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Abstract 

The quest to build anthropomorphic machines has led researchers to focus on knowledge and 

the manipulation thereof. Recently, the expert system was proposed as a solution, worldng 

well in small, well understood domains. However these initial attempts highlighted the tedious 

process associated with building systems to display intelligence, the most notable being the 

Knowledge Acquisition Bottleneck. Attempts to circumvent this problem have led researchers 

to propose the use of machine learning databases as a source of knowledge. Attempts to 

utilise databases as sources of knowledge has led to the development Database-Driven Expert 

Systems. Furthermore, it has been ascertained that a requisite for intelligent systems IS 

powerful computation. In response to these problems and proposals, a new type of 

database-driven expert system, Cogitator is proposed. It is shown to circumvent the 

Knowledge Acquisition Bottleneck and posess many other advantages over both traditional 

expert systems and connectionist systems, whilst having non-serious disadvantages. 
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Chapter 1 

Introd uction 

Expert systems playa prominent role in AI. They have been successfully applied to prob­

lem solving in many fields including medicine, exploration, system configuration and plan­

ning. However, their continued progress and acceptance appears to be threatened by the 

classical Knowledge Aquisition Bottleneck (KAB). Current trends indicate that expert sys­

tems of any real use will have to posess large knowledge bases - for instance MCC's CYC 

knowledge base [Lenat & Sheperd, 1990] that seeks to embed all common sense knowledge 

in a knowledge base is to posess 108 facts and rules - exacerbating the problem. The 

resulting largesse of the KAB led researchers to suggest databases as alternative sources 

of knowledge in an attempt to circumvent the KAB . This has spawned the development 

of Database-Driven Expert Systems (DDES's). Large databases are commonplace today. 

The recent great advances in concurrency have spawned the design and development 

of new hardware architectures and software designs and is generally accepted as the only 

viable alternative to increasing the performance of computer systems. 

Fuzzy Logic has been conclusively shown to efficiently describe and control many com­

plex real-world systems. It has also been shown to correlate closely with Human Informa­

tion Processing (HIP) and there have even been arguments for its use in legal procedures 

[Kosko, 1992]. Furthermore, similarity is immanent to HIP and to complex systems in 

general. People react similarly to similar situations or stimuli, as do many natural systems. 

Similarity is thus a pervasive quality. 

Consequentially, a new type of expert system that bypasses the KAB , precludes many 

other problems associated with traditional expert systems, utilises the ever-advancing 

power of concurrency, the descriptive capabilities of fuzzy mathematics and the imma­

nence of similarity is proposed. Called Cogitator and deemed to be a dialect of Case-Based 
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Reasoning (CBR), the system seeks to emulate HIP according to the cognitive theory of 

Case-Based Reasoning (CBR) and the HIP descriptive capabilities of fuzzy mathemat­

ics. Furthermore, the use of concurrency to improve performance and by using databases, 

complete decomposability is possible simplifying the concurrency aspect and yielding a 

scaleably accurate system that is virtually database independent and therefore commer­

cially viable. 

The next chapter introduces the main ideas associated with concurrency. The differ­

ent classes of concurrent architectures, performance and compiler issues, programming en­

virnoments and applications are briefly considered. Thereafter, a short chapter introduces 

the main characteristics associated with expert system such as knowledge and knowledge 

acquisition, representation, valldation and management. 

Chapter 4 illustrates an emerging field formed from the confluence of concurrency and 

AI : Concurrent AI, in particular, Concurrent Expert Systems. The different types of 

concurrent expert systems are introduced and briefly discussed . Emphasis is placed on 

the problems associated with concurrent expert systems as it forms a major thrust for the 

development of the concurrent expert system paradigm proposed in this thesis: Cogitator. 

Chapter 5 introduces fuzzy logic. Some elemenntary fuzzy theory is initially introduced 

whereafter, fuzzy measures and membership functions, to be extensively utilised by the 

paradigm proposed in this thesis, are illustrated. Finally, fuzzy expert and control systems 

are introduced and some sample applications thereof are given. 

In Chapter 6, a new dialect of Case-Based Reasoning, Memory-Based Reasoning, is 

illustrated. Memory-Based Reasoning (MBR) forms the basis for the system proposed 

in this thesis, in fact Cogitator is a fuzzy Memory-Based Reasoner. Initially, Case-Based 

Reasoning is introduced whereafter the main aspects of MBR are considered. 

Finally, chapter 7 introduces and illustrates the system proposed in this thesis: Cog­

itator. The membership functions it utilises, the incorporation of fuzzy logic as well as 

its operation and an illustrative implementation using a popular concurrent programming 

paradigm, are considered. Finally, the advantages of Cogitator vis-a-vis traditional rule­

based expert systems and connectionist systems, are given. 
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Chapter 2 

Concurrency 

Concurrent computing is here to stay. Developed extensively over the last two decades, 

it has influenced almost all aspects of computing. This chapter seeks to briefly introduce 

concurrency and illustrate its necessity for significantly improving performance. Later 

chapters illustrate how the confluence with AI has given rise to Concurrent AI, in partic­

ular, concurrent expert systems. 

2.1 Origins 

Despite convincing evidence that Concurrency 1 is a 20th century development, the earliest 

reference to it is believed to be in General L. F. Menabreas' publication in the Biblioteque 

Universelle de Geneve, in October 1842 entitled Sketch of the Analytical Engine Invented 

by Charles Babbage2 • Listing the utility of the analytical engine, he writes: 

"Secondly, the economy of time: to convince ourselves of this, we need only to recollect 

that the multiplication of two numbers, consisting each of twenty figures, requires at the 

very utmost three minutes. Likewise, when a series of identical computations is to be 

performed, such as those required for the formation of numerical tables, the machine can 

be brought into play so as to give several results at the same time, which would greatly 

abridge the whole amount of the processes." 

Nevertheless, it does not appear that the ability for concurrent execution was incorpo­

rated into the design of the Analytical Engine, but that the idea had occurred to Babbage 

lConcurrency is used as a collective term to encompass the technically different descriptors Parallel 
Processing, concurrency a.nd multiprocessing. These terms are defined later. In the sense used here, it 
refers to the traditional definition : the ability to execute ma.ny processes at once. 

zIn designing his Analytical and Difference engines, Charles Babbage pioneered the many notions of 
computing. His endea.vours resulted from his desire to compile reliable astronomical tables. 
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about a hundred years before the technology matured [Hockney & Jesshope, 1981). Nev­

ertheless , in his designs, Babbage rejected serial arithmetic owing to the resulting long 

execution times and designed the analytical engine to perform arithmetic on fifty deci­

mal digits in simultaneously is significant [Hockney & Jesshope, 1981}. Consequentially, 

the initial ideas and uses of concurrency concerned performing arithmetic on each digit 

simultaneously 3 . 

According to [Hockney & Jesshope, 1981}, the architecture of most of the early and 

subsequent electronic computers may be traced to the concepts outlined by in a 1946 paper 

of Burks, Goldstein and von Neumann, entitled "Preliminary discussion of the logical 

design of an electronic computing instrument", the idea of a serial computing machine 

that subsequently became known as the "von Neumann Architecture" originated 4. 

The fundamental characteristics of the von Neumann architecture were that both data 

and programs are stored in memory and that programs be able to alter themselves during 

execution, as is manifest in modern computers. The other main characteristic is that there 

be one main processor. 

However, having only one main processor, and consequently one processor to memory 

interface through which instructions and data flow, creates a bottle neck that has became 

known as the "von Neumann bottleneck". Furthermore, the belief that many processors 

could perform a task or tasks quicker than a single processor heralded the advent of 

concurrent computers. This duplication of processors was (and still is) believed to preclude 

the limitations associated with the von-neumann architecture. Fl:om these initial ideas 

grew the area of concurrency. 

The first concurrent computer was the Harvard Mark I or Automatic Sequence Con­

trolled Calculator, a 52-by-8 foot electro-mechanical monster. First proposed by Howard 

Aitken in 1937, the rationale behind its design was that the automation of complex or 

extended computing could be achieved by linking a number of automata in a network and 

arranging the data to be passed around the network and operated on by the automata in a 

pre-set sequence. This is essentially the notion of pipelining. The chronological evolution 

of concurrent computers may be found in any of the multitude of books on concurrency. 

Computer technology may be conceived of as developing in a series of generations, each 

3This has been perpetua.ted in teda-y's microprocessor architectures. 
"'Nevertheless, the first stored-program electronic computers, the ED SAC (1949) and the EDVAC 

(1952), performed bit- serial arithmetic. Considering Ba..bbage's ideas and designs, this seems odd, but 
may be a.ttributable to the need for a. working electronic computer a.nd consequentially simple circuitry 
used to implement bit-serial arithmetic. 
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characterised by some important development. The first generation was characterised by 

the development of vacuum tubes during the mid 1900's, the second, third and fourth 

generations were characterised by the development of, respectively, transistors, Integrated 

Circuits (IC's) or Large Scale Integration (LSI) and VLSI technologies. The fifth and re­

cently announced sixth generations marked a general departure from hardware innovations 

to software, they are characterised, respectively, by thinking machines based upon formal 

logic (PROLOG) and biological/adaptive computing based upon soft (fuzzy) computing. 

See [Baise, 1993] for more information. 

The 1980's heralded the advent of large scale parallelism as a principal innovation that 

has extended into the 1990's, and is bound to extend further. 

2.2 Introductory Concepts 

Firstly, it is significant to delineate between multiprocessing, parallelism and concurrency, 

since these terms are often incorrectly and interchangeably used. 

Multiprocessing implies "consisting of or having many", with no restriction on the 

constituent parts. It refers to the use of two or more PE's with a common memory, but 

each executing a different program. Multiprocessing means one application per processor. 

Parallel Processing or Parallelism means" like in essential parts" wherein a process is 

or processors are replicated at least once. It refers to the dividing up of one application 

among many processors. This may be accomplished in one of many ways: 

• One processor doing many jobs 

• N processors doing one job 

• N processors doing M jobs. 

Also, a job may be thought of as being performed on 

• one processor 

• one processor with many processing units 

• many processors connected by links. 

From these different ideas, various parallel architectures may be derived. 
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Parallel processors speed up the computation of a single job while multiprocesors 

handle more jobs at a given time. Multiprocessing improves productivity, while parallel 

processing accomplishes a single job quicker. 

Concurrency encapsulates both parallel and multiprocessing, meaning that an appli­

cation is concurrent if it may be implemented in a parallel or multiprocessing manner if a 

suitable algorithm may be found. 

In Symmetric Multiprocessing, all the processors are homogenous and generally no one 

processor exerts control over any other one. 

Asymmetric Multiprocessing is essentially the master-slave architecture where one (or 

more) master processors control all the processors in the computer system. 

The move from sequential programming and computers to their concurrent counter­

parts is most certainly non-trivial. When parallelism is introduced, the problems of dead­

lock, livelock, race conditions and unwanted data sharing arise. 

Deadlock occurs when two (or more) processes cannot proceed since they are interde­

pendent and each need the other's next computed value in order to proceed. 

Livelock occurs when two (or more) processors repetitively perform their (respective) 

same tasks since the flags or values needed to cause them to proceed to another task never 

occur. 

When a shared memory scheme is implemented, Race Conditions occur when a process 

needs to use a value computed or updated by another process and fetches the value before 

it has been properly computed or updated. It thus fetches the wrong value leading to 

problems during execution. 

Unwanted Data Sharing arises when data that should be local to a certain process is 

accidentally accessed by another process and, possibly, mistakenly modified. 

Many techniques have been developed to detect program constructs that could lead to 

any of the aforementioned problems so that they may be precluded from occurring. 

Parallelism may be introduced in either of three principal ways : 

(1) Pipelining where assembly line techniques are used to improve the performance of 

an arithmetic or control unit 

(2) Functional where several independent units that perform different functions such as 

arithmetical and logical. These units operate on different data, and 
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(3) An Array of identical processing elements under common control performing the 

same operation simultaneously on different data (i.e. in lockstep). 

2.3 Architectures and Classifications 

The notion of increasing processing power by replicating processors has spawned the de­

velopment of different architectures and the classifications thereof. 

Architecture refers to the granularity of the processing elements (PE's) , their topo­

logical organisation (interconnection network) and the distribution of control across the 

PE's. 

The Granularity a PE refers to its processing power and capabilities, ranging from 

single bit processors (fine) to general purpose ones (coarse) . Topology refers to the pattern 

and density of the interconnection pattern of the PE's which range from lightly connected 

(sparse) to heavily connected ( dense). Control refers to the allocation of tasks and their 

subsequent synchronisation, ranging from loose to tight. 

Attempts to classify concurrent aomputer architectures has led to three classification 

schemes, those of Flynn, Enslow and Shore of which Flynn's is the most popular. 

[Flynn, 1966] devised a taxonomy outlining four classes of concurrent computers that 

have become standard terminology in concurrency. Based upon the nature of the in­

struction stream (the sequence of operators) and the data stream (sequence of operands), 

Flynn determined four classes according to the multiplicity of these two characteristics. 

The four classes are Single Instruction Single Data (SISD), Single Instruction Multiple 

Data (SIMD), Multiple Instruction Single Data (MISD) and Multiple Instruction MUltiple 

Data (MIMD). 

SISD refers to the traditional von Neumann uniprocessor computers, the decoding of 

only one instruction per execution cycle. 

MISD refers to the simultaneous operation of many instructions operating upon a single 

duplicated datum, i.e. many processors operating on a single data stream. Applications 

exhibiting this type of organisation include Digital Signal Processors (DSP) where different 

solution algorithms operate simultaneously on the same data stream. Another definition 

of MISD includes pipelined processors which, like a production line, comprises stages each 

of which operates on the data and then passes it onto the next stage. The veracity of 

this latter definition is somewhat questionable, since pipelined machines tend to resemble 
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MIMD-type machines (see below) . 

SIMD refers to a single duplicated instruction operating simultaneously on different 

data. These machines are also termed array processors in which the PE's are identical 

and are synchronised by a single master processor to operate in lockstep. 

In MIMD-type organisations, a collection of instructions operates simultaneously on 

a collection of different data items. Each PE has its own independent instruction and 

data stream and is more general purpose than those of SIMD machines . The PE's may 

be synchronised or not and the amount of communication is minimal. MIMD is the most 

popular organisation. 

Another taxonomy, based upon the degree of coupling between processors in multi­

processor arrays, is that of Enslow [Enslow, 1977] Coupling is the method by which PE's 

communicate, by network links, buses or shared memory. Coupling may be physical or 

logical ranging from loose to tight. 

Loose Coupling implies a lack of direct sharing of process address space, no sharing 

of primary memory. On the physical level this means that communications are message­

based, and on the logical level, that the processors are autonomous. Collective tasks are 

completed cooperatively. 

Tightly Coupled systems permit shared memory access and inter- processor communi­

cations are word by word. On the physical level, there is an overlapping address space, 

while, logically, the processors are synchronised in that one processor may at its discretion 

exercise control over another. 

It should be noted that it is possible to create systems that are physically loose, yet 

logically tight, for example, Transputer arrays with synchronised processors for real time 

applications. 

Another taxonomy based upon a hierarchial classification according to how a machine 

is organised into its constituent parts, is attributable to [Shore, 1973] . Six classes of 

machines were identified and assigned a numerical designator. This classification scheme 

is not widely used, if at all. Furthermore, the numerical classes are somewhat archaic in 

that a biologist will not describe a certain plant as of class I; rather, a more descriptive 

linguistic or acronymic name would be chosen. Flynn's taxonomy is the most popular and 

informative and is used throughout this thesis. 

The architectures of parallel and multiprocessors are numerous and varied. Figure 2.3 

overleaf is a brief taxonomy of them. More information on each may be gleaned from any 
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of the many books on concurrency. 

Certain combinations of two of the four Flynn classes mentioned above, give rise to cer­

tain hybrid architecture classes. [Almasi & Gottlieb, 1989] describe a class ca.lled MSIMD 

(Multiple SIMD) Tree Machines and MSIMD Reconfigurable Machines. They also classify 

VLIW architectures as hybrid. 

MSIMD Tree Machines are geared towards more massive para.llelism than MIMD. They 

have very many simple processors (106 PE's for the two machines that have been built) 

• that cannot store their own programs. Two such computers are the Non-Von and the 

Cellular Computer. 

MSIMD Reconfigurable Designs employ a circuit switched network to enable programs 

to have their resources dynamica.lly reconfigured to fit the structure of (primarily scientific) 

problems. Two prototype machines have been built, the TRAG and the PASM having 8 

and 16 processors respectively. However the goals are machines with more processors 

(1024 for the PASM). They may thus be considered to be in the experimental stage. 

Considering this panoply of architectures, which one may be deemed to be the most 

apposite for a.Il applications? It is genera.lly accepted that no one single architecture offers 

the best solution for a.Il applications. Some architectures are more appropriate for certain 

types of applications; e.g. array processors are efficient for spatial problems such as fluid 

flow analysis whereas a vector or systolic processor would be appropriate for computing 

Fast Fourier Transforms, which require many inter-processor communications. [Desrogers, 

1987] states that 

"There is ... no best parallel or multiprocessor organisation; each must be judged upon 

its benefits and weaknesses relative to the intended application" . 

2.4 Performance Issues 

To ascertain the performance of concurrent machines is important since one needs to know 

whether these architectures actua.lly do offer meaningful speedup. It is genera.lly difficult 

to determine the performance of a uniprocessor machine, let alone a concurrent one, owing 

to a multitude of factors . Before discussing them, some preliminary concepts need to be 

introduced. 

!iCompa.re to the 6 * 103 (64K) processors of the Connection Machine CM-2. 
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Architecture Topology Control Granularity Classification 
(Connectivity) (Flynn) 

Multiprocessor Light Loose-Medium Medium-Coarse MIMD 
A centralised operating system and autonomous processors 

Vector Processors Medium I Tight Medium SIMD 
Contains functional units each of which performs the same operation on all elements 
of the vector simultaneously. Has a vector and scalar unit. 

Pipeline Processors Medium I Tight Fine-Medium MIMD/MISD 
Applied to vector machines. Has a number of stages each of which performs a 
specified operation within a specified time period. Pipeline may be reconfigurable 
(multi-function) or not (single function). e.g. the Harvard Mark 1. 

Array Processors Heavy I Tight Fine SIMD 
PE's arranged in a rectangular grid connected to the four nearest neighbours. 

Systolic Processors Medium-Heavy I Tight I Fine MISD 
Pumps operands in one end, operates on them and pumps the results out the other 
end. Precludes I/O and compute bound problems. An extension to the concept of 
pipelining (multidimensional and multidirectional flows. Great for special purpose 
applications such as Fast Fourier Transforms. 

Cubes Medium I Loose-Tight Medium MIMD 
N processors where N is a power of 2. PE's located at the corners of the cube, 
the interconnections forming the cube edges. Each PE is located such that its binary 
numeric address differs from those of its neighbours by one bit. Hypercubes have a 
dimension greater then 3; i.e. at least 24 = 16 processors. 

Associative Heavy Tight Fine SIMD 
Processors 

Data is content addressable - no physical/logical address needed, retrieval is based 
upon the contents of the word. Operations performed on data in parallel. 
Associative memory array searched concurrently for a match. Ideal for implementing 
certain database searches since searches are 0(1). e.g. Goodyear STARAN. 

Interconnected Light-Heavy Loose-Tight Fine-Coarse MIMD 
Network Processors 
PE's are connected via some data routing network with a capacity to transfer many 
items simultaneously (eg butterfly and shume networks). Appropriate for problems 
comprising many interacting elements such as Fast Fourier Transforms. ego 'Iransputer networks. 

Data Flow Light-Medium I Loose-Medium I Medium MIMD 
Based upon the idea that a sequence of data should control the machine and not the 
instructions. Operations occur when operands are ready to be operated on . Comprises 
separate functional units that may simultaneously operate on the data. Systems are 
functionally or single assignment programmed. 

Very Long Light-Medium Tight Medium MIMD 
Instruction (no general 

Word (VLIW) purpose PE's) 
Rather than replicate processors, the instruction processing portion is widened by 
an order of magnitude relative to the usual instruction length. Conceptual to date 
owing to difficulties in programming such machines [Desrogers, 1987J. 

Table 2.1: The Characteristics and Classification of Concurrent Architectures according 
to Flynn's Taxonomy 
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Concerning performance, computers may be classified as either Compute or I/O bound. 

A machine that is compute bound typically has its processor(s) unable to process data or 

instructions in accordance with the speed with they arrive along the buses or networks. 

For I/O bound machines, the bandwidth of the buses or networks cannot cope with the 

I/O capabilities of the computer's microprocessors. 

The Peak Rate of a computer system (the one that manufacturers readily quote) is the 

maximum computational rate that may be theoretically achieved when all modules are 

fully utilised. 

The Sustained Rate of a computer system is the rate achieved for the solution of a 

particular task. 

The performance of computers is typically measured in Floating Point Operations per 

Second (FLOPS) and Instructions Per Second (IPS). For powerful computers, the terms 

Millions of FLOPS (MegaFLOPS) and Millions of IPS (MIPS) are often used. 

The Speedup of machine lover machine II is given by the ratio .ll.,' where tI and tIl 
" 

are, respectively, the times taken to execute the same program on machines I and II. 

It seems obvious that the amount of parallelism that may be extracted from a particu­

lar problem depends upon the inherent sequentiallty in the algorithm designed to solve the 

problem. This notion is formalised in Amdahl's law [Amdahl, 1967] which states that the 

inherent sequentiality is the ultimate limiting factor of parallelism on any machine. There 

have been criticisms of this law as being unrealistic [Hockney & Jesshope, 1981); never­

theless, it serves as a general indication as to the appropriateness of a certain architecture 

to a certain problem. 

There are certain performance criteria that pertain to specific architectures. For in­

stance, concerning pipeline computers, there are the notions of Half Performance Length 

and Vector BreakEven Length, and for interconnected network processors, there is latency. 

Half Performance Length refers to the length of a vector that produces half the through­

put while Vector Break-Even Length is the minimum vector length that makes operating 

in vector mode more efficient than operating in scalar mode. Latency refers to the time 

required to set up the commuuication between any two processors . It varies from computer 

to computer. 

To ascertain the performance of various computers, programs that test certain com­

putational aspects of computer systems have been developed. In addition, certain mathe­

matical theories, such as that of Petri Nets have been developed ascertain and predict the 
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performance of various computers. 

A Benchmark is a program that, via a series of computations, operations and actions, 

seeks to provide a relative performance index of a computer's performance. These pro­

grams are often written in a high level language such as Fortran and contain code to test 

various aspects of a computer system such as floating point and looping. 

Such programs must exhibit three characteristics: they must produce an intelligible 

result, the result should be repeatable and should state what aspects of a computer it 

tests. 

The two most common benchmark programs are the Dhrystone and Whetstone which, 

respectively, test the integer and floating point capabilities of a computer. The Whetstone 

was the first benchmark and was succeeded by the Dhrystone. 

The Whetstone program contains code for floating point, array manipulation as well 

as looping and subroutines. 

The Dhrystone program contains code for pointer manipulation, array referencing, and 

string manipulation and record access . The relative performance returned by this program 

is measured in Dhrystones. 

The latest benchmark is the SpecMarks program, which contains code to test many 

aspects of computers and then combines these into an aggregated relative index. 

A common program to rate basic speed without procedure calls is the Sieve of Eratos­

thenes, based upon Erastothenes' algorithm for calculating prime numbers up to a certain 

integer, suchas 16 000. 

However, the result of a benchmark program cannot be seen to give a true indication 

of a computer's speed. Owing to compiler efficiencies, operating system overhead, caching, 

the language used, the nature of the problemas well as its algorithm and the architecture 

of the computer, an accurate measure is difficult to obtain for uniprocessor systems, let 

alone multi and parallel processing systems. One solution is to use many programs and 

use a form of averaging to arrive at an aggregated index, or to disable all caching since 

benchmark programs are typically fairly small and may easily fit into the cache yielding an 

unrealistic result . Another solution is to develop specific benchmarking programs to test 

the efficiencies of various multi- and parallel processing systems on a range of problems with 

different natures should be designed. For instance, spatial or datarparallel problems such 

as fluid flow using cellular automata map very well to SIMD-type computers. Alternatively, 

problems exhibiting a large degree of locality and are non-uniform map better to pipeline 
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or vector machines. There should be a collection of tests to test both spatial and local 

information-based problems. 

Some people adopt the simplistic view that adding N processors should reduce the 

execution time by a factor of N. However, there are a multitude of factors that refute 

that idea, such as the nature of the problem, the target architecture, inter-processor 

communication overhead, the number of and the type of processors. Very seldom is a 

linear speedup achieved, and mostly the speedup is very sub-linear . Sometimes, usually 

owing to communications Overheads (eg. latency), there may even be a slowdown. 

As may be deduced, measuring the performance of a concurrent computer is no easy 

task. Manufacturers and testers seem to still argue over the performances reached by 

certain concurrent computers. 

2.5 Detection and Transformation 

For programs to execute with a reasonable degree of efficiency on a concurrent computer, 

the concurrency in programs needs to be appropriately detected and utilised. 

Concurrency in a program may be classified as either Explicit or Implicit. Explicit 

concurrency is the conscious placement by the programmer of certain language statements 

to indicate concurrency. Implicit concurrency is the concurrency that may be determined 

in a program without any conscious placement of specific language constructs to indicate 

parallelism. 

The theory of dependency analysis was introduced by Professor David K uck for the 

detection of concurrency and has subsequently been used in register allocation and memory 

hierarchy management. 

Loops and arrays commonly occur in programs and form the main target for transfor­

mation. 

Nevertheless, millions of lines of Fortran code written over the last 30 years for sequen­

tial machines. With the realisation that concurrency offers the only means of significant 

speedups, instead of rewriting all this code for concurrent computers, why not transform 

these sequential codes into parallel form? This notion has necessitated research and de­

velopment in implicit concurrency detection and transformation. 

Owing to the vagaries associated with concurrent programming, many techniques have 

been developed for the automatic detection of concurrency in programs such as loop un-
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folding and statement substitution. However, it is generally accepted that these tech­

niques are limited by the language used, the nature of the problem, the language used 

and the target architecture and that only partial solutions may be expected in the near 

future [Zima & Chapman, 1991J. Implicit detection is only partially explicit parallelism 

is needed to really attain maximum performance therefore there is an emphasis on the 

programmer to consider these characteristics. This has led to .the development of special­

purpose concurrent languages such as Parallel C and Occam as well as parallel algorithms 

and programming environments that provide the construction of powerful tools for the 

detection of parallelism. 

Automatic restructuring compilers (super compilers) have been developed (cf. Cray 

Research's new CFT Fortran compiler). They are termed autotasking compilers since they 

detect the parallel/vector constructs in programs and transform them to an appropriate 

parallel/vector form thereafter generating parallel/vector code. 

[Zima & Chapman, 1991J state that knowledge-based systems may play an impor­

tant part in the detection of concurrency. On the relative difficulties of parallelism and 

vectorisation 6 Zima and Chapman [Zima & Chapman, 1991 J state that 

... while veetorisation has evolved into a well-understood technique and many 

of the principal problems of parallelisation have been successfully attacked, the 

variety and structural complexity of parallel systems has so far prevented a 

general solution of the parallelisation problem. 

and that 

In general, the complexity of the relationships between the algorithmic structure 

and the transformation strategies prevents global optimal solutions . . " 

2.6 Programming Paradigms and Environments 

Methods for the representation and detection of parallelism have been described. In ac­

cordance with the difficulties associated with concurrent program development, certain 

concurrent programming paradigms environments for parallel program development and 

specification have been developed. Typically these environments contain support tools to 

allow detalled specification and coding of the tasks to be implemented as well as inter 

processor communication protocols and concurrent architecture desired . 

6Zima. and eha.proan distinguish between parallelism and vectorisa.tion to illustra.te the rela.tive diffi­
culties of the detection and transformation methodologies pertaining to each. Usually, though, parallelism 
is thought to supersume vectorisation. 
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[Desrogers, 1987] mentions Snyder's POKER system and another system developed 

at Rice University. In POKER, a user specifies computations and maps them onto a 

specified parallel graph using a graphical tool to arrange the graph's nodes and edges. 

Rice University's system was designed to allow the development of large parallel programs 

without having to recompile the whole program when an addition or correction was made. 

It contains an intelligent Fortran editor, an intelligent debugger and an optimising compiler 

(as well as a vectoriser) to aid program development. 

There have been a few concurrent programming paradigms that have been developed, 

the most popular of which appears to be the Linda paradigm developed at Yale University. 

Linda is a simple, yet powerful, concept in which certain simple functions are added to a 

traditional programming language to facilitate concurrent computation. Central to Linda 

is a Tuple space representing a shared memory through which communication between 

processes (sending variables or messages) occurs using the Linda constructs embedded into 

the traditional language. Versions of Linda have been ported to many platforms including 

Transputers and Hypercubes. Linda will be discussed more completely in chapter 5. 

2.7 Applications 

Almost 10 years ago, the Nobel physicist, Kenneth Wilson, suggested compiling a list of 

projects that presented grand challenges to researchers and their supercomputers. 

Currently, the list is extensive including projects from areas such as molecular biol­

ogy (designing protein structures), chemistry (understanding catalysis), physics (quantum 

chromodynamics), medicine (drug design and interaction), geography (weather prediction) 

and engineering (designing aircraft) . 

In 1991, the US Senate ratified the High Performance Computing and Communication 

(HPCC) initiative which is to investigate these grand challenges. 

The key to these "grand challenges" is visualisation, to graphically see how the phenom­

ena being studied appear and evolve. All of these "grand challenges" demand phenomenal 

computing resources. The convenience provided by a "teraflop" machine - one capable of 

performing one "trillion" floating point operations per second has been mentioned often 

[Zorpette, 1992b]. For instance, a TeraFlop machine would allow the visualisation of air 

flow over a "whole" aircraft (and not just certain parts of it) and the modelling of global 

weather. According to [Zorpette, 1992a], certain manufacturers claim that they will be 
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able to achieve this performance by the end of the decade. Below is a figure illustrating 

the various grand challenges, their estimated processing requirements and the expected 

year of solution. Note the presence of speech and natural language processing as well as 

computer vision and cognition, major aspects of AI. 

Figure 2.1 The Estimated Processing Requirements and the proposed date of solution of 
the Grand Challenges. (Source: [Grossmann, 1992) ) 

Oimale Modelling 
Fluid Turbulance 

1000 Pollution dispersion 
Human genome 
Ocun Circulation 

100 - QCD 
Semiconductor Modelling 

Vehicle Signature Superconductor Modelling 
Combustion Systems 

mtra-large Scale Vision and Cognition 
8 10 -

ICDesign 

" • § Structural 

<ll Biology 
" Po 

72 Hour ~eatber " E 
~ Pharamacxulical 
0 

1.0 - Design U Chemical Estima , of 
~ 

" 48 Hou r Dynamics Higgs oson .; 
0' Weather 
" M" Speech and '" 

Airfoil Design Natural 
Language 

3-D 

Plasma 
0.1 - 2-D Plasma Modelling Modelling 

I I 
1980 199' 2000 

Billion oCFloaling-Point Operations I Second 

2.8 Conclusion 

Given the problems and difficulties associated with concurrency, why pursue the field so 

fervently? Why concurrent machines? Why won't very powerful serial machines suffice? 

The performance of serial computers is limited by the familiar "von Neumann Bottleneck" 

(serial path used to move instructions and data between memory and the CPU). Consider 

the state of present and a prognostication of future performance-enhancing technologies. 

The physical limits of semiconductor fabrication and design are being reached in that 

processors cannot be made dense enough such that the minimal time delays that allow for 

high speed may be facilitated. Furthermore, highly dense chips of exotic materials packed 
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close together present difficult cooling and packaging problems [Walz, 1990J. 

Over the next decade, semi-conductor technologies such as Gallium Arsenide, the 

Quantum Flux Parametron (QFP) and the Josephson Junction (JJ) (Gallium Arsenide 

currently provides a speedup factor ofthree) and further miniaturisation (VLSI technology 

is generally acknowledged as nearing its limits concerning miniaturisation) will increase 

performance by a factor of five [Wah, 1990J. 

[Walz, 1990J also mentions that clever caching and instruction prefetch techniques will 

provide a speedup factor of two and the use of multiple functional units a factor of four 

thus theoretically increasing the fastest uniprocessors from the current 1 GFlop to about 

40 GFlops. Further, compiler technologies could allow as many as sixteen such processors 

to be linked together thus producing a theoretical peak performance of 640 Gflops [Walz, 

1990J. Also, higher clock rates facilitated by better cooling technologies and advances in 

semiconductor design could further increase processing power by a factor of two. Consider 

DEC's new Alpha 7 chip that is being designed to run at 200 MHz [IEEE, 1992J . 

The most powerful massively parallel machines already exceed the power of today's 

fastest sequential machines: the 65 536 processor CM-2 is realistically capable of speeds 

in the order of 5 GFlops with a peak performance of 28 GFlops. Further, the Defense Ad­

vanced Research Projects Association (DARPA) has targeted a massively parallel TeraOps 

(Trillion operations per second) machine by 1995 at a cost of less than $ 100 million 

The main ideas and problems associated with concurrency have now been introduced 

and the reasons for the advent, continued use, research and development of concurrent 

computers have been stated and substantiated. At this stage, the reader should be con­

vinced that concurrency is here to stay and does offer a viable alternative to serialism in 

computing for higher performance. A confluence of the notions developed here and those 

of Artificial Intelligence (AI) initiated the field of Concurrent AI. The main ideas asso­

ciated with expert systems, in particular their functioning and the problems associated 

with building them. Thereafter, chapter 3 seeks to introduce the confluence of concurrency 

and AI - concurrent AI - with particular emphasis on concurrent expert systems and the 

problems 

7DEC's new Alpha chip is listed in the Guineas Book of Records as the fastest microchip for 1992. 
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associated with building them. 
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Chapter 3 

Expert Systems 

Expert systems playa prominent role in AI. They have been successfully applied to prob­

lem solving in many fields including medicine, exploration, system configuration and plan­

ning. After a brief historical account of their origins, the aspects of expert systems' design 

and functioning, viz. architecture, the process of knowledge organisation, acquisition and 

validation, as well as their associated vagaries are briefly introduced and discussed. 

3.1 Origins 

In the late 1600's, Gottfried Wilhelm Leibnitz 1 sought to build an aJI-purpose calculating 

machine, becoming the first person to consider building a machine to mechanise thought. 

Leibnitz considered reasoning to be the identification of identities among ideas. His pri­

mary motivation was that, being a diplomat and lawyer, he encountered the problems that 

could arise from disagreement, especially on the political level. He ascribed the problems 

to the imprecision of natural language and wondered if, by mechanising the thought pro­

cess, disagreement would be eliminated. As he wrote 

"If controversies were to arise, there would be no more need of disputation than 

between two philosophers than between two accountants. For it would suffice to 

take their pencils in their hands, to sit down to their slates and to say to each 

other ( with a friend to a witness, if they liked): let us calculate" 

[Pratt, 1987a) . 

'Gottfired Wilhelm Leibnitz [1646-1716J. Mathematician, philosopher, lawyer and diplomat. Indepen­
dent inventor of the calculus, he is certainly one of the grea.test scientists. 
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This was the notion behind Leibnitz's project for the mechanisation of thought , the 

first ideas of an expert system. Leibnitz may thus be considered to have had the first ideas 

to build a Thinking Machine. This becomes apparent from his writing: 

" how much better will it be to bring under mathematical laws human 

reasoning, which is the most useful and excellent thing we have. Logicians 

are not to be blamed because they have pursued these tasks, but that they have 

wearied boys with them" 

[Pratt, 1987b]. 

So Leibnitz believed that logic as the systemisation of reasoning can and should be 

mastered, and thereafter mechanised. He advanced the idea of syllogism inasmuch as he 

sought to apply it to the whole 'of life rather than to just shapes and lines like Euclid did. 

He also placed great emphasis on representation or notation and developed a representative 

scheme for concepts. He advanced a universal polygraphy, wherein a complex representa­

tion of an object was represented as a list of its simple attributes, used in modern-day list 

processing languages such as LISP. 

Leibnitz built a calculator, but not for human reasoning per se. Sadly, towards the 

end of his life, Leibnitz' work sank into obscurity and his works left unread until the 

renaissance of mathematics in the nineteenth century. The denouement of Leibnitz' ideas 

on computation found a prologue in Charles Babbage. 

The rise of mathematics in the nineteenth century, especially the advances made in 

extending algebra spurned the interests of Charles Babbage 2 in mechanisation. Babbage 

along with George Peacock 3 and others toiled at the notion of algebra for calculation 

leading to the axiomatisation of Algebra. 

Algebra in this new form was conceived of as "the SCIence of general reasoning by 

symbolic language" according to Peacock [Pratt, 1987c]. 

Owing to his design of the analytical and difference engines, Babbage is sometimes 

referred to as the father of computing. By their conceptions and designs, both machines 

were certainly marvels of engineering. 

'Charies Babbage [1792-1871J Self-taught mathematici"" a.nd inventor. He inherited money from his 
banker father which he used to finance his inventions. Among his inventions were the first speedometer, 
skeleton keys and the first actuarial tables. He also advocated the division of labour in factories the 
effectiveness of which Ford showed in his US car factory. His criticisms of the British method of postal 
cha.rges led to the introduction of sta.mps with the Penny Black in 1840. 

3George Pea.cock [1791-1858] English mathema.tician, son of a. Curate. He wa.s educa.ted a.t home 
thereafter entering and gradua.ting from Cambridge University. He published a. text on Algebra. in 1830. 
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Babbage and Ada, Lady Lovelace 4 believed that the ability to manipulate algebraic 

symbols would allow the Analytical Engine to use a universal language that could represent 

the laws governing the relationships between any two entities. In a similar vein, Ada stated 

that the Analytical Engine should be thus be able to compose music if only 

" ... the fundamental relations of pitched sounds in the science of harmony 

and musical composition" 

were expressible in the universal language she envisaged, 

" the engine might compose elaborate and scientific pieces of music of any 

degree of complexity or extent" 

[Pratt, 1987c] 

Countess Lovelace considered the Analytical Engine's ability for music, but concluded 

that original thought could not be imitated. The Analytical Engine was never built, yet 

the ideas and initial designs of Babbage and Lovelace were revolutionary. 

Mter Babbage, mathematics continued to advance and eventually, in 1936, Alan Turing 

, and others saw what Babbage and Lovelace had done before: that arithmetic was not 

the only function of machines. 

When in the 1930's, Turing and others entertained the idea of building brains, the 

developments in mathematical logic were of paramount importance. Turing's work in 

discrete state machines led him to conceive of the brain as such a machine performing the 

function of controlling behaviour. Ten years later, he proposed to exploit this discovery 

and his observations of living forms in the building of a brain with his famous 1950 paper 

Can Machines Think? and initiated the Brain Project. There, Turing entertained the idea 

that every human thought could be expressed by his universal machine if it was suitably 

programmed. He also proposed what became the Turing Test of intelligence, a method to 

determine whether a machine exhibits intelligence or not. To date, no-one has developed 

a computer to pass the Turing Test and it is still an active area of research . 

• Ada Augusta, Lady Lovela.ce [1815-1852J. Daughter of Lord Byron. Her descriptions of the Analytical 
Engine preserved knowledge of it for posterity. A lady of brilliant intellect . 

S Alan Ma.thison Thring [1912-1954]. British Ma.thematician. Showed an exemplary a.ptitude for ma.the­
matics during his early 20's. He proved the centra.llimit theorem without knowing that it ha.d been proved 
already. Worked in Numerical Analysis and noted for his ma.jor contributions to the early development of 
computing with his Turing Ma.chines and notions of machine intelligences. Was concerned with the mech­
anistic interpreta.tion of the natural world and during hiB later life, he . attempted to determine a chemical 
basis for organic growth. Also noted for his version of chess: round the house chess. 
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3.2 Knowledge 

Knowledge is fundamental to AI systems that are to exhibit any sort of intelligence. Early 

researchers believed that the approach was to develop general problem solvers (Newell and 

Simons' General Problem Solver) for particular domain classes. However, these systems 

almost invariably required considerable hand tailoring of the problem descriptions and an 

ad hoc guidance to solutions. 

Intelligence requires the possession of and the access to knowledge : an important 

characteristic of intelligent people is that they possess much knowledge. This realisation 

heralded the prologue of domain-specific knowledge in computer programs, which are now 

termed expert systems. 

Knowledge may be defined as the collection of facts and principles accumuiated by 

mankind via acts of personal experience and 'knowing' (called noumena), or as having a 

familiarity with places, customs and entities coupled with an ability to utilise these notions 

effectively in different situations . Without this organisational ability, the facts and ruies 

associated with experience are meauingless. 

In biological organisms, knowledge may be stored as complex structures of intercon­

nected weighted neurons. (Biological neurons are said to provide 1014 bits of storage). This 

representation is termed non-symbolic. Symbolic representations are articulated knowledge 

stored in some readable form . 

Knowledge may be classified as either procedural or declarative. Procedural knowledge 

is knowledge compiled relative to the performance of some task (eg. steps to solve an 

algebraic problem). Declarative knowledge is passive knowledge expressed as statements 

offacts about the world. (eg. personnel data in a database). 

Heuristic knowledge, which may be expressed both procedurally and declaratively, is 

commonly utilised by humans for problem solving. Knowledge about a problem is used to 

simplify it, to make good judgements and undertake appropriate actions. Although not 

always correct, it leads to quick solutions. 

The difference between knowledge and data is that data concerns elements per se, 

whereas knowledge is the data with relations between them (Le. knowledge is structured 

data). The relations may be either rules or symbolic links. For example, when a doctor 

treats a patient, he uses the patients' record (the data) and the facts, beliefs and heuristics 

(the knowledge) he learnt during his training and experience to determine a diagnosis. 
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To define knowledge, certain important concepts need to be introduced. A Belief is 

any meaningful or coherent statement that may be represented. Hypotheses are justified 

beliefs that are not known to be true. Knowledge may be defined as a collection of true 

justified beliefs, a collection of true hypotheses. 

Epistemology is the study of the nature of knowledge. Meta- knowledge is knowledge 

about knowledge, ie. knowledge about what we know. 

3.3 Expert Systems 

The interests of mechanising logic should not be considered to be an esoteric concern 

of mathematicians and logicians. The appeal thereof is the ability to draw automatic 

conclusions from a collection of facts. This led to the notion of expert systems, computer 

programs that mimic the logical reasoning that a domain expert indulges in to solve 

a particular problem. They may also be considered to be theorem provers in that a 

proposition (goal) follows from any combination of propositions (facts and rules) that the 

system has been given. These programs marked a departure from algorithms and general 

search methods, such as hill climbing and means-end analysis (GPS) by using specialised 

domain knowledge and heuristics. Edward Feigenbaum, creator of the first expert systems, 

stated that the power of the expert system is in the knowledge it possesses, rather than 

the inference mechanism [Patterson, 1989). 

The first such program was DENDRAL developed by Lederberg, Feigenbaum and 

Djerassi of Stanford University in 1965. Dendral determined the molecular structure 

compounds from their constituent elements and mass spectral data. It was followed by 

META-DENDRAL, essentially DENDRAL with a learning function. This was done owing 

to the difficulty of knowledge acquisition. In 1968, MACSYMA was developed, solving a 

variety of mathematical problems. The next major expert system, and possibly the best­

known, was MYCIN, also developed at Stanford. It diagnosed infectious blood diseases and 

prescribed a list of remedies. MYCIN's accuracy as opposed to that of a human expert was 

significant: 65% as opposed to 60% . MYCIN spawned the AI programs THEIRESIUS, 

a knowledge acquisition system, GUIDON, a tutorial system, and EMYCIN, the first 

expert system shell. After these initial systems, expert systems started to mushroom in 

size, complexity, number and in topology. 
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3.4 Representation 

The representation of knowledge is of cardinal importance in AI. It may be via written 

text, character strings, binary numbers, or whatever. Certa.in representations are more 

suitable for particular applications than others . For example, for a poker game, cards may 

be represented as a simple character string: c6 for a six of clubs. 

Expert systems are often characterised according to the representation of their knowl­

edge, their architecture. The architecture of an expert system refers to the organisation of 

the knowledge and the subsequent methods of accessing it . Expert system architectures 

may be characterised as either Production (Rule-Based) or Non-Production Systems. Non­

production systems include systems that are frame-based, associative (semantic) networks , 

decision trees, blackboard systems, object-oriented systems and neural networks. Other 

memory organisations include Scripts, Plans, Goals and Memory Organisation Packets 

(MOP's), particular to case-based reasoners. Production systems and neural networks 

[Gallant, 1988J are termed unstructured systems whereas, the other organisations which 

are essentially graph-like structures, are structured. The general layout of an expert sys­

tem is depicted in figure 1 (dotted boxes indicate those modules not found in all expert 

systems) . 

Figure 1 A Schematic of a General Expert System 
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As may be deduced from the figure above, these systems comprise a knowledge base, an 

inference engine, a learning module, a case history file, working memory, an I/O interface 

and an explanation module. The general execution cycle proceeds as follows. Input to the 

expert system, a human query or a result from a system being monitored or controlled, is 

entered via the I/O interface and is then placed into working memory. The inference engine 

then uses the input to chain through the static information contained in the knowledge­

base rules to reacb an intermediate solution. During cbaining, intermediate results are 

generated and stored in the working memory. These results, commonly called dynamic 

information, are then utilised to further the inferencing process performed by the inference 

engine. The final results are stored in the case history file for use by the learning module 

whicb adds information to the knowledge base. The explanation module attempts to 

explain how a conclusion was reached or why certain information is needed. 

This cbapter emphasises the process of acquiring knowledge, building a knowledge 

base and the problems associated therewith. The interested reader is referred to any of 

the many books on AI and expert systems, for instance [Patterson, 1989J . 

3.4.1 Rule-Based/Production Systems 

Originally proposed as a model of human information processing, the production systems 

paradigm now occupies a prominent place in AI, having been used in expert systems and 

in human intelligence modelling. The first expert systems, viz . DENDRAL and MYCIN 

were all Rule-based. MYCIN initially possessed 200 rules, which grew to 600 by the early 

1980's. These expert systems comprise a knowledge base of rules and facts. Rules are 

simple IF-THEN statements of the form 

IF <Antecedents> THEN <Consequents> 

The antecedents and consequents are, respectively, also termed conditions and conclu­

sions. When there are more than one of each, they are separated by the logical connectives 

AND OR. For example 

IF (lips are pink) AND (head is sore) OR (feels tired) 

THEN (Carbon-Monoxide poisoning) 

states that if a person has pink lips, a headacbe or feels tired, then carbon-monoxide 

poisoning is present. 
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Facts are observations that are assumed to be true or irrefutable. They may be repre­

sented in a variety of ways, but the most common method is to use First Order Predicate 

Logic (FOPL), for example PROLOG . FOPL is popular owing to sound mathematical 

theory, suitable expressive power and valid forms of inference. Facts may be represented 

easily as, for instance 

Father( Paul, Debra) = Paul is the father of Debra 

and the rules may be represented as Prolog conditionals. However, a problem common 

to FOPL is an inability to represent commonsense knowledge, which almost all people 

possess and is essential for any intelligent system. 

Inference proceeds by eliciting an initial input from the user and then to use this 

dynamic information to chain through the static information contained in the knowledge­

base rules to draw conclusions. This proceeds as follows. 

Match: The inference engine matches the contents of the working memory with the 

knowledge base rules . 

Select: If a match is found, the rules are added to the conflict set which resides in the 

working memory. 

Execute: One rule is selected for execution from the conflict set . The system may ask 

for more information, fire the rule and thus place the new data into working memory or 

stop. By "firing a rule", the data in the consequent part is added to the working memory. 

When the last rule in the knowledge base has been matched, the data in working memory 

to be matched is removed ant the next datum is used. 

The inference process may proceed as forward or backward chaining. In forward chain­

ing, the left hand side of the rules (the antecedents/ conditions) are instantiated first, i.e. 

the system is data-driven with the rule's right-hand side forming the sub-goals. For back­

ward chaining, the rule's right-hand side is instantiated first, i.e. the system is goal-driven, 

an initial goal initiates a backward direction of chaining. Here, the antecedents/ conditions 

form the sub-goals. Backward chaining is utilised when what-if questions are posed. 

3.4.2 Non-Production System Organisations 

Less common than production systems, non-Production Systems generally exhibit more 

structured knowledge bases. Included are associative/ semantic networks, frames, decision 

trees, blackboard systems, object-oriented systems and neural networks. It suffices to 
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say that there has been a renewed interest in semantic networks (especially for parallel 

architectures) owing to the speed with which elements may be searched fo r and updated. 

Also, the interest in neural networks has surged over the last decade or so with a plethora 

of architectures being put forward and tested in various domains. 

3.5 Uncertainty 

Intelligent beings are continually required to make decisions under a veil of vague, incom­

plete, imprecise, contradictory and/or continually varying information. These concepts 

are collectively termed uncertainty. 

With an aim of building intelligent systems, it is essential for computer systems to 

reason with uncertain information. Many AI systems use monotonic 6 logics to represent 

knowledge, thus assuming that all conclusions are valid and all information is given. This is 

clearly inadequate for the manipulation and representation of uncertainty. Uncertainty in 

expert systems is represented using probability, possibility and certainty theories and non­

monotonic logics such as modal and fuzzy logics . Modal logics are extensions of classical 

logic allowing concepts such as "likely" and "possible" to occur. They were developed to 

better represent commonsense reasoning. Fuzzy logic, also an extension of classical logic, 

allows varying degrees of the presence of concepts, such as height and wind. Thus, the 

partial truth of concepts is allowed to facilitate the handling of uncertainty. Fuzzy logic 

and the other representational methods of uncertainty are discussed in chapter 4 on fuzzy 

logic. 

3.6 Knowledge Acquisition and Validation 

Knowledge acquisition and validation are the most difficult and time-consuming aspects 

of designing an expert system. For acquisition, an expert is interviewed during which 

he is asked to solve typical problems specific to his field and to explain his conclusions. 

He has also to re-state his knowledge for the interviewers' understanding, whereafter the 

interviewer has to codify this re-stated knowledge into a representation suitable for a 

knowledge base. These demands of knowledge acquisition have created a new profession 

liThe difference between Monotonic and Non-Monotonic logics is as follows . In monotonic (traditional) 
logics, the addition of new knowledge increases the size of the knowledge base or axiom set linearly. For 
non-monotonic logics, this is not the case and the incorpora.tion of new knowledge is easier. 
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for the interviewer: the knowledge engineer. Figure 3.1 below illustrates the knowledge 

acquisition process. 

Figure 3.1 The Knowledge Acquisition Process 
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The knowledge gained from the domain expert is also used to test and validate the 

knowledge in the knowledge base. This acquisition-validation process is repeated until 

satisfactory results are obtained. This process takes the better part of a year and may 

consume tens of man years [Patterson, 1989). [Patterson, 1989) states that 

" Experience in building dozens oj expert systems and other knowledge-based 

systems over the past fifteen years has shown this to be the single most costly 

and time-consuming part oj the building process". 

Another quote from [Schank, 1991) concerning his development of an AI system called 

SAM, that evolved into FRUMP and then ATRANS, that was designed to summarise, 

paraphrase, translate and answer questions about stories, underscores this aspect. 

"" . there is one important Jact to know about A TRANS. It took something 

like 90 person-years to make it work. This number is in addition to any oj the 

SAM-FRUMP work. There is an important lesson to be learnt here". 

And that 

" The lesson to be learnt Jrom ATRANS is simple enough. AI entails massive 

software engineering. To paraphrase Thomas Edison, "AI is 1 percent in­

spiration and gg-percent perspiration". AI people will never build any real AI 

unless they are willing to make the tremendolLSly complex effort that is involved 

in making sophisticated software work". 

[Schank, 1991) further states that a real test for AI systems is whether they easily scale 

up from toy problems to complex real world ones. 

The aforementioned vagaries associated with the construction of a knowledge base are 

collectively termed the Knowledge Acquisition Bottleneck. Recognition of this problem has 

prompted researchers to propose specific knowledge base building tools, machine learn­

ing, the extraction of knowledge from databases and the construction of CYC, a large 

knowledge base of 108 commonsense facts [Microelectronics & Corporation, 1991). 



Knowledge Management 29 

3.7 Knowledge Management 

Knowledge management concerns access to knowledge and is the key to the efficient pro­

cessing thereof. For large systems, such as XCON, DEC's 12 000 rule expert system de­

signed for the configuration of it's computer systems, it is essential that appropriate struc­

tures are located, accessed and retrieved quickly. For these systems, exhaustive searches 

are implausible and, consequentially, recourse to RETE-like matching procedures [Forgy, 

1982], indexing and hashing methods or the use of structured (graph-like) representations 

for knowledge is made. The RETE method is an efficient method for processing produc­

tion systems whereas the latter two methods simplify the search by performing locallsed 

searches. Since large knowledge bases often reside on secondary storage, another method 

is to cache storage device. 

Allied to these methods are certain problems. The Frame Problem arises in systems 

that function in dynamic environments. It concerns knowing what changes have and have 

not occurred after the occurrence of some influential phenomenon, i.e. how frames and the 

relations between them are to be modified. This type of problem must also be considered 

by all non-production representational systems. 

Furthermore, since knowledge changes periodically, the ability of the system to incor­

porate this new knowledge is desirable. Human memories are dynamic in that they have 

an inherent ability to learn and consequentially, concepts from human memories are used 

in designing AI systems. Learning is thus a quintessential aspect of intelligence - someone 

who makes the same mistake twice or more times is termed "dumb" or "stupid". That 

learning may be easily incorporated into MBR is another of it's advantages. 

3.8 Conclusion 

As has already been mentioned, the construction of knowledge bases is no trivial matter 

indicating the largesse of the knowledge acquisition bottleneck. This problem is apparent 

for both production and non-production systems. Allied to frame-based systems was the 

frame problem. Also, learning is a difficult task, especially for real (in Schanks' words) AI 

systems. The problems of generating appropriate rules and establishing their consistency 

vis-a-vis the other rules in the rule-base is extremely difficult and computationally expen­

sive. A similar problem is apparent in non-production systems (cf. the Frame problem). 

These problems are a strong motivation for the deVelopment of Memory-Based Reason-
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ing, of which Cogitator is an example. But before proceeding to memory-based reasoning, 

some other precedents need to be considered. The following chapter briefly illustrates 

the field of concurrent AI, in particular, the various types of concurrent expert systems. 

Theproblems associated with each type of concurrent expert system are highlighted with 

the aim of later proposing a system to overcome them. 
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Chapter 4 

Concurrent AI 

The recent advances in concurrency have influenced almost all aspects of computer sci­

ence and electrical engineering: new microchips, computer architectures, programming 

languages, programming paradigms, algorithms, and so on have been designed and built. 

What effect has this exerted on AI? AI is acknowledged as being difficult: problems in 

very restricted environments work well, but when the scope is increased, they tend to fail. 

Also, AI has not lived up to the expectations and promises of it's early apologists and, 

AI systems are becoming more complex. With concurrency unanimously acknowledged as 

being difficult and complex (one researcher wryly remarked "Death, taxes and parallelism, 

no-one likes them, but they are here to stay"), why compound matters further by forming 

a confluence with AI? Consider the following. 

The first chapter on concurrency mentioned the various Grand Challenges that were 

originally posed almost 10 years ago by the Nobel physicist, Kenneth Wilson, and extended 

by others since then. For the readers' convenience, the grand challenges are reproduced 

below in figure 4.1. 

The reader possibly noticed the presence of speech and natural language processing as 

well as computer vision and cognition, major fields of AI. They form a cardinal reason for 

the development of Cogitator. 

(Walz, 1990) provides a summary of parallel AI systems implemented on the Connection 

Machine and argues for massive parallelism in AI systems. He proceeds to state that truly 

intelligent machines would have to attain processing power and memory of at least four 

orders of magnitude greater than that which is currently available on the most powerful 

current machines. This sentiment is echoed in [Desbiens & Nault, 1992). To elucidate 

this, consider the characteristics of a bee's brain [Sejnowski, 1992). 
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Figure 4.1 The various Grand Challenges, their estimated processing requirements and 
the expected year of solution 
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The energy dissipation of a honeybee's brain is of the order of 10-6 watts (10 mi­

crowatts), about seven orders of magnitude better than current microchips. Furthermore, 

the operating speed is conservatively estimated to be approximately ten Teraflops (1013 

operations), about three orders of magnitude better than today's fastest computers that 

(theoretically) peak at about ten Gigaflops. Also the size of a bee's brain is a few cubic 

miIlimetres, many orders of magnitude smaller than a supercomputer. Besides these capa­

bilities, the bee can harvest nectar and return to the hive with it, recognise and remember 

high nectar concentration sites thus maximising foraging benefits, see, smell, fly, walk and 

maintain balance, they also navigate over long distances and predict changes in nectar 

location, recognise intruders and attack, recognise dead bees and remove them from the 

hive and when the hive becomes crowded, they fly off in a swarm in search of a new home. 

All these tasks they perform autonomously, ever heard of an autonomous supercomputer? 

Current robots and androids may be described as clumsy at best when compared to even 

the simple actions of humans and animals and the speeds that they are performed at. 
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Likewise, expert systems are still way behind in mimicking the type of everyday reasoning 

that humans perform. This is echoed in [Moldovan & Chung, 1992]. 

[Douglas & Mahowald, 1992] mention certain important performance characteristics of 

the human brain. The human brain contains 100 billion neurons (cf. the 1 million of a bee's 

brain) operating in the millisecond rather than the nanosecond range of their electronic 

counterparts. The speed of the brain is approximately 1016 operations per second and 

the power dissipation is approximately 10-1' joules per operation compared to 10-7 joules 

for electronic chips. [Douglas & Mahowald, 1992] proceed to mention the unsolved object 

perception problem and that the neuronal computations to facilitate object recognition 

are less than a hundred operations deep. This they attribute to the vast inter- neuronal 

connection network. 

[Walz, 1990] also mentions a consensus in the supercomputing community that the 

supercomputers of 2000 will all be massively parallel. This view is echoed in [Zorpette, 

1992b] 

"On the verge of a gradual takeover, industry analysts believe, is the massively 

parallel processor (MP P), which is already winning for itself a place as the high 

performance architecture of choice". 

Even Cray Research, the bastion of vector processing is even moving towards MPP's . 

Nevertheless, nearly all current AI systems have been designed to operate on single 

workstations or PC's. Considering this, there Are massively parallel machines or net­

works of cooperating machines necessary? Won't very powerful serial machines suffice? 

The performance limitations of serial computers is limited by the classical von Neumann 

Bottleneck (mentioned previously) as well as the rapid approach of the physical limits of 

VLSI. [Walz, 1990] offers a prognosis of future performance- enhancing technologies such 

as Gallium Arsenide, the Quantum flux parametron and the Josephson junction (Gallium 

Arsenide currently provides a speedup factor of three), clever cacheing and instruction 

prefetch techniques, the use of multiple functional units, new compiler technologies, higher 

clock rates facilitated by better cooling technologies and advances in semiconductor design 

(DEC's new 200 MHz Alpha chip, although cooling the chip is a major problem [IEEE, 

1992]) . Also, highly dense chips of exotic materials packed close together present difficult 

cooling and packaging problems) and further miniaturisation (VLSI and SLSI technology 

is generally acknowledged as nearing their limits concerning miniaturisation and switching 

speeds). 
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[Walz, 1990] thus concludes that serial technologies offer limited speedups. This sen­

timent is also echoed by [Des biens & Nault, 1992] and [Herath, 1992] who states that 

"Conventional uniprocessors cannot efficiently handle intensive computations 

with a high level of data dependency. Such processors are good at executing 

sequential computations that have been precisely formulated, but have difficulty 

processing tasks related to vision, speech and spacial and temporal pattern recog­

nition in the presence of noise. Intelligent computations with irregular prop­

erties are suited for implementation on MIMD machines. Linear recursive 

structures are suited for implementation on SIMD machines". 

As the computing power of systems increases, more complex algorithms often need to 

be implemented to increase a system's intelligence. Generally, knowledge bases (KB's) of 

the size of 102 to 104 axioms (rules and facts) represent enough knowledge to be proficient 

in a certain restricted domain. Knowledge bases that are to contain enough information so 

as to be non-brittle and more widely applicable are to be four to five orders of magnitude 

bigger than those currently available [Lenat & Sheperd, 1990]. During the 80's, work 

began in Very Large Knowledge Bases (VLKB 's) such as CYC [Lenat & Sheperd, 1990] 

and databases such as Japan's Electronic Dictionary Research (EDR) project, part of 

the Fifth Generation Computer Systems Project. Also, in the light of arguments that 

databases contain information. 

[Walz, 1990] also advocates that massively parallel processors (MPP's) provide the best 

alternative concerning performance and cost. However, not many people nor organisations 

currently own or can afford MPP 's, nor are they likely to. Rather, networked workstations 

and PC's are considerably more widespread and functional. Consequentially designing 

systems to execute on these networked machines is a more viable alternative, another 

motivation for the development of Cogitator. 

The Japanese were the first to recognise the benefits of merging concurrency and AI, 

quintessential to the fifth generation computer systems (FGCS) project. Initiated in 1982, 

the FGCS project concentrated on the deVelopment of concurrent inferencing techniques, 

computers (Parallel Inference Machines - PIM's) and logic languages. The FGCS project 

was terminated in June, 1992 shortly after it's successor, the Real World Computing 

(RWC) project was announced. The computing hardware of the FGCS project will form 

part of the computing base of the RWC project. For a brief summary on the aims, results 

and success of the FGCS project and a discussion of the RWC project, see [Baise, 1993] . 
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In the light of the aforementioned revelations, that AI systems are space and time 

hogs, and that AI systems cannot handle suitable problems in real time (which may be 

attributed to alack of computing power [Moldovan & Chung, 1992)), it is imperative that 

for AI systems of any decent nature to be constructed, efficient computational capabilities 

far beyond the capabilities of current systems and paradigms are needed. An attempt to 

solve these problems has led to the development of concurrent expert systems. 

4.1 Concurrent AI Systems 

Within concurrent AI, numerous paradigms may be identified. These are summarised in 

figure 4.2 overleaf and are briefly discussed in the ensuing pages, starting with parallel AI. 

Figure 4.2 Taxonomy of Concurrent AI 
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Judging from the dates of papers cited in the papers describing concurrent expert systems, 

the first such systems arose during the late 70's and early 80's with the Hearsay speech 

recognition system [Erman & Raj Reddy, 1980J. Work began in earnest during the mid to 

late 80's [Walz, 1990J. Currently, the field is still in it's nascent stages, but it is expanding. 

Most work in parallel AI concerns the parallelisation of production (rule-based) expert 

systems, although work is being performed in parallel AI languages. Some work has also 

been performed in parallel algorithms. 

Production systems are computationally very expensive and therefore slow, limiting 

their acceptance in industry [Kuo & Moldovan, 1992J . Furthermore, the need for intelligent 
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systems, continued research and development in production systems is expected to lead 

to larger and more complex systems, exacerbating the performance problem. Therefore 

utilising the benefits offered by parallelism is essential. 

Within parallel production systems exist three paradigms: actual parallel production 

systems, parallel production programming envirnoments and parallel production program­

ming languages. Examples of each will be discussed in turn . 

Faster Sequential Production Systems 

Attempts to speed up sequential expert systems have led researchers to concentrate on 

speeding up the RETE algorithm [Forgy, 1982], the de facto matching algorithm for ex­

pert systems. Two examples of such expert systems are TREAT [Miranker, 1987] and 

YES/RETE [Highland & Iwaskiw, 1989]. The important aspects thereof are summarised 

in figure 4.3 below. 

Figure 4.3 Sequential Match Algorithms. (Adapted from: [Kuo & Moldovan, 1992]) 

II Name Type I Speedup I Problems Comments II 
TREAT Sequential 4-15 Sequential Speeds up RETE 

(Limited Speedup) significantly 
YES/RETE Sequential Around 10 Sequential Speeds up RETE 

(Limited Speedup) significantly 

The realisation that sequential algorithms only lead to limited speedups has led to the 

development of parallel matching algorithms and systems. 

Parallel Production Systems 

Parallelism has been introduced to production systems at three levels: the match, action 

and task levels. 

Match level parallelism arises when parallelism is introduced to speed up the matching 

of entities in production systems. Matching may be introduced at either of two levels: 

the production or antecedent level. At the production level, a single antecedent of each 

of the productions is simultaneously matched working memory elements, whereas, at the 

antecedent (condition) level, the antecedents (conditions) of a single production rule are 

simultaneously matched with the working memory. 

At the action level, parallelism is introduced to speed up the execution of the actions 

(rule firing) of a production system. This may be accomplished by either firing all the 
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actions of a single rule simultaneously, or by simultaneously firing a single action of each 

of the production rules. These two methods are referred to as, respectively, production 

and action level parallelism. 

At the Task level, several homogeneous or heterogeneous tasks are performed simulta­

neously. 

Of these levels of parallelism, match level parallelism is the most prevalent . Since 

production systems spend much of their time matching (around 90% [Forgy, 1982]), it was 

initially believed that match level parallelism should lead to vast speedups. However, it 

has since been shown that this is not the case and is attributed to three main reasons : 

(a) Only a few productions are affected by changes to working memory (WM). Sequential 

algorithms such as RETE, may via appropriate bookkeeping, avoid unnecessary 

processing. 

(b) Some productions are very expensive to match, while others are cheap. Therefore, 

some processors sit idle waiting for others to complete their tasks (the small cycle 

problem). 

(c) The overhead arising from inter-processor communications. 

Parallel Matching Algorithms and Systems 

Changes to working memory only affects a few rule network nodes. Also, the number 

of node activations per change is independent of the number of rules in the rulebase. 

Therefore, neither small nor large production systems can be expected to execute quicker. 

Also, since the node changes are small, fine grained parallelism is appropriate. 

Parallel match algorithms exploit this fine-grained parallelism by partitioning the 

RETE network and assigning each segment to a processor (node-level parallelism) and/or 

by breaking up the memory nodes themselves and assigning each to a different proces­

sor (intra-node level parallelism). The major issue is to partition the RETE network 

efficiently. Parallel Match algorithms have been proposed for shared memory, message 

passing and special purpose architectures. Examples of each are summarised in figure 4.4 

below. 

One of the main reasons for the very sub-linear (low) speedups is what is termed the 

small-cycle problem, that there is simply not enough work to occupy all the processors 

most or all of the time ( the parallelism is limited - changes to WM are small). This is 
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Figure 4.4 Parallel Matching Algorithms . 

II Name I Type Speedup Problems Comments II 
PSM-E Shared 2-11 Cross Product not Only Shared 

Memory (13 Processors) reduced Memory System 
Resources and memory 
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PSM-M Message 8-12 Cross Product not Variant of PSM-E 
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processor is limiting 
DADO Message 2-31 U nder-utilisation of Pipelined Processors 
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Specific Architecture or MIMD mode 
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PESA-1 Message 12.5 Under-utilisation of Dataflow Machine 

Passing (32 Processors) processors Distributed 
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DRETE Message 9.3 Cross-product effect DADO ans PESA-l 

Passing (16 Processors) not reduced 
Specific Architecture Memory and control 

Overhead from a 
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also common in sequential systems in that only one rule may fire at a time. The small 

cycle problem may be addressed by incorporating the parallel execution (firing) of the 

production rules. 

Multiple Rule-Firing Systems 

Multiple Rule Firing Systems (MRFS's) attempt to increase the amount of available paral­

lelism by parallelising all phases of the execution cycle, not just matching. By parallelising 

the act phase, the small cycle problem is alleviated, and by executing inference phases si­

multaneously, the variance of processing time is reduced. 

Nevertheless, two significant problems, the compatibility and convergence problems 

arise when attempts are made to eliminate the sequential conflict resolution which prevents 

multiple rule firing. 

The compatibility problem arises when rule instantiations are not independent. A set 

of rule instantiations may simultaneously fire only if they do not interfere with each other; 

ie. firing a rule in one set does not preclude any other instantiated rules from firing . 

Rules may simultaneously fire if there are no inter-instantiation data dependencies. A 

set of non-interfering rule instantiations is termed a compatible set. Firing a compatible set 
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simultaneously yields the same result as if they were sequentially fired. This is not the case 

for incompatible rule instantiations so they cannot fire simultaneously. The compatibility 

problem is thus concerned with determining compatible rule sets. 

Compatible rule sets are determined by constructing and then analysing data depen­

dence graphs (cf. data dependence analysis in parallelising compilers). This data depen­

dence graph is constructed by analysing the inter-rule instantiation data dependencies and 

then combining the result into a directed graph. 

Compile time analyses of the rule compatibilities are possible by analysing the left 

hand side of the rules since they determine the instantiations to be matched and the 

right hand sides represent the effects of firing these instantiations have on other rule 

instantiations. Therefore, analysing the rules using the cyclic or pairwise conditions yields 

a data dependence graph. 

As is usual with compile time analyses, information is obtained off-line, the disad­

vantage is that only limited information is available. This disadvantage is remedied by 

utilising run time analyses. 

Run time analyses are more complete since all variables are bound at run time and it 

is therefore possible to analyse the data dependencies between rule instantiations instead 

of just between rules. However, this process introduces run time overhead and conse­

quentially, certain researchers have proposed a mixture of compile and run-time analyses 

[Kuo & Moldovan, 1992). Compile time analyses offer limited information and run-time 

analyses increase the computational overhead. 

As compile and run-time analyses are complementary, both are utilised to reduce the 

processing time: the run-time analyser has some initial information from the compile-time 

analyser to work from. 

As the compatibility condition presents a local view of the problem solving process 

(the rule instantiations that seem to be right at one stage may be incorrect later on), 

it is insufficient to guarantee the correctness of the final solution. This is termed the 

convergence condition. 

Two methods for addressing this problem include non-deterministic execution and 

parallel conflict resolution. In non-deterministic execution systems, rules are chosen arbi­

trarily and fired without the help of conflict resolution. 

By executing randomly chosen rule instantiations, many different execution sequences 

arise and consequentially, many different solutions are possible, albeit not all correct. 
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Correctness in non-deterministic production systems is guaranteed if it may be proved 

that, starting from an initial state INIT, all possible execution sequences satisfy a post 

condition POST. 

Parallel conflict resolution strategies may be encoded as a collection of meta-rules, the 

Inputs to which are the matched rule instantiations [Kuo & Moldovan, 1992]. By carefully 

coding the meta-rules, a non-interfering set of rule instantiations may be selected and 

fired . 

Various MRFS's have been proposed and some implemented as well, including paral­

lel production languages ( CREL [Miranker & Browne, 1990], SWARM [Cunningham & 

Roman, 1990] and PARULEL [Stolfo & Ohsie, 1991]) parallel programming envirnoments 

(IRIS [Pasik, 1989] and Ishida's system [Ishida, 1991]) and parallel production programs 

(PARS [Schmolze & Goel, 1990] and RUBIC [Moldovan, 1989]). Parallel production lan­

guages were proposed to facilitate the non-deterministic execution of production systems. 

They are summarised in figure 4.5 below. 

Other systems have also been implemented on more general purpose machines . [Walz, 

1990] briefly describes AI systems that have been implemented on the Connection Ma­

chine (r) and are described in detail in their respective papers, including CIS: a marker­

passing parallel expert system which has one instantiated rule per processor [Blelloch, 

1986] and a massively parallel document retrieval system [Stanfill & Kahle, 1986] which 

led to the 1989 commercial product DowQuest(r). Natural Language Processing (NLP) 

and computer vision systems are also mentioned. [Waltz & Stanfill, 1988] also describe 

the early applications of massively parallel AI applications on the Connection Machine. 

Nearly all the systems implemented to date have been implemented on concurrent 

computers, some special-purpose, others more general. The raison de etre behind these 

systems is that there is enough parallelism to be utilised by the architectures, in the case 

of the Connection Machine, SIMD-type computation is deemed to be appropriate. 

4.1.2 Non-Production Systems 

A central issue in the design of expert systems is the representation of the knowledge base. 

As was mentioned, rule- based systems are difficult to construct and slow. For these rea­

sons, other knowledge base representations have been proposed and used. Recently, two 

interesting non-production expert systems have been designed and implemented. Two 

systems, SNAP [Moldovan & Chung, 1992] and IXM2 [Higuchi & Kokubu , 1991], respec-



4.1 Non-Production Systems 41 

Figure 4.5 Multiple Rule Firing Systems. 

II Name Type Speedup Problems Comments 
CREL Parallel 5-12 Programmer must Convergence and 

Production write" correct)) Compatibility 
Language Programs - difficult problems solved 
Language for large systems problems solved 

SWARM Parallel N/A Programmer must Convergence and 
Production write "correct" Compatibility 
Language Programs - difficult problems solved 
Language for large systems problems solved 

PARULEL Parallel 2-21 Programmer must Convergence a.nd 
Production write» correct" Compatibility 
Language Programs - difficult problems solved 
Language for large systems problems solved 

IRIS Parallel 5.6-90.8 Programmer must Reduces software 
Production (Simulated) write "correct" Complexity and 

Environment Programs - difficult increases parallelism 
Language for large systems problems solved 

Ishida's Parallel 5.11-7.57 Programmer must Comprises an 
System Production (Simulated) write " good" analyser, a 

Environment Programs - difficult simulator and 
Language for large systems language constructs 

PARS Parallel N/A Need to assign Solves the Compatibility 
Expert appropriate and Convergence Problems 
System Priorities to 

Rules 
RUBIC Message 3.84-4.35 Specific Architecture Implemented on a 

Passing (8 Processors) Mapping rules to hypercube 
Processors Addresses the 

difficult Compatibility and 
Convergence Problems 

tively, utilise the fast propagative and lookup capabilities of semantic networks and the 

benefits of associative memory to infer conclusions. They are summarised in figure 4.6 

below. 

Associative memory, a simple and efficient methodology of attaining efficient massive 

parallelism, allows association and set intersections to be performed in 0(1) time. It also 

embodies extremely powerful logical and arithmetical computing power in that operands 

may be stored at each node or word and an operation may operate on all words simul­

taneously. According to [Higuchi & Kokubu, 1991], tills method allows nana-seconds of 

execution time per datum. Furthermore, parallel write and the search functions of associa­

tive memory allow marker propagation from a node to proceed concurrently, independent 

of the number of fan outs (Le. 0(1)). This powerful feature is termed parallel marker 

II 



Distributed AI 42 

Figure 4.6 Non-Production Systems . 

II Name I Type I Speedup I Problems Comments II 
SNAP Semantic up to 1000 Specific Architecture Designed for Natural 

Network Slow communications Language Processing 
System 

lXM2 Associative Over 1000 Specific Architecture 64 T800 processors 
Memory 9 T800's for communication 
System Overcomes communication 

Language for large systems bottleneck 

propagation. 

These impressive speedups indicate three important aspects. Firstly that sequential 

machines (SUN-4/330 and CRAY) are unsuitable for semantic net processing and, sec­

ondly, that communication overheads and routing are of vital importance in semantic 

network as well as other types of processing. The latter is especially true if the fanout is 

large, although the CM-2 prevalled for small fanouts . Thirdly, and most importantly, AI 

systems may be reformulated using semantic nets to increase the inherent parallelism and 

parallel systems to exploit this could easily exhibit impressive speedups. 

All the systems discussed thus far were all parallel systems, systems in which all the 

processors operate as a single entity, each performing their bit of work to collectively attaln 

a certain goal. Distributed AI systems differ in that each entity represents a single system 

in it's own right. These various systems are often termed agents. 

4.2 Distributed AI 

Distributed Reasoning Systems (DRS's) are systems are composed of different modules 

or agents each expected to act as a problem- solving entity in it's own right, and an 

interconnection network connecting them. DRS's range from loosely- to tightly-coupled 

systems, respectively, systems with or without a central controller. 

As intimated by Herbert Simon, large complex systems tend to naturally break them­

selves down into relatively independent sub- problems within which communication is 

frequent and quick, while between which communications are rare and slow. This intro­

duces the notion of decomposability. 

Nearly Decomposable Problems are those system that when divided up lead to rela­

tively independent sub-problems. Complete decomposability is analogous to linear sep­

arability in that they lead to totally independent sub-problems when divided up. For 
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instance, databases are completely decomposable, a characteristic that is deemed to be of 

cardinal importance and forms the major thrust of this thesis . 

That problems tend to decompose themselves, coupled with the power of concurrency 

and that expert systems have limited domains of applicability (extending their scope seems 

doomed to failure) , leads to the notion that large problems may be solved by a collection 

of co-operating entities (expert systems), Distributed Reasoning Systems (DRS's). 

DRS's exhibit certain advantages over large monolithic systems: 

(a) Greater Modularity - easier to build than non-modular systems 

(b) Greater efficiency- easier and quicker to design owing to the greater modularity. 

(c) Fast computer architectures - for more speed, there is a tendency towards processors 

with local memory (multi-computers). 

(d) Heterogeneous reasoning - certain knowledge representations are more apposite for 

certain types of reasoning than others (eg. backward verses forward chaining). 

(e) Multiple perspectives - many agents better than one since often many perspectives 

of a problem are needed to devise it's solution. 

(f) Distributed problems - many problems are physically distributed, such as weather 

systems. 

(g) Reliability - one agent may die without the whole system crashing. 

These architectures must provide the following: 

(a) A mechanism ensuring that the collective activities of the various agents solve the 

problem (ie. the co-operation and co- ordination of agent's activities), 

(b) inter-agent communication links, and 

(c) since operate on different knowledge bases, rather than a global one, distributed 

versions of reasoning techniques are necessary. 

These are briefly discussed in turn below. 

Coordination and cooperation of the processors in the DRS is of cardinal importance 

and may assume anyone of the following four forms : 
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(a) Master-Slave, wherein one processor assumes the role of master controller, partition­

ing problems and designating the sub- problems to the agents or slaves, 

(b) Pseudo Master-Slave, wherein the master controller partitions problems as before, 

but it negotiates with the agents as to who will receive what sub-problem, 

(c) Cooperative Non-Master-Slave wherein there is no master controller and a.ll the 

agents cooperate to atta.in a certa.in goal, and 

(d) Non-Cooperative Non-Master-Slave, wherein a master controller is absent and agents 

do not cooperate so that the goal is not guaranteed. The agents may even compete 

with each other. 

Although a.ll these organisations differ considerably, the necessity for models of the 

agents is immanent. The master controller often needs a model of the agents to ascerta.in 

their capabilities for certa.in types of work, their goals and their status (busy or not). In 

non-master-slave systems, the agents often utilise models of themselves as well as other 

agents in the system for the purposes mentioned above so that it knows when to give and 

request help. State-based models, wherein each action by an agent alters either the global 

or local model state, are useful. 

Master-Slave systems represent the least distributed form of reasoning, ca.lled multi­

agent planning. Unless a.ll the slave agents are homogenous, access to the models of the 

slaves by the master is necessary to facilitate the efficient a.llocation of tasks to them. 

Even if the slaves are identical, the master must perform load balancing to ensure that 

the goal is atta.ined as soon as possible. Once the tasks have been distributed, unless 

a.ll the tasks are independent, the slaves must be synchronised. In single agent schemes, 

static a.llocation of the tasks is often sufficient, however in multi-agent systems, dynamic 

schemes are also reqnired owing to the often unpredictable (within limits) nature of the 

agents. 

To illustrate these notions, consider a simple example. Assume documents must be 

spell-checked before they may be printed. using many spell-checking processors and one 

printing agent is sufficient. Synchronisation schemes may be simple wherein the master 

controls a.ll the agents (printing does not proceed until a.ll the spell-checker agents have 

finished and inform the master accordingly), to more complex systems in which agents 

cooperate with each other (each lets the print agent know of their job completions). 
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Pseudo Master-Slave systems (PMSS's) accomplish planning and negotiation by util­

ising contract nets . In contract nets, there an agent may assume the status of either 

a manager or a contractor. Managers decompose the · problem, look for contractors and 

monitors them. A contractor accepts a job and completes it either by completing it itself 

or by partitioning the job further and subcontracting the sub-jobs to other contractors. 

Negotiation between the managers (masters) and the contractors (agents) occurs by means 

of bidding. The master announces a task, the contractors evaluate it vis-a-vis their ca­

pabilities and thereafter make bids to the master which allocates the task to the most 

suitable candidate. Managers may also undertake work instead of sitting idle while the 

contractors are busy. 

Both the above systems contained a single controlling agent. Non-Master-Slave sys­

tems (NMSS's) attempt to attain their goals without a central controller by utilising 

distributed control and communication, a method termed distributed planning. In dis­

tributed planning, since all agents must perform more complex communication tasks than 

simply corresponding with the master, they are assumed to be rational. 

Planning occurs either utilises communication or not at all. 

Planning without communication proceeds by assuming rationality of the agents and 

utilising techniques from game theory, in particular, payoff matrices. Each agent utilises 

these matrices to maximise his gain or payoff vis-a-vis the choices of other agents. 

Agents planning via communication create their own plans and either know or don't 

know the states of the other agents. Communication is either via shared memory or an 

interconnection network and sometimes messages are directed towards agents that are 

efficient at performing certain tasks . Also, incomplete plans may be initially formulated 

and may become complete as execution proceeds. 

Communication between agents may be divided up into two classes. 

Blackboard (BB) systems permit communication via a shared knowledge structure 

caJled a blackboard to which agents or modules may post to and read from. Black­

boards are similar to shared memories and are thus perfectly suitable for shared memory 

architectures . 

In message passing systems, an agent or module sends or receives messages from other 

agents whose names are explicitly known. 

These two systems appear completely different, however one may be remodelled to 

simulate the other. 
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The first blackboard system was the HEARSAY-II speech recognition system [Erman 

& Raj Reddy, 1980] . It comprised a set of independent modules or agents called knowledge 

sources (KS's) that contain the domain-specific knowledge, a blackboard through which 

the knowledge sources communicate, and a control system which determines the order 

that the KS's may operate on the blackboard entries. 

In blackboard systems, an agent is ignorant of all the other agents in the system and 

messages are issued by a central controller (the scheduler) . In message passing systems, 

agents possess knowledge about other agents and messages are sent to specific agents via 

message passing. Inasmuch, agents may reallocate work to those agents more adept at a 

certain task. 

An example of a multi-agent system is Aurora [Desbiens & Nault, 1992], developed on 

a 'Thansputer cluster. Aurora simulates the crew of an anti-submarine attack aircraft in 

various situations. The crew duties include navigation, piloting and weapons armament. 

Each crew member is represented by an autonomous agent corresponding with other agents 

via message passing. Each agent has it's own local knowledge base which it uses to make 

deductions commensurate with the crew member it represents . They also formulate their 

own goals and sub-goals and perform their own tasks. The duties of the agents are the 

support and analysis of situations which they accomplish by using their local knowledge 

bases. They are not purely asynchronous as informational messages and orders need to 

be exchanged between them. All the agents (crew members) co-operate to collectively 

complete a "mission", a global goal all the agents are aware of. 

While DRS's have many advantages, they also posess some serious disadvantages: 

(a) How to partition and assign the rule base effectively (rule bases are not decomposable 

or separable), 

(b) how to reconcile the different types of expertise in the system, 

(c) how to reconcile subject field overlaps, 

(d) the synchronisation of the agents (if needed), and 

(e) truth maintenance. 

As may be deduced, there is no real dichotomy between blackboard and message 

passing systems, rather a continuum. At one extreme, a controller broadcasts to all 
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(tightly-coupled - blackboard systems), whereas in the other, any agents may broadcast 

to any other one. Neuter systems, wherein the agents are ignorant of an other agent, but 

knows it's class (to which it directs it's messages). In such a way, class hierarchies may be 

implemented, with more general-purpose KS's or agents higher up in the hierarchy. This 

saves memory and achieves greater modularity. 

4.3 Conclusion 

As has been illustrated, parallelising traditional expert systems is no trivial matter. Prob­

lems arise, such as the need to lock resources and require developers to write correct 

programs or assign appropriate priorities to rules so as to avoid inter-rule conflicts. Fur­

thermore, concurrent versions of production systems offer only limited speedups. This 

may be ascribed to the fact that the production systems architecture is inherently se­

quential and therefore not amenable to simple parallelisation. It appears that significant 

speedups are only possible when specialist hardware, such as in IXM-2 and SNAP, is 

utillsed. This is not a commercially viable as such specific architectures are often very 

expnsive and their general functionality is restricted. Furthermore, knowledge bases are 

not easily decomposable owing to their strong inter-connectedness, and as it is now gen­

erally acknowledged that real AI systems will have to possess huge amounts of knowledge 

(commonsense knowledge, etc - ego [Microelectronics & Corporation, 1991]), it becomes 

infeasable for sequential machines to process these large knowledge bases. 

As will be illustrated, the concurrent expert system paradigm argued for in this thesis, 

Cogitator, bypasses all the problems associated with the above systems, and with building 

knowledge bases, especially large ones. It also utilises fuzzy logic, a generalisation of 

classical mathematics that has been conclusively shown to model human cognition very 

closely. It is fuzzy mathematics that is considered in the next chapter, before 
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moving on to discuss Memory-Based Reasoning and then Cogitator. 
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Chapter 5 

Fuzzy Mathematics 

The real world is a dynamic environment with uncertainty and vagueness being immanent. 

This has been known for many years: almost two millenia ago, Heraclitus stated that" We 

never step into the same river twice" . 

Fuzziness was a descriptor coined during the 1960's to describe matters of degree and 

to mathematically mean multivalence. The initial beginnings of fuzzy mathematics may 

be traced to the 1920's and 1930's. 

From his investigations into quantum mechanics, Werner Heisenberg observed what 

was to become Heisenberg's Uncertainty Principle, that it is impossible to measure two 

complimentary properties of an entity to arbitrary accuracy. Consequentially, a third or 

middle truth was to be introduced into the duality framework of classical mathematics to 

allow for this indeterminancy. 

Logical paradoxes, such as the Sorites and Zeno paradoxes, have been around for many 

a year. Paradoxes such as 

• Does the Liar from Crete tell the truth when he says that he is lying? 

• Who shaves the barber if he shaves all those people that do not shave themselves? 

• Is A a member of itself if it contains all sets that do not contain themselves? 

The concept common to all these paradoxes is that of a self-referential statement. They 

are found in music (Bach's ), art (Escher) and in mathematics (Giidel). [Hofstadter,1980J 

is a wonderful book highlighting these paradoxes. 

It is easy to show that a paradox corresponds to a half-truth (indefinite). Consequen­

tially, ternary and higher-order logics are able to represent the solutions to paradoxes. 
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Logical paradoxes and Heisenberg's principle led to the deVelopment of multi valued log­

ics in the 1920's and 1930's. During the 1930's, the Polish mathematician, Jan Lukasiewicz 

developed a ternary logic (with truth values 0, ~and 1). He later extended his logic to the 

rational numbers between a and 1 and thereafter to all the numbers in the closed inter­

val [0,1]. Other three-valued logics were subsequentially developed. Figure 5 illustrates 

the various three-valued logics. Also during the 1930's, the quantum philosopher Max 

Figure 5.1 Table of Some Three-Valued Logics 

lnputs Lukasiewicz Bochvar Kleene 
U =? 

Heyting 
U =? 

Reichenbach 
lIa bin u =? ¢>In U =? ¢>In ¢> I n ¢> I n u =? ¢> II 

0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 
0 1 0 1 1 1 1 1 ~ 1 0 ~ 1 ~ 0 1 1 0 0 1 1 2 2" 2 2 2 2" 2 2" 
0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
1 0 0 t 1 t t 1 1 t t 1 t 1 t t 1 1 1 1 1 ? ~ I t 2" t I ,-

1 1 1 1 1 1 1 1 1 1 1 2" 2" 2" ;;- ;;- ,- 2" 2" .- ;;- 2" ;;-
1 a 0 1 0 0 0 1 0 0 0 1 a 0 0 1 0 0 0 1 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2" 2" 2" 2" ;;- ,- 2 ,- .- ,- ,- ,- ,- ,- ,- 2' 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Black applied continuous logic componentwise to sets or lists of elements. Each element 

behaved as a statement in continuous logic. Historically, Black drew the first fuzzy mem­

bership functions [Kosko, 1992], calling the uncertainty associated with these structures 

" vagueness" . 

In 1965, systems scientist Lofti Zadeh published the paper 'Fuzzy Sets' [Zadeh, 1965] 

thereby formally developing multivalued (infinite-valued) set theory and introducing the 

term Fuzzy 1 • 

The current surge of interest in fuzzy logic, spurned by Japan's successes with fuzzy 

logic control systems proves it's suitability as a means of interpreting complex real world 

systems. The Japanese have recognised this more than anyone else and have made fuzzy 

computing the major theme of the Real World Computing Project (the Sixth Generation 

Computer Systems project), which began last year. 

Recently, there have been arguments for fuzziness in legal procedures. Comparing 

a rule-based judge to a fuzzy judge, [Kosko, 1992] illustrates that while the rule-based 

judge uses a rule-book and chains through it, the fuzzy judge does not use rules, but legal 

principles, citing legal precedents and cases to enunciate their relative importance. The 

1 Interestingly, Zadeh's initial ideas concerning fuzziness arose out of a.n a.rgument with a. friend a.bout 
the bea.uty of each ma.n's wife. Zadeh realised tha.t bea.uty is not a. dicotomous descriptor, but that bea.uty 
has degrees associa.ted with it 

1 
1 
2 
0 
1 
1 
2" 
a 
1 
;;-
1 
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fuzzy judge then determines a conclusion by combining and weighing up these fuzzy facts 

and principles . 

The distinction between rule-based and fuzzy systems then reduces to rules verses 

principles. Certain legai theorists have focussed upon this, one aptly summing up the 

difference as 

" [principles} have a dimension that rules do not - the dimension of weight or impor­

tance" 

Furthermore, rules are strict, they come and go as civilisation evolves. Principles are 

more fundament ai, they evolve as civilisation does. Legai principles are rarely excised, 

but they do evolve. 

[Schmucker, 1984] summarises the work of many researchers to conclude that fuzziness 

is an inherent quality of Human Information Processing (HIP). He cites an example of 

naturai language processing wherein people were tested in assigning linguistic variables to 

concepts (such as cool or warm to temperature) and numerical values (such as 23'C). The 

results conclusively indicated the use of linguistic rather than numerical values. 

[Schmucker, 1984] proceeds to quote further results illustrating that people represent 

and recall concepts in accordance with the structure and recall procedures of fuzzy seman­

tic memory 2. 

Probability theory was conceived of to explain gambling odds. The rules of gambling 

are strict and consequentially, extensions to Pascal's initial ideas built probability theory 

atop classical mathematics, in particular measure theory. Probability theory has been 

applied to many problems, including those which have non-strict governing rules. However, 

considering Pascal's initial ideas relating to the formulation of probability theory, the 

application of probability theory to problems and systems which have non-strict governing 

rules may be deemed to be inappropriate. Examples of such systems include weather, 

air /fluid flows and economics. For these purposes, possibility theory, based upon fuzzy 

theory is deemed to be more appropriate and has been proposed and used. One might 

ask what would be the current state of prediction methods if probability theory had been 

formulated to explain or predict systems with non-strict rules of operation. 

In fuzzy theory, entities may have partial memberships in two complementary classes 

which corresponds closely with HIP. An example may serve to illustrate. 

2juZZY .femantic memory corresponds to semantic memory wherein the relations between entities are 
not necessarily crisp 
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The following sections introduce fuzzy mathematics as well as fuzzy expert systems 

and fuzzy controllers. The emphasis is on merely illustrating some of the main concepts 

of fuzzy mathematics that are utilised in expert systems, in particular a fuzzy database­

driven expert system called Cogitator. 

5 .1 Introductory Theory 

Mathematics comprises three main areas, Set theory, Boolean Algebra and Propositional 

logic. Between any two of these areas, an isomorphic mapping exists, so any theorem in 

one area has a counterpart in both of the two other areas. Figure 5.1 below illustrates 

the equivalent symbols used by each of the three areas . Isomorphisms between the three 

areas are derived using these equivalent symbols. The same organisation applies to fuzzy 

mathematics. Let X represent the Universal Set and x be an element of this set. Zadeh 

Figure 5.2 The Equivalent Symbols used in each of the Three Branches of Mathematics 

II Set Theory I Boolean Algebra I Propositional Logic II 
p(X) B Im(V) 

U + V 
n + 1\ 

- - -
X 1 1 
0 0 0 
C < :} 

[Zadeh, 1965] extended the Indicator Function IA of a non-fuzzy (crisp) subset A of X 

which, in classical mathematics is defined as 

to a Multi- Valued Indicator Function 

1 ifxEA 

o ifx¢A 

IA : X >-> [0,1] A E X 

(5.1) 

(5.2) 

This allows the extension of the common operators of classical mathematics as follows 

(5.3) 
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IAUB(X) = max(IA(x),IB(X)) 

hex) = 1- IA(x) 

53 

(5.4) 

(5.5) 

(5.6) 

The Membership Function M(x) measures the degree to which an element x belongs 

to set A, formally 

MA(x) = Degree(x E A) (5.7) 

Just as the indicator functions act as statements in classical propositional calculus, 

membership values M(x) correspond to statements in a continuous logic. Typically, mem­

bership and indicator functions map to the closed interval [O,1J. Traditional indicator 

functions form step functions whereas fuzzy ones form continuous curves over the range. 

This extension to multi, rather infinite, valued sets causes classical mathematics to 

become a special case of fuzzy mathematics. The principle that applies to allow the gen­

eralisation of crisp to fuzzy mathematics is termed the Extension Principle. Since Zadeh 

introduced the aforementioned fuzzy union, intersection and complementation operations, 

other unions, intersections and complementation operations have been developed. They 

need only obey a collection of axioms pertaining to fuzzy union, intersection and comple­

mentation. Some of these fuzzy union, intersection and complementation functions are 

reproduced in figure 5.1 below. 

Figure 5.3 Table of some Fuzzy Union and Intersection Operators 

II Name I Fuzzy Union Fuzzy Intersection Parameter II 
Yager min[1, (aW + bW)t;] 1 - min[1, ((1- a)W + (1- bW))t;] wE (0,00) 

Dombi 
1 1 >. E (0,00) 

1 + [(i - 1)-' + [(~ -l)-'J-t 1 + [(i - 1)-' + [(~ -1)-'J-t 

Dubois 
a+b-iib m'iiTa,o,l tiT ab 

'" E (0,1) max[l - a, 1 - b, "'] max[a, b, "'] 
& Prade 

All the union, intersection and complementation operation definitions illustrated above 

reduce to classical mathematical intersections and unions when x is restricted to {0,1} 

(by definition). The intersection, union and complementation operators (5)-(7) above may 

be termed the Standard Operations of fuzzy set theory. When used to define a fuzzy set 
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theory, they define Possibility Theory, a contingency theory supersuming both Probability 

and Dempster-Schafer theory. 

This generalisation of crisp mathematics violates the classical laws of Excluded Middle 

AuA=X 

and Non-Contradiction 

AnA=0 

The fuzzy Indicator Function has since also been extended to 

(5 .8) 

where £ is any set that is at least partially ordered. £ is frequently a lattice, an when it 

is, fuzzy sets defined by above are termed £ - fuzzy sets. Again, typically £ = [0,1J. 

Fuzzy sets are commonly represented as follows: 

n 

A = 2:MA(Xi)/Xi (5.9) 
i;::l 

where Xi E A and A is a fuzzy set. For instance, 

5.1.1 Definitions 

Some of the main definitions pertaining to fuzzy set theory are reproduced below, the 

interested reader is referred to any books comprising the vast literature on fuzzy logic, 

such as [Klir & Folger, 1988J. 

Definition 5.1.1 The Support of a fuzzy set A E X is the crisp set containing all elements 

of X that have a non-zero membership grade in A. Formally, 

(5.10) 

where 2A is the power set of A and 

supp(A) = {x E X I M(x) > a} (5.11) 

Definition 5.1.2 The Height of a fuzzy set A is the largest membership grade attained 

by any member of that set. 

Definition 5.1.3 A fuzzy set is said to be Normalised if at least one of the members 

attains the maximum grade, which is typically 1 (Le. it's height is 1). 
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Definition 5.1.4 An a - cut of a fuzzy set A is the crisp set A, of elements that attain 

a membership of at least a. Formally, 

(5.12) 

Definition 5.1.5 A level set of A is the set of all distinct a - cuts of the fuzzy set A. 

Formally, 

/\ = {a I 3x EX; M (x) = a} (5.13) 
A 

Definition 5.1.6 IAp l, the Cardinality of an a-cut fJ of a fuzzy set A is defined as the 

number of members in Ap. 

Definition 5.1. 7 The Scalar Cardinality of a fuzzy set A defined on a finite X is the 

summation of the membership grades of those elements of X in A. Formally 

(5.14) 

Uncertainty is a naturally universal phenomenon associated with real-world and very 

complex systems. It is the main aim of Cogitator to overcome uncertainty by utilising 

fuzzy methodologies and techniques. It is these that are now considered. 

5.2 Uncertainty 

For centuries now, man has attempted to characterise uncertainty. His initial attempts 

led to the development of probability theory and, subsequently, to Dempster-Schafer and 

possibility theory. Some theories are based upon classical bivalent mathematics (proba­

bility theory) while others are based upon the more general theory of fuzzy mathematics 

(possibility theory). Each of these theories occupies its own little niche in uncertainty 

theory and has been applied to a variety of problems. This section seeks to illustrate 

how fuzziness has been introduced to interpret uncertainty and to illustrate some of the 

methodologies used to characterise the various types of uncertainty. The system proposed 

in this thesis, Cogitator, is designed to utilise these fuzzy uncertainty theories for the 

interpretation of data. 

5.2.1 Types of Uncertainty 

Consulting a dictionary for a meaning of uncertainty yields terms such as vague, indefinate, 

doubtful, ambiguous, varying, inconsistent, unreliable, not known for certain, and so on. 
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From these, two main areas may be identified: vagueness and ambiguity. Vagueness implies 

not sharply delineated, indistinct or hazy, whereas, ambiguity signifies one-to-many, variety 

or a choice between many alternatives. The basic mechanism for characterising vagueness 

and uncertainty are, respectively, fuzzy sets and fuzzy measures. 

Vagueness is characterised by Measures of Fuzziness. Typically, a measure of fuzziness 

takes the form of a function: 

F: P(X) f-+ ~ 

where P(X) represents the power set of X 

There is also a collection of axioms that all measures of fuzziness must obey; they 

are not reproduced here but may be found in any book on fuzzy mathematics. Measures 

of fuzziness are characterised by a distance function, such as the Hamming, Euclidean 

or Minkowski metrics. The metrics are in terms of a fuzzy set and the nearest crisp set 

(an Index of Fuzziness or between a fuzzy set and its complement. The general form of 

measures of fuzziness is represented as 

F(A) = D,(Z, Z) - D,(A, A) 

where Z denotes an arbitrary subset of X such that D,(Z, Z) is the largest possible distance 

in P (X) for some complement function,. A ~ X is a fuzzy subset, and D,(A, A) represents 

the distance between A and its complement (for some complement function). 

Some examples are reproduced below (fL,(X) = membership of x in a crisp set). 

Hamming: F(A) = L:.EX I fLACX) - fL,CX) I 
Minkowski: FCA) = (L:.Ex I fLA(X) - fL,(X) IW)t; 

Analogous formulae exist when, instead of the closest crisp set, the complement of a fuzzy 

set is used. The formulae for measures of fuzziness illustrated above may be extended to 

infinite sets by considering X to be an interval and replacing the summation by an integral 

with appropriate limits. 

Ambiguity may be further resolved into 3 types. When the size of the subsets of 

X are being considered as a measure of ambignity, the measure is termed a Measure of 

Nonspecificity. As the size grows, the amount of specificity decreases increasing ambiguity. 

When subsets of X that do not or partially overlap are considered, conflicts between the 

evidence supporting the sets may arise. In this case, a measure of Dissonance is used. 
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Finally, if a number of fuzzy subsets are designated as possible locations of a concept y, 

then problems arise owing to the multitude of candidate sets. Measures of ambiguity using 

this method are termed Measures of Confusion. Figure 5.2.1 contains the general forms 

of these three measures of ambiguity 3. 

Figure 5.4 The General Forms of Measures of Ambiguity · 
Nonspecificity : 

V(m) = L: m(A)Log21 A I 
Aet 

Dissonance 
E(m) = - L: m(A)Log2(PI(A)) 

Aet 

Confusion 
C(m) = - L: m(A)Log2(Bel(A)) 

Aet 

Fuzzy measures of uncertainty were preceded by other measures based upon classical 

mathematics and probability theory. The most common class is Entropies, which arose in 

physics (theory of heat) in the middle of the 19'th century. The most popular entropy is 

Shannon Entropy. The general form of Shannon entropy is 

• 
H(p) = - L:p.Log2(p.) 

i=l 

where P = (Pl,P2,··· ,P.) is a probability distribution. There are also other entropies, 

but they generally form soecial cases of Shannon entropy as may be deduced from figure 

below. 

Figure 5.5 The General Forms of Entropies 

II Name Formula. I[ 
Reyni Entropies H,,(Pl,P2,··· ,P.) - l~"Log2(L:'-l pr 

Order f3 Entropies H~(P',P2 '··· ,P.) = ~((L:?-l p~ - 1) 
R-Norm Entropies HR(Pl,P2,·· ·,P.) = R~,cl1- (L:?=,Pf)*j 

Shannon Entropy was restricted to finite sets which need not be the case. The Boltz­

mann Entropy has a similar form to the Shannon one, but is defined for infinite sets and 

has the following general form: 

'(m is .. Ea.ic Probability A .. ignment, E is the set of Foca.l Elements, Bel(A) and PI(A) are Eeliefa.nd 
Plau"abilitv measures respectively) 
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B(q(x) I x E [a,b]) = -[ q(x)Log2(q(x))dx 

Another lesser used entropy measure is the Hartley Information, a measure based upon 

classical set theory. It assumes the general form 

I(N) = Log2(N) 

where N is the number of possible alternatives (one or a sequence of selections). 

Cogitator is a general paradigm for a new type of fuzzy expert system, therefore any 

of the aforementioned measures of uncertainty may be used by the inferencing process 

utilised. The choice is the discretion of the system builder. 

5.3 Membership Functions 

Quintessential to fuzzy inference and retrieval is the notion of a Linguistic Variable, which 

may be defined as follows. 

Definition 5.3.1 [Zimmermann, 1986] 

A Linguistic Variable is a fuzzy set characterised by the quintuple 

< X,T(X),U,G,M > 

where 

• X is the name of the linguistic variable, 

• T(X) is the term set, the set of linguistic values of X, 

• U is the Universe of Discourse associated with the base variable u, 

• G is a syntactic Rule, often a grammar, for generating the name, X, of values x 

• M is the Semantic Rule for associating each x with its meaning; M (x) ~ U. 

The element x generated by G is called a term. 

To illustrate this definition, consider an example. Figure 5.6 below illustrates the 

linguistic variable Distance. 

For this example, X is the Linguistic variable Distance, the universe of discourse, U, 

may be taken as [0,20 000]. The terms or linguistic values, x, of this fuzzy set X may be 
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Very Close", Close, Far and so on. i.e. T(x) = (very close, close, medium, far, very far). 

M (x) assigns a meaning, a fuzzy set, to these terms Xi in this case, 

M(x) = {(u,J.!.(u) I u E [O,20000]} 

where J.!.( u) is referred to as the Membership Function associated with the linguistic vari­

able Xi for instance J.!.(u) may be given as 

u E [0,400) 

Otherwise 

G(x) generates the labels of the terms in the term set u, the grammar encapsulating 

the terms close, far, etc. 

The two linguistic variables of particular interest are Truth and Probability. For more 

information, the interested reader is referred to [Zimmermann, 1986) for more details. 

Two more definitions before rounding off. 

Definition 5.3.2 A Linguistic Hedge or Modifier is an operation that modifies the mean­

ing of a term or a fuzzy set. If F is a fuzzy set, then the linguistic modifier M generates 

the fuzzy set G = MF. 

Two important linguistic modifiers are: 

• Concentration: J.!Con(A)(U) = (J.!A(U))2 

For a term or fuzzy set A, 
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• Very A = ConCA) 

• More or Less A = Dil( A) 

Definition 5.3.3 A Linguistic Variable X is termed Boolean if all the terms (linguistic 

values) are boolean expressions of the form XB, MB(xB) where XB is a primary term and 

MB a modifier. 

For example, 

• Young -+ Not Young * mB = "Not" 

• Old -+ Very Old * mB = "Very" 

From these, terms such as "very (not Old)" and "more or less (not old)" may be derived. 

There are three maln forms that term set elements assume (Le. their membership 

functions), Bell-Shaped, Trapazoidalor Pyriamidial, all convex forms. They are depicted 

in figure 5.7 below. Nevertheless, variations on these are possible. 

PyriamJdJai Tnpazoldal BtU-Shaped 

The choice of membership functions and their associated shapes as well as the num­

ber of linguistic vallues or terms to have, are of cardinal importance. Which types of 

membership functions are suitable for which types of problems is a still unsolved prob­

lem. Concerning the number of terms to use, five or seven represent a general consensus, 

although five seems to be more common. 

membership functions playa cardinal role in fuzzy expert and control systems, which 

are discussed in the next section. 
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5.4 Fuzzy Expert Systems, Control Systems and Applica­

tions 

Recently, expert systems and control systems based upon fuzzy logic have balooned in 

number. Various methodologies for incorporating fuzzy logic into these systems have 

been proposed and successfully implemented in various commercial and private projects. 

What follows is a brief descrription of fuzzy expert systems, fuzzy control systems and the 

equivalences between them and neural networks. Finally, some applications of these fuzzy 

systems are given. 

5.4.1 Fuzzy Expert Systems 

Most expert systems are represented in the form of a collection of rules, R;, called Pro­

duction Rules, rules of the form 

R, : IF < Antecedents> THEN < Consequents> 

where the antecedents and consequents are collections of statements (at least one) of the 

form 

x, = Aj 

where X, represents the variable and Aj the value of the statement, linked by the logical 

operators AND, OR and NOT. The collection of rules in a fuzzy expert system is known 

as the Rulebase or Knowledge base. 

Fuzzy expert systems are represented as such except that the variables and values used 

in the antecedent and consequent statements are considered to be fuzzy sets as opposed to 

singletons, and are referred to as, respectively, linguistic variables and linguistic values (as 

mentioned earlier). Furthermore, the logical operators are not Boolean ones, but fuzzy. 

The antecedent (the rule's premise) describes to what degree the rule applies, while the 

conclusion (the rule's consequent) assigns a membership function to each of one or more 

output variables. For example, a collection of three rules for controlling the current to an 

air-conditioner Might be 

• IF temperature is high AND humidity is high THEN current = high 

• IF temperature is low AND humidity is low THEN current =low 

• IF temperature is high AND humidity is low THEN current = medium 
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where temperature, humidity and current are considered to be the linguistic variables and 

high, low and medium the linguistic values or labels. 

The execution cycle also differs, comprising the stages: Fuzzijico.tion, Inference, Com­

position and De-Fuzzijication. The execution cycle is represented in figure 5.8 below 4. 

Figure 5.8 The Execution Cycle of a Fuzzy Expert System 
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• (1) Fuzzijico.tion entails translating a crisp value into a fuzzy one; for instance for 

temperature, 43°c translates into the fuzzy value High . 

• (2) Under Inference, the truth values for each antecedent statement of each rule is 

determined. This results in one fuzzy subset to be applied to each consequent value 

for each rule. Commonly, the MIN and Product functions are used as inference 

rules In MIN inferencing, the output membership function is clipped off at a height 

corresponding to the rule premise's computed degree of truth (fuzzy logic AND) . 

In PRODUCT inferencing, the output membership function is scaled by the rule 

premise's computed degree of truth. 

"In this figure, the inference engine comprises the inference and composition stages 
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• [3 Under Composition, all of the fuzzy subsets assigned to each output variable are 

combined together to form a single fuzzy subset for each output variable. Again, 

usually MAX or SUM are used. In MAX composition, the combined output fuzzy 

subset is constructed by taking the pointwise maximum over all of the fuzzy subsets 

assigned to variable by the inference rule (Le. fuzzy OR). In SUM composition, the 

combined output fuzzy subset is constructed by taking the pointwise sum over all of 

the fuzzy subsets assigned to the output variable by the inference rule . 

• [4] Finally is the (optional) De-Fuzzijication, which is used when it is useful to 

convert the fuzzy output set to a crisp number . There are many defuzzification 

methods, however two of the more common techniques are the Centroid and MAX 

methods. In the Centroid method, the crisp value of the output variable is computed 

by determining the center of gravity of the membership function for the fuzzy value. 

In the MAX method, one of the variable values at which the fuzzy subset has its 

maximum truth value is chosen as the crisp value for the output variable. 

Fuzzy expert systems have exhibited great success in the modelling of complex pro­

cesses, whether for inferencing or for controlling them. This may be attributed to the use 

of fuzzy sets to allow a certain degree of tolerance. 

The most popular use of fuzziness in decision-making is in the controlling of complex 

processes. This gives rise to fuzzy control systems which are now (briefly) considered. 

5.4.2 Fuzzy Control Systems 

Fuzzy control systems may be considered to be a slight variation on fuzzy expert systems, 

in fact fuzzy control systems may be considered to be an example of a fuzzy expert system. 

As in fuzzy expert systems, fuzzy control systems also have a rule-base of rules with fuzzy 

variables and their associated values, as well as the four stages of operation that fuzzy 

expert systems comprise. Most of the techniques developed for fuzzy expert systems have 

been extended for use in fuzzy control systems. 

The use of fuzzy control systems was first popularised by the Japanese under the aus­

piuces oftheir Fifth-Generation Computer Systems project (FGCS). Since then numerous 

applications of fuzzy control techniques to complex processes have occurred. 

The latest foci in fuzzy control systems is to construct adaptive fuzzy control systems. 

The characteristice of systems to be controlled may vary over time, for instance as a 
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machine operates, it's parts are subject to wear and tear. For these types of reasons, 

adaption has been introduced into fuzzy expert systems to compensate for this temporal 

behaviour. Two main methods for accomplishing this are the modification of certain 

weights associated with the rules in the rule-base, and to widen or narrow the membership 

functions corresponding to certain linguistic values of a linguistic variable. Adaptive fuzzy 

control sysetms have been shown to be extremely robust. 

By considering continuous processes as continuous systems with a vector input and a 

vector output, [Buckley, 1992) shows that neurai networks, fuzzy expert systems and fuzzy 

control systems may all be deemed to be equivalent (with some minor considerations). 

The use of fuzziness in control and expert systems may be deemed analogous to the 

use of the complex domain, fuzzy expert and control systems translate inputs and operate 

upon them in the fuzzy domain, to analyse difficult integrals, it is convenient to jump into 

the complex domain and make use of residues and complex numbers . 

5.4_3 Applications 

Fuzzy expert and control systems have been utilised to interpret and control a plethora 

of real-world systems. Fuzzy expert systems working within domains such as medicine, 

geology and finance have been successfully developed. Of note is that the Japanese Se­

curities firm, Yamaichi Securities, deploys a fuzzy expert system to manage clients' stock 

portfolios and yields an average return of 35% on investments! 

Fuzzy control systems are far more numerous, having been applied to aeronautics 

(flight control systems and shuttle docking), railway train driving (the Sendai Railway), 

image stabilisation (panasonic's video recorder). Figure 5.9 below gives a brief summary 

of some of the applications recently developed. 

5.5 Conclusion 

At this stage, fuzzy mathematics, expert systems and their fuzzy counterparts have been 

illustrated. The reader may ask whether the problems associated with traditional (non­

fuzzy) expert systems highlighted earlier, extend to fuzzy expert systems. The answer is 

yes, albeit to a lesser degree. By allowing fuzzy variables, a single fuzzy expert system 

rule encodes two or more traditional rules, i.e. a fuzzy expert system utilises fewer rules 

to encode the same knowledge as a traditional expert system. However, the knowledge 
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Figure 5.9 Some Applications of Fuzzy Control 

II Product I Company I Fuzzy Logic Role II 
Elevator Control Fujitec/Matsushita Evaluates Passenger 'fraflic 

to reduce waiting times 
Video Camcorder Sanyo Fisher / Canon Auto focus and exposure 

when several when several 
objects are in the picture 

Washing Machine Matsushita Senses quality and quantity 
of dirt, load size fabric 
type and adjusts wash cycle 
accordingly 

Vacuum Cleaner Matsushita Senses floor condition and 
dust quantity and adjusts 
the cleaners' motor power 
accordingly 

Air Conditioner Mitsubishi Determines optimum constant 
operating power level to 
preclude power-consuming 
on-off cycling 

Television Sony Adjusts screen brightness, 
colour and contrast 

Handheld Computer Sony Interprets (Japanes~) 
handwritteI\ input for 
data entry 

Auto Transmission Subaru Monitors driving style and 
engine load to select the 
best gear ratio 

Stock 'frading Program Yamaichi Securities Manages stock portfolios 
(returns 35% annually) 

acquisition bottleneck is still present and the problems of consistency and completeness of 

a knowledge base still abound, if to a lesser degree. 

For these reasons, the expert system argued for in this thesis, while utilising fuzzy 

mathematics, is not a fuzzy expert system. Rather the quintessential aspect of Cogitator 

is that it seeks to circumvent the knowledge acquisition bottleneck and as many of the 

other problems associated with traditional expert systems, as possible. It utilises certain 

aspects of fuzzy mathematics, in particular fuzzy measures of uncertainty and similarity 

with the aim of modelling human cognition (problem-solving) more closely. 
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It is therefore appropriate to introduce an alternative methodology, Case-Based Rea­

soningand then consider a dialect thereof, Memory-Based Reasoning, the reasoning scheme 

upon which Cogitator is based. 
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Chapter 6 

Memory-Based Reasoning 

There is a plethora of reasoning paradigms that seek to simulate human cognitive processes 

with the aim of building intelligent systems. Amoung them are Case-Based Reasoners 

which have shown success in modelling Human Cognition. This section seeks to introduce 

Case-Based Reasoning (CBR) and to elucidate a dialect of CBR called Memory Based 

Reasoning (MBR). Initially, the concepts associated with MBR are discussed in detail as 

well as it's advantages and disadvantages over traditional (rule-based) expert and connec­

tionist systems. Thereafter, three MBR systems developed to date are briefly discussed 

and, finally, the differences between MBR, Deductive Databases (DDB's) and Information 

Retrieval (IR) systems are illustrated. 

6.1 Case Based Reasoning 

CBR may be defined as " A psychological model of human cognition leading to an Ana­

logical Reasoning Methodology [Slade, 1991]. It is based upon the examination of the 

natural reasoning that people perform and developing a cognitive model thereof. 

CBR is consistent with much of what phsychologists have observed in human problem­

solving. [Kolodner, 1991] recounts numerous experiments and observations performed by 

phsychologists and herself in her laboratory at the Georgia Institute of Technology, ir­

refutably establishing that analogical reasoning is performed by humans when they per­

form problem solving and decision making. Furthermore, it was observed that people use 

previous experiences to suggest plausable solutions which are then adapted and evaluated 

accordingly. It was also observed that in the natural situations that the subjects were 

placed in, the use of analogues were more significant than the application of abstract 
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principles (what science generally attempts to do), rules (as traditional expert systems 

do) or conscious deliberation with alternatives. Also, the fundamental advantage that the 

recollection of cases provides is that they allow the decision maker to deal with unknown 

and uncertain information, as well as to explain anomalous situations. 

The methodology used by humans to solve problems is essentially CBR : Lawyers 

use cases as precedents to construct and justify arguments in new cases; mediators and 

arbitrators are taught to do likewise, as are doctors. CBR is also evident in our everyday 

actions, whether preparing a meal, deciding what to do first or even cleaning a pool. 

Expert systems often utilise rules to produce a solution. They are successful for prob­

lem solving in well circumscribed domains. However, they are not proficient at solving 

problems that require creativity, broad common sense knowledge or escetic judgement 

owing to their brittleness. This will be discussed in more detail later. 

Consider an example. A doctor has to diagnose a patient that exhibits an unusual 

combination of symptons. If the doctor has previously encountered patients with similar 

symptoms, then they are likely to be recalled. and a similar diagnosis to those of the 

recalled cases would be proposed. Since medicine often allows for the possibility of more 

than one diagnosis corresponding to a collection of symptoms, a proposed diagosis based 

upon a similar past case may not be assumed to be irrefutably correct. Hence the doctor 

needs to validate the proposed diagnosis vis-a-vis the symptons of the current patient to 

determine whether there is a more apt diagnosis. The recollection of similar past cases 

allows the doctor to generate a plausable answer as a starting point easily. 

Doctors evaluating a proposed diagnosis or judging which of several are appropriate, 

make their judgements based upon their previous experiences. Problem instances - in­

stances where a diagnosis was incorrect - are also helpful since they indicate what could 

go wrong. 

While a doctor knows the etiology (progression) of certain disorders, he cannot be 

trained to identify all possible combinations of disorders. Furthermore, for doctor to use 

their knowledge of disorder etiologies to repeatedly generate plausable diagnoses is too 

time consuming to use every time a patient is to be diagnosed. If the knowledge of the 

disease process was used once to solve a difficult problem, it is sensible to store the solution 

such that it may be re-used! That is, the doctor will thus be able to recognise a subsequent 

combination of disorders that are similar to the one that was stored without having to 

repeat the inference process necessary to arrive at the conclusion again (unlike traditional 
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expert systems). 

Therefore CBR is useful to those who have sufficient knowledge about a task or a 

domain as it allows them to re-use the results of previous hard reasoning. It is also 

useful to those who know a little about a domain - what others did may be recalled and 

their actions adapted accordingly. CBR is also useful when information is incomplete or 

evidence is sparse. Logical systems have trouble dealing with either of these situations 

since they need to base their answers upon what is well known and sound. Some AI systems 

use certainty factors and probabilities to counter these problems of rigidity, however all of 

these require considerable effort on behalf of the computer (computation) and the designer 

(hand-tailoring and derivation), none of which seem intuitive. A CBR system makes 

assumptions to augment incomplete or missing knowledge based upon what experience 

dictates, and progresses from there. Answers generated in such a way will not always 

be correct, not even optimal, but if the reasoner carefully evaluates its solutions, CBR 

provides a way to easily generate answers. 

There are two styles of Case-Based Reasoning - the Problem-Solving and Interpretative 

styles[Kolodner, 1991}. In the Problem-Solving Style, solutions to current problems are 

derived using old solutions as a guide. As already mentioned, old solutions may provide 

almost correct solutions to or warnings of failure concerning certain solutions to a new 

problem. Case-based Reasoning of this style supports a variety of problem-solving tasks 

including planning, diagnosis and design. 

For the Interpretative Style, new situations are evaluated in terms of old ones: a lawyer 

uses this style of CBR to substantiate his arguments for or ' againsed a particular legal ar­

gument. Interpretative CBR is often used to weigh up the odds of a problem solution. 

People making strategic decisions tend to use the interpretative style. Generally, the in­

terpretative style is appropriate for situation classification, the evaluation and justification 

of a solution, argumentation and the projection of the effects of a decision or solution. 

The two different styles of reasoning require that different reasoning be done once 

cases have been retrieved. In Problem-solving CBR, a solution is proposed by retrieving 

appropriate cases. Thereafter, the modiffication of old solutions to fit new situations 

is performed - called adaption. Finally, the new solution is evaluated - called criticism 

- before proposing it. For interpretative CBR, an interpretation or result is proposed 

either based upon retrieved cases or imposed from the outside (eg: when a lawyer's client 

stipulates a desired result) . Thereafter, the process of justification is performed, whereby 
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an argument for the proposed solution is created by comparing the proposed case to prior 

cases . Finally, the process of criticism whereby an argument is ana.!ysed by generating 

hypothetica.! situations and applying the argument to them is utilised. 

6.1.1 Design of a CBR System 

The genera.! design and the functioning of a CBR system is depicted in figure 6.1. The 

Figure 6.1 The Genera.! Design of a Case-Based Reasoner 
(Source: [Hies beck & Schank, 1989]) 
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cardina.! aspect of CBR is the retrieva.! of appropriate cases. This is termed the Indexing 

Problem [Kolodner, 1991J . Essentially, the problem is one of assigning appropriate labels 

to cases when they are placed into the case memory such that they may be retrieved 

appropriately. These labels indicate under what circumstances a case might be retrieved 

and provides a means of deciding the appropriateness of a case vis-a-vis the query case. 

This requires an understanding of the notion of similarity which is discussed later. 

People tend to be proficient at using cases to solve problems for which there is incom­

plete or uncertain information. However, they are not proficient at reca.lling the correct 

cases when there is a myriad of information to remember [Kolodner, 1991J . [Kolodner, 
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1991] refers to phsychologists who observed that people sometimes recall an experience 

without validating it vis-a-vis the new situation and they are often not reminded of the 

most appropriate cases during reasoning. Also, novices have the additional problems asso­

ciated with missing experiences that would constitute cases to be recalled for apt analogical 

decisions . In effect, their ability for judging the similarity of cases is deficient. 

Computers form the complement of humans in this sense: they are proficient at remem­

bering cases but not at using the cases to make decisions, whereas people are proficient at 

organising information, but not at recalling all the appropriate cases. 

Consequentially, [Kolodner, 1991] proposes the development of CBR systems to aid 

the decision-making capability of people, Case-Based Aiders augment a person's memory 

by providing analogues to a query case which a person may then use to solve problems. 

Now that the main aspects of CBR have been introduced, we now turn to Memory­

Based Reasoning, a dialect of CBR and a main topic of this thesis. 

6.2 Memory Based Reasoning 

Memory Based Reasoning (MBR) is an empirical datardriven reasoning scheme that makes 

direct references to a large database of specific episodes (an episodic memory), rather than 

using a knowledge base of rules and facts to reason. It is as if the MBR system seeks to 

make decisions by "remembering" similar past circumstances and directly recalling those 

that are the most similar to the current query case. 

The rationale behind this methodology is that it is difficult to conceive of intelligence 

without cognition and common sense, which are in turn, difficult to conceive of without a 

memory of past experiences. To illustrate, consider the simple task that we do every day: 

reading. When reading a book, the story progresses by describing certain events and then 

others. Often, in order to understand later events properly, recollection of past events is 

essential. Similarly in the sciences, definitions, theorems and certain introductory concepts 

are initially given and are subsequently used to develop other or more advanced aspects of 

the subject . The whole notion of theorems that started with the ancient Greeks is based 

upon this. It is not to say that memory is the sole important aspect of intelligence, but it 

is a very important one. 

Before progressing with MBR, the notion of similarity, a quintessential aspect of MBR 

needs to be considered. 
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6.3 Similarity 

As already stated, the real world is a dynamic environment immanent with uncertainty. 

Whereas entities are different and are evolving, there still appears to be a strand of siIni­

larity between them. This strand allows us to generalise, learn from past experience and 

to develop contingency plans. 

Generalisation may be considered a form of abstraction. Of cardinal importance to 

intelligent systems, it aids in the recognition of similar objects and noise compensation, two 

attributes that humans are particularly adept at. This notion of similar inputs yielding 

similar outputs is characteristic of many real-world systems. Neural networks seek to 

replicate this behaviour by utilising a simplistic representation of the brain. 

Is this generalisation via similarity also characteristic of humans? Consider the im­

portant notion of categorisation. In order to categorise entities, computer scientists have 

formed lists of attributes and matched them againsed other lists to identify entities in the 

same categories. However, this approach is flawed. Most cats meow, but not all. (eg. 

Lions and Tigers which growQ. Some birds fly, others do not (eg. Ostrich and Emu). 

Ornaments come in many shapes and sizes and are made from· plastic, steel, wood or some 

other exotic material. 

A possible solution to the categorisation problem is to deVelop prototypes, a collection of 

examples characteristic of a certain category. This approach has significant phsychological 

support and is gaining acceptance in the form of Case-Based Reasoners and already in 

Neural Networks. In line with this, an MBR system computes the similarity between a 

query and a collection of prototypical cases, producing similar outputs when posed with 

similar inputs. 

This Generalisation by Similarity has some interesting phychological observations en­

countered in everyday life. People consider good or prototypical birds as doves, sparrows 

or pidgeons. Ostriches and Emus are termed bad examples of birds. Almost all mam­

mal classes comprise males and females, however the Black-Backed Jackal of Australia is 

epicene. Batrachian amphibians discard their gills and fins when adults (eg. tadpoles­

frogs). The mudhopper is a swamp-dwelling fish that occasionally leaves the water, often 

climbing the stems of swamp plants. Oddly, people tend to remember these exceptions 

very well. 

One may state that these exceptions are enumerative and may be classified accordingly. 
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However, similarity as a general descriptive model is offered. According to similarity, then, 

there exists a continuum between all classes, and examples of these continua exist only 

if nature allows them, for instance a human with no legs nor arms would not survive 

very long on earth, so no such specimens exist. The significant inter-class overlap arising 

from certain entities having qualities of many classes serves to illustrate the concept of 

continuity. The characteristics of land-amphibian-sea mammals change gradually with 

respect to their main functions. This continuity precludes strict classifications leading 

to the appropriatness of fuzziness or fuzzy similarities, a cardinal aspect of the system 

proposed in this thesis. 

Nevertheless, similarity is not a flawless approach. While it describes HIP very well 

[Kosko, 1992], an example will serve to illustrate where it fails. The classical parity function 

which sets a bit according to the number of 1 's in a binary vector exhibits total oppositeness 

for the simple reversing of a single bit. This limitation and the XOR function caused a 

decline in neural network research in the 1960's. 

Neural networks simulate both pre-attentive and attentive processing. Pre-attentive 

processing includes our unconscious operations of image segmentation and contrast en­

hancement in our visual systems, low-pass filtering performed by our cochlea as well as 

word and syllable recognition in our hearing system. Attentive processing encompasses 

the analysis of the image segments and syllables. We look, see (pre-attentive), pay at­

tention (attentive) and then recognise quickly and efficiently. However, the higher level 

cognitive functions, those of decision-making, planning and reasoning with noisy, scant or 

uncertain evidence, our" cognitive calculus" [Kosko, 1992], is a result of natural selection 

and subsequent experential refinement. These are the functions that fuzzy mathematics 

seeks to simulate and MBR seeks to replicate simply. 

Both neural networks and fuzzy systems are model-free estimators, in that no model 

of the system to be analysed is needed. They break with the traditional Western view 

that entities must be observed, defined, quantified exactly and then manipulated by for­

mal methods. Very complex real world systems have been shown to be un-characterisable 

by these strict methodologies: quantum mechanics uses probability theory in its formal­

isations and attempts to introduce fuzzy logic are currently underway. In [Kosko, 1992], 

Richard Anderson recounts the words of Huang Po, a 9-th century Buddist monk 

... from discrimination between this and that, a host of demons blazes forth 
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To summarise, then, similarity is a pervasive aspect of nature and human reasoning 

and is therefore regarded as a quintessential aspect of MBR and Cogitator, the paradigm 

proposed in this thesis. 

Before proceeding to describe the operation of a typical MBR system, the format of 

database cases needs to be described. 

6.4 Case Representation 

Cases are represented by records comprising fields . The fields are partitioned into into 

collections of Goal and Predictor fields . To illustrate, an example of a case is given in 

figure 6.2 below. 

Figure 6.2 Example of a case record containing information pertaining to a scuba diver 
pa.tient who has a burst lung ( pulmonary barotrauma) and has any of mediastinal 
emphysema, air embolism or pheneumothora.x. 

Goal Fields Predictor Fields 
Pulmonary Barotrauma Shortness of breath I Pain in chest II 

The predictor and goal fields may be thought of as containing, respectively, the symp­

toms and diagnoses describing a case. Using the collection of cases in the database, the 

MBR system utilises both types of fields to determine possible solutions for a query case. 

6.5 Operation of an MBR System 

The operation of an MBR system comprises a number of steps : 

(a) The system is first presented with a query, a case record comprising fields, not all of 

which need be instantiated, 

(b) For each attribute or instantiated field of the query case, the database records are 

scanned to determine the similarity between the query case and all the database 

cases, 

(c) A list of best matches is returned, and 

(d) the list is used to guide the system through inferencing. 

Any of four instances may occur after these operations have been performed : 
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(a) No database record/case is sufficiently similar to the query case. 

(b) Some or a small number of the returned cases are similar to the query case, 

(c) All or almost all the returned cases are sufficiently similar or 

(d) Some of the returned cases are, while some are not, similar to the query case. 

For instance (a), the system may state that it cannot make an accurate diagnosis 

and state some reasons as to why; it may ask whether the entered information is correct 

or state that has never encountered such a case and therefore regards the query case as 

apocryphal. Instance (b) may cause the system to state that the combination of attributes 

comprising the query case constitute a rare condition or it may present a possible diagnosis 

but state that it is inconclusive. For instance (c), the system may state that the condition 

illustrated by the combination of features comprising the query case is familiar and present 

a fairly conclusive diagnosis. For the final instance,( d), the system may state that there 

is no definite diagnosis and state the alternatives. It may also ask for more information, 

proceed with an inconclusive case or propose a precaution rather than a diagnosis. All 

these proposals are made with respect to the database which assumes the form of the 

MBR systems' memory or " knowledge" . 

After a list of cases most similar to the query case have been determined, the system 

utilises an inference procedure with the aim of creating either an amalgamated case rep­

resenting the systems' diagnosis, or a collection of possible diagnoses (whether conclusive 

or not). 

Finally, the database is "restricted", either goal or predictor wise and the MBR 

paradigm is re-applied to this restricted database (a subset of the database). In pre­

dictor restriction, the predictor fields of the elements of the database are scanned and a 

similarity computation based thereon is performed for each case. Similarly, in goal re­

striction, the database is scanned for records containing similar goal field values as those 

of the current query case. Thereafter, the predictor fields of the records in the restricted 

database are scanned and similarity coefficients computed. This is done in order to dis­

cover plausible (or evocative) new values for the goal field. This may be thought of as a 

system of refinement . 

As may be deduced, an MBR system and a database-driven expert system are es­

sentially synonymous. Inasmuch, the FGP machine [Fertig & Galernter, 1991], a virtual 
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machine describing a database-driven expert system, is also equivalent to an MBR system. 

The final section compares MBR to the FGP machine as well as Information Retrieval 

(IR) systems and Deductive Databases. 

6.6 Computer Operation 

The database of case records is segmented according to the number of processors available 

in the concurrent computer system and each segment is broadcast to a processor which 

in turn stores the portion in its memory or disk. The operation of the MBR system then 

proceeds as follows 

(a) The values of the query records' predictors are broadcast to each processor. 

(b) Each processor computes a similarity metric value for each predictor, 

(c) Using these metrics, a total similarity/dissimilarity metric between each predictor 

value and each record in each processors' database is computed and 

(d) The n best matches (those with the greatest similarity metrics) to the query are 

selected. 

(e) These n best matches are then used for inferencing. 

The size of the case database (episodic memory) is siguificant and it is that which is 

now considered. 

6.7 Database Size 

The size of a database used has a significant influence on the accuracy of the systems' 

conclusions. [Creecy & Waltz, 1991] showed that, generally, the larger the database, the 

more accurate the deductions are likely to be. [Creecy & Waltz, 1991] also describes how 

the size of the database was varied and the respective accuracies of the MBR system for 

each size. Thelr results are depicted in figure 6.3. 

Consequentially, the recognition accuracy of an MBR system is sensitive to the initial 

database size. Therefore, to improve the systems' accuracy, a simple form of learning ( 

simply adding to the database correct conclusions as irrefutable cases) may be utilised. 

However, as databases increase in size, certain problems become apparent including: 
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Figure 6.3 Accuracy verses Database Size 
(Source: [Creecy & Waltz, 1991]) 
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(b) More processing power. Also, not serious, but adds to cost. Just add more processors 

(as databases are linearly seperable more processors do not increase the complexity 

of the MBR system - see MBRs'advantages in the next section). 

(c) Greater difficulty in finding and manipulating relevant information (information is 

more detailed and dense). Serious since it leads to deteriorating search quality (either 

miss important cases or retrieve irrelevant ones). A solution is to use relevance 

feedback [Waltz & Thau, 1987) [Waltz, 1986). 

Now that MBR has been illustrated, the reader may wonder about its viability as an 

alternative expert system paradigm. To illustrate this, the next section lists and com­

ments on the advantages and disadvantages of MBR over both symbolic and non-symbolic 

(connectionist) AI (expert) systems. 
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6.8 Advantages of MBR 

MBR posesses numerous attractive advantages over symbolic and non-symbolic (connec­

tionist) AI systems. Concerning symbolic AI systems (expert systems) these include 1 

(a) No expert required. Conferring with a domain expert and having him articulate his 

knowledge and then transforming this knowledge into a knowledge base takes time. 

According to [Creecy & Waltz, 1991] the time is often a year or so, sometimes even 

longer. The reader may recall a quote from [Schank, 19tH] in the chapter on expert 

systems that claimed that building the third version of a system took 30 man years 

of doctoral students' labour. 

(b) Easier to construct a database than a knowledge base. A knowledge base is a struc­

tured collection of rules and facts. Translating knowledge into this format is non­

trivial especially if the domain is fairly large resulting in many rules and facts. 

Databases are simply collections of previous documented cases and are thus obvi­

ously much easier to construct . 

(c) Establishing the consistency of knowledge bases. The main problem of knowledge 

bases is in establishing the consistency of the rules and facts therein. This is ac­

knowledged as a major problem, especially when sufficiently large domains are to 

be characterised. This problem has elicited many researchers to enquire and suggest 

alternative expert systems to be designed [Stanfill & Kahle, 1986]. Databases do not 

have a need for consistency establishment at all. 

(d) Databases are numerous and more readily available. Owing to the effort that is 

expended in constructing a knowledge base, the compiler(s) thereof are more reluc­

tant to give them to other researchers or other people without some form of reward 

(financial or referential). Databases are available from many sources, for instance 

medical and biological databases, and records are also kept by many private and 

public institutions. 

(e) MER systems may form a hypothesis based upon a single precedent. Expert systems 

or, rather, systems that use rules cannot since rules are generalised summaries of 

the regularities of phenomena. 

'Some of the advantages were highlighted in [Creecy & Waltz, 1991]. 
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(f) MBR systems exhibit consciousness they "know when they don't know". The use of a 

similarity metric and additional criteria such as thresholds allow for the embedding 

of a simple form of consciousness into the system. The system may then use its 

"consciousness" to determine whether its decisions are conclusive or not and relay 

this to the user. It may ask for more information, question the veracity of the input 

or state that its decision is inconclusive and why. 

(g) MBR systems substantiate their conclusions and offer meaningful commentary dur­

ing operation. Expert systems cannot generate commentary during execution nor 

can they substantiate their conclusions. This is a. serious limitation since the ve­

racity of an argument or conclusion is based upon how the conclusion was reached 

(intermediate commentary) and what substantiations are used. 

(h) The implementation time is much shorter than that of expert systems. As they 

circumvent the knowledge acquisition bottleneck, they are easier to implement. 

(i) MBR systems are inherently tolerant of noise and deviation. MBR systems have 

been shown to be noise tolerant, and to be able to handle great deviations in input 

[Creecy & Waltz, 1991J [Stanfill & Kahle, 1986J . The deviations in input are also 

handled by the MBR systems' "consciousness" - it may state that the input data 

is incorrect, ask for more information or state tha.t its decisions are inconclusive. 

Also, MBR systems degrade gracefully in the presence of noise - as noise increases 

they degrade sub-linearly until noise reaches about 90% [Creecy & Waltz, 1991J. 

Traditional expert systems are "brittle" - they tend to fail miserably if presented 

with a query whose attributes do not match very closely or exactly to those that are 

contained in the knowledge base. They are therefore intolerant of noise and degrade 

in the presence of it. 

(j) MBR systems lend themselves to easy implementation on parallel computer systems. 

Since databases are completely decomposable, database searches are naturally paral­

lel- segment the database into equal segments and assign each segment to a processor 

allowing for linear speedups in searches. Expert systems contain many enumera­

tive paths and executing them in parallel implies the propagation of intermediate 

results/conclusions to all the processors thus leading to plenty of communication 

overhead. [Blelloch, 1986J each describe a parallel expert system and mention the 
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following problems associated with them: Chapter three described various attempts 

to parallelise expert systems and illustrates the trickiness associated therewith . 

(k) Since expert systems are generalisations over domains, they average over many do­

main cases omitting the details specific to a number of the cases. In certain situa­

tions, in fact most, more details about a phenomenon are needed before a decision 

may be made. Often, when asked for a decision concerning a problem, you might 

say "Give me more details"? Thus the specific details about a collection (small or 

large) of cases may be needed to make a decision. 

Consequently, expert systems are only really useful for interpreting non-large do­

mains (this is also forced by the need for consistency of the rules: as the no. of rules 

increase, the determination of consistency becomes increasingly difficult). However, 

MBR determines those cases most relevant to the current query and in so doing the 

details specific to all those related cases are considered. 

(i) It is easier to add correctly classified examples to a database than it is to add rules 

to a knowledge base. The former operation is simply an append, whereas the latter 

involves testing for consistency of the rules and deriving them before adding them. 

MBR's learning is experiential - when a case is deemed to be correct, it (and its 

characteristics) is added to the "memory" of the system for possible future reference. 

(m) The inferencing procedure required to reach a conclusion is not repeated when a 

similar query is posed. Rather, the closest matches to be found in the database are 

retrieved instead. This is a more efficient procedure and closely simulates human 

cognition. It also presents a possible solution to the claSsic Categorisation Problem 

(see the earlier section on Similarity in this chapter). 

(n) The pervasiveness of Similarity in the natural world lends many real world appli­

cations amenable to the MER paradigm. MBR has shown encouraging results in 

modelllng real-world systems, much greater than that of traditional expert systems 

(see the section on applications below for more details). 

Of these advantages, the ability to circumvent the "knowledge acquisition bottleneck" 

(instances ( a), (b) and (c)), to generate meaningful commentary and to tolerate noise and 

inexact input may be considered as being the most attractive. 
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Concerning non-symbolic or connectionist AI systems, the advantages include 

(a) No training required. Connectionist systems must be trained with an example set 

and much time is often consumed for this purpose. The larger the training set, the 

longer the learning process takes. 

(b) Overtraining. Connectionist systems also suffer from the possibility of overtraining 

- when the system learns the example set so well that when presented with inputs 

not in the example set, recall accuracy is very low. [Weber, 1991) mentions recall 

percentages around 5% in his time-delay neural network-based voice recognition 

system. 

(c) Connectionist systems cannot explain their decisions. MBR systems can and do. 

(d) Connectionist systems are non-interactive. MBR systems are. 

(e) MER systems are conscious. Connectionist systems are not. 

(f) The values representing features are averaged by connectionist systems. This leads 

to the loss of detail of collections of phenomena that occur or have similar charac­

teristics. This averaging occurs as the training examples are superimposed upon one 

another to obtain a connectionist representation of them. 

6.9 Disadvantages of MBR 

The disadvantages of MBR vis-a-vis symbolic AI systems include: 

(a) They require more processing power than traditional expert systems. The similarity 

computation must be computed using every element in the database and must be 

executed for every attribute of the predictor field. Expert systems simply follow 

pre-determined inference paths. 

(b) Expert systems can generate a proof tree of how their conclusions were reached. MBR 

systems cannot - rather, they substantiate their intermediate and final conclusions 

and produce commentary on their operation. 

(c) MER is still in the nascent stages of research. Only two applications [Stanfill & 

Waltz, 1986) and [Creecy & Waltz, 1991) have been implemented and tested. 
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Of these, (a) and (c) should diminish over time as, respectively, hardware becomes 

more powerful and cheaper, and as research in MBR (and related paradigms) progresses. 

Concerning (c), whether it constitutes a disadvantage may be deemed to be debatable. 

Connectionist systems also exhibit some advantages over MBR including: 

(a) Connectionist systems are order-l search systems. 0(1) search systems are systems 

that take the same time to search for an element irrespective of the number of 

elements contained in the search space. MBR systems are O(N) search systems at 

best - the time to search a database increases linearly with the size of the database. 

(b) Connectionist systems are at a fairly advanced stage of development. There is a 

myriad of books on connectionist systems and applications. MBR is still in its 

incipient stages. 

(c) Connectionist systems have an inherent learning capability. There is a myriad of 

books on connectionist systems and applications. MBR is still in its incipient stages. 

Instance (a) is a major advantage, although the "forgetting" property of neural net­

works could be problematical for large databases. (b) is currently an advantage that would 

diminish with time as more work in MBR and related paradigms progresses. 

As may be deduced, whilst connectionist systems exhibit an attractive property (0(1) 

searching), the advantages of MBR over both symbolic (traditional expert systems) and 

connectionist AI systems far outweigh its respective disadvantages. MBR is therefore a 

viable alternative paradigm for the creation of intelligent systems. 

6.10 Evaluation Criteria 

Research for this thesis has led to the identification of five criteria deemed to be important 

for the evaluation of the performance of an MBR system, and are : 

(a) Precision: The proportion of retrieved cases that are relevant to the query case is 

termed to be precision. 

(b) Recall: The proportion of relevant documents or cases in the entire database that 

are deemed to be relevant is termed recall. 

(c) Ease of use: How quickly a novice / neophyte can learn to use the system and the 

ease with which an experienced user can use the system. 
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(d) Response time: To facilitate interaction and fast processing of large databases, re­

spectively, good response times and an efficient implementation are needed. 

(e) Ease of Extensibility: The ease with which the system is ported to process other 

databases efficiently, and the ease with which records are added to the database. 

All the aforementioned five criteria may be used to evaluate the performance of the 

MBR system. For the proposed system, Cogitator, these five criteria are of vital impor­

tance to establish its viability. 

MBR systems exhibit certain characteristics that may be found in certain other sys­

tems, and may sometimes be confused with them. The following section seeks to delineate 

between MBR and two similar systems, Information Retrieval systems and Deductive 

Databases, and to illustrate the similarities between MBR and the FGP machine. 

6.11 Similarities to Other Systems 

The operation of a MBR system is similar to that of the FGP machine [Fertig & Galernter, 

1991]. The retrieval of cases from the database is represented in the FGP machine by a 

Fetch() command. The inferencing performed by a MBR system is equivalent to the 

Generalise() operation of the FGP machine, although the methodologies employed may 

differ. The restriction of a database is equivalent to the FGP machines' Project() operation. 

Thus, MBR and the FGP machine are, in essence, equivalent. However, the difference is 

that MBR utilises concurrency whereas the FGP Machine does not, but it may easily be 

extended by defining the following primitive functions : 

P Yetch() - Parallel Fetch 

P _Generalise() - Parallel Generalise 

P J>roject(} - Parallel Project 

where P_Fetch() broadcasts the query case to all the processors/ computers being utilised 

which in turn perform the searching on different portions of the segmented database and 

return ordered lists of the most similar cases, P_Generalise(} performs as does Generalise(}, 

and P J>roject() broadcasts the amalgamated or new case to all the processors/computers 

that are being utilised. 

It is important to delineate between Database-Driven Expert Systems (DDES's), De­

ductive Database Systems (DDBS's) and Information Retrieval (IR) Systems. Although 
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similar, there are several important differences that need to be illustrated. 

A DDBS is a database system that applies logic programming techniques to databases 

with the aim of extracting inferred or implied information. They may be considered to 

be an extension of relational ones, in that anything that can be done with the latter may 

be performed with a DDBS. In addition, a deductive database can of course utilise rules, 

which are usually a subset of (pure) Prolog rules. Queries are similar to those of Prolog. 

A database-driven expert system is very similar, and possibly the same, depending on 

aspects such as how rules are expressed [Harland, 1992]. An example of such a system 

is ADITI [Harland, 1992], which is being used to identify and find airline flights between 

arbitrary cities. 

Both Database-Driven Expert Systems and Deductive Databases have an inference 

mechanism. However, the databases are represented differently. Another difference is 

that a deductive database is usually conceived of as having a vast number of facts, and 

a comparatively small (though not tiny) number of rules(an expert system may have as 

many rules as data in some cases), but the database of the DDES does not contain any 

rules at all. 

There are a couple of standard examples of a DDBS. One is family trees. Suppose you 

have a parent relation, full of tuples such as 

parent (john, susan). 

parent(john, roger). 

parent(susan, george) . 

This is no more than what a relational database can do. However, in a DDB you can 

also define rules such as the one below, which defines the ancestor relation in terms of the 

parent one: 

ancestor(X,Y) :- parent(X,Y). 

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y). 

Queries can then be posed as follows: 
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?- ancestor(XJohn) % "Who are the ancestors of John?" 

?- ancestor(john,X) % "Who are the descendants of John? 

?- ancestor(X,Y) % "Find all tuples in the family tree." 

?- ancestor(john,susan). % "Is John an ancestor of Susan?" 
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Another example is a flight information database. Assuming that there is a relation 

flight which has information on direct flights only, we can then write rules such as those 

below for a trip relation, which finds feasible flight routes between two destinations: 

trip(X,Y,F) :- flight(X,Y,F). 

trip(X,Y,F1.F2) :- feasible(X,S,Y), trip(X,S,Fl), flight(S,Y,F2). 

[Harland, 1992J has a sample application of such a database, implemented in his system 

- Aditi. 

Now that the delineation, although fine, between database-driven expert systems and 

deductive databases has been illustrated, the difference between DDES's and information 

retrieval systems needs to be illustrsted. 

Allied with databases, Information Retrieval (IR) may be deemed to encompass the 

notions of many modern database management systems such as Oracle. Essentially, IR 

systems attempt to reproduce the decisions of an expert librarian by studying the infor­

mation seeking and needs of, respectively, librarians and library users. IR therefore is 

concerned with the retrieval of appropriate or relevant documents. 

The classical problem in IR concerns the automatic extraction of relevant textual 

documents. Attempts to solve this problem have led researchers to propose different 

models of document representation and their subsequent retrieval. Document models may 

be classified as one of three types: exact match, probabilistic or vector space. Relevance 

Feedback is a powerful method of retrieval [Walz, 1990J. 

The difference between IR and MER is twofold. Firstly, IR is concerned with the 

retrieval of relevant documents whereas MER is concerned with the retrieval of relevant 

cases. Secondly, MER posseses an inference mechanism whereas IR systems do not, the 

main delineating factor. Nevertheless, cases and documents may be considered to be 

synonomous so that many retrieval techniques of IR may be utilised in MER. 
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IR has established links with AI (cognitive Science and NLP) and database manage­

ment systems (DBMS) and according to [van Rljsbergen & Agosti, 1992J, these links are to 

strengthen in the future; certainly true if Case-Based Reasoners (CBRs) and their dialects 

are considered. 

6.12 Applications of MBR 

Since the FGP machine and MBR systems may be regarded as two different implementa­

tions of the same paradigm, their respective applications and the results obtained needs 

to be mentioned. 

To date, only three applications of the MBR paradigm have been implemented [Stanfill 

& Waltz, 1986J, [Creecy & Waltz, 1991J and [Fertig & Galernter, 1991J . The first, described 

in [Stanfill & Waltz, 1986J, is MBR applied to the pronunciation of English words. The 

aim was to identify the phonemes and the phoneme accents for each English word (ie. to 

try to pronounce the word correctly). 

Utilising a dictionary of 20,199 words, 4,438 words with a total of 32,768 letters were 

selected. MBRTalk was then applied to 100 words, totalling 772 letters, and 86 % of the 

phenomes (43 % of the words) matched the dictionary pronunciation exactly. Humans 

listening to the output played through a speech synthesizer judged the pronunciation at 

least as good as that of the dictionary 47 % of the time, slightly and badly mispronounced, 

respectively, 21 % and 32 % of the time. As English pronunciation is very difficult, [Stanfill 

& Waltz, 1986J state that these results are encouraging. 

The second application, described in [Creecy & Waltz, 1991J, concerns using MBR to 

interpret natural language responses to census forms of the US department of Census. 

The Censes are conducted annually in order to determine the number of people working 

in various US industries, i.e. to profile the US workforce. By interpreting a person's 

responses to the census, the system attempts to classify that person in an industry and 

occupation category. Those applicants that cannot be processed by the MBR system were 

referred to clerks for classification. 

The performance of the system was evaluated and compared to an expert system, 

called AIOCS, which was developed to perform the same task. The results are depicted 

in table 6.4 below, from which it may be easily deduced that the MBR system performed 

significantly better. 



Applications of MER 

Figure 6.4 Performance comparison of the AIOCS and MBR systems 
(Source : [Creecy & Waltz, 1991]) 

Industry Coding 
( at 90 % accuracy) 

100 

0-'--'-...... -

Occupation Coding 
( at 86 % accuracy) 
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Both these systems were implemented on the Connection Machine (r), a SIMD parallel 

machine. To date there have been no implementations on other (MIMD) parallel computer 

systems, as proposed by this thesis. 

Three applications of the FGP machine [Fertig & Galernter, 1991] have been im­

plemented including the classification of Irises, attributing folk dances to countries and 

mammography (breast Cancer). Respectively, the percentages of correct classifications 

are depicted in figure 6.5 below. 

Figure 6.5 Test results of the FGP machine in three domains 
(Source: [Fertig & Galernter, 1991]) 

II elMs I System I Human II 
Irises 77% nla 

Folkdances 57% 53% 
Mammography 70% 60% 

The reader is referred to [Fertig & Galernter, 1991] for more information. 

Other applications of MBR include DNA and protien sequencing [Zhang, 1993] [Core, 1988], 
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document retrieval, Natural Language Processing [Stanfill & Kahle, 1986J, and many oth­

ers. There has even been an application in computer vision: the recognition of objects 

by using prototypes [basri, 1992J. Continued use and application of MBR to real world 

problems should indicate its wide applicability and efficacy. 

6.13 Conclusion 

This chapter sought to illustrate the utility of a CBR dialect, MBR. Initially, CBR was 

introduced and its close correlation with human cognition, in particular problem-solving, 

was illustrated. Thereafter, the pervasiveness of similarity in nature was discussed with an 

aim of further substantiating CBR, and the following discussion on MBR. Certain aspects 

of MBR were then discussed including database size and operation, whereafter, finally, 

the advantages and disadvantages of MBR with respect to symbolic and non-symbolic AI 

systems, was illustrated. The greater number of advantages vis-a-vis both systems should 

convince the reader of the utility and viability of MBR as an alternative expert system 

paradigm. 

The next section illustrates Cogitator, the expert system paradigm proposed in this 

thesis . As Cogitator is an extension of MBR, almost all the concepts developed in the 

current chapter are either utilised or extended upon. 
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Chapter 7 

Cogitator 

It has been conclusively shown that traditional expert systems suffer from a variety of 

problems, some of which are serious. The previous chapter illustrated that MER circum­

vents many of them, in particular those allied to the Knowledge Acquisition Bottleneck 

(KAE) indicating that MER is a viable alternative expert system paradigm. Furthermore, 

MER is a naturally concurrent paradigm and the trickiness associated with concurrent tra­

ditional expert systems further enhances MER's appeal. 

Towards the end of the previous chapter, the FGP Machine was mentioned and a 

parallel version thereof was shown to be equivalent to an MBR system. Initially, the use 

of a parallel version of the FGP machine to define Cogitator by the following eight primitive 

functions from which a concurrent virtual machine defining a concurrent database-driven 

expert system could be constructed. 

• P-Fetch() - Parallel Fetch 

• P _Generalise() - Parallel Generalise 

• P _Project() - Parallel Project 

• P ...Add() - Add a case to the database 

• P _Delete() - Remove a particular database case 

• P ..EetSize() - Reset the size of all the databases 

• P _Getsize() - Determine the sizes of the database segments 

• P_Ossify() - Determine the irrefutable cases (facts) implicit in the database 
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However, a pa.rallel version of the FGP Ma.chine is under development at Yale Uni­

versity. Also, Cogitator utilises fuzzy instead of crisp logic and therefore has a totally 

different inferencing and simila.rity computational mechanism. Furthermore, the FGP 

machine could serve as a system to compa.re Cogitator to. Consequentially, building Cog­

ita tor directly from the FG P Machine seems inappropriate. Nevertheless, the parallel 

virtual machine concept is an attractive aspect. 

What follows is a description of a pa.rticula.r MBR system, called Cogitator, designed 

to be commercially viable and to offer ease of adaptability and extensibility. Cogitator 

may be considered to be an extension of fuzzy relational databases (FRDBs), in the same 

way as the FGP machine and MBR a.re extensions of traditional (non-fuzzy) relational 

databases (RDBs). For this reason, fuzzy RDBs a.re initially discussed. Thereafter, a 

discussion of the types of membership functions that a.re suitable for Cogitator is given, 

followed by Cogitator's proposed analogical inferencing methodology, the suggested repre­

sentational format of the database, and how a simple form of lea.rning may be incorporated. 

Finally, the proposed operation of Cogitator followed by a sample implementation utilising 

a popula.r concurrent programming paradigm, Linda, is given. 

7.1 Fuzzy Relational Databases 

Relational databases, such as Ingres and Oracle, play an important role in the functioning 

of businesses and corporations today: client records, employee records, etc. However, all 

these databases contaln and deal with information and data per se, in that exact matching 

between queries and data must occur. This exact matching places certain limitations on 

queries and the interpretation of data. For instance, consider the following query 

Which members a.re in Considerable agreement with the president on the effects 

of fossil fuels? 

To cha.racterise the concepts considerable agreement and fossil fuels (ie. coal, oil and 

natural gas) in terms of boolean matching queries is difficult. Furthermore, when subjec­

tive or imprecise data is being considered, repesenting the data satisfactorily and recalling 

the correct information is difficult [Buckles, 1982]. 

For these reasons, resea.rchers have explored the possibility of natural language inter­

faces as well as fuzzy databases. The author considers a natural language interface to 

a standa.rd (crisp) database to be a.rtificial. Furthermore, natural language processing 
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is known to be very difficult owing to the panopoly of interpretations of many common 

statements. 

Judging from the literature, most work on fuzzy RDBs was performed during the 

late 70's and early 80's and is still applicable today. Fuzzy Databases, specifically Fuzzy 

Relational Databases, are similar to their crisp counterparts, except that incomplete and 

imprecise data and queries are handled more efficiently. In effect, they allow [Buckles, 

1982J 

• Easier specification of incomplete and imprecise queries 

• Representation of fuzzy data in a linguistic format 

• The similarity relations used to interpret data, and thus the database, may be mod­

ified modified to reflect the values of a different individual. 

[Buckles, 1982J describes the basic structure of - and the utility of - fuzzy databases 

when dealing with imprecise or incomplete data. They are useful in areas where subjective 

knowledge and judgemental evaluation pervade, such as in the economic and medical fields. 

Whereas many concepts of fuzzy databases may be extended to Database-Driven Ex­

pert Systems (DDESs), they are not equivalent, the two main differences being that 

• RDBs, both fuzzy and crisp, seek to eliminate redundancy - something DDESs rely 

on for noise tolerance and accuracy, and 

• RDBs have no inferencing mechanism, they may be considered to be lookup systems 

(albeit sometimes sophisticated) 

Fuzzy RDBs represent the impreciseness of data by fuzzy sets. As in traditional RDBs, 

the database comprises a collection of records each composed of fields. The fields are 

represented by fuzzy sets, for instance for a field "Salary", records may contain "High" or 

"Low" instead of, respectively, $96 000 and $20 000. In RDB's, records are often termed 

tuples, and fields, keys. 

For retrieved information, an answer to a query, keys are often represented as vectors, 

for example 

Occupation = < economist, envirnomentalist, economist, geologist> 

In essence then, a RDB may be specified as 
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RDB = ( t" t2 , ••• , tn ) 

where 

the tuples comprising the key field values dij . 

In a Fuzzy RDB, keys are termed domains and tuples are sometimes referred to as 

relations. Furthermore, instead of characterising entities or tuples as 

d, = { iii E I and i "is about" d} I an index set 

they are represented as 

d, = { (i, !ld (i) ) IdE D and i E I } 

where !laO) represents the degree of membership of entity i in domain d (ie. permit the 

set of index terms to be represented fuzzily) and D is a domain set. 

Consequentially, the two main differences are as follows 

• dij E D j for a standard RDB 

d'j £;; D j for a fuzzy RDB 

• V Dj> a similarity relation 1 Sij is defined. 

Therefore, for domain sets D j , a fuzzy relation Rf may be defined as 

where 2D , is the power set of domain Di . 

Membership in R f is determined by the underlying semantics of the relation . 

Definition 7.1.1 A Fuzzy Tuple ti is defined as 

where Dij E D j represent fuzzy labels of fuzzy set Dj 

Definition 7.1.2 An Interpretation (aI, a2, . . . , am) of tuple ti = (Dil,Di2, . . . ,Din) is 

an assignment of vaiues aj such that aj E Dij> V j . 

Definition 7.1.3 A Similarity Threshold T(D j ), is defined as 

1 A re:flexive, symmetric a.nd tra.nsitive relation. 



Cogitator's Membership FUnctions 93 

T(Dj) = min( max [S(x,y)]) 
, 2:,l/E dij 

Relational databases are interrogated by some Relational Algebra. Fuzzy RDBs are 

queried by a fuzzy relational algebra which takes the following general form: 

( < Operation Name> < one or more Relation names> <one or more Domaln names> 

< Optional Condition> < Minimum Similarity Clause> ) 

When applied, all relational algebras return a relation that may be used to pose the 

next query. 

For instance, 

( Project People over <Height + Age> with < T(age) ;::: 0.8 and T(Height) ;::: 0.75> 

Giving Tall-and-Old ) 

[Buckles, 1982J proves the uniqueness of the union and intersection operations for 

Fuzzy RDBs. He also mentions two concepts used to measure accuracy: precision and 

recall (mentioned in the previous chapter), both fundamental to determining the accuracy 

of RDB's as well as DDES's. 

Before proceeding with a discussion of the operation and functioning of Cogitator, a 

perspective on the types of membership functions, of cardinal importance to any MBR 

system, needs to be considered. 

7.2 Cogitator's Membership Functions 

As previously mentioned, the choice of an appropriate membership function for the fuzzy 

sets and the linguistic variables is of cardinal importance. Consequentially, the question 

arises: which types of linguistic variable membership functions are suitable for retrieval 

and/or inferencing? 

[Kim & Lee, 1993J provide a possible solution. Arguing that the traditional functions 

used for information retrieval, AND and OR, based upon T-Norms and Averaging, are 

inadequate for effective information retrieval, they propoSe a class of operators called 

Positively Compensatory Operators. A brief outline of their ideas and arguments now 

follows. For more detailed information, see [Kim & Lee, 1993J. 
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In information retrieval, the logical operators AND, OR and NOT are used as part 

of the user queries and are evaluated according to certain fuzzy operator functions. The 

AND and OR functions are of particular importance and are often evaluated, respectively, 

according to the MIN and MAX operators. [Kim & Lee, 1993J argue that this does not 

correspond with how people would rank documents. For instance, consider two documents 

indexed as follows 

and the query 

D, : (kitty 0.35) (ant 0.3) 

D 2 : (kitty 0.95) (ant 0.25) 

Q = (kitty AND ant) 

As is apparent, applying the MIN operator for AND yields a rating of 0.3 and 0.25 for 

,respectively, documents Dl and D 2 , thus rating Dl higher. However, that is not how a 

human would rate them. 

Before proceeding, a few definitions are in order. 

Definition 7.2.1 An operator fJ is termed Single Operator Dependent if 

fJ(x,y) = x or y 

fJ is termed Partially Single Operator Dependent if 

• fJ(x,O) = fJ(O,x) = 0 

• fJ(x,l)=fJ(l,x)=lorx 

Definition 7.2.2 An operator fJ is termed Negatively Compensatory if 'if x,y either 

• fJ(x,y)::; MIN(x,y),or 

• fJ(x,y) ~ MAX(x,y) 

An operator fJ is termed Partially Negatively Compensatory if fJ(x, y) is Negatively Com­

pensatory for some values x,y. 

Definition 7.2.3 An operator fJ is termed Positively Compensatory if 

MIN(x,y)::; fJ(x,y)::; MAX(x,y) 

and fJ(x,x) = x 
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Figure 7.1 The Various Types of Operator Functions 
(Source: [Kim & Lee, 1993]) 

(a) (b) (e) 

(d) (e) 

To illustrate these concepts, consider figure 7.1. 

[Kim & Lee, 1993] show that the MAX and MIN operators are Single Operator De­

pendent whereas the T-Norms and T-Conorms are Negatively Compensatory and in some 

cases partially negatively Compensatory. [Kim & Lee, 1993] illustrate that negatively com­

pensatory functions depend upon the number of documents and are therefore undesirable 

as they do not model a human's intuition concerning document ranking. 

T-Norms and T-Conorms have also been used to model human, rather fuzzy, decision 

making by the union and intersection of fuzzy sets. Deemed to be inadequate for this 

purpose, Averaging Operators were suggested in place of T-Norms and T-Conorms. 

Positively Compensatory operators avoid all the problems associated with the other 

four types. Whilst stating that they have not tested these functions yet, they compare 

positive compensatory operators with those of the Extended Boolean Model, an effective 

information retrieval model, (Le. E-And and E-Or) concluding that the E-And and E-Or 

are positively compensatory. 

Consider another perspective on the aforementioned operator classes. Single Operator 

Dependent operators appear artificial, rather extremal, in that they choose "one or the 

other", not "weighing up the odds" like people readily do to compensate for ambiguity 

and uncertainty. Negatively Compensatory and Partially Negative Compensatory operators 

behave similarly by over-compensating or under-compensating, in a sense, extremal too. 
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Positively compensatory operators appear to simulate human cognition more closely by 

staying within the "extremal bounds" provided by the problem at hand by "weighing up 

the odds" . 

For the reasons and discussions mentioned above, the functions to be used for case 

retrieval and inferencing in Cogitator are to be Positively Compensatory. 

7.3 Cogitator's Inference Mechanism 

As has been mentioned, Cogitator is an alternative expert systems paradigm. Any fuzzy 

inferencing scheme may be utilised within Cogitator, for instance [Nakamura & Iwai, 1982], 

[Chunxi & Shiquan, 1988] or [Ram & L., 1991]. To illustrate how a fuzzy inferencing 

scheme might be incorporated into Cogitator, consider an adaption of the fuzzy learning 

scheme introduced in [Nakamura & Iwai, 1982]. Utilising fuzzy topological spaces and 

semantic networks, they introduce a similarity-based analogical scheme for learning and 

fuzzy information retrieval. Below is a brief description of how their system functions, the 

interested reader is referred to [Nakamura & Iwai, 1982] for more details. 

Similarity is modelled utilising a semantic network wherein two types of nodes exist to 

represent the concepts x, and their properties Pk ' Each concept is linked to its properties 

as well as to certain other concepts, where the inter-concept links are weighted whereas 

the llnks to the properties are not. These weights are considered to represent the degree 

of similarity or dissimilarity between concepts. Furthermore, there is the notion of direct 

and indirect properties. Properties immediately adjacent to a concept x, are termed direct 

properties, those adjacent from any concept that may be reached from concept xi's node 

are termed indirect properties. Indirect properties are classified according to the number 

of edges that must be traversed to reach them from the concept x" n edges traversed to 

reach property P. classifies P. as an n-reachable property. 

Utilising these notions, [Nakamura & Iwai, 1982] define the following similarity metric 

where Nn(p) represents the cardinality of the set of n-reachable properties from p. 

Together with this similarity metric, the semantic network forms a topological metric 

space: if two concepts are very similar, they are placed close together in the topological 
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space. Thus the related concepts form a sub-region of the topological space. 

Inference is analogical, is characterised by the use of fuzzy sets and is based upon a 

question-answering scheme wherein the computer poses questions for the human user to 

answer. The system then utilises these answers to reason, possibly posing further questions 

in its quest for a conclusion. The operation of such a system is as follows: 

• [1] Assume the Fuzzification functions, f .. (x) and f .. (x), respectively, defining the 

fuzzy sets F. ,(x) and F.,(x ). Additionally, assume a measure offuzziness (D(C., C!.), 
where C. and C. are, respectively, the k'th concept set and some reference set. 

• [2] Prompt the user for initial information - this becomes the initial concept set Co. 

• [3J Based upon the information received and inferred to date, the next question 

concept is chosen according to a selection criterion E(I(C.)) which is defined as 

follows: 

Min[E(I(C.))J = Min, [F(C;_l> F.,)J 

where 

E(I(C.)) is the Expectation of Fuzziness 

I(C.) = F(D(C., C.) is the Index of Fuzziness 

C;_1 is the (k-1)'th concept set 

x, is a possible k'th question concept 

• [4J The system poses a question concerning the chosen x, to the user 

• [5J If user answers "Yes", form the fuzzy set C, = Co U F., 

If user answers "No", form the fuzzy set C, = Co n F., 

Otherwise, do nothing. 

• [6] Return to step 3. (See [7] below for the termination condition) 

Eventually 

C. = (U., F.,) n en •. F.J2 

2Qwing to the 88socia.tivity a.nd commuta.tivity of the fuzzy union a.nd intersection opera.tors, the order 
of question-asking and a.nswering is immaterial. 
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where x. and Xn are, respectively, all the concepts that when posed received the 

answers "yes" and "no'). 

• [7] Inferencing terminates when the index offuzziness I( C.)) drops below a certain 

threshold value T indicating that the inter- conceptual ambiguity is minimal. This is 

deemed to be synonomous to people understanding something when their cognitive 

ambiguity has diminished sufficiently. 

The main idea behind such an inferencing process is that the regions, rather the topolo­

gies, defined by the fuzzy sets F.,(x) and F .. (x) are repeatedly deformed according to the 

concept combination functions given in stage [5] above to yield a space C representing 

a. coherent collection of concepts. Each step of the above process generally improves the 

coherency of the subject of interest. 

Figure 7.2 The Incremental Deformation of Regions in Kc 
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This is illustrated in FigureF 7.2 and is codified as follows: 

• When a concept x, is specified to be contained in the subject of interest and each 

concept x in K c is assumed not to be contained therein, the fuzzification function 

f .. (x) raises the degree of membership of each concept x according to the distance 

they are from x, (i.e. their similarity). 

• When a concept x, is specified not to be contained in the subject of interest and 

each concept x in Kc is assumed to be contained therein, the fuzzification function 
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f.,(x) reduces the degree of membership of each concept x according to the distance 

they are from Xi (i.e. their similarity). 

The Convergence ofthe inference process to this cogent collection is largely determined 

by the type of information in the database and the type of query posed: if the database 

contains a collection of information that is minimally contradictory then convergence is 

quick and efficient. 

The coherency of a region representing a body of knowledge may be measured according 

to any measure of fuzziness, such as the difference between a fuzzy set and its complement, 

between a fuzzy set and the closest crisp set (used by [Nakamura & Iwai, 1982] ) or by a 

fuzzy entropy. [Nakamura & Iwai, 1982] also considered what they termed the "reachability 

extent of analogical inference" as a parameter of f.,(x) and f .. (x) that determines the 

spread of the function. Figure 7.3 illustrates this notion. 

Figure 7.3 The Reachable Extent of a Fuzzy Membership Function 
> The Reachlblllty ElI:lenl 

• -li 1 

i ~ 
~ JL-____ ~.==j.==~ __ ~ ________ _ lE 0 

Unguistic Variable Indica Ungulstlc Variable Indices 

[Nakamura & Iwai, 1982] also analysed these "reachable extents" and concluded that 

larger extents lead to quick, yet rough learning, whereas smaller extents lead to slower yet 

more defined learnt regions of knowledge. This finding corresponds closely with human 

cognition and is utilised in Cogitator. 

The coherency of regions or inferred bodies of knowledge is significant. The greater 

the coherency of a subject, the easier it is learnt and within which conclusions are reached 

(as it is essentially represented by a single region in K,). Less coherent subjects of interest 

tend to be represented by disjoint regions of K" indicating that there is a need for a 

form of reconciliation between such unrelated bodies of knowledge. This also corresponds 

closely with human cognition. 

The reader may have noticed the ommission of functions for the measures, indices 

and expectation of fuzziness and the similarity functions. There are a multitude of such 

functions, some of which were given in chapter 4 on fuzzy logic. The choice of function 
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rests with the system developer, some types or classes of functions may exhibit certain 

properties that may be desirable for problems in certain domains. 

7.4 Database Representation 

Both Wong's Generalised Vector Space Model (GVSM) [Wong & Wong, 1987] and se­

mantic networks were considered as possible representation models for the database. The 

simplicity of a standard textual record-based database and the complete decomposability 

thereof prompted its choice above semantic networks and the GVSM: by their nature, 

semantic networks do not partition easily and utilising the GVSM to represent fuzzy con­

cepts is non-trivial. Nevertheless, the GVSM does partition fairly simply and a fuzzy 

extension to it could be a possible extension of the current project. 

Furthermore, methods for the indexing of databases, such as signature files or hashing, 

may be implemented to improve the efficiency and storage of and access to the database. 

If speed is a crucial component (which it usually is for database searches), then indexing 

the database is natural. 

7.5 Learning 

Learning is an integral part of an intelligent system. Traditionally, it has operated within 

the deductive / heuristic paradigm and involves the generation of rules. As in MBR, 

learning in Cogitator does not involve the generation of any rules. This is a desirable 

aspect since rule generation consumes plenty of time owing to the myriad of rules that 

are possible for even a moderately sized database and is non-trivial (consistency and 

redundancy checking, etc). 

In Cogitator, learning is simple as it entails the mere appending of a case to the 

database. Some cases may be stored as facts for future reference, facts are deemed to 

be irrefutably correct cases. These facts are derived from irrefutable conclusions reached 

previously. Learn.ing is therefore incremental: as the system is used, the database grows 

and the accumulation of cases and facts should improve the system's accuracy as it is 

used. A very simple process. 
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7.6 Design and Operation 

Now that the type of membership functions, an inferenceing methodology and the repre­

sentation of the database have been discussed, how these all fit together to form a DDES 

is considered. 

Gogitator is a general scheme describing a fuzzy database-driven expert system. As 

mentioned previously, the choice of fuzzy measures, indices and expectations of fuzziness 

as well as similarity equations is the whim of the system developer. In fact the user may 

even choose a different type of inferencing scheme - the one illustrated above appeals to 

the author owing to its close resemblance to human cognition. It is easily adapted for 

execution on any of the major concurrent architectures: SIMD, MIMD and hybrids, and 

may thus be considered to be architecture independent. Almost all universities and cor­

porations own networked computer systems and the computers therein may be considered 

to collectively form a concurrent computer, a MIMD-type architecture (ie. distributed 

computation/concurrency). Consequentially, the development of Gogitator to execute on 

this type of architecture enhances its appeal. This chapter contains a description of such a 

(possible) implementation, initially illustrating its functionality and then how it could be 

implemented using a popular concurrent programming paradigm. The following section 

illustrates a sample implementation of Gogitator over a network of workstations. 

The operation of Gogitator is as follows . Upon startup, the database, which normally 

resides on a certain machine, is accessed and partitioned according to the number of 

computers (workers) in the network. Each segment is then sent to each member computer 

and becomes resident on that machine. After some initialisation procedures, the system 

is ready. The user then poses a query which is passed on by the host computer to all the 

other computers (workers) in the network. Upon receipt of the query case, each worker 

initiates a search procedure to determine a list of cases from its resident database segment 

that most closely matches the query case. In effect then, the database search (back-end) 

extracts a collection of elements most similar to the query case from the database's vast 

collection. These are then passed on to the host machine (front-end) which utilises the 

inferencing mechanism to hone the collection of returned cases down to a more cogent 

or consistent collection of concepts. Gogitator may also pose questions if it requires more 

information or is "unsure" and utilise the users' answers for the furtherance of inferencing. 

The system terminates according to the conditions as laid out in the inferencing procedure 



Proposed Implementation using Linda 102 

described earlier. 

Now that Cogitator has been completely discussed, an example implementation of Cog­

itator over a computer network using a concurrent programming paradigm is appropriate. 

It is hoped that the next section illustrates to the user a new concurrent programming 

paradigm, as well as how easily Cogitator may be implemented on a concurrent architec­

ture. 

7.7 Proposed Implementation using Linda 

As was mentioned in the chapter on concurrency, programming concurrent computers is 

far from easy, far more difficult than programming their uni-processor cousins thus compli­

cating matters and exacerbating the familiar Software Crisis. For these reasons, different 

concurrent or parallel programming paradigms have been developed, many for specific 

architectures, others for more general ones. The difficulties associated with programming 

concurrent computers and that when switching architectures, the need to learn a new par­

allel programming paradigm is necessary. Therefore, architecture-independent paradigms 

have become popular. Amoung these architecture-independent paradigms, one, called 

Linda and developed by David Galernter of Yale University during the early 80's, appears 

to be the most popular. It has been used for many applications such as database searching, 

computational fluid dynamics (CFD) and molecular modelling to name a few. It's success 

may be attributed to its simplicity and its associated programming ease. What follows 

is a brief description of Linda, whereafter the design of Cogitator is given within Linda's 

framework. The interested reader is referred to [Carriero & Galernter, 1989], [Carriero & 

Galernter, 1988] and [Ahuja & Galernter, 1986] for further details. 

7.7.1 Linda 

Linda is a Distributed Data parallel programming system. In fact, Linda is a Coordination 

Language comprising a set of five functions that are embedded within a traditional base 

programming language such as C or Fortran. Quintessential to its design is the notion of 

a Tuple Space, an associative shared memory containing data elements called Tuples. The 

five functions are 

• in(T) : reads a tuple T from tuple space and removes it from Tuple Space (TS) . 

• rd(T) : reads a tuple T from tuple space without removing it from TS. 
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• outer) ; places a tuple r into TS. 

• rdp( r) ; the predicate form of rdO; checks to see if a tuple matching r. is present 

in TS and returns a value indicating whether the tuple is present. 

• inp( r) ; the predicate form of inO; the same as rdpO except that if a tuple is found, 

it is removed from TS and returned. 

In addition there is another function called eval() which evaluates a tuple rafter 

placing it into TS (i.e. by forking another process to do so). 

The tuples r as the arguments to the five functions above (excluding eval()) correspond 

to templates. For example the tuples 

• out("string", s) 

• rd("string", s) 

• out("matrix", rows, columns, M) 

respectively, place a tuple with template ("string", s) into TS, reads a tuple with the 

same template as ("string", s) from TS and places a matrix tuple corresponding to the 

template ("matrix", rows, columns, M) into TS. Figure 7.4 illustrates a general schematic 

of Linda. 

Figure 7.4 The Topology of Linda 
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As may be deduced from figure 7.4, Linda is essentially a master-slave architecture, 

although other architectures may be easily accomodated and a master may become a 

worker. 
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When a rd( 1') or an inC 1') is initiated, and there is no tuple corresponding to tuple l' 

in TS, they wait until one is available (i.e they block). However, rdp(r) and inp(r) do not 

block if no matching tuple l' is found, rather they return a code indicating abscence of a 

tuple or they read the tuple if present. 

Two tuples match only if the following conditions are satisfied 

• They contain the same number of fields . 

• All corresponding fields are of the same type. 

• All corresponding fields are of the same size. 

• The corresponding fields in the tuple contain the same values as the actuals in the 

template. 

The blocking features of INO and RDO are important and are used for synchronisation 

of processes; in fact, tuple space is used as an inter-process communication medium. A 

common practice is for the first field of a tuple to be a string constant, such as "string" 

and "matrix" for the tuples above. This is termed tuple naming and is utillsed for easier 

debugging and writing of Linda programs. 

There are two types of tuples, Live and Data tuples. Data tuples are simple collections 

of fields in a template, such as ("matrix", rows, columns, M). Live tuples represent an 

executable process that, upon termination, becomes a data tuple. When evalO is called, 

it creates live tuples that may execute on different processors. For example 

eval(" Power" , 3, 5, power(3,5)) 

causes the function power() to be evaluated after it is placed into TS (i.e. Linda spawns 

another process on an arbitrary host in the network to evaluate the aforementioned tuple). 

See the example below as well. 

To illustrate the concepts outlined above, consider, the following C program. 

real_mainCargc. argv) 

int argc; 

char *argv [] ; 
{ 

int nworker=5. j. helloC); 

for Cj=O; j < nworker; j++) 

1* Declaration of variables and the function *1 
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} 

{ 

eval("worker", hello(j)); 

} 

for (j=O; j< nworker; j++) 
{ 

in("done"); 

in ("worker", ?retval); 

105 

1* place a "live" tuple (the function *1 
1* "helloO" ) into tuple space and *1 
1* have it evaluated 

1* All the processes are finished? *1 
1* In the values returned from the *1 
1* terminated worker processes *1 

printf("All processes have terminated"); 
} 

int hello(i) 1* function to print out the result *1 
1* of executing on a certain host *1 

int ij 

{ 

char name [25] ; 

gethostname(name,25); 1* get the name of the host the *1 
1* process is executing on *1 

printf("Hello from host number Yod host name Yos \n" , i, name); 

1* print the result *1 
out("done") ; 1* Place a tuple in tuple space to *1 

1* indicate completion of the task *1 
return(O); 

} 

The above program initiates worker processes on each of five machines in a network. 

To accomplish this, it utilises evalO which creates a live tuple out of the function helloO 

that retrieves the name of the host it is executing on, prints the result and places a tuple 

into tuple space to indicate that it is finished. These values are then read by the master 

process (the function realJIlainO ), and when all have been sent, it prints a message to 

indicate that the program has terminated. 



7.7 Cogitator's Design and Functionality 106 

7.7.2 Cogitator's Design and Functionality 

Being a master-slave architecture, the functionality of Cogitator is easily expressible within 

Linda's framework. Refer to figure 2. 

Figure 2 The Topology of Cogitator using Linda 
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Upon startup, the segmentation of the database according to the number of hosts 

that may be utilised, the copying to each host of a database segment (via the remote 

copy facility) and the accepting of an initial query from the user are codified as follows 

(assuming that the operating system is UNIX ©) : 
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No_of_Hosts=atoi(*argv[1]); 1* The number of hosts - an argument to the program *1 

segment (DB , DBSegments); 1* Partition the database into segments according *1 
1* to the number of computers to be utilised *1 

for (count=O; count<No_of_Hosts; count++) 
{ 

} 

command = "rep . /"; 

host=*argv[count+1]; 

strcat(command,DBSegment[count]); 

strcat(command, host); 

strcat(command,":/tmp"); 

1* Get the host name *1 
1* Build up the remote copy command *1 

system(str); 1* issue the system command to copy the 

1* database segment to the appropriate host *1 

Initialise_Master(); 

printf("Please enter query :" ); 
getstring(query); 

1* Initialise the master host *1 
1* Prompt for and read *1 
1* the initial query *1 

The user starts the system by entering a query which the master translates into a tuple 

such as 

("Query", Q) 

where Q is an array of strings or a long string; and places the tuple into TS : 

out("Query", Q) 

Meanwhile, each worker is waiting, rather blocking, on a rdO: 

rd("Query", ?Q) 

When the query arrives in TS, the workers immediately read it and perform fuzzy 

similarity matching 3 between the query tuple and all the elements of their respective 

resident database segments, building a list ordered according to the computed similarity 

coefficients. After all entries in the resident database have been checked, the worker 

translates each member of the ordered list that satisfy a threshold value and/or a threshold 

3 Assuming tha.t the fuzzy sets representing the coded da.ta.base domains have been defined. 
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number of elements into tuples and places them into TS. After placing all the elements 

into TS, it places a tuple in TS to indicate that it is finished. This may be codified as 

follows: 

in("Query", Q); 

entry = 1; 

1* read in the query tuple *1 

Ilhile (1) 
{ 

} 

finished = GetNextEntry(DB, Record[entry]); 

If (! finished) 
1* retrieve the next database record *1 

{ 

} 

FuzValue[entry] = Fuzmatch(Q, Record[entry]); 

1* Determine the fuzzy *1 
1* similarity betlleen the *1 
1* query and the database entry *1 

if (FuzValue[entry] > FuzValue[entry-1]) 

{ 

} 

SIlap(FuzValue[entry] , FuzValue[entry-1]); 1* Sort the fuzzy similarity *1 

SIlap (Record [entry] , Record[entry-1]); 
1* values into descending order *1 
1* Sort the records into *1 
1* into descending order *1 

else 

break; 1* end of database - stop searching *1 
1* Ilhile loop delimiter *1 

entry = 1; 
gethostname(HostName,25); 1* Determine the name of the *1 

1* current Ilorkers' host *1 
Ilhile ( (entry < Threshold) I I (FuzValue[entry] < Threshold_Value)) 

{ 

out ("Ilorker" , HostName, entry, FuzValue[entry] , Record [entry] ); 

} 

out ("Done", HostName); 

1* Place all returned entries and *1 
1* their fuzzy similarity *1 
1* coefficients into tuple space *1 

1* Send a completion signal to the master *1 
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While the workers perform their tasks, the master waits for a worker to finish; i.e. to 

place its tuple indicating completion into tuple space. When this tuple is detected, the 

master records the host it emanated from and inO's all the list tuples that that worker 

placed into TS. This is accomplished as follows: 

HostCount = 0; 

while (HoatCount<No_of_Hoata) 

{ 

in("Done", ?HoatName); 
HostCount++; 

counter=1; 

Entry_Number=1; 

while (counter<=Entry_Number) 
{ 

1* Find a completed worker *1 

in("Reault", HostName, counter, ?Record[counter)); 

} 

} 

1* Read in the data returned *1 
1* by the completed worker *1 

After reading in all the tuples returned by all the workers, the master then constructs 

an ordered amalgamation of the workers' ordered lists, yielding a single ordered list of 

matching elements. This amalgamated list is constructed according to certain thresholds 

and almost certainly contains fewer elements than were collectively returned by all the 

workers. This is a simple merge sort. This resulting amalgamated ordered list is used by 

Cogitators inference mechanism 4 to hone in on a coherent collection. While the searching 

and matching were being performed concurrently on the database segments in the back-end 

of Cogitator, the front-end performs the inference sequentially. 

7.8 Conclusion 

It is hoped that a powerful, yet simple general reasoning scheme that utilises the cognitive 

simulation power of fuzzy logic, along with the utility of databases, which are numerous, 

"Any of the numerous fuzzy inference methodologies ma.y be used. 
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ail well ail the power of concurrency has been illustrated. Concerning the little work 

performed by others as well as the numerous advantages over and few disadvantages !Jis­

a-!Jis traditional expert systems and connectionist systems, Cogitator may be deemed to 

be viable. 

As is common in AI, it is one thing to propose a system, but another to implement 

and test it . However as was intimated in the chapter on expert systems, AI systems of 

any repute and size almost always require massive software engineering. While a sample 

implementation Wail given, this thesis represents the first phase; the second phase - imple­

mentation - is to be undertaken by the author to establish its viability ail an alternative 

expert system paradigm. 
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Chapter 8 

Conclusion 

The necessity of concurrency for any realistic speedup was categorically established. Fur­

thermore, as knowledge-based systems are known to be space and time hogs, it seems 

natural to build concurrent expert systems to speed up their execution and ease memory 

problems. However, as was illustrated, the concurrentising of expert systems is no simple 

task: not do they also suffer from the main problems associated with their sequential 

counterparts, but other problems like convergence and compatibility, the need to write 

"correct" programs or to assign appropriate priorities to rules so as to preclude conflicts 

became apparent. Attempts to overcome these problems led to restrictions on the system 

or programmer or no guarrantee of a correct terminal state. Furthermore, the speedups 

gained, were not all that impressive - for more than about 8 processors , the speedups 

tended to level off indicating that the production systems paradigm exhibits limited con­

currency. It was also shown that AI systems of any decent nature would be very large 

indeed. Consequentially, more power than that offered by simply concurrentising the 

production system paradigm will be needed. To answer this, concurrent non-production 

systems have been built and tested . They offered the sort of speedups that will be needed 

for the processing of large knowledge bases. However, they are custom architectures, so 

that they may rerally only be used for certain AI applications only and their cost would 

be high. Not viable in today's commercial world. 

To answer the problems associated with sequential and concurrent production systems, 

as well as concurrent non-production expert systems, a new expert system paradigm, called 

Cogitator, was proposed. Based upon a Case-Based Reasoning Dialect, Memory-Based 

Reasoning, utilising fuzzy analogical inferencing schemes as well as databases, the system 

was shown to bypass almost all the problems associated with connectiouist and traditional 
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expert systems. That, in both cases, the advantages of Cogitatorfar outweighed its disad­

vantages illustrates its viability as an expert system. In particular, its circumvention ofthe 

Knowledge Acquisition Bottleneck and the resulting shorter construction times illustrates 

its commercial viability. Its commercial viability is further enhanced by its operation on 

a network of workstations, which many companies posess. 

Hiroaki Kitano is a researcher using Memory-Based Reasoning on a supercomputer (a 

Connection Machine ©) to tackle the language translation problem. In recognition of his 

results and efforts, he was awarded the most prestigious award in AI for researchers under 

35: the Computers and Thought Award at the 13'th International Joint Conference on AI 

(IJCAI) in Chambery, France, on November 12'th 1993. As Cogitator is a fuzzy version of 

the Memory-Based Reasoners that Kitano utilises, and as fuzzy mathematics supersedes 

classical mathematical techniques for human cognitive modelling (Mentioned in chapters 4 

and 5), further strengthens Cogitator's viability as an alternative expert systems paradigm 

[Margolin, 1993). 

To date, the system has been proposed and compared to traditional expert systems. 

Linda is deemed to be an appropriate implementation platform and Cogitator's imple­

mention on a network of workstations has been considered and partially specified. To 

implement Cogitator and to run a series of tests to ascertain its viability as a commercial 

expert system, is needed. As was already mentioned, that is the next phase of this project 

which the author intends to pursue. 
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Please note the following minor corrections: 

Page 52 middle Diagram + to .. 

Page 53 line 8 from top "continuous" to multi-valued. 

Page 54 line 6 from bottom IA to IX. 

Page 54 line 6 from bottom 2A to 2x. 

Page 54 line 8 from bottom "A of X". 

Page 60 line 6 from bottom "values". 


