
A Mobile Phone Solution for Ad-hoc

Hitch-Hiking in South Africa

Submitted in ful�lment

of the requirements of the degree of

Master of Science

of Rhodes University

Sacha P. Miteche

Grahamstown, South Africa

October 2013

Abstract

The purpose of this study was to investigate the use of mobile phones in organizing ad-hoc

vehicle ridesharing based on hitch-hiking trips involving private car drivers and commuters

in South Africa. A study was conducted to learn how hitch-hiking trips are arranged in

the urban and rural areas of the Eastern Cape. This involved carrying out interviews

with hitch-hikers and participating in several trips. The study results provided the design

speci�cations for a Dynamic Ridesharing System (DRS) tailor-made to the hitch-hiking

culture of this context. The design of the DRS considered the delivery of the ad-hoc

ridesharing service to the anticipated mobile phones owned by people who use hitch-

hiking. The implementation of the system used the available open source solutions and

guidelines under the Siyakhula Living Lab project, which promotes the use of Information

and Communication Technology (ICT) in marginalized communities of South Africa. The

developed prototype was tested in both the simulated and live environments, then followed

by usability tests to establish the viability of the system. The results from the tests

indicate an initial breakthrough in the process of modernizing the ad-hoc ridesharing of

hitch-hiking which is used by a section of people in the urban and rural areas of South

Africa.

Acknowledgements

I would like to thank my supervisors, Alfredo Terzoli and Hannah Thinyane, for their

e�orts in providing endless support to complete this thesis. I am grateful to your guidance

and encouragement in the years I have worked under your supervision.

To the members of the Convergence Research Group in the Computer Science Department

and ReedHouse Systems, I appreciate the technical support and advice that you gave me

and wish you all the best in your research work.

I would like to acknowledge the �nancial support of Telkom SA, Tellabs, Genband, East-

tel, Bright Ideas 39 and THRIP. I would also like to thank the Malawi Government for

the �nancial assistance to study at Rhodes University. This opportunity has given me

tremendous exposure to various �elds of computer science.

Lastly, I would like to thank my wife and family for the support throughout this long

journey that was worthy going through, may the Almighty Lord bless you. All this would

not have been possible without your continued prayers and encouragement.

1

Related Publications

The work that appears in this thesis has been presented in the following conference papers:

1. Sacha Miteche, Alfredo Terzoli, and Hannah Thinyane. A Mobile Phone Solution to

Improve Geographical Mobility. In Southern Africa Telecommunication Networks

and Applications Conference (SATNAC), 2011.

2. Sacha Miteche, Alfredo Terzoli, and Hannah Thinyane. A Mobile Phone Solution to

Improve Geographical Mobility. In Southern Africa Telecommunication Networks

and Applications Conference (SATNAC), 2012.

Contents

1 Introduction 15

1.1 Problem Statement . 15

1.2 Research Objective . 16

1.3 Scope and Limitations . 16

1.4 Research Approach . 17

1.5 Thesis Outline . 17

1.6 Summary . 18

2 Background and Related Work 19

2.1 Ridesharing . 19

2.1.1 Motivating Factors . 20

2.1.2 Classi�cations of Ridesharing . 21

2.2 Ridesharing Systems . 22

2.2.1 Conventional Ridesharing Systems 22

2.2.2 Dynamic Ridesharing Systems . 23

2.2.2.1 Common Features in Dynamic Ridesharing Solutions . . . 23

2.2.2.2 The Underlying Technologies in DRSs 24

2.2.2.3 Advantages . 25

2.2.2.4 Disadvantages . 26

2.2.2.5 Motivating Factors for Ad-hoc Ridesharing 26

2.2.2.6 Mitigating Risks through Technology 27

2.2.2.7 Examples of Modern DRS Systems 27

2.2.3 Flexibility and Reliability Trade-O� 29

2.3 Ridesharing in South Africa's Context . 29

2.3.1 Status of the Public Transportation Systems 30

2

CONTENTS 3

2.3.2 Conventional Ridesharing . 31

2.3.3 Ad-hoc Ridesharing: Hitch-Hiking 31

2.3.3.1 Types of Hitch-Hiking . 32

2.3.3.2 Why Hitch-Hiking is Popular 32

2.3.3.3 The Risks . 33

2.3.3.4 Legality of Hitch-Hiking 34

2.4 Mobile Phone Devices and Applications . 34

2.4.1 Proliferation of Mobile Phones . 35

2.4.2 Feature Phones Versus SmartPhones 35

2.4.3 Mobile Phone Applications . 37

2.4.3.1 Development Platforms 37

2.4.3.2 Types of Applications . 37

2.4.3.3 Mobile Applications Usage in South Africa 38

2.5 The Living Lab Concept . 39

2.6 Summary . 40

3 Data Collection 41

3.1 The Eastern Cape . 41

3.2 Study on Hitch-Hiking Travels . 43

3.3 Methodology . 43

3.3.1 Study Area . 44

3.3.1.1 Urban and Peri-Urban Areas 44

3.3.1.2 Rural Areas . 44

3.3.1.3 Map of the Study Area . 44

3.3.2 Semi-structured Interviews . 45

3.3.3 Participating in Hitch-Hiking Trips 46

3.4 Study Results and Discussions . 46

3.4.1 Urban and Peri-Urban Areas . 46

3.4.2 Rural Areas . 48

3.4.3 Hitch-Hiking Experiences . 50

3.5 The Hitch-Hiking Models . 52

3.5.1 Urban Hitch-Hiking Model . 52

CONTENTS 4

3.5.2 Rural Hitch-Hiking Model . 54

3.6 Summary . 55

4 System Design and Architecture 56

4.1 System Design . 56

4.1.1 System Goals . 56

4.1.2 Use Case Diagram . 57

4.1.3 Requirements Speci�cations . 58

4.1.3.1 Functional Requirements 58

4.1.3.2 Matching Algorithm . 60

4.1.3.3 Non Functional Requirements 62

4.1.4 Class Diagram . 62

4.1.5 Sequence Diagrams . 65

4.2 User Interface Design . 68

4.2.1 SMS Application . 68

4.2.2 Mobile Web Application . 71

4.3 System Architectural Design . 72

4.4 Summary . 74

5 Relevant Technologies 75

5.1 Modular Applications with Spring and OSGi 75

5.1.1 Spring Framework . 75

5.1.1.1 Spring Beans . 76

5.1.1.2 Container Implementations 77

5.1.2 OSGi Technology . 77

5.1.3 Spring with OSGi . 81

5.1.3.1 Limitations in Spring and OSGi Technologies 81

5.1.3.2 Bene�ts of Spring with OSGi 82

5.1.3.3 Spring Dynamic Modules 82

5.1.4 OSGi Development with Maven . 84

5.1.4.1 How Maven Works . 85

5.1.4.2 Maven Based OSGi Projects 85

5.2 Data Access in OSGi . 86

CONTENTS 5

5.2.1 Java Database Connectivity . 86

5.2.2 Object Relational Mapping . 86

5.2.2.1 Objectives . 87

5.2.2.2 Frameworks . 87

5.3 OSGi Web Components . 88

5.3.1 Web Container in OSGi . 88

5.3.2 Web Frameworks . 88

5.3.2.1 Action-Based Frameworks 88

5.3.2.2 AJAX-Based Frameworks 90

5.3.3 Web Services . 92

5.3.3.1 SOAP Web Services . 93

5.3.3.2 RESTful Web Services . 93

5.4 The TeleWeaver Service Platform . 94

5.4.1 OSGi Container . 94

5.4.1.1 Directory Structure . 94

5.4.1.2 Starting the Container . 95

5.4.2 Developing Services . 96

5.4.2.1 Project Structure . 96

5.4.2.2 The Service API Bundle 97

5.4.2.3 The Service Implementation Bundle 98

5.4.3 Registering a Service . 98

5.4.4 Referencing a Service . 98

5.5 WAP and SMS Solutions . 99

5.5.1 The Wireless Application Protocol 99

5.5.2 SMS . 100

5.5.3 Kannel . 101

5.6 Summary . 102

6 System Implementation 103

6.1 The Development Environment . 103

6.1.1 Hardware . 103

6.1.2 Software . 104

CONTENTS 6

6.2 Developing the Service . 104

6.2.1 Overview of the Service Bundles . 104

6.2.2 Service API Bundle . 106

6.2.3 Service Implementation Bundle . 107

6.2.3.1 Packages . 107

6.2.3.2 Spring Con�gurations . 108

6.2.3.3 Domain Model Classes . 109

6.2.3.4 Business Logic . 109

6.3 Kannel SMS and WAP Gateway . 114

6.3.1 Installation . 114

6.3.2 Con�gurations . 114

6.3.2.1 Bearerbox . 115

6.3.2.2 SMS Center . 115

6.3.2.3 Smsbox . 116

6.3.2.4 Wapbox . 116

6.3.2.5 SMS Push . 117

6.3.2.6 SMS Service . 117

6.4 Implementing Restful Web Services . 118

6.4.1 RESTful Services Bundle . 119

6.5 SMS Application Architecture . 120

6.6 WAP Solution . 121

6.6.1 Action-Based Web Framework . 121

6.6.2 OSGi Web Bundle . 122

6.7 WAP Implementation Architecture . 123

6.8 Summary . 124

7 System Testing and Evaluation 125

7.1 The Experimental Set-up . 125

7.2 The System Test Methodology . 126

7.3 Testing the Server Applications . 127

7.3.1 TeleWeaver . 127

7.3.2 Kannel System . 128

CONTENTS 7

7.3.2.1 Testing the BearerBox . 128

7.3.2.2 Testing the Smsbox . 128

7.3.2.3 Testing the Wapbox . 129

7.4 Functional Test Results . 130

7.4.1 Testing the RESTful Web Service API 130

7.4.2 User Registration . 132

7.4.3 Organizing Rideshare Trips . 133

7.4.4 Ride O�er to Hitch-Hikers . 135

7.4.5 Ride Request by a Hitch-Hiker . 136

7.4.6 Adding a Hitch-Hiker to a Trip . 138

7.4.7 Informing a Next Of Kin . 139

7.4.8 Multilingual Support . 140

7.5 Usability Tests . 141

7.5.1 Urban Context . 142

7.5.2 Rural Context . 145

7.6 Discussion . 148

7.7 Summary . 149

8 Conclusion 151

8.1 Assessment of Research Objective . 151

8.1.1 Theoretical Contributions . 151

8.1.2 Practical Contributions . 152

8.1.3 Challenges . 153

8.2 Future Work . 154

8.3 Concluding Remarks . 154

A Questionnaires 166

A.1 Hitch-Hiking Questionnaire . 166

A.2 Usability Testing . 166

A.2.1 Background Questionnaire: User Background 166

A.2.2 System Usability Scale Questionnaire 169

CONTENTS 8

B Code Snippets 170

B.1 Project Layout . 170

B.2 The application-con�g.xml �le . 170

B.3 The RESTful Web Service Bundle . 173

B.3.1 Setting the Con�gurations . 173

B.3.2 JAX-RS annotations for a RESTful implementation 173

B.4 The WAP Implementation Bundle . 174

B.4.1 The RideshareController Class . 174

B.4.2 JSP page for WAP Clients . 174

C The RESTful Web Service API 176

D SMS Application User Instructions. 178

E Additional System Test Results 181

E.1 Functional Tests . 181

F The Siyakhula Living Lab 183

F.1 ReedHouse Systems . 184

G Accompanying CD-ROM 185

List of Figures

2.1 Ridesharing Classi�cations. Taken from [15]. 21

2.2 Avego on Iphone. Taken from [9]. 28

2.3 Reliability vs Flexibility in Ridesharing. Taken from [74]. 29

2.4 Household Access to Public Transport. Taken from [24]. 30

2.5 Mobile Market Overview: Sub-Saharan Africa. Taken from [37]. 35

2.6 Clash of Ecosystems. Taken from [62]. 36

3.1 Map of the Eastern Cape. Adapted from Google Maps. 45

3.2 Urban Hitch-Hiking Model. 53

3.3 Rural Hitch-Hiking Model. 55

4.1 Use Case Diagram. 58

4.2 Time Window for a Ride O�er. Taken from [2]. 61

4.3 UML Class Diagram. 64

4.4 Sequence Diagram: Ride O�er Before Ride Request. 66

4.5 Sequence Diagram: Ride Request Before Ride O�er. 67

4.6 UI Model for a Two-Way SMS Application. 70

4.7 UI Model for the DRS Web Application. 72

4.8 The System Architectural Design. 74

5.1 The Spring Framework. Taken from [106]. 76

5.2 OSGi Layered Architecture. Taken from [105]. 79

5.3 OSGi Bundle Life cycle. Taken from [88]. 80

5.4 OSGi Service Registry. Taken from [105]. 81

5.5 Spring DM in OSGi Container. Taken from [18]. 83

5.6 Spring-powered bundles. Taken from [18]. 84

9

LIST OF FIGURES 10

5.7 General ORM Architecture. Taken from [18]. 87

5.8 OSGi and Action-based Web Frameworks. Taken from [18]. 89

5.9 Spring MVC Design. Taken from [106]. 89

5.10 Spring DM and AJAX frameworks. Taken from [18]. 91

5.11 Spring DM and Web Service Frameworks. Taken from [18]. 92

5.12 TeleWeaver Directory. 95

5.13 Starting TeleWeaver. 96

5.14 TeleWeaver Project Structure. Taken from [99]. 97

5.15 WAP Architecture. Adapted from [110]. 100

5.16 Bearerbox with Wapbox and Smsbox. Adapted from [110]. 101

5.17 Kannel SMS Gateway. Taken from [30]. 102

6.1 Overview of the Service Bundles. 105

6.2 Data Transfer Objects. 110

6.3 Registering a Ride O�er at a Route Point. 112

6.4 Hitch-Hiker Record. 112

6.5 Hitch-Hiker Request at a Route Point. 113

6.6 Bearerbox Con�guration Settings. 115

6.7 SMSC Con�guration Settings. 116

6.8 Smsbox Con�gurations Settings. 116

6.9 Wapbox Con�guration Settings. 117

6.10 Sendsms Con�guration Settings. 117

6.11 SMS Service Con�guration Settings. 118

6.12 SMS Application with Kannel and TeleWeaver. 121

6.13 WAP Implementation with Kannel and TeleWeaver. 124

7.1 The Experimental Set-up. 125

7.2 DRS Bundles on TeleWeaver's OSGi Console. 127

7.3 Bearerbox at Work. 128

7.4 Smsbox at Work. 129

7.5 Wapbox at Work. 129

7.6 Testing the RESTful Web Service using the Simple Rest Client. 131

7.7 Response from a RESTful Web Service. 132

LIST OF FIGURES 11

7.8 User Registration . 133

7.9 Registered User Records in MySQL Database. 133

7.10 Creating a Trip. 134

7.11 A Trip Con�rmation Message to the Driver. 135

7.12 Ride O�er by Driver. 135

7.13 Ride O�er Request Results. 136

7.14 Ride Request by Hitch-Hiker. 137

7.15 Ride Request Results. 137

7.16 Accept Hitch-Hiker for a Trip . 138

7.17 Trip Con�rmation to a Hitch-Hiker . 139

7.18 Inform Next Of Kin. 140

7.19 An SMS Sent To A Next Of Kin. 140

7.20 Changing Language to IsiXhosa. 141

7.21 SUS: User Background Information. 143

7.22 SUS: Relevance to Hitch-Hiking. 143

7.23 SUS: Ease of Use. 144

7.24 SUS: How Easy to Learn. 145

7.25 SUS: Rating for the System. 145

7.26 SUS: User Background Information. 146

7.27 SUS: Relevance to Hitch-Hiking. 146

7.28 SUS: How Easy To Use. 147

7.29 SUS: Learning How to Use. 147

7.30 SUS: Rating for the System. 148

A.1 Questionnaire Part 1 . 167

A.2 Questionnaire Part 2. 168

B.1 The DRS API Bundle Project . 170

B.2 Spring Bean Con�gurations. 171

B.3 Spring Datasource and Hibernate Con�gurations 172

B.4 Apache CXF RESTful Web Service Con�gurations 173

B.5 The RESTful Service Implementation Class 173

B.6 The Controller Class of the Spring MVC Bundle 174

LIST OF FIGURES 12

B.7 Serving Dynamic WAP Content . 175

E.1 Selecting Roles in the WAP Application 181

E.2 View Trip Details . 182

E.3 View Hitch-Hiking Spot Details . 182

F.1 TeleWeaver Business Model. Taken from [51] 184

List of Tables

3.1 Households' Car Access and Ownership. Taken from [24]. 42

3.2 Transport Modes Used in the Eastern Cape. Adapted from [24]. 43

3.3 Hitch-Hiking Survey Responses in Urban Setup. 47

3.4 Hitch-Hiking Survey Responses in Rural Set-up. 49

C.1 The RESTful Web Service API . 177

13

Glossary of Terms

API Application Programming Interface

DRS Dynamic Ridesharing System

FOSS Free and Open Source Solution

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile

MMS Multimedia Messaging Service

OSGi Open Services Gateway Initiative

REST Representational State Transfer

RHS ReedHouse Systems

SLL Siyakhula Living Lab

SMS Short Message Service

SMSC Short Message Service Center

URI Universal Resource Identi�er

URL Universal Resource Locator

WAP Wireless Application Protocol

XML eXtensible Markup Language

14

Chapter 1

Introduction

This chapter introduces the research presented in this thesis by explaining the prob-

lem statement. This is followed by the objective of the research to solve the identi�ed

problems. Thereafter, the scope and limitations of the work in this thesis are presented

together with the approach that was followed to achieve the goals of the research. The

chapter concludes with an outline of the chapters that constitute this thesis.

1.1 Problem Statement

Vehicle ridesharing is used as an alternative to other means of collective land transporta-

tion methods, such as public buses and trains [61]. Ad-hoc ridesharing is one example of

vehicle ridesharing which normally involves the use of privately owned vehicles in trips

that are organized without any pre-arrangements or acquaintances between the driver

and commuters. Hitch-hiking travels are an example of the ad-hoc vehicle ridesharing

method.

Vehicle ridesharing systems have existed to assist in organizing ridesharing and realize

several incentives such as reduced travel costs through cost sharing, minimized tra�c

congestion and assist in the availability of parking spaces. The ridesharing systems have

advanced their capabilities in response to the advancement of technology such that the

modern systems target mobile phone users to help arrange ad-hoc ridesharing whilst on

the move. These ridesharing systems provide services that ease the ridesharing process for

people without acquaintances, using features such as Global Positioning Satelite (GPS)

and map data to facilitate the locating of rideshare partners. Some of the ridesharing

systems for mobile phone users are available for use at no charge [9, 76].

In South Africa, ad-hoc ridesharing through hitch-hiking is popular in some areas as

15

1.2. RESEARCH OBJECTIVE 16

observed in the Eastern Cape [94]. The available ridesharing systems are capable of

being used in these ad-hoc ridesharings based on their technical capabilities. However,

the majority of people in South Africa who use hitch-hiking as a means of travels cannot

utilize them due to the following reasons:

1. The ridesharing systems target smartphones which the majority of mobile phone

users do not own/have. Therefore, the ridesharing services are out of reach for the

people who are expected to bene�t from their operations.

2. The systems are designed with a particular context of use and user characteristics

in mind, as is the case with all software [60]. The hitch-hiking culture used in their

design is di�erent from the one practiced in South Africa. Therefore, the designs of

the available ridesharing systems are not adequate to satisfy the user requirements

for hitch-hiking in South Africa.

1.2 Research Objective

This research investigates the possibility of using mobile phones, with di�erent capabil-

ities, to arrange ad-hoc ridesharing trips for hitch-hikers in the urban and rural areas

of South Africa. The focus is on the ad-hoc ridesharing that involves private car owners

(drivers) and commuters (usually unknown to each other) in a one-time trip arrangement.

The use of mobile phones in organizing ad-hoc ridesharing trips should improve on the

shortfalls identi�ed in the current hitch-hiking process.

1.3 Scope and Limitations

The scope and limitations of this research are as follows:

• The thesis does not address the security concerns resulting from the credibility of

data provided by the users of the system as no further veri�cations on details such

as persons, vehicles and places are performed in the system's operation.

• The research covers the hitch-hiking in the Eastern Cape such that the localization

of the developed system only considered the isiXhosa language.

• The implementation of a low level application for low end mobile phones only consid-

ered the Short Message Service (SMS) solution, without other menu driven solutions

(for this level) such as the Unstructured Supplementary Service Data (USSD).

1.4. RESEARCH APPROACH 17

1.4 Research Approach

The research used the following steps to achieve its objective:

1. Understanding the concept of vehicle ridesharing and systems that target mobile

phones for ad-hoc ridesharing.

2. Selecting a study area that includes the urban and rural contexts and performing a

study on hitch-hiking travels to understand how they are organized.

3. Designing a Dynamic Ridesharing System (DRS) based on the identi�ed character-

istics of hitch-hiking in the urban and rural contexts of the study area.

4. Identifying the relevant free and open source softwares that were appropriate for

the implementation of the DRS and its management.

5. Developing an experimental environment of the system and performing the tests in

both the simulated and live environments.

6. Performing a usability study on the system.

1.5 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 reviews the concept of vehicle ridesharing and the systems that facilitates driver

and commuter ridesharing arrangements. It focuses on the ad-hoc ridesharing method and

modern DRSs for organized vehicle ridesharing using mobile phones. The chapter also

presents the �ndings from a related study on why hitch-hiking is popular in the Eastern

Cape of South Africa. It further discusses mobile phones and applications with details

about their status of use in South Africa. It concludes with a discussion on the use of

the Living Lab methodology under the Siyakhula Living Lab (SLL) to promote the use

of Information and Communication Technologies (ICT) in marginalized communities of

South Africa.

Chapter 3 presents a study that was performed to understand hitch-hiking travels in urban

and rural areas of the Eastern Cape. The �ndings of the study provided details that were

used in the design process of a DRS that aims to meet the objective of this research.

Chapter 4 presents the design of the DRS for hitch-hiking travels. It also presents the

components which make up the system architecture to provide the conceptual under-

standing.

1.6. SUMMARY 18

Chapter 5 discusses the relevant free and open source software solutions that were used

in the implementation of the proposed DRS.

Chapter 6 presents the tasks that were performed to implement the components of the

DRS. It includes the con�gurations and references to code snippets in order to illustrate

the implementation of the di�erent components of the system.

Chapter 7 presents the results of the functional and non-functional tests on the DRS. The

results are discussed to assess whether the objective of this research was achieved.

Chapter 8 concludes the thesis by discussing the theoretical and practical contributions,

followed by the challenges that were encountered in the course of conducting this research.

It also provides the suggested future work for this research.

1.6 Summary

This chapter introduced the research and discussed the research problem, objectives, and

the outline of the thesis. The next chapter discusses the literature that was consulted in

the research processes.

Chapter 2

Background and Related Work

This chapter begins with a discussion of the concept of vehicle ridesharing focusing on the

ad-hoc or informal type. It then presents details about ridesharing systems that target

mobile phone users in arranging ad-hoc rideshares. This is followed by a discussion on

the ridesharing situation within South Africa. Thereafter, mobile phone devices and their

applications development are discussed, including a report on their usage in South Africa.

The chapter concludes with a discussion of the Living Lab methodology being used to

promote the use of ICT in South Africa.

2.1 Ridesharing

Vehicle ridesharing involving drivers of privately owned cars and commuters with a com-

mon travel destination has existed since the World War II as an alternative transportation

means [15]. Di�erent terms are used to describe vehicle ridesharing, depending on where

it takes place. For example, in North America terms such as ridesharing, carpooling

or vanpooling (if a van is used) are used, while in the United Kingdom it is known as

liftsharing or car sharing.

The most well-known term is carpooling, which is the shared use of a car by the driver and

one or more passengers usually for commuting purposes with the arrangements varying

in regularity and formality [108]. Ridesharing is sometimes said to be a synonym for

carpooling, but it is increasingly used to indicate a form of ad-hoc carpooling, thus with

less regularity and formality.

A common point of confusion in de�ning shared vehicle transportation is how to dis-

tinguish between ridesharing, carpooling, public transit and taxi services [6]. In this

document, ridesharing uses a similar de�nition by Amey [6] who describes it as a trip

19

2.1. RIDESHARING 20

that the driver intends on taking whether or not they can �nd an appropriate passenger

to share the ride with; and also with no pro�t-seeking motive. Whereas taxi drivers or

public transits are pro�t seeking in their carriage of passengers, in most cases rideshare

drivers seek only to share the costs of transport.

2.1.1 Motivating Factors

There are various reasons that encourage both drivers and commuters to participate in

ridesharing travelling. The most common include:

1. Financial incentives

Drivers see an opportunity to cut trip costs on items like fuel, toll fees, vehicle's

wear and tear, etc. Therefore, �lling the empty seats with commuters who contribute

money reduces the overall trip cost. In some developed countries, discounted parking

fees and separate transport lanes are o�ered to drivers who carry a set minimum

number of passengers [15, 2].

2. Society bene�ts

Willingness to help stranded commuters, referred as �Good-Heart-Hitch-Hiking� by

Sicwetsha [94], strengthens the relationship between drivers and commuters in a

community. Society also bene�ts in the reduction of congestion on roads and parking

spaces, assuming that the riders also own private cars and each would have used

them for the trip to the common destination [2].

3. Travel time saving

In countries such as the USA and Canada, the use of faster High Occupancy Vehicle

(HOV) highway lanes is an incentive to drivers with passengers occupying all car

seats [41]. In this case, commuters target well-known places where drivers pick them

up in order to qualify for the use of these special HOV lanes.

4. Environmental impact

The average new car (e.g. VW Golf 1.6, Mini Cooper Convertible, Volvo C30,

and Mercedes Benz CLC) emits 182g of carbon per kilometre. At the other end

of the spectrum, a Hummer H2 may emit as much as 412g/km [27]. Participants

in rideshare travels (assuming that they own cars), take part in the campaign to

reduce Greenhouse Gas emissions [69].

2.1. RIDESHARING 21

5. Increased travel options

In areas where public transport is limited or not available (e.g. between home

location and the closest public transport service point), ridesharing provides the

best travel option for people going to similar destinations. Such irregular trips, also

called "last mile" trips, are di�cult to be serviced by the public transport systems

[58].

2.1.2 Classi�cations of Ridesharing

There are many terms that de�ne the di�erent rideshare arrangements and Chan [15]

proposes a ridesharing scheme based on how ridesharing appears today and the relation-

ship among its participants. Figure 2.1 shows the classi�cations that are available in

ridesharing.

Figure 2.1: Ridesharing Classi�cations. Taken from [15].

Acquaintance-based and organization-based ridesharing are usually run by a public or

private entity in a formal way. Ad-hoc ridesharing as observed in casual carpooling (also

known as �slugging�, �instant carpooling� and �dynamic ridesharing�) is informally ar-

ranged and does not involve family, friends or co-workers, but rather runs on �rst-come,

�rst-served deal [55].

2.2. RIDESHARING SYSTEMS 22

2.2 Ridesharing Systems

According to Chan [15], ridesharing's evolution in major industrial countries of the world

can be categorized into �ve phases: 1) World War II car-sharing (or carpooling) clubs;

2) major responses to the 1970s energy crisis; 3) early organized ridesharing schemes; 4)

reliable ridesharing systems; and 5) strategy-based, technology-enabled ridematching.

In general, a ridesharing system helps people to establish rideshares by automatically

matching up drivers and riders [2]. Therefore the viability of a ridesharing system depends

on the critical number of participants in a given driver/passenger ratio to ensure success

of the system [45]. To ensure high participation, some systems o�er additional incentives

to its users such as �nancial bene�ts or subsidies o�ered by governmental or employer

entities [104].

2.2.1 Conventional Ridesharing Systems

Based on the classi�cation shown in Figure 2.1, technology-based conventional ridesharing

systems operate under the �organization-based� division, which involves ridesharing that

requires participants to join a service whether through formal membership or simply by

visiting the organization's website.

These systems formally or informally link riders and drivers assuming they all have a �xed

schedule and �xed origin and destination points [53]. Examples of such systems include a

rideshare system for workers of a company or students at a University who have a de�ned

schedule of travel. The matching process may take days and results are sent to users as

early as possible using communication methods like emails.

Conventional ridesharing systems ensure that people involved in ridesharing trips are well

acquainted with each other or share social relationships. The members decide who can

join the group based on their assessment of the interested individuals. This improves the

safety of ridesharing trips as strangers are not allowed to take part [16, 29].

Rideshare systems ensure that trips are sheduled in advance which guarantees the avail-

ability of transport to a destination and should any changes occur, users can communicate

via the system's messaging service or emails prior to the travel time [29, 39]. This provides

a user with enough time to arrange alternative transport should the need arise.

However, rigid rideshare arrangements have proven to be less desirable due to the re-

straints they place on participants' extra activities which do not �t into a trip's �xed

schedule [21]. Conventional ridesharing systems suit people travelling for common ende-

vours e.g. to their work place or an event at the destination [58]. Therefore, rideshare

2.2. RIDESHARING SYSTEMS 23

arrangements between two or more unrelated individuals for commuting purposes end up

being relatively in�exible long-term arrangements [74].

2.2.2 Dynamic Ridesharing Systems

Dynamic Ridesharing Systems (DRSs) target the �ad-hoc� ridesharing classi�cation, ac-

cording to Figure 2.1, which requires little relationship between participants.

Dynamic ridesharing describes an automated system that facilitates once-o� trips close to

the desired departure times of drivers and riders. The concept is also known as real-time

ridesharing, ad-hoc ridesharing and instant ridesharing [2]. Amey [6] de�nes real-time

ridesharing as a single or recurring rideshare trip with no �xed schedule, organized on a

one-time basis, with matching of participants occurring as little as a few minutes before

departure or as far in advance as the evening before a trip is scheduled to take place.

Over the years a number of pilot projects aimed at developing dynamic ridesharing sys-

tems have been carried out using the available technologies at each point [41]. Some

examples include: Bellevue Smart Traveler, Washington (1993) [14]; RideNow, Dublin &

Pleasanton, California (2006) [71]; and Avego, University Cork, Ireland (2010) [9].

2.2.2.1 Common Features in Dynamic Ridesharing Solutions

Organized dynamic ridesharing involves people either o�ering or requesting rides from a

system that matches registered potential drivers and riders to the approximate time and

destination of the request. The general features that are common in DRSs are as follows:

• Dynamic nature

The rideshare can be established on short notice, which can range from a few minutes

to a few hours before departure time. Thus, communication technology is a key

enabler to dynamic, on-demand ridesharing and mobile phones are the best suited

devices because of their Internet and Short Message Service (SMS) capabilities. In

addition, the origin and destination points are not based on a particular schedule

of locations thereby making the points also dynamic [2].

• Organizing non-recurring trips

Dynamic ridesharing focuses on single, non-recurring trips. This distinguishes it

from conventional ridesharing which require a long-term commitment among two or

more people to travel together on recurring trips for a particular purpose. Therefore,

a DRS assists in organizing a single ridesharing trip which is �exible because it does

not require rigid time schedules or itineraries over time [53, 2].

2.2. RIDESHARING SYSTEMS 24

• Pre-arranged trips

The trips are pre-arranged which means that the participants agree to share a ride in

advance, typically while they are not yet at the same location. This is di�erent from

the spontaneous, so-called casual ridesharing (slugging or hitch-hiking) in which

riders and drivers establish a rideshare on the spot on the side of the street [2].

• Automated matching

Participants establish rideshares with minimal e�ort and ride matching is automated

in a dynamic setting. The system matches up riders and drivers and communicates

the matches to the participants [2, 58].

• Independent drivers

The drivers who participate are independent individuals that do not belong to any

organization for ridesharing travels [2].

• Cost sharing by participants

The variable trip-related costs are shared among the rideshare participants in a

way that makes it bene�cial for them to participate from the perspective of cost

reduction [2, 15].

2.2.2.2 The Underlying Technologies in DRSs

The earliest form of dynamic ridesharing involved the use of telephone-based ridematching

[15]. In this approach, users send their request for rides, o�er rides and receive ridematch-

ing information in real-time over the telephone. Either human operators or an automated

interface communicates with users.

According to Amey [6], the underlying technological features of current DRSs are:

• Smartphone devices

Many service designs rely on the recent proliferation of smartphones in the market-

place. The �rms developing the underlying software for �real-time� ridesharing have

focused their e�orts on platforms with easy-to-use attractive user interfaces such as

Apple's iPhone software and Google's Android platform.

• Constant network connectivity

The need to communicate ride requests and accept o�ers on short notice requires

that one be constantly connected to the network. Many smartphones o�er unlimited

data plans with constant network connectivity.

2.2. RIDESHARING SYSTEMS 25

• Ride matching algorithm

All of the underlying systems use some form of algorithm to match riders and

passengers. Some of the algorithms do so based only on origin and destination,

while some of the newer algorithms match drivers and passengers based on the

commonality of their travel route.

• Global Positioning Satelite (GPS) functionality

The use of GPS functionality helps participants seeking a ride not to key in their

current location because the GPS built into their phone (smartphone) knows where

they are located and communicates this information automatically when trips are

logged.

• Social network integration

Some providers have linked their services to existing social networks in an e�ort

to improve successful matches. Lack of trust and safety are the main problems for

ridesharing. Wessel [108] recommends the integration of ridesharing systems with

social networks for veri�cation, but points out that rather than being a complete

solution, this is simply a step in the right direction.

• Participant evaluation

Participants rate each other in a similar way to the online service eBay [25]. After

a ride has been successfully completed, both the passenger and driver are asked to

rate each other. Those with higher ratings are likely to be preferable shared ride

partners.

• Automated �nancial transactions

Some services may allow for �nancial transactions between participants. Some allow

participants to name their own price, while others recommend a value based on

standard Internal Revenue Service (IRS) vehicle cost estimates. Some providers

facilitate automatic transactions through the use of online payment systems such

as PayPal [82]. Other providers simply calculate the recommended shared cost and

allow drivers and passengers to negotiate and agree on a �nal amount and payment

method.

2.2.2.3 Advantages

DRSs provide �exible ridesharing services that overcome the barrier of �xed travel times

in conventional ridesharing systems. The proliferation of mobile phones coupled with their

2.2. RIDESHARING SYSTEMS 26

ability to perform computing operations and use the internet has opened the possiblity

of arranging instant ridesharing [60].

The ability to arrange ridesharing on a per trip basis rather than for trips made on a

regular basis suits peoples' less predictable lifestyles [58] (A trip being a single instance

of travel from one geographic area to another [53]). In addition, real-time ridesharing

attempts to provide added �exibility to rideshare arrangements by allowing drivers and

passengers to partake in occasional shared rides when their schedules allow [6].

2.2.2.4 Disadvantages

DRSs are based on the casual carpooling or ad-hoc ridesharing methods which involve

matching of people without acquaintances. Therefore, safety and security are the major

problems. People have a natural distrust of strangers and are hesitant to ride in a car

with one [53]. The security risks include car hijacking, rape and attacks leading to loss of

life as indicated in the study by Sicwetsha [94]. Travelling with a driver with an unknown

record of driving and in a vehicle with unknown road �tness status poses a major safety

risk [23].

There is a trade-o� in DRS systems through the provision of valuable travel data against

the loss of privacy. The collection of real time data (e.g. GPS and social networks data)

involves the loss of personal privacy for the user of the phone (smartphone). The challenge

lies in balancing the use of technology for innovative data gathering while ensuring that

personal privacy is respected [6].

Participation in most modern DRS systems is limited to smartphone users with high

connection speeds and additional features like GPS. This has a signi�cant impact on

the number of people who can use the ridesharing services in the context of developing

nations, where the penetration of smartphones is still smaller than in developed nations

[85].

2.2.2.5 Motivating Factors for Ad-hoc Ridesharing

Ad-hoc ridesharing continues to exist despite most people being aware of the risks asso-

ciated with it. Levofsky and Greenberg [53] identify the following reasons for the success

of ad-hoc ridesharing despite its risks:

1. Incentives to the participants

Incentives such as money and time saving remain the main motivation for drivers

due to the continued increase in driving costs, as discussed in Section 2.1.1. Similarly

2.2. RIDESHARING SYSTEMS 27

for commuters, the �exibility of travelling to a destination not based on a scheduled

arrangement, and limited or non existing public transport service.

2. Known pick-up locations

It is easy for drivers and passengers to locate each other when there are well-known

places for people interested in ridesharing or in search of ridesharing. Drivers are

assured of �nding commuters with common travel destinations at known places in

a particular area.

3. Familiarity among participants

Regular ad-hoc ridesharing partners build trust amongst themselves which encour-

ages more participation in future trips as partners.

2.2.2.6 Mitigating Risks through Technology

Whilst most modern DRSs simplify spontaneous arrangement of trips, e�orts are being

made to mitigate the risks associated with ridesharing for people without acquaintances

by incorporating the available technologies of social networks and GPS [9, 76].

The rise of social networking platforms, such as Facebook, has enabled ridesharing ap-

plications to use this interface to match potential rides between friends or acquaintances

more easily [15, 108]. The hope is that social networking will build trust among partic-

ipants, thereby addressing safety considerations. But Chan [15] observes that this may

limit users of the system as isolated groups and exclude less tech-savvy users. Some ex-

amples of ridesharing applications that focus on social networking platforms are ZimRide

[113] and PickupPal [83].

Other systems, such as Avego [9], use GPS and location data to keep track of driver and

passenger positions throughout their rideshare trip. This provides a security check that

ensures that travel partners of the system's arranged trip arrive at their set destinations.

2.2.2.7 Examples of Modern DRS Systems

This section discusses some examples of DRSs that use modern technology in providing

dynamic ridesharing operations.

Avego is a free real time ridesharing application available to iPhone and Windows Phone

users. A driver is matched in real-time with anyone searching for a ride along the driver's

route.

2.2. RIDESHARING SYSTEMS 28

The system combines GPS-enabled real-time ride matching with fully automated payment

transaction management and real-time passenger information [9]. Figure 2.2 shows an

example screenshot of the Avego application for Iphone.

Figure 2.2: Avego on Iphone. Taken from [9].

Where safety is concerned, Avego uses a self-policing rating mechanism, whereby drivers

and riders rate each other at the end of a journey. Drivers also authenticate riders by

entering their auto-generated PIN at the start of each journey. The system uses audio

noti�cations, so drivers don't need to interact with the application while driving. Another

security feature of the system is the use of GPS to log the journey progress in real-time

[9].

Another example of a DRS is OpenRide. This is a free and open source application for

arranging spontaneous shared rides using smartphones. It is device independent as the

end device component runs as a mobile web page in the web browser accessible by any

internet-enabled device e.g. smartphone, netbook or tablet.

Drivers and passengers on the move can o�er or search for rides. The search engine

does not only consider the start and end point of the route, but the complete route so

passengers can be picked up anywhere along the route and rideshare for any part of the

route [76].

To increase the level of trust between a driver and passengers, the system matches user

2.3. RIDESHARING IN SOUTH AFRICA'S CONTEXT 29

pro�les via a two sided rating system [76].

2.2.3 Flexibility and Reliability Trade-O�

Amey [6] observes that there is a large trade-o� involved in the use of real-time ridesharing

with the loss of trip reliability in exchange for trip �exibility. However, the degree to which

these two features are traded-o� depends on the type of rideshare trip being sought. Figure

2.3 shows the trade-o� between �exibility and reliability. While conventional rideshare

opportunities su�er from a lack of �exibility, they are quite reliable. On the opposite

end of the spectrum, immediate rideshare trips are very �exible, but provide little service

reliability. Occasional trips, where matching takes place su�ciently far in advance of the

start of the trip to allow for alternate travel arrangements to be made, tend to o�er a

balance between �exibility and reliability.

Figure 2.3: Reliability vs Flexibility in Ridesharing. Taken from [74].

2.3 Ridesharing in South Africa's Context

In this section, the ridesharing situation for both conventional and ad-hoc methods in the

South African context will be discussed. The section �rst discusses the state of public

transportation and then discusses the ridesharing situation for conventional and ad-hoc

methods in South Africa.

2.3. RIDESHARING IN SOUTH AFRICA'S CONTEXT 30

2.3.1 Status of the Public Transportation Systems

South Africa provides land based public transportation in the form of trains, buses and

taxis (minibus, sedan or bakkie). The signi�cance of taxis as a convenient form of public

transport among the three modes of public transport is shown in the survey results in

Figure 2.4 [24]. The relative inaccessibility of trains is also shown in the chart. On

average, households are approximately half an hour away from train stations. Bus stops

and taxi services can be found on average within 12 minutes' walk of peoples' homes [24].

Figure 2.4: Household Access to Public Transport. Taken from [24].

Minibus taxis are responsible for 65% of the 2.5 billion annual passenger trips in urban

areas, as well as a high percentage of rural and intercity transport. Buses and trains

account for 21% and 14% respectively of all public transport [75].

The statistics clearly indicate that the South African taxi industry plays an important

role in the economy considering that the majority of South Africans are dependent on

public transport. The taxi industry consists of minibuses, dominating 90% of the market,

and metered taxis which are active in the remaining 10% of the market [3].

The public transport sector has its challenges which in�uence the way people choose their

travel modes. The main factors for people not to use the available travel modes, as found

in the survey [24], are as follows:

1. Train services: The long distance between peoples' homes and the train stations as

2.3. RIDESHARING IN SOUTH AFRICA'S CONTEXT 31

well as the lack of security at stations and on the trains.

2. Bus services: Too infrequent, did not depart/arrive at appropriate times and travel

times were too long.

3. Minibus taxi services: Safety from taxi accidents, lack of facilities at ranks and lack

of roadworthiness of vehicles.

This section has described the state of the public transport system in South Africa and the

challenges that are faced. The next section will focus on how people arrange alternative

travels methods in the form of vehicle ridesharing.

2.3.2 Conventional Ridesharing

In South Africa, organized vehicle ridesharing services that are run by local private entities

are available. Example websites are FindAlift [29], Gumtree carpool/rideshare [39], Car-

poolmates [13] and N1 Lift Club [17]. Generally, these websites o�er services of ridesharing

for people living in a community wishing to travel to a common destination. People can

eventually form lift clubs for regular ride shares based on thier agreed travel schedules.

These services fall under the category of conventional carpooling/rideshare systems cov-

ered in Section 2.2.1. Some websites (e.g. N1 Lift Club [17]) o�er their services at a fee

while others are free (e.g. Carpoolmates [13]).

The incentives o�ered by these web based ridesharing systems are similar to those that

were explained in Section 2.1.1 as motivating factors for ridesharing. For example, they

all encourage ridesharing for the incentives such as cost sharing (uniting to save money

on fuel), reducing their carbon footprint, helping to cut tra�c for faster journey times

and making new friends [29, 13].

The major limitation with these systems is that their website designs target computer

web browsers. This makes their services inaccessible to the majority of internet users in

South Africa who rely on mobile phones to access the internet [85].

Since the designs mainly target conventional ridesharing, the �exibility of rideshare sched-

ules could be problematic for the participants, as explained in Section 2.2.1.

2.3.3 Ad-hoc Ridesharing: Hitch-Hiking

Ad-hoc ridesharing in the form of hitch-hiking is a popular method of travel in South

Africa, as reported in a study by the Eastern Cape Department of Transport [94].

2.3. RIDESHARING IN SOUTH AFRICA'S CONTEXT 32

The study was conducted following the observation of the rise in popularity of hitch-

hiking travels involving drivers (private car owners) and commuters for trips within the

provincial towns/cities. It involved drivers, commuters and minibus taxi operators who

provided their responses through a questionnaire on why hitch-hiking is popular.

The study revealed the reasons behind hitch-hiking and these may also be applicable to

other provinces of South Africa.

2.3.3.1 Types of Hitch-Hiking

Sicwetsha [94] de�nes hitch-hiking (also known as thumbing, hitching, autostop or thumb-

ing up a ride) as a means of transport that is gained by asking people, usually strangers,

for a ride in their vehicle to travel a distance that may either be short or long. Com-

muters use a hand gesture where a thumb is pointed at the road or in some cases write

an abbreviated name of their destination on a piece of paper or cardboard for the driver

to see.

The study acknowledges the existence of two types of hitch-hiking which are de�ned as:

1. Good-Heart-Hitch-Hiking: Willingness to help stranded commuters e.g. Drivers

�with a good heart� give transport to the elderly, disabled, women or children with-

out expecting any monetary contribution. This has been part of society's ubuntu

way of living in most communities. Ubuntu can be explained as the consciousness

of our natural desire to a�rm our fellow human beings and to work and act towards

each other with the communal good in the forefront of our minds [73].

2. Commercial Hitch-Hiking: Rewards motivated hitch-hiking whereby the driver ex-

pects a monetary contribution, which in most cases is lower than the taxi cost for

the same trip. The growth of this type of hitch-hiking (as observed in the province)

indicates that there are inadequacies in the public transport system.

2.3.3.2 Why Hitch-Hiking is Popular

From the commuter's perspective (41 out of 66 [94]) the main reasons for preferring hitch-

hiking to taxis were found as follows:

1. The lack of customer care by the taxi drivers citing cases of rude behaviour, bad

attitude, noisy music, etc. This is based on the fact that there is no management

mechanism in place for the taxi industry as it is run by individuals and not man-

aged by corporate governance structures [94]. In addition, the taxi industry has no

customer service plan aimed at providing quality service to its customers.

2.3. RIDESHARING IN SOUTH AFRICA'S CONTEXT 33

2. Lack of safety from accidents. The dissatisfaction with minibus taxis due to safety

from accidents is also found in the results of the national household survey [24] and

is indicated as the overwhelming travel choice factor by commuters. Taxi violence

is another reason that commuters do not feel safe and switch to other modes of

transport for long and short distance travelling [94].

3. Delays due to time spent at the ranks.

For the drivers who own private cars and pick-up hitch-hikers, 75 respondents [94] gave

their reasons as:

1. To reduce fuel cost for their trips.

2. Good will reasons i.e. helping hitch-hikers with transport. It was found that most

drivers indicated that they were commuters before and they understood the incon-

veniences of using taxi services.

3. Use the ridesharing trip as a preaching platform.

The taxi owners and drivers (66 respondents [94]) gave their views on reasons for hitch-

hiking as follows:

1. Hitch-hiking was encouraged due to the high taxi fares. They suggested that Gov-

ernment should subsidize the taxi industry in the same way it does with buses and

trains.

2. Their services need improvement to win back the commuters. This was admitted

by �ve respondents [94].

3. The time spent at the ranks by commuters. A total of 30 repondents [94] indicated

that commuters feel that their time is wasted when taxis delay their departures by

waiting to �ll all passenger seats.

2.3.3.3 The Risks

In the previous section some of the reasons why people in the Eastern Cape use hitch-

hiking as a means of travel were highlighted. Below is a discussion of the risks of this

travelling method.

Ad-hoc ridesharing has its associated risks, mainly safety and security as discussed in

Section 1.2.2.4. In South Africa's context (as observed in the Eastern Cape), the major

risks found in the study [94] were:

2.4. MOBILE PHONE DEVICES AND APPLICATIONS 34

1. Increasing rate of criminal activities related to hitch-hiking.

This makes both the drivers and commuters vulnerable to crimes such as car hijack-

ing, theft, murder, etc. Therefore, trusting a stranger is a problem as was indicated

by most drivers (57 out of 75 [94]) who admitted that they do not trust hitch-hikers

they pick-up. Only 15 drivers [94] responded that they trust them and had no

reasons not to do so.

2. Drivers face attacks from taxi operators.

Taxi drivers feel that their business is a�ected by the increase in hitch-hiking travels.

In some cases, they confront drivers who are found o�ering rides to commuters.

The study reports that many people involved indicated reluctance to stop doing it as a

means of transport.

2.3.3.4 Legality of Hitch-Hiking

Historically, hitch-hiking is a common practice worldwide with the exception of a few

places in the world where laws exist to restrict it. For example, in the United States some

local governments have laws to outlaw hitch-hiking for safety reasons [94].

According to Sicwetsha [94], there are no strict and clear laws in the National Land

Transport Act No. 5 of 2009 [59] about hitch-hiking in South Africa. The taxi industry

has been calling for a legislative ban on hitch-hiking on the basis that it involves drivers

who participate in public transport services without proper permits [94].

This has sparked a debate on the rights of citizens and Scwetsha [94] recommends a

consultative process involving the Government, taxi industry, commuters and drivers who

provide transport to hitch-hikers. This would assist in bringing up relevant regulations

and laws concerning the matter.

2.4 Mobile Phone Devices and Applications

In the previous sections, we have discussed ad-hoc ride sharing in the form of hitch-hiking

as an alternative method of travel in South africa that is popular in the Eastern Cape.

We have also discussed the current state of ridesharing systems that provide real-time

ridesharing services and primarily target mobile phone platforms.

This section provides information about the mobile phone devices, applications and their

usage status within Africa, paying particular attention to South Africa's perspective. This

2.4. MOBILE PHONE DEVICES AND APPLICATIONS 35

information helps to explain the reasons why the majority of people (living in this part of

the world) who own mobile phones and participate in ridesharing travels do not bene�t

from the existing DRS solutions.

2.4.1 Proliferation of Mobile Phones

Africa has overtaken Latin America to become the second largest mobile market in the

world after Asia, with over 620 million mobile connections as of September 2011 [37].

Over the past 10 years, the number of mobile connections in Africa has grown an average

of 30% per year and is predicted to reach 735 million by the end of 2012 [37]. Figure

2.5 shows the mobile market overview in Sub-Saharan Africa, showing the trend of the

increase in the number of mobile connections.

Figure 2.5: Mobile Market Overview: Sub-Saharan Africa. Taken from [37].

South African residents are some of the highest users of mobile technology and mobile

social networking on the continent. The results of Census 2011 [1] show that the propor-

tion of households owning cellphones signi�cantly increased from 31.9% in 2001 to 88.9%

in 2011. According to the Mobile Africa Report 2012 [85], the rural penetration rate in

South Africa is at 38%.

2.4.2 Feature Phones Versus SmartPhones

According to Kaigwa [43], there is no o�cial de�nition to distinguish a feature phone and

a smartphone. The de�nitions change so rapidly due to the improvements in technology

and cost e�ciencies in manufacturing.

Smartphones describe high end mobile phone devices while feature phones are the corre-

sponding low end devices. The latter can be classi�ed as mobile phones that supports the

2.4. MOBILE PHONE DEVICES AND APPLICATIONS 36

Wireless Application Protocol (WAP) on GPRS/Edge connectivity, have a colour screen,

can send an MMS message, have low-resolution cameras and support J2ME native appli-

cations [43].

The majority of the world's mobile users still make calls and access data using feature

phones [100]. Figure 2.6 shows the size of the feature phone market in comparison to

smartphones globally (collectively called the �connected device� market) as observed in

2011. Smartphones make up 27% of the graph below, leaving 73% that are feature phone

devices.

Nokia is the dominant OEM (Original Equipment Manufacturer) of mobile handsets in

Africa. One estimate has positioned Nokia with a 65% market share across the whole of

Africa [43].

The dominance of feature phones' mobile operating systems (73%) is shown in the inner

circle of Figure 2.6. Such details should have an in�uence when developing mobile phone

applications that target many users in regions such as Africa.

Figure 2.6: Clash of Ecosystems. Taken from [62].

Despite the sharp rise in smartphone shipments in 2010-2011, the rate of smartphone

adoption is uneven across di�erent countries. South Africa recorded a 15% (Base: Total

population) penetration rate of smartphones in the year 2011 [84]. Developed countries

such as UK and USA reported 30% and 31% respectively.

2.4. MOBILE PHONE DEVICES AND APPLICATIONS 37

2.4.3 Mobile Phone Applications

We now focus on mobile application development and the di�erent mediums that are

available to provide user access to services that can be hosted by content servers on the

internet.

2.4.3.1 Development Platforms

Mobile phone application development requires a target platform that provides access to

the devices. The platform can be a licensed a product (e.g. Java Micro Edition, JME),

or proprietory (e.g. Blackberry); and also open source (e.g. Android) [31]. The selection

of an appropriate platform depends on the client devices that the application targets.

For example, JME is the most predominant software platform that provides a collection

of Java APIs for the development of software for resource constrained devices such as

phones[31].

2.4.3.2 Types of Applications

The JME provides one of the preferred choices when developing native applications that

can run in most mobile phones that are either feature phones or smartphones. Native

applications are speci�cally developed to run on a device's operating system and machine

�rmware [4].

Native applications have several advantages which include the ease of tapping into phone

features (e.g. GPS, accelerometer, and camera), working o�ine and also o�ering rich

designs, which enables greater user experience [31, 47].

Native applications are at a disadvantage to support the mobile device fragmentation

due to the growing number of platforms (e.g. Windows, Android, iOs, etc). This results

in issues such as the requirement of expertise in each respective operating system, use

of di�erent environments for each platform and provision of consistent user experiences

across all supported platforms [31].

In recent years, the mobile web framework has become one of the most rapidly growing

mobile application platform. Content that is device, platform, and operating system

independent is rendered by a web browser [31]. Most mobile phones come with pre-

installed native applications that are web browsers.

The mobile web applications are easy to develop as they require knowledge in familiar

web programming tools such as Hyper Text Markup Language (HTML), Cascading Style

Sheets (CSS) and JavaScript. Web applications enable direct control over own distribution

2.4. MOBILE PHONE DEVICES AND APPLICATIONS 38

as any change on the application can be made on the server and clients download the latest

application as they access it [4].

The downside of web applications is in the need for constant network connections for their

operation. Their performance is bad in areas where network connections are erratic. In

addition, it is di�cult to develop web applications that access phone features such as the

�le system (e.g. for the user's address book, photos, etc) [31]. Such �le system access

presents a large security and privacy issue due to the availability of web based threats

that use the internet.

The SMS applications are the other type of mobile applications that can reach many users

given the ubiquity of devices that support SMS [31]. They are useful for sending timely

alerts to the user and providing two way interactive messaging applications (request and

respond)[42]. Their disadvantages include the limited use of only text characters limited

to the size of 160 [30], as well as the cost in using them which could be expensive in the

course of sending multiple messages [31]. In addition, using SMS applications demands

that the user remembers the required keywords and proper structure of the message

parameters. This leads to mistakes such as incorrect spacing and misspelled words being

made since there is no check on the input parameters before sending an SMS message.

This section has explained some of the types of mobile phone applications that can be

developed to provide services to the various mobile phone platforms that are in existence.

The next section provides information about the example mobile phone applications that

are in common use by people in South Africa.

2.4.3.3 Mobile Applications Usage in South Africa

Recent statistics show that many people in the continent of Africa are slowly being pulled

into the world of Internet connectivity by the phones they use [34]. In 2011, 12.8% of

the population had Internet access and only 3.8% had broadband connections [34]. Social

networks are the entry point to the Internet for many, even in rural areas. It is projected

that in �ve years more than half of those using phones will be using smartphones: one in

four Africans [34].

Since the growth of Information Communication Technologies (ICTs), many South Africans

living in urban and rural communities are able to explore, share and access digital infor-

mation through mobile and computer Internet connectivity. The practice of Internet

browsing on mobile phones is expanding with nearly 39% of urban dwellers and 27% of

rural residents browsing the Internet on their mobile phones [12]. One of the key factors

behind the mobile push onto the Internet is the low penetration of both computers and

�xed line Internet access in South Africa [34].

2.5. THE LIVING LAB CONCEPT 39

According to The Mobility 2012 report [112] by World Wide Worx [111], adult South

African cellphone owners are increasingly adjusting their budgets for data use. The report

shows that the proportion of the average user's cellphone spend on data has increased by

half from 8% of budget at the end of 2010 to 12% in mid-2012 [112]. In the same period,

browsing on the phone increased from 33% to 41% of users, application downloads rose

from 13% of users to 24%, while Facebook use rose by more than half from 22% to 38%.

While spending on voice has dropped from 77% to 73% in the same period, SMS spend

remains steady at 12%. The biggest increases in speci�c uses of data on the phone were

seen in instant messaging services such as Blackberry Messager (BBM) and WhatsApp

[109].

Such mobile phone statistics have helped businesses like First National Bank (FNB) to

develop strategies to provide their mobile banking services across new channels and plat-

forms like Facebook on top of the more familiar text-based services like USSD and SMS

[112].

The Mobility 2012 research study [112] covered South Africans across all age demographics

from 16 years and upwards and in all metropolitan and rural areas. However, it did not

cover the deep-rural population.

This section has discussed mobile phone devices and some of the types of mobile appli-

cations that can be developed. It has also presented information on how the people of

South Africa are adopting the use of mobile phones for data access on top of the voice

communication services.

The next section will present one of the example methodologies in ICT for Development

(ICT4D) for the empowerment of the use of ICT in marginalized communities of South

Africa.

2.5 The Living Lab Concept

The Living Lab concept was developed by Professor William J. Mitchell [49] of the MIT

Media Lab and School of Architecture. He proposed user-centric research methods in real

life environments to identify and build prototypes and to evaluate multiple solutions.

Living Labs use di�erent stakeholders in cooperation, bringing together Enablers, Uti-

lizers, Developers and Users. These co-creators include the public sector, business and

science parks, incubators, universities, companies and, of course, the end-user communi-

ties, both non-professional and professional [48]. Use of real world testing by end-users in

an authentic digital, physical and social environment ensures that emerging technologies

2.6. SUMMARY 40

and the innovative products and services are fully developed before they reach the market

[48].

Living Labs in Southern Africa (LLiSA) [87] is a project that focuses on building a network

and community of Living Labs practitioners in Southern Africa, with the purpose of

advancing and supporting open user-centric innovations and Living Labs in South Africa

[90]. Living Labs that are part of the LLiSA include Siyakhula Living Lab [51], Limpopo

Living Lab [54] and Sekhukhune Living Lab [50].

This research is part of the Siyakhula Living Lab and Appendix F discusses the work that

is currently taking place under this Living Lab.

2.6 Summary

The chapter provided background information on vehicle ridesharing focusing on dynamic

ridesharing. This was followed by a look at the designs of modern DRSs that enable real-

time ridesharing using mobile phones. In the context of South Africa, hitch-hiking as a

form of ad-hoc ridesharing was discussed by looking at some of the reasons behind its

popularity and its associated risks. Thereafter, information about the status of mobile

phone usage in-terms of the types of mobile phones and applications used by most people

was also provided. In conclusion, the chapter highlighted the initiatives, through the

Siyakhula Living Lab, that are taking place to promote the use of ICT in South Africa.

Chapter 3

Data Collection

This chapter discusses a study that was conducted to understand how hitch-hiking travels

are organized in South Africa. The study builds on the results of the study on the

popularity of hitch-hiking in the Eastern Cape, discussed in Section 2.3.3. The chapter

provides a background of the areas where the study was conducted to consider the urban

and rural contexts. Then it presents the methods that were applied to gather the facts

about hitch-hiking travels and the results that were found. The chapter concludes with a

description of two models of hitch-hiking, for the urban and rural contexts. These models

were used in the design of a DRS that is relevant to this context.

3.1 The Eastern Cape

Our study on hitch-hiking was conducted in the Eastern Cape province of South Africa.

The Eastern Cape is the second largest province in South Africa with a population of

about 6,562,053 (2011) [89]. The majority of the people speak isiXhosa (78.8%), while

the other major languages are Afrikaans (10.6%) and English [89].

The metropolitan economies of Port Elizabeth and East London are based primarily on

manufacturing, the most important being automotive manufacturing [89]. The province

is the hub of South Africa's motor industry. The major towns in the Eastern Cape include

Bisho, King Williams Town, Grahamstown and Mthatha.

The deep rural areas of the Eastern Cape are in the former Transkei area. The inhabitants

of Dwesa/Cwebe are traditionally subsistence farmers who depend on their crops for their

livelihood [102].

Like most marginalized communities, Dwesa/Cwebe su�ers from major infrastructure

problems including limited electricity availability and connectivity, minimal telecommu-

41

3.1. THE EASTERN CAPE 42

nication infrastructure, and poor quality of the transport infrastructure [101].

The importance of public road transport to the majority of people in the Eastern Cape

is indicated through the results of the South African National Household Travel Survey

in 2003 [24]. It was the �rst national survey of the travel habits of individuals and

households. It provides information on workers and commuter trips, and includes the

modes of travel, periods of travel, travel times, and travel costs.

The survey ranked the Eastern Cape as the lowest in the household car ownership by

province, as shown in Table 3.1. The results showed that in the Western Cape, over 45%

of households have access to a car (ownership of one or more privately-owned or use of

company-owned cars), compared with approximately 16% in the Eastern Cape.

Province % of households with car access No. of cars per household

Western Cape 45.5 0.68

Eastern Cape 15.5 0.23

Northern Cape 25.4 0.41

Free State 21.8 0.32

Kwazulu-Natal 23.2 0.34

North-West 22.4 0.33

Gauteng 33.0 0.56

Mpumalanga 23.5 0.37

Limpopo 17.2 0.24

RSA 26.1 0.40

Table 3.1: Households' Car Access and Ownership. Taken from [24].

Among the available transport modes used by people in the province, public transport

in the form of buses and taxis provides the major means of land transportation. The

signi�cance of the taxi mode (minibus, sedan and bakkie) as the most widely used form

of public transport is shown in Table 3.2 [24].

3.2. STUDY ON HITCH-HIKING TRAVELS 43

Transport modes used by all household members in the

week prior to survey (Percentage of all people)

Train 0.7

Bus 3.3

Metered taxi 0.5

Minibus taxi 15.9

Sedan taxi 1.2

Bakkie taxi 4.9

Car 8.6

Table 3.2: Transport Modes Used in the Eastern Cape. Adapted from [24].

Given that a large percentage of people in the province rely on taxis, the issues of the

quality and reliability of the taxi industry are critical. The dissatisfaction with the taxi

industry in the Eastern Cape has been found to be the main reason behind the increase

in popularity of hitch-hiking travels, as found in the study [94] by Scwetsa (presented in

Section 2.3.3).

The background of the study area for this research has been presented, the next section

will discuss a study that was conducted to understand hitch-hiking travels in this area.

3.2 Study on Hitch-Hiking Travels

The primary objective of the study on hitch-hiking was to understand how hitch-hiking

travels are arranged between drivers (private car owners) and commuters (hitch-hikers)

within the Eastern Cape. This was key to the design of our DRS so that its functions are

tailored to the familiar hitch-hiking operations.

The second objective was to get �rst-hand information on hitch-hiking travels from the

participants' point of view, speci�cally on the incentives, risks and the possible suggestions

for how it could be improved. Information gathered in the process was used to improve

on the existing hitch-hiking operations and to mitigate the identi�ed risks.

3.3 Methodology

In conducting the study, several research methods were followed and the steps that were

undertaken are discussed in this section.

3.3. METHODOLOGY 44

3.3.1 Study Area

To have a broad understanding of hitch-hiking in the Eastern Cape, we conducted our

study in urban, peri-urban and rural contexts. It was thought that understanding about

hitch-hiking in these contexts could provide a general picture of how hitch-hiking is done

in South Africa as the context in other provinces is similar to that of the Eastern Cape.

3.3.1.1 Urban and Peri-Urban Areas

The urban and peri-urban areas in our study were Grahamstown, King Williams Town,

Port Elizabeth and East London. Most long distance hitch-hiking travels involve people

moving between these urban areas.

3.3.1.2 Rural Areas

To understand hitch-hiking in rural areas, we performed our study in the community of

Dwesa and its surrounding areas, located on the south-eastern coast of South Africa in

what was previously the homeland of Transkei.

This community is characteristic of many third world rural realities [101]. It provides

a good representative area for our study on rural hitch-hiking as it has most of the

characteristics that other rural areas in South Africa possess.

The closest towns to Dwesa are Willlowvale and Idutywa, 50 and 75 km inland respectively

[102]. People from the rural communities usually travel to these towns for services such

as shopping and banking.

3.3.1.3 Map of the Study Area

The study area of our research is shown in Figure 3.1. The map shows the locations of the

urban and rural areas that are involved in hitch-hiking travels within the Eastern Cape.

3.3. METHODOLOGY 45

Figure 3.1: Map of the Eastern Cape. Adapted from Google Maps.

3.3.2 Semi-structured Interviews

To get the required information on hitch-hiking travels, we conducted semi-structured

interviews with people in the study area. Semi-structured interviews are interviews in

which the researcher uses a set of predetermined questions to guide the interviewing

process [102]. This is opposed to an open interview process in which no schedule is used.

A questionnaire was designed (available in Appendix A.1) as a guide for the interviews

and it focused on the following areas:

1. How hitch-hiking travels are arranged between the drivers and commuters.

2. The perceived incentives when participating in hitch-hiking trips.

3. The risks associated with hitch-hiking travels.

4. How hitch-hiking travels can be improved.

The use of semi-structured interviews allowed us to get more detailed information through

the ability to use follow up questions; and also get clari�cations on some of the responses.

In addition, these interviews were important in the rural areas which have scattered

communities that makes it di�cult to manage survey questionnaire distribution.

People who were not ready to take part in the interview were asked to complete the

questionnaire at a later time.

3.4. STUDY RESULTS AND DISCUSSIONS 46

Our sample targeted only people familiar with hitch-hiking travels. Hence, the snowball

sampling method [103] was used. Using this technique, participants referred us to other

people from the target population.

3.3.3 Participating in Hitch-Hiking Trips

To gain further understanding on hitch-hiking travels, several trips were arranged within

the Eastern Cape covering the urban and peri-urban areas. In these trips, we took on the

role of a hitch-hiker.

Participating in the trips gave us the experience of hitch-hiking, as well as an opportunity

to closely observe:

• How drivers and hitch-hikers �nd appropriate meeting points (hitch-hiking spots).

• How agreements on the sharing of costs are made between drivers and commuters .

• How the �nal destination for a hitch-hiker is decided.

• The travel experience compared to the available public transport by minibus taxis.

Taking part in the hitch-hiking trips also provided the opportunity to carry out informal

interviews with ride partners, both drivers and commuters. Conducting such informal

interviews gave us information from random people, most of whom were regular hitch-

hikers or drivers who usually pick-up hitch-hikers. This widened our source of information

within the study area.

3.4 Study Results and Discussions

This section presents and discusses the results of the study.

3.4.1 Urban and Peri-Urban Areas

The semi-structured interviews targeted a sample size of 40 people within the Graham-

stown area. A total of 22 people gave their feedback with 15 people taking part in the

semi-structured interviews. The remaining seven people only provided their responses by

�lling in the questionnaire. Table 3.3 shows a summary of the responses that were given

for the main questions.

3.4. STUDY RESULTS AND DISCUSSIONS 47

Question General Response

How do you �nd an

appropriate hitch-hiking spot?

1) There are well-known places.

2) Strategic points along a street that lead to the

intended destination.

What are the bene�ts of

hitch-hiking travel?

As a hitch-hiker

1) Quick travel time.

2) Cheaper than minibus taxis.

As a driver

Save travel costs (mainly on fuel).

What are the risks associated

with hitch-hiking travels?

As a hitch-hiker

1) Theft cases.

2) Rape cases.

3) Use of unknown vehicles and their condition.

4) Travelling with strangers who could be criminals.

5) Not �nding a ride o�er.

As a driver

1) Car hijacks.

2) Transporting strangers who could be criminals

carrying unlawful items.

What recommendations would

be suggested to improve

hitch-hiking travels?

1) Do not travel alone.

2) Travel details like the car used and the driver must

be made available to friends or relatives.

What information would be

important before participating

in hitch-hiking travel.

1) Details of ride partners, driver and other passengers.

2) Details about the car to be used.

What estimated waiting time

would you allow in organized

hitch-hiking travel?

Most people indicated a waiting time of between 15

minutes and an hour.

Table 3.3: Hitch-Hiking Survey Responses in Urban Setup.

3.4. STUDY RESULTS AND DISCUSSIONS 48

The respondents indicated that they know the hitch-hiking spots that drivers target when

going to a particular destination. Most of the hitch-hiking trips cover long distances to

neighbouring places like Peddie, Port Elizabeth (PE) and King Williams Town (KWT).

Therefore, Beaufort street which links the main Grahamstown area to the main road to

other major towns/cities provides the best hitch-hiking spots. For example, when hitch-

hiking to KWT the hitch-hiking spots are along the street in the direction of KWT (near

the Shoprite building) whilst when going to PE the best spots are towards the opposite

end of the street in the direction of PE.

The bene�ts of hitch-hiking were given with reference to the minibus taxi services since

they are the main providers of public transportation in the area (as was explained in

Section 3.1). All respondents emphasized that hitch-hiking provides them with lower

travel costs and quicker travel time compared to the taxi services. No respondent indicated

any incentive that targets society bene�ts in the form of reducing tra�c congestion or

carbon emissions which are some of the main incentives in ridesharing in the context of

many developed nations, as presented in Section 2.1.1.

The risks that people face when hitch-hiking were linked to the involvement of strangers

which brings in the fear of crimes as is the case in any ad-hoc ridesharing arrangement.

The major crimes indicated were car hijacking, theft and rape. All respondents were

aware of the risks associated with hitch-hiking travels.

The need for details about travel partners and the vehicle used in the trip were indicated

as one way of improving hitch-hiking travelling.

3.4.2 Rural Areas

A similar approach of using semi-structured interviews was done in the rural area of

Dwesa, using the same questions as the urban interviews.

There were 14 respondents from around the areas of Ngwane (�ve respondents) and

Nqabara (nine respondents). The responses that were provided are summarized in Table

3.4.

3.4. STUDY RESULTS AND DISCUSSIONS 49

Question General Response

How do you �nd an

appropriate hitch-hiking spot?

1) Any nearest suitable position along the road.

2) Known hitch-hiking spots usually at bus stops.

What are the bene�ts of

hitch-hiking travels?

As a hitch-hiker

1) Unlimited time schedule.

2) Ability to negotiate with drivers e.g. on cost and

drop o� point.

As a driver

Save travel costs (mainly on fuel).

What are the risks associated

with hitch-hiking travels?

As a hitch-hiker

1) Risk on accidents due to the use of unroadworthy

vehicles and the overloading of passengers and goods.

2) Not reliable to �nd a ride o�er on expected time.

3) Theft cases.

4) Rape cases.

As a driver

1) Car hijacks.

2) Travelling with strangers is risky.

What recommendations would

be suggested to improve

hitch-hiking travels?

Details of the ride partners and the car must be made

available.

What information would be

important before participating

in hitch-hiking travel?

1) Details of driver and ride partners.

2) Details about the car to be used.

What estimated waiting time

would you allow in an

organized hitch-hiking travel?

Most people indicated a waiting time of at least 30

minutes to 1 hour.

Table 3.4: Hitch-Hiking Survey Responses in Rural Set-up.

The responses indicated that hitch-hiking in deep rural areas like Dwesa, does not nor-

3.4. STUDY RESULTS AND DISCUSSIONS 50

mally involve speci�c hitch-hiking spots. Any nearest point along the road can be used as

a hitch-hiking spot. One of the reasons could be that there are no speci�ed illegal pick-up

points for passengers as is the case with most urban areas. The known hitch-hiking spots

in the rural areas are usually the public bus stops.

One of the major bene�ts of hitch-hiking is the ability to travel at any time, without

being restricted to a time schedule. People explained that the rural areas do not have

frequent public transport services. The public bus service in the Dwesa area, which is

the cheapest compared to taxis and hitch-hiking, is available twice a day (early morning

and late afternoon). In addition, the taxis also operate at regular times which makes

hitch-hiking the only possible travel option during the day.

The major risk indicated was the safety of the trips. Some of the vehicles used by drivers

in the hitch-hiking trips are not roadworthy. And in some cases, drivers overload their

vehicles with passengers and goods.

3.4.3 Hitch-Hiking Experiences

Several trips between major towns/cities of the Eastern Cape were arranged to understand

hitch-hiking, and they were as follows:

1. Grahamstown and Port Elizabeth (three times)

In all the three trips, we used hitch-hiking for the direct travel from Grahamstown

to Port Elizaberth and taxis were used for the return trips.

2. Grahamstown and King Williams Town

This hitch-hiking trip was used on our way to East London. King Williams Town

was a transit destination.

3. King Williams Town and East London

This was the �nal hitch-hiking trip to reach East London from Grahamstown. In

the return trip to Grahamstown, a single taxi was used all the way.

By taking part in hitch-hiking travels within the urban setup, we observed the following:

• Use of hand gestures or holding a written post of the destination name to signal

rideshare requests to approaching vehicles. The use of written posts is common

at hitch-hiking spots that serve multiple destinations. The destination names are

usually in short-codes e.g. King Williams Town is KWT.

3.4. STUDY RESULTS AND DISCUSSIONS 51

• The destination name is used when making rideshare agreements between a driver

and hitch-hiker. Further details like the �nal drop o� points are discussed whilst

the trip is in progress. Generally, the driver decides the �nal drop o� point which

depends on his choice of routes at the destination location. Commuters proceeding

further than the driver's destination are usually dropped at a hitch-hiking spot to

hitch-hike to their �nal destination. In our three trips to Port Elizabeth, we were

dropped at di�erent points in each trip and it all depended on the driver's decision.

• There is a well-known cost of each trip to a particular destination. The cost is usually

lower than the equivalent taxi service cost. For example, we paid an amount of R50

to travel between Grahamstown and Port Elizabeth which the driver and the other

hitch-hikers were all aware of.

• To reach some destinations it is easier to go through a transit location. For example,

going to East London from Grahamstown, it is quicker to go to King Williams Town

and then hitch-hike a second time for a trip to East London.

Based on the experience we had in participating in the hitch-hiking travels, we found the

bene�ts in comparison to the taxi services (minibus and sedan) as follows:

• No strict time schedules of travel. As a commuter, you start your journey at your

own convenience by standing at a known hitch-hiking spot and waiting. Drivers

who are looking for ride partners will stop when they choose to.

• Flexible departure points for commuters. Whilst there are usual hitch-hiking spots,

any safe parking point for a driver along the road can be your departure point.

Therefore, it provides the ability to start a journey at your nearest point along the

main road.

• Taxis depart at the terminal when all passenger seats are �lled which in most cases

delays commuters. For hitch-hiking, the drivers do not wait for seats to be �lled at

a hitch-hiking spot but rather start the journey and pick-up additional passengers

along the way. This explains why people said that hitch-hiking is a quicker means

of travel than taxi services.

• The travel cost is cheaper than taxis. For example, it cost R50 to hitch-hike between

Grahamstown and Port Elizabeth whilst travelling by taxi would have cost R80.

The costs were also cheaper for the other hitch-hiking trips that we undertook (e.g.

between King Williams Town and East London). This veri�ed our earlier �ndings

on why people prefer hitch-hiking to taxis for their travels within the province.

3.5. THE HITCH-HIKING MODELS 52

The risks that were observed were similar to those we found in the interviews. But we

also noted the following:

• Di�culty in �nding a hitch-hiking spot in large urban areas like Port Elizabeth.

• Does not guarantee, as a hitch-hiker, that you will be dropped close to your �nal

destination. On two of the trips to Port Elizabeth we were dropped in the township

area where we had to take a local minibus taxi to reach our intended destination

(city center).

• Cannot be sure of the actual departure time which is risky if you are travelling on

a strict time schedule which requires a speci�c arrival time at the destination.

We have discussed how we conducted our study on hitch-hiking travels in our study area.

In the next section we will present the hitch-hiking models that were derived from the

�ndings of the study to represent urban and rural hitch-hiking travels.

3.5 The Hitch-Hiking Models

We summarized our �ndings on hitch-hiking travels with two models that highlight the

di�erences that exist in urban and rural hitch-hiking travels.

3.5.1 Urban Hitch-Hiking Model

Using the results of the study, a model of hitch-hiking that describes the characteristics

in urban contexts was designed as shown in Figure 3.2.

3.5. THE HITCH-HIKING MODELS 53

Figure 3.2: Urban Hitch-Hiking Model.

The model shows that male drivers are mostly involved in hitch-hiking travels as we found

from our observations and the people that were interviewed. The drivers aim to cut trip

costs (fuel) in their long distance trips between towns or cities of the province. The major

risk they face in the process of picking-up hitch-hikers are car hijackings; and in some

instances they also face resistance from taxi drivers, who feel that their business is a�ected

when they pick-up hitch-hikers.

In the urban context, vehicles that are used for hitch-hiking are mostly saloon types,

hence the number of hitch-hikers to be picked-up depends on the available free seats. The

drivers search for hitch-hikers at known hitch-hiking spots which possibly increases their

chances of picking-up genuine commuters.

Most people who hitch-hike in the urban areas belong in the low to middle bracket of the

South African Living Standard Measure (LSM), as indicated in a study by the Department

of Transport [94]. Therefore, the main incentive is the opportunity for cheaper travel costs

on a similar route to public transport, usually taxis. The other incentives are due to the

ine�ciencies of the taxi industry such as delays in travel time.

The main risks that hitch-hikers face are crime related in the form of theft and rape; and

also travelling with criminals, who may be transporting unlawful items.

The hitch-hikers hold a written post of their intended travel destination name or short-

3.5. THE HITCH-HIKING MODELS 54

code to enable drivers to see the �nal intended destination for a hitch-hiking trip. Once a

driver picks up a hitch-hiker, further discussions about the cost and the �nal drop point

can be held whilst the trip is in progress. The �nal drop point of a hitch-hiker is the

driver's decision and mostly depends on his driving route at the destination location.

3.5.2 Rural Hitch-Hiking Model

The rural hitch-hiking model is represented by the diagram in Figure 3.3. The main

di�erence with the urban context is the higher possibility of picking-up hitch-hikers as

part of the ubuntu philosophy. The rural context, being composed of community set-

ups, have people who are more connected in community settlements than in urban areas.

Therefore, people who own cars, in some cases, o�er rides out of good will as part of

community living. We found that this type of hitch-hiking is de�ned as �Good-Heart-

Hitch-Hiking� by Sicwetsha [94], in Section 2.3.3.1.

Another observed di�erence is in the type of vehicles used to pick-up hitch-hikers. In the

rural context, bakkies are most commonly used vehicles as they are ideal for the untarred

road conditions. Therefore, there is no de�ned seating capacity when people sit at the

back, which in some cases leads to the overloading of passengers in a trip.

In rural areas almost all age groups and both genders participate in hitch-hiking due to

the limited availability of public transport services. In some instances hitch-hiking o�ers

the only alternative to public transport services and it also provides �exible travel times

which are bene�cial to the traveller.

One of the major risks people face when hitch-hiking in rural areas is the unroadworthi-

ness of the vehicles used by drivers o�ering them a lift. Due to limited transport options,

sometimes hitch-hikers have no choice but to accept lifts in unroadworthy vehicles. An-

other safety issue is that the use of bakkies encourages overloading of passengers and

goods.

Most hitch-hikers do not need to stand at speci�c hitch-hiking spots as the road networks

are simple and it is easy to locate a good place to catch vehicles going to a particular

destination.

3.6. SUMMARY 55

Figure 3.3: Rural Hitch-Hiking Model.

3.6 Summary

In this chapter we have presented the study that was undertaken to understand hitch-

hiking travels in the Eastern Cape as part of the requirements gathering to design a DRS

for ad-hoc hitch-hiking in South Africa. The area of the study has been explained in such

a way that it covers both the urban and rural contexts. The results of the study have

been discussed leading to the development of models that represent the urban and rural

hitch-hiking contexts. The next chapter focuses on the design stage activities which take

into consideration the �ndings that have been presented in this chapter.

Chapter 4

System Design and Architecture

The previous chapter presented our study on understanding hitch-hiking travels in South

Africa. This chapter continues with the development of the DRS by providing details

of the design phase activities, including the de�nition of the requirements speci�cations.

The chapter concludes with a discussion of the overall system architecture, explaining the

conceptual design of the DRS.

4.1 System Design

This section explains the design of the DRS by providing details about the system's re-

quirement speci�cations and the Uni�ed Modeling Language (UML) diagrams that elab-

orate on the structure and the interaction design.

4.1.1 System Goals

Based on our understanding of DRSs in Section 2.2.2 and the results of the study on

hitch-hiking in Section 3.4, the following requirements were identi�ed for our DRS:

1. Registration of users of the system

Like other DRSs discussed in Chapter 2, all users must be registered to use the DRS.

In addition, registering users' phone numbers provides a valuable link for additional

user information that can be sourced from South Africa's phone number registration

system, RICA (Regulation of Interception of Communication Act) [65]. This might

be useful if further identi�cation of a user is required, for example, after a reported

bad incident in a ridesharing trip.

56

4.1. SYSTEM DESIGN 57

2. Ridesharing trips arranged spontaneously

Trips are arranged in a random manner. In our study on hitch-hiking, we identi-

�ed that most drivers start their trips by driving towards the known hitch-hiking

spots to pick-up hitch-hikers who are ready to travel and the driver does not wait

until all seats are �lled. Therefore, the system must accomodate this kind of trip

arrangement which requires quick responses once a request is recieved and returns

the necessary information for quick decisions to be made.

3. Record trip information

Like other DRSs, the details of a ridesharing trip must be logged in a database and

the information should be available to other registered users.

4. Match ride o�ers (driver) to ride requests (hitch-hiker) and vice versa.

Ride o�ers must be matched to hitch-hiker requests who meet the trip requirements

speci�ed by the driver. The system should consider scenarios of a ride o�er and a

ride request posted without available matches.

5. Use simpli�ed operations

Considering that the majority of our target users are in the low to middle income

bracket of the South African LSM, the system operations must be usable by people

with low ICT literacy levels.

4.1.2 Use Case Diagram

Based on the system goals, the Use Case diagram that highlights the system's actors and

key operations is shown in Figure 4.1.

The system identi�es two possible roles by a user which are driver and hitch-hiker. This

was considered after our understanding that some people change roles from driver to

hitch-hiker and vice versa. As a driver, you are responsible for creating a trip and then

o�ering it according to a set of conditions such as cost, o�er duration and number of free

seats. As a hitch-hiker, you seek a ride by posting your hitch-hiking details which include

your current location and the name of the preferred destination.

The driver decides which hitch-hiker to include in a trip by accepting a list of the matching

hitch-hikers or by selecting one at a time.

4.1. SYSTEM DESIGN 58

Figure 4.1: Use Case Diagram.

Any users can register a hitch-hiking spot in a location. The hitch-hiking spot can be

searched by other users who do not know the location of known hitch-hiking spots or who

are looking for the short-codes of locations that are used in hitch-hiking.

The users can enquire about the details of other users, as well as the trips that have

been arranged. Information about a particular trip includes the driver, passengers (hitch-

hikers) and the vehicle used.

4.1.3 Requirements Speci�cations

This section presents the functional and non-functional requirements of the DRS. These

requirements can be tested on the �nal developed system to verify that the objectives

have been met.

4.1.3.1 Functional Requirements

The key functional requirements based on the objectives of the DRS were set as follows:

4.1. SYSTEM DESIGN 59

1. All users must be registered with their personal details that include their full name,

sex, home location and phone number.

2. As a driver:

• create a trip with details about the �nal rideshare destination and a preferred

hitch-hiker pick-up location.

• register a vehicle that is used for a rideshare trip under your pro�le. The vehicle

details should be the registration number, make, seating capacity, body type

and colour.

• o�er a trip to hitch-hikers with conditions that include a ride o�er validity

period, the expected rideshare cost and the maximum number of seats.

• accept a hitch-hiker in a trip to con�rm that his/her passenger seat has been

reserved.

• search for available hitch-hikers at a hitch-hiking spot who are ready for a ride

to a particular destination name.

3. As a hitch-hiker:

• post a ride request with the preferred destination and your current location

details (name, street and nearest landmark).

• search for available ride o�ers to a particular destination from a speci�ed pick-

up point location.

4. Match driver and hitch-hiker requests and send instant noti�cations of matches.

The matcher should pend both requests from a driver and a hitch-hiker when no

matching result is immediately found. The match alerts should be recieved as SMS

messages.

5. Each trip must be independent and have a secret code that is shared between a

driver and any hitch-hiker who is accepted. This code can be used by the driver to

verify a hitch-hiker at the pick-up point. This should add an extra security check

to verify that the person was matched using the DRS, as is the case with the Avego

system [9] discussed in Section 2.2.2.7.

6. The rideshare trip information must be recorded, including the day of travel, pas-

sengers (hitch-hikers) who were accepted and the vehicle that was used.

4.1. SYSTEM DESIGN 60

7. The known hitch-hiking spots in a particular location must be registered. Details

must include the location name, location short-code, street and nearest landmark.

Therefore, short-codes must be allowed when sending a ride o�er or a ride request

as an alternative to full location names. This should enable the use of simple short-

codes, which are already familiar to people who participate in hitch-hiking travels;

and this could also save time when entering location names that are long.

8. An optional function that adds next-of-kin contact details (full name and phone

number). This should enable a user to notify a relative or friend about a hitch-

hiking trip they are taking part in. The information about the trip (e.g. vehicle,

driver, and other passengers) must be sent to the next-of-kin person by a simple

request to the system.

4.1.3.2 Matching Algorithm

In our study on hitch-hiking (in Chapter 3), we found that drivers and hitch-hikers make

rideshare agreements using the destination name (full name or short-code). Similarly, we

designed our matching algorithm to be based on the destination name entered by a driver

and a hitch-hiker.

In the hitch-hiking culture of our study area, we also found that a driver is not expected

to drop each passenger (hitch-hiker) at his/her exact destination point. Following this,

the system design does not enforce the driver to agree to a hitch-hiker's ride request with

an exact drop o� point in the destination location as is the case with other DRSs such as

Avego [9]. We left the decision on the �nal drop o� point to be agreed by the participants

whilst the trip is in progress, as is the case in the normal hitch-hiking travels.

Matching the travel plans of a driver and a hitch-hiker requires a departure time schedule

that suits both users. Agatz et al. [2] states that letting each user specify a desired

depature time can be problematic for a system to decide the best time to allocate for

departure that suits both the driver and possible ride partners. They suggest that a time

window representation may capture a participant's time preferences more accurately. One

could, for example, let a participant specify an earliest possible departure time and latest

possible arrival time as represented in Figure 4.2.

4.1. SYSTEM DESIGN 61

Figure 4.2: Time Window for a Ride O�er. Taken from [2].

Our system adapts the use of a time window by allowing a driver to specify a duration

in which a ride o�er is valid. We considered the time window for the driver based on the

realization that the drivers are solely responsible for the rideshare trip and hence decide

when to depart.

Based on Figure 4.2, the time-stamp of the ride o�er becomes the announcement time and

the latest departure time is calculated by adding the time window to the announcement

time. For example, specifying 30 minutes means that the driver is o�ering a ride from the

current time to the end of the next 30 minutes. In this case, any hitch-hiker meeting the

trip requirements within this period should be matched. Therefore, a hitch-hiker would

be expecting the departure time between the time a successiful match message is received

and the latest depature time indicated on the trip (as calculated by the system). But

the actual departure time still depends on how long it will take the driver to reach the

pick-up point.

The matching algorithm should match a trip ride o�er to a hitch-hiker with the same

destination name at the trip's indicated pick-up point location. Therefore, a ride o�er

should return a list of hitch-hikers who match the ride o�er request. Considering that

devices in use are mobile phones (with small display screens and low memory size), the

size of the list is limited by the passenger seats speci�ed by the driver. If the required

number of seats is not speci�ed, then the vehicle seating capacity excluding the driver seat

must be used. The order of the hitch-hiker requests should be based on the time-stamp

of each ride request. The earliest hitch-hiker request must lead the list of ride requests

4.1. SYSTEM DESIGN 62

available to a driver. Then, the driver must decide whether to accept all or select preferred

hitch-hikers from the list.

In the scenario of a hitch-hiker's ride request arriving in the system and more than one

matching ride o�ers (by drivers) are available, the ride o�er with the nearest departure

time is selected. This was done to enable a hitch-hiker to get a matching trip that would

best suit their requirement.

4.1.3.3 Non Functional Requirements

The key non functional requirements identi�ed were as follows:

1. System stability

• The system must be stable in terms of the availability of its ridesharing services.

2. Accessible to the target variety of mobile phone platforms

• Targeting people who own di�erent types of mobile phones requires access

methods that accommodate as many phones as possible. Therefore, the DRS

must target the majority of mobile phone owners who participate in hitch-

hiking trips in South Africa.

3. System usability

• E�ectiveness - assess the extent to which users successfully complete certain

tasks on the system [64].

• E�ciency - measure how much e�ort is used in achieving the objectives [90].

• Satisfaction - �nd out if the user experience is satisfactory [90].

4.1.4 Class Diagram

The UML class digram in Figure 4.3 shows the static structure of the system. It also shows

the classes and relationships that were designed following the requirements speci�cations.

In the diagram, the Person class represents a registered user. The user is represented as

a Hitchhiker object when the role is to seek for driver ride o�ers. A ride request by a

Hitchhiker is performed at a particular point (e.g. hitch-hiking spot) represented by a

RoutePoint object.

4.1. SYSTEM DESIGN 63

When a Person takes the role of a driver, he/she starts by creating a Trip object that

contains the required trip details (e.g. �nal destination, preferred pick-up point, Vehicle

used, etc). Then, a ride o�er of the Trip can be made for any Hitchhiker at the speci�ed

pick-up point, i.e. a RoutePoint object. A ride o�er at a RoutePoint is represented by a

TripRoutePoint object and its properties are the conditions on the o�ered Trip (e.g. trip

cost, o�er time window, available seats, etc).

The Vehicle class has the properties of a vehicle that is used in the ridesharing trip. A

Person can have zero to many Vehicle objects registered under his/her pro�le. And a

single Vehicle can be used in many trips organized by di�erent Person objects in the role

of a driver. We designed it in this way because we were taking into account the fact that

a single person cannot solely drive a registered vehicle for all possible trips it may be

involved in. Any other Person in the role of a driver can register the same vehicle under

his/her pro�le and use it in a ridesharing trip.

The Trip class has a property called Passengers that contains a list of Hitchhikers. The

list is updated when a driver accepts a list of matched hitch-hikers or when a single

hitch-hiker is added.

The NextOfKin class represents the details of a close relative or friend to whom a user

can send details of a trip that he/she is participating in. As such, the name and phone

number details of the next-of-kin are required. The number of registered NextOfKins to

a Person can be zero to many depending on the user's preference.

4.1. SYSTEM DESIGN 64

Figure 4.3: UML Class Diagram.

4.1. SYSTEM DESIGN 65

4.1.5 Sequence Diagrams

Representing the activity �ow of organizing a rideshare trip, two scenarios can be consid-

ered on how rideshare requests from a driver and a hitch-hiker are handled by the system.

The scenarios are as follows:

1. A ride o�er arriving before a matching ride request

Referring to the sequence diagram of Figure 4.4, the �ow of activities involved

starts with a driver creating a trip and then o�ering it whilst no matching hitch-

hiker request is available. As explained in the description of the matching algorithm

(in Section 4.1.3.2), a ride o�er is only available within a set time window.

When a hitch-hiker posts a ride request, the matcher looks for any available ride

o�er. If an available matching ride o�er is found, both the owner of the ride o�er

(driver) and the hitch-hiker are instantly informed about the details of their match.

2. A ride request arriving before a matching ride o�er

In this scenario (shown in Figure 4.5), a hitch-hiker posts a ride request but there is

no matching ride o�er by a driver. The ride request is pended until a matching ride

o�er is available. When a ride o�er is posted by a driver, the matcher searches for

hitch-hikers, at the speci�ed pick-up point or along the same street, seeking a ride

to the same destination. A list of hitch-hikers is returned (limited by the number

of seats o�ered) and is sent to the driver. Each hitch-hiker in the matched list is

noti�ed about a possible ride o�er that has been found and is informed to wait for

a con�rmation by the driver. Figure 4.4 illustrates the activities that are involved.

4.1. SYSTEM DESIGN 66

Figure 4.4: Sequence Diagram: Ride O�er Before Ride Request.

4.1. SYSTEM DESIGN 67

Figure 4.5: Sequence Diagram: Ride Request Before Ride O�er.

4.2. USER INTERFACE DESIGN 68

4.2 User Interface Design

The User Interface (UI) layer provides interfaces that the user interacts with in order to

make use of the services the system o�ers [90]. Our system's client side is composed of

various mobile phone platforms used by drivers and hitch-hikers to organize hitch-hiking

travels.

Section 2.4.3.2 discussed the di�erent types of mobile phone applications in the form of

web and native applications. Based on the expectation that our target users do not own a

single mobile phone platform, solutions that target cross platforms were considered . The

prospective users come from a section of the population of mobile phone users in South

Africa who own high and low end phones (both categories of smartphones and feature

phones).

The next sections discuss our selected mobile phone application types that provide the

user interface for the DRS.

4.2.1 SMS Application

The ubiquity of mobile phones that support SMS was highlighted in Section 2.4.3.2, Fink

et al. [30] states that almost all GSM mobile phones can send and receive SMS messages.

Based on the information about the penetration of mobile phones in South Africa (in

section 2.4.1.1), we expect the majority of our target users to own feature phones that

operate on the GSM network. By making the DRS's functions accessible through the SMS

technology, the accessibility is increased by including a population of mobile phone users

belonging in the di�erent levels of the South African LSM (including the lowest bracket).

The other advantages of using the SMS application are the consistent user interfaces and

familiarity to most phone users. An SMS text operates in almost the same way across

di�erent mobile phone types. This means that users who migrate to di�erent phones

would not experience any di�erences in terms of their interactions with the system. The

person-to-person text messaging is the most commonly used by mobile phone users and

it is what the SMS technology was originally designed for [42]. This leads to familiarity

on how to use the SMS operations for the DRS.

The major setback with the SMS application would be the costs incurred in the process

of using the service and the lack of checks on the user entered parameters (e.g. correct

requests) before sending an SMS, as indicated in Section 2.4.3.2. This could be expensive

to some users in our target population of hitch-hiking participants. The cost factor was

considered by minimizing the number of operations when using the system. For example,

in a hitch-hiker role only a single SMS message is required to post a ride request, while

4.2. USER INTERFACE DESIGN 69

for a driver a maximum of three SMSs can be used to create, o�er and accept all matched

hitch-hikers.

To perform the spontaneous ridesharing arrangements using SMS technology, the system

uses a two-way interactive text messaging application [42]. This means that a driver or

hitch-hiker sends an SMS that queries the availability of a possible ride partner and the

system responds immediately with the results.

The user interaction in SMS applications involves the use of a keyword and parameters

(e.g. format: KEYWORD<space>PARAMETER<space>PARAMETER) in a normal

text message. The keyword can be used to indicate the type of operation, for example

using the keyword �Reg� meaning a registration operation. This is followed by the required

parameters (e.g. �rstname, username) separated by a delimiter which can be any input

character (e.g. a space character).

The design of the user interactions for the SMS application for the DRS is shown in

Figure 4.6. The request SMS containing a unique keyword and parameters can be sent to

a phone number used by the DRS. The request SMS could be, for example, a ride request

containing the details of a hitch-hiker (e.g. origin hiking spot and preferred destination).

Each keyword is associated with an action which is triggered once an SMS with a matching

keyword is recieved. The action calls a content server to perform the required task and

return the result which goes back to the sender of the request as a response SMS message.

This completes the two-way interactive text messaging session.

To make sure that only registered users access the ridesharing service, each request SMS

is validated by checking the sender's phone number against the registered users' phone

numbers which are unique for each user.

More details about the SMS application are discussed in Chapter 6 of this documents

which covers the implementation of the DRS.

4.2. USER INTERFACE DESIGN 70

Figure 4.6: UI Model for a Two-Way SMS Application.

4.2. USER INTERFACE DESIGN 71

4.2.2 Mobile Web Application

The other user interaction method for the DRS is through a mobile web application.

Section 2.4.3.2 highlighted that mobile web applications do not need to be installed or

compiled on the target device as is the case with native applications. In addition, they

allow control by a developer after the deployment of the application. This suits our work-

ing environment because our target clients include people of various ICT literacy levels.

Those that have weak ICT literacy levels would �nd it hard to perfom the installation or

the necessary upgrades when required to do so.

The other advantage in choosing a web application is the multiple device support for

mobile web applications. A phone only needs to have a web browser, which comes pre-

installed in most mobile phones. The main challenge would be to make the web applica-

tion accessible by mobile phones with di�erent speci�cations (from low end to high end

phones). We considered a design that uses simple interfaces and the WAP technology,

which optimizes web pages for wireless devices like mobile phones [30].

The user interactions with the DRS using the mobile web application starts with the

login process whereby a username and password are required. After a successiful login,

the user is provided with a main menu for a selection of the preferred role, either driver or

hitch-hiker. Under each role, the relevant operations can be accessed. Figure 4.7 provides

the UI model of the mobile web application for performing the DRS functions.

4.3. SYSTEM ARCHITECTURAL DESIGN 72

Figure 4.7: UI Model for the DRS Web Application.

4.3 System Architectural Design

The system has the architecture of a client-server design as presented in Figure 4.8. The

server side runs the ridesharing service that performs the DRS's functions and persists all

data in a relational database.

4.3. SYSTEM ARCHITECTURAL DESIGN 73

The client side has various mobile phone devices of diferent capabilities owned by drivers

and hitch-hikers for arranging spontaneous rideshare trips. The users can access the DRS

functions using either the SMS texts or mobile web browsers. The mobile phone devices

operate in di�erent mobile phone networks such as GSM, GPRS, and 3G and above.

The server side requires a communication link to be established with the mobile service

provider network which hosts the mobile phone clients. The web server hosting the DRS's

web pages needs to communicate with the mobile phone browsers through the Internet

using the Hyper Text Transfer Protocol (HTTP).

The SMS application needs a GSM/GPRS modem to link the server hosting the DRS

and the mobile phone networks. The user sent SMS messages must be converted to string

format that the server understands and similarly, server messages must be structured in

an SMS format understood by the mobile phones. This job is performed by an SMS

gateway that operates between the mobile phone clients and the server.

4.4. SUMMARY 74

Figure 4.8: The System Architectural Design.

4.4 Summary

In this chapter, the design of the DRS has been discussed, including the requirements

speci�cation, the static structural design, the activity �ow and the conceptual architec-

ture. The choice of the mobile phone application types has been explained, taking into

consideration the information about the type of mobile phones owned by the participants

of hitch-hiking travels in South Africa. The next section follows up on the design stage

with a discussion of the available free and open source solutions that were considered in

the implementation of the DRS.

Chapter 5

Relevant Technologies

This chapter focuses on the various open source technologies that were used in the imple-

mentation of the DRS. It covers application development using the Java OSGi technology.

TeleWeaver, an OSGi platform for e-services, will be discussed in terms of how services

are created, deployed and consumed in the OSGi environment. The chapter concludes

with a discussion of the open source solutions for WAP and SMS technologies using the

Kannel system.

5.1 Modular Applications with Spring and OSGi

This section discusses the use of Spring Java and OSGi technologies to develop modular

systems that use the bene�ts provided by both technologies.

5.1.1 Spring Framework

Spring is a lightweight Dependency Injection (DI), Aspect Oriented Programming (AOP)

container and framework [106]. It promotes loose coupling of classes leading to modu-

lar programming. The Spring framework provides for all the needs encountered in the

development life cycle of an enterprise Java project or server-side space [88].

Spring follows a software design pattern called Inversion of Control (IoC) in which the �ow

of the system is inverted with respect to a traditional sequence of procedural calls. The

�ow is instead delegated to an external entity which performs the sequence calls based on

a prede�ned set of instructions. Spring's implemented type of IoC is called DI [88, 106].

The loose coupling in Spring applications is achieved through DI, whereby objects are

passively given their dependencies instead of creating or looking for dependent objects for

75

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 76

themselves. The actual injection of objects takes place when an object of the correspond-

ing class is instantiated, either via its constructor method or setter methods [88, 106].

Spring's core container provides the fundamental functionality of the Spring framework

as shown in Figure 5.1. This module contains the BeanFactory, which is the fundamental

Spring container and the basis on which Spring's DI is based.

The other modules, shown in Figure 5.1, such as AOP, DAO (Data Access Object),

ORM (Object Relational Mapping), and MVC (Model-View-Controller), build on the

core module to provide various functionalities to an application developed in Spring.

For example, developers who prefer the use of ORM tools over straight Java Database

Connectivity (JDBC) utilize the ORM module which builds on the DAO support module.

The DAO module provides a convenient way to build DAOs for various ORM solutions

e.g. Hibernate [44]. In this way, Spring does not provide a speci�c ORM solution, but

provides the developer with hooks into the available solutions [106].

Figure 5.1: The Spring Framework. Taken from [106].

5.1.1.1 Spring Beans

In a Spring application objects are created, wired together and live within the Spring

container. Though the components are called �Beans� or �Java Beans�, they do not follow

all Java Beans speci�cations. A Spring component can be any type of Plain Old Java

Object (POJO) [88, 106].

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 77

5.1.1.2 Container Implementations

There is no single Spring container and container implementations can be categorized into

two distinct types, namely bean factories and Application Contexts. A bean factory is

a class whose responsibility is to create and dispense beans [106]. Apart from creating

beans, it also knows about objects within an application and creating associations between

collaborating objects as they are instantiated. Therefore, when a bean factory hands

out objects, those objects are fully con�gured, aware of their collaborating objects and

are ready to use. There are several implementations of BeanFactory in Spring, but the

most commonly used is the org.springframework.beans.factory.xml.XmlBean factory which

loads its beans based on the de�nitions contained in an XML �le. Bean factories are the

simplest of containers and they provide basic support for DI [106].

Application Contexts are Spring's more advanced containers as they take advantage of

the full power of the Spring framework. Application contexts build on the notion of a

bean factory. They provide application framework services, such as the ability to publish

application events to interested event listeners and the ability to resolve textual messages

from a properties �le. An ApplicationContex t is preferred over a BeanFactory and the

three most used implementations are [106]:

1. ClassPathXmlApplicationContext

Loads a context de�nition from an XML �le located in the classpath.

2. FileSystemXmlApplicationContext

Loads a context de�nition from an XML �le in the �le system.

3. XmlWebApplicationContext

Loads context de�nitions from an XML �le contained within a web application.

5.1.2 OSGi Technology

Open Services Gateway Initiative (OSGi) emerged in 1999 to address the needs of the

embedded device market [18]. OSGi technology is a set of speci�cations that de�nes a

dynamic component system for Java. These speci�cations reduce software complexity

by providing a modular architecture for large-scale distributed systems as well as small,

embedded applications [5].

To understand why OSGi is an increasingly important Java technology, Hall et al [40]

gives the following as Java's limitations with respect to creating modular applications:

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 78

1. Low level code visibility

Java provides a fair complement of access modi�ers to control visibility (such as

public, protected, private, and package private), these tend to address low-level

object-oriented encapsulation and not logical system partitioning. For code to be

visible from one Java package to another, the code must be declared public or pro-

tected if using inheritance. Therefore, should the logical structure of an application

call for speci�c code to belong in di�erent packages then any dependencies among

the packages must be exposed as public, which makes them accessible to everyone.

2. Error-prone class path concept

Applications are generally composed of various versions of libraries and components.

The class path pays no attention to code versions (it returns the �rst version it

�nds) as there is no way to explicitly specify dependencies. In addition, the process

of setting up a class path is largely trial and error, where libraries are added until

the Virtual Machine (VM) stops complaining about missing classes.

3. Limited deployment and management support

There is no easy way in Java to deploy the proper transitive set of versioned code

dependencies and execution of an application. The same is true for evolving an

application and its components after deployment.

According to Cogoluegnes [18], OSGi addresses Java's limitations regarding modularity

in four ways:

1. It de�nes exactly what a module is, as opposed to Java which de�nes only deploy-

ment units, like JAR (Java ARchive) or WAR (Web ARchive).

2. It provides ways to �nely set visibility rules between modules.

3. It de�nes the life cycle of a module. A module can be installed, started and stopped.

4. It lets modules interact with each other via services.

The OSGi framework plays a central role when you create OSGi-based applications, be-

cause it is the application's execution environment [40]. The OSGi Alliance's [5] frame-

work speci�cation de�nes the proper behavior of the framework, which gives a well-de�ned

API to program against. The speci�cation also enables the creation of multiple imple-

mentations of the core framework providing a freedom of choice [40]. The well-known

open source projects include Apache Felix [7], Eclipse Equinox [26] and Knop�er�sh [57].

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 79

OSGi framework provides a standardized environment that is divided into di�erent layers

as shown in Figure 5.2. Every OSGi container is based on the Java Virtual Machine

(JVM) which runs on an operating system.

Figure 5.2: OSGi Layered Architecture. Taken from [105].

Referring to Figure 5.2, the three main conceptual layers de�ned in the OSGi speci�cation

are Modules, Lifecycle and Services. Each layer is dependent on the layers beneath it.

Therefore, it is possible to use the lower OSGi layers without the upper layers, but not

vice versa [40].

The OSGi layers are described as follows:

1. Modules layer

The modules layer is responsible for handling components which in OSGi are called

bundles. OSGi bundles are standard JAR �les, with additional metadata in their

manifest �le that aims at (among other things) identifying them and con�guring the

visibility rules. The Metadata includes Bundle-SymbolicName (unique identi�er for

the bundle), Bundle-Version and Import-Package (lists one or more packages a

bundle requires) [18, 105].

Bundles are typically not an entire application packaged into a single JAR �le.

They are the logical modules that combine to form a given application [40]. The

modules layer enforces visibility rules between modules which means that when

using classes, the required packages must be speci�ed as being visible before you

can reference them from other bundles [18].

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 80

2. Life cycle layer

The lifecycle layer de�nes how bundles are dynamically installed and managed in

the OSGi framework. It relies on the module layer for classloading and provides a

dynamic approach to bundle management, making it possible to update parts of an

application without stopping it [40, 18].

In the lifecycle, a component can be installed into the container without trying to

resolve dependencies. The next phase is the resolution of dependencies which if

successiful leaves the component in the resolved state. Once in resolved state, the

component is available in the container for execution and its code executable by

other components. The main state at this stage is the active state, which is reached

after the start event. Figure 5.3 shows the di�erent states, transitions and events in

the lifecycle of an OSGi bundle.

Figure 5.3: OSGi Bundle Life cycle. Taken from [88].

3. Service registry and services layer

The service registry allows bundles to be used and to interact in a way that takes

the dynamic nature of the system into account [18]. The registry enables bundles

to publish and/or consume services, as shown in Figure 5.4. This enables a form of

Service-Oriented Architecture (SOA). However, unlike many interpretations of SOA,

which rely on web services for communication, OSGi services are published and

consumed within the same Java Virtual Machine (JVM). Thus, OSGi is sometimes

described as �SOA in a JVM� [105].

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 81

Figure 5.4: OSGi Service Registry. Taken from [105].

5.1.3 Spring with OSGi

In the previous sections, Spring and OSGi have been discussed as stand-alone technologies.

This section will focus on how Java applications designed around Spring can bene�t from

the integration with OSGi technology through the use of the Spring Dynamic Modules

(Spring DM).

5.1.3.1 Limitations in Spring and OSGi Technologies

Despite the bene�ts of both Spring and OSGi technologies discussed above, there are

several limitations that exist in these technologies. The drawback of Spring framework

occurs when trying to scale up to large and complex applications. In this case, a lot of

beans need to be con�gured within the Spring container, making its con�gurations more

di�cult to maintain. Again, Spring su�ers from a lack of modularity and no support to

improve this, such that there is no way to limit the visibility of a bean in Spring [18].

In OSGi technology, the core speci�cation does not provide any support for patterns or

tools in the design and implementation of bundles. This leaves the developer free to

choose a suitable architecture and framework (In this case, Spring can be the solution).

In addition, using the service management API is tedious, and managing the dynamic

nature of services in user code is error prone [18].

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 82

5.1.3.2 Bene�ts of Spring with OSGi

Rubio [88] suggests that OSGi is about the packaging, versioning, and dynamic loading

of Java applications, while Spring is about pursuing a pragmatic approach to developing

Java applications using POJOs and the IoC. He further states that the OSGi's strengths,

presented in Section 5.1.2, can be greatly enhanced by leveraging the Spring framework

using the following techniques:

1. OSGi's core services can make use of Spring's DI approach, making the development

of OSGi-bound classes simpler and more amenable to testing.

2. OSGi can leverage Spring's ample foundation for delivering enterprise-grade appli-

cations.

Similarly, Spring can gain from adopting some of OSGi's features, yielding the following

bene�ts:

1. The DI technique can be performed more intelligently with the help of OSGi's

dynamic-loading capabilities.

2. Class libraries used in Spring applications can be shared more easily, with a lesser

threat of class con�icts due to OSGi's awareness of other bundles (JARs) running

in the system.

3. Spring applications can be designed to support class versioning, using OSGi's capa-

bilities in this area.

4. Spring beans can be registered as OSGi services, making them readily available to

other bundles (JARs) running in the system.

5.1.3.3 Spring Dynamic Modules

Spring Dynamic Modules (Spring DM) is a technology that bridges the gap between the

Spring and the OSGi frameworks, combining the simplicity and power of Spring with the

modularity, �exibility and dynamism of OSGi [18]. Figure 5.5 shows how Spring DM

bridges between components (bundles), the service registry and embedded containers.

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 83

Figure 5.5: Spring DM in OSGi Container. Taken from [18].

Spring DM is composed of a set of OSGi bundles that become part of the infrastructure

when installed in the OSGi container. They manage a Spring application context for

bundles or start a web container inside the OSGi container.

An example of a Spring DM bundle is the Spring DM standard extender, which is a special

bundle that listens for bundle installations in the OSGi container. It scans bundles looking

for Spring con�guration �les and creates Spring application contexts on behalf of these

Spring-powered bundles [105, 18].

In a classical Spring application, a dedicated Spring container is used, and the framework

is con�gured from its enclosing contexts (the classpath or web environment). With Spring

DM, a dedicated Spring container is associated with each Spring DM�powered bundle.

Therefore, each container is unconnected with the rest and is internal to its enclosing

bundle. The use of separate containers is mandatory because each bundle has its own

lifecycle and can appear or disappear at any time [18]. Figure 5.6 shows the Spring-

powered bundles that bene�t Spring framework features such as DI, but also bene�t from

the OSGi environment like any other OSGi bundle. Spring DM helps them with tasks

such as the interaction with the OSGi service registry.

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 84

Figure 5.6: Spring-powered bundles. Taken from [18].

When registering services with Spring DM, the preferred procedure is to use the Spring

context de�nitions which are executed at the time a bundle's Spring context is created.

The de�nitions are taken from Spring DM's prede�ned or default trigger point loca-

tions. Spring DM automatically processes any XML �le located under a bundle's /META-

INF/spring/ directory. Therefore by using the OSGi namespace in the XML �le, a bean

is published in the OSGi service registry using the XML tag osgi:service from the OSGi

namespace. Similarly, to retrieve a service from the OSGi registry, the tag osgi:reference

from the OSGi namespace is used [88].

5.1.4 OSGi Development with Maven

The use of software project management and comprehension tools is important in soft-

ware applications development. This section looks at the use of Apache Maven in OSGi

application development.

Maven is a software project management and comprehension tool. Based on the concept

of a Project Object Model (POM), Maven can manage a project's build, reporting and

documentation from a central piece of information [8].

The primary goal of Maven is to allow a developer to comprehend the complete state of a

development e�ort in the shortest period of time. There are several areas of concern that

Maven attempts to deal with and they are as follows [8]:

• Making the build process easy.

• Providing a uniform build system.

5.1. MODULAR APPLICATIONS WITH SPRING AND OSGI 85

• Providing quality project information.

• Providing guidelines for best practices development.

• Allowing transparent migration to new features.

5.1.4.1 How Maven Works

Maven provides archetypes (project templating toolkit) for creating the skeleton of a

project [18]. There are di�erent types of archetypes depending on the nature of the

project. One example is the maven-archetype-webapp which creates a simple web appli-

cation project.

Maven downloads dependencies from public repositories on the internet and stores them

on the local �le system, in the local Maven repository: in the ~/.m2 folder on Linux and

C:\Documents and Settings\username\.m2 on Windows [8].

A Maven project generates a POM �le that contains two sections with information about

the project [18, 8] and these are as follows:

1. The project identi�cation with the coordinates such as project group id, artifact id,

version and the packaging element (JAR, WAR, etc.).

2. The project dependencies with coordinates such as group id, artifact id, version,

etc.

Maven does not only handle direct dependencies but a whole graph of dependencies. This

notion is also referred to as transitive dependencies. For example, if a framework like

Hibernate is speci�ed as a dependency, Maven automatically provides all the dependencies

that are required by Hibernate [18].

5.1.4.2 Maven Based OSGi Projects

OSGi-based software development is supported in Maven 2 and 3 versions [8]. There

are several remote repositories that provide coordinates for dependencies that are OSGi

compliant. These include MvnRepository [67] and SpringSource EBR (Enterprise Bundle

Repository) [96].

When developing OSGi applications, the dependencies that are downloaded for the project

must be OSGi-�ed library versions. OSG-�ed is a term that refers to a Java library with

OSGi speci�cations [18]. The SpringSource EBR [96] is the recommended source for

dependency coordinates of OSG-�ed libraries for OSGi environments.

5.2. DATA ACCESS IN OSGI 86

5.2 Data Access in OSGi

The previous sections have discussed Spring, OSGi and Spring DM in modular application

development. The use of a database to store data is an important aspect of any enterprise

application. This section explores how data access components are implemented in an

OSGi environment.

5.2.1 Java Database Connectivity

The Java Database Connectivity (JDBC) API is the industry standard for database-

independent connectivity between the Java programming language and a wide range of

databases. The JDBC API provides a call-level API for SQL-based database access [79].

JDBC provides an abstraction layer above the vendor-speci�c database drivers. Al-

though any database-based Java application must rely on JDBC, there is a structural

mismatch between object-oriented applications, which are based on objects, and rela-

tional databases, which are based on rows, tables and relations [18].

Cogoluegnes [18] states that using JDBC within OSGi has particular constraints, es-

pecially with respect to the JDBC driver (DriverManager). The problem is that the

DriverManager class, which is the central class when using JDBC, uses classloaders in a

speci�c way that can have strange side e�ects (e.g. unexpected Class-NotFoundException

exceptions) within an OSGi container. It is advised not to use the DriverManager class

in OSGi, but instead to directly obtain a JDBC connection using the driver interface.

5.2.2 Object Relational Mapping

ORM enables applications to work with the object representation of the data in database

tables, rather than dealing directly with that data. At the basic level, each ORM frame-

work maps entity objects to JDBC statement parameters when the objects are persisted.

It also maps the JDBC query results back to the object representation when they are

retrieved [93]. Figure 5.7 illustrates how ORM interacts with a relational database on be-

half of an application. A Java application persists objects of the mapped classes without

concern about the JDBC implementation details in order to save the data in a relational

database. An ORM technology operates between a Java application and a relational

database to perform the required conversions of the application's objects to records of a

database table.

5.2. DATA ACCESS IN OSGI 87

Figure 5.7: General ORM Architecture. Taken from [18].

5.2.2.1 Objectives

ORM tools aim to address issues that come up due to the structural mismatch between

objects and the relational tables in a database which are as follows [18]:

• Handling speci�c SQL dialects since every database has its own extension of SQL

speci�cation.

• Execute a vastly di�erent number of SQL requests when an application uses entity

relationships.

• Handling object graphs which JDBC does not provide an easy way.

• Entity mapping with table and inheritance support.

5.2.2.2 Frameworks

Spring does not provide its own solution for persistence. It uni�es pre-existing solutions

under its consistent API and makes them easier to use [93]. The available persistence

solutions include Java Persistence API (JPA) [78], Hibernate [44] and TopLink [80].

To use an ORM framework in the OSGi environment with Spring DM, Cogoluegnes[18]

outlines the following steps:

1. Provision the OSGi container with bundles required for the chosen persistence API

e.g. Hibernate. The OSGi-�ed components can be found from the SpringSource

EBR [96].

2. Con�gure JPA entities with Spring JPA support.

5.3. OSGI WEB COMPONENTS 88

3. Con�gure the global packages in the OSGi con�guration.

4. Implement the Data Access Object (DAO) classes.

5.3 OSGi Web Components

This section focuses on the development of web applications in OSGi environments using

Spring DM.

5.3.1 Web Container in OSGi

In normal Java application development, a web application is deployed into a web con-

tainer (e.g. Tomcat [33]) in a Java application server. In OSGi, instead of deploying an

application into a web container, a web container is installed in an application. In this

case, a web container is deployed alongside an application in the OSGi framework [105].

Two common choices of web containers in OSGi are Tomcat [33] and Jetty [32].

The OSGi framework does not know how to hand a WAR �le o� to the servlet container

[105]. As such, web applications in OSGi are deployed using the Spring DM web extender.

The web extender is a bundle that has an activator whose job is to watch for bundles to

be installed into the OSGi framework. When it discovers a web bundle, it deploys that

bundle to the web container which could either be Tomcat or Jetty [105].

5.3.2 Web Frameworks

Spring DM can integrate with various web technologies and frameworks to create web

User Interfaces (UIs) and web services. We now look at how Spring DM works with

di�erent contexts of web frameworks.

5.3.2.1 Action-Based Frameworks

Action-based web frameworks are responsible for selecting the appropriate actions to han-

dle requests. Actions are responsible for extracting parameters from requests, executing

the requests and building responses [18].

Integrating Spring DM with action-based frameworks involves the use of OSGi services,

which are con�gured through Spring DM, in action implementations. These actions use

OSGi services to execute the business functions. Figure 5.8 shows the implementation

design of action-based web frameworks with Spring DM in an OSGi environment.

5.3. OSGI WEB COMPONENTS 89

Figure 5.8: OSGi and Action-based Web Frameworks. Taken from [18].

Spring MVC is an action-based web framework shipped with Spring itself. In Spring

MVC, Spring moves requests around a dispatcher servlet, handler mappings, controllers

and view resolvers [106]. Figure 5.9 illustrates how a request is moved until a response in

generated by the view component.

Figure 5.9: Spring MVC Design. Taken from [106].

The DispatcherServlet acts as the front controller servlet to funnel requests to a Controller.

5.3. OSGI WEB COMPONENTS 90

A typical application may have several Controllers and the DispatcherServlet needs to

decide which one to send a request to. In this case, the DispatcherServlet consults one or

more Handler mappings, which check the URL carried by the request to �nd the next stop.

Then the selected Controller processes the request by retrieving the payload (information

submitted by a user) and performs the necessary actions. The logic performed by the

Controller results in information, referred to as the Model, which must be sent back to

the user. The Model can be presented in a View such as an HTML or JSP (Java Server

Pages) page. The Controller packages the Model in a new object called ModelAndView

which is sent to the DispatcherServlet. A ModelAndView object contains the Model and

the information about a particular View that should render the results. In the end, the

DispatcherServlet asks the ViewResolver to �nd the actual View (e.g. a JSP page) and

use the data in a Model to render a page [106].

Spring MVC is available as OSGi components directly in the Spring distribution. Ad-

ditional components need to be present in the OSGi container if JSP and JSTL (Java

Standard Tag Library) are used.

In summary, when implementing an action-based web framework, an OSGi service can be

con�gured with Spring DM within a Spring MVC Controller to display results of a web

request in a View such as a JSP page [18]. In this case, the Actions component shown

in Figure 5.8 would be handled by the Controller shown in Figure 5.9, and the business

logic would be performed by referencing an OSGi service from the OSGi registry.

5.3.2.2 AJAX-Based Frameworks

AJAX (Asynchronous Javascript XML) frameworks are web frameworks that provide end-

to-end support for implementing AJAX techniques from a JavaScript client on a web page

to calling services on server side [18].

Integrating Spring DM with AJAX frameworks involves exporting OSGi services refer-

enced through Spring DM as remote services with the exporting facilities of these frame-

works. An exporter is a dedicated utility class that makes an existing service available

remotely through a speci�c protocol [18]. Figure 5.10 shows the interaction between

Spring DM and AJAX-based web framework.

5.3. OSGI WEB COMPONENTS 91

Figure 5.10: Spring DM and AJAX frameworks. Taken from [18].

An example of AJAX-based framework is the Google Web Toolkit (GWT) [35]. GWT

is a development toolkit for building complex AJAX-based web applications using Java,

which is then compiled to optimized JavaScript that runs across the major browsers [38].

Con�guring GWT in an OSGi environment with Spring DM requires OSGi-�ed versions

of GWT and the GWT Widget library. The SpringSource EBR [96] does not provide

the OSGi versions of GWT and GWT library. Instead, there is need to create the OSGi

version using a utility tool such as Bndtools [11]. Bndtools is an open source utility that

enables the creating and diagnosing of OSGi bundles.

In GWT applications, the exporter mechanism provided by the GWT Widget Server

framework is used to expose Spring beans as remote GWT services based on Spring

MVC. In general, GWT provides a Spring MVC controller for handling GWT Remote

Procedure Calls (RPC). GWT RPC services are not web services. They are based on the

Java servlet architecture and provide lightweight methods for transferring data between

a server and the GWT application on the client [35].

In the OSGi environment, an OSGi service con�gured within Spring DM is exported as

a remote GWT service and called from the client side through GWT remote interfaces.

For the Javascript front end making the remote call, two interfaces are added with one

corresponding to the remote interface of the service and the other being a remote asyn-

chronous interface with a variant of the same methods exposed in the remote interface

[18].

5.3. OSGI WEB COMPONENTS 92

5.3.3 Web Services

Web service frameworks provide remote access to services using web technologies. Ac-

cording to Balani et al [10], a web service can be de�ned as a software component that

provides a business function as a service over the web that can be accessed through a

Uniform Resource Locator (URL).

Static HTML pages have been the web content that has evolved into more dynamic

full featured web applications. A web service component is one step ahead of this web

paradigm and provides only business service, usually in the form of raw XML data that

can be digested by virtually all client systems [18]. In general, a web service can be

thought of as a self contained, self describing, modular application that can be published,

located and invoked across the web [10].

The key abstractions of web service frameworks are request handlers (Endpoints or Re-

sources) [10]. These abstractions are responsible for handling requests and implementing

functionality. Therefore, integrating Spring DM with these frameworks involves the use

of OSGi services inside the action implementations [18]. Figure 5.11 shows how a web

service framework integrates with Spring DM.

Figure 5.11: Spring DM and Web Service Frameworks. Taken from [18].

Two of the most widely used approaches for developing web services are SOAP (Simple

Object Access Protocol) and the REST (Representational State Transfer) architecture

style. The next sections explain the two architectures in detail.

5.3. OSGI WEB COMPONENTS 93

5.3.3.1 SOAP Web Services

In SOAP-based web services, the service provider publishes the contract, Web Service

De�nition Language �le (WSDL), of the service over the web where a consumer can

access it directly or by looking it up in a service registry. The service consumer usually

generates a web service client code from a WSDL �le using the tools o�ered by the web

service framework to interact with the web service [10].

In OSGi environment, there are several frameworks that can be used to implement web

services using SOAP. One example is Spring WS [95] which is a Spring community project.

Spring WS uses the contract-�rst approach, which consists of �rst implementing web

service contracts using the WSDL, independent of the classes used to implement the

services.

Another web service framework is Apache CXF [22]. CXF can be used to develop services

using front end programming APIs like JAX-WS and JAX-RS [22]. These services can

use a variety of protocols such as SOAP, XML/HTTP, RESTful HTTP, etc.

For SOAP web services in OSGi environments, CXF has a sub-project called Distributed

OSGi (DOSGi) [22]. DOSGi implements the remote services functionality using web

services, leveraging SOAP over HTTP and exposing the service over a WSDL contract .

5.3.3.2 RESTful Web Services

The term REST was �rst introduced in Roy Fielding's PhD dissertation [28], published in

the year 2000, and it stands for REpresentational State Transfer [91]. The Abstractions

that make a RESTful system are namely resources, representations, Universal Resource

Identi�ers (URIs) and the HTTP request types.

A RESTful resource is anything that is addressable over the Web. By addressable, it

means that the resource can be accessed and transferred between clients and servers.

Examples of resources can be a news story or a search result for a particular item in a

web index, such as Google [91].

The representation of resources is what is sent back and forth between clients and servers.

In general terms, it is a binary stream together with its metadata that describes how the

stream is to be consumed by either the client or the server. A representation can take

various forms, such as a text �le, or an XML stream or a JSON stream, but has to be

available through the same URI [91].

A URI in a RESTful web service is a hyperlink to a resource. The URIs use hyperlinks

because the Web is used for creating the web services. Therefore, the hyperlinks (URIs)

provide the only means for clients and servers to exchange representations [28, 91].

5.4. THE TELEWEAVER SERVICE PLATFORM 94

The HTTP methods of POST, GET, PUT, and DELETE are used to perform resource

manipulations: creation, retrieval, update and deletion [91]. In this way, a resource such

as a news story on the web can be read, edited or deleted using the HTTP methods.

There are several Java implementations of RESTful web services. Jersey is the reference

implementation of Sun's Java API for RESTful web services which is commonly known as

JAX-RS [91]. JAX-RS provides support in creating web services according to the REST

architectural style [77]. The example open source frameworks that support JAX-RS are

Restlet [86] and Apache CXF [22]. Both Restlet and Apache CXF provide OSGi versions

of their distributions which can be downloaded from their respective websites.

5.4 The TeleWeaver Service Platform

In the previous sections, we have discussed application development and deployment in

an OSGi environment through the creation of OSGi services and exposing them using the

OSGi registry. We have also explored how web frameworks can be integrated in OSGi

containers (using Spring DM) to develop web applications and web services. This section

discusses TeleWeaver, an eServices platform based on OSGi technology which provides

services that target marginalized communities in South Africa. In Chapter 2, TeleWeaver

was introduced in a discussion of its business model and the targeted users and devices.

We now focus on its technical details by discussing how the services are created, registered

and consumed.

5.4.1 OSGi Container

TeleWeaver is a lightweight, custom built OSGi container which supports o�ine and online

services access [72, 98]. It is based on Equinox OSGi framework [26]. The current release

version of Teleweaver is 1.2.2 which uses Equinox version 3.6 (Release 3.6.0.v20100517).

5.4.1.1 Directory Structure

The directory for TeleWeaver contains an Equinox Java application �le and folders named

bundles, con�guration, dropbox and logs (as shown in Figure 5.12). The Equinox applica-

tion �le, originally named org.eclipse.osgi_3.6.0.v20100517.jar, is renamed Equinox.jar.

It is the main �le that starts up the container.

5.4. THE TELEWEAVER SERVICE PLATFORM 95

Figure 5.12: TeleWeaver Directory.

The bundles directory contains all OSGi bundles that are installed and started when the

Equinox Container starts. The OSGi bundles are grouped in subfolders, for example, the

rhs folder contains all custom made bundles by RHS, and the Spring folder contains all

bundles for the Spring framework.

The con�guration directory contains a con�gurations �le called con�g.ini and a database

con�guration �le database.properties. The con�g.ini has all the container settings such as

the list of bundles that automatically start up when the container starts. The database.properties

has the database connection settings which include the connection driverClassName.

The dropbox directory contains OSGi bundles that can be added dynamically to the

container. In this directory, OSGi bundles can be un-installed (removed in the Container)

and re-installed without requiring the restart of the container[99].

The logs directory stores all the log �les with messages (e.g. error messages) generated

by the container.

5.4.1.2 Starting the Container

To start TeleWeaver, a terminal session must be used to reach the location of the container.

In TeleWeaver's root directory, issuing a command java -jar Equinox.jar -console starts

the OSGi terminal and then prompts for a command to interact with Equinox. An

example command is ss, which shows all bundles and their state as shown in Figure 5.13.

Each bundle con�gured to start automatically (in the con�g.ini) resolves its dependencies

and when successiful, ends up in Active or Resolved (if it is a supporting bundle or

fragment) state.

5.4. THE TELEWEAVER SERVICE PLATFORM 96

Figure 5.13: Starting TeleWeaver.

5.4.2 Developing Services

To meet strict Java coding conventions and standards, RHS provides a standard guideline

for TeleWeaver developers [99]. This section explains some of the guidelines that are

followed when developing for TeleWeaver.

5.4.2.1 Project Structure

Maven is the recommended tool for creating projects which use a naming convention set

by RHS. All project names are pre�xed with reedhousesystems-, for example, a project on

a tourism application is named as reedhousesystems-tourism-api. Packages are pre�xed

with com.reedhousesystems- (a service package uses com.reedhousesystems.services.core-).

A web package uses the com.reedhousesystems.web- pre�x. Figure 5.14 shows the project

structure for TeleWeaver projects.

5.4. THE TELEWEAVER SERVICE PLATFORM 97

Figure 5.14: TeleWeaver Project Structure. Taken from [99].

There are custom made maven archetypes by the RHS which help in creating TeleWeaver

projects with all relevant directories and default settings. An example of such archetypes is

the reedhousesystem-gwt-maven-archetype2 [99]. Running this archetype in Maven creates

a TeleWeaver web project for a GWT application based on the structure shown in Figure

5.14.

5.4.2.2 The Service API Bundle

When developing OSGi services in Teleweaver, each service must have at least an API

bundle and its implementation bundle. This design structure enables decoupling or a

separation of concerns. In this way, client/web application developers are not concerned

about the implementation of the APIs, but about the client applications they are devel-

oping [99].

An API bundle describes an interface for the interaction with a set of functions used

by components of a software system. According to the RHS Wikidoc [99], an API can

be language-independent and be called from several programming languages. This is a

desirable feature for a service-oriented API that is not bound to a speci�c process or

system and may be provided as remote procedure calls or web services.

The service API bundle can be created using the Maven quickstart archetype and specify

5.4. THE TELEWEAVER SERVICE PLATFORM 98

the project details (name, version, etc.) in the process. The generated POM �le must

specify the packaging type as bundle. The API bundle must have an interface class with

methods that de�ne the service functions.

5.4.2.3 The Service Implementation Bundle

A service implementation bundle can be created using the Maven quickstart archetype in

the same way as has been explained for the API bundle. The bundle requires an import

of its corresponding API bundle package by setting it as a dependency in the POM. The

POM must have the coordinates for all dependencies (libraries) that are required by the

classes inside the bundle. The packaging type of the project must be set as a bundle.

The service implementation bundle has a class (or classes) with code that perform the

business logic for the methods listed in the API bundle's interface class.

5.4.3 Registering a Service

To add a service in the TeleWeaver service registry, the required settings must be de�ned

in the application-con�g.xml �le: located in the META-INF/spring folder of the service

implementation bundle. A service is registered and exposed using the osgi:service element

followed by an assigned service reference name and the interface class of the API bundle.

An example is shown below:

<osgi:service ref="tourismService"

interface="com.reedhousesystems.services.core.tourism.TourismService" />.

5.4.4 Referencing a Service

To reference a service in TeleWeaver, a similar approach to the registration process is used

by adding the settings in the application-con�g.xml. In this process, the osgi:reference tag

is used. An example is shown below:

<osgi:reference ref="tourismService"

interface="com.reedhousesystems.services.core.tourism.TourismService" />.

We have looked at the TeleWeaver platform as an e-services enabler that is based on OSGi

technology. The next section focuses on mobile phone communication technologies that

can be integrated with TeleWeaver to provide the OSGi services to mobile phone users.

5.5. WAP AND SMS SOLUTIONS 99

5.5 WAP and SMS Solutions

This section covers the WAP and SMS technologies, which are important to mobile phone

subscribers on top of the normal voice communication.

5.5.1 The Wireless Application Protocol

The Wireless Application Protocol (WAP) is a collection of various languages, tools and

an infrastructure for implementing services for mobile phones [30]. WAP makes it possible

to implement services similar to the World Wide Web (WWW). The entry of smartphones

removes the need for WAP, but this technology is still relevant especially in developing

nations where feature phones are the dominant mobile phones as explained in Section

2.4.2.

WAP does not bring the existing content of the WWW directly to the phone. The main

problem is that WWW content is mainly in the form of HTML pages: which require

fast connections, fast processors, large memories, and often also fairly e�cient input

mechanisms [110, 30]. However, most feature phones have very slow processors, very

little memory and intermittent bandwidth. With HTTP being heavy for wireless use,

WAP de�nes a completely new markup language, the Wireless Markup Language (WML),

which is simpler and much more strictly de�ned than HTML [30].

Figure 5.15 illustrates how content from a server is served to a mobile phone. The WAP

gateway communicates with the phone using the WAP protocol stack, and translates the

requests it recieves to HTTP. The WAP protocol stack transports requests for pages from

the phone to the gateway, and the actual pages (possibly converted to a binary form)

back to the phone. In this way, the content providers can use any HTTP server and

utilize existing knowledge about HTTP service implementation and administration [110].

In addition to protocol translations; the gateway also compresses the WML pages to save

bandwidth on the air and to further reduce the phone's processing requirements [30].

5.5. WAP AND SMS SOLUTIONS 100

Figure 5.15: WAP Architecture. Adapted from [110].

WML is a simple markup language based on XML and is used to mark the contents of the

�le as actual text, title, hyperlinks, etc. A WML page is similar to a deck of cards with

a single card displayed at a time by the phone. It is possible to switch between cards on

the same deck quickly, since the whole deck is downloaded at once. A WAP application

might �t onto one card, or be divided into several, depending on its size and how big a

deck the phone can accept [110].

5.5.2 SMS

SMS is a way to send short (160 character) messages from one GSM phone to another

[30]. It can also be used to send regular text as well as advanced content like operator

logos, ringing tones, business cards and phone con�gurations [30].

SMS services are content services initiated by an SMS message to a phone number used

by a content server to respond with requested content. When SMS services are used,

the client (mobile terminal) sends an SMS message to a Short Message Service Center

(SMSC)[30]. A SMSC is responsible for handling the SMS operations of a wireless network

[42]. The SMSC then forwards the SMS message to the destination.

An SMS message may need to pass through more than one network entity (e.g. SMSC

and SMS gateway) before reaching the destination [42]. The main duty of an SMSC is to

route SMS messages and regulate the process. It uses the store and forward mechanism

such that if the recipient is unavailable, the SMSC stores the message and forwards it

once the recipient becomes available within the message's validity period [42].

5.5. WAP AND SMS SOLUTIONS 101

Di�erent SMSCs use speci�c protocols, for example, a Nokia SMSC uses CIMD protocol

[30]. Therefore, an SMS gateway is used to handle connections with SMSC and to relay

or intercept them onward in a uni�ed form.

5.5.3 Kannel

Kannel is an open source WAP and SMS gateway [30]. It is made up of three di�erent

components:

1. Bearerbox - the direct interface to mobile phones which accepts SMS and WAP

messages and sends them to the other two boxes.

2. Smsbox - handles the SMS gateway functionality.

3. Wapbox - handles the WAP gateway functionality.

Figure 5.16: Bearerbox with Wapbox and Smsbox. Adapted from [110].

Figure 5.16 shows how the bearerbox works with both the smsbox and wapbox. There

can be only one bearerbox, but any number of smsboxes and wapboxes. Having multiple

smsboxes or wapboxes can be bene�cial when the load is high [110, 30].

Kannel as a WAP gateway operates in between a phone and a content server, as shown

in Figure 5.15, to perform the protocol translations (between WAP and HTTP) and

compressions of the WML pages. The wapbox is con�gured to translate WML content

to a binary format which is optimal for wireless communication. In this scenario, Kannel

5.6. SUMMARY 102

acts as a proxy server by handling HTTP requests and responses on behalf of the mobile

phone [110].

As an SMS gateway, Kannel is used to handle connections with SMS Centres (SMSCs)

and to relay them onward in a uni�ed manner [30]. Figure 5.17 shows Kannel as an SMS

gateway providing content from a provider to an SMS client (mobile phone).

Figure 5.17: Kannel SMS Gateway. Taken from [30].

Kannel provides a mini-HTTP server that intercepts HTTP requests. Con�guration set-

tings in the smsbox section determine the hostname and port number it listens to.

In an SMS service, unique services are distinguishable by the �rst word in the message

and by the number of arguments that follow it. If a particular message is matched against

a service, Kannel fetches content through an HTTP request to the URL indicated in the

service con�guration [30].

5.6 Summary

In this Chapter, we have discussed various technologies that are relevant for the im-

plementation of our proposed DRS. We explored how a service can be developed and

deployed in an OSGi environment so that clients (e.g. web clients) can access it. Then,

the TeleWeaver platform which is based on OSGi technology, has been discussed in terms

of how e-services are developed and deployed. In conclusion, open source solutions for

WAP and SMS technologies using the Kannel system have been explained in terms of

how they operate and communicate with content servers and mobile phone clients. The

next chapter covers how the DRS was implemented based on the technologies that have

been presented in this chapter.

Chapter 6

System Implementation

The previous chapter explained the technologies that are relevant in the implementation

of our DRS. This chapter dicusses how the di�erent components of the system were

implemented. It presents the details about the development of the DRS 's service bundles

that make up the system in TeleWeaver. Thereafter, it explains how the service is exposed

to mobile phone clients using the Kannel system.

6.1 The Development Environment

To implement our system in TeleWeaver, we followed the guidelines in developing for

OSGi environments that are provided in the wiki document [99] by RHS. The wiki also

provides the software and hardware requirements that assist in selecting the appropriate

tools for the implementation process.

6.1.1 Hardware

The hardware that was used for the implementation of the system was as follows:

1. A desktop computer as a TeleWeaver developer machine installed with the necessary

software for development. This machine also ran a local TeleWeaver test server (RHS

Test Server) for tests that were performed during the development process.

2. A server machine to provide an environment for tests on the developed application.

3. GSM modem (Wavecom Fastrack Supreme 10). This is a GSM and GPRS (General

Packet Radio Service) modem that comes with a slot for a SIM card and connects

to a computer using the serial (console) port.

103

6.2. DEVELOPING THE SERVICE 104

6.1.2 Software

The development machine had the following software installations:

1. Ubuntu desktop version 11.10 operating system [56].

2. SpringSource Tool Suite 2.9.2.RELEASE, for Spring and OSGi application devel-

opment [20].

3. TeleWeaver container, RHSServer1.2.1 version [99].

4. Apache Maven version 2.2.1 [8].

5. MySQL community server version 5.1.63 [81].

6. Hibernate version 3.5.1-Final [19].

The server machine had the following software installations (relevant for our tests):

1. Ubuntu server 10.04.4 LTS operating system [56].

2. Kannel bearerbox version 1.4.3 [36].

3. TeleWeaver container, RHSTestServer1.2.2 version [99].

4. MySQL community server version 5.1.63 [81].

6.2 Developing the Service

The implementation process started with the development of the DRS service bundles

(API and implementation) in TeleWeaver. This section discusses how the service bundles

were implemented.

6.2.1 Overview of the Service Bundles

There are di�erent design choices for implementing OSGi enterprise applications based on

how bundles are used with the enterprise application layers (web, business or data access)

[18]. An application can have one bundle for each layer that has only classes (e.g. domain

and web) or it can be designed to use two bundles for each layer that has interfaces and

class implementations (e.g. data access and business layers).

The important design practice is to separate static components from dynamic components

[18]. Static components are bundles that de�ne APIs by exporting interface-based Java

6.2. DEVELOPING THE SERVICE 105

packages. These bundles do not contain a Spring application context (or a BundleAc-

tivator) and do not register or reference any OSGi services. Dynamic components are

bundles that import Java packages from static bundles, provide implementations, and

usually register OSGi services. These can also be called Spring-powered bundles [18].

We followed the design pattern used by RHS in TeleWeaver, as explained in chapter 5.

Hence, the implementation design for the DRS was based on two bundles (for the API

and the implementation) as shown in Figure 6.1.

Figure 6.1: Overview of the Service Bundles.

This design ensures that the static components are stable (changing infrequently) whereas

dynamic components can be frequently updated and bene�t from OSGi dynamic features

such as on-the-�y service updating [18].

The implementation design uses the spring framework's Data Access Object (DAO) pat-

tern for data access from a database [105]. Hence, all persistence operations are performed

using speci�c classes called DAO classes.

In Figure 6.2, the ridesharing service objects in the implementation bundle can only

access the DAOs through interfaces in the ridesharing service API bundle. This separates

the persistence code from the business logic, resulting in the service objects not being

coupled to speci�c data access implementation (e.g. an ORM solution or JDBC connection

details).

The next sections will discuss the two bundles that make up the DRS in TeleWeaver.

6.2. DEVELOPING THE SERVICE 106

6.2.2 Service API Bundle

The API bundle was developed using the following steps:

1. Creating a Maven project in SpringSource Tool using themaven-archetype-quickstart

archetype. Using the RHS naming conventions, explained in Section 5.4.2.1, the API

bundle manifest �le (Manifest.mf) was set as follows:

• Bundle-Name: reedhousesystems-ridesharing-api

• Bundle-Version: 1.2.2

• Export-Package-Name = com.reedhousesystems.services.core.ridesharing

2. Creating an interface class named RideshareService in the package called

com.reedhousesystems.services.core.ridesharing. The interface class has the methods

that de�ne the ridesharing operations of the DRS.

3. In the same package, an interface class for the DAOs was created and named

RideshareDao. This interface class has the methods for the data access operations.

4. Creating Data Transfer Objects (DTOs) that carry data across the application lay-

ers, for example, between the persistence and business logic layers. DTO is a sim-

ple Plain Old Java Object (POJO) only containing simple data �elds to enable

lightweight data transfers [38]. The DTOs in the API bundle were created based

on the domain model entity objects which are explained in Section 6.2.3.4. More

details about DTOs are provided in Section 6.2.3.5.

The POM �le (pom.xml) of the project imports two dependencies: a custom RHS ex-

ceptions library (reedhousesystems-exceptions) and the J-Unit library for J-Unit tests. It

includes a directive to export the bundle's package that contains the interface classes and

DTOs. This ensures that other bundles that import the API bundle, as a dependency,

can use the package contents.

After compiling and installing the project, an OSGi bundle called reedhousesystems-

ridesharing-api.jar was generated. This bundle was added in the rhs folder of the

TeleWeaver directory. The bundle �le location details were added in the con�guration �le

(con�g.ini) to ensure that the bundle starts in Active state whenever TeleWeaver starts

up.

The API bundle is mainly concerned with the de�nition of the ridesharing service that is

published on the OSGi registry. It is simple in structure and contents compared to the

service implementation bundle, which is discussed in the following section.

6.2. DEVELOPING THE SERVICE 107

6.2.3 Service Implementation Bundle

The service implementation bundle was created using similar steps as has been explained

for the API bundle. The manifest �le of this bundle has some of the properties which

were set as follows:

• Bundle-Name: reedhousesystems-ridesharing

• Bundle-Version: 1.2.2

• Import-Packages: com.reedhousesystems.services.core.ridesharing, ... (and a list of

other imported packages)

• Bundle-Activator:

com.reedhousesystems.services.core.ridesharing.impl.RideshareBundleActivator

The Import-Packages property contains a list of packages required by the classes in the

bundle, and are speci�ed through the import directive in the POM �le.

6.2.3.1 Packages

The bundle has 3 packages as shown in the implementation design in Figure 6.1 above.

The packages are set as follows:

1. com.reedhousesystems.services.core.ridesharing.impl.

Contains the bundle activator class called RideshareBundleActivator and a service

implementation class named RideshareServiceImpl. The RideshareServiceImpl class

implements the methods in the RideshareService interface class of the service API

bundle. The bundle activator class is used to initialize and �nalize the bundle [18].

It has the start and stop methods that perform bundle-speci�c activities in the

bundle's start and stop processes respectively. In our case, the start method is

used to display information of a successiful start on the OSGi console whenever the

bundle is started.

2. com.reedhousesystems.services.core.ridesharing.dao.

Contains a DAO class named HibernateRideshareDAO. This class implements the

methods of the RideshareDao interface class of the service API bundle.

3. com.reedhousesystems.services.core.ridesharing.model.

Contains the domain model composed of entity classes that were created based on

the class diagram that is presented in Section 4.1.4.

6.2. DEVELOPING THE SERVICE 108

6.2.3.2 Spring Con�gurations

Chapter 5 explained how Spring DM bundles provision a Spring application context to

an OSGi bundle for spring framework features such as DI. The implementation bundle of

the DRS has a Spring con�guration �le called application-con�g.xml, which is located in

the src/main/resource/META/spring folder. The Spring con�gurations can be separated

in di�erent �les for easy management of the con�gurations. In this way, Spring beans

can be con�gured in a separate �le called beans.xml �le, the datasource con�gured in a

datasource.xml �le and the hibernate con�gurations set in a hibernate.xml �le. In our

implementation, the application-con�g.xml �le contains all the con�gurations in separate

sections of the �le. Hibernate was our selected ORM solution and the relational database

was the MySQL database system. The con�gurations were made as follows:

1. Data source properties

This part con�gures the reference to a Datasource. The Datasource uses a pool of

connections using the org.apache.commons.dbcp.BasicDataSource class of Java. The

database properties and their values (e.g. driverClassName, username, password,

etc.) are provided in the database.properties �le which is explained in Section 5.4.1.1.

2. SessionFactory

SessionFactory is responsible for opening, closing and managing Hibernate ses-

sions [106]. The SessionFactory in the DRS uses contextual sessions which, ac-

cording to Walls et al [106], were introduced in Hibernate 3 as a way in which

Hibernate itself manages one session per transaction. This decouples the DAO

classes from the Spring API. The SessionFactory was con�gured using the hi-

bernate3.annotation.AnnotationSessionFactoryBean class. Part of the application-

con�g.xml �le that contains our Hibernate settings for the sessionFactory is shown

in Figure B.3 of Appendix B.2.

3. Bean declarations

Spring beans are declared and wired together with other beans using their proper-

ties. This is part of the DI to enable an object to use another object in a Spring

application. In our implementation, the datasource bean is declared and wired into

a sessionFactory bean as its property. Then, the sessionFactory is wired into the

hibernateRideshareDao bean: the DAO implementation class of the service imple-

mentation bundle (reedhousesystems-ridesharing). The bean declarations and their

wiring can be seen in Figures B.2 and B.3 of Appendix B.2.

6.2. DEVELOPING THE SERVICE 109

4. OSGi service registration

The ridesharing service is registered on the TeleWeaver's OSGi registry using the

osgi:service tag and the value of the interface class set as

com.reedhousesystems.services.core.ridesharing.RideshareService. This is shown at

the end of the con�gurations in Figure B.3 of Appendix B.2.

6.2.3.3 Domain Model Classes

Entity classes were created using the class diagram presented in Section 4.1.4. The entity

classes are persisted using annotations based mapping by Hibernate [93]. The annotations

enable mapping of collections and associations of objects in the domain model to their

relational database representations. The entity classes in the domain model package

include the Person, Trip, RoutePoint, Vehicle and Hitchhiker classes.

6.2.3.4 Business Logic

The application uses DTOs, as mentioned in Section 6.2.2, for the transfer of method

parameters that involve domain model objects. The DTO classes located in the API

bundle have their names derived from the domain model entity classes, located in the

implementation bundle (e.g personDTO for person class). DTOs enable the transfer of

subset properties of an object for a particular task. The transfer of lightweight objects

in the form of DTOs helps to improve the performance of an application [35]. Figure

6.2 illustrates our implementation of DTOs to persist data in the MySQL database. The

data transfers between the user interaction and business layers involve the DTOs, while

between the business and persistence layers the actual objects are involved. The Java

class org.apache.commons.beanutils.BeanUtils is used to copy properties of a DTO to its

associated object and vice versa.

6.2. DEVELOPING THE SERVICE 110

Figure 6.2: Data Transfer Objects.

The ridesharing functions of the DRS are implemented in the methods of the Rideshare-

ServiceImpl class of the implementation bundle. The main functions were implemented

as follows:

1. Registration of users

The registerUser method uses the personDTO as a parameter with a new user's

details such as username, password, phonenumber, etc. The properties of the per-

sonDTO are assigned their values by the application front end interface. A new user

is persisted by copying the personDTO properties to an instantiated person object

which has Hibernate annotations to save it as a record in the database table called

Person.

2. Register a vehicle

The requirements speci�cations in Section 4.1.3.1 state that only a person in a driver

role can create a trip. As such, the driver is required to register a vehicle under

his/her pro�le. The addVehicleToPerson method uses the vehicleDTO parameter

which has properties of a vehicle such as registration number, model, seating capac-

ity and colour.

The registration number of a vehicle must be unique and is checked for every new

vehicle registration. A driver can register more than one vehicle under his/her

pro�le, and a vehicle can be used by more than one user in di�erent rideshare trips,

as explained in the class diagram in Section 4.1.4.

3. Creating a trip

6.2. DEVELOPING THE SERVICE 111

A trip is created using the createTrip method which accepts three parameters user-

name, vehRegNo and TripDTO. A driver is required to provide a username, vehicle

registration number and the new trip details. The trip details in a TripDTO are

the �nal destination and the hitch-hiker's preferred pick-up point (location name,

street and nearest landmark). The method also checks if the vehicle registration

represents a vehicle that is registered under the driver's pro�le before creating a

trip.

A location name or a short-code (used in hitch-hiking) can be used when setting

the destination and pick-up location names. When a short-code is used, the system

searches for the location name in a table of registered locations (RoutePoint). If the

short-code entered does not match any registered location then the user is requested

to register the new location details.

The createTrip method generates a security code (TripCode) using a private method

called generateTripCode. The generateTripCode uses a trip's destination short-code

and a random number generator function to create a secret code, TripCode. An

example of a TripCode is PE283461, generated for a trip with the destination set

as Port Elizabeth. Therefore, all trips to Port Elizabeth are identi�ed by the pre�x

PE- followed by a random six digit number. The TripCode can be used by a driver

to verify unknown ride partners at the pick-up point.

4. O�ering a trip to hitch-hikers

The rideO�er method enables a driver to o�er a trip to hitch-hikers with a set of

conditions. The conditions are: available seats, rideshare cost, ride o�er validity

and any additional conditions (optional).

The method gets the conditions in the form of parameters: seats (integer), TripCode

(string), Cost (double), Time_Window (interger) and Conditions (string). The

most recently created Trip object by the driver is o�ered at a RoutePoint (pick-up

point of the Trip). As a result, the Trip is available to any hitch-hiker available at

the RoutePoint and seeking a ride to a same destination as that of the o�ered Trip.

The implementation of the matching algorithm is discussed in point number six of

this section.

The timestamp of a ride o�er is recorded and the Time_Window (integer), which

represents the o�er duration in minutes (e.g 10 = 10 minutes), is added to calculate

the expiry timestamp of the ride o�er. Figure 6.3 shows how ride o�ers are logged

with a validity period calculated from a speci�ed Time_Window, in the MySQL

database. Any ride request by a hitch-hiker that arrives outside the validity period

6.2. DEVELOPING THE SERVICE 112

of a ride o�er is not considered for matching.

Figure 6.3: Registering a Ride O�er at a Route Point.

5. Ride request by a hitch-hiker

A ride request by a hitch-hiker is handled by the seekRide method which gets a

username and a HitchhikerDTO parameters. The HitchHikerDTO carries the de-

tails of a hitch-hiker such as destination and the hitch-hiking spot where he/she is

standing. The destination and hitch-hiking spot location names can use short-codes

and are handled as explained in point number three, for the createTrip method.

The ride request is matched against ride o�ers available at the hitch-hiker's speci�ed

hitch-hiking spot (RoutePoint). Figures 6.4 and 6.5 show how records of hitch-hikers

are saved in the database and ride requests at a hitch-hiking spot (RoutePoint)

respectively.

Figure 6.4: Hitch-Hiker Record.

6.2. DEVELOPING THE SERVICE 113

Figure 6.5: Hitch-Hiker Request at a Route Point.

6. The matching algorithm

The matching algorithm considers both scenarios of a driver ride o�er and a hitch-

hiker ride request arriving at di�erent times (ride o�er before ride request or vice

versa) as discussed in the design of the DRS in Section 4.1.3.2.

When matching a ride o�er, the search for hitch-hikers is performed on the objects of

the HitchhikerPoint class (representing hitch-hikers at a RoutePoint). The matching

algorithm puts a priority on hitch-hiker requests that have the same pick-up point

(location, street and nearest land mark) as speci�ed by the driver (these are referred

to as the BestMatch records). If the BestMatch results do not meet the number of

o�ered seats, then a second matching is performed for any hitch-hiker along the

street of the driver's speci�ed pick-up location.

The list of matching hitch-hikers is sorted by the timestamp of their ride request

(The CheckInTime at the hitch-hiking spot shown in Figure 6.5). The earliest ride

request ranks at the top of the list as explained in the design of the DRS.

When matching a ride request, the search for a ride o�er by a driver is performed on

the objects of the TripRoutePoint class (representing o�ered trips at a RoutePoint).

A single ride o�er is selected from a possible list of valid driver ride o�ers. A valid

ride o�er with the closest departure time, based on its PickupTimeMax value, is

selected for the ride request.

If no ride o�er is available, the hitch-hiker request waits until it is cancelled by the

owner or by the end of the day (by default). If a BestMatch for a ride request is not

found, the matching algorithm targets ride o�ers (to the same destination) with a

pick-up point speci�ed along the same street as the ride request. In this scenario,

6.3. KANNEL SMS AND WAP GATEWAY 114

the DRS suggests a possible ride partner to a driver at a particular point along the

street of the speci�ed pick-up point. Then, the driver can decide whether or not to

include the hitch-hiker in the trip.

7. Message noti�cations

The message alerts sent by the DRS to the users use SMS. The SMSClient class

of the implementation bundle has a method called sendSMS, which gets a phone

number (or a list of phone numbers) and the information for the SMS message.

The sendSMS method uses the Apache Commons client (HTTPClient) to send an

SMS message delivery request to the SMS gateway. The implementation of the SMS

gateway and its communication with the OSGi bundles in TeleWeaver are discussed

in Sections 6.3 and 6.5 respectively.

We have discussed the implementation of an OSGi bundle that performs the required

operations of the DRS. The next section discusses how the ridesharing service of the DRS

was made to be accessible by mobile phone clients using web browsers and SMS.

6.3 Kannel SMS and WAP Gateway

This section explains how the Kannel system was con�gured as an SMS and WAP gateway

for the accessibility of the ridesharing service by mobile phones.

6.3.1 Installation

Kannel can be installed either from a source code package or by using a pre-compiled

binary version [30]. For our installation, the Ubuntu software management primitives

were used, using the command sudo apt-get install kannel kannel-dev.

The installation has a default con�guration �le, called modems.conf, which de�nes all

types of modems used by Kannel to connect to an SMSC.

6.3.2 Con�gurations

We con�gured the bearerbox, smsbox and wapbox in a single �le, kannel.con�g. The

con�gurations consist of groups of con�guration variables and are explained in the next

few sections.

6.3. KANNEL SMS AND WAP GATEWAY 115

6.3.2.1 Bearerbox

We con�gured the core group for general bearerbox settings as shown in Figure 6.6:

Figure 6.6: Bearerbox Con�guration Settings.

The core group instantiates the bearerbox with global settings for the system. The smsbox

and wapbox are assigned port numbers (can be any number) 13002 and 13005 respectively

to which they can be connected. The admin-port key identi�es the port that the bearerbox

binds to for HTTP administration commands. A list of allowed IP addresses can be set

using the box-deny-ip and box-allow-ip for controlled access to the system.

6.3.2.2 SMS Center

For the kannel system to access the SMSC for SMS messages, a group called smsc was

added and con�gured as shown in Figure 6.7. The smsc key is given the value at, however

any string is acceptable. The smsc-id key is an optional id. This 'id' is written into log

�les and can be used to route SMS messages, and to specify the used SMS-service [30].

The modemtype key value is de�ned in the included �le modems.conf. Instead of using

a speci�c value, the value of this key was set to auto for Kannel to automatically detect

the type of modem that is attached.

6.3. KANNEL SMS AND WAP GATEWAY 116

Figure 6.7: SMSC Con�guration Settings.

6.3.2.3 Smsbox

The Kannel system can have as many smsboxes in a distributed setup. We de�ned a single

group (smsbox) for the smsbox con�gurations as shown in Figure 6.8. The bearerbox-host

key identi�es the IP address of the machine that the bearerbox is running on. Therefore,

to run a distributed deployment of the Kannel system, smsbox can be run on a separate

machine from the machine running bearerbox. The smsbox-id key provides a unique

identi�er for a speci�c smsbox instance. The sendsms-port key sets the port number used

by the smsbox to send out HTTP requests.

Figure 6.8: Smsbox Con�gurations Settings.

6.3.2.4 Wapbox

The wapbox con�gurations were set as shown in Figure 6.9. The map-url entry uses the

format of "http://source/* http://destination/*". Hence, an incoming URL of

6.3. KANNEL SMS AND WAP GATEWAY 117

"http://source/some/path" is replaced with "http://destination/some/path" [30].

Figure 6.9: Wapbox Con�guration Settings.

6.3.2.5 SMS Push

Kannel provides a mini-HTTP server [30] that intercepts HTTP requests formatted in

the following manner:

�http://hostname:port/cgi-bin/sendsms?user=user&pwd=pwd&to=num&text=text�.

The mini-HTTP server con�gurations were put in a group called sendsms-user, and are

shown in Figure 6.10. The mini-HTTP server recieves HTTP client requests from the

service implementation bundle in TeleWeaver for SMS messages that must be sent to the

users.

Figure 6.10: Sendsms Con�guration Settings.

6.3.2.6 SMS Service

To implement our SMS application, we created a group for SMS services, called sms-

service (mandatory variable), that is used by the smsbox. An SMS service de�nes the

6.4. IMPLEMENTING RESTFUL WEB SERVICES 118

expected behaviour when an SMS is received. Unique services are distinguishable by the

�rst word in the message and by the number of arguments that follow it. Figure 6.11

shows an example of an SMS service con�guration for the registration of users in our

system.

Figure 6.11: SMS Service Con�guration Settings.

The keyword speci�es the string that matches a request for a service to be triggered. In

this case, the triggered action is an XML post de�ned by the value of the post-xml key

(http://127.0.0.1:9090/rideshare/users). Therefore, when an SMS with a keyword reg is

sent, Kannel sends a request to the speci�ed address as an HTTP POST of the SMS

message (in XML format). If an HTTP GET request is required, then get-url is used in

place of the post-xml. The response from the HTTP request is sent to the SMS sender

as an SMS message. The max-messages key speci�es the maximum parts permitted for a

multi-part message.

Following the con�gurations of SMS services in Kannel, a RESTful web service API (see

Appendix C) was created and the next section explains how an OSGi bundle for RESTful

web services was developed to complete the actions for the SMS application.

6.4 Implementing Restful Web Services

Restful web services can be implemented with frameworks such as Restlet and Apache

CXF in OSGi environments as discussed in Section 5.3.3.2. TeleWeaver is provisioned

with Apache CXF bundles, hence a RESTful web service was implemented using Apache

CXF.

This section presents the tasks that were performed to implement a bundle that exposes

the ridesharing service through RESTful webservices. The RESTful web service completes

the development of an SMS application by ensuring that each keyword in an SMS message

has a corresponding URI of an HTTP request for a particular operation of the DRS.

6.4. IMPLEMENTING RESTFUL WEB SERVICES 119

6.4.1 RESTful Services Bundle

To develop an OSGi bundle for the RESTful web service, the following tasks were per-

formed:

1. Creating an OSGi bundle using the Maven archetype maven-archetype-quickstart.

The properties in the manifest �le were set as follows:

• Bundle-Name: reedhousesystems-ridesharing-ws

• Bundle-Version: 1.2.2

• Bundle-Activator:

com.reedhousesystems.services.core.ridesharing.ws.RideshareBundleActivator

• Import-Package: com.reedhousesystems.services.core.ridesharing, javax.ws.rs,

... (a list of other imported packages)

2. Creating a bundle activator class named RideshareBundleActivator. This class ini-

tializes the bundle with RESTful web service settings that are speci�ed in the start

method. The start method sets the web service address as the host machine's local-

host address on port 9090. The bundle is registered in the OSGi registry through

the bundle context's registerService method. The settings can be seen in Figure B.4

of Appendix B.3.1.

3. Creating an implementation class named RideshareRestService: annotated for REST-

ful web services with JAX-RS annotations. According to Balani et al [10], in JAX-

RS terminology, a class which has the JAX-RS annotations de�ned is termed as a

resource class. Therefore, the resource class (RideshareRestService) has the URI as

http://localhost:9090/rideshare/, following the settings in the RideshareBundleActi-

vator class. In this way, each method in the resource class has a unique URI relative

to the URI of the resource class. For example, the addUser method, annotated with

@Path(�/users�), has a URI as http://localhost:9090/rideshare/users.

The RideshareRestService class uses the @Consumes annotation to indicate the

content type that a method accepts. All the methods in the class have the content

type set as text/xml since the expected content from Kannel is in XML format, as

explained in Section 6.3.2.6.

The @Produces annotation de�nes the content type that a method or resource class

can produce and send back to the client. All the methods in the RideshareRestSer-

vice class were set to produce plain text, which is delivered in an SMS message.

6.5. SMS APPLICATION ARCHITECTURE 120

The ridesharing service is injected in the RideshareRestService class using the con-

structor setRideService, and is assigned the variable name rideService. The injected

service (rideService) is referenced by the methods of the class when they perform

actions to respond to requests sent by Kannel.

4. Creating a Java data object for Kannel's XML request data. Apache CXF uses Java

Architecture for XML Binding (JAXB) as the default data binding component.

JAXB is used to serialize request and response data objects in di�erent formats

such as Java Script Object Notation (JSON) and XML. In our case, the XML data

from a Kannel request must be converted into a Java object understandable by the

methods of the RideshareRestService class.

A Message class with properties that represent the format of a Kannel XML post

was created. The XML request data from Kannel is serialized into a Message object

by JAXB. The Message object's ud (user data) property contains the SMS message

contents from Kannel. To retrieve the parameters in an SMS message (separated by

a single space character), the StringTokenizer class (Java utility class) breaks the

message into tokens representing each parameter. For example, an SMS message

sent as �pro�le user�, results in two string tokens, �pro�le� and �user�, which can be

set as separate parameters for a method of the ridesharing service class.

5. Creating methods in the RideshareRestService class which reference the rideshar-

ing service for the operations of the DRS and setting their URIs. For example, an

HTTP POST request to the URI address http://localhost:9090/rideshare/trips cre-

ates a new trip. By creating methods and setting their corresponding URIs for the

ridesharing operations, a RESTful web service API was completed. This is used by

the Kannel requests for actions in the SMS application of the DRS. The RESTful

web service API details are available in Appendix C of this document.

6.5 SMS Application Architecture

The architecture of the SMS application is presented in Figure 6.12. It shows how di�erent

components in Kannel and TeleWeaver interact in the implementation of a two-way SMS

application, which follows a design discussed in Section 4.2.1. A mobile phone user sends

an SMS message (with a keyword and parameters) to the phone number of the Kannel

SMS gateway. Kannel uses its HTTP client to make an HTTP request to the RESTful web

service running in bundle 1 (reedhousesystems-ridesharing-ws) inside TeleWeaver. Then,

bundle 1 performs the necessary action for the request by referencing the ridesharing

6.6. WAP SOLUTION 121

service in bundle 2 (reedhousesystems-ridesharing). The response from bundle 1 is sent

back to Kannel, which structures it as an SMS message response to the mobile phone

user.

Figure 6.12: SMS Application with Kannel and TeleWeaver.

We have discussed how the ridesharing services are made available to mobile phone clients

using the SMS technology provided by the Kannel SMS gateway. The next section dis-

cusses how mobile web clients access the ridesharing services using the WAP technology.

6.6 WAP Solution

Following the con�gurations of a WAP gateway as explained earlier in Section 6.3.2.4, the

next step was to develop a web bundle that serves dynamic WML content. This section

presents the tasks that were performed to develop an OSGi web bundle that targets mobile

phone clients using the WAP technology.

6.6.1 Action-Based Web Framework

An action-based framework web bundle was implemented to render JSP pages with WML

content. The Spring MVC framework was used in the implementation since its OSGi

components are directly available in the Spring distribution, as mentioned in Section

5.3.2.1.

Following the understanding of how the Spring MVC works, as explained in Section

5.3.2.1, a dispatcher servlet and a controller were implemented to process web requests.

In the implementation, the controller retrieves a request's parameters and references the

6.6. WAP SOLUTION 122

ridesharing service to create the model data. Then, the model is presented in a view that

is appropriate for mobile phone browsers: a JSP page with WML tags.

6.6.2 OSGi Web Bundle

The steps that were performed to create an OSGi web bundle were as follows:

1. Creating a bundle using the maven-archetype-quickstart, and setting the manifest

�le properties as follows :

• Bundle-Name: reedhousesystems-ridesharing-mvc

• Bundle-Version: 1.2.2

• Import-Package: com.reedhousesystems.services.core.ridesharing, javax.servlet.jsp,

javax.servlet.jsp.jstl.core,... (list of other import packages)

Being a web bundle, a web.xml �le was created in the src/main/webapp/WEB-INF

folder. A web.xml �le is used to specify properties such as the servlet and �lter

mappings, and the context paths that indicates an application's deployment URL

[88]. In our web.xml, the dispatcher servlet class was set as

org.springframework.web.servlet.DispatcherServlet. In addition, the web context was

speci�ed as OsgiBundleXmlWebApplicationContext to enable SpringDM support.

Two Spring con�guration �les were added in the src/main/resources/conf folder:

application-context.xml �le for OSGi service reference and servlet-context.xml �le

for the InternalResourceViewResolver bean con�guration. The InternalResource-

ViewResolver is recommended by Walls et al[106], for views that are rendered by

JSP. The InternalResourceViewResolver was con�gured to use �les with the exten-

sion .jsp, located in the /WEB-INF/jsp folder.

2. Creating the controller class RideshareController with annotations for Spring MVC

framework.

The RideshareController class is annotated with the @Controller annotation to

identify it as the controller. The handler methods in the RideshareController class

are annotated with the @RequestMapping annotations and they include the URL

address value. Part of the RideshareController class, which shows the annotations,

is available in Figure B.6 of Appendix B.4.1. The web context path was con�gured

as �ridesharing�, therefore the URLs to the methods of the RideshareController class

use the pre�x as http://localhost/ridesharing/.

6.7. WAP IMPLEMENTATION ARCHITECTURE 123

The ridesharing service provided by the reedhousesystems-ridesharing bundle is ref-

erenced in the application-con�g.xml �le of the reedhousesystems-ridesharing-mvc

bundle. The service is autowired in the RideshareController class and is used by

the methods when processing web requests for the ridesharing operations.

3. Developing dynamic WAP pages.

The dynamic WAP pages were developed using JSP considering that the system de-

velopment was Java based. The JSP pages are placed in a folder named jsp inside the

WEB-INF folder. For a web server to provide a service for WAP applications, the re-

quired MIME (Multipurpose Internet Mail Extension) type for the responses must be

declared in the web page [46]. Therefore, the MIME type of the JSP pages was set to

WML, using the JSP directive <% response.setContentType("text/vnd.wap.wml");

%>.

The JSP pages use a combination of the WML and JSP Expression Language (EL).

The WML tags structure the static page layout while the JSP EL inserts the dy-

namic content of the page. An example of how the JSP pages were implemented is

shown in Figure B.7 in Appendix B.4.2.

4. Creating ModelAndView objects in the methods of the RideshareController class.

TheModelAndView objects package the model data and the name of a view. AMod-

elAndView object is constructed with three parameters, logical name of a view and

a name-value pair representing the model object. For example, instantiating a new

ModelAndView object using the code �new ModelAndView("enquiry", "PersonDe-

tails", Person)�, the ViewResolver looks for a JSP page named enquiry.jsp (in the

jsp folder under WEB-INF) and passes it to the Person object named PersonDe-

tails. Then, the ModelAndView object (PersonDetails) properties can be accessed

on the JSP page (enquiry.jsp) using the JSP EL.

6.7 WAP Implementation Architecture

The architecture of the WAP application for the DRS is shown in Figure 6.13. The Kannel

WAP gateway, located between the mobile phone WAP browser and the content provider

(TeleWeaver), translates WAP requests and responses (for the mobile phone) to normal

HTTP protocol which is used by web servers (in our case, Jetty). It also compresses

the WML pages, located in bundle 1, to improve the page processing by the phone as

discussed in Section 5.5.1.

6.8. SUMMARY 124

Figure 6.13: WAP Implementation with Kannel and TeleWeaver.

According to Figure 6.13, bundle 1 in TeleWeaver implements the Spring MVC frame-

work and refers to bundle 2 when processing web requests for ridesharing operations.

The response data from bundle 2 is packaged together with an appropriate View in a

ModelAndView object to render the information on a JSP page as WAP content.

6.8 Summary

This chapter has presented the work that was undertaken to develop the DRS using OSGi

bundles deployed in TeleWeaver. The DRS use the SMS and WAP Gateways provided by

the Kannel system to make the services in TeleWeaver accessible by mobile phone clients.

The next chapter covers the various system tests that were performed on the DRS to

verify that its objectives were implemented as required.

Chapter 7

System Testing and Evaluation

The previous chapter discussed the implementation of the DRS using TeleWeaver and the

Kannel system as an SMS and WAP gateway. This chapter focuses on the tests that were

performed on the DRS and their results. It concludes with a discussion of the results

which provide the assessment of the DRS against the requirements speci�cations that are

presented in Chapter 4.

7.1 The Experimental Set-up

The experimental set-up for the tests on the DRS was arranged as shown in Figure 7.1.

Figure 7.1: The Experimental Set-up.

125

7.2. THE SYSTEM TEST METHODOLOGY 126

Figure 7.1 shows how the server side, made up of TeleWeaver and Kannel, interacts with

the mobile phone clients in the simulated and live environments. The SMS application

of the DRS communicates with mobile phone users via the SMSC that is con�gured in

the GSM/GPRS modem. During the tests, an MTN SIM card was used (mobile number

+27785677238). Hence, all the tests for the SMS application involved actual mobile

phones.

In conducting tests on the WAP application, WAP emulator softwares such as the Nokia

S40 Emulator, WinWAP, Mozilla web browser WAP extension and WAPProof [107] were

used. These applications provided emulators for di�erent mobile phones which represent

those owned by the target users of the DRS.

Nokia S40 is the world's most widely used mobile phone platform, with an extensive range

of phone models in use [70]. The platform has been built into over 150 phone models.

According to Nokia [70], it includes phones that o�er budget conscious consumers options

ranging from their �rst internet capable mobile phone to a phone with smartphone-like

features such as accelerometers and touch screens. Therefore, the series 40 simulator

provided a test platform for phone types that are owned by a signi�cant population of

feature phone users in South Africa (as highlighted in Section 2.4.1.1).

WAPProof provides 21 di�erent mobile devices that are emulated [107]. These include

Nokia, Samsung, Siemens and Motorola brands. The availability of di�erent types of

mobile phones using WAPProof enabled a wide test on the behaviour of user interactions

on the di�erent screen designs and user input methods that are provided.

The WinWAP and Mozillaweb browser WAP extension were used for tests on the WAP

page designs on the desktop computers. The tests provided initial results on the interface

design of the WAP pages and their behaviour (e.g. navigations) before carrying out tests

in the mobile phone environment (small screens, input mechanism, etc.).

7.2 The System Test Methodology

The following aspects of the system were tested in the process:

1. Con�gurations of the server applications

By carrying out tests on the deployment environment (TeleWeaver) and checking

the con�gurations in Kannel for the SMS and WAP gateway services.

2. Functional tests

7.3. TESTING THE SERVER APPLICATIONS 127

Performing tests on the DRS to verify that the functional requirements, set in

Section 4.1.3.1, and the matching algorithm, discussed in Section 4.1.3.2, are imple-

mented as expected.

3. Usability tests

Conducting usability tests and using a sample of users to get feedback from their

assessment of the DRS.

7.3 Testing the Server Applications

The components in the TeleWeaver and Kannel systems were tested to verify that the

con�gurations were correct for the operations of the DRS. This section provides the results

of the tests on the two systems.

7.3.1 TeleWeaver

TeleWeaver hosts the OSGi bundles for the ridesharing service of the DRS. The OSGi

bundles must be in active state (all dependencies resolved) when providing the ridesharing

service, based on the OSGi bundle life cycle that is discussed in Section 5.1.2. The console

command �ss� can be issued in TeleWeaver to check the status of each bundle in the

container. Figure 7.2 shows the �ACTIVE � status of the bundles for the DRS implying

that they are registered in TeleWeaver's OSGi registry. Therefore, the DRS bundles can

perform OSGi services (register, discover and consume) in the TeleWeaver container.

Figure 7.2: DRS Bundles on TeleWeaver's OSGi Console.

Each bundle can be managed independently such that changes (e.g. adding an upgrade

version of a bundle) can be made without restarting the container. In addition, more

than one version of a bundle can be deployed in the container. Such server management

abilities provide the stability of the DRS, meaning that clients will not experience service

disruptions when new DRS bundles are tested in TeleWeaver.

7.3. TESTING THE SERVER APPLICATIONS 128

7.3.2 Kannel System

The Kannel System provides the DRS with the SMS and WAP gateway functionality.

The con�gurations of the gateways were tested to ensure the successful operation of the

SMS application and the WAP web pages.

7.3.2.1 Testing the BearerBox

All con�gurations in Kannel must always include a group for general bearerbox con�g-

uration [30]. The core group (explained in Section 6.3.2.1) is used to instantiate the

bearerbox. Therefore, it must be con�gured properly for the SMS and WAP gateways to

operate.

The status of the bearerbox can be checked by issuing the command �bearerbox -v l

kannel.conf � on the kannel.con�g con�guration �le. The results from our test on the

bearerbox are shown in the console display of Figure 7.3. The last line on the console

output shows that the bearerbox is con�gured properly to communicate with the SMSC.

This con�rms that the bearerbox is ready to work with the smsbox and wapbox.

Figure 7.3: Bearerbox at Work.

7.3.2.2 Testing the Smsbox

When the bearerbox is in operation, the smsbox can be started using the command

�smsbox kannel.conf �. The smsbox con�rms the established connection with the bearerbox

in its message display as shown in Figure 7.4.

7.3. TESTING THE SERVER APPLICATIONS 129

Figure 7.4: Smsbox at Work.

7.3.2.3 Testing the Wapbox

The wapbox is launched using the command �wapbox kannel.conf �. Figure 7.5 shows the

console output that con�rms the launch of the wapbox and the connection established

to the bearerbox. The successiful launch of the wapbox completes the startup of the

important components of the Kannel system (bearerbox, smsbox and wapbox). This

con�rms that the Kannel system is ready to work with TeleWeaver for the SMS and WAP

requirements of the DRS.

Figure 7.5: Wapbox at Work.

We have presented the results of the various tests which show that the DRS components

in TeleWeaver and Kannel were correctly con�gured to provide ridesharing operations for

hitch-hiking to mobile phone clients. The next section presents the functional tests that

were performed to verify the operations of the DRS in organizing hitch-hiking trips.

7.4. FUNCTIONAL TEST RESULTS 130

7.4 Functional Test Results

This section presents the tests that were conducted to verify the functional speci�cations

stated in Section 4.1.3.1. The tests on the WAP application were done on desktop com-

puters using web browsers with WML support and mobile phone emulators. The SMS

application was tested using actual mobile phones. However, some of the screenshots

for the SMS application use a mobile phone emulator to provide clear information. This

section explains how the tests were conducted and the results that were obtained.

7.4.1 Testing the RESTful Web Service API

To carry out tests on the DRS using the two-way SMS application, the RESTful web

service API (Appendix C) which provides the communication link between Kannel and

TeleWeaver was tested. Tests were conducted to verify that all the URI requests are pro-

cessed by the appropriate JAX-RS annotated methods in the RideshareRestService class

of the reedhousesystems-ridesharing-ws bundle, following the implementation discussed in

Section 6.4.1. In addition, the data transfers were tested to ensure that correct formats

are used in the operation of the RESTful web service: Kannel requests consumed in XML

format, and the TeleWeaver responses produced in plain text format.

An external REST client application was used to test the RESTful web service of the DRS

in TeleWeaver. There are free REST client applications which run in web browsers and

are installed as plugins. Examples include RESTClient [63] for Mozilla Firefox browser

and Simple REST Client [97] for Chrome browser. The tests on the RESTful web service

involved the use of a REST client application to send XML data requests (using HTTP

POST and GET methods) in a similar format to Kannel requests. Figure 7.6 shows an

example of a test request that was performed on the RESTful web service (in TeleWeaver)

using the Simple REST client application.

7.4. FUNCTIONAL TEST RESULTS 131

Figure 7.6: Testing the RESTful Web Service using the Simple Rest Client.

In the example above, the URL �eld takes the URI address that Kannel would use to

make an HTTP request using the Method of HTTP POST. The Headers �eld sets the

content type of the response to text/xml ; which is also the setting on the produced content

for the methods of the RideshareRestService class. The Data �eld gets the XML data in

a structure that Kannel uses when sending HTTP requests. In our case, the important

data in a Kannel request are the value of the oa element (the sender's phone number)

and the ud element which has the SMS message contents.

The response from TeleWeaver comes in plain text and Figure 7.7 shows the reply (Data

�eld) that Kannel is supposed to send as an SMS message following the request shown in

Figure 7.6. The response contains personal details for a particular username (davis2000)

fetched from the database. The status value of �200 OK� con�rms that the service was

executed without any error.

7.4. FUNCTIONAL TEST RESULTS 132

Figure 7.7: Response from a RESTful Web Service.

The test results above demostrate how the RESTful web service in TeleWeaver responds

to HTTP requests sent by Kannel. The tests of this kind were performed on all the URIs

de�ned for the methods of the RideshareRestService class in the RESTful web service

bundle. The RESTful web service API for the SMS application is available in Appendix

C of this document. The next section will present the tests that were performed on the

core functions of the DRS to check if the functional requirement speci�cations were met.

7.4.2 User Registration

User registration is a requirement before using the DRS as outlined in the requirements

speci�cations provided in Section 4.1.3. The SMS and WAP applications provide the

registration function as shown in Figures 7.8. The SMS application uses the keyword

�Reg� (not case sensitive) and subsequent parameters of the new user's details. The

user details are de�ned in the following order: �rstname, surname, username, password,

gender, language (default is english) and home location. The WAP application provides

a registration form that has the input �elds of the new user details.

In the SMS registration, the phone number of a new user is extracted from the value of

the oa element in the Kannel XML message as explained earlier in Section 7.4.1. After

a successful registration, the DRS responds with a con�rmation SMS message which

includes keywords for further instructions on how to use the system (for driver and hitch-

hiker roles).

User registration through the WAP application requires a new user to submit a username

and phone number. After registering, a password is auto generated and sent in an SMS

message to the phone number provided by the user. This veri�es that the registered phone

number belongs to the new user. The user can change the assigned password after logging

into the system. Figure 7.9 shows the records of users in a MySQL database table called

PERSON, after successfully registering in the DRS.

7.4. FUNCTIONAL TEST RESULTS 133

Figure 7.8: User Registration

Figure 7.9: Registered User Records in MySQL Database.

7.4.3 Organizing Rideshare Trips

When organizing a rideshare trip, a driver provides information which includes vehicle

registration, destination and the preferred pick-up point. Figure 7.10 shows how a trip

can be created using an SMS message and a WAP web page. For the SMS message, the

keyword �Trip� is used and is followed by the required trip details. In the example shown

in Figure 7.10, �test123� is the registration number of the vehicle to be used in the trip.

The destination is set as �pe� which is the short-code for Port Elizabeth. A user can enter

the full name of a location (as a single word) or use a short-code. This is �ne for full

location names that are one word, such as Grahamstown. Therefore, a short-code must

7.4. FUNCTIONAL TEST RESULTS 134

be used for location names that have more than one word (e.g. King Williams Town, East

London, Port Elizabeth, etc.) to ensure that the correct location name is used. Similarly,

the location name of the pickup point, in the SMS message example, can use �gt� or

�Grahamstown� and should use short-codes for location names with more than one word.

The street name of the pickup point has been set as �beaufort� and the nearest landmark

as �shoprite�.

Figure 7.10: Creating a Trip.

Once a trip is created, a con�rmation message, which includes a secret code TripCode,

is sent to the driver. Figure 7.11 shows a con�rmation message after creating a trip.

The same message is sent to a user as a response SMS message when using the SMS

application.

7.4. FUNCTIONAL TEST RESULTS 135

Figure 7.11: A Trip Con�rmation Message to the Driver.

7.4.4 Ride O�er to Hitch-Hikers

The SMS application uses the keyword �O�er� followed by the ride o�er conditions. The

conditions are in the following order: seats, cost, o�er duration and additional condition.

The additional condition is optional and if included, a maximum of �ve words are accepted.

An example of a ride o�er to hitch-hikers is shown in Figure 7.12. In the SMS message

example, the conditions of a recently created trip are set as follows: a maximum of four

hitch-hikers only, a rideshare cost of R100 and the ride o�er is valid for 30 minutes.

Figure 7.12: Ride O�er by Driver.

7.4. FUNCTIONAL TEST RESULTS 136

The results for the ride o�er are immediately sent to the driver as shown in Figure 7.13.

If no match is found, a message for the unsuccessiful matches is sent, as shown in part

A. Otherwise, a list of hitch-hikers (limited by the o�ered seats) is provided as shown in

part B. The same messages are also provided in an SMS message when using the SMS

application. If the list of hitch-hiker details does not �t in a single SMS message (160

characters) then a multi-part SMS (limited to three) is sent to the driver.

Figure 7.13: Ride O�er Request Results.

7.4.5 Ride Request by a Hitch-Hiker

A ride request by a hitch-hiker is performed in a similar way as explained above for a

ride o�er by a driver. The SMS message uses the keyword �Hike� followed by the hitch-

hiking details: destination name, current location name, street and nearest landmark. An

optional parameter is the number of seats requested, in the case of a hitch-hiker travelling

with a partner. The screen shots for a ride request operation are shown in Figure 7.14.

7.4. FUNCTIONAL TEST RESULTS 137

Figure 7.14: Ride Request by Hitch-Hiker.

After sending a ride request, a message with the result is sent to the user indicating

whether or not a match has been found, as shown in Figure 7.15. Both messages shown

in part A (match not found) and part B (match found) have a hitch-hiker identi�cation

number which the DRS uses to refer to the user's hitch-hiker role. This number is used

when modifying or cancelling the associated hitch-hiking record.

Figure 7.15: Ride Request Results.

When a matching ride request by a driver is found, as indicated in the message shown

in part B of Figure 7.15, an SMS message alert for an available hitch-hiker is sent to the

driver. The driver can add a single hitch-hiker as explained in the next section.

7.4. FUNCTIONAL TEST RESULTS 138

7.4.6 Adding a Hitch-Hiker to a Trip

A driver con�rms the intention to pick-up a single hitch-hiker or a list of hitch-hikers

by using the add hitch-hikers operation. A list of matched hitch-hikers is available when

a ride o�er request is made, as shown earlier in part B of Figure 7.13. The driver can

decide to accept all hitch-hikers using a single action. In the SMS application, all matched

hitch-hikers can be accepted in a trip by sending an SMS message �Accept all�, which uses

the keyword �Accept�. The WAP application provides a button to accept all.

If the driver prefers to add a single hitch-hiker from a list of hitch-hikers then a hitch-hiker

identity number must be used as shown in Figure 7.16. After adding a hitch-hiker (or

hitch-hikers) to a trip, an SMS message is sent to a hitch-hiker to con�rm the driver's

acceptance as a trip partner. The message includes the trip secret code (TripCode),

vehicle details and the estimated pickup time limit, as shown in Figure 7.17.

Figure 7.16: Accept Hitch-Hiker for a Trip

7.4. FUNCTIONAL TEST RESULTS 139

Figure 7.17: Trip Con�rmation to a Hitch-Hiker

7.4.7 Informing a Next Of Kin

The DRS provides an optional operation that noti�es a next of kin of a user who is

participating in a hitch-hiking trip. This operation can be performed using an SMS

message with the keyword �Inform�, and followed by the secret code of a trip (TripCode).

Figure 7.18 shows the screenshots for this operation. The DRS generates an SMS message

with the trip details that the user would like to share to the next of kin, as shown in

Figure 7.19. The next of kin, who is registered under the user's pro�le, can receive

further information (e.g. other passengers) by sending an SMS message with the keyword

�RideInfo�, followed by the secret code provided (PE352544). The full trip information

that can be viewed is shown in Figure E2 of Appendix E.

7.4. FUNCTIONAL TEST RESULTS 140

Figure 7.18: Inform Next Of Kin.

Figure 7.19: An SMS Sent To A Next Of Kin.

7.4.8 Multilingual Support

To localize the DRS, the isiXhosa language was added to the system considering that the

majority of people in the Eastern Cape speak isiXhosa. The language of the messages

when performing the DRS operations can be set to isiXhosa by sending an SMS with

the keyword �Lang�, followed by �x� or �xhosa� as shown in Figure 7.20. The message in

7.5. USABILITY TESTS 141

isiXhosa, shown in Figure 7.20, is sent to a user after creating a trip and is a translation

of a similar message shown in Figure 7.11. The equivalent isiXhosa translations for the

SMS keywords were found di�cult to express in simple words. As such, they remained

unchanged as recommended by the users who took part in the usability tests of the DRS

(covered in Section 7.5). To return to English language, an SMS of either �Lang e� or

�Lang english� must be used.

Figure 7.20: Changing Language to IsiXhosa.

The full instructions on how to operate the DRS using the SMS application can be found

in Appendix D of this document. Selected instructions are available when an SMS with

a keyword �Instruct� is sent to the DRS. The next section will discuss the usability tests

that were conducted to gather the assessment views on the DRS, from a sample of drivers

and commuters who participate in hitch-hiking travels.

7.5 Usability Tests

The user feedback on the functions of the DRS was gathered through a usability test

process. The usability tests measured the e�ectiveness, e�ciency and satisfaction of the

operations of the DRS, as explained in the non functional requirements provided in Section

4.1.3.3.

The usability tests for the DRS were conducted using the SMS application. The SMS

application was selected to take advantage of the availability of SMS in mobile phone

handsets owned by the target users as well as the users' familiarity with SMS messaging.

SMS services are widely available in urban and rural areas in South Africa through the

GSM network. According to MTN, a mobile phone service provider, SMS services reach

7.5. USABILITY TESTS 142

93% of the population [66]. This provided the freedom to carry out the usability tests at

almost any location point in the urban and rural places of the study area.

The usability tests targeted only people (in urban and rural areas) who hitch-hike or

pick-up hitch-hikers. The tasks that were performed were as follows:

1. Each participant responded to a user background questionnaire (see Appendix A.2.1).

2. A demonstration of how the system works to provide an overview understanding.

3. Each participant performed the DRS operations to organize a rideshare trip us-

ing a personal mobile phone. The tests involved playing both the role of a driver

and a hitch-hiker in separate runs. When conducting the test with more than one

participant, the driver and hitch-hiker roles were assigned to the participants and

exchanged in the second run of the test.

4. Each participant responded to a Systems Usability Scale (SUS) questionnaire af-

ter performing the tests. The SUS is a technology independent questionnaire for

measuring perceptions of usability and is used for many types of systems which

include consumer software, websites, mobile phones, etc [92]. We adapted some of

the questions of the SUS, which we found relevant for our system, to establish our

questionnaire for the usability tests. The SUS questionnaire for the usability tests

on the DRS is available in Appendix A.2.2.

7.5.1 Urban Context

Usability tests were conducted in the Grahamstown area and a total of nine people par-

ticipated in the tests. The background of the participants is shown in the results of

the user background questionnaire, in Figure 7.21. The results indicate that two of the

participants had real-life experience in both roles of a driver and a hitch-hiker. All the

participants stated that they owned a mobile phone and had background knowledge in

using SMS and computers.

7.5. USABILITY TESTS 143

Figure 7.21: SUS: User Background Information.

After testing the system, each participant responded to the SUS questionnaire and the

results were as follows:

1. Relevance of the DRS to hitch-hiking travel arrangements

Figure 7.22: SUS: Relevance to Hitch-Hiking.

Figure 7.22 shows that all nine participants agreed that the DRS provides operations

that relate to hitch-hiking travels. By performing the tests in both roles, as a driver

and a hitch-hiker, each participant had the experience of how to organize a rideshare

trip and also how to search for a ride o�er using the DRS. Therefore, the response

by the participants provides a strong indication that the operations of the DRS

represent the actions that are performed in reality.

7.5. USABILITY TESTS 144

2. Ease of use in performing the DRS operations

During the usability tests, the user instructions for the SMS application was provided

to the participants. This was done to remove the extra challenge of memorizing the

structure of SMS message requests. The main interest in the tests was to measure

how easy it is to perform the operations if the user understands what information

is required; and how to send requests using correct formats.

Figure 7.23: SUS: Ease of Use.

Figure 7.23 shows that none of the respondents indicated having di�culty in per-

forming the operations. All responses show that the operations are achievable with-

out much e�ort.

3. The anticipated learning curve for other people

Based on the experience in performing the operations, the participants provided

their opinion on how quickly they thought other people could learn how to use the

system.

7.5. USABILITY TESTS 145

Figure 7.24: SUS: How Easy to Learn.

The responses were divided, as shown in Figure 7.24. The majority suggested that

it would be quick to learn the system, while others indicated that they did not have

an opinion.

4. Overall rating of the DRS

The overall rating shown in Figure 7.25 indicates that the participants were at least

satis�ed with what they experienced in testing the system.

Figure 7.25: SUS: Rating for the System.

7.5.2 Rural Context

For the rural context, the usability tests were conducted in the rural areas of Dwesa. A

total of 10 people participated in the tests in Nqabara (four people) and Ngwane (six

7.5. USABILITY TESTS 146

people). The usability test included a test on the isiXhosa language setting of the DRS.

The participants were allowed to select a language of choice (english or isiXhosa) during

the tests. The results of the user background questionnaire are provided in Figure 7.26.

Figure 7.26: SUS: User Background Information.

The responses for the SUS questionnaire after performing the tests were as follows:

1. The relevance of the DRS to hitch-hiking

All the 10 participants agreed that the system provided operations that are relevant

to hitch-hiking, as shown in Figure 7.27.

Figure 7.27: SUS: Relevance to Hitch-Hiking.

2. Ease of use in performing the DRS operations

7.5. USABILITY TESTS 147

Most participants (80%) responded that it was easy to perform the ridesharing

operations, as shown by the results in Figure 7.28. This indicates the advantage of

using SMS service which is familiar to most mobile phone users in this context.

Figure 7.28: SUS: How Easy To Use.

3. The anticipated learning curve for other people

Based on the results in Figure 7.29, there was a strong indication that it would

be quick for other people to learn how to use the system. The majority (40%)

indicated that it would not take much time to learn how to use the system. The

remaining participants suggested that it would be very quick (30%) to learn while

others thought that it would be slow (30%).

Figure 7.29: SUS: Learning How to Use.

4. Overall rating of the DRS

7.6. DISCUSSION 148

Figure 7.30 shows the results of the overall rating of the DRS. The results show the

ratings of the satisfaction with the system: excellent (40%); very good (20%); and

good (40%).

Figure 7.30: SUS: Rating for the System.

7.6 Discussion

The outcome of the functional and non functional tests, presented above, provide the

assessment of the requirements speci�cations of the DRS presented in Section 4.1.3. The

functional test results in Section 7.3 show the successful operation of the server application

components of the DRS. The OSGi bundles of the DRS meet the requirements of OSGi

application development in order to run in TeleWeaver: a service hosting environment

designed for the context of South Africa, as highlighted in Section 2.5.3.2. The results

of the con�gurations on the Kannel SMS and WAP gateways show how the ridesharing

service (in TeleWeaver) is accessible to mobile phones using SMS and WAP technologies.

The functional test results for the DRS, provided in Section 7.4, demonstrate the features

of dynamic ridesharing that were highlighted in Section 2.2.2.1. As such, the DRS provides

the dynamic ridesharing service in a customized way that suits the hitch-hiking culture

in the Eastern Cape. In addition, the development of the DRS using the guidelines under

SLL ensures the use of appropriate software solutions that are sustainable in the context

of South Africa.

The non functional test through a usability study has provided the assessment results by

a sample of users. The test results provide a measure of the e�ectiveness, e�ciency and

satisfaction of the DRS, which were explained in Section 4.1.3.3. The relevance of the

DRS as a tool for organizing hitch-hiking has been emphasized by the 100% response (in

7.7. SUMMARY 149

both the urban and rural contexts) that the system provides operations that represent

the hitch-hiking arrangements. The DRS enables the arrangement of rideshare trips by

people without acquaintances who share the same destination, as is the case with other

example DRSs (explained in Section 2.2.2.7) and in the hitch-hiking travels studied in

the Eastern Cape (covered in Chapter 3). This indicates a positive step in developing an

appropriate ridesharing system for hitch-hiking in South Africa.

During the usability tests, all participants were able to complete their designated tasks.

The results showed that people in both the urban (78%) and the rural (90%) found the

operations using SMS messages to be easy to use. Performing the ridesharing operations

using SMS messages provided familiar operations due to the participants' background

knowledge of SMS. The main challenge was remembering the keywords and properly

structuring the requests, as mentioned in the disadvantages of SMS application in Sec-

tion 2.4.3.2. However, participants had a user manual which they could reference when

composing the SMS messages. This could be the reason why some participants felt that

the learning process of the system would be slow (11% in urban area and 30% in rural

area) or failed to provide an opinion (22% in the urban area). Nevertheless, this problem

can be solved through frequent use of the application which would allow a user to get

acquainted with the message structures for the di�erent operations; or through the use of

menu based operations as in USSD and WAP applications.

The overall rating of the DRS, in Figures 7.25 and 7.30, show that all the participants

were satis�ed with the operations they carried out in the tests. This indicates that people

can adopt the system when they are given time to test it. Further improvements on the

current version of the DRS could also be made to increase this adoption.

The use of SMS technology to deliver the ridesharing service makes the DRS compatible

with a variety of mobile phones owned by the targeted drivers and hitch-hikers in this

research. During the usability tests, all participants owned a mobile phone, which they

used when carrying out the tests. This satis�ed the requirement for the DRS to reach

many mobile phone types (old and new models), which is part of the non functional

requirements presented in Section 4.1.3.3.

7.7 Summary

This chapter has discussed the tests that were conducted to verify whether or not the

developed DRS meets the objective of this research. The functional test results show how

the DRS works by including the user interaction screens. The usability test results provide

the feedback from a sample of users who understand and participate in hitch-hiking in the

7.7. SUMMARY 150

study area. In conclusion, a discussion of the results provided an analysis of the obtained

results after performing tests in both the simulated and live environments.

Chapter 8

Conclusion

This thesis has presented work that was performed to develop a DRS for hitch-hiking

travels in South Africa. It begun by providing the details of the available DRSs that are

used in most developed nations and their primary objectives. By consulting the related

literature on hitch-hiking and carrying out a study on how it is done in selected urban

and rural areas of the Eastern Cape, the requirements of the DRS were identi�ed. This

was followed by a discussion on how the DRS was designed and its implementation using

the appropriate open source solutions. Thereafter, the functional and non-functional test

results which verify the achievement of the objective of this research were presented. This

chapter concludes the thesis by an assessment of the objective of this research, highlighting

the contributions, challenges and outlining suggestions for future work.

8.1 Assessment of Research Objective

The objective of this research is revisited to discuss the degree to which the work presented

in this thesis achieved the main goal. This is presented in a discussion of the theoretical

and practical contributions of this thesis, followed by the challenges that were encountered

in the process.

8.1.1 Theoretical Contributions

The thesis has presented literature on vehicle ridesharing and DRSs that assist in organiz-

ing ad-hoc ridesharing using mobile phones, mostly belonging in the context of developed

nations. This provided background knowledge on the objectives and general features of

DRSs, which formed the basis for developing a relevant DRS to the context of South Africa

(a developing nation). The availability of technical documentation of free DRSs such as

151

8.1. ASSESSMENT OF RESEARCH OBJECTIVE 152

OpenRide (an open source project) provided the in-depth understanding of how the vari-

ous components are designed in modern ridesharing systems. Based on the understanding

of the hitch-hiking culture in the Eastern Cape, a DRS was designed to provide familiar

methods of ad-hoc trip arrangements. This includes the use of a matching algorithm that

uses location short-codes (for origin and destination names) and also a time window for

ride o�ers, which simpli�es the departure time arrangements by drivers. The functional

and non functional test results indicate a positive step in an e�ort to provide a design

of an appropriate DRS (for hitch-hiking) that is accessible by mobile phones owned by

people in urban and rural contexts of South africa, which include marginalized areas.

8.1.2 Practical Contributions

The functional test results have demonstrated how a driver and commuter can arrange a

rideshare trip without any acquaintaces, at any time of the day, by performing the required

operations using a mobile phone (through SMS or the WAP application). The information

of users, vehicles and organized trips is recorded and made available to registered users.

As such, enquiries can be made about a particular rideshare trip to get details such as

the driver, passengers and the vehicle particulars. In addition, a registered next of kin

for a user can be informed about a hitch-hiking trip that they are participating in by

sending a request to the DRS. This solves the problem of the lack of information to a

relative or friend when a person is travelling by hitch-hiking. These are some of the

requirements that people who use hitch-hiking travels indicated as important in order

to improve on the current hitch-hiking process, as we found in the study presented in

Chapter 3. The usability tests on the DRS made drivers and hitch-hikers aware of the

possibility to arrange hitch-hiking trips and enquire details of a particular rideshare trip

using their mobile phones. This provided them an opportunity to learn about the use of

a DRS in ad-hoc ridesharing, which improve on the shortfalls observed in the ordinary

methods such as hitch-hiking.

The existing free DRSs for mobile phones target primarily smartphone users as found in

Section 2.2.2. This limits the number of people who can access the ridesharing services

as indicated in the statistics of the mobile phones that are owned globally (in Section

2.4.2). Therefore, most people who participate in hitch-hiking (in South Africa) cannot

access the available DRSs for their bene�ts. The developed DRS supports mobile phones

of di�erent capabilities through the methods of SMS and WAP. These access methods suit

the targeted drivers and hitch-hikers in the urban and rural areas of South Africa, who

are already familiar with SMS and web browsing technologies on their mobile phones. In

this way, the developed DRS addresses the gap created by the modern DRSs, which focus

8.1. ASSESSMENT OF RESEARCH OBJECTIVE 153

on smartphones and the operating environments that have high speed mobile internet

services.

8.1.3 Challenges

In Chapter 2, we found that trust is a major issue in implementing DRSs since they involve

users who are not acquainted. In our DRS, the identi�cation details provided by the user

(e.g. names) must be trustworthy to bring con�dence among users when they request

for travel partners. This would require extra veri�cation on the personal details provided

during registration. In Section 4.1.1, RICA [65] was explained as a system which keeps

the personal identi�cation information of mobile phone users in South Africa. Linking the

DRS with RICA could provide a solution for the veri�cation of user details by compairing

with information on documents which certify identity (e.g. National ID or Passport). The

user veri�cation could be further enhanced by conducting a search for any criminal record

of the user from relevant authorities (e.g. the Police). In this way, the issues of trust and

security can be minimized.

Providing origin and destination location names in an SMS message is error prone as

names can be misspelled, which could result in missing out on a matching ride part-

ner. Some users may struggle to provide correct location names considering that the

target population of users (in this research) consists of some people who are illiterate.

Therefore, an extra function would be required to handle incorrect location names by

auto-correcting or suggesting location names after verifying the location information in

external applications, such as Google maps. In smartphones, input errors of location

names are minimized through the capabilities of auto-detection of locations (using GPS

and map data) and auto-complete for the location names.

The costs that are incurred when using SMS messages could restrict the number of people

using the system. Section 2.4.3.3 highlighted the high cost of SMS messaging in South

Africa through the observed increase in use of available cheaper alternative instant mes-

saging services such as WhatsApp [109] and Mxit [68]. Therefore, the challenge would be

on negotiating with the mobile phone operators to provide discounted SMS messages for

the DRS. This would help most drivers and hitch-hikers a�ord to use the ridesharing ser-

vice espencially in marginalized areas such as the Dwesa communities: where hitch-hiking

is a major alternative mode of transportation due to limited a�ordable public transport

services.

The e�ects of mobile phone device fragmentation were experienced during the tests on

the WAP application, using di�erent mobile phone brands. It was observed that the user

8.2. FUTURE WORK 154

interfaces were not consistent across the di�erent mobile phone brands; and in some cases

within old and latest models of a particular brand. The notable di�erences were observed

in the input mechanism and the screen sizes which provides di�erent layouts of web pages.

This can confuse some users when they migrate to a di�erent mobile phone handset due

to the di�erent experience provided when performing the same operations of the DRS.

The existing disagreements between the taxi operators and private car owners, who pick-

up hitch-hikers, could have e�ects on the active participation of users in the DRS. As

found in the study on hitch-hiking by Sicwetsha [94], presented in Section 2.3.3.3, private

car drivers risk attacks by taxi operators when they pick-up hitch-hikers. Therefore, it

cannot be predicted how the general public (particularly the taxi operators, private car

drivers and commuters) would accept the DRS once it is deployed for public use.

8.2 Future Work

The work that this thesis has presented provides the initial step in providing a system that

is tailor-made for the dynamic ridesharing of hitch-hiking in South Africa. The modular

design of the system using OSGi technology provides the opportunity for the expansion

of the technical capabilities of the system.

The DRS should be re�ned by conducting further usability tests that include �eld tests

involving drivers and hitch-hikers. Thereafter, additional functionalities such as GPS and

location based services must be added to make the system relevant for smartphones in

order to provide the extra features discussed in Section 2.2.2.2. In South Africa, the

number of smartphone users continue to grow each year, indicating that people are slowly

moving away from feature phones [84]. This should help to provide simpli�ed arrangement

of hitch-hiking trips and also improve the security aspect (e.g. logging the trip progress

in real-time), as is the case in similar DRSs such as Avego [9].

8.3 Concluding Remarks

The thesis has outlined the design and implementation process of a DRS for drivers and

commuters who participate in hitch-hiking travels. Some of the reasons for the choice to

hitch-hike or pick-up hitch-hikers in South Africa have been found to be di�erent to those

in developed nations. The hitch-hiking culture and the operating environment are unique

to this context such that the available free DRSs do not satisfy all the requirements to

enable many people to use their ad-hoc ridesharing services. The thesis has presented how

the developed DRS is accessible by mobile phones of di�erent capabilities and the results

8.3. CONCLUDING REMARKS 155

of a usability study which indicate an initial step forward in implementing an appropriate

system for ad-hoc ridesharing of hitch-hiking.

References

[1] Statistics South Africa. Census 2011. Online:

http://www.statssa.gov.za/Publications/P03014/P030142011.pdf, [Last accessed

on 25/07/13], October 2012.

[2] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang. Sustain-

able Passenger Transportation: Dynamic Ride-Sharing. Online:

http://www2.isye.gatech.edu/people/faculty/Alan_Erera/pubs/aesw09.pdf, [Last

accessed on 10/12/12], 2009.

[3] Arrive Alive. Minibus Taxis and Road Safety. Online:

http://www.arrivealive.co.za/pages.aspx?i=2850, [Last accessed on 7/10/12].

[4] Global Intelligence Alliance. Native or Web Application. Online:

http://www.globalintelligence.com/insights-analysis/white-papers/native-or-

web-application-how-best-to-deliver-cont/, [Last accessed on 22/12/12], 2010.

[5] OSGi Alliance. OSGi Technology. Online: http://www.osgi.org/Main/HomePage,

[Last accessed on 10/11/12].

[6] A. Amey. Real-Time Ridesharing: Exploring the Opportunities and Challenges of

Designing a Technology-based Rideshare Trial for the MIT Community. Master's

thesis, Massachusetts Institute of Technology, 2010.

[7] Apache.org. Apache Felix. Online: http://felix.apache.org/site/index.html, [Last

accessed on 10/11/12].

[8] Apache.org. Apache Maven. Online: http://maven.apache.org/, [Last accessed on

11/11/12].

[9] Avego. Avego Real-time Ridesharing. Online:

http://www.avego.com/products/real-time-ridesharing/, [Last accessed on

30/05/12].

156

REFERENCES 157

[10] N. Balani and R. Hathi. Apache CXF Web Service Development. Packt Publishing,

2009.

[11] N. Bartlett. Bndtools. Online: http://bndtools.org/, [Last accessed on 12/11/12],

2011.

[12] G. Beger and A. Sinha. South African Mobile Generation. On-

line: http://www.unicef.org/southafrica/SAF_resources_mobilegeneration.pdf,

[Last accessed on 15/10/12]., May 2012.

[13] Carpoolmates. Carpool Matching System. Online:

http://www.carpoolmates.co.za/, [Last accessed on 7/10/12].

[14] Washington State Transportation Center. Bellevue Smart

Traveler: Design, Demonstration, and Assessment. Online:

http://www.wsdot.wa.gov/Research/Reports/300/376.1.htm, [Last accessed

on 24/10/12].

[15] N. Chan and S. Shaheen. Ridesharing in North America: Past, Present and Future.

Online: http://tsrc.berkeley.edu/ridesharingNA, [Last accessed on 10/12/12]., 2011.

[16] V. Chaube. Understanding and Designing for Perceptions of Trust in Rideshare

Programs. Masters thesis, Virginia Polytechnic Institute and State University, July

2010.

[17] N1 Lift Club. N1 Lift Club Gauteng. Online: http://www.n1liftclub.co.za/, [Last

accessed on 7/10/12].

[18] A. Cogoluegnes, T. Templier, and A. Piper. Spring Dynamic Modules in Action.

Manning Pubs Co Series. Manning Publications, 2010.

[19] JBoss Community. Hibernate. Online: http://www.hibernate.org/downloads, [Last

accessed on 11/12/12].

[20] SpringSource Community. SpringSource Tool Suite. Online:

http://www.springsource.org/spring-tool-suite-download, [Last accessed on

11/12/12].

[21] G. Correia and J. Viegas. Advanced OR and AI Methods in Transportation

Car Pooling Clubs: Solution For The A�liation Problem In Traditional/Dynamic

Ridesharing System. Online: http://www.iasi.cnr.it/ewgt/16conference/ID92.pdf,

[Last accessed on 10/12/12].

REFERENCES 158

[22] Apache CXF. RESTful Services, JAX-RS. Online: http://cxf.apache.org/docs/jax-

rs.html, [Last Accessed on 23/08/12].

[23] E. Deakin, K. Frick, and K. Shively. Markets for Dynamic Ridesharing? Case

of Berkeley, California. University of California Transportation Center, Working

Papers, University of California Transportation Center, 2011.

[24] South Africa Department of Transport. The First South

African National Household Travel Survey 2003. Online:

http://www.arrivealive.co.za/document/household.pdf, [Last accessed on 7/10/12],

August 2005.

[25] eBay. URL: http://www.ebay.com/, [Last accessed on 09/01/13].

[26] Eclipse. Equinox OSGi. Online: www.eclipse.org/equinox/, [Last accessed on

10/11/12].

[27] Rhodes University Environment. Travel Wise. Online:

http://www.ru.ac.za/environment/action/travelwise/, [Last accessed on 3/10/12].

[28] Roy Thomas Fielding. Architectural styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, 2000. AAI9980887.

[29] FindALift.co.za. Find a lift. Online: http://www.�ndalift.co.za, [Last accessed on

8/10/12].

[30] A. Fink, B. Rodrigues, S. Tolj, A. Syvänen, A. Malysh, L. Wirzenius, and K. Mar-

jola. Kannel 1.5.0 User Guide, Open Source WAP and SMS gateway. On-

line: http://www.kannel.org/download/1.5.0/userguide-1.5.0/userguide.pdf, [Last

accessed on 9/05/12].

[31] B. Fling. Mobile Design and Development: Practical Concepts and Techniques for

Creating Mobile Sites and Web Apps - Animal Guide. O'Reilly Media, Inc., 1st

edition, 2009.

[32] Codehaus Foundation. Jetty. Online: http://jetty.codehaus.org/jetty/, [Last ac-

cessed on 15/11/12].

[33] The Apache Foundation. Apache Tomcat. Online: http://tomcat.apache.org/, [Last

accessed on 15/11/12].

[34] A. Goldstuck. Internet Matters: The Quiet Engine of the South African Economy.

Online: www.internetmatters.co.za, [Last accessed on 12/10/12].

REFERENCES 159

[35] Google. Google Web Toolkit. Online: https://developers.google.com/web-toolkit/,

[Last access on 4/05/12].

[36] Kannel Group. Kannel: Download Pages. Online:

http://www.kannel.org/download.shtml, [Last accessed on 11/12/12].

[37] GSMA. African Mobile Observatory 2011. Online: http://www.gsmworld.com/our-

work/public-policy/, [Last accessed on 14/06/12].

[38] D. Guermeur and A. Unruh. Google App Engine Java and Gwt Application Devel-

opment. Packt Publishing, Limited, 2010.

[39] Gumtree. South Africa Carpool and Rideshare. On-

line: http://www.gumtree.co.za/f-Community-carpool-rideshare-

W0QQAdTypeZ1QQCatIdZ9035QQisSearchFormZtrue, [Last accessed on

7/10/12].

[40] R.S. Hall, K. Pauls, S. McCulloch, and D. Savage. OSGi in Action: Creating

Modular Applications in Java. Manning Pubs Co Series. Manning, 2011.

[41] S. Heinrich. Implementing Real-time Ridesharing in the San Francisco Bay Area.

Master's thesis, Mineta Transportation Institute San Jose State University, 2010.

[42] Developer's Home. Example Applications of SMS Messaging. Online:

http://www.developershome.com/sms/sms_tutorial.asp?page=egApps, [Last Ac-

cessed on 14/12/12].

[43] M. Kaigwa. Why You Must Never Forget About the Humble Feature Phone

in Africa. Online: http://afrinnovator.com/blog/2012/02/02/why-you-must-

never-forget-about-the-humble-feature-phone-in-africa, [Last accessed on 17/10/12],

February 2012.

[44] G. King, C. Bauer, E. Bernard, and S. Ebersole. Hibernate 3.6.10.Final, Community

Documentation. Online: http://docs.jboss.org/hibernate/core/3.6/quickstart/en-

US/html/, [Last Accesed on 12/09/12].

[45] A. Kothari. Genghis - A Multiagent Carpooling System. Bsc in Computer Science

Dessertation work, May 2004. University of Bath.

[46] K. Kurbel and A. Dabkowski. Dynamic WAP Content

Generation with the Use of Java Server Pages. Online:

REFERENCES 160

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.3195&rep=rep1&type=pdf,

[Last accesed on 14/01/13].

[47] D. Kurka. GWT PhoneGap library. Online:

http://code.google.com/p/mgwt/wiki/GettingStarted, [Last accessed on 21/09/12].

[48] Helsinki Living Lab. Helsinki Living Lab. Online: www.helsinkilivinglab.�, [Last

accessed on 30/09/12], 2012.

[49] MIT Media Lab. William J. Mitchell. Online. http://web.media.mit.edu/ wjm/

[Last accessed on 21/10/12].

[50] Sekhukhune Living Lab. Sekhukhune Living Lab. Online: http://www.c-

rural.eu/Southafrica-LivingLab/, [Last accessed on 10/12/12].

[51] Siyakhula Living Lab. The Siyakhula Living Lab. Online: http://siyakhulall.org/,

[Last accessed on 30/09/12].

[52] Siyakhula Living Lab. The Siyakhula Living Lab: An

Important Step for South Africa and Africa. Online:

http://siyakhulall.org/sites/default/�les/SiyakhulaLL_Booklet_2012.pdf, [Last

accessed on 02/02/13].

[53] A. Levofsky and A. Greenberg. Organized Dynamic Ride Sharing: The Potential

Environmental Bene�ts and the Opportunity for Advancing the Concept. Report,

Transportation Research Board, January 2001.

[54] LLiSA. Living Labs in Southern Africa. Online:

http://llisa.meraka.org.za/index.php/Moutse_LL:Project_Overview, [Last Ac-

cessed on 10/12/12].

[55] S. Loucks. Report for Haliburton County's Rural Transportation Options Commit-

tee of Environment Haliburton. Online: http://www.haliburtoncooperative.on.ca,

[Last accessed on 21/10/12].

[56] Canonical Ltd. Get Ubuntu. Online: http://www.ubuntu.com/download, [Last

accessed on 11/12/12], 2012.

[57] Makewave. Knop�er�sh- Open Source OSGi Service Platform. Online:

http://www.knop�er�sh.org/, [Last accessed on 10/11/12].

REFERENCES 161

[58] D. Massaro, B. Chaney, S. Bigler, J. Lancaster, S. Iyer, M. Gawade, M. Eccleston,

E. Gurrola, and A. Lopez. Carpoolnow - Just-in-Time Carpooling without Elabo-

rate Pre-planning. In Joaquim Filipe and José Cordeiro, editors, WEBIST 2009 -

Proceedings of the Fifth International Conference on Web Information Systems and

Technologies, Lisbon, Portugal, March 23-26, 2009, pages 219�224. INSTICC Press,

2009.

[59] South Africa Ministry of Transport. National Land Transport Act 2009. Online:

http://www.transport.gov.za/PublicTransport.aspx, [Last accessed on 30/09/12].

[60] S. Miteche, A. Terzoli, and H. Thinyane. A Mobile Phone Solution to Improve

Geographic Mobility. In SATNAC 2011: Southern African Telecommunications

Networks and Applications Conference, 2011.

[61] S. Miteche, A. Terzoli, and H. Thinyane. A Mobile Phone Solution to Improve

Geographic Mobility. In SATNAC 2011: Southern African Telecommunications

Networks and Applications Conference, 2012.

[62] Vision Mobile. Mobile Platforms: The Clash of Ecosystems. On-

line: http://www.visionmobile.com/product/clash-of-ecosystems, [Last accessed on

23/10/12], November 2011.

[63] Mozilla. RESTClient a Debugger for RESTful Web Services. On-

line: https://addons.mozilla.org/en-us/�refox/addon/restclient/, [Last accessed on

29/11/12].

[64] H. Mpofu. Development Of An M-Payment System Prototype For A Marginalized

Region (Dwesa Case Study). Master's thesis, University Of Forthare, 2011.

[65] MTN. RICA - Regulation of Interception of Communication Act. On-

line: http://www.mtnsp.co.za/MTNServices/RICA/Pages/Overview.aspx, [Last

accessed on 18/11/12].

[66] MTN. Visiting South Africa. Online: http://www.mtn.co.za/Travel/Pages/TravellingToSA.aspx,

[Last Accessed on 8/12/12].

[67] MvnRepository. MVN Repository. Online: http://mvnrepository.com/, [Last ac-

cessed on 15/11/12].

[68] Mxit. Mixit for Your Feature Phone. Online: http://site.mxit.com/, [Last accessed

on 21/09/13].

REFERENCES 162

[69] United Nations. Environmental Indicators Greenhouse Gas Emissions. Online:

http://unstats.un.org/unsd/environment, [Last accessed on 12/10/12]., July 2010.

[70] Nokia. Series 40. Online: http://www.developer.nokia.com/Develop/Series_40/Platform/,

[Last accessed on 1/12/12].

[71] Ride Now. Pilot Tests of Dynamic Ridesharing. Online: http://www.ridenow.org,

[Last accessed on 24/10/12].

[72] L. Ntshinga, M. Thinyane, and A. Terzoli. Blueprints for Software Components

within Teleweaver, a Custom OSGi Container. In SATNAC 11: Southern African

Telecommunications Networks and Applications Conference, 2011.

[73] B. Nussbaum. African Culture and Ubuntu. Online:

http://barbaranussbaum.com/downloads/perspectives.pdf, [Last accessed on

10/12/12], 2003.

[74] Massachusetts Institute of Technology. MIT "Real-Time" Rideshare Research.

Online: http://ridesharechoices.scripts.mit.edu/home/real-time, [Last accessed on

04/10/12], 2009.

[75] South Africa Online. South Africa Transport. Online:

http://www.southafrica.co.za/about-south-africa/transport/, [Last accessed

on 7/10/12].

[76] OpenRide. OpenRide Ridessharing 2.0. Online: http://www.open-ride.com/, On-

line [Last accessed on 25/04/12].

[77] Oracle. Java API for RESTful Services JAX-RS. Online: http://jax-rs-

spec.java.net/, [Last accessed on 13/11/12].

[78] Oracle. Java Persistence API. Online: http://www.oracle.com/technetwork/java/javaee/tech/persistence-

jsp-140049.html, [Last accessed on 13/11/12].

[79] Oracle. Java SE Technologies- Database. Online:

http://www.oracle.com/technetwork/java/javase/jdbc/index.html, [Last accessed

on 11/11/12].

[80] Oracle. Oracle Top Link. Online: http://www.oracle.com/technetwork/middleware/toplink/overview/index.html,

[Last accessed on 13/11/12].

[81] Oracle. MySQL Download. Online: http://dev.mysql.com/downloads/, [Last ac-

cessed on 11/12/12], 2012.

REFERENCES 163

[82] PayPal. URL: https://www.paypal.com/za/webapps/mpp/home, [Last accessed on

03/02/13].

[83] Pickuppal. Pickuppal on Your Way. Online:

http://www.pickuppal.com/pup/intro.html, [Last accessed on 22/10/12].

[84] Our Mobile Planet. Mobile Behaviour. Online:

http://www.thinkwithgoogle.com/mobileplanet/en/, [Last accessed on 10/09/12].

[85] M. Rao. Mobile Africa Report 2012. Sustainable Innovation Ecosystems. Technical

report, http://www.mobilemonday.net/reports/MobileAfrica_2012.pdf, 2012.

[86] Restlet. The Leading Web API Framework for Java. Online:

http://www.restlet.org/, [Last accessed on 13/11/12].

[87] RLabs. LLiSA Living Labs in Southern Africa. Online. http://llisa.net/, [Last

accessed on 21/10/12].

[88] Daniel Rubio. Pro Spring Dynamic Modules for OSGi Service Platforms. Apress,

Berkely, CA, USA, 2009.

[89] Brand SA. About South Africa. Online: http://www.southafrica.info, [Last accessed

on 28/10/12].

[90] J. Samalenge and M. Thinyane. Developing SOA Wrappers for Communication

Purposes in Rural Areas. Master's thesis, University of Fort Hare, 2010.

[91] J. Sandoval. RESTful Java Web Services: Master Core REST Concepts and Create

RESTful Web Services in Java. From technologies to solutions. Packt Publishing,

Limited, 2009.

[92] J. Sauro. Measuring Usability. Online: https://www.measuringusability.com/sus.php,

[Last Accessed on 7/12/12].

[93] A. Seddighi. Spring Persistence with Hibernate: Build Robust and Reliable Persis-

tence Solutions for Your Enterprise Java Application. From technologies to solu-

tions. Packt Publishing, Limited, 2009.

[94] M. Sicwetsha. Hitch-Hiking Research Report, Reasons behind hitch-hiking in the

Eastern Cape. Online: http://www.ectransport.gov.za/uploads/Reports/reasons-

behind-hitch-hiking-in-the-eastern-cape1.pdf, [Last accessed on 12/04/12].

REFERENCES 164

[95] SpringSource. Spring Web Service. Online: http://static.springsource.org/spring-

ws/sites/2.0/ [Last accessed on 13/11/12].

[96] SpringSource. SpringSource Enterprise Bundle Repository. Online:

http://ebr.springsource.com/repository/app/, [Last accessed on 11/11/12].

[97] Chrome Web Store. Developer Tools Simple Rest Client. Online:

https://chrome.google.com/webstore/category/ext/11-web-development, [Last ac-

cessed on 29/11/12].

[98] Reedhouse Systems. Reedhouse systems. Online: http://reedhousesystems.com/,

[Last accessed on 2/04/12].

[99] Reedhouse Systems. Reedhouse Systems Wikidoc. Online:

http://reedhousesystems.com/wikidoc, [Last accessed on 13/11/12].

[100] Techcrunch. It's Still A Feature Phone World: Global Smartphone Penetration at 27

Online: http://techcrunch.com/2011/11/28/its-still-a-feature-phone-world-global-

smartphone-penetration-at-27/, [Last accessed on 22/10/12], November 2011.

[101] M. Thinyane. A knowledge-oriented, context-sensitive architectural framework for

service deployment in marginalized rural communities. PhD thesis, Rhodes Univer-

sity, 2009.

[102] H.G. Timmermans. Rural Livelihoods at Dwesa/Cwebe: Poverty, Development and

Natural Resource Users on the Wild Coast, South Africa. Master's thesis, Rhodes

University, 2004.

[103] W. Trochim. Nonprobability Sampling. Online:

http://www.socialresearchmethods.net/kb/sampnon.php, [Last accessed on

1/11/12].

[104] D. Ungemah, G. Goodin, and C. Dusza. Examining Incentives and Preferential

Treatment of Carpools on Managed Lane Facilities. Journal of Public Transporta-

tion, 10, 2007.

[105] C. Walls. Modular Java: Creating Flexible Applications with OSGi and Spring.

Pragmatic Bookshelf Series. Pragmatic Bookshelf, 2009.

[106] C. Walls and R. Breidenbach. Spring in Action. Manning Publications, 2008.

[107] WAPProof. WAPProof WAP Browser for Developers of Mobile Content. Online:

http://www.wap-proof.com/, [Last accessed on 1/12/12].

REFERENCES 165

[108] R. Wessels. Combining Ridesharing & Social Networks. Online:

www.utwente.nl/ctw/aida/education/ITS2-RW-Pooll.pdf, [Last accessed on

2/10/12].

[109] WhatsApp. Simple. Personal. Real Time Messaging. Online:

http://www.whatsapp.com/, [Last accessed on 21/10/12].

[110] L. Wirzenius. Kannel Architecture and Design. Online: rt-

lab.cs.nthu.edu.tw/course/cs5241/papers/wap_arch.pdf, [Last accessed on

14/11/12].

[111] Worldwideworx. Leaders in Technology Market Research in South Africa. Online:

http://www.worldwideworx.com/, [Last accessed on 20/10/12]., 2012.

[112] Worldwideworx. The Mobile Internet in South Africa 2012. Technical report,

www.worldwideworx.com, 2012.

[113] Zimride. Grab a Friend. Online: http://www.zimride.com/, [Last accessed on

23/10/12].

Appendix A

Questionnaires

A.1 Hitch-Hiking Questionnaire

See Figure A1 and A2 below.

A.2 Usability Testing

A.2.1 Background Questionnaire: User Background

Question Yes No

Do you travel by hitch-hiking?

Do you pick-up hitch-hikers? (If you drive)

Are you computer literate?

Do you own a cell phone?

Do you use SMS?

166

167

F
igu

re
A
.1:

Q
u
estion

n
aire

P
art

1

QUESTIONNAIRE ON HITCH HIKING

Answer questions in the provided spaces and tick where specified.

1. What is your gender type? (Tick your selection)

0 Male

0 Female

2. In which age group do you belong? (Tick your selection)

0 Less than 18 years

0 18 · 30 years

0 31 - 60 years

0 Over 60 years

3. What is your occupation?

4. Do you travel by hitch hiking method? (Tick your selection)

0 Yes

0 No {skip to question 8)

5. If yes, in what role? (Tick your selection)

0 Commuter

0 Driver

0 Both

6. As a commuter, how do you find an appropriate hitch hiking spot for your intended

destination?

7. How often do you use hitch hiking travel?

8. What do you think are the benefits of hitch hiking travel?

9. What do you think are the risks associated with hitch hiking travel?

10. What recommendations would you suggest to improve hitch hiking travel?

11. Do you own a mobile phone? (Tick your selection)

0 Yes

0 No

12. What brand is your mobile phone i.e . Nokia, LG, Siemens, Blackberry? (include model

where possible)

13. Do you use internet on your phone? (Tick your selection)

0 Yes

0 No

14. If yes, how often?

0 At least once a day

168

Figure A.2: Questionnaire Part 2.

A.2. USABILITY TESTING 169

A.2.2 System Usability Scale Questionnaire

Does this application provide operations

that represent hitch-hiking travel

arrangements?

Yes No

How easy was it to

perform the

operations?

Very di�cult Di�cult Moderate Easy Very easy

Is the application

important for

hitch-hiking travels?

Not at all Not very No opinion Somewhat Extremely

In your opinion, will

most people (drivers

and commuters) learn

how to use this

system quickly?

Very slow Slow No opinion Quick Very quick

How do you rate the

entire system?

Needs

improvement

Adequate Good Very good Excellent

Appendix B

Code Snippets

B.1 Project Layout

Figure B.1: The DRS API Bundle Project

B.2 The application-con�g.xml �le

Figure B.2 gives an extract of the application-con�g.xml �le showing the bean de�nitions

and their wiring for DI.

170

B.2. THE APPLICATION-CONFIG.XML FILE 171

Figure B.2: Spring Bean Con�gurations.

Figure B.3 shows part of the application-con�g.xml for the datasource and Hibernate

con�gurations.

B.2. THE APPLICATION-CONFIG.XML FILE 172

Figure B.3: Spring Datasource and Hibernate Con�gurations

B.3. THE RESTFUL WEB SERVICE BUNDLE 173

B.3 The RESTful Web Service Bundle

B.3.1 Setting the Con�gurations

Figure B.4: Apache CXF RESTful Web Service Con�gurations

B.3.2 JAX-RS annotations for a RESTful implementation

The code extract below show the implementation of the RESTful web service bundle

with the JAX-RS annotations and the ridesharing service referrenced using a constructor

method.

Figure B.5: The RESTful Service Implementation Class

B.4. THE WAP IMPLEMENTATION BUNDLE 174

B.4 The WAP Implementation Bundle

B.4.1 The RideshareController Class

The code extract in Figure B.5 shows the implementation of the web bundle using the

Spring MVC. The @RequestMapping annotations complete the full URL address of each

method. All methods return a ModelAndView object which contains the information and

the name of the JSP �le to render the view. The ridesharing service is referenced using

the @Autowired annotation.

Figure B.6: The Controller Class of the Spring MVC Bundle

B.4.2 JSP page for WAP Clients

The code in Figure B.6 shows an example implementation of a dynamic WAP page of the

DRS using JSP.

B.4. THE WAP IMPLEMENTATION BUNDLE 175

Figure B.7: Serving Dynamic WAP Content

Appendix C

The RESTful Web Service API

Table B1 shows the RESTful Webservice API for the SMS application.

176

177

R
es
ou
rc
e
M
et
h
o
d

M
et
h
o
d
D
es
ig
n
at
or

@
P
at
h

E
x
am

p
le
R
eq
u
es
t

U
se
rM

an
u
al

@
G
E
T

/i
n
st
ru
ct
io
n
s/
ge
n
er
al

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
in
st
ru
ct
io
n
s/
ge
n
er
al

D
ri
ve
rI
n
st
ru
ct
io
n
s

@
G
E
T

/i
n
st
ru
ct
io
n
s/
d
ri
ve
r

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
in
st
ru
ct
io
n
s/
d
ri
ve
r

H
ik
er
In
st
ru
ct
io
n
s

@
G
E
T

/i
n
st
ru
ct
io
n
s/
h
ik
er

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
in
st
ru
ct
io
n
s/
h
ik
er

A
d
d
U
se
r

@
P
O
S
T

/u
se
rs

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
u
se
rs
/

G
et
U
se
r

@
P
O
S
T

/u
se
rs
/p
ro
�
le

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
u
se
rs
/p
ro
�
le

U
p
d
at
eU

se
r

@
P
O
S
T

/u
se
rs
/u
p
d
at
e

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
u
se
rs
/u
p
d
at
e

A
d
d
N
ex
tO

fK
in

@
P
O
S
T

/u
se
rs
/n
ex
to
fk
in

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
u
se
rs
/n
ex
tO

fK
in

A
d
d
V
eh
ic
le

@
P
O
S
T

/u
se
rs
/v
eh
ic
le

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
u
se
rs
/v
eh
ic
le

C
h
an
ge
L
an
gu
ag
e

@
P
O
S
T

/u
se
rs
/l
an
g

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
u
se
rs
/l
an
g

N
ot
if
y
N
ex
tO

fK
in

@
P
O
S
T

/u
se
rs
/s
en
d
m
sg

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
u
se
rs
/s
en
d
m
sg

C
re
at
eT
ri
p

@
P
O
S
T

/t
ri
p
s

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
tr
ip
s

T
ri
p
D
et
ai
ls
B
y
T
ri
p
C
o
d
e

@
P
O
S
T

/t
ri
p
s/
co
d
e

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
tr
ip
s/
co
d
e

T
ri
p
D
et
ai
ls
B
y
T
ri
p
Id

@
P
O
S
T

/t
ri
p
s/
id

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
tr
ip
s/
id

R
id
eO

�
er

@
P
O
S
T

/t
ri
p
s/
ri
d
eo
�
er

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
tr
ip
s/
ri
d
eo
�
er

A
cc
ep
tH

it
ch
h
ik
er

@
P
O
S
T

/t
ri
p
s/
h
it
ch
h
ik
er

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
tr
ip
s/
h
it
ch
h
ik
er

A
cc
ep
tH

it
ch
h
ik
er
s

@
P
O
S
T

/t
ri
p
s/
al
lh
it
ch
h
ik
er
s

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
tr
ip
s/
al
lh
it
ch
h
ik
er
s

C
an
ce
lR
id
eO

�
er

@
P
O
S
T

/t
ri
p
s/
ri
d
eo
�
er
/c
an
ce
l

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
tr
ip
s/
ri
d
eo
�
er
/c
an
ce
l

V
ie
w
O
�
er
s

@
P
O
S
T

/t
ri
p
s/
o�
er
s

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
tr
ip
s/
o�
er
s

H
it
ch
h
ik
e

@
P
O
S
T

/h
it
ch
h
ik
er
s

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
h
it
ch
h
ik
er
s

M
o
d
if
y
H
it
ch
h
ik
er

@
P
O
S
T

/h
it
ch
h
ik
er
s/
h
ik
er

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
h
it
ch
h
ik
er
s/
h
ik
er

C
an
ce
lH
it
ch
h
ik
er

@
P
O
S
T

/h
it
ch
h
ik
er
s/
ca
n
ce
l

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
h
it
ch
h
ik
er
s/
ca
n
ce
l

F
in
d
H
ik
er
s

@
P
O
S
T

/h
it
ch
h
ik
er
s/
d
es
ti
n
at
io
n

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
h
it
ch
h
ik
er
s/
d
es
ti
n
at
io
n

A
d
d
R
ou
te
P
oi
n
t

@
P
O
S
T

/r
ou
te
p
oi
n
ts

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
ro
u
te
p
oi
n
ts

G
et
C
o
d
e

@
P
O
S
T

/r
ou
te
p
oi
n
ts
/c
o
d
e

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
ro
u
te
p
oi
n
ts
/c
o
d
e

G
et
R
ou
te
P
oi
n
ts
B
y
L
o
c

@
P
O
S
T

/r
ou
te
p
oi
n
ts
/l
o
c

h
tt
p
:/
/1
27
.0
.0
.1
:9
09
0/
ri
d
es
h
ar
e/
ro
u
te
p
oi
n
ts
/l
o
c

Table C.1: The RESTful Web Service API

Appendix D

SMS Application User Instructions.

SMS phone number: 0785677238.

1. GENERAL OPERATIONS

• Register user, MESSAGE FORMAT: *Reg �rstname surname username pass-

word sex language homeLocation(max 3 words)*. NOTE: homeLocation allows

maximum of 3 words. EXAMPLE:reg sacha miteche smiteche pass123 m e gra-

hamstown

• View pro�le of registered user, MESSAGE FORMAT: *Pro�le username* EX-

AMPLE: Pro�le smiteche

• Add Next Of Kin, MESSAGE FORMAT: *kin title(Or �rstname) surname

phone homeLocation*. NOTE: homeLocation(maximum 3 words) EXAMPLE:

kin Mr person 07565560000001 king williams town

• View trip details using trip Id, MESSAGE FORMAT: *Infotrip TripId* NOTE:

view a summary of trip details. EXAMPLE: Infotrip 106

• View trip details using trip code, MESSAGE FORMAT: *rideinfo Tripcode*.

NOTE: Trip information relevant to ride share partners i.e. driver and accepted

hitchhikers. EXAMPLE: Rideinfo KWT575962

• Find hitch-hiking points in location, MESSAGE FORMAT: *hikepoints loca-

tion*. NOTE: location (maximum 3 words OR use a Short code). EXAMPLE:

hikepoints grahamstown

• Find short code of a location, MESSAGE FORMAT: *Code location*. NOTE:

Use short code OR location maximum 3 words! EXAMPLE: Code port eliza-

beth

178

179

2. DRIVER OPERATIONS

• Add vehicle details to your pro�le, MESSAGE FORMAT: *veh regNo make

colour bodytype seats*. NOTE: Add vehicle details to your pro�le, bodytype

saloon (s) or bakkie (b). EXAMPLE: veh test123 toyota white s 5

• Create a trip, MESSAGE FORMAT: *Trip VehRegNo destination origin street

landmark*. NOTE: destination and origin use 1 word or code of the location. A

secret trip code is generated that would be shared with potential ride partners

for their identi�cation at the meeting point. EXAMPLE: trip test123 pe gt

beaufort shoprite

• Trip o�er, MESSAGE FORMAT: *O�er seats cost minutes extra-conditions*.

NOTE: minutes should be an integer value e.g. 20 = approx. 20 minutes to

pickup time, extra conditions is optional if needed use maximum 5 words. The

matcher returns a list of hitch-hikers limited by seats o�ered. First priority

is to hitch-hikers with exact street and nearest landmark followed by those at

other landmarks along the driver speci�ed street!) EXAMPLE: O�er 4 80 20

OR O�er 4 80 20 no big luggage

• Add a single hitch-hiker in a trip, MESSAGE FORMAT: *Add hitchhikerId*.

NOTE: Add a hitch-hiker from the match list using his/her Id. EXAMPLE:

Add 91

• Add all matched hitch-hikers in a trip, MESSAGE FORMAT: *Addall hikers*.

EXAMPLE: Addall hikers

• Cancel ride o�er, MESSAGE FORMAT: *Cancelo�er username password*.

NOTE: Cancel your current ride o�er. EXAMPLE: Cancel smiteche pass123

• Find Hitch-hikers available in a location looking for ride o�ers to a destination,

MESSAGE FORMAT: *Hitchhikers origin destination*. NOTE: Use short

code OR location name with 1 word as long as it is unique! EXAMPLE:

Hitchhikers gt pe

3. HITCH-HIKER OPERATIONS

• Post hitch-hiker request, MESSAGE FORMAT: *hike destination origin street

landmark seats*. NOTE: seats is optional, must be an integer representing a

request for extra seats. EXAMPLE: hike pe gt beaufort kfc

• Cancel hitch-hiker ride request, MESSAGE FORMAT: *Cancelhike username

password* EXAMPLE: Cancelhike smiteche pass123

180

• Find ride o�ers available from a location to another, MESSAGE FORMAT:

geto�ers origin destination. NOTE: Use short code OR location name with

1 word as long as it is unique! EXAMPLE: geto�ers gt kwt

Appendix E

Additional System Test Results

E.1 Functional Tests

Figure E.1 shows the main menus for the driver and hitch-hiker roles using the web

application.

Figure E.1: Selecting Roles in the WAP Application

Rideshare trip information can be viewed by registered users with details as shown below

in Figure E.2.

181

E.1. FUNCTIONAL TESTS 182

Figure E.2: View Trip Details

Information about known hitch-hiking spots in a particular location can be searched and

is provided as shown in Figure E.3.

Figure E.3: View Hitch-Hiking Spot Details

Appendix F

The Siyakhula Living Lab

The Siyakhula Living Lab (SLL) is organised along the lines of the emerging Research

Development and Innovation (RDI) process living lab methodology [51, 52]. Its �eld test

site is in the Mbashe municipality in the vicinity of the Dwesa-Cwebe Nature Reserve in

the rural Eastern Cape Province. Rhodes and Fort Hare Universities have been active in

ICT4D in this project, through the two Telkom Centres of Excellence in Telecommunica-

tion hosted in their Computer Science departments [52].

The original objective of the SLL was to develop and �eld-test the prototype of a simple,

cost-e�ective and robust e-business/telecommunication platform, to deploy in marginal-

ized and semi-marginalized communities where a large number (over 40%) of the South

African population live [51, 52]. The project has evolved to include a generic service

integration platform to support services for rural and peri-urban areas in South Africa.

Current study areas [51] in the SLL are:

1. Broadband telecommunications network models for rural and peri-urban communi-

ties.

2. eService provisioning for rural and peri-urban communities.

3. Financial, technical and cultural models for rural and peri-urban ICT initiatives.

4. Monitoring and evaluation of rural and peri-urban ICT initiatives.

5. Rural and peri-urban user requirement elicitation.

6. ICT in education.

183

F.1. REEDHOUSE SYSTEMS 184

Figure F.1: TeleWeaver Business Model. Taken from [51]

F.1 ReedHouse Systems

The ReedHouse Systems (RHS) [98] is a software company that transforms the experi-

mentation in the SLL into robust industrial products. It started its operations in 2010

and is used by researchers from Rhodes and Fort Hare Universities for their innovations

that focus on community-oriented, integrated eServices solutions [98]. The two univer-

sities each have the Telekom Centre of Excellence (CoE) [51] whose main focus is the

introduction of meaningful ICTs in marginalized areas.

The combination of the two CoEs, the SLL and RHS shows in a practical way how

marginalized areas that are di�cult to reach, may in future be joined with other commu-

nities to the economic, social and cultural bene�t of all [51, 52].

ReedHouse System has a service integration platform called TeleWeaver [98]. TeleWeaver

is an open source technology platform, based on OSGi (Open Services Gateway Initiative)

[5], that comes with service adapters for the South African eGovernment, rural eCom-

merce, important work�ows; and also blueprints for external services through open web

services interfaces [52, 98].

The TeleWeaver business model has the capacity to provide the appropriate way of in-

troducing ICT infrastructure in marginalized areas. Figure F.1 shows the TeleWeaver

business model with example entities.

Appendix G

Accompanying CD-ROM

The accompanying CD-ROM contains the following:

SachaMiteche.pdf- This thesis in pdf format.

Instructions.txt- How to start the DRS in TeleWeaver.

/References/Documents- Electronic copies of most of the reference material cited in

this thesis.

/References/ref.bib� Bibtex database for references.

/SourceCode/Projects- The source code of the DRS: API, Implementation, Restiful

web service and WAP bundle projects.

/SourceCode/TeleWeaver- The directory folder for TeleWeaver container with DRS

bundles.

/SourceCode/rideshare.sql- The MySQL database dump �le of the DRS.

/SourceCode/Kannel.conf- The con�gurations �le for Kannel (bearerbox, wapbox,

smsbox and sms application settings).

/SourceCode/RideshareWebservice- Settings of the RESTful Webservice for Kannel

message requests.

185

