

An Investigation into Tools and Protocols
For

Commercial Audio Web-site Creation

S’busiso Simon Ndinga

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by South East Academic Libraries System (SEALS)

https://core.ac.uk/display/145054521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Investigation into Tools and Protocols
For

Commercial Audio Web-site Creation

Submitted in fulfillment of the requirements of

Master of Science

By

S’busiso Simon Ndinga

Computer Science Department
Rhodes University

Grahamstown 6140
South Africa

January 2000

Abstract

This thesis presents a feasibility study of a Web-based digital music library and

purchasing system. It investigates the current status of the enabling technologies for

developing such a system. An analysis of various Internet audio codecs, streaming

audio protocols, Internet credit card payment security methods, and ways for

accessing remote Web databases is presented. The objective of the analysis is to

determine the viability and the economic benefits of using these technologies when

developing systems that facilitate music distribution over the Internet. A prototype of

a distributed digital music library and purchasing system named WAPS (for Web-

based Audio Purchasing System) was developed and implemented in the Java

programming language. In this thesis both the physical and the logical component

elements of WAPS are explored in depth so as to provide an insight into the inherent

problems of creating such a system, as well as the overriding benefits derived from

the creation of such a system.

Acknowledgements

I would like to thank Prof. Richard Foss, my supervisor, for his continued effort and

support over the duration of my degree. Many thanks also go to the members of the

Rhodes University Computer Science Department for their support.

I would also like to thank Prof. Radlof, for her support during the statistical analysis

of the subjective audio listening tests. Thanks to Prof. Pat Terry, Vinothan Naidoo and

Siviwe Kwatsha for proofreading the drafts of this thesis.

Special thanks goes to my mother, my sister Duduzile, and my brothers, for their

ceaseless encouragement throughout my masters study.

Contents

1. INTRODUCTION..1
1.1 DESIGN CHALLENGES..1
1.2 WHAT IS NEW IN THIS PROJECT ?..4
1.3 A MODEL FOR AN ONLINE MUSIC STORE...4

1.3.1 Digitizing Audio...4
1.3.1.1 Digitizing with WaveLab..5

1.3.2 Encoding and Cataloguing..5
1.3.3 The System Overview ..6

1.3.3.1 The Audio Storage Server ..6
1.3.3.2 The Store Front...7
1.3.3.3 The Merchant Server ...7

1.4 THESIS OVERVIEW..9

2. REMOTE ACCESS TO AN AUDIO DATABASE... 12
2.1 CURRENT DATABASE TECHNOLOGY ...12
2.2 AUDIO DATABASE RETRIEVAL METHODS..14
2.3 WAPS AUDIO STORAGE SERVER..15
2.4 ARCHITECTURE OF WEB DATABASES ...16

2.4.1 Two-tier Approach.. 16
2.4.2 Three-tier Approach... 17

2.5 ARCHITECTURE FOR THE WAPS LOGICAL DATA COMPONENT..18
2.5.1 Communication between the server and the database tiers.. 19

2.5.1.1 The concept of JDBC ..19
2.5.2 Communication between the Client and the Server tiers... 21

2.5.2.1 HTTP/CGI ...21
2.5.2.2 Java Socket Classes ...23
2.5.2.3 RMI...23
2.5.2.4 CORBA ..26

2.6 IMPLEMENTATION OF THE 3-TIER ARCHITECTURE THAT FORMS THE WAPS DATA
COMMUNICATION COMPONENT ..29

2.6.1 The Pure Java with RMI Implementation... 32
2.6.1.1 Part 1: The Development of the RMI Client (Information Retrieval Engine)..................33
2.6.1.2 Part 2: The Development of the RMI Server Object (Data Access Server).......................36

2.6.2 The Pure Java with CORBA Implementation... 38
2.6.2.1 Phase 1: The Development of the CORBA Client ...40
2.6.2.2 Phase 2: The Development of the CORBA Server Object ...40

2.6.3 Why RMI and CORBA? ... 40
2.6.4 Response times RMI vs. CORBA .. 41

SUMMARY ..43

3. INTERNET AUDIO CODECS ... 44
3.1 DIGITAL AUDIO...44

3.1.1 Sample Rate... 44
3.1.2 Quantization Level.. 45
3.1.3 Bandwidth Consideration.. 45

3.2 AUDIO COMPRESSION..46
3.3 AUDIO COMPRESSION SCHEMES..47
3.4 CURRENT AUDIO CODING SCHEMES...48

3.4.1 MPEG Audio.. 48
3.4.1.1 MPEG-1 Layer I Audio...49
3.4.1.2 MPEG-1 Layer II Audio ...50

3.4.1.3 MPEG-1 Layer III Audio..51
3.4.1.4 MPEG-2 Advanced Audio Coding ...52
3.4.1.5 The MPEG-4 standard...54

3.4.2 Transform-domain Weighted Interleave Vector Quantization (TwinVQ)................................. 55
3.4.3 RealAudio G2 .. 55
3.4.4 Codecs used in WAPS .. 56

3.5 AUDIO VERIFICATION TESTS..56
3.5.1 Test Motivation.. 57
3.5.2 Codecs under Test... 57
3.5.3 Test Material.. 58
3.5.4 Test Methodology.. 58
3.5.5 Test Results .. 59

3.5.5.1 Subject Reliability..59
3.5.5.2 Codec performance ..60

3.5.5.2.1 Overall quality by codec groups ..60
3.5.5.2.2 Overall quality by individual codec ..61
3.5.5.2.3 Quality of each audio test material by individual codecs..62

SUMMARY ..65

4. STREAMING AUDIO PROTOCOLS .. 67

4.1 STREAMING AUDIO..67
4.2 COMMON ARCHITECTURE FOR STREAMING AUDIO APPLICATIONS...68
4.3 TECHNICAL CHALLENGES ASSOCIATED WITH AUDIO STREAMING..70

4.3.1 Bandwidth Limitations... 70
4.3.2 Bandwidth Measurement... 70

4.3.2.1 The Implemented Algorithm..73
4.3.3 Jitter Control ... 74
4.3.4 The Need for Specialized Protocols... 74

4.3.4.1 RTP/RTCP ..75
4.3.4.2 RTSP ..76
4.3.4.3 PNA ..77

4.4 IMPLEMENTED ARCHITECT URE FOR THE WAPS AUDIO COMPONENT ..78
4.4.1 The Audio Component’s core Classes... 81
4.4.2 The message flow within the audio communication component... 82
4.4.3 Implemented transport protocols... 85

4.4.3.1 HTTP ..85
4.4.3.2 RTSP/PNA ..86
4.4.3.3 SATP..86

4.4.4 Implemented support for Plug-in players... 89
4.5 EXPERIMENTAL TESTS...89

4.5.1 Testing scenario.. 90
4.5.2 Testing environment... 90
4.5.3 Experimental Results.. 92

SUMMARY ..93

5. INTERNET CREDIT CARD TRANSACTIONS .. 94
5.1 CREDIT CARD PAYMENT PROCESS OVERVIEW..94
5.2 ONLINE CREDIT CARD TRANSACTIONS...97
5.3 CURRENT INTERNET SECURITY APPROACHES...98

5.3.1 SSL... 99
5.3.2 SET ..101
5.3.3 Virtual Vendor...105
5.3.4 BankGateTM..107
5.3.5 Alternative Methods for Online Credit Card Payments...108

5.4 THE WAPS IMPLEMENTATION OF THE CREDIT CARD PAYMENT PROCESS108
5.4.1 Getting a merchant account..109

5.4.2 Designing a Shopping Cart...110
5.4.2.1 The WAPS Shopping Cart’s Framework ...110
5.4.2.2 The Shopping Cart’s User Interface..112

5.4.3 Securing Payment Data..114
5.4.3.1 Phase 1: Consumer to Merchant data transfer...115
5.4.3.2 Phase 2: Merchant to Bank data transfer..117

SUMMARY ..120

6. DISTRIBUTING MUSIC OVER THE INTERNET ...121
6.1 COPYRIGHT PROBLEMS..121
6.2 INTELLECTUAL PROPERTY MANAGEMENT SYSTEMS..122

6.2.1 Audio Watermarking ..122
6.2.2 FASTAudio...124
6.2.3 The Multimedia Protection Protocol...125

6.3 ETHICS..126
SUMMARY ..127

7. CONCLUSION..128
7.1 THESIS OVERVIEW..128

7.1.1 Methods for Accessing Remote Databases...129
7.1.2 Internet Audio Codecs and Streaming Audio Protocols..131
7.1.3 Payment Security Protocols..133
7.1.4 Issues and Concerns about Distributing Music over the Internet..134

7.2 END-PRODUCT ...135
7.3 FUTURE DIRECTIONS..136

REFERENCES: ...139

1

Chapter 1

Introduction

The growth of the WWW has provided new opportunities for distributing and selling

recorded music over the Internet. Nowadays consumers have the ability to tune-in to

their favorite sites, and to listen to music or purchase it while online. Online stores

can be referred to as the new or current generation way of doing business. In the

context of business transactions, online stores use the Internet to facilitate the sale and

purchase of goods and services. The Web-based Audio Purchasing System (WAPS)

developed during this project is a typical example of an online store that provides the

sale of African music on the Internet. WAPS is a Web-based application that lets

users search for music of their choice from a music database, provides short audio

excerpts from its collection on demand, and allows for music to be ordered securely

and delivered in digital form over the Internet.

 The development of this system has been supported by the International

Library of African Music (ILAM), an institute of Rhodes University. ILAM have a

large archive of African music that they have collected over many years. This music

has been recorded on old 78 rpm LP’s (10 and 12 inches), ¼ Magnetic tapes (of

various sizes, including ‘pancakes’), Shellac discs, Acetates, Cassettes, and recently

CD’s. ILAM has been distributing this music to their customers on audio tapes using

the postal services. Due to the high demand for this music from their customers,

ILAM has had to consider other delivery mechanisms, of which they chose the

Internet. Thus, a Web-based audio delivery system was needed. This then lead to the

development of WAPS. The major aim of this project has been to investigate the

current technological requirements for setting-up an ideal Web-based audio

purchasing environment.

1.1 Design Challenges

Putting together an enterprise-level application for an Internet music store involves

design and integration of various related technologies that play specific roles in a

distributed computing environment. For example, providing widely distributed client

2

access to a large music database and sale of musical assets poses several challenges

that are inadequately addressed by several electronic commerce applications. Firstly, a

distributed topology is a prerequisite for building applications of this sort, since the

Internet is inherently distributed in nature. Thus, a distributed architecture is the

foundation for these applications. Secondly, designing such applications involves

choosing between technologies based on feasibility, applicability, availability, cost,

and many other factors. However, the challenge is to investigate relevant technologies

and select competing, yet complementary technologies that can be integrated

efficiently and effectively to produce a robust system. Thirdly, online commerce

applications generally need to cater to both the product distributor’s (merchant’s)

needs as well as the user’s needs. This is one important factor that in most instances is

ignored. For example a typical e-commerce application should be easy to use for both

users and merchants, easy to maintain and upgrade, fast, and should consume few

machine resources.

The following is a summary of the design challenges that are to be faced when

creating commercial audio web sites:

§ Provide flexible online access to a large music database.

Providing networked access to a large music library presents several challenges.

First, one has to deal with size, since the demands of digitized audio and the high

bandwidth requirements of audio playback require high capacity storage devices.

Also, the limited inter-network bandwidth and the desire for low latency access

suggest the use of distributed stores.

§ Support ad-hoc queries for allowing users to find music material based on

bibliographic information.

Indexing and retrieval of multimedia data poses many different demanding

requirements for navigation on database systems. For example, multimedia

databases need to support searches by media content, such as audio clips, in

addition to processing the traditional text-based queries. Hence, the system should

not be limited to one media retrieval method, but should be able to support both

current and future technology. There is a lot of research which is taking place into

3

the field of content- based audio retrieval systems, although no firm standards

have emerged as yet.

§ Provide support for the standard and the most popular audio codecs.

Web shoppers are accustomed to sampling items they want to buy in the form of

images. Similarly users of the system will prefer to pre-listen to a shorter version

of a particular music item before purchasing it. Hence, the system needs to

provide support for most of the standard and the popular audio file formats.

§ Provide a way to deliver audio according to the users preference.

The system has to allow users to download music material online. However, many

users of the Internet are still connected to the net with a bit rate of 33.6 kbps, and

hence other options for delivery (such as e-mail attachments) will need to be

provided.

§ Provide a secure online payment mechanism through the use of the standard

and the most popular Internet security protocols.

Internet payment security is still a major bottleneck that slows down the growth of

Internet commerce. Internet shoppers need a payment system that is easy to use,

fast and trustworthy.

§ Support the standard multimedia transport protocols so as to allow users to

preview short audio excerpts on demand.

Multimedia transport protocols allow audio to be streamed over the Internet in real

time. Streaming audio is an ideal way to preview music on the Internet, with no

download time or disk space issues to worry about.

The six central goals presented above have provided a platform for the analysis of

various audio compression schemes suitable for the Internet, audio and data transport

protocols, and secure purchase protocols. Realizing the above requirements, an

efficient and flexible architecture for WAPS had to be developed.

4

1.2 What is New in this Project?

This project aims to provide a complete picture of secure music distribution over the

Internet, not just specific pieces (e.g. electronic payments), specific scenarios (e.g.

delivering high quality audio online), or specific products and protocols. The

relationship of the selected enabling technologies is explained in Chapters 2, 3, and 5

through the three logical components of WAPS, outlined in section 1.3.3 below.

WAPS presents an open structure for electronic commerce. This includes a technical

architecture also outlined in section 1.3.3 as well as a legal aspect described in

Chapter 6. The technical structure enables the integration of various tools and

protocols that provide the necessary services. Thus, WAPS is not restricted to specific

proprietary technology or specific protocols. The prototype implementation uses

existing technology standards and widely used technologies, such as data transport

protocols used to access databases remotely, streaming audio technology, credit card

payments, public-key certification, and cryptographic services.

1.3 A Model for an Online Music Store

There are a number of steps that need to be taken when setting up an online store for

the sale of digital music on the Internet. Firstly, the music to be sold has to be

captured from its original source, digitized, and cleaned. Secondly, a short audio clip

of each musical item to be sold has to be created. This is to allow users to preview

music before purchasing it. Thirdly, each musical item has to be catalogued along

with its audio clip, using industry-standard SQL databases such as those from

Microsoft, Informix, and Oracle. Finally, the online store, which takes the form of a

distributed application, has to be built for the purchase and sale of the musical items.

1.3.1 Digitizing Audio

There are two major operations that need to be effected when digitizing audio: firstly,

the audio should be captured from its original source at such a level so that clipping

does not occur. Secondly, clicks, hisses, ticks, and pops of modest amplitude have to

be removed. There is a wide variety of audio digitizing software packages on the

market that can be used to fulfill the above operations. Some of these packages are

platform-specific, while others are cross-platform. Listed below are a few of these

software packages: CubaseVST, WaveLab, CoolEdit, GoldWave, Sound Forge, and

5

many others. All these packages offer excellent tools for capturing, re-sampling,

mixing, splitting tracks, and similar manipulations. For this project, WaveLab was

chosen for digitizing ILAM’s music material since it integrated with a number of

powerful sound processing plug-ins.

1.3.1.1 Digitizing with WaveLab

WaveLab is an all-in-one sound editing and recording software package. It allows for

recording and editing, correcting mistakes and making detailed analysies giving

quality results in 24-bit, 96 kHz resolution. For filtering out noise, WaveLab uses a

Plug-In called DeNoiser. The DeNoiser is a real-time broadband noise removal tool. It

is based on spectral subtraction, whereby each frequency spectrum that has amplitude

below the estimated noise floor is reduced in intensity by the use of a spectral

expander. This results in noise reduction that does not affect the signal phase. Figure 1

below illustrates the signal flow in the DeNoiser Plug-In.

When the noise level is constant or modulates slowly, the signal is continuously

analyzed by the first module in the chain to estimate the noise floor at any given time.

However, if the noise level varies rapidly, the Ambient and Transient analysis help

adjust the response of the noise reduction unit. This allows transient material to

maintain its liveliness and natural ambience.

1.3.2 Encoding and Cataloguing

The process of encoding and cataloguing of the music items on sale was done by

ILAM. The encoders used and the cataloguing process are described in section 4.4 of

Chapter 4.

Figure 1: Signal flow in DeNoiser

Noise
Floor

Transient
Analysis

Ambient
Analysis

Noise

Reduction

Noise Reduction

Ambience Level

OutputInput

6

1.3.3 The System Overview

The model chosen for WAPS is shown in Figure 2. It integrates four Internet related

technologies, which are: multimedia databases, suitable audio codecs, data and audio

transport protocols and Internet security protocols. For any musical store based on the

web, the above technologies need to be addressed during the design and

implementation of such a system.

In designing the architecture of WAPS, the primary concern was its modularity. A

modular system structure enables quick and easy modification and improvements of

some parts without affecting others. Based exclusively on the core modules, it has to

be possible to add new modules, utilizing the existing system mechanisms. WAPS

modularity covers both the physical system components and the logical layered

structure. Physically, WAPS consists of three primary components: Audio Storage

Server, Store Front, and the Merchant Server.

1.3.3.1 The Audio Storage Server

The Audio Storage Server stores bibliographic information regarding a particular

music item for searching and retrieval purposes. Since one of the system’s objectives

is to provide access to a large volume of audio information, the Audio Storage Server

has to be capable of handling numerous requests simultaneously. It also has to be

capable of supporting any other multimedia storage system with an ODBC structure.

The choice of the Audio Storage System used in WAPS is described in section 2.3 of

Chapter 3.

Figure 2: A model for a web music store

7

1.3.3.2 The Store Front

This forms the client side of WAPS. It is a graphical user interface that resides on any

Java-capable browser on the user’s machine. The Store Front is composed of three

components, which are the information retrieval engine, the audio player, and the

shopping cart.

§ The Information Retrieval Engine

The Information Retrieval Engine is used primarily for conducting

structured and free text searching, menu browsing, and displaying of

results.

§ The Audio Player

This is a remote continuous audio playback application that has to be used

in conjunction with a web browser to access remotely stored continuous

audio data. It provides support for most of the popular audio codecs as

well as transmission protocols that are suitable for the Internet. It

integrates with various audio servers to facilitate real-time streaming of

audio data.

§ The Shopping Cart

The shopping cart is needed to temporarily hold all the purchased items,

while the user is busy shopping. It is also used to allow secure transfer of

customer payment details from the Store Front to the Merchant Server.

1.3.3.3 The Merchant Server

The Merchant Server forms the server and the processing end of WAPS. It resides on

the merchant’s computer. The merchant server is composed of three components,

which are the data access server, the audio server, and the payment server.

§ The Data Access Server

The Data Access Server processes audio queries from the remote client

(Store Front) and communicates with the Audio Storage Server to enable

users of WAPS to extract audio information of interest.

8

§ The Audio Server

The Audio Server uses suitable multimedia transport protocols to transmit

on-demand locally stored short audio excerpts to the audio player. Before

the Audio Server transmits audio data to the player, an appropriate

transmission protocol is negotiated between the Audio Server and the

player, depending on the current traffic on the network.

§ The Payment Server

This forms an interface between the shopping cart and the payment

gateway of the Acquiring bank (Merchant’s bank). It supports two third-

party payment systems that enable credit card authorization and settlement

services. These are the Virtual Vendor (VV) [10] system, an e-mail-based

system; and the BankGate [11] system. The BankGate system offers

immediate authorization, while the VV system does not.

Figure 3 illustrates the physical structure of the system’s components.

Merchant
Server

S
e
c
u
r
e
l
i
n
k

 Store Front

Payment
Gateway

Bank

Shopping
Cart

Information
Retrieval
Engine

Audio
Player

Payment
Server

Query
Server Audio

Server
Audio

Storage
Server

Internet
Audio

transport
protocols

Private network

Financial network

Figure 3: The WAPS physical component structure

9

Although the system is split into physical components, it is also divided into three

logical communication components responsible for providing various functionality.

Usually, a physical component implements one logical layer. However, one-to-many

relations between a component and layers are possible. The three logical components

implemented by WAPS are:

§ Data Communication Component

The data communication component provides the means for transporting

information from the Audio Storage Server to the Store Front. The

implementation details for this component are described in Chapter 2.

§ Audio Communication Component

This provides the means for the real-time transmission of audio clips from

the audio server to the audio player. The audio codecs and the transport

protocols that are utilized in this component and the details of how these

interact are described in Chapters 3 and 4.

§ Payment Communication Component

This component details how WAPS secures the user’s payment details

when making online transactions. The implementation details of the

payment communication component are described in Chapter 5.

1.4 Thesis Overview

The remainder of this thesis is structured as follows:

§ Chapter 2 (Remote Access to Audio Databases) investigates the different

techniques available for accessing remote databases and provides some

background information on related technologies, such as current database

technology, audio database retrieval techniques, and data transport protocols.

This chapter also describes the overall architecture of the logical data

communication component of WAPS, and shows how it was implemented

using the concepts presented in this chapter.

10

§ Chapters 3 (Internet Audio Codecs) presents various technologies and

standards that are currently used by applications utilizing audio on the

Internet. It discusses the basics of digital audio and offers a look at the current

audio compression schemes that are suitable for use over the Internet. This

chapter also discusses the procedure followed and the results of the subjective

audio listening tests conducted on various audio codecs for bit rates between 6

and 56 kilobits per second.

§ Chapter 4 (Streaming Audio Protocols) discusses some of the standard and

widely used multimedia transport protocols, so as to give an overview of the

means by which multimedia data is transmitted over the Internet. The

technical issues that affect streaming audio over the Internet and attempts to

solve them are discussed. This chapter lays out the common architecture used

by Internet streaming applications and shows how this architecture was

implemented in WAPS, thereby forming the WAPS logical audio

communication component. Chapter 4 also discusses the results of the

qualitative tests for various audio transport protocols that are utilized by

WAPS.

§ Chapter 5 (Internet Credit Card Transactions) discusses the security of credit

card payment on the Internet. The general approach on how credit card

transactions occur on both the Internet and the real world is outlined. Several

payment security mechanisms are discussed, including the use of SSL, SET,

and proprietary systems that are based on these two protocols. This chapter

also discusses the overall payment mechanism implemented in WAPS

(referred to as the WAPS logical payment communication component).

§ Chapter 6 (Distributing Music over the Internet) discusses some of the legal

issues and copyright concerns encountered when distributing high quality

audio over the Internet. It introduces the issues of copyright protection of

multimedia content on the Internet and presents several technological efforts

that attempt to solve the problems of Intellectual Property Management and

Protection of multimedia content.

11

§ Chapter 7 (Conclusion) presents the concluding remarks on WAPS and the

cost, feasibility, and the applicability of implementing a Web-based audio

purchasing system.

 Page 12

Chapter 2

Remote Access to an Audio Database

This chapter will investigate the various techniques available for accessing a remote

database. It presents general web database architectures and shows how they were

implemented in WAPS. An analysis of the different communication mechanisms that

can be used in distributed web database applications is presented. The analysis of

these technologies will focus on the solutions that directly affect the development of

the WAPS data communication component. Hence, the analysis of these different

communication mechanisms will be based on approaches that are provided by the

Java programming language. However, the results also apply to the more general field

of distributed computing. Firstly, a brief overview of the current database

technologies, multimedia retrieval techniques, and the general architectures used

when developing web databases will be given. Thereafter, the various communication

techniques that can be used between a client and a server application in a distributed

environment, and the solutions selected for WAPS will be introduced. Finally, the

chapter gives some experimental results on the performance of the implemented

communication mechanisms.

2.1 Current Database Technology

There are three models that are available for handling multimedia data, and these are:

a) Object Relational Model

This model started when multimedia data first began to be included in databases.

With this model, a multimedia object is represented as a binary large object

(BLOB) [1]. A BLOB is a collection of binary data stored as a single entity in a

database management system. BLOBs are used primarily to hold multimedia

objects such as images, videos, sound, and they can even be used to store

programs or fragments of code. BLOBs can be indexed by name or subject and

this leads to them functioning as a black box i.e. one cannot get inside and ask

questions about the contents of the object. For example, one cannot search an

 Page 13

audio file or get content information about a specific sequence of frames of a

video file. This model uses SQL for data definition, data management, and data

access and retrieval.

b) Object-oriented Database Model

Object-oriented databases employ a data model that has object-oriented aspects

like a class with attributes, methods, and integrity constraints. They combine the

aspects of object orientation and object-oriented programming languages with

database capabilities. Object-oriented databases have the ability to deal with

complex objects. They encapsulate the object along with the methods it needs for

access and display. They provide more than persistent storage of programming

language objects by extending the functionality of object programming languages

to provide full-featured database programming capabilities. The object-oriented

database model uses a declarative language called OQL (Object Query Language)

defined by ODMG-93 [2] for querying of database objects. However, most object-

oriented databases also support SQL, primarily in the context of ODBC.

c) Object Relational Database Model

The object relational database model employs a data model that attempts to add

object-orientedness to database tables. All database information is still in tables,

but some of the tabular entries can have richer data structures termed Abstract

Data Types (ADTs). An ADT is a data type that is constructed by combining basic

alphanumeric data types. The support for ADTs is attractive because the

operations and functions associated with the new data type can be used to index,

store, and retrieve records based on the context (e.g. multimedia) data type. This

model supports an extended form of SQL, sometimes referred to as Object SQL,

for querying databases. The point of the extension is to support the object model

(e.g. queries involving object attributes). The typical extensions include queries

involving nested objects, set-valued attributes, inclusion of methods, functions in

search predicates, and queries involving abstract data types. This model is still

relational because the data is stored in tables of rows and columns, and SQL (with

the extensions mentioned) is the language for data definition, manipulation, and

query.

 Page 14

2.2 Audio Database Retrieval Methods

Selecting a (small) subset of objects (or records) that meet certain specified criteria

from a given large set of objects is a central problem in database technology. Two

familiar methods, for achieving this are: the traditional alphanumeric method and

content-based retrieval methods.

§ The Traditional Alphanumeric Method

This is the most common way of retrieving multimedia data in a database. It is

accomplished by assigning an alphanumeric ‘tag’ to each object and then

retrieving the objects based on their tags. These tags can be structured into

multiple attributes with an object itself being treated as merely one very large

attribute from a logical perspective. The traditional Boolean algebra then becomes

applicable in all the attributes in the tag and predicates on these can be used to

retrieve the object. In most cases, the tag does not have as much structure as

typical relational databases. For example, the tag may comprise English

descriptions of what the object is about. Hence, standard keyword based indexing

used in document retrieval can be used to retrieve the tags relevant to a given

query and the associated data.

The problem with this approach is that the data in the object is not given the

consideration it deserves. Hence, this gives rise to other problems. The first

problem is how to select what to put in a tag, given an object. Multimedia objects,

such as audio, have many different attributes that are of interest and it is not easy

for any single tag to capture all of them. One solution could be to identify the

commonly used characteristics and build tags based on these, though some

information would still be lost. The other problem is how to create tags. Does one

still have to look at the multimedia object and fill in the corresponding tag for

each multimedia object in a database? The cost of such tagging may limit the

potential size of a database. Also, part of the tagging process can be automated so

as to reduce human effort. For example, in an audio database, a cataloguer could

enter information such as the author, instruments, publisher, music type,

performer, etc, while the tagging of the type-specific attributes such as

compression type, sample size, rate, etc could be automated.

 Page 15

§ Content- based Retrieval Technique

This method can be viewed as the solution to the traditional alphanumeric method.

In this technique, the query is actually posed against the object rather than against

the tag. The content of the object is analyzed and used to evaluate specified

selection predicates. Retrieval in multimedia databases must allow for the type of

queries known from the field of traditional databases as well as for extended

functionality (such as full text search) known from the field of information

retrieval [3]. For example, in the case of videos, content-based searching means

the ability to search for a specific fragment of a video that starts with a given

scene, or that includes a given object. In the case of audio, one might want to be

able to retrieve all audio that is associated with a given topic.

Content-based retrieval may depend on the availability of rich metadata or

meta-knowledge about the original multimedia data. The metadata might be based

on additional knowledge incorporating the semantics of the data and its intended

usage in a particular application, or it might be automatically derived from the

original data by employing specific analysis techniques. One obvious concern

with respect to the retrieval by content as described in the preceding paragraph is

performance. Complex predicates can be very costly to evaluate, and performing

such an evaluation on every object in a database may not be feasible. This is

particularly applicable to large multimedia databases in which a database server

has to process requests from several clients simultaneously. So, access structures

can be provided to reduce this cost and this means that the data may have to reside

in distributed storage.

2.3 WAPS Audio Storage Server

The digitizing, the cleaning, and the cataloguing of music material for WAPS was

done at the ILAM labs by ILAM. The choice of a database management system was

also made by ILAM, and in this case ILAM chose to use the Microsoft Access

database as their database server. MS Access falls under the object relational database

model. It provides a technology called OLE (Object Linking and Embedding) [4] for

storing audio, images, and other binary data created outside it. With OLE technology,

an object can either be linked to, or embedded into a table. Linked objects are those

 Page 16

that reside outside the database, can be updated independently of the database, and are

managed by a file system, not the database. On the other hand, embedded objects

reside completely within the database, are updated by first launching the database, and

travel within the database as opposed to within the file system. Since MS Access does

not support the retrieval of audio material by content, the traditional alphanumeric

technique for the retrieval of the music material on the database was used. Here, the

music data was stored as a string containing the filename (i.e. point/link) of the music

files stored on the local hard disk. Another reason why the link method was chosen

over the embedded data method was to save disk space. With the embedded method

one copy of the audio data resides inside the database and the other remains in the file

system. An update to the embedded audio data does not affect the copy on the file

system and this affects data consistency. For example, since two copies of the

multimedia object exist i.e. one embedded in the database and the other remaining in

the file system, when a change is made to the object on the file system, it is not

reflected on the embedded object. Hence, the updated object on the file system will

now be different from the embedded object, though they both were the same object.

2.4 Architecture of Web Databases

Web database applications have a client-server structure. There are two architectures

that are commonly used when developing these types of applications, namely two-tier

architecture and three-tier-architecture (sometime this is referred to as the n-tier

architecture).

2.4.1 Two-tier Approach

This is the most common architecture on LAN based systems. In two-tier client/server

systems, the client talks directly to a server with no other intervening processes. With

this approach, clients manage the user interface, validate data entered by the user,

dispatch requests from the clients, execute business logic, and send data to users [5].

Figure 1 illustrates the structure of the two-tier approach.

 Page 17

2.4.2 Three-tier Approach

The three-tier client/server architecture introduces a third layer of processing between

the client and the server (Figure 2). As can be seen in Figure 2, this architecture is

composed of three tiers:

a) Client-tier (top-tier): is responsible for the presentation of data, receiving user

events, and controlling the user interface. The actual application logic has

been moved to the application server-tier.

b) Application server-tier (middleware-tier): protects data from direct access by

clients. This tier is new and is not present in the two-tier architecture approach

in this explicit form.

c) Database-tier (bottom tier): responsible for data storage.

Figure 1: Two-tier approach

Figure 2: Three-tier approach

Client

Network

Database
server

------- Top tier

-------- Bottom tier

Network

Database
server

---- Client tier

-- Database
tier

Middle-
ware

Server tier

Client

 Page 18

The boundaries between tiers are logical. For example, it is easily possible to run all

three tiers on one machine.

2.5 Architecture for the WAPS Logical Data Component

As mentioned in section 1.3.3 of Chapter 1, the WAPS data component describes the

way in which the archival audio catalog information travels from the audio storage

server to the Information Retrieval Engine of the Store Front. The data component is

composed of three of the WAPS physical components, which include the Information

Retrieval Engine, Data Access Server, and the Audio Storage Server, The three-tier

architecture approach was chosen when designing the data component. The major

advantage of the three-tier architecture over the two-tier architecture is that it allows

clients and servers to lose weight and become “thin clients” and “thin servers”. This

means that partitioning of functions can be carried further and greater modularity can

be achieved. The following are some advantages that justify the choice of a three-tier

architecture over a two-tier architecture:

§ Reduced network load.

With the two-tier approach, the actual processing of data takes place on the

remote client and this data has to be transported over the network. Hence

increasing the network load. The introduction of the application server tier in

the three-tier approach removes this complexity since the actual control

processing is moved to this tier and clients only receive the results of the

queries made to the database server, or any other operation defined by the

application server-tier.

§ Separation of user interface control and data presentation from application

logic.

Through this separation, more clients are able to have access to a wide variety

of server applications.

§ Re-definition of the storage strategy does not have much impact on the clients.

 Page 19

From Figure 2 above, the chosen three-tier architecture for the data component

integrates the Information Retrieval Engine (Client-tier), the Data Access Server

(Server-tier), and the Audio Storage Server (Database-tier). The interaction between

the server-tier and the data storage-tier can generally be managed by database

protocols such as ODBC or the Java Database Connectivity (JDBC). However one

major concern is how to manage the interaction between the client-tier and the server-

tier in a distributed environment. This section discusses different communication

methods that can be used between the client and the server tiers. The focus will be on

solutions that directly or indirectly affect the development of WAPS and Web

distributed applications in general. Firstly, the JDBC approach that can be used to

facilitate communication between the server-tier and the database-tier will be

discussed followed by a discussion of the various communication methods that can be

used between the client and the server tiers.

2.5.1 Communication between the server and the database tiers

2.5.1.1 The concept of JDBC

The Java Database Connectivity is a standard Java API for executing SQL statements

[6]. It consists of a set of classes and interfaces written in the Java programming

language. JDBC is a low-level interface that is used to invoke or call SQL commands

directly. It was designed to be a base upon which to build higher-level interfaces and

tools. It provides a uniform and a standard programming level interface for database

access. Just like the Open Database Connectivity (ODBC), JDBC is based on the

X/OPEN SQL Call Level Interface. JDBC can be used to write programs to send SQL

statements to virtually any relational database (Figure 3).

Figure 3: JDBC’s relational DB support

JDBC Interface

Java GUI

Driver
(Oracle)

Driver
(ODBC)

Driver
(Sybase)

Oracle DB Ms Access Sybase

C
L
I
E
N
T

SERVER

 Page 20

JDBC allows application programmers to do three things:

a) Establish a connection with a relational database,

b) Send SQL statements, and

c) Process the results.

The following code fragment gives a basic example of these steps:

JBDC facilitates both the two-tier and the three-tier client/server communication

models for accessing databases. In a two-tier model, a client application talks directly

to the database. This requires a driver that can communicate with the particular

database management system being accessed. The SQL statements are then sent to the

database and the results sent back to the client application. Figure 4 illustrates the use

of JBDC in a two-tier architecture.

In the three-tier architecture, commands from the client are sent to a “middleware-

tier”, which then sends SQL statements to the database. The database processes the

SQL statements and sends the results back to the middleware-tier, which in turn sends

them to the client application. In this approach, the JDBC is implemented in the

middleware–tier as opposed to the client application. Figure 5 shows how JDBC is

implemented in a three-tier approach.

Connection con = DriverMananger.getConnection (“jbdc:odbc:Access”, “Login” “Password”)
Statements stmt = con.createStatement ();
ResultsSet rs = stmt.executeQuery(“SELECT a,b,c FROM Table1”));
 while(rs.next())
 {
 int x = rs.getINT(“a”);
 String s = rs.getString(“b”);
 Double c = rs.getDouble(“c”);
 }

Figure 4: JDBC in a 2-tier architecture

Java Application
(client)

JDBC

DBMS

Client computer

DBMS-proprietary protocol

Database server

 Page 21

2.5.2 Communication between the Client and the Server tiers

Four approaches based on Java were identified for communication between the client

and server tiers in a distributed environment. These included HTTP, Java sockets

classes, Java Remote Method Invocation (RMI), and the Common Object Request

Broker Architecture (CORBA).

2.5.2.1 HTTP/CGI

The Hyper Text Transfer Protocol (HTTP) allows web browsers to communicate with

HTTP servers. This communication protocol is implemented over TCP/IP. HTTP

operates in a disconnected mode i.e. once the transaction is completed the client will

disconnect itself from the server. Apart from serving simple web pages, HTTP

combined with the Common Gateway Interface (CGI) can be used in developing

distributed web applications. Figure 6 illustrates the architecture of such applications.

Client application

Application server
JDBC

DBMS

DBMS-proprietary protocol

Middle-tier

Top-tier

Database server

Figure 5: JDBC in a 3-tier model

Figure 6: HTTP/CGI application architecture

Internet

 Page 22

The operation of such applications would be as follows [11]:

1) The user clicks on the “submit” button of the HTML form; the browser uses

the POST method provided by HTML, specifying the target URL and the

HTTP headers. The HTTP server receives the call via a TCP/IP connection,

analyzes the message, and recognizes POST.

2) The web server launches a CGI program or transmits the request to an

application server via an API, such as the Java Servelet [7].

3) The CGI program or the application server performs the processing (for

instance the connection to a DBMS).

4) The CGI program or the application server generates the resulting HTML page

with the results.

5) Finally, the HTTP server returns the results to the web browser for the user

viewing.

This method is fairly easy to implement, but it has a number of significant drawbacks.

These include: data marshalling, performance, and maintainability.

§ Data Marshalling

With the HTTP approach it becomes the application programmer’s responsibility

to marshal and un-marshal a request, its arguments, and results, into a string

representation according to the URL format for the CGI. The marshalling process

is carried-out by the application server or the CGI script.

§ Performance

Experiments have shown that the CGI creates a significance performance

overhead. The CGI creates an extra layer of computation and (inter-process)

communication.

 Page 23

§ Maintainability

When the interface of the application evolves to a new version, the application

programmer has to upgrade the client, the server, and the CGI script in a

consistent manner. This creates unnecessary work and is time consuming; hence it

becomes very difficult to maintain.

2.5.2.2 Java Socket Classes

This is the lowest level at which a client and a server application can communicate in

a Java distributed system environment. It is the basis through which all the other

techniques are built. With the Java programming language a client application can

open an IP socket connection using either TCP or UDP data transport protocols.

Though the socket-based communication can be efficiently implemented between a

client and server application, an application programmer has to still be concerned with

standard tasks such as data marshalling and session management. Also, support for

version upgrades is non-existent. As data formats remain application specific, the re-

use of these implementations is limited. Also, Java imposes a network security

restriction that applets can only open a network connection to servers that reside on

machines where the applets were downloaded. This poses a serious problem,

especially when one thinks of migrating the server application to a different location.

Hence, this limits the use of this approach on web-based applications.

2.5.2.3 RMI

The Java Remote Method Invocation (RMI) is an API standard for building

distributed Java systems [8]. RMI can be compared with the Remote Procedure Call

(RPC), which was intended for usage in procedural languages such as C. RPC allows

one to write programs that call procedures over a network as if the code was stored

and executed locally. RMI can be thought of as the object equivalent of RPC.

However, instead of calling procedures over a network as if they were local, RMI

invokes objects that are distributed throughout a network and physically residing on

the different machines. From the application’s point of view, a remote method and a

local method are invoked in the same manner using the same semantics, while RMI

takes care of the detail at a lower level. RMI is implemented as three layers between

the application program and the Java Virtual Machine, which in turn sits on top of the

operating system. The three layers are:

 Page 24

1) A stub class on the client side of the client/server relationship, and the

corresponding skeleton at the server end. Both the stub and the skeleton

classes are comprised of Java code that provides the necessary link between

the client and the server.

2) A Remote Reference Layer that can behave differently depending on the

parameters passed by the calling program. For example, this layer can

determine whether the request is to call a single remote service or multiple

remote programs as in multicasting.

3) A Transport Connection Layer, which sets up and manages the request.

For the actual communication between two objects RMI uses a native protocol

called the Remote Method Protocol (RMP). With this protocol, information

transfers are performed via “serialization”. In other words, the arguments and

return objects are transmitted via RMP, which in turn formats them so that

they can be transported over the network. There has been an API released by

Sun Microsystems that allows RMI over the Internet Inter ORB Protocol

(IIOP). This API allows client objects written in other languages to talk to

server objects written in Java and vice versa.

RMI uses a network-based registry to keep track of the distributed objects. A server

object makes a method available for remote invocation by binding it to a name in the

RMI registry. The client object in turn, can check for availability of an object by

looking up that particular object’s name in the RMI registry. Basically, the registry

acts as a limited central management point for RMI and it can be thought of simply as

a name repository i.e. it keeps track of the names of all objects that have allowed their

methods to be invoked. Now, one has to recall that we are dealing with objects, the

client and the server that are physically residing on different machines. Hence, a

mechanism is needed to transmit the client’s request to invoke a method on the server

object and provide a response back to the client.

In this regard RMI uses an approach very similar to RPC. Figure 7 illustrates

an interaction between the client and the server objects using RMI. When a client

invokes a server method, the Java Virtual Machine of the client object refers to the

 Page 25

stub for type checking (1). This request is then routed to the skeleton class on the

server, which in turn calls the appropriate method on the server object (2 and 3), that

may then send queries and receive results from a database. The stub acts a proxy to

the skeleton (4) and the skeleton is a proxy to the actual remote method of the server

object (5). In order for RMI to be useful, it must be able to pass arguments to invoked

methods and also handle return values from the invoked methods. In RMI there are no

restrictions on the types of arguments to be passed, and these involve the normal data

types, and objects. Practically, RMI allows two ways for the passing of arguments: by

remote object and by value.

The deciding factor, as to which approach to use, is whether or not arguments

refer to remote objects. For example, if an argument or return value is a remote object,

a reference to the object is passed. Otherwise an argument or return value is not a

remote object, it is copied over the network, meaning that the argument is passed by

value. In RMI, the process of encoding and decoding arguments is referred to as

marshalling and un-marshalling respectively, and it is transparent to the application

programmer. RMI’ s major drawback is that it is limited to a single language

environment, which is Java.

Figure 7: RMI’s client/server interaction

Resolve
object

Request Object

Object Interaction
RMI

registry

Server object implementation

Audio

Storage
Server

Object
handle

(1)

Client object application

(2)

(3)

(4)
Stub

object

(5)
Skeleton

object

 Page 26

2.5.2.4 CORBA

The Common Object Request Broker Architecture (CORBA) is a distributed object

standard developed by an industry consortium of 500 companies called the Object

Management Group (OMG) [4]. It is a set of specifications for providing

interoperability and portability to distributed object-oriented applications. CORBA-

compliant applications can communicate with each other regardless of their location,

implementation language, and the underlying operating system and hardware

architecture. The CORBA framework consists of the following elements [9]:

§ An Object Request Broker (ORB)

The ORB is the object bus. It provides the middleware that establishes the

interaction between client applications needing services and server

applications capable of providing them.

§ An Interface Definition Language (IDL)

IDL provides architecture and implementation independence to CORBA-

compliant applications. It is a declarative language in which object interfaces

are defined and advertised. The interface definition itself is independent of the

actual object implementation.

§ Implementation Repository

This provides a run-time repository of information about the classes a server

supports, the objects that are instantiated, and the object references. The

implementation repository consists of all the run-time information about the

invocation of methods on the client side.

§ Interface Repository

This is an on-line database of object definitions that can be queried at run-time

for dynamic method calls, for locating potentially reusable software

components, and for type checking of method signatures. Basically, the

interface repository is a run-time distributed database that contains machine-

readable versions of the IDL defined interfaces.

 Page 27

§ Object Adapter

The object adapter sits on top of the ORB core communication services and

accepts requests on behalf of the server objects. It provides the run-time

environment for the server application and handles incoming client calls. It is

also responsible for registering the server classes with the implementation

repository.

§ CORBA Services

These augment the functionality of the ORB. CORBA defines services for

persistence, transactions, concurrency, database queries, licensing, etc.

§ Inter-ORB Protocol (IIOP)

The communication in the CORBA implementation of the data layer relies on

IIOP and is performed via stubs and skeletons. IIOP is a binary protocol for

communication between ORBs. It specifies how messages and common data

type representations can be exchanged over a TCP/IP network.

§ Dynamic Invocation Interface (DII)

This is used for dynamic method invocations. CORBA defines Application

Programming Interfaces (API) for looking up the metadata that defines the

server interface, generating the parameters, issuing the remote call, and getting

back the parameters.

§ Dynamic Skeleton Interface (DSI)

It provides run-time binding for servers that need to handle incoming method

calls. The DSI looks at parameter values in an incoming message to figure out

the object and its methods. DSI is the server equivalent of the DII.

§ Client/Server IDL Stubs

The stubs provide static interfaces to object services. They are created by

using an IDL compiler. The client stubs define how clients invoke

corresponding services on the servers. From a client perspective, the client

stubs are local proxies for remote server objects. A CORBA client application

must have an IDL stub for each interface it uses on the server. On the other

 Page 28

hand, the server stubs provide static interfaces to each object exported by the

server.

Figure 8 shows the various components that form CORBA.

When a client sends a request to the server, the ORB intercepts this request and is

responsible for finding an object that can implement the request, passing it the

parameters, invoking its method, and returning the results. CORBA defines two

common ways in which a client can receive an object reference: by using the

Interoperable Object References (IOR) or by using naming services. Just like RMI, in

CORBA, an object can receive a reference to a server object through a naming

service. The naming service allows the client object to locate the server object by

name. Another method for a client to receive a reference to an object is by using

IORs.

Every object on the ORB has an IOR. The IOR is a global identifier string that

identifies the machine on which its associated object is located and the interface that

the object supports. If given the IOR for an object, a client can use standard function

calls on the ORB to turn it into an object reference. Figure 9 illustrates how a client

makes a request to the server object via an ORB.

Figure 8: Components of CORBA

Client

Object
Implementation

Interface
Reposito

ry

Impleme
ntation
Reposito

ry

client
IDL
Stubs

ORB
Interf
ace

Dyna
mic

Invoc
ation

Static
Skele
tons

Dyna
mic

Skele
ton

Invoc

Obje
ct

Adap
ter

Object Request Broker

 Page 29

From Figure 9, the client either uses the DII or its stub class to forward a request to

the ORB interface. The ORB then intercepts the client’s request, finds the object that

implements the request through the server object skeleton or the object adapter, passes

the parameters to skeleton, which then hands them over to the server object

implementation. The server object may then query the database, get the results back

and sends them to the ORB interface through its skeleton class. The ORB then

forwards the results to the client object through the stub class.

2.6 Implementation of the 3-tier Architecture that forms the

WAPS Data Communication Component

As mentioned in section 1.3.3 of Chapter 1, the data communication component

defines the way in which the WAPS audio catalogue information travels from the

bottom tier (Audio Storage Server), through the middleware tier (Data Access Server)

to the client-tier (Information Retrieval Engine). Basically, this logical component

integrates three of the WAPS physical components, which are the Information

Retrieval Engine, the Data Access Server, and the Audio Storage Server, to form a 3-

tier architecture structure. Two similar versions of the data component’s three-tier

architecture were designed and developed. In one version the Java’s Remote Method

Invocation was implemented for transporting database information between the client

Figure 9: Client/server request

Client

Server object
Implementation

DII

Client
IDL

stubs

Server
IDL

skeleton

Object
adapter

Request
Object Request Broker Core

Database
Server

 Page 30

and the server tiers. The other version implements CORBA between the client and the

server tiers.

However, both these versions implement the JDBC approach for transporting

the database information between the middleware server and the data storage tiers.

Figure 10 shows the overall implemented 3-tier architecture of the data component

and it also illustrates how the data communication component’s framework tiers relate

to each other.

Before the protocol communication between the client UI-tier, and the data server-tier

is defined, the information one would like to pass among these three-tiers will be

examined. A typical data retrieval transaction in WAPS would have the following

steps.

§ The user feeds his input for a song or an artist request to the client UI

(Information Retrieval Engine).

Data Server Tier

Data Access Tier

Client UI Tier

Figure 10: Data component’s framework

Information Retrieval Engine

Data Access Server

U
Menu 1 Menu 2 Menu 3

Audio Storage Server

- Top tier

- Middleware
tier

- Bottom tier

RMI/CORBA

JDBC

This transaction does not make use of the shopping cart, payment manager, audio
player, audio server, payment gateway, and the bank modules. It is only
concerned with how data travels from the client UI, through the data access
server, to the data storage server and back to the client UI. Figure 11 gives a
diagrammatic flow of this transaction.

 Page 31

§ The request goes to the middleware server (Data Access Server), named

server. A method on the client application passes the data request to the server

by invoking its method remotely.

§ The server packages the data request into an SQL query object, makes a

connection to the database (Audio Storage Server), forwards the SQL query

for execution, and waits for results.

§ The storage server executes the query and sends the results back to the server.

§ The server receives the results from the storage server, flattens them into a

string representation and stores them into a hash table. It then forwards the

hash table to the client.

§ The client receives the hash table with the search results, retrieves the results

from the hash table, un-flattens them to their original data types, and displays

them for user viewing.

The following two sections (sections 3.61 and 3.62) discuss the two 3-tier architecture

implementation versions of the WAPS logical data communication component, which

are based on RMI and CORBA respectively.

Figure 11: Transaction flow

Display
search
engine

Submit
request

to server

SQL
query to

DB

Server
creates

SQL
query

Matches
Found

DB
sends

results to
server

Server
packs
results

Results
sent to
client

Client
unpacks
results

Results displayed for
user viewing

yes
NO

 Page 32

2.6.1 The Pure Java with RMI Implementation

Here, RMI was utilized to transfer the audio database information between the client-

tier and the server-tier. Figure 12 illustrates the 3-tier RMI architecture approach

implemented. The pure Java with RMI implementation of the WAPS data

communication component was developed in two parts. The first part is the

development of the RMI client (i.e. the client-tier named the Information Retrieval

Engine). The second part is the RMI server object (i.e. middleware-tier named the

Data Access Server).

The following four classes form the core of the RMI implementation of the data

component. They implement the scenario described by the above-mentioned

transaction flow represented by Figure 11. The logic in these classes is hard coded.

These classes are:

1) RMIRequestClient: Receives a search from the user, forwards it to the

RMIAccessServer, and passes the results to the DataReceiver.

2) RMIAcccessServer: Receives the user request in the form of a string,

generates an SQL query and forwards it to the DBConnector.

3) DBConnector: Receives SQL query from the RMIAccessServer, connects to

the database using the JDBC-OBDC bridge, sends the SQL query for

Figure 12: RMI architecture of the data component

 Page 33

execution, gets the results back, flattens them into a string representation and

stores them into hash table.

4) DataReceiver: Receives flattened results from the RMIRequestClient,

reconstructs them into their original form, and displays them for the user

viewing.

The RMIRequestClient and the DataReceiver classes are implemented by the

Information Retrieval Engine, while the RMIAccessServer and the DBConnector

classes are implemented by the Data Access Server. Figure 13 illustrates how these

classes interact.

2.6.1.1 Part 1: The Development of the RMI Client (Information Retrieval

Engine)

The following are the primary features provided by the RMI client implementations

via a graphical user interface:

a) Binding to the server’s implementation using RMI.

b) Invoking the server’s implementation with the appropriate commands

c) Displaying the query results to the user.

The graphical user interface part was built with the AWT, the standard graphical

library of the Java Development Kit. It consists of three canvases, which include the

main canvas, search canvas, and the display canvas.

Figure 13: How the classes interact

Key
RMI class

RMI
application
class

Application
classes

UI
<<interface>>

java.rmi.remote

<<interface>>
java.rmi.remote

RMIAccessServer RMIRequestClient

DataReceiver DBConnector

java.rmi.UnicastObject
{Abstract}

 Page 34

§ Main canvas

This is the outermost canvas. It allows users to search for audio information by

artist, song title, and key words. A snapshot of this canvas is shown in Figure 14.

§ Search canvas

This is a search engine. It provides a text field for submitting a search query to the

server sited remotely. Figure 15 shows a snapshot of this canvas.

Figure 14: Main canvas

Figure 15: Search canvas

 Page 35

§ Display canvas

This is for displaying the user’s search results and allowing a user to navigate

through the results. A snapshot of this canvas is shown in Figure 16.

To move between the canvases, a user uses the Next, and the Back buttons. The

following code is run when the user presses the Go get it button on the search canvas.

The calls to the server are printed in bold characters above. The first call makes a

connection to the server object, and the second call invokes one of the server’s

methods (searchByAuthor()), passes a search string, and gets the returned hash table

(authorTable). Once the results have been received from the server, they are then

displayed within a List Box (left of the display canvas), and the user can then use the

if (initialized)
{
 try
 {
 String host = “rmi”://”+getCodeBase().getHost()=”:4444/RMIAccessServer”;
 //Binding the server’s implementation using RMI
 server=(RMIAccessInterface)Naming.lookup(host);
 //Invoke an RMIAccessServer method and assign the results to a hashtable
 Hashtable authorTable=server.searchByAuthor(textField.get.Text());
 }
 catch (RemoteException e)
 {
 e.printStack Trace();
 }}

Figure 16: Display canvas

 Page 36

Next, Previous, Open, Clear, and Close buttons to navigate through the audio

information.

2.6.1.2 Part 2: The Development of the RMI Server Object (Data Access Server)

The server object is made up of two parts. The first part is the server’s interface

definition, which is a Java class file that defines all the methods that the server objects

will make available for remote invocation. The interface allows for the establishment

of interface definitions between the client and the server. It is equivalent to CORBA’s

IDL interface. To make the interface available to the client, RMI uses the RMI

registry (naming service). The registry answers connection requests to RMI servers

that registered themselves by returning their interfaces to the client. The calls are then

performed through this interface. The interface for Data Access Server object is as

follows:

The second part of the RMI server object is the server object itself i.e. the

RMIAccessServer. The server object basically is the implementation of the interface,

and it makes its methods available for remote invocation through the interface and

registers its name with the RMI registry server. It also establishes a connection with

the database (Audio Storage Server) and waits for client queries. During a search

request by the user, the client first makes a connection to the server object. This

connection is performed in two steps:

§ Firstly, a variable, which is the same type as the server interface is declared

and

§ Secondly, a connection with the naming service is established by passing on

the server object’s name on which one wants to retrieve a reference. This is

import java.rmi.*
import java.util.Hashtable;
import DataConnector;

public interface AccessInterface extends Remote
{
 public Hashtable searchByAuthor (String name) throws RemoteExceptions;
 public Hashtable searchByTitle (String name) throws RemoteExceptions;
 public Hashtable searchByKeyword (String name) throws RemoteExceptions
 }

 Page 37

given by the URL: rmi://<Name IP address of host>:<port>/<server object

name>, which is represented by the following code:

Figure 17 illustrates how this connection to the server is established.

The diagram below (Figure 18) summarizes the various development stages of the

RMI implementation of the data component.

 “rmi://”+getCodeBase().getHost()+”:4444/RMIAccessServer”

 host address port# server object name

Figure 17: client server connection

(1) lookup (“………”)

(2) connect()

(3) searchByAuthor()

(4) searchByTitle()

(5) searchByKeyWord()

Client Server RMI registry

Server interface definition

Java compiler

Client development Server object development

Client and interface
classes

Server classes

rmic compiler

Stubs Skeleton

Figure 18: RMI development stages

 Page 38

The white rectangles represent the code writing steps i.e. the definition of the server

object interface, writing the client and the RMI server object. The dark rectangles

show the various classes that were automatically generated by the Java tools.

2.6.2 The Pure Java with CORBA Implementation

Here, the concept of CORBA is utilized to transfer audio information in a distributed

environment. Just as with the RMI approach, the pure Java with CORBA

implementation of the WAPS data communication component was also developed in

two phases that included the development of the CORBA client (i.e. the client-tier

named the Information Retrieval Engine) and the CORBA server object (i.e.

middleware-tier named the Data Access Server). Figure 19 illustrates the 3-tier

CORBA architecture implemented.

The CORBA implementation also makes use of the four main classes used in the RMI

approach. These are the DataReceiver, CORBARequestClient (same functionality as

the RMIRequestClient), CORBAccessServer (same functionality as the

RMIAccessServer), and the DBConnector. The ORB used during the implementation

comes standard with the JDK 1.2 version of Java. Sun Microsystems Java ORB

complies with the OMG CORBA 2.0 specification and it implements a portion of

CORBA’s services. It provides mechanisms for the launching of server object

interfaces using IDL and the use of an IDL-to-Java compiler to do the conversion to

Figure 19: CORBA architecture of the data component

 Page 39

Java class files. The IDL-to-Java mapping enables one to associate the CORBA data

types to one of the languages chosen to develop the objects, which is Java in this case.

With CORBA, each server object has to have an interface that specifies the methods

that the server will make available for remote invocation.

This is, in principle, similar to the RMI interface. The following is the IDL file, which

defines the interface of the Data Access Server’s CORBA implementation.

Once defined, the idl2java compiler [12] is then used to create the necessary CORBA

infrastructure (including stubs and skeletons). The diagram below (Figure 20) shows

the various development stages of the CORBA version for the data component.

The dark rectangles represent code that was written i.e. the definition of the server

object interface, writing of the client applet and the CORBA server object. The white

rectangles show the various classes that were automatically generated by the Java

tools used.

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA

 module DataAccess
{
 interface AccessInterface extends Remote
 {
 string searchByAuthor (in string name)
 string search ByTitle (in string name)
 string search ByKeyword (in string name)
 }
}

Server interface IDL definition

Java compiler

idl2java compiler

Stubs

Client and server
classes

Skeleton

Server object
development

Client object
development

Figure 20: CORBA development stages

 Page 40

2.6.2.1 Phase 1: The Development of the CORBA Client

The entire functional code of the RMI client was used again with no further

development needed. Only the communication mechanisms with the server were

modified. This was only of concern at two points: access to the ORB, and the use of

tokenized strings instead of hash tables to transmit the results of the method calls. The

code needed to interface with the server is as follows:

2.6.2.2 Phase 2: The Development of the CORBA Server Object

The implementation of the DBConnector objects uses 100% of the code from the RMI

version, while the implementation of the CORBAccessServer object uses 95% of the

code from the RMI version (RMIAccessServer). The only difference between the two

is the way in which data is transported between the client and the server objects. For

example, the Hashtable object does not correspond to any IDL type; hence the

solution used in RMI could not be kept. Thus the results were tokenized into a string

as the return type of the various methods of the server object e.g. row1+“$”+row2

+”$”+…+rowN. On the client side the dollar (“$”) sign was then used to split or to

un-tokenize the results into their original form.

2.6.3 Why RMI and CORBA?

As shown above, the data communication component has been implemented using

two of the widely used distributed system architectures: CORBA and Java RMI.

CORBA and RMI are two distributed object standards supported by the Object

Management Group. They are not competing systems, but complementary ones. They

each suit different needs, and the choice between them depends on one’s

requirements. The most important requirement is whether one requires homogeneity

or heterogeneity. For example, systems that are made up of components in languages

try {
 // create and initialize the ORB
 ORB orb = Orb. int (parent, null);
 //Get the root naming context
 org.omg.CORBA.Objects obj = orb. resolve_initial_references(“NamingServices”);
 NamingContext nc = NamingContextHelper.narrow(obj);
 //Resolve the objects reference in naming
 NameComponent ncp = NameComponent (“waps”,’’’’);
 NameComponent path[] = {ncp};
 WapsRef = wapsHelper.narrow(nc.resolve(path));}

catch (Exceptions e) {
e.printStackTrace(System.out); }

 Page 41

other than Java demand CORBA. At the same time, by using RMI on a pure Java

environment (such as WAPS tails) one is able to gain the benefits of distributed

garbage collection, object serialization, and other Java features.

However, even in the 100% pure Java scenario, there is a place for CORBA. RMI is

specifically not capable of handling highly distributed systems. It is still missing some

of the key services, such as transaction management, that CORBA supports. The

introduction of CORBA in the Java environment is still new and is not well supported

by many Java virtual machines. In view of the above factors, both the CORBA and

the RMI support were included in WAPS.

2.6.4 Response times RMI vs. CORBA

The literature discussing response times states that there are three important limits that

are acceptable to users of web-based distributed systems [10]:

§ 0.1 second

This is just about the limit for having a user feel that the system is reacting

instantaneously.

§ 1.0 seconds

This is about the limit for a user’s flow of thought to stay uninterrupted, even

though the delay will be noticeable.

§ 10 seconds

This is about the limit for keeping a user’s attention focused on dialogue. For

longer periods, users should be given feedback indicating when the system

expects to be done.

Feedback during the delay is especially important if the response time is likely to be

highly inconsistent, otherwise users will not know what to expect. This is particularly

true on systems that are developed to function on the Internet, like WAPS. Hence in

WAPS feedback is provided on the Information Retrieval Engine’s status bar when a

user searches for some musical material. It was mentioned that the Information

Retrieval Engine communicates with the Data Access Server through both RMI and

 Page 42

CORBA. Using this client/server scenario some experimental tests were conducted in

different network conditions in order to get readings on the performance and the

response times of both RMI and CORBA method invocations. A search query method

invocation was performed to the Data Access Server through the Information

Retrieval Engine. With this query between fifty and one hundred records were

received. Three of these search method invocations were undertaken. The tests were

conducted across a 10 Mb/s Ethernet LAN, a 10 Mb/s dedicated connection, and

finally over the Internet via a 28.8 kbps modern connection line. These tests measured

the average response times of the RMI and the CORBA search method invocations.

The client machine used was a 133- MHz Pentium running Windows 98 and

the server machine was a 233-MHz Pentium running Windows NT server 4.0. Table 1

compares the average response times from the experiments.

 RMI CORBA

LAN 1.303 s 0.971 s

Dedicated 1.123 s 0.898 s

Internet 2.363 s 2.179 s

The RMI remote invocations performance numbers were higher than those of

CORBA. This is due to the RMI’s native protocol, the Remote Method Protocol

(RMP), which uses Java serialization to marshal and un-marshal each argument. This

causes some performance overhead, which eventually degrades the performance of

RMI as opposed to CORBA’s transport protocol (IIOP), which does not support

object serialization

Table 1: RMI Vs CORBA method invocations

 Page 43

Summary

In this chapter, four approaches provided by the Java programming language, for

accessing remote audio databases were identified. These include techniques based on

database protocols e.g. JBDC, HTTP/CGI, RMI, and CORBA. The approaches based

on HTTP/CGI and straight IP sockets have several drawbacks, such as data

marshalling and performance, especially when it comes to 3-tier web database

applications. The RMI mechanism offers an efficient and a lightweight

communication between remote Java objects, and is the preferred solution for

applications that are completely written in Java. Its object serialization technique is an

added advantage over CORBA and reduces the need for data marshalling. Although

CORBA offers more services than RMI and the performance tests proved that it is

faster than RMI, it is still not well supported by many Java virtual machines on the

market.

 Page 44

Chapter 3

Internet Audio Codecs

The purpose of this chapter is to briefly present technologies and standards that are

currently used by audio applications on the Internet. It will show the environment in

which WAPS was designed, and help justify the utilization of some technologies and

the rejection of others. In this chapter data compression will be discussed, specifically

focusing on audio, and several existing audio compression standards that facilitate the

design and the implementation of audio applications in the Internet environment will

be presented. The procedure followed and the results of the subjective audio listening

tests, which were conducted for some of the standard and the most popular Internet

audio codecs are presented.

3.1 Digital Audio

Audio files pose one major problem when sent across data communication networks,

especially the Internet. They consume a large amount of bandwidth. For example,

uncompressed CD-quality audio is stored as 16 bit samples and requires 44100

samples per second to capture the full range of frequencies that a listener can hear.

Although the quality is very high, this requires a data rate of 700 kbps and for stereo

files the data rate doubles to 1400 kbps. Given that the physical access to the Internet

is limited, this becomes far too large to be delivered in real-time. Two factors

contribute to the bandwidth consumed by an audio file: the sample rate and the

quantization level.

3.1.1 Sample Rate

Frequencies perceived by the human ear as sound are typically between 20 Hz and 20

kHz. The human voice can produce frequencies between 40 Hz and 4 kHz. In order to

preserve all the frequencies in the range of human hearing (20 Hz – 20 kHz), an

analog to digital converter must sample an analog signal at 40 kHz. This is in

accordance with the Shannon-Nyquist theorem [13], which states that the sample rate

must be at least twice the highest frequency to be sampled. A sampling rate any lower

 Page 45

than twice the highest frequency produces aliasing distortion. In practice a sampling

rate of 44.1 kHz or 48 kHz is used for highest audio quality. However, sampling at

high frequencies increases the size of the audio file.

3.1.2 Quantization Level

When an analog signal is sampled, the amplitude of each sample has to be stored and

any number of bits can be used to represent this amplitude. The number of bits that

are used determines the number of quantization levels. For digital audio, this precision

usually ranges from 8 bits per sample (256 levels) to 16 bits per sample (65536

levels). Normally, samples that fall in between two quantization levels are assigned

the closest value. For example, Figure 1 shows a value lying half way between two

quantization levels and it is assigned a value of 1. In Figure 1, four quantization levels

are used and hence 2 bits are needed to encode each sample. This process is referred

to as quantizing. The difference between the actual analog value and the chosen

quantization interval value is called quantization error [14].

Quantization error produces audible distortion. The more bits used in the sampling

process, the less audible the quantization distortion. Hence, it is important to use

enough bits to lower the quantization distortion to a level where it cannot be heard.

Most of the digital audio industry has agreed that 16 to 20 bits is adequate. On the

other hand, using more bits during the sampling process increases audio file size.

3.1.3 Bandwidth Consideration

As much as one would like the highest audio quality possible, with 16 bits being

generated 441100 times per second, it does not take long to generate a very large

Figure 1: Quantization error shown on a 2-bit system

 Page 46

audio file. For example, a one-minute stereo song will generate a 10.58 million-byte

file (10.34 Megabytes). A 64-minute compact disc requires 650 MB of storage. Apart

from the need for very large storage devices for the files, these large files present a

problem when they are to be transferred across networks, especially over standard

telephone lines. For example, using a sampling rate of 44.1 kHz and 16 bits per

sample, stereo audio generates a 1.4 MBPS real-time audio signal. Considering that

all transmission protocols add bits to the audio file for routing purposes, this amount

of bandwidth eliminates the possibility of playing high quality audio through a 28.8

kbps modem in real-time. Thus, some way is needed to reduce the amount of data in

an audio file whilst retaining quality. This is achieved through compression.

3.2 Audio Compression

Data compression reduces the amount of space that must be allocated for information

[15]. This is particularly important in current network environments where bandwidth

is the most crucial constraint. Compression schemes can either be lossless or lossy.

§ Lossless Compression

This is also known as redundancy reduction. This scheme removes or reduces

the redundancy in the information, but enables these modifications to be

inverted and data structures to be reconstructed. As the name implies, lossless

compression does not introduce any signal distortion or information losses. In

lossless data compression, the output (decompressed) data is guaranteed to

exactly match the input data after the compress/decompress cycle. This type of

compression is mainly used when storing database records, spreadsheets, or

word processing files. In these applications, the loss of even a single bit could

prove catastrophic.

§ Lossy Compression

This is also known as entropy reduction. Compression techniques that are

based on this method result in a loss of information, which cannot be

recovered. This method is irreversible and introduces signal distortion. Lossy

data compression gives up a certain loss of accuracy in exchange for increased

compression. It is generally applied to digital multimedia data. With

 Page 47

multimedia data, the idea of output and input signals not exactly matching is

somewhat acceptable. Lossy compression techniques can be adjusted to

different quality levels, gaining higher accuracy in exchange for less

compression.

3.3 Audio Compression Schemes

Audio compression coder/decoders (codecs) attempt to preserve all of the frequencies

in the range of human hearing (20 Hz – 20 kHz). In the case of human speech, only

frequencies in the range of 20 Hz – 3.4 kHz are necessary, so speech codecs are only

concerned with this range. However, this chapter will focus on audio codecs. Codecs

are implemented either as software programs or as dedicated hardware that can be

added to a computer or an audio device. In this discussion only software based audio

codecs are considered. During audio compression, a user typically loads a 16 bit, 44.1

kHz PCM audio file into an encoder and then saves the new compressed copy of the

file. The output file is not in the same format as the original file, so a corresponding

decoder is required to reconstruct the audio file into the original format. There are two

basic types of audio compression codecs: time domain and frequency domain.

§ Time Domain Codecs

In time domain codecs the parameters that model the audio signal are derived in

the compressor. These parameters are transmitted to the decompressor, which then

attempts to re-synthesize the audio based on the same model used in the

compressor. Vocoders and linear predictive codecs are the most often used

examples of time domain codecs [14]. These codecs have been successfully used

to achieve low-bit rate coding of speech. Their drawback is that they are based on

a model of the human vocal tract that can be used to compress voice very

efficiently, but does not accurately reproduce music (and other types of audio).

§ Frequency Domain Codecs

With the frequency domain codecs, the audio signal is divided into a set of

frequency components that are encoded separately. This type of coding scheme is

mainly used in music. With this scheme, the highest coding efficiency is achieved

with algorithms exploiting signal redundancies and irrelevancies in the frequency

 Page 48

domain based on a model of the human auditory system. All codecs use the same

basic structure. Frequency domain codecs include two more coding types,

transform and subband. Transform codecs map the time-based PCM samples into

the frequency domain. The result is a set of frequency components that can be

coded separately. MPEG-1 Layer III is one example of a transform codec.

Subband codecs are hybrids of frequency domain codecs and time domain coding

methods. The signal is broken into smaller equal bandwidth subbands of different

frequency ranges while remaining in the time domain. Concurrently, the same

signal is mapped to the frequency domain and the spectral lines fed to a

psychoacoustic model. The model then dictates the quantization level of each

subband in the time domain. The most popular examples of subband codecs are

MPEG-1 Layer I and II coders.

3.4 Current Audio Coding Schemes

The existing audio coding schemes that are used for Internet applications can be

roughly divided into three groups: MPEG codecs, derivatives of the AC-3 codec, and

speech codecs [16]. In this section some of the standard audio codecs and those that

are proprietary but widely used are discussed. The codecs to be discussed include

MPEG-1 (Layers I, II, and III), MPEG-2 AAC, MPEG-4, RealAudio G2, and

TwinVQ,

3.4.1 MPEG Audio

The Motion Picture Experts Group (MPEG) audio compression algorithm is an

International Standards Organization (ISO) standard for high fidelity audio

compression. The composite standard addresses the compression of synchronized

video and audio at a total bit rate of roughly 1.5 megabits per second. MPEG works in

phases, which are normally denoted by Arabic numbers (MPEG-1, MPEG-2, MPEG-

4). The audio activities of the first phase, MPEG-1, were finalized in 1992, while

those of the second phase, MPEG-2, were finalized in 1997. Another phase currently

under way is called MPEG-4 and is in its final stages of development. Both the

MPEG-1 and the MPEG-2 phases define three different layers. These layers represent

a family of coding algorithms and they are normally denoted by Roman Numbers i.e.

Layer I, Layer II, and Layer III. Each layer offers increased compression as well as

 Page 49

increased encoding complexity. All these layers are defined within the audio part of

the existing international standards, MPEG-1 and MPEG-2.

By using MPEG audio coding, one may compress the original sound data from

a CD by a factor of 12 without losing any significant sound quality. Factors of 24 and

even more are possible and still maintain a sound quality that is significantly better

than one would get by just reducing the sampling rate and the resolution of the

samples. Basically, this is realized by perceptual coding techniques addressing the

perception of sound waves by the human ear. Using the MPEG audio standard, one

may achieve a typical data reduction shown in Table 1, but still maintain the original

CD sound quality.

Ratio MPEG Layer

1:4

1:6 – 1:8

1:10 – 1:12

By Layer I (Corresponds to 384 kbps for a stereo signal)

By Layer II (Corresponds to 256 – 192 kbps for a stereo

signal)

By Layer III (Corresponds to 128 – 112 kbps for a stereo

signal)

By exploiting stereo effects and by limiting the audio bandwidth, these layers can

achieve an acceptable sound quality at even lower bit rates.

3.4.1.1 MPEG-1 Layer I Audio

This is the simplest layer that is suitable for consumer use. It features subband

filtering with 32 equal width subbands, adaptive bit allocation, and block

compounding. Bit rates range from 32 kbps (mono) up to 448 kbps (stereo).

Depending on the complexity of the encoder, high (near CD) audio quality requires a

bit rate of about 256 – 384 kbps for stereo audio. The complexity of the decoder is

low, while that of the encoder is about 1.5 to 3 times higher than that of the decoder.

The Layer I algorithm uses a basic filter bank, found in all layers, to divide the audio

signal into 32 constant width frequency bands. These filters are relatively simple and

provide good time resolution with reasonable frequency resolution relative to the

perceptual properties of the human ear [13]. The filter bank provides 32 frequency

Table 1: MPEG reduction ratio vs CD quality

 Page 50

samples, one sample per band, for every 32 input audio samples. The Layer I

algorithm groups together 12 samples from each of the 32 bands. Each group of 12

samples receives a bit allocation and if the bit allocation is not zero, a scale factor.

The bit allocation determines the number of bits used to represent each sample. The

scale factor is a multiplier that sizes the samples to maximize the resolution of the

quantifier. The Layer I encoder formats the 32 groups of 12 samples (i.e. 384

samples) into a frame. Besides the audio data, each frame contains a header, an

optional cyclic redundancy code (CRC) check word, and possibly ancillary data.

3.4.1.2 MPEG-1 Layer II Audio

MPEG-1 layer II audio offers more compression than Layer I. It has numerous

applications in both consumer and professional audio, such as audio broadcasting,

television, telecommunication, and the Internet. Bit rates range from 32 – 192 kbps

for mono and from 64 – 384 kbps for stereo. Depending on the complexity of the

encoder, a high (near CD) audio quality requires a bit rate of about 192 – 256 kbps per

stereo channel. The complexity of the decoder is about 25% higher than for Layer I

decoder, with the encoder complexity about 2 to 4 times higher.

The Layer II algorithm is a simple enhancement of Layer I. It improves compression

performance by coding data in larger groups. Encoders based on Layer II form frames

of 3 by 12 by 32 = 152 samples per audio channel. Whereas Layer I codes data in

single groups of 12 samples for each subband, Layer II codes data in 3 groups of 12

samples for each subband. Discounting the stereo redundancy, there is one bit

allocation and up to three scale factors for each trio of 12 samples. The encoder

encodes with a unique scale factor for each group of 12 samples only if necessary to

avoid audible distortions.

The encoder shares scale factor values between two or three groups in two other

cases:

(i) when the values of the scale factors are sufficiently close and

(ii) when the encoder anticipates that the temporal noise masking by the

ear will hide the consequent distortion.

Layer II also improves performance over Layer I by representing the bit allocation,

the scale factor values, and the quantified samples with a more efficient code.

 Page 51

3.4.1.3 MPEG-1 Layer III Audio

MPEG Layer III audio is one of the most powerful members of the MPEG audio

coding family [17]. It offers even more compression than the Layer I and Layer II

coders. Its applications extend into narrow band telecommunication and certain

specialist areas of professional audio. Table 2 gives an overview of the level of

complexity of all the three layers.

Layer Complexity Level

 Encoder Decoder

I 1.5 – 3 1.0

II 2 – 4 1.25

III > 7.5 2.5

It has to be taken into account that the complexity has to do with the amount of

processing power and memory that is required if a general-purpose machine performs

the encoding and decoding functions.

While MPEG Layer II specifies a coded representation that can be used for

compressing audio sequences, both mono and stereo, the Layer III algorithm is a

much more refined approach. The algorithm is illustrated in Figure 2 below. Input

audio samples are fed into the encoder. The mapping creates a filtered and sub-

sampled representation of the input audio stream. A psychoacoustic model creates a

set of data to control the quantifier and coding. The quantifier and the coding block

create a set of coding symbols from the mapped input samples. The block ‘frame

packing’ assembles the actual bit stream from the output data of the other blocks, and

adds other information (e.g. error correction) when necessary. Several international

listening tests for high quality audio have been undertaken, whereby MPEG-1 Layer

III impressively proved to have superior performance, maintaining the original sound

Table 2: Encoder/Decoder level of complexity

 Page 52

 Figure 2: MPEG Layer III encoder

quality at a data reduction of 1:12 (around 64 kbps per audio channel) [18]. However,

there have been hardly any listening tests conducted for lower bit rates that could

benefit web-based applications that require bandwidth of around 6–10 kbps. Table 3

illustrates the typical performance data values of MPEG Layer III [18].

SOUND QUALITY BANDWIDTH MODE BITRATE REDUCTION

RATIO

Telephone sound 2.5 kHz mono 8 kbps 96:1

Better than short-

wave

4.5 kHz mono 16 kbps 48:1

Better than AM radio 7.5 kHz mono 32 kbps 24:1

Similar to FM radio 11 kHz stereo 56-64 kbps 26-24:1

Near – CD 15 kHz stereo 96 kbps 16:1

CD >15 kHz stereo 112-128 kbps 14-12:1

 Table 3: MPEG Layer III performance values

3.4.1.4 MPEG-2 Advanced Audio Coding

MPEG-2 AAC is the consequent continuation of MPEG Audio Layer III. Previously

known as MPEG-2 NBC (Non-backward compatible), MPEG-2 AAC was declared

an international standard by MPEG in 1997 [19]. It supports sampling frequencies

between 8 kHz and 96kHz and any number of channels between 1 and 48. Presently

MPEG-2 AAC is the most efficient method for audio data compression. The driving

force behind its development was the quest for an efficient coding method for

 Page 53

surround signals, like 5.1 channel signals (left, right, center, left surround, and right

surround) as are being used in cinemas and digital television systems. However, the

high performance of MPEG-2 AAC also applies to mono and 2-channel stereo

signals, and its high coding efficiency makes it an exceptional candidate for the

Internet.

MPEG-2 AAC basically makes use of the signal masking properties of the

human ear, in order to reduce the amount of data, just as all perceptual coding

schemes do. The quantization noise is distributed among frequency bands in such a

way that it is masked by the total signal i.e. it remains inaudible. The basic structure

of this coding method is shown in Figure 3.

There are some crucial differences between MPEG-2 AAC and MPEG Audio Layer

III. These are shown as follows:

§ Filter bank

MPEG-2 AAC uses a plain Modified Discrete Cosine Transform (MDCT).

Together with the increased window length (2048 instead of 1152 lines per

transformation) the MDCT outperforms the filter banks of the previous coding

methods.

§ Temporal Noise Shaping (TNS)

Figure 3: MPEG-2 AAC structure

 Page 54

This shapes the distribution of quantization noise in time by prediction in the

frequency domain.

§ Prediction

This technique is commonly established in the area of speech coding systems.

It benefits from the fact that a certain type of audio signal is easy to predict.

§ Quantization

By allowing finer control of quantization resolution, the given bit rate can

be used more efficiently.

• Bit-Stream

The information to be transmitted undergoes entropy coding in order to

keep redundancy as low as possible. The optimization of these coding

methods together with a flexible bit-stream structure has made further

improvement of the coding efficiency possible.

3.4.1.5 The MPEG-4 standard

After MPEG-1 and MPEG-2, the next phase of compression work by the Moving

Picture Experts Group is called MPEG-4. While the former MPEG standards (i.e.

MPEG-1 and MPEG-2) were only concerned about compression, MPEG-4 provides

additional functionality (e.g. bit rate scalability, object-based representation,

intellectual property management and protection, etc). MPEG-4 is based on a rich set

of coding tools, starting at bit rates as low as 2 kbps for a channel. The MPEG audio

codec includes coding tools from different coding paradigms. These include

parametric audio coding, synthetic audio, speech coding, and subband/transform

coding. The high-quality part of the MPEG-4 audio functions is covered by what is

called “t/f” coding. In a t/f coder the input signal is first decomposed into a

time/frequency (t/f) spectral representation by means of an analysis filterbank prior to

subsequent quantization and coding. The core part of the MPEG-4 audio t/f coder is

based on MPEG-2 AAC technology. At present there are no fully completed MPEG-4

implementations. The MPEG-4 standard is meant to become universal in

 Page 55

broadcasting, movies, and multimedia applications, mostly applications that are based

on the Web, due to its low bit rate compression techniques.

3.4.2 Transform-domain Weighted Interleave Vector Quantization

(TwinVQ)

TwinVQ is a music compression technology that has been developed by the NTT

Human Interface Laboratories in Japan [21]. It is a transform coding method like

MPEG Audio Layer III or AAC. However, TwinVQ encoded files are much smaller

than those of MPEG Audio Layer III, whilst providing high quality. In this method,

the individual bits of music data are not directly encoded, but are combined into

pattern segments (vectors). These patterns are then compared against standard

patterns, which are prepared in advance. The standard pattern, which provides the

closest match, is selected and the number associated with that pattern is transmitted as

the compression code. Data is then packed into long frame mode or short frame mode

(8 sub-frames) using a constant bit rate in order to enhance error robustness. The

coding distortion is minimized even at low bit rates so that music can be successfully

regenerated.

3.4.3 RealAudio G2

RealAudio is one of the oldest formats for compressed audio. It was first designed for

voice applications on the web, but later was extended to music and video applications

as well. It is developed by Real Networks [22] and it implements a codec developed at

Dolby Laboratories, called DolbyNet [23]. This music codec was designed for

maximum quality at typical Internet speeds of 16 to 32 kbps. It was, however,

extended to rates outside the original design to offer data rates ranging from 6 kbps to

96 kbps with an average frequency response ranging from 3.5 to 22.4 kHz. Table 4

and Table 5 illustrate the average frequency responses achieved by RealAudio.

Data rate 6 kbps 8 kbps 11 kbps 16 kbps 20 kbps 32 kbps 44 kbps 96 kbps

Frequency

response

3 kHz 4 kHz 5.5 kHz 8 kHz 10 kHz 16 kHz 22 kHz 22 kHz

Sampling rate 8 kHz 8 kHz 11 kHz 16 kHz 22 kHz 44 kHz 44 kHz 44 kHz

Table 4: Frequency responses for mono music

 Page 56

The RealAudio coder uses a combination of fast algorithms, approximation, and

clever implementation to achieve fast operation with little loss of quality. Instead of

expensive functions, RealAudio uses lookup tables or simple approximations, and

instead of iterative procedures, it uses prediction. RealAudio has been designed to

limit the algorithmic dependencies on prior data, and allows encoded data to be

handled in relatively small and independently decoded units. This prevents a data

frame loss from affecting the frames around it during transmission. It also allows the

compressed frames to be interleaved before being grouped into packets for

transmission over the network. These small audio gaps are then “filled-in” using an

interpolation scheme that uses past and future data to estimate content that might be

lost during transmission.

3.4.4 Codecs used in WAPS

The audio formats that are currently supported by WAPS include: MPEG-1 Layer II,

Sun/NexT (AU) format, QuickTime audio, and MPEG-1 Layer III. The support for

these audio formats depended on the support of these formats by the Java Media

Framework API, which was used when developing the WAPS audio player. Also, the

WAPS audio player provides support for plug-in players such as Liquid Player,

RealNetwork’s RealPlayer G2, MP3 players such as Bitcasting’s MP3 player, and

Microsoft's Windows Media Player.

3.5 Audio Verification Tests

Listening tests are how audio formats are evaluated. For example, established formats

like MPEG Audio Layer III or AC-3 (from Dolby laboratories) undergo extensive

tests to establish whether listeners can tell the difference between an original and a

Data rate 20 kbps 32 kbps 44 kbps 64 kbps 96 kbps

Frequency

response

3 kHz 8 kHz 11 kHz 16 kHz 22 kHz

Sampling rate 11 kHz 16 kHz 22 kHz 44 kHz 44 kHz

Table 5: Frequency responses for stereo music

 Page 57

compressed signal. These listening tests have to be conducted extremely carefully to

legitimately confirm the “transparency” (similarity to the original signal) of a given

format. Internet audio applications utilize audio coding tools that cover a bit rate

range from 6 kbps to 56 kbps, with a corresponding subjective audio quality that

needs to be evaluated. The purpose of this section is to describe some subjective

testing procedures that have been followed in this project and to present the outcome

of the verification subjective tests on Internet audio codecs. These tests show the

performance of particular encoders and decoders, and do not necessarily show the

performance of the algorithm. Under investigation were low bit rate schemes suitable

for streaming (real-time delivery) of audio via 33.6 or 56 kbps modems.

3.5.1 Test Motivation

The demand for music transmission in real-time over networks, like the Internet,

forms the background for these tests, which evaluate recent audio coders at bit rates

suitable for analog modem and ISDN connections. The tests also helped identify the

audio codecs that could be used by WAPS and any similar Internet applications. The

comparisons of interest are:

§ to compare the recent coding tools for transmission of audio at bit rates

below 10 kbps.

§ to compare the recent coding tools for transmission of audio at bit rates

between 10 and 30 kbps and

§ to compare the recent coding tools for transmission of audio at bit rates

between 40 and 56 kbps.

3.5.2 Codecs under Test

The test was divided into three groups of coding schemes/bit rate:

• Group A tests the codecs at 6 and 8 kbps mono signal.

• Group B tests the codecs at 16 and 24 kbps mono signal.

• Group C tests the codecs at 40 and 56 kbps stereo signal.

The codecs tested are listed in Table 6:

 Page 58

Codec family Source Label Mode Bitrates

(kbps)

MPEG-1 Layer II FhG-IIS1 L II mono, stereo (40 kbps) 24, 56

MPEG-1 Layer III FhG-IIS L III mono, stereo (40 kbps) 8, 16, 40

TwinVQ Yamaha VQF mono, stereo (40 kbps) 8, 16, 40

MsAudio Microsoft MA mono, stereo (40 kbps) 8, 16, 40

RealAudio G2 Real Networks RA mono, stereo (44 kbps) 20, 44

In these tests, the term codec family is used to identify the various codec proponents

(e.g. Layer II, Layer III, RealAudio, etc), while the term codec represents a specific

codec family/bit rate combination (e.g. Layer II at 56 kbps, MsAudio at 8 kbps, etc.).

The term codec group will be used to identify a group of codecs operating at a certain

bit rate interval (e.g. Group A refers to codecs with bit rates between 6 and 8 kbps,

while Group B refers to bit rates between 16 and 24 kbps, as indicated above. A total

of 13 codecs were examined in these subjective tests. These consisted of 5 codec

families operating at various bit rates to yield 13 codecs shown in Table 6 above.

Unfortunately, the tested codecs were not available at all bit rates for each codec

family.

3.5.3 Test Material

When conducting audio listening tests, samples must be chosen which are both hard

to compress and likely to create artifacts which can be easily identified. Examples of

such content include isolated instruments, drums, acoustic guitars, and solo vocal

passages. In these experiments, three samples based on the above examples were

selected. The samples included a female voice speech, an acoustic guitar, and a rock

piece with a strong drum component

3.5.4 Test Methodology

The subjective assessment of sound quality according to ITU-Recommendation

BS.562.3 [24] was followed. This method (see Table 7) uses a five-grade scale for

scoring:

1 The Fraunhofer Institute for Integrated Circuits

Table 6: Codecs tested

 Page 59

 BS.562.3 Quality Scale

 5 Excellent

 4 Good

 3 Fair

 2 Poor

 1 Bad

This method also recommends the use of this scale as a continuous scale with one

decimal place. This means that users can provide grades between these values down

to one decimal place e.g. 4.3. Within each test group (A, B, C), the codecs were

compared to a bandwidth-limited reference. The bandwidth of this reference was

equal to the bandwidth of the coder with the highest bandwidth, which was 56 kbps.

For all test groups i.e. A, B, and C, the audio playback sequence type (shown in Table

8) used during the experiments was R (Reference) – A (Coded), i.e. the reference

sample was played first followed by the coded sample. The reference used was a

MPEG-1 Layer III audio file encoded at 56 kbps.

Experimental group A B C

Sequence type R-A R-A R-A

Scoring BS. 562. 3

3.5.5 Test Results

In this section the results of the subjective test are examined. The discussion begins

with an assessment of subject reliability and is followed by an analysis of the

performance of all codecs tested.

3.5.5.1 Subject Reliability

Listener reliability was evaluated by ensuring that each listener could consistently

distinguish between the original reference sound and the coded sound. Then statistical

t-tests were performed for each listener over the listener’s aggregate responses to all

coded items, to test that the responses differed from 5 (maximum grade). In this

Table 8: Audio playback sequence

Table 7: The BS.562.3 Quality Scale

 Page 60

scenario, this is not a strong criterion since the reference was not hidden from

listeners and they were instructed to score only the coded samples with grades

between 5.0 and 1.0 inclusive. Hence the listeners had mean grades different from 5

with p< 0.1 for all the codecs. Thus no listener grades were discarded.

A strong criterion could have been taken whereby it would have been ensured

that the listeners are able to make clear distinctions between the coded samples and

the original reference. For example, for each subject, a one-way ANOVA would be

conducted for each of the test groups. Subjects would then be retained only if they

showed significant distinctions between codecs on half or more than half of the tested

codecs in which they tested. This strong criterion was not followed in these tests due

to the fact that it is mainly applied to double blind subjective tests of high quality

audio codecs against a CD-quality reference (instead of a bandwidth limited

reference, as in these tests). The testing procedures for double blind subjective tests

are outlined in the ITU-R Recommendation BS.1116 and the bit rates for the codecs

to be tested vary between 64 and 192 kilobits per second per stereo pair, which is

contrary to the conducted tests that focussed on bit rates between 6 and 56 kilobits per

second suitable for Internet audio transmission purposes.

3.5.5.2 Codec performance

Outcomes of the experiments are shown in the following three sections:

3.5.5.2.1 Overall quality by codec groups

In this section the results of the subjective tests are analyzed with respect to the

overall quality of the three codec groups i.e. Group A for bit rates between 6 and 8

kilobits per second, Group B for bit rates between 16 and 24 kilobits per second, and

Group C for bit rates between 40 and 56 kilobits per second. The overall codec group

performance is examined in Figure 4. In Figure 4, the horizontal axis indicates the

increasing bit rate while the vertical axis indicates the overall grading scale.

 Page 61

It is apparent from Figure 4 that, as expected, the performance of each codec group

improves monotonically with increasing bit rate. The ranking of the codec groups

with respect to quality is Group A, Group B, Group C, from lowest to highest.

3.5.5.2.2 Overall quality by individual codec

In this section, the results of the subjective tests are examined with respect to the

overall quality of each of the individual codecs. The results are summarized in a novel

graph-Table (Figure 5) that simultaneously allows one to compare codecs in terms of

quality and bit rate.

Figure 5: Codec performance versus subjective audio quality

A1 A2 A3

B1 B2
B3

B4

B5

C1
C2 C3

C4 C5

1.0

2.0

3.0

4.0

5.0

Bitrate

G
ra

de

 CODECS
A1: MP3
A2: MsAudio
A3: TwinVQ
B1: MP2
B2: MP3
B3: MsAudio
B4: RealAudio
B5: TwinVQ
C1: MP2
C2: MP3
C3: MsAudio
C4: RealAudio
C5: TwinVQ

Overall results by individual codec

 16 30 60

Figure 4: Overall quality by individual codec group

Overall results by Group

Group A
Group B

Group C

1.0

2.0

3.0

4.0

5.0
G

ra
de

 Group bitrates

Group A: 6-8 kbit/s

Group B: 16-24 kbit/s

Group C: 40-56 kbit/s

 16 30 60

Bitrate

 Page 62

Just as with the results of the overall codec quality by group, it is also apparent from

the figure that, as expected, the performance of each codec improves with increasing

bit rate. The ranking of the individual codecs with respect to quality is given in Table

9 below. The TwinVQ and RealAudio codecs performed identically at bit rates of 40

kbps and are in the “Excellent” range on the quality scale. The MPEG-1 LII at 56

kbps, MsAudio at 40 kbps, and MPEG-1 LIII at 40 kbps codecs are the next, falling

on the boundary between “ Excellent” and “Good”, with MPEG-1 LII at slightly

higher bit rates than others. The MPEG-1 LIII, MsAudio, and TwinVQ codecs

performed identically at 8 kbps and all are in the “Poor” range.

3.5.5.2.3 Quality of each audio test material by individual codecs

This section presents the results of the individual codecs for each test material. The

results of the overall quality of each of the individual codecs for the acoustic guitar

(item 1), the contemporary rock piece with drums (item 2), and the English female

speech (item 3) are summarized in the graph-Tables: Figures 6, 7, and 8 respectively.

Figure 6 and Table 10 present the results of the individual codecs for the acoustic

guitar, Figure 7 and Table 11 show the results for the contemporary rock piece with

drums, and Figure 8 and Table 12 show the results for the female voice test material.

From (Figure 6, Table 10) codec performance for item 1 (acoustic guitar),

RealAudio at 44 kbps performed better than all the other codecs; MsAudio at 8 kbps,

and TwinVQ at 8 kbps performed at “Poor”; while the rest of the codecs performed

between “Fair” and “Good” on the quality scale.

From (Figure 7, Table 11) none of the codecs performed at excellent. The

MsAudio at 8 and 16 kbps , MPEG-1 L III at 8 kbps, and Twin VQ at 8 kbps, codecs

Grading Codecs

(5) Excellent VQF/40, RA/44

(4) Good L II/56, MA/40, L III/40

(3) Fair L III/16, RA/20, L II/24, MA/16, VQF/16

(2) Poor L III/8, MA/8, VQF/8

(1) Bad

Table 9: Ranking of the individual codecs

 Page 63

remained at “Poor”. The rest of the codecs performed between “Fair” and “Good” on

the quality scale.

From (Figure 8, Table 12), RealAudio at 44 kbps and TwinVQ at 40 kbps

performed at “Excellent” on the quality scale. The TwinVQ at 16 kbps, MPEG-1 L III

at 16 kbps, and MsAudio at 16 kbps joined MPEG-1 L III at 8 kbps , MsAudio at

8kbps , and Twin VQ at 8 kbps to perform at “Poor” on the quality scale. The rest of

the codecs remained between “Fair” and “Poor” on the quality scale.

On both item 1 and item 3 RealAudio at 44 kbps performed better than all the

other codecs and its performance was very consistent across all the audio items.

Group A codecs (i.e. MPEG-1 L III, MsAudio, and TwinVQ, all at 8 kbps) performed

at “Poor” on the quality scale for all the items. Generally, the Group B and Group C

codecs performed from “Fair” to “Excellent” for all the items despite the poorer

performances of TwinVQ at 16 kbps , MPEG-1 L III at 16 kbps , and MsAudio at 16

kbps for item 3.

Table 10 gives the different equivalent groupings of the individual codecs for the

acoustic guitar test material in order of merit.

Item1: Acoustic guitar

A1 A2 A3

B1 B2 B3

B4

B5

C1
C2

C3
C4 C5

1.0

2.0

3.0

4.0

5.0

Bitrate

G
ra

de

 CODECS
A1: MP3
A2: MsAudio
A3: TwinVQ
B1: MP2
B2: MP3
B3: MsAudio
B4: RealAudio
B5: TwinVQ
C1: MP2
C2: MP3
C3: MsAudio
C4: RealAudio
C5: TwinVQ

 16 30 60

Figure 6: Overall quality by individual codecs for item 1

 Page 64

Grading Acoustic guitar

(5) Excellent RA/44

(4) Good L II/56, L III/56, MA/40, VQF/40, RA/20

(3) Fair L II/24, L III/16, MA/16 VQF/16

(2) Poor L III/8, MA/8, VQF/8

(1) Bad

Table 11 summarizes the different equivalent groupings of the individual codecs for

the rock piece test material in order of merit.

Grading Contemporary rock piece

(5) Excellent

(4) Good L II/56, L III/40, RA/44, VQF/40

(3) Fair L III/40, MA/40, L II/24, L III/16, MA/16, VQF/16

(2) Poor MA/16, L III/8, MA/8, VQF/8

(1) Bad

Item2: Contemporary Rock Music

A1
A2 A3

B1

B2

B3

B4

B5

C1

C2 C3

C4 C5

1.0

2.0

3.0

4.0

5.0

Bitrate

G
ra

de

 CODECS
A1: MP3
A2: MsAudio
A3: TwinVQ
B1: MP2
B2: MP3
B3: MsAudio
B4: RealAudio
B5: TwinVQ
C1: MP2
C2: MP3
C3: MsAudio
C4: RealAudio
C5: TwinVQ

 16 30 60

Figure 7: Overall quality by individual codecs for item 2

Table 10: Equivalence groupings of the individual codecs for item 1

Table 11: Equivalence groupings of the individual codecs for item 2

 Page 65

Table 12 gives the different equivalent groupings of the individual codecs for the

female voice speech test material, in order of merit.

Grading Female voice

(5) Excellent RA/44, VQF/40

(4) Good L II/56, L III/40, MA/40, VQF/40, RA/20

(3) Fair L II/24, L III/16

(2) Poor VQF/16, L III/16, MA/16, L III/8, MA/8, VQF/8

(1) Bad

Summary

In this chapter, digital audio compression and the two compression schemes, lossy

and lossless compression, were discussed and analyzed. Also, the current audio

codecs suitable for the Internet were presented. These included MPEG-1 Layer I, II,

and III, MPEG-2 AAC, TwinVQ, RealAudio G2, and the new MPEG-4 standard.

Table 12: Equivalence groupings of the individual codecs for item 3

Item 3: English Female Speech

A1

A2

A3

B1
B2

B3
B4 B5

C1

C2 C3

C4
C5

1.0

2.0

3.0

4.0

5.0

Bitrate

G
ra

de
 CODECS
A1: MP3
A2: MsAudio
A3: TwinVQ
B1: MP2
B2: MP3
B3: MsAudio
B4: RealAudio
B5: TwinVQ
C1: MP2
C2: MP3
C3: MsAudio
C4: RealAudio
C5: TwinVQ

 16 30 60

Figure 8: Overall quality by individual codecs for item 3

 Page 66

This chapter also presented some experimental tests on the performance of these

codecs at bit rates suitable for the Internet. The results of the subjective tests,

evaluating the audio quality of the 13 audio codecs tested, were presented. The tests

are unique since this was the first time in which all of these codecs have been

compared in a single formal test. The tested codecs operated at bit rates between 6 and

56 kilobits per second. The tests examined the performance of the codecs under “low

bandwidth” conditions and were conducted in accordance with the methodologies

outlined in ITU-R Recommendation BS.562.3. The results show that the tested codecs

are clearly delineated with respect to quality. The overall ranking of the individual

codecs with respect to quality in order of merit is:

(1) RealAudio/44 and TwinVQ/40

(2) MPEG-1 LII/56, MPEG-1 LIII/40, and MsAudio/40

(3) MPEG-1 LII/24, MPEG-1 LIII/16, and RealAudio/20

(4) MsAudio/16 and TwinVQ/16

(5) MPEG-1 LIII/8, MsAudio/8, and TwinVQ/8

The tests reported in this chapter only considered audio quality with respect to bit

rate.

 Page 67

Chapter 4

Streaming Audio Protocols

One of the major attractions of an audio store on the Internet is to provide excerpts

from its collection in real-time. This feature allows users of the system to preview a

short audio sample of the original musical item they are interested in before

purchasing it. The main problem with this feature is the Internet bandwidth, especially

when considering on-demand audio. Many professional Internet users have access to

the net with wide-band connections. But private consumers usually use low-band

connections with phone line modems with 33.6 kbps or ISDN mid-band access with

56/64 kbps. This poses a problem for applications that need to provide high quality

on-demand audio services, especially when considering that one of the aims of on-

demand audio is to use the low transmission rates available in the most effective way.

One solution to this problem is to investigate and use audio codecs that are suitable

for the Internet, as discussed in the previous chapter.

In this chapter the use of streaming audio technology as an added solution to

the bandwidth limitation problem will be discussed. Audio streaming and some

technical issues that go with it will be described first, and then the enabling

technologies will be discussed, followed by a description of how the support for audio

streaming was provided in WAPS. Finally the chapter concludes by discussing the

experimental procedure taken and test results for the performance of various audio

transport protocols supported by WAPS.

4.1 Streaming Audio

The traditional method of “bulk” transfer (i.e. transferring the entire file before

playback) for audio files has the drawback of lengthy delay before the user can start

the playback. This becomes a major problem when considering a large music site that

allows electronic sale of thousands of digitized musical items and provides short

audio excerpts for each of these items. Typically, audio files have an average transfer

ratio of 5:1 on dial-up connections [23].

 Page 68

 This implies that one must spend 5 minutes downloading a file that contains 60

seconds of audio. To reduce this delay to an acceptable level (less than 10 seconds)

regardless of the file size, streaming technology is necessary. An audio stream is data

that is sent from a server to a client at a controlled rate defined by the server [25].

This means that even if more bandwidth is available, the data rate will not exceed the

predetermined rate. This ensures that the server’s sending rate does not exceed the

client’s ability to handle the data. In audio streaming, an audio file is broken down

into small chunks (data that normally contains just a fraction of a second’s worth of

sound). Then, each packet is individually transmitted over a suitable protocol to the

client. Upon arrival, the client may then begin the playback after receiving the first

few packets, rather than waiting for the entire file. With this approach, the listener

does not have to wait an arbitrarily long time before playback begins. Implementing a

bi-directional communication between the client and the server gives the client the

ability to randomly access different portions of the audio file.

 To support the rate of flow of packets, the bandwidth between the server and

the client must be high enough. For example, playing uncompressed CD quality music

in real-time requires bandwidth in excess of 1.4 MBPS (i.e. 44100 samples/sec x 16

bits/sec x 2). This is simply unrealistic for a client connected to the net via a 28.8

Kbaud modem, which would take 49 seconds to download one second of audio.

Clearly audio compression is required in order to support real-time delivery of audio.

Hence the selection of audio codecs suitable for the Internet, as discussed in Chapter

3, is an important factor in audio streaming.

4.2 Common Architecture for Streaming Audio Applications

When delivering real-time audio over the Internet, streaming audio applications

employ a common architecture. This architecture is illustrated in Figure 1.

 Page 69

There are three components to the architecture:

§ The Encoder

This encodes the audio data into a compressed format that can be efficiently

transmitted over the Internet. This process is typically done off-line and the

encoded files can then be catalogued and stored in a database.

§ The Client

The client application contains a player that decompresses (decodes) in real time

the encoded data streams into a format that can be played back on the client’s

computer. Hence the server and the client should have a matching

encoder/decoder pair (codec) for audio to be successfully transferred and

rendered.

§ The Server

The server program is responsible for delivering audio data, controlling the flow

of audio data, and some other tasks related to performance monitoring and control

of audio streams. Most streaming audio applications implement the server

program within a normal HTTP server. Examples of audio applications that do

this are: Truespeech, Internet Wave, Video Live, RealAudio, etc. All these player

applications use any HTTP server for audio delivery during playback. However,

some other audio streaming applications implement a dedicated server program to

offer more functionality and user capacity; these include RealAudio that uses the

RealServer.

Figure 1: Common architecture

CLIENT
 PLAYER

 SERVER

DATABASE

ENCODER

 Page 70

4.3 Technical Challenges Associated with Audio Streaming

Several technical challenges have increased the difficulty of real-time audio delivery

over the Internet. These include: coping with packet losses, bandwidth limitations

while having to meet minimum audio quality requirements, measuring the available

bandwidth between the client and the server application, and the need for specialized

protocols.

4.3.1 Bandwidth Limitations

One of the goals for audio delivery over the Internet is to use the low transmission

rates available in the most effective way [26]. The subjective quality must be kept as

high as possible with the given bit rate. As mentioned earlier, the real-time playback

of CD-quality music requires more than 1.4 MBPS of bandwidth. However, with the

majority of Internet users still connected to the net with low bandwidth connections,

bandwidth limitation is the major factor that hinders the growth of on-demand audio

applications. All on-demand audio applications require real-time traffic. This means

that audio data must be played back continuously at the rate at which they are

sampled. If the data does not arrive in time, the playback process will stop and the

human ear can easily pick up the interruption. One major contributing factor to this

delay is network congestion. If the network is congested, real-time data becomes

obsolete and data packets will be dropped. On the other hand, for non real-time

traffic, this is not such a problem since it simply means that the data transfer takes

longer to complete.

4.3.2 Bandwidth Measurement

Several Internet streaming audio applications could benefit from knowing the

bottleneck bandwidth of a route. This could help judge the efficiency of the utilized

protocols and audio formats. For example, if an audio server is delivering audio data

at close to the bottleneck bandwidth, then increasing the bandwidth of that link may

increase the application performance. However, if the bottleneck link already has

plenty of bandwidth to spare, increasing its bandwidth will probably not improve

application performance. The bottleneck bandwidth of a route is the ideal bandwidth

of the lowest bandwidth link (the bottleneck link) on the route between two hosts

 Page 71

[30]. The current bandwidth measurement techniques include: Pathchar, and Packet

Pair algorithms.

§ Pathchar

Pathchar is a tool written by Van Jacobin [49] that tries to estimate latency and the

bandwidth of a route by sending UDP packets from a single source and measuring

round-trip times. With Pathchar, packets of varying sizes are sent by a sender program

to a receiver program, and the round trips of each of these packets are measured.

Then, the round trip times are correlated with the packet sizes to calculate bandwidth.

The problem with Pathchar is that it can consume a significant amount of network

bandwidth. In particular, Pathchar runs in time proportional to the round trip time of

the network and sends a varying sized data packets regardless of the actual bandwidth

of the network. For example, if more hosts were to run Pathchar, its packets would

become a significant burden on the network. Even for isolated hosts with low

bandwidth connections, Pathchar could consume too much bandwidth to be usable

regularly.

§ Packet Pair algorithm

This algorithm relies on the fact that if two packets are queued next to one another at

the bottleneck link, then they will exit the link t seconds apart:

 t = S2/bbn1

where S2 is the size of the second packet and bbn1 is the bottleneck bandwidth. There

are two types of Packet Pair algorithm: Receiver and Sender Based Packet Pair. These

two differ in how the t from the above equation is measured. Figure 2 shows the

difference in where timing measurements must be taken for the two packets.

 Page 72

The arrows pointing to SBPP (Sender Based Packet Pair), RBPP (Receiver Based

Packet Pair), and ROPP (Receiver Only Packet Pair) indicate what timing information

must be sent from the sender and receiver. The two packets have to be the same size

because different size packets have different “velocities”. For example if the second

packet were smaller than the first, then its transmission delay would always be less

than the first packet’s. Consequently it would pass through links faster than the first

packet and quickly eliminate the bottleneck separation. Similarly, if the first packet is

smaller, then it will be faster than the second packet and continuously grow the

bottleneck separation. Assuming the bottleneck separation is constant, the two packets

will arrive at the receiver spaced t seconds apart. Since we know S2 , we can then

calculate the bottleneck bandwidth as in the following equation:

 bbn1 = S2/t

In Receiver Based Packet Pair, t is measured at the receiver, hence the equation

becomes

 bbn1 = S2/(a2 – a1)

where a1 and a2 are arrival times of the first and the second packets, respectively. If

the arrival times cannot be measured at the receiver, the round trip time is used, which

is measured at the sender (SBPP). Now the equation becomes:

 bbn1 = S2/(r2– r1)

where r1 and r2 are the arrival times of the acknowledgements to the first and the

second packets, respectively. SBPP is easy to deploy, but its results can be highly

inaccurate during congestion. Also, the SBPP approach requires that packets be

Figure 2: How Packet Pair works

 Page 73

acknowledged and that the acknowledgements be constant size and relatively small.

This is because variation in the acknowledgement’s size causes variation in the total

round trip time, which would cause noise in the bandwidth samples. The

acknowledgments need to be small in size because if they become larger, the

bandwidth of the path back to the sender would start to become the bottleneck.

4.3.2.1 The Implemented Algorithm

In the WAPS audio communication component, the audio player first measures the

bottleneck bandwidth of the route between the audio server and itself before actually

requesting the audio clip from the audio server. The player then uses this information

for deciding which codec e.g. MPEG-1 LIII at 16 kbps or RealAudio at 40 kbps,

would be suitable for that particular bandwidth. The idea here is to encode the short

audio excerpts at different bit rates in such a way that if the bottleneck bandwidth of

the route between the audio player and the audio server is saturated, then an

appropriate bit rate is selected so as to provide smooth playback at reasonable quality.

For measuring the bandwidth of the route between the distributor’s (ILAM) server

and the user’s machine, the Receiver based Packet Pair bandwidth measurement

algorithm was implemented. This algorithm was implemented in the WAPS audio

communication component using a client/server approach, whereby the receiver was a

Java thread class named BandwidthClient, implemented by the audio player, and the

sender was also a Java thread class named BandwidthServer, executing as a daemon

process on the merchant’s server. Three pairs of 1024 bytes sized data packets are

sent from the sender to the receiver and their arrival times are then recorded by the

sender. The bottleneck bandwidth is then calculated for each pair and the average of

the three pairs is used as the final bandwidth of the route between the sender and the

receiver.

Using this information, the audio player can then recommend the bit rate of the audio

clip to be delivered by the audio server. For example, the music distributor can have

two 30 second audio clips of one musical item on sale whereby the first clip would be

encoded at 16 kbps while the second excerpt would be encoded at 40 kbps (using an

MPEG-1 Layer II encoder, these two clips would be saved as artistR102_16.mp2 and

artistR102_40.mp2, where artist is the name of the artist, R1 the album release, 02

the track number, while 16 and 40 are two bit rates at which the excerpts have been

 Page 74

encoded). Then, if the measured bottleneck bandwidth falls, say, below 40 kbps, the

audio player will request the first clip, otherwise it will request the second clip.

4.3.3 Jitter Control

During real-time audio transmission, the client ideally needs to have regular arrival of

audio packets so that the audio can be played back smoothly. However, in many

instances this does not happen, as packets sent by the server at regular intervals tend

to arrive at an irregular rate. This is mostly caused by varying delays that depend on

changing congestion levels at different routers along the way [25]. This phenomenon

is called jitter, and it normally results in choppy sounding audio. The jitter problem is

usually solved by using a “play-out buffer” at the receiver end. Using this buffer, a

player stores the first several packets of data into the buffer before starting playback.

As new packets arrive from the server, they are queued into the buffer, and playback

continues from the buffer.

4.3.4 The Need for Specialized Protocols

Streaming audio technology developers have to choose between two packet transport

protocols, of which neither is particularly effective for real-time data delivery. Some

rely on the User Datagram Protocol (UDP) to send packets as quickly as possible, but

with no guarantee of delivery. Others use the Transmission Control Protocol (TCP),

ensuring that all packets will arrive in proper order. The Internet has been primarily

used for the reliable transmission of data with minimal or no delay constraints [27].

The TCP protocol was designed for this type of traffic and it works very well in this

context. However, audio traffic possesses different characteristics and hence requires

the use of different protocols to provide the necessary services. For example, if an

audio receiver has to wait for a TCP retransmission, there can be noticeable and

unacceptable gaps in play-out of the real-time data. In addition, the “slow start” TCP

congestion control mechanism can interfere with the audio “natural” play-out rate.

Also, TCP does not provide timing information, which is a critical requirement in on-

demand audio.

On the other hand, UDP sends packets as quickly as possible to the destination

and does not bother to retransmit lost packets. Instead, given that some packets may

 Page 75

be lost, the receiver may try to fill the gaps with appropriate space fillers. Since the

type of compression used determines the quality of real-time audio and the amount of

data lost, the audio quality of UDP-based applications will degrade accordingly when

the net becomes congested and packets get lost.

Using either of these two transport protocols, packets frequently do not reach

the destination in time to achieve smooth audio playback. This has resulted in a

number of protocols being developed to enhance the Internet architecture and improve

support of applications that make use of audio and video. These protocols include: the

Real-time Transport Protocol (RTP), Real-time Control Protocol (RTCP), Real-time

Streaming Protocol (RTSP), and many other proprietary protocols such as the

Progressive Network Audio (PNA) protocol. A brief description of these protocols is

given below.

4.3.4.1 RTP/RTCP

The Real-time Transport Protocol (RTP) and its companion, Real-time Control

Protocol, defined in RFC’s 1889 and 1890, specify a standard for transmitting time

dependent data such as audio or video streams [28]. RTP provides end-to-end delivery

services to support applications transmitting real-time data. It was primarily designed

for multicasting real-time data, but can also be used in unicasting mode. Among the

services that RTP provides are payload type identification, packet sequence

numbering, and time stamping. The RTP specification defines the use of translators

that can convert an RTP stream from one format or bandwidth to another, and mixers,

which can pull multiple streams into a single stream to conserve bandwidth. RTP

primarily runs on top of UDP, thereby utilizing its multiplexing and checksum

services.

 However, other transport protocols besides UDP can carry RTP packets as

well. UDP was chosen as the target transport protocol for RTP for two reasons: First,

RTP was primarily designed for multicast, so the connection-oriented TCP does not

scale well and therefore is not suitable. Second, for real-time data, reliability is not as

important as timely delivery. Hence, TCP is not a suitable candidate due to its

guaranteed delivery of packets. RTP does not provide all of the typical functionality

of audio transport protocols. It does not ensure timely delivery or provide Quality of

 Page 76

Service (QoS) guarantees. It does not guarantee delivery or prevent out-of order

delivery, nor does it assume that the underlying network is reliable. The Real-time

Control Protocol is used to monitor the delivery of RTP packets. RTCP ensures a

channel of communication between the server and client applications so that proper

adjustments can be made as needed to facilitate delivery. It provides feedback

information about the quality of the transmission to the applications.

The statistics include the number of packets sent, the number of packets lost,

interval jitter, etc. RTCP also identifies the RTP source address through its transport-

level identifier called the canonical name (CNAME). The CNAME is used to keep

track of participants in a RTP session in order to synchronize audio and video. RTCP

controls its transmission intervals in order to prevent control traffic from

overwhelming network resources. This control allows RTP to scale up to a large

number of participants. An optional function can be used to convey a small amount of

information to all session participants.

4.3.4.2 RTSP

The Real-time Streaming Protocol is a client-server multimedia presentation protocol

that enables controlled delivery of streamed multimedia over IP networks. RTSP is an

application level protocol designed to work with lower level protocols, such as RTP,

to provide a complete streaming service over the Internet [28]. It is intended to:

§ control multiple data delivery sessions

§ provide a means for choosing a data transport protocol such as UDP, TCP, or

IP multicast.

RTSP was designed to have a similar syntax and mode of operation as HTTP. For

instance, in RTSP, an RTSP URL identifies each presentation. The following are

some of the features of RTSP:

§ It is an application level protocol with syntax and operations similar to HTTP,

but works for audio.

§ It uses URLs like those in HTTP.

 Page 77

The RTSP protocol itself is different from the data protocol, e.g. may use RTP

as its data protocol.

§ It is a bi-directional protocol, i.e. both the server and client can issue requests.

§ It allows interoperability between clients and servers from different

manufactures.

RTSP provides “VCR-style” remote control functionality for audio and video streams.

These include: pause, fast-forward, reverse, and absolute positioning. RTSP

establishes and controls streams of continuous audio and video media between a

server and a client. For example, an audio server may provide transmitting or

recording services for audio streams, while a client may request continuous audio data

from the audio server. RTSP can be considered more of a framework than a protocol.

In many respects, it resembles a “network remote control” between a server and a

client, allowing the retrieval of media from a media server, i.e. the client can request a

presentation description and ask the server to set up a session to send the requested

data.

4.3.4.3 PNA

Progressive Networks Audio (PNA) is a proprietary client/server protocol designed

and used by Real Networks in the RealSystem (i.e. RealAudio and RealServer). PNA

is one of the two main protocols (the other being RTSP) used by the Real Server G2

system to communicate with its clients. This protocol implements a two-way TCP/IP

connection for sending commands, such as “start and stop” between the client and the

server and uses a one-way UDP channel, which is separate from the TCP channel, for

carrying audio data. For packet loss, PNA employs what is known as forward error

correction, where each packet sent to the client contains some information about the

previous packet. This technique is based on the observation that on the Internet the

probability of losing multiple packets in a row is relatively low compared to the

probability of losing a single packet. The PNA protocol also uses another technique

called sample interleaving for reducing the impact of packet loss. With this technique,

about 3 seconds of sound is divided into 144 bundles of 20 milliseconds each. The

bundles are then allocated to 12 packets where the first, thirteenth, twenty-fifth, and

 Page 78

so on go into the first packets, and the second, fourteenth, twenty-sixth and so on go

to the second packet, etc. Figure 3 illustrates this technique.

The sample Interleaving technique does introduce some computational overhead

during encoding and decoding, however its advantage is that if one packet is lost, the

receiving client application does not loose 240 milliseconds of continuous audio,

rather it loses 20 milliseconds about every quarter of a second.

4.4 Implemented architecture for the WAPS audio

component

The WAPS audio communication component provides the means for the real-time

transmission of audio clips between a client and a server application. Intel’s Java

Media Framework (JMF) API [29] was used for developing the audio component, in

particular the client (player). The audio component is based on a client/server

architecture, whereby the client application is an audio player that decompresses

(decodes) the encoded data streams into a format that can be played back on the

client’s computer, and the server application (audio server) is responsible for

delivering audio data to the player. The WAPS audio component architecture

implements the common architecture for streaming audio applications, described in

Figure 3: Sample interleaving

 Page 79

section 4.2. Thus, the WAPS audio communication component architecture is made

up of the following sub components:

§ The Encoders

As mentioned in section 4.2, the encoders are used to encode (compress) the short

audio clips of the musical items into a compressed format that can be efficiently

transmitted from the audio server to the audio player in real-time. The process of

compressing the audio clips was done off-line. Each musical item on sale was

encoded into a 30 second audio clip, which was then stored on the local hard drive

of the merchant’s (distributor’s) computer. These short audio clips were

catalogued along with their parents (original high quality) musical items into the

audio storage server. Each audio clip consisted of a unique name that

corresponded to its parent. This name becomes a pointer or link and is then stored

in the database for retrieval purposes. For example a parent musical item could be

named mbandeR102.wav, where Mbande is the name of the artist R1 the album

release, and 02 being the track number in that particular album. Now, the audio

clip corresponding to this track would be mbandeR102_BT.mp3, where BT would

be the bit rate at which the audio clip was encoded at. The use of the BT allows for

the encoding of multiple audio clips of the same track but at different bit rates

targeting different Internet connections.

For the encoding of the audio clips, several industry standard audio encoders are

supported. These include: the QuickTime audio encoder, MPEG-1 Layer II and III

encoders, Microsoft Windows Media encoder, Real Producer, and CoolEdit Pro

(for SuN/NexT audio – AU). The use of these encoders corresponds to the

decoders currently supported by the WAPS audio player (as indicated in section

3.4.4 of Chapter 3). Providing support for these different coders does not

necessarily mean that all of them have to be used at one time. The music

distributor (such as ILAM) will have to decide which codecs their music stores

will utilize. They can then encode the audio clips using that encoder, which may

be decoded by the matching decoder pair supported by the WAPS audio player.

 Page 80

§ The Client (audio player)

This is a continuous audio playback application that runs on a Java capable

browser to decompress the encoded data streams on demand using an appropriate

transport protocol. Figure 4 shows a snapshot of the WAPS audio player.

The audio player forms the control interface of the audio component. It allows

users to browse and control audio clips. The following user controls are provided

by the player:

o Play: Start to play the music sample.

o Stop: Ends the playing of the sample. If user presses Play, start

playback from the beginning.

o Fast Forward: Skip and play the audio on another position.

o Rewind: Play the audio from a previously played position.

o Pause: Stop playback for a while until user presses play again, then

start playback at exactly the same position

§ The Server

This is responsible for delivering audio data to the remote audio player. The audio

component integrates with some of the industry standard audio servers (such as

RealServer G2 and MPEG-3 server). An application specific server was

developed for transporting static audio files, such as SuN/NexT (AU), on-demand.

The audio component also makes use of any HTTP server for transporting audio

data to the player.

For transporting audio data between a client and a server application, specialized

protocols are needed. The WAPS audio component provides support for both the

standard and proprietary audio transport protocols. These include HTTP, RTSP, and

PNA, which have been described in section 4.3.4 of this chapter. An application

Figure 4: The WAPS audio player

 Page 81

specific protocol was designed and implemented, named Simple Audio Transport

Protocol (SATP), for transporting static audio files, such as AU files and WAV files,

between the audio player and a server in real-time. Figure 5 illustrates the overall

client/server architecture of the audio component. This figure also illustrates the two

physical components (audio player and supported audio servers) of WAPS that form

the audio component along with the various audio streaming protocols used.

4.4.1 The Audio Component’s core Classes

The following Java classes form the core of the WAPS audio communication

component:

§ ControlInterface: is a graphical user interface that provides buttons for

playing, browsing, and stopping the player.

§ BandwidthServer: is a server thread that implements the server side of the

bandwidth measurement algorithm.

§ BandwidthClient: is a thread that implements the client side (receiver) of the

bandwidth measurement algorithm. It receives sample data from the

BandwidthServer.

Figure 5: WAPS audio component

WAPS audio player

HTTP
Server

RTSP
Server

PNA
Server

SATP
Server

Audio directory

HTTP RTSP PNA SATP

 Page 82

§ ProtocolManager: manages the supported transport protocols, decides as to

which protocol to use, and instantiates the appropriate classes to receive audio

data over the selected protocols.

§ HTTPclientControl: receives audio data carried via HTTP from an HTTP

server and sends it to the audio device (sound card) for playback.

§ RTSP/PNAControl: receives and renders audio data transported by the RTSP

and the PNA protocols.

§ PlugInManager: launches helper applications that are supported by the audio

player e.g. RealAudio G2, Windows Media Player, etc.

§ SATPClientControl: receives and renders audio data from the SATPServer.

§ SATPServer: sends audio data (AU files) to the SATPClientControl.

Figure 6 illustrates the implemented class files and shows how they interact.

4.4.2 The message flow within the audio communication component

The following are a series of steps that occur when a user wants to preview a music

sample through WAPS:

Figure 6: Implemented class files

ControlInterface Merchant
Server

BandwidthClient BandwidthServer

ProtocolManager

HTTPClie
ntControl

SATPClie
ntControl

RTSP/P
NAClien
tControl

PlugInM
anager

SATPServer

CLIENT SERVER

 Page 83

1) User browses via Information Retrieval Engine and clicks the “preview”

button, which is linked to the audio player.

2) The audio player is launched and is forwarded the URL of the audio clip it has

to render by the Information Retrieval Engine. This URL contains the names

of the available servers that can be used to stream the clip, address of the

machine where the audio clip physically resides, and the name of the audio

excerpt. The format of the URL is shown in Table 1 below.

SVR1, SVR2, SVR3, etc give the available audio servers on the merchant’s

computer, which can be used to stream the audio clip. Servername is the host

name, and filename is the name of the audio clip to be played. For example, if

a merchant uses the RealServer G2 and an HTTP server for serving audio data

to the player, the sample URL would be: G2:HTTP:\\ilam.ru.ac.za\

mbandeR102_BT.rm. Then, given this URL the audio player would choose

which server and transport protocol to use depending on whether that media

type is supported by that particular transport protocol.

3) Once the audio player has identified the URL, it then estimates the bottleneck

bandwidth between itself and the server. The audio player uses the

BandwidthClient object to open a TCP connection to the BandwidthServer

object on the merchant’s computer. This connection is then used to estimate

the bandwidth between the player and the server and an appropriate clip

encoded at the relevant bit rate will be selected. For example, the player will

modify the above URL to G2:\\ilam.ru.ac.za\mbandeR102_40.rm,

indicating that the RealServer G2 system will be used to send the clip to the

player and that the bottleneck bandwidth available is enough for a clip

encoded at 40 kbps.

SVR1:SVR2:SVR3:\\servername\filename

Table 1: URL format

 Page 84

4) Player requests the music sample from audio server and waits for audio data.

Based on the results of the estimated bandwidth, the player chooses a suitable

transport protocol, makes a connection to the audio server, and requests

transmission of the audio sample.

5) Audio server receives the request, retrieves the audio file, and streams it to the

player, and playback resumes immediately after a small amount of data has

been received.

Figure 7 illustrates the internal structure of the audio component and shows how the

various messages flow between the different components.

 Figure 7: Internal structure of the audio layer

Audio device Controls

Transport protocol selector
Bandwidth

measure client

RTSP/PNA
client

process

Plug-In manager HTTP
client
process

SATP
client

process

Real
Audio

Ms
Audio

MP3
audio

Bandwidth
measure
server

HTTP
server

SATP
server

Real
Server

G2

R
T
S
P
/
P
N
A

T
C
P
/
I
P

H
T
T
P

S
A
T
P

Merchant server

 Page 85

4.4.3 Implemented transport protocols

The following audio transport protocols were implemented by the audio player for

rendering audio data from the various supported audio servers. These protocols,

which include HTTP, RTSP, PNA, and SATP, form the core of the audio

communication between the WAPS audio player and the audio servers supported.

4.4.3.1 HTTP

The Hyper Text Transfer Protocol, which is already used by all web servers to store

and transmit ordinary text and graphic files can also be used for the transmission of

on-demand audio. When using an HTTP connection to download audio files in certain

‘streamable’ formats (e.g. MPEG, RealAudio, Ms Audio, ‘fast-start’ QuickTime, etc)

the audio player can begin playback before all of the audio data is received. This is

called HTTP streaming. HTTP streaming has been transparently implemented in the

JMF API using the javac.media.Player object, which is also used for the playback of

the audio data transported over HTTP. The Player class resides in the javavax.media

class library of the JMF API. A separate class named HTTPClientControl, defined in

section 4.4.1, was implemented as part of the audio player to provide support for

HTTP streaming. HTTPClientControl imported the javavax.media class library and

inherited from the Player class of this library. When the HTTPClientControl class is

instantiated by the ProtocolManager (also defined in section 4.4.1) of the audio

player, it gets forwarded the URL of the audio sample to be rendered. Using this

URL, it then calls the Player.start() method, which makes a connection to the HTTP

server and waits for the audio data.

The Player will attempt to begin playback as soon as it has buffered a small

amount of data. If the download rate is not high enough to keep up with the rate at

which the Player is using data, an under-run condition occurs. For example, if an

MPEG file is being downloaded over a low bit rate modem connection, and the

download cannot keep up with playback, then the Player will run out of data. The

default behavior of the Player in an under-run condition is to generate a

DataStarvedEvent. This event is intercepted and playback paused so that the Player

continues to download data waiting until enough data has been received to begin

playback. The following code fragment shows how the Player object was used

 Page 86

4.4.3.2 RTSP/PNA

The RTSP/PNAControl mentioned in section 4.4.1, an inner class of the audio player,

was implemented to provide support for the RTSP and the PNA protocols using Real

Network’s JMF implementation in conjunction with the Intel’s JMF. This class

implemented exactly the same code used for the HTTPClientControl class. It also

imported the javax.media class package and inherited from the Player class defined in

this class package. The only difference between the HTTPClientControl and the

RTSP/PNAControl classes is when specifying the URL of the audio sample to be

played. The setting up of the RTSP or PNA connection is handled automatically by

the Real Network’s JMF API transparently from the application programmer. The

following code illustrates how to connect to a server using both the RTSP and the

PNA protocols:

4.4.3.3 SATP

The Simple Audio Transport Protocol is an application specific protocol that was

designed to stream static audio files (such as the Sun/NexT format or WAV files)

import javax.media.*;
 ………….
 try{
 //Create a URL from the file forwarded by the ProtocolManager, e.g. the file could be
 // Http://ilam.ru.ac.za/mbandeR102.mp2
 URL mediaURL = new URL(sampleURL);
 // Create an instance of an appropriate media player for the audio type requested
 Player player = new Manager.createPlayer(mediaURL);
 ………
 // Start the player
 player.start();
 }
catch(MalformedURLException e)
 {}
 ………

import javax.media.*;
………….
 try{
 //Create a URL from the file forwarded by the ProtocolManager, e.g. the file could be
 // rttp://ilam.ru.ac.za/mbandeR102_16.mp2 or pna://ilam.ru.ac.za/mbandeR102_40.mp2
 URL mediaURL = new URL(sampleURL);
 // Create an instance of an appropriate media player for the audio type requested
 Player player = new Manager.createPlayer(mediaURL);
 ………
 // Start the player
 player.start(); }
catch(MalformedURLException e) {}
 ………

 Page 87

from a server process to a client process in real-time. SATP was implemented in Java

and is made up of two objects: the SATPClientControl named ‘client’ and the

SATPServer named ‘server’. With this protocol, the client does not download any

information from the server until such time that information is needed. For example,

when the user presses the play button on the control interface, the client tells the

server to initiate the flow of audio over the network to the client. With a little bit of

buffering to smooth out packet arrival jitter, audio data is played as soon as it arrives

over the network, and prior to that no audio data is ever downloaded to the client. The

server is a multi-threaded stand-alone Java application. For each new request, it

creates a new audio file server thread that in turn serves the audio data to the client.

By default the server restricts the number of simultaneous audio on-demand

requests to twenty streams. However, this number can be increased at run-time. For

decoding and playing the compressed audio, the client requires use of Sun

Microsystems’s AudioPlayer class in the sun.audio class library. The fact that these

classes are housed in the sun.* package hierarchy indicates that they are not part of

the standard Java API and may change in future releases of the Java core. The

AudioPlayer class requires an InputStream object from which it reads and plays ulaw

encoded audio data until it reaches the end of the file. An InputStream object called

FifoInputStream (which will be referred as FIS) was derived. This FIS is then

submitted to the AudioPlayer class. The AudioPlayer class reads and plays from the

FIS object. The FIS allows one write thread and one read thread. For controlling jitter,

a download thread class was derived for receiving audio data from the server and

depositing it into the FIS object. Figure 8 illustrates how jitter control works.

 Figure 8: The client’s jitter control

SATP server

Download thread

FIS

Play Audio

 Page 88

The illustrated solution proved to be successful especially on a LAN, but noticeable

gaps could be heard when played over a 28.8 kbps modem connection. The following

code fragment demonstrates how the client processes audio using the AudioPlayer

class.

SATP uses TCP to maintain a control connection to the audio server and for relaying

user commands to the server process. This command channel carries an application

specific VCR-type control prototype between the client and the server. For the actual

audio data transport, SATP uses UDP. A three-way stop and wait handshake is used

between the client and the server upon connection setup. The client process initiates

the streaming audio connection by opening a TCP connection with the server, and

sending a packet to the server containing the desired audio file’s name. If the file

exists, the server sends an acknowledgement back to the client containing the desired

audio file’s header information to be used by the client when creating initial buffers.

The client then sends back an “acknowledgement received” packet to inform the

server that the connection is established and is awaiting audio data via UDP. On

arrival of the client’s acknowledgement, the server then chops the requested audio file

into chunks of 1024 bytes, packages it into UDP packets and sends it to the client. The

client accepts the UDP packets through the download thread, which deposits them

into the FIS object.

The main goal of SATP has been to facilitate the streaming and playback of

static audio files (e.g. AU files). The baseline-encoding scheme for the AU files

consumes 64 kbps of network bandwidth. This is not a problem for internal Ethernet

networks or when using ISDN. However, to be able to transmit the data through a

modem, clearly some form of audio compression is required.

import sun.audio.*;
……..
{
 AudioStream audioStream = new AudioStream(new FifioInputStream());
 AudioPlayer.player.start(audioStream);
 ……………
}

 Page 89

4.4.4 Implemented support for Plug-in players

As mentioned in section 3.4.4 of Chapter 3, the WAPS audio player also provides

support for an unlimited number of audio Plug-in applications, such as RealAudio

player, Windows Media Player, etc. Launching an audio plug-in application through

the audio player is achieved by constructing a java.net.URL object of the audio

sample requested. The actual launching of the plug-in is handled via the

showDocument method of the Java API. There are two forms of this method: one

instructs the browser, from which the player is executing, to display a URL on the

current window, and the other can be used to send the output of the URL to another

target browser window. In this project, the latter approach was chosen so as to allow

users to navigate through the Information Retrieval Engine, while at the same time

controlling the player on a separate browser window. The plug-in support is

implemented by the PlugInManager class mentioned in section 4.3.1 of this chapter.

The following is the code that this class implements to launch the plug-in

applications supported

This concept of plug-in players was used to provide support for a potentially

unlimited list of audio formats.

4.5 Experimental tests

This section reports on the results of some real time playout testing activities, which

were conducted on the transmission of the audio samples using the WAPS framework

of a distributed audio database system. The main goal of these tests is to evaluate the

applicability of the HTTP, RTSP, and PNA protocols to satisfying the real-time play-

out requirements of compressed audio streams.

if (useHelperPlayer)
{
 try{
 // construct a URL object of the audio sample to be played
 URL real = new URL (“rtsp:\\ilam.ru.ac.za\Samples\mbandeR102_40.rm”);
 }
 catch(MalformedURLException e)
 {}
 // Launch the RealAudio helper application
 Applet.getAppletContext().showDocument(real);
}

 Page 90

4.5.1 Testing scenario

The following environments seemed to be the most likely for the transport protocols:

a) LAN: >= 10 Mbits/s

A Local Area Network (e.g. based on Ethernet) offers bandwidth far greater

than needed for the highest quality MPEG-Layer III file. It is even possible to

retransmit lost or corrupted information, without delaying real-time playback.

b) WAN/dedicated connection

Typical for this environment is a single PC on a dial-up line, and bit rates of

14.4/28.8……n*64 kbps (n=1,2).

c) WAN/Internet

This is the most difficult scenario for synchronous audio playback. The

Quality of Service can vary by orders of magnitude and is mostly

unpredictable.

The comparative tests of the HTTP, RTSP, and PNA protocols were conducted for all

the above three cases.

4.5.2 Testing environment

The testing environment described in section 4.5.1 above was set-up as follows:

§ LAN

The LAN used was part of Rhodes University’s Ethernet connected via a

CISCO switch as shown in Figure 9. The load on the Ethernet during testing

was roughly between 5% and 35 %.

Figure 9: The LAN environment used

client

server
switch

 Page 91

§ WAN

For this environment two computers were connected back-to-back using a

crossover UTP cable and two 10 Mbits/s Ethernet cards were used, one on

each computer, as shown in Figure 10 below.

§ Internet

A remote server was connected to the LAN via a 28.8 kbps modem connection, as

shown in Figure 11.

The tests consisted of transmitting an MPEG-1 Layer III audio stream from a

producer (server) to a consumer (client) through the various networking

environments. The producer is simply in charge of retrieving and transmitting the

compressed stream, while the consumer decompresses and plays the audio as soon as

new chunks of information are available. For the RTSP and the PNA protocols

RealNetwork’s RealServer G2 system was used as the producer, while the Microsoft’s

Internet Information Server was used for HTTP. For the playback of the compressed

audio stream, the RealAudio G2 system was used and it was launched as a plug-in

player through the PlugInManager object. For measuring the performance of the

tested transport protocols, RealAudio G2’s built-in protocol performance monitoring

tool was used during the tests. These tests are based on one subjective evaluation of

Figure 10: WAN environment

Figure 11: Internet environment

client server

10 Mbits/s

client server modem modem

 Page 92

the performance of the HTTP, RTSP, and PNA protocols as opposed to the audio

listening tests (conducted in Chapter 3) which require a number of subjects in order to

have decisive results due to the nature of the tests. In other words the audio listening

tests were concerned with sound quality as opposed to performance, which was the

main concern in the transport tests.

4.5.3 Experimental Results

As may be expected, no problems were detected when using the HTTP, RTSP, and

the PNA protocols on both LAN and WAN network environments. There were no

substantial delivery delays detected and on both the LAN and WAN environments the

bandwidth was widely sufficient to put out smooth audio playback without any

noticeable gaps between packets. On the Internet environments, the performances of

all the tested protocols were greatly influenced by the available bandwidth. The tests

revealed that particularly for limited bandwidth, the network capacity could be

quickly saturated depending on the audio stream characteristics. When using HTTP,

noticeable gaps could be heard during playback and the player had to pause several

times to buffer more data. This was because HTTP uses TCP as its primary delivery

protocol, and when packets get lost TCP retransmits them resulting in poor playback

quality. On the whole, the playback when using the RTSP and the PNA protocols was

much smoother than with HTTP, and RTSP performed better than the PNA protocol.

Table 2 summarizes the approximate results for the 20 kbps RealAudio bit stream

used.

Stream Bit rate Protocol Bandwidth

occupation

RealAudio 20 kbps HTTP 21.2 kbps

RealAudio 20 kbps RTSP 20.6 kbps

RealAudio 20 kbps PNA 20.8 kbps

From the above table the performance values of HTTP appear to be better than those

of the other protocols. This however, does not mean that HTTP is a preferred

approach, since the other protocols offer more services than in HTTP, which include

Table 2: Bit rates, HTTP, RTSP, and PNA

 Page 93

intelligent buffering, jitter control and packet loss. The other protocols also offer bi-

directional communication between client and the server.

Summary

In this chapter the major audio transport protocols, the technologies, and the various

technical issues that need to be considered when developing systems that make use of

audio streaming technology were discussed. These proven protocols make audio

streaming over IP networks a practical solution to the limited bandwidth nature of the

web. Also the implementation of these protocols in WAPS to facilitate the preview of

short audio clips of the musical items on-demand, was shown. A brief report was

given for the performance tests of the HTTP, RTSP, and the PNA protocols, as used

in the audio communication component within different network environments. As

anticipated, the results showed that the real-time transmission of compressed audio

has no substantial delivery delay within both the LAN and WAN/dedicated

networking environments. However, on the Internet, established protocols such as

RTSP are needed.

 Page 94

Chapter 5

Internet Credit Card Transactions

The emergence of Internet commerce has presented an unprecedented opportunity for

new ways of conducting business. This has led to the development of systems that

facilitate online credit card payment and processing. The vast growth potential for

Internet commerce is however tempered by legitimate concerns over the security of

such systems. Securing electronic commerce must occur on all fronts, including data

confidentiality, authentication of the participating parties, data integrity, and non-

repudiation [31]. This chapter discusses the security of payment on the Internet. It

first introduces an overview of the credit card payment process in the real world and

on the Internet. It then shows how the credit card payment process was implemented

in WAPS.

5.1 Credit Card Payment Process Overview

Many people use credit cards frequently to purchase groceries, put fuel on their cars,

charge meals at restaurants, buy books at Amazon.com, etc. In most cases these people

never really know what is involved when making a credit card purchase nor do they

even think about the process running in the background that lets them make these

purchases. For example, what actually happens when a merchant swipes a credit card

through a Point of Sale device? Who authorizes the charge payment? What did the

merchant have to do to be able to handle credit card transactions? To have a complete

picture of how credit cards work both in the real world and on the Internet, one needs

to know the following:

§ The parties involved in credit card transactions,

§ How the credit card information travels among the involved parties, and

§ The security measures applied to protect the payment details

Making purchases using a credit card both in the real world and over the Internet

involves four parties:

 Page 95

1) The credit card holder or the consumer,

2) The merchant who is offering products or services for sale,

3) The merchant’s bank (also known as the acquiring bank or the

acquirer) that has contracted with the merchant to enable the merchant

to accept credit cards.

4) The issuing bank that has issued the consumer’s bank credit card (e.g.

MasterCard or Visa)

The acquiring bank processes merchant’s credit card transactions with the card-

issuing bank through a private financial network. This network is usually the Internet

i.e. dial-up standard or ISDN modems, or sometimes leased lines. For a better

understanding of a credit card transaction, the following is a step-by-step breakdown

from the customer making a purchase to the merchant making an authorization

request to the bank. This description covers the starting point, when the merchant

swipes the consumer’s credit card on a point of sale device, through to the final point

when the acquiring bank sends an approval of purchase to the merchant. However, the

interaction between the acquiring bank and the card-issuing bank is treated as a black

box, as there is no public information available about it. No one source could readily

be found to present the whole picture of how the acquiring bank and the issuing bank

interact. The steps involved in a normal credit card transaction are as follows [32]:

a) Merchant calculates the amount of purchase and asks buyer for payment.

b) Buyer presents merchant with a credit card.

c) Merchant swipes the credit card through a point of sale device (Speed point

terminal). During this process, either the sales amount is hand-entered on the

point of sale device or is automatically transmitted by the cash register.

d) Merchant transmits the credit card data and sales amount with a request for

authorization of the sale to their acquiring bank. RFC1898 (CyberCash Credit

Card Protocol Version 0.8) points out that point of sale devices are set to

request authorization at the time of sale, but actually capture the sales draft at

a later time.

 Page 96

e) The acquiring bank routes the authorization request to the card-issuing bank.

The credit card number identifies type of card, issuing bank, and the

cardholder’s account.

f) If the cardholder has enough credit on his account to cover the sale, the issuing

bank authorizes the transaction and generates an authorization code. The

issuing bank then puts a hold on the cardholder’s account for the amount of

the sale. Note that the cardholder’s account has not been charged yet. This

code is then sent back to the acquiring bank.

g) The acquiring bank receives the approval or denial code and sends it to the

merchant’s point of sale device.

h) The point of sale device prints out a sale draft, or slip. The merchant asks the

buyer to sign the sales slip, which obligates them to reimburse the card-issuing

bank for the amount of sale.

i) At a later time, probably that night when the store closes up, the merchant

reviews all the authorizations stored on the point of sale device against the

signed sales slips. When all the credit card authorizations have been verified to

match the actual sales drafts, the merchant will then capture or transmit the

data on each authorized credit card transaction to the acquiring bank for

deposit.

j) The acquiring bank performs what is called an interchange for each sales draft

with the appropriate card-issuing bank. The card-issuing bank transfers the

amount of the sales draft, minus any interchange fees, to the acquiring bank.

k) The acquiring bank then deposits the amount of all the sales drafts submitted

by the merchant, less a service fee, into the merchant’s bank account.

 Page 97

Figure 1 illustrates the above process.

As mentioned earlier, the overview presented above is not complete. It does not cover

the interaction between the acquiring bank and the card-issuing bank and it is also

geared towards MasterCard and Visa transactions. For example, there is no card-

issuing bank associated with American Express or Discover cards.

5.2 Online Credit Card Transactions

It seems natural that online commerce will be done with credit cards, since no

physical paper needs to be passed (such as cash and cheques). People simply type

their credit card numbers into the merchant’s web page payment form and wait for the

purchased goods to be delivered to them. This process might seem very simple, but

the problem is that people still have legitimate fears about giving their credit card

numbers over the Internet. The reason is that the Internet is an open network without

any basic security provisions built-in, unless secure servers are involved for

transporting data. Due to these fears, several methods have been and are still being

developed to make purchasing products online more secure. There are two main

methods for securing online credit card transactions:

 Point of sale

Figure 1: Real-world credit card transaction process

Acquiring
bank

Card Issuing
bank

Merchant’s bank
account

Acquiring
bank

Card issuing
bank

Point of sale

Authorizing a credit card sale

Authorization
request

Authorization
request

Approval codeApproval code

Later on the sale draft is captured

Capture
request

Sales
amount

Capture request

Sale
amount

 Page 98

§ Taking the transaction off-line.

This was more or less the first attempt at making online credit card transactions

secure. With this approach a commerce site would allow one to call-in the credit

card number to a customer support person using normal telephone lines. This

solved the problem of passing credit card numbers over the Internet, but

eliminated the merchant’s ability to automate the purchasing process. Also the

merchant has to have employees available 24 hours a day to take phone calls from

buyers. This method raises further problems when a buyer has one phone line,

meaning that he has to log-off the Internet in order to actually make a purchase.

§ Using payment security protocols.

This method is currently being used by many web sites. In this approach secure

servers that use Internet security protocols are used by merchants when

transmitting payment data between a customer and a merchant. With these

protocols, the data being transmitted is encrypted such that the data travels

securely when one submits a credit card number through a web storefront.

5.3 Current Internet Security Approaches

It was apparent that for online commerce to flourish, advanced and truly secure means

of making payment needed to be developed. The typical current security approaches

revolve around server-based systems. These systems are usually based on a “Web of

trust” around the network. This trust basically consists of multiple layers of firewalls

and centralized servers connected via secured network tunnels to individual client

PCs. Secure transactions, therefore, require a series of complex steps including the

utilization of technologies such as:

o Authentication,

o Digital Certificates,

o Checking the validity of credit card number and the available balance,

and

o Encoding/decoding the payment data at each end of the network.

 Page 99

For e-commerce to grow, consumers and businesses need to be able to establish a

“trust” that their transactions are secure and private. At present there are many

software-based initiatives to establish this trust. These include the use of the Secure

Socket Layer (SSL) and the Secure Electronic Transaction (SET) protocols. There

are also numerous proprietary credit card payment systems that are based on the

above two security protocols. In this section we shall discuss the two standard

protocols (i.e. SSL and SET) and two of proprietary credit card payment systems,

Virtual Vendor [35] and the BankGate systems [38].

5.3.1 SSL

At a minimum, an Internet payment system should provide the SSL protocol security

for encrypting the customer’s payment information. SSL was developed by Netscape

communications [37]. It is a protocol that allows the authentication and encryption of

data between client and server applications. SSL has two major aims [33]:

a) To authenticate the server and (optionally) the client using public key

signatures.

b) To provide an encrypted connection for the client and server to exchange

messages.

SSL is generally comprised of two protocols: the record protocol and the handshake

protocol. The record protocol defines a way in which messages passed between the

client and server are encapsulated. It defines a set of parameters, known as cipher

suites that define the cryptographic methods being used at any point in time. There are

a number of cipher suites defined by the SSL standard with names that describe their

content. For example, the cipher suite named: SSL_RSA_EXPORT_WITH_

RC4_MD5 can be interpreted as using:

§ RSA public key encryption for key exchange using an export strength

modulus,

§ RC4 cipher for bulk data encryption using a 40-bit (export strength)

key, and

§ MD5 hashing to ensure data integrity.

 Page 100

When a SSL record protocol session is first established, it has a default cipher suite of

SSL_NULL_WITH_NULL_NULL (i.e. no encryption at all). This is where the SSL

handshake protocol comes in. The handshake protocol defines a series of messages in

which client and server negotiate the type of connection that they can support, use to

perform authentication, and generate an encryption key. Once the handshake is over,

the client and server exchange ChangeCipherSpec messages, which switches the

default cipher suite of the record protocol to the one that they negotiated during

handshake. Figure 2 illustrates how the SSL handshake occurs.

From the case shown in the diagram, only the server is authenticated, hence the client

does not need to provide a Digital Certificate (or Digital ID). But, the server has to

have a valid Digital Certificate issued by a Certification Authority (CA). This

certificate is then used by the client to prove the server’s identity during handshake. A

Digital Certificate or Digital ID is a means of verifying one’s identity on the Internet.

Digital Certificates are issued by a third party company known as a Certification

Authority (CA) for the purpose of proving ones’ identity. They are also used as way

of creating trust between groups conducting transactions that may involve personal

information or monetary exchange.

Figure 2: SSL handshake

C
L
I
E
N
T

S
E
R
V
E
R

Client requests connection

Servers sends digital certificate

Client suggests cipher suites

Server sends selected cipher suite

Encrypted application data

ChangeCipherSpec

Unencrypted
record

protocol for
handshake

Encrypted
record protocol

for data

 Page 101

5.3.2 SET

The SET (Secure Electronic Transaction) specification is a technical standard for

making credit card purchases over open networks. SET was initiated on February 1,

1996, and its development was driven by two of the world’s largest credit card

organizations, Visa International and MasterCard, with participation from leading

technology companies including IBM, Microsoft, Netscape, RSA Data Security,

Terissa Systems, Verisign, and others. Its significance over existing security protocols

is found in the use of Digital Certificates and public key cryptography to protect the

privacy and integrity of payment information sent over the Internet. SET incorporates

public key cryptography from RSA Data Security, which includes 56-bit DES (Data

Encryption Standard), and RSA public/private key pairs using a 1024-bit modulus. To

utilize SET, merchants, shoppers, and acquiring banks need software that follows the

SET protocol. SET also requires that the merchant, shopper, and the acquiring bank

have Digital Certificates from a Certification Authority. These certificates are then

used by the protocol to authenticate all the parties involved in a SET transaction. The

SET protocol addresses seven major business requirements [34]:

§ SET provides “confidentiality” of payment, and enables confidentiality of

order information.

§ It ensures integrity for transmitted data.

§ It authenticates the cardholder as a legitimate card account user.

§ It authenticates the merchant as authorized to accept bankcard payments.

§ It ensures the use of the best security practices and system design techniques

to protect all legitimate parties involved in a transaction.

§ It provides a protocol that neither depends on transport nor security

mechanisms.

§ SET facilitates interoperability across network and software providers.

The confidentiality of transmitted information in SET is ensured by message

encryption and digital signatures for ensuring the integrity of payment information.

SET uses DES symmetric key encryption along with RSA digital signatures for

authentication and key transfer. During the process of authentication, a cardholder

(customer) is authenticated through a digital signature along with a cardholder

 Page 102

certificate issued by the cardholder’s bank or an approved Certification Authority. A

merchant is authenticated through a digital signature along with a merchant certificate

issued by the acquiring bank. The interoperability is enabled through the use of

specific protocols and message formats. SET messages are transferred as MIME

messages and their cryptographic encapsulation follows PKCS-7 (Public Key

Cryptography Standard, Number 7) [34].

SET uses 160-bit message digests (i.e. algorithms that generate a “hashing” of a piece

of text or binary data) produced by the SHA hash algorithm, and two public/private

keys pairs. One pair is used in private key exchange. During encryption, a message is

encrypted using a randomly generated DES private session key, where the first public

key pair is used to encrypt and decrypt the DES session key. The second key pair is

then used to create and verify digital signatures. A message is hashed by the SHA-1

hashing algorithm and then signed with the private key of the second key pair, and

afterward verified with the corresponding public key. The following is a simple

summary of the steps that occur in a SET commercial transaction:

1) Cardholder shops.

2) Cardholder’s software sends an initiate request to merchant asking for public

keys of both the payment gateway (acquiring bank’s software for processing

credit card authorization and settlement services) and that of the merchant.

This request indicates the type of credit card the cardholder will use. The

cardholder’s software needs both the merchant’s and the payment gateway’s

public key before it can send transaction details to the merchant.

3) Merchant software generates a response to the request and replies to the

cardholder software. This report includes a unique transaction identifier

generated by the merchant, and the requested certificates.

4) Cardholder software verifies both the merchant and the payment gateway.

5) Cardholder software generates two packets of information to send back to the

merchant and these are:

a) An order information (OI) packet

This is created using the information from the shopping phase. It is the

data meant for the merchant to see containing the transaction identifier,

brand of credit card being used, and the transaction date. The OI is

 Page 103

encrypted using the merchant’s public key. The merchant does not get

to see the cardholder’s credit card number.

b) The purchase instruction (PI) packet

The PI is the data meant for the acquirer to see. It is tunneled through

the merchant to the payment gateway. The PI is encrypted with the

payment gateway’s public key. It includes a credit card number and

expiry date, purchase amounts agreed to by the buyer, and a

description of the order.

6) Cardholder software transmits the OI and the PI to the merchant.

7) Merchant software verifies the cardholder certificate for tampering. If no

tampering is found, it then starts the process of requesting authorization from

the acquirer.

8) Merchant software creates an authorization request for payment.

Included in this request is the transaction identifier that the merchant

generated at the beginning of the payment process. It then encrypts the

authorization request using the payment gateway’s public key.

9) Merchant software transmits the encrypted authorization request and the

encrypted PI from the cardholder purchase request to the payment gateway.

10) Payment gateway verifies the merchant and decrypts the message and its

various components such as the PI from the cardholder. It checks the various

parts of the message for tampering. These include:

§ Making sure the transaction identifier in the authorization matches the

one in the cardholder’s PI packet.

§ Making sure the merchant has not tried to temper with the data in the

cardholder’s PI packet.

11) The gateway sends an authorization request through an existing financial

network to the issuing bank.

12) The issuing bank sends back an approval or denial response to the payment

gateway in response to the authorization request.

13) Payment gateway creates an authorization response message to be sent back to

the merchant. This message includes:

§ The issuer’s response, and

§ A capture token to be used by the merchant when requesting

capture of the sale later on.

 Page 104

14) Payment gateway encrypts and sends the authorization response back to the

merchant software.

15) Merchant software verifies the payment gateway and decrypts the

authorization response from the payment gateway. It then stores the

authorization response message and the capture token sent by the payment

gateway for later use when capturing sales.

16) Merchant software creates a purchase response message to the cardholder’s

software. This message informs the cardholder that the payment was accepted

or not accepted and that the goods will or will not be delivered.

17) The cardholder’s software processes the purchase response message and

informs the cardholder that payment was accepted or not accepted.

18) At a later time, the merchant software creates a capture (settlement) request

message to send to the payment gateway. This request includes the capture

token, transaction ID, and the authorization information. The sequence of

events surrounding the capture request is very similar to steps 11 – 17 of the

authorization process.

19) Merchant software creates a capture request and encrypts it using the payment

gateway’s public key.

20) Merchant transmits the encrypted request to the payment gateway.

21) Payment gateway verifies the merchant and then decrypts the capture request

and ensures consistency between the merchant’s capture request and the

capture token.

22) The gateway sends the capture request through a financial network to the

issuing bank.

23) The issuer sends back an approval or denial response to the payment gateway

in response to the capture request.

24) The gateway creates a capture response, encrypts it and transmits it to the

merchant.

25) Merchant verifies the gateway and stores the capture response to be used for

verification with payment received from the acquirer.

From the above SET transaction flow, one must notice that “confidentiality” means

that the messages cannot be read in transit, such as at Internet gateway routers or local

access providers. The customer’s credit card number is likewise concealed from

 Page 105

merchants. However, the SET acquiring bank software is privy to all transaction

information. It can both link together transactions made by a customer, and it can link

purchases to credit withdrawals on the credit card.

5.3.3 Virtual Vendor

Developed by Virtual Vendor CC [35], virtual vendor is an e-mail message-based

credit card payment model that was initially developed for mail order and subscription

related transactions. Unlike SET, virtual vendor only protects the payment data

between the merchant and the acquiring bank. This means that a way has to be

provided to transfer payment data from the client (storefront) to the merchant securely

across the Internet. Virtual vendor relies on e-mail messages being exchanged

between the merchant and the acquiring bank. Since virtual vendor uses SMTP

(Simple Mail Transfer Protocol) for the transmission of payment data, the sales

settlements do not get effected immediately but do take place before the bank’s daily

cut-off times. Virtual vendor uses the PGP (Pretty Good Privacy) [50] encryption and

authentication algorithms for the message-based credit card authorization and

settlement services.

The virtual vendor method offers four different services: Single Authorization

Service, Multiple Authorization Service, Transaction Management Service, and a

Settlement Service. In each case, once the payment data has been received from a

customer via a secure channel, the merchant creates a message containing an

authorization request, which is then encrypted using PGP and transmitted to the

acquiring bank through SMTP. In the Single Authorization Service, only one

authorization is handled at a time and, once the issuing bank has approved the

transaction and a response has been received by the acquiring bank, it is recorded on a

database for future references, encrypted, and returned to the merchant by e-mail. The

Multiple Authorization Service allows for at least 10 authorization requests to be

handled at any one time. The Transaction Management and Settlement services allow

the merchant to send requests for settling transaction such as sales and refunds.

With virtual vendor, once the issuing bank has approved a transaction, the

acquiring bank automatically settles it without the merchant having to send a sale

 Page 106

capture request. All approved transactions are automatically settled in time to meet

the bank’s cut-off times and a statement is e-mailed to the merchant. The following is

a summary of the steps that take place during a virtual vendor authorization request:

1) Customer enters payment details in a web form on the merchant’s storefront.

2) Payment data is transferred to the merchant through a secure channel.

3) Merchant receives payment data, creates a file of transactions, encrypts the file

using PGP, includes the encrypted file in the body of an e-mail message

addressed to the acquiring bank, and sends it. The transaction file contains

information such as customer’s credit card number, expiry date, sales amount,

merchant number, and a unique transaction number. This process is done

manually by the merchant using a software module called Virtual Client,

which allows for entering the customer’s credit card details and sending them

to the acquiring bank via encrypted mail.

4) The acquiring bank decrypts the message, requests authorization from the

bank that issued the consumer’s credit card, and if it is approved will instruct

the bank to transfer the funds to the merchant’s account.

5) The acquiring bank creates an e-mail message, encrypts it and sends it to the

merchant. This contains:

a. Any errors there may be in the authorization request from the

merchant,

b. The result of the authorization request,

c. The amount to be transferred to the merchant’s account,

d. The transactions held over to the next day for re-trying, and

e. The transactions that have failed and require manual intervention,

6) Merchant receives the encrypted mail, decrypts it using PGP and may inform

the customer accordingly via e-mail.

Just like SET, both the virtual vendor and the BankGate systems require that the

merchant and the acquiring bank exchange their public cryptographic keys for

encryption purposes, and that they both obtain Digital Certificates through a

Certification Authority for authentication purposes.

 Page 107

5.3.4 BankGateTM

The BankGate method uses models that allow for immediate authorization and

settlement of transactions by banks. For protecting payment data among the parties

participating in a BankGate transaction, BankGate provides support for the SSL-3,

SET, and its own proprietary security protocols. BankGate has several services

available for merchants, shoppers, issuing and acquiring banks. It is mainly composed

of three primary software components. For merchants, WebPOS (web point of sale) is

a program that emulates the traditional point of sale device across the Internet,

performing merchant and bank authentication using Digital Certificates. Data is

protected whilst being transmitted from the merchant to the acquiring bank using up

to 128-bit encryption. For shoppers, there is WebWallet, which is a program that

provides a SET wallet. There is also WebGATE software for acquiring banks, which

offers BankGate merchant services, such as authorization and settlement of

transaction with the issuing bank. WebGate can be referred to as a payment gateway.

Figure 3 shows the program components that form the BankGate system and how

they relate to each other.

A typical BankGate transaction follows exactly the same steps described in the SET

transaction flow. A customer enters his payment details on the WebWallet (cardholder

software), which then submits it using SSL, SET or the BankGate proprietary

protocols to the merchant software (WebPOS). The merchant forwards the payment

Figure 3: BankGate’s component programs

WebGate

Card
issuing
bank

WebPOS

Web browser

WebWallet

SSL/SET

SET

SSL

Other

Private Network

 Page 108

data to the payment gateway (WebGATE) of the acquiring bank, which in turn does

the authorization and settlement with the issuing bank, and sends a response to the

merchant. The only drawback with the SET (or BankGate) approach is the fact that

cardholders need to have Digital Certificates issued to them by the merchant or a

Certification Authority. This implies that if a million users use a web store, then a

million Digital Certificates have to be issued, which is a practical impossibility. This

is one of the major factors that will delay the acceptance of the credit card payment

methods based on the SET protocol unless some methods are developed to work

around it until such time as Digital Certificates become widely available to

consumers.

5.3.5 Alternative Methods for Online Credit Card Payments

As an alternative to credit card payment over the Internet, there are new payment

methods being developed, such as electronic cash (E-cash). E-cash is digital money

that one can use to make online purchases. Consumers interested in shopping with E-

cash need to have special software on their computers that allows them to download

money from their bank accounts into their E-cash wallets on their computers. When

making a purchase, they exchange this downloaded money with the merchant for the

product they want to buy. The merchant then redeems the money at a bank that

accepts E-cash deposits. DigiCash [36] is one example of a company, which has

developed an E-cash system.

5.4 The WAPS Implementation of the Credit Card Payment

Process

The process of commerce-enabling a site can be time consuming and hard to figure

out. Three steps were followed when developing the purchasing phase of the Web-

based Audio Purchasing system. These were:

§ Getting a merchant account with a bank,

§ Designing a shopping cart that customers can use to place orders, and

§ Setting up payment processing software for securing the payment data

 Page 109

5.4.1 Getting a merchant account

This is a first step towards commerce enabling a Web site. It involves obtaining a

virtual merchant number from a bank. At present it is still hard for merchants to get

the virtual merchant status, especially for small businesses. The reason for this is that

not all banks are ready to provide this service and those that do are bigger banks that

are afraid of extending merchant status to small businesses as they consider them to

present too much of a risk. These banks are afraid that a at-risk business may not be

able to handle any charge backs (credit reversal) that hit its accounts. Thus, if a

merchant cannot handle a charge back, the merchant’s bank will have to absorb the

loss. With online shopping, it is almost guaranteed that charge backs will occur at

some point due to a customer claiming the ordered goods never arrived, or were not

what the customer ordered. The card issuing banks penalize the acquiring banks that

have more than a certain percent charge back of their sales. This percentage varies

from banks to banks, but normally it is around 1 percent [39]. This then results in that

particular merchant losing its merchant status with the bank and this also makes

acquiring banks more reluctant to give out virtual merchant accounts.

 The average approval period for a virtual merchant account can take up to six

weeks. This is because a thorough investigation into the credit worthiness of the

merchant applying for virtual merchant status has to be carried out by the bank.

Unlike the normal merchants that are supplied with a credit card terminal by the bank

and can thus provide a customer with a receipt to sign on site, virtual merchants

cannot provide the buyer with an ink-on-paper proof of purchase. For this reason the

banks examine extreme caution in whom they allow to become a virtual merchant.

The following are some of the factors that banks consider when processing merchant

status approvals:

§ The authenticity of the products on sale,

§ The average amount per transaction,

§ Merchant’s projected monthly sales volume,

§ How long the merchant has been in business,

§ What kind of credit rating the merchant has, and

 Page 110

§ The kinds of cards that the merchant wants to accept, e.g. Visa, MasterCard,

etc.

Though bigger banks offer credit card merchant accounts, there are still very few that

offer virtual merchant accounts at present. One of the reasons for this is the fear of

credit card fraud on the Internet, while others are just not sufficiently knowledgeable.

Since WAPS is to be used by the International Library of African Music, an Institute

of Rhodes University, the University’s merchant account number was used when

commerce-enabling WAPS. Otherwise ILAM would have had to go through the

process outlined above to obtain a merchant account.

5.4.2 Designing a Shopping Cart

When people are shopping over the Web, they typically select a number of items that

are then kept in a virtual shopping cart. The shopping cart keeps a continuous list of

what the customer wants to buy and how much it costs. Once the customer has

finished selecting the items, he simply pushes a button on the shopping cart’s

interface to place an order. The most popular method for creating a shopping cart is to

use the Common Gateway Interface (CGI). With CGI shopping carts, all the shopping

information resides on the Web server.

This implies that every time a customer adds or removes an item in the cart, a

communication will have to be established with the Web server. This becomes a

problem when a customer has a slow connection, as it may take a while to select the

items. For this reason the WAPS shopping cart was developed using Java. This

enabled the management of selected items on the customer’s computer rather than

saving them on the Web server, and when the customer decides to place the order, the

Java shopping cart sends the order to the merchant only once. A simple framework for

the WAPS shopping cart was created and a user interface was attached to it.

5.4.2.1 The WAPS Shopping Cart’s Framework

Firstly the attributes of the items that had to go in the cart were selected. These

included the title of the song, price, and the quantity. The quantity value was included

to avoid multiple instances of the same item in the cart. The following code fragment

 Page 111

shows a simple implementation of the shopping cart item i.e. an object that defines the

attributes of the items that are to go to cart. These include a song title, price, and a

quantity.

The next step was to create the actual shopping cart itself. A hash table object for

storing the cart items was created. When storing data in a hash table object, a key is

associated with each data entry (see Figures 4 and 5).

The keys are then used to retrieve the data stored on the hash table. For the WAPS

shopping cart, the song titles were used as keys to the data, which was stored as an

 Title

 Keys Data

 class Items {
 public String title;
 public double price;
 public int quantity;

 Items (String t, double p, int q) {
 this.price = p;
 this.quantity = q;
 }
 //The update method is used when adding items to a cart, It does not perform any checks to
 //ensure that they are similar
 public void update (double p) {
 price = price+p;
 quantity++;
 }
 //The delete method is similar to the add method but it removes a certain quantity of items
 public void delete (double p, int q){
 price = (price-p)/q;
 quantity--; } }

Data ?

Data :

Data 2

Data 1

Key ?

:

Key 2

Key 1

new objects(t,p,q)

new objects(t,p,q)

new objects(t,p,q)

new objects(t,p,q)

Title?

:

Title2

Title1

Figure 4: A hash table Figure 5: Actual shopping cart

Data Data

 Page 112

object (class Items defined by the code snippet above) with attributes price, quantity,

and title. Figure 5 shows the structure of the actual shopping cart. The following code

fragment shows the actual shopping cart object implementation:

Other major methods implemented by the shopping cart object include getTotalCost ()

for calculating the total amount of the selected items and delete () for deleting an item

on the shopping cart.

5.4.2.2 The Shopping Cart’s User Interface

Generally, the structure of a Web storefront has two parts: the catalogue (the

Information Retrieval Engine in WAPS) and the shopping cart (WAPS shopping cart).

When a user is buying musical items, he searches for the available music of interest

through the catalog and selects ones he wants. The catalog then sends these items to

the shopping cart. All this has to be done through a suitable and easy to use interface.

The WAPS shopping cart is composed of two canvases: the main canvas for

reviewing the selected items, and the order canvas for placing an order of the selected

import java.util.*;
class wapsCart{
Objects obn = null;
Hashtable cart;

wapsCart
{
 cart = new Hashtable();
 }
 //This method is for adding items to the cart, It performs checks to ensure that there is no
 //similar items. If the item already exists, it uses the update method of the cart
 //implementation (class Objects) to increment the price and the quantity value of that
 //particular item.
 public void addItem (String t,double p, int q)
 {
 if (cart.containsKey(t)!=true){
 // item does not exist, store it on the hash table
 cart.put(t, new obn(t,p,q));
 }
 // item already exists, update the price and the quantity value
 else
 {
 // retrieve the record
 obn = (Objects)(cart.get(t));
 // update the price an the quantity values
 obn.update (p,q);
 // save the record back
 cart.put (t,obn);
 }
 …………………
}

 Page 113

items and entering the customer’s payment details, such as address, credit card

number, e-mail, etc. Figures 6 and 7 show snapshots of the two canvases.

Figure 6: The main shopping cart canvas

Figure 7: The order canvas

 Page 114

The shopping cart’s interface was developed using the standard Java GUI components

and layout managers.

5.4.3 Securing Payment Data

A typical WAPS credit card transaction starts with the customer selecting and

ordering a musical item from the WAPS strore front. The payment information is sent

securely to the merchant and then to the acquiring bank to get authorization for the

purchase. The approval or denial is returned to the merchant, which generates the

consumer’s digital receipt and then the customer is forwarded a Web page with links

to the purchased items. The approach that was used when securing the customer’s

credit card information in WAPS was implemented in two phases. Firstly, the SSL

protocol was used when transferring the payment data from the storefront to the

merchant. Secondly, both the Virtual Vendor approach and the WebPOS software

(BankGate’s software program for merchants) described in sections 5.3.3 and 5.3.4

were used for the actual authorization request between the merchant and the acquiring

bank. Figure 8 shows the implemented architecure, which forms the WAPS logical

payment component. Figure 8 also shows the two phases of implementation.

Figure 8: The implemented architecture

Web
browser

Card issuing
bank

WAPS Payment Server

Virtual
Vendor

WebPOS

Payment gateway
(Acquring bank)

[WebGate]

Shopping
cart

SET

SSL
BankGate

SMTP

 Page 115

As shown on the figure above, the implemented architecture for the credit card

payment process integrates two of the WAPS physical components, which are the

shopping cart and the payment server, with two external components, which are the

payment gateway and the issuing bank. Apart from storing the selected musical items,

the shopping cart is also responsible for the transportation of the customer’s credit

card details to the payment server. The payment server is a multi-threaded stand-alone

Java application that executes on the merchant’s computer waiting for payment data

from the shopping cart over a secure channel of communication. The payment server

has been interfaced with the WebPOS software (BankGate’s program for merchants)

in order to send real-time authorization and settlement requests to the acquiring bank.

The following two sections describe the two implementation phases that form the

logical payment communication component mentioned in section 1.3.3 of Chapter 1.

5.4.3.1 Phase 1: Consumer to Merchant data transfer

For transferring the customer’s credit card details from the storefront to the merchant,

a client/server architecture was defined and developed using Baltimore Technology’s

J/SSL toolkit [40], a Java SSL version 3 class package. This package provides a set of

Java classes that mirror the java.net socket classes and includes two other socket

classes named SSLSocket and SSLServerSocket. These additional socket classes

provide a transparent implementation of the SSL version 3 protocol. These classes

behave exactly like their java.net equivalents, except that their constructor methods

also require a JcipherSuite object among their arguments for providing cipher suite

details.

 Using this J/SSL toolkit, two Java threads were defined. These were a

SSLClient thread named “client” and a SSLServer thread named “server”. The client

thread was implemented as an inner class of the shopping cart, while the server thread

was implemented as the main class of the payment server. Basically, the client thread

implements the client side of the SSL protocol, while the server thread implements the

server side of the SSL protocol. The server thread is started automatically when

starting the payment server and it executes as a daemon thread waiting for SSL

connections from clients. When a customer presses the submit button on the order

canvas of the shopping cart’s interface, the client thread is instantiated. It then sends a

data packet requesting an SSL session to the server thread. The server responds by

 Page 116

sending the merchant’s Digital Certificate, which it encrypts with its private key. This

server’s Digital Certificate is then used by the client to prove the server’s identity.

This certificate includes a chain of certificates up to the Certification Authority (CA)

that the client trusts. Once the client receives the server’s Digital Certificate, it

decrypts it using the server’s public key. The tricky part when setting up an SSL

connection is that the client has to obtain a key ring, which is a conventional file

containing a database of keys (including the server’s public key needed to decrypt the

server’s Digital Certificate) and the CA’s certificate (that issued the merchant’s

certificate), before an SSL session is created. Since the key ring contains some

confidential information, it has to be transferred securely from the merchant to the

client thread. In this project, the key ring was encrypted using the cryptographic

libraries that are part of the J/SSL toolkit and it was placed on the merchant’s Web

server. The client thread loads the key ring from the Web server using the URL class

provided by the Java class library. The key ring is then decrypted by the client thread.

The following code fragment shows how a client thread loads the key ring from the

Web server using the URL class.

When the client has finished authenticating the server, an SSL handshake begins.

During handshake, the client suggests to the server a list of SSL cryptographic

algorithms that it is able to support. The server goes through the list, picks up the

strongest algorithm that is common to both, and an SSL session is established. The

client retrieves all items that are on the shopping cart and the payment details entered

on the order canvas, and sends them through the established secure connection to the

server. The server gathers the ordered items with the credit card details and gets ready

………..
public void loadKeyRing(){
 try{
 byte keyring[] = new byte [ring.length]
 for (int i=0; i<ring.length; i++)
 {
 ByteArrayOutputStream out = new ByteArrayOutputStream ();
 URL url = new URL (getURL ()+keyring[I]);
 InputStream fin = url.openStream();
 int n;
 while ((n=fin.read(keyring))>=0)
 out.write(keyring,0,n);
 fin.close;
 byte[] content = out.toByteArray();
 supportFactory.addCACertificate(content);
 }}}

 Page 117

to create an authorization request with the acquiring bank and to deliver the ordered

items.

5.4.3.2 Phase 2: Merchant to Bank data transfer

This covers the transfer of the payment data from the payment server to the payment

gateway of the acquiring bank. Both Virtual Vendor and the BankGate credit card

payment systems were used for this. As to which payment approach to use at a

particular point in time, the merchant has to specify this on a configuration file that is

read by the payment server during start-up.

§ Using the Virtual Vendor method

When this payment approach is being used, the payment server performs two

independent operations: Firstly, once the payment server has received the customer’s

credit card details and the list of the ordered items, it generates an HTML page

containing links that point to where the customer can download the ordered musical

tracks. This HTML page is then sent to the shopping cart through the SSL connection.

The client then uses the showDocument method of the URL class package, to display

the HTML page on a separate browser window, thereby allowing the customer to start

downloading the purchased items. Secondly the payment server creates a transaction

file. This file contains a merchant number, merchant ID, customer’s credit card

number and expiry data, and the total sales amount. The payment server executes PGP

from the command prompt to encrypt the transaction file. The following code

fragment shows how PGP is executed within the payment server:

Having encrypted the transaction file, the payment server constructs an e-mail

addressed to the acquiring bank, attaches the encrypted transaction file, and sends it to

the acquiring bank. The acquiring bank decrypts the transaction file using its private

……
public void encrypt (String filename)
{
 try{
 Runtime rt = Runtime.getRuntime();
 // run pgp from command prompt
 Process pro = rt.exec(“pgp –eatw “+filename+” “ +publicKey);
 …..
 }
 catch(IOException e)
 {}}

 Page 118

key pair, and forwards the authorization request to the issuing bank for credit

authorization and settlement. The issuing bank sends the response to the acquiring

bank, which then sends it to the merchant by PGP encrypted email. If the

authorization request was approved, the acquiring bank automatically sends a request

to the issuing bank for the transfer of funds from the customer’s account to the

merchant’s account.

As can be seen from the above scenario, the merchant does not wait for the bank’s

response before allowing customers access to the purchased items. This is due to the

fact that the implemented approach uses the normal email messages for authorizations

and it can take a very long time before a response can be received from the bank.

Thus, the Virtual Vendor’s message-based payment technique opens opportunities for

fraud, since users of the online store can gain access to the musical files while having

insufficient funds on their credit card accounts. The following method of payment that

was implemented utilizes the BankGate payment approach and it offers an immediate

authorization and settlement of requests.

§ Using the Bankgate System

Also in this approach the payment server performs two operations: First, the HTML

page that contains the links to where the ordered items can be downloaded is

generated by the payment server. Secondly, the payment server is interfaced with the

WebPOS software mentioned in section 5.3.4 for authorization purposes. Unlike the

previous message-based payment process, the generated HTML page cannot be sent

to the shopping cart until a response is received from the acquiring bank indicating

that the authorization request was approved. The WebPOS software used is freely

available from http://www.bankgate.com. It is compatible with the SET version 1.0,

SSL version 3, and other proprietary BankGate protocols, allowing merchants to

choose the type of protocol to use when tranferring data from the merchant to the

acquring bank. WebPOS can be interfaced with backend systems that support CGI

calls or calls to command line programs.

 In our case the payment server was interfaced with WebPOS by using the

command line method. The following code fragment shows a typical authorization

 Page 119

request issued by the payment server and it shows how the payment server and

WebPOS were interfaced.

The bold words are the BankGate argument fields whose values have to be passed to

the WebPOS program. For example,

§ Function: identifies the type of transaction to be sent to the payment

gateway, i.e. whether it will be an authorization request or a capture

request

§ Protocol: an argument used for selecting which security protocol is to be

used when sending the authorization request to the WebGate (payment

gateway) program of the acquiring bank.

§ BankGateID: is a unique ID number issued by the acquiring bank to the

merchant. It is a terminal identification code

§ CardNumber: customer’s credit card number

§ CardExpiry: credit card’s expiry date

§ Amount: sales amount

§ Currency: local currency

§ TransactionID: a randomly generated number that uniquely identifies a

particular transaction

 When the payment server executes the above sample code, the authorization request

is passed to WebPOS, which then uses the selected protocol to send the request to the

payment gateway. The payment gateway forwards the request to the issueing bank.

…..
public void authorize()
{
 // create the authorization request
 String request=”Function=Authorise&Protocol=”SET”&BankGateID=bankgateID&
 CardNumber=ccnumber&CardExpiry=exp_date&Amount=sales&
 Currency= rands&TransactionID=refNo”;
 try{
 Runtime rt = Runtime.getRuntime();
 // Execute WebPOS and forward it the authorization request
 Process pro = rt.exec(“webPOS “+request);
 //read the response
 InputStreamReader isr = new InputStreamReader(pro.getInputStream());
 BufferedReader br = new BufferedReader (isr);
 String response = br.readLine();
 }
catch(IOException e){}

 Page 120

The issueing bank sends the response back to the payment gateway, which forwards it

to WebPOS and on to the payment server. If the authorization request is approved, the

payment server then sends the HTML page generated earlier to the shopping cart for

the customer to download the ordered items. Otherwise the payment server sends a

message to the shopping cart to inform the customer that the authorization was denied

and hence no access to the ordered items would be given. Just as with the Virtual

Vendor approach, when the authorization has been approved by the issuing bank, the

acquiring bank automatically issues a credit settlement request without requiring the

payment server to issue a capture request.

Summary

The credit card payment security protocols (SSL and SET), and the credit card

payment software that implement these protocols (such as the BankGate system) were

discussed in this chapter. SSL offers channel security between two parties i.e. client

and server. It uses public key encryption to negotiate a session key between a client

and a server and uses this key to encrypt the data passing over this channel. The SET

protocol not only offers channel security between the parties involved in a payment

transaction, but it defines a complete credit card payment methodology by involving

the cardholder, the merchant, and the acquiring bank. The approach that was used

when commerce enabling WAPS combines both the SSL and the SET protocols to

provide a secure transfer of payment data from the WAPS storefront to the payment

server and through to the acquiring bank.

As discussed in this chapter, the SSL protocol was used to secure payment

data between the shopping cart and the payment server, while the SET protocol was

utilized between payment server and the acquiring bank. The main reason for the

implemented approach was that SET requires authentication of all parties involved in

a transaction. This then means that all customers must obtain Digital Certificates in

order to be authenticated by merchants. Thus, in our approach the customer payment

details are transferred to the merchant over an SSL connection, and then either SET or

SSL can be used to send the authorization request to the acquiring bank depending on

which payment method the merchant has decided to use i.e. either e-mail based or

BankGate.

 Page 121

Chapter 6

Distributing Music over the Internet

The transition of audio technology from the analog to the digital domain and the

rapidly improving hardware and software resources for handling digital audio data has

enabled easy illegal copying and manipulation of audio files, especially of those sent

over the Internet. This poses a serious challenge to the security and copyright

protection of IP based audio streams and to various parties involved in the music

production industry. Systems that facilitate the delivery of music over the Internet

need to be aware of these challenges and methods that can be used to counteract them.

This chapter discusses some copyright protection problems and introduces several

proprietary solutions to the problem of unauthorized copying and usage of audio data.

Finally some standards that are in place for copyright protection of music transmitted

over the Internet will be presented.

6.1 Copyright Problems

The rising popularity of audio transmission on the Internet and the increasing

efficiency of audio codecs promotes an ideal environment for music distributors to

sell digitized and high quality compressed audio to interested customers over the

Internet or dial-in connections (e.g. ISDN). With these emerging possibilities that

enhance online music distribution, the intellectual property rights (IPR) of artists need

to be protected. Also the current equipment (i.e. multimedia computers with CD-

ROM and CD writers) makes it possible to produce digital copies of music tracks or

video files without much problem and without the knowledge of the copyright

holders. With these new technologies, digital audio data or any multimedia data can

be duplicated without any loss of quality, where the copy becomes identical to the

master and the process of copying does not affect the quality of the master itself. This

leads to the possibility of uncontrolled copying, (reproduction) and selling of

unauthorized copies.

 Page 122

This impacts music producers and distributors who stand to lose a lot of money. On

the other hand, the rising popularity of the Internet commerce has forced the music

distributors to consider it as one of their delivery mediums. This has led to the design

and development of web-based systems, such as WAPS, that allow selling of high

quality compressed music (e.g. ISO/MPEG Audio Layer III files, or any other high

quality compression technique) via the Internet. But, the questions that automatically

arise when services of this nature are launched are:

§ How can digital multimedia data be sold without losing track of how the data

is used?

§ How can additional information (e.g. composer, artist, publisher, distributor,

etc) be attached to the multimedia data?

The answers to the two questions lie in the hands of the technology developers and

the music distribution industry at large. At the end of the day it is the distributor’s

decision that counts i.e. whether they decide to use the technology developed to

protect the copyright of their music or not. However, several systems have been

developed to answer these questions. These include: digital audio watermarking [41],

Fraunhofer’s Multimedia Protection Protocol [42], FASTAudio [43], and the Secure

Digital Music Initiative [44], to name a few.

6.2 Intellectual Property Management Systems

6.2.1 Audio Watermarking

A digital watermark is an invisible identification code that is permanently embedded

in a multimedia data file. In the case of music the term watermarking describes a

method of transmitting arbitrary data along with a piece of music. Basically,

watermarking is used to embed information (e.g. information about the artist,

distributor, publisher, etc) into an audio track. Watermarking provides a way to carry

additional information along with the music even if it is uncompressed. Figure 1

illustrates how watermarking is implemented within digital audio data.

 Page 123

From Figure 1 above, the watermark encoder embeds the identification code into the

original audio data, the original data being digital in nature (i.e. a digital sound file or

sound coming from a sound device). The watermarked file is then transmitted over the

network. On the receiving end, the watermark decoder extracts the identification code.

A digital watermark should be:

§ Hidden and invisible.

A watermark should be perceptually invisible and its presence should not

interfere with the work being protected.

§ Robust against signal processing operations.

Robustness ensures that no one is able to remove or tamper with an embedded

watermark without destroying or at least degrading the music.

§ Directly connected to the music, not in the header.

The above requirements can be achieved by combining two fundamental techniques:

“Psychoacoustics” and “Spread Spectrum” modulations [45]. The first ensures the

inaudibility of the additional data by modeling properties of the human auditory

system. The spread spectrum modulation provides high robustness against various

signal-processing attacks by spreading the information over the entire time-frequency

plane. Although digital watermarking is relatively new as a means of protecting

intellectual property, the theories and technologies around it have been around for a

while. These include: computer-based steganography (cryptography), spread-

Figure 1: Watermarking in music

 Additional Data
Additional Data
 Output
Input

 Audio Audio

 Signal Signal

Watermark

Encoder

Watermark
Decoder

Music
Distribution
Via Internet

Standard
Audio
Player

 Page 124

spectrum communications, and noise theory. There are mainly two different

categories of watermarking technology tools available [43]. The first is based on

fingerprinted binary information, and the other is based on watermarking techniques

developed at NEC research and the University of Catholique de Lourain (Belgium),

which identifies documents by hidden number (fingerprints). There are various

systems that implement audio watermarking. These include: SysCoP (System for

Copyright Protection) [46], developed at the Fraunhofer Institute for Computer

Graphics; Digimarc from Digimarc Inc. (Poland) [47]; and Argent from DICE [48].

These systems can encode additional identification information such as the author’s

name, publisher, etc.

6.2.2 FASTAudio

The Fast and Adaptive Security Technique for Audio over IP is a solution for securing

audio transmission in a number of IP based applications. FASTAudio has been

developed by the Fraunhofer Center for Research in Computer Graphics (CRCG).

FASTAudio is an audio IP streaming technology that is adaptive and content-based.

With FASTAudio, adaptive security functions are applied to selected portions of an

audio stream depending on the network conditions and security requirements. Hence,

any user can play the lower quality portions of a FASTAudio-encoded stream using

any audio decoder, while only authorized users with FASTAudio decoders can play

the audio stream at all levels of quality.

FASTAudio uses encryption technology on a significant portion of the audio

stream for providing adjustable security. Once the audio data has been encrypted, it

can then be securely transported over a network. At the receiving end, these

significant portions are first decrypted and then combined with the remaining audio

portions into the original audio stream. For further protection of copyright of the

audio after decryption, the audio stream is digitally watermarked using the SysCoP

audio watermarking systems. SysCoP (System for Copyright Protection) [46] is a file-

based mechanism that applies a copyright marker (watermark) to a multimedia file

that cannot be deleted without destroying the contents of the file.

Although FASTAudio is not a standard for securing the delivery of high quality audio

over the Internet, it offers one possible solution of guaranteeing copyright protection,

 Page 125

especially for streaming audio applications. Some of the possible applications of

FASTAudio include Music on Demand, Video on Demand, and Internet Radio.

FASTAudio represents one of the simplest audio delivery methods and it offers a

solution for secure and flexible audio streaming over IP, including multicast/broadcast

transmission.

6.2.3 The Multimedia Protection Protocol

Developed by the Fraunhofer-Institute for Integrated Circuits (Fraunhofer IIS), the

Multimedia Protection Protocol (MMP) introduces a convenient way to ensure

copyright protection for all kinds of digital data. MMP was especially constructed for

the copyright protection of compressed multimedia data e.g. MPEG Layer III files or

H.263 video clips. For producing MMP files, Fraunhofer IIS has developed an MMP

library that can be used to wrap (protect) multimedia files and unwrap them to use the

contents. This library can then be inserted into every multimedia encorder and player.

When a customer asks his distributor for a multimedia file e.g. a piece of

music, the distributor can use an MMP encoder (wrapper) to protect the requested

track with MMP. During the MMP encoding process, an MMP file is produced and is

personalized, meaning that only the target customer’s MMP compliant multimedia

player can use the data. If, for example, the MMP file is played by another person’s

player other than the one for which it was intended to, the file becomes useless.

Hence, no one but the target customer would be able to use the contents of the file i.e.

listen to music. MMP is basically a secure envelope wrapped around the multimedia

data for its protection. The inside of the envelope is then ciphered to prevent

unauthorized access. This envelope is represented by a header and followed by the

MMP file. The MMP header carries information such as:

§ The provider and distributor,

§ The target customer for whom the file was composed, and

§ Additional data describing the contents e.g. author’s name, artist,

composer, ISRC, information on the copyright holder, etc.

 Page 126

Figure 2 shows the principle structure of an MMP file. When protecting the contents

of a multimedia file, both the header and some parts of the multimedia contents are

ciphered.

An MMP file is enciphered by using two different keys: one key, KH, is used to

encipher the MMP header and the other key KB is used to protect the contents of the

MMP file. The ratio at which how much data is to be left un-ciphered is adjustable to

the needs of the distributor. More ciphering would obviously produce more load on

the computer that wraps the data into the MMP envelope, while on the other hand

increasing the safety of the MMP file. The MMP approach has promoted an efficient

and a convenient way for music distributors to sell their music securely on the Internet

without fear of copyright infringements. MMP is part of the ISO MPEG-1 Layer III

software developed at the Fraunhofer IIS (WinPlay3 for Windows and MacPlay3 for

Macintosh). Thus, if a distributor intends distributing his music in MPEG-1 Layer III

format, all he has to do is envelope the music into MMP files using an MMP encoder.

These files can then be unwrapped by the target customers using any MMP compliant

player.

6.3 Ethics

The Internet has on many occasions proven to be a good testing ground for the

applicability of existing and new laws. As new technologies develop, there is a

continuous struggle to determine the legality of various applications of that

technology, which often involves groups with varying goals. One such technology is

the distribution of music over the Internet. There are several standards for transmitting

Figure 2: Structure of an MMP file

 header ciphered

 Plainbody

 ciphered ………

 ..

 unciphered unciphered

 unciphered

 Page 127

music over the Internet, each of which puts into focus various issues of the legality of

such actions. Various groups have also come to the forefront of the debate involving

the distribution of music over the Internet. One typical example of such a group is the

Secure Digital Music Initiative (SDMI).

The SDMI was announced at the end of 1998 by the Recording Industry

Association of America and Japan (RIAA and RIAJ) and the International Federation

of the Phonographic Industries (IFPI). SDMI is the music industry’s effort to ensure

copyright protection of music over the Internet. Through this initiative the record and

technology solution providers hope to create a specification that can be extensibly

embedded within any online music delivery technology to ensure it is secure. The

major driving force for this initiative has been the widespread use of formats like

MPEG Layer III for pirating music. So, the SDMI was launched in order to establish a

secure way of trading and distributing music (and other multimedia content) over the

Internet.

Summary

Though the technological advances might seem to suggest that the distribution of CD

quality audio over the Internet is a solved problem, there are still barriers that have to

be overcome before there can be widespread access to vast music catalogues.

Furthermore, music that has already been distributed online is vulnerable in the light

of these advances. Hence, systems and services have to be built, which will guarantee

that the music copyright owners do not lose complete control of their wares. It is very

difficult to build a completely foolproof solution, but there is a great need for

technology providers to design systems that will maximize the incentives for

customers to play by the rules. There is however a belief that the kinds of systems

described in this chapter do enable consumers to use music in new ways. These

systems also enable music distributors to distribute their music more confidently and

securely without fearing for copyright infringements. The distribution of high quality

audio over the Internet has revolutionized the entire music industry and has enabled

content owners (or music distributors) to engage in entirely new kinds of services.

 Page 128

Chapter 7

Conclusion

The primary ways of ordering music have been through the mail, from the music

store, or on the Internet. Purchases made through the mail and Internet are partially

convenient because they do not require individuals to leave their homes. However,

once a purchase has been made via these means, a consumer has to wait between two

and four weeks for the goods to be delivered. Additionally, if ordered by mail or

Internet, consumers are unable to listen to samples of the music prior to their

purchase. Hence, they may prefer to get in their cars, drive to the nearest music store,

make a purchase, and leave with the goods in hand. The growth of the WWW has

provided new opportunities for distributing and selling recorded music on the Internet.

This has enabled music distributors to utilize the Internet as an important delivery

medium, i.e. for advertising, ordering, or promoting music as well as delivering

digitally compressed music.

 The electronic transfer of music over the Internet provides a more convenient

and accessible alternative to music consumers. It has the potential to allow individuals

to browse, listen to, purchase, and receive music at their residence in a relatively short

time period.

7.1 Thesis Overview

The main goal of this thesis was to investigate the technological requirements for an

ideal Web music store and suggest an optimal way for setting it up. The basic purpose

of an electronic music store is exactly the same as that of a physical store i.e. to bring

potential buyers and sellers together, whereby:

§ Sellers offer their goods and buyers order them, and

§ Buyers make a payment and sellers deliver the goods.

In the above actions, the two parties have specific security requirements, namely

integrity, confidentiality, and availability. Essentially, an online music store allows

 Page 129

users to sit at their computers, log onto a Web site, search for music of their interest,

listen to music samples prior to purchase, select and purchase items, and download

the digitally compressed CD-quality songs to their hard-drives. Putting together an

enterprise-level application for an online music store involves design and integration

of various technologies that play specific roles in a distributed computing

environment. Five Internet-related technologies, which form the core of the model for

WAPS, were identified, discussed, and analyzed in this thesis. These include various

methods for accessing remote databases, Internet audio codecs, streaming audio

protocols, payment security protocols, and the Intellectual Property Management and

Protection (IPMP) of multimedia data over the Internet.

7.1.1 Methods for Accessing Remote Databases

Since the Internet is inherently distributed in nature, a distributed topology is a

prerequisite for building Internet applications that access Web databases remotely. As

discussed in Chapter 2, a 3-tier architecture approach is the foundation upon which

such applications are built. This approach has several added advantages over the

traditional 2-tier approach. These include: reduced network load; clear separation of

user interface control and data presentation from the application logic; re-definition of

storage strategy that doesn’t influence clients; business objects and data storage are

brought together as close as possible, reducing network load; dynamic load balancing:

if bottlenecks in terms of performance occur, the server process can be moved to other

servers at runtime. The 3-tier architecture is composed of a client-tier, an application

server-tier, and a data storage-tier. The interaction between the application server and

the data storage tiers is handled by database protocols, such as ODBC or JDBC.

The question remained of how to manage the interaction between the client and the

application server tiers. This question was used in Chapter 2 as the driver for an

analysis of various techniques, provided by Java programming language, that can be

used to facilitate data communication between client and the application server tiers.

However, the results also apply to the more general field of distributed applications.

Four approaches, using different protocols and mechanisms to enable interaction

between a client (Java applet) and a remote corporate server application were

identified and analyzed. The approaches based on HTTP/CGI and those that

 Page 130

implement straight IP sockets suffer from significant shortcomings, such as data

marshalling, performance, and maintainability. In Chapter 2, it was shown that the

RMI mechanism provides a very efficient and lightweight communication between

remote Java objects and seemed to be the preferred solution for distributed

applications that are completely in Java.

 On the other hand, CORBA with its support of a range of major programming

languages, provides a useful set of fundamental services for distributed systems,

including Naming, Trading, and Event services. CORBA seems to be the choice when

it comes to the larger scale distributed applications or to the access of legacy

applications not implemented in Java. Both the RMI and the CORBA approaches

were tested for preliminary performance results by means of a prototype of a

distributed audio database management and purchasing system, developed in this

project. As outlined in Chapter 1, the system is based on a client/server architecture

where audio documents (text, audio, still images, etc) are stored and accessed in a

manner transparent to its client applications. Access to audio information is performed

by querying a relational database and the set of audio items are integrated and

transparently distributed to the users. For the test, several queries were performed,

with each query performed three times and the average performance time measured.

The queries consisted of issuing SQL statements to select each and every field from

the database, where between 50 and 100 records were returned from each query.

 The performance results for the RMI and CORBA approaches showed that

CORBA’s performance was faster than that of RMI. The reason for this is that RMI

uses Java object serialization for passing results between client and server

applications, while CORBA does not i.e. its uses normal data types when passing

results. The latest release of RMI over IIOP by JavaSoft provides a core ORB

including an IDL compiler, which uses a lightweight protocol for invocation of

methods on remote Java objects by non-Java clients, and vice-versa. This has created

the possibility of integrating RMI and CORBA, so that either of these approaches can

be chosen where they are most appropriate.

 Page 131

7.1.2 Internet Audio Codecs and Streaming Audio Protocols

The Internet does not offer guaranteed bandwidth and there is always a variable delay

involved when transmitting audio files in real-time. Because of this unknown

overhead, an audio file’s bandwidth must be between 6 and 56 kbps if it is to be

streamed across the Internet, with subjective quality kept as high as possible within

the given bit rate. There are basically two solutions to the bandwidth problem for

applications that utilize audio on the Internet. These include careful selection of

suitable audio codecs and appropriate transport protocols. Chapter 3 presented various

audio codecs that can be used in low band connections, and it presented the results of

blind subjective tests, evaluating the audio quality of 5 industry standard, and widely

used codec families (which constituted 13 codecs) against a limited bandwidth

reference. The study of these codecs is unique, since this was the first time that all of

these codecs have been compared in a single formal test.

 The codecs tested operated at bit rates between 8 kbps and 56 kbps. The tests

examined the quality of the codecs against increasing bandwidth and were conducted

in accordance with methodologies outlined in the ITU-R Recommendation BS.562.3.

Three test materials were selected and encoded in each of the 13 codecs. These

included an acoustic guitar; a rock piece with a good mix of synthesizers, bass and

drums; and a female voice speech. Eighteen men and two women then listened to and

evaluated the quality of the samples produced by the 13 codecs. The listeners were

given a 56 kbps MPEG-1 Layer III file as a reference, and were asked to rank the

quality of the samples against it. The 56 kbps MPEG-1 file was used as a reference

instead of the original recording because it is closer in quality to the compressed

samples. This encouraged the listeners to use the full grading scale given, from 1 to 5.

 The results of the tests showed that the codec families are clearly delineated

with respect to quality. The ranking of the individual codecs with respect to quality is

(in order of merit):

1) RealAudio/44 and TwinVQ/40

2) MPEG-1 LII/56, MPEG-1 LIII/40, and MsAudio/40

3) MPEG-1 LII/24, MPEG-1 LIII/16, and RealAudio/16

4) MsAudio/16 and TwinVQ/16

 Page 132

5) MPEG-1 LIII/8, MsAudio/8, and TwinVQ/8

Overall, the RealAudio and TwinVQ codecs operating at 40 kbps had the best sound,

while others (except MPEG-1 Layer III, MsAudio, and TwinVQ, all operating at 8

kbps and rated as “Poor”) performed between “Fair” and “Good” on the quality scale.

These tests only considered audio quality with respect to bit rate. Other factors such

as computational complexity, delay, sensitivity to bit errors, and compatibility with

existing systems, usually need to be considered in the selection of a suitable

compression algorithm for a particular application.

 As mentioned earlier, the various audio compression schemes, which

markedly reduce audio file sizes and lower bandwidth requirements, present one

solution to real time streaming for applications that stream audio over Internet. The

other alternative is the use of streaming audio protocols. Chapter 4 presented several

standard and proprietary multimedia transport protocols suitable for the transmission

of real-time media on the Internet. In Chapter 4, it was also indicated that streaming

media technology developers basically have to choose between two packet-transport

protocols, neither of which is particularly effective for real-time data delivery. Some

products rely on the User Datagram Protocol (UDP) to send packets as quickly as

possible with no guarantee of delivery. Others use the Transmission Control Protocol

(TCP), ensuring that all packets arrive in the proper order. However, TCP introduces

transmission overhead, which can slow data transfer when congestion occurs. Thus,

using either transport, packets frequently do not reach the destination player in time to

put together smooth audio playback, especially on low band Internet connections.

Hence, specialized protocols, essential for the success of streaming media, needed to

be developed. Some of these protocols, presented in Chapter 4, include RTP/RTCP,

RTSP, and the Real Network’s proprietary PNA protocol.

 Some experimental tests using these protocols were carried out in the presence

of real-time play out requirements. These testing activities involved the transmission

of a 20 kbps RealAudio stream from a producer to a consumer through various

network environments. The main goal of these tests was to evaluate the applicability

of the HTTP, RTSP, and PNA protocols, in order to satisfy real-time play out

requirements with respect to the transmission of compressed low bit rate audio

 Page 133

streams. These tests were conducted within different networking environments, which

included an Ethernet based LAN, a dedicated WAN connection, and the Internet. The

parameters of interest were the bandwidth requirements and the achievable bit rate.

Attention was restricted to RealAudio since, as seen on the qualitative tests from

Chapter 3, it guarantees a better quality in audio reproduction at a higher compression

rate compared to other compression schemes, such as TwinVQ, MsAudio, MPEG-1.

There were no problems using all tested protocols on both the LAN and the dedicated

connection/WAN environments. There was no substantial delivery delay, and on both

the LAN and WAN environments the bandwidth was widely sufficient to put out

smooth audio playback without any noticeable gaps between packets. In the Internet

environment, the performance of the protocols was greatly influenced by the available

bandwidth. Though the performance of HTTP on average was slightly higher than

that of the RTSP and PNA protocols, noticeable gaps could be heard when the link

became saturated with other network traffic. Overall, the RTSP and PNA protocols

offered a much more controlled and smoother playback, and allowed one to move

back and forth during playback of the audio stream, a feature that is not possible with

HTTP.

7.1.3 Payment Security Protocols

Security is the primary concern of people and businesses that commit to using the

Internet for conducting business transactions. An Internet transaction is conducted

between two parties, and each party needs to have a certain level of trust in the other.

For electronic transactions to be the primary mechanism for conducting business, the

level of trust needs to be as high as, if not higher than, that of a person-to-person

transaction. Most importantly, the parties involved in an electronic trade also need to

have a high degree of trust in the medium used for information transfer, namely the

Internet. Several payment security protocols, and payment systems that utilize these

were introduced in Chapter 5. These included the SSL and SET protocols, and the

Virtual Vendor and the BankGate systems. These payment security protocols provide

important end-to-end security features in a way that persists even if payment

information passes over more than one secure channel. These features include:

 Page 134

§ Digital signatures on transaction data sent by customers to merchants,

from merchants to payment gateways, and from payment gateways to

merchants.

§ Non-repudiation of transaction data sent by customers to merchants, from

merchants to payment gateways, and from payment gateways to

merchants.

§ Secondary encryption, allowing information to be encrypted by its

originator (for example, a customer), sent off to another participant (for

example, a merchant), but decrypted only by a third-party (for example,

the payment gateway).

These functions are required by electronic payment systems in order to fulfill the

needs of all participants (customer, merchant, and payment gateway). These needs

involve:

§ Keeping both the customer credit card information and the order information

private.

§ Digitally signing all communications between all parties for the purpose of

guaranteeing authorship, and to adding non-repudiation to the communications

(i.e. the customer should not be able to deny having made an order).

7.1.4 Issues and Concerns about Distributing Music over the Internet

Though technological advances have furthered the ease with which music can be

distributed over the Internet, as well as increased the quality of music being

transmitted, there are still many issues that need to be addressed concerning the

distribution of high quality audio on the Internet. Chapter 6 introduced some of the

technological standards and groups such as the SDMI, who are at the forefront of the

debate involving the distribution of music over the Internet. These debates not only

reflect the technology itself, but the interest of those who stand to gain and lose it. At

 Page 135

the bottom line the protection of the rights of composers, artists, and music publishers,

is a key concern of music distribution over the Internet.

There are plenty of individuals hoping to gain tremendous revenue opportunities from

network music distribution, and all the players in the electronic commerce value chain

including musicians, recording artists, distributors, marketing groups, and Web

developers, want to benefit, as technological advances improve the quality of network

music distribution. These opportunities, however, are contingent upon important

public policy advances that ensure the development of a secure and business-friendly

environment. For example, no businesses will invest in Internet music distribution

unless there exist reasonable guarantees that they will be appropriately paid for their

services and goods. Thus, in order for this to happen, public policy advances need to

be applied in the following areas: cryptographic security, licensing mechanisms,

copyright protection, and secure payment systems. This implies that any system that

facilitates Internet music distribution has to incorporate most (if not all) of these

technologies.

7.2 End-product

The Web-based audio purchasing system, developed in this project, proposes a novel

way of integrating various Internet-related technologies, such as audio codecs,

security protocols, multimedia transport protocols, and methods for accessing remote

databases, into an appealing and reusable online music store. The design of WAPS is

based on a distributed topology. The system is low cost, since it has been built using

standard and widely used technologies. Its modular structure enables music

distributors to upgrade and maintain it with relative ease. The system is also

applicable to the real world, and has been tested by the International Library of

African Music (ILAM), of Rhodes University. The following are some of the

requirements, mentioned in Chapter 1, which we felt the system has fulfilled:

§ Providing flexible online access to a large music database by implementing

the industry standard distributed architectures, RMI and CORBA.

 Page 136

§ Supporting ad-hoc queries for users to find music material of interest based on

bibliographic information.

This was achieved by using the traditional “alphanumeric” technique for

retrieving music information from the music database utilizing RMI, CORBA,

and the JDBC communication methods.

§ Providing support for the standard and the most widely used audio codecs and

streaming audio protocols, so as to facilitate real-time preview of short audio

excerpts provided by the online store.

§ Providing a secure online payment mechanism, achieved by implementing a

combination of both the SSL and SET protocols in order to secure payment

information from the customer to the merchant, from the merchant to the

payment gateway, through to the bank and then back to the merchant.

The fulfillment of the above requirements has led to an analysis of various tools and

protocols involved, and also to the development of an online application that allows

users to search for music of their choice from a database, receive excerpts from its

collection on demand, to order securely, and to have their music delivered in digital

form via the Internet.

7.3 Future Directions

The following points constitute some of the areas or technologies that will improve

music distribution over the Internet.

§ Distributed Databases

A flexible, distributed client/server architecture is a good solution to the problem

of servicing processes on the Internet depending on the network load. This load

also affects access to databases, that is, the transfer of data. A simple solution to

this is the idea of a distributed database. A database distributed over several hosts,

each one located in different geographical locations, is a viable solution. The

database servers would then synchronize their contents during times of low

 Page 137

network load, and clients would then be able to choose their “closest” server. Thus

catalogue information would be duplicated in different geographical locations.

§ Content-based Retrieval Techniques

A large and well-organized audio database is a very important component in an

online music store. However, the issue of searching the database using the

“alphanumeric” or text-based technique only is a major limitation due to the

natural complexity of sound or music, and good alternatives are based on content-

based retrieval techniques. These would enable one to search a database by

specifying acoustic or perceptual attributes that are obtained directly from sound

analysis.

§ Multiparty Payment Systems

Currently, there is still a need to establish a standard micro payment system that is

flexible and secure enough to handle network music transactions. A sophisticated

micro payment system would ensure that music distributors, authors and artists are

properly compensated for their services and goods. Such a micro payment system

would provide the technology to back-up intellectual property rights and copyright

infringements. Hence, in order to fully encourage fair electronic transactions,

payment systems must move towards an open, multiparty model in which Internet

music distribution would be based on voluntary compliance and enforceable law,

whereby all parties involved (including customers, merchants, owners, artists,

producers, etc) benefit.

In conclusion, the advantages of electronically selling, transporting, and downloading

music over the Internet are numerous. Music distributors and artists are able to reach a

much broader audience and decrease their production costs. Consumers on the other

hand, benefit from the ability to easily compare prices of various distributors, with the

convenience of home-based shopping and faster delivery of the product. At present,

these advantages are slowly being realized by interested parties, especially the larger

music producers such as Sony, due to the various issues of concern highlighted in this

thesis. Hence, further technological advances are necessary to ensure that:

(1) Costs are reasonable for both the consumer and the provider,

 Page 138

(2) There are adequate incentives to encourage the use of this resource including

copyright protection, and

(3) Secure environments are provided for both the payment and transmission

products.

In addition, when providing networked music commerce, appropriate and effective

technologies need to be selected and coordinated to produce an environment that

further facilitates the achievement of the above goals. Under these conditions,

networked digital music distribution is likely to become a major player in the music

industry.

 Page 139

References:
[1] C. McGrath and B. Fowler, “Multimedia Databases”, ONLINE -

http://ils.unc.edu/~fowll/multimedia/index.html.

[2] S. McCline, “Object databases vs. Relational databases”, IDC Bulletin No.

14821E, August 1997, ONLINE - http//:www.cai.com/products/jasmine/

analyst/ide/1482E.htm.

[3] A. Amir et al, “Key to Effective Video Retrieval: Effective Cataloguing and

Browsing”, ACM Multimedia 98, ONLINE -

http://www.acm.org/sigm/MM98/

electronic_proceedings/ponceleon/index.html

[4] J. Patrick van Metre, “Common Gateway Interface”, ONLINE -

http://ei.cs.edu.vt.edu.

[5] Distributed Technologies GmbH, “3- and n-tier Architectures”, 1998,

ONLINE - http://www.corba.ch/e/3tier.html.

[6] JavaSoft, “JDBCTM Guide: Getting Started”, Sun Microsystems Inc., ONLINE

- http://java.sun.com/products/jdk/1.1/docs/guide/jdbc/getstart/intro.doc.html.

[7] JavaSoft, “ Java Servelet API”, Sun Microsystems Inc., ONLINE -

http://java.sun. com/products/servlet/index.html.

[8] P. Mohseni, “Exploiting distributed Java Computing with RMI”, NC-World

Magazine, ONLINE - http://www.ncworldmag.com, January 1998.

[9] OMG, “CORBA Overview”, Object Management Group Publications,

ONLINE - http://www.omg.org/corba/whatiscorba.html.

[10] Jakob Nielsen, “Response Times: The three important limits”, ONLINE -

http://www.useit.com/papers/responsetime.html.

 Page 140

[11] TechMetrix Reaserch, “Internet architectures and performances”, ONLINE -

http://www.techmetrix.com, November 1998.

[12] JavaSoft, “idl2java compiler”, Sun Microsystems Inc., ONLINE -

http://java.sun.com.

[13] D.Yen Pan, “Digital Audio Compression”, Digital Technical Journal Vol. 5

No. 2, pp. 1-12, Spring 1993.

[14] K. Lampert, “Methods to Reduce the Bandwidth Requirements of MPEG-1

Layer II Audio Data for Transmission Speeds of less than 28.8 kbps”, MSc

thesis, University of Miami, 1997.

[15] T. Stachowiak, “Multiplatform, Desktop Videoconferencing Systems for the

Internet”, MSc thesis, Graduate School of Syracuse University, December

1997.

[16] B. Feiten et al, “Dynamic Scallable Audio Internet Transmission”, Presented

at the 104th AES Convention, Amsterdam, May 1998.

[17] FhG-IIS, “Frequently Asked Questions”, ONLINE - http://www.iis.fhg.de

/departs/ amm/layer3/sw/index.html.

[18] A. P. Smith, “Perceptual Audio Coding”, ONLINE -

http://www.ug.ecs.soton.ac.uk/ ~sap296/media/perceptual_audio_coding.htm.

[19] Fraunhofer IIS-A, “MPEG-2 AAC”, ONLINE - http://www.iis.fhg.de/amm/

techinf/aac/index.html.

[20] Fraunhofer IIS-A, “MPEG-4”, ONLINE - http://www.iis.fhg.de/amm/techinf/

mpeg4/index.html.

[21] MP3’ Tech, “TwinVQ”, ONLINE - http://freeflight.cockpit.be/mp3tech/

vqf.html.

 Page 141

[22] RealNetworks, “RealAudio G2 Music Codec”, ONLINE -

http://www.real.com.

[23] Dolby Laboratories Inc. Press Realease, “ Dolby introduces audio format for

the Internet”, ONLINE - http://www.dolby.com/press/imadnet.html.

[24] ITU-Recommendation BS.562.3, “Subjective assessment of sound quality”

ONLINE - http://ext-www-proxy.itu.ch/itudoc/itu-r/rec/bs/562-3.html.

[25] K. Lee and W. Suh, “Real-time Audio on the Internet”, University of

Pennsylvania, ONLINE - http://www.seas.upenn.edu/~ksl/Classes/TCOM500/

InternetAudio/index.html, September 1996.

[26] Gilbert A. Soulodre et al, “Subjective Evaluation of State-of-the Art 2-

Channel Audio codecs”, AES preprint 4740, AES 104th convention, May 16-

19, 1999, Amsterdam.

[27] A. Covell, “Streaming Audio and Video on the Internet”, Network Computing,

CMP Media Inc., ONLINE - http://techweb.cmp.com/nc/712/

712corpnetSTREAMING.html.

[28] C. Liu, “Moltimedia over IP: RSVP, RTP, RTCP, RTSP”, ONLINE -

http://www.cis.ohio-state.edu/~jain/Cis788-97/ip_multimedia/index.html,

January 1998.

[29] JavaSoft, “Java Media Framework API”, Sun Microsystems Inc., ONLINE -

http://java.sun.com.

[30] K. Laik and M. Baker, “Measuring Bandwidth”, Stanford University,

ONLINE - http://mosquitonet.Stanford.edu/~laik/pro…blication/infocom/199/

html/netliner.html, 1999.

 Page 142

[31] Fraunhofer-CRCG, “SLICE: Secure Light – Weight Information Commerce”,

Fraunhofer Center for Research in Computer Graphics, ONLINE -

http://www.crcg.edu/projects/slice.html.

[32] K. Lamond, “Credit Card Transactions – Real World and Online”, ONLINE -

http://www.virtualschool.edu/mon/ElectronicProperty/klamond/

credit_card.htm.

[33] IBM, “Java Network Security”, IBM International Technical Support

Organization, November 1997.

[34] Visa and MasterCard, “Business Description: Secure Electronic Transaction

Specification”, version 1.0, May 1997, ONLINE - http://www.visa.com/cgi-

bin/vee/nt/econmm/set/main.html.

[35] Virtual Vendor CC, “ Virtual Vendor Transaction Management Service”,

ONLINE - http://vvendor.co.za.

[36] DigiCash, Digicash home page: ONLINE - http://www.digicash.com.

[37] Netscape, “SSL Version 3.0”, ONLINE - http://www.netscape.com/newsref/

std/SSL.html.

[38] BankGateTM, “Electronic commerce payment processing software for the

Internet Merchant”, ONLINE - http://www.bankgate.com.

[39] On the Internet Magazine (Oti), “Commerce Enabling a Web site”, issue 5,

July/August 1998, pp. 18 – 23, ONLINE - http://www.oti.co.za

[40] Baltimore, “J/SSL Version 1.0”, Baltimore Technologies Inc., ONLINE -

http://www.baltimoreInc.com.

 Page 143

[41] Ingemar J. Cox and Matt L. Miller, “A review of Watermarking and the

Importance of Perceptual Modeling”, proceedings of Electronic Imaging’97,

February 1997.

[42] N. Rump, “ Copyright Protection of Multimedia Data: The Multimedia

Protection Protocol (MMP)”, Fraunhofer – IIS, Erlangen, October 1996,

ONLINE – http://www.iis.fhg.de/amm/techinf.

[43] Fraunhofer-CRCG, “FASTAudio: Fast and Adaptive Security Techniques for

Audio over IP”, Fraunhofer Center for Research in Computer Graphics,

ONLINE – http://www.crcg.edu/projects/audio.html.

[44] N. Rump et al, “The Secure Digital Music Initiative”, Fraunhofer – IIS,

Erlangen, February/March 1999, ONLINE - http://www.iis.fhg.de/amm/.

[45] Fraunhofer-IIS, “ Intellectual Property Management and Protection (IPMP)”,

ONLINE - http://www.iis.fhg.de/amm/techinf/ipmp/index.html.

[46] Fraunhofer-ICG, “ SysCop: The System for Copyright Protection”, Fraunhofer

Institute for Computer Graphics, Darmstadt, Germany, ONLINE -

http://www.iis.fhg.de/.

[47] Digimarc, ONLINE - http://www.digimarc.com/.

[48] DICE, ONLINE - http://www.digital-watermark.com/.

[49] V. Jacobson, “Pathchar - a tool to infer characteristics of Internet paths”,

ONLINE - ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf, MSRI, April,1997.

[50] PGP, ONLINE - http://web.mit.edu/network/pgp.html.

	Ndinga

