
OVR: a Novel Architecture for

Voice-based Applications

Submitted in ful�lment

for the requirements of the degree of

Master of Science

at Rhodes University

Mathe Maema

Grahamstown, South Africa

April 2011

To all my family and friends

� because of your willingness to always march with me to Zion!

Abstract

Despite the inherent limitation of accessing information serially, voice applications are

increasingly growing in popularity as computing technologies advance. This is a positive

development, because voice communication o�ers a number of bene�ts over other forms of

communication. For example, voice may be better for delivering services to users whose

eyes and hands may be engaged in other activities (e.g. driving) or to semi-literate or

illiterate users. This thesis proposes a knowledge based architecture for building voice

applications to help reduce the limitations of serial access to information.

The proposed architecture, called OVR (Ontologies, VoiceXML and Reasoners), uses a

rich backend that represents knowledge via ontologies and utilises reasoning engines to

reason with it, in order to generate intelligent behaviour. Ontologies were chosen over

other knowledge representation formalisms because of their expressivity and executable

format, and because current trends suggest a general shift towards the use of ontologies

in many systems used for information storing and sharing.

For the frontend, this architecture uses VoiceXML, the emerging, and de facto standard

for voice automated applications.

A functional prototype was built for an initial validation of the architecture. The system

is a simple voice application to help locate information about service providers that o�er

HIV (Human Immunode�ciency Virus) testing. We called this implementation HTLS

(HIV Testing Locator System).

The functional prototype was implemented using a number of technologies. OWL API, a

Java interface designed to facilitate manipulation of ontologies authored in OWL was used

to build a customised query interface for HTLS. Pellet reasoner was used for supporting

queries to the knowledge base and Drools (JBoss rule engine) was used for processing

dialog rules. VXI was used as the VoiceXML browser and an experimental softswitch

called iLanga as the bridge to the telephony system. (At the heart of iLanga is Asterisk,

a well known PBX-in-a-box.)

HTLS behaved properly under system testing, providing the sought initial validation of

OVR.

Acknowledgements

�Knowledge is in the end based on acknowledgement.�

Ludwig Wittgenstein

I would like to acknowledge the �nancial support of Telkom SA, Bright ideas Projects 39,

Comverse SA, Stortech, Tellabs, Amatole, Mars Technologies, openVOICE and THRIP

through the Telkom Centre of Excellence in the Department of Computer Science at

Rhodes University. I would also like to express my gratitude to the Government of Lesotho

for o�ering me an interest-free study loan through the National Manpower Development

Secretariat. I am truly thankful and hope that next generations will be as fortunate as I

have been.

The overall support I received in my quest to complete this thesis is analogous to the

legs of the three-legged pot. Finances represent but one leg of this pot, which stands

upright only if none of the legs is missing or broken. The second leg is the mentorship

and guidance I received from members of the convergence research group and my (o�cial

and non-o�cial) supervisors. I am truly grateful to all of you for your contribution and

in�uence in shaping this beautiful and ever eager-to-learn soul. Alfredo you were the

anchor, even when I was in doubt you kept me grounded both technically and otherwise;

with you it was so easy to always maintain a healthy sense of humour. Lorenzo as ironic

as this may sound, you were the eyes; for you often helped me to see the forest for the

trees as I navigated my way to the destination. Denis though on paper you were not my

supervisor, you were the reasoning mind that patiently helped me to make sense of the

vast �eld of knowledge representation and management. To everyone else on the research

group, you were my ears; for on many occassions you made me feel like �nding my voice

was important through your willingness to listen to my rants and raves. Thank you all

so much.

To my family and friends, you were undoubtedly the third leg of this magni�cent pot.

Without you guys, the journey would have not been worthwhile! Your love, support and

prayers have done so much for me that no words in this world can ever describe. I love

you guys - and yes I am not naming you, for you know who you are! Thank you so much

for everything. I am truly blessed to have you in my life. I LOVE YOU!

Related Publications

The work that appears in this thesis has been presented in the following conference

papers:

1. Mathe Maema, Alfredo Terzoli, and Lorenzo Dalvit. An Ontology-based Telephony

Service for the Provision of HIV/AIDS Information. In Southern Africa Telecom-

munication Networks and Applications Conference (SATNAC), 2008.

2. Mathe Maema, Alfredo Terzoli, and Lorenzo Dalvit. HIV Testing Site (HTS) Loca-

tor: Applying Current Computing Trends to Voice Applications. In Southern Africa

Telecommunication Networks and Applications Conference (SATNAC), 2010.

Table of Contents

1 Introduction 1

1.1 Motivation and Problem Statement . 3

1.2 Goals for the Thesis . 4

1.3 Thesis Organisation . 5

2 Related Work 6

2.1 Knowledge and Related Concepts . 6

2.1.1 What is Knowledge? . 6

2.1.2 Types of Knowledge . 8

2.1.3 Knowledge Representation and Reasoning 8

2.1.3.1 Knowledge Representation 9

2.1.3.2 Reasoning . 10

2.1.4 Understanding Ontologies . 11

2.1.4.1 De�nitions . 12

2.1.4.2 Types of Ontologies . 13

2.1.4.3 Uses of Ontologies . 14

2.1.4.4 Theoretical Comparison: Databases vs. Ontologies 15

vi

TABLE OF CONTENTS vii

2.1.4.5 Methods and/or Methodologies for Ontology Construction 16

2.1.4.6 Design Criteria for Ontologies 17

2.1.5 Understanding Reasoners . 18

2.1.5.1 What is a Reasoner? . 18

2.1.5.2 Uses of a Reasoner . 19

2.1.5.3 Selection Criteria for a Reasoner 20

2.2 Human-Machine Dialog Systems . 20

2.2.1 Types of Dialog Systems . 21

2.2.2 Dialog Management . 22

2.2.3 Dialog Systems Architectures . 22

2.3 VoiceXML . 24

2.3.1 What is VoiceXML? . 24

2.3.2 VoiceXML Architectural Model . 26

2.4 Information and Communication Technologies in Health 27

2.4.1 Healthcare Knowledge Management 27

2.4.2 IVR in Health . 29

2.5 Summary . 30

3 Software Components 31

3.1 Information Flow . 32

3.2 Main Features of the Architecture . 33

3.3 Components for Application Development 34

3.3.1 Ontology Authoring Tool . 34

TABLE OF CONTENTS viii

3.3.2 Ontology APIs . 35

3.3.3 Reasoning Engine . 35

3.3.4 Rule Engine . 36

3.4 Components for the Deployment Environment 36

3.4.1 Application Servers . 38

3.4.2 Asterisk . 38

3.4.3 VoiceXML Browser . 38

3.4.4 Text-to-Speech . 40

3.5 Summary . 40

4 Ontology Construction for Developing the Prototype System 41

4.1 Ontology Development Life Cycle . 41

4.1.1 Development Life Cycle and the Final Product 43

4.1.2 Development Life Cycle and the Methodologies 44

4.1.2.1 Uschold and King's Method 46

4.1.2.2 Grüninger and Fox's Methodology 47

4.1.2.3 METHONTOLOGY . 49

4.2 Building the HIV and AIDS Service Provider Ontology 50

4.2.1 Speci�cation: Identifying the Purpose & Scope 54

4.2.1.1 Competency questions . 54

4.2.1.2 Enumeration of important terms 55

4.2.2 Conceptualisation . 56

4.2.3 Formalisation and Implementation 64

TABLE OF CONTENTS ix

4.2.3.1 Ontology Language Selection 64

4.2.3.2 Tool Selection . 65

4.2.4 Evaluation, Documentation & Maintenance 66

4.3 Summary . 68

5 Basic Implementation of the Prototype System 69

5.1 Implementation Strategy . 70

5.2 First Group of Iterations for the Implementation 72

5.2.1 View Implementation . 72

5.2.2 Controller Implementation . 77

5.3 Summary . 82

6 Enhanced Implementation of the Prototype System 83

6.1 Second Group of Iterations for the Implementation 84

6.1.1 Dialog Processing with Rules . 84

6.1.2 Dynamic Page Rendering . 90

6.2 Summary . 93

7 System Testing and Discussion 94

7.1 Proposed Architecture: Implementation View 94

7.2 System Testing . 97

7.3 Integration and Implementation Experience 99

7.4 Potential Barriers for Proposed Architecture Adoption 100

7.4.1 Demand for Wide Range of Competencies 101

7.4.2 Availability of Ontologies . 101

7.5 Summary . 102

TABLE OF CONTENTS x

8 Conclusion 103

8.1 Thesis Synopsis . 103

8.2 Achievements . 104

8.3 Future Work . 105

8.4 Summary . 106

List of References 107

A Snapshot from Protege 118

B A Snippet XML File for the Service Provider Ontology 119

C Example Scripts 121

Call Script 1 . 121

Call Script 2 . 122

D Rule Engine Class 123

E Accompanying CD-ROM 124

F Deployment Guide 125

List of Figures

1.1 Overall Architecture . 4

2.1 Snapshot of Areas of Interest to the Thesis 7

2.2 Guarino [60] Ontology Categorisation . 13

2.3 Evolution of Representation of Backend Data 16

2.4 Reasoner Basic Functionality . 18

2.5 Self-Service Model . 20

2.6 Classi�cation of Dialog Systems . 21

2.7 Reference Architectures for Dialog Systems 23

2.8 VoiceXML Architecture (from [50]) . 26

2.9 Pyramid of HKM services . 28

3.1 Categorisation for Utilised Components 31

3.2 Overall Architecture . 32

3.3 Components to Support Core VoiceXML Functionality 37

3.4 iLanga Main Components (from [96]) . 37

4.1 Ontology Development Life Cycle . 42

4.2 Decision Tree for Selecting Ontology Development Life Cycle (from [106]) . 45

xi

LIST OF FIGURES xii

4.3 Spiral Model . 45

4.4 A Comprehensive Service for HIV and AIDS Information Dissemination . . 52

4.5 Process Overview for Building the HIV and AIDS Service Provider Ontology 53

4.6 Tasks for Conceptualisation Activity According to METHONTOLOGY . . 57

4.7 Excerpt of Concept Taxonomy from the HIV and AIDS Provider Ontology 58

4.8 Ad hoc Binary Relation Diagram Example for the HIV and AIDS Provider

Ontology . 58

4.9 High-level Conceptual Model of the HIV and AIDS Provider Ontology . . . 59

5.1 Use Case Diagram for HIV Testing Site Locator 69

5.2 Model View Controller Architectural Design Pattern 70

5.3 Implementation Breakdown based on MVC 70

5.4 Spiral Model for Implementing the Prototype System 71

5.5 High Level Flowchart Capturing Prototype Functionality 74

5.6 Listing of VoiceXML Page for the Initial Dialog (i.e. Welcome Page) 75

5.7 Events for Basic VoiceXML Page Rendering 76

5.8 Basic Components in a Description Logic based System 77

5.9 Basic Controller's Task . 78

5.10 Visual Implementation of the Prototype Service Rendered in HTML . . . 79

5.11 Listing for Processing and Presenting Query Results 80

5.12 Listing for Query Generation . 80

5.13 Taxonomy Tree for HIV Test Providers . 81

5.14 Listing for Preference Con�gurations . 82

6.1 Transformation Process: Basic to Enhanced Prototype 83

LIST OF FIGURES xiii

6.2 Servlet Chaining . 84

6.3 Flowchart for Presenting Query Results 85

6.4 Listing for Results Filtering Using If-Else Statements 86

6.5 Listing of a Sample Drools Rule for Performing Alphabetic Sort 87

6.6 Overview of Processing of Query Results by the Rule Engine 88

6.7 Listing of Code Snippet for Results Filtering Using the Rule Engine 88

6.8 Events for Interacting with the Backend 89

6.9 Listing for Creating a VoiceXML Form for Presenting Provider Details . . 90

6.10 Listing of VoiceXML Template Page for Results Presentation 92

6.11 Listing for Initialising Template Variables 92

7.1 Complete Architectural View of HTLS . 95

7.2 Requirements Classi�cation . 97

A.1 Snapshot from Protege of the Service Provider ontology 118

List of Tables

2.1 Explicit vs. Tacit Knowledge . 8

2.2 Interpretations of �Ontology� in Computing (adapted from Guarino and

Giaretta [62]) . 12

2.3 Databases vs. Ontologies (from [71]) . 15

2.4 VUI vs. GUI Development . 25

4.1 Comparison of Life Cycles and their Final Product 43

4.2 Classi�cation of Activities in Enterprise Methodology 47

4.3 Classi�cation of Activities in Grüninger and Fox's Methodology 48

4.4 Classi�cation of Activities in METHONTOLOGY 49

4.5 Example of Glossary of Terms for the HIV and AIDS Service Provider

Ontology . 58

4.6 Excerpt of Concept Dictionary from the HIV and AIDS Service Provider

Ontology . 60

4.7 Excerpt of Ad hoc Binary Relation Table from the HIV and AIDS Service

Provider Ontology . 61

4.8 Excerpt of Instance Attribute Table from the HIV and AIDS Service Provider

Ontology . 61

4.9 Example Formal Axiom from the HIV and AIDS Service Provider Ontology 62

xiv

LIST OF TABLES xv

4.10 Example Rule from the HIV and AIDS Service Provider Ontology 63

4.11 Excerpt of Instance Table from the HIV and AIDS Service Provider Ontology 64

4.12 A Brief Comparison of OWL Sublanguages 65

4.14 Comparison of FaCT++ and Pellet Reasoners 67

7.1 Decision Table Used for Testing . 98

F.1 Deployment Locations and Context Names Used for Testing 126

Glossary of Terms

API Application Programming Interface

AI Arti�cial Intelligence

ASR Speech Recognition

DL Description Logic

DTMF Dual Tone Multiple Frequency

FOL First Order Logic

GUI Graphical User Interface

IVR Interactive Voice Response

KM Knowledge Management

MVC Model-View-Controller

OVR Ontologies, VoiceXML and Reasoners

OWL Web Ontology Language

RDF Resource Description Framework

TTS Text-to-Speech

VUI Voice User Interface

W3C World Wide Web Consortium

XML Extensible Markup Language

xvi

Chapter 1

Introduction

The convergence of various modes of communication, supported by ever less expensive

visualisation technologies, provides many opportunities for creating non voice based ser-

vices that can be used for both business and social innovation. Notwithstanding this,

voice remains a powerful mode of communication. This means that development of voice

applications remains important in delivering services to users. In part, this is because

for certain tasks, such as simple information retrieval while driving or engaged in any

other activity, access using voice is better (and generally requires less costly terminals).

Further, access with voice has the advantage of allowing services to be availed to a wider

community of users that includes visually impaired and semi literate individuals. In fact,

a look into the trends suggests that the opportunities of voice as a medium of commu-

nication, in�uenced by advances in speech recognition technologies, is revolutionising the

commercial sector [85, 102].

Driving this revolution is a trend capturing a switch �from e-everything to u-everything�

[73], (i.e., electronic to ubiquitous). This trend consists of systematically digitising re-

sources to enable access to information anywhere, anytime and (hopefully) to every person

[102]. This trend is fuelled and underpinned by numerous factors. These include the use

of the converged network and the ever increasing computational power for creating and

delivering services to users.

This thesis proposes an architecture for building voice applications i.e. applications or

services1 that allow users to interact with systems using the acoustic interface. Interactive

1It is important to note that unless otherwise stated, service in this thesis shall refer to a telephony
service and will be regarded as a catch all term that encompasses the view of application as a service.

1

2

Voice Response (IVR) based applications including those that use Dual Tone Multiple

Frequency (DTMF)2 are types of voice applications.

The impetus behind this proposal is to encourage use of voice applications because of

their potential to provide a truly ubiquitous solution for various users, across di�erent

socio-economic backgrounds. But most importantly, the intent is to add value, in terms

of promoting and encouraging self service by users. This is important because self-service

o�ers numerous bene�ts. For example, from the point of view of businesses or service

providers, self service o�ers a cost e�ective solution for supporting customer care op-

erations. Conversely, from the point of view customers or users, self service o�ers the

convenience of anytime, anywhere access to information.

The proposed architecture, named Ontologies, VoiceXML and Reasoners (OVR), uses

knowledge management and representation techniques in the backend instead of tradi-

tional databases to structure and manage information (consumed by a developed service).

This allows one to build voice applications that can infer new information through rea-

soning. This is a major bene�t, since databases lack the intrinsic capability to reason and

infer new information. This has long been recognised by the Information and Communi-

cation Technology (ICT) industry, but has until recently received little attention.

A reasoner, albeit a more specialised one, is also used in the proposed architecture to

help with dialog generation. Overall, the use of reasoners in the architecture provides the

backend with some degree of intelligence that can be harnessed to create a next generation

of voice applications. Applications that can use the power of inference to adapt interaction

will hopefully transform the user experience in voice based self-service contexts, making

it `short, sweet and painless'.

The proposed architecture was functionally validated through the implementation of a

prototype service. This service focuses on increasing access to HIV and AIDS testing

information. The aim of the service is to contribute to ongoing e�orts for reducing rates

of infection. The requirements of this service were determined from information gathered

in interviews and relevant online resources.
2In this thesis, touch tone will be used instead of DTMF because of growing acceptance of the term

within the telephony industry.

1.1. MOTIVATION AND PROBLEM STATEMENT 3

1.1 Motivation and Problem Statement

Through the years, the market has continued to grow for voice applications as self-service

systems [85]. In part, this is due to the ubiquity of phones and the potential they o�er

for creating services that are not dependent on the visual modality.

Many of these voice self-service systems have been implemented as IVR based applications.

Unfortunately, both anecdotal and empirical evidence suggest that users �nd IVR based

applications confusing and frustrating [42, 107, 108]. Thus, given an opportunity, users

tend to opt for a human agent and this leads to low usage of self-service [37, 42, 107, 108].

There are a number of factors discussed in literature to explain or justify this pattern of

behaviour. One such factor, which is considered in this thesis, is the lack of �exibility of

IVR based systems. According to Dean [42], the preference that users have for human

agents is rooted in the perception that IVR transactions take longer to complete and are

less customisable. (Customisability, in this case, is tied to �exibility and/or ability to be

adaptive - one of the de�ning attributes of intelligence, see for example, Landauer and

Bellman [79].)

The perception, justi�ed or not, raises the question: should users expect more from IVR

based systems? That is, should users expect IVR systems to treat them intelligently and

in a timely manner? Assuming the answer is a�rmative for these questions, another

question may be asked from an implementation point of view: how can intelligence be

introduced structurally into IVR systems in order to gain intelligent behaviour akin to

that of a human agent?

Arti�cial Intelligence (AI), a branch of computer science dedicated to machine intelligence,

has identi�ed Knowledge Representation (KR) as a key area of study for understanding

and generating intelligent behaviour. In particular, ontologies have received special atten-

tion within AI and other disciplines of computing [43]. Thus, as re�ected by the trends

ontologies might in the future be used by any system that enables knowledge and/or

information exchange.

This thesis proposes an architecture that uses ontologies instead of traditional databases

for structuring and managing information. The use of ontologies accentuates the impor-

tance of providing a shared and common understanding of the domain of discourse. As

articulated by Fensel [46], this makes ontologies a key asset for application systems that

support the exchange of data, information, and knowledge. The proposed architecture

1.2. GOALS FOR THE THESIS 4

Figure 1.1: Overall Architecture

also uses rules for dialog processing and VoiceXML for rendering the dialogs to the user.

An initial, high level view of this architecture is presented in Figure 1.1.

1.2 Goals for the Thesis

The two main goals for this thesis are as follows:

1. To propose an architecture for voice applications with reasoning mechanisms for

inferring new information. The objective is to contribute to a move towards building

intelligence into voice services to improve the user experience.

2. To build a functional prototype that will allow validation of the proposed architec-

ture, as well as generate immediate spin o� bene�ts for the community. A service

directory for locating providers of HIV and AIDS speci�c services in Grahamstown

was selected for the prototype implementation.

These two goals e�ectively provide the scope for this thesis, which is limited to demon-

strating functional validity of the proposed architecture.

1.3. THESIS ORGANISATION 5

1.3 Thesis Organisation

The remainder of this thesis is organised as follows.

ß Chapter 2 discusses related work, organised under four main themes to ease pre-

sentation. It should also convey the message that work done in this thesis lies

somewhere in the intersection of these themes.

ß Chapter 3 presents the various components of the proposed architecture and dis-

cusses their integration.

ß Chapter 4 discusses the construction of the ontology for the prototype system. This

chapter outlines the importance of conceptualisation in constructing a functional

and useful ontology.

ß Chapter 5 discusses the �rst `group' of iterations for the implementation of the

prototype system. The chapter is preambled by a discussion on the overall imple-

mentation strategy followed.

ß Chapter 6 discusses the second `group' of iterations for the implementation of the

prototype system.

ß Chapter 7 provides a summary of the system testing process and an analysis of the

proposed architecture. The chapter discusses the theoretical and practical implica-

tions derived from the implementation of the prototype system.

ß Chapter 8 provides concluding remarks for the thesis and provides some directions

for future work.

Chapter 2

Related Work

There is a lot of literature that is directly and indirectly relevant to the work done in

this thesis. This chapter will review concisely some of this literature to provide an overall

picture of how di�erent ideas from di�erent sources can be woven together to support a

sound architectural design.

As a preamble to how the discussion will proceed, Figure 2.1 provides a snapshot of areas

that will be explored. As seen in the �gure, these areas are organised into four themes.

The �rst theme discusses knowledge and key concepts surrounding its representation

and processing. The second theme focuses on dialog systems and architectures used to

build them while the third theme focuses on VoiceXML and its use in developing voice

applications. Finally, the fourth theme aggregates (in a contextualised manner) topics

relevant to health, the domain of the service used as a case study for the thesis.

2.1 Knowledge and Related Concepts

This section will focus on knowledge and its categorisation. Further, it will explore the

meaning of knowledge representation and demonstrate how this �ts with the concept of

ontologies.

2.1.1 What is Knowledge?

The old adage `knowledge is power ' is truer than ever in today's society, which recognises

knowledge as a critical resource. This can be gleaned anecdotally from the pivotal role

6

2.1. KNOWLEDGE AND RELATED CONCEPTS 7

Figure 2.1: Snapshot of Areas of Interest to the Thesis

that knowledge and its management are believed to play in the decision making process

of any organisation1.

Otherwise, veri�cation of the above fact can be sought from Knowledge Management

(KM) literature. As aptly captured in the name, KM is about managing knowledge. The

management involves, for example, processes and techniques for knowledge generation,

knowledge codi�cation, knowledge transfer and knowledge application [67]. A question to

ask is: what exactly is knowledge or what constitutes knowledge? Unfortunately, there is

no easy answer for this question. According to Nickols [92], knowledge is:

�A very slippery concept with many di�erent variations and de�nitions. The

nature of knowledge and what it means to know something are epistemological

questions that have perplexed philosophers for centuries and no resolution

looms on the horizon.�

In light of the above, no attempt will be made to explore the various de�nitions that exist

for knowledge. Webster's dictionary [10] de�nes knowledge within computing context as:

1The deduction can also be made by looking at the role of information in decision making, since
knowledge and information are often used interchangeably even though they are not synonyms.

2.1. KNOWLEDGE AND RELATED CONCEPTS 8

Explicit Knowledge Tacit Knowledge

Easy to code (e.g. document, identify, articulate) Di�cult to code (e.g. document, identify, articulate)
Easy to communicate Di�cult to communicate
Cannot exist independent of tacit knowledge Can exist by itself

Table 2.1: Explicit vs. Tacit Knowledge

�objects, concepts and relationships that are assumed to exist in some area of interest�.

For purposes of this thesis, this de�nition will be deemed as su�cient since it is consistent

with ontologies and their modelling. This will become more apparent in the next chapter

when implementation details of the service ontology are discussed.

2.1.2 Types of Knowledge

Although there are a number of ways to categorise knowledge, in this thesis it will be

categorised as either explicit or tacit. Explicit knowledge refers to codi�ed knowledge,

articulated in some language or format. Conversely, tacit knowledge refers to knowledge

that cannot be articulated [47, 92].

Table 2.1 provides a quick comparison of these two types of knowledge, whose categorisa-

tion stems from seminal work by Polanyi [99, 100]. According to Polanyi, �we can know

more than we can tell�. Therefore, all knowledge is either tacit or rooted in tacit knowl-

edge. As he argues, �a wholly explicit knowledge is unthinkable� (as cited in [67]). Further,

it is not possible to have explicit knowledge (whether expressed in words, numbers, or

any other format) without tacit understanding.

Given that part of the work in this thesis is to codify knowledge, Polanyi's argument is

relevant. As it will be seen in later discussions, it provides context for understanding

why knowledge representation is, for example, a set of ontological commitments (i.e. a

set of decisions on what to keep in focus and what to blur). In this particular case,

an inference from his argument would be that a decision on what to focus and blur

in representing knowledge is indeed dependent on tacit understanding. Further, such a

decision is necessary because not everything can be represented.

2.1.3 Knowledge Representation and Reasoning

It is often stated that knowledge representation and reasoning are intertwined [31, 41, 43].

Thus, a discussion of one without the other would lead to incomplete understanding. In

2.1. KNOWLEDGE AND RELATED CONCEPTS 9

order to prevent this incompleteness, this section will discuss these two concepts together.

The section will show how representation of knowledge is connected to reasoning, and how

reasoning over knowledge is impacted by its representation.

2.1.3.1 Knowledge Representation

An important question underpinning the work in this thesis is: �what is knowledge rep-

resentation?� This question is not new and has been a subject of interest in the �eld of

AI for decades.

Davis, Shrobe and Szolovits [41], in a paper dedicated to answering this seemingly chal-

lenging question, argue that knowledge representation can be understood in terms of �ve

roles it plays. A brief summary of these roles is outlined below.

Role 1: A Knowledge Representation is a Surrogate

In this role, knowledge representation serves as a substitute or place holder (i.e.

surrogate) for things that exist in the world under discussion. Hence representa-

tion functions as a mapping between two domains: the machine world and the

real world. This mapping allows operations on and with surrogates to substitute

those that are possible on the real thing. This means reasoning itself can be

viewed as surrogate for action in the real world.

Role 2: A Knowledge Representation is a Set of Ontological Commitments

By virtue of being a surrogate, representations cannot be entirely accurate. This,

aptly stated by Davis et al. [41], is because �the only completely accurate repre-

sentation of an object is the object itself�. For this reason, the goal of represen-

tation is not to attain perfect �delity. The goal is to approximate the real world

as close as possible by capturing things that are deemed important to tasks to be

performed.

Implicitly, this means that what is represented results from a set of decisions

about what needs to be included and excluded. Hence, knowledge representation

can be regarded as set of ontological commitments. These commitments serve as

strong pair of glasses that bring into sharp focus some parts of the world whilst

blurring other parts. This focusing e�ect may be due to a constraint imposed by

representation technologies or tools used. Hence, it is important to note that the

commitments begin with the choice of representation technology to use.

2.1. KNOWLEDGE AND RELATED CONCEPTS 10

Role 3: A Knowledge Representation is a Fragmentary Theory of Intelligent Reasoning

This role captures the strong tie that exists between representation and reasoning.

Representation at its core is about how people can reason intelligently with rep-

resented information to obtain sound results as fast as possible. For this reason,

a theory of what constitutes intelligent reasoning is implicitly embedded within a

representation. As argued by Davis et al. [41], this theory has three components

to it: (i) the representation's fundamental conception of intelligent inference; (ii)

the set of inferences the representation sanctions (i.e. permissible inferences); and

(iii) the set of inferences it recommends.

Role 4: A Knowledge Representation is a Medium of E�cient Computation

This role serves as a general reminder of the importance of computational e�-

ciency. The ultimate goal for using representation is to compute with it. To this

end, e�ciency is important and cannot be divorced from representation.

Role 5: A Knowledge Representation is a Medium of Human Expression

This role communicates the idea that representations are similar to metaphors

in speech. Thus, as people use representations, they are essentially expressing

how they see the world. In this role, key questions to ask include: How general

is the representation? How precise is it? How expressive is it? How well does it

support communication? And any other question that can be linked to how easy

representation as a language contributes to communication.

2.1.3.2 Reasoning

As previously stated, knowledge representation and reasoning are inextricably entwined

together. However, it is important to note that the two concepts are not the same.

Reasoning refers speci�cally to the computation process of deriving conclusions that are

sanctioned by the represented knowledge [41, 56]. This computation is also referred to as

derivation, deduction or inference [56].

Many applications that use a knowledge base (repository for represented knowledge) also

make use of a reasoning system (reasoner). The reasoner helps to harness the full potential

of the knowledge base by computing, as needed, the conclusions from the encoded knowl-

edge. Without the reasoner, the alternative would be to explicitly code these conclusions

[31, 43, 56]. This is not usually ideal because, on the one hand, there is potentially an

2.1. KNOWLEDGE AND RELATED CONCEPTS 11

in�nite set of possible conclusions that can be derived from a knowledge base [56]. On

the other hand, the encoding reduces the overall �exibility of the application.

Based on the above, the bene�ts of using a reasoner are evident. However, for practical

and e�cient use in any system, there are two important considerations that need to

be made. The �rst is how to reduce the set of sanctioned inferences without making

unsuitable recommendations. As stated by Davis et al. [41], representation must provide

intelligent indication on which inferences to recommend. For this reason, it is prudent

to choose a representation technology well; since this choice is inevitably a choice in the

conception of what the chosen technology deems as intelligent reasoning [41].

The second consideration pertains to the task of selecting a reasoner. According to

Greiner, Darken and Santoso [56], an ideal reasoner is one that �always returns all-and-

only the correct and precise answers, immediately, to arbitrary queries� [56]. Unfortu-

nately, as indicated by some researchers, it is not always possible to �nd such a reasoner,

especially for reasoning over expressive representation [31, 56]. They argue that while

increased expressivity makes a system more correct and precise compared to the world

being represented, it also increases the ine�ciency of reasoning, which in turn, may cause

the reasoner to not be decidable. As such, there is a trade o� between expressiveness

of representation and e�ciency of a reasoning system. Understanding this trade o� is

important for selecting both the representation language and the reasoner to use in any

knowledge based system.

2.1.4 Understanding Ontologies

In recent years, ontologies have become the knowledge representation medium of choice

in many computing disciplines [32]. Although fairly new to computing, ontologies have

existed for centuries in the area of philosophy.

In literature, there are multiple de�nitions provided for what ontology is in computing,

and unlike in the area of philosophy, there is still no single de�nition that is used. However,

this does not suggest that the de�nitions are in con�ict with each other. The de�nitions

do re�ect a general consensus that ontology is a description of concepts and their relations

within a given domain. The di�erence in the de�nitions lies mainly in the interpretation

of words such as `conceptualisation' and `formal '.

In this subsection, some of the de�nitions will be reviewed, but not for the purpose of

deciding whether or not one is better than the other. The objective for the discussion is to

2.1. KNOWLEDGE AND RELATED CONCEPTS 12

Interpretation Context of Use

1. Ontology as an informal conceptual system Conceptual framework
2. Ontology as a formal semantic account Conceptual framework
3. Ontology as a speci�cation of a �conceptualisation� Concrete artefact
4. Ontology as a representation of a conceptual system via a logical theory Concrete artefact

4.1 characterised by speci�c formal properties
4.2 characterised only by its speci�c purposes

5. Ontology as the vocabulary used by a logical theory Concrete artefact
6. Ontology as a (meta-level) speci�cation of a logical theory Concrete artefact

Table 2.2: Interpretations of �Ontology� in Computing (adapted from Guarino and Gia-
retta [62])

provide understanding on ontologies and how their use �ts with knowledge representation

and creation of telephony services.

2.1.4.1 De�nitions

There are many de�nitions for ontology in computing. One of the popular de�nitions

describes ontology as: �an explicit speci�cation of a conceptualisation� [58].

Table 2.2 provides a compilation by Guarino and Giaretta [62] of interpretations of other

de�nitions that exist in literature including that by Gruber [58], provided above. As indi-

cated in the table, each interpretation is valid within a speci�c context of use. According

to Guarino and Giaretta [62], there are two contexts in which the term `ontology' is used

in computing; the �rst is ontology as a concrete artefact and the second is ontology as

a conceptual framework. As a concrete artefact, ontology relates to �speci�c knowledge

bases (or logical theories) designed with the purpose of expressing shared (or sharable)

knowledge� [62] at a syntactic level. As a conceptual framework, ontology relates to a con-

ceptualisation that re�ects a particular view of the world being represented at a semantic

level.

An important consequence of making a distinction between these two contexts of use is

that ontology as an artefact can commit to di�erent conceptualisations. Thus, from the

point of view of knowledge representation as a set of ontological commitments, conceptu-

alisation can be seen as commitments underlying the artefact. Therefore, depending on

the commitments, ontologies in any given domain may vary signi�cantly in their concep-

tualisation. This means a commitment in the selection of one or another ontology artefact

within a domain can produce a very di�erent view depending on the task to be completed

[41].

2.1. KNOWLEDGE AND RELATED CONCEPTS 13

Top-level ontology

Domain ontology Task ontology

Application ontology

Figure 2.2: Guarino [60] Ontology Categorisation

2.1.4.2 Types of Ontologies

There are di�erent types of ontologies to support various uses of ontologies. In literature,

the categorisation is usually made using criteria that re�ects the potential ontologies

exhibit for reuse in engineering knowledge based systems [57].

One of the most notable categorisation has been provided by Guarino [60, 61]. Figure 2.2

provides a summary of this categorisation, which distinguishes four types of ontologies

classi�ed according to their level of dependence on a particular task or point of view.

These are as follows:

� Top-level Ontologies

These ontologies describe very abstract and general concepts such as time and space

in a manner that is not dependent on any particular problem or domain.

� Domain and Task Ontologies

These types of ontologies represent, respectively, knowledge about a speci�c domain

(e.g. health), or knowledge about a speci�c task (e.g. scheduling). The representation

is often achieved by specialising concepts introduced in top-level ontologies. This

means that these ontologies although narrower than top-level ontologies, they o�er

more depth in their representation of the domain of discourse and a particular task.

2.1. KNOWLEDGE AND RELATED CONCEPTS 14

� Application Ontologies

These ontologies serve as a medium for describing concepts relating to a task in

a particular domain. They often make use of both domain and task ontologies to

describe, for example, roles played by domain entities in performing a speci�ed task.

As such, they are much narrower in scope than domain and task ontologies.

In summarising Guarino's categorisation, Grimm, Hitzler and Abecker [57] say the lattice

shown in Figure 2.2 �represents an inclusion hierarchy [where] the lower ontologies inherit

and specialise concepts and relations from the upper ones.� Thus, the upper ontologies

tend to have a broader potential for reuse than the lower ones which have a much narrower

scope.

2.1.4.3 Uses of Ontologies

Ontologies are used in many di�erent ways in various �elds of computing. For example,

they are used for information retrieval, database design and integration, and semantically

enhanced content management in specialised applications for bio-informatics, e-commerce

and education [32, 57, 61, 63].

Despite the many ways in which ontologies can be used, authors like G. Dragan, D.

Dragan and Vladan [43] and Fensel [46] contend that the main purpose of ontologies is

to facilitate knowledge sharing and knowledge reuse by applications. The roots of this

position can be traced back to early comments on use of ontologies by authors such as

Davies, van Harmelen and Fensel [40] and Grimm et al. [57]. These authors attributed

the increase in the momentum of use of ontologies to the promise they o�er in providing

a common and shared understanding of a domain, which can be communicated between

people and machines.

Regardless of how they may be used, Baader, Horrocks and Sattler [24] assert that e�ective

use of ontologies is underpinned by well designed and well de�ned ontology language that is

supported by reasoning tools. According to them, reasoning is important for the creation

of high quality ontologies, and for exploiting the rich structure of ontologies and ontology

based information. This is because reasoning can be used to determine consistency of

an ontology by, for example, checking for contradictions within concepts. Furthermore,

reasoning can be used to derive implied relations and to answer queries based on both the

implied and explicit knowledge captured in an ontology.

2.1. KNOWLEDGE AND RELATED CONCEPTS 15

Database Ontology

Closed World Assumption (CWA) Open world assumption (OWA)
� missing information is treated as false. � missing information is treated as

unknown.

Unique Name Assumption (UNA) No UNA
� each individual has a single unique

name.

� individuals may have more than one

name.

Schema use Axiom use
� schema behaves as constraints on

structure of data to de�ne legal

database states.

� axioms behave like implications

(inference rules) that entail implicit

information.

Query Answering Query Answering
� amounts to model checking i.e.

a �look up� against the data.

� amounts to theorem proving i.e. logical

entailment.

� can be very e�ciently implemented to

yield fast response times.

� may have very high worst case

complexity that may result in slow

response times.

� schema plays no role; data must

explicitly satisfy schema constraints.

� axioms play a crucial role to provide an

answer that may include implicitly

derived facts or an answer to a

conceptual or extensional queries.

Table 2.3: Databases vs. Ontologies (from [71])

On the premise of the importance of ontology reasoning, Baader et al. [24] argue that

Description Logics (DLs) are ideal candidates for ontology languages. DLs are but for-

mal knowledge representation languages that model concepts and their relationships in a

highly expressive manner. The argument for their use will further be explored in the next

chapter when discussing the selection of the ontology language for the implementation of

the ontologies underlying the prototype service.

2.1.4.4 Theoretical Comparison: Databases vs. Ontologies

As it might be deduced from some highlighted uses of ontologies, their use either replaces

or enhances that of databases. A pertinent question that could be asked is: when to use

ontologies or databases? The answer is, there are di�erent motivations to justify either

one of them. Ontologies have the ability to reason with the data they store. Databases

are mature, stable and widely available. To gain more insight on why the motivations

may di�er, Table 2.3 compares the two technologies.

2.1. KNOWLEDGE AND RELATED CONCEPTS 16

Figure 2.3: Evolution of Representation of Backend Data

As illustrated in the table, in some aspects, ontologies are analogous to databases. How-

ever, as noted in [71], there are important di�erences in semantics. For example, on-

tologies use `axioms' and databases use `schema'; while these concepts are similar, the

former involves implications and the latter constraints. Another notable di�erence lies in

the potential response times for answering user queries, as shown in the table, databases

are generally superior to ontologies and as it may be argued, this could attributed to the

maturity of databases.

As implied from above, ontologies are a relatively new technology. They are predicted to

be next in the evolution of how backend data is represented, see Figure 2.3. Based on this

predicition, ontologies can be viewed as the historical equivalent of relational databases

when use of �at �le (databases) was common. As re�ected in literature, during that

period, it was important to justify use of relational databases as opposed to �at �les;

unlike today when their use is accepted without much justi�cation (precisely because

the bene�ts of structure are well understood and the database technology has matured

signi�cantly). This means, with continued use, ontologies have the potential to be as

widely accepted as relational databases are today.

2.1.4.5 Methods and/or Methodologies for Ontology Construction

There are a number of methods and/or methodologies for ontology construction. Exam-

ples include the Uschold and King's method [117], the Grüninger and Fox's methodology

[59], METHONTOLOGY [49] and the 101 Method [93]. The suitability of each method

and/or methodology is dependent on several factors. Some of these factors, as identi�ed

by Gómez-Pérez, Fernández-López and Corcho [63], include the development life cycle

and strategies employed for identi�cation of ontology concepts.

In comparing the above-mentioned methods (except the 101 Method), Gómez-Pérez et al.

[63] conclude that each approach has some drawbacks. Thus, there is no single method

2.1. KNOWLEDGE AND RELATED CONCEPTS 17

and/or methodology for ontology construction that is deemed as best [43, 63, 93, 98].

As a result, it is common, especially for the construction of domain ontologies, to merge

di�erent methods and/or methodologies together, so as to capitalise on their individual

strength [34]. This approach of merging methods and/or methodologies for ontology

construction is followed in this thesis as will be seen in the next chapter.

2.1.4.6 Design Criteria for Ontologies

As Gruber [58] aptly notes, the task of representing something in an ontology involves

making decisions. These decisions inherently involve making trade o�s. For this reason,

Gruber argues that objective criteria is needed for evaluating ontology designs. To this

end, he has proposed the following �ve general design criteria for ontologies, particularly

those used in knowledge sharing and applications based on shared conceptualisation:

1. Clarity : The intended meaning of the de�ned terms should be captured objectively

in the ontology, to enable e�ective communication. To this end, whenever possible

de�nitions should be formalised (i.e. expressed using logical axioms). Further,

de�nitions should be documented using natural language.

2. Coherence: Consistency should be achieved such that there are no contradictions

between de�nitions, concepts and inferences made within the ontology. Without

consistency, the ontology becomes incoherent.

3. Extendibility : An ontology should be designed to allow additions to be made without

a need to revise existing de�nitions and concepts.

4. Minimal encoding bias : The conceptualisation of the ontology should be indepen-

dent of the tools used for representing it. That is, �the representation choices [should

not be] made purely for the convenience of notation or implementation� [58].

5. Minimal ontological commitment : An ontology should be modelled to serve its pur-

pose but without making too many claims about the world being modelled so as to

maintain a degree of generality for potential reuse. This means the ontological com-

mitments made should be kept at a minimum. This can be achieved �by specifying

the weakest theory (allowing the most models) and de�ning only those terms that

are essential to the communication of knowledge consistent with that theory� [58].

2.1. KNOWLEDGE AND RELATED CONCEPTS 18

Figure 2.4: Reasoner Basic Functionality

2.1.5 Understanding Reasoners

The previous subsection has attempted to shed some light on the knowledge representation

formalism used in this thesis. As noted in [56], for each formalism used to represent

knowledge, there is an associated type of reasoning. In turn, this implies di�erent types

of reasoners are needed to support reasoning with di�erent formalisms for representing

knowledge. In this thesis, as it might have been deduced from page 14, interest is on

reasoners that support DL formalism (i.e. DL reasoners).

Notwithstanding the interest of the thesis, this subsection will attempt to enhance overall

understanding of what the task of reasoning entails. First, in greater detail than before,

the subsection will de�ne a reasoner and discuss qualities that can be used to select an

ideal reasoner for use. Then, it will proceed to discuss the various functions or tasks that

a reasoner is expected to perform.

2.1.5.1 What is a Reasoner?

A reasoner (also known as a reasoning engine) refers to a system that is used to perform

computations for deriving conclusions or answers from a knowledge base. Figure 2.4

captures at a basic level how a reasoner works. As it can be seen from the �gure, the user

application sends through queries via the application interface to the reasoner. Before

an answer can be returned, the reasoner performs necessary computations by consulting

the knowledge base via an interface that enables communication between the two entities.

These computations will not be discussed in detail within this thesis. In brief, the reasoner

processes the facts it has in its working memory with the aid of a reasoning algorithm.

2.1. KNOWLEDGE AND RELATED CONCEPTS 19

Essentially, this algorithm matches the facts to the represented knowledge in order to

infer the appropriate answer to return to the user application.

As previously suggested, the processing done by a reasoner to infer an answer is also called

inference (aside from being called reasoning). For this reason, sometimes a reasoner

is called an inference engine. Technically, this is not accurate. A subsumption (is-a)

relationship exists between the two, with the reasoner assuming the role of a superclass

and the inference engine that of a subclass. Principally, as gleaned from [119], a reasoner

generalises the concept of an inference engine.

In this thesis, both an inference engine and a reasoner are used. The inference engine

(rule engine) is used to reason with knowledge organised as rules expressed in the form of

if...then statements while the reasoner is used to reason with knowledge represented in a

much richer format as ontologies.

2.1.5.2 Uses of a Reasoner

Reasoners o�er other services aside from answering queries that de�ne the scope of use.

For example, reasoners o�er a consistency checking service. This service is used to check

that the knowledge reasoned with does not contain any contradictions. This veri�cation

is important because it ensures a degree of reliability before a reasoner can attempt to

answer any queries presented to it.

Other services o�ered speci�cally by DL reasoners (as cited in [105, 119]) include:

ß Concept satis�ability: This is very similar to consistency checking except focus

is on verifying that any given class can have individuals that belong to it. If no

individual can belong to a class, the class is unsatis�able and de�ning any instance

will lead to inconsistency.

ß Classi�cation: This computes the class hierarchy by determining subclass rela-

tionships between for named classes. The class hierarchy is important for answering

queries such as obtaining all instances of a given subclass.

ß Realisation: This helps to locate the most speci�c class that an individual belongs

to. In principle, this can only be performed after classi�cation.

2.2. HUMAN-MACHINE DIALOG SYSTEMS 20

User Self-Service System
query

answer

Figure 2.5: Self-Service Model

2.1.5.3 Selection Criteria for a Reasoner

The factors that need to be considered for selecting an ideal reasoner have already been

discussed. To reinforce what was discussed, a list of quality measures will be provided

below. This list can e�ectively be used as criteria for selecting an appropriate reasoner

to use. According to Greiner [56], there are four important measures that can be used to

guide selection and these are outlined below:

1. Correctness: The reasoner returns the correct answer, preferably all the time. This

is not possible but it remains important that the probability of providing the correct

answer is high.

2. Precision: The reasoner returns the most speci�c answer from a possible list of

inferences that it sanctions.

3. Expressivity: This refers to how well the representation formalism can express any

possible piece of information without diminishing the ability for a reasoner to answer

any possible question presented to it. In a way, this substantiates Davis et al. [41]

assertion that knowledge representation and reasoning are inextricably entwined.

4. E�ciency: This quality measure is linked directly to the performance of the rea-

soner. Essentially, for a reasoner to be e�cient, it must return its answers as fast

as possible.

2.2 Human-Machine Dialog Systems

The practice of self-service is recognised by many sectors of the economy as bene�cial.

This practice operates on a simple model, shown in Figure 2.5. As shown in the �gure,

users send queries to self-service systems and after due processing, answers are returned.

The query and answer interactions embodied in the depicted self-service model represent

human to machine communication. Thus, systems that emulate this type of communica-

tion are sometimes aptly called human-machine dialog systems. This section will review

2.2. HUMAN-MACHINE DIALOG SYSTEMS 21

Dialog Systems

Modality

by

Device

by

Style

by

Initiative

by

Application

by

Text-based

Speech

Graphical user interface

Multi-modal

In-car systems

Telephone-based systems

Desktop/laptop systems

...

Command-based

Menu-driven

Natural language

System initiative

User initiative

Mixed initiative

Information service

Reminder systems

Entertainment

...

Figure 2.6: Classi�cation of Dialog Systems

these types of systems and their architectures. However, primary focus will be on systems

that use the acoustic interface for their interaction.

2.2.1 Types of Dialog Systems

There are a number of ways to categorise dialog systems. Figure 2.6 aggregates together

some of the possible ways to make the classi�cation. As it can be seen from the �gure,

categorisation can be done by device, modality, application, initiative, and style. However,

as implied, for example, in [?, 97], there are many other dimensions or perspectives that

could be used for the categorisation. Overall, as re�ected from various literature sources,

these perspectives coexist and overlap with each other. This means, for example, that

2.2. HUMAN-MACHINE DIALOG SYSTEMS 22

telephone based dialog systems can be seen as a major category as well as a subcategory

of the other categorisations, without this being seen as a contradiction. In the �gure, the

bolded dialog systems re�ect an overlap in how the prototype resulting from this thesis

may be categorised.

2.2.2 Dialog Management

All dialog systems irrespective of categorisation require some dialog management mech-

anism. This mechanism is needed to ensure that interactions between the user and the

system are seamless and e�cient. A component aptly named dialog manager is used to

implement this mechanism.

There are many de�nitions provided in literature for a dialog manager, but as noted

by Pieraccini and Huerta [97], there is no consensus on the de�nition because �di�erent

systems [...] attribute di�erent functions to it�. For purposes of this thesis, a dialog

manager shall be de�ned as a component that is �responsible for controlling the human

computer interaction by following prede�ned dialogue scenarios� [53]. This de�nition is

su�cient because it is general and does not tie the dialog manager to speci�c functions.

Nor does it embody a speci�c approach for carrying out dialog management.

2.2.3 Dialog Systems Architectures

As already suggested, the focus of this thesis is on dialog systems that interact with users

through the acoustic interface. Based on categorisation by modality, these systems are

commonly called spoken dialog systems. This subsection will discuss in broad terms how

these systems are architected. It should be noted, however, that the prototype system for

this thesis quali�es as a subsystem of these systems, since users interact with the system

using touch tone keys instead of voice.

There are many architectures that have been proposed and implemented for spoken dialog

systems. These architectures have varying number of components arranged in di�erent

con�gurations. As a result, there are multiple ways in which these architectures can

be classi�ed. For example, Pieraccini and Huerta [97] provide what may be viewed as

an oversimpli�ed classi�cation. According to them, these architectures may be classi�ed

based on their origin: as either from the commercial or research sectors.

2.2. HUMAN-MACHINE DIALOG SYSTEMS 23

(a) Typical Architecture for Research Prototypes (adapted from [97])

(b) Typical Architecture of Commercial Dialog Systems (from [97])

Figure 2.7: Reference Architectures for Dialog Systems

Figure 2.7a and Figure 2.7b depict typical architectures used to build research prototypes

and commercial systems, respectively. As seen from the �gures, there are some similarities

and di�erences. In both architectures, input (e.g. speech) is received via the telephony

platform and after due processing, requests for external resources may be made to the

backend. The di�erences may be attributed mainly to what lies and happens between the

telephony platform and the backend of these two types of architectures.

With architectures designed by the research community, the input goes via the speech

recognition component. The recognition results are relayed to the semantic parser, which

attempts to provide semantic understanding of what was said. After this, the dialog

manager is contacted so that it can decide on the action to take. The action includes

sending text the Text-to-Speech (TTS) engine, instructing the server to play an audio

recording, or sending queries to the backend.

2.3. VOICEXML 24

However, with commercial system architectures, the input is dispatched to the voice

browser, which accepts documents written in a markup language for voice applications

such as VoiceXML (which will be discussed in the next section). The browser may interact

with the application server or gain access to speech resources, such as speech recognition

or TTS engines. The determination is made based on what is embodied by the markup

document.

An important observation to make from the comparison is that commercial architectures

put little emphasis on semantic understanding. As Pieraccini and Huerta [97] explain,

this is because commercial and research sectors have di�erent goals and agendas, which

lead to distinct implementation paths. The commercial sector follows a pragmatic path

that prioritises usability and task completion. The research sector follows an idealistic

path that aims for unconstrained natural language interactions. While it may seem like a

contradiction, these authors also believe a `synergistic convergence' between these paths

is possible. The core of their argument hinges on the use of inference, which is very

important for this thesis.

2.3 VoiceXML

As advances in �elds like AI bring closer an era where users can verbally query systems

using natural language without vocabulary restrictions, many organisations are increas-

ingly moving towards voice self-service. Although this move is largely due to advances in

technology, it does not mean that organisations were ignorant of the value of voice as a

medium of interaction in implementing self-service.

According to Schoeller [104], before the introduction of VoiceXML, the architectural lim-

itations of voice self-service acted as a barrier to broader adoption. In his opinion, �the

movement to VoiceXML has revolutionised the voice self-service market � [104]. To under-

stand this revolution, this section will provide an overview of VoiceXML and its bene�ts.

Additionally, the section will discuss the architectural model of VoiceXML.

2.3.1 What is VoiceXML?

VoiceXML is a markup language for creating distributed voice applications [83]. It was

designed to support creation of audio dialogs that feature synthesised speech, digitised

2.3. VOICEXML 25

Graphical User Interface Voice User Interface

Language HTML VoiceXML

Browser Output
Markup formatted text and
images

Markup formatted streaming
audio, synthesised text or
prerecorded audio

User Input Keyboard or mouse Touch tone keypad or voice
Field Navigation on a Form Keyboard or mouse Touch tone keypad or voice

Data Persistence Screen display User's short-term memory

Error Handling
Screen error message using
reprompt

Audio error message using
reprompt with cascading

Table 2.4: VUI vs. GUI Development

audio, recognition of spoken and touch tone input, recording of spoken input, telephony,

and mixed initiative conversations [50].

VoiceXML was designed to be similar to HTML in order to blur the di�erence between

Graphical User Interface (GUI) and Voice User Interface (VUI) development. Table 2.4

obtained from [104], provides a comparison between these two types of development. As

it can be seen from the table, the two di�er because of inherent di�erences between visual

and voice interactions. Otherwise they are similar. This can be gleaned from the listed

`comparative criteria' in the �rst column of the table, which show, for example, that both

need a browser and both use a concept of a form for accepting user input. Overall, the

similarities align voice self-service application development with the web. As stated in

[50, 75, 83, 104], this alignment brings about the following bene�ts:

ß It allows developers to leverage on their Web development skills. Therefore, devel-

opment can be done more easily.

ß It allows application logic to be separated from the voice interface. This o�ers two

main advantages. Firstly, there is the opportunity to bring the advantages of us-

ing design patterns such as Model-View-Controller (MVC) to the development of

voice applications. (Although the MVC pattern does have drawbacks, it brings, for

example, the ability to have code that is easier to port and reuse.) Secondly, organ-

isations can outsource the VUI design and hosting while maintaining full control of

the application logic.

ß It enables integration of voice services with backend infrastructure (e.g. databases),

using the familiar client/server paradigm.

2.3. VOICEXML 26

Figure 2.8: VoiceXML Architecture (from [50])

2.3.2 VoiceXML Architectural Model

The architectural model of VoiceXML, as shown in Figure 2.8, has three main components:

1) a document server (e.g. Web server), 2) an interpreter and associated interpreter

context, and 3) an implementation platform. These map directly to components shown

in Figure 2.7b. The document server maps to the application server. The VoiceXML

interpreter and the associated context map to the Voice browser client. Finally, the

implementation platform maps jointly to the telephony and speech resources in that it

incorporates the both components in it.

As shown in the VoiceXML architectural model, the interpreter and the associated in-

terpreter context constitute the heart of the architecture; as both play a critical role in

managing all interactions between the document server and the implementation platform.

To capture the interactions within the architecture, a brief summary (from [50]) of the

functions of the document server and the implementation platform is provided below.

ß The document server processes requests made to it through the interpreter con-

text and returns VoiceXML documents in response. The returned documents are

processed by the VoiceXML interpreter.

2.4. INFORMATION AND COMMUNICATION TECHNOLOGIES IN HEALTH 27

ß The implementation platform generates events under the control of the interpreter

and its context. These events may be generated in response to user actions or events

within the system.

2.4 Information and Communication Technologies in

Health

In modern health care, the move �to equalise relationships between health professionals

and lay people is gathering momentum� [38]. This move is due to the realisation that a

shift from paternalism to partnership can increase the overall quality of health care [38].

This is underpinned by the principle that partners work together and share responsibilities.

As part of this shift, more emphasis has been placed on ensuring that lay people, just

like health professionals, gain access to health information and knowledge. In turn, this

emphasis has resulted in increased use of Information and Communication Technologies

(ICTs) for processing and delivering health content to lay people [45, 115].

This section will explore this use from two perspectives. The �rst perspective will focus

on the use of knowledge management and representation techniques. In theory, there are

numerous areas of interest that could be explored under this perspective. However, only

one area will be explored, namely, Healthcare Knowledge Management (HKM), which is a

discipline that has emerged from knowledge management. Unlike with general knowledge

management, HKM focuses speci�cally on the e�ective management of health information

and knowledge to enable high quality and well informed decisions by all stakeholders [23].

The second perspective will focus on the experiences of lay people in using IVR systems

to pursue health related goals. The objective is to demonstrate the potential for using

the built IVR system for locating information about HIV testing facilities.

2.4.1 Healthcare Knowledge Management

HKM provides an approach for designing and deploying knowledge-driven services that

demonstrate the value of knowledge as a key resource in decision making as well as a

`service' [23]. As a service, HKM caters to the needs of di�erent stakeholders in a manner

that allows the gap between knowledge and practice to be minimised. The reason, as aptly

expressed by Abidi [23], is that HKM services provide a higher level of abstraction than

2.4. INFORMATION AND COMMUNICATION TECHNOLOGIES IN HEALTH 28

Figure 2.9: Pyramid of HKM services

data driven services. As such, they provide �semantic-validity and pragmatic-viability� in

generating an overall service that is capable of improving health outcomes.

Figure 2.9, presents a pyramid of HKM services to capture this abstraction. As shown

in the �gure, HKM services can be categorised in three groups: 1) enabling, 2) care and

3) transformational services. In this thesis, focus will be on the enabling services. The

enabling services provide the foundation for developing care and transformational services,

which focus largely on the core objectives of public health and individual patient care.

The enabling services are constituted by three types of service activities: knowledge cre-

ation, knowledge access and knowledge sharing. As noted in [40], Semantic Web tech-

nologies, especially ontologies, support these activities in ways that promote synergies

between them to be exploited for building sound knowledge driven services. This is rein-

forced by Abidi [23] who states that: ontologies �o�er a semantically rich and executable

knowledge representation formalism� that is highly practical for creating health oriented

applications.

Overall, this subsection has highlighted one important point for this thesis. To translate

information (from information rich disciplines like health)2 into knowledge that can be

shared, the foundation lies with use of knowledge representation formalisms. Although not

explicitly stated, these formalisms contribute to the discipline of knowledge management:

precisely because they act as the foundation for enabling service creation (Figure 2.9

captures this idea for health oriented services).

2A lot of information and/or knowledge is generated in the health sector as a result of active research
on how to better treat and manage health related problems.

-",-<,",,,,,,, """
,-""., ~ " '''''' -m" -" .,

" (~" ' ~ .- .
,,- ~.-, v •• ~",,~,

2.4. INFORMATION AND COMMUNICATION TECHNOLOGIES IN HEALTH 29

2.4.2 IVR in Health

IVR systems are pervasive in many sectors of the economy including the health sector. In

health, Lee, Friedman, Cukor and Ahern [80] suggest that use of IVR systems can provide

many bene�ts that include increased access to health care, reduced operating costs and

increased sta� e�cacy. However, as they state, attaining these bene�ts is dependent on

designing quality IVR systems.

In a study that sought to determine the feasibility and acceptability of using an IVR sys-

tem for facilitating peer support among elderly diabetes patients, 79% of the participants

stated that the IVR was easy to use [66]. This is one of the many examples that con-

�rms the statement made in the previous chapter, that use of IVR systems in health can

yield satisfactory outcomes. Other studies that can be used to substantiate this assertion

include use of IVRs for chronic pain management as in [91], and their use as reminders

for individuals to get preventative services such as mammograms, pap tests and in�uenza

immunisations [39].

In a study very pertinent to this thesis by Frank, Wandell, Headings, Conant, Woody

and Michel (as cited in [36]), 85% of participants chose to use an IVR session for HIV

counselling instead of opting to talk to a counsellor over the telephone. While the result

is impressive, it is very untypical for IVR applications. (As suggested before, typically

people tend to opt for a human rather than go through an IVR session.)

There are possibly many reasons to explain the anomaly in Frank et al. study, such as

stigma attached to HIV and AIDS. It can be argued that these reasons still apply, even

though the study was done a few years ago (in another country). This is because stigma,

for example, continues to be a problem in South Africa 3 [109]. The use of an IVR system

to locate information on HIV testing facilities may help to encourage testing. Primarily,

because an IVR dialog, a�ords individuals `uninhibited' interactions that may propel them

to actually go for testing, should they �nd a facility that meets their individual needs.

3The problem persists for a number of reasons that include poor leadership and media campaigns that
have uncunningly exacerbated stigmatisation through discourses that reinforce views that only certain
segments of the community face the risk of infection. For example, due to the use of BMW Z3 sports car
in some media campaigns, �HIV infection is seen by ruralites as a modern disease `of the town� ' [109].

2.5. SUMMARY 30

2.5 Summary

This chapter focused on the core `pillars' which constitute the foundation of the work

carried out in this thesis. VoiceXML was identi�ed as one of the underpinning pillars.

For this reason, there was a discussion on VoiceXML which outlined some of its bene�ts

as a standard language for creating audio dialogs. As stated by Schoeller [104], �stan-

dardisation on VoiceXML [has allowed] for closer alignment of content and business logic

with web applications�. This alignment has revolutionised the voice self-service market

and has consequently positioned VoiceXML as the technology standard to use now and

in the future.

Arguably, one of the most important pillars under discussion was ontologies. Ontologies

in computing can be de�ned in a number of ways, as indicated in Subsubsection 2.1.4.1.

Without providing a de�nition, ontologies can simply be regarded as forms of knowledge

representation. This means that they can be understood in terms of the �ve distinct

roles played by knowledge representation, as discussed in Subsubsection 2.1.3.1. These

roles as articulated by Davis et al. [41], capture the `spirit' of representation and that of

reasoning, since the two are intertwined. Although, as they admit, the roles may �create

multiple, sometimes competing demands, requiring selective and intelligent trade o�s� to

be made on how to view and reason about the world under representation.

To deal e�ectively with some of these trade o�s, Gruber [58] has proposed �ve design cri-

teria, discussed in Subsubsection 2.1.4.6, to guide the evaluation of ontologies. Although

the criteria are general, they were intended speci�cally for the design of ontologies used

for knowledge sharing. In part, this is because ontologies are believed to be more suited

for use in knowledge sharing; since they provide a shared and common understanding of

a domain that can be communicated among people and machines [43, 46, 47].

In lieu of focusing only on the domain of the knowledge to be represented, this chapter

discussed the domain of health as one of the pillars. However, because health is a knowl-

edge rich discipline, the scope was purposefully con�ned to areas that capture the use of

ICTs in health as they relate to this thesis in Section 2.4 on page 27.

The other pillar, which was also discussed in a purposeful manner pertained to human-

machine dialog systems in Section 2.2 on page 20. The discussion centred on spoken

dialog systems and their architectures. This helped to provide an overall context for

understanding the work carried out in this thesis.

Chapter 3

Software Components

In the past, dialog systems were commonly built using proprietary architectures based

on IVR platforms [97]. As documented widely in literature, the biggest problem with

proprietary architectures is that they limit interoperability; and this impacts negatively

on service creation, deployment, and general use. These problems (as also stated in the

literature) can be ameliorated through standardisation.

OVR has been designed to take advantage of standards and to be in alignment with

popular trends. One such trend is component reuse, which advocates for development of

applications through simple or sophisticated building blocks. This chapter will give some

background on the building `blocks ' for assembling the architecture. Additionally, it will

provide an insight into how selection was done for components with multiple competing

o�erings. It will start with an overview of the information �ow within the architecture,

using as organising element the main use scenario: a user who calls to get service provider

details.

Figure 3.1 provides a categorisation that will be used to present these components. As a

deduction from the �gure, there will be two main sections. One for components related to

application development and the other essential components for assembling the deploy-

ment environment. There is a subcategorisation that can be made for components used

Components

Application Development

Deployment Environment

Runtime

Non-runtime

Figure 3.1: Categorisation for Utilised Components

31

3.1. INFORMATION FLOW 32

Figure 3.2: Overall Architecture

in development; they can be classi�ed in terms of the role they play at runtime. However,

in the presentation structure, this subcategorisation shall not be made explicit.

3.1 Information Flow

As a means of providing clarity on how the various components of the architecture interact

with each other, an example of use is provided below. The example illustrates how a user's

request for information may be handled within the architecture. Figure 3.2 will be used

to aid the discussion. (This �gure is the same as Figure 1.1 on page 4.)

ß A user places a call to request information.

ß The telephone system handles the processing details of the call. These may in-

volve interactions with the telephone network (PSTN). After processing, the call is

forwarded to the browser.

ß The browser detects an incoming call and triggers events that cause the voice ap-

plication to answer the call. These events can be viewed as examples of background

3.2. MAIN FEATURES OF THE ARCHITECTURE 33

interactions between the browser and the telephone system.

ß The voice application answers the call, interacts with the user and ultimately hangs

the call. The interactions with the user are dependent on the type of service being

o�ered by the voice application and user's actions. These interactions may result

in:

õ The VoiceXML browser sending requests to the telephone system to send

prompts, messages, requested information or audio material to the user. Al-

ternatively, they may involve sending requests that cause the telephone system

to accept user input and process it accordingly.

õ The voice application sending requests to the ontology knowledge base for

information retrieval via the reasoner. These requests are handled by a query

processing component designed to facilitate querying of the knowledge base.

õ The voice application sending requests to the rule engine to process dialogs

that need to be generated as part of user's response. For example, given that

presentation of fewer items has merits in terms of memorability in acoustic

interfaces, the rule engine may issue a `trim list' dialog if the list to be presented

to the user is long.

3.2 Main Features of the Architecture

First, the architecture uses an ontology knowledge base instead of a traditional database.

This brings in signi�cant power to the architecture albeit at a potential increase in perfor-

mance cost. The details will be explored in the next chapters. However, a notable contri-

bution to this power lies in the fact that a reasoner is used, speci�cally Pellet [105]. Pellet

is a popular DL reasoner that supports the variant of Web Ontology Language (OWL)

based on Description Logic. OWLAPI (�a Java interface and implementation for World

Wide Web Consortium (W3C) Web Ontology Language (OWL)� [17]) was used to build a

customised query interface that facilitates access to the reasoner for querying the ontology

knowledge base.

Second, the architecture has been designed to take advantage of open standards. Although

Asterisk allows creation of IVR dialogs using dial plans or Asterisk Gateway Interface

(AGI), the process is ad hoc. In the architecture, VoiceXML browser is included because

VoiceXML is used to generate dialogs. VoiceXML is a W3C dialog markup language for

3.3. COMPONENTS FOR APPLICATION DEVELOPMENT 34

creating standard based voice applications [83]. The move to use standards, particularly

aligned to the web, increases �exibility of the architecture. Further, it provides enhanced

value proposition for created services.

Although not depicted, another notable feature is that the architecture has made an

e�ort to combine two forms of representations. That is, in addition to ontologies, the

architecture also uses rules to represent knowledge for driving dialogs that the system

has with users. As a representation formalism, rules allow knowledge to be represented

in the form of `if-then' constructs, i.e. if this happens, then take the following action

[101, 57]. In this thesis, the use of rules is two fold. First, they have been used as part

of the implemented ontology to enhance reasoning over the knowledge base. Secondly,

they have been used in the context of rule based programming to implement the voice

application. Under this context, rules were used to increase the level of abstraction for

the overall system and to bring emphasis on the importance of separation of concerns:

unlike in the �rst instance where their use was primarily intended to support intelligent

reasoning.

3.3 Components for Application Development

There are several components (tools and/or resources) that were vital for realising the

goals for this thesis. This subsection will focus on those that were important for building

the prototype application service. In some instances, it will be asserted that a component

can be used as a third party library. What this means is that the component is required

as a resource at runtime. Thus, it will be bundled in with the application.

3.3.1 Ontology Authoring Tool

The next chapter will discuss the process for building ontologies. As it will be seen,

this process can be lengthy. Thus, having a tool to support authoring can be bene�cial.

Protégé was selected because of its reputation as a leading ontological engineering tool.

Other reasons for selection have been articulated in the next chapter (4.2.3.2 on page 65).

Protégé can be downloaded from its website, [13]. There is an option to choose between

a platform independent installer or a ZIP �le that excludes Java Virtual Machine (JVM).

In either case, installation is straight forward and documentation is available to clarify

3.3. COMPONENTS FOR APPLICATION DEVELOPMENT 35

any problems that may arise. Once installed, Protégé is ready for use; an ontology may

be created and rendered in a number of formats, like XML as shown in Appendix B on

page 119.

To install plugin extensions for Protégé to include, for example, reasoning services, there

might be a need to set additional JVM parameters. Protégé (version 4 in particular)

implements an automatic update mechanism that allows plugins to be downloaded and

updated. This mechanism assumes that the user has direct Internet connection. Thus, if

connection is through a proxy, the user has to provide proxy credentials. This can be done

by adding the following parameters to the contents of the appropriate run �le (run.sh for

Linux or run.bat for Windows) found in Protégé home directory:

-Dhttp.proxySet=true -Dhttp.proxyHost=proxy_name -Dhttp.proxyPort=proxy_port

3.3.2 Ontology APIs

Application Programming Interfaces (APIs) are important for development of any soft-

ware artefact. This is a well known and accepted fact that also holds true for ontology

APIs, which aid with building ontology based applications. OWL API [68, 69], a high

level Java API for working with OWL 2 ontologies was selected for use in this thesis. The

alternative would have been to use Jena [74], a Java API designed for Resource Descrip-

tion Framework (RDF). Jena does provide support for OWL, but at a low level. It was

deemed prudent to opt for a high level API in order to simplify the development process.

OWL API can be downloaded from SourceForge (an online repository for open source

code), using the following URL [17]. Once downloaded, the API can be treated as a

third party library. Before its use, its location must be added to the build path of the

development project. This process varies depending on whether an integrated develop-

ment environment (IDE) is used or not. And when an IDE is used, the process may vary

depending on the chosen IDE. (The actual details are not pertinent for inclusion in this

thesis.)

3.3.3 Reasoning Engine

The need for a reasoning engine (reasoner) has already been discussed in the previous

chapter. Pellet reasoner was selected as the main reasoning engine for making inferences

3.4. COMPONENTS FOR THE DEPLOYMENT ENVIRONMENT 36

on the domain knowledge, justi�cation will be provided in the next chapter. The objective

in this subsection is to provide brie�y the details of how to incorporate a reasoning engine

within an application. This can be done by �rst downloading Pellet from its website,

[12]. After downloading, it can be used as a third party library (as discussed above) by

specifying its location in the build path.

3.3.4 Rule Engine

A number of rule engines were surveyed: Hammurapi [5], Jess [8], JLisa [9], SweetRules

[14], and Drools (JBoss Rules) [33]. Pellet reasoner was also considered for the dialog

rules. It was eliminated in favour of using a more specialised engine for the task and (to a

small extent) for purposes of demonstrating that multiple trend aligned technologies can

be used together to provide a rich service.

Other candidate rule engines were eliminated using the following criteria: alignment with

Java speci�cation request for a Java based rule engine (JSR 94); latest release date (rele-

vant for establishing status of maintenance); and evidence of community support. From

the list of rule engines that remained, Drools was selected since it showed evidence of

regular maintenance and strong support from its community of developers.

Drools, similar to Pellet, can be used as a third party library. It can be downloaded from

its website, using the following URL [4].

3.4 Components for the Deployment Environment

The deployment environment for the prototype service is constituted by components that

are essential for the core functionality of VoiceXML, see Figure 3.3. These components

will be reviewed in this section. The choice for most of these components is rooted in the

decision to use iLanga [96], a telephony platform developed at Rhodes University that

comprises of three main components depicted in Figure 3.4.

There were a number of practical and theoretical reasons for using iLanga. Availability was

one of the key reasons. As an already functional platform, iLanga provided a convenient

telephony gateway (through use of Asterisk) for allowing users inside and outside campus

access to the prototype service. Further, expertise was available to support the deployment

of the service.

37

Figure 3.3: Components to Support Core VoiceXML Functionality

Figure 3.4: iLanga Main Components (from [96])

1Wc") ... " : :1'" .-
r''''"H 0",,.. •
""n ',o,. c"

VO;"XMLlro""e<

(C) I. iL..i ,'i' , ;A""j"P,th,

['d .. .,, '.w, [U'f." I 'c-'! t.c S,,,~ c' , I

A'le.;'"
.co'. , .. ,," ,

,""w"'.-,

~ "" OpenGK
(~"''''',i : ti rI C" "" " ,

3.4. COMPONENTS FOR THE DEPLOYMENT ENVIRONMENT 38

3.4.1 Application Servers

Tomcat [1], a popular open source server designed speci�cally to support Java servlets and

Java Server Pages was selected for use. It was used in conjunction with Apache [16] web

server. While indeed there were many application servers to choose from, no e�ort was

made to review other existing alternatives. It was su�cient that Tomcat could support

the goals for this thesis and that its sterling reputation could be leveraged to make its

installation and con�guration easy (enough to not warrant a discussion).

3.4.2 Asterisk

Asterisk is a very popular open source platform for creating communications solutions.

As shown in Figure 3.4, Asterisk is one of the main components of iLanga. Thus, the

decision to use iLanga came with the implicit use of Asterisk. The VoiceXML browser

was tested with Asterisk 1.4.22. The package repository had a lower version; this meant

installation in both the test and iLanga servers had to be done by compiling Asterisk from

the source code. The process itself is fairly straight forward. It involved downloading the

source from [2], running the con�gure script inside the source folder (after decompressing)

and following the prompts.

After installation, one of the primary con�gurations to be made in Asterisk pertains to

creating what is termed a dialplan. A dialplan consists of a set of instructions that tell

Asterisk what to do [118]. These instructions are typically speci�ed in extensions.conf

�le.

3.4.3 VoiceXML Browser

A VoiceXML browser by i6Net called VXI* [21] was selected for use. This browser is

speci�cally designed to work on the Asterisk platform and integrates easily with a number

of widely used TTS and Speech Recognition (ASR) applications. Its implementation is

based on OpenVXI, an old portable open source VoiceXML interpreter.

Prior to this work, an initial experimentation with integrating OpenVXI with iLanga

was done and is reported in [75, 76]. This integration e�ort was considered; however,

since the various components that were used to create a VoiceXML browser running on

iLanga needed upgrading, a decision was made to explore other alternatives. This is

3.4. COMPONENTS FOR THE DEPLOYMENT ENVIRONMENT 39

because the upgrading task also warranted a reimplementation of the browser. In seeking

alternatives, VXI* was practically the only VoiceXML browser available for the Asterisk

platform. Although this in�uenced the decision for its selection, the primary reason was

that it demonstrated the potential to provide easy integration with iLanga.

The manual for VXI* [21] provides a step by step guide on the installation and con�g-

uration process. Once Asterisk is installed, VXI* can be installed by downloading the

VoiceXML browser from i6Net's website at [20]. The downloaded package comes with an

install script to automate the process. After installation, the commercial license may be

activated to increase the number of simultaneous VoiceXML sessions.

As a next step, the VoiceXML interpreter and the Asterisk module need to be con�g-

ured. The various parameters for their con�guration are explained in the manual. The

con�guration of the interpreter is done through a text �le (/etc/openvxi/client.cfg) that

passes speci�ed parameters to OpenVXI. To assist with con�guration, the �le includes a

comment block that contains details of possible property names with example values for

various components and settings.

The Asterisk application module is used by the browser to execute VoiceXML pages.

Parameters for its con�guration can be set inside the �le, /etc/asterisk/vxml.conf. These

parameters include specifying default timeout values for DTMF recognition, codecs to

be used and whether or not a VoiceXML application should automatically answer the

Asterisk channel before starting a session.

Once con�gured, the Asterisk command line interface (CLI) can be used to interact with

the application module to seek help or issue management commands like vxml debug,

which enables VoiceXML debugging. To execute a VoiceXML session for any created

voice application (say, with a root page index.vxml), a minimal dialplan like the one

shown below is required. This could be added as a context within the extensions.conf �le

(or any included �le).

exten => 448,1,Answer()

exten => 448,n,Wait(3)

exten => 448,n,Vxml(http://serverURL/voiceApp/index.vxml)

exten => 448,n,Hangup ()

3.5. SUMMARY 40

3.4.4 Text-to-Speech

As aptly captured by the name, a TTS converts text into speech. VXI* integrates an

HTTP client interface for communicating with a TTS server. As speci�ed in [21], the ad-

vantage of using HTTP as opposed to MRCP (Media Resource Control Protocol) interface

is that any generated speech can be cached by the VoiceXML browser.

A number of TTS engines are available both commercially and as freeware. However, as

speci�ed in [15], only the following are supported by VXI*: Acapela, Cepstral, eSpeak,

Festival Lite (Flite), Loquendo, Nuance, Verbio, Voiceinteraction and Yantra Software.

Using the principle that `free software is preferable to proprietary one', all commercial TTS

engines were eliminated from the list. This left eSpeak and Flite on the list of candidate

engines to use. Flite was selected simply because con�guration details for making it work

with VXI* were included in the manual [21].

Flite can be installed in a number ways. However, the easiest way is directly from the

package repository. For a Debian distribution the command to use is:

sudo apt-get install flite

To use Flite a PHP script is provided to facilitate the conversion. This script needs

to be placed in the designated TTS server (in this case it was Apache server). After

its placement, the VoiceXML browser needs to be con�gured to be aware of the location

(within the OpenVXI client con�guration �le). Once this is done, the browser will be able

to execute the script, which in turn, will invoke Flite whenever a conversion is required.

3.5 Summary

OVR is constituted by several software components. This chapter provided a background

on the key components. Further, through a brief discussion on the installation process, it

was revealed how these components were selected and integrated together. This integra-

tion was paramount for the eventual deployment of services created for the architecture.

The next chapter will provide implementation details of a prototype service built to vali-

date the integration e�ort.

Chapter 4

Ontology Construction for Developing

the Prototype System

There are many readily available ontologies that could have been used for testing the

OVR. However, in order to gain more understanding about ontologies, the option to

build an ontology from scratch was favoured. There was also another reason, at least

during the early days of the project: to deploy a service within a speci�ed domain that

would bene�t from a semantically rich representation. (However, as already explained,

this was hampered by challenges in working collaboratively in a diverse team.)

It is important to note that building ontologies from scratch does not preclude use of other

ontologies or resources; this is encouraged whenever possible. Hence, the word scratch is

used in a quali�ed manner. This chapter will discuss the construction from scratch of the

HIV and AIDS service provider ontology. This discussion will be preceded by sections

covering theory for contextualising decisions that were made in building the ontology.

4.1 Ontology Development Life Cycle

In order to engage in the process of building any ontology, it is imperative to understand

the various stages involved from start to end. These stages constitute what is called

ontology development life cycle. In the literature, the commonly accepted stages of this

cycle are speci�cation, conceptualisation, formalisation, implementation and maintenance

[49, 63, 98]. Figure 4.1 shows how these stages generally interact and feed into each other.

41

4.1. ONTOLOGY DEVELOPMENT LIFE CYCLE 42

Figure 4.1: Ontology Development Life Cycle

Each stage of the ontology development life cycle is characterised by a set of activities

(which will be discussed in Section 4.2). These activities are performed in conjunction

with support activities namely: knowledge acquisition, evaluation and documentation.

It is important to emphasise that the support activities are carried throughout the whole

ontology development life cycle. However, the degree to which knowledge acquisition

and evaluation activities are performed varies at each stage. As shown in the lower

portion of Figure 4.1, there is in fact a delicate balance between these two activities and

documentation plays a pivotal role in supporting them. That is, documentation operates

as a `pivot' that helps to bring clarity at every stage on the weighing of decisions 1 that,

for example, re�ect how evaluation might have impacted on knowledge acquisition, or vice

versa.

Another point to emphasise is that the ontology development life cycle models are compa-

rable, in two important ways, to life cycle models in Software Engineering. Firstly, they

identify stages which lead to the �nal product. Secondly, they provide a framework for

de�ning methodologies that outline activities as well as guidelines on when to perform

these activities in order to move from one stage to the next [49].

1As noted in literature, weighing decisions to make informed trade o�s is an integral part of designing
and/or developing any artefact such as an ontology.

4.1. ONTOLOGY DEVELOPMENT LIFE CYCLE 43

Table 4.1: Comparison of Life Cycles and their Final Product

4.1.1 Development Life Cycle and the Final Product

It has been suggested in the beginning of this section that understanding the development

life cycle is important. A question that is yet to be answered directly, however, is: why?

A simple answer to this question is that a development life cycle provides a structured

approach, which guides development. This helps to produce a �nal product of good quality

in a timely and cost-e�ective manner. This justi�cation was conveyed by Royce [103] in an

article that provided the �rst formal description of the development life cycle model, now

commonly known as the waterfall model. (In this article, the gist of Royce's argument

was that the `waterfall model' - a term he did not use - provided a �fundamentally sound�

approach to development, albeit with risks that needed to be mitigated.)

In the waterfall model, each stage of the development proceeds in a strict order and

the next stage cannot be initiated unless the preceding stage has been completed and

perfected. Due to this strictness, the waterfall model has been criticised for its inability

to allow re�nements and mitigate against risk. To address this criticism, there are a

number of adaptations that have been proposed for the waterfall model. Table 4.1 o�ers

a comparison of the waterfall model together with two models adapted from it, namely:

iterative 2 [25] and evolving prototyping3 [54] life cycle models. The waterfall life cycle

2Similar to incremental life cycle model. Hence, sometimes the terms are used interchangeably.
3Also called evolutionary.

4.1. ONTOLOGY DEVELOPMENT LIFE CYCLE 44

model is a single build model whereas the iterative and the evolving life cycle models

develop their �nal product in multiple builds.

A notable di�erence between these two multiple build life cycles is that with the evolving

life cycle model, it is not imperative to have all requirements known upfront. This is

re�ected in the table by the haphazard looking �nal product that suggests a possible

change in direction with every build milestone. In contrast to the iterative life cycle

model, it can be seen that the �nal product grows in layers with each milestone build.

This suggests that most of the requirements need to be established up front in order to

progressively enhance a product from a previous build; otherwise it would be di�cult to

plan how to systematically build up the product to completion.

Single build development life models are usually not deemed appropriate for ontology

construction. These models are ideal for non experimental settings and as alluded to,

ontology construction is a non trivial process that requires several revisions to be made

before producing the �nal product. Necessarily, this means the process for ontology

construction is iterative and demands careful analysis, feedback and redesign throughout

the entire life cycle [43, 49, 93, 98].

Notwithstanding the above, it is still important to know which life cycle model to use for

any ontology development project. For this purpose, Suárez-Figueroa and Gómez-Pérez

[106] propose a guideline for selection, which is captured as a decision tree shown in Figure

4.2. The decision tree includes another popularly recognised life cycle model, called the

spiral life cycle model [29], shown in Figure 4.3.

The spiral model, shown in Figure 4.3, can be regarded as a generic model that �combines

the iterative nature of prototyping with the controlled and systematic aspects of the

waterfall model� [18]. An important feature of this model is that it explicitly focuses on

minimising risk associated with each iteration of development. Hence, analysis of risk

is done as soon as objectives for the iteration are determined and a solution that o�ers

minimal risk is implemented and evaluated. The next iteration is planned and started to

either resolve risk related problems or incrementally add features to the artefact produced

from the implementation stage.

4.1.2 Development Life Cycle and the Methodologies

By virtue of creating structure, development life cycles provide a framework that un-

derpins many methodologies used for the construction of any artefact. Methodologies

45

Do you think requirements wil l change during development?

Do you want in termedia te

resul t s?

No

Do you want to include risk control

 in development?

Yes

Waterfall

No

Do you want to p roduce each

in te rmedia te resu l t in a comple te manner?

Yes

Evolving Prototyping

No

Spiral

Yes

Iterative

No

Incremental

Yes

Figure 4.2: Decision Tree for Selecting Ontology Development Life Cycle (from [106])

Figure 4.3: Spiral Model

4.1. ONTOLOGY DEVELOPMENT LIFE CYCLE 46

identify activities that must be performed and to some extend their sequencing. While

development life cycles determine when the identi�ed activities should be carried out and

the di�erent stages that lead to completion [106].

To concretely show the relationship between development life cycles and methodologies,

this subsection will outline activities de�ned in popular ontology methodologies. Further,

it will discuss how these map to the overall stages of development life cycle as depicted

in Figure 4.1.

The mapping and accompanying analysis will be guided largely by two sources: 1) Gómez-

Pérez et al. [63] and 2) Pinto and Martins [98]. The reason is that these two sources

provide an in depth analysis on methods and/or methodologies4 used to build ontologies

from scratch. For consideration in this thesis, three methods and/or methodologies are

discussed below.

4.1.2.1 Uschold and King's Method

As aptly re�ected in the name, the method was proposed by Uschold and King [117]

based on their experiences in developing the Enterprise ontology. It is due to this fact

that sometimes the method is also referred to as the Enterprise methodology. A skeletal

form of this methodology includes the following activities:

ß Identify purpose and scope to clarify why the ontology is being built and who the

intended users are.

ß Build the ontology by breaking the activity into three tasks. These entail:

1. Capturing knowledge by:

õ Identifying key concepts and relationships in the domain.

õ Producing precise, unambiguous text de�nitions for such concepts and

relationships.

õ Identifying terms to refer to such concepts and relationships.

õ Agreeing on all of the above.

2. Coding the knowledge using a formal language.

4There is a di�erence between terms methods and methodologies. However, in literature these words
are often used interchangeably [63]. In this thesis, they will also be used interchangeably as dictated by
quoted sources.

4.1. ONTOLOGY DEVELOPMENT LIFE CYCLE 47

Enterprise Activity Maps to

Identifying purpose and scope Speci�cation
Capturing knowledge Knowledge Acquisition and

Conceptualisation
Coding Formalisation and Implementation
Evaluation Evaluation
Documentation Documentation

Table 4.2: Classi�cation of Activities in Enterprise Methodology

3. Integrating knowledge from existing ontologies.

ß Evaluate the built ontology using Gómez-Pérez and Pazos [64] criteria.

ß Document all important assumptions to facilitate e�ective knowledge sharing.

Table 4.2 shows how the above outlined activities map to the ontology development life

cycle stages. As it can be seen, knowledge acquisition and conceptualisation as well

as formalisation and implementation are performed together. In the latter case, it is

important to note that a formal language used for formalisation may not necessarily be

the implementation language.

From the table, it can also be observed that maintenance has not been included. This is

because the methodology lacks maintenance activities. As explained by Pinto and Martins

[98], this is typical of �rst generation ontology construction methodologies. According to

them, this can be attributed to the fact that these methodologies focused squarely on

bringing understanding on how to build ontologies.

4.1.2.2 Grüninger and Fox's Methodology

The methodology by Grüninger and Fox [59] is based on the experience of the TOVE

project; a project whose goal was to develop a set of ontologies for capturing knowledge

that can be shared across enterprises. The methodology is also known as the TOVE

methodology. Similar to the Enterprise methodology, the TOVE methodology is a �rst

generation methodology.

As part of the process for building ontologies, this methodology stipulates use of First

Order Logic (FOL) for formalisation and implementation stages. With regard to the

whole process, the methodology recommends the following activities:

4.1. ONTOLOGY DEVELOPMENT LIFE CYCLE 48

TOVE Activity Maps to

Capture motivating scenarios Speci�cation
and formulate informal competency
questions
Specify terminology, Conceptualisation,
formulate formal competency questions Formalisation and
and specify axioms in FOL Implementation
Evaluate competency and completeness Evaluation

Table 4.3: Classi�cation of Activities in Grüninger and Fox's Methodology

ß Identify motivating scenarios to capture the problems to be addressed and intuitively

generate a set of possible solutions to these problems. These scenarios are typically

presented in a story format.

ß Formulate informal competency questions to re�ect the questions that the ontology

must be able to answer based on the motivating scenarios.

ß Specify the terminology in FOL to produce formal de�nitions of concepts and rela-

tions.

ß Formulate formal competency questions in FOL from identi�ed questions using for-

malised terminology from the previous activity.

ß Specify axioms and de�nitions for the terms using FOL to de�ne the semantics, or

meaning of terms in a manner that provides constraints on their interpretation.

ß Evaluate competency and completeness of the ontology by demonstrating that iden-

ti�ed competency questions can be answered and depending on speci�c conditions,

the answer can be deemed as complete.

Table 4.3, outlines the activities in the TOVEmethodology and shows how they map to the

ontology development life cycle stages. As it can be seen, conceptualisation, formalisation

and implementation are not treated as di�erent stages. Further, maintenance, knowledge

acquisition and documentation are not explicitly de�ned as part of this methodology.

Again, this can be attributed to the fact that this methodology belongs to a class of �rst

generation methodologies.

4.1. ONTOLOGY DEVELOPMENT LIFE CYCLE 49

METHONTOLOGY Activity Maps to

Speci�cation Speci�cation
Conceptualisation of domain knowledge Conceptualisation
Formalisation of conceptual model Formalisation
Implementation of formal model Implementation
Maintenance Maintenance
Knowledge Acquisition Knowledge Acquisition
Documentation Documentation
Evaluation Evaluation

Table 4.4: Classi�cation of Activities in METHONTOLOGY

4.1.2.3 METHONTOLOGY

METHONTOLOGY [49] unlike Enterprise and TOVE methodologies is not a �rst gener-

ation methodology. It is a second generation methodology that has gone through many

re�nements since the time it was proposed.

From Table 4.4, it can be seen that a one-to-one mapping exists between activities speci�ed

by METHONTOLOGY and the stages of the ontology development life cycle. Other

activities that include integration, control and quality assurance activities are proposed

by METHONTOLOGY but below only the tabulated activities will be elaborated on.

ß Speci�cation entails stating the purpose of ontology and its scope as well as spec-

ifying competency questions. The product of speci�cation is either an informal,

semi-formal or formal document written in natural language.

ß Knowledge acquisition embodies a number of techniques and methods that enable

knowledge to be acquired. These include brainstorming, interviews, formal and in-

formal analysis of text (e.g. from books, handbooks, websites, etc). Most of the

acquisition, as noted in [49], �is done simultaneously with the requirements speci�-

cation phase, and decreases as the ontology development process moves forward�.

ß Conceptualisation structures the domain knowledge acquired during knowledge ac-

quisition activity into a conceptual model that provides a picture of the overall

problem and its solution. This model is built independent of how the ontology will

be formalised and implemented. Therefore, knowledge representation paradigms

and implementation languages are not considered in making any decisions that will

yield the conceptual model.

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 50

ß Formalisation involves transforming the conceptual model to a formalised model

that can be understood by the machine when implemented.

ß Implementation involves coding the formalised model using an ontology language

in order to make the model executable.

ß Maintenance is carried out whenever there is a need to update or make corrections

to the built ontology.

ß Documentation details each completed activity and captures assumptions made.

ß Evaluation includes the process of validating and verifying the built ontology. Gómez-

Pérez and Pazos [64] evaluation criteria or any other suitable criteria is recom-

mended.

4.2 Building the HIV and AIDS Service Provider On-

tology

With the above in mind, the question is determining which service to create in order to

build a real ontology to use in the validation of OVR. HIV and AIDS in South Africa, like

in many other countries, is a public concern. There are over �ve million people living with

HIV [112, 114]. In recent years, there has been a decline in the HIV prevalence among

the youth [114]. This can be attributed to ongoing e�orts and commitment to reduce and

reverse the spread of HIV by all stakeholders including universities. Rhodes University

like all concerned stakeholders has shown commitment to reducing rates of infection and

increasing better management of the disease. To this end, it is involved in a lot of HIV

and AIDS advocacy work.

At the time of �nding a suitable project aligned to the goals of the thesis, Rhodes Uni-

versity was embarking on a project under the Higher Education HIV/AIDS (HEAIDS)

Programme, funded by the European Union [22]. This project involved many parties

across the university working on HIV and AIDS initiatives. Hence, it became clear that

selecting this as a project, would allow a strategic synergy to be formed. On the one hand,

the selection provided an assurance that there will be a collective in the construction of

the ontology as it is recommended by best practice currently. On the other hand, the

selection yielded an opportunity to work in a knowledge rich discipline. As stated in [23],

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 51

health care in broad terms is knowledge rich and the rate in which the knowledge grows

is exponential.

Many implemented IVR systems are in the business domain. The last of the pertinent

questions asked was: will health, as the selected domain of interest, play a role in reinforc-

ing perceptions that users have of IVR applications? This question sought to determine

whether users expectations di�ered signi�cantly when using IVR applications for health

motivated reasons than when using them for business related reasons.

According to Migneault, Farzanfar, Wright and Friedman [88], there is growing evidence

that IVR applications can yield satisfactory health outcomes. They provide a two fold

argument to support this view. First, they draw on their two decades of experience

in designing and implementing automated telephone based conversational systems (i.e.

IVRs) for improving health outcomes and the general delivery of health services. They

present results from evaluation of some of their systems to argue the potential of IVRs

in health, and in a sense, to demonstrate a growing trend in their use. Subsection 2.4.2

provides a brief review of other studies involving use of IVR in health to con�rm the

validity of the argument.

Secondly, they make a generic argument based on accessibility. They argue that any

information delivered telephonically is easily accessed because �telephones are ubiquitous�

[88] and familiar to most people across socio-economic lines. Overall, as deduced from

their arguments, the domain itself is not important but the design of an IVR in meeting

its objectives.

What should the service delivered be exactly?

Many HIV preventative measures are designed as initiatives that communicate tailored

messages �for promoting and sustaining risk-reducing behaviour in individuals� [3]. The

initial idea of the thesis, as indicated in [84], was to create a service that would be

grounded by behavioural change theories to encourage, for example, use of condoms and

testing. Figure 4.4 provides a snapshot of �ve key areas that were identi�ed for inclusion

in this service: 1) basic and general facts, 2) counselling and testing, 3) prevention and

awareness, 4) rights and responsibilities, and 5) medication and treatment.

However, due to challenges experienced in working within the HEAIDS project, a decision

was made to trim down the scope of the service. This was done by eliminating the need to

use behavioural change theories. Following this decision, the requirements analysis phase

was revisited. Interviews with clinicians and lay people, in particular, revealed a need for

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 52

HIV

 &

 AIDS Knowledge

Basic

 &

 General Facts

Counselling

 &

 Testing

Prevention

 &

 Awareness

Rights

 &

 Responsibilities

Medication

 &

Treatment

Figure 4.4: A Comprehensive Service for HIV and AIDS Information Dissemination

creating a service that would, at a minimum, help individuals locate service providers that

o�er HIV testing. This need was expressed mainly in the context of increasing the drive for

testing; given that many individuals with HIV tend not to know their status early enough.

As a result, they miss the opportunity to gain timely access to antiretroviral treatment,

or the opportunity to change their behaviour to prevent re-infection and transmission to

others [7, 113].

It is against the above background that a decision was taken to implement a service

directory focusing only in the area of counselling and testing (indicated with a bold border

in Figure 4.4). On the one hand, service directory is a classic telephony service that would

allow the proposed architecture to be understood in context of service creation. On the

other hand, the service itself has the potential to help individuals go for HIV testing. This,

as suggested before, is bene�cial to both the economy and the overall national health care

system: assuming individuals with HIV can be helped to live long and productive lives.

This section will describe the development process for building the HIV and AIDS service

provider ontology. The development essentially followed an evolving prototyping life cycle.

As aptly articulated by Pinto and Martins [98]:

�In this life cycle, one can go back from any activity to any previous activity of

the development process. As long as the ontology does not satisfy evaluation

criteria and does not meet all requirements, the prototype is improved.�

The reason this life cycle allows moving back and forth to any activity as needs be, is

that it inherently assumes that requirements for construction are `�uid'. As suggested

in Chapter 1, the construction of the ontology for this thesis was to be driven by needs

identi�ed from an external project that provided an opportunity for a mutually bene�cial

partnership to be formed. For this reason, it was important to select a life cycle that

provided �exibility in adapting to changes in the requirements at any time, and without

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 53

Figure 4.5: Process Overview for Building the HIV and AIDS Service Provider Ontology

necessarily worrying about the implications or risk factors associated with the changes.

It is with this in mind and the aid of the decision tree shown in Figure 4.2 on page 45

that the evolving prototyping life cycle was selected.

Using this life cycle, four main stages as shown in Figure 4.5 were identi�ed. The �rst stage

is speci�cation and its goal is to clarify the purpose and scope of the ontology through an

informal process of knowledge acquisition about the domain to be modelled. The second

stage is conceptualisation and its goal is to organise and structure the acquired knowledge

in order to build a conceptual model for the ontology. The third stage formalises and

implements the conceptual model to make the ontology executable. Finally, the fourth

stage ties any loose ends from implementation. In this stage, the ontology is tested, re�ned

and through documentation, an e�ort is made to ensure that any tacit form of knowledge

that might have been used is articulated.

The above stages and activities form a hybrid methodology created by merging method-

ologies discussed in Subsection 4.1.2. According to a number of authors, for example,

Brusa, Caliusco and Chiotti [34], depending on ontology goals and intended use: �it is

common to merge di�erent methodologies since each of them provides design ideas that

r-1- ieecific" ion: Ident ifv r urlK"o 8. Sopo J-
• ""-"j'l "", "'-,,, " CO" _ " c, ', d ,," "tc"""'" "",,,,,,itO
• ' n" '"",' _" '""",,'e Ol ' " rr" ,_"""" "" "~t"

;--"ncop"" I; ",,' oc

• st, ... ,c< • .>C,"" j '",e., ~" •• \0 , "' c "'''' '0_ <»<"'~" .. ", ct ""
cco ","', I <or""", "t'i, "", 'Nt ""-', ,_ , "'''', '" . ,' ,," ,",,,,,,.'':'

_ "'....- ' , d , ,,,,,,,.<\t. " , -;"" n. ,,_ " : .. ",,, I <""""",",~

.,- ' " '., '''' 'M
r c : m, li oot ioc 8. 1m, ementat ioc

• """'tIC, eI " "~"'" "" "-" ".It'' '" j Ico "
• Cod '!y "',,,"'" -" I mod ~ ,

to y< u" 1 UU, 1)<><. u rn~" 1,,1.:>0" 8. M " '" I",, ", ce

• ,, ' " . '" "" U ,,"' .one ,- " ,_ "'- " ,_"" ,.,.' .' ow' "

• r..-" " ~ I ,.. .. I, ' "~ , '" ~, '"V ,<'" TI r t "'" ",,"_

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 54

distinguish it from the others�. In the next subsections, more details will be provided on

how di�erent ideas from di�erent methodologies were used to build the HIV and AIDS

service provider ontology.

4.2.1 Speci�cation: Identifying the Purpose & Scope

Although the terminology used may be di�erent, the �rst stage for all methodologies is

speci�cation. In carrying out this stage, di�erent strategies and activities are proposed.

However, to bring increased clarity on the purpose and scope of the ontology, informal

techniques for knowledge acquisition are preferred. For this reason, knowledge acquisition

was done through brainstorm-type of meetings with members of the HEAIDS programme

team, interviews with personnel at testing facilities and through analysis of content from

relevant online resources.

In combining these three strategies, the purpose and scope of the ontology was clari�ed.

Firstly, by identifying questions that can be answered by the ontology. Secondly, by listing

important terms that needed to be captured within the ontology. The next subsections

will provide more details on these two activities.

Before proceeding, it is worth mentioning that this stage would have included a review of

candidate ontologies to reuse. However, it had already been established that no relevant

ontologies existed for reuse when the project was selected. Furthermore, it was established

that resources like HIV-911 Directory [6] would be useful to the development process. This

directory provides a listing of organisations that o�er services related to the management

of HIV and AIDS in South Africa.

4.2.1.1 Competency questions

Competency questions, as suggested before, represent queries in a form of questions that

can used to test the validity of the ontology in serving its intended purpose [59]. Below

is a listing of some of these questions for this ontology:

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 55

1. Where can I go for testing?

2. How far is the place from Rhodes University campus?

3. Where is the provider located at?

4. What are the opening hours?

5. What is the cost?

6. How long does one have to wait for their result?

7. How will the results be communicated?

8. Is counselling mandatory for one to be tested?

9. What other services are offered?

10. Is test confidentiality ensured?

The next step was to identify constraints and assumptions implicitly made in each ques-

tion. Through this process, it was agreed that the mandate of this ontology was to o�er

information that enables a person to locate a place for HIV testing that is aligned to

his/her needs but without delving deep into the testing details. This information can

range from the duration of the test to other possible services o�ered by the place of

interest.

For practical reasons, only places in Grahamstown were considered and Rhodes University

has been used as a reference point for distance determination. The determination was

done in approximate terms. That is, the actual distance measurement was not deemed to

be as important as providing a broad indicator of how far or close the place is from the

reference point. A similar argument was made for cost, which is given as either low cost

or moderate cost.

4.2.1.2 Enumeration of important terms

The methodologies discussed in Subsection 4.1.2 advocate in varying degrees, for relevant

terms about the ontology to be identi�ed as part of speci�cation. A methodology proposed

by Noy and McGuinness [93] refers to this as enumeration (listing) of important terms.

The enumeration process requires engaging with questions such as: `what terms are rep-

resentative of statements that need to be captured in the ontology? ', `what is it that needs

to be said about those terms? ' and `what properties are possessed by the terms? ' [93]. By

considering these questions, the scope is de�ned or further clari�ed. This in turn allows

a transition to be made to the conceptualisation stage of the ontology building process.

Below is an example of a listing from this process, shown as a �word cloud� to provide

prominence to important terms:

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 56

Service provider, service, language used, telephone number,
organisation type, result waiting duration, Cost, Healthcare provider, proximity

It is important to note that the enumeration process requires no e�ort to be put on pruning

the list or classifying the terms in any meaningful way that may reveal relationships among

the terms. This, as it will be seen shortly, is done as part of conceptualisation.

4.2.2 Conceptualisation

Conceptualisation, as noted by Gómez-Pérez et al. [63], is the most important activity

of ontology construction. Its goal is to organise and structure knowledge acquired in the

speci�cation phase into taxonomies and vocabulary that is representative of the ontology.

As noted by Dragan et al. [43], the taxonomies and the vocabulary provide a conceptual

framework for the retrieval of information and most importantly facilitate knowledge

sharing and knowledge reuse by applications.

METHONTOLOGY, due to its elaborateness, was used almost exclusively for guiding

the process of conceptualisation. This methodology de�nes a set of ordered tasks to be

performed as shown in Figure 4.6. Given that knowledge representation needs vary for

di�erent ontologies, it is not mandatory to perform all tasks or perform them in their

stipulated order. However, according to Gómez-Pérez et al. [63], it is strongly advisable

to adhere as much as possible to the order to ensure consistency and completeness in

conceptualising the ontology.

A brief description of how each task was carried out will be provided below, following a

format presented in [35, 63]. As it will be observed, the process is document intensive in

that each task warrants some form of documentation to be done.

Task 1: Build glossary of terms

This was achieved by tabulating the enumerated terms to provide synonyms,

acronyms, description based on natural language and a general classi�cation for

each term. Table 4.5 provides an excerpt of this tabulation.

Task 2: Build concept taxonomies

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 57

Task 1

 Build glossary of terms

Task 2

 Bui ld concept taxonomies

Task 3

 Build ad hoc relation diagrams

Task 4

 Build concept dictionary

Task 6

 Describe instance

 a t t r ibu tes

Task 8

 Describe

 c o n s t a n t s

Task 7

 Describe class

 a t t r ibu tes

Task 9

 Descr ibe formal axioms

Task 5

 Descr ibe adhoc

 binary relations

Task 10

 Describe rules

Task 11

 Descr ibe ins tances

Figure 4.6: Tasks for Conceptualisation Activity According to METHONTOLOGY

To reveal parent-child relationships5 between concepts, concept taxonomies were

built by selecting terms listed as concepts in the glossary of terms. A middle-out

approach as recommended by Uschold and Grüninger [116] was used to guide the

selection.

Using this approach, important concepts were identi�ed �rst. Thereafter, the

parents and then the children for those concepts were identi�ed. As an example,

to generate the taxonomy depicted in Figure 4.7 Healthcare Provider was selected

�rst. The parent was identi�ed as Service Provider. Private Practice, Clinic,

Hospital and Health Support Centre were identi�ed as children.

Task 3: Build ad hoc binary relation diagrams

Concepts of the same or di�erent concept taxonomies may be related to each

other through some ad hoc relations. Given that a picture is said to be worth a

thousand words, the goal of this task was to visualise these relations. This was

5Formally known as superclass-subclass relationships or generalisation-specialisation relationships.

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 58

Term Synonym Acronym Description Type

Service provider � � A provider of some service. Concept
Non- Governmental
Organisation

� NGO Organisations that o�er
services with the objective of
not making pro�t.

Concept

Telephone number Phone
number

� The telephone number of the
service provider.

Instance
Attribute

result waiting duration
(HIV Test, Duration)

� � The time it takes for a person
to receive results after testing.

Relation

Table 4.5: Example of Glossary of Terms for the HIV and AIDS Service Provider Ontology

Service Provider

Healthcare Provider

Private Practice Clinic Hospital Health Support Centre

Multiple Doctor Practice One Doctor Practice

Figure 4.7: Excerpt of Concept Taxonomy from the HIV and AIDS Provider Ontology

achieved by generating ad hoc binary relation diagrams. In these diagrams, con-

cepts are represented as labelled oval nodes and relations as arcs with lower camel

case labels. An example of an ad hoc binary relation diagram is provided in Fig-

ure 4.8. In this �gure, a binary relation usesLanguage connects Service Provider

and Language concepts. This relation has an inverse relation isLanguageUsedBy,

which is also shown in the �gure.

The generated binary relation diagrams were then used as building blocks for

generating the overall conceptual model diagram for the HIV and AIDS service

ontology. Figure 4.9 shows a simpli�ed conceptual model for this ontology. (This

�gure will be used extensively below to explain various concepts.)

In generating the conceptual model, a question arose as to how to represent n-

ary relations, i.e. relations among more than two concepts. This question was

Service Provider Language
u s e s L a n g u a g e

i s L a n g u a g e U s e d B y

Figure 4.8: Ad hoc Binary Relation Diagram Example for the HIV and AIDS Provider
Ontology

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 59

Service Profile

Service

descr ibes

Cost

hasCos t

Workday

hasWorkday

Provider

 hasProfile

isProviderOf

 cha rges

isOfferedOn

Star t T ime

s tar tTime

End Time

 endTime

Figure 4.9: High-level Conceptual Model of the HIV and AIDS Provider Ontology

motivated by, for example, the need to assert that each service is associated with

both cost and time, since some services are provided on speci�c days as opposed

to every working day. In this instance, the problem translates to how to represent

the following statement e�ciently and accurately:

Service provider W offers service X on day Y at the cost of Z

Using guidelines o�ered in [94], the decision was to introduce a new concept

that will group the n-ary relations together. For example, in order to capture

the above, concept Service Pro�le was introduced and as it can be seen from

Figure 4.9, it provides links to concepts Service, Workday and Cost via relations

describes, hasWorkday and hasCost respectively.

Also shown in the �gure, are dashed arcs which represent relations that indicate

how inferences can be made. For example, if a service pro�le for a service provider

has been full de�ned with cost, service and day of o�ering stipulated, then the cost

charged by the provider may be inferred via the relation charges. This can be done

I ,
/

I

\ ,

-.;.;
..... ,

I
I

'" /
I

I
\
\

\ ,

-....
"­ ,

I
I

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 60

Concept name Instances Class attributes Instance attributes Relations

Service pro�le Joza pro�le 1 � � describe
Raphael pro�le 1 � � hasCost
Raphael pro�le 2 � � hasWorkday

Service provider Fort England Hospital � telephoneNumber isProviderOf
Hospital Rhodes Health Care Centre � streetAddress charges

Raphael Centre � hasCloseRadius hasWorkday
Colcade Practice � email hasPro�le

Table 4.6: Excerpt of Concept Dictionary from the HIV and AIDS Service Provider
Ontology

assuming the relation has been speci�ed as a composition of relations hasPro�le

and hasCost (i.e. hasPro�le o hasCost). Similarly, the day in which the service

is o�ered on can be inferred via the isO�eredOn relation, a composition of the

inverse relation of describes and hasWorkday (i.e. inv(describes) o hasWorkday).

As a �nal note on the discussion about Figure 4.9, the �gure has been embellished

to show that binary relations can also exist between concepts and attribute values.

In the �gure, this idea is represented by binary relations startTime and endTime,

which link concept Workday to start time and end time values. These attribute

values are represented in the �gure using parallelograms.

Task 4: Build concept dictionary

For this task, the goal was to create a concept dictionary that lists all concepts

together with their relations, their instances, and their class and instance at-

tributes. Although not all details have been listed for selected concepts, Table

4.6 provides an excerpt of the concept dictionary from the HIV and AIDS service

ontology.

Task 5: Describe ad hoc binary relations

The goal for this task was to describe in detail ad hoc binary relations listed in

the concept dictionary. This was done by generating a table such as one shown

in Table 4.7. This table speci�es for each binary relation, a name, the names of

source and target concepts, the source concept cardinality, the inverse relation,

and mathematical properties, which indicate whether the relation is functional,

symmetric, asymmetric, transitive, re�exive or irre�exive.

In the table, composing relations are also included if the relation was a composi-

tion i.e. a result of a sequence of relations. For example, charges is a composition

of hasPro�le and hasCost relations; since hasPro�le followed by hasCost provides

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 61

Relation name Source concept Source
card.
(Max)

Target concept Inverse relation Mathematical properties Relation composition

charges Service Provider 1 Cost isChargedBy � hasPro�le o hasCost
isProviderOf o hasCost

describes Service Pro�le 1 Service isDescribedBy Functional �
sharesPracticeWith Doctor N Doctor � Symmetric �

Table 4.7: Excerpt of Ad hoc Binary Relation Table from the HIV and AIDS Service
Provider Ontology

Instance attribute name Concept name Value type Cardinality Default Value

hasCloseRadius (to campus) Service Provider boolean (1,1) �
startTime Workday time (1,1) 08:00:00

Table 4.8: Excerpt of Instance Attribute Table from the HIV and AIDS Service Provider
Ontology

the same source and target concepts as the charges relation. This can be con-

�rmed quickly by referring to Figure 4.9 on page 59.

Task 6: Describe instance attributes

The goal for this task was to provide a detailed description of instance attributes

listed in the concept dictionary. A table was used in which each row provided

the details of an instance attribute. The table included the following �elds:

instance attribute name, the concept it belongs to, value type6, measurement

unit, default values if they exist, allowed range of values for numerical values,

and minimum and maximum cardinality. Table 4.8 shows a small section of the

instance attribute table for the HIV and AIDS service provider ontology.

Additionally, the following could have been included in the table: instance at-

tributes, class attributes and constants used to infer values for each instance

attribute; formulae or rules that allow inferring values of the attribute; and at-

tributes that can be inferred using values of this attribute. However, given the

relative simplicity of the HIV and AIDS service provider ontology, these and some

of the other descriptors previously listed were not required.

Task 7: Describe class attributes

The goal for this task was in many regards similar to that outlined in the previous

task. The major di�erence is that class attributes describe concepts and take

their values in the class where they are de�ned; unlike with instance attributes,

6These refer mainly to the numerous datatypes supported in XML schema.

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 62

Axiom name HIV Test Provider Obligation

Description Every HIV test provider must be a provider of either HIV testing or VCT.

Expression for all(?X,?Y,?Z)

(HIV Test Provider(?X) and HIV Testing(?Y) and isProviderOf(?X,?Y))

or

(HIV Test Provider(?X) and VCT(?Z) and isProviderOf(?X,Z))

Concepts HIV Test Provider

HIV Testing

VCT

Referred relations isProviderOf

Referred attributes �
Variables ?X

?Y

?Z

Table 4.9: Example Formal Axiom from the HIV and AIDS Service Provider Ontology

which describe concept instances and take their values in instances. Further,

class attributes are neither inherited by the subclasses nor by the instances. In

the concept dictionary, there were no listed class attributes otherwise a table

similar to Table 4.8 would have been generated.

Task 8: Describe constants

The goal for this task was to provide a detailed description of constants listed in

the glossary of terms by means of a table. There were no constants de�ned and

so there was no need to carry out the task.

Task 9: Describe formal axioms

The goal of this task was to describe formal axioms, which are logical expres-

sions for specifying constraints. It is important to ensure that each description is

precise. Otherwise it is possible to sanction inferences that are inconsistent with

de�ned de�nitions. In order to attain precision, METHONTOLOGY proposes

inclusion of the following: name, description, logical expression that formally de-

scribes the axiom using �rst order logic, concepts, attributes and ad hoc relations

as well as variables used.

Table 4.9 shows an example of a formal axiom de�ned within the HIV and AIDS

service provider ontology. The axiom states that a service provider must provide

HIV testing or VCT as services in order to qualify as an HIV test provider. Also

included in the table are concepts and relations used in formulating the axiom.

Task 10: Describe rules

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 63

Rule name Private practice doctors as contact persons

Description
A private practice doctor is as a contact person for the practice s/he works

in.

Expression if (Doctor(?D) and `Private Practice'(?P) and isDoctorAt(?D, ?P)

then hasContactPerson(?P, ?D)

Concepts Private Practice

Doctor

Contact Person

Referred relations hasContactPerson

Referred attributes �

Variables ?D

?P

Table 4.10: Example Rule from the HIV and AIDS Service Provider Ontology

This task was very similar to the previous one. However, in this case the objec-

tive was to describe rules that may be used to infer knowledge within the ontol-

ogy. The rules were used cautiously to avoid creating an ontology that is over

committed, and also to minimise performance cost. In principle, rules increase

expressivity of the ontology and as stated in the previous chapter, expressivity

comes at a price.

The rules were presented in a form of if-then type of statements. Table 4.10

provides an example of one of the rules used in the HIV and AIDS service provider

ontology. This rule states that private practice doctors can be regarded as contact

persons for their practices. Also included in the table are concepts and relations

used for formulating the rule.

Task 11: Describe instances

At this point, assuming the tasks were performed in some relative order, the

conceptual model of the ontology is complete. There is the visualised and the

textual part, which details all entities involved in the model. Therefore, all that

is required in this task is to `instantiate' the model. That is, de�ne instances

that appear in the concept dictionary inside an instance table. The instance

table typically includes the following �elds: instance name, name of concept the

instance belongs to and the attribute values, if known. Table 4.11 on the following

page presents a few instances from the HIV and AIDS service provider ontology.

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 64

Instance Name Concept Name Attribute Values

Rhodes University Health Care Centre Clinic telephoneNumber 6038093
hasCloseRadius true
streetAddress Lucas Avenue

RU Workday Workday startTime 08:30:00
Sister M V Nduna Nurse name Mandisa V Nduna

Table 4.11: Excerpt of Instance Table from the HIV and AIDS Service Provider Ontology

4.2.3 Formalisation and Implementation

Similar to Enterprise and TOVE methodologies, formalisation and implementation were

combined into a single stage. The goal of this stage was to transform the conceptual model

to a model that is executable by a computer. To achieve this goal, two key questions

needed to be asked. The �rst question was: which language to use for codifying the

conceptual model? The second question was: which tools to use to support this dual

process of formalisation and implementation? The next subsections will provide answers

to these questions.

Once these answers were obtained, the only major requirement was e�ort to codify the

conceptual model; then move to the next stage of the life cycle for rigorous testing and

other related activities. For this reason, minute details of the formalisation and imple-

mentation process will not be discussed.

4.2.3.1 Ontology Language Selection

As already alluded to in Subsubsection 2.1.4.3 on page 14, the broad adoption of ontologies

is dependent on the availability of well de�ned semantics and powerful reasoning tools.

DLs provide both, and for this reason, a decision was made to select a DL based language.

This decision was informed by nearly two decades of research in DLs, which according

to Baader et al. [24] provides unequivocal evidence that DLs are �ideal candidates for

ontology languages�. According to Baader et al. [24], the suitability of DLs has been

highlighted by their role as the foundation for several web ontology languages that include

OWL.

OWL is an ontology language standard developed by the W3C Web-Ontology Working

Group. As reported in [87], compared to other W3C endorsed languages such as Extensible

Markup Language (XML), RDF, and RDF Schema (RDF-S), OWL facilitates greater

interpretation of content by machines. This is because in contrast to the other languages,

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 65

OWL sublanguages Based on Expressivity Reasoning

OWL Lite DL Low Decidable
OWL DL DL Medium Mostly decidable
OWL Full RDF-S High Mostly undecidable

Table 4.12: A Brief Comparison of OWL Sublanguages

OWL provides additional vocabulary together with formal semantics. Based on this,

OWL was selected for use. Speci�cally, OWL 1.1 7 was chosen even though at the time

of construction that version was not yet endorsed.

There are three di�erent sublanguages in OWL, namely OWL Full, OWL DL and OWL

Lite. OWL Full is the superset of OWL DL and OWL Lite. OWL DL is based on DL

and its subset OWL Lite is based on a least expressive form of DL. To further highlight

the relationship between these sublanguages, Table 4.12 provides a brief summary and

comparison. In particular, the table captures the relationship between expressivity and

decidability in reasoning.

In the previous chapter, it was argued that reasoning and representation are inextricably

intertwined. Further, that the role of representation, among other things, is to act as a

medium for e�cient computation. With these ideas in mind, OWL DL was selected as

the best language to use for implementing the HIV and AIDS service provider ontology.

Essentially, OWL DL was selected because it o�ers a good middle ground between expres-

siveness and e�ciency in reasoning. Again, by referring to Table 4.12, it can be seen that

compared to OWL Lite, OWL DL o�ers more expressivity whilst retaining a high degree

of decidability. Compared to OWL Full, however, it o�ers less expressivity but remains

computationally superior. This is because OWL Full does not provide computational

guarantees to enable useful or intelligent inferences to be made from an ontology [87].

4.2.3.2 Tool Selection

ß Development Tool

Protégé [13], a free and open source platform, is regarded as one of the leading on-

tological engineering tools [43, 93]. As Lam and Lee [78] elaborate, Protégé o�ers a

�friendly user interface that provides a set of tools for constructing domain model and

knowledge based applications with ontologies�.

7OWL 1.1 was developed informally by OWL practitioners in industry and academia as a revision of
OWL-DL; and was submitted to W3C Working Group, which later decided to call it OWL 2 [55, 82].

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 66

At the time of construction, Protégé-4 [70] was the only tool that provided solid

support for constructing ontologies based on OWL 1.1. This, together with reputation

for quality, made Protégé-4 an ideal candidate for use. The alternative would have

been to manually formalise and implement the ontology with the aid of a simple text

editor. This would have worked, but would have taken longer. Protégé speeds up

development substantially in that it provides an interface that obviates the need to

learn low level syntax of OWL 1.1. Further, it allows, for example, for the ontology

to be visualised like as shown in Appendix A on page 118.

ß Reasoners

There are a number of ontology reasoners available in the market. However, only

FaCT++ and Pellet [105] were considered. There are two interrelated reasons for

this.

First, it was pragmatic to select a DL reasoner optimised for use with Protégé. Sec-

ondly, the reasoner had to have good support for OWL 1.1, the selected language for

ontology authoring. Unfortunately, while reasoners such as RacerPro [65] and Her-

miT [90] could in practice be used with Protégé, at the time of construction, they did

not o�er much support for OWL 1.1. FaCT++ and Pellet, however, showed a high

degree of conformity with OWL 1.1 and also came bundled in with Protégé-4.

Table 4.14, compares brie�y these two reasoners. The lightly shaded rows represent

comparison based on some relatively subjective criteria. For each criterion, a three

point rating scale was used. The scores were awarded based on information gleaned

informally from online resources and comparative studies (based on previous versions)

such as those done by Sirin, Parsia, Grau, Kalyanpur and Katz [105], and Gardiner,

Horrocks and Tsarkov [52].

Apart from the di�erence in the implementation language, it can be seen from the

table that FaCT++ and Pellet are almost on par with each other. However, by

introducing a degree of subjectiveness, Pellet was deemed most suitable for use in

that it o�ered rule and good technical support.

4.2.4 Evaluation, Documentation & Maintenance

Once implementation is done, there is a need to ensure that the quality of the resulting

ontology meets expectations of its users. Further, that the captured knowledge can be

shared without creating barriers in understanding. Given this dual mandate and the

4.2. BUILDING THE HIV AND AIDS SERVICE PROVIDER ONTOLOGY 67

FaCT ++ Pellet

Language
C++ implementation but has

Java wrapper
Pure Java implementation

Implementation
algorithm

Tableaux Tableaux

Licensing Free

Dual licence � free for
open source applications
and fee based for closed
source applications

Expressivity SROIQ(D) SROIQ(D)

Rule support No
Yes (SWRL � DL Safe

Rules)
Performance
[Poor | Average | Good]

Good � but in few cases can
be poor

Good � but in few cases
can be poor

Release cycle /
Maintenance activity
[Irregular | Semi regular | Regular]

Semi regular � monitored but
unless for example, a feature
request or bug report is

marked high priority, it may
take time to implement or �x.

Regular

Technical support
[Poor | Average | Good]

Average Good

Table 4.14: Comparison of FaCT++ and Pellet Reasoners

relative simplicity in scope of the service provider ontology, evaluation, documentation

and maintenance were combined into a single stage, which involved:

ß Validating the ontology by verifying that it can answer accurately the speci�ed

competency questions.

ß Using criteria recommended in literature (such as one discussed in 2.1.4.6 on page 17)

to evaluate de�nitions and axioms within the ontology. For example, following a

technical evaluation to determine how to reduce over commitment without decreas-

ing performance, a decision was made to follow advice issued in [70]. The advice

was to avoid explicit speci�cation of source and target concepts of binary relations

during the implementation stage; because it was possible to determine them during

reasoning. This translated in the removal of asserted domains and ranges for many

of the properties (binary relations) de�ned in the ontology.

ß Documenting the ontology by recording changes and adding content in the imple-

mentation code as comments, meta data, descriptions, etc. This also applies to

documentation generated from speci�cation and conceptualisation.

4.3. SUMMARY 68

4.3 Summary

This chapter provided implementation details of the HIV and AIDS service provider

ontology. This ontology captures knowledge pertaining to places that provide HIV testing.

In constructing the ontology, ideas from literature were used to inform the process as

well as guide decisions for conceptual modelling and tool selection. One of the key ideas

related to using a development life cycle. As explained by Fernández-López, Gómez-Pérez

and Amaya [48], a life cycle outlines the various stages of ontology development, activities

performed in each stage and how these stages are related to each other.

Although it may seem that a life cycle is prescriptive and rigid, according to Royce [103],

it provides structure that transforms a risky ad hoc development process into one that

produces the desired product in a timely and cost e�ective manner. As stated in this

chapter, for the construction of the ontology an evolving prototyping life cycle model was

used. This model was deemed more suitable in contrast to other presented models in

that it provided the assurance that the �nal product could be declared as �reasonably

modi�able and reliable� [25].

Chapter 5

Basic Implementation of the Prototype

System

This chapter will discuss the implementation of the prototype system, an IVR system

named HIV Testing Locator System (HTLS). This system has been designed to use the

HIV and AIDS service directory realised through the ontology discussed in Chapter 4.

The key objective of the system is to help users locate HIV testing sites aligned to their

individual needs. Figure 5.1 provides the high level use case diagram for the system.

Essentially, in order to locate a testing site, a search query is initiated to retrieve infor-

mation from the ontology knowledge base. (As shown in the �gure, a robot has been

used to represent the knowledge base: the intention is to convey the future possibility of

successfully averting the need for a human agent.) The query to the knowledge base is

generated by obtaining search criteria that needs to be matched. In this particular case,

Figure 5.1: Use Case Diagram for HIV Testing Site Locator

69

5.1. IMPLEMENTATION STRATEGY 70

Figure 5.2: Model View Con-
troller Architectural Design Pat-
tern

Figure 5.3: Implementation Breakdown based on
MVC

the criteria is determined by the cost of testing and the proximity of a site to Rhodes

University campus. Once retrieved, the results may be re�ned.

The re�nement process will be discussed in Chapter 6 as part of the implementation

of the enhanced prototype. This chapter will discuss the implementation of the initial,

basic prototype. This discussion will be preceded by an outline of the overall strategy for

implementing both the basic and the enhanced prototype systems.

5.1 Implementation Strategy

An important consideration for implementing the prototype system was maximising �exi-

bility. As gleaned explicitly from computing �elds like Software Engineering, this could be

attained through separation of concerns, which e�ectively translates to modular system

design.

There are a number of architectural models that have been proposed for achieving mod-

ularisation. The MVC [77] and three tier architecture are but examples of well known

and widely used models for web oriented applications. Both models break down imple-

mentation into three parts. These parts are similar although their functionality may be

categorised di�erently. In MVC, the parts are named: model, view and controller. In the

three tier architecture, the parts are named: presentation layer, model layer and persis-

tence layer. Conceptually, communication between these parts is triangular in the case of

" - I -." ,;" ,,~,,"', " .0 " " ""c,." h e""" :"o ",'M

I
",,- "' ~., ,,; . --.. " • ._ " " ." .,. .. . " • • -.. " -. .,,) -. ',.--

. " • -"-'c.<",. -- , .. ~"., -' ",'" • " "'-
I" • •• '" • -- '" " , ,- " ". • ,,," " , " • -let -"" .. " ," ' ,~ .. -. .. , " N _ j .-

5.1. IMPLEMENTATION STRATEGY 71

Figure 5.4: Spiral Model for Implementing the Prototype System

MVC (as shown in Figure 5.2) whereas in three tier architecture it is linear. This makes

MVC model more �exible than the three tier architecture since all parts can communicate

directly with each other. It is for this reason that MVC was selected for use over the three

tier architecture.

The MVC parts focus, respectively on: representation of domain speci�c information,

presentation, and executing control logic, which subject to user input may cause the model

and the view to be modi�ed. Although these are the key areas for MVC, it is important to

note that a strict breakdown into three parts is not prescribed by this architectural model.

Consequently, there are many variations of how the model is used. For example, in the

case of this thesis, the breakdown is in four parts, as shown in Figure 5.3. Presentation

maps to the view, the knowledge base maps to the model and the controller maps jointly

to interaction and access components, with some elements of access belonging to the

model.

Using the above breakdown, an implementation strategy was developed based on a simple

question: what is needed to have an initial working prototype? Answering this question

amounted to using an experimental approach, which involved two major phases of devel-

opment, each comprising of multiple iterations. As expected, the �rst phase focused on

implementing the initial prototype while the second focused on the enhancements of that

prototype.

Inherent to the implementation strategy was the choice of a development life cycle model

--[':.:.-

e ,

5.2. FIRST GROUP OF ITERATIONS FOR THE IMPLEMENTATION 72

to use. Several di�erent development life cycle models were introduced in Chapter 4. As it

might be deduced from the chapter, the suitability of each life cycle model is dependent on

the needs and requirements of the artefact to be built. In this particular case, the spiral life

cycle model was deemed suitable for use; it is iterative and accommodates for uncertainties

inherent in using an experimental approach. This life cycle model as it pertains to the

development of the prototype system is depicted in Figure 5.4 (albeit inaccurately, since

individual iterations are not shown, instead iterations have been grouped under either

basic or enhanced prototype).

5.2 First Group of Iterations for the Implementation

The ontology constitutes a large portion of what quali�es as the model component of the

prototype system. Chapter 4 extensively discussed the implementation of the ontology

for this thesis. This section will provide implementation details for the the view and the

controller components. With these implemented, the initial working prototype will be

realised.

Each component to be discussed in this subsection will in fact constitute a distinct itera-

tion. For each iteration, the format of the discussion will be closely aligned to the steps

of the spiral model shown in Figure 5.4. It will include a preamble capturing the design,

followed by tool selection, implementation and unit testing segments.

5.2.1 View Implementation

The conversations the user holds with voice dialog systems qualify as the user interface for

these systems. The realisation of the conversations is crucial to the overall implementation

of these systems.

There are a number of strategies based on voice user interface design principles that can

be followed to ensure that these conversations are indeed e�ective (i.e. lead to user satis-

faction instead of frustration). These include: breaking content into clear small chunks to

avoid memory overload; using quiz type questions; and/or making content conversational

by introducing rhetorical questions as part of con�rming user requests. These strategies

are intended to help users perform their tasks quickly and without frustration.

5.2. FIRST GROUP OF ITERATIONS FOR THE IMPLEMENTATION 73

With the above in mind, �owcharts were used to capture the order of events for various

scenarios to be supported by the system. Then, conversations for di�erent scenarios were

written out in a drama script format to simulate communication by the user and the

system (see Appendix C on page 121 for example scripts).

In creating the �owcharts (and subsequently writing out the scripts), caution was taken to

limit options to be presented to the user to three. This decision was guided by anecdotal

evidence which suggest that audio and serially presented information impose a limitation

on the short term memory that is far less than `Miller's magical number seven, plus or

minus two' [89]. (Miller argues that a person can remember between �ve and nine pieces

of information presented at once visually).

On the basis of the �owcharts and produced scripts, pages based on VoiceXML [50]

(version 2.1) were created. Details will be provided shortly below.

A) Tool Selection

Although development tools are available for the automated creation of VoiceXML

pages, a decision was made not to use them. Instead, a simple text editor together

with an online XML validating tool powered by Validome [19] were used.

Three reasons can be provided for this decision. The �rst reason is that comprehensive

support for VoiceXML is not o�ered by many tools (i.e. GUI based tools) because

of continuing amendments to the language as part of the ongoing standardisation

process. Secondly, the learning curve for VoiceXML is low because as argued in 2.3.1

on page 24 its alignment to the web enables web development skills to be leveraged on.

The third reason is in a sense interrelated to the other reasons. As a well known fact,

a tool can enhance productivity and e�ciency. This is dependent on the developer

learning to use the tool properly, which is an investment if the application to be

built is complex or there is a possibility of using the tool regularly in the future.

Neither of these cases applied. Further, due to the ongoing standardisation process

of VoiceXML, there would still be a need to learn VoiceXML in order to resolve any

possible mismatches between properties of the language supported by the selected tool

and VoiceXML browser. Weighing these together, learning the language as opposed

to the tool seemed more worthwhile.

B) Implementation

Learning VoiceXML was crucial to the implementation of the view. Once this was

done, VoiceXML pages for the prototype application were created. These pages rep-

5.2. FIRST GROUP OF ITERATIONS FOR THE IMPLEMENTATION 74

Figure 5.5: High Level Flowchart Capturing Prototype Functionality

resented dialogs using forms, which served to either collect user input or present

information to the user.

As alluded to, the pages were authored using a simple text editor and an online tool

for checking correctness of grammar and syntax. These pages were created based on

�owcharts and scripted dialogs. Figure 5.5 shows a high level �owchart for generating

the pages. For example, the initial page for the application, shown in Figure 5.6 was

created. This page includes two main dialogs, with the logic for each enclosed in

form tags. The �rst dialog, named greetings, greets the user and moves to the options

dialog using the goto tag. Within the options (menu) dialog, the user is asked to

make choices that would aid in locating a suitable provider. These choices are then

submitted for further processing to the controller. The details of the processing will

be described in the next subsection. Apart from selecting options for choosing a

provider, the user has the option to choose to terminate the session (other than by

5.2. FIRST GROUP OF ITERATIONS FOR THE IMPLEMENTATION 75

1 <?xml v e r s i o n=" 1 .0 "?>
2 <vxml v e r s i o n=" 2 .1 " xmlns=" ht tp ://www.w3 . org /2001/ vxml">
3

4 <l i n k dtmf="0" even t=" e x i t " />
5 <catch even t=" e x i t "> <goto next=" t e rm i na t e . vxml "/> </catch>
6 <!−−Va r i a b l e d e c l a r a t i o n omi t ted −−>
7

8 <!−− S t a r t i n i t i a l d i a l o g −−>
9 <form i d=" g r e e t i n g s ">
10 <!−−The block e l ement i s needed f o r c o n t a i n i n g e x e c u t a b l e i n s t r u c t i o n s −−>
11 <block>
12 <audio s r c="">
13 <!−− Welcome message −−>
14 </audio>
15 <goto next="#op t i o n s "/>
16 </block>
17 </form>
18

19 <!−−Pre s en t u s e r w i th op t i o n s −−>
20 <form i d = " op t i o n s ">
21 <!−−Determine co s t p r e f e r e n c e −−>
22 <!−−The f i e l d e l ement d e c l a r e s an i npu t f i e l d and prompts the u s e r f o r v a l u e s

t ha t match a grammar . I n t h i s case , DTMF bu i l t −i n grammar s p e c i f i c to the
VXI* p l a t f o rm i s used.−−>

23 < f i e l d name ="costParam" type=" boo l ean ?y=1;n=2;">
24 <prompt>Are you i n t e r e s t e d i n a f r e e or low co s t t e s t i n g s i t e ? P r e s s 1 f o r

ye s and p r e s s 2 f o r no.</prompt>
25 <!−− Execute the f i l l e d segment to e v a l u a t e u s e r r e s pon s e −−>
26 < f i l l e d >
27 < i f cond ="costParam=='t rue ' ">
28 <as s i gn name = " co s t " exp r=" ' lowCost ' "/>
29 <e l s e i f cond="costParam ==' f a l s e ' "/>
30 <as s i gn name =" co s t " exp r =" ' moderateCost ' "/>
31 </ i f>
32 </ f i l l e d >
33 </ f i e l d >
34 <!−−Determine d i s t a n c e p r e f e r a n c e−−>
35 <!−−Submit u s e r s e l e c t i o n −−>
36 <block>
37 <submit next=" ht tp : // l o c a l h o s t / vo iceLocApp / query " method=" pos t " n ame l i s t="

d i s t a n c e c o s t "/>
38 </block>
39 </form>
40 </vxml>

Figure 5.6: Listing of VoiceXML Page for the Initial Dialog (i.e. Welcome Page)

just hanging up). If this decision is made, a dialog is initiated that thanks the user

for calling. This dialog is captured in another VoiceXML page, terminate.vxml.

It is important to note that, as with the implementation of any application, there

were multiple ways to get the desired results. Figure 5.6, for example, illustrates one

possible implementation for realising the logic captured by the �owchart shown in

Figure 5.5.

C) Unit Testing

For this iteration, testing focused mainly on validating the control �ow and processing

carried within the page. To perform this testing, the created pages were uploaded

5.2. FIRST GROUP OF ITERATIONS FOR THE IMPLEMENTATION 76

Figure 5.7: Events for Basic VoiceXML Page Rendering

to the (web) application server. Then through extensions.conf �le (Asterisk �le for

dialplan con�guration), a phone number (extension) was speci�ed. This number

linked to the URL of created VoiceXML pages as follows:

exten => 448,n,Vxml(http://serverURL/voiceApp/index.vxml)

Using the speci�ed number (i.e. 448) a call was placed to verify the functionality

of the pages. This entailed a process of validating communication between the user

and the application server, as shown in Figure 5.7. That is, once the call has been

answered the following happens as depicted:

(1) The application server delivers the appropriate VoiceXML page to the browser.

(2) The browser interprets the page and renders it appropriately. For interactions

with the user, this may involve prompting (i.e. posing questions) to the user,

which may be rendered by TTS engine or through an audio recording.

(3) The user responds to the prompt. This could be through voice but the prototype

was implemented speci�cally to use touch tone.

(4) The response is forwarded to the application server. Another page may be

delivered to the browser or a request for external resources may be made to the

backend.

(5) A request is placed to the backend, if at all necessary.

(6) A response to the request is returned.

When the results were not as expected, debugging was performed in order to identify

and �x the potential fault, then the veri�cation process was repeated. The debugging

and testing processes were repeated until the functionality of the prototype matched

""'-.. ,.~ -,-_._"
< ~

- " , , .'-, "M,

l • •
-- .V · '" ,

,
"

,
~~" , - I

, ,

~ ... ,...W' -.,C"'"
•

•
,

5.2. FIRST GROUP OF ITERATIONS FOR THE IMPLEMENTATION 77

Figure 5.8: Basic Components in a Description Logic based System

the design requirements. (This type of testing is known as correctness testing because

of its strong focus on ensuring correct behaviour of a software module.)

5.2.2 Controller Implementation

The controller as stated before refers to a component that processes and responds to

events between the view and the model. As noted in the previous section, a VoiceXML

based user interface was created using �owcharts and scripted dialogs. The process of

generating these �owcharts and dialogs provided a `point of entry' into understanding

the interactions between the view and the model. This, in turn, helped in de�ning the

behaviour of the controller to be built.

Figure 5.8 shows basic components in a DL based system and their interaction with

each other. This �gure e�ectively captures how communication with the model should

be carried out. In order to access any data, an application must communicate with the

knowledge base via an interface that connects directly to a reasoning system.

The primary task of a controller is to facilitate this communication with the model as

well as communication with the view (see Figure 5.9 on the next page). As part of the

analysis process, it was established that the controller would require implementing code

Knowled,e Base

............. ""'1 E
-< 1 po' ',0' {
-< 1 _<>II'CT

~ -< ~~. ~ - • • • . - • •
~ • -
• --, ~ .. _,,,'"' - _~{,..·I

.... _<>11 .. • .. • ,.,

5.2. FIRST GROUP OF ITERATIONS FOR THE IMPLEMENTATION 78

Figure 5.9: Basic Controller's Task

that handled requests and generated pages. Also required was code that handled the logic

pertaining speci�cally to how reasoning services could be used to obtain information from

the HIV and AIDS service provider ontology. This code was required to build an interface

through which the ontology could be queried to retrieve relevant data from the knowledge

base.

A) Tool Selection

An observation on current trends shows a steady move into a generation of Java based

tools within the telephony sector. (This can be evidenced by the growing adoption

of platforms like Mobicents, a popular open source telecommunications multi-service

platform that is based on e�orts by the Java community [110].) On the basis of this,

Java was selected as the language of choice for implementing the controller (and any

functionality that supports application integration on the server side). Implicitly,

this meant grounding subsequent decisions on tools to use to Java oriented APIs,

technologies, etc.

In line with the above, servlets were chosen for implementing the controller. Pellet was

selected for o�ering reasoning services (for reasons provided in Subsubsection 4.2.3.2

on page 66). OWL API [68, 69], a high level Java API for working with OWL 2

ontologies was selected for implementing the interface for querying.

B) Implementation

Taking advantage of the similarity between VoiceXML and HTML, a decision was

made to build a controller that would be tested using a view implemented in HTML.

Fundamentally, the controller would work in the same way, irrespective of whether the

user interface was created in VoiceXML or HTML. HTML was chosen simply because

it was perceived that visual debugging would be faster, therefore productivity would

be enhanced. Based on this argument, one other possibility would have been to render

VoiceXML on the visual browser (i.e. display as an XML tree structure within the

browser). This remained a viable option but for the initial demonstration of the basic

functional prototype, HTML implemented view seemed more attractive.

5.2. FIRST GROUP OF ITERATIONS FOR THE IMPLEMENTATION 79

(a) Input Page (b) Results Page

Figure 5.10: Visual Implementation of the Prototype Service Rendered in HTML

Figure 5.10 captures pages for this prototype: the input page (Figure 5.10a) and the

results page (Figure 5.10b). In this case, the role of the controller is simply to process

submissions from the input page and generate the results page.

Figure 5.11 provides snippet code of the servlet used to realise the controller. Es-

sentially, what this code does is to retrieve user's input, generate a query to extract

information from the ontology knowledge base, generate HTML page for presenting

the results, and display the results from the query. These tasks (with the exception of

query generation) have been expressed explicitly in the listing captured in the �gure.

The details of query generation have been abstracted away by implementing a class

with the logic for performing the needed query.

This class was implemented using OWL API. It contains several methods that col-

lectively serve to provide a convenient format for performing queries. For example,

there are methods for loading the ontology, setting up the reasoner and retrieving

various entities (e.g. classes, individuals and axioms) using a string as a keyword.

Figure 5.12 shows a listing that captures the methods responsible speci�cally for

querying the ontology. For example, line 5 calls the method getClassIndividuals(...),

which returns individuals from the ontology based on a query that is passed to the

reasoner. The query itself is generated by calling the createQuery(...) method, which

uses cost and proximity parameters received from the user to create a query of the

,

.... . -.
........... ,
.~ , .
. _._.-

.. _--

-­._.,
'.' .

".'.' . ,. ..
.. ,", " .-..

80

1 protected vo id p ro c e s sReque s t (H t t pSe r v l e tReque s t r eque s t , H t t pSe r v l e tRe spon s e
r e s pon s e) throws Se r v l e t E x c e p t i o n , IOExcept ion {

2 // De c l a r a t i o n s
3 t r y {
4 // R e t r i e v e u s e r i n pu t
5 S t r i n g costOpt = r e qu e s t . ge tParamete r (" c o s t ") ;
6 S t r i n g p rox im i t yOpt = r e qu e s t . ge tParamete r (" p r o x im i t y ") ;
7 // Genera te HTML page to p r e s e n t the r e s u l t s
8 out . p r i n t l n ("<html>") ;
9 out . p r i n t l n ("<body>") ;
10 out . p r i n t l n ("<h1>Search Re su l t s </h1>") ;
11 out . p r i n t l n ("<t a b l e i d =' t ab l e '>") ;
12 out . p r i n t l n ("<tr><th>Organ i s a t i on </th><th>Telephone<th></t r>") ;
13 // Genera te a query u s i n g use r ' s i n pu t and wi th d i s p l a y the r e s u l t s
14 r e s u l t s = d i r e c t o r y . g e t C l a s s I n d i v i d u a l s (costOpt , p rox im i t yOpt) ;
15 I t e r a t o r i t e r a t o r = r e s u l t s . i t e r a t o r () ;
16 i n t count = 0 ;
17 whi le (i t e r a t o r . hasNext ()) {
18 S t r i n g key = i t e r a t o r . nex t () . t o S t r i n g () ;
19 i n t num = ++count ;
20 out . p r i n t l n ("<tr><td>"+num+" . "+
21 output . underScoreRemova l (key)+"</td><td>"+d i r e c t o r y . g e tD a t a L i t e r a l (key , p r e f .

ge tVa lueOf In te re s tPropName ())+"</td></t r>") ;
22 }
23 out . p r i n t l n ("</tab l e >") ;
24 out . p r i n t l n ("</body>") ;
25 out . p r i n t l n ("</html>") ;
26 } f i n a l l y { out . c l o s e () ; }
27 }

Figure 5.11: Listing for Processing and Presenting Query Results

1 pub l i c Set g e t C l a s s I n d i v i d u a l s (S t r i n g costOpt , S t r i n g p rox im i t yOpt) {
2 Set i n s t a n c e s= nu l l ;
3 OWLDescr ipt ion query = c r ea t eQue ry (costOpt , p rox im i t yOpt) ;
4 t r y {
5 i n s t a n c e s = r e a s o n e r . g e t I n d i v i d u a l s (query , f a l s e) ;
6 } catch (OWLReasonerException ex) {// hand l e r code }
7 re tu rn i n s t a n c e s ;
8 }
9 //Onto logy que r y i n g amounts to c r e a t i n g d e s c r i p t i o n s
10 p r i v a t e OWLDescr ipt ion c r ea t eQue ry (S t r i n g costOpt , S t r i n g p rox im i t yOpt) {
11 Set<OWLDescription> c l a s s e s = new HashSet<OWLDescription >() ;
12 // Eve r t h i n g must be long to the r o o tC l s i . e . H IVTes tProv ide r
13 c l a s s e s . add (ge tRootC l s ()) ;
14 OWLObjectProperty prop = t h i s . getNamedObjectProperty (" cha rg e s ") ;
15 i f (costOpt . e q u a l s I g n o r eCa s e (" lowCost ")) {
16 c l a s s e s . add (manager . getOWLDataFactory () . getOWLObjectSomeRestr ic t ion (prop ,

getNamedClass ("LowCost"))) ;
17 }
18 i f (costOpt . e q u a l s I g n o r eCa s e ("ModerateCost ")) {
19 c l a s s e s . add (manager . getOWLDataFactory () . getOWLObjectSomeRestr ic t ion (prop ,

getNamedClass ("ModerateCost "))) ;
20 }
21 i f (p rox im i t yOpt . e q u a l s I g n o r eCa s e (" nea r ")) {
22 c l a s s e s . add (getBoo leanDataVa lueDesc (" ha sC l o s eRad i u s " , " t r u e ")) ;
23 }
24 i f (p rox im i t yOpt . e q u a l s I g n o r eCa s e (" f a r ")) {
25 c l a s s e s . add (getBoo leanDataVa lueDesc (" ha sC l o s eRad i u s " , " f a l s e ")) ;
26 }
27 re tu rn manager . getOWLDataFactory () . ge tOWLObjec t In t e r s ec t i onOf (c l a s s e s) ;
28 }

Figure 5.12: Listing for Query Generation

5.2. FIRST GROUP OF ITERATIONS FOR THE IMPLEMENTATION 81

HIV Test Provider

Private Practice

is-a

Hospital
is-a

VCT Provider

is-a

Laboratory Practice

is-a

Multiple Doctor Practice
is-a

One Doctor Practice

is-a

Clinic
is-a

Figure 5.13: Taxonomy Tree for HIV Test Providers

form:

HIVTestProvider

and (charges some Cost)

and (hasCloseRadius value Boolean)

Note: Cost can either be LowCost or ModerateCost.

In essence, even though numerous queries could be made to the HIV and AIDS service

provider ontology, the decision was to have an interface that would restrict the search

space for the answer. This was achieved by specifying a `root node' for a hierarchy of

ontology classes likely to contain query answers.

In this particular case, the HIVTestProvider class was provided as the root class.

Figure 5.13 shows a taxonomy generated from this class after the classi�cation process

by the reasoner. The shaded nodes represent `equivalent' classes (i.e. classes de�ned

using equivalentTo axioms to express necessary and su�cient conditions for instances

to qualify as members). As already suggested, from the perspective of the interface,

all the answers are captured within this tree. Hence, the act of answering any query,

amounts to traversing the tree using algorithms provided by the reasoner and criteria

that needs to be matched. The criteria consists of other classes and properties of

interest from the ontology, speci�ed within a con�guration �le, as shown in Figure

5.14.

For a simple system, limiting the queries as discussed above is su�cient. And as

will be discussed in the next chapter, this can be enhanced with a simple rule based

dialog driver. A further modi�cation for a complete system would be to use an

ontology together with rules to represent dialog interactions. Combined, these two

representation formalisms would yield a better solution for deciding how `restrictions'

are done and, in general, how dialogs are managed.

5.3. SUMMARY 82

1 <?xml v e r s i o n=" 1 .0 " encod ing=" ut f−8"?>
2 <Loca to rP r e f s >
3 <Onto logyLoca t i on u r l=" ht tp : // mathe . r u cu s . net / on to l ogy / d i r e c t o r y . owl "/>
4 <ro o tC l s name="HIVTes tProv ide r "/>
5 <ModerateCostC l s name="ModerateCost "/>
6 <LowCostCls name="LowCost"/>
7 <menuOpt1Property name=" cha rg e s "/>
8 <menuOpt2Property name=" ha sC l o s eRad i u s "/>
9 <va l u eO f I n t e r e s t P r o p e r t y name="hasTelephoneNumValue "/>
10 </Loca to rP r e f s >

Figure 5.14: Listing for Preference Con�gurations

C) Unit Testing

To carry out testing, the entire application was deployed on the application server.

The deployment may vary slightly depending on the selected server, but otherwise

the process itself is rudimentary, and will not be discussed further here.

In many ways, the testing was similar to the one done for the view. However, particu-

lar attention was devoted to the task of verifying that server side processing produced

the expected results. That is, steps 5 and 6 captured in Figure 5.7 on page 76 yielded

correct results.

As gleaned from the implementation discussion, the bulk of the testing was done using

the visual version of the prototype (i.e. with user interface implemented in HTML).

When this testing was completed and the controller was veri�ed to work, the voice

version of the prototype was implemented. The implementation focused on adapting

code for page generation within the controller to render VoiceXML instead of HTML.

5.3 Summary

This chapter provided implementation details for building the basic prototype of HTLS.

Similar to the process of building an ontology, a development life cycle model was used to

guide the building process. Although the approach followed for building this prototype

was experimental in nature, it was simple and systematic. Overall, this made the spiral

life cycle model appropriate for use. The next chapter will continue to discuss the imple-

mentation of this system. Speci�cally, the chapter will provide implementation details of

a second `group' of iterations used to enhance the basic prototype system.

Chapter 6

Enhanced Implementation of the

Prototype System

The previous chapter covered the �rst iterations in the implementation of the prototype

system. For these iterations, the goal was to create a `vanilla' implementation to act as

a proof of concept that the user interface (view) and the model can communicate with

each other as required. Alternatively put, the goal was to ensure that a user could send a

query to the knowledge base, and after due processing receive an answer for their query.

This chapter will discuss the implementation of the `second' group of iterations. For

these iterations, the goal (as depicted in Figure 6.1) was to transform the previously

implemented prototype into an enhanced �nal product. The presentation format for

the implementation will be the same as the previous chapter; it will include a preamble

capturing the design, followed by tool selection, implementation and unit testing segments.

Figure 6.1: Transformation Process: Basic to Enhanced Prototype

83

6.1. SECOND GROUP OF ITERATIONS FOR THE IMPLEMENTATION 84

Figure 6.2: Servlet Chaining

6.1 Second Group of Iterations for the Implementation

Having produced a basic functional prototype, the iterations that followed focused on

enhancing the overall system to make it more �exible and easy to maintain. The starting

point was to have two servlets in lieu of a single servlet to carry out the functions of the

controller.

These two servlets were chained together, as shown in Figure 6.2. The �rst servlet receives

search parameters sent via an HTTP request, generates a query to the knowledge base,

and forwards the returned results to the second servlet for generating output to the user.

This section will focus primarily on the functions of the second servlet. Speci�c attention

will be paid to dialog processing and page generation.

6.1.1 Dialog Processing with Rules

When a query is made, it is typically not known how many results will be returned. What

is known is that, beyond a certain range, presenting the results serially to the user ceases

to be useful1. Given this, the question was: how best to present lengthy results to the

user, factoring in the serial nature of presentation imposed by acoustical interfaces?

The answer was to either present the results in batches or �nd some criteria that could be

used to shorten the list. The former option would simultaneously waste user's time and

lead to short-term memory overload. For this reason, the latter option was preferred.

1Using Miller's [89] hypothesis (the magical number seven, plus or minus two), the estimated range
lies between zero and �ve.

,

"
. , -

Hn " ~, -.. -.
I >n ... ",,_

~-,

6.1. SECOND GROUP OF ITERATIONS FOR THE IMPLEMENTATION 85

Figure 6.3: Flowchart for Presenting Query Results

Figure 6.3 depicts a �owchart for handling the presentation of query results. As shown

in the �gure, if the number of results is less than or equal to the threshold value, which

is three in this case, the results are presented to the user, i.e. VoiceXML page for the

results is generated and delivered to the user. Otherwise a VoiceXML page is generated

to ask the user for criteria to be used to re�ne the results2. After the user has provided

an answer, the results are re�ned and presented to the user.

From an implementation point of view, matching criteria for re�ning the results could

be achieved through use of if...else statements like as shown in Figure 6.4. However,

current trends are moving away from this type of implementation, in favour of explicit

rules residing outside the code. The former puts emphasis on `how' to perform a task and

2With increased use, instead of asking the user how to re�ne the results, a determination could be
made via an implementation of some learning mechanism.

-,
-_. ' '" ,"". ,-,

,",o"elf,.,

-~.

_.-...........

1_-
'M

6.1. SECOND GROUP OF ITERATIONS FOR THE IMPLEMENTATION 86

1 i f (r e q u e s t . g e t A t t r i b u t e (" r e su l t sMap ") != nu l l) {
2 map = (Map) r e q u e s t . g e t A t t r i b u t e (" r e su l t sMap ") ;
3 //Render r e s u l t s i . e . p r e s e n t r e s u l t s to u s e r i f l i s t i s s h o r t
4 i f (map . s i z e () <= maxOutput) {
5 i n t a r r S i z e = map . s i z e () ;
6 r e f i n e = f a l s e ;
7 vxmlPage . r e n d e r R e s u l t s (map , out , templatePath , a r r S i z e , r e f i n e)
8 }
9 // l i s t i s long , g en e r a t e r e f i n emen t l i s t
10 e l s e { // (map . s i z e () > maxOutput)
11 d i a l o g S e s s i o n . s e t A t t r i b u t e (" s to r edResu l t sMap " , map) ;
12 vxmlPage . r e n d e rR e f i n e (map , out , templatePath , maxOutput) ;
13 }
14 }
15 e l s e { // r e su l t sMap i s n u l l
16 i f (d i a l o g S e s s i o n . g e tA t t r i b u t e (" s to r edResu l t sMap ") != nu l l) {
17 map = (Map) d i a l o g S e s s i o n . g e t A t t r i b u t e (" s to r edResu l t sMap ") ;
18 S t r i n g c r i t e r i a S e l e c t i o n = r e qu e s t . ge tParamete r (" r e f i n e C h o i c e ") ;
19 // i f −e l s e s t a t emen t s to e v a l u a t e c r i t e r i a f o r r e f i n emen t
20 i f (c r i t e r i a S e l e c t i o n . e q u a l s I g n o r eCa s e (" a l p h a b e t i c ")) {
21 //Dumping the Map i n t o a TreeMap p r o v i d e s a map s o r t e d a u t oma t i c a l l y by key
22 Map sortedMap = new TreeMap (map) ;
23 vxmlPage . r e n d e r R e s u l t s (sortedMap , out , templatePath , maxOutput , r e f i n e) ;
24 }
25 e l s e i f (c r i t e r i a S e l e c t i o n . e qu a l s I g n o r eCa s e ("random")) {
26 vxmlPage . r e n d e r R e s u l t s (map , out , templatePath , maxOutput , r e f i n e) ;
27 }
28 // p r o v i d e the u n r e f i n e d l i s t to u s e r .
29 e l s e {
30 r e f i n e = f a l s e ;
31 vxmlPage . r e n d e r R e s u l t s (map , out , templatePath , map . s i z e () , r e f i n e) ;
32 }
33 }
34 }

Figure 6.4: Listing for Results Filtering Using If-Else Statements

uses if statements. While the latter puts emphasis on `what' task to perform and uses

when statements.

As cited in [33], this shift from if to when o�ers several bene�ts. The most important

bene�t is that knowledge can be represented in an easy readable format. As a result,

non-technical users can make changes to the knowledge without necessarily engaging, say,

a programmer. This is enhanced by the fact that knowledge (business logic) is separated

from implementation, which means a change in the knowledge imposes no change in the

source code. This separation brings other bene�ts such as reduced cost of maintenance

and increased application adaptability.

In recognition of the above, dialog processing for the re�nement of the results was imple-

mented using rules. Implementation details are provided below.

A) Tool Selection

6.1. SECOND GROUP OF ITERATIONS FOR THE IMPLEMENTATION 87

1 r u l e " C r i t e r i a 1 − Alphabet ic so r t "
2 s a l i e n c e 3
3 when
4 $c : C r i t e r i a (u s e r S e l e c t i o n == C r i t e r i a . CRITERIA_1)
5 $q : QueryResultMap ($map : r e su l tMap)
6 then
7 s t o r eRe su l t sMap = new TreeMap ($map) ;
8 $q . se tResu l tMap (s to r eRe su l t sMap) ;
9 $q . s e tR e f i n e d (t r u e) ;
10 end

Figure 6.5: Listing of a Sample Drools Rule for Performing Alphabetic Sort

Drools (JBoss Rules) was selected to act as the rule engine for driving dialog within

the architecture. The reasons for the selection have been discussed in the previous

chapter (Subsection 3.3.4).

B) Implementation

To replace if...then statements using Drools, three critical things were needed. Firstly,

a fact model had to be built in order to provide the rule engine with `facts' for

making decisions. Technically, a fact model refers to a collection of `knowledge objects'

capturing information needed in decision making and the format for its storage [33].

Implicitly, this means that an analysis of required information had to be done as a

prerequisite for building the fact model. When this analysis was completed, for the

development of the prototype system, two Java classes were created: Criteria and

QueryResultMap classes. These classes were implemented as plain old Java object

(POJO) classes with getters and setters (i.e. methods used, respectively, to access

and change data within an object).

Secondly, rules had to be authored and stored in some repository (such as the Apache

web server). Figure 6.5 provides an example of a rule Criteria 1- Alphabetic sort. This

rule is matched when the user selection is CRITERIA_1 and the query result map

(QueryResultMap) exists. The matching process is implemented within Drools and

uses the Rete Algorithm. (This algorithm is e�cient for comparing large collection

of patterns to large collection of objects [51]. Due to its e�ciency, this algorithm is

used and continues to be used in the implementation of many rule engines.) Once

the matching is completed, the rule �res and the query result map is put into a tree,

which performs sorting, and the results are stored in the storeResultsMap variable.

Within the engine, the instance of the query result map ($q) is updated with stored

results map and a boolean variable that indicates whether or not the results have

been re�ned is set to true.

Thirdly, a Java class had to be implemented to set up the rule engine (see Appendix

6.1. SECOND GROUP OF ITERATIONS FOR THE IMPLEMENTATION 88

Figure 6.6: Overview of Processing of Query Results by the Rule Engine

1 t r y {
2 Object p r o c e s s e dR e s u l t s [] = runRu l e s . c r i t e r i a P r o c e s s o r (map , c r i t e r i a S e l e c t i o n) ;
3 Map processedMap = (Map) p r o c e s s e dR e s u l t s [0] ;
4 r e f i n e d = Boolean . va lueOf (p r o c e s s e dR e s u l t s [1] . t o S t r i n g ()) ;
5 i n t s i z e = r e f i n e d ? maxOutput: map . s i z e () ;
6 vxmlPage . r e n d e r R e s u l t s (processedMap , out , templatePath , s i z e , r e f i n e d) ;
7 }

Figure 6.7: Listing of Code Snippet for Results Filtering Using the Rule Engine

D). This class includes methods that load and process resources needed for the rule

engine to carry out its function. Thus, an instance of this class can be regarded as a

wrapper object that contains logic for accessing Drools API classes. Implementing this

class speci�cally for the prototype system was, for the most part, a simple exercise.

This is because much of the code used was included as part Drools documentation,

thus could be reused with few adjustments.

Once the three tasks were completed, all that was required was to implement the

logic to activate the rule engine for the re�nement of the results. The activation

(as captured in the �owchart shown in Figure 6.3) would be triggered by having

more than three results returned. As depicted in Figure 6.6, the rule engine would

require the results from the query and �lter criteria selected by the user as its input.

The rule engine would also need to consult the rule base as part of processing. The

output results from this processing are passed on as parameters for rendering. The

actual code implementing all this is as shown in Figure 6.7. The next subsection will

elaborate more on the task of rendering.

C) Unit Testing

Testing for this iteration involved two main phases. The �rst phase focused on val-

idating independently the functionality of the new feature. This entailed verifying

l:":";.; .. ::; . .J------'l ____ ~";"~'''','.,.----~
/.(],

"",,,,od •• ,,"

6.1. SECOND GROUP OF ITERATIONS FOR THE IMPLEMENTATION 89

Figure 6.8: Events for Interacting with the Backend

that the authored rules behaved as expected.

The second phase of testing involved validating the added feature within the broad

context of the application use. However, as a matter of preference and practicality, the

rendering of VoiceXML pages for performing testing was again done using a visual

browser (i.e. normal web browser). The preference, as previously suggested, was

based on the fact that debugging the application would be faster.

The events underpinning the validation and veri�cation process for the broad func-

tionality of the prototype are captured in Figure 6.8. A brief description detailing

each captured event is provided below.

(1) The browser sends input received from the user for further processing. This input

is validated locally before it is submitted using VoiceXML `�lled' element3.

(2) The query invoker servlet receives the input and generates a query to be sent to

the knowledge base.

(3) The knowledge base sends its results back to the query invoker servlet.

(4) The query invoker servlet forwards the query results to the dialog generator

servlet.

(5) Assuming the results need to be re�ned, the dialog generator servlet sends a

request to the rule engine.

3As aptly stated by Lucas [83], this element �allows input validation code to gain control upon com-
pletion of any set of user inputs.�

6.1. SECOND GROUP OF ITERATIONS FOR THE IMPLEMENTATION 90

(6) The rule engine sends back its response to the dialog generator servlet.

(7) The dialog generator servlet sends a VoiceXML page to the browser.

(8) The browser renders the results of the query to user.

Naturally, steps 5-6 may be omitted if the number of returned results is equal or less

than the threshold value, as suggested by the �owchart shown in Figure 6.3

6.1.2 Dynamic Page Rendering

In the basic prototype system, out.println(...) statements were used to print out each

directive for rendering dynamic VoiceXML pages. That is, each VoiceXML statement

was printed using out.println(...) as shown in Figure 6.9. Whilst this approach works, it

blends the view with the controller, and as such, fails to bring about true separation of

concerns.

1 out . p r i n t l n ("<form>") ;
2 out . p r i n t l n ("<block>") ;
3 out . p r i n t l n ("<prompt>") ;
4 out . p r i n t l n (" P r o v i d e r <va l u e exp r = \"prov iderName \"/>") ;
5 out . p r i n t l n ("Telephone number i s <va l u e exp r = \" current_te l_number \"/> ") ;
6 out . p r i n t l n ("</prompt>") ;
7 out . p r i n t l n ("</block>") ;
8 out . p r i n t l n ("</form>") ;

Figure 6.9: Listing for Creating a VoiceXML Form for Presenting Provider Details

In light of the above, an alternative approach for dynamically rendering pages was sought.

As it will be explained below, this approach leveraged on the work discussed in Subsection

5.2.1.

A) Tool Selection

A common alternative to the use of out.println(...) statements for rendering the view

when using servlets is to utilise Java Server Pages (JSP). Although JSP remained a

viable candidate for use, an investigation into other possible alternatives was carried

out.

Based on this investigation, StringTemplate [95] was selected. StringTemplate is a

popular template engine that is able to enforce strict separation of generation logic

(model/controller) and output format (view). It is the strict enforcement of the

6.1. SECOND GROUP OF ITERATIONS FOR THE IMPLEMENTATION 91

model-view separation that distinguished StringTemplate from JSP and other tem-

plate engines that were surveyed. (A compilation list of template engines found in

[11] was used for the survey that informed the selection.)

B) Implementation

Using StringTemplate as the view engine allowed VoiceXML pages authored during

the implementation of the view (as described in Section 5.2.1) to be utilised for

creating generic templates for the dynamic rendering process.

Two main templates were created, one for querying how the results should be re�ned

and the other for presenting the results. Figure 6.10 shows the template for the

presentation of the results. The areas within the template surrounded with dollar

signs are placeholders for content to be added by StringTemplate during application

execution.

This content can be obtained by calling other templates as shown on line 26 and

54 of the listing. Alternatively, it can be obtained by writing code that will assign

appropriate content to each placeholder (i.e. template variable) once the template

has been loaded, like as shown in Figure 6.11. In this listing, the contents of variables

arrayString and boolMultiple are assigned to template variables populateArray and

multipleItems respectively, shown in line 9 and 53 of Figure 6.10.

C) Unit Testing

Testing for this iteration was fundamentally the same as discussed for dialog process-

ing iteration. However, primary focus was on the validation of the rendered VoiceXML

pages. These were con�rmed to yield expected results.

92

1 <?xml v e r s i o n=" 1 .0 "?>
2 <vxml v e r s i o n=" 2 .1 " xmlns=" ht tp ://www.w3 . org /2001/ vxml">
3 <l i n k dtmf="0" even t=" e x i t " />
4 <catch even t=" e x i t "><goto next=" t e rm i na t e . j s p "/></catch>
5 <s c r i p t ><![CDATA[
6 var p r o v i d e r = new Array () ;
7 var tel_number = new Array () ;
8 $ popu l a t eA r r a y $
9 var l i s t i n d e x = 0 ;
10 var l i s t l e n g t h = p r o v i d e r . l e n g t h ;
11 var c u r r e n t_p r o v i d e r = p r o v i d e r [l i s t i n d e x] ;
12 var current_te l_number = tel_number [l i s t i n d e x] ;
13]]></ s c r i p t>
14 <catch even t=" no input nomatch">
15 <audio s r c=" $aud i oCa t chF i l e $ ">P l e a s e p r e s s * to r e p e a t what was sa i d ,
16 $ aud i oCa tchS t r $ and Pre s s 0 to e x i t a t anyt ime</audio>
17 </catch>
18 <form i d=" s t a r t ">
19 <block>
20 <prompt>
21 $ i f (r e f i n eP rompt) $
22 Your r e s u l t s have been r e f i n e d
23 $ e l s e $
24 $ resu l t_prompt () $
25 $ e n d i f $
26 </prompt>
27 <audio s r c=" $aud i oCa t chF i l e $ ">P l e a s e p r e s s * to r e p e a t what was sa i d , $

aud i oCa tchS t r $ and Pre s s 0 to e x i t a t anyt ime
28 </audio>
29 <goto next="#navCho ice "/>
30 </block>
31 </form>
32 <form i d=" navCho ice ">
33 <block><prompt>
34 Pro v i d e r <va lue exp r = " cu r r e n t_p r o v i d e r "/>
35 Telephone number i s <va lue exp r = " current_te l_number "/>
36 </prompt></block>
37 < f i e l d name=" cho i c e ">
38 <grammar t ype=" t e x t /x−grammar−cho i ce−dtmf" mode="dtmf">
39 * { r e p e a t } | 0 { e x i t } $grammarStr $
40 </grammar>
41 < f i l l e d >
42 < i f cond=" cho i c e == ' repea t ' ">
43 <goto next="#navCho ice "/>$ f i l l S t r $
44 <e l s e i f cond =" cho i c e ==' e x i t ' "/>
45 <goto next=" t e rm i na t e . j s p "/>
46 </ i f>
47 </ f i l l e d >
48 </ f i e l d >
49 </form>
50 $ i f (mu l t i p l e I t em s) $
51 $ prev_next_nav iga t i on () $
52 $ e n d i f $
53 </vxml>

Figure 6.10: Listing of VoiceXML Template Page for Results Presentation

1 Str ingTemplateGroup group = new Str ingTemplateGroup (" t emp l a t e F i l e s " , temp la tePath) ;
2 St r i ngTemp la t e page = group . g e t I n s t a n c eO f (templateName) ;
3 page . s e t A t t r i b u t e (" popu l a t eA r r a y " , a r r a y S t r i n g) ;
4 page . s e t A t t r i b u t e (" mu l t i p l e I t em s " , b o o lMu l t i p l e) ;

Figure 6.11: Listing for Initialising Template Variables

6.2. SUMMARY 93

6.2 Summary

The overall discussion for the implementation of HTLS was split into two by grouping

the iterations of development. This chapter exclusively focused on the discussion of the

second group of iterations. Through these iterations, the basic prototype developed from

the �rst group of iterations was enhanced. As reported in the chapter, this was done by

integrating two engines into the system: a rule engine to support use of rules for driving

the dialog and a rendering engine to support the dynamic generation of VoiceXML pages.

The overall integration and use of these engines was tested and con�rmed to work as

expected.

Chapter 7

System Testing and Discussion

The previous two chapters provided details of the implementation of HTLS; a functional

prototype developed to illustrate OVR, the proposed knowledge-driven architecture for

building voice applications. This chapter will examine the architecture before proceeding

with the discussion on system testing. Additionally, the chapter will provide a critical

review of OVR drawing on the integration and implementation experience for developing

the prototype service.

7.1 Proposed Architecture: Implementation View

This section will review OVR from the implementation point of HTLS. Figure 7.1 provides

an overview of the architecture under scrutiny. This architecture (albeit more elaborate)

is the same as the one presented in Figure 1.1 on page 4. (System testing in the next

subsection will be presented as proof for functional viability.)

The proposed architecture, OVR, now `grounded' in a speci�c realisation, has three main

components. These are discussed brie�y below.

1) Input/Output Component

This component includes infrastructure that enables communication between the user

and the system. It encompasses the components described in the VoiceXML archi-

tectural model, depicted in Figure 2.8 on page 26. As previously stated, these com-

ponents are essential for deploying VoiceXML based applications. A brief description

is provided below for two key components:

94

7.1. PROPOSED ARCHITECTURE: IMPLEMENTATION VIEW 95

Figure 7.1: Complete Architectural View of HTLS

a) Telephony Platform

The platform is responsible for connecting to the telephony network, converting

text to speech, playing audio �les and performing other supporting functions for

managing or enabling interactions that the user has with the system.

b) VoiceXML Browser

The browser is responsible mainly for facilitating the rendering of VoiceXML

pages. It interprets and executes these pages appropriately in concert with the

telephony platform.

2) Interface Component

Essentially, this component refers to the application server. The primary task of the

application server is to run the voice application and e�ectively act as an intermediary

that allows access to the knowledge. To support this task, the application server hosts

the domain logic components, discussed brie�y below. Additionally, it hosts resources

T ... ~y PI.tlo,m
(......... k]

w""
IAp""-1

.... ,,"" _ -.... ~ ..
00

I A2i_ I (lllo<_ 0..001.1

[""100: "~, .. 1

Voic.JlMllr_

(YlII' irQ."']

"'p "l i,.,Ooo So",.,
ITome"]

[§] 0 • • -, .,..,.'."
••• • ••

I ,~ " , I ",.rio<.

, ~=~J~ I
l """",i. 0. J

} 'o""l/o",P"'
~om".,.,., nI

lo'orf ...
Com"",""'

K"",wt.dS·

Com""o""'

7.2. SYSTEM TESTING 96

required during execution. Speci�cally, as shown in Figure 7.1, the hosting task for

static content is carried out by the web server.

a) Integration Logic

The application integration logic layer acts as the glue that binds the view and

model together. As re�ected in the implementation of the prototype system,

this layer was realised using servlets (i.e., query invoker and dialog generator

servlets). These servlets embodied the logic that glued various components of the

architecture together.

b) Query Interface

The query interface interacts directly with the reasoning engine and the knowledge

base to facilitate the querying of the ontology. This interface can be customised via

a con�guration �le to limit the scope of the queries to the ontology. (Other than

setting the scope de�ning parameters, the con�guration �le is used for specifying

the name and location of the ontology to be loaded. E�ectively, this enables `plug

and play' of ontologies into the architecture.)

3) Knowledge Component

This component embodies the knowledge used by the system and mechanism for its

access. To this end, it has two main components described below.

a) Knowledge Bases

As stressed already, a notable feature of OVR is that it uses knowledge, repre-

sented using either ontologies or rules. Accordingly, there are two distinct types

of knowledge bases within the architecture. One used as a repository for the rules

and the other for maintaining the instantiated ontology.

b) Reasoning Engines

The architecture uses reasoning engine(s)1 to reason and infer new information

from its knowledge bases. In the case of the built prototype service, the use sup-

ported two specialised tasks: query answering and processing of rules for driving

the dialog.

7.2. SYSTEM TESTING 97

Requirements

Functional Non-functional

Security Accuracy Suitability . . .Data Quality Security Maintainability Portability Performance & reliability

Usability & User Interface

Figure 7.2: Requirements Classi�cation

7.2 System Testing

As already stated, testing was performed for each module during each iteration in order

to validate and verify that the individual components implemented were coded correctly

and yielded the expected results.

Once all the development was completed, system testing was performed. As highlighted

in literature [26, 28], the key objective of system testing is to verify that requirements

are met. Figure 7.2 shows a possible classi�cation2 of the requirements (synthesised from

sources: [26, 27, 28, 72, 81]) that are important to verify. As it can be seen, these

requirements can be classi�ed as either functional or non functional.

Functional requirements describe `what a system must to do' while non functional require-

ments describe `how well the system must carry out its tasks' [44, 81]. As suggested, both

types of requirements are important for a complete system test. However, for this thesis,

system testing focused mainly on verifying compliance to functional requirements (even

though testing researchers such as Beizer [26] and Black [28] state unequivocally that a

single type of testing is not enough. This decision was based on pragmatic reasons).

Testing was done following a use case driven strategy. As aptly stated by Le�ngwell and

Widrig [81], �use cases carry the majority of the requirements for [any] system�. This

strategy involved calling the service and using scenarios captured in the use case (shown

in Figure 5.1) as tests for verifying that key functionality of the system worked.

Other testing techniques were used as part of the strategy. For example, outcome predic-

tion was used to determine accuracy of returned query results. In the event of a mismatch

1As stated before, it was possible to use just Pellet reasoner as the reasoning engine of choice for
performing all required tasks.

2The levels of granularity and abstraction for specifying requirements may di�er with context. This
yields multiple classi�cations with nuances that may bring contradictions or overlaps in how some re-
quirements are classi�ed.

7.2. SYSTEM TESTING 98

Alternatives
Input 1 2 3 4

1. Low or Moderate cost? Low Low Moderate Moderate
2. Near or Far ? Near Far Near Far
Expected Number of Results 2 3 10 1

Output _ _ _ _

� Present results to user Yes Yes Yes
� Re�ne results Yes
� Present results to user

Table 7.1: Decision Table Used for Testing

between the actual and predicted outcome, error guessing was used. Further, as part of

supporting the execution of this strategy, a decision table, as shown in Table 7.1, was used

to capture the di�erent combinations of input. Given the low complexity of the example

service, all listed inputs from the table were used in the testing process.

The system testing helped to verify that the �ow of `events' happened as expected, from

the beginning to the end of a transaction by the user yielding the correct results. With

the aid of Figure 7.1, this entailed verifying that:

ß When a call is made, the telephony platform receives and handles the processing

details for forwarding the call.

ß The call is forwarded to the VoiceXML browser, which maps the number called to

the URI of the initial document to fetch.

ß A request is sent to the web server for the initial document (i.e., static VoiceXML

page that quali�es as the �welcome� page).

ß The web server sends the document to the browser, which interprets the document

and renders it appropriately using services o�ered by the telephony platform. Specif-

ically, the result of the interpretation is a welcome message that prompts the user

for relevant criteria for locating a suitable HIV testing site.

ß The user provides suitable criteria via touch tone input, which is forwarded from

the telephony platform to the QueryInvoker servlet.

ß A query is generated using the received criteria and is sent to the knowledge base

via the reasoning engine.

7.3. INTEGRATION AND IMPLEMENTATION EXPERIENCE 99

ß The results of the query are returned and forwarded to the DialogGenerator servlet.

This servlet acts as the controller for the rule driven dialog generation process.

Depending on the number of returned results, the results are presented to the user

or the user may be asked to provide criteria to have the results re�ned before being

presented.

ß An appropriate VoiceXML page is generated and rendered to the user.

ß The call is terminated by the user or by the telephony platform if no further requests

are made by the user within a preset time.

Also veri�ed was that error handling happened as expected. Further, in order to be

reasonably certain about the functional viability of OVR, the veri�cation process of the

�ow was repeated several times using both valid and invalid input. The repetition was

done simply to gain a degree of con�dence that behaviour was as expected.

Again, while it is important to heed the advice to perform more than one type of test-

ing, the system developed in this thesis was tested only functionally. Usability testing

would have required an amount of extra work that was not justi�able within the limits

of a traditional thesis work for an MSc. As an aside, it could have been performed by

the counterpart in the HEAIDS project, but as described earlier in this write-up, that

cooperation had to come to an end for reasons extrinsic to the thesis.

7.3 Integration and Implementation Experience

This section will relate brie�y the experience of integrating the various components to-

gether to implement the prototype. Fundamental to the integration process was the need

to understand the functionality of each component used. Inherently, this means there was

a learning curve associated with the use of these components.

As it would be expected, the learning curve di�ered from component to component. On

the average, it was reasonable for many of the components. In part, this could be at-

tributed to the actual choice of the components used (the selection was discussed in

Chapter 3 on page 31). Each component, in its own right, provided impressive docu-

mentation and support resources to enable relatively easy use and to help with problem

resolution in a timely manner.

7.4. POTENTIAL BARRIERS FOR PROPOSED ARCHITECTURE ADOPTION 100

The e�ort for implementing the logic for the prototype was also reasonable, albeit a bit

tedious with regard to ontology construction. As stated before, for an artefact to qualify

as an ontology, it takes more than just using an appropriate implementation language;

the underlying conceptualisation has to be rati�ed as representative of the intended use.

This takes time, patience (and to a degree, luck in coping with human dynamics).

It is also worth pointing out that the learning curve for ontology construction for anyone

without a strong background in logic may be steep. Any misconceptions may lead to the

implementation of ontologies with very high worst case complexity, which translate in

slow response times and often high memory requirements.

Still, it is important to note that the gap between learning and applying what is learnt

can be bridged through the use of design criteria such as provided in Subsubsection 2.1.4.6

on page 17 and simple practical guidelines like verifying that non overlapping concepts

are explicitly declared as disjoint and di�erent individuals are asserted as di�erent.

In summarising all of the above, the e�ort required for implementing the prototype service

using OVR architecture is reasonable, and by no means insurmountable. The availability

of documentation and community support means developers can be assured of relatively

fast assistance when a problem is encountered.

7.4 Potential Barriers for Proposed Architecture Adop-

tion

Although the scope of this thesis did not include extensive testing of OVR, it can be

argued that its immediate use lies within the realm of possibility. The components used

are readily available, functional testing supports its validity and, as indicated, the overall

integration and implementation experience is reasonable.

However, there are challenges that may act as barriers for the adoption of the proposed

architecture. This subsection will discuss two major challenges that have been identi�ed.

On re�ection, the �rst challenge is easily solvable, while the second is more serious but

solvable hopefully over time.

7.4. POTENTIAL BARRIERS FOR PROPOSED ARCHITECTURE ADOPTION 101

7.4.1 Demand for Wide Range of Competencies

OVR draws on a wide range of competencies. This is a challenge because expecting one

individual to possess all the required competencies is not realistic or practical. And having

more individuals has cost implications, which for broad adoption may require justi�cation.

However, one should realise that in a real production environment this is not much of an

issue since development is carried by a team of people.

7.4.2 Availability of Ontologies

The use of ontologies and reasoning tools plays a paramount role in the architecture.

Ontologies provide a semantically rich formalism that can be harnessed by reasoning tools

to �nally help advance the idea of building inference based dialog systems. For example,

as discussed in [30], these systems can be e�ective in managing the direction of how

dialogs must proceed in that, through use of semantic representation, logical inferences

can be drawn to determine: what action to perform, how to answer a question, and how

to resolve any possible ambiguities between dialog participants.

Notwithstanding the above, it is important to point out the caveats associated with the

use of ontologies. They require careful and meticulous design, which allows for intelligent

reasoning without necessarily entailing strong ontological commitments. To attain this

delicate balance is still a challenge. Thus, from a short term perspective, it is important

to stress that until ontologies are readily available, their use has to be weighed with the

e�ort (or cost) that goes into their development. In other words, one should stress that:

�To achieve wide-spread use of ontologies, they have to be established (empha-

sis added) as usable software artifacts [sic] that are interchanged and traded

between parties, similar to computer programs or other forms of electronic

content� [57].

In order to establish a �wide-spread use of ontologies�, development of ontologies has to be

encouraged. On the one hand, to help overcome any challenges that make development

`burdensome'. On the other hand, to increase their availability so that they eventually

become trivially simple entities which can be plugged to backends of knowledge oriented

systems.

7.5. SUMMARY 102

7.5 Summary

This chapter reviewed the components of OVR. This was done as a preamble to the

discussion on system testing, and the broad analysis of the architecture. Although OVR

was deemed to be functionally viable, a few issues were identi�ed that could impact its

adoption.

A key issue for adoption is the availability of ontologies. As alluded to, the functionality

of OVR is dependent on the quality of the ontology it uses. Given that ontologies are

still being established for �wide-spread use�, this concern about quality will actually di-

minish as more and more work goes into improving development strategies and e�ciency

mechanisms for using ontologies. Anecdotally, this will happen as an imperative for their

adoption.

Chapter 8

Conclusion

Many telephony services that exist today are database driven. However, with the increase

in the adoption of ontologies and accuracy of speech recognition technologies, this is

certain to change. In computing, the change is inextricably intertwined with the trends.

The change is driving the trends, and at the same time, the trends are driving the change.

As part of anticipating change in the telephony industry, this thesis has interpreted trends

in computing in order to propose an architecture that might be used to build voice appli-

cations. Instrumental to the proposal were trends that suggest a move from imperative

to declarative programming, and those that signify a move towards broad adoption of on-

tologies in any system that enables knowledge and/or information exchange. The former

is linked to the use of business rules as opposed to if...else statements in order to separate

knowledge from implementation. The latter is tied to the shift from databases to knowl-

edge bases augmented with reasoning engines. Overall, these trends acted as pillars for

the proposed architecture, which delivers voice services to the users by also capitalising

on the bene�ts of the converged network and the ever increasing computational power of

devices.

8.1 Thesis Synopsis

This thesis presented an architecture that illustrates how next generation IVR systems

might be implemented. Based on the current trends, the �rst point was that these systems

are likely to use VoiceXML speci�cation, due to the growing endorsement of VoiceXML

as a `standard and de facto language' for implementing voice applications. Further, these

103

8.2. ACHIEVEMENTS 104

systems might, at a minimum, use explicitly represented knowledge and reasoning engines

in order to interpret and respond to user requests intelligently (i.e. through appropriate

inferences). Ontologies, as re�ected by the trends, are likely to be used for knowledge

representation as they provide a semantically rich formalism that can be exploited with

ease by many reasoning engines.

From these considerations, the core components of the architecture were identi�ed. To

illustrate how these components interact with each other and perform an initial validation

of the architecture, a prototype service was implemented.

The implementation of the prototype service was done through two distinct phases, each

with several iterations. The �rst phase focused on the construction of the domain ontology,

the details are reported in Chapter 4. The second phase focused on the implementation of

two main components: 1) the integration and application logic, and 2) the user interface.

These components were implemented incrementally in an iterative manner, with the goal

of generating a simple working prototype that could later be enhanced. In alignment

with the goal, the discussion for this phase was split in this thesis by grouping iterations

based on two key milestone achievements: the production of the initial and the enhanced

prototypes.

Finally, system testing was performed on the enhanced prototype, con�rming the func-

tional validity of OVR.

8.2 Achievements

This thesis had two main objectives. The �rst was to propose an architecture for building

voice applications that o�ered an improved user experience and interpreted current trends

in computing. The second, was to build a functional prototype service to provide an initial

validation of OVR, the proposed architecture.

Both objectives were met. For this reason, the thesis has indeed achieved its mandate. It

has provided an architecture for voice services that are standard based, has the potential

to improve the user experience and is aligned to current trends. Further, in developing

a functional prototype, this thesis has helped Rhodes University in its e�ort to encour-

age members of its community to test for HIV. As reported in [109], when it comes to

management of AIDS:

8.3. FUTURE WORK 105

�... death is not seen as the problem: being seen to be sick or being observed

going for voluntary testing and counseling is identi�ed as the real problem�.

For this reason, any initiative that may help people to be comfortable with the idea of

testing and knowing their status is signi�cant.

8.3 Future Work

A number of suggestions can be made for future improvements of the proposed architec-

ture. One suggestion would be to upgrade the view to use VoiceXML 3.0 [86], which

is the next major release of VoiceXML (to be �nalised as a complete speci�cation early

in 2011). According to the latest speci�cation draft document [86], VoiceXML 3.0 is

designed exclusively as a presentation language. Thus, the backend of the proposed ar-

chitecture can still be used as is, because the backend from the speci�cation point of view

is seen a separate entity.

Another suggestion would be to validate the proposed architecture from other perspec-

tives by performing, for example, usability and performance testing. In order to yield

meaningful results from these tests, the following might be considered:

ß Building a voice application over the proposed architecture that uses speech recog-

nition technologies and sophisticated rules together with a specialised ontology for

user interactions. This ontology could also be instrumented using a learning for-

malism to make user interactions more intelligent. For example, Bayesian statistics,

which provides a formalism for combining learning with explicit modelling could be

used.

ß Distributing the various components of the backend to run on separate servers to

determine how the distribution may impact performance and user experience.

To realise the value of these amendments, the complexity of such an application would

need to be high to allow for example, dialogs to be adapted accordingly if it is detected

that the user is getting upset. Essentially, the complexity should need to move beyond

user requests that focus on simple information retrieval to requests that factor in multiple

parameters and constraints in processing a response for the user.

8.4. SUMMARY 106

8.4 Summary

As a conclusion to the work done in this thesis, this chapter has synthesised the im-

portant trends that have in�uenced the design of OVR, the proposed architecture for

building knowledge rich voice applications. This architecture is rooted in the branch of

AI that deals with expert systems in that it uses reasoning engines to derive answers from

knowledge bases.

At the same time, the architecture is aligned to the Semantic Web approach of building

services in that it uses ontologies to explicitly represent knowledge. As deduced from

current trends, this is vital for achieving automation that may make human to computer

communication as seamless as possible within a domain, taking into account Polanyi's

argument that �a wholly explicit knowledge is unthinkable� (as cited in [67]). That is,

whilst the gap in communication between the two may be reduced, it will continue to

exist because complete semantic understanding is not possible without tacit knowledge.

Hence, the only question that can ever be asked is: will the gap be reduced substantially

enough to pass the de�nitive test1 of intelligence proposed by Alan Turing [111]?

1The test attempts to determine whether responses from a computer with intelligent behaviour are
comparable to responses from a human.

List of References

[1] Apache Tomcat. Online: http://tomcat.apache.org/ [Last accessed: 8

April2008].

[2] Asterisk. Onine: http://www.asterisk.org/ [Last accessed: 8 April 2008].

[3] Behavior Change Communication for HIV/AIDS. Online: http://www.fhi.org/

en/hivaids/pub/fact/bcchiv.htm [Last accessed: 8 April 2008].

[4] Drools - Business Logic integration Platform. Online: http://jboss.org/drools

[Last accessed: 1 April 2010].

[5] Hammurapi Group. Online: http://www.hammurapi.biz/hammurapi-biz/

ef/xmenu/hammurapi-group/products/hammurapi-rules/index.html [Last ac-

cessed: 17 Nov 2009].

[6] HIV-911 Programme. Online: http://www.hiv911.org.za/[Last accessed: 16

June 2009].

[7] HIV Prevention. Online: http://data.unaids.org/pub/FactSheet/2008/

20080527_fastfacts_testing_en.pdf [Last accessed: 25 March 2009].

[8] Jess. Online: http://www.jessrules.com/ [Last accessed: 17 Nov 2009].

[9] JLisa. Online: http://jlisa.sourceforge.net/ [Last accessed: 17 Nov 2009].

[10] Knowledge. Online: http://www.webster-dictionary.org/definition/

knowledge [Last accessed: 2 Dec 2009] .

[11] Open Source Template Engines in Java. Online: http://java-source.net/

open-source/template-engines [Last accessed: 9 Nov 2010].

[12] Pellet: OWL 2 Reasoner for Java. Online: http://clarkparsia.com/pellet/

[Last accessed: 8 April2008].

107

http://tomcat.apache.org/
http://www.asterisk.org/
http://www.fhi.org/en/hivaids/pub/fact/bcchiv.htm
http://www.fhi.org/en/hivaids/pub/fact/bcchiv.htm
http://jboss.org/drools
http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/products/hammurapi-rules/index.html
http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/products/hammurapi-rules/index.html
http://www.hiv911.org.za/
http://data.unaids.org/pub/FactSheet/2008/20080527_fastfacts_testing_en.pdf
http://data.unaids.org/pub/FactSheet/2008/20080527_fastfacts_testing_en.pdf
http://www.jessrules.com/
http://jlisa.sourceforge.net/
http://www.webster-dictionary.org/definition/knowledge
http://www.webster-dictionary.org/definition/knowledge
http://java-source.net/open-source/template-engines
http://java-source.net/open-source/template-engines
http://clarkparsia.com/pellet/

LIST OF REFERENCES 108

[13] Protégé. Online: http://protege.stanford.edu/ [Last accessed: 8 April 2008].

[14] SweetRules. Online: http://sweetrules.projects.semwebcentral.org/ [Last

accessed: 17 Nov 2009].

[15] Text-to-Speech: Speech Synthesis. Online: http://www.i6net.com/purchase/

text-to-speech-tts/ [Last accessed: 23 Mar 2010].

[16] The Apache Software Foundation. Online: http://www.apache.org/ [Last ac-

cessed: 8 April2008].

[17] The OWL API. Online: http://owlapi.sourceforge.net/[Last accessed: 9 Oc-

tober 2009].

[18] The Spiral Model. Online: http://scitec.uwichill.edu.bb/cmp/online/

cs22l/spiralmodel.htm [Last accessed: 10 February 2010]. Copyright © Adrian

Als & Charles Greenidge, 2003.

[19] Validator for XML Documents. Online: http://www.validome.org/xml/ [Last

accessed: 9 Feb 2008].

[20] VXI* VoiceXML Broswer. Online: http://www.i6net.com/ [Last accessed: 23 Mar

2010].

[21] VXI* VoiceXML Browser Manual. Online: http://www.i6net.com/support/

documents/ [Last accessed: 9 Feb 2008].

[22] Higher Education HIV/AIDS (HEAIDS) Programme Proposal. Online: http://

campus.ru.ac.za/download.php?actionarg=8881 [Last accessed: 9 May 2008],

2007.

[23] Abidi, S. S. R. Healthcare Knowledge Management: The Art of the Possible. In

K4CARE (2007), D. R. no, Ed., vol. 4924 of Lecture Notes in Computer Science,

Springer, pp. 1�20.

[24] Baader, F., Horrocks, I., and Sattler, U. Description Logics. In Handbook

of Knowledge Representation, F. van Harmelen, V. Lifschitz, and B. Porter, Eds.

Elsevier, 2007.

[25] Basili, V. R., and Turner, A. J. Iterative Enhancement: A Practical Technique

for Software Development. IEEE Trans. Software Eng. 1, 4 (1975), 390�396.

http://protege.stanford.edu/
http://sweetrules.projects.semwebcentral.org/
http://www.i6net.com/purchase/text-to-speech-tts/
http://www.i6net.com/purchase/text-to-speech-tts/
http://www.apache.org/
http://owlapi.sourceforge.net/
http://scitec.uwichill.edu.bb/cmp/online/cs22l/spiralmodel.htm
http://scitec.uwichill.edu.bb/cmp/online/cs22l/spiralmodel.htm
http://www.validome.org/xml/
http://www.i6net.com/
http://www.i6net.com/support/documents/
http://www.i6net.com/support/documents/
http://campus.ru.ac.za/download.php?actionarg=8881
http://campus.ru.ac.za/download.php?actionarg=8881

LIST OF REFERENCES 109

[26] Beizer, B. Black-Box Testing: Techniques for Functional Testing of Software and

Systems, 1 ed. Verlag John Wiley & Sons, Inc., New York, NY, USA, 1995.

[27] Bell, D., Morrey, I., and Pugh, J. Software Engineering: A Programming

Approach. Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1987.

[28] Black, R. Pragmatic Software Testing: Becoming an E�ective and E�cient Test

Professional. John Wiley & Sons, Inc., New York, NY, USA, 2007.

[29] Boehm, B. A Spiral Model of Software Development and Enhancement. SIGSOFT

Softw. Eng. Notes 11, 4 (1986), 14�24.

[30] Bos, J., and Oka, T. An Inference-based Approach to Dialogue System Design.

In COLING (2002).

[31] Brachman, R., and Levesque, H. Knowledge Representation and Reasoning

(The Morgan Kaufmann Series in Arti�cial Intelligence). Morgan Kaufmann, May

2004.

[32] Brewster, C., and O'Hara, K. Knowledge Representation with Ontolo-

gies: Present Challenges � Future Possibilities. International Journal of Human-

Computer Studies 65, 7 (July 2007), 563�568.

[33] Browne, P. JBoss Drools Business Rules. Packt Publishing, 2009.

[34] Brusa, G., Caliusco, M. L., and Chiotti, O. A Process for Building a Do-

main Ontology: an Experience in Developing a Government Budgetary Ontology.

In AOW '06: Proceedings of the second Australasian workshop on Advances in on-

tologies (Darlinghurst, Australia, Australia, 2006), Australian Computer Society,

Inc., pp. 7�15.

[35] Corcho, O., Fernández-lópez, M., Gómez-pérez, A., and López-Cima,

A. Building Legal Ontologies with METHONTOLOGY and Webode. In Law and

the Semantic Web (2005), no. 3369, Springer-Verlag, pp. 142�157.

[36] Corkrey, R., and Parkinson, L. Interactive Voice Response: Review of Studies

1989-2000. Behavior Research Methods, Instruments, & Computers 34 (2002), 342�

353.

[37] Corkrey, R., Parkinson, L., and Bates, L. Pressing the Key Pad: Trial of

a Novel Approach to Health Promotion Advice. Preventive Medicine 41 (August

2005), 657�666.

LIST OF REFERENCES 110

[38] Coulter, A. Paternalism or Partnership? Patients have grown up�and there's

no going back. BMJ 319 (1999), 719�720.

[39] Crawford, A. G., Sikirica, V., Goldfarb, N., Popiel, R. G., Patel, M.,

Wang, C., Chu, J. B., and Nash, D. B. Interactive Voice Response Reminder

E�ects on Preventive Service Utilization. American Journal of Medical Quality 20

(2005), 329�336.

[40] Davies, J., van Harmelen, F., and Fensel, D. Towards the Semantic Web:

Ontology-driven Knowledge Management. John Wiley & Sons, Inc., New York, NY,

USA, 2002.

[41] Davis, R., Shrobe, H. E., and Szolovits, P. What is a Knowledge Represen-

tation? AI Magazine 14, 1 (1993), 17�33.

[42] Dean, D. H. What's Wrong with IVR Self-Service. Managing Service Quality 18,

6 (2008), 594�609.

[43] Dragan, G., Dragan, D., and Vladan, D. Model Driven Architecture and

Ontology Development. Springer, 2006.

[44] Eide, P. L. H. Quanti�cation and Traceability of Requirements. Tech. rep., NTNU

Norwegian University of Science and Technology, 2005.

[45] Eysenbach, G. Consumer Health Informatics. Online: http://www.bmj.com/

cgi/content/full/320/7251/1713 [Last accessed: 8 April 2008].

[46] Fensel, D. Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[47] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M.,

Roman, D., and Domingue, J. Enabling Semantic Web Services: The Web

Service Modeling Ontology. Springer, 2007.

[48] Fernández-López, M., Gómez-Pérez, A., and Amaya, M. D. R. Ontology's

Crossed Life Cycles. In EKAW '00: Proceedings of the 12th European Workshop on

Knowledge Acquisition, Modeling and Management (London, UK, 2000), Springer-

Verlag, pp. 65�79.

[49] Fernández-López, M., Gómez-Pérez, A., and Juristo, N. METHONTOL-

OGY: From Ontological Art Towards Ontological Engineering. In Proceedings of

the AAAI97 Spring Symposium (Stanford, USA, March 1997), pp. 33�40.

http://www.bmj.com/cgi/content/full/320/7251/1713
http://www.bmj.com/cgi/content/full/320/7251/1713

LIST OF REFERENCES 111

[50] Ferrans, J., Porter, B., Tryphonas, S., Lucas, B., Danielsen, P.,

Burnett, D. C., Hunt, A., McGlashan, S., Rehor, K., and Carter,

J. Voice Extensible Markup Language (VoiceXML) Version 2.0. W3C

Recommendation, W3C, Mar. 2004. Online: http://www.w3.org/TR/2004/

REC-voicexml20-20040316/ [5 May 2008].

[51] Forgy, C. L. Rete: A fast algorithm for the many pattern/many object pattern

match problem. Arti�cial Intelligence 19, 1 (1982), 17 � 37.

[52] Gardiner, T., Horrocks, I., and Tsarkov, D. Automated Benchmarking of

Description Logic Reasoners. In Description Logics (2006).

[53] Georgila, K., Tsopanoglou, A., Fakotakis, N., and Kokkinakis, G. A

dialogue system for telephone-based services integrating spoken and written lan-

guage. In Interactive Voice Technology for Telecommunications Applications, 1998.

IVTTA '98. Proceedings. 1998 IEEE 4th Workshop (Sept. 1998), pp. 55 �59.

[54] Gilb, T. Principles of Software Engineering Management. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1988.

[55] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F.,

and Sattler, U. OWL 2: The Next Step for OWL. Journal of Web Semantics

6, 4 (2008), 309�322.

[56] Greiner, R., Darken, C., and Santoso, N. I. E�cient Reasoning. ACM

Comput. Surv. 33, 1 (2001), 1�30.

[57] Grimm, S., Hitzler, P., and Abecker, A. Knowledge Representation and

Ontologies Logic, Ontologies and Semantic Web Languages. Springer-Verlag, 2007,

ch. 3, pp. 51�106.

[58] Gruber, T. R. Towards Principles for the Design of Ontologies Used for Knowledge

Sharing. In Formal Ontology in Conceptual Analysis and Knowledge Representation

(Deventer, The Netherlands, 1993), N. Guarino and R. Poli, Eds., Kluwer Academic

Publishers.

[59] Grüninger, M., and Fox, M. S. Methodology for the Design and Evaluation

of Ontologies. In IJCAI95 Workshop on Basic Ontological issues in Knowledge

Management Sharing (1995), D. Skuce, Ed.

http://www.w3.org/TR/2004/REC-voicexml20-20040316/
http://www.w3.org/TR/2004/REC-voicexml20-20040316/

LIST OF REFERENCES 112

[60] Guarino, N. Semantic Matching: Formal Ontological Distinctions for Information

Organization, Extraction, and Integration. In Information Extraction: A Multidis-

ciplinary Approach to an Emerging Information Technology (1997), M. T. Pazienza,

Ed., Springer Verlag, pp. 139 � 170.

[61] Guarino, N. Formal Ontology and Information Systems. In Proceedings of the 1st

International Conference on Formal Ontologies in Information Systems (FOIS'98)

(Trento, Italy, 1998), IOS Press, pp. 3�15.

[62] Guarino, N., and Giaretta, P. Ontologies and Knowledge Bases: Towards a

Terminological Clari�cation. In Towards Very Large Knowledge Bases: Knowledge

Building and Knowledge Sharing (1995), pp. 25�32.

[63] Gómez-Pérez, A., Fernández-López, M., and Corcho, O. Ontological En-

gineering: With Examples from the Areas of Knowledge Management, e-Commerce

and the Semantic Web. Springer, 2004.

[64] Gómez-Pérez, N. J. A., and Pazos, J. Evaluation and Assessment of Knowledge

Sharing Technology. In Towards Very Large Knowledge Bases (1995), N. J. Mars,

Ed., IOS Press, pp. 289�296.

[65] Haarslev, V., and Möller, R. RACER System Description. In Automated

Reasoning, First International Joint Conference, IJCAR 2001 (Siena, Italy, June

2001), R. Goré, A. Leitsch, and T. Nipkow, Eds., vol. 2083 of Lecture Notes in

Computer Science, Springer.

[66] Heisler, M., and Piette, J. D. "I Help You, and You Help Me": Facilitated

Telephone Peer Support Among Patients With Diabetes. The Diabetes Educator 31

(2005), 869�879.

[67] Holsapple, C. W. Handbook on Knowledge Management 1: Knowledge Matters,

vol. 1. Springer-Verlag Berlin Heidelberg New York, Inc., 2003.

[68] Horridge, M., and Bechhofer, S. Igniting the OWL 1.1 Touch Paper: The

OWL API. In OWLED (2007), vol. 258 of CEUR Workshop Proceedings.

[69] Horridge, M., and Bechhofer, S. The OWL API: A Java API for Working

with OWL 2 Ontologies. In OWLED (2009).

[70] Horridge, M., Jupp, S., Moulton, G., Rector, A., Stevens, R., and

Wroe, C. A Practical Guide To Building OWL Ontologies Using Prote�gé 4 and

CO-ODE Tools, 1.1 ed. Manchester University, 2009. Edition 1.1.

LIST OF REFERENCES 113

[71] Horrocks, I. Ontologies and databases. Semantic Days 2008. Stavanger, Norway,

April 2008. Online: http://www.comlab.ox.ac.uk/ian.horrocks/Seminars/

download/onto-db.ppt [Last accessed: 17 August 2010].

[72] ISO/IEC. ISO/IEC 9126. Software engineering � Product quality. ISO/IEC, 2001.

[73] ITU. Ubiquitous Network Societies: Their Impact on the Telecommunication In-

dustry. In Background Paper, International Telecommunication (2005).

[74] Jena. Jena � a Semantic Web Framework for Java. Online: http://jena.

sourceforge.net/ [Last accessed: 8 April 2008].

[75] King, A. Constructing a Low-Cost, Open-Source, VoiceXML Gateway. Master's

thesis, Rhodes University, 2007.

[76] King, A., Terzoli, A., and Clayton, P. Creating a Low Cost VoiceXML

Gateway to Replace IVR Systems forRapid Deployment of Voice Applications.

In Southern African Telecommunications, Networks and Applications Conference

(SATNAC) (September 2006), pp. 131�136.

[77] Krasner, G., and Pope, S. A Description of the Model-View-Controller User

Interface Paradigm in the Smalltalk-80 System. J. Object Oriented Programming 3,

1 (August 1988), 26�49.

[78] Lam, T. H. W., and Lee, R. S. T. iJADE FreeWalker-An Intelligent Ontology

Agent-based Tourist Guiding System. Studies in Computational Intelligence (SCI)

72 (2007), 103�125.

[79] Landauer, C., and Bellman, K. Some measurable characteristics of intelligent

computing systems. In Systems, Man, and Cybernetics, 2000 IEEE International

Conference on (2000), vol. 3, pp. 2086 �2091 vol.3.

[80] Lee, H., Friedman, M. E., Cukor, P., and Ahern, D. Interactive Voice

Response System (IVRS) in Health Care Services. Nursing Outlook 51 (2003),

277�283.

[81] Leffingwell, D., and Widrig, D. Managing Software Requirements: A Use

Case Approach. Pearson Education, 2003.

[82] Liebig, T. Reasoning with OWL � System Support and Insights. Tech. Rep.

TR-2006-04, Ulm University, Ulm, Germany, September 2006.

http://www.comlab.ox.ac.uk/ian.horrocks/Seminars/download/onto-db.ppt
http://www.comlab.ox.ac.uk/ian.horrocks/Seminars/download/onto-db.ppt
http://jena.sourceforge.net/
http://jena.sourceforge.net/

LIST OF REFERENCES 114

[83] Lucas, B. VoiceXML for Web-based Distributed Conversational Applications.

Communications of the ACM 43, 9 (2000), 53�57.

[84] Maema, M., Terzoli, A., and Dalvit, L. Ontologies for Provision of HIV/AIDS

Information Using Telephony Infrastructure. In Annual Conference of the South

African Institute of Computer Scientists and Information Technologists (SAICSIT

2008) (2008).

[85] Massie, T., Obrst, L., and Wijesekera, D. TVIS: Tactical Voice Interaction

Services for Dismounted Urban Operations. In IEEE Military Communications

Conference (MILCOM) (2008).

[86] McGlashan, S., Burnett, D. C., Akolkar, R., Auburn, R., Baggia, P.,

Barnett, J., Bodell, M., Carter, J., Oshry, M., Rehor, K., Young,

M., and Hosn, R. Voice Extensible Markup Language (VoiceXML) 3.0. Online:

http://www.w3.org/TR/2010/WD-voicexml30-20100304/ [Last accessed: 2 May

2010].

[87] McGuinness, D. L., and van Harmelen, F. OWL Web Ontology Language

Overview. Tech. Rep. REC-owl-features-20040210, W3C, 2004.

[88] Migneault, J. P., Farzanfar, R., Wright, J. A., and Friedman, R. H. How

to Write Health Dialog for a Talking Computer. Journal of Biomedical Informatics

35, 5 (October 2006), 468�481.

[89] Miller, G. A. The Magical Number Seven, Plus or Minus Two: Some Limits on

Our Capacity for Processing Information. Psychological Review 63 (1956), 81�97.

[90] Motik, B., Shearer, R., and Horrocks, I. Optimized Reasoning in Descrip-

tion Logics using Hypertableaux. In Proc. of the 21st Conference on Automated

Deduction (CADE-21) (Bremen, Germany, July 17�20 2007), F. Pfenning, Ed.,

vol. 4603 of LNAI, Springer, pp. 67�83.

[91] Naylor, M., Keefe, F., Brigidi, B., Naud, S., and Helzer, J. Therapeutic

interactive voice response for chronic pain reduction and relapse prevention. Pain

134 (2007), 335�345.

[92] Nickols, F. W. The "Knowledge" in Knowledge Management. In The knowledge

management yearbook 2000-2001 (Boston, USA, 2000), J. Cortada and J. Woods,

Eds., Butterworth-Heinemann, pp. 12�21.

http://www.w3.org/TR/2010/WD-voicexml30-20100304/

LIST OF REFERENCES 115

[93] Noy, N., and McGuinness, D. Ontology Development 101: A Guide to Creating

Your First Ontology. Tech. rep., Stanford University, 2001.

[94] Noy, N., and Rector, A. De�ning N-ary Relations on the Semantic Web. Tech.

rep., W3C World Wide Web Consortium, 2006. W3C Working Group Note 12 April

2006, Online: http://www.w3.org/TR/swbp-n-aryRelations/ [1 June 2009].

[95] Parr, T. J. A Functional Language For Generating Structured Text. Tech. rep.,

University of San Franscisco, 2006. Online: http://www.cs.usfca.edu/~parrt/

papers/ST.pdf [Last accessed: 5 March 2010].

[96] Penton, J., and Terzoli, A. iLanga: A Next Generation VOIP-based,TDM-

enabled PBX. In Southern African Telecommunications Networks and Applications

Conference (SATNAC) (2004).

[97] Pieraccini, R., and Huerta, J. Where do we go from here? Research and

commercial spoken dialog systems. In Proceedings of the 6th SIGdial Workshop on

Discourse and Dialogue (Lisbon, Portugal, September 2005).

[98] Pinto, H. S., and Martins, J. a. P. Ontologies: How can They be Built?

Knowledge and Information Systems 6, 4 (July 2004), 441�464.

[99] Polanyi, M. II. Knowing and Being. Mind LXX, 280 (1961), 458�470.

[100] Polanyi, M. The Tacit Dimension. Doubleday, Garden City, NY, 1966.

[101] Pérez-Jiménez, M. J., and Romero-Campero, F. A CLIPS Simulator for

Recognizer P Systems with Active Membranes. In Proceedings of the Brainstorm-

ing week on Membrane Computing (Sevilla, España, 2004), G. P. A. R. N. Álvaro

Romero Jiménez; Fernando Sancho Caparrini, Ed., pp. 387�413.

[102] Rouillard, J. Multimodality in Mobile Computing and Mobile Devices: Methods

for Adaptable Usability. IGI Global, 2009, ch. Multimodal and Multichannel Issues

in Pervasive and Ubiquitous Computing, pp. 1�23.

[103] Royce, W. W. Managing the Development of Large Software Systems: Concepts

and Techniques. In Proc. IEEE WESTCON (August 1970), pp. 1�9. Reprinted in

Proceedings of the Ninth International Conference on Software Engineering, March

1987, pp.328�338.

[104] Schoeller, A. Voice Self-Service Aligns with Web Architectures to Reduce TCO,

Increase Flexibility and Ensure Content Consistency. Tech. rep., YANKEE Group,

http://www.w3.org/TR/swbp-n-aryRelations/
http://www.cs.usfca.edu/~parrt/papers/ST.pdf
http://www.cs.usfca.edu/~parrt/papers/ST.pdf

LIST OF REFERENCES 116

2006. Online: http://www.cisco.com/en/US/prod/collateral/voicesw/

custcosw/ps5694/ps1006/prod_white_paper0900aecd8051711b.pdf[Last ac-

cessed: 7 May 2010].

[105] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. Pellet: A

Practical OWL-DL Reasoner. Journal of Web Semantics 5, 2 (2007), 51�53.

[106] Suárez-Figueroa, M. C., and Gómez-Pérez, A. Building Ontology Networks:

How to Obtain a Particular Ontology Network Life Cycle? In Proceedings of the

International Conference on Semantic Systems (ISEMANTICS08) (Graz, Austria,

September 2008).

[107] Suhm, B., Bers, J., McCarthy, D., Freeman, B., Getty, D., Godfrey,

K., and Peterson, P. A Comparative Study of Speech in the Call Center:

Natural Language Call Routing vs. Touch-tone Menus. In CHI '02: Proceedings of

the SIGCHI conference on Human factors in computing systems (New York, NY,

USA, 2002), ACM, pp. 283�290.

[108] Suhm, B., and Peterson, P. Call Browser: A System to Improve the Caller

Experience by Analyzing Live Calls End-to-end. In CHI '09: Proceedings of the

27th international conference on Human factors in computing systems (New York,

NY, USA, 2009), ACM, pp. 1313�1322.

[109] Tomaselli, K. G. (Re)Mediatizing HIV/AIDS in South Africa. Cultural Studies

<=> Critical Methodologies 9, 4 (2009), 570�587.

[110] Tsietsi, M., Terzoli, A., and Wells, G. Mobicents as a Service Creation and

Deployment Environment for the Open IMS Core. In Southern African Telecom-

munications, Networks and Applications Conference (SATNAC) (2009).

[111] Turing, A. M. Computing Machinery and Intelligence. Mind LIX (1950), 433�

460.

[112] UNAIDS. HIV/AIDS Country Pro�le for South Africa. Online: http://

www.unaids.org/en/CountryResponses/Countries/south_africa.asp [Last ac-

cessed: 8 April 2008].

[113] UNAIDS. UNAIDS Practical Guidelines for Intensifying HIV Prevention: To-

wards Universal Access. Online: http://data.unaids.org/pub/Manual/2007/

20070306_prevention_guidelines_towards_universal_access_en.pdf [Last

accessed: 24 March 2009], 2007.

http://www.cisco.com/en/US/prod/collateral/voicesw/custcosw/ps5694/ps1006/prod_white_paper0900aecd8051711b.pdf
http://www.cisco.com/en/US/prod/collateral/voicesw/custcosw/ps5694/ps1006/prod_white_paper0900aecd8051711b.pdf
http://www.unaids.org/en/CountryResponses/Countries/south_africa.asp
http://www.unaids.org/en/CountryResponses/Countries/south_africa.asp
http://data.unaids.org/pub/Manual/2007/20070306_prevention_guidelines_towards_universal_access_en.pdf
http://data.unaids.org/pub/Manual/2007/20070306_prevention_guidelines_towards_universal_access_en.pdf

LIST OF REFERENCES 117

[114] UNAIDS. South Africa - Country Situation. Online: http://data.unaids.org/

pub/FactSheet/2008/sa08_soa_en.pdf [Last accessed: 24 March 2009], July 2008.

[115] United States General Accounting Office. Consumer Health Informatics -

Emerging Issues. Tech. rep., United States General Accounting O�ce, Washington,

D.C. 20548, July 1996.

[116] Uschold, M. Building Ontologies: Towards a Uni�ed Methodology. In 16th

Annual Conf. of the British Computer Society Specialist Group on Expert Systems

(1996), pp. 16�18.

[117] Uschold, M., and King, M. Towards a Methodology for Building Ontologies. In

Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction

with IJCAI-95 (1995).

[118] Van Meggelen, J., Smith, J., and Madsen, L. Asterisk™: the future

of telephony, 2nd edition, second ed. O'Reilly, 2007.

[119] Velásquez, J. D., and Jain, L. C. Advanced Techniques in Web Intelligence-1.

Springer, 2010.

http://data.unaids.org/pub/FactSheet/2008/sa08_soa_en.pdf
http://data.unaids.org/pub/FactSheet/2008/sa08_soa_en.pdf

Appendix A

Snapshot from Protege

Figure A.1: Snapshot from Protege of the Service Provider ontology

118

Appendix B

A Snippet XML File for the Service

Provider Ontology

1 <?xml v e r s i o n=" 1 .0 "?>

2 <!DOCTYPE r d f :RDF [

3 <!ENTITY t ime " ht tp : //www.w3 . org /2006/ t ime#" >

4 <!ENTITY owl " h t tp : //www.w3 . org /2002/07/ owl#">

5 <!ENTITY xsd " ht tp : //www.w3 . org /2001/XMLSchema#">

6 <!ENTITY owl2xml " h t tp : //www.w3 . org /2006/12/ owl2−xml#">

7 <!ENTITY r d f s " h t tp : //www.w3 . org /2000/01/ rd f−schema#">

8 <!ENTITY r d f " h t tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#">

9 <!ENTITY S e r v i c e I n f o " h t tp : // mathe . r u cu s . net / on to l ogy / S e r v i c e I n f o . owl#">

10 <!ENTITY HIVTest ing " h t tp : // mathe . r u cu s . net / on to l ogy /HIV/ t e s t i n g . owl#">

11]>

12 <rd f :RDF xmlns=" ht tp : // mathe . r u cu s . net / on to l ogy /HIV/ t e s t i n g . owl#"

13 xml : base=" ht tp : // mathe . r u cu s . net / on to l ogy /HIV/ t e s t i n g . owl "

14 xmlns : r d f s=" ht tp : //www.w3 . org /2000/01/ rd f−schema#"

15 xmlns : t ime=" ht tp ://www.w3 . org /2006/ t ime#"

16 xmlns : owl2xml=" ht tp ://www.w3 . org /2006/12/ owl2−xml#"

17 xmlns : d i r e c t o r y=" ht tp : // mathe . r u cu s . net / on to l ogy / S e r v i c e / d i r e c t o r y . owl#"

18 xmlns : owl=" ht tp ://www.w3 . org /2002/07/ owl#"

19 xmlns : HIVTest ing=" ht tp :// mathe . r u cu s . net / on to l ogy /HIV/ t e s t i n g . owl#"

20 xmlns : xsd=" ht tp ://www.w3 . org /2001/XMLSchema#"

21 xmlns : r d f=" ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#"

22 xmlns : S e r v i c e I n f o=" ht tp : // mathe . r u cu s . net / on to l ogy / S e r v i c e I n f o . owl#">

23 <owl : Onto logy r d f : about="">

24 <owl : impo r t s r d f : r e s o u r c e=" ht tp :// mathe . r u cu s . net / on to l ogy /HIV/ t e s t i n g . owl "/>

25 </owl : Ontology>

26

27 <!−−************************ Object P r o p e r t i e s ************************−−>

28 <!−− ht tp : // mathe . r u cu s . net / on to l ogy / S e r v i c e I n f o . owl#cha rg e s −−>
29 <owl : Ob j e c tP rope r t y r d f : about="#cha rge s ">

30 <owl : p roper tyCha inAx iom r d f : parseType=" C o l l e c t i o n ">

31 <rd f : D e s c r i p t i o n r d f : about="#h a s P r o f i l e "/>

32 <rd f : D e s c r i p t i o n r d f : about="#hasCost "/>

33 </owl : propertyCha inAx iom>

34 <owl : p roper tyCha inAx iom r d f : parseType=" C o l l e c t i o n ">

35 <rd f : D e s c r i p t i o n r d f : about="#i sP r o v i d e rO f "/>

119

120

36 <rd f : D e s c r i p t i o n r d f : about="#hasCost "/>

37 </owl : propertyCha inAx iom>

38 </owl : Ob jec tPrope r ty>

39 <!−−************************** Data P r o p e r t i e s ***************************−−>

40 <!−− ht tp : // mathe . r u cu s . net / on to l ogy / S e r v i c e I n f o . owl#hasC l o s eRad i u s −−>
41 <owl : Data typePrope r t y r d f : about="#hasC l o s eRad i u s ">

42 <r d f s : comment>In t h i s on to l ogy we r ega r d the c e n t r e to be the RU campus . Fur the r ,

we have dec i d ed not to a t t a ch the a c t u a l d i s t a n c e v a l u e to the c e n t r e . Thus

f o r each p r o v i d e r the qu e s t i o n i s : i s the p r o v i d e r w i t h i n c l o s e r a d i u s to

campus or not?</ r d f s : comment>

43 <r d f s : range r d f : r e s o u r c e="&xsd ; boo l ean "/>

44 </owl : DatatypeProper ty>

45 <!−−********************************** C l a s s e s ***************************−−>

46 <!−− ht tp : // mathe . r u cu s . net / on to l ogy / S e r v i c e I n f o . owl#HIV_Test_Provider −−>
47 <owl : C l a s s r d f : about="#HIV_Test_Provider ">

48 <r d f s : l a b e l >HIV Test P rov i d e r </ r d f s : l a b e l >

49 <owl : e q u i v a l e n tC l a s s >

50 <owl : C la s s>

51 <owl : un ionOf r d f : parseType=" C o l l e c t i o n ">

52 <owl : R e s t r i c t i o n >

53 <owl : onPrope r ty r d f : r e s o u r c e="#i sP r o v i d e rO f "/>

54 <owl : someValuesFrom r d f : r e s o u r c e="&t e s t i n g ; HIV_Testing"/>

55 </owl : R e s t r i c t i o n >

56 <owl : R e s t r i c t i o n >

57 <owl : onPrope r ty r d f : r e s o u r c e="#i sP r o v i d e rO f "/>

58 <owl : someValuesFrom r d f : r e s o u r c e="#VCT"/>

59 </owl : R e s t r i c t i o n >

60 </owl : unionOf></owl : C la s s>

61 </owl : e q u i v a l e n tC l a s s >

62 <r d f s : subC la s sOf r d f : r e s o u r c e="#Hea l t h ca r e_Prov i d e r "/>

63 </owl : C la s s>

64 <!−−************************ I n d i v i d u a l s *********************************−−>

65 <!−− ht tp : // mathe . r u cu s . net / on to l ogy / S e r v i c e I n f o . owl#Raglan_Road_Clin ic −−>
66 <owl : Thing r d f : about="#Raglan_Road_Clin ic "><r d f : t ype r d f : r e s o u r c e="#C l i n i c "/>

67 <r d f s : l a b e l >Raglan Road C l i n i c </ r d f s : l a b e l >

68 <hasTelephoneNumValue r d f : da ta t ype="&xsd ; i n t e g e r ">6036084</hasTelephoneNumValue>

69 <ha s S t r e e t l A d d r e s sV a l u e r d f : da ta t ype="&xsd ; s t r i n g ">Raglan Road</

ha sS t r e e t lAdd r e s sVa l u e >

70 <hasC l o s eRad i u s r d f : da ta t ype="&xsd ; boo l ean ">f a l s e </hasC lo seRad iu s>

71 <l o c a t e d I n r d f : r e s o u r c e="#Grahamstown"/>

72 <ha sO rgan i s i t i o nType r d f : r e s o u r c e="#Pub l i c_Sec to r "/>

73 <h a s P r o f i l e r d f : r e s o u r c e="#RagP r o f i l e 1 "/>

74 <h a s P r o f i l e r d f : r e s o u r c e="#RagP r o f i l e 2 "/>

75 <usesLanguage r d f : r e s o u r c e="#Seped i "/>

76 <usesLanguage r d f : r e s o u r c e="#i s i X h o s a "/>

77 </owl : Thing>

78 <!−−************************* Gene ra l Axioms ****************************−−>

79 <rd f : De s c r i p t i o n >

80 <rd f : t ype r d f : r e s o u r c e="&owl ; A l l D i f f e r e n t "/>

81 <owl : d i s t i n c tMembe r s r d f : parseType=" C o l l e c t i o n ">

82 <rd f : D e s c r i p t i o n r d f : about="#Se t t l e r s_Ho s p i t a l "/>

83 <rd f : D e s c r i p t i o n r d f : about="#Fort_England_Hosp i ta l "/>

84 </owl : d i s t i nc tMember s>

85 </r d f : De s c r i p t i o n >

86 <!−− Generated by the OWL API (v e r s i o n 2 . 2 . 1 . 1 1 3 8) h t tp : // ow l ap i . s o u r c e f o r g e . net −−>

Appendix C

Example Scripts

Please note that the scripts were designed speci�cally for DTMF-driven responses.

Call Script � 1

System Hello. Welcome to the telephone number listing service for locating HIV testing sites in Graham-

stown. To provide you with an initial listing, please answer two yes or no questions for us. You may

press 0 at anytime to exit.

(User is moved to another dialogue)

Should the testing site be within close proximity to Rhodes University?

Press 1 for Yes; Press 2, for No; And press 0, if you want to exit.

User DTMF-2

System OK. Are you interested in a free or low cost testing site?

Press 1 for Yes; Press 2, for No; And press 0, if you want to exit.

User DTMF-2

System There is one site. It is Dr Mackenzie Practise and the telephone number is

6 2 2 3 3 8 3.

Press *, if you would like to repeat the information just given.

Press 9, if you would like to return to the main menu.

Press 0, if you want to exit.

User DTMF-0

System Thanks for calling. Please complete the satisfaction survey for us.

(Five questions intended to improve service)

121

122

Call Script � 2

System Hello. Welcome to the telephone number listing service for locating HIV testing sites in Graham-

stown. To provide you with an initial listing, please answer two yes or no questions for us. You may

press 0 at anytime to exit.

(User is moved to another dialogue)

Should the testing site be within close proximity to Rhodes University?

Press 1 for Yes; Press 2, for No; And press 0, if you want to exit.

User DTMF-1

System OK. Are you interested in a free or low cost testing site?

Press 1 for Yes; Press 2, for No; And press 0, if you want to exit.

User DTMF-1

System There are two sites. The �rst is Rhodes Health Care Centre and the second is Raphael centre.

Press 1, to obtain Rhodes Health Care Centre telephone number

Press 2, to obtain Raphael centre

Press *, if you would like to repeat the information just given.

Press 9, if you would like to return to the main menu.

Press 0, if you want to exit.

User DTMF-1

System Rhodes Health Care Centre telephone number is 6 0 3 8 0 9 3.

Press *, if you would like to repeat the information just given.

Press 9, if you would like to return to the main menu.

Press 0, if you want to exit.

User DTMF-0

System Thanks for calling. Please complete the satisfaction survey for us.

(Five questions intended to improve service)

Appendix D

Rule Engine Class

1 pub l i c c l a s s RuleRunner {

2 // De c l a r a t i o n s

3 pub l i c Object [] c r i t e r i a P r o c e s s o r (Map resu l tMap , S t r i n g c r i t e r i a S e l e c t i o n) {

4 // I n i t i a l i s a t i o n s

5 t r y {

6 // Load up the knowledge base

7 KnowledgeBase kbase = readKnowledgeBase () ;

8 S t a t e f u lKnow l e dg eSe s s i o n k s e s s i o n = kbase . n ewSta t e f u lKnow l edgeSe s s i on () ;

9 KnowledgeRuntimeLogger l o g g e r = KnowledgeRunt imeLoggerFactory . newF i l eLogge r (

k s e s s i o n , " r u l e S e s s i o n ") ;

10 k s e s s i o n . i n s e r t (resMap) ; // i n s e r t query r e s u l t map

11 k s e s s i o n . i n s e r t (c r i t e r i a) ; // i n s e r t c r i t e r i a

12 k s e s s i o n . f i r e A l l R u l e s () ; //" F i r e a l l r u l e s "

13 l o g g e r . c l o s e () ;

14 k s e s s i o n . d i s p o s e () ;

15 } catch (Throwable t) { t . p r i n t S t a c kT r a c e () ; }

16 // Sto r e the r e s u l t map and the r e f i n e d boo l ean v a l u e i n the o b j e c t a r r a y .

17 p r o c e s s e dR e s u l t s [0] = resMap . getResu l tMap () ;

18 p r o c e s s e dR e s u l t s [1] = resMap . i s R e f i n e d () ;

19 re tu rn p r o c e s s e dR e s u l t s ;

20 }

21 p r i v a t e s t a t i c KnowledgeBase readKnowledgeBase () throws Excep t i on {

22 KnowledgeBu i lde r k b u i l d e r = Know l edgeBu i l d e rFac to r y . newKnowledgeBui lder () ;

23 k b u i l d e r . add (Re sou r c eFac to r y . newUr lResource (ruleRepoURL+"/ r e f i n e . d r l ") ,

ResourceType .DRL) ;

24 Know l edgeBu i l d e rE r r o r s e r r o r s = k b u i l d e r . g e t E r r o r s () ;

25 i f (e r r o r s . s i z e () > 0) {

26 f o r (Know l edgeBu i l d e rE r r o r e r r o r : e r r o r s) {

27 System . e r r . p r i n t l n (e r r o r) ;

28 } throw new I l l e g a lA r g umen tE x c e p t i o n ("Could not pa r s e knowledge . ") ;

29 }

30 KnowledgeBase kbase = KnowledgeBaseFactory . newKnowledgeBase () ;

31 kbase . addKnowledgePackages (k b u i l d e r . getKnowledgePackages ()) ;

32 re tu rn kbase ;

33 }

34 }

123

Appendix E

Accompanying CD-ROM

The following are contained within the accompanying CD-ROM:

ß Thesis Document � The electronic copy of this thesis in pdf format.

ß Readings � A selection of electronic copies of some of the referenced papers within

the thesis. The papers are in pdf format. The naming convention uses primary

author and year of publication, separated by an underscore (e.g. XYZ_1980.pdf).

ß Domain Ontology � The electronic copy of the developed ontology in xml format.

ß Source Code � The source code for the following is included:

õ Locator Application � The HTML version of the HIV Testing Site Locator

application. The WAR �le has also been provided for deployment.

õ Voice Locator Application � The VoiceXML version of the HIV Testing Site

Locatior application. The WAR �le has also been provided for deployment.

õ `Query Interface' Manager � This application embodies the logic for man-

aging access to the domain knowledge. It is imported into both versions

of the Locator applications. The con�guration �le (con�g.xml) has also

been included to alter, for example, the location of the ontology. When al-

terations are made, this �le may be placed in /tmp/voiceApp/con�g.xml or

C:/tmp/voiceApp/con�g.xml depending on whether Linux or Windows is used.

124

Appendix F

Deployment Guide

As stated in Chapter 3, deployment process to the application server is dependent on the

server used and its con�guration. Below is a brief guide for deploying the voice application

using Tomcat in conjuction with Apache web server. There are two basic steps that need

to be followed. The description for each is provided below, with Table F.1 providing

speci�c detail for each deployed resource.

1. Deploy resource to a suitable location, /�lesystem/path/to/resource. For testing, all
resources where deployed on /var/www/[resouceFolderName].

2. Create a context XML �le similar to one shown below:

1 <?xml v e r s i o n=" 1 .0 " encod ing="UTF−8"?>
2 <Context ant iJARLock ing=" t r u e " docBase="/ f i l e s y s t em /path / to / a p p l i c a t i o n " />

The above created �le should be saved based on the URL path that will be used to access

the application. Once saved the �le must be deployed in the directory:

$CATALINA_HOME/conf/[enginename]/[hostname]

where enginename might be Catalina and hostname might be localhost. In fact, for testing

purposes, it is assumed that the host shall be localhost. However, if say, the ontology was to

be deployed in a remote server, its location would need to be speci�ed in the con�guration

�le (/tmp/voiceApp/con�g.xml or C:/tmp/voiceApp/con�g.xml).

125

126

Deployment Location Context File Names

TTS Script /var/www/tts tts.xml

Ontology Folder /var/www/ontology ontology.xml

Rules Folder /var/www/rules rules.xml

VoiceApplication Folder/WAR /var/www/voiceLocatorApp voiceLocatorApp.xml

Table F.1: Deployment Locations and Context Names Used for Testing

	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Goals for the Thesis
	1.3 Thesis Organisation

	2 Related Work
	2.1 Knowledge and Related Concepts
	2.1.1 What is Knowledge?
	2.1.2 Types of Knowledge
	2.1.3 Knowledge Representation and Reasoning
	2.1.3.1 Knowledge Representation
	2.1.3.2 Reasoning

	2.1.4 Understanding Ontologies
	2.1.4.1 Definitions
	2.1.4.2 Types of Ontologies
	2.1.4.3 Uses of Ontologies
	2.1.4.4 Theoretical Comparison: Databases vs. Ontologies
	2.1.4.5 Methods and/or Methodologies for Ontology Construction
	2.1.4.6 Design Criteria for Ontologies

	2.1.5 Understanding Reasoners
	2.1.5.1 What is a Reasoner?
	2.1.5.2 Uses of a Reasoner
	2.1.5.3 Selection Criteria for a Reasoner

	2.2 Human-Machine Dialog Systems
	2.2.1 Types of Dialog Systems
	2.2.2 Dialog Management
	2.2.3 Dialog Systems Architectures

	2.3 VoiceXML
	2.3.1 What is VoiceXML?
	2.3.2 VoiceXML Architectural Model

	2.4 Information and Communication Technologies in Health
	2.4.1 Healthcare Knowledge Management
	2.4.2 IVR in Health

	2.5 Summary

	3 Software Components
	3.1 Information Flow
	3.2 Main Features of the Architecture
	3.3 Components for Application Development
	3.3.1 Ontology Authoring Tool
	3.3.2 Ontology APIs
	3.3.3 Reasoning Engine
	3.3.4 Rule Engine

	3.4 Components for the Deployment Environment
	3.4.1 Application Servers
	3.4.2 Asterisk
	3.4.3 VoiceXML Browser
	3.4.4 Text-to-Speech

	3.5 Summary

	4 Ontology Construction for Developing the Prototype System
	4.1 Ontology Development Life Cycle
	4.1.1 Development Life Cycle and the Final Product
	4.1.2 Development Life Cycle and the Methodologies
	4.1.2.1 Uschold and King's Method
	4.1.2.2 Grüninger and Fox's Methodology
	4.1.2.3 METHONTOLOGY

	4.2 Building the HIV and AIDS Service Provider Ontology
	4.2.1 Specification: Identifying the Purpose & Scope
	4.2.1.1 Competency questions
	4.2.1.2 Enumeration of important terms

	4.2.2 Conceptualisation
	4.2.3 Formalisation and Implementation
	4.2.3.1 Ontology Language Selection
	4.2.3.2 Tool Selection

	4.2.4 Evaluation, Documentation & Maintenance

	4.3 Summary

	5 Basic Implementation of the Prototype System
	5.1 Implementation Strategy
	5.2 First Group of Iterations for the Implementation
	5.2.1 View Implementation
	5.2.2 Controller Implementation

	5.3 Summary

	6 Enhanced Implementation of the Prototype System
	6.1 Second Group of Iterations for the Implementation
	6.1.1 Dialog Processing with Rules
	6.1.2 Dynamic Page Rendering

	6.2 Summary

	7 System Testing and Discussion
	7.1 Proposed Architecture: Implementation View
	7.2 System Testing
	7.3 Integration and Implementation Experience
	7.4 Potential Barriers for Proposed Architecture Adoption
	7.4.1 Demand for Wide Range of Competencies
	7.4.2 Availability of Ontologies

	7.5 Summary

	8 Conclusion
	8.1 Thesis Synopsis
	8.2 Achievements
	8.3 Future Work
	8.4 Summary

	List of References
	A Snapshot from Protege
	B A Snippet XML File for the Service Provider Ontology
	C Example Scripts
	Call Script 1
	Call Script 2

	D Rule Engine Class
	E Accompanying CD-ROM
	F Deployment Guide*-0.4in

