
Buffering strategies and
Bandwidth renegotiation
for MPEG video streams·

by

Nico Schonken

Submitted in fulfillment of the requirements for the degree of

Master of Science

in the Department of Computer Science at

Rhodes University

January 1999

• This research was made possible by the Centre of Excellence at Rhodes University sponsored by Telkom SA Ltd
http://cs.ru.ac.za/coe

Abstract
This paper confirms the existence of short-term and long-term variation of

the required bandwidth for MPEG videostreams. We show how the use of a

small amount of buffering and GOP grouping can significantly reduce the

effect of the short-term variation. By introducing a number of bandwidth

renegotiation techniques, which can be applied to MPEG video streams in

general, we are able to reduce the effect of long-term variation. These

techniques include those that need the a priori knowledge of frame sizes as

well as one that can renegotiate dynamically. A costing algorithm has also

been introduced in order to compare various proposals against each other.

Table of Contents Page no.

~I~1r ()Jr JrI<X1J~ .. i

~I~1r ()Jr 1r~IJ~IC~ ... ii

IN1rR()D1JC1rI()N ... 1

CII~J»1rICR ()NIC ... !)

MPIC<X VIDIC() C()MP~~I()N

1.1. Introduction ... 5
1.2. General description .. 5
1.3. MPEG structure ... 11
1.4. MPEG encoding .. 12
1.5. Previous work .. 15
1.6. Conclusions ... 18

CII~J»1rICR 1r~() ~()

IJ1JJrJrICRING

2.1. Introduction ... 20
2.2. Previous work .. 22
2.3. The Leaky Bucket .. 27
2.4. Lookahead ... 29

2.4.1. Transmission order .. 29
2.4.2. Frame size differences ... 31

2.5. GOP Averaging ... 31
2.6. Simulator ... 34
2.7. Conclusions ... 38

~1I~~ICFt ~II~IC ... ~1

~NICGO~I~~ION

3.1. Introduction ... 41
3.2. The Problem ... 42
3.3. Previous Work .. 44
3.4. Our Approach .. 45
3.5. Assumptions .. 47
3.6. Conclusions ... 48

~1I~~~1l IrOlJll ... fi()

FIXICD IN~ICFtV ~LS

4.1. Introduction ... 50
4.2. Pre-Analysis using Fixed Intervals 50
4.3. Conclusions ... 58

~1I~~ICFt F~IC fi~

V~Ri~BLICIN~ICFtV~LS

5.1. Introduction ... 59
5.2. Heuristics .. 60

5.2.1. Generate-and-Test ... 61
5.2.2.Hill Climbing .. 61
5.2.3. Simulated Annealing 62

5.3. Boundary Shifting Approach 62
5.4. Quantisation Approach .. 66
5.5. Scene Changes ... 68

5.5.1. Costing of Movies .. 70
5.6. Previous Work .. 73
5.7. Conclusions ... 75

~1I~J»1r~Ft ~IJt •••••••••.•....•.. ~~

DYNAMI~ ~N~GOTI~TION

6.l.
6.2.
6.3.

Introduction ... 77
Moving Average .. 77
Conclusions ... 81

~ON~~lJ~ION•.. ~~

~Jr~~N~~~ ••••••••••••••.•.••••••.•••••••••......•••••••••••.••• •••••••••••• ~e;

List of Figures Page No.

Figure A.I. - A simple illustration of the problem domain 1

Figure 1.1. - The pattern of MPEG frames (I, B and P frames) .. 8

Figure 2. 1. - Buffering at sender for lossless smoothing 24

Figure 2.2. - Critical bandwidth allocation example 26

Figure 2.3. - The leaky bucket analogy 29

Figure 2.4. - Bandwidth demands for maximum averaged GOPs
versus maximum raw frame sizes over 5-minute intervals 33

Figure 2.5. - Total underflows vs bandwidth for various buffer
sizes and bandwidths ... 36

Figure 4.1. - Bandwidth for every GOP vs bandwidth for largest
GOP ... 52

Figure 4.2. - Bandwidth requirements for all 2-minute intervals
(GOP sizes as input) ... 53

Figure 4.3. - Bandwidth requirements for all 5-minute intervals
(GOP sizes as input) ... 54

Figure 5.1. - A heuristic attempt at achieving optimum interval
lengths " , ... 60

Figure 5.2. - Costs of each attempt at shifting the 5-minute
boundaries by x minutes .. 64

Figure 5.3. - Costs of each attempt at shifting the 10-minute
boundaries by x minutes .. 65

List of Tables Page No.
Table 3. 1. - Example of frame sizes near the beginning of the
Starwars data ... 43

Table 3.2. - Frame sizes from the middle of the Starwars
data ... 43

Table 4.1. - Costs for fIxed interval approach 55

Table 4.2. - The most economical intervals for various values
ofK .. 57

Table 5.1. - Mapping of GOP sizes (bits) to chosen values 67

Table 5.2. - Scene cost comparisons per movie 72

Table 6.1. - Moving average and related boundaries
(GOP data) .. 79

Table 6.2. - Cost comparison for fIxed intervals vs dynamic
renegotiation for various K ... 80

11

In troduction

The goal of this paper is to identify the problem areas within a video-on-

demand network and to propose solutions to those problems encountered.

The entire video-on-demand system can be broken into three simple

components. Firstly there needs to be a source, which we call the video

server, from where movies can be requested. The video server has the

capability to encode and store available videos and transmit them over a

network. We will discuss the MPEG encoding technique in detail in Chapter

1. The network between the source and the destination is the second

component of the system. This network can be anything from an ATM LAN

to the Internet itself. Lastly, at the destination we have a settop box. This

box would usually contain a minimal amount of buffer space as well as the

ability to decode the encoded video stream and then display it. Figure A.l.

gives an idea of what the system would look like in general.

Video
server

Set top
box

Figure A.I. - A simple illustration of the problem domain

Different problems will occur at various parts of the system. We can thus

use various techniques in an attempt to solve each problem. At the video

server one can use interval caching methods and read -ahead buffering in

order to alleviate burstiness in video servers. This also improves jitter

tolerance and hence the real-time performance of the video server. The

variable bit rate of MPEG encoded movies causes problems for the video

server. The different sizes of the frames cause short-term variation within a

videostream. The video server is where decisions for renegotiation of

bandwidth would also occur. The server can use the a priori knowledge of

the frame sizes in a movie to make decisions about the amount of

bandwidth required. Chapters 3, 4,5 and 6 cover the various methods used

to renegotiate bandwidth.

At the 'entrance' to the network, we can use the leaky bucket approach in

order to constrain the video stream in such a manner that it conforms to

certain parameters. Once again it is the variable bit rate which forces the

network to use its resources in order to transmit the video stream at the

correct speed.

It is at the settop box where most of our buffering is done. A buffer placed at

the destination can alleviate the problems of a variable bit rate. Chapter 2

discusses buffer underflow and overflow. The settop box receives the video

2

stream at a variable frame rate and must then convert this to a constant

frame rate stream in order for the video to be viewable.

Chapter 1 includes a simple overview of MPEG coding in general as well as a

more detailed description of the encoding technique and its structure. Some

previous uses of MPEG are also included.

Chapter 2 explains what short-term variations occur in an MPEG stream

and how one can cope with them using buffering. We introduce the concept

of GOP (Group of Picture) buffering and show how the use of this idea can

significantly reduce the cost of transporting a video over a network. We use

the results of this chapter in most of our experiments in the other chapters.

Chapter 3 introduces long-term variation, which is caused by the changing

content within a movie. Chapter 3 gives an overview of the problem and

covers the two approaches used to deal with it, namely static renegotiation

and dynamic renegotiation. We introduce an objective function for

calculating costs of the renegotiation methods. The necessary assumptions

are also stated and explained in this chapter.

Chapter 4 deals only with static renegotiation. We have used fixed time

lengths in order to slice the movie into intervals with different bandwidth

3

requirements. Costs are calculated for each of our methods in order to find

the most economical method.

Chapter 5 contains a variation of the fixed interval approach. Instead of

using equal time lengths to slice the movie into fixed intervals, we have used

heuristics and scene changes in the movie in order to make predictions of

where bandwidth changes need to be made. We make the implication here

that the content of the movie can be a decision tool for points of bandwidth

renegotiation. Once again costs are calculated based on the objective

function introduced in Chapter 3.

Chapter 6 covers dynamic renegotiation. We use the moving average of the

frame sizes and GOP sizes in order to adjust the available bandwidth at run­

time. In this case, the a priori knowledge of the frame sizes is not necessary.

4

Chapter 1

MPEG video compression

1.1. Introduction

The Moving Picture Coding Experts Group (MPEG) was established in

January 1988 with the mandate to develop standards for coded

representation of moving pictures, audio and their combination and hence it

is also the name of the standard that they have produced. [ROSE] suggested

that MPEG is expected to cause problems for ATM, since the major part of

B-ISDN traffic will be produced by multimedia sources such as

teleconferencing and video-on-demand servers and these services tend to

use MPEG compression.

1.2. General description

MPEG has been developed for storing video on digital storage media as well

as delivering video through local area networks and other

telecommunications networks. At a rate of several Mbps, MPEG video is

suitable for a range of multimedia applications e.g. video mail, video

conferencing, electronic publishing, distance learning and games.

The MPEG standard consists of 3 parts; video encoding, audio encoding and

the systems portion, which includes information about the synchronisation

5

of the audio and video streams. MPEG-1 was optimised for synchronised

digital video and audio, and compressed to fit into a bandwidth of 1.5 Mbps.

The video stream uses up about 1.15 Mbps, while the remaining bandwidth

is used by the audio and systems data streams. The system layer contains

timing and other information. The MPEG video algorithm can compress

video signals to an average of 0.5 to 1 bit per coded pixel. At a compressed

data rate of 1.2 Mbits per second, a coded resolution of 352 X 240 at 30

frames per second is often used, and the resulting video quality would be

comparable to that of VHS recording. Of course, if we attempted to maintain

a high video quality we would then have to vary the required bandwidth.

This can be controlled at the encoder by varying the level of compression

performed on segments of the video.

MPEG-l functionalities are a subset of the MPEG-2 ones. MPEG-2 allows for

layered coding over ATM where a base layer contains the basic information

required, and one or more enhancement layers can be used to improve the

quality of the video sequence. The primary application targeted during the

MPEG-2 definition process was the all-digital transmission of broadcast TV

quality video at coded bitrates between 4 and 9 Mbps. The most significant

enhancement over MPEG-l is the addition of syntax for efficient coding of

in terlaced video.

6

When work on MPEG-3 began it originally targeted HDTV (high-definition

television) applications with coded bitrates between 20 and 40 Mbps. It was

discovered that with some amount of fine-tuning, MPEG-2 and MPEG-1

syntax worked very well for HDTV rate video and thus the work on MPEG-3

was not continued.

When completed, the MPEG-4 standard should enable a whole spectrum of

new applications, including videophone, remote-sensing, electronic

newspapers, games, interactive multimedia databases and sign language

captioning. According to the MPEG-4 overview dated July 1998, this new

standard was to be released in October 1998 and would then be an

International Standard by December 1998. MPEG has also started work on

a new standard known as MPEG-7. It is to be a content representation

standard for information search, scheduled for completion in the year 2001.

Full motion video is a set of frames displayed sequentially. Each frame

consists of three rectangular matrices representing luminance (Y) and two

chrominance values (Cr and Cb) , which hold the colour information. For

every four luminance values, there are 2 associated chrominance values:

one Cb value and one Cr value.

7

There are three types of frames in MPEG encoding. Figure 1.1. illustrates

these types.

B
B

B

Figure 1.1. - the pattern of MPEG frames (I, Band P frames)

I (Intracoded) frames use only intra-frame coding based on the discrete

cosine transform and entropy coding. This means that the I frame is coded

independently of any other information in the video stream. A frame with

spatial resolution of 640 X 480 pixels and 24 bits per pixel requires about

921 Kbytes to represent when uncompressed. Spatial resolution is the term

for the number of pixels that make up the frame. For a video sequence to be

displayed at 24 frames per second, the transmission capacity required is

about 168.75 Mbps [(640 x 480 x 24 x 24) bits per second] for

uncompressed video. Given that MPEG has an optimal compression ratio of

6: 1, we can assume that a bandwidth requirement of 168.75 Mbps could be

reduced to 28 Mbps.

The discrete cosine transform (DCT) helps separate the image into

coefficients of differing frequencies. Low frequency components are more

8

critical to the human's perception of the image's visual quality. Colour

subsampling has been used in MPEG encoding since the human eye is more

sensitive to high-resolution luminance than to high-resolution colour. The

first compression technique employed by MPEG is to subsample the colour

channels in order to reduce them to a quarter of their original sizes. The

luminance channel remains its original size while the Cb and Cr levels are

reduced to a quarter each and hence when the three channels are put

together, the result is a reduction to half of the originally required

bandwidth.

Lossy compression is achieved by quantising the resulting coefficients into a

smaller set of possible values, with more aggressive quantisation being

applied to the higher frequency components. Many of the resulting

coefficients may become zero during this process. Entropy coding is a

lossless compression technique that further compacts the resulting

coefficients, and also takes advantage of runs of zeros. P (Predictive) frames

use a similar coding algorithm to I frames, but with the addition of motion

compensation with respect to the previous I or P frame. B (Bi-directional)

frames are similar to P frames, except that the motion compensation can be

with respect to the previous I or P frame, the next I or P frame or an

interpolation between them. Interpolation is a method for deducing a value

from known higher and lower values. I frames usually require more bits

than P frames, while the B frames have the lowest size requirement.

9

After coding, the frames are arranged in a periodic sequence known as a

Group of Pictures (GOP), e.g. IBBPBBPBB IBBPBBPBB etc. The number of

frames in a GOP can vary for each video. For a single video, however, all

GOP's contain the same number of frames. The sequence of encoded

pictures is specified by 2 parameters, M (the distance between I or P frames)

and N (the distance between I frames).

e.g. M:;:::3 and N:;:::9 implies IBBPBBPBB IBBP .. .

M=l and N-5 implies IPPPP IPPPP IPPPP .. .

In order to maintain constant quality video, compressed frames are

generated at a fixed frame rate (i.e. 24 frames per second), which results in

variable bit rate (VBR) traffic.

The output rate of an MPEG encoder depends upon the spatial resolution of

pictures (no. of pixels) and the temporal resolution (frequency of sampled

data or picture rate), which are parameters typically specified by a

multimedia application. The picture rate, as well as some other MPEG

encoded parameters can be adaptively controlled to modify the encoder

output rate. This output rate changes as the scenes in the video sequence

being encoded changes. Frames that are a part of complex scenes require

more bits to encode than slower, less complicated scenes. Complex scenes

include those with large amounts of motion in them, since it is then that the

10

P and B frames are heavily affected. It is therefore evident that these scenes

require more bandwidth for transmission than less complex scenes.

1.3. MPEG structure

In EBF notation, the MPEG video bit stream structure can be specified as

follows:

<sequence>

<group of pictures>

<frame>

<slice>

< sequence header>
<group of pictures>

{ [<sequence header>]
<group of pictures> }

<sequence end code>

<group header> <frame>
{ <frame> }

<frame header> <slice>
{ <slice> }

<slice header> <macroblock>
{ <macroblock> }

The sequence header contains control information needed to decode the

MPEG video bit stream. Repeating the sequence header at the beginning of

every group of pictures makes it possible to begin decoding at intermediate

points in the video sequence. Note that only the first header is required

while the others are optional. The group header includes information such

as a time code. The frame header contains control information about the

frame, such as frame type and temporal reference. The slice header contains

control information about the slice, for example, the position of the slice in

the frame. Each header, whether it be from a sequence, a group, a frame or

11

a slice, begins with a 32-bit start code that IS umque III the coded bit

stream.

The macroblock, however, does not begin with a unique start code. A slice is

therefore the smallest unit available to a decoder for resynchronisation and

hence important in the handling of errors. If the bitstream contains an

error, the decoder can skip to the start of the next slice. Having more slices

in a bitstream allows better error concealment, but uses bits which could

have been used for an improvement in picture quality. Each macro block in

a slice represents an area of 16 X 16 pixels in a frame. Consider a frame of

640 X 480 pixels. There are 1200 (40 x 30) macroblocks in the frame. By

definition, a slice contains a series of one or more macroblocks; the

minimum is one macroblock, and the maximum can be all the macroblocks

in the frame. Slices in the same frame can have different numbers of

macroblocks. Each macroblock header begins with a header containing

information on the macroblock address, macroblock type and an optional

quantiser scale. Macroblocks are of varying lengths.

1.4. MPEG encoding

In an I frame, every macroblock is intracoded. The technique of spatial

compression (intracoding) used to encode I frames in MPEG is essentially

the same as that used for encoding JPEG pictures, since I frames do not

depend on the P and B frames. These I frames are coded using only

12

information present in the frame. I frames typically use about 2 bits per

coded pixel. This coding algorithm includes using the Discrete Cosine

Transform (DCT) in order to transform 8 X 8 blocks of pixels from the

spatial domain to the frequency domain. The algorithm then quantises the

frequency coefficients. Quantisation maps each frequency coefficient to one

of a set of limited number of allowed values. The use of the DCT and

quantisation results in many of the frequency coefficients being zero. The

coefficients are then organised in a zigzag order to produce long runs of

zeros. These coefficients are then converted to a series of run-amplitude

pairs, which are then coded with a variable length code.

In P or B frames, a macroblock may either be intracoded, or predicted using

vanous interframe motion compensation techniques. Much of the

information in a frame within a video sequence is similar to information in a

previous or subsequent frame. The MPEG standard takes advantage of this

temporal redundancy by representing some frames in terms of their

differences from other (reference) pictures. P frames can propagate coding

errors because they are predicted from previous reference (lor P) frames. B

frames do not propagate errors because they are never used as a reference.

Bi -directional prediction used in B frames decreases the effect of noise by

averaging two frames.

13

This concept of motion compensation, also known as temporal compression,

is where MPEG attempts to encode successive frames relative to previous I

or P frames. This technique can improve the compression ratio by about 3

times. In temporal compression, the encoder searches forward or backward

in time for a similar macroblock. A compressed macroblock contains a

spatial vector between the reference macroblock(s) and the macroblock

being coded as well as content differences between the two macroblocks.

When a macroblock in a P frame cannot be efficiently represented by motion

compensation, it is coded in the same way as a macroblock in an I frame.

For the B frames, we can possibly have an interpolated match, which is the

average of the forward and backward blocks. Since a B frame depends on a

reference frame in the future, it cannot be encoded until the reference frame

in the video sequence has been captured and digitised. Similarly, a decoder

cannot decode a B frame until its reference frame in the future has been

received. Therefore, the order in which the frames are transmitted should be

different from the order in which a sequence is displayed. The reference

frame following a group of B frames in a video sequence should be

transmitted ahead of the group.

For example, if the video sequence is as follows,

10 Bl B2 P3 B4 B5 P6 B7 B8 19 BlO B11 P12

then the transmission sequence is,

10 P3 Bl B2 P6 B4 B5 19 B7 B8 P12 BlO B11

14

An MPEG encoder can control its output rate by setting the quantiser scale

in the slice header, and also setting the optional quantiser scale in the

header of each macroblock within a slice. A coarser setting would result in a

lower bit rate at the expense of poorer visual quality. A coarser quantiser

scale would discard some of the high-frequency DCT coefficients thereby

lowering the encoder output rate. This is due to the assumption that the

human eye is less sensitive to such high-frequency information.

1.5. Previous work

[ROSE] found that video sequences such as sports, news and music clips

lead to MPEG sequences with high peak bit rate and a high peak-to-mean

ratio compared to movie sequences. This results from the rapid movement of

a lot of small objects, which increase the amount of data necessary to

encode the sequence. [ROSE] also concluded that for modeling of frame and

GOP sizes, either histograms, Gamma, or Lognormal probability density

functions can be used. [ROSE] found that there are long-range

dependencies in the frame sequences although these were difficult to

ascertain using the frame-by-frame correlations. 1

I The term correlation is used to describe the degree of linear association
between two variables X and Y. When the coefficient of correlation (r) has a
value close to zero, the data is not linearly related. However when r has a
value close to +1 or -1, one can assume a positive or negative linear
relationship between the two variables. Terms that are correlated over time
are said to be autocorrelated.

15

Other ways to detect long-range dependencies include variance-time plots or

periodograms. Our paper has attempted to discuss this problem in more

depth and has suggested solutions to alleviate it.

In their paper, [LAM et all concluded that the rate fluctuations from one

frame to the next are most troublesome. Consider an I frame that is 100

kbits in size followed by a B frame 10 kbits in size. If a video application

specifies a frame rate of 24 frames per second, sending the I frame over a

network for 1/ 24th of a second would require a transmission capacity of

2.34 Mb/s. During the next 1/24th of a second, the transmission capacity

required for the B frame drops radically to 0.234 Mb/s. These large

fluctuations are a consequence of the use of interframe coding techniques in

MPEG.

[LAM at ell also presented an algorithm for smoothing frame-to-frame rate

fluctuations in a video sequence. The algorithm's performance is improved

by a 'lookahead' strategy that makes use of the repeating pattern of I, P and

B frames.

[LI et all introduced the concept of fast playback where only n out of every m

frames are displayed (m > n). These frames are displayed at the normal

frame rate, but (m-n) frames are not displayed at all. The choice of frames to

be dropped determines the nature and quality of the fast playback display.

16

The nature of the B frames dictates that they can always be dropped

without altering the meaning of the rest of the video stream. Each P frame,

however, depends on another I or P frame. The video stream will be

impacted negatively if these P frames are dropped at random. Given a 12-

frame GOP (e.g. hB2B3P4BsB6P7BsBgPlOBllB12 h3B14BlSP16 ...) we could

speed up the playback by a factor of 12 by displaying only the I frames.

Dropping just the B frames would increase the playback speed by a factor of

3. It would not be possible, however, to speed up the playback by a factor of

6 by only transmitting hP7 h3P19 ... , i.e. only displaying one I frame and one

P frame from each GOP. This is because P7 is predicted and only makes

sense relative to P4, which has been dropped.

In their paper, [KRUNZ et all suggest a bandwidth allocation scheme for

VBR video traffic using the temporal structure of MPEG sources. This

scheme results in an effective bandwidth that, in most cases, is less than

the source peak rate. This effective bandwidth depends on the arrangement

of the multiplexed streams, which is a measure of the degree of

synchronisation between the GOP patterns of different streams.

A major challenge in designing B-ISDN / ATM networks is to guarantee the

Quality of Service requirements for all transported streams without

underutilising the available bandwidth capacity. One could allocate

bandwidth based on the peak rates of the sources in order to satisfy the

17

Quality of Services requirements. This method, however, leads to low

utilisation due to the burstiness of many sources (high peak-to-mean ratio).

Statistical mUltiplexing can be used to increase utilisation by allowing

available bandwidth to be shared among various streams. [KRUNZ et all

investigates the bandwidth requirements of video streams that are

generated by MPEG encoders. They show that statistical multiplexing can be

used to an advantage with MPEG video traffic while providing stringent and

deterministic Quality of Service guarantees.

[Doulamis et all analysed the statistical characteristics of the three types of

frames found in an MPEG stream over a B-ISDN / ATM network. They

studied the autocovariance and probability density functions of these

frames and then proposed two new models that approximate both the

statistical properties and the traffic characterisation of MPEG data streams.

1.6. Conclusions

Unlike [ROSE] and [Doulamis et al], this paper does not attempt to find

statistical models for MPEG data streams. Although some statistical

characteristics are used in this work, we have not presented them as a

central theme.

18

This work is similar to the above mentioned papers in that we have also

found long-term as well as short-term variations in the MPEG data. We have

only considered a single MPEG stream and have suggested a few bandwidth

allocation methods. [KRUNZ et all on the other hand, have used the

mUltiplexing of video streams as a possible method for allocating bandwidth.

Our methods will be described in more detail in the next few chapters.

19

Chapter 2

Buffering

buffer (n.) a person or thing that lessens shock or protects from

damaging impact, circumstances, etc.

a memory device for temporarily storing data. [COLLINS]

2.1. Introduction

In the Information Technology environment, a buffer is a temporary

storage mechanism. A buffer can be placed anywhere in a network. It is

usually placed near the destination however, because it can be used to

smooth variations in a video stream, which makes the displaying of the

video much less complicated for the decoder. As data arrives at the buffer

it is stored temporarily until the destination is ready to receive it. If the

buffer is large enough, the data can be stored for a long period of time. The

destination can then receive data at its preferred rate, which is usually

very different to the arrival rate. In the context of this study, data would

arrive at a variable frame rate while it would generally leave the buffer at a

constant frame rate. In this way a buffer can be used to smooth the traffic

flow.

20

It is important to note that a constant bit rate is very good for network

transmission because network resources can be allocated optimally, and

used to their capacity. On the other hand, a constant frame rate is

essential for viewing of the video stream. For example, an encoded MPEG

video's normal frame rate is usually about 24 frames per second. Since

frames are of different sizes we cannot have a constant frame rate as well

as a constant bit rate throughout the movie. The problem of irregular

bitrates caused by network latencies aggravates the issue. Frames will

travel from a source (video player) across the network, arriving at the

buffer at irregular intervals. A buffer placed near the destination can

function as a type of adaptor or modifier of the traffic. The buffer smoothes

the incoming irregular traffic flow into the more regular 24 frames per

second displayable rate. In this way, the video stream is smoothed of

almost all variation.

Proposals have also been made where buffers are placed at the entrance of

the network. This would not necessarily prevent the data from becoming

jittery during its lifetime in the network. Due to network activity and

congestion, packets may be lost or slowed down while traversing the

network. The transfer of data from the buffer over the network to the

destination would not be as smooth as it would if the buffer were placed in

21

close proximity to the destination. This could mean being placed inside of

a set-top box as part of the MPEG decoder/player.

In a video-on-demand system, VCR functions such as stop, pause, rewind

and fast-forward may be required. The buffer in the set-top box can also

be used to service some of these requests, such as pausing and a short

rewind.

2.2. Previous work

For a video-on-demand system, buffering can be used at the server or at

the destination, i.e. the set-top box. The amount of buffering (usually

measured in Megabytes) which can be used at these points is an important

Issue.

i) Buffering at the video server

[DAN et all introduce buffering concepts that alleviate burstiness in video

servers. Read-ahead bUffering is where blocks are read and buffered ahead

of the time they are needed. This storing of data improves the on-time data

delivery ability of the server with only a small additional cost. This cost

includes the cost of the memory for use as a buffer as well as the extra

time delay of reading the buffer. Additional read-ahead buffering improves

jitter tolerance and hence, the real-time performance of the video server.

22

This type of buffering cannot, however, prevent jitter and data loss

occurring in the network.

Another concept is that of interval caching used predominantly in video-on­

demand servers where the same data is served to more than one client.

Here the data is cached during the intervals between successive streams,

which are not synchronised. Closely following streams can exploit the

blocks of data that were fetched by the first stream, if memory space is

available to retain them. This type of buffering simply reduces the amount

of time used to serve videos and the disk traffic within the server, but does

not necessarily alleviate the problem of jitter within a video stream.

Buffering is also used to smooth the bitrate fluctuations of encoder output

from one frame to another. Without such smoothing, the performance of

networks carrying this type of data would be adversely affected. [LAM et all

use the concept of lossless smoothing to eliminate rate fluctuations that

are a consequence of interframe coding in MPEG. By placing a buffer at

the sender one can smooth out frame-to-frame variations. For example, let

the distance between each I frame be 9, let the frame rate be 24 frames per

second and let Si ... Si+8 be the frame sizes for one GOP. Each frame in that

GOP is sent to the network at the same rate, namely,

23

(Si + Si+l + ... + Si+8) * 24 [average frame size multiplied by frame rate]
9

Using a buffer at the sender, all frames in that GOP can be sent at the

same rate regardless of their individual sizes. The rate of the coded stream

still fluctuates from GOP to GOP, due to scene complexity and the amount

of motion in a scene. In Figure 2.1 below, the encoder sends out an

encoded bit stream. This enters the buffer at the host at a rate equal to the

frame rate of the MPEG encoding. Since the frames are different sizes the

buffer fills up at a variable rate. The bitrate leaving the host and entering

the network is near to constant due to the smoothing effect of the buffer.

No data loss occurs in this buffering technique.

,--1
I

HOST
Bit rate

I ENCODER II---
I
I after I .. I

buffering I
I
I aGOP

.. ... To
NETWORK

Figure 2.1. - Buffering at sender for lossless smoothing

ii) Buffering at the set-top box

According to [FENG et al], when the buffer size is too small, movies with

large variations in frame sizes tend to have large peak bandwidth

requirements due to the limited ability of the buffer to smooth large peaks.

For small buffers, the peak bandwidth rate is generally based on the

24

maximum frame SIzes, since these large frames cannot be stored as one

frame in a buffer and hence they cause large fluctuations in the required

bandwidth. For large buffer sizes, the peak rate is based largely on average

frame sizes and the long-term burstiness of the video stream. Using large

buffers, one can remove most of the burstiness in the stream through

prefetching of data. More than one frame can be stored in a large buffer

and hence this averages out the required bandwidth.

[LI et all found that it is advantageous to group MPEG frames into

segments. In most research papers, a segment is synonymous with a GOP,

but [LI et all proposed a generalised scheme for grouping frames into

segments of any desired length. A frame storage order known as the

minimal causal order was introduced. This was then used as the basis for

grouping frames into segments. This paper also looked at the construction

of the MPEG stream itself, paying specific attention to the I, P and B

frames in an MPEG video stream. When a B frame is to be displayed, the I

or P frame which follows in the playback order needs to be present in the

buffer for the successful decoding of the B frame. A buffer storage of at

least 2 frames is therefore necessary. It can be shown that the I-frame is

either directly, or indirectly, responsible for the successful decoding of a

certain number of frames that follows it. According to [LI et all therefore,

when segments are retrieved consecutively for the display of a piece of

25

video, the first such retrieved segment should be one with an I-frame in it.

Note that a GOP will always contain one I frame.

[JAHANIAN et all used buffering in conjunction with the critical bandwidth

allocation algorithm. This algorithm creates a bandwidth allocation plan

for video data. The following diagram depicts a possible plan creation.

Points of
renegotiation -------..

\
Required buffer
space

Beginning of
movie

Frame number

Fmovie(i)

1
End of
movie

Figure 2.2. - critical bandwidth allocation example

The minimum buffer size required is represented by the maximum vertical

distance between the critical bandwidth allocation plan (dotted line) and

the function Fmovie(i) (solid line). The function Fmovie(i) is given as the

cumulative summation of frame sizes for the movie. The four points of

26

renegotiation show where the amount of required bandwidth was

decreased during the streaming of the video. The slope of each dotted line

between renegotiation points is the bandwidth requirement for that run.

According to [JAHANIAN et al], the required buffer size is largely due to the

long-term burstiness of the video stream, and to a lesser degree, the length

and average frame sizes of the videos.

[JAHANIAN et all also show that for a small amount of client-side buffering

one can reduce the number of bandwidth changes necessary. In their

experiments, 20 Mbytes of buffer space on the client-side could reduce the

total number of changes for the video clips tested, from over 100 changes

(in some cases) to less than 10 for all of the videos. Most of the video clips

used were full-length movies close to 100 minutes long. It was also shown

that if a movie has a sustained area of smaller frames followed by a

sustained area of larger frames, the amount of buffering needed tends to

be much higher.

2.3. The leaky bucket

The leaky bucket algorithm, discussed m more detail at

http://poisson.ecse.rpi.edu/ ~bergr IBBN I , is a type of buffering algorithm

that is used in ATM networks. It is a buffer mechanism used at the

27

'entrance'to the network, which constrains the user's data to ensure that

it conforms to certain parameters. These parameters include the average

bit rate, the peak rate, and the sustained peak time. The buffer is modelled

as a bucket of fIxed size with a leak. The average bit rate is the maximum

rate at which data can leak from the bucket. The peak rate is the

maximum rate at which data can be added to the bucket. The sustained

peak time is the maximum length of time that peak level traffIc may occur.

When the client negotiates the required parameters, the size of the bucket

will be determined by the need to buffer the peak level traffic for the

sustained peak time. Once the bucket overflows, data is discarded. This

bucket model provides a policing mechanism, which ensures that the

network is isolated from client streams that violate their negotiated

contracts.

In the case of an MPEG video stream, the data stream enters the bucket at

a variable frame rate. The buffer is then drained at a constant rate of 24

frames per second. The buffer level will always be changing.

In chapter 6 we have used a leaky bucket concept of constantly checking if

it is too full or too empty. We use the moving average of the Starwars data

in order to do the monitoring. If the bucket gets too full, we increase the

leak; while if it gets close to empty, we decrease the rate of the leak. In this

28

way, the data inside the bucket can be regulated. The following diagram

(Figure 2.3.) shows what a leaky bucket regulator does.

,---s_ou_r_c_e--ll U
Non-
conforming

8 data is
discarded

r----------_

n Conforming data drains
at a constant rate

Figure 2.3. - The leaky bucket analogy

2.4. Lookahead

Buffering gives us the ability to smooth a group of frames that are of

varying sizes. This involves storing these frames for a short period of time

before they are used. Temporarily storing a frame gives the receiver the

ability to have some intelligence about the content of that upcoming frame

before it is displayed. This effectively introduces lookahead into the

stream.

2.4.1. Transmission order

As we know, the I frame in a GOP is the coded still image while the P

frames are the deltas, or differences, from the most recent I or P frame.

The B frames are interpolations between the I and P frames. We can

29

therefore say that the frames in a GOP are dependent upon one another. B

frames are predicted from the closest two I or P frames, one in the past

and one in the future. The sequence of decoded frames ready for display

usually looks like this,

10 Bl B2 P3 B4 Bs P6 B7 B8 Pg BlO B11 h2 B13 B14 PIS ...

Now, in order for a B frame to be processed (coded and sent or decoded

and displayed), the P frame or I frame which is associated with that B

frame needs to be processed first. Hence, for the decoder to work, one has

to send the associated P or I frame before the B frames. The sending order

of frames would then be,

10 P3 Bl B2 P6 B4 Bs Pg B7 B8 h2 BlO B11 PIS B13 B14 ...

At the starting point of the MPEG video stream, one would have to decode

the 10 frame, then the P3 frame and keep them both in memory in order to

decode the B frames (Bl and B2). One could display the 10 frame while

decoding the P3 frame, and display the B frames as one decodes them and

then display the P3 frame as one decodes the next P frame (P6), and so on.

This description implies that the buffer should be large enough to hold at

least 2 frames while the decoder decodes another. The sender would then

be 2 frame-timeslots ahead of the receiver, hence introducing a small

amount of lookahead into the system.

30

2.4.2 Frame size differences

The worst case scenario in MPEG buffering would be where the en tire size

of a GOP is made up of the I frame (fo) (which is simply a still picture) and

no other frames; i.e. all the other P and B frames are 0 in size. If we

assume that the transmission capacity is equal to [GOPsize / 12] per

frame-timeslot (for a GOP made up of 12 frames) then the I frame would

require all twelve frame-timeslots to download completely. If the I frame is

3 Mbits in size, then the buffer would receive only 0.25 Mbits during each

timeslot (one twelfth of its total size). Each twelfth would arrive at time to,

tl, t2 ... , tll, and the I frame (fo) would only be displayed at t12, when the

next I frame is being sent. We would therefore see a delay of at least 12

frame-timeslots, which is equivalent to 1 GOP, between the sender and the

receiver. In this case we have a receive latency of up to 12 frame-timeslots.

2.5. GOP Averaging

The largest frame in the Starwars data is 185267 bits in size. If we wanted

to carry the entire movie without any buffering, we would require a

bandwidth of 4.24 Mbps.

An obvious improvement on the above would be to use GOP smoothing,

which implies a small amount of buffering; enough to hold the largest

GOP. In our test data the largest GOP is about 0.9 Mbits in size. The

31

required bandwidth in this case would be 1.80 Mbps. We have therefore

already reduced the required bandwidth for the entire Starwars movie by

using a small amount of buffering.

In order to compare the effect of using GOP sizes instead of frame sizes we

have plotted the bandwidth requirements for the Starwars data set. Using

the frame sizes and GOP sizes as input, results in different bandwidth

requirements for the movie. In the following graph we have plotted the

bandwidth required for every 5 minutes of the movie. We see from this

graph that the required bandwidth when using GOP sizes is always below

the bandwidth required for the frame sizes. There is a visible amount of

smoothing that occurs due to the use of GOP sizes. This implies that the

small amount of buffering used within a GOP can smooth the short-term

variation in a MPEG video stream.

32

,-..

'"

--+-frames 5mins --+- gop 5mins
- - maximum frame bandwidth· ... 'maximum GOP bandwidth

4.5~--~

4+-~---------------------..--.H-----------------------~--~

3.5~r----------------------r~~-+---------------------+-4~~

~ 3+-~--------------------4-~~~~----------------~~--~__1
..c
:::!!
~ 2.5t-~~~~~~----~~~~------~--~~~~~~----------~
,..c::

~ 2+-----------~~--=---~----------~----------------------__1
~
; 1.5+----------------------------7~----------------~-----------,

..c

0.5+-----~--__1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

interval number

Figure 2.4. - Bandwidth demands for maximum averaged GOPs versus
maximum raw frame sizes over 5-minute intervals

In our experiments in chapters 3 to 6, we have used GOP sizes as well as

frame sizes as the input data. The differences show the effect of a small

amount of buffering used for a MPEG video stream. We have shown that

the sizes of different frames within a GOP can be smoothed with the aid of

a smallish buffer. A buffer that can hold an entire GOP for the Starwars

data will not need to be larger than about 118 Kbytes. Each GOP would be

approximately half a second long with respect to the movie time since the

frame rate for the Starwars data is 24 frames per second and there are 12

frames in these GOPs.

33

2.6. Simulator

We have seen that the frame-to-frame or even GOP-to-GOP variations can

cause problems for networks and set-top boxes in a video-on-demand

system. In section 2.2. we have presented possible solutions to the short­

term variation problem, based on related research. In this section we will

introduce a tool to assist with finding an adequate buffer size for the

MPEG video stream under investigation.

Our initial experiment included constructing a simple simulator, which

used the Starwars data from Bellcore, see [GARRETI et all. Most of the

data used throughout this paper originates from traces of a motion picture

done at Bellcore. This data is available from [GARRETI et al] as a

statistical analysis of a 2-hour long sample of Variable Bit Rate (VBR)

video data. The video under investigation, Starwars, contains quite a

diverse mixture of material ranging from low complexity or motion scenes

to those with very high action. The coding of this data set has been

simplified somewhat by the fact that only the luminance component of the

video source has been coded. The movie is therefore, in effect, a

monochrome video.

Our simulator assumed a buffer of size X (Megabytes) was placed at the

receiving end of the network with a given bandwidth of size W (Megabits

34

per second). The values of X and W were varied while we measured the

number of times the buffer underflowed. The bandwidth for each

simulation was kept constant throughout the entire run. We did make the

assumption that the buffer would not overflow since we would only move

data into the buffer if there was space for it. This assumption requires a

flow-control algorithm that can stop the sender from delivering data when

the buffer is full or near to full. The values of X and W need to be kept

within reasonable limits, since buffer size could rapidly increase the cost

of the set-top box for the end-user. In our initial experiment, bandwidth

values of 0.2, 0.3, 0.4 and 0.5 Megabits per second were used. The buffer

sizes used were the values of 0.5, 1, 1.5 and 2 Megabytes. Since there are

174136 frames in the data set, there could be no more than 174136

underflows during the running of the simulation.

35

Budlfe:r s~ If)] 0.5 Mbytes .1 Mbyte 01.5 Mbytes 02 Mbytes I
70000

60000

50000

'" ~ 40000 0
I;:l ...
~

-0 30000 c
::s

20000

10000

0
0.2 0.3 0.4 0.5

bandwidth (Mbps)

Figure 2.5. - Total underflows vs bandwidth for various buffer sizes
and bandwidths

Figure 2.5. shows the different bandwidth sizes used and the respective

underflow counts that were generated by the simulator using the Starwars

data set. As would be expected, the smaller buffer sizes resulted in a larger

number of underflows. As the bandwidth was increased and the buffer size

increased, the number of underflows decreased until none occurred with a

bandwidth of 0.5 Mbits per second and a buffer size of 2 Megabytes. We

see that for a small increase in available bandwidth, the number of

underflows is greatly reduced. For example, the difference in the number

of underflows decreases substantially with an increase of 0.1 Megabits per

second bandwidth from 0.2 to 0.3. One can also note that for the smallest

36

bandwidth, increasing buffer size to 2 Mbytes does not significantly reduce

the number of buffer underflows. According to [GARRETI et all, the

average bandwidth of the MPEG video stream under investigation is

approximately 0.36 Megabits per second.

The SIze of the buffer requirements will increase as the available

bandwidth decreases. For example, at a bandwidth of 0.4 Mbps we require

a 12 Mbyte buffer for 0 underflows, while a bandwidth of 0.3 Mbps (below

average) requires 52 Mbytes for 0 underflows. In our simulation, we are

only interested in steady-state behaviour, hence we will not cover the case

when the available bandwidth is below the bandwidth average for the

en tire movie.

[GARRETI et all also show that the peak-to-mean ratio for the Starwars

data is 11.88. This ratio is a primary indicator of the variability of the

stream. In the case of our data set, the peak frame size is almost 12 times

the size of the average frame size. The range of the data is also quite large,

which adds to the bursty nature of the video stream. The maximum frame

size is 185267 bits, while the minimum frame size is only 476 bits.

Using this simulator along with the data and analysis of [GARRETI et al],

we have attempted to determine to what extent the strategic placement of

37

one or more buffers in a network can smooth multimedia traffic; in this

case MPEG video streams. If there are too many occurrences of frame loss

or underflows then adjustments to the approach need to be made. We

have, however, shown that a buffer of 2 MB is efficient for smoothing our

MPEG data set when used in conjunction with a bandwidth of 0.5 Mbps,

since the buffer does not underflow at this rate.

Note that any bandwidth requirement is bounded on the upper and lower

side. The upper bound would be the peak frame size. It would be

unnecessary to allocate more than the maximum frame size as a

bandwidth requirement. The lower bound would then be the average frame

sIze.

In the above experiment, our simulator has used individual frame sizes as

input. In essence we have used the bandwidth required for each frame.

Therefore, large bandwidth requirements do not last for long periods, but

rather only for a few seconds.

2.7. Conclusions

In this chapter we have shown how buffering at the set-top box can assist

in coping with the short-term variation found in MPEG encoded data.

Buffering a variable bit rate datastream can reduce the peak bandwidth

38

requirements of a MPEG video stream. We have also explored the tradeoff

between buffer size and average bandwidth. We have shown how the use

of a large enough bandwidth and buffer size can reduce the number of

buffer underflows during the transmission of a movie over a network.

We have gIven some descriptions of prevIOUS research where small

amounts of buffering and caching have been used at the source of the

video stream. The leaky bucket approach to buffering, used at the

entrance to a network, has also been introduced in this chapter. We have

seen how this type of buffer can be used to regulate conforming and non­

conforming data.

A buffer can be placed anywhere in the network, not necessarily just at the

sender or just at the receiver. It must be noted however that placing the

buffer at the entrance to a network will not be able to prevent the jittery

effect caused by a congested network. Buffering can also be useful for

lookahead in a data stream. In rest of this paper, we have investigated

mechanisms for dealing with the possible long-term variations in MPEG

video streams.

It has been shown in this chapter that grouping frames into a GOP has the

effect of smoothing the data. If we have enough buffer space to hold an

39

entire GOP (half a second of movie time), then the required bandwidth is

reduced substantially. With this result in mind, we can approach the

following chapters using GOP data as the input to most of our

experimen ts.

Not only does buffering benefit us by reducing the required bandwidth for

a movie, but it can also be used to smooth any jitter, which is caused by

network latency.

40

Chapter 3

Renegotia tion

3.1. Introduction

MPEG video traffic is inherently bursty, especially in the short-term, and it

also exhibits long-term variations with respect to bandwidth requirements.

This short-term variation is largely due to the different frame sizes which

occur in MPEG encoded streams. The short-term burstiness can be dealt

with by using buffering techniques as shown in Chapter 2.

Long-term variation is due to the gradual increase or decrease of the

average frame size during a movie. When the content of a movie is complex,

the average size of the frames will increase. This will happen rapidly when

there is a change from one scene containing very little action to one where

there is a large amount of complexity and motion. There will then be a

gradual decrease in the average frame size, as the scenes become less

complex. These gradual increases and decreases of frame sizes lead to long­

term variation in the movie. Buffering will not be able to reduce this type of

variation since long-term variation occurs gradually, over a large number of

frames, while buffers are generally chosen to handle a small number of

frames. We will attempt to manage these types of fluctuations by

41

renegotiating the available bandwidth at intervals during the movie in order

to increase or decrease the required bandwidth when necessary.

3.2. The problem

In order to show that long-term variation does exist in our test data we need

to compare the frame sizes in Table 3.1. to those in Table 3.2. There is a

large difference in the average frame sizes of the two tables. To show that

this difference is statistically significant, we have tested the hypothesis:

Ho : 112 > III vs Ha : 112 = III (Ili refers to the frames in Table 3.i)

Here III and 112 are the mean frame sizes from different sections of the

Starwars movie. According to our test, there is a definite statistical

difference between the average frame sizes within the movie. This difference

shows that there is a long-term variation of frame sizes in this video stream,

which can cause bandwidth allocation problems. The rest of this chapter

suggests ways to counter this problem.

42

Type
I
B
B
P
B
B
P
B
B
P
B
B

Size
12609
7022
11091
10960
3053
11531
11159
2357
11440
11647
11911
11398

Average frame size (~11) 9681.5

Table 3.1. - Example of frame sizes near the beginning of the Starwars
data

Type Size
I 49150
B 23668
B 24465
p 46802
B 24863
B 24311
p 44832
B 22666
B 23880
p 44227
B 23508
B 24676

Average frame size (~2) 31420.67

Table 3.2. - Frame sizes from the middle of the Starwars data

43

3.3. Previous work

[NORIAKI et al] have proposed a dynamic bandwidth allocation method for

an interactive video-on-demand system. Required bandwidth is determined

based on the queue length at the set-top box. No pre-calculation is

necessary for this scheme hence it is beneficial for interactive video-on­

demand. Used in conjunction with a buffer at the set-top box, the

bandwidth is increased when an underflow is predicted and decreased when

an overflow is predicted. This philosophy is similar to that of the "leaky

bucket" algorithm mentioned in Chapter 2. In general, either the set-top box

can monitor its own buffer (but then some sort of signalling information

would be required so that the set-top box can inform the sender when to

increase or decrease the traffic flow) or the sender, given knowledge of the

set-top box buffer size, can model what will be happening at the remote end,

and adjust the bandwidth on that basis.

[JAHAN et all introduced an optimal bandwidth allocation (OBA) algorithm

that minimised the total number of bandwidth changes necessary for

continuous playback. The OBA algorithm IS a variant of the critical

bandwidth allocation (CBA) algorithm.

For a flxed buffer constraint, the CBA technique results in plans for

continuous playback of stored video that have (1) the minimum number of

bandwidth increases, (2) the smallest peak bandwidth requirements, and (3)

44

the largest minimum bandwidth requirements. The OBA algorithm

considers a more complex case where, in addition to the three critical

bandwidth allocation properties, it minimises the total number of bandwidth

changes necessary for continuous playback.

3.4. Our approach

We have investigated the delivery of MPEG video streams over negotiated­

bandwidth channels. A number of methods for adaptively renegotiating the

delivery bandwidth have been considered. In each method, a bandwidth is

assigned at the start of the video stream and it can then be adjusted

(renegotiated) according to the needs of the video by whatever technique is

used in the given method.

Using the a priori knowledge of stored MPEG video data (the frame sizes) we

have developed techniques which allow us to know at the start of the video

stream what the bandwidth requirements for the entire duration of the

movie will be. By pre-analysing a movie and comparing scene and group of

picture sizes we are able to detect the points in a movie at which to adjust

the available bandwidth in order to reduce the effect of long-term variation

in MPEG video streams. Since not all video servers will have the a priori

knowledge of frame sizes for the movies they are serving, we have also

experimented with a dynamic renegotiation approach. Using the moving

average statistic we are able to dynamically adjust the required bandwidth.

45

The two basic strategies covered in chapters 4, 5 and 6, with respect to

bandwidth renegotiation, are therefore the pre-analysis approach and the

dynamic analysis approach. The pre-analysis approach calculates the

bandwidth required for known interval lengths. These intervals may be of a

flxed size throughout the movie or they may be of varying sizes. Chapter 4

deals only with the fixed interval scenario. Chapter 5 uses more flexible

methods for choosing interval sizes, and considers heuristic methods in

order to determine possible renegotiation points. The scene changes within

the movie are also considered as possible sites for renegotiation.

The dynamic analysis approach, discussed in Chapter 6, calculates the

amount of bandwidth required without the use of pre-determined interval

lengths. Using a moving average, we renegotiate for an increase or decrease

in required bandwidth based on upper and lower bounds that change

throughout the length of the video stream.

In order to compare the results from the above experiments we will need a

base measurement against which they can be evaluated. We have therefore

calculated the minimum bandwidth necessary to carry the entire movie

without renegotiation and then use that as a basis, against which, any cost

savings accrued during renegotiation, can be measured. Since we are using

one bandwidth value throughout the entire datastream, there will only be a

single negotiation of bandwidth at the start of the movie.

46

3.5. Assumptions

For our experiments, we assume that the network has adequate bandwidth

available for use by the MPEG video streams at all times. In this way, the

cost will not be affected by a lack of bandwidth. Furthermore, we assume a

linear cost function, i.e. doubling the bandwidth requirement would double

the cost. This implies that the cost of carrying K Megabits is independent of

the bandwidth, i.e. 100 Mbps for 1 second costs the same as 1 Mbps for 100

seconds. The unit of costing is therefore taken as Megabits, i.e. one Mbps

for 1 second would incur one unit of cost, while 10Mbps for 60 seconds

would cost 600 units. We assume the objective function for the

minimisation problem must minimise these unit costs. The costs involved

would include the amount of bandwidth actually used over each time period

as well as the cost of renegotiating between a high and a low bandwidth.

This renegotiation cost is also assumed to be a constant cost incurred every

time we renegotiate and can also be expressed in our units.

Cost = L(no. of seconds * bandwidth) + (no. of renegotiations * K)

where K = renegotiation cost

This costing function is calculated as follows. We sum up the amount of

bandwidth used over the length of time that the specified bandwidth was

used. Whenever the bandwidth is adjusted there is a renegotiation cost

equal to K. Finally, we assume that the cost of a certain bandwidth over a

47

fixed interval will be fIxed, and will not depend on external factors such as

the current network load.

Given the above costing algorithm, we are now able to calculate the cost of

the minimum bandwidth required to transmit the entire video stream, using

only one negotiation of bandwidth at the very beginning of the transmission.

We would obtain a cost of approximately (30767 + K) units when using the

frame sizes of the movie as input, and a cost of (13080 + K) units when

using the GOP sizes. The small amount of buffering implied when using

GOP sizes instead of frame sizes reduces the cost of transporting the movie,

which is consistent with our findings in Chapter 2. We have used these

costs as a basis against which we will compare the other renegotiation

strategies in Chapters 4, 5 and 6.

3.6. Conclusions

This chapter has identifIed the problem of long-term variation. Its presence

in the Starwars data has been verifIed. The size of any frame is dependent

on the content of the movie at that point.

In order to reduce the negative effect of this long-term variation, we have

introduced the concept of renegotiation in this chapter. We have mentioned

a number of methods that can be used for adaptively renegotiating the

delivery bandwidth for an MPEG video stream. These methods include using

48

fIxed intervals at which to renegotiate as well as usmg heuristics to

determine various interval lengths. A dynamic method of using the moving

average of the data set will also be discussed in detail in Chapter 6. A simple

model against which we will compare the costs has been proposed.

49

Chapter 4

Fixed Intervals

4.1. Introduction

Chapter 4 deals only with the renegotiation of bandwidth over fixed

intervals. Each interval will be of the same length with respect to time, but

different bandwidths will be required to transport the data for each

interval since the amount of data per interval will vary. The number of

intervals chosen will have a direct effect on the overall cost of the

transmission of the movie. This is due to the fact that each interval implies

a new bandwidth, which implies another renegotiation would be required.

Assuming a non-zero renegotiation cost, a large number of intervals would

increase the total cost.

Based on our results from Chapter 2, we only need to use the GOP sizes in

our experiments. We have seen how the use of buffering can significantly

reduce the bandwidth required to transport an entire movie.

4.2. Pre-analysis using Fixed Intervals

Fixed-interval renegotiation simply splits the video stream into fIxed

intervals and renegotiates the required bandwidth at the start of each

interval. The bandwidth requirement will depend on the GOP sizes within

50

each interval. Rather than attempting to negotiate for the mmnmum

bandwidth for the entire video stream, the video server will need to

negotiate for a different, and often reduced, bandwidth requirement for

each interval. Clearly, renegotiating the bandwidth for each GOP will

minimise the bandwidth requirements, but because of the reasonable

assumption that there are non-zero renegotiation costs, this method will

not necessarily return the least cost. We wish to choose the interval size in

such a way that the total cost will be minimised.

We have divided the mOVIe into intervals, 1 GOP (half a second), 7.5

seconds, 15 seconds, 30 seconds, 1 minute, 2 minutes, 5 minutes and 10

minutes. The bandwidth for each interval was calculated using the

maximum GOP size for that particular interval. For example, if the largest

GOP in an interval of X minutes was 500 000 bits, the required bandwidth

for that interval would then be 0.95 Mbps. The bandwidth would be

maintained for X minutes of the movie before a renegotiation would take

place at the beginning of the next X-minute interval. This method would

only be possible if the GOP data were available prior to the streaming of

the movie, since the server would need to know what the largest GOP for

each interval would be before negotiating a bandwidth for that interval.

In Figure 4.1. we have plotted the upper and lower boundary for the

required bandwidth for the Starwars data. The bandwidth required for

51

each GOP has been plotted against the maximum bandwidth required if

only one bandwidth was set (implying no negotiations of bandwidth).

I-every GOP --maximum GOP bandwidth I
2

1.8

1.6

-<I)
1.4

0..
.n 1.2 ::!l
...:: 1 ...
~
~ 0.8 ~
1:
as

0.6 .n

0.4

0.2

0 "'" M QI on "'" C"') OJ on "'" M QI on "'" C"') OJ on "'" C"') OJ on
00 "'" on "It C"') Q 00 "'" ID "It M Q Q'I "'" ID ~ CO') N Q Q'I "'" ID
on "'" CO') Q'I on ID N 00 "It Q ID N "'" CO') OJ on "'" CO') 00 ~ Q N N C"') "It "It on on ID "'" "'" 00 00 Q'I Q'I Q N N CO') "It--

interval number

Figure 4.1. - Bandwidth for every GOP vs bandwidth for largest GOP

In Figures 4.2. and 4.3., we have plotted the required bandwidth for 2-

minute and 5-minute intervals respectively, using the GOP sizes as the

input data. For our data, 1.80 Mbps is the maximum bandwidth required

if there were to be no renegotiations during the movie. We see here that a

bandwidth of 1.80 Mbps is not necessary to maintain throughout the

entire movie. In the following two graphs, 1.80 Mbps has been plotted as a

52

comparison. We have also plotted the average bandwidth required if we

renegotiated after every GOP.

-+-2mins - - - Maximum GOP bw --Ave bw for every GOP

2

1.8

1.6

,....,. 1.4 ...
p..

..0 1.2 ~

.c:: 1 -"'0
-~

0.8 "'0
c:
\!II

..0 0.6

0.4

0.2

o

interval number

Figure 4.2. - Bandwidth requirements for all 2-minute intervals (GOP

sizes as input)

53

I--+-5mins - - - Maximum GOP bw - Ave bw for every GOP I
2

1.8

1.6

~ 1.4 '" 0..
..0

1.2 ::s
..c:
~
.~

0.8 "0
s::
as 0.6 ..0

0.4

0.2

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

interval number

Figure 4.3. - Bandwidth requirements for all 5-minute intervals (GOP

sizes as input)

Immediately we notice the large number of renegotiations of bandwidth

that occur when the movie is divided into 2-minute intervals. There are 61

renegotiations in Figure 4.2. as opposed to only 25 in Figure 4.3. Both

graphs show a maximum bandwidth requirement of 1.80 Mbps. However,

the average bandwidth requirement for all 2-minute intervals is 0.82 Mbps

whereas the average for all 5-minute intervals is 0.946 Mbps. Over a

period of one hour, this equates to a difference of 56 Mbytes. Notice also

the large area between the lowest graph line and the constant 1.8 Mbps

line. This is the effective 'wasted bandwidth' if we cannot renegotiate. It is

this area that we seek to minimise.

54

It may be of interest to the reader to note that the peaks in the middle of

the two previous graphs are due to scenes in the Starwars movie, which

contain large amounts of motion.

In the following table (Table 4.1.) we have averaged the bandwidth required

over all X-minute intervals for each experiment. As was expected, the

smaller averages are associated with the shorter intervals smce the

average bandwidth over the entire movie is about 0.36 Mbps.

Interval GOP
Size Avebw Cost

Every GOP 0.36 2590 +
Mbps 14512K

Every 7.5 0.52 3768 + 968K
sees Mbps
Every 15 0.58 4202 + 484K
sees Mbps
Every 30 0.65 4704 + 242K
secs Mbps
Every 1 min 0.73 5322 + 121K

Mbps
Every 2 mins 0.82 5970 + 61K

Mbps
Every 5 mins 0.95 6977 + 25K

Mbps
Every 10 1.05 7931 + 13K
mins Mbps
Base 1.80 13080 + K

Mbps

Table 4.1. - Costs for f"lxed interval approach

55

The costs in the above table are calculated usmg the cost function

introduced in Section 3.5. where cost = L(no. of seconds * bandwidth) +

(no. of renegotiations * K). We have summed the bandwidth used over

each interval and added the cost of all renegotiations necessary. For

example, if we renegotiate at the start of every GOP there will be 14512

renegotiations (equal to the number of Gaps). There are 13 intervals of 10

minutes in length hence there are 13 renegotiations in this case. In fact,

the movie is just over 2 hours long, which implies that the 13th interval is

shorter than 10 minutes. In each case the bandwidth for the last interval

has been calculated accordingly to accommodate the exact length of the

movie. From the above, one can deduce that if the cost of renegotiation (K)

is negligible, then making the intervals as small as possible, results in the

lowest cost. In the following table (Table 4.2.), we have calculated the most

economical intervals for the Starwars data according to various values of

K. Note once again that K is measured in Megabits, implying that when K

= 100 we assume the cost of renegotiation is equivalent to the cost of

transporting 100 Mbits.

56

K - cost in Mhits GOP

0 Every GOP
{14512 negotiations}

5 Every 30 secs
(242 renegotiations)

20 2 minutes
(61 negotiations)

40 5 minutes
(25 negotiations)

80 10 minutes
(13 negotiations)

150 10 minutes
(13 negotiations)

300 10 minutes
(13 negotiations)

600 Base
(1 negotiation)

Table 4.2. - The most economical intervals for various values of K

The most economical interval becomes wider as the value of K becomes

larger. When the renegotiation cost (K) is large, one would want to keep the

number of renegotiations to a minimum.

Using the GOP sizes as input data, if the renegotiation cost was negligible,

and we were able to renegotiate the bandwidth for every GOP, we could

achieve a saving of up to 80% over the maximum required bandwidth of

1.80 Mbps. Note that the cost of renegotiation would almost certainly be

non-trivial and hence the 80% saving is highly unlikely. For example, with

K = 1 there is no saving when we negotiate at every GOP.

57

These results tend to imply that network architectures should be designed

to respond cheaply to fine-grained renegotiations, since it is always more

economical to choose the smaller intervals when K is small.

4.3. Conclusions

By dividing the video stream into fixed intervals, we have been able to

reduce the cost of transmitting the video over a network. We have run a

number of experiments where various interval sizes have been used. Each

interval in the experiments required a different bandwidth. At the start of

each interval it was necessary to renegotiate a new bandwidth. Assuming a

non-zero renegotiation cost, experiments with a large number of intervals

had a higher transmission cost than those with fewer intervals. However, a

large number of intervals generally implies that a smaller bandwidth is

needed per interval. A compromise will then be necessary to optimise

between a large number of intervals and a higher cost due to a large

number of renegotiations.

58

Chapter 5

Variable Intervals

5.1. Introduction

Instead of flxing the interval length used for renegotiation, one could use

different length intervals for each renegotiation of bandwidth. In this way,

one could attempt to use the least amount of bandwidth for the longest

period of time.

We have used variable intervals in two ways in this chapter. Firstly, we have

introduced the use of heuristics, where one can shift each interval's

boundaries closer together or wider apart in order to optimise the cost of the

required bandwidth for that interval. Secondly, we have used scene changes

in a movie to be the interval boundaries. We have assumed that scene

boundaries are intuitively the best measure of change of content and hence,

where a change in bandwidth would be necessary. If the scene changes were

all known at the start of the movie, the cost and bandwidth portfolio for the

movie could be known prior to sending the movie over the network.

However, if this data is not known prior to sending the movie over the

network, then the encoder or sender would need extra intelligence in order

for it to detect scene changes and then calculate the required bandwidth

and cost for each section of the movie.

59

5.2. Heuristics

Using the crude ftxed-period negotiation as a starting point, we can devise

heuristics to either extend or shorten some of the intervals, or to integrate

adjacent intervals, or to break existing intervals into ftner-grained sub­

intervals. A heuristic is a technique that improves the efftciency of a search

process, possibly by sacrificing claims of completeness.

localtnean ·· •• -.· ... 1

Figure 5.1. . A heuristic attempt at achieving optimum interval lengths

As Figure 5.1. implies, our heuristics should attempt to shift interval

boundaries A and B to the left or right in order to determine the optimum

sizes for the intervals 1, 2 and 3. In order to calculate the related cost we

need to consider some set-up cost for each interval as well as the cost due

to the required bandwidth and the length of each interval. In simple terms,

we wish to use the least amount of bandwidth necessary for the longest

period of time possible. Our costing algorithm introduced in Section 3.5.

60

would be appropriate. A heuristic algorithm will be used to determine these

aforementioned optimum fragment sizes. Using such an algorithm, we are

able to shift the interval boundaries in order to widen the interval requiring

the least bandwidth.

The following are heuristic methods, mentioned in [Rich et all that one could

use to generate new solutions or search for other possible solutions to a

given problem:

5.2.1. Generate-and-Test

This method generates a possible solution and then tests to see if it is valid.

Any valid solutions are then tested to see if they are also optimal solutions.

If a solution is not optimal then another solution is generated and the cycle

continues.

5.2.2. Hill Climbing

This is a variant of the Generate-and-Test method. Feedback from the test

procedure is used to help the generator decide which direction to move in

the search space. Hill climbing is often used when a good heuristic function

is available for evaluating states but when no other useful knowledge is

available. Hill climbing is terminated when there is no reasonable

alternative state to which to move. One would the check if the current state

is a goal state. If it is not a goal state, some operator would be applied in

61

order to produce a new state. The method then checks to see if the new

state is better than the current state. This method may fail to find a

solution. It may terminate without reaching a goal state, by entering a state

from which no better states can be generated.

5.2.3. Simulated Annealing

This method is a variation of the Hill Climbing method. It still seeks a goal

state and will terminate if one is found. If the new generated state is not

better than the current state, then it will become the current state with a

given probability. If the new state is better than the current state then it will

become the current state.

5.3. Boundary shifting approach

One possible approach would be to shift the boundaries of the intervals by a

fIxed amount and test to see if these 'new' intervals generate a lower cost

than the original intervals. Using the fixed interval approach in Chapter 4,

we have been able to generate different sized intervals, which produce lower

costs. The algorithm we have designed generates interval sizes based on the

5-minute and lO-minute intervals used in Chapter 4. We were able to

choose the amount by which we shift the interval boundaries in order to

create 'new' intervals. If the new intervals produced a lower cost than the

original interval sizes they have been kept otherwise they have been

62

discarded. The costs have been recorded and graphed in Figures 5.2. and

5.3.

The amounts by which the original boundaries are shifted are on the x-axes

of the graphs, while the cost is on the y-axes. For example, using the

original 10-minute intervals, we have chosen to shift the boundaries by 2

minutes in either direction and the cheapest cost produced was 7775. The

first cost plotted in both graphs was the cost when the interval boundaries

are not shifted at all. These costs correspond to the costs calculated in Table

4.1. of Chapter 4. Since the number of renegotiations do not change using

this algorithm, no additional costs are involved.

In both graphs there is a distinct decrease in the cost to a minimum after

which the cost begins to increase. This shows that there is a definite

advantage in using this algorithm to reduce the cost of bandwidth

utilisation. As long as the GOP sizes are known prior to sending the movie

across the network then the network needs to do no extra calculations. All

calculations can be done prior to transmitting the movie and a bandwidth

profile can then be created.

63

7000

6950

6900

6850

6800
'" 0
u

6750

6700

6650

6600

6550
0 2 3 4

number of minutes interval boundary shifted

Figure 5.2. - Costs of each attempt at shifting the 5-minute boundaries

by x minutes

64

8000

7900

7800

7700

7600

-... 7500 0
u

7400

7300

7200

7100

7000
0 2 3 4 5 6 7 8 9

number of minutes interval boundary shifted

Figure 5.3. - Costs of each attempt at shifting the IO-minute

boundaries by x minutes

Note that the costs in the above two graphs need to be increased by 25K

and 13K respectively to achieve the total costs, which include the

renegotiation cost.

In Figure 5.2. we see that the most economical approach requires shifting

the original 5-minute interval boundaries by 2 minutes in either direction.

This is equivalent to a 4% saving on the cost of the original interval sizes.

The graph in Figure 5.3. shows that by shifting the lO-minute interval

boundaries by 7 minutes in either direction we were able to reduce the cost

to 93% of the original cost (a saving of 7%).

65

Heuristic algorithms like the one used above have potential to reduce the

cost of the required bandwidth significantly enough to make the extra

computation justifiable.

5.4. QuantisatioD approach

Another approach would be to use the quantisation method. Here we choose

to map all GOP sizes to a number of pre-chosen sizes. In this way, we hope

to reduce the number of bandwidth renegotiations necessary during the

streaming of the video. This scenario is necessary if the network provider

only allows renegotiation in fixed quanta, as is presently the case for ISDN

services, in which new bandwidth can only be added in 54-Kilobit quanta.

Rather than use predefined quanta, we have created intervals based on the

Starwars data. The minimum and maximum GOP sizes in the original

Starwars data are 77500 bits and 945153 bits respectively. Within these

borders we have created 5 intervals of equal size. With this knowledge we

are then able to map the original GOP sizes to the maximum value of each

interval. The following table (Table 5.1.) shows how the original GOP sizes

are mapped to the chosen values.

66

Original values Mapped values

77500 to 251030 251030

251031 to 424561 424561

424562 to 598091 598091

598092 to 771622 771622

771623 to 945153 945153

Table 5.1. - Mapping of GOP sizes (bits) to chosen values

All GOP sizes that fall into the interval given in the left-hand column are

mapped to the value in the right-hand column. We now only have five

possible values for the GOP sizes. This immediately reduces the number of

possible renegotiations during the movie, unless every second GOP in the

original data belongs to a different category to the GOP just before it. These

5 values would be able to carry the entire movie within the time allowed

since the bandwidth required would always be less than or equal to the

maximum value to which we are mapping.

By calculating costs for the above GOP sizes, we are able to achieve a cost of

(3900 + 14473*K), where K is the cost of a single renegotiation. This cost

will be less than the cost for renegotiating at every GOP, for all K > 33. If

different values are chosen to which the original GOP sizes can be mapped,

then different costs and hence different savings can be achieved.

67

5.5. Scene Changes

We could assume a bandwidth adjustment would be necessary when there

is a scene change in a movie. We base this on the assumption of a change of

content in a movie when there is a scene change. Scene changes are the

best locations, intuitively, for bandwidth renegotiations. Complex scenes

require more available bandwidth than scenes with little action. The content

of a movie will therefore playa vital role in the cost of bandwidth usage and

renegotiation. Using actual scene-change data, we have been able to

calculate bandwidth requirements for a number of MPEG movies. This

method assumes that we have access to actual content that allows us to

detect the scene changes.

In some instances scene change data may not be directly available, if for

example, the data were encrypted. In that case, one would have to resort to

inspecting the size information in the stream. Unlike those algorithms that

attempt to detect changes in the moving average, the scene change is more

likely to be detected by looking at individual sizes of frames within a GOP to

find data sizes that violate our expected norms for the pattern of I, Band P

frames.

In general there are two kinds of scene changes. One is a camera break and

the other is a gradual transition such as a fade or dissolve. There are a

number of techniques available that can be used to detect a scene change.

68

Some of them extract features from each video frame, such as a colour

histogram, in order to measure any content differences between consecutive

frames. Comparing pixel differences between two frames can identify these

changes. Comparisons based on histograms are also used. The colour

histogram comparison and the chi-squared test of colour histograms are

examples. Another approach is the pair-wise sub-frame colour histogram

comparison where a video frame is divided into 4x4 rectangular regions. The

comparison is then made on each pair of corresponding regions between two

frames.

DCT coefficients can also be used in companng two video frames. The

number of motion vectors can be an indicator of data sizes that violate our

norms. For each predicted frame (P and B frames), a number of motion

vectors will be associated as explained in Chapter 1. The exact number

associated with each frame depends on the residual error after motion

compensation. If two frames are quite different, only a few motion vectors

will be used for coding. Thus a scene cut can be detected based on the

counts of motion vectors.

The detection of gradual transitions to new scenes is somewhat more

complicated. The twin-comparison method requires the use of two cutoff

threshold values. One would begin by comparing consecutive frames using a

video segmentation method such as the colour histogram comparison. Once

69

a start frame for the transition period has been detected, frame differences

are monitored until they become greater than the upper threshold. This is

then taken to be the end of the entire transition period between scenes.

For the detection of a fade between scenes, one can use the fact that there is

a linear variation in the luminance values while there is constancy in the

chrominance values.

5.5.1. Costing of movies

Since a change of scene usually implies a change of content in a movie, we

have decided to renegotiate the bandwidth required for a movie at the start

of each new scene. MPEG videos with scene change data were found at

http://www.cse.cuhk.edu.hk/~cflam/research/.

These were then used to calculate the costs given in Table 5.2. The other

costs in the table were also calculated in order to compare how scene breaks

compare with other methods of renegotiation. All costs were calculated

using the original costing equation introduced in Section 3.5.

70

The scene change data was supplied in the following format:

1) filename of the movie
2) total number of frames
3) size of each frame i.e. 320 x 240 pixels
4) type and position of each scene change

each scene change has three attributes: the type of scene change (a
fade or cut etc), the frame number where the scene change began, the
frame number where the scene change ended.

e.g.

1) airwolf2.mpg
2) 412
3) 192 144
4) [2,1,14,0,74,75,6,75,98,0,98,99,0,106,107,0,115,116,0,123,124,6,124,138,0,

138,139,0,169,170,4,230,244,0,297,298,0,322,323,6,323,338,0,338,339,0,346,
347,0,355,356,0,363,364,4,364,387,0,387,388]

The actual frame sizes were then supplied in another file along with the

number of each frame. We were then able to match the start frame of a

scene with the correct frame size and find the maximum frame size for every

scene in the videostreams. These maximums were then used to calculate

the required bandwidth for each scene. Using the above frame data we were

also able to calculate the required bandwidth if a renegotiation was done

after every frame as well as having a single negotiation of bandwidth at the

beginning of the movie. No GOP information was available for these

video streams, hence we were unable to determine if there was any cost

reduction due to the use of GOP sizes.

We have chosen just four of the available movies in order to analyse them

completely.

71

In each case the number of scenes and number of frames per mOVIe are

given by the number of renegotiations necessary for each case. For example,

in the Airwolf2.mpg video, there are 21 scenes and 412 frames.

Movie name Per scene Per frame One renegotiation

Airwolf2.mpg 25.95 + 21 K 10.67 + 412 K 46.54 + K

AdS.mpg 89.74 + 24 K 39.98 + 696 K 103.86 + K

Ad21.mpg 94.12 + 9 K 39.27 + 684 K 107.09 + K

Bobo.mpg 39.79 + 24 K 14.61 + 680 K 44.65 + K

Table 5.2. - Scene cost comparisons per movie

As would be expected the most economical method for renegotiating would

be to do so at every frame, if the renegotiation cost was minimal. However

for all four of the *.mpg movies, renegotiating at every scene would be more

economical for all values of K > 0.08. Since these are such short movies,

there is not much improvement from using a single bandwidth throughout

the entire videostream. For example, renegotiating at every scene change in

the ad21.mpg videostream is only economically viable for values of K < 1.62,

and for the ad5.mpg video K needs to be less than 0.62. It is quite possible

that renegotiation per scene would be more beneficial for full-length movies

where the scene content varies a great deal.

72

5.6. Previous work

The papers mentioned below, have all introduced methods for detecting

scene changes in MPEG compressed video streams. [YEUNG et al], in

particular, mentions a number of different scene change detection methods

including the Global Threshold Method, the Sliding Window Method and the

Difference of frame difference Method. They also introduce many

segmentation algorithms. The Pair-Wise Pixel Comparison Algorithm, the

Difference of Colour Histogram Algorithm, the Motion Vectors Count

Algorithm and the Simple Histogram Comparison are some examples.

Algorithms have been developed by [YEO et al] that detect abrupt and

gradual scene changes. These algorithms use the DC sequence for detection,

which can be extracted from the MPEG encoded video without having to

decompress the stream in any way. Operating on the DC images offers

significant computational savings. In order to gain even better detection, one

could combine the results from the luminance DC and the two chrominance

DC sequences. A scene change could be detected from frame i to i+ 1 if a

change is detected on any of the 3 types of DC sequences, Y, Cb or Cr. [YEO

et all also introduced a more robust method for detecting a gradual

transition between scenes. Here, they would use every frame and compare it

to the following kth frame. For example, compare frame i and frame i+k.

73

[NAGASAKA et all experimented with vanous companson techniques in

order to detect scene changes. These functions were applied to only a

portion of each image. Their method is robust against zooming and panning,

but may fail to detect special effects like fading to a new scene.

Based on the hierarchical structure of frames and scenes, [KENDER et all

have derived a method for measuring probable scene boundaries. They have

highlighted the underlying high-level organisational structures of videos, as

presented in various textbooks on production, cinematography and film

editing, which depend on many certain human expectations about the

placement and timing of camera shots within a scene. There are thus limits,

both maximum and minimum, on the number of viewpoints and on the

lengths of camera shots that can be assimilated by an observer into a single

scene.

[ARMAN et all have developed a technique which can detect changes directly

on the MPEG compressed data, without working on the original image

sequences. [ZHANG et all use the difference of histograms as well as global

thresholds to detect scene changes.

[MENG et all use the vanance of DC coefficients in I and P frames and

motion vectors information to characterise scene changes. [SETHI et all use

only the DC coefficients of I frames to perform hypothesis testing using the

74

luminance histogram. Unfortunately, the exact location of abrupt scene

changes cannot be located with this method.

Using a variety of videos, [YEUNG et all found that normalised colour

histogram difference was a satisfactory measure of frame dissimilarity. This

measure would be used to detect possible scene changes where bandwidth

renegotiations could take place.

5.7. Conclusions

Since we can assume that dividing a video stream into flxed interval sizes

would not generally result in the most economical interval lengths, we have

attempted to use variable interval lengths in order to reduce the costs of

frequent renegotiations of bandwidth. There are various methods available

that enable one to divide a video stream into intervals of variable size.

Firstly, we have introduced a number of different heuristic approaches to

our problem of how to divide a video stream into economical intervals. The

idea behind the heuristic approach is to choose intervals that use the least

amount of bandwidth for the longest period of time. We have attempted to

reduce costs by shifting interval boundaries in either direction. New

intervals were created if they resulted in lower costs than the original

intervals. Using this method, our results show that there is a deflnite

75

advantage to shifting boundaries since in each of our experiments we were

able to reduce the total cost of the movie.

Another heuristic method was to map all the GOP sizes onto a few chosen

average values. Unfortunately, in order to choose these values, we would

require the a priori knowledge of the original data. By only using a small

number of possible GOP sizes, we immediately reduce the number of

renegotiations required during the movie. Our experiments have shown that

this method is very economical with the data we had at our disposal

reducing the original costs for all K >= 3.

Our second method of creating variable length intervals was to use the

lengths of scenes in a movie. Since we can assume that scene changes

would imply a change in movie content within the movie, we have chosen

these scene changes as appropriate locations for the renegotiation of

bandwidth. For this method, one would require the scene change data; for

example, the number of the frame at which a scene change begins. If the a

priori data is not available then one would have to rely on algorithms that

detect possible scene changes based on purely on the frame sizes of the

movies. These algorithms would generally search for individual frames that

violate the expected norms for the rest of the frames within a GOP. Our

experiments have shown how renegotiating when a scene change occurs

reduces the total costs substantially.

76

Chapter 6

Dynamic Renegotiation

6.1. Introduction

Dynamic renegotiation does not require the a priori knowledge of frame sizes

that is demanded by the previous renegotiation methods. By looking a few

frames ahead into the video stream we are able to adjust the bandwidth

according to the moving average of the data. As the frame sizes increase, so

the required bandwidth would increase. When this occurs, we are able to

adjust the available bandwidth at run-time, i.e. any renegotiation takes

place while the movie is being played. We have chosen to experiment with

this method since no a priori knowledge is required and a renegotiation

would only take place when one is required.

6.2. Moving Average

A simple algorithm, which monitors the moving average of the frame sizes or

GOP sizes, can be used to trigger renegotiation. This method involves

calculating a mean and a deviation (s) for the data. Since renegotiation is a

local event (with respect to the MPEG data set), a global mean does not

serve our research well. We have therefore chosen to modify the approach

by using a local mean (as a moving average). We have used (mean + 5*s) as

the maximum allowable bandwidth, while (mean ± 3*s) is used as the upper

77

and lower boundaries respectively. These values have been chosen

according to Tchebysheff's Theorem (see [MENDEN et al]), which gives a

lower bound to the probability that a variable (frame size or GOP size in this

case) falls in an interval of the form (~ ± rna), where J.l is the mean and a is

the standard deviation. The lower bound is then given by (1 - 1/ m 2).

Therefore the probability that a GOP size falls within the maximum

allowable bandwidth would then be (1 - 1/25) = 0.96.

In general, if we can predict a buffer underflow we could then increase the

bandwidth (renegotiate) and similarly decrease the bandwidth when a buffer

overflow is predicted. If the moving average increases and crosses the upper

bound (mean + 3*s), a new mean and a new standard deviation are

calculated and a renegotiation takes place. Using these new values, a new

maximum bandwidth is calculated. This would also occur if the moving

average decreased below the lower bound (mean-3*s).

If only a small amount of buffering was available, then one would have to

calculate the moving average on a small amount of data, for example every 6

frames (half a GOP) which equates to a quarter of a second of our movie

time. However, adequate buffering would allow one to use GOP data. With

n=4, this would equate to 2 seconds of our movie time, since one GOP is

equivalent to a half a second of our movie data (Starwars). Our data set of

78

movmg averages does show long periods where no renegotiations are

necessary.

In the following table (Table 6.1.), the bandwidth value is calculated using

(mean + 5*s), while the upper and lower bounds are calculated with (mean ±

3*s). The bandwidth values are the moving averages for the GOP data (n=4).

All the values are measured in bits.

Lower bound Mean Upper bound Bandwidth

0.020 0.216 0.514 0.678

0.020 0.334 0.514 0.678

0.020 0.432 0.514 0.678

0.020 0.503 0.514 0.678

0.190 0.554 0.918 1.161

0.190 0.475 0.918 1.161

0.190 0.409 0.918 1.161

0.190 0.362 0.918 1.161

Table 6.1. - moving average and related boundaries (GOP data)

We are now able to calculate a cost according to the original cost function in

terms of K, the renegotiation cost.

Cost = (no. of renegotiations * renegotiation cost(K)) + L(no. of seconds *

bandwidth)

79

For the GOP data, the cost of carrying the entire movie and renegotiating

dynamically when required, would be 17135 + 7K for all K >= O.

In order to compare the costs involved when usmg the fIxed interval

approach and the dynamic renegotiation approach for the GOP data, we

have constructed the following table showing the relevant costs for different

values of K.

K
Every 15 Every 2 Every 10 Dynamically
seconds minutes minutes

0 4202 5970 7931 17135

20 13882 7190 8191 17275

40 23562 8410 8451 17415

80 42922 10850 8971 17695

150 76802 15120 9881 18185

300 149402 24270 11831 19235

600 294602 42570 15731 21335

Table 6.2. - Cost comparison for f"lxed intervals vs dynamic

renegotiation for various K

For very large values of K, the dynamic approach would be one of the better

approaches for our data set, when compared to the other fIxed interval

80

approached we have used. Due to the large area between the upper and

lower bounds, there are a very few number of renegotiations for the

Starwars data. By adjusting these bounds one would be able to alter the

number of renegotiations during a movie and thereby adjusting the cost as

well.

6.3. Conclusions

Our approach in Chapter 6 does not use the a priori knowledge of frame

sizes. We are able to dynamically adjust the required bandwidth at run-time

using the moving average of our Starwars data. If the moving average

exceeds some upper bound (based on the mean + 3 * standard deviation (s))

the required bandwidth is increased. We have set upper and lower

boundaries at (mean ± 3*s) while the maximum required bandwidth is set at

(mean + 5*s).

If only a small amount of buffering was available we would have to calculate

the moving average on the frame data using about 6 frames, otherwise, with

more buffering one could use say 4 Gaps in order to calculate the moving

average.

81

Conclusion

In our investigation of techniques that can be used to bypass some of the

difficulties associated with variable bit rate traffic, we have focussed our

attention on video-on-demand servers. We have not attempted to find

statistical models for MPEG video data.

We have shown that short-term as well as long-term variations occur in

MPEG videos. The existence of these variations is not uncommon in MPEG

encoded videos as can be seen by much previous research done on this

topic.

The above-mentioned variations result from the variable bit rate traffic

which is inherit in MPEG encoded video. The short-term variation is due to

the difference in the frame sizes of the movies. Because of the way MPEG is

encoded (with I, Band P frames), we can expect a video stream of MPEG

encoded data to vary substantially m its short-term bandwidth

requiremen ts.

In order to alleviate this problem, we have introduced a small amount of

buffering at the receiver end of the network. This buffer can smooth out

much of the short-term variation evident in a videostream. By grouping

frames into naturally occurring Groups of Pictures (GOP's) and buffering an

82

entire GOP before displaying the frames, we have been able to reduce the

required bandwidth for our MPEG video under investigation significantly.

With the above result in mind, we have also focussed much attention on the

long-term variation that occurs in most video streams. We attempt to

accommodate this variation by changing the bandwidth over time.

This type of variation is due to the change in content within a movie. Scenes

in a movie that contain large amount of motion and complexity tend to

result in above average frame sizes. As scenes move from high complexity to

low complexity, the frame sizes also become smaller in size.

In order to alleviate the problems associated with this type of variation, we

have introduced a number of renegotiation techniques, which are able to

reduce the amount of required bandwidth over the entire videostream. We

have proposed a costing algorithm in order to evaluate the different

techniques used. Most of these techniques have used the a priori knowledge

of the frame sizes.

The proposed techniques include dividing the video stream into fixed

intervals and calculating the bandwidth required per interval. We have also

used a variation on this method by dividing the video stream into intervals of

different lengths based on heuristic methods as well as on scene changes.

83

Finally, we have shown how to cope with long-term variation without having

to use the a priori knowledge of frame sizes. By using a moving average and

setting upper and lower bandwidth limits, we have been able to propose a

system of renegotiating bandwidth, which is able to carry the entire movie at

a reduced cost.

84

References

[ARMAN et al] F.Arman, A.Hsu and M.Y. Chiu. "Feature management for large
video databases". Storage and Retrieval for Image and Video Databases, 1993,
volume SPIE 1908.

[C-CUBE] C-Cube Microsystems: MPEG Technical Overview.
http://www.c-cube.com/technology/mpeg.html

[COLLINS] Collins Dictionary of the English Language, 2nd Edition. Collins
London and Glasgow 1986.

[DAN et all A.Dan, D.M.Dias, RMukherjee, D.Sitaram and RTewari. "Buffering
and caching in large-scale video servers". IBM Research Division.

[DOULAMIS et al] N.D.Doulamis, A.D.Doulamis, G.E.Konstantoulakis and
G.I.Stassinopoulos. "Performance models for multiplexed VBR MPEG video
sources". National Technical University of Athens.

[FENG et al] W.Feng and J.Rexford. "A comparison of bandwidth smoothing
techniques for the transmission of prerecorded compressed video". Ohio State
University and AT&T Labs Research.

[GARRETT et al] M.W.Garrett and W.Willinger. "Analysis, Modeling and
Generation of Self-Similar VBR Video Traffic". (Sept 1994). Proceedings of the
ACM Sigcomm '94, pp. 269-280.

[JAHANIAN et al] W.Feng, F.Jahanian and S.Sechrest. "An optimal bandwidth
allocation strategy for the delivery of compressed prerecorded video".

[KENDER et all J.RKender and B-L.Yeo. "Video scene segmentation via
continuous video coherence'. Department of Computer Science, Columbia
University and IBM T.J. Watson Research Center.

[KRUNZ et all M.Krunz and S.Tripathi. «Exploiting the temporal structure of
MPEG video for the reduction of bandwidth requirements". Department of
Computer Science, University of Maryland.

[LAM et al] S.S.Lam, S.Chow and D.K.Y.Yau. "An algorithm for loss less
smoothing of MPEG video". Department of Computer Science, University of
Texas at Austin.

85

[LI et all S.Sengodan and V.O.K.Li. "A generalised grouping and retrieval
scheme for stored MPEG video". Communication Sciences Institute, University
of Southern California Los Angeles.

[MENDEN et all W.Mendenhall, D.D.Wackerly, R.L.Scheaffer. "Mathematical
Statistics with Applications Fourth Edition." PWS-Kent Publishing Company
1990.

[MENG et all J.Meng, Y.Juan and S.F.Chang. "Scene change detection in a
MPEG compressed video sequence." Digital Video Compression: Algorithms and
Technologies, volume SPIE 2419, February 1995.

[NAGASAKA et all A.Nagasaka and Y.Tanaka. "Automatic video indexing and
full-motion search for object appearances". Proceedings of the IFIP TC2jWG2.6
Second Working Conference on Visual Database Systems, September 30-
October 3 1991.

[NORIAKI et all Noriaki Kamiyama and Victor O.K. Li. "Renegotiated CBR
transmission in Interactive Video-on-Demand System". Communication
Sciences Institue, University of Southern California.

[RICH et all Elaine Rich and Kevin Knight. "Artificial Intelligence 2nd Edition".
McGraw-Hill, 1991.

[ROSE] O.Rose. "Statistical properties of MPEG video traffic and their impact on
traffic modeling in ATM systems". (February 1995). Report no 101, Institute of
Computer Science, University of Wurzburg.

[SETHI et all I.K.Sethi and N.Patel. "A statistical approach to scene change
detection". Storage and Retrieval for Image and Video Databases III, volume
SPIE 2420, February 1995.

[YEO et all Boon-Lock Yeo and Bede Liu. "A unified approach to temporal
segmentation of motion JPEG and MPEG compressed video". Proceedings of the
Second International Conference on Multimedia Computing and Systems, May
1995.

[YEUNG et all M. Yeung and B. Liu. "Efficient matching and clustering of video
shots". Proceedings of the International Conference on Image Processing,
Volume I, pages 338-341, 1995.

[ZHANG et all H.J.Zhang, A.Kankanhalli and S.W.Smoliar. "Automatic
partitioning offull-motion video". Multimedia Systems, volume 1, July 1993.

86

Below are some sites where MPEG movies can be obtained:
[tp: I I [tp-info3.informatik. uni-wuerzburg.de/pub/MPEG I traces I
[tp: I I [tp.mieroso[t.com I Products I NetShowTheater IMPEG 11
[tp: Ilmm-[tp.es. berkeley.edu I pub Imultimedia/mpeg/moviesl

87

	SCHONKEN N 1999-75-001
	SCHONKEN N 1999-75-002

