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Abstract 
This paper confirms the existence of short-term and long-term variation of 

the required bandwidth for MPEG videostreams. We show how the use of a 

small amount of buffering and GOP grouping can significantly reduce the 

effect of the short-term variation. By introducing a number of bandwidth 

renegotiation techniques, which can be applied to MPEG video streams in 

general, we are able to reduce the effect of long-term variation. These 

techniques include those that need the a priori knowledge of frame sizes as 

well as one that can renegotiate dynamically. A costing algorithm has also 

been introduced in order to compare various proposals against each other. 
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In troduction 

The goal of this paper is to identify the problem areas within a video-on-

demand network and to propose solutions to those problems encountered. 

The entire video-on-demand system can be broken into three simple 

components. Firstly there needs to be a source, which we call the video 

server, from where movies can be requested. The video server has the 

capability to encode and store available videos and transmit them over a 

network. We will discuss the MPEG encoding technique in detail in Chapter 

1. The network between the source and the destination is the second 

component of the system. This network can be anything from an ATM LAN 

to the Internet itself. Lastly, at the destination we have a settop box. This 

box would usually contain a minimal amount of buffer space as well as the 

ability to decode the encoded video stream and then display it. Figure A.l. 

gives an idea of what the system would look like in general. 

Video 
server 

Set top 
box 

Figure A.I. - A simple illustration of the problem domain 



Different problems will occur at various parts of the system. We can thus 

use various techniques in an attempt to solve each problem. At the video 

server one can use interval caching methods and read -ahead buffering in 

order to alleviate burstiness in video servers. This also improves jitter 

tolerance and hence the real-time performance of the video server. The 

variable bit rate of MPEG encoded movies causes problems for the video 

server. The different sizes of the frames cause short-term variation within a 

videostream. The video server is where decisions for renegotiation of 

bandwidth would also occur. The server can use the a priori knowledge of 

the frame sizes in a movie to make decisions about the amount of 

bandwidth required. Chapters 3, 4,5 and 6 cover the various methods used 

to renegotiate bandwidth. 

At the 'entrance' to the network, we can use the leaky bucket approach in 

order to constrain the video stream in such a manner that it conforms to 

certain parameters. Once again it is the variable bit rate which forces the 

network to use its resources in order to transmit the video stream at the 

correct speed. 

It is at the settop box where most of our buffering is done. A buffer placed at 

the destination can alleviate the problems of a variable bit rate. Chapter 2 

discusses buffer underflow and overflow. The settop box receives the video 
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stream at a variable frame rate and must then convert this to a constant 

frame rate stream in order for the video to be viewable. 

Chapter 1 includes a simple overview of MPEG coding in general as well as a 

more detailed description of the encoding technique and its structure. Some 

previous uses of MPEG are also included. 

Chapter 2 explains what short-term variations occur in an MPEG stream 

and how one can cope with them using buffering. We introduce the concept 

of GOP (Group of Picture) buffering and show how the use of this idea can 

significantly reduce the cost of transporting a video over a network. We use 

the results of this chapter in most of our experiments in the other chapters. 

Chapter 3 introduces long-term variation, which is caused by the changing 

content within a movie. Chapter 3 gives an overview of the problem and 

covers the two approaches used to deal with it, namely static renegotiation 

and dynamic renegotiation. We introduce an objective function for 

calculating costs of the renegotiation methods. The necessary assumptions 

are also stated and explained in this chapter. 

Chapter 4 deals only with static renegotiation. We have used fixed time 

lengths in order to slice the movie into intervals with different bandwidth 
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requirements. Costs are calculated for each of our methods in order to find 

the most economical method. 

Chapter 5 contains a variation of the fixed interval approach. Instead of 

using equal time lengths to slice the movie into fixed intervals, we have used 

heuristics and scene changes in the movie in order to make predictions of 

where bandwidth changes need to be made. We make the implication here 

that the content of the movie can be a decision tool for points of bandwidth 

renegotiation. Once again costs are calculated based on the objective 

function introduced in Chapter 3. 

Chapter 6 covers dynamic renegotiation. We use the moving average of the 

frame sizes and GOP sizes in order to adjust the available bandwidth at run­

time. In this case, the a priori knowledge of the frame sizes is not necessary. 
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Chapter 1 

MPEG video compression 

1.1. Introduction 

The Moving Picture Coding Experts Group (MPEG) was established in 

January 1988 with the mandate to develop standards for coded 

representation of moving pictures, audio and their combination and hence it 

is also the name of the standard that they have produced. [ROSE] suggested 

that MPEG is expected to cause problems for ATM, since the major part of 

B-ISDN traffic will be produced by multimedia sources such as 

teleconferencing and video-on-demand servers and these services tend to 

use MPEG compression. 

1.2. General description 

MPEG has been developed for storing video on digital storage media as well 

as delivering video through local area networks and other 

telecommunications networks. At a rate of several Mbps, MPEG video is 

suitable for a range of multimedia applications e.g. video mail, video 

conferencing, electronic publishing, distance learning and games. 

The MPEG standard consists of 3 parts; video encoding, audio encoding and 

the systems portion, which includes information about the synchronisation 
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of the audio and video streams. MPEG-1 was optimised for synchronised 

digital video and audio, and compressed to fit into a bandwidth of 1.5 Mbps. 

The video stream uses up about 1.15 Mbps, while the remaining bandwidth 

is used by the audio and systems data streams. The system layer contains 

timing and other information. The MPEG video algorithm can compress 

video signals to an average of 0.5 to 1 bit per coded pixel. At a compressed 

data rate of 1.2 Mbits per second, a coded resolution of 352 X 240 at 30 

frames per second is often used, and the resulting video quality would be 

comparable to that of VHS recording. Of course, if we attempted to maintain 

a high video quality we would then have to vary the required bandwidth. 

This can be controlled at the encoder by varying the level of compression 

performed on segments of the video. 

MPEG-l functionalities are a subset of the MPEG-2 ones. MPEG-2 allows for 

layered coding over ATM where a base layer contains the basic information 

required, and one or more enhancement layers can be used to improve the 

quality of the video sequence. The primary application targeted during the 

MPEG-2 definition process was the all-digital transmission of broadcast TV 

quality video at coded bitrates between 4 and 9 Mbps. The most significant 

enhancement over MPEG-l is the addition of syntax for efficient coding of 

in terlaced video. 
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When work on MPEG-3 began it originally targeted HDTV (high-definition 

television) applications with coded bitrates between 20 and 40 Mbps. It was 

discovered that with some amount of fine-tuning, MPEG-2 and MPEG-1 

syntax worked very well for HDTV rate video and thus the work on MPEG-3 

was not continued. 

When completed, the MPEG-4 standard should enable a whole spectrum of 

new applications, including videophone, remote-sensing, electronic 

newspapers, games, interactive multimedia databases and sign language 

captioning. According to the MPEG-4 overview dated July 1998, this new 

standard was to be released in October 1998 and would then be an 

International Standard by December 1998. MPEG has also started work on 

a new standard known as MPEG-7. It is to be a content representation 

standard for information search, scheduled for completion in the year 2001. 

Full motion video is a set of frames displayed sequentially. Each frame 

consists of three rectangular matrices representing luminance (Y) and two 

chrominance values (Cr and Cb) , which hold the colour information. For 

every four luminance values, there are 2 associated chrominance values: 

one Cb value and one Cr value. 
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There are three types of frames in MPEG encoding. Figure 1.1. illustrates 

these types. 

B 
B 

B 

Figure 1.1. - the pattern of MPEG frames (I, Band P frames) 

I (Intracoded) frames use only intra-frame coding based on the discrete 

cosine transform and entropy coding. This means that the I frame is coded 

independently of any other information in the video stream. A frame with 

spatial resolution of 640 X 480 pixels and 24 bits per pixel requires about 

921 Kbytes to represent when uncompressed. Spatial resolution is the term 

for the number of pixels that make up the frame. For a video sequence to be 

displayed at 24 frames per second, the transmission capacity required is 

about 168.75 Mbps [(640 x 480 x 24 x 24) bits per second] for 

uncompressed video. Given that MPEG has an optimal compression ratio of 

6: 1, we can assume that a bandwidth requirement of 168.75 Mbps could be 

reduced to 28 Mbps. 

The discrete cosine transform (DCT) helps separate the image into 

coefficients of differing frequencies. Low frequency components are more 
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critical to the human's perception of the image's visual quality. Colour 

subsampling has been used in MPEG encoding since the human eye is more 

sensitive to high-resolution luminance than to high-resolution colour. The 

first compression technique employed by MPEG is to subsample the colour 

channels in order to reduce them to a quarter of their original sizes. The 

luminance channel remains its original size while the Cb and Cr levels are 

reduced to a quarter each and hence when the three channels are put 

together, the result is a reduction to half of the originally required 

bandwidth. 

Lossy compression is achieved by quantising the resulting coefficients into a 

smaller set of possible values, with more aggressive quantisation being 

applied to the higher frequency components. Many of the resulting 

coefficients may become zero during this process. Entropy coding is a 

lossless compression technique that further compacts the resulting 

coefficients, and also takes advantage of runs of zeros. P (Predictive) frames 

use a similar coding algorithm to I frames, but with the addition of motion 

compensation with respect to the previous I or P frame. B (Bi-directional) 

frames are similar to P frames, except that the motion compensation can be 

with respect to the previous I or P frame, the next I or P frame or an 

interpolation between them. Interpolation is a method for deducing a value 

from known higher and lower values. I frames usually require more bits 

than P frames, while the B frames have the lowest size requirement. 
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After coding, the frames are arranged in a periodic sequence known as a 

Group of Pictures (GOP), e.g. IBBPBBPBB IBBPBBPBB etc. The number of 

frames in a GOP can vary for each video. For a single video, however, all 

GOP's contain the same number of frames. The sequence of encoded 

pictures is specified by 2 parameters, M (the distance between I or P frames) 

and N (the distance between I frames). 

e.g. M:;:::3 and N:;:::9 implies IBBPBBPBB IBBP .. . 

M=l and N-5 implies IPPPP IPPPP IPPPP .. . 

In order to maintain constant quality video, compressed frames are 

generated at a fixed frame rate (i.e. 24 frames per second), which results in 

variable bit rate (VBR) traffic. 

The output rate of an MPEG encoder depends upon the spatial resolution of 

pictures (no. of pixels) and the temporal resolution (frequency of sampled 

data or picture rate), which are parameters typically specified by a 

multimedia application. The picture rate, as well as some other MPEG 

encoded parameters can be adaptively controlled to modify the encoder 

output rate. This output rate changes as the scenes in the video sequence 

being encoded changes. Frames that are a part of complex scenes require 

more bits to encode than slower, less complicated scenes. Complex scenes 

include those with large amounts of motion in them, since it is then that the 
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P and B frames are heavily affected. It is therefore evident that these scenes 

require more bandwidth for transmission than less complex scenes. 

1.3. MPEG structure 

In EBF notation, the MPEG video bit stream structure can be specified as 

follows: 

<sequence> 

<group of pictures> 

<frame> 

<slice> 

< sequence header> 
<group of pictures> 

{ [ <sequence header> ] 
<group of pictures> } 

<sequence end code> 

<group header> <frame> 
{ <frame> } 

<frame header> <slice> 
{ <slice> } 

<slice header> <macroblock> 
{ <macroblock> } 

The sequence header contains control information needed to decode the 

MPEG video bit stream. Repeating the sequence header at the beginning of 

every group of pictures makes it possible to begin decoding at intermediate 

points in the video sequence. Note that only the first header is required 

while the others are optional. The group header includes information such 

as a time code. The frame header contains control information about the 

frame, such as frame type and temporal reference. The slice header contains 

control information about the slice, for example, the position of the slice in 

the frame. Each header, whether it be from a sequence, a group, a frame or 
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a slice, begins with a 32-bit start code that IS umque III the coded bit 

stream. 

The macroblock, however, does not begin with a unique start code. A slice is 

therefore the smallest unit available to a decoder for resynchronisation and 

hence important in the handling of errors. If the bitstream contains an 

error, the decoder can skip to the start of the next slice. Having more slices 

in a bitstream allows better error concealment, but uses bits which could 

have been used for an improvement in picture quality. Each macro block in 

a slice represents an area of 16 X 16 pixels in a frame. Consider a frame of 

640 X 480 pixels. There are 1200 (40 x 30) macroblocks in the frame. By 

definition, a slice contains a series of one or more macroblocks; the 

minimum is one macroblock, and the maximum can be all the macroblocks 

in the frame. Slices in the same frame can have different numbers of 

macroblocks. Each macroblock header begins with a header containing 

information on the macroblock address, macroblock type and an optional 

quantiser scale. Macroblocks are of varying lengths. 

1.4. MPEG encoding 

In an I frame, every macroblock is intracoded. The technique of spatial 

compression (intracoding) used to encode I frames in MPEG is essentially 

the same as that used for encoding JPEG pictures, since I frames do not 

depend on the P and B frames. These I frames are coded using only 
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information present in the frame. I frames typically use about 2 bits per 

coded pixel. This coding algorithm includes using the Discrete Cosine 

Transform (DCT) in order to transform 8 X 8 blocks of pixels from the 

spatial domain to the frequency domain. The algorithm then quantises the 

frequency coefficients. Quantisation maps each frequency coefficient to one 

of a set of limited number of allowed values. The use of the DCT and 

quantisation results in many of the frequency coefficients being zero. The 

coefficients are then organised in a zigzag order to produce long runs of 

zeros. These coefficients are then converted to a series of run-amplitude 

pairs, which are then coded with a variable length code. 

In P or B frames, a macroblock may either be intracoded, or predicted using 

vanous interframe motion compensation techniques. Much of the 

information in a frame within a video sequence is similar to information in a 

previous or subsequent frame. The MPEG standard takes advantage of this 

temporal redundancy by representing some frames in terms of their 

differences from other (reference) pictures. P frames can propagate coding 

errors because they are predicted from previous reference (lor P) frames. B 

frames do not propagate errors because they are never used as a reference. 

Bi -directional prediction used in B frames decreases the effect of noise by 

averaging two frames. 
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This concept of motion compensation, also known as temporal compression, 

is where MPEG attempts to encode successive frames relative to previous I 

or P frames. This technique can improve the compression ratio by about 3 

times. In temporal compression, the encoder searches forward or backward 

in time for a similar macroblock. A compressed macroblock contains a 

spatial vector between the reference macroblock(s) and the macroblock 

being coded as well as content differences between the two macroblocks. 

When a macroblock in a P frame cannot be efficiently represented by motion 

compensation, it is coded in the same way as a macroblock in an I frame. 

For the B frames, we can possibly have an interpolated match, which is the 

average of the forward and backward blocks. Since a B frame depends on a 

reference frame in the future, it cannot be encoded until the reference frame 

in the video sequence has been captured and digitised. Similarly, a decoder 

cannot decode a B frame until its reference frame in the future has been 

received. Therefore, the order in which the frames are transmitted should be 

different from the order in which a sequence is displayed. The reference 

frame following a group of B frames in a video sequence should be 

transmitted ahead of the group. 

For example, if the video sequence is as follows, 

10 Bl B2 P3 B4 B5 P6 B7 B8 19 BlO B11 P12 

then the transmission sequence is, 

10 P3 Bl B2 P6 B4 B5 19 B7 B8 P12 BlO B11 
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An MPEG encoder can control its output rate by setting the quantiser scale 

in the slice header, and also setting the optional quantiser scale in the 

header of each macroblock within a slice. A coarser setting would result in a 

lower bit rate at the expense of poorer visual quality. A coarser quantiser 

scale would discard some of the high-frequency DCT coefficients thereby 

lowering the encoder output rate. This is due to the assumption that the 

human eye is less sensitive to such high-frequency information. 

1.5. Previous work 

[ROSE] found that video sequences such as sports, news and music clips 

lead to MPEG sequences with high peak bit rate and a high peak-to-mean 

ratio compared to movie sequences. This results from the rapid movement of 

a lot of small objects, which increase the amount of data necessary to 

encode the sequence. [ROSE] also concluded that for modeling of frame and 

GOP sizes, either histograms, Gamma, or Lognormal probability density 

functions can be used. [ROSE] found that there are long-range 

dependencies in the frame sequences although these were difficult to 

ascertain using the frame-by-frame correlations. 1 

I The term correlation is used to describe the degree of linear association 
between two variables X and Y. When the coefficient of correlation (r) has a 
value close to zero, the data is not linearly related. However when r has a 
value close to +1 or -1, one can assume a positive or negative linear 
relationship between the two variables. Terms that are correlated over time 
are said to be autocorrelated. 
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Other ways to detect long-range dependencies include variance-time plots or 

periodograms. Our paper has attempted to discuss this problem in more 

depth and has suggested solutions to alleviate it. 

In their paper, [LAM et all concluded that the rate fluctuations from one 

frame to the next are most troublesome. Consider an I frame that is 100 

kbits in size followed by a B frame 10 kbits in size. If a video application 

specifies a frame rate of 24 frames per second, sending the I frame over a 

network for 1/ 24th of a second would require a transmission capacity of 

2.34 Mb/s. During the next 1/24th of a second, the transmission capacity 

required for the B frame drops radically to 0.234 Mb/s. These large 

fluctuations are a consequence of the use of interframe coding techniques in 

MPEG. 

[LAM at ell also presented an algorithm for smoothing frame-to-frame rate 

fluctuations in a video sequence. The algorithm's performance is improved 

by a 'lookahead' strategy that makes use of the repeating pattern of I, P and 

B frames. 

[LI et all introduced the concept of fast playback where only n out of every m 

frames are displayed (m > n). These frames are displayed at the normal 

frame rate, but (m-n) frames are not displayed at all. The choice of frames to 

be dropped determines the nature and quality of the fast playback display. 
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The nature of the B frames dictates that they can always be dropped 

without altering the meaning of the rest of the video stream. Each P frame, 

however, depends on another I or P frame. The video stream will be 

impacted negatively if these P frames are dropped at random. Given a 12-

frame GOP (e.g. hB2B3P4BsB6P7BsBgPlOBllB12 h3B14BlSP16 ... ) we could 

speed up the playback by a factor of 12 by displaying only the I frames. 

Dropping just the B frames would increase the playback speed by a factor of 

3. It would not be possible, however, to speed up the playback by a factor of 

6 by only transmitting hP7 h3P19 ... , i.e. only displaying one I frame and one 

P frame from each GOP. This is because P7 is predicted and only makes 

sense relative to P4, which has been dropped. 

In their paper, [KRUNZ et all suggest a bandwidth allocation scheme for 

VBR video traffic using the temporal structure of MPEG sources. This 

scheme results in an effective bandwidth that, in most cases, is less than 

the source peak rate. This effective bandwidth depends on the arrangement 

of the multiplexed streams, which is a measure of the degree of 

synchronisation between the GOP patterns of different streams. 

A major challenge in designing B-ISDN / ATM networks is to guarantee the 

Quality of Service requirements for all transported streams without 

underutilising the available bandwidth capacity. One could allocate 

bandwidth based on the peak rates of the sources in order to satisfy the 
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Quality of Services requirements. This method, however, leads to low 

utilisation due to the burstiness of many sources (high peak-to-mean ratio). 

Statistical mUltiplexing can be used to increase utilisation by allowing 

available bandwidth to be shared among various streams. [KRUNZ et all 

investigates the bandwidth requirements of video streams that are 

generated by MPEG encoders. They show that statistical multiplexing can be 

used to an advantage with MPEG video traffic while providing stringent and 

deterministic Quality of Service guarantees. 

[Doulamis et all analysed the statistical characteristics of the three types of 

frames found in an MPEG stream over a B-ISDN / ATM network. They 

studied the autocovariance and probability density functions of these 

frames and then proposed two new models that approximate both the 

statistical properties and the traffic characterisation of MPEG data streams. 

1.6. Conclusions 

Unlike [ROSE] and [Doulamis et al], this paper does not attempt to find 

statistical models for MPEG data streams. Although some statistical 

characteristics are used in this work, we have not presented them as a 

central theme. 
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This work is similar to the above mentioned papers in that we have also 

found long-term as well as short-term variations in the MPEG data. We have 

only considered a single MPEG stream and have suggested a few bandwidth 

allocation methods. [KRUNZ et all on the other hand, have used the 

mUltiplexing of video streams as a possible method for allocating bandwidth. 

Our methods will be described in more detail in the next few chapters. 
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Chapter 2 

Buffering 

buffer (n.) a person or thing that lessens shock or protects from 

damaging impact, circumstances, etc. 

a memory device for temporarily storing data. [COLLINS] 

2.1. Introduction 

In the Information Technology environment, a buffer is a temporary 

storage mechanism. A buffer can be placed anywhere in a network. It is 

usually placed near the destination however, because it can be used to 

smooth variations in a video stream, which makes the displaying of the 

video much less complicated for the decoder. As data arrives at the buffer 

it is stored temporarily until the destination is ready to receive it. If the 

buffer is large enough, the data can be stored for a long period of time. The 

destination can then receive data at its preferred rate, which is usually 

very different to the arrival rate. In the context of this study, data would 

arrive at a variable frame rate while it would generally leave the buffer at a 

constant frame rate. In this way a buffer can be used to smooth the traffic 

flow. 
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It is important to note that a constant bit rate is very good for network 

transmission because network resources can be allocated optimally, and 

used to their capacity. On the other hand, a constant frame rate is 

essential for viewing of the video stream. For example, an encoded MPEG 

video's normal frame rate is usually about 24 frames per second. Since 

frames are of different sizes we cannot have a constant frame rate as well 

as a constant bit rate throughout the movie. The problem of irregular 

bitrates caused by network latencies aggravates the issue. Frames will 

travel from a source (video player) across the network, arriving at the 

buffer at irregular intervals. A buffer placed near the destination can 

function as a type of adaptor or modifier of the traffic. The buffer smoothes 

the incoming irregular traffic flow into the more regular 24 frames per 

second displayable rate. In this way, the video stream is smoothed of 

almost all variation. 

Proposals have also been made where buffers are placed at the entrance of 

the network. This would not necessarily prevent the data from becoming 

jittery during its lifetime in the network. Due to network activity and 

congestion, packets may be lost or slowed down while traversing the 

network. The transfer of data from the buffer over the network to the 

destination would not be as smooth as it would if the buffer were placed in 
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close proximity to the destination. This could mean being placed inside of 

a set-top box as part of the MPEG decoder/player. 

In a video-on-demand system, VCR functions such as stop, pause, rewind 

and fast-forward may be required. The buffer in the set-top box can also 

be used to service some of these requests, such as pausing and a short 

rewind. 

2.2. Previous work 

For a video-on-demand system, buffering can be used at the server or at 

the destination, i.e. the set-top box. The amount of buffering (usually 

measured in Megabytes) which can be used at these points is an important 

Issue. 

i) Buffering at the video server 

[DAN et all introduce buffering concepts that alleviate burstiness in video 

servers. Read-ahead bUffering is where blocks are read and buffered ahead 

of the time they are needed. This storing of data improves the on-time data 

delivery ability of the server with only a small additional cost. This cost 

includes the cost of the memory for use as a buffer as well as the extra 

time delay of reading the buffer. Additional read-ahead buffering improves 

jitter tolerance and hence, the real-time performance of the video server. 
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This type of buffering cannot, however, prevent jitter and data loss 

occurring in the network. 

Another concept is that of interval caching used predominantly in video-on­

demand servers where the same data is served to more than one client. 

Here the data is cached during the intervals between successive streams, 

which are not synchronised. Closely following streams can exploit the 

blocks of data that were fetched by the first stream, if memory space is 

available to retain them. This type of buffering simply reduces the amount 

of time used to serve videos and the disk traffic within the server, but does 

not necessarily alleviate the problem of jitter within a video stream. 

Buffering is also used to smooth the bitrate fluctuations of encoder output 

from one frame to another. Without such smoothing, the performance of 

networks carrying this type of data would be adversely affected. [LAM et all 

use the concept of lossless smoothing to eliminate rate fluctuations that 

are a consequence of interframe coding in MPEG. By placing a buffer at 

the sender one can smooth out frame-to-frame variations. For example, let 

the distance between each I frame be 9, let the frame rate be 24 frames per 

second and let Si ... Si+8 be the frame sizes for one GOP. Each frame in that 

GOP is sent to the network at the same rate, namely, 
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(Si + Si+l + ... + Si+8) * 24 [average frame size multiplied by frame rate] 
9 

Using a buffer at the sender, all frames in that GOP can be sent at the 

same rate regardless of their individual sizes. The rate of the coded stream 

still fluctuates from GOP to GOP, due to scene complexity and the amount 

of motion in a scene. In Figure 2.1 below, the encoder sends out an 

encoded bit stream. This enters the buffer at the host at a rate equal to the 

frame rate of the MPEG encoding. Since the frames are different sizes the 

buffer fills up at a variable rate. The bitrate leaving the host and entering 

the network is near to constant due to the smoothing effect of the buffer. 

No data loss occurs in this buffering technique. 

,--------------------------------------------1 
I 

HOST 
Bit rate 

I ENCODER II---
I 
I after I .. I 

buffering I 
I 
I aGOP 

.. ... To 
NETWORK 

Figure 2.1. - Buffering at sender for lossless smoothing 

ii) Buffering at the set-top box 

According to [FENG et al], when the buffer size is too small, movies with 

large variations in frame sizes tend to have large peak bandwidth 

requirements due to the limited ability of the buffer to smooth large peaks. 

For small buffers, the peak bandwidth rate is generally based on the 
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maximum frame SIzes, since these large frames cannot be stored as one 

frame in a buffer and hence they cause large fluctuations in the required 

bandwidth. For large buffer sizes, the peak rate is based largely on average 

frame sizes and the long-term burstiness of the video stream. Using large 

buffers, one can remove most of the burstiness in the stream through 

prefetching of data. More than one frame can be stored in a large buffer 

and hence this averages out the required bandwidth. 

[LI et all found that it is advantageous to group MPEG frames into 

segments. In most research papers, a segment is synonymous with a GOP, 

but [LI et all proposed a generalised scheme for grouping frames into 

segments of any desired length. A frame storage order known as the 

minimal causal order was introduced. This was then used as the basis for 

grouping frames into segments. This paper also looked at the construction 

of the MPEG stream itself, paying specific attention to the I, P and B 

frames in an MPEG video stream. When a B frame is to be displayed, the I 

or P frame which follows in the playback order needs to be present in the 

buffer for the successful decoding of the B frame. A buffer storage of at 

least 2 frames is therefore necessary. It can be shown that the I-frame is 

either directly, or indirectly, responsible for the successful decoding of a 

certain number of frames that follows it. According to [LI et all therefore, 

when segments are retrieved consecutively for the display of a piece of 
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video, the first such retrieved segment should be one with an I-frame in it. 

Note that a GOP will always contain one I frame. 

[JAHANIAN et all used buffering in conjunction with the critical bandwidth 

allocation algorithm. This algorithm creates a bandwidth allocation plan 

for video data. The following diagram depicts a possible plan creation. 

Points of 
renegotiation -------.. 

\ 
Required buffer 
space 

Beginning of 
movie 

Frame number 

Fmovie(i) 

1 
End of 
movie 

Figure 2.2. - critical bandwidth allocation example 

The minimum buffer size required is represented by the maximum vertical 

distance between the critical bandwidth allocation plan (dotted line) and 

the function Fmovie(i) (solid line). The function Fmovie(i) is given as the 

cumulative summation of frame sizes for the movie. The four points of 
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renegotiation show where the amount of required bandwidth was 

decreased during the streaming of the video. The slope of each dotted line 

between renegotiation points is the bandwidth requirement for that run. 

According to [JAHANIAN et al], the required buffer size is largely due to the 

long-term burstiness of the video stream, and to a lesser degree, the length 

and average frame sizes of the videos. 

[JAHANIAN et all also show that for a small amount of client-side buffering 

one can reduce the number of bandwidth changes necessary. In their 

experiments, 20 Mbytes of buffer space on the client-side could reduce the 

total number of changes for the video clips tested, from over 100 changes 

(in some cases) to less than 10 for all of the videos. Most of the video clips 

used were full-length movies close to 100 minutes long. It was also shown 

that if a movie has a sustained area of smaller frames followed by a 

sustained area of larger frames, the amount of buffering needed tends to 

be much higher. 

2.3. The leaky bucket 

The leaky bucket algorithm, discussed m more detail at 

http://poisson.ecse.rpi.edu/ ~bergr IBBN I , is a type of buffering algorithm 

that is used in ATM networks. It is a buffer mechanism used at the 
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'entrance'to the network, which constrains the user's data to ensure that 

it conforms to certain parameters. These parameters include the average 

bit rate, the peak rate, and the sustained peak time. The buffer is modelled 

as a bucket of fIxed size with a leak. The average bit rate is the maximum 

rate at which data can leak from the bucket. The peak rate is the 

maximum rate at which data can be added to the bucket. The sustained 

peak time is the maximum length of time that peak level traffIc may occur. 

When the client negotiates the required parameters, the size of the bucket 

will be determined by the need to buffer the peak level traffic for the 

sustained peak time. Once the bucket overflows, data is discarded. This 

bucket model provides a policing mechanism, which ensures that the 

network is isolated from client streams that violate their negotiated 

contracts. 

In the case of an MPEG video stream, the data stream enters the bucket at 

a variable frame rate. The buffer is then drained at a constant rate of 24 

frames per second. The buffer level will always be changing. 

In chapter 6 we have used a leaky bucket concept of constantly checking if 

it is too full or too empty. We use the moving average of the Starwars data 

in order to do the monitoring. If the bucket gets too full, we increase the 

leak; while if it gets close to empty, we decrease the rate of the leak. In this 
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way, the data inside the bucket can be regulated. The following diagram 

(Figure 2.3.) shows what a leaky bucket regulator does. 

,---s_ou_r_c_e--ll U 
Non-
conforming 

8 data is 
discarded 

r----------_ 

n Conforming data drains 
at a constant rate 

Figure 2.3. - The leaky bucket analogy 

2.4. Lookahead 

Buffering gives us the ability to smooth a group of frames that are of 

varying sizes. This involves storing these frames for a short period of time 

before they are used. Temporarily storing a frame gives the receiver the 

ability to have some intelligence about the content of that upcoming frame 

before it is displayed. This effectively introduces lookahead into the 

stream. 

2.4.1. Transmission order 

As we know, the I frame in a GOP is the coded still image while the P 

frames are the deltas, or differences, from the most recent I or P frame. 

The B frames are interpolations between the I and P frames. We can 
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therefore say that the frames in a GOP are dependent upon one another. B 

frames are predicted from the closest two I or P frames, one in the past 

and one in the future. The sequence of decoded frames ready for display 

usually looks like this, 

10 Bl B2 P3 B4 Bs P6 B7 B8 Pg BlO B11 h2 B13 B14 PIS ... 

Now, in order for a B frame to be processed (coded and sent or decoded 

and displayed), the P frame or I frame which is associated with that B 

frame needs to be processed first. Hence, for the decoder to work, one has 

to send the associated P or I frame before the B frames. The sending order 

of frames would then be, 

10 P3 Bl B2 P6 B4 Bs Pg B7 B8 h2 BlO B11 PIS B13 B14 ... 

At the starting point of the MPEG video stream, one would have to decode 

the 10 frame, then the P3 frame and keep them both in memory in order to 

decode the B frames (Bl and B2). One could display the 10 frame while 

decoding the P3 frame, and display the B frames as one decodes them and 

then display the P3 frame as one decodes the next P frame (P6), and so on. 

This description implies that the buffer should be large enough to hold at 

least 2 frames while the decoder decodes another. The sender would then 

be 2 frame-timeslots ahead of the receiver, hence introducing a small 

amount of lookahead into the system. 
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2.4.2 Frame size differences 

The worst case scenario in MPEG buffering would be where the en tire size 

of a GOP is made up of the I frame (fo) (which is simply a still picture) and 

no other frames; i.e. all the other P and B frames are 0 in size. If we 

assume that the transmission capacity is equal to [GOPsize / 12] per 

frame-timeslot (for a GOP made up of 12 frames) then the I frame would 

require all twelve frame-timeslots to download completely. If the I frame is 

3 Mbits in size, then the buffer would receive only 0.25 Mbits during each 

timeslot (one twelfth of its total size). Each twelfth would arrive at time to, 

tl, t2 ... , tll, and the I frame (fo) would only be displayed at t12, when the 

next I frame is being sent. We would therefore see a delay of at least 12 

frame-timeslots, which is equivalent to 1 GOP, between the sender and the 

receiver. In this case we have a receive latency of up to 12 frame-timeslots. 

2.5. GOP Averaging 

The largest frame in the Starwars data is 185267 bits in size. If we wanted 

to carry the entire movie without any buffering, we would require a 

bandwidth of 4.24 Mbps. 

An obvious improvement on the above would be to use GOP smoothing, 

which implies a small amount of buffering; enough to hold the largest 

GOP. In our test data the largest GOP is about 0.9 Mbits in size. The 
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required bandwidth in this case would be 1.80 Mbps. We have therefore 

already reduced the required bandwidth for the entire Starwars movie by 

using a small amount of buffering. 

In order to compare the effect of using GOP sizes instead of frame sizes we 

have plotted the bandwidth requirements for the Starwars data set. Using 

the frame sizes and GOP sizes as input, results in different bandwidth 

requirements for the movie. In the following graph we have plotted the 

bandwidth required for every 5 minutes of the movie. We see from this 

graph that the required bandwidth when using GOP sizes is always below 

the bandwidth required for the frame sizes. There is a visible amount of 

smoothing that occurs due to the use of GOP sizes. This implies that the 

small amount of buffering used within a GOP can smooth the short-term 

variation in a MPEG video stream. 

32 



,-.. 

'" 

--+-frames 5mins --+- gop 5mins 
- - maximum frame bandwidth· ... 'maximum GOP bandwidth 

4.5~--------------------------------------------------------~ 

4+-~---------------------..--.H-----------------------~--~ 

3.5~r----------------------r~~-+---------------------+-4~~ 

~ 3+-~--------------------4-~~~~----------------~~--~__1 
..c 
:::!! 
~ 2.5t-~~~~~~----~~~~------~--~~~~~~----------~ 
,..c:: 

~ 2+-----------~~--=---~----------~----------------------__1 
~ 
; 1.5+----------------------------7~----------------~-----------, 

..c 

0.5+-----~--------------------------------------------------__1 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

interval number 

Figure 2.4. - Bandwidth demands for maximum averaged GOPs versus 
maximum raw frame sizes over 5-minute intervals 

In our experiments in chapters 3 to 6, we have used GOP sizes as well as 

frame sizes as the input data. The differences show the effect of a small 

amount of buffering used for a MPEG video stream. We have shown that 

the sizes of different frames within a GOP can be smoothed with the aid of 

a smallish buffer. A buffer that can hold an entire GOP for the Starwars 

data will not need to be larger than about 118 Kbytes. Each GOP would be 

approximately half a second long with respect to the movie time since the 

frame rate for the Starwars data is 24 frames per second and there are 12 

frames in these GOPs. 
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2.6. Simulator 

We have seen that the frame-to-frame or even GOP-to-GOP variations can 

cause problems for networks and set-top boxes in a video-on-demand 

system. In section 2.2. we have presented possible solutions to the short­

term variation problem, based on related research. In this section we will 

introduce a tool to assist with finding an adequate buffer size for the 

MPEG video stream under investigation. 

Our initial experiment included constructing a simple simulator, which 

used the Starwars data from Bellcore, see [GARRETI et all. Most of the 

data used throughout this paper originates from traces of a motion picture 

done at Bellcore. This data is available from [GARRETI et al] as a 

statistical analysis of a 2-hour long sample of Variable Bit Rate (VBR) 

video data. The video under investigation, Starwars, contains quite a 

diverse mixture of material ranging from low complexity or motion scenes 

to those with very high action. The coding of this data set has been 

simplified somewhat by the fact that only the luminance component of the 

video source has been coded. The movie is therefore, in effect, a 

monochrome video. 

Our simulator assumed a buffer of size X (Megabytes) was placed at the 

receiving end of the network with a given bandwidth of size W (Megabits 
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per second). The values of X and W were varied while we measured the 

number of times the buffer underflowed. The bandwidth for each 

simulation was kept constant throughout the entire run. We did make the 

assumption that the buffer would not overflow since we would only move 

data into the buffer if there was space for it. This assumption requires a 

flow-control algorithm that can stop the sender from delivering data when 

the buffer is full or near to full. The values of X and W need to be kept 

within reasonable limits, since buffer size could rapidly increase the cost 

of the set-top box for the end-user. In our initial experiment, bandwidth 

values of 0.2, 0.3, 0.4 and 0.5 Megabits per second were used. The buffer 

sizes used were the values of 0.5, 1, 1.5 and 2 Megabytes. Since there are 

174136 frames in the data set, there could be no more than 174136 

underflows during the running of the simulation. 
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Figure 2.5. - Total underflows vs bandwidth for various buffer sizes 
and bandwidths 

Figure 2.5. shows the different bandwidth sizes used and the respective 

underflow counts that were generated by the simulator using the Starwars 

data set. As would be expected, the smaller buffer sizes resulted in a larger 

number of underflows. As the bandwidth was increased and the buffer size 

increased, the number of underflows decreased until none occurred with a 

bandwidth of 0.5 Mbits per second and a buffer size of 2 Megabytes. We 

see that for a small increase in available bandwidth, the number of 

underflows is greatly reduced. For example, the difference in the number 

of underflows decreases substantially with an increase of 0.1 Megabits per 

second bandwidth from 0.2 to 0.3. One can also note that for the smallest 
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bandwidth, increasing buffer size to 2 Mbytes does not significantly reduce 

the number of buffer underflows. According to [GARRETI et all, the 

average bandwidth of the MPEG video stream under investigation is 

approximately 0.36 Megabits per second. 

The SIze of the buffer requirements will increase as the available 

bandwidth decreases. For example, at a bandwidth of 0.4 Mbps we require 

a 12 Mbyte buffer for 0 underflows, while a bandwidth of 0.3 Mbps (below 

average) requires 52 Mbytes for 0 underflows. In our simulation, we are 

only interested in steady-state behaviour, hence we will not cover the case 

when the available bandwidth is below the bandwidth average for the 

en tire movie. 

[GARRETI et all also show that the peak-to-mean ratio for the Starwars 

data is 11.88. This ratio is a primary indicator of the variability of the 

stream. In the case of our data set, the peak frame size is almost 12 times 

the size of the average frame size. The range of the data is also quite large, 

which adds to the bursty nature of the video stream. The maximum frame 

size is 185267 bits, while the minimum frame size is only 476 bits. 

Using this simulator along with the data and analysis of [GARRETI et al], 

we have attempted to determine to what extent the strategic placement of 
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one or more buffers in a network can smooth multimedia traffic; in this 

case MPEG video streams. If there are too many occurrences of frame loss 

or underflows then adjustments to the approach need to be made. We 

have, however, shown that a buffer of 2 MB is efficient for smoothing our 

MPEG data set when used in conjunction with a bandwidth of 0.5 Mbps, 

since the buffer does not underflow at this rate. 

Note that any bandwidth requirement is bounded on the upper and lower 

side. The upper bound would be the peak frame size. It would be 

unnecessary to allocate more than the maximum frame size as a 

bandwidth requirement. The lower bound would then be the average frame 

sIze. 

In the above experiment, our simulator has used individual frame sizes as 

input. In essence we have used the bandwidth required for each frame. 

Therefore, large bandwidth requirements do not last for long periods, but 

rather only for a few seconds. 

2.7. Conclusions 

In this chapter we have shown how buffering at the set-top box can assist 

in coping with the short-term variation found in MPEG encoded data. 

Buffering a variable bit rate datastream can reduce the peak bandwidth 
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requirements of a MPEG video stream. We have also explored the tradeoff 

between buffer size and average bandwidth. We have shown how the use 

of a large enough bandwidth and buffer size can reduce the number of 

buffer underflows during the transmission of a movie over a network. 

We have gIven some descriptions of prevIOUS research where small 

amounts of buffering and caching have been used at the source of the 

video stream. The leaky bucket approach to buffering, used at the 

entrance to a network, has also been introduced in this chapter. We have 

seen how this type of buffer can be used to regulate conforming and non­

conforming data. 

A buffer can be placed anywhere in the network, not necessarily just at the 

sender or just at the receiver. It must be noted however that placing the 

buffer at the entrance to a network will not be able to prevent the jittery 

effect caused by a congested network. Buffering can also be useful for 

lookahead in a data stream. In rest of this paper, we have investigated 

mechanisms for dealing with the possible long-term variations in MPEG 

video streams. 

It has been shown in this chapter that grouping frames into a GOP has the 

effect of smoothing the data. If we have enough buffer space to hold an 
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entire GOP (half a second of movie time), then the required bandwidth is 

reduced substantially. With this result in mind, we can approach the 

following chapters using GOP data as the input to most of our 

experimen ts. 

Not only does buffering benefit us by reducing the required bandwidth for 

a movie, but it can also be used to smooth any jitter, which is caused by 

network latency. 
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Chapter 3 

Renegotia tion 

3.1. Introduction 

MPEG video traffic is inherently bursty, especially in the short-term, and it 

also exhibits long-term variations with respect to bandwidth requirements. 

This short-term variation is largely due to the different frame sizes which 

occur in MPEG encoded streams. The short-term burstiness can be dealt 

with by using buffering techniques as shown in Chapter 2. 

Long-term variation is due to the gradual increase or decrease of the 

average frame size during a movie. When the content of a movie is complex, 

the average size of the frames will increase. This will happen rapidly when 

there is a change from one scene containing very little action to one where 

there is a large amount of complexity and motion. There will then be a 

gradual decrease in the average frame size, as the scenes become less 

complex. These gradual increases and decreases of frame sizes lead to long­

term variation in the movie. Buffering will not be able to reduce this type of 

variation since long-term variation occurs gradually, over a large number of 

frames, while buffers are generally chosen to handle a small number of 

frames. We will attempt to manage these types of fluctuations by 
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renegotiating the available bandwidth at intervals during the movie in order 

to increase or decrease the required bandwidth when necessary. 

3.2. The problem 

In order to show that long-term variation does exist in our test data we need 

to compare the frame sizes in Table 3.1. to those in Table 3.2. There is a 

large difference in the average frame sizes of the two tables. To show that 

this difference is statistically significant, we have tested the hypothesis: 

Ho : 112 > III vs Ha : 112 = III (Ili refers to the frames in Table 3.i) 

Here III and 112 are the mean frame sizes from different sections of the 

Starwars movie. According to our test, there is a definite statistical 

difference between the average frame sizes within the movie. This difference 

shows that there is a long-term variation of frame sizes in this video stream, 

which can cause bandwidth allocation problems. The rest of this chapter 

suggests ways to counter this problem. 
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Type 
I 
B 
B 
P 
B 
B 
P 
B 
B 
P 
B 
B 

Size 
12609 
7022 
11091 
10960 
3053 
11531 
11159 
2357 
11440 
11647 
11911 
11398 

Average frame size (~11) 9681.5 

Table 3.1. - Example of frame sizes near the beginning of the Starwars 
data 

Type Size 
I 49150 
B 23668 
B 24465 
p 46802 
B 24863 
B 24311 
p 44832 
B 22666 
B 23880 
p 44227 
B 23508 
B 24676 

Average frame size (~2) 31420.67 

Table 3.2. - Frame sizes from the middle of the Starwars data 
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3.3. Previous work 

[NORIAKI et al] have proposed a dynamic bandwidth allocation method for 

an interactive video-on-demand system. Required bandwidth is determined 

based on the queue length at the set-top box. No pre-calculation is 

necessary for this scheme hence it is beneficial for interactive video-on­

demand. Used in conjunction with a buffer at the set-top box, the 

bandwidth is increased when an underflow is predicted and decreased when 

an overflow is predicted. This philosophy is similar to that of the "leaky 

bucket" algorithm mentioned in Chapter 2. In general, either the set-top box 

can monitor its own buffer (but then some sort of signalling information 

would be required so that the set-top box can inform the sender when to 

increase or decrease the traffic flow) or the sender, given knowledge of the 

set-top box buffer size, can model what will be happening at the remote end, 

and adjust the bandwidth on that basis. 

[JAHAN et all introduced an optimal bandwidth allocation (OBA) algorithm 

that minimised the total number of bandwidth changes necessary for 

continuous playback. The OBA algorithm IS a variant of the critical 

bandwidth allocation (CBA) algorithm. 

For a flxed buffer constraint, the CBA technique results in plans for 

continuous playback of stored video that have (1) the minimum number of 

bandwidth increases, (2) the smallest peak bandwidth requirements, and (3) 
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the largest minimum bandwidth requirements. The OBA algorithm 

considers a more complex case where, in addition to the three critical 

bandwidth allocation properties, it minimises the total number of bandwidth 

changes necessary for continuous playback. 

3.4. Our approach 

We have investigated the delivery of MPEG video streams over negotiated­

bandwidth channels. A number of methods for adaptively renegotiating the 

delivery bandwidth have been considered. In each method, a bandwidth is 

assigned at the start of the video stream and it can then be adjusted 

(renegotiated) according to the needs of the video by whatever technique is 

used in the given method. 

Using the a priori knowledge of stored MPEG video data (the frame sizes) we 

have developed techniques which allow us to know at the start of the video 

stream what the bandwidth requirements for the entire duration of the 

movie will be. By pre-analysing a movie and comparing scene and group of 

picture sizes we are able to detect the points in a movie at which to adjust 

the available bandwidth in order to reduce the effect of long-term variation 

in MPEG video streams. Since not all video servers will have the a priori 

knowledge of frame sizes for the movies they are serving, we have also 

experimented with a dynamic renegotiation approach. Using the moving 

average statistic we are able to dynamically adjust the required bandwidth. 
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The two basic strategies covered in chapters 4, 5 and 6, with respect to 

bandwidth renegotiation, are therefore the pre-analysis approach and the 

dynamic analysis approach. The pre-analysis approach calculates the 

bandwidth required for known interval lengths. These intervals may be of a 

flxed size throughout the movie or they may be of varying sizes. Chapter 4 

deals only with the fixed interval scenario. Chapter 5 uses more flexible 

methods for choosing interval sizes, and considers heuristic methods in 

order to determine possible renegotiation points. The scene changes within 

the movie are also considered as possible sites for renegotiation. 

The dynamic analysis approach, discussed in Chapter 6, calculates the 

amount of bandwidth required without the use of pre-determined interval 

lengths. Using a moving average, we renegotiate for an increase or decrease 

in required bandwidth based on upper and lower bounds that change 

throughout the length of the video stream. 

In order to compare the results from the above experiments we will need a 

base measurement against which they can be evaluated. We have therefore 

calculated the minimum bandwidth necessary to carry the entire movie 

without renegotiation and then use that as a basis, against which, any cost 

savings accrued during renegotiation, can be measured. Since we are using 

one bandwidth value throughout the entire datastream, there will only be a 

single negotiation of bandwidth at the start of the movie. 
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3.5. Assumptions 

For our experiments, we assume that the network has adequate bandwidth 

available for use by the MPEG video streams at all times. In this way, the 

cost will not be affected by a lack of bandwidth. Furthermore, we assume a 

linear cost function, i.e. doubling the bandwidth requirement would double 

the cost. This implies that the cost of carrying K Megabits is independent of 

the bandwidth, i.e. 100 Mbps for 1 second costs the same as 1 Mbps for 100 

seconds. The unit of costing is therefore taken as Megabits, i.e. one Mbps 

for 1 second would incur one unit of cost, while 10Mbps for 60 seconds 

would cost 600 units. We assume the objective function for the 

minimisation problem must minimise these unit costs. The costs involved 

would include the amount of bandwidth actually used over each time period 

as well as the cost of renegotiating between a high and a low bandwidth. 

This renegotiation cost is also assumed to be a constant cost incurred every 

time we renegotiate and can also be expressed in our units. 

Cost = L(no. of seconds * bandwidth) + (no. of renegotiations * K) 

where K = renegotiation cost 

This costing function is calculated as follows. We sum up the amount of 

bandwidth used over the length of time that the specified bandwidth was 

used. Whenever the bandwidth is adjusted there is a renegotiation cost 

equal to K. Finally, we assume that the cost of a certain bandwidth over a 
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fixed interval will be fIxed, and will not depend on external factors such as 

the current network load. 

Given the above costing algorithm, we are now able to calculate the cost of 

the minimum bandwidth required to transmit the entire video stream, using 

only one negotiation of bandwidth at the very beginning of the transmission. 

We would obtain a cost of approximately (30767 + K) units when using the 

frame sizes of the movie as input, and a cost of (13080 + K) units when 

using the GOP sizes. The small amount of buffering implied when using 

GOP sizes instead of frame sizes reduces the cost of transporting the movie, 

which is consistent with our findings in Chapter 2. We have used these 

costs as a basis against which we will compare the other renegotiation 

strategies in Chapters 4, 5 and 6. 

3.6. Conclusions 

This chapter has identifIed the problem of long-term variation. Its presence 

in the Starwars data has been verifIed. The size of any frame is dependent 

on the content of the movie at that point. 

In order to reduce the negative effect of this long-term variation, we have 

introduced the concept of renegotiation in this chapter. We have mentioned 

a number of methods that can be used for adaptively renegotiating the 

delivery bandwidth for an MPEG video stream. These methods include using 
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fIxed intervals at which to renegotiate as well as usmg heuristics to 

determine various interval lengths. A dynamic method of using the moving 

average of the data set will also be discussed in detail in Chapter 6. A simple 

model against which we will compare the costs has been proposed. 
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Chapter 4 

Fixed Intervals 

4.1. Introduction 

Chapter 4 deals only with the renegotiation of bandwidth over fixed 

intervals. Each interval will be of the same length with respect to time, but 

different bandwidths will be required to transport the data for each 

interval since the amount of data per interval will vary. The number of 

intervals chosen will have a direct effect on the overall cost of the 

transmission of the movie. This is due to the fact that each interval implies 

a new bandwidth, which implies another renegotiation would be required. 

Assuming a non-zero renegotiation cost, a large number of intervals would 

increase the total cost. 

Based on our results from Chapter 2, we only need to use the GOP sizes in 

our experiments. We have seen how the use of buffering can significantly 

reduce the bandwidth required to transport an entire movie. 

4.2. Pre-analysis using Fixed Intervals 

Fixed-interval renegotiation simply splits the video stream into fIxed 

intervals and renegotiates the required bandwidth at the start of each 

interval. The bandwidth requirement will depend on the GOP sizes within 
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each interval. Rather than attempting to negotiate for the mmnmum 

bandwidth for the entire video stream, the video server will need to 

negotiate for a different, and often reduced, bandwidth requirement for 

each interval. Clearly, renegotiating the bandwidth for each GOP will 

minimise the bandwidth requirements, but because of the reasonable 

assumption that there are non-zero renegotiation costs, this method will 

not necessarily return the least cost. We wish to choose the interval size in 

such a way that the total cost will be minimised. 

We have divided the mOVIe into intervals, 1 GOP (half a second), 7.5 

seconds, 15 seconds, 30 seconds, 1 minute, 2 minutes, 5 minutes and 10 

minutes. The bandwidth for each interval was calculated using the 

maximum GOP size for that particular interval. For example, if the largest 

GOP in an interval of X minutes was 500 000 bits, the required bandwidth 

for that interval would then be 0.95 Mbps. The bandwidth would be 

maintained for X minutes of the movie before a renegotiation would take 

place at the beginning of the next X-minute interval. This method would 

only be possible if the GOP data were available prior to the streaming of 

the movie, since the server would need to know what the largest GOP for 

each interval would be before negotiating a bandwidth for that interval. 

In Figure 4.1. we have plotted the upper and lower boundary for the 

required bandwidth for the Starwars data. The bandwidth required for 
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each GOP has been plotted against the maximum bandwidth required if 

only one bandwidth was set (implying no negotiations of bandwidth). 
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Figure 4.1. - Bandwidth for every GOP vs bandwidth for largest GOP 

In Figures 4.2. and 4.3., we have plotted the required bandwidth for 2-

minute and 5-minute intervals respectively, using the GOP sizes as the 

input data. For our data, 1.80 Mbps is the maximum bandwidth required 

if there were to be no renegotiations during the movie. We see here that a 

bandwidth of 1.80 Mbps is not necessary to maintain throughout the 

entire movie. In the following two graphs, 1.80 Mbps has been plotted as a 

52 



comparison. We have also plotted the average bandwidth required if we 

renegotiated after every GOP. 
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Figure 4.2. - Bandwidth requirements for all 2-minute intervals (GOP 

sizes as input) 
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Figure 4.3. - Bandwidth requirements for all 5-minute intervals (GOP 

sizes as input) 

Immediately we notice the large number of renegotiations of bandwidth 

that occur when the movie is divided into 2-minute intervals. There are 61 

renegotiations in Figure 4.2. as opposed to only 25 in Figure 4.3. Both 

graphs show a maximum bandwidth requirement of 1.80 Mbps. However, 

the average bandwidth requirement for all 2-minute intervals is 0.82 Mbps 

whereas the average for all 5-minute intervals is 0.946 Mbps. Over a 

period of one hour, this equates to a difference of 56 Mbytes. Notice also 

the large area between the lowest graph line and the constant 1.8 Mbps 

line. This is the effective 'wasted bandwidth' if we cannot renegotiate. It is 

this area that we seek to minimise. 
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It may be of interest to the reader to note that the peaks in the middle of 

the two previous graphs are due to scenes in the Starwars movie, which 

contain large amounts of motion. 

In the following table (Table 4.1.) we have averaged the bandwidth required 

over all X-minute intervals for each experiment. As was expected, the 

smaller averages are associated with the shorter intervals smce the 

average bandwidth over the entire movie is about 0.36 Mbps. 

Interval GOP 
Size Avebw Cost 

Every GOP 0.36 2590 + 
Mbps 14512K 

Every 7.5 0.52 3768 + 968K 
sees Mbps 
Every 15 0.58 4202 + 484K 
sees Mbps 
Every 30 0.65 4704 + 242K 
secs Mbps 
Every 1 min 0.73 5322 + 121K 

Mbps 
Every 2 mins 0.82 5970 + 61K 

Mbps 
Every 5 mins 0.95 6977 + 25K 

Mbps 
Every 10 1.05 7931 + 13K 
mins Mbps 
Base 1.80 13080 + K 

Mbps 

Table 4.1. - Costs for f"lxed interval approach 
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The costs in the above table are calculated usmg the cost function 

introduced in Section 3.5. where cost = L(no. of seconds * bandwidth) + 

(no. of renegotiations * K). We have summed the bandwidth used over 

each interval and added the cost of all renegotiations necessary. For 

example, if we renegotiate at the start of every GOP there will be 14512 

renegotiations (equal to the number of Gaps). There are 13 intervals of 10 

minutes in length hence there are 13 renegotiations in this case. In fact, 

the movie is just over 2 hours long, which implies that the 13th interval is 

shorter than 10 minutes. In each case the bandwidth for the last interval 

has been calculated accordingly to accommodate the exact length of the 

movie. From the above, one can deduce that if the cost of renegotiation (K) 

is negligible, then making the intervals as small as possible, results in the 

lowest cost. In the following table (Table 4.2.), we have calculated the most 

economical intervals for the Starwars data according to various values of 

K. Note once again that K is measured in Megabits, implying that when K 

= 100 we assume the cost of renegotiation is equivalent to the cost of 

transporting 100 Mbits. 
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K - cost in Mhits GOP 

0 Every GOP 
{14512 negotiations} 

5 Every 30 secs 
(242 renegotiations) 

20 2 minutes 
(61 negotiations) 

40 5 minutes 
(25 negotiations) 

80 10 minutes 
(13 negotiations) 

150 10 minutes 
(13 negotiations) 

300 10 minutes 
(13 negotiations) 

600 Base 
(1 negotiation) 

Table 4.2. - The most economical intervals for various values of K 

The most economical interval becomes wider as the value of K becomes 

larger. When the renegotiation cost (K) is large, one would want to keep the 

number of renegotiations to a minimum. 

Using the GOP sizes as input data, if the renegotiation cost was negligible, 

and we were able to renegotiate the bandwidth for every GOP, we could 

achieve a saving of up to 80% over the maximum required bandwidth of 

1.80 Mbps. Note that the cost of renegotiation would almost certainly be 

non-trivial and hence the 80% saving is highly unlikely. For example, with 

K = 1 there is no saving when we negotiate at every GOP. 
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These results tend to imply that network architectures should be designed 

to respond cheaply to fine-grained renegotiations, since it is always more 

economical to choose the smaller intervals when K is small. 

4.3. Conclusions 

By dividing the video stream into fixed intervals, we have been able to 

reduce the cost of transmitting the video over a network. We have run a 

number of experiments where various interval sizes have been used. Each 

interval in the experiments required a different bandwidth. At the start of 

each interval it was necessary to renegotiate a new bandwidth. Assuming a 

non-zero renegotiation cost, experiments with a large number of intervals 

had a higher transmission cost than those with fewer intervals. However, a 

large number of intervals generally implies that a smaller bandwidth is 

needed per interval. A compromise will then be necessary to optimise 

between a large number of intervals and a higher cost due to a large 

number of renegotiations. 
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Chapter 5 

Variable Intervals 

5.1. Introduction 

Instead of flxing the interval length used for renegotiation, one could use 

different length intervals for each renegotiation of bandwidth. In this way, 

one could attempt to use the least amount of bandwidth for the longest 

period of time. 

We have used variable intervals in two ways in this chapter. Firstly, we have 

introduced the use of heuristics, where one can shift each interval's 

boundaries closer together or wider apart in order to optimise the cost of the 

required bandwidth for that interval. Secondly, we have used scene changes 

in a movie to be the interval boundaries. We have assumed that scene 

boundaries are intuitively the best measure of change of content and hence, 

where a change in bandwidth would be necessary. If the scene changes were 

all known at the start of the movie, the cost and bandwidth portfolio for the 

movie could be known prior to sending the movie over the network. 

However, if this data is not known prior to sending the movie over the 

network, then the encoder or sender would need extra intelligence in order 

for it to detect scene changes and then calculate the required bandwidth 

and cost for each section of the movie. 
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5.2. Heuristics 

Using the crude ftxed-period negotiation as a starting point, we can devise 

heuristics to either extend or shorten some of the intervals, or to integrate 

adjacent intervals, or to break existing intervals into ftner-grained sub­

intervals. A heuristic is a technique that improves the efftciency of a search 

process, possibly by sacrificing claims of completeness. 

localtnean ·· •• -.· ... 1 

Figure 5.1. . A heuristic attempt at achieving optimum interval lengths 

As Figure 5.1. implies, our heuristics should attempt to shift interval 

boundaries A and B to the left or right in order to determine the optimum 

sizes for the intervals 1, 2 and 3. In order to calculate the related cost we 

need to consider some set-up cost for each interval as well as the cost due 

to the required bandwidth and the length of each interval. In simple terms, 

we wish to use the least amount of bandwidth necessary for the longest 

period of time possible. Our costing algorithm introduced in Section 3.5. 
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would be appropriate. A heuristic algorithm will be used to determine these 

aforementioned optimum fragment sizes. Using such an algorithm, we are 

able to shift the interval boundaries in order to widen the interval requiring 

the least bandwidth. 

The following are heuristic methods, mentioned in [Rich et all that one could 

use to generate new solutions or search for other possible solutions to a 

given problem: 

5.2.1. Generate-and-Test 

This method generates a possible solution and then tests to see if it is valid. 

Any valid solutions are then tested to see if they are also optimal solutions. 

If a solution is not optimal then another solution is generated and the cycle 

continues. 

5.2.2. Hill Climbing 

This is a variant of the Generate-and-Test method. Feedback from the test 

procedure is used to help the generator decide which direction to move in 

the search space. Hill climbing is often used when a good heuristic function 

is available for evaluating states but when no other useful knowledge is 

available. Hill climbing is terminated when there is no reasonable 

alternative state to which to move. One would the check if the current state 

is a goal state. If it is not a goal state, some operator would be applied in 
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order to produce a new state. The method then checks to see if the new 

state is better than the current state. This method may fail to find a 

solution. It may terminate without reaching a goal state, by entering a state 

from which no better states can be generated. 

5.2.3. Simulated Annealing 

This method is a variation of the Hill Climbing method. It still seeks a goal 

state and will terminate if one is found. If the new generated state is not 

better than the current state, then it will become the current state with a 

given probability. If the new state is better than the current state then it will 

become the current state. 

5.3. Boundary shifting approach 

One possible approach would be to shift the boundaries of the intervals by a 

fIxed amount and test to see if these 'new' intervals generate a lower cost 

than the original intervals. Using the fixed interval approach in Chapter 4, 

we have been able to generate different sized intervals, which produce lower 

costs. The algorithm we have designed generates interval sizes based on the 

5-minute and lO-minute intervals used in Chapter 4. We were able to 

choose the amount by which we shift the interval boundaries in order to 

create 'new' intervals. If the new intervals produced a lower cost than the 

original interval sizes they have been kept otherwise they have been 
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discarded. The costs have been recorded and graphed in Figures 5.2. and 

5.3. 

The amounts by which the original boundaries are shifted are on the x-axes 

of the graphs, while the cost is on the y-axes. For example, using the 

original 10-minute intervals, we have chosen to shift the boundaries by 2 

minutes in either direction and the cheapest cost produced was 7775. The 

first cost plotted in both graphs was the cost when the interval boundaries 

are not shifted at all. These costs correspond to the costs calculated in Table 

4.1. of Chapter 4. Since the number of renegotiations do not change using 

this algorithm, no additional costs are involved. 

In both graphs there is a distinct decrease in the cost to a minimum after 

which the cost begins to increase. This shows that there is a definite 

advantage in using this algorithm to reduce the cost of bandwidth 

utilisation. As long as the GOP sizes are known prior to sending the movie 

across the network then the network needs to do no extra calculations. All 

calculations can be done prior to transmitting the movie and a bandwidth 

profile can then be created. 
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Figure 5.2. - Costs of each attempt at shifting the 5-minute boundaries 

by x minutes 
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Figure 5.3. - Costs of each attempt at shifting the IO-minute 

boundaries by x minutes 

Note that the costs in the above two graphs need to be increased by 25K 

and 13K respectively to achieve the total costs, which include the 

renegotiation cost. 

In Figure 5.2. we see that the most economical approach requires shifting 

the original 5-minute interval boundaries by 2 minutes in either direction. 

This is equivalent to a 4% saving on the cost of the original interval sizes. 

The graph in Figure 5.3. shows that by shifting the lO-minute interval 

boundaries by 7 minutes in either direction we were able to reduce the cost 

to 93% of the original cost ( a saving of 7%). 
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Heuristic algorithms like the one used above have potential to reduce the 

cost of the required bandwidth significantly enough to make the extra 

computation justifiable. 

5.4. QuantisatioD approach 

Another approach would be to use the quantisation method. Here we choose 

to map all GOP sizes to a number of pre-chosen sizes. In this way, we hope 

to reduce the number of bandwidth renegotiations necessary during the 

streaming of the video. This scenario is necessary if the network provider 

only allows renegotiation in fixed quanta, as is presently the case for ISDN 

services, in which new bandwidth can only be added in 54-Kilobit quanta. 

Rather than use predefined quanta, we have created intervals based on the 

Starwars data. The minimum and maximum GOP sizes in the original 

Starwars data are 77500 bits and 945153 bits respectively. Within these 

borders we have created 5 intervals of equal size. With this knowledge we 

are then able to map the original GOP sizes to the maximum value of each 

interval. The following table (Table 5.1.) shows how the original GOP sizes 

are mapped to the chosen values. 
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Original values Mapped values 

77500 to 251030 251030 

251031 to 424561 424561 

424562 to 598091 598091 

598092 to 771622 771622 

771623 to 945153 945153 

Table 5.1. - Mapping of GOP sizes (bits) to chosen values 

All GOP sizes that fall into the interval given in the left-hand column are 

mapped to the value in the right-hand column. We now only have five 

possible values for the GOP sizes. This immediately reduces the number of 

possible renegotiations during the movie, unless every second GOP in the 

original data belongs to a different category to the GOP just before it. These 

5 values would be able to carry the entire movie within the time allowed 

since the bandwidth required would always be less than or equal to the 

maximum value to which we are mapping. 

By calculating costs for the above GOP sizes, we are able to achieve a cost of 

(3900 + 14473*K), where K is the cost of a single renegotiation. This cost 

will be less than the cost for renegotiating at every GOP, for all K > 33. If 

different values are chosen to which the original GOP sizes can be mapped, 

then different costs and hence different savings can be achieved. 
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5.5. Scene Changes 

We could assume a bandwidth adjustment would be necessary when there 

is a scene change in a movie. We base this on the assumption of a change of 

content in a movie when there is a scene change. Scene changes are the 

best locations, intuitively, for bandwidth renegotiations. Complex scenes 

require more available bandwidth than scenes with little action. The content 

of a movie will therefore playa vital role in the cost of bandwidth usage and 

renegotiation. Using actual scene-change data, we have been able to 

calculate bandwidth requirements for a number of MPEG movies. This 

method assumes that we have access to actual content that allows us to 

detect the scene changes. 

In some instances scene change data may not be directly available, if for 

example, the data were encrypted. In that case, one would have to resort to 

inspecting the size information in the stream. Unlike those algorithms that 

attempt to detect changes in the moving average, the scene change is more 

likely to be detected by looking at individual sizes of frames within a GOP to 

find data sizes that violate our expected norms for the pattern of I, Band P 

frames. 

In general there are two kinds of scene changes. One is a camera break and 

the other is a gradual transition such as a fade or dissolve. There are a 

number of techniques available that can be used to detect a scene change. 
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Some of them extract features from each video frame, such as a colour 

histogram, in order to measure any content differences between consecutive 

frames. Comparing pixel differences between two frames can identify these 

changes. Comparisons based on histograms are also used. The colour 

histogram comparison and the chi-squared test of colour histograms are 

examples. Another approach is the pair-wise sub-frame colour histogram 

comparison where a video frame is divided into 4x4 rectangular regions. The 

comparison is then made on each pair of corresponding regions between two 

frames. 

DCT coefficients can also be used in companng two video frames. The 

number of motion vectors can be an indicator of data sizes that violate our 

norms. For each predicted frame (P and B frames), a number of motion 

vectors will be associated as explained in Chapter 1. The exact number 

associated with each frame depends on the residual error after motion 

compensation. If two frames are quite different, only a few motion vectors 

will be used for coding. Thus a scene cut can be detected based on the 

counts of motion vectors. 

The detection of gradual transitions to new scenes is somewhat more 

complicated. The twin-comparison method requires the use of two cutoff 

threshold values. One would begin by comparing consecutive frames using a 

video segmentation method such as the colour histogram comparison. Once 
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a start frame for the transition period has been detected, frame differences 

are monitored until they become greater than the upper threshold. This is 

then taken to be the end of the entire transition period between scenes. 

For the detection of a fade between scenes, one can use the fact that there is 

a linear variation in the luminance values while there is constancy in the 

chrominance values. 

5.5.1. Costing of movies 

Since a change of scene usually implies a change of content in a movie, we 

have decided to renegotiate the bandwidth required for a movie at the start 

of each new scene. MPEG videos with scene change data were found at 

http://www.cse.cuhk.edu.hk/~cflam/research/. 

These were then used to calculate the costs given in Table 5.2. The other 

costs in the table were also calculated in order to compare how scene breaks 

compare with other methods of renegotiation. All costs were calculated 

using the original costing equation introduced in Section 3.5. 

70 



The scene change data was supplied in the following format: 

1) filename of the movie 
2) total number of frames 
3) size of each frame i.e. 320 x 240 pixels 
4) type and position of each scene change 

each scene change has three attributes: the type of scene change (a 
fade or cut etc), the frame number where the scene change began, the 
frame number where the scene change ended. 

e.g. 

1) airwolf2.mpg 
2) 412 
3) 192 144 
4) [2,1,14,0,74,75,6,75,98,0,98,99,0,106,107,0,115,116,0,123,124,6,124,138,0, 

138,139,0,169,170,4,230,244,0,297,298,0,322,323,6,323,338,0,338,339,0,346, 
347,0,355,356,0,363,364,4,364,387,0,387,388] 

The actual frame sizes were then supplied in another file along with the 

number of each frame. We were then able to match the start frame of a 

scene with the correct frame size and find the maximum frame size for every 

scene in the videostreams. These maximums were then used to calculate 

the required bandwidth for each scene. Using the above frame data we were 

also able to calculate the required bandwidth if a renegotiation was done 

after every frame as well as having a single negotiation of bandwidth at the 

beginning of the movie. No GOP information was available for these 

video streams, hence we were unable to determine if there was any cost 

reduction due to the use of GOP sizes. 

We have chosen just four of the available movies in order to analyse them 

completely. 
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In each case the number of scenes and number of frames per mOVIe are 

given by the number of renegotiations necessary for each case. For example, 

in the Airwolf2.mpg video, there are 21 scenes and 412 frames. 

Movie name Per scene Per frame One renegotiation 

Airwolf2.mpg 25.95 + 21 K 10.67 + 412 K 46.54 + K 

AdS.mpg 89.74 + 24 K 39.98 + 696 K 103.86 + K 

Ad21.mpg 94.12 + 9 K 39.27 + 684 K 107.09 + K 

Bobo.mpg 39.79 + 24 K 14.61 + 680 K 44.65 + K 

Table 5.2. - Scene cost comparisons per movie 

As would be expected the most economical method for renegotiating would 

be to do so at every frame, if the renegotiation cost was minimal. However 

for all four of the *.mpg movies, renegotiating at every scene would be more 

economical for all values of K > 0.08. Since these are such short movies, 

there is not much improvement from using a single bandwidth throughout 

the entire videostream. For example, renegotiating at every scene change in 

the ad21.mpg videostream is only economically viable for values of K < 1.62, 

and for the ad5.mpg video K needs to be less than 0.62. It is quite possible 

that renegotiation per scene would be more beneficial for full-length movies 

where the scene content varies a great deal. 
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5.6. Previous work 

The papers mentioned below, have all introduced methods for detecting 

scene changes in MPEG compressed video streams. [YEUNG et al], in 

particular, mentions a number of different scene change detection methods 

including the Global Threshold Method, the Sliding Window Method and the 

Difference of frame difference Method. They also introduce many 

segmentation algorithms. The Pair-Wise Pixel Comparison Algorithm, the 

Difference of Colour Histogram Algorithm, the Motion Vectors Count 

Algorithm and the Simple Histogram Comparison are some examples. 

Algorithms have been developed by [YEO et al] that detect abrupt and 

gradual scene changes. These algorithms use the DC sequence for detection, 

which can be extracted from the MPEG encoded video without having to 

decompress the stream in any way. Operating on the DC images offers 

significant computational savings. In order to gain even better detection, one 

could combine the results from the luminance DC and the two chrominance 

DC sequences. A scene change could be detected from frame i to i+ 1 if a 

change is detected on any of the 3 types of DC sequences, Y, Cb or Cr. [YEO 

et all also introduced a more robust method for detecting a gradual 

transition between scenes. Here, they would use every frame and compare it 

to the following kth frame. For example, compare frame i and frame i+k. 
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[NAGASAKA et all experimented with vanous companson techniques in 

order to detect scene changes. These functions were applied to only a 

portion of each image. Their method is robust against zooming and panning, 

but may fail to detect special effects like fading to a new scene. 

Based on the hierarchical structure of frames and scenes, [KENDER et all 

have derived a method for measuring probable scene boundaries. They have 

highlighted the underlying high-level organisational structures of videos, as 

presented in various textbooks on production, cinematography and film 

editing, which depend on many certain human expectations about the 

placement and timing of camera shots within a scene. There are thus limits, 

both maximum and minimum, on the number of viewpoints and on the 

lengths of camera shots that can be assimilated by an observer into a single 

scene. 

[ARMAN et all have developed a technique which can detect changes directly 

on the MPEG compressed data, without working on the original image 

sequences. [ZHANG et all use the difference of histograms as well as global 

thresholds to detect scene changes. 

[MENG et all use the vanance of DC coefficients in I and P frames and 

motion vectors information to characterise scene changes. [SETHI et all use 

only the DC coefficients of I frames to perform hypothesis testing using the 
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luminance histogram. Unfortunately, the exact location of abrupt scene 

changes cannot be located with this method. 

Using a variety of videos, [YEUNG et all found that normalised colour 

histogram difference was a satisfactory measure of frame dissimilarity. This 

measure would be used to detect possible scene changes where bandwidth 

renegotiations could take place. 

5.7. Conclusions 

Since we can assume that dividing a video stream into flxed interval sizes 

would not generally result in the most economical interval lengths, we have 

attempted to use variable interval lengths in order to reduce the costs of 

frequent renegotiations of bandwidth. There are various methods available 

that enable one to divide a video stream into intervals of variable size. 

Firstly, we have introduced a number of different heuristic approaches to 

our problem of how to divide a video stream into economical intervals. The 

idea behind the heuristic approach is to choose intervals that use the least 

amount of bandwidth for the longest period of time. We have attempted to 

reduce costs by shifting interval boundaries in either direction. New 

intervals were created if they resulted in lower costs than the original 

intervals. Using this method, our results show that there is a deflnite 
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advantage to shifting boundaries since in each of our experiments we were 

able to reduce the total cost of the movie. 

Another heuristic method was to map all the GOP sizes onto a few chosen 

average values. Unfortunately, in order to choose these values, we would 

require the a priori knowledge of the original data. By only using a small 

number of possible GOP sizes, we immediately reduce the number of 

renegotiations required during the movie. Our experiments have shown that 

this method is very economical with the data we had at our disposal 

reducing the original costs for all K >= 3. 

Our second method of creating variable length intervals was to use the 

lengths of scenes in a movie. Since we can assume that scene changes 

would imply a change in movie content within the movie, we have chosen 

these scene changes as appropriate locations for the renegotiation of 

bandwidth. For this method, one would require the scene change data; for 

example, the number of the frame at which a scene change begins. If the a 

priori data is not available then one would have to rely on algorithms that 

detect possible scene changes based on purely on the frame sizes of the 

movies. These algorithms would generally search for individual frames that 

violate the expected norms for the rest of the frames within a GOP. Our 

experiments have shown how renegotiating when a scene change occurs 

reduces the total costs substantially. 
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Chapter 6 

Dynamic Renegotiation 

6.1. Introduction 

Dynamic renegotiation does not require the a priori knowledge of frame sizes 

that is demanded by the previous renegotiation methods. By looking a few 

frames ahead into the video stream we are able to adjust the bandwidth 

according to the moving average of the data. As the frame sizes increase, so 

the required bandwidth would increase. When this occurs, we are able to 

adjust the available bandwidth at run-time, i.e. any renegotiation takes 

place while the movie is being played. We have chosen to experiment with 

this method since no a priori knowledge is required and a renegotiation 

would only take place when one is required. 

6.2. Moving Average 

A simple algorithm, which monitors the moving average of the frame sizes or 

GOP sizes, can be used to trigger renegotiation. This method involves 

calculating a mean and a deviation (s) for the data. Since renegotiation is a 

local event (with respect to the MPEG data set), a global mean does not 

serve our research well. We have therefore chosen to modify the approach 

by using a local mean (as a moving average). We have used (mean + 5*s) as 

the maximum allowable bandwidth, while (mean ± 3*s) is used as the upper 
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and lower boundaries respectively. These values have been chosen 

according to Tchebysheff's Theorem (see [MENDEN et al]), which gives a 

lower bound to the probability that a variable (frame size or GOP size in this 

case) falls in an interval of the form (~ ± rna), where J.l is the mean and a is 

the standard deviation. The lower bound is then given by (1 - 1/ m 2). 

Therefore the probability that a GOP size falls within the maximum 

allowable bandwidth would then be (1 - 1/25) = 0.96. 

In general, if we can predict a buffer underflow we could then increase the 

bandwidth (renegotiate) and similarly decrease the bandwidth when a buffer 

overflow is predicted. If the moving average increases and crosses the upper 

bound (mean + 3*s), a new mean and a new standard deviation are 

calculated and a renegotiation takes place. Using these new values, a new 

maximum bandwidth is calculated. This would also occur if the moving 

average decreased below the lower bound (mean-3*s). 

If only a small amount of buffering was available, then one would have to 

calculate the moving average on a small amount of data, for example every 6 

frames (half a GOP) which equates to a quarter of a second of our movie 

time. However, adequate buffering would allow one to use GOP data. With 

n=4, this would equate to 2 seconds of our movie time, since one GOP is 

equivalent to a half a second of our movie data (Starwars). Our data set of 
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movmg averages does show long periods where no renegotiations are 

necessary. 

In the following table (Table 6.1.), the bandwidth value is calculated using 

(mean + 5*s), while the upper and lower bounds are calculated with (mean ± 

3*s). The bandwidth values are the moving averages for the GOP data (n=4). 

All the values are measured in bits. 

Lower bound Mean Upper bound Bandwidth 

0.020 0.216 0.514 0.678 

0.020 0.334 0.514 0.678 

0.020 0.432 0.514 0.678 

0.020 0.503 0.514 0.678 

0.190 0.554 0.918 1.161 

0.190 0.475 0.918 1.161 

0.190 0.409 0.918 1.161 

0.190 0.362 0.918 1.161 

Table 6.1. - moving average and related boundaries (GOP data) 

We are now able to calculate a cost according to the original cost function in 

terms of K, the renegotiation cost. 

Cost = (no. of renegotiations * renegotiation cost(K)) + L(no. of seconds * 

bandwidth) 
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For the GOP data, the cost of carrying the entire movie and renegotiating 

dynamically when required, would be 17135 + 7K for all K >= O. 

In order to compare the costs involved when usmg the fIxed interval 

approach and the dynamic renegotiation approach for the GOP data, we 

have constructed the following table showing the relevant costs for different 

values of K. 

K 
Every 15 Every 2 Every 10 Dynamically 
seconds minutes minutes 

0 4202 5970 7931 17135 

20 13882 7190 8191 17275 

40 23562 8410 8451 17415 

80 42922 10850 8971 17695 

150 76802 15120 9881 18185 

300 149402 24270 11831 19235 

600 294602 42570 15731 21335 

Table 6.2. - Cost comparison for f"lxed intervals vs dynamic 

renegotiation for various K 

For very large values of K, the dynamic approach would be one of the better 

approaches for our data set, when compared to the other fIxed interval 
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approached we have used. Due to the large area between the upper and 

lower bounds, there are a very few number of renegotiations for the 

Starwars data. By adjusting these bounds one would be able to alter the 

number of renegotiations during a movie and thereby adjusting the cost as 

well. 

6.3. Conclusions 

Our approach in Chapter 6 does not use the a priori knowledge of frame 

sizes. We are able to dynamically adjust the required bandwidth at run-time 

using the moving average of our Starwars data. If the moving average 

exceeds some upper bound (based on the mean + 3 * standard deviation (s)) 

the required bandwidth is increased. We have set upper and lower 

boundaries at (mean ± 3*s) while the maximum required bandwidth is set at 

(mean + 5*s). 

If only a small amount of buffering was available we would have to calculate 

the moving average on the frame data using about 6 frames, otherwise, with 

more buffering one could use say 4 Gaps in order to calculate the moving 

average. 

81 



Conclusion 

In our investigation of techniques that can be used to bypass some of the 

difficulties associated with variable bit rate traffic, we have focussed our 

attention on video-on-demand servers. We have not attempted to find 

statistical models for MPEG video data. 

We have shown that short-term as well as long-term variations occur in 

MPEG videos. The existence of these variations is not uncommon in MPEG 

encoded videos as can be seen by much previous research done on this 

topic. 

The above-mentioned variations result from the variable bit rate traffic 

which is inherit in MPEG encoded video. The short-term variation is due to 

the difference in the frame sizes of the movies. Because of the way MPEG is 

encoded (with I, Band P frames), we can expect a video stream of MPEG 

encoded data to vary substantially m its short-term bandwidth 

requiremen ts. 

In order to alleviate this problem, we have introduced a small amount of 

buffering at the receiver end of the network. This buffer can smooth out 

much of the short-term variation evident in a videostream. By grouping 

frames into naturally occurring Groups of Pictures (GOP's) and buffering an 
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entire GOP before displaying the frames, we have been able to reduce the 

required bandwidth for our MPEG video under investigation significantly. 

With the above result in mind, we have also focussed much attention on the 

long-term variation that occurs in most video streams. We attempt to 

accommodate this variation by changing the bandwidth over time. 

This type of variation is due to the change in content within a movie. Scenes 

in a movie that contain large amount of motion and complexity tend to 

result in above average frame sizes. As scenes move from high complexity to 

low complexity, the frame sizes also become smaller in size. 

In order to alleviate the problems associated with this type of variation, we 

have introduced a number of renegotiation techniques, which are able to 

reduce the amount of required bandwidth over the entire videostream. We 

have proposed a costing algorithm in order to evaluate the different 

techniques used. Most of these techniques have used the a priori knowledge 

of the frame sizes. 

The proposed techniques include dividing the video stream into fixed 

intervals and calculating the bandwidth required per interval. We have also 

used a variation on this method by dividing the video stream into intervals of 

different lengths based on heuristic methods as well as on scene changes. 
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Finally, we have shown how to cope with long-term variation without having 

to use the a priori knowledge of frame sizes. By using a moving average and 

setting upper and lower bandwidth limits, we have been able to propose a 

system of renegotiating bandwidth, which is able to carry the entire movie at 

a reduced cost. 
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Below are some sites where MPEG movies can be obtained: 
[tp: I I [tp-info3.informatik. uni-wuerzburg.de/pub/MPEG I traces I 
[tp: I I [tp.mieroso[t.com I Products I NetShowTheater IMPEG 11 
[tp: Ilmm-[tp.es. berkeley.edu I pub Imultimedia/mpeg/moviesl 
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