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0.1. ABSTRACT i

0.1 Abstract

This thesis is aimed at generalizing notions of rings to modules. In par-

ticular, notions of completely prime ideals, s-prime ideals, 2-primal rings and

nilpotency of elements of rings are respectively generalized to completely prime

submodules and classical completely prime submodules, s-prime submodules,

2-primal modules and nilpotency of elements of modules. Properties and rad-

icals that arise from each of these notions are studied.
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Chapter 1

Introduction

A prime number is a positive integer that has exactly two distinct divisors:

one and itself. Equivalently, p ∈ Z+ is prime if

for all a, b ∈ Z+, ab = p implies a = p or b = p. (1.1)

Primes are used to carry out a multitude of computations which are impossible

with other numbers. This is evidenced in theorems such as: Fermat’s little the-

orem, Wilson’s theorem, fundamental theorem of arithmetic, etc. Primes are

used in cryptography - this is due to the difficulty of factoring very large num-

bers into their prime factors. Many open problems about primes are standing.

The popular ones are: obtaining a function generating all primes, Goldbach’s

conjecture - “every even integer greater than two can be expressed as a sum

of two primes”, the twin prime conjecture - “there are infinitely many twin

primes”, the Riemann hypothesis which is one of the seven Millennium prob-

lems, etc.

The importance attached to prime numbers among other reasons motivated

their generalization to prime elements in commutative rings and prime ideals

in rings. An element p of a commutative ring R is prime if it is a non-zero

1



2 CHAPTER 1. INTRODUCTION

non-unit, and for any

a, b ∈ R, p/ab ⇒ p/a or p/b, (1.2)

where p/b means p divides b. In terms of the ideal (p) generated by a prime p

in the ring Z of integers, we restate the definition as:

if a, b ∈ Z such that ab ∈ (p), then a ∈ (p) or b ∈ (p). (1.3)

Statement 1.3 suggests the following definition [60, p. 62]. An ideal P of a

commutative ring R is a prime ideal if

for any a, b ∈ R such that ab ∈ P , then a ∈ P or b ∈ P . (1.4)

From Statements 1.3 and 1.4, we can deduce that, in a ring of integers, if an

ideal is generated by a prime number, then that ideal is also prime. For a

general ring R (not necessarily commutative), an ideal P of R is said to be a

prime ideal if

for any ideals A,B of R such that AB ⊆ P , then A ⊆ P or B ⊆ P . (1.5)

If R is commutative, definitions (1.4) and (1.5) coincide, otherwise when (1.4)

is used on a non-commutative ring, we say P is a completely prime ideal of

R. Any completely prime ideal is prime but the converse does not hold in

general. The ring Mn(F ) of all n× n matrices (n > 1) over a field F is prime

but for E1n ∈ Mn(F ) where E1n is the matrix with 1 in the (1, n) coordinate

but zeros elsewhere, we have: E2
1n = 0 and E1n 6= 0. This shows Mn(F ) is not

completely prime.

Other but less popular “primes” in rings include: uniformly strongly prime

[66], strongly prime [42], unitary strongly prime [31], weakly prime [2], super-

prime [79], [16, p.24], [15, p.346], strictly prime (also called strongly prime of
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bound one), [28], [43] and s-prime [78] among others. “Prime” ideals are used

in rings to define and characterize radicals. For example, the prime radical of

a ring (also called the Baer’s lower nil radical) is the intersection of all prime

ideals of that ring and the (K
..
othe) upper nil radical of a ring is the intersection

of all its s-prime ideals [78]. Of course, these radicals have other equivalent

characterizations. The prime radical of a ring coincides with the set of all

strongly nilpotent elements of that ring and if the ring is commutative, the

strongly nilpotent elements are indistinguishable from the nilpotent elements.

The upper nil radical of a ring is the sum of all nil ideals of that ring.

Prime ideals are used in the localization of commutative rings. The prime

radical is used in algebraic geometry to study the celebrated Hilbert’s Nullstel-

lensatz. Primary ideals which are a generalization of prime ideals are used in

the so-called primary decomposition of rings, i.e., when every ideal of a given

ring is a finite intersection of primary ideals. For instance, in a Noetherian

ring, every ideal is an intersection of primary ideals.

Primeness exists for more algebraic structures. These include: semi-rings,

near-rings (see [61] and [67]), modules over rings and modules over near-rings

(see [47] and [48]) among others. In this thesis, emphasis is put on “primes”

for modules over rings. From now on, a “module” will mean a “module over a

ring”. Andrunakievich and Rjabuhin in [3] and Dauns in [28] were among the

first to study prime modules. If P is a prime submodule of RM , m ∈ M \ P
and R is a commutative ring, then (P : m) := {r ∈ R : rm ∈ P} is a

prime ideal of R called the associated prime ideal of M/P . In commutative

algebra, associated prime ideals play a central role in the theory of primary

decomposition, see [5], [23] and [57].

Other definitions of “prime” modules exist. Among them, we have: classical
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prime (or weakly prime), see [6], [7], [9], [10], [11], [13]; strongly prime defined

differently in each of [28], [42], [62] and [63]; and weakly prime in [30] which

is also different from that in [6], [7] and [9].

Despite the already many existing “primes” for modules in literature, there

was still a gap. Some “primes” from rings, for instance, completely prime and

s-prime had not been yet generalized to modules. This motivated part of our

study. We have two generalizations of completely prime rings (domains) to

modules, namely: completely prime modules and classical completely prime

modules; they are respectively studied in chapters two and three. We generalize

the notion of s-prime ideals in chapter four by defining s-prime submodules.

Using s-prime submodules, we define the K
..
othe upper nil radical for modules.

By drawing motivation from how nilpotent and strongly nilpotent elements

of rings are defined, in chapter five we define nilpotent and strongly nilpotent

elements of modules. We show that, the set of all strongly nilpotent elements

of a unital module defined over a commutative ring coincides with the classi-

cal prime radical of that module. We give examples of situations where this

result still holds even when R is not commutative. This generalizes a result by

Levitzki in rings, namely: the set of all strongly nilpotent elements of a ring

coincides with the prime radical of that ring. In the same chapter, the struc-

ture of non-nilpotent elements of the Z-module Z/pkZ is characterized. When

adjoined with the zero element, the non-nilpotent elements of the Z-module

Z/pkZ form a topological ideal of the ring of p-adic integers.

We recall that, the prime radical of a non-commutative ring need not coin-

cide with the set of all nilpotent elements of that ring. However, if the two

coincide, then the ring is called 2-primal. Among other characterizations of

2-primal rings, we have: a ring R is 2-primal if and only if its prime radical is



5

equal to its generalized nil radical (also called the completely prime radical).

It is this that motivates our definition of 2-primal modules. Chapter six is de-

voted to studying 2-primal modules. We obtain several conditions that bridge

the gap between completely prime radical and prime radical of a module just

like what happens for the ring case. It however remains open to us whether our

definition of 2-primal modules can be expressed in terms of nilpotent elements

of modules.

If R is a ring, R[x] the collection of all polynomials over R in the indeter-

minate x is a ring called the polynomial ring. If M is a module over a ring R,

M [x] the collection of all polynomials over M in the indeterminate x is a mod-

ule over the ring R[x]. We call M [x] the polynomial module. In chapter seven,

we study properties of radicals of polynomial modules. More specifically, we

show that radicals of the polynomial module induced by different “primes”

satisfy both the polynomial equation as well as the Amitsur property and are

polynomially extensible.

Just like some of the questions (e.g., about nilpotent elements of modules

and 2-primal modules) studied in this thesis emerged from my masters treatise

[73], a couple of questions have emerged while putting this thesis together; they

have been posed in chapter eight which is the last chapter. Although we did

not have immediate answers to them, we feel some should not be difficult to

investigate. This however, suggests to us that more could still be done in trying

to extend notions of “prime” and radicals from rings to modules. In the same

chapter, we show that, when a module is defined over a commutative Artinian

ring, all the nine module radicals studied in this thesis are indistinguishable.

Except with otherwise explicit mention, all rings are associative and not

necessarily unital. All modules are left modules. Let R be a ring and M an
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R-module. If N is a submodule of M , I is an ideal of R and I is an essential

ideal of R, we respectively write N ≤M , I / R and I / ·R. If N,P ≤M such

that N 6⊆ P , we write (P : N) to mean the ideal {r ∈ R : rN ⊆ P}. By

(P : m) where P ≤ M and m ∈ M \ P , we mean {r ∈ R : rm ∈ P}. 〈m〉
is the submodule of RM generated by m ∈ M , i.e., 〈m〉 = Zm + Rm. If R is

unital then 〈m〉 = Rm, otherwise Rm ⊆ 〈m〉 but 〈m〉 6⊂ Rm in general. If a

is an element of a ring R, by (a) we denote the ideal of R generated by a. Z

and Z+ are used to denote integers and positive integers respectively.

Lastly, we point out that, in the process of producing this thesis, the follow-

ing papers were written: [36], [37], [38], [39], [40], [41] and [74]. In particular,

[37], [40], [36], [39] and [74], [38] and [41] form the basis of chapters 2, 3, 4, 5,

6 and 7 respectively.



Chapter 2

Completely prime submodules

In this chapter, we generalize completely prime ideals in rings to submod-

ules in modules. The notion of multiplicative systems of rings is generalized

to modules. Let N be a submodule of an R-module M . Define co.
√
N :=

{m ∈ M : every multiplicative system of M containing m meets N}. It is

shown that co.
√
N is equal to the intersection βco(N) of all completely prime

submodules of M containing N . We call βco(M) = co.
√

0 the completely prime

radical of M . If R is a commutative ring, βco(M) = β(M) where β(M) denotes

the prime radical of M . βco is a complete Hoehnke radical which is neither

hereditary nor idempotent and hence not a Kurosh-Amitsur radical. The tor-

sion theory induced by βco is discussed. The module radical βco(RR) and the

ring radical βco(R) are compared. We show that the class of all completely

prime modules, RM for which RM 6= 0 is special.

A proper submodule P of an R-module M with RM 6⊆ P is a prime sub-

module of M [3], [28] if for all ideals A of R and submodules N of M such that

AN ⊆ P , we have N ⊆ P or AM ⊆ P . If R is a commutative ring, this defi-

nition is equivalent to: for all a ∈ R and every m ∈M , if am ∈ P then m ∈ P
or aM ⊆ P . We call this the definition of a completely prime submodule P of

7
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a module RM . Several authors have discussed prime submodules in modules

over commutative rings, e.g., [6], [7], [46] and [58] among others. In general

(for example when R is not commutative), the two definitions above need not

be equivalent - the later implies the former but not conversely. Simple mod-

ules (and maximal submodules) are always prime but need not be completely

prime. This justifies our study of completely prime submodules in this chap-

ter, drawing motivation from how completely prime ideals in rings are defined.

Although some authors, e.g., [3, p.1792 No. 6], [29], [76, p.1840] mentioned

about completely prime modules, to the best of our knowledge none has ever

studied them in detail.

If I is a completely prime ideal of a ring R, the complement R \ I is a

multiplicative system, i.e., closed under multiplication. We generalize this

notion to modules and show that if P is a completely prime submodule of M ,

the complement M \ P of P is a multiplicative system of M .

2.1 Properties of completely prime submod-

ules

Definition 2.1.1 A proper submodule P of an R-module M with RM 6⊆ P

is a completely prime submodule if for each a ∈ R and every m ∈M such that

am ∈ P , we have m ∈ P or aM ⊆ P .

An R-module M is completely prime if the zero submodule of M is a com-

pletely prime submodule of M . In general, an R-module M/P is a completely

prime module if and only if P is a completely prime submodule of M .

Example 2.1.1 Every torsion-free module is a completely prime module.



2.1. PROPERTIES OF COMPLETELY PRIME SUBMODULES 9

Proof: Suppose am = 0 for a ∈ R and m ∈ M . If m = 0, we are through.

Suppose m 6= 0, by definition of torsion-free modules, a = 0 and aM = 0.

An R-module M is reduced [52], [69] if for all a ∈ R and m ∈ M , am = 0

implies 〈m〉 ∩ aM = 0.

Example 2.1.2 A simple module which is reduced is completely prime.

Proof: Suppose am = 0. If m = 0, we are through. Suppose m 6= 0, then

0 = aM ∩ 〈m〉 = aM ∩M = aM .

Proposition 2.1.1 If 1 ∈ R and P /R, then P is a completely prime ideal of

R if and only if P is a completely prime submodule of RR.

Proof: Suppose am ∈ P for a ∈ R and m ∈ M = R. By definition

of a completely prime ideal, a ∈ P or m ∈ P such that aM ⊆ P or m ∈
P . Conversely, if for a, b ∈ R, ab ∈ P , by definition of completely prime

submodules, a ∈ aR ⊆ P or b ∈ P .

Corollary 2.1.1 R is a domain (a completely prime unital ring) if and only

if RR is a completely prime module.

In general, Proposition 2.1.1 holds for all rings R such that for all a ∈ R,

a ∈ aR. The following proposition offers several other characterizations of

completely prime modules.

Proposition 2.1.2 Let M be an R-module. For a proper submodule P of M ,

the following statements are equivalent:

1. P is a completely prime submodule of M ;

2. for all a ∈ R and every m ∈ M , if 〈am〉 ⊆ P , then either 〈m〉 ⊆ P or

〈aM〉 ⊆ P ;
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3. (P : M) = (P : m) for all m ∈M \ P ;

4. P = (P : M) is a completely prime ideal of R, and (P : m) = (0̄ : m̄) =

P for each m ∈M \ P ;

5. the set {(P : m) : m ∈M \ P} is a singleton;

6. (P : F ) = (P : M) for all subsets F ⊆M \ P .

Proof: 1 ⇒ 2. If 〈am〉 ⊆ P for a ∈ R and m ∈ M , then am ∈ P . By 1,

m ∈ P or aM ⊆ P . Hence, 〈m〉 ⊆ P or 〈aM〉 ⊆ P .

2 ⇒ 3. Suppose a ∈ (P : M) and m ∈ M \ P . Then, aM ⊆ P . So, am ∈ P
and a ∈ (P : m). Now let a ∈ (P : m) with m ∈ M \ P . Then am ∈ P and

〈am〉 ⊆ P . By 2, aM ⊆ 〈aM〉 ⊆ P since 〈m〉 6⊆ P as m 6∈ P . It follows that

a ∈ (P : M).

3⇒ 1. Let am ∈ P for a ∈ R and m ∈M , then a ∈ (P : m). If m ∈ P we are

through. Suppose m 6∈ P . By 3, a ∈ (P : M) such that aM ⊆ P .

1 ⇒ 5. Let m1 6= m2, m1,m2 ∈ M \ P . We show that (P : m1) = (P : m2).

Let a ∈ (P : m1), then am1 ∈ P . By 1, aM ⊆ P . Thus, am2 ∈ P and hence

a ∈ (P : m2). Similarly, if a ∈ (P : m2), we get a ∈ (P : m1).

5⇒ 4. P = (P : M) = ∩{(P : m) : m ∈M \P} = (P : m) for all m ∈M \P
by 5. But (P : m) = {r ∈ R : rm ∈ P} = {r ∈ R : rm̄ = 0̄} = (0̄ : m̄),

where m̄ = m + P . Let ab ∈ (P : m) with a, b ∈ R and m ∈ M \ P . Then

abm ∈ P . If b ∈ (P : m), we are through. Suppose b 6∈ (P : m), i.e., bm 6∈ P ,

then by 5, a ∈ (P : bm) = (P : m) and hence P = (P : m) for all m ∈ M \ P
is a completely prime ideal of R.

4⇒ 1. Similar to 3⇒ 1.

6⇒ 3. Take F = {m} where m ∈M \ P .

3⇒ 6. (P : F ) = ∩m∈F (P : m) = ∩(P : M) = (P : M).
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Corollary 2.1.2 If P is a completely prime submodule of RM , then (P : m)

is a two sided ideal of R for all m ∈M \ P .

2.2 Multiplicative systems of modules

Definition 2.2.1 Let RM be a module. A nonempty set S ⊆M \{0} is called

a multiplicative system of RM if for each a ∈ R, m ∈ M and for all K ≤ M

such that (K+〈m〉)∩S 6= ∅ and (K+〈aM〉)∩S 6= ∅, then (K+〈am〉)∩S 6= ∅.

Corollary 2.2.1 Let M be an R-module. A submodule P of M is completely

prime if and only if M \ P is a multiplicative system of M .

Proof: (⇒). Suppose S = M \ P . For a ∈ R, K ≤ M and m ∈ M suppose

(K + 〈m〉) ∩ S 6= ∅ and (K + 〈aM〉) ∩ S 6= ∅. If (K + 〈am〉) ∩ S = ∅, then

〈am〉 ⊆ P and since P is completely prime 〈m〉 ⊆ P or 〈aM〉 ⊆ P . Thus,

(K + 〈m〉) ∩ S = ∅ or (K + 〈aM〉) ∩ S = ∅, a contradiction.

(⇐). Let a ∈ R and m ∈M such that 〈am〉 ⊆ P but 〈m〉 6⊆ P and 〈aM〉 6⊆ P .

Then, 〈m〉∩ S 6= ∅ and 〈aM〉∩ S 6= ∅. By definition of a multiplicative system,

〈am〉 ∩ S 6= ∅ such that 〈am〉 6⊆ P , a contradiction.

Proposition 2.2.1 For any proper submodule P of RM , and S := M \P , the

following statements are equivalent:

1. P is a completely prime submodule of M ;

2. S is a multiplicative system of M ;

3. for all a ∈ R and every m ∈M , if 〈m〉 ∩ S 6= ∅ and 〈aM〉 ∩ S 6= ∅, then

〈am〉 ∩ S 6= ∅;

4. for all a ∈ R and every m ∈ M , such that m ∈ S and 〈aM〉 ∩ S 6= ∅
then am ∈ S.
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Lemma 2.2.1 Let M be an R-module, S ⊆ M a multiplicative system of M

and P a submodule of M maximal with respect to the property that P ∩S = ∅,
then P is a completely prime submodule of M .

Proof: Suppose a ∈ R and m ∈ M such that 〈am〉 ⊆ P . If 〈m〉 6⊆ P and

〈aM〉 6⊆ P then (〈m〉 + P ) ∩ S 6= ∅ and (〈aM〉 + P ) ∩ S 6= ∅. Since S is a

multiplicative system of M , (〈am〉 + P ) ∩ S 6= ∅. Since 〈am〉 ⊆ P , we have

P ∩S 6= ∅, a contradiction. Hence, P must be a completely prime submodule.

Definition 2.2.2 Let R be a ring and M an R-module. For N ≤M , if there

is a completely prime submodule containing N , we define

co.
√
N := {m ∈M : every multiplicative system ofM containingmmeetsN}.

We write co.
√
N = M when there are no completely prime submodules of

M containing N .

Theorem 2.2.1 Let M be an R-module and N ≤M . Then, either co.
√
N =

M or co.
√
N equals the intersection of all completely prime submodules of M

containing N , which is denoted by βco(N).

Proof: Suppose co.
√
N 6= M . Then, βco(N) 6= ∅. Both co.

√
N and N are

contained in the same completely prime submodules. By definition of co.
√
N

it is clear that N ⊆ co.
√
N . Hence, any completely prime submodule of M

which contains co.
√
N must necessarily contain N . Suppose P is a completely

prime submodule of M such that N ⊆ P , and let t ∈ co.
√
N . If t 6∈ P , then

the complement of P , C(P ) in M is a multiplicative system containing t and

therefore we would have C(P )∩N 6= ∅. However, since N ⊆ P , C(P )∩P = ∅
and this contradiction shows that t ∈ P . Hence co.

√
N ⊆ P as we wished

to show. Thus, co.
√
N ⊆ βco(N). Conversely, assume s 6∈ co.

√
N , then there
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exists a multiplicative system S such that s ∈ S and S ∩N = ∅. From Zorn’s

lemma, there exists a submodule P ⊇ N which is maximal with respect to

P ∩ S = ∅. From Lemma 2.2.1, P is a completely prime submodule of M and

s 6∈ P .

Proposition 2.2.2 Let R be a ring and P / R, P 6= R. The following state-

ments are equivalent:

1. P is a completely prime ideal of R;

2. there exists a completely prime R-module M such that P = (0 : M)R.

Proof: (1) ⇒ (2). Let P be a completely prime ideal and M = R/P .

M is an R-module with the usual operation. If p ∈ P and x ∈ R then,

p(x+P) = px+P = P . Hence, P ⊆ (0 : M)R. If a ∈ (0 : M)R, a(r+P) = P
for all r ∈ R, hence aR ⊆ P and since P is a completely prime ideal we

get a ∈ P , hence (0 : M)R = P . M is completely prime, for if a ∈ R and

m ∈ M = R/P such that am = 0̄ then m = m1 + P and am1 ∈ P . Since P
is completely prime, we have a ∈ P or m1 ∈ P and it follows that aM = 0̄ or

m = 0̄.

(2)⇒ (1). Follows from Proposition 2.1.2.

Corollary 2.2.2 A ring R is a completely prime ring if and only if there exists

a faithful completely prime R-module.

Example 2.2.1 If R is a domain, RR is a faithful completely prime module.

Example 2.2.2 If I is a completely prime ideal of R, R/I is a completely

prime R-module.
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2.3 Preradicals and radicals

The terminology of radicals is that of [75]. Throughout this section rings

have unity and all modules are unital left modules. A functor γ: R-mod →
R-mod is called a preradical if γ(M) is a submodule of M and f(γ(M)) ⊆ γ(N)

for each homomorphism f : M → N in R-mod. A radical γ is a preradical for

which γ(M/γ(M)) = 0 for all M ∈ R-mod. A preradical is hereditary or left

exact if γ(N) = N ∩ γ(M) whenever N ≤ M ∈ R-mod (equivalently, if γ is

a left exact functor). N is a characteristic submodule of M if f(N) ⊆ N for

every f ∈ HomR(M,M).

Proposition 2.3.1 [64, Proposition 1] Let M be any nonempty class of mod-

ules closed under isomorphisms, i.e., if A ∈M and A ∼= B, then B ∈M. For

any M ∈M define

γ(M) = ∩{K : K ≤M,M/K ∈M}.

It is assumed that γ(M) = M if M/K 6∈ M for all K ≤M . Then

1. γ(M/γ(M)) = 0 for all modules M ;

2. if M is closed under taking non-zero submodules, γ is a radical;

3. if M is closed under taking essential extensions, then γ(M)∩N ⊆ γ(N)

for all N ≤M .

In particular, γ is a left exact radical ifM is closed under non-zero submodules

and essential extensions.

For any module M , we define the completely prime radical βco(M) as co.
√

0.

From Theorem 4.2.1, we have

βco(M) = ∩{K : K ≤M,M/K is completely prime}
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which is a radical by Proposition 2.3.1 since completely prime modules are

closed under taking non-zero submodules.

Let β(M) be the prime radical of M (the intersection of all prime submodules

of M).

Theorem 2.3.1 If R is a commutative ring, then βco(M) = β(M).

Proof: If R is a commutative ring, prime and completely prime submodules

are indistinguishable.

Proposition 2.3.2 For any R-module M ,

1. βco(M) is a characteristic submodule of M ;

2. If M is projective, then βco(R)M = βco(M).

Proof: Follows from [19, Proposition 1.1.3].

Proposition 2.3.3 For any M ∈ R-mod,

1. if M =
⊕
Λ

Mλ is a direct sum of submodules Mλ (λ ∈ Λ), then

βco(M) =
⊕

Λ

βco(Mλ);

2. if M =
∏
Λ

Mλ is a direct product of submodules Mλ (λ ∈ Λ), then

βco(M) ⊆
∏
Λ

βco(Mλ).

Proof: Follows from [19, Proposition 1.1.2].

The following examples show that the preradical βco is not hereditary.
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Example 2.3.1 Consider the Z-module Z4, βco(Z4) = 2Z4 and βco(2Z4) =

(0), hence βco(Z4) ∩ 2Z4 = 2Z4 6⊆ βco(2Z4) = (0).

Example 2.3.2 Take a Z-module M = Zp∞ where p is a prime number. By

[14, Remark 4.6], βco(M) = Zp∞ and if N is a proper submodule of M , N has

a (maximal) completely prime submodule, say P . Thus, βco(N) ⊂ P ⊂ N =

βco(M) ∩N and βco(M) ∩N 6⊆ βco(N).

However, for direct summands, we have the following proposition.

Proposition 2.3.4 Let M = X ⊕ Y

1. If P is a completely prime submodule of X, then P ⊕ Y is a completely

prime submodule of M ;

2. βco(M) ∩X ⊆ βco(X).

Proof:

1. Let a ∈ R and m = (m1,m2) ∈M = X⊕Y . Suppose am ∈ P⊕Y . Then

am1 ∈ P and am2 ∈ Y . Since P is a completely prime submodule of X,

we have aX ⊆ P or m1 ∈ P . aX ⊆ P implies aM = aX ⊕ aY ⊆ P ⊕ Y .

If m1 ∈ P , then m = (m1,m2) ∈ P ⊕ Y .

2. If Q is any completely prime submodule of X, then Q is a completely

prime submodule of M = X⊕Y . So, βco(M) ⊆ Q ⊆ X. Thus, βco(M) =

βco(M) ∩X ⊆ Q. Hence, βco(M) ∩X ⊆ βco(X).

Corollary 2.3.1 For any direct summand N of M , βco(M) ∩N = βco(N).

Remark 2.3.1 It follows from Proposition 2.3.1 and Examples 2.3.1 and 2.3.2

that completely prime modules are not closed under taking essential extensions.
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Definition 2.3.1 A functor γ: R-mod→ R-mod is called a Hoehnke radical

[29, p. 454] if f(γ(M)) ⊆ γ(f(M)) for every homomorphism f : M → f(M)

and moreover, γ(M/γ(M)) = 0 for all M ∈ R-mod. γ is complete if γ(K) =

K ≤M ∈ R-mod implies K ⊆ γ(M). γ is idempotent if γ(γ(M)) = γ(M) for

all M ∈ R-mod. A Kurosh-Amitsur radical is a complete idempotent Hoehnke

radical.

Theorem 2.3.2 The completely prime radical βco is a complete Hoehnke rad-

ical which is not Kurosh-Amitsur.

Proof: βco is a Hoehnke radical by the nature of its definition, cf., [29, (4),

p. 455]. All preradicals are complete, cf., [29, (3) p.455]. The radical βco

is not idempotent since 2Z4 = βco(Z4) 6= βco(βco(Z4)) = (0), and hence not

Kurosh-Amitsur.

2.3.1 Torsion theory induced by the radical βco

Definition 2.3.2 [75, p.139] A torsion theory in the category of modules R-

mod is a pair (T ,F) of classes of modules in R-mod such that,

1. Hom(T, F ) = 0 for all T ∈ T , F ∈ F .

2. If Hom(C,F ) = 0 for all F ∈ F , then C ∈ T .

3. If Hom(T,C) = 0 for all T ∈ T , then C ∈ F .

Define Tβco = {M : βco(M) = M} and Fβco = {M : βco(M) = 0}.
Tβco is a torsion class, Fβco is a torsion-free class and the pair (Tβco , Fβco) a

torsion theory, see [75, p.140]. Tβco coincides with the class of modules with

no completely prime submodules.

Proposition 2.3.5 [75, Prop. 2.1] T is a torsion class for some torsion theory

if and only if it is closed under quotient objects, direct products and extensions.
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Corollary 2.3.2 For any M ∈ R-mod and N ≤ M , Tβco is closed under

quotients, direct products and extensions.

By Example 2.3.2, Tβco is not closed under taking submodules.

Corollary 2.3.3 The following statements hold.

1. β̄co(M) =
∑
{N : N ≤ M and βco(N) = N} is an idempotent prerad-

ical, β̄co ⊆ βco, Tβco = Tβ̄co and β̄co is the largest idempotent preradical

contained in βco.

2. β̂co(M) = ∩{N : N ≤ M,M/N ∈ Fβco} is a radical. βco ⊆ β̂co,

Fβco = Fβ̂co and β̂co is the least radical containing βco.

Proof: Follows from [19, Proposition, 1.1.5].

Proposition 2.3.6 If M ∈ Tβco, then for each non-zero homomorphic image

N of M there exists K ≤ N such that 0 6= K ∈ Tβco. This is the module

analogue of (R1) in [33, Theorem 2.1.5].

Proof: Since Tβco is closed under quotients, the result follows from [75, Prop.

2.5].

Example 2.3.3 Any completely prime module M is βco-torsion-free.

Remark 2.3.2 All said about completely prime (sub)modules under section

of preradicals also holds for prime (sub)modules. Thus, the prime radical

β(M) is a complete Hoenhke radical which is neither hereditary nor idempo-

tent (hence not Kurosh-Amitsur). Furthermore, prime modules are not closed

under taking essential extensions. However, if we define a faithful prime radi-

cal, β0(M) as,

β0(M) = ∩{P : P ≤M,M/P is faithful and prime}
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β0 is a Kurosh-Amitsur radical, cf., [64, Section 3]. Furthermore, the class of

all faithful prime modules is closed under essential extensions. This leads us

to the following.

Question 2.3.1 Is the class of all faithful completely prime modules closed

under essential extensions?

2.3.2 Comparison of the radicals βco(RR) and βco(R)

Lemma 2.3.1 For any associative ring R, βco(RR) ⊆ βco(R).

Proof: Let x ∈ βco(RR) and I be a completely prime ideal of R. From

Proposition 2.2.2, we have R/I is a completely prime R-module. Hence, x ∈ I
and we have x ∈ βco(R), i.e., βco(RR) ⊆ βco(R).

Remark 2.3.3 In general the containment in Lemma 2.3.1 is strict.

Example 2.3.4 Let R =

{(
x y

0 0

)
: x, y ∈ Z2

}
and M = RR. (0) is a

completely prime submodule of RR. Hence, βco(RR) = 0. (0 : R)R is a

completely prime ideal of R but (0 : R)R 6= (0). For if b 6= 0, b ∈ Z2, then(
0 b

0 0

)
R = 0. Hence, βco(R) ⊆ (0 : R)R. But since (0 : R)R(0 : R)R = 0 we

have (0 : R)R ⊆ βco(R). Hence, βco(R) = (0 : R)R 6= 0.

Lemma 2.3.2 For any ring R and any R-module M we have

βco(R) ⊆ (βco(M) : M)R.

Proof: (βco(M) : M)R = (
⋂

P≤M
P : M) =

⋂
P≤M

(P : M), where P is a

completely prime submodule of M . Since (P : M)R is a completely prime
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ideal of R for each completely prime submodule P of M , we get βco(R) ⊆
(βco(M) : M)R, i.e., βco(R)M ⊆ βco(M).

The containment is strict: let R = Z and M = Zp∞⊕Z for some prime number

p. βco(M) = Zp∞ and βco(R) = (0), i.e., βco(R)M = (0).

Proposition 2.3.7 For any ring R, βco(R) = (βco(RR) : R)R.

Proof: From Lemma 2.3.2, βco(R) ⊆ (βco(RR) : R)R. Since βco(RR) ⊆ βco(R)

we have βco(R) ⊆ (βco(RR) : R) ⊆ (βco(R) : R). Let x ∈ (βco(R) : R). Hence

xR ⊆ βco(R) =
⋂

P completely prime in R

P ⊆ P for all completely prime ideals P of

R. Since xR ⊆ P for P completely prime, we have x ∈ P and x ∈ βco(R).

Hence, (βco(R) : R) ⊆ βco(R) and we are done.

Proposition 2.3.8 For all R-modules M ,

1. βco(M) = {x ∈M : Rx ⊆ βco(M)}.

2. If βco(R) = R, then βco(M) = M , i.e., if R has no completely prime

ideals, then M has no completely prime submodules.

Proof:

1. Since βco(M) ≤ M , we have Rβco(M) ⊆ βco(M). Conversely, let x ∈ M
with Rx ⊆ βco(M). Hence Rx ⊆ P for all completely prime submodules

P of M . Since P is also a prime submodule, we have x ∈ P and hence

x ∈ βco(M).

2. R = βco(R) gives R ⊆ (βco(M) : M) from Lemma 2.3.2. Hence RM ⊆
βco(M) and from (1), we have M ⊆ βco(M), i.e., M = βco(M).
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Proposition 2.3.9 Let R be any ring. Then, any of the following conditions

implies βco(R) = βco(RR).

1. R is commutative;

2. x ∈ xR for all x ∈ R, e.g., if R has an identity or R is Von Neumann

regular.1

Proof:

1. Since R is commutative, it follows from Proposition 2.3.7 and Lemma

2.3.8 that βco(R) ⊆ βco(RR) ⊆ βco(R) and βco(R) = βco(RR).

2. Let x ∈ βco(R), then from Proposition 2.3.7, xR ⊆ βco(RR) and since

x ∈ xR, we get x ∈ βco(RR) such that βco(RR) = βco(R).

2.4 A special class of completely prime mod-

ules

A class ρ of associative rings is called a special class if ρ is hereditary, con-

sists of prime rings and is closed under essential extensions, cf., [33, p.80]. An-

drunakievich and Rjabuhin in [3] extended this notion to modules and showed

that prime modules, irreducible modules, simple modules, modules without

zero divisors, etc form special classes of modules. De La Rosa and Veldsman

in [29] defined a weakly special class of modules. We follow the definition in

[29] of a weakly special class of modules to define a special class of modules.

1A ring R is Von Neumann regular if for every r ∈ R, there exists x ∈ R such that

r = rxr.
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Definition 2.4.1 For a ring R, let KR be a (possibly empty) class of R-

modules. Let K = ∪{KR : R a ring}. K is a special class of modules if it

satisfies:

S1 M ∈ KR and I / R with I ⊆ (0 : M)R implies M ∈ KR/I .

S2 If I / R and M ∈ KR/I , then M ∈ KR.

S3 M ∈ KR and I / R with IM 6= 0 implies M ∈ KI .

S4 M ∈ KR implies RM 6= 0 and R/(0 : M)R is a prime ring.

S5 If I /R and M ∈ KI , then there exists N ∈ KR such that (0 : N)I ⊆ (0 :

M)I .

Following similar techniques of [80], we get:

Theorem 2.4.1 Let M = ∪MR be a special class of modules. Then,

J = {R : there exists M ∈MR with (0 : M)R = 0} ∪ {0}

is a special class of rings. If R is the corresponding special radical then,

R(R) := ∩{(0 : M)R : M ∈M}.

Theorem 2.4.2 Let J be a special class of rings and for every ring R, let

MR = {M : M is an R-module, RM 6= 0 and R/(0 : M)R ∈ J }.

If M = ∪MR, then M is a special class of modules. If r is the corresponding

special radical and M is any R-module, then

r(M) := ∩{P ≤M : M/P ∈MR}.

For the completely prime modules, we have
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Theorem 2.4.3 Let R be any ring and

MR := {M : M is a completely prime R-module with RM 6= 0}.

If M = ∪MR, then M is a special class of R-modules.

Proof:

S1 Let M ∈MR and I/R with IM = 0. M is an R/I-module via (r+I)m =

rm. We show M ∈ MR/I . Let a + I ∈ R/I and m ∈ M such that

(a+ I)m = 0, then am = 0 such that aM = 0 or m = 0 since M ∈MR.

Thus, M ∈MR/I .

S2 Let I / R and M ∈ MR/I . M is an R-module w.r.t. rm = (r + I)m for

r ∈ R, m ∈ M . Let a ∈ R, m ∈ M such that am = 0 ⇔ (a + I)m = 0.

(a + I)M = 0 or m = 0 since M ∈ MR/I . Thus, aM = 0 or m = 0 and

M ∈MR.

S3 Suppose M ∈ MR, I / R and IM 6= 0. Let a ∈ I, m ∈ M such that

am = 0. Since M ∈MR, m = 0 or aM = 0. Therefore, M ∈MI .

S4 Let M ∈ MR. Hence RM 6= 0. Since (0 : M)R is a completely prime

ideal of R, it is a prime ideal and R/(0 : M)R is a prime ring.

S5 Let I / R and M ∈ MI . (0 : M)I is a completely prime ideal of I. We

have (0 : M)I / I / R and since I/(0 : M)I is a completely prime ring

we have (0 : M)I / R. Choose K/(0 : M)I / R/(0 : M)I maximal w.r.t.

I/(0 : M)I ∩ K/(0 : M)I = 0. Then I/(0 : M)I ∼= (I + K)/K / ·R/I.

Since the class of completely prime rings is essentially closed, R/I is

completely prime. Let N = R/K. N is an R-module and RN 6= 0.

From Proposition 2.2.2 we have (0 : N)R = K. (0 : N)I ⊆ (0 : M)I ,

for let x ∈ (0 : N)I , then xR ⊆ I ∩ K ⊆ (0 : M)I and it follows that

x ∈ (0 : M)I thus, M is a special class.
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Corollary 2.4.1 IfMco is the special class of completely prime modules, then

the special radical induced by Mco on a ring R is given by

βco(R) = ∩{(0 : M)R : M is a completely prime R-module}

= ∩{I / R : I is a completely prime ideal}

= Ng(R) the generalized nil radical.



Chapter 3

Classical completely prime

submodules

We define and characterize classical completely prime submodules which are

a generalization of both completely prime ideals in rings and reduced modules

(as defined by Lee and Zhou in [52]). A comparison of these submodules with

other “prime” submodules in literature is done. If Rad(M) is the Jacobson

radical of M and βccl(M) the classical completely prime radical of M , we show

that for modules over left Artinian rings R, Rad(M) ⊆ βccl(M) and Rad(RR) =

βccl(RR).

A ring R is completely semiprime (reduced) if and only if for all a ∈ R,

a2 = 0 ⇒ a = 0. An R-module M is reduced if for all a ∈ R and every

m ∈ M , am = 0 implies 〈m〉 ∩ aM = 0. Our definition of a reduced module

is a generalization of that in [52], where Rm is used in the place of 〈m〉. We

state an equivalent but more handy definition for a reduced module.

Definition 3.0.2 An R-module M is reduced if for all a ∈ R and every

m ∈M , a2m = 0 implies a〈m〉 = 0.

25
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To show that these two definitions are indeed equivalent, we need Lemma 3.0.1

first.

Lemma 3.0.1 The R-module M is reduced if and only if:

1. for all a ∈ R and m ∈M such that am = 0, then a〈m〉 = 0 and

2. a2m = 0 implies am = 0.

Proof: Suppose M is reduced, a ∈ R, m ∈ M and am = 0. By definition

of reduced modules, a〈m〉 ⊆ 〈m〉 ∩ aM = 0 giving (1). Now let a ∈ R

and m ∈ M such that a2m = a(am) = 0. Since M is reduced, we have

am ∈ 〈am〉 ∩ aM = 0 which establishes (2). For the converse, let a ∈ R and

m ∈M such that am = 0. If x ∈ 〈m〉 ∩ aM = 0, then x = m1 = an for some

m1 ∈ 〈m〉 and n ∈ M . From (1), am1 ∈ a〈m〉 = 0. But am1 = ax = a2n = 0.

From (2), we have a2n = 0 implies x = an = 0. Hence, 〈m〉 ∩ aM = 0.

Proposition 3.0.1 An R-module M is reduced if and only if for all a ∈ R

and every m ∈M , if a2m = 0, then a〈m〉 = 0.

Proof: (⇒) is clear from Lemma 3.0.1. For the converse, assume that, if

a2m = 0 then, a〈m〉 = 0. Let a ∈ R and m ∈ M such that am = 0 and

x ∈ 〈m〉 ∩ aM . Now, x = m1 = am2 for some m1 ∈ 〈m〉 and m2 ∈ M . Since

am = 0, we also have a2m = 0 and from our assumption, a〈m〉 = 0 and hence

am1 = 0 since m1 ∈ 〈m〉. Now, am1 = 0 ⇒ a2m2 = 0, so that a〈m2〉 = 0

(again from our assumption). Consequently, x = am2 ∈ a〈m2〉 = 0 and hence

〈m〉 ∩ aM = 0 which completes the proof.

Definition 3.0.1 of a reduced (completely semiprime) module motivates the

following two definitions:



27

Definition 3.0.3 A proper submodule P of an R-module M with RM 6⊆ P

is completely semiprime if for all a ∈ R and every m ∈ M , a2m ∈ P implies

a〈m〉 ⊆ P .

Definition 3.0.4 A proper submodule P of an R-module M with RM 6⊆ P

is classical completely prime if for all a, b ∈ R and every m ∈ M , abm ∈ P

implies a〈m〉 ⊆ P or b〈m〉 ⊆ P .

AnR-moduleM/P is a classical completely prime (resp. completely semiprime)

module if and only if P is a classical completely prime (resp. completely

semiprime) submodule of M . Thus, an R-module M is classical completely

prime (completely semiprime) if and only if the zero submodule is a classical

completely prime (completely semiprime) submodule of M .

Example 3.0.1 A free module M over a domain R is classical completely

prime.

Proof: Suppose abm = 0 for some a, b ∈ R and m ∈ M . Then abm =

ab
∑n

i=1(rimi) =
∑n

i=1(abri)mi = 0 for some ri ∈ R and mi ∈ M . Since M is

free abri = 0 for all i ∈ {1, · · ·n}. For m 6= 0, there is at least one j ∈ {1, · · ·n}
such that rj 6= 0. Now abrj = 0 implies a = 0 or b = 0 (since R is a domain)

such that a〈m〉 = 0 or b〈m〉 = 0.

Example 3.0.2 A torsion-free module M over a domain R is classical com-

pletely prime. It follows that flat modules over domains (and hence projective

modules over domains) are classical completely prime modules.

Proof: Suppose for a, b ∈ R and m ∈M , abm = 0. If m = 0, a〈m〉 = 0 and

b〈m〉 = 0. Let m 6= 0, then ab = 0 since M is torsion-free. Hence, a = 0 or

b = 0 since R is a domain. Therefore, a〈m〉 = 0 or b〈m〉 = 0. The last part
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is due to the fact that flat modules are torsion-free, see [75, Example 1, p.15]

and projective modules are flat modules.

Example 3.0.3 Every submodule P of a module M over a division ring R

is a classical completely prime submodule.

Proof: Suppose a, b ∈ R and m ∈ M such that abm ∈ P . If ab = 0,

a = 0 or b = 0 such that a〈m〉 ⊆ P or b〈m〉 ⊆ P . Suppose ab 6= 0, then,

m ∈ (ab)−1P ⊆ P .1 Thus, a〈m〉 ⊆ P and b〈m〉 ⊆ P .

Example 3.0.4 Any prime (sub)module over a commutative ring is a classical

completely prime (sub)module.

3.1 Investigation of properties

In this section, we investigate properties exhibited by classical completely

prime (semiprime) submodules. First, we introduce notions of symmetric and

IFP submodules that will prove useful later in the sequel.

Lambek in [51, p.364] called a module M symmetric if abm = 0 implies

bam = 0 for a, b ∈ R and m ∈M . We call a submodule P of an R-module M

symmetric if abm ∈ P implies bam ∈ P for a, b ∈ R and m ∈M . So, a module

M is symmetric if its zero submodule is symmetric. From [17], a right (or

left) ideal I of a ring R is said to have the insertion-of-factor-property (IFP) if

whenever ab ∈ I for a, b ∈ R, we have aRb ⊆ I. We call a submodule N of an

R-module M an IFP submodule if whenever am ∈ N for a ∈ R and m ∈ M ,

we have aRm ⊆ N . A module is IFP if its zero submodule is IFP.

1(ab)−1 is here used to mean the inverse of ab in R
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Proposition 3.1.1 For any submodule P of an R-module M ,

completely semiprime⇒ symmetric⇒ IFP.

Proof: Let abm ∈ P . (bab)2m ∈ P and P completely semiprime gives

bab〈m〉 ⊆ P . Thus, (ba)2m = bab(am) ∈ bab〈m〉 ⊆ P and again P completely

semiprime gives bam ∈ ba〈m〉 ⊆ P . For the second implication, let am ∈ P
for a ∈ R and m ∈ M . Then Ram ⊆ P and P symmetric implies aRm ⊆ P .

Example 3.1.1 A module M over a left duo ring R (a ring whose all left

ideals are two sided) is fully IFP (every submodule of M is IFP) but it need

not be symmetric.

Proof: Let P ≤M , a ∈ R and m ∈M such that am ∈ P , then a ∈ (P : m).

(P : m) is a left ideal of R but since R is left duo, we have (P : m) / R and

aR ⊆ (P : m) such that aRm ⊆ P . Hence, P is IFP. Z2 = {0̄, 1̄} is a left quasi

duo ring (i.e., every maximal left ideal of Z2 is two sided). By [44, Prop. 2.1],

any n-by-n upper triangular matrix ring R over Z2 is left quasi duo. Hence,

every submodule of the module RR (R = Z2) is IFP. We show that the zero

submodule of RR is not symmetric. Take m =

(
1̄ 0̄

0̄ 1̄

)
, a =

(
1̄ 0̄

1̄ 0̄

)
, and

b =

(
0̄ 0̄

1̄ 0̄

)
∈ R; abm = (0) but bam 6= (0).

Example 3.1.2 A submodule P of a module M over a commutative ring R

is symmetric but it need not be completely semiprime.

3.1.1 Properties of underlying ring

We give information classical completely prime (completely semiprime) sub-

modules of RM reveal about the underlying ring R. Propositions 3.1.2 and
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3.1.3 indicate that there is a one to one correspondence between completely

semiprime (classical completely prime) submodules P of the module RM and

completely semiprime (completely prime) ideals of R of the form (P : m) for

all m ∈M \ P .

Proposition 3.1.2 For P ≤ RM , the following statements are equivalent:

1. P is a completely semiprime submodule of M ;

2. (P : m) = (P : 〈m〉) = (0̄ : m̄) is a completely semiprime ideal of R for

every m ∈M \ P , where m̄ = m+ P ;

3. for all m ∈ M \ P , (P : m) / R and for all a ∈ R if a2m ∈ P , then

am ∈ P ;

4. for all m ∈ M \ P , (P : m) / R and for all a ∈ R if 〈a2m〉 ⊆ P , then

〈am〉 ⊆ P ;

5. for all a ∈ R and every m ∈M , if 〈a2m〉 ⊆ P , then 〈a〈m〉〉 ⊆ P .

Proof: (1)⇒ (2). Since (P : m) is always a left ideal of R for all m ∈M \P ,

we show that if a ∈ (P : m), then aR ⊆ (P : m). Suppose a ∈ (P : m),

then Ram ⊆ P and from Proposition 3.1.1, we have aRm ⊆ P and therefore,

aR ⊆ (P : m) as required. Let m ∈ M \ P , (P : m) = {r ∈ R : rm ∈
P} = {r ∈ R : rm̄ = 0̄} = (0̄ : m̄). The inclusion (P : 〈m〉) ⊆ (P : m)

is clear. Suppose x ∈ (P : m), then xR ⊆ (P : m). Hence, x〈m〉 ⊆ P and

we have x ∈ (P : 〈m〉). Lastly, suppose a2 ∈ (P : m), i.e., a2m ∈ P . Then,

am ∈ a〈m〉 ⊆ P since P is a completely semiprime submodule of M . Thus,

a ∈ (P : m).

(2)⇒ (1). Let for all a ∈R and m ∈M , a2m ∈ P . Then, a2 ∈ (P : m) which

implies a ∈ (P : m) by definition of a completely semiprime ideal of a ring R.

Thus, aR ⊆ (P : m) and aRm ⊆ P . Therefore, a〈m〉 = Zam+ aRm ⊆ P and
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P is a completely semiprime submodule of M .

(2)⇔ (3)⇔ (4) and (5)⇔ (1) are trivial.

Corollary 3.1.1 An R-module M is reduced if and only if for every 0 6= m ∈
M , (0 : m) is a completely semiprime two sided-ideal of R.

Proposition 3.1.3 For a proper submodule P of an R-module M , the follow-

ing statements are equivalent:

1. P is a classical completely prime submodule of M ;

2. for every m ∈ M \ P , (P : m) = (P : 〈m〉) = (0̄ : m̄) is a completely

prime ideal of R;

3. for all m ∈M \ P , (P : m) / R and if a, b ∈ R such that abm ∈ P , then

am ∈ P or bm ∈ P ;

4. for all m ∈ M \ P , (P : m) / R and if a, b ∈ R such that 〈abm〉 ⊆ P ,

then 〈am〉 ⊆ P or 〈bm〉 ⊆ P ;

5. for all a, b ∈ R and every m ∈ M , if 〈abm〉 ⊆ P , then 〈a〈m〉〉 ⊆ P or

〈b〈m〉〉 ⊆ P .

Proof: (1) ⇒ (2). Every classical completely prime submodule of M is a

completely semiprime submodule of M . We have seen in Proposition 3.1.2

that (P : m) is an ideal of R and (P : m) = (P : 〈m〉) = (0̄ : m̄). Let a, b ∈ R
and m ∈ M \ P such that ab ∈ (P : m), i.e., abm ∈ P . Now, P classical

completely prime submodule gives am ∈ a〈m〉 ⊆ P or bm ∈ b〈m〉 ⊆ P .

Hence, a ∈ (P : m) or b ∈ (P : m).

(2) ⇒ (1). Let for a, b ∈ R and 0 6= m ∈ M , abm ∈ P , i.e., ab ∈ (P : m).

(P : m) a completely prime ideal of R gives a ∈ (P : m) or b ∈ (P : m). Hence,

(am ∈ P and aRm ⊆ P ) or (bm ∈ P and bRm ⊆ P ) such that a〈m〉 ⊆ P or

b〈m〉 ⊆ P . (2)⇔ (3)⇔ (4) and (5)⇔ (1) are trivial.
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The zero divisor set of RM [7, p.316] is the set

Zd(M) := {r ∈ R : there exists 0 6= m ∈M, with rm = 0}.

The following proposition provides us with two other ways of constructing

completely prime ideals of a ring R from a submodule P of an R-module M .

Proposition 3.1.4 Let P be a classical completely prime submodule of an

R-module M . Then,

1. for any m,n ∈M \ P either (P : n) ⊆ (P : m) or (P : m) ⊆ (P : n);

2. Zd(M/P ) is a completely prime ideal of R;

3. for all submodules K and L of M not contained in P , (P : L) ⊆ (P : K)

or (P : K) ⊆ (P : L);

4. (P : K) is a completely prime ideal of R for all submodules K of M such

that K 6⊆ P .

Proof:

1. Assume n,m ∈ M \ P . Then, (P : n)(P : m) ⊆ (P : n) ∩ (P : m) ⊆
(P : n + m). We know that, (P : n + m) is a completely prime ideal of

R and hence a prime ideal of R. So, we have (P : n) ⊆ (P : n + m) or

(P : m) ⊆ (P : n + m). If (P : n) ⊆ (P : n + m), then (P : n) = (P :

n) ∩ (P : n + m) ⊆ (P : m). Similarly, if (P : m) ⊆ (P : n + m), we get

(P : m) ⊆ (P : n).

2. By definition, Zd(M/P ) =
⋃

m∈M\P
(P : m). But {(P : m)}m∈M\P form

a chain of completely prime ideals of R. We see that Zd(M/P ) is the

largest of all the (P : m)’s and hence a completely prime ideal of R.
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3. (P : K)(P : L) ⊆ (P : K) ∩ (P : L) ⊆ (P : K + L). Hence, (P : K) ⊆
(P : K + L) ⊆ (P : L) or (P : L) ⊆ (P : K + L) ⊆ (P : K).

4. To show that (P : K) is a completely prime ideal of R, it is enough to

show that it is both prime and completely semiprime as an ideal of R.

If P is classical completely prime, by Theorem 3.4.1 it is classical prime

(see definition 3.4.2) and hence (P : K) is a prime ideal of R for all

K ≤M such that K 6⊆ P . Suppose a2 ∈ (P : K) for a ∈ R and K ≤M

with K 6⊆ P , then a2k ∈ P for all k ∈ K. By hypothesis, a〈k〉 ⊆ P for

all k ∈ K. Thus, aK ⊆ P such that a ∈ (P : K).

Proposition 3.1.5 below and its corollaries provide more justification for our

definition of classical completely prime submodules.

Proposition 3.1.5 If 1 ∈ R and P /R, then P is a completely prime ideal of

R if and only if P is a classical completely prime submodule of RR.

Proof: Suppose P is a completely prime ideal of R and for any a, b ∈ R and

m ∈RR, abm ∈ P . By definition of a completely prime ideal, a ∈ P or b ∈ P
or m ∈ P . Thus, a〈m〉 ⊆ P or b〈m〉 ⊆ P . Conversely, suppose the ideal P

of R is a classical completely prime submodule of RR. Let for any a, b ∈ R,

ab ∈ P . Since 1 ∈ R by definition of classical completely prime submodule,

ab.1 ∈ P implies aR ⊆ P or bR ⊆ P such that a ∈ P or b ∈ P .

Remark 3.1.1 In general, Proposition 3.1.5 holds for all rings R such that a ∈
aR for all a ∈ R. A comparison of Propositions 3.1.5 and 2.1.1 demonstrates

yet another reason why both completely prime as well as classical completely

prime submodules generalize completely prime ideals.
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Corollary 3.1.2 If 1 ∈ R, then R is a domain if and only if RR is a classical

completely prime module.

Corollary 3.1.3 If 1 ∈ R and P / R, then P is a completely semiprime ideal

of R if and only if it is a completely semiprime submodule of RR.

Corollary 3.1.4 A unital ring R is reduced if and only if RR is a reduced

module.

3.1.2 Homomorphic images

Proposition 3.1.6 Let M be an R-module, N,P ≤ M such that N ⊆ P . If

f : M →M/N is the canonical epimorphism, then P is a classical completely

prime submodule of M if and only if f(P ) is a classical completely prime

submodule of M/N .

Proof: Elementary.

Remark 3.1.2 If N 6⊆ P , P classical completely prime submodule of M does

not in general imply f(P ) is a classical completely prime submodule of M/N

(and hence classical completely prime is not in general closed under homomor-

phic images). See Example 3.1.3 below.

Example 3.1.3 The Z-module Z is a classical completely prime module, cf.,

Corollary 3.1.2 and N = 8Z is a submodule of M = ZZ. By [1, Example 2.5],

M/N is not a reduced module (i.e., not a completely semiprime module) and

hence not a classical completely prime module.

Proposition 3.1.7 Let f : R → A be a ring epimorphism and M an A-

module, then M is an R-module and AM is classical completely prime if and

only if RM is classical completely prime.
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Proof: Define a function from RM to AM by rm = f(r)m. This function

turns M into an R-module whenever M is an AM module. Suppose AM is

classical completely prime and for all r, s ∈ R and m ∈ M , rsm = 0. Then,

0 = rsm = f(r)f(s)m. Since AM is classical completely prime, f(r)〈m〉A =

0 or f(s)〈m〉A = 0. Suppose f(r)〈m〉A = 0, f onto and definition of f

imply r〈m〉R = Zrm + rRm = Zf(r)m + f(rR)m = Zf(r)m + f(r)f(R)m =

f(r)[Zm+Am] = f(r)〈m〉A = 0. Similarly, if f(s)〈m〉A = 0, we get s〈m〉R = 0.

Thus, RM is classical completely prime. Assume RM is classical completely

prime and for all a, b ∈ R and m ∈ M , abm = 0. f onto implies there exists

r, s ∈ A such that a = f(r) and b = f(s), i.e., f(r)f(s)m = rsm = 0. By

assumption, r〈m〉R = 0 or s〈m〉R = 0. If r〈m〉R = 0 (resp. s〈m〉R = 0), the

fact that f is onto leads to a〈m〉A = 0 (resp. b〈m〉A = 0). Hence, AM is

classical completely prime.

3.1.3 Properties of submodules and direct summands

Proposition 3.1.8 If M is a classical completely prime module, then any

submodule N of M is also a classical completely prime module.

Proof: Elementary.

Proposition 3.1.9 For an R-module M , the following statements are equiv-

alent:

1. M is a classical completely prime module;

2. Each direct summand of M including the zero summand is a classical

completely prime submodule of M .

Proof: (1) ⇒ (2). Suppose M = K ⊕ P where K and P are submodules

of M . Let m ∈ M , a, b ∈ R such that abm ∈ P . If b〈m〉 ⊆ P , we are
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through. Suppose b〈m〉 6⊆ P . Then, 〈m〉 6⊆ P and abm ∈ 〈m〉 ⊆ K. Thus,

abm ∈ P ∩K = 0, i.e., abm = 0. By (1), a〈m〉 = 0 or b〈m〉 = 0. We assumed

that b〈m〉 6⊆ P , so b〈m〉 6= 0. Therefore, a〈m〉 ⊆ P and P is a classical

completely prime submodule of M .

(2)⇒ (1). M ∼= 0⊕M . From (2), the zero summand is a classical completely

prime submodule of M . Therefore, M is a classical completely prime module.

3.2 Classical multiplicative systems

Definition 3.2.1 Let R be a ring and M an R-module. A nonempty set

S ⊆ M \ {0} is called a classical multiplicative system of M if, for all a, b ∈
R, m ∈ M and for all submodules K of M , if (K + a〈m〉) ∩ S 6= ∅ and

(K + b〈m〉) ∩ S 6= ∅, then (K + {abm}) ∩ S 6= ∅.

Proposition 3.2.1 Let M be an R-module. A proper submodule P of M is

classical completely prime if and only if its complement M\P is a classical

multiplicative system.

Proof: Suppose S := M\P . Let a, b ∈ R, m ∈M and K be a submodule of

M such that (K+a〈m〉)∩S 6= ∅ and (K+b〈m〉)∩S 6= ∅. If (K+{abm})∩S = ∅,
then abm ∈ P . Since P is classical completely prime, a〈m〉 ⊆ P or b〈m〉 ⊆ P .

It follows that (K + a〈m〉) ∩ S = ∅ or (K + b〈m〉) ∩ S = ∅, a contradiction.

Therefore, S is a classical multiplicative system in M . For the converse, let

S := M\P be a classical multiplicative system in M . Suppose for a, b ∈ R

and m ∈ M , abm ∈ P . If a〈m〉 6⊆ P and b〈m〉 6⊆ P , then a〈m〉 ∩ S 6= ∅ and

b〈m〉 ∩ S 6= ∅. Thus, abm ∈ S, a contradiction. Therefore, P is a classical

completely prime submodule of M .
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Proposition 3.2.2 Let M be an R-module, P be a proper submodule of M ,

and S := M\P . Then, the following statements are equivalent:

1. P is a classical completely prime submodule of M ;

2. S is a classical multiplicative system of M ;

3. for all a, b ∈ R and m ∈ M , if a〈m〉 ∩ S 6= ∅ and b〈m〉 ∩ S 6= ∅, then

abm ∈ S;

4. for all a, b ∈ R and m ∈ M , if 〈a〈m〉〉 > ∩ S 6= ∅ and 〈b〈m〉〉 ∩ S 6= ∅,
then 〈ab〉 ∩ S 6= ∅.

Lemma 3.2.1 Let M be an R-module, S ⊆ M a classical multiplicative sys-

tem of M and P a submodule of M maximal with respect to the property that

P ∩ S = ∅. Then, P is a classical completely prime submodule of M .

Proof: Suppose a ∈ R and m ∈ M such that 〈abm〉 ⊆ P . If 〈a〈m〉〉 6⊆ P

and 〈b〈m〉〉 6⊆ P then (〈a〈m〉〉 + P ) ∩ S 6= ∅ and (〈b〈m〉〉 + P ) ∩ S 6= ∅. By

definition of a classical multiplicative system S of M , (〈abm〉 + P ) ∩ S 6= ∅.
Since 〈abm〉 ⊆ P , we have P ∩ S 6= ∅, a contradiction. Hence, P must be a

classical completely prime submodule.

Definition 3.2.2 Let R be a ring and M an R-module. For N ≤ M , if

there is a classical completely prime submodule of M containing N , we define

clc.
√
N := {m ∈M : every classical multiplicative system of M containing

m meets N}. We write clc.
√
N = M when there are no classical completely

prime submodules of M containing N .

Theorem 3.2.1 Let M be an R-module and N ≤M . Then, either clc.
√
N =

M or clc.
√
N equals the intersection of all classical completely prime submod-

ules of M containing N , which is denoted by βccl(N).
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Proof: Suppose clc.
√
N 6= M . Then, βccl(N) 6= ∅. Both clc.

√
N and N are

contained in the same classical completely prime submodules. By definition

of clc.
√
N it is clear that N ⊆ clc.

√
N . Hence, any classical completely prime

submodule of M which contains clc.
√
N must necessarily contain N . Suppose

P is a classical completely prime submodule of M such that N ⊆ P , and let

t ∈ clc.
√
N . If t 6∈ P , then the complement of P , C(P ) in M is a classical

multiplicative system containing t and therefore we would have C(P )∩N 6= ∅.
However, since N ⊆ P , C(P ) ∩ P = ∅ and this contradiction shows that

t ∈ P . Hence clc.
√
N ⊆ P as we wished to show. Thus, clc.

√
N ⊆ βco(N).

Conversely, assume s 6∈ clc.
√
N , then there exists a classical multiplicative

system S such that s ∈ S and S ∩N = ∅. From Zorn’s lemma, there exists a

submodule P ⊇ N which is maximal with respect to P ∩S = ∅. From Lemma

3.2.1, P is a classical completely prime submodule of M and s 6∈ P .

3.3 Complete systems

Definition 3.3.1 Let R be a ring and M an R-module. A nonempty set

T ⊆ M \ {0} is called a complete system if, for all a ∈ R, m ∈ M and for all

submodules K of M , if (K + a〈m〉) ∩ T 6= ∅, then (K + {a2m}) ∩ T 6= ∅.

Corollary 3.3.1 Let M be an R-module. A proper submodule P of M is

completely semiprime if and only if M\P is a complete system.

Proposition 3.3.1 Let M be an R-module, P be a proper submodule of M ,

and T := M\P . Then, the following statements are equivalent:

1. P is completely semiprime;

2. T is a complete system;

3. for all a ∈ R and m ∈M , if a〈m〉 ∩ T 6= ∅, then a2m ∈ T ;
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4. for all a ∈ R and m ∈M , if 〈a〈m〉〉 ∩ T 6= ∅, then 〈a2m〉 ∩ T 6= ∅.

Remark 3.3.1 Every classical multiplicative system is a complete system but

not conversely.

3.4 Comparison with “primes” in literature

In this section, we compare classical completely prime (resp. completely

semiprime) submodules with prime (resp. semiprime) and classical prime

(resp. classical semiprime) submodules.

Definition 3.4.1 [28] P ≤ RM with RM 6⊆ P is a semiprime submodule of

M if for a ∈ R and m ∈M such that aRam ⊆ P , then am ∈ P .

Definition 3.4.2 [10, p.338 ] P ≤ RM with RM 6⊆ P is classical prime if

for any N ≤ RM and any A,B / R such that ABN ⊆ P , then AN ⊆ P or

BN ⊆ P . P ≤R M is classical semiprime if for every A /R, and N ≤ M such

that A2N ⊆ P , then AN ⊆ P .

Propositions 3.4.1 and 3.4.2 are modifications of [10, Proposition 1.1] and

[10, Proposition 1.2] to suit a not necessarily unital module.

Proposition 3.4.1 Let P ≤ RM , the following statements are equivalent:

1. P is a classical prime submodule of M ;

2. for all a, b ∈ R and every m ∈ M , if (a)(b)m ⊆ P , then (a)m ⊆ P or

(b)m ⊆ P ;

3. for all a, b ∈ R and every m ∈M such that aRb〈m〉 ⊆ P , then a〈m〉 ⊆ P

or b〈m〉 ⊆ P .
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Proposition 3.4.2 Let P ≤ RM , the following statements are equivalent:

1. P is a classical semiprime submodule of M ;

2. for all a ∈ R and every m ∈M , if (a)2m ⊆ P , then (a)m ⊆ P ;

3. for all a ∈ R and every m ∈M , if aRa〈m〉 ⊆ P , then a〈m〉 ⊆ P .

Remark 3.4.1 In literature, classical prime is used interchangeably with

weakly prime, cf., [7], [9], [10], [11], [13]. We here use classical prime instead

of weakly prime. In defense of our nomenclature, weakly prime modules exist

in [30] when used in a totally different context - a context which generalizes

the notion of weakly prime ideals for rings to modules. To the best of our

knowledge, classical prime has never been used by other authors to mean

something different. Our “classical semiprime” is what is called “semiprime” in

[10], our nomenclature reflects that classical semiprime is derived from classical

prime. Lastly, our “semiprime” is the semiprime in [28].

Theorem 3.4.1 For any P ≤ RM , we have the following implications:

(a) in general (b) when P is IFP

prime prime

⇓ ⇓
classical ⇒ classical classical ⇔ classical

completely prime prime completely prime prime

Proof: (a). Classical completely prime⇒ classical prime. Let for all a, b ∈ R
and every m ∈ M , (a)(b)m ⊆ P . Then, abm ∈ P and P classical completely

prime in M implies a〈m〉 ⊆ P or b〈m〉 ⊆ P . Thus, (am ∈ P and aRm ⊆ P )

or (bm ∈ P and bRm ⊆ P ) so that (a)m = (Za + Ra + aR + RaR)m ⊆ P or

(b)m = (Zb+Rb+ bR+RbR)m ⊆ P . Hence, P is a classical prime submodule
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of M . Prime ⇒ classical prime see, [73, Prop. 4.1.11].

(b). Suppose P is IFP, we show that classical prime implies classical completely

prime. Suppose P is a classical prime submodule of M . If a, b ∈ R and m ∈M
such that abm ∈ P , then aRbm ⊆ P and aRb(Rm) ⊆ P so that aRb〈m〉 ⊆ P .

This implies, either a〈m〉 ⊆ P or b〈m〉 ⊆ P by definition of classical prime

submodule. So, P is classical completely prime.

Remark 3.4.2 From [13] a prime module is classical prime but not conversely

even when a module is defined over a commutative ring. It is also true that

over a commutative ring, completely prime is the same as prime and classical

prime is the same as classical completely prime. Hence, a classical completely

prime module need not be completely prime.

Theorem 3.4.2 P is a completely prime submodule if and only if it is both a

prime and a completely semiprime submodule.

Proof: Any completely prime submodule is both prime and completely

semiprime. Suppose P is both prime and completely semiprime. Let am ∈ P
for any a ∈ R and m ∈M . Because P is completely semiprime, it is IFP and

hence a〈m〉 ⊆ P . P prime implies m ∈ P or aM ⊆ P . Thus, P is completely

prime.

Theorem 3.4.3 P is a classical completely prime submodule of an R-module

M if and only if P is both a classical prime and a completely semiprime sub-

module of M .

Proof: Every classical completely prime submodule is completely

semiprime. From Theorem 3.4.1, classical completely prime submodules are

classical prime. For the converse, assume P is both a completely semiprime

and a classical prime submodule of M . Now, let a, b ∈ R and m ∈M such that
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abm ∈ P . By Proposition 3.1.1, P is IFP. Hence, aRb〈m〉 ⊆ P . P classical

prime implies a〈m〉 ⊆ P or b〈m〉 ⊆ P .

Example 3.4.1 Every maximal submodule P of an R-module M is a classical

prime submodule but there exist modules with maximal submodules which

are not classical completely prime. Let A / R and N ≤ M such that AN ⊆
P , where P is a maximal submodule of M . If N ⊆ P , we are through.

Suppose N 6⊆ P . Then, M = N + P so that AM = AN + AP ⊆ P .

This shows P is a prime submodule and hence a classical prime submodule.

We construct a maximal submodule which is not classical completely prime.

Let R = (M2(Z),+, .) be a ring of all 2-by-2 matrices with integral entries

and (M2(Z2),+) be a group of all 2-by-2 matrices with entries from the ring

Z2 = {0̄, 1̄}. Then, M2(Z2) is an M2(Z)-module and

P =

{(
0̄ 0̄

0̄ 0̄

)
,

(
0̄ 0̄

1̄ 1̄

)
,

(
1̄ 1̄

0̄ 0̄

)
,

(
1̄ 1̄

1̄ 1̄

)}

is a maximal submodule of M2(Z2). Now, let a =

(
0 1

0 0

)
, b =

(
1 0

0 0

)
and

m =

(
0̄ 1̄

1̄ 0̄

)
. abm = 0 ∈ P but a〈m〉 6⊆ P and b〈m〉 6⊆ P since am 6∈ P and

bm 6∈ P . Therefore, P is a maximal submodule of M2(Z2) but not a classical

completely prime submodule of the M2(Z)-module M2(Z2).

In regard to Example 3.4.1, we point out that, although it is not true in gen-

eral, we can find non-commutative rings for which every maximal submodule

is classical completely prime. To illustrate this, we use left (quasi) duo rings.

A ring R is called left (quasi) duo if every left (maximal left) ideal of R is two

sided.
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Proposition 3.4.3 [69, Proposition 3.6] R is a left quasi-duo ring if and only

if each simple R-module M is reduced.

Proposition 3.4.4 If R is a left quasi-duo ring, then each maximal submodule

P of M is a classical completely prime submodule of M .

Proof: Let P be a maximal submodule of M and R a left quasi-duo ring.

M/P is simple and from Proposition 3.4.3, it is reduced. Hence, P is a com-

pletely semiprime submodule of M . Since every maximal submodule of M is

classical prime, it follows from Theorem 3.4.3 that P is a classical completely

prime submodule of M .

Remark 3.4.3 It is not possible to get an example like Example 3.4.1 for a

ring R which is a collection of all upper triangular matrices over Z. This is

because, upper triangular matrix rings are left quasi-duo and from Proposition

3.4.4, maximal submodules are always classical completely prime.

It is clear from Example 3.4.1 that simple modules are not always classical

completely prime. We give another example to show that simple modules are

not always classical completely prime. It makes use of Lemma 3.4.1.

Lemma 3.4.1 For a simple and reduced module RM , am = 0 implies aM = 0

for all a ∈ R and 0 6= m ∈M .

Proof: Suppose am = 0. Since M is simple and reduced, we have 0 =

aM ∩ 〈m〉 = aM ∩M = aM .

Example 3.4.2 LetM =

{(
0̄ 0̄

0̄ 0̄

)
,

(
0̄ 0̄

1̄ 1̄

)
,

(
1̄ 1̄

0̄ 0̄

)
,

(
1̄ 1̄

1̄ 1̄

)}
where

entries of matrices in M are from Z2 = {0̄, 1̄} and R = M2(Z). RM is a simple

module which is not classical completely prime.
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Proof: Let r =

(
a b

c d

)
∈ R,

rM =

{(
0̄ 0̄

0̄ 0̄

)
,

(
a a

c c

)
,

(
b b

d d

)
,

(
a+ b a+ b

c+ d c+ d

)}
⊆M

for any a, b, c, d ∈ Z. The would be nontrivial proper submodules, namely;

N1 =

{(
0̄ 0̄

0̄ 0̄

)
,

(
1̄ 1̄

0̄ 0̄

)}
, N2 =

{(
0̄ 0̄

0̄ 0̄

)
,

(
0̄ 0̄

1̄ 1̄

)}
and

N3 =

{(
0̄ 0̄

0̄ 0̄

)
,

(
1̄ 1̄

1̄ 1̄

)}
are not closed under multiplication by R since,

for a and c odd, rN1 6⊆ N1, for b and d odd, rN2 6⊆ N2 and for a odd but b, c, d

even, rN3 6⊆ N3. Take a =

(
3 3

2 2

)
∈ R and m =

(
1̄ 1̄

1̄ 1̄

)
∈ M , am = 0

but aM 6= 0 since a =

(
3 3

2 2

)(
1̄ 1̄

0̄ 0̄

)
=

(
1̄ 1̄

0̄ 0̄

)
6= 0. By Lemma 3.4.1,

M is not reduced and hence not classical completely prime.

Since over commutative rings classical completely prime submodules and

classical submodules are indistinguishable, we have:

Example 3.4.3 [13, Example 1] Assume that R is a unital commutative do-

main and P is a non-zero prime ideal in R. P ⊕ 0 and 0 ⊕ P are classical

completely prime submodules in the free module M = R ⊕ R, but they are

not prime submodules.
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3.5 Comparison of “semiprimes”

Theorem 3.5.1 For any submodule P of an R-module M ,

completely semiprime ⇒ semiprime ⇒ classical semiprime.

Proof: Suppose for a ∈ R and m ∈ M , aRam ⊆ P , then (a2)2m ∈ P and

P completely semiprime implies a2m ∈ a2〈m〉 ⊆ P . Hence, am ∈ a〈m〉 ⊆ P

and P is semiprime. Now, suppose aRa〈m〉 ⊆ P but a〈m〉 6⊆ P . Then, there

exists m1 ∈ 〈m〉 such that am1 6∈ P . By definition of semiprime submodules,

aRam1 6⊆ P and so aRa〈m〉 6⊆ P which is a contradiction. Therefore, whenever

aRa〈m〉 ⊆ P , we have a〈m〉 ⊆ P and semiprime ⇒ classical semiprime.

The reverse implications in Theorem 3.5.1 are not true in general. The

simple module M constructed in Example 3.4.2 is semiprime (because all sim-

ple modules are prime) but it is not completely semiprime. For the second

implication, a counter example was constructed by Hongan in [43, p.119].

Corollary 3.5.1 If P is an IFP submodule of M , then

completely semiprime ⇔ semiprime ⇔ classical semiprime.

Proof: It is enough to show that classical semiprime⇒ completely semiprime,

the rest follows from Theorem 3.5.1. Let a2m ∈ P , where a ∈ R and m ∈ M .

For P IFP, aRa〈m〉 ⊆ P . By definition of classical semiprime, a〈m〉 ⊆ P and

P is completely semiprime.

A ring R is left (right) permutable [20, p.258], if for all a, b, c ∈ R, abc = bac

(abc = acb). R is permutable if it is both left and right permutable. Commu-

tative rings and nilpotent rings of index ≤ 3 are left (right) permutable. A ring

R is medial [20], if for all a, b, c, d ∈ R, abcd = acbd. A left (right) permutable
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ring is medial but not conversely. A unital medial ring is indistinguishable

from a commutative ring. A ring R is left self distributive, denoted by LSD

(resp. right self distributive, denoted by RSD) if for all a, b, c, d ∈ R, the

identity: abc = abac (resp. abc = acbc) holds. LSD rings are left permutable,

see [34, Corollary 2.2]. Left (right) permutable rings and medial rings exist in

abundance; according to Birkenmeier and Heatherly in [20, p.258], they are a

special type of PI-rings and also exist as special subrings of every ring. Fur-

thermore, if R is a non-commutative medial (left permutable, right permutable

or permutable) ring, then the ring of polynomials (resp. formal power series or

formal Laurent series) over R is a medial (left permutable, right permutable

or permutable) ring which is not commutative, see [20, p.262-263].

Theorem 3.5.2 If P is a classical semiprime submodule of RM and R is

a medial (left permutable, right permutable or LSD) ring then each of the

following statements implies P is a completely semiprime submodule of RM :

1. M is finitely generated,

2. M is free,

3. M is cyclic.

Proof: We prove only the case for M cyclic, the proofs for other cases are

similar. Suppose a2m ∈ P for a ∈ R and m ∈ M , R2a2m ⊆ P . R medial

implies RaRam ⊆ P . Since M is cyclic, m = rm0 for some r ∈ R and m0 ∈M .

RaRarm0 ⊆ P and R2aRarm0 ⊆ P . Again, R medial leads to RaRaRm ⊆ P .

It follows that RaRa〈m〉 ⊆ P . Since P is classical semiprime, Ra〈m〉 ⊆ P ,

i.e., Ra ⊆ (P : 〈m〉). P classical semiprime implies (P : 〈m〉) is a semiprime

ideal of R and hence a ∈ (P : 〈m〉), i.e., a〈m〉 ⊆ P .

Corollary 3.5.2 If P is a prime (resp. classical prime) submodule of RM

with R medial (left permutable, right permutable or LSD), then each of the
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following statements implies P is completely prime (resp. classical completely

prime).

1. M is finitely generated,

2. M is free,

3. M is cyclic.

Proof: Suppose P is prime (resp. classical prime) then P is classical

semiprime. By Theorem 3.5.2, P is completely semiprime. It follows from

Theorem 3.4.2 (resp. Theorem 3.4.3) that P is completely prime (resp. clas-

sical completely prime).

3.6 Intersections of “completely prime” sub-

modules

Proposition 3.6.1 For any module RM , βco(M) and βccl(M) are completely

semiprime submodules.

Proof: Let a2m ∈ βco(M) for a ∈ R and m ∈ M , then a2m ∈ P for all

completely prime submodules P of M . Since any completely prime submodule

is completely semiprime, we have a〈m〉 ⊆ P for all completely prime submod-

ules P of M . Hence, a〈m〉 ⊆ βco(M) and βco(M) is completely semiprime. A

similar proof shows that βccl(M) is also a completely semiprime submodule.

Remark 3.6.1 If P is a completely semiprime submodule of RM , then P need

not be an intersection of completely prime submodules. We know that over

a commutative ring, prime is the same as completely prime and semiprime is

the same as completely semiprime, see Corollary 3.5.1. Now, let R = Z[x] and
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F = R ⊕ R. If f := (2, x) ∈ F and P = 2R + Rx which is a maximal ideal of

R, then N = Pf is a semiprime submodule of F which is not an intersection

of prime submodules, see [46, p.3600].

Question 3.6.1 Is every completely semiprime submodule of a module an

intersection of classical completely prime submodules?

3.7 The radicals βccl(M) and βco(R)

Let Mc be the class of all completely prime rings, i.e., rings which have

no non-zero divisors. Then Mc
R is the class of all classical completely prime

R-modules. We have Rc = Ng, the generalized nil radical which we shall call

the completely prime radical of R (denoted by βco(R)) with

βco(R) := ∩{I / R : I is a completely prime ideal}.

The corresponding classical completely prime radical for the R-module M will

be denoted by

βccl(M) := ∩{N ≤M : M/N ∈Mc
R}.

Since each classical completely prime submodule of an R-module M is also

classical prime submodule, we have βcl(M) ⊆ βccl(M) where βcl(M) is the

classical prime radical (the intersection of all classical prime submodules of

M). If M is an R-module over a commutative ring, then the two radicals

coincide.

Proposition 3.7.1 For any ring R, βccl(RR) ⊆ βcco(RR) ⊆ βco(R).

Proof: Follows from Lemma 2.3.1 and the fact that any completely prime

module is classical completely prime.
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Lemma 3.7.1 For any R-module M , we have

βco(R) ⊆ (βccl(M) : M)R ⊆ (βco(M) : M)R.

Proof: We have (βccl(M) : M) = (
⋂

S≤M
S : M)R =

⋂
S≤M

(S : M)R where

M/S is a classical completely prime module. Since (S : M)R is a completely

prime ideal, we get βco(R) ⊆ (βccl(M) : M). The next inclusion holds because

βccl(M) ⊆ βco(M).

Remark 3.7.1 The containment in Lemma 3.7.1 is in general strict. Let

R = Z and M = Zp∞ ⊕ Z for some prime number p. Now βccl(M) = Zp∞ and

βco(R) = 0, i.e., βco(R)M = (0).

Lemma 3.7.2 For any ring R, we have

βco(R) = (βccl(RR) : R)R = (βco(RR) : R)R.

Proof: Follows from [29, Proposition 4.6].

Recall that for an R-module M , we have the Jacobson radical Rad(M) of

the module M defined as:

Rad(M) = ∩{K ≤M : K is a maximal submodule of M}.

Theorem 3.7.1 Let M be a module over a left Artinian ring R. Then

Rad(M) ⊆ βccl(M) and Rad(RR) = βccl(RR) = βco(RR).

Proof: From [18, Cor. 4.3.17, p.178], Rad(M) = Jac(R)M = βco(R)M

and from the fact that βco(R) ⊆ (βccl(M) : M)R we get Rad(M) ⊆ βccl(M).

Again from [18, Cor. 4.3.17, p.178], and Lemma 3.7.2, Rad(RR) = Jac(R)R =

βco(R)R = βccl(RR) = βco(RR).



Chapter 4

s-prime submodules

In this chapter, a generalization of the notion of an s-system of rings to

modules is given. Let N be a submodule of M . Define S(N) := {m ∈
M : every s-system containing m meets N}. It is shown that S(N) is equal

to the intersection of all s-prime submodules of M containing N . We define

U(M) = S(0). This is called (K
..
othe’s) upper nil radical of M . We show

that if R is a commutative ring, then U(M) = β(M) where β(M) denotes

the prime radical of M . We also show that if R is a left Artinian ring, then

β(M) = U(M) = Rad(M) = Jac(R)M where Rad(M) denotes the Jacobson

radical of M and Jac(R) the Jacobson radical of the ring R. Furthermore, we

show that the class of all s-prime modules RM for which RM 6= 0 forms a

special class of modules.

Behboodi in [10] and [11] generalized a notion of (Baer’s) lower nil radical

to modules. We here generalize a notion of (K
..
othe’s) upper nil radical to

modules. s-prime ideals in rings were introduced in [78], where it was pointed

out that the intersection of all s-prime ideals in a ring R is the upper nil radical

of R. In this chapter, we generalize the notion of s-prime ideals in rings to

submodules in modules. An ideal P of a ring R is an s-prime ideal if for any

50
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A,B / R and any x ∈ AB such that xm ∈ P for some m ∈ N, then A ⊆ P or

B ⊆ P . A set S of elements of a ring R is called an s-system [78] if S = ∅ or

S contains a multiplicative system S∗ such that for every element s ∈ S, we

have (s) ∩ S∗ 6= ∅, where ∅ is the void set and (s) the ideal of R generated by

s ∈ R. An ideal P of a ring R is an s-prime ideal if its complement CR(P)

is an s-system. An ideal P of a ring R is semi s-prime if and only if for any

A / R and x ∈ A such that xm ∈ P for some m ∈ N, then A ⊆ P . P is an

s-prime ideal of R if and only if P is both prime and semi s-prime ideal of R.

s-prime for rings has been referred to as strongly prime by some authors, e.g.,

see [70, Definition 2.6.5, p.170].

4.1 s-prime modules

Definition 4.1.1 A proper submodule P of M with RM 6⊆ P is called an s-

prime submodule if the following is satisfied: If A/R and N ≤M and for every

x ∈ A there exists n ∈ N such that xnN ⊆ P , then N ⊆ P or AM ⊆ P . An

R-module M is s-prime if the zero submodule of M is an s-prime submodule

of M . In general, an R-module M/P is an s-prime module if and only if P is

an s-prime submodule of M .

Example 4.1.1 Every simple module is an s-prime module.

Proof: Suppose N 6= 0 and AM 6= 0 for some A/R and N ≤M . Since M is

simple, we can find an element m ∈M such that Am is a non-zero submodule

and as such Am = M . Hence, we can get an element a ∈ A such that am = m.

This gives akm = m not zero for any positive integer k. Hence, since N 6= 0

we have N = M and consequently akm is an element of akN , i.e., akN 6= 0 for

every k ∈ N.

Remark 4.1.1 Every maximal submodule is an s-prime submodule.
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Proposition 4.1.1 The following statements are equivalent:

1. A proper submodule P of M is an s-prime submodule of M .

2. (a) P is a prime submodule of M and;

(b) for every A /R such that A 6⊆ (P : M) there exists a ∈ A\ (P : M)

such that anM 6⊆ P for all n ∈ N.

Proof: (⇒) (a). Let A / R, N ≤ M such that AN ⊆ P . For all x ∈ A,

xN ⊆ P . Since P is s-prime, N ⊆ P or AM ⊆ P and P is a prime submodule

of M .

(b). Let B / R such that B 6⊆ (P : M), i.e., BM 6⊆ P . Let m ∈ M such that

Bm 6⊆ P . Now, since P is an s-prime submodule, there exists b ∈ B such that

bnBm 6⊆ P for all n ∈ N. Hence bnM 6⊆ P for every n ∈ N.

(⇐). Let A / R and N ≤ M such that N 6⊆ P and AM 6⊆ P . Let n ∈ N

such that n 6∈ P . Now, since P is prime, we have (P : M) = (P : 〈n〉) is a

prime ideal. From (b), there exists a ∈ A such that akM 6⊆ P for every k ∈ N.

Hence, ak 6∈ (P : M) = (P : 〈n〉) for every k ∈ N. Thus, ak〈n〉 6⊆ P and

akN 6⊆ P for every k ∈ N, so P is an s-prime submodule of M .

Corollary 4.1.1 For any ring R, P is an s-prime submodule of M if and only

if P is a prime submodule of M and U(R/(P : M)R) = (0), where U(R) is the

upper nil radical of the ring R. 1 In other words, R/(P : M) has no non-zero

nil ideals.

Corollary 4.1.1 gives a perfect generalization of the notion of s-prime for

rings (see [70, Definition 2.6.5 p.170]) to modules.

1Upper nil radical of a ring is the ideal generated by all nil ideals of that ring. It is the

largest nil ideal of the ring.
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Proposition 4.1.2 If R is a unital ring, then R is s-prime if and only if RR

is an s-prime module.

Proof: We know that R is a prime ring if and only if RR is a prime module.

R prime implies (0 : R) = 0. Hence, whenever R is prime, U(R) = 0 if and

only if U(R/(0 : R)) = 0. It follows that: R is prime and U(R) = 0 if and

only if RR is prime and U(R/(0 : R)) = 0, i.e., R is s-prime if and only if RR

is s-prime.

Definition 4.1.2 A submodule P of an R-module M is a semi s-prime sub-

module if for all A / R and every N ≤ M with a ∈ A2 and N 6⊆ P such that

anN ⊆ P for some n ∈ N, then AN ⊆ P .

Proposition 4.1.3 The following statements are equivalent:

1. P is a semi s-prime submodule of M ;

2. for all A / R and every N ≤ M if AN 6⊆ P , then there exists a ∈ A2

such that anN 6⊆ P for all n ∈ N;

3. U(R/(P : N)) = 0 for all N ≤M with N 6⊆ P .

Theorem 4.1.1 A submodule P of RM is s-prime if and only if P is prime

and semi s-prime.

Proof: Similar to that of Proposition 4.1.1.

Proposition 4.1.4 For any module RM ,

1. βs(M) = ∩{P : P ≤M, P s-prime submodule of M} is a semi s-prime

submodule;

2. if P is semi s-prime, then (P : N) is a semi s-prime ideal of R for any

N ≤M with N 6⊆ P .
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Proof:

1. Let A / R, N ≤ M such that AN 6⊆ βs(M), then there exists an s-

prime submodule P such that AN 6⊆ P . By definition of an s-prime

submodule, there exists a ∈ A such that anN 6⊆ P for all n ∈ N. Hence,

for b = a2 ∈ A, we have bmN 6⊆ βs(M) for all m ∈ N.

2. Let A2/R and a ∈ A such that an ∈ (P : N) for some n ∈ N and N ≤M

with N 6⊆ P . Then, anN ⊆ P and since P is semi s-prime, AN ⊆ P ,

i.e., A ⊆ (P : N). Hence, (P : N) is a semi s-prime ideal of R.

Proposition 4.1.5 Any semi s-prime submodule is classical semiprime.

Proof: Let P be a semi s-prime submodule of RM . Suppose for all A / R
and every N ≤ M , A2N ⊆ P . Then a2N ⊆ P for all a ∈ A. P semi s-prime

implies AN ⊆ P and hence P is classical semiprime.

Proposition 4.1.6 For modules over a commutative ring,

semi s-prime⇔ semiprime ⇔ classical semiprime.

Proof: Suppose R is commutative and P is classical semiprime. Let A / R
and AN 6⊆ P for some N ≤ M . Then A2N 6⊆ P and there exists a ∈ A2

such that aN 6⊆ P . P semiprime implies (P : N) is semiprime and because R

is commutative (P : N) is completely semiprime, hence an 6∈ (P : N) for all

n ∈ N, i.e., anN 6⊆ P for all n ∈ N which shows that P is semi s-prime. The

rest follows from Proposition 4.1.5 and Corollary 3.5.1.
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From Proposition 4.1.1, every s-prime module is prime. The following is an

example of a prime module which is not s-prime.

Example 4.1.2 We use the construction and computation in [45, Example

1.2 and Proposition 1.3]. Let S be a domain, n be a positive integer and Rn be

the 2n by 2n upper triangular matrix ring over S. Define a map δ : Rn → Rn+1

by A →

(
A 0

0 A

)
. Then, Rn is considered as a subring of Rn+1 via δ. Let

Dn = {Rn, δnm} (with δnm = δm−n whenever n ≤ m) be the direct system over

I = {1, 2, 3, · · ·} and let R = lim
→
Rn. From [45, Proposition 1.3], R is a prime

ring with U(R) 6= 0. Hence, a prime ring which is not an s-prime ring. If we

let M = RR, then M is a prime module which is not an s-prime module.

The following Lemma is a generalization of [11, Proposition 1.1 (2)]. In [11],

it was given for unital modules. We here modify it to suit a not necessarily

unital module. In the place of Rm, we use 〈m〉 and the two coincide when M

is unital.

Lemma 4.1.1 Let M be an R-module. For a proper submodule P of M , the

following statements are equivalent:

1. P is a prime submodule of M ;

2. for all a ∈ R and every m ∈ M , if (a)m ⊆ P , then either m ∈ P or

(a)M ⊆ P ;

3. for all a ∈ R and every m ∈ M , if a〈m〉 ⊆ P , then either m ∈ P or

aM ⊆ P ;

4. for each left ideal Al of R and every m ∈M , if Al〈m〉 ⊆ P , then either

m ∈ P or AlM ⊆ P ;
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5. for each right ideal Ar of R and every m ∈M , if Arm ⊆ P , then either

m ∈ P or ArM ⊆ P ;

6. P = (P : M) is a prime ideal of R, and (P : 〈m〉) = (0̄ : 〈m̄〉) = P for

each m ∈M \ P ;

7. the set {(P : 〈m〉) : m ∈M \ P} is a singleton.

Remark 4.1.2 If R is a commutative ring and M an R-module, each prime

submodule P of M is an s-prime submodule of M .

Proof: Let P be a prime submodule of M and an〈m〉 ⊆ P for n ∈ N, a ∈ R
and m ∈ M . If m ∈ P , we are through. Suppose m 6∈ P . Since P is prime,

we have anM ⊆ P by Lemma 4.1.1 (3). Hence, an ∈ (P : M). But (P : M) is

a prime ideal of a commutative ring, thus a ∈ (P : M) and aM ⊆ P .

Remark 4.1.3 Where as we have seen in Proposition 4.1.4 that any intersec-

tion of s-prime submodules is a semi s-prime submodule, the converse does not

hold in general. For over a commutative ring, prime is the same as s-prime (see

Remark 4.1.2) and semiprime is the same as semi s-prime, (see Proposition

4.1.6). In [46, p.3600] an example of a module over a commutative ring was

constructed (also given in Remark 3.6.1) to show that semiprime submodules

need not be intersections of prime submodules.

Proposition 4.1.7 offers several other characterizations of s-prime modules.

Proposition 4.1.7 Let M be an R-module. For a proper submodule P of M ,

the following statements are equivalent:

1. P is an s-prime submodule of M ;

2. for every a ∈ R and for every m ∈ M , if an〈m〉 ⊆ P for some n ∈ N,

then m ∈ P or aM ⊆ P ;
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3. P is a prime submodule of M and for every A / R with A 6⊆ (P : M)

there exists a ∈ R such that anM 6⊆ P for every n ∈ N;

4. P = (P : M) is an s-prime ideal of R and (0̄ : 〈m̄〉) = (P : 〈m〉) = P
for every m ∈M \ P .

Proof: (1) ⇒ (2). Suppose P is an s-prime submodule of M and for all

a ∈ R and every m ∈ M an〈m〉 ⊆ P for some n ∈ N. Now, a ∈ (a) / R and

〈m〉 ≤M . By (1), m ∈ 〈m〉 ⊆ P or aM ⊆ (a)M ⊆ P .

(2)⇒ (1). Suppose there exists A/R, N ≤M such that N 6⊆ P and AM 6⊆ P .

Then there exists m ∈ N \P and aM 6⊆ P for some a ∈ A. By (2), an〈m〉 6⊆ P

for all n ∈ N. Thus, anN 6⊆ P for all n ∈ N and P is an s-prime submodule of

M .

(1)⇒ (3). Follows from Proposition 4.1.1.

(3)⇒ (4). Suppose A,B are ideals of R such that A 6⊆ (P : M) and B 6⊆ (P :

M). By (3), P is a prime submodule of M . Thus, (P : M) is a prime ideal

and AB 6⊆ (P : M). By (3), there exists a ∈ AB ⊆ R such that an 6∈ (P : M)

for all n ∈ N and therefore (P : M) is an s-prime ideal of R. By Lemma 4.1.1

(6), P = (P : 〈m〉) = (0̄ : 〈m̄〉) for every m ∈M \ P .

(4) ⇒ (1). Suppose there exists A / R and N ≤ M such that N 6⊆ P and

AM 6⊆ P . Then there exists m ∈ N \ P and A 6⊆ (P : M). By (4), A 6⊆ (P :

〈m〉). Since (P : 〈m〉) is a semi s-prime ideal of R, we have xn 6∈ (P : 〈m〉) for

all n ∈ N, i.e., xn〈m〉 6⊆ P and xnN 6⊆ P for all n ∈ N.

Proposition 4.1.8 For any module RM , completely prime ⇒ s-prime.

Proof: Suppose an〈m〉 ⊆ P for some n ∈ N. Then, anm ∈ P . Because P is

completely prime, it is classical completely prime such that am ∈ a〈m〉 ⊆ P .

By definition of completely prime we have aM ⊆ P or m ∈ P .
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Example 4.1.3 A simple module is s-prime but it need not be completely

prime.

4.2 s-systems and s-prime radical

In [10], Behboodi introduced the notion of an m-system for modules and

used it to characterize the prime radical for a module, cf., [10, Definition 1.3].

We now introduce a notion of an s-system as a generalization of an m-system

and then use it to characterize the upper nil radical for modules.

Definition 4.2.1 Let R be a ring and M an R-module. A nonempty set

S ⊆ M \ {0} is called an s-system if, for each A / R and for all K,L ≤ M , if

(K + L) ∩ S 6= ∅ and (K +AM) ∩ S 6= ∅, then there exists x ∈ A such that

(K + xnL) ∩ S 6= ∅ for every n ∈ N.

It is easy to see that every s-system is an m-system.

Corollary 4.2.1 Let M be an R-module. A submodule P of M is s-prime if

and only if M \ P is an s-system of M .

Proof: (⇒). Suppose S := M \ P . Let A / R and K,L ≤ M such that

(K + L) ∩ S 6= ∅ and (K + AM) ∩ S 6= ∅. If there exists n ∈ N such that

(K + xnL) ∩ S = ∅ for every x ∈ A, then xnL ⊆ P for every x ∈ A. Since P

is s-prime, we have L ⊆ P or AM ⊆ P . It follows that (L + K) ∩ S = ∅ or

(AM +K) ∩ S = ∅, a contradiction. Therefore, S is an s-system of M .

(⇐). Suppose that for every A / R, N ≤ M and x ∈ A there exists n ∈ N

such that xnL ⊆ P . If L 6⊆ P and AM 6⊆ P , then L∩S 6= ∅ and AM ∩S 6= ∅.
Hence, there exists a ∈ A such that anL∩S 6= ∅ for every n ∈ N. Hence, there

exists a ∈ A such that anL 6⊆ P for every n ∈ N, a contradiction. Therefore,

P is an s-prime submodule of M .
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Proposition 4.2.1 Let M be an R-module, P a proper submodule of M and

S := M \ P . Then, the following statements are equivalent:

1. P is an s-prime submodule of M ;

2. S is an s-system of M ;

3. for every A /R and for all N ≤M , if N ∩S 6= ∅ and AM ∩S 6= ∅, then

there exists a ∈ A such that anN ∩ S 6= ∅ for every n ∈ N;

4. for every a ∈ R and every m ∈ M , if 〈m〉 ∩ S 6= ∅ and aM ∩ S 6= ∅,
then an〈m〉 ∩ S 6= ∅ for all n ∈ N.

Proof: (1)⇔ (2) follows from Corollary 4.2.1.

(2)⇒ (3)⇒ (4) is clear.

(4)⇒ (1). Suppose a ∈ R and m ∈ M such that an〈m〉 ⊆ P for some n ∈ N.

Suppose m 6∈ P and aM 6⊆ P . Then, 〈m〉 ∩ S 6= ∅ and aM ∩ S 6= ∅ and from

(4), at〈m〉∩ S 6= ∅ for all t ∈ N. Hence also an〈m〉∩ S 6= ∅, i.e., an〈m〉 6⊆ P a

contradiction. From Proposition 4.1.7 (2), P is an s-prime submodule of M .

Lemma 4.2.1 Let M be an R-module, S ⊆M an s-system and P a submodule

of M maximal with respect to the property that P ∩ S = ∅. Then, P is an s-

prime submodule of M .

Proof: Suppose A / R and L ≤ M such that for every a ∈ A, anL ⊆ P for

some n ∈ N. If L 6⊆ P andAM 6⊆ P then (L+P )∩S 6= ∅ and (AM+P )∩S 6= ∅.
Since S is an s-system, there exists b ∈ A such that (bkL+P )∩S 6= ∅ for every

k ∈ N. Since btL ⊆ P for some t ∈ N, we have P ∩ S 6= ∅, a contradiction.

Hence, P must be an s-prime submodule.

Definition 4.2.2 Let R be a ring and M an R-module. For N ≤M , if there

is an s-prime submodule containing N , then we define

S(N) := {m ∈M : every s-system of M containing m meets N}.
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We write S(N) = M whenever there is no s-prime submodules of M containing

N .

Theorem 4.2.1 Let M be an R-module and N ≤M . Then, either S(N) = M

or S(N) equals the intersection of all s-prime submodules of M containing N .

Proof: Suppose S(N) 6= M . This means

βs(N) := ∩{P : P is an s-prime submodule of M and N ⊆ P} 6= ∅.

Both S(N) andN are contained in the same s-prime submodules. By definition

of S(N) it is clear that N ⊆ S(N). Hence, any s-prime submodule of M which

contains S(N) must necessarily containN . Suppose P is an s-prime submodule

of M such that N ⊆ P , and let t ∈ S(N). If t 6∈ P , then the complement

of P , C(P ) in M is an s-system containing t and therefore we would have

C(P ) ∩N 6= ∅. However, since N ⊆ P , C(P ) ∩ P = ∅ and this contradiction

shows that t ∈ P . Hence S(N) ⊆ P as we wished to show. From this we have

S(N) ⊆ βs(N). Conversely, assume s 6∈ S(N), then there exists an s-system S

such that s ∈ S and S ∩N = ∅. From Zorn’s lemma, there exists a submodule

P ⊇ N which is maximal with respect to P ∩ S = ∅. From Lemma 4.2.1, P is

an s-prime submodule of M and s 6∈ P , as desired.

Proposition 4.2.2 Let R be a ring and P / R, P 6= R. The following state-

ments are equivalent:

1. P is an s-prime ideal of R;

2. there exists an s-prime R-module M such that P = (0 : M)R.

Proof: (1) ⇒ (2). Let P be an s-prime ideal and let M = R/P . M

is an R-module with the usual operation. Let p ∈ P and x ∈ R. Then,

p(x + P) = px + P = P . Hence, P ⊆ (0 : M)R. Now suppose a ∈ (0 : M)R.
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Then a(r + P) = P for all r ∈ R, hence aR ⊆ P and since P is an s-prime

ideal we get a ∈ P , hence (0 : M)R = P and M is an s-prime module.

(2)⇒ (1). Follows from Proposition 4.1.7.

Corollary 4.2.2 A ring R is an s-prime ring if and only if there exists a

faithful s-prime R-module.

Example 4.2.1 If R is a domain, then RR is a faithful s-prime module since

every domain is an s-prime ring.

Throughout the remaining part of this section rings have unity and all mod-

ules are unital left modules.

For any module M , we define the upper nil radical U(M) as S(0), i.e.,

S(0) := {m ∈M, every s-system in M which contains m also contains 0}.

From Theorem 4.2.1, we have

U(M) = ∩{K : K ≤M,M/K is s-prime}

which is a radical by Proposition 2.3.1 since s-prime modules are closed under

taking non-zero submodules.

Proposition 4.2.3 For any R-module M ,

1. U(U(M)) = U(M), i.e., U is idempotent;

2. U(M) is a characteristic submodule of M ;

3. If M is projective then U(R)M = U(M).

Proof: Follows from [19, Proposition 1.1.3].
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Proposition 4.2.4 For any M ∈ R-mod,

1. if M =
⊕
Λ

Mλ is a direct sum of submodules Mλ(λ ∈ Λ), then

U(M) =
⊕

Λ

U(Mλ);

2. if M =
∏
Λ

Mλ is a direct product of submodules Mλ(λ ∈ Λ), then

U(M) ⊆
∏
Λ

U(Mλ).

Proof: Follows from [19, Proposition 1.1.2].

Theorem 4.2.2 If R is a commutative ring and M an R-module, then

β(M) = U(M).

Proof: If R is commutative, every prime submodule is s-prime, see Remark

4.1.2.

Remark 4.2.1 In general, U(R)M ⊂ U(M) even over a commutative ring.

For let R = Z and M = Zp∞ ⊕ Z. Since R is commutative, U(M) = β(M).

From [11, Example 3.4], we have β(M) = Zp∞ . But β(R) = U(R) = 0. Hence,

0 = U(R)M ⊂ U(M) = Zp∞ .

Theorem 4.2.3 If M is a module over a left Artinian ring R, then

U(M) = Rad(M) = Jac(R)M.

Proof: Since every maximal submodule is s-prime, we have U(M) ⊆ Rad(M) =

Jac(R)M . Since R is left Artinian U(R) = Jac(R). Hence, U(M) ⊆ Rad(M) =

Jac(R)M = U(R)M ⊆ U(M).
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4.3 Upper nil radical of the module RR and

the ring R

Lemma 4.3.1 For any associative ring R, U(RR) ⊆ U(R).

Proof: Let x ∈ U(RR) and I be an s-prime ideal ofR. From Proposition 4.2.2,

we have R/I is an s-prime R-module. Hence, x ∈ I and we have x ∈ U(R),

i.e., U(RR) ⊆ U(R).

Remark 4.3.1 In general the containment in Lemma 4.3.1 is strict.

Example 4.3.1 Let R =

{(
x y

0 0

)
: x, y ∈ Z2

}
and M = RR. It is easy

to check that (0) is an s-prime submodule of RR. Hence, U(RR) = 0. Now,

we have (0 : R)R is an s-prime ideal of R, (0 : R)R 6= (0). For if b 6= 0, b ∈ Z2,

then

(
0 b

0 0

)
R = 0. Hence, U(R) ⊆ (0 : R)R. But since (0 : R)R(0 : R)R = 0

we have (0 : R)R ⊆ U(R). Hence, U(R) = (0 : R)R 6= 0.

Lemma 4.3.2 For any ring and any R-module M we have

U(R) ⊆ (U(M) : M)R.

Proof: We have (U(M) : M)R = (
⋂

S≤M
S : M) =

⋂
S≤M

(S : M), where S is an

s-prime submodule of M . Since (S : M)R is an s-prime ideal of R for each s-

prime submodule S of M , we get U(R) ⊆ (U(M) : M)R, i.e., U(R)M ⊆ U(M).



64 CHAPTER 4. S-PRIME SUBMODULES

The containment is strict: let R = Z and M = Zp∞ ⊕ Z for some prime

number p. U(M) = Zp∞ and U(R) = (0), i.e., U(R)M = (0).

Proposition 4.3.1 For any ring R, U(R) = (U(RR) : R)R.

Proof: From Lemma 4.3.2, U(R) ⊆ (U(RR) : R)R. Since U(RR) ⊆ U(R)

we have U(R) ⊆ (U(RR) : R) ⊆ (U(R) : R). Let x ∈ (U(R) : R). Hence

xR ⊆ U(R) =
⋂

P s-prime in R

P ⊆ P for all s-prime ideals P of R. Since xR ⊆ P

for P s-prime, we have x ∈ P and x ∈ U(R). Hence, (U(R) : R) ⊆ U(R) and

we are done.

Proposition 4.3.2 For all R-modules M ,

1. U(M) = {x ∈M : Rx ⊆ U(M)}.

2. If U(R) = R then U(M) = M .

Proof:

1. Since U(M) ≤ M , we have RU(M) ⊆ U(M). Conversely, let x ∈ M

with Rx ⊆ U(M). Hence Rx ⊆ P for all s-prime submodules P of M .

Since P is also a prime submodule, we have x ∈ P and hence x ∈ U(M).

2. R = U(R) gives R ⊆ (U(M) : M) from Lemma 4.3.2. Hence RM ⊆
U(M) and from (1), we have M ⊆ U(M), i.e., M = U(M).

Proposition 4.3.3 Let R be any ring. Then, any of the following conditions

implies U(R) = U(RR).

1. R is commutative;
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2. x ∈ xR for all x ∈ R, e.g., if R has an identity or R is Von Neumann

regular.

Proof:

1. Since R is commutative, it follows from Proposition 4.3.1 and Lemma

4.3.2 that U(R) ⊆ U(RR) ⊆ U(R) and U(R) = U(RR).

2. Let x ∈ U(R), then from Proposition 4.3.1, xR ⊆ U(RR) and since

x ∈ xR, we get x ∈ U(RR) such that U(RR) = U(R).

4.4 A special class of s-prime modules

Theorem 4.4.1 Let R be any ring and

MR := {M : M is an s-prime R-module with RM 6= 0}.

If M = ∪MR, then M is a special class of R-modules.

Proof:

S1 Let M ∈ MR and I / R with IM = 0. Now M is an R/I-module

via (r + I)m = rm. We show M ∈ MR/I . Let A/I / R/I, N ≤ M . If

(x+I) ∈ A/I and (x+I)nN = 0 for some n ∈ N, then (xn+I)N = 0 such

that xnN = 0. Because, M is R s-prime, we have N = 0 or AM = 0.

Thus N = 0 or (A/I)M = 0. Therefore, M is an R/I s-prime module.

S2 Let I / R and M ∈ MR/I . M is an R-module w.r.t. rm = (r + I)m for

r ∈ R and m ∈ M . Let A / R, N ≤ M and x ∈ A such that xnN = 0

for some n ∈ N. Then, (xn + I)N = 0 such that (x + I)nN = 0. Since

M ∈ MR/I , we have N = 0 or (a + I)M = 0 for all a ∈ A., i.e., N = 0

or AM = 0 and M ∈MR.
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S3 Suppose M ∈ MR and I / R with IM 6= 0. Let J / I and N ≤ M , if

x ∈ J and xnN = 0 for some n ∈ N, then x ∈ I and because M ∈ MR,

we have N = 0 or IM = 0 such that N = 0 or JM = 0. Therefore,

M ∈MI .

S4 Let M ∈MR. Hence RM 6= 0. Since (0 : M)R is an s-prime ideal of R,

R/(0 : M)R is an s-prime ring.

S5 Let I / R and M ∈ MI . Since M is an s-prime I-module, (0 : M)I is

an s-prime ideal of I. Now, (0 : M)I / I / R and I/(0 : M)R an s-prime

ring implies (0 : M)I / R. Choose K/(0 : M)I / R/(0 : M)I maximal

with respect to I/(0 : M)I ∩ K/(0 : M)I = 0. Then, I/(0 : M)I ∼=
(I + K)/K / ·R/K by [33, Lemma 3.2.5]. Since I/(0 : M)I / ·R/K
and I/(0 : M)I an s-prime ring R/K is s-prime. Let N = R/K. N

is an R-module. Clearly, RN 6= 0. From Proposition 4.2.2, we have

(0 : N)R = K. We show (0 : N)I ⊆ (0 : M)I . Let x ∈ (0 : N)I . Then

xR/K = 0, i.e., xR ⊆ K. Now, xR ⊆ I ∩ K and from definition of

K/(0 : M)I , we have xR ⊆ I ∩K ⊆ (0 : M)I . Hence xRM = 0 and since

xIM ⊆ xRM we have xI ⊆ (0 : M)I and (0 : M)I is a prime ideal of I

implies x ∈ (0 : M)I . Hence, (0 : N)I ⊆ (0 : M)I .

Proposition 4.4.1 If Ms is the special class of s-prime modules, then the

special radical induced by Ms on a ring R is U .

Proof: Let R be a ring. From Proposition 4.2.2, we have

U(R) = ∩{(0 : M)R : M is an s-prime R-module}

= ∩{I / R : I is an s-prime ideal}.



Chapter 5

Nilpotency of module elements

We define nilpotent and strongly nilpotent elements of a module M and show

that the set Ns(M) of all strongly nilpotent elements of M over a commutative

unital ring R coincides with the classical prime radical βcl(M) the intersection

of all classical prime submodules of M . We also characterize non-nilpotent

elements of the Z-module Z/pkZ. If Bk is a set of non-nilpotent elements of

the Z-module Z/pkZ, B0
k = Bk∪{0} is a non-unital ring. When considered as a

Z-module, B0
k is isomorphic to Z/pZ and Np = lim

←
B0
k is a compact topological

ideal of the ring Zp of p-adic integers.

A non-zero element a of a ring R is nilpotent if there exists k ∈ Z+ such

that ak = 0. Let N (R) denote the set of all nilpotent elements of R. If R is

commutative, the set N (R) is an ideal of R. A ring R is completely semiprime

(reduced) if and only if for all a ∈ R, a2 = 0 ⇒ a = 0, i.e., if and only if R

has no non-zero nilpotent elements. Consider ¬(a2 = 0 ⇒ a = 0) for some

a ∈ R which is logically equivalent to (a2 = 0 and a 6= 0). This translates as R

not completely semiprime (R not reduced) is equivalent to there exists a non-

zero element a in R which is nilpotent. We use the same approach to define

nilpotent elements in modules. A non-zero module M over a commutative ring

67
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is semiprime [12] if a2m = 0 implies am = 0 for all a ∈ R and every m ∈ M .

If R is commutative, this definition is equivalent to the following statements:

1. for all a ∈ R and every m ∈M , if a2m = 0, then a〈m〉 = 0;

2. for all a ∈ R and every N ≤M , if a2N = 0, then aN = 0;

3. for all a ∈ R and every m ∈M , if aRam = 0, then am = 0;

4. for all A / R and every N ≤M , if A2N = 0, then AN = 0.

However, if R is not commutative all the statements turn out to be different

and we have:

Definition 5.0.1 A module M over a ring R is said to be

1. completely semiprime if for all a ∈ R and every m ∈ M , whenever

a2m = 0, a〈m〉 = 0;

2. weakly completely semiprime if for all a ∈ R and every m ∈ M , if

a2m = 0, then am = 0;

3. classical completely semiprime if for all a ∈ R and every N ≤M , when-

ever a2N = 0, aN = 0;

4. semiprime if for all a ∈ R and every m ∈ M , whenever aRam = 0,

am = 0;

5. classical semiprime for all A / R and every N ≤M , whenever A2N = 0,

AN = 0.
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Proposition 5.0.2 shows us where weakly completely semiprime and classical

completely semiprime lie in the chart of implications for module “semiprimes”.

Proposition 5.0.2 For any module M over a ring R, we have the following

implications:

completely ⇒ weakly completely ⇒ classical completely

semiprime semiprime semiprime

⇓ ⇓
semiprime ⇒ classical semiprime

Proof: Completely semiprime ⇒ weakly completely semiprime, see Lemma

3.0.1. Weakly completely semiprime ⇒ classical completely semiprime. Let

a2N = 0 for a ∈ R and N ≤ M . Then a2n = 0 for all n ∈ N . By defini-

tion of weakly completely semiprime submodules, an = 0 for all n ∈ N such

that aN = 0 and M is classical completely semiprime. Classical completely

semiprime ⇒ classical semiprime. Suppose A2N = 0 for A / R and N ≤ M ,

then a2N = 0 for all a ∈ A. By definition of classical completely semiprime

submodules, aN = 0 for all a ∈ A such that AN = 0. For the remaining

implications (together with counter examples to show that the converses are

not true in general), see chapter three.

Now that we have the definition of weakly completely semiprime modules, we

can paraphrase Lemma 3.0.1 as: a unital module M is completely semiprime

if and only if M is weakly completely semiprime and IFP.

Example 5.0.1 Any module over a division ring is weakly completely semiprime,

for if a2m = 0 and a 6= 0, then am = a−1(a2m) = 0. If a = 0, the result follows

trivially.
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Example 5.0.2 A weakly completely semiprime module over a ring which

is not right duo need not be completely semiprime. For if a2m = 0 where

a ∈ R and m ∈M , then am = 0 by definition of weakly completely semiprime

modules. It follows that a ∈ (0 : m). But since R is not right duo, aR need

not be contained in (0 : m). If aR 6⊆ (0 : m), aRm 6= 0 and a〈m〉 6= 0.

Example 5.0.3 A fully faithful module (a module whose all submodules are

faithful) over a reduced ring R is classical completely semiprime but it need

not be weakly completely semiprime.

Example 5.0.4 Let M be a module over a fully semiprime ring (a ring whose

all ideals are semiprime), then M is classical semiprime but it need not be

classical completely semiprime. For if A2N = 0 for A / R and N ≤ M ,

A2 ⊆ (0 : N). By hypothesis, A ⊆ (0 : N) and AN = 0. On the other hand,

if a2N = 0 with a ∈ R and N ≤ M , a2 ∈ (0 : N). A semiprime ideal need

not be completely semiprime, hence it is possible that a 6∈ (0 : N) such that

aN 6= 0 in which case M fails to be classical completely semiprime.

From among the different definitions of “completely semiprime” modules,

we get one (Definition 5.0.1(2)) which we think is the most suitable to use

when defining a nilpotent element of a module. Our choice is motivated by the

fact that Definition 5.0.1(2) involves only module elements (unlike the other

definitions) just like its analogue for rings. In a manner similar to that for

rings, we say an R-module M is not weakly completely semiprime if there

exists a non-zero element m in M which is nilpotent.

5.1 Nilpotent elements of modules

Definition 5.1.1 A non-zero element m of an R-module M is nilpotent of

degree k if there exists a ∈ R and k ∈ N \ {1} such that akm = 0 and am 6= 0.
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We take the zero element of a module to be nilpotent.

A left ideal I of a ring R is completely semiprime if a2 ∈ I implies a ∈ I for

all a ∈ R. An element m of a module RM is nilpotent if and only if (0 : m)

(the annihilator of m) is not a completely semiprime left ideal of R.1 Thus,

every left ideal (0 : m) of R for all 0 6= m ∈M is completely semiprime if and

only if the module RM is weakly completely semiprime.

Example 5.1.1 1̄ is a nilpotent element of every Z-module Z/nkZ for all

positive integers k, n greater than 1 since nk.1̄ = 0̄ but n = n.1̄ 6= 0̄.

Example 5.1.2 If a ∈ R is nilpotent (with degree n ≥ 3) in the ring R, then

a is nilpotent (with degree n− 1 ≥ 2) in the module RR.

Proof: Suppose a is nilpotent in R. Then, an−1 6= 0 and an = 0 for some

positive integer n. Now, an−1a = 0 and 0 6= a2 since by hypothesis the least

degree of nilpotency of a is 3.

Remark 5.1.1 If m is a non-zero nilpotent element of the module RR and a

in definition 5.1.1 coincides with m, then m is a nilpotent element of the ring

R since 0 = akm = aka = ak+1.

Example 5.1.3 The Z-modules Ak = Z/pkZ = {0, 1, 2, ...., pk−1} where p is

a prime integer and 1 6= k ∈ Z+ consist of nilpotent elements.

Proof: If 1 < k, there exists m ∈ Z/pkZ such that pm is not a multiple of pk.

Thus, pm 6= 0 but pkm = 0. Hence, m is nilpotent in Z/pkZ.

Proposition 5.1.1 The non-nilpotent elements of the Z-module Ak = Z/pkZ

where 1 6= k ∈ Z+ are {pk−1, 2pk−1, 3pk−1, ..., (p− 1)pk−1}, i.e., they are p− 1

in number and are all multiples of pk−1.

1A left ideal I of a ring R is completely semiprime if for all a ∈ R, a2 ∈ I implies a ∈ R.
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Proof: Let m = npk−1 where n ∈ Z+. Then, akm = 0 in Ak only when

either a or n is a multiple of p. If a = qp for some q ∈ Z+, am = (qp)(npk−1) =

nqpk = 0. If n = sp for some s ∈ Z+, then am = asppk−1 = aspk = 0. Hence,

all multiples of pk−1 are non-nilpotent in Z/pkZ.

Corollary 5.1.1 The number of nilpotent elements in the Z-module Z/pkZ,

1 < k ∈ Z+ is pk − p+ 1. Moreover, this number is always odd.

Call a weakly completely semiprime module weakly reduced, then all reduced

modules are weakly reduced. Over a commutative ring reduced and weakly

reduced modules are indistinguishable. Furthermore, a module M is weakly

reduced if it has no non-zero nilpotent elements.

Example 5.1.4 A torsion-free module M over a reduced ring R is reduced

(and hence weakly reduced). For if m 6= 0 and akm = 0 for some a ∈ R and

k ∈ Z+, then ak = 0 because M is torsion-free and a = 0 since R is reduced.

Thus, a〈m〉 = 0. So, modules such as RR, ZZ[i], ZC, ZR, and ZZ are reduced.

Example 5.1.5 The Z-modules Z/pZ where p is a prime number are reduced.

For if a2m = 0̄ ∈ Z/pZ, either a or m is a multiple of p such that am = 0̄.

In general, the Z-modules Z/(
n∏
i=1

pkii )Z where pi’s are prime numbers, ki ∈ Z+

and ki > 1 for at least one i consist of nilpotent elements and the Z-modules

Z/(
n∏
i=1

pi)Z where the pi’s are distinct prime numbers are reduced.

A finite sum of nilpotent elements of a module M is not necessarily nilpotent

in M , even when M is defined over a commutative ring R. 1̄ and 3̄ are nilpotent

in the Z-module Z/8Z since 23.1̄ = 0̄ but 2.1̄ 6= 0̄ and 23.3̄ = 0̄ but 2.3̄ 6= 0̄.

Their sum 4̄ is not nilpotent in the same Z-module Z/8Z. If m is a nilpotent

element of an R-module M (even when R is commutative), rm for r ∈ R is

not in general a nilpotent element of M . 2̄ is nilpotent in the Z-module Z/8Z,
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but the product 2.2̄ = 4̄ is not nilpotent in Z/8Z. Thus, the set N (M) of all

nilpotent elements of an R-module M is in general not a submodule of M even

when R is commutative.

One is then led to ask whether there are classes of modules for which the

set N (M) is a submodule of M . The answer is yes. All reduced modules have

N (M) = 0 and nil modules (i.e., when N (M) = M) exist, see Example 5.1.6.

Let M∗ = HomR(M,R) and T =
∑

f∈M∗
Imf be the trace of M in R. M is

nondegenerate [49] if Tm 6= 0 for every 0 6= m ∈M .

Example 5.1.6 A nondegenerate module over a nil ring is nil.

Proof: By definition, Tm 6= 0 for all 0 6= m ∈ M , i.e., for all 0 6= m ∈ M
there exists t ∈ T such that tm 6= 0. R nil implies tkm = 0 for some k(t) ∈ Z+

and hence M is nil.

However, we do not know of a situation where N (M) is a non-zero proper

submodule of M .

Proposition 5.1.2 Nilpotent elements of modules are preserved by module

monomorphisms.

Proof: Suppose m is nilpotent in RM and f : M → N is a module

monomorphism. There exists k ∈ Z+ \ {1} and a ∈ R such that akm = 0

and am 6= 0. Now, 0 = f(0) = f(akm) = akf(m). Because f is injective,

0 6= f(am) = af(m).

We recall that an element a of a ring R is called strongly nilpotent if ev-

ery sequence a1, a2, a3, · · · such that a1 = a and an+1 ∈ anRan (for all n) is

eventually zero. We generalize this notion to modules.
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Definition 5.1.2 An element m of an R-module M is strongly nilpotent if

m = 0 or for every sequence a1, a2, a3, · · · where a1 = a and an+1 ∈ anRan for

all n, we have akm = 0 for some k ∈ Z+ \ {1} and am 6= 0.

Proposition 5.1.3 Every strongly nilpotent element of the module RM with

1 ∈ R is nilpotent but not conversely.

Proof: If m = 0, the result follows trivially. Suppose m 6= 0 is strongly

nilpotent in RM , i.e., for every sequence a1, a2, · · · where a1 = a and an+1 ∈
anRan for all n, we have akm = 0 for some k ∈ Z+ \{1} and am 6= 0. Take the

sequence a1, a2, a3, · · · such that a1 = a, a2 = a2, a3 = a4, · · · ak = a2k−1
. Then,

a2k−1
m = 0 but am 6= 0 such that m is nilpotent. 1̄ is nilpotent in a Z-module

Z/4Z, (cf., Example 5.1.1) but it is not strongly nilpotent. To see this, take

the sequence a1, a2, a3, a4, · · · = {4, 42, 44, 48, · · ·}. Note that an+1 ∈ anRan for

all n ∈ N and ak.1̄ = 0 for all k ∈ N. Since am = 4× 1̄ = 0̄, 1̄ is not strongly

nilpotent in Z/4Z.

Corollary 5.1.2 If 1 ∈ R and Ns(M) is the set of all strongly nilpotent ele-

ments of M , then Ns(M) ⊆ N (M) and this containment is in general strict

even when R is commutative.

Example 5.1.7 If a is a strongly nilpotent element of a ring R such that

am 6= 0 then m is also a strongly nilpotent element of the module RM .

Proposition 5.1.4 Strongly nilpotent elements of modules are preserved by

module monomorphisms.

Proof: Suppose 0 6= m ∈ RM and for every sequence a1, a2, a3, · · · where

a1 = a and an+1 ∈ anRan for all n, we have akm = 0 for some k ∈ Z+ \ {1}
and am 6= 0. Let f be a module monomorphism, then akf(m) = f(akm) =

f(0) = 0. Since am 6= 0 and f is injective, 0 6= f(am) = af(m) and f(m) is

strongly nilpotent.
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The envelope of the zero submodule of a module RM is the set EM(0) :=

{m ∈ M : m = rn and rkn = 0 for some r ∈ R, k ∈ Z+, n ∈ M}. Let

〈EM(0)〉 and 〈N (M)〉 denote the submodules of M generated by EM(0) and

N (M) respectively. The zero submodule of RM is said to satisfy the radical

formula (s.t.r.f) if 〈EM(0)〉 = β(M).

Theorem 5.1.1 For a module M over a ring R, we have:

1. 〈EM(0)〉 ⊆ 〈N (M)〉;

2. if R is nil, then 〈EM(0)〉 = 〈N (M)〉;

3. if R is nil, then the zero submodule of RM s.t.r.f if and only if

β(M) = 〈N (M)〉.

Proof: 1) If m ∈ 〈EM(0)〉, m = r1m1 +· · ·+rkmk for ri ∈ R and mi ∈ EM(0)

with k ∈ Z+ and 1 ≤ i ≤ k. Since each mi ∈ EM(0) is of the form m = sini

with si ∈ R and ni ∈ N (M). It follows that m ∈ 〈N (M)〉.
2) It is enough to prove the reverse inclusion. Suppose x ∈ 〈N (M)〉, x =

r1m1 + · · · + rkmk for r ∈ R and mi ∈ N (M) for all i ∈ {1, · · · , k}. R

nil implies there exists a positive integer ti for each i ∈ {1, · · · , k} such that

rtii mi = 0. It follows that rimi ∈ EM(0) for each i and hence x ∈ 〈EM(0)〉.
3) Follows from 2) above and the definition of submodules that s.t.r.f.

5.2 Generalization of Levitzki result of rings

to modules

Lemma 5.2.1 If P is a classical prime submodule of a module M over a

commutative ring R and rm 6∈ P for r ∈ R and m ∈M , then rRrm 6⊆ P .
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Proof: Suppose rRrm ⊆ P . Then, rRr〈m〉 ⊆ P . By definition of classical

prime submodules, rm ∈ r〈m〉 ⊆ P .

In the following theorem, we give a module analogue of the Levitzki result

for rings, i.e., the set of all strongly nilpotent elements of R coincides with the

prime radical of R, cf., [33, Theorem 2.6].

Theorem 5.2.1 The set Ns(M) of all strongly nilpotent elements of a module

M over a commutative unital ring R coincides with the classical prime radical

βcl(M).

Proof: Suppose for 1 = r1 ∈ R and m ∈ M , m = r1m 6∈ βcl(M). Then,

m = r1m 6∈ P for some classical prime submodule P in M . By Lemma 5.2.1,

Rm = r1Rr1m 6⊆ P . Thus, we can find r2 ∈ r1Rr1 = R for which r2m 6∈ P .

Again, by Lemma 5.2.1, r2Rr2m 6⊆ P . So, there exists r3 ∈ r2Rr2 such that

r3m 6∈ P . By repeating this procedure, we obtain a sequence r1, r2, r3, · · · such

that rn+1 ∈ rnRrn but there is no k ∈ Z+ for which rkm = 0. Therefore,

m is not strongly nilpotent. This proves that Ns(M) ⊆ βcl(M). Conversely,

suppose m is not strongly nilpotent and an infinite sequence S of non-zero

elements rnm (defined above) exists. Using Zorn’s lemma, we may choose a

submodule P of M maximal with respect to having P ∩ S = ∅. Suppose A,B
are ideals of R and N is a submodule of M such that P ⊂ AN and P ⊂ BN .

Then AN ∩ S 6= ∅ and BN ∩ S 6= ∅. Hence, rim ∈ AN and rjm ∈ BN for

some i, j ∈ Z+. If k = max{i, j}, rkm ∈ BN . Hence, Arkm ⊆ ABN . So,

rk+1m ∈ rkArkm ⊆ ABN . This implies ABN ∩ S 6= ∅. Thus, P is a classical

prime submodule of M which does not contain rk+1m. Therefore, m 6∈ βcl(M)

which proves the second inclusion βcl(M) ⊆ Ns(M).

A zero submodule of M weakly satisfies the radical formula (w.s.t.r.f) [65] if

βcl(M) = 〈EM(0)〉. It is easy to see that any module that s.t.r.f also w.s.t.r.f.
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Corollary 5.2.1 If M is a module over a commutative unital ring R, then

1. Ns(M) is a submodule of M ;

2. Ns(M) ⊆ β(M);

3. the zero submodule of RM w.s.t.r.f if and only if Ns(M) = 〈EM(0)〉.

Proof: βcl(M) the intersection of all classical prime submodules of M is

a submodule of M . Since by Theorem 5.2.1 Ns(M) = βcl(M), Ns(M) is a

submodule of M . Any prime submodule is classical prime. It follows that

βcl(M) ⊆ β(M). By Theorem 5.2.1, Ns(M) ⊆ β(M). 3 follows directly from

the definition of modules that w.s.t.r.f and the fact that Ns(M) = βcl(M).

A module is compatible [13] if its prime submodules coincide with its classical

prime submodules. Multiplication modules, semisimple modules, and a field

of fractions of a domain are multiplication modules.

Corollary 5.2.2 If a compatible module over a commutative unital ring s.t.r.f

(or w.s.t.r.f) then 〈EM(0)〉 = Ns(M) = βcl(M) = β(M).

Proof: For compatible modules, there is no distinction between prime sub-

modules and classical prime submodules. Hence, compatible modules s.t.r.f if

and only if they w.s.t.r.f (i.e., 〈EM(0)〉 = β(M)⇔ 〈EM(0)〉 = βcl(M)). If in ad-

dition to being compatible the module is unital and defined over a commutative

ring, then from Theorem 5.2.1, we have 〈EM(0)〉 = Ns(M) = βcl(M) = β(M).

Remark 5.2.1 Lemma 5.2.1 demands for a classical prime submodule which

is semiprime. Hence, Theorem 5.2.1 Corollaries 5.2.1 and 5.2.2 still hold when

instead of R being commutative, we have:
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1. M fully IFP (e.g., when R is left duo),

2. M fully symmetric,

3. M is finitely generated (cyclic or free) and R is medial (LSD, left per-

mutable or right permutable).

Proof: Follows from Corollary 3.5.1 and Theorem 3.5.2.

5.3 Non-nilpotent elements of the Z-module

Z/pkZ

In this section, we characterize the structure of non-nilpotent elements of the

Z-module Z/pkZ. Table 5.3 below gives examples of non-nilpotent elements of

the Z-module Z/pkZ.
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Prime The Number of non- The non-nilpotent

number Z-module nilpotent elements elements in

in the module the module

2 Z/22Z 1 2̄

Z/23Z 1 4̄

Z/24Z 1 8̄

Z/25Z 1 16

3 Z/32Z 2 3̄, 6̄

Z/33Z 2 9̄, 18

Z/34Z 2 27, 54

5 Z/52Z 4 5̄, 10, 15, 20

Z/53Z 4 25, 50, 75, 100

Z/54Z 4 125, 250, 375, 500

p Z/p2Z p− 1 p̄, 2p̄, 3p̄, ..., (p− 1)p̄

Z/p3Z p− 1 p̄2, 2p̄2, 3p̄2, ..., (p− 1)p̄2

...
...

...

Z/pkZ p− 1 (p̄)k−1, 2(p̄)k−1, ..., (p− 1)(p̄)k−1

Table 5.1: Non-nilpotent elements in the Z-module Z/pkZ
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Proposition 5.3.1 Let Bk = {npk−1}p−1
n=1 for k ∈ {2, 3, 4, · · ·},2 then

1. for a given prime p, |Bk| = |Bk+1| for all k ∈ {2, 3, 4, · · ·};

2.
p−1∑
n=1

npk−1 =

{
2k−1 if p = 2;

0 (mod pk) if p 6= 2.

Proof:

1. 1 is evident from how Bk is defined, i.e., each Bk for a given prime p

consists of p− 1 elements.

2. If p = 2, then Bk has only one element 2k−1. Suppose p 6= 2,
p−1∑
n=1

npk−1 =

pk−1p(p−1
2

) = pk(p−1
2

) = 0 (mod pk).

Proposition 5.3.2 Define B0
k as B0

k = Bk∪{0}. Then, B0
k is a ring (without

unity) under addition modulo p and multiplication modulo p.

Proof: If a, b ∈ B0
k, then a = npk−1 and b = mpk−1 for some m,n ∈ Z+.

a+b = npk−1+mpk−1 = (n+m)pk−1. If n+m ≤ p, (n+m)pk−1 ∈ B0
k otherwise

by division algorithm n + m = rp + s for some r, s ∈ Z+ and 0 < s < p. So,

in this case, (n+m)pk−1 = (rp+ s)pk−1 ≡ spk−1 (mod p). Therefore, in both

cases a + b ∈ B0
k. The identity element is 0, the additive inverse of npk−1 is

(p − n)pk−1 for n ∈ {1, 2, 3, .., p − 1}. Associativity is inherited from Z. If

a, b ∈B0
k, then ab = (npk−1)(mpk−1) for some n,m ∈ {1, 2, 3, .., p − 1}. This

implies ab = nmp2(k−1) ≡ 0 (mod p) since 2(k − 1) > 1 for all k ≥ 2.

2Note that Bk is the set of all non-nilpotent elements of the Z-module Z/pkZ.



5.3. NON-NILPOTENT ELEMENTS OF THE Z-MODULE Z/PKZ 81

Although the rings Z/pZ and B0
k have the same number of elements and

elements of B0
k are got by multiplying those of Z/pZ by pk−1, the two rings are

not isomorphic. The former is unital and not nil but the latter is non-unital

and nil. However, the two rings coincide if k = 1.

Proposition 5.3.3 Define ψk : B0
k+1 −→ B0

k by ψk(np
k) = npk−1. ψk is a

ring isomorphism from B0
k+1 to B0

k.

Proof: ψk is well defined, for if npk = mpk, then n ≡ m (mod p). This

implies npk−1 ≡ mpk−1 (mod p) and so ψk(np
k) = ψk(mp

k). ψk(np
k +

mpk) = ψk([n+m]pk) = (n+m)pk−1 = npk−1 +mpk−1 = ψk(np
k) + ψk(mp

k).

ψk([np
k][mpk]) = ψk([nmp

k]pk) = ψk(0p
k) = 0pk−1 = 0 = nmp2(k−1) =

(npk−1)(mpk−1) = ψk(np
k)ψk(mp

k). ψk has kernel pB0
k ≡ 0 (mod p), hence

ψk is injective. Lastly, for all npk−1 ∈ B0
k there is npk ∈ B0

k+1 such that

ψk(np
k) = npk−1. Thus, ψk is surjective.

For an indexed set I, the collection {Ri : i ∈ I} of rings together with

ring homomorphisms, ψi : Ri → Ri−1 is called a projective system (inverse

system) if whenever i < j, we have a homomorphism fji from Rj to Ri and

if i ≤ j ≤ k, then fkj ◦ fji = fki. A sequence (xi) in the direct product
∏
Ri

is said to be coherent if it respects the maps ψi in the sense that for every i

we have ψi+1(xi+1) = xi. The collection of all coherent sequences is called the

inverse limit of the inverse system. The inverse limit is denoted by lim
←

(Ri, ψi)

or just lim
←
Ri if no confusion is likely to arise.

· · · ψk→ B0
k

ψk−1→ B0
k−1 → · · ·

ψ3→ B0
3

ψ2→ B0
2 is a projective system indexed by

integers greater than 1. As an example, consider B0
k with p = 5:

· · · ψ4→ B0
4 = {53, 2×53, 3×53, 4×53, 0} ψ3→ B0

3 = {52, 2×52, 3×52, 4×52, 0} ψ2→
B0

2 = {5, 2× 5, 3× 5, 4× 5, 0}. ψ2 : B0
3 → B0

2 is defined by ψ2(0) = 0, ψ2(52) =
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5, ψ2(2× 52) = 2× 5, ψ2(3× 52) = 3× 5 and ψ2(4× 52) = 4× 5. Clearly, ψ2 is

injective and surjective. For Bk when p = 5 we get the following sequences:

· · · → 5m → · · · → 53 → 52 → 5

↑ ↑ ↑ ↑
· · · → 2× 5m → · · · → 2× 53 → 2× 52 → 2× 5

↑ ↑ ↑ ↑
· · · → 3× 5m → · · · → 3× 53 → 3× 52 → 3× 5

↑ ↑ ↑ ↑
· · · → 4× 5m → · · · → 4× 53 → 4× 52 → 4× 5

In general, we have sequences defined by ψ(npm) = npm−1 across Bm’s with

an infinite number of elements but convergent to np. We also have sequences

defined by f(npm) = (n − 1)pm within Bm with a finite number of elements

(equal to p− 1) and convergent to pm.

Lemma 5.3.1 If a1, a2, · · · , am is a complete system of residues modulo m,

and if r is a positive integer with (r,m) = 1, (i.e., r is relatively prime to m)

then ra1 + s, ra2 + s, · · · , ram + s is also a complete system of residues modulo

m for any s ∈ Z.

Theorem 5.3.1 Let Np = lim
←

(B0
k, ψk), then Np is a compact topological ideal

of the ring Zp of p-adic integers. Furthermore, Np consists of sequences of the

form (· · · , npk, · · · , np3, np2, np, 0), where n ∈ Z/pZ.

Proof: Let Ak = {0, 1, 2, · · · , pk−1} and B0
k = {0, pk−1, 2pk−1, ..., (p−1)pk−1}.

Since pk − 1 ≥ (p − 1)pk−1 = pk − pk−1 for all k ∈ Z+ and every a ∈ B0
k is a

positive integer less than pk − 1, and hence a ∈ Ak, we have B0
k ⊆ Ak for all

k. Therefore, Np = lim
←

(B0
k, ψk) ⊆ lim

←
(Ak, φk) = Zp where Ak = Z/pkZ and

φk is a homomorphism from Ak to Ak−1. To show that Np / Zp, it is enough
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to show that B0
k / Ak for each k. Since {0, 1, 2, · · · , (p − 1)} is a complete

system of residues modulo p and for any r ∈ Ak, (r, p) = 1, by Lemma 5.3.1,

{0, r, 2r, · · · , (p − 1)r} is also a complete system of residues modulo p. So,

B0
kr = rB0

k ≡ B0
k (mod p) for all r ∈ Ak. Since B0

k are rings, their inverse limit

Np is also a ring. If we give
∏
k≥2

Bk the product topology and Bk the discrete

topology, the ring Np inherits a topology which turns it into a compact space

since it is closed in a product of compact spaces.

Corollary 5.3.1 The ideal Np (of the ring Zp) has no invertible elements.

Proof: Follows from [71, Chap II, Proposition 2(a)] and the fact that every

element of Np is of the form (· · · , npk, · · · , np3, np2, np, 0), n ∈ Z/pZ.

Corollary 5.3.2 Np is an integral domain and a complete metric space.

Proof: Since Zp is an integral domain, cf., [71, p.12], its ideal Np is also

an integral domain. For the rest we follow the proof in [71, p.12, Proposition

3]. Every element x of Np is of the form x = pny where y ∈ Ak and n is

the p-adic valuation of x denoted by vp(x). The ideals pnNp form a basis of

neighborhoods of 0; since x ∈ pnNp implies vp(x) ≥ n, the topology on Np is

defined by the distance d(x, y) = e−vp(x−y). Since Np is compact [cf. Theorem

5.3.1], it is complete.

Proposition 5.3.4 B0
k and Z/pZ are isomorphic Z-modules.

Proof: Since B0
k and Ak are abelian groups, they are Z-modules and

ϕk(np
k−1) = n (mod p) is a module isomorphism from B0

k to Ak. ϕ is well

defined, for if npk−1,mpk−1 ∈ B0
k and npk−1 = mpk−1, then n ≡ m (mod p)

and hence n (mod p) = m (mod) p which implies ϕk(np
k−1) = ϕk(mp

k−1).

ϕk(np
k−1 + mpk−1) = ϕk([n + m]pk−1) = (n + m) (mod p) = n (mod p) +
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m (mod p) = ϕk(np
k−1)+ϕk(mp

k−1). For all a ∈ Z, ϕk(a[npk−1]) = ϕk([an]pk−1) =

an (mod p) = aϕk(np
k−1). ϕk(np

k−1) = 0 ⇔ n (mod p) = 0 ⇔ n = 0̄. Thus,

Ker ϕk = 0̄ and ϕk is injective. Since the Z-modules B0
k and Ak are of the

same size and ϕk is injective, by the pigeon hole principal ϕk is surjective.



Chapter 6

2-primal modules

A notion of 2-primal rings is generalized to modules by defining 2-primal

modules. We show that the implications between rings which are reduced, IFP,

reversible, semi-symmetric and 2-primal are preserved when the notions are

extended to modules. Like for rings, 2-primal modules bridge the gap between

modules over commutative rings and modules over non-commutative rings; for

instance, for 2-primal modules, prime submodules coincide with completely

prime submodules. Completely prime submodules and reduced modules are

both characterized. A generalization of 2-primal modules is done where 2-

primal and NI modules are a special case.

From chapter three we know that the following chart of implications is true:

completely prime ⇒ prime ⇒ semiprime

⇓ ⇓ ⇓
classical ⇒ classical prime ⇒ classical semiprime

completely prime

⇓ ⇑
completely semiprime ⇒ semiprime.

85
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Reddy and Murty in [68] defined a semi-symmetric ideal I of a near-ring

R (and hence of a ring R) as one such that if an ∈ I for some a ∈ R and

n ∈ N, then (a)n ⊆ I. We extend this notion to modules and call a submodule

N of an R-module M semi-symmetric if for a ∈ R and m ∈ M such that if

a2m ∈ N , then (a)2m ⊆ N .

If R is a ring, let β(R), βco(R) and N (R) be the prime radical, generalized

nil radical (also called the completely prime radical) and the set of all nilpotent

elements of R respectively. An ideal I of a ring R is called 2-primal [21, Defi-

nition 1.1] if β(R/I) = N (R/I). Thus, a ring R is 2-primal if and only if the

zero ideal is 2-primal, i.e., β(R) = N (R). 2-primal rings were first studied in

[72] (although not so called at that time). Birkenmeier et al. in [21, Prop. 2.1]

showed that a ring R is 2-primal if and only if β(R) = βco(R). The notion of 2-

primal exists in literature for other algebraic structures such as near-rings, for

example, see [41]. In this chapter we extend it to modules by defining 2-primal

(sub)modules. We show that in modules, completely semiprime, symmetric,

semi-symmetric, IFP and 2-primal bridge the gap between prime submodules

and completely prime submodules; and that the implications between these

notions for rings are preserved when they are extended to modules.

6.1 Notions that lead to 2-primal modules

Recall that for a module M over a ring R, βco(M) and β(M) respectively

denote the completely prime radical of M and prime radical of M .

Definition 6.1.1 A submodule P of an R-module M is 2-primal if

βco(M/P ) = β(M/P ).

Thus, an R-module M is 2-primal if βco(M) = β(M).
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Example 6.1.1 A module over a commutative ring is 2-primal.

According to Behboodi, an element m of an R-module M is nilpotent [10,

Definition 2.2] if m =
∑r

i=1 aimi for some ai ∈ R, mi ∈ M and r ∈ N, such

that akimi = 0 (1 ≤ i ≤ r) for some k ∈ N; and m is strongly nilpotent if

m =
∑r

i=1 aimi for some ai ∈ R, mi ∈ M and r ∈ N, such that for every

i (1 ≤ i ≤ r) and every sequence ai1, ai2, ai3, · · · where ai1 = ai and ain+1 ∈
ainRain (for all n), we have aikRmi = 0 for some k ∈ N. The set of all

Behboodi’s strongly nilpotent elements of a module is a submodule and is

denoted by Nil∗(M), cf., [10, Definition 2.4]. Note that, these definitions are

not equivalent to our definitions of nilpotent element and strongly nilpotent

element introduced in chapter five.

Theorem 6.1.1 Suppose R is a 2-primal ring and M is a projective R-module,

then

βco(M) = β(M) = Nil∗(M).

Proof: Since β and βco are both preradicals, for any projective R-module

M , β(R)M = β(M) and βco(R)M = βco(M), cf., [19, Proposition 1.1.3]. If

β(R) = βco(R), we get β(M) = βco(M). β(M) = Nil∗(M) follows from [11,

Theorem 3.8].

Corollary 6.1.1 A projective module over a 2-primal ring is 2-primal.

Proposition 6.1.1 If RM is both projective and faithful, then RM 2-primal

implies R is 2-primal.

Proof: Suppose βco(M) = β(M). M projective implies βco(R)M = β(R)M .

So, βco(R)M − β(R)M = 0. Thus, (βco(R)− β(R))M = 0. M faithful implies

βco(R)− β(R) = 0. Hence, βco(R) = β(R).



88 CHAPTER 6. 2-PRIMAL MODULES

Proposition 6.1.2 Let R be a ring such that r ∈ rR for all r ∈ R (e.g., if

R is Von Neumann regular or if R has a right identity), then R is 2-primal if

and only if the module RR is 2-primal.

Proof: From Proposition 2.3.9, βco(R) = βco(RR). A similar proof of the

prime case yields β(R) = β(RR). The rest is trivial.

We have not found any examples of 2-primal rings R for which the R-module

is not 2-primal, we therefore have:

Conjecture 6.1.1 If R is a 2-primal ring, the R-module M is 2-primal.

The implications between symmetric, IFP, reduced, semi-symmetric and 2-

primal for rings were given in [21, p.105], [55, p.314] and [56, p.494]. We show

in Theorems 6.1.2 and 6.1.3 that they are (the implications) preserved by their

module analogues.

Theorem 6.1.2 For any submodule P of an R-module M ,

R commutative semi-symmetric

⇓ ⇑
completely ⇒ symmetric ⇒ IFP ⇔ (P : S) / R

semiprime for any subset S of M .

Proof: Completely semiprime ⇒ symmetric ⇒ IFP, see Proposition 3.1.1.

IFP ⇔ (P : S) / R for any subset S of M . (P : S) is always a left ideal. Let

a ∈ (P : S) for any subset S of M and a ∈ R. Then aS ⊆ P . P IFP implies

aRS ⊆ P and aR ⊆ (P : S). Conversely, suppose (P : S) /R for any subset S

of M and am ∈ P for a ∈ R and m ∈M . Then a ∈ (P : {m}). By hypothesis,

(P : {m}) / R and hence aR ⊆ (P : {m}) such that aRm ⊆ P . IFP ⇒
semi-symmetric. Suppose a2m ∈ P , then a ∈ (P : am). Since (P : {am}) / R,
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we have (a) ⊆ (P : {am}) such that (a)am ⊆ P , (a)aRm ⊆ P , (a)Ram ⊆ P

and (a)RaRm ⊆ P . Hence, (a)2m = (a)[Za + aR + Ra + RaR]m ⊆ P . R

commutative ⇒ symmetric is trivial.

Corollary 6.1.2 For any proper submodule P of an R-module M , the follow-

ing statements are equivalent:

1. P is completely semiprime,

2. P is semi-symmetric and classical semiprime,

3. P is semi-symmetric and semiprime,

4. P is IFP and classical semiprime,

5. P is IFP and semiprime,

6. P is symmetric and classical semiprime,

7. P is symmetric and semiprime.

Proof: It suffices to prove (2) ⇒ (1), the rest follows from Theorem 6.1.2

and the fact that completely semiprime ⇒ semiprime ⇒ classical semiprime.

Suppose for a ∈ R and m ∈ M , a2m ∈ P . Then (a)2m ⊆ P since P is semi-

symmetric. P classical semiprime implies (a)m ⊆ P . Thus, a〈m〉 ⊆ P and P

is completely semiprime.

Remark 6.1.1 When P = 0 in Corollary 6.1.2, we get different characteriza-

tions of reduced modules.

Theorem 6.1.3 For any submodule P of an R-module M ,

P semi-symmetric submodule ⇒ P is a 2-primal submodule.
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Proof: It is enough to show that semi-symmetric + prime = completely

prime. One direction is trivial. Suppose P is both prime and semi-symmetric.

Let a ∈ R and m ∈M such that am ∈ P . It follows from the definition of semi-

symmetric submodules that (a)2m ⊆ P . By definition of prime submodules,

(a)M ⊆ P or (a)m ⊆ P . If (a)M ⊆ P , aM ⊆ P and we are through.

Suppose (a)m ⊆ P . If m ∈ P , we are through. Suppose m 6∈ P . Then

a ∈ (a) ⊆ (P : m). Since P is prime, (P : m) = (P : M) and a ∈ (P : M)

such that aM ⊆ P .

We construct examples to illustrate that the implications in Theorems 6.1.2

and 6.1.3 are not reversible in general.

Example 6.1.2 Let R be the ring of all 4-by-4 upper triangular matrices

over a field F . Let a =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

. Then a2 = 0, but (a)2 6= 0. If

m =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 ∈ RR, a2m = 0 but (a)2m 6= 0. Thus, the zero

submodule of RR is 2-primal by Proposition 6.1.2 and [21, Example 1.4] but

not semi-symmetric.

IFP submodules need not be symmetric and symmetric submodules need not

be completely semiprime, see Example 3.1.1 and Example 3.1.2 respectively.

Example 6.1.3 A ring R is reversible [25], [50], if ab = 0 ⇔ ba = 0 for all

a, b ∈ R. A torsion-free module over a reversible ring is symmetric. Note that
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a reversible ring need not be commutative. Hence, symmetric modules need

not be defined over commutative rings.

Corollary 6.1.3 Each of the following statements implies that each submodule

of a module M is 2-primal:

1. every semiprime submodule of M is completely semiprime,

2. every prime submodule of M contains a completely prime submodule of

M ,

3. every classical prime submodule of M is completely prime,

4. every prime submodule of M is completely prime.

Proof: Elementary.

Example 6.1.4 If M is a finitely generated (cyclic or free) module over a

medial (left permutable, right permutable or left self distributive) ring, then

M is 2-primal.

Proof: Follows from Corollary 3.5.2 and Corollary 6.1.3(4).

Corollary 6.1.4 For a proper submodule P of an R-module M , the following

statements are equivalent:

1. P is a completely prime submodule of M ,

2. P is a prime and a completely semiprime submodule of M ,

3. P is a prime submodule of M and the module M/P is symmetric,

4. P is a prime submodule of M and the module M/P is IFP,

5. P is a prime submodule of M and (P : S) / R for all subsets S of M ,
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6. P is a prime submodule of M and the module M/P is semi-symmetric,

7. P is a prime and 2-primal submodule of M .

Proof: 1⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ and 6 ⇒ 7 follow from Theorems 6.1.2 and

6.1.3 respectively.

7⇒ 1. Suppose P is a prime and 2-primal submodule. Then M/P is a prime

module such that β(M/P ) = (0). P 2-primal implies β(M/P ) = βco(M/P ) =

(0). Since βco(M/P ) is always a completely semiprime submodule of M/P ,

M/P is a reduced (equivalently completely semiprime) module. Thus, P is a

completely semiprime submodule and hence completely prime. To see this, let

am ∈ P for a ∈ R and m ∈ M . P completely semiprime implies P is IFP ,

hence a〈m〉 ⊆ P . P prime implies m ∈ P or aM ⊆ P . Thus P is completely

prime.

Example 6.1.5 Reduced modules are 2-primal.

Example 6.1.6 If R is a left duo ring, the module RM is strongly 2-primal,

(i.e., every proper submodule of M is 2-primal).

Proof: Follows from Example 3.1.1 and Corollary 6.1.4.

Corollary 6.1.5 For a classical semiprime submodule, the following state-

ments are equivalent:

1. completely semiprime,

2. symmetric,

3. IFP,

4. semi-symmetric.



6.2. GENERALIZATION OF 2-PRIMAL MODULES 93

Proof: It is enough to show that semi-symmetric implies completely semiprime.

The rest follows from Theorem 6.1.2. Suppose a2m ∈ P , by definition of

semi-symmetric submodules, (a)2m ⊆ P . By definition of classical semiprime

submodules (a)m ⊆ P such that a〈m〉 ⊆ P and P is completely semiprime.

Modules over fully idempotent rings (rings whose all ideals are idempotent,

[26], [27]) and modules over fully prime rings (rings whose all ideals are prime

[22, p.5390]) are classical semiprime and hence satisfy Corollary 6.1.5.

Proposition 6.1.3 For any module M , the following statements are equiva-

lent:

1. M is 2-primal,

2. βco(M) ⊆ β(M).

Proof: Elementary.

Proposition 6.1.4 2-primal modules are closed under direct sums.

Proof: Suppose {Mλ, λ ∈ Λ} are 2-primal modules and M = ⊕Mλ. By

Proposition 2.3.3 and Remark 2.3.2, β(M) = ⊕β(Mλ) = ⊕βco(Mλ) = βco(M).

6.2 Generalization of 2-primal modules

By following a generalization of 2-primal near-rings in [41, Section 2] we

have:

Definition 6.2.1 Let ρ be a Hoenhke radical of a module M for which β ⊆
ρ ⊆ βco. A submodule N of an R-module M is ρ-primal if ρ(M/N) =

βco(M/N). Thus, M is ρ-primal if ρ(M) = βco(M).
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Example 6.2.1 If ρ = β the prime radical of M , then M is 2-primal.

Example 6.2.2 Primeless modules (for instance the Z-module Zp∞ where p is

a prime number) are ρ-primal for all Hoenhke radicals ρ such that β ⊆ ρ ⊆ βco.

Proof: If M is primeless, it is completely primeless. Hence, β(M) =

βco(M) = M . Thus, ρ(M) = βco(M) = M for all β ⊆ ρ ⊆ βco.

Example 6.2.3 Projective modules over ρ-primal rings are ρ-primal for all

β ⊆ ρ ⊆ βco.

Proof: Suppose M is projective and R is ρ-primal, i.e., ρ(R) = βco(R), then

ρ(M) = ρ(R)M = βco(R)M = βco(M).

A ring R is called NI (due to [54] and also studied in [45]) if its upper nil

radical coincides with the set of all its nilpotent elements, i.e., U(R) = N (R).

The upper nil radical, U(M) of an R-module M is the intersection of all its

s-prime submodules, where P ≤ M is s-prime if P is prime and the ring

R/(P : M) has no non-zero nil ideals, i.e., P is prime and U(R/(P : M)) = 0.

We say an R-module M is NI if U(M) = βco(M).

Example 6.2.4 If ρ = U the upper nil radical of M then M is NI.

Definition 6.2.2 A submodule P of an R-module M is

1. l-prime if it is a prime submodule and the ring R/(P : M) contains no

locally nilpotent ideals, i.e., L(R/(P : M)) = 0, where L is the Levitzki

radical map.

2. strictly prime [28] if RM 6⊆ P and for each m ∈M \P there exists b ∈ R
such that if a ∈ R and abm ∈ P , then aM ⊆ P .
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3. strongly prime [8] if RM 6⊆ P and for each m ∈ M \ P there exists a

finite set F ⊆ R such that if a ∈ R and aFm ⊆ P , then aM ⊆ P .

Proposition 6.2.1 For any submodule P of an R-module M we have:

completely prime⇒ strictly prime⇒ strongly prime⇒ prime.

Proof: We prove the first implication, for the others see, [43, p.131]. Since

RM 6⊆ P , there exists t ∈ R such that tM 6⊆ P . If atm ∈ P for a ∈ R and

m ∈ M , then by definition of completely prime submodules of M , m ∈ P or

atM ⊆ P . If m ∈ P , we are through. Suppose m ∈ M \ P , then atM ⊆ P .

Since tM 6⊆ P , there exists m1 ∈ M such that tm1 6∈ P , but since atm1 ∈ P ,

we have aM ⊆ P by definition of completely prime submodules.

Proposition 6.2.2 Any strictly prime module is s-prime.

Proof: We already know that if M is strictly prime, it is prime. Let A / R

such that AM 6= 0. There exists a ∈ A and m ∈ M such that am 6= 0. Since

M is strictly prime, we can find b ∈ R such that if r ∈ R and rbam = 0 then

rM = 0. Now, aM 6= 0 (since am 6= 0) implies abam 6= 0 by definition of

strictly prime modules. It follows that 0 6= abam ∈ abaM . abaM 6= 0 and

am 6= 0 imply ababam 6= 0. By induction, we get (ab)nm 6= 0 for all n ∈ N

and hence (ab)nM 6= 0 for all n ∈ N. This shows that M is s-prime.

Example 6.2.5 Let R = FS where F is a field and S a permutation group

on the integers. R is a primitive group ring hence an s-prime ring and prime

ring which is not strongly prime and hence not strictly prime, see [42, p.215].

If M = RR, then M is an s-prime module and hence prime module which is

not strongly prime and hence not strictly prime. Thus, a prime module need

not be strongly prime and an s-prime module need not be strictly prime.
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Example 6.2.6 Let F be a field and R =

(
F F

F F

)
, then the module RR is

strongly prime but not strictly prime, see [43, p.119].

Example 6.2.7 Let D be a simple domain with identity which is neither left

nor right ore. The matrix ring R = Mn(D), 1 < n < ℵ0 is strictly prime (also

called strongly prime of bound one) but not completely prime, see [81, p.315,

Sec. 4.12]. In [24, p.153] there is another example of a strictly prime ring R

which is not completely prime. If we take M = RR, then M is strictly prime

but not completely prime.

Proposition 6.2.3 If L(M), βs(M) and βsc(M) denote the intersection of all

l-prime submodules of M , all strongly prime submodules of M and all strictly

prime submodules of M respectively, then β ⊆ L ⊆ U ⊆ βsc ⊆ βco and β ⊆
βs ⊆ βsc ⊆ βco.

Example 6.2.8 If ρ = βs, βsc,L in Definition 6.2.1 for a given module, then

such a module is respectively βs, βsc,L-primal.

Remark 6.2.1 A 2-primal module is ρ-primal for all β ⊆ ρ ⊆ βco but not

conversely. For instance, NI modules need not be 2-primal. To see this, suppose

R is unital. Then by a proof similar to that of Proposition 6.1.2, R is NI if and

only if the module RR is NI. Direct limits of direct systems of NI modules of

the form RR are NI, cf., [45, Prop. 1.1]. But direct limits of direct systems of

2-primal modules of the form RR need not be 2-primal, cf., [45, Example 1.2].

Theorem 6.2.1 LetMcp andMp denote a class of completely prime modules

and prime modules respectively. For any class Mρ of some type of “prime”

modules such that Mcp ⊆ Mρ ⊆ Mp, a submodule P of an R-module M

is a completely prime submodule if and only if M/P ∈ Mρ and ρ(M/P ) =

βco(M/P ).
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Proof: If P is a completely prime submodule of M , M/P ∈ Mρ and

ρ(M/P ) = βco(M/P ). For the converse, the proof is similar to that of 7⇒1 in

Corollary 6.1.4.

Corollary 6.2.1 The following statements are equivalent for a proper sub-

module P of an R-module M :

1. completely prime submodule,

2. strongly prime submodule which is βs-primal,

3. strictly prime submodule which is βsc-primal,

4. s-prime submodule which is NI (i.e., U-primal),

5. l-prime submodule which is L-primal,

6. prime submodule which is 2-primal.

Remark 6.2.2 For P = 0, we get more characterizations of reduced modules

from Corollary 6.2.1.

Let ρ̄(N) = ∩{P ≤ M : N ⊆ P and M/P ∈ M} for all β ⊆ ρ ⊆ βco. For

any N ≤M , ρ(M/N) = ρ̄(N)/N . In particular, if N = 0, then ρ(M) = ρ̄(0).

Proposition 6.2.4 Let M be an R-module,M a class of R-modules such that

Mcp ⊆M ⊆Mp and ρ a Hoenhke radical associated with the class M, then

1. ρ(M/N) = βco(M/N) implies ρ̄(N) is a completely semiprime submodule

of M ,

2. ρ(M) = βco(M) implies ρ(M) is a completely semiprime submodule of

M ,
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Proof: 1) Let a ∈ R and m ∈ M such that a2m ∈ ρ̄(N), N ≤ M . Then

a2(m + N) ⊆ ρ̄(N)/N = ρ(M/N) = βco(M/N). Since βco(M/N) is a com-

pletely semiprime submodule of M/N , a(〈m〉+N) = (a〈m〉+N) ⊆ ρ̄(N)/N .

Hence a〈m〉 ⊆ ρ̄(N) and ρ̄(N) is a completely semiprime submodule of M .

2) Follows from 1) if we let N = 0.

Corollary 6.2.2 If M is a ρ-primal module, then ρ(M) is a completely

semiprime submodule of M for all β ⊆ ρ ⊆ βco.

Proposition 6.2.5 Let N be a submodule of M such that N ⊆ ρ(M). Then

ρ(M) = βco(M) implies ρ(M/N) = βco(M/N).

Proof: Since N ⊆ ρ(M), ρ̄(N) = ρ(M). If ρ(M) = βco(M), then ρ̄(N) =

βco(M). Since βco(M) is a completely semiprime submodule of M contain-

ing N , we have ρ̄(N) = βco(M) = β̄co(N). Thus, ρ(M/N) = ρ̄(N)/N =

β̄co(N)/N = βco(M)/N = βco(M/N).



Chapter 7

The Amitsur property in

modules

For a series of different “primes” in modules, if γ is a radical corresponding to

one such “prime” and M is a module over a ring R, we show that γ(M [x]) =

γ(M)[x], (γ(M [x]) ∩ M)[x] = γ(M [x]) and if γ(M) = M , then γ(M [x]) =

M [x], i.e., γ satisfies the polynomial equation, has the Amitsur property and

is polynomially extensible. We also show that the module RM is 2-primal or

ρ-primal (where ρ-primal is a generalization of 2-primal) if and only if so is

the module R[x]M [x].

In this chapter unlike other chapters, all modules are left unital modules and

the rings are both associative and unital. Let R be a ring and R[x] the poly-

nomial ring over R. If γ is a radical map, the properties: (γ(R[x]) ∩ R)[x] =

γ(R[x]); if γ(R) = R, then γ(R[x]) = R[x]; and γ(R[x]) = γ(R)[x] are termed

as: γ has the Amitsur property; γ is polynomially extensible and γ satisfies

the polynomial equation respectively. Ring radicals with such properties were

studied in [16], [32], [33], [35], [53] and [77]. The prime radical, Levitzki radi-

cal, upper nil radical, Jacobson radical, generalized nil radical, Brown-McCoy
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radical, antisimple radical and Behrens radical satisfy the Amitsur property.

The prime radical and the Levitzki radical are polynomially extensible. The

prime radical, uniformly strongly prime radical and Levitzki radical satisfy the

polynomial equation. For definitions of the aforementioned ring radicals see

[33]. In this chapter, we aim at obtaining module radicals that exhibit the

aforementioned properties. The following classes of submodules will be useful

for this purpose: prime, s-prime, completely prime, strictly prime, strongly

prime, classical semiprime and completely semiprime.

7.1 The “going up” and “going down” theo-

rems

The terminology used here is that of [59]. Let σ be a property of submodules

defined for submodules in M and in M [x], where M is an R-module and M [x]

the corresponding R[x]-module. A submodule with property σ may be called

a σ-submodule. If σ is such that P a σ-submodule of RM implies P [x] is

a σ-submodule of R[x]M [x], then we say that the “going up” theorem holds

for σ-submodules. If Q a σ-submodule in M [x] implies that Q ∩M is a σ-

submodule in M , then we shall say that the “going down” theorem holds for

a σ-submodule.

Let σ be a property for submodules defined in the R-module M and also in

the R[x]-module M [x]. If N is a submodule in M , the closure of N relative to

σ which we denote by Nσ is the intersection of all σ-submodules which contain

N . Hence, closed submodules (relative to σ) are those submodules that are

intersections of σ-submodules.

Theorem 7.1.1 Let σ be a property of submodules defined in RM and in
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R[x]M [x] such that the following are true:

(a) M is a σ-submodule;

(b) if N is a submodule and B a σ-submodule in M [x] such that R[x]N ⊆ B,

then N ⊆ B;

(c) the “going up” and “going down” theorems hold for σ-submodules. Then

for each submodule N in M

(N [x])σ = (Nσ)[x].

Proof: Clearly (a) and (c) imply M [x] is a σ-submodule in M [x]. Moreover,

it follows easily from (c) that the “going up” and “going down” theorems hold

also for closed submodules. Since N ⊆ Nσ, we have N [x] ⊆ Nσ[x]. But by

the “going up” theorem for closed submodules, Nσ[x] is a closed submodule

in M [x] and hence (N [x])σ ⊆ Nσ[x]. To obtain the inclusion in the other

direction, suppose N [x] ⊆ C where C is a closed submodule in M [x]. Now,

C ∩M is a closed submodule in M by the “going down” theorem, and since

N ⊆ C∩M , we have Nσ ⊆ C∩M . Now R[x]Nσ[x] ⊆ C and by (b) Nσ[x] ⊆ C.

Applying this result to the case in which C = (N [x])σ, we haveNσ[x] ⊆ (N [x])σ

and the proof is completed.

Theorem 7.1.2 If M is a “prime” R-module in one of the following senses,

then M [x] is a “prime” R[x]-module in the same sense, i.e., the listed “primes”

satisfy the “going up” theorem.

1. prime,

2. s-prime,

3. strictly prime,
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4. strongly prime,

5. classical semiprime,

Proof:

Prime: Let f(x) ∈ R[x] and m(x) ∈ M [x] such that f(x)R[x]m(x) = 0.

Suppose m(x) =
∑k

i=0mix
i 6= 0. Hence, we may assume mk 6= 0. If f(x) =∑l

j=0 ajx
j, then from f(x)R[x]m(x) = 0, we have

∑
h(
∑

i+j=h ajrmi)x
h = 0

for all r ∈ R. Now, for all r ∈ R

a0rm0 = 0 (7.1)

a0rm1 + a1rm0 = 0 (7.2)

...

alrmk−1 + al−1rmk = 0 (7.3)

alrmk = 0. (7.4)

Since alRmk = 0, mk 6= 0 and M is prime, we have alM = 0 hence Equation

(7.3) reduces to al−1rmk = 0 for all r ∈ R. Hence, al−1Rmk = 0 and again

M prime and mk 6= 0 implies al−1M = 0. Continuing with this process, leads

to ajM = 0 for j = 0, · · · , l and we have f(x)M [x] = 0, i.e., M [x] is a prime

module.

s-prime: For m(x) ∈M [x] where m(x) = m0 +m1 + · · ·+mtx
t, we define the

least coefficient of m(x) as mk 6= 0, the coefficient of the term mkx
k such that

mk−1 = mk−2 = · · · = m1 = m0 = 0. Let f(x) ∈ R[x] and m(x) ∈ M [x] such
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that (f(x))nR[x]m(x) = 0 for some n ∈ Z+. Suppose m(x) =
∑k

i=0mix
i 6= 0.

Let md be the least coefficient of m(x). If f(x) =
∑l

j=0 ajx
j, then from

(f(x))nR[x]m(x) = 0, we have an0rmd = 0 for all r ∈ R such that a0M = 0

since RM is s-prime. a0M = 0 implies all the terms in the expansion of

(f(x))nrmd involving a0 vanish. This leads to an1rmd = 0 for all r ∈ R. Again

RM s-prime implies a1M = 0. By a similar argument all terms in expansion

of (f(x))nrmd that involve a1 vanish. This leads to an2rmd = 0 for all r ∈ R
such that a2M = 0. By induction principle, aiM = 0 for all i ∈ {0, · · · , l} such

that f(x)M [x] = 0 and hence R[x]M [x] is s-prime.

Strictly prime: Let 0 6= m(x) ∈ M [x] with m(x) =
∑k

i=0mix
i such that

mt is the least coefficient of m(x). mt 6= 0 and M strictly prime imply there

exits b ∈ R such that if abmt = 0 for some a ∈ R, then aM = 0. Suppose

a(x)bm(x) = 0 for some a(x) =
∑n

i=0 aix
i ∈ R[x]. Then

a0bmt = 0 (7.5)

a0bmt+1 + a1bmt = 0 (7.6)

a0bmt+2 + a1bmt+1 + a2bmt = 0 (7.7)

...

anbmk = 0. (7.8)

a0bmt = 0 implies a0M = 0 since M is strictly prime. Equation 7.6 reduces to

a1bmt = 0 such that a1M = 0 since M is strictly prime. Equation 7.7 becomes

a2bmt = 0 and we get a2M = 0. It is clear that we get aiM = 0 for 0 ≤ i ≤ n.

Hence a(x)M [x] = 0 and R[x]M [x] is a strictly prime module.
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Strongly prime: Let 0 6= m(x) ∈ M [x] with m(x) =
∑k

i=0mix
i such that

mt is the least coefficient m(x). Since mt 6= 0 there exists F ⊆ R ⊆ R[x] such

that for a ∈ R, aFmt = 0 implies aM = 0. Let a(x)Fm(x) = 0 for some

a(x) =
∑n

i=0 aix
i ∈ R[x]. Then, we get

a0Fmt = 0 (7.9)

a0Fmt+1 + a1Fmt = 0 (7.10)

a0Fmt+2 + a1Fmt+1 + a2Fmt = 0 (7.11)

...

anFmk = 0. (7.12)

From Equation 7.9 it follows that a0M = 0. Equation 7.10 becomes a1Fmt = 0

and consequently a1M = 0. Equation 7.11 becomes a2Fmt = 0 and hence

a2M = 0. Continuing with this process leads to aiM = 0 for 0 ≤ i ≤ n. Hence

a(x)M [x] = 0 and we are through.

Classical semiprime: Let a(x)R[x]a(x)R[x]m(x) = 0 with a(x) =
∑l

i=0 aix
i

and m(x) =
∑k

j=0 mjx
j. Then (

∑l
i=0 aix

i)r(
∑l

i=0 aix
i)s(
∑k

j=0mjx
j) = 0 for

all r, s ∈ R such that for all r, s ∈ R

aoraosm0 = 0 (7.13)

a0ra0sm1 + a0ra1sm0 + a1ra0sm0 = 0 (7.14)

a0ra0sm2+a0ra2sm0+a2ra0sm0+a1ra1sm0+a1ra0sm1+a0ra1sm1 = 0 (7.15)

...

al−1ralsmk + alral−1smk + alralsmk−1 = 0 (7.16)
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alralsmk = 0. (7.17)

From Equation 7.13, a0Ra0Rm0 = 0, M classical semiprime implies a0Rm0 =

0. Equation 7.14 reduces to: a0Ra0Rm1 = 0. M classical semiprime implies

a0Rm1 = 0. a0Rm0 = 0 and a0Rm1 = 0 reduce Equation 7.15 to:

a0ra0sm2 + a1ra1sm0 = 0 for all r, s ∈ R. (7.18)

Multiply Equation 7.18 by a0R, the second term vanishes since a0Rm0 = 0.

So, we get a0Ra0Ra0Rm2 = 0. M classical semiprime implies a0Ra0Rm2 = 0.

Again, M classical semiprime implies a0Rm2 = 0. This reduces Equation

7.18 to a1Ra1Rm0 = 0 such that a1Rm0 = 0. Repeating this process leads

to aiRmj = 0 for all i, j. Hence a(x)R[x]m(x) = 0 and R[x]M [x] is classical

semiprime.

Theorem 7.1.3 Let M be an R-module and M [x] the corresponding R[x]-

module. If P is a prime (resp. completely prime, strongly prime, s-prime,

classical semiprime and completely semiprime) submodule in M [x], then so is

P ∩M in M , i.e., the “primes” listed in this theorem satisfy the “going down”

theorem.

Proof:

Prime: Let a ∈ R, m ∈M such that aRm ⊆ P ∩M . aR[x]m ⊆ P since each

element of aR[x]m is a sum of terms belonging to P and since P is prime, we

have m ∈ P or aM [x] ⊆ P . Hence m ∈ P ∩M or aM ⊆ P ∩M .

Completely prime: Let a ∈ R and m ∈ M such that am ∈ P ∩M . Then

am ∈ P . Since a ∈ R ⊆ R[x], m ∈ M ⊆ M [x] and P is completely prime in

M [x], m ∈ P or aM ⊆ aM [x] ⊆ P such that m ∈ P ∩M or aM ⊆ P ∩M .
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Hence, P ∩M is completely prime in M .

Strongly prime: Let P be a strongly prime submodule in M [x] and suppose

that there exists m ∈ M \ (P ∩M) such that for every finite subset F ⊆ R,

there exists r ∈ R with rFm ⊆ P ∩M but rM 6⊆ P ∩M (and hence rM 6⊆ P ).

Let J be any finite subset of R[x], say J = {z1, · · · , zn} with zi =
∑ni

j=0 aijx
j
i

where aij ∈ R and i = 1, · · · , n. Furthermore, let Fi = {aij, j = 0, 1, · · · , ni}
and F = ∪ni=1Fi. Then, F is a finite subset of R and from our assumption

there exists r ∈ R such that rFm ⊆ P ∩M ⊆ P and rM 6⊆ P . Let zi ∈ J
be arbitrary. Then rzim = r(ai0 + ai1xi + ai2x

2
i + · · · + ainx

n
i )m = rai0m +

rai1mxi + · · ·+ +rainmx
n
i . From rFm ⊆ P , raijm ∈ P for j = 0, 1, · · · , n. It

follows that rzim ∈ P . But zi was arbitrary, hence rJm ⊆ P . This contradicts

the fact that P is a strongly prime submodule since rM 6⊆ P and consequently

P ∩M is a strongly prime submodule of M .

The s-prime, classical semiprime and completely semiprime cases can be

proved in a way similar to that of the prime and completely prime cases.

Corollary 7.1.1 If Q[x] is a prime (resp. s-prime, strongly prime, classical

semiprime) submodule of R[x]M [x], then Q is a prime (resp. s-prime prime,

strongly prime, classical semiprime) submodule of RM .

Proof: In Theorem 7.1.3, if we use Q[x] in the place of P , then we get P ∩M
as Q[x] ∩M = Q.

By using similar arguments as for the polynomial ring R[x] and I[x] where

I / R and where (R/I)[x] ∼= R[x]/I[x] we get:

Proposition 7.1.1 If M is an R-module and N is a submodule of M , then

(M/N)[x] ∼= M [x]/N [x]
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where N [x] = {
∑k

i=0 nix
i : ni ∈ N} is an R[x]-submodule of M [x].

Proposition 7.1.2 If M is an R-module and M [x] is the corresponding R[x]-

module, then P is a prime (resp. s-prime strongly prime, classical semiprime)

submodule of M if and only if P [x] is a prime (resp. s-prime, strongly prime,

classical semiprime) submodule of M [x].

Proof: This is clear from Theorem 7.1.2, Proposition 7.1.1 and Corollary

7.1.1.

Proposition 7.1.3 Let M be an R-module and M [x] the corresponding R[x]-

module. P is a completely prime submodule of M if and only if P [x] is a

completely prime submodule of M [x].

Proof: From [52, Theorem 1.6], RM is completely semiprime (reduced) if

and only if RM [x] is completely semiprime. Hence from Proposition 7.1.1, we

have P is a completely semiprime submodule if and only if P [x] is a completely

semiprime submodule of M [x]. But P is a completely prime submodule if and

only if P is both prime and completely semiprime, see Theorem 3.4.2. From

this and Proposition 7.1.2, the result follows.

7.2 Module radicals with Amitsur property

If M is any of the following classes of modules: prime, s-prime, completely

prime, strictly prime and strongly prime, then M is closed under taking non-

zero submodules and by Proposition 2.3.1 γ is a radical.

As for rings, see [33, p. 276], [77, Definition 2.13] we say a radical map γ

1. has Amitsur property if (γ(M [x]) ∩M)[x] = γ(M [x]);
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2. is polynomially extensible if γ(M) = M , then γ(M [x]) = M [x];

3. satisfies the polynomial equation if γ(M [x]) = γ(M)[x].

Theorem 7.2.1 If β(M), N (M), βco(M), βs(M) and βsc(M) respectively

denote the prime radical, s-prime radical, completely prime radical, strongly

prime radical and strictly prime radical of M , then

1. β(M [x]) = β(M)[x],

2. N (M [x]) = N (M)[x],

3. βco(M [x]) = βco(M)[x],

4. βs(M [x]) = βs(M)[x] and

5. βsc(M [x]) ⊆ βsc(M)[x].

Proof: This is a simple application of Theorem 7.1.1 and the fact that the

prime (resp. s-prime, completely prime, strongly prime and strictly prime)

radical of a module is the intersection of all the prime (resp. s-prime, com-

pletely prime, strongly prime and strictly prime) submodules.

Proposition 7.2.1 Let γ be a module radical map such that γ(M [x]) = γ(M)[x],

then

1. (γ(M [x]) ∩M)[x] = γ(M [x]), i.e., γ satisfies the Amitsur property;

2. if γ(M) = M , then γ(M [x]) = M [x], i.e., γ is polynomially extensible.

Proof: (γ(M [x])∩M)[x] = (γ(M)[x]∩M)[x] = γ(M)[x] = γ(M [x]). Suppose

γ(M) = M , then by hypothesis, γ(M [x]) = γ(M)[x] = M [x].

Theorem 7.2.2 Let β, N , βco and βs denote respectively the prime, s-prime,

completely prime and strongly prime module radicals. Then, β (resp. N , βco

and βs) satisfies the Amitsur property and is polynomially extensible.
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Proof: Follows from Proposition 7.2.1 and Theorem 7.2.1.

Theorem 7.2.3 Let R be a ring such that x ∈ xR for every x ∈ R, (i.e., R

has a right identity). Let γ be any of the following radicals: prime radical,

upper nil radical, generalized nil radical and strongly prime radical; then

γ(R[x]) = γ(R)[x].

Proof: From [29, Prop. 4.8] we have that γ(R) = γ(RR) for γ any

of the above mentioned radicals. From Theorem 7.2.1, we have γ(R[x]) =

γ(R[x]R[x]) = γ(RR)[x] = γ(R)[x].

Corollary 7.2.1 Let R be any ring such that for every x ∈ R, x ∈ xR and

γ any of the following ring radicals: prime radical, upper nil radical, strongly

prime radical and generalized nil radical; then

1. (γ(R[x]) ∩R)[x] = γ(R[x]), i.e., γ satisfies the Amitsur property;

2. if γ(R) = R, then γ(R[x]) = R[x], i.e., γ is polynomially extensible.

Theorem 7.2.4 The module RM is 2-primal (resp. βs-primal) if and only if

so is R[x]M [x].

Proof: We prove the 2-primal case, the other case can proved in a similar way.

If β(M) = βco(M), from Theorem 7.2.1, β(M [x]) = β(M)[x] = βco(M)[x] =

βco(M [x]). For the converse, suppose β(M [x]) = βco(M [x]). Then βco(M) =

M ∩ βco(M)[x] = M ∩ β(M)[x] = β(M).



Chapter 8

Conclusion

In this chapter, we bring together all the implications between different

“primes” discussed in the preceding chapters; radicals corresponding to the

“primes” are ordered. The nine module radicals studied in this thesis coincide

whenever the module is defined over a commutative Artinian ring, see Theorem

8.1.1. Questions that emerge from the thesis are posed.

8.1 A summary of implications

From chapters two, three, four and six, we have the following implications:

(a) when a module is defined over an arbitrary ring, see Figure 8.1;

110
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Figure 8.1: Implications between different “primes” in modules

(b) when a module is defined over a commutative ring, we have:

completely prime⇔ strictly prime⇔ strongly prime⇔ s-prime⇔

l-prime⇔ prime⇒ classical prime⇔ classical completely prime.

(c) P a “prime” submodule of RM implies the ideal (P : N) of R is “prime”

for any N ≤M with N 6⊆ P , see Table 8.1.
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Submodule P of a module RM Ideal (P : N) of R for any

N ≤ RM with N 6⊆ P

completely prime submodule ⇒ completely prime ideal

classical completely prime submodule ⇒ completely prime ideal

s-prime submodule ⇒ s-prime ideal

strictly prime submodule ⇒ strictly prime ideal (strongly

prime ideal of bound one)

strongly prime submodule ⇒ strongly prime ideal

prime submodule ⇒ prime ideal

classical prime submodule ⇒ prime ideal

Table 8.1: P “prime” implies (P : N) “prime”

Remark 8.1.1 In this section, we only define strictly prime ideals and strongly

prime ideals; and prove the implication: P strongly prime (resp. strictly prime)

submodule of RM implies (P : N) is a strongly prime (resp. strictly) ideal of

R for any submodule N of M not contained in P . This is because all the

other “prime” ideals and their corresponding implications were respectively

defined and proved in the previous chapters. For the prime and classical prime

submodules, see [10] and [11] respectively.

A ring R is left strongly (resp. strictly) prime if for each 0 6= r ∈ R there

exists a finite set F ⊆ R (resp. s ∈ R) such that for t ∈ R, tFr = 0 (resp.

tsr = 0) implies t = 0. An ideal I is a left strongly (resp. strictly) prime

ideal of R if and only if R/I is a left strongly (resp. strictly) prime ring.

We here omit the word “left” and call left strongly (resp. left strictly) prime

rings/ideals strongly (resp. strictly) prime rings/ideals.

Proposition 8.1.1 If P is a strongly (resp. strictly) prime submodule of RM ,

then (P : N) is a strongly (resp. strictly) prime ideal of R for any submodule



8.1. A SUMMARY OF IMPLICATIONS 113

N of M not contained in P .

Proof: Let a ∈ R \ (P : N), then aN 6⊆ P . So, am 6∈ P for some m ∈ N .

Now 0 6= am ∈ M and P strongly prime implies there exists a finite subset

F ⊆ R such that if b ∈ R and bF (am) ⊆ P , then bM ⊆ P . Now suppose

bFa ⊆ (P : N), i.e., bFaN ⊆ P , then bF (am) ⊆ P . It follows that bM ⊆ P

which implies bN ⊆ P , i.e., b ∈ (P : N). The proof for the strictly prime case

is similar.

From Figure 8.1, we get Figure 8.2 which shows the strength of module

radicals. This Figure is what one would expect - compare it with strength of

ring radicals in [81] and in [33, p.293].
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Figure 8.2: Strength of module radicals
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A comparison of Figure 8.2 of module radicals and that of ring radicals in

[81] indicates lots of gaps in the figure for module radicals. This compels us to

suggest that, more should be done in terms of investigating module analogues

for existing ring radicals - where this is not possible, an explicit declaration of

its nonexistence should be made.

Theorem 8.1.1 If RM is a module, then

1. βcl = β = L = U = Rad whenever R is left Artinian;

2. βco = βsc = βs = β = L = U and βcl = βccl whenever R is commutative;

3. βccl = βcl = β = L = U = Rad = βco = βsc = βs whenever R is both

Artinian and commutative.

Proof:

1. From Figure 8.2, βcl ⊆ β ⊆ L ⊆ U ⊆ Rad. If R is left Artinian, by [9,

Theorem 2.15] Rad ⊆ βcl from which the desired result follows.

2. For commutative rings, there is no distinction between:

(a) completely prime, strictly prime, strongly prime, prime, l-prime and

s-prime submodules;

(b) classical prime and classical completely prime submodules.

3. Follows from 1) and 2) above.

Remark 8.1.2 In the place of commutative ring in Theorem 8.1.1 we can

have:

1. M IFP or M symmetric,

2. RM cyclic (finitely generated, or free) with R medial (LSD, left per-

mutable or right permutable).
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8.2 Emanating questions

Work from this thesis raises the following questions:

Question 8.2.1 Can we have a 2-primal module characterized in terms of

nilpotent elements (as defined in chapter five) of that module?

Question 8.2.2 Is the sum of nil submodules nil? If no, can we use this fact

to prove K
..
othe’s conjecture in negative?

Question 8.2.3 What is the relationship between the upper nil radical of a

module M (which is defined as the intersection of all s-prime submodules of

M) and the sum of all nil submodules of M? By a nil submodule, we mean

a submodule whose all elements are nilpotent. For rings, these two notions

coincide.

Question 8.2.4 Does the Jacobson radical (resp. Brown-McCoy radical, clas-

sical prime radical, strictly prime radical) of a module satisfy the Amitsur

property and is polynomially extensible?

Question 8.2.5 The theory of “primes” in chapters 2, 3, 4 and in papers [9]

and [10] is developed in a rather similar way. Isn’t there a universal way of

studying them?

Question 8.2.6 If P is a “prime” submodule of RM , what can be said of the

ring EndR(M/P )? Can we obtain a table similar to Table 8.1?

Question 8.2.7 Under which conditions can one have reverse implications in

Table 8.1?
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Appendix I: Conferences, workshops and semi-

nars attended

Results in this thesis were presented by the author in the following confer-

ences, workshops and seminars:

1. South African Mathematical Society congress held at Stellenbosch Uni-

versity in October-November 2012.

2. Eastern Cape Post Graduate seminar held at Nelson Mandela Metropoli-

tan University in October 2012.

3. Pure Mathematics workshop at Strathmore University, Nairobi Kenya in

July 2012.

4. International Conference on the Theory of Radicals, Rings and Modules

held at Sultan Qaboos University in the Sultanate of Oman in January

2012.

5. Pure Mathematics workshop at Strathmore University, Nairobi Kenya in

July 2011.

6. First Kenyatta University International Mathematics Conference that

was held in June 2011 at Kenyatta University in Nairobi Kenya.

Appendix II: Tables of symbols



8.2. EMANATING QUESTIONS 117

Category Symbol Description

General = equal to

∼= isomorphism

≡ congruence

⊂ strict inclusion of sets

⊆ contained or equal to (for sets)

∈ member of (for elements)⊕
direct sum∏
direct product

∩ intersection of sets

∪ union of sets

∅ empty set

lim
←

inverse limit

6= not equal to

6⊂ not a strict inclusion of sets

6⊆ neither contained nor equal to (for sets)

6∈ not member of (for elements)

Sets of numbers R reals

Z integers

Z+ positive integers

N natural numbers

Zp p-adic integers

Rings and ideals / ideal

/· essential ideal

β(R) prime radical of a ring R

βco(R) completely prime radical of a ring R

U(R) upper nil radical of a ring R

Jac(R) Jacobson radical of a ring R

L(R) Levitzki radical of a ring R

N (R) set of all nilpotent elements of a ring R

Ng(R) generalized nil radical of R

Table 8.2: Symbols defined



118 CHAPTER 8. CONCLUSION

Category Symbol Description

Modules N ≤M N is a submodule of M

(N : M) annihilator of the factor module M/N

(0 : M) annihilator of the module M

β(M) prime radical of a module M

Rad(M) Jacobson radical of a module M

βco(M) completely prime radical of a module M

βcl(M) classical prime radical of a module M

βccl(M) classical completely prime radical of a module M

βsc(M) strictly prime radical of a module M

βs(M) strongly prime radical of a module M

U(M) upper nil radical of a module M

L(M) Levitzki radical of a module M

N (M) nilpotent elements of a module M

Ns(M) strongly nilpotent elements of a module M

EM(0) envelope of the zero submodule of M

〈m〉 submodule generated by m

Table 8.3: More symbols defined
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