
Maximization of Power in Randomized Clinical Trials using the Minimization Treatment Allocation 

Technique 

- 0 - 

 

UNIVERSITY OF FORTHARE 

 

FACULTY OF SCIENCE AND AGRICULTURE 

 

 

 

 

 

                                                                                                                             

Maximization of Power in Randomized Clinical Trials using the Minimization Treatment Allocation Technique. 

 

By 

Chioneso Show Marange 

 

SUBMITTED AS PART OF ASSESSMENT IN 

                                                                                       

MASTERS OF SCIENCE IN BIOSTATISTICS AND EPIDEMIOLOGY 

 

Department of Statistics, University of Fort Hare 

2008-2009 

 

 

Supervisor:  Prof J.C. Tyler 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by South East Academic Libraries System (SEALS)

https://core.ac.uk/display/145054116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Maximization of Power in Randomized Clinical Trials using the Minimization Treatment Allocation 

Technique 

- 1 - 

 

ACKNOWLEDGMENTS 

 

One of the most fundamental payoffs in pursuing this MSc degree was to be associated with 

intelligent and assistive minds. I am most privileged and thankful in this regard. To begin with, I 

would like to express my very special thanks to my supervisor Professor J C Tyler for the valuable 

supervision, guidance, assistance and support that she gave me for this work. 

I would like to acknowledge the help given by Mr R T Chiruka and Mr A Mandeya on numerous 

statistical issues, for the eagerness and visionary assistance they provided for my research. I would 

also like to thank friends and colleagues who have helped through this research and also making 

life enjoyable during the course of my MSc studies at the University of Fort Hare. In addition, I 

would like to point out that the time and work involved in completing this dissertation has not 

come without sacrifice. In context of this, I would like to thank everyone for being patient for this 

period.  

Finally, I am really grateful to my wonderful wife and relatives, who have supported me 

unconditionally all the way through my studies, in particular my father for his endless care and last 

but not least I would like to thank God for his spiritual guidance and wisdom that he provided 

throughout my studies. 

 

 

 

 

 

 

 



Maximization of Power in Randomized Clinical Trials using the Minimization Treatment Allocation 

Technique 

- 2 - 

 

DECLARATION 

 

I would like to acknowledge that all references are truthfully recorded and that, unless otherwise 

stated, all work herein is my own. 

 

Signed by Author ……………………………………………………………….     /        / 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Maximization of Power in Randomized Clinical Trials using the Minimization Treatment Allocation 

Technique 

- 3 - 

 

ABSTRACT 

 

Background: Generally the primary goal of randomized clinical trials (RCT) is to make 

comparisons among two or more treatments hence clinical investigators require the most 

appropriate treatment allocation procedure to yield reliable results regardless of whether the 

ultimate data suggest a clinically important difference between the treatments being studied. 

Although recommended by many researchers, the utilization of minimization has been seldom 

reported in randomized trials mainly because of the controversy surrounding the statistical 

efficiency in detecting treatment effect and its complexity in implementation. Methods: A SAS 

simulation code was designed for allocating patients into two different treatment groups. 

Categorical prognostic factors were used together with multi-level response variables and 

demonstration of how simulation of data can help to determine the power of the minimization 

technique was carried out using ordinal logistic regression models. Results: Several scenarios 

were simulated in this study. Within the selected scenarios, increasing the sample size 

significantly increased the power of detecting the treatment effect. This was contrary to the case 

when the probability of allocation was decreased. Power did not change when the probability of 

allocation given that the treatment groups are balanced was increased. The probability of 

allocation { }kP  was seen to be the only one with a significant effect on treatment balance. 

Conclusion: Maximum power can be achieved with a sample of size 300 although a small 

sample of size 200 can be adequate to attain at least 80% power. In order to have maximum 

power, the probability of allocation should be fixed at 0.75 and set to 0.5 if the treatment groups 

are equally balanced.  

 

Key Words: Minimization, Randomization, Power, Logistic regression, Allocation probability 
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PREFACE 

 

This dissertation is structured as follows: 

 

� Chapter one (1) gives the introduction, research problem together with the research aims 

and objectives 

� Chapter two (2) gives the detailed description on the implementation of the minimization 

treatment allocation technique as well as the literature review and overview of this 

technique. This chapter also highlights on power and sample size consideration in 

randomized clinical trials. 

� Chapter three (3) gives the statistical methods and designs used in this study and their 

justifications. This includes the simulation procedures using SAS programming and 

categorical data analysis using logistic regression models. 

� Chapter four (4) gives the methods for data analysis and the interpretation of results. 

� Chapter five (5) presents the discussions, conclusions, recommendations and areas of future 

research that can be drawn from the study. 
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CHAPTER ONE (1) 

INTRODUCTION/BACKGROUND INFORMATION 

1.1     GENERAL INTRODUCTION 

In a randomized clinical trial subjects should be assigned to comparison or treatment groups on 

the basis of a random process which should be unpredictable. In such studies, several methods of 

randomization are available to create comparable intervention groups. Randomized controlled 

trials generally use some form of constraints when allocating subjects for example; blocking, 

stratification, or minimization. The main purpose behind this is to attain a better balance of 

known prognostic factors. Achieving balance on prognostic factors between treatment groups in 

a clinical trial is essential to make sure that any observed treatment outcome may be accredited 

to the treatment itself. Improving the balance on prognostic factors also potentially increases the 

statistical power attained in a trial (Weir CJ and Lees KR, 2003). 

The design of a clinical trial which involves the choice of a method of allocating treatments to 

subjects can contribute to the prevention of selection bias and minimizing the precision and 

validity of the estimates of treatments by minimizing bias and ensuring an efficient comparison 

(Kalish and Begg, 1985). It is desirable that any method of treatment allocation exhibits 

unpredictability and balance between treatment groups with respect to the available treatment 

numbers and major prognostic variables. Being a cornerstone in the design and conduct of 

clinical trials, randomization is the bias of most treatment allocation methods. Randomization 

prevents most clinicians from consciously or unconsciously assigning particular subjects to a 

treatment they believe to be superior hence treatment allocation is not based on subject’s 

prognostic factors. Randomization also prevents confounding and ensures comparability with 

respect to known and unknown factors that may affect the response. 

Since the requirements of randomization and balancing of prognostic factors conflict with one 

another, in practice investigators have to come to a compromise and use a procedure which suites 

that specific trial to be conducted. This study intends to describe current knowledge about the 

implementation of minimization as a form of restrictive measure of randomization in clinical 

trials and try to investigate its behavior in terms of maximizing power. Since power and 
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efficiency are directly correlated, thus for a particular treatment difference and significance level, 

a more highly powerful trial will require more patients and a larger trial will have more power. 

Because of this direct relationship, this study also intends to focus on statistical efficiency. 

1.2     DEFINITION OF TERMS/CONCEPTS 

1.2.1  Effect Size or Treatment Size 

The sample size of a clinical trial depends on the size of the difference to be detected. The larger 

the desired detectable difference the more patients required for the study. It is usually best to 

make sure that there is an adequate number of subjects to detect the minimal “clinically” 

significant difference to avoid the need for astronomically large numbers of patients. 

Considering the rule above, it makes sense that studies, in which strong treatment effects and 

large differences between groups are anticipated, require a smaller number of subjects. 

1.2.2 Power  

The power of a study is defined as its ability to detect a true difference in outcome between the 

treatment arms. It can also be defined as the ability of a test to detect a statistical difference 

between two different treatments, when the difference in fact exists. Power is correlated to the 

possibility of finding a clinically relevant effect for any given drug or treatment and this may be 

termed “clinical effect,” which is not always the same as statistical effect.  

1.2.3 Prognostic Factors 

Prognostic factors are factors that have a greater effect on the response variables. They are 

usually categorized in different levels. Categorizing prognostic variables is vital for their use in 

clinical decision-making. Often a single cut point that stratifies patients into high-risk and low-

risk categories is sought. These categories of prognostic factors may be used for making 

treatment recommendations, determining study eligibility, or to control for varying patient 

prognoses in the design of a clinical trial. Methods used to categorize variables include 

biological determination, arbitrary selection of a cut point at the median value, graphical 

examination of the data for a threshold effect and exploration of all observed values for the one 
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which best separates the risk groups according to a chi-squared test. Prognostic variables can be 

continuous or categorical and they are usually independently distributed. 

1.3    METHODS OF TREATMENT ALLOCATION 

1.3.1 The Method of Minimization 

Minimization is considered not to be a method of randomization. In fact it is the only non-

random technique which is an acceptable option to randomization. Minimization can be 

classified as a “dynamic allocation” or “covariate adaptive” method as the allocation depends on 

the characteristics of patients previously recruited. This is different from “response adaptive” 

methods where the allocation can depend on the interim results of the study. Minimization 

ensures balance between treatment groups for a number of patient factors. Randomization lists 

are not set up in advance. The first patient is strictly randomly allocated; for each successive 

patient, the treatment allocation is identified, which minimizes the imbalance between groups at 

that instance. Minimization makes a sequential assignment of subjects to treatments by 

minimizing the total imbalance between treatment groups over significant prognostic variables.   

1.3.2 Block Randomization 

The basic idea of block randomization is to divide potential patients into m blocks of size 2n , 

randomize each block such that n patients are allocated to treatments A and B then choose the 

blocks randomly. It is used to ensure close balance of the numbers in each group at any time 

during the study. After allocating in every block the number of participants in each group would 

be equal. Blocking tends to diminish the unpredictability of randomization, as a result it is 

recommended to use random block sizes when using block randomization. This method ensures 

equal treatment allocation within each block if the complete block is used. The example given 

below illustrates how block randomization is implemented. 

Example 1(Beller M et al, 2002). 

The permuted block method of randomization for a block size of four, with A and B being 

treatment groups (A = new treatment and B = control/placebo, for example)  
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Table 1-1 

 

A random number sequence is generated from a statistical textbook or computer. Each possible permuted block is assigned a number (1 to 6 in 

the above example). Using each number in the random number sequence in turn selects the next block, determining the next four participant 

allocations. Numbers in the random number sequence greater than the number of permuted block combinations (7, 8, 9 and 0 in the above 

example) are not used to select blocks. 

Block size depends on the number of treatments, it should be short enough to prevent imbalance, 

and long enough to prevent guessing allocation in trials. The block size should be at least 2 times 

the number of treatments. The block size is not stated in the protocol so the clinicians and 

investigators are blind to the block size. If blocking is not masked in open-label trials, the 

sequence becomes somewhat predictable. This may possibly lead to selection bias. The solution 

to avoid selection bias is not to reveal blocking mechanism and to use random block sizes. If 

treatment is double blinded, selection bias is highly not to be expected. Note, if only one block is 

requested, then it produces a single sequence of random assignment, that is simple 

randomization. 
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1.3.3 The Method of Stratification 

Stratification ensures that the numbers of participants receiving each treatment are closely 

balanced within each stratum. Stratified randomization is achieved by performing a separate 

randomization method within each of two or more subsets of participants. Stratified 

randomization has quite a number of potential advantages which include as outlined below. 

i. Greater assurance of homogeneity 

One of the advantages is of providing greater assurance that compared groups are similar with 

respect to known prognostic features other than treatment (R. Simon, 1979; S.J. White and L.S. 

Freedman, 1978; M. Zelen, 1974; A.B. Hill, 1951; R. Simon, 1982; P. Armitage and E.A. Gean, 

1974). For small trials (that is with n < 100) (S.J. White and L.S. Freedman, 1978), stratification 

is cited to assure a valid comparison (P. Armitage and E.A. Gean, 1974).  

ii. Protection against type 1 error  

It also protects against type 1 error . A falsely positive trial could occur if the randomization 

schedule allocates patients between treatment groups such that those patients in the active group 

have a better prognosis than those in the control group. Thus stratification reduces the probability 

of finding statistically a significant difference between two treatment groups when none exists. 

iii. Improvement of power 

Stratification also helps to protect against type II error (increased power) (Walter N. Kernan et 

al, 1999). Investigators refer to the quantity, 1 β−  as statistical power and a highly powered 

study is known to have a greater probability of detecting a specific treatment effect at any given 

level of alpha (significance level). Power is inversely related to variance of the difference 

between two means, thus stratification reduces that variance (J.E. Grizzle, 1982 and O.S 

Miettinen, 1976) and theoretically should increase power and, also when stratification improves 

power, it also reduces sample size.  
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iv. Improvement of efficiency 

 

Efficiency is referred to as the number of patients that are required to detect a difference between 

two treatments at a pre-specified power and level of significance, and increased efficiency is one 

other potential advantage of stratified randomization. The magnitude of the benefit of stratified 

randomization on efficiency has been examined and demonstrated in only a limited number of 

studies (J.M. Nam, 1995 and M. Palta, 1985). Power and efficiency are directly related; hence 

for a specific treatment difference and significance level, a more highly powered trial will 

require more patients and a larger trial will have more power (Walter N. Kernan et al, 1999). 

Other advantages include; facilitation of subgroup analysis, facilitation of interim analysis and, 

protection against effects of recruitment center drop-out. Provided that the number of strata is 

kept small, relative to the size of the study, there is generally no disadvantage to stratification. 

However one problem which is associated with too many strata and incomplete filling of blocks 

is termed overstratification. The maximum number of strata that is acceptable for any trial cannot 

be fixed easily. Investigators have proposed that more than three to four strata are seldom 

advisable (Pocock SJ, Simon R, 1975); the maximum appropriate number of strata depends on; 

i. The total number of subjects in the trial, 

ii. The expected number of subjects who will be in each strata, and 

iii. The significance of the stratification factors. 

The number of strata required in a trial is the product of the number of levels of each factor (for 

example; with just 16 factors, each having 2 levels, 32 strata are possible.). To assure parsimony, 

investigators are encouraged to consider only those clinical variables that have a known and 

important effect on outcome risk or treatment responsiveness (Walter N. Kernan et al, 1999).  

1.4     RESEARCH PROBLEM 

The greatest determinant of the power of a study is its design (Treasure T, MacRae KD., 1998). 

Thus for any particular study, special considerations on the sample size, the effect size and alpha 

(α ) should be practiced since they are so essential in determining the power of a study. In 

studies with restrictions on randomization, imbalances may occur which will lead to power loss. 

It is of greater concern to go beyond older reviews that have focused on limited aspects of power 

maximization in studies with restrictive measures applied on treatment allocation schemes. From 



Maximization of Power in Randomized Clinical Trials using the Minimization Treatment Allocation 

Technique 

- 16 - 

 

previous studies it can be noted that little work has been done by clinicians and clinical 

investigators on the effect of restricted randomization on the validity of significance tests.  

The benefits of minimization have been debated recently (Altman DG., 2005; Buyse M., 2004) 

and a recent review of the usage of minimization recommended 'its wider adoption in the 

conduct of randomized controlled trials' (Scott NW et al., 2002). Some literature suggests that in 

very small trials were there is an insufficient patient population for algorithms to work 

minimization has less statistical benefits and stratification may be necessary. Nevertheless, for 

other trials, including very large trials, minimization is preferable to stratification.  

Angie Wade et al (2006) stated that minimization could be used within treatment trials to ensure 

that prognostic factors are evenly distributed between treatment groups. The method is 

moderately straightforward to apply but does need running tallies of patient recruitments to be 

made and some simple calculations to be performed prior to every allocation. As computing 

facilities have become more widely available, minimization has become a more feasible option 

for many researchers. Although the technique has increased in popularity, more research needs to 

be done to ensure solid results in regard to the power achieved by this technique. Minimization 

improves power by comparing similar groups but randomized block design has even more power 

(Zar JC, 1996). Previous studies conducted by Tu et al. (2000) together with Weir and Less 

(2003) have compared the statistical power of minimization and random permuted blocks within 

strata using simulations but results have differed and McEntegart (2003) states that more 

research is needed before drawing conclusions regarding statistical efficiency of minimization. 

Generally the primary goal of randomized clinical trials (RCTs) is to make comparisons among 

two or more treatments. In this sense clinical investigators require the most appropriate treatment 

allocation procedure to yield reliable information regardless of whether the ultimate data suggest 

a clinically important difference between the treatments being studied or the study is intended to 

measure the accuracy of a diagnostic test or the incidence of a disease. Having all this in mind 

the focus of this research is on finding the parameters within the minimization algorithm that 

yields the most statistical effect in maximizing power for the minimization technique, power in 

this sense refers to the power of a statistical test conditional on the particular restrictive measure 

achieved. 
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1.5   AIMS AND OBJECTIVES 

The main aim of this study is to investigate the maximization of power in clinical trials where 

minimization treatment allocation technique is implemented (a simulation approach). The objectives of 

the study were as follows: 

i. To generate a dataset of size 50≥  with 3-4 prognostic factors and having two treatment groups. 

ii. To compare a measure of the maximum power and balance between treatment groups to be 

attained using different sample sizes under the null and the alternative hypotheses  

iii. To investigate a measure of the maximum power and balance between treatment groups to be 

attained with the effect of varying the probability of assignment { }kP  to treatments 1 and 

treatment 2 using the minimization allocation algorithm. 

iv. To examine the effect of minimization parameters on the power of tests. 
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CHAPTER TWO (2) 

LITERATURE REVIEW 

2.1   INTRODUCTION 

This chapter highlights the implementation of the minimization treatment allocation technique in 

clinical trials. In this context various formulations of power and sample size considerations and 

determination are also discussed. The effects of minimization on statistical efficiency will also be 

highlighted basing on the theoretical aspects, empirical evidence and evidence from previous 

researches.  

2.2    IMPLEMENTATION OF MINIMIZATION TREATMENT             

             ALLOCATION TECHNIQUE 

Minimization makes a sequential assignment of subjects to treatments by minimizing the total 

imbalance between treatment groups over important prognostic variables. This section will 

present the ideas developed by Pocock and Simon on the implementation of the method of 

minimization. 

2.2.1 General Description of Minimization 

Some important prognostic factors are identified before the commencement of a clinical trial 

where the assignment of a new subject to a particular treatment group is determined so as to 

minimize the difference between the groups depending on these factors (Scott et al., 2002). 

Suppose we have N  treatments and M  prognostic factors. Thus for a given arbitrary situation 

in a trial, we denote 
ijkx  as the number of subjects with factor i  at level j  assigned to treatment 

k . Let the next patient entering the trial have factor levels 1, 2,........, .r r rM Therefore if the new 

patient is assigned to treatment k , then only irikx  for 1 to i N=  will change. That is, the number 

of patients assigned to treatment k  will only change for the factor levels that the new patient 

exhibits. Pocock and Simon provided a generalized framework of Taves (1974) minimization 

scheme and treatment assignment that describes the following three functions: 

i. The amount of variation among assignments for any given factor level D , (where D  is 

the individual factor balance function). 
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ii. The measure of the total imbalance in treatment numbers G , (where G  is an overall 

balance function). 

iii. Assignment probabilities to the k  treatments of the trial { }kP  ; where 
1P  is the 

probability of assignment to the treatment that would lead to the least total imbalance p , 

(a set of treatment assignment probabilities). 

Functions D  and G  are used to decide on which treatment assignment will result in the least 

overall imbalance in treatments based on the changed irikx  values. 

2.2.2 The Choice of Individual Factor Balance Function, D  

Consider 1( ,........., )ik iri iriNd D x x=  where ikd  measures the resulting “lack of balance” among 

treatment assignments for factor i  at level ri  if the patient is assigned to treatment k . Pocock 

and Simon considered four possible formulae for choosing D , the range, the standard deviation 

or variance, an upper limit of acceptable treatment imbalance and the sign rule (Pocock and 

Simon, 1975). 

i. The Range of ri , were i is a prognostic factor and r  the factor level. If there are only            

two treatments the range is defined as di NiA NiB= − , where NiA  is the number of            

subjects assigned to A  for ri  and NiB  is the number of subjects assigned to B for ri .  

 

ii. The Standard Deviance or Variance of ri . Because of its squared component, the 

variance measure attaches relatively higher importance to more extreme imbalances, 

which sometimes can be considered appropriate. With only two treatments, the 

standard deviation is equivalent to the range method. 

 

iii. An Upper Limit of Acceptable Treatment Imbalance could be defined for each level of 

each factor. 

 

iv. A Sign Rule, this can be used in the case of two treatments. 
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2.2.3 The Choice of Overall Balance Function, G  

Now consider 1  ( ,  ., ) k k MkG G d d= … for 1  ,k to N= where G  is a function that calculates the 

resulting overall imbalance of the treatment assignments if the patient is assigned to treatment k . 

Then G  might be chosen to simply sum up the ikd  values, or G  could be a weighted sum of the 

ikd  values to reflect the desire to obtain balance for certain prognostic factors more than others 

(Pocock and Simon, 1975). The overall imbalance functions corresponding to each treatment k  

can then be ranked from the smallest overall imbalance value to the largest, with the motivation 

that one would assign a patient to a treatment with a low G  score with a high probability so as to 

increase the chance of maximizing balance among the factors.  

In a purely deterministic procedure, assuming that there are no ties in the scores forG , the 

treatment assignment k  with the lowest G  function would be picked with probability one. But, 

other values for 1  (   ) Np p p= … could be chosen. The patient is then assigned to a treatment 

based on the probabilities for p . The steps above are repeated for every patient that enters the 

trial (Pocock and Simon, 1975). 

2.2.4 The Choice of { }kp  

Determining what values to use for 1  (   ) Np p p= … is important as it establishes the level of 

determinism of the minimization procedure; unpredictability in the treatment assignment process 

will help protect against selection bias. Let 1p  be the treatment assignment probability 

corresponding to the treatment yielding the smallest G  value. Pocock and Simon suggest 

letting
1p p= , where p  is a constant greater than or equal to1/ N , and  

( ) ( )  1 / 1kp p N= − −  for  2  .   1/  k to N p N= =  

which corresponds to random treatment assignment, while 1p =  corresponds to deterministically 

assigning the patient to the treatment yielding the lowest value of G  (Pocock and Simon, 1975). 

Example 1(Beller M et al, 2002). 
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Example of randomisation using the minimisation method in a trial of chemotherapy for breast 

cancer, with stratification factors of clinic site, oestrogen receptor status (ER+ or ER–) and 

menopausal status 

Table 2-1 Status after 34 participants have been randomised to the trial 

Characteristic Treatment A Treatment B 

 

Site 1 7 8 
         

Site 2 10 9 
         

ER+ 5 6 
         

ER– 12 11 
         

Premenopausal 8 9 
         

Postmenopausal 9 8 
         

Total 17 17 
         

 

The next participant (no. 35) is from Site 2, ER+, postmenopausal. Subtotals for treatment allocation to this profile of characteristics are 10 + 5 + 

9 = 24 for Treatment A and 9 + 6 + 8 = 23 for Treatment B (note subjects are counted more than once). Participant no. 35 would therefore be 

allocated to Treatment B. When the tallies on A and B are equal within a profile, the next participant is randomly allocated. This process is 

equivalent to a permuted block size of two within the profile. 

 

2.3 COMPONENTS FOR CONSIDERATION ON STATISTICAL POWER 

ANALYSIS 

Power is calculated based on several components. Some are judgments made by investigators, 

others are calculated from samples. These components are: 

i. Sample size  

ii. Standardized effect size 

iii. Test Size  or Significance level 

iv. Power of the test(1 β− ) 

v. Model(test) 
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2.3.1 Sample Size Calculations 

To estimate a sample size which will ethically answer the research question of a randomized 

clinical trial (RCT) with a reliable conclusion, the following information should be available. 

2.3.1.1 Type of Comparison 

R Schall et al., (1998) noted that there are three types of comparisons and these include 

superiority trials which show that a new experimental therapy is superior to a control treatment. 

There are also equivalence trials which are aimed at showing that the test and control therapies 

are equally effective. Lastly there exist non-inferiority trials, and for these non-inferiority trials 

the aim is to show that the new therapy is as effective but need not be superior compared to the 

control therapy.  

2.3.1.2 Type of Configuration 

Two types of configuration were discussed in an article published by Chan YH. (1998). Firstly 

there is the parallel design which is the most commonly used design. In this design subjects are 

randomised to one or more arms of different therapies and treated concurrently. Secondly there is 

the crossover design, and in this design subjects act as their own control, and will be randomised 

to a sequence of two or more therapies with a washout period in between therapies. The 

crossover design is appropriate for chronic conditions which will return to its original level once 

therapy is discontinued. 

2.3.1.3 Type I Error and Power 

L Thomas and F Juanes, (1996) quoted that the type I error is usually set at two-sided 5% and 

power is at 80% or 90%. For the purposes of statistical testing, the major aim of this study is to 

use a feasible sample of data to evaluate a given hypothesis, 1H , that the effect of treatment 1 

(placebo) is better than the effect of treatment 2 (new drug). If the sample data leads to conclude 

that 
1H  is true, but the contrary is actually the case, that is, if the (null) hypothesis 

0H  is true 

that there is in actual fact no effect this is called a type I error. The probability of a type I error is 

typically designated by α , and statistical tests are intended to ensure that α  is suitably small 

(for example, less than 0.05).  
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However it is also significant to have power over the probability β  of making the opposite (type 

II) error that is, concluding 0H , that there is no effect, when there really is one. The probability 

1 β− , of correctly rejecting 0H  when it is false is traditionally called the power of the test. 

However, another more scientific meaning of power is the probability of rejecting 0H  for any 

known set of conditions, even those matching to 0H  being true. 

2.3.1.4 Effect Size of Therapies 

The effect size specifies the accepted clinical difference between two therapies that a researcher 

wants to observe in a study. There are three usual ways to get the effect size: 

i. From past literature. 

ii. If no past literature is available, one can do a small pilot study to determine the estimated 

effect sizes. 

iii. Clinical expectations.  

To calculate the sample size, besides knowing the type of design to be used, one has to classify 

the type of the primary outcome, which includes: 

i. Proportion outcomes: The primary outcome of interest is dichotomous (success/failure, 

yes/no). For example, 25% of the subjects on the standard therapy had a successful 

outcome and it is of clinical relevance only if we observe a 40% (effect size) absolute 

improvement for those on the study therapy (that is 65% of the subjects will have a 

successful outcome). Thus a simple formula to calculate the sample size is given by  

 

( ) ( ) ( )
( )

1 1 2 2

2

1 2

1 1
size per group

c
m

π π π π

π π

× − + −
=

−
 

 

Where c  (the required total sample size of the standardised effect size in steps of 0.1 for two-

sided 5%) = 7.9 for 80% power and 10.5 for 90% power, 1π  and 2π  are the proportion estimates.  
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ii. Continuous outcomes: There exist two scenarios; firstly a case in which we have two 

independent samples thus, the primary outcome of interest is the mean difference in an 

outcome variable between two treatment groups. For example, it is postulated that a good 

clinical response difference between the active and placebo groups is 0.2 units with a 

standard deviation (SD) of 0.5 units, how many subjects will be required to obtain a 

statistical significance for this clinical difference? A simple formula, for a two-sided test 

of 5%, is  

 

m  (size per group) = 
2

2
1

c

δ
+  where 2 1µ µ

δ
σ
−

=  is the standardized effect size 

 

and 1µ and 2µ are the means of the two treatment groups, σ Sis the common standard 

deviation c  = 7.9 for 80% power and 10.5 for 90% power. Secondly we have paired 

samples. In this case, we have the pre and post mean difference of the two treatment 

groups and a simple formula for the total sample size is; 

n =
2

2
c

δ
+

 

 

2.3.2 Relationship among the Components of Power 

Basing on the arguments and specifications of the various components mentioned in this section, 

namely model (test), standardized effect size, sample size ( n ), significance level and power of 

the test, this sub-section will highlight the relationship among these components. 

Considering the three parameters which characterize power of a study, that is sample size, effect 

size defined by the alternative hypothesis and significance level collectively with the power, 

fixing any three will permit determination of the fourth. Usually the most significant factor 

affecting statistical power is the sample size. In actual fact there is little room to alter a test size, 

and it is as well complex to have power over effect sizes in most cases (Jeeshim, 2004). Different 

statistical tests need different methods of calculating power for the reason that the sensitivity of 
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the tests varies. Power is the ability to identify a difference in effect between treatments; if the 

test being used is not extremely sensitive, in that case a bigger sample will be desirable to attain 

sufficient power. Tests in which the data satisfy the assumptions of a normal distribution are 

usually fairly robust, meaning they can detect differences with high sensitivity, so their sample 

sizes might be moderately small. For the reason that tests for non-normal data (for example; Chi 

Square or the Mann-Whitney U) are comparatively insensitive, they need bigger samples. 

Multivariate tests over and over again need larger samples for the reason that they are looking for 

multiple relationships and interrelationships, hence have to be responsive as much as necessary 

to detect them all. 

Effect size is a key consideration in power calculation. Just as a large object is easier to see than 

a small one, big effects are easier to notice in the data than small effects. To compute power, the 

investigator has got to predetermine the size of effect considered clinically important. A new 

drug that cures only 1% of the patients will on no account depart the pharmacy shelf, but one that 

cures 80% will fly off the shelves. The difficulty of clinical implication becomes more appealing 

if a cure rate of only 10%, 20% or 30% is clinically significant. Large effects can be detected by 

means of small samples, whereas subtle effects need large samples. Detecting rare side effects 

requires extremely large samples. Determining a significant effect size is a ruling call, but 

clinical expertise, historical studies, and patient responses possibly will all be considered.  

The tolerable level of power is also set by the researcher. A power of 80% is considered the 

modestly satisfactory level, at the same time a number of researchers need much higher levels of 

power for their studies. Selecting an advantageous power level is achieved by balancing the need 

to detect a result with the difficulty in obtaining large sample sizes. The following elements of 

power calculation, which include, the precise statistical test, meaningful effect size, and level of 

power necessary are determined by the researcher prior to the commencement of the study. 

Researchers usually report these elements in the methods section of an article by means of the 

discussion of sample size and power analysis. Additionally, elements of power calculation are 

not selected but somehow predictable by taking into consideration characteristics of the probable 

population. As a general rule, a highly heterogeneous population is not represented well by a 

small sample, and so will have less power. Heterogeneity can be assessed statistically via the 

standard divergence of key variables. If prior measurement of outcome variables shows an 
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enormous deal of variability as represented by a moderately large standard deviation, then larger 

samples will be considered necessary.  

The probabilities that a number of groups will be under or over-represented are greater in a 

diverse population, hence larger samples can aid guarantee that this does not take place. To 

institute population characteristics with whichever assurance, historical data or data from 

comparable studies is necessary. Unfortunately, these statistics are frequently unavailable for 

early-stage studies, hence when no historical data are available, precise power analysis is 

problematic. The main ordinary way to get hold of data is to carry out a pilot study. There are a 

lot of additional advantages of conducting pilot studies prior to full-scale randomized trials, these 

include, assessments can be tested, protocols refined, and measures experienced relatively 

quickly and economically with small numbers of subjects. On the other hand, if a pilot study is 

not possible and no historical data is accessible, the researcher can analyze data from the initial 

subjects to determine with restricted certainty whether the sample size is supposed to be 

modified. The diagrammatic representation of the relationship among the components is given in 

figure 2-1 below: 

 

Figure 2-1  RELATIONSHIPS AMONG THE COMPONENTS OF POWER  
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Model (Test): Due to variation of sensitivity of tests, different statistical tests require different 

methods of calculating power. If the test being used is not very sensitive, then a larger sample 

size is required to obtain adequate power. Also a model (or a test) dictates the formula for the 

standardized effect sizes (test statistics). 

Standardized effect size: Effect size is a key consideration in power calculation (Houser J, 2007). 

Large effects can be detected with small samples, while subtle effects require large samples. 

Detecting rare side effects requires very large samples. If the standardized effect size is small, it 

is difficult to detect effects even when they exist, that is larger power is achieved by larger effect 

size (positive relationship). 

Sample size (n): A larger sample size generally leads to a parameter with smaller variances, a 

larger standardized effect size and eventually a greater ability to detect a significant difference 

(positive relationship with power and standardized effect size). 

Test size (Significance level): The lower the significance level, the lower the power hence there 

is a positive relationship between the two components. 

2.4 OVERVIEW ON THE MINIMIZATION TECHNIQUE 

2.4.1 History and Background 

This method was introduced by Pocock and Simon in 1975 and they declared that it may finally 

be able to replace longer established procedures (Pocock SJ and Simon R, 1975).The 

minimization method was described separately by Taves (Taves DR, 1974) and Pocock and 

Simon (Pocock SJ and Simon R, 1975). Even though the term “minimization” can be applied to 

any of Pocock and Simon’s methods, it is most commonly used to refer to the special case 

described by Taves, which is less complex to use in practice. Begg and Iglewicz extended 

Pocock and Simon’s method by minimizing an estimate to the variance of the treatment effect 

(Begg CB and Iglewics B, 1980). Begg and Iglewicz method allows chosen interactions to be 

incorporated. Atkinson also provided a method which uses optimum design theory, but here the 

probability of allocation to the underrepresented treatment responds to increasing imbalance 

rather than just being a random value (Atkinson AC, 1982). Smith proposed a modification of 

Atkinson’s method (Smith RL, 1984). Klotz’s method addresses the issue of a trade-off between 
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uncertainty and imbalance which is similar to that of Pocock and Simon but is more 

computationally demanding and describes a function for calculating the best possible treatment 

randomization probabilities (Klotz JH, 1978). Titterington proposed a similar method that 

involves minimizing a quadratic criterion subject to a balance constraint and is said to be simpler 

than Klotz’s method (Titterington DM, 1983). These proposed minimization methods and a 

variety of other allocation methods have been used in quite a number of studies.  

The minimization method has been used since then and it is far from widely replacing other 

methods of randomization. The International Conference on Harmonization (ICH) support the 

use of dynamic allocation, and the CONSORT statement declares “trials that use minimization 

are measured methodologically equivalent to randomized trials, even when a randomization 

element is not included” (http:www.consort-statement.org/statement/revisedstatement.htm.). On 

the other hand, when Altman and colleagues reviewed 80 randomized clinical trials from four 

journals in 1990, they found that only one used minimization (Scott et al. 2002). Scott et al 

reviewed all randomized clinical trials published in Lancet and the New England Journal of 

Medicine in 2001 and found that only 4% of the 150 trials used minimization (Scott et al. 2002). 

Scott et al did not mention the proportion of trials that they thought minimization would be 

appropriate for, however twenty nine percent of the trials used permuted block stratification and 

13% used other stratification methods. The remaining articles did not evidently explain the 

alternative of allocation technique (Scott et al. 2002). The apparently minute percentage of 

minimization uptake in light of its public commendations may result from the analysis and 

practical issues. Tu et al speculate that minimization might be an additional well-liked alternative 

in academic world than in industry (Tu et al, 2000). 

The major drawback of deterministic allocation procedures such as minimization is that in 

certain cases the next allocation can be predicted by means of assurance and knowledge of the 

characteristics of earlier patients. Therefore there is a potential for selection bias, which can have 

an effect on the validity of a trial’s results. Even an understanding on which allocation is more 

likely to take place next can result in selection bias. It must be noted that the predictability issue 

is not just restricted to minimization. In randomized permuted block the allocation intended for 

the final patient in each block can also be predicted through assurance even if blocks of random 

length are used, and the most probable allocation can often still be guessed. Taves realized that 
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the next assignment can usually be predicted if the exact system used in the minimization 

method is well-known (Taves DR, 1974). He showed that minimization can be considerably less 

predictable than restricted randomization but the subsequent allocation might still be guessed by 

means of knowledge of just the current group totals in nearly 70% of cases. Pocock and Simon 

and others have argued that the probability of assignment to the “optimal” treatment according to 

the minimization algorithm should be set at some value less than one to make sure that the next 

assignment can on no account be predicted by means of certainty (Pocock SJ and Simon R, 

1975). On the other hand, they and others acknowledged that in many trials, mainly multicenter 

trials, it is acceptable to set this probability to one (White SJ and Freedman LS, 1978).  

Additional methods have been planned that seek out a compromise between the conflicting aims 

of ensuring balanced groups and ensuring unpredictability of assignment. No more than one 

report had been identified that used simulations to investigate the effect of varying the 

probability of assignment to the treatment selected by the minimization algorithm. Pocock and 

Simon compared allocation systems where the probability of getting the optimal treatment be 

reduced from 1 to 0.75 (Pocock SJ and Simon R, 1975). Peto et al believed that the gains in 

effectiveness and balance comparative to complete randomization insignificant (Peto R et al, 

1976). They also consider the use of any stratified method of randomization unnecessary as the 

added complexity is able to harm enrollment and adjustments for covariates can be prepared at 

the end of the trial. Their arguments have, nevertheless, been countered by a number of authors. 

Other potential drawbacks of using minimization were noted. Firstly minimization is 

fundamentally a deterministic scheme but statistical tests used in the analysis of the trial 

formulate the assumption of random allocation. Secondly, also arising from the nonrandom 

nature of minimization, are concerns concerning selection bias due to the fact that the next 

assignment might be predicted in a number of situations. Lastly, minimization can result in 

organizational complexity as a result of its potential to damage recruitment as well as raise 

expenditure. 

The use of minimization can, on the other hand, also guide indirect benefits as well as increased 

persuasiveness and credibility by presenting data signifying that prognostic factors be closely 

balanced within each treatment group (Brown BW, 1978). It has furthermore been recommended 

that planning to use minimization is a good regulation for making trialists feel confident about 
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prognostic factors prior to a study and for helping guarantee loyalty to the protocol as the trial 

progresses (Day S, 1999). Additional benefits of the minimization technique have been 

anticipated, such as the ability to consist of more patient factors than for stratified randomization. 

This can be chiefly important in smaller trials in which quite a few factors are known to have an 

effect on outcome (Pocock SJ, Lagakos SW, 1982). Additionally, minimization can have power 

over confounding factors without the need of splitting the patient sample into too numerous 

strata (Kalish LA, Begg CB, 1985). 

2.4.2 Practical and Theoretical Considerations in using Minimization 

Taves acknowledged that the use of his technique does have implications for the analysis of the 

trial (Taves DR, 1974). He further suggested that modification should be made for factors used 

in the minimization using analysis of covariance, recognizing that minimization is not a random 

scheme. Many standard inferential measures necessitate that each series of treatment assignments 

is evenly probable. Only simple randomization has this property, on the other hand, concerns 

over the validity of the analysis surround not just minimization but all other allocation methods. 

As a result a disadvantage of adaptive methods like minimization is that the correct statistical 

analysis is compound and not yet obviously worked out (Halpern J and Brown BW, 1986; 

Lachin JM, Matts JP, Wei LJ, 1988). Quite a few authors have discussed how permutation tests 

can be conducted when analyzing trials where such methods have been used (Kalish LA and 

Begg CB, 1985),(Simon R, 1979),(Green H et al, 2001). Even though it is hypothetically 

achievable to carry out a suitable permutation test for minimization using simulation, this is in 

practice not straightforward and makes little distinction to the results obtained (Buyse M, 2000). 

Although Green et al. (2001) thinks that permutation tests be unnecessary provided that 

minimization factors be used as covariates in the analysis, they refer to a case where a U.S. 

regulatory organization requested that a trial that had used minimization be reanalyzed using 

permutation tests (Green H et al, 2001).  

Pocock and Simon cite in brief the likelihood of accidental bias taking place when patients go 

into a trial in a nonrandom order (Pocock SJ and Simon R, 1975). Though the consequence of 

stratifying by a covariate and then ignoring it in the analysis may perhaps not be severe, 

accidental bias is able to result from using an erroneous hypothetical model for analysis. It is 

likely that accidental bias decreases whilst a random element is included into such a methodical 
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design (Simon R, 1979). Halpern and Brown have described how in the case of biased coin 

randomization the classical analysis will more often than not yield acceptable conclusions apart 

from  specific conditions such as trends in outcome of low time frequency in the stratifying 

variables (Halpern J and Brown BW, 1986). Many authors have discussed the consequence of 

minimization on the nominal level of the significance test as well as on the power of the test. 

Forsythe and Stitt showed that if the analysis method ignores the fact that minimization has been 

used; this will result in p-values that are indistinct (Forsythe AB and Stitt FW, 1977). On the 

other hand, when analysis of covariance is used to evaluate treatments following adjusting for 

the upshot of the covariate, the significance level resulting from minimization is equivalent to the 

nominal level of the test.  

Additionally, the analysis of covariance resulting from minimization is more influential than that 

resulting from randomization, though the differences were not great. Birkett used simulations to 

evaluate minimization by means of simple and stratified randomization (Kalish LA and Begg 

CB, 1987). Minimization resulted in conservative levels of significance using Student’s t test, 

and even though minimization shaped improvements in power compared to stratification in 

opposition to chosen hypotheses, little or no increase in power has been seen except “actual” cut 

points  were used. He suggests that the use of analysis of covariance in the analysis may 

additionally increase power. Kalish and Begg found that by simulating data from actual trials p-

values resulting using permuted block randomization implementing Begg as well as Iglewicz’s 

techniques were conservative but were not probable to be strictly unclear if the analysis is 

stratified by the covariates used as analysis prompts (Kalish LA and Begg CB, 1987).  

Furthermore, the intrinsic conservativeness of exact methods due to discreteness tends to govern 

any extra conservativeness due to nonrandom designs. Tu et al conducted simulations using data 

from two actual trials (Tu D et al, 2000). They bring into being that minimization be inferior to 

stratified allocation in reducing alpha in addition to beta errors and be almost comparable to 

simple randomization in this regard. They affirm that the balance in marginal totals achieved by 

minimization will be adequate when the effects of prognostic factors do not interrelate. When 

such interactions do exist, as is frequently the case in actual trials, balance among individual 

strata is essential to decrease alpha errors. They believe that minimization enhances reliability by 

producing marginal balance, but whether it can increase accuracy depends on whether 
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interactions exist between covariates. They have the same opinion that explanation should be 

taken of the covariates in the analysis. Senn argues that factors used in the minimization have got 

to also be incorporated in the analysis and that using minimization but not together with the 

covariates in the model is not justifiable (Senn S, 1995).  

Fisher and Yates argued from a Bayesian viewpoint he argues that balancing for factors that are 

not incorporated in the model is worthless if not risky (Senn S, 2000). Even though Kalish and 

Begg states that the agreement is that factors used in the allocation process have to be accounted 

for in the analysis, they also admit that scientific audiences might find the results of simple, 

unadjusted treatment comparisons by means of demonstration of good balance of important 

factors extra realistic than the results of a covariate analysis (Kalish LA and Begg CB, 1985). 

Other authors have overlooked such abstract concerns in practice. Vaughan Reed and Wickham 

state that they do not regulate for covariates for the reason that the errors introduced be likely to 

be fewer than the errors resulting from imbalance among treatment groups (Vaughan Reed J and 

Wickham EA, 1988). Watson and Pearce also do not consider so as to the nonrandom allocation 

process invalidates the statistical assumptions to any large degree as it would still be likely for 

whichever individual to be allocated to any treatment (Rovers MM et al, 2000). Treasure and 

MacRae consider that attempts to regulate for imbalances in randomization might guide to 

ambiguity about the legitimacy of the conclusion (Treasure T and MacRae KD, 1998). 

Even if the calculations required for assigning treatments using minimization be moderately 

straightforward as well as knowing how they are conducted by hand, they might exist difficult as 

well as unfeasible in numerous situations (Taves DR, 1974 ; Pocock SJ and Simon R , 

1975),(Vaughan Reed J and Wickham EA, 1988). White and Freedman have exposed how this is 

capable of being cut down in practice using index cards (White SJ and Freedman LS, 1978). 

Despite the fact that several authors differ in that the implementation of the standard 

minimization technique increases the organizational burden, the use of various prognostic factors 

and extensions to the standard method (such as the use of weighting factors by means of diverse 

probabilities) put in additional difficulty. A lot of investigators have made use of computerized 

randomization, although the issue of computer downtime has been mentioned (Therneau TM, 

1993). Additionally, a continuously updated centralized scheme is necessary since the allocation 

of every new patient entering the trial depends on information of prior patients entered being 
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kept up to date. By means of conventional stratified randomization the whole randomization 

schedule can be formed and circulated to centers in advance (Kalish LA and Begg CB, 1985; 

Simon R, 1979). On the other hand, for multicenter trials central randomization has additional 

reward such as the capability to centrally regulate the trial as well as to watch alongside selection 

bias. Stratified minimization performed locally by every center is as well an alternative. 

An additional practical thought in multicenter trials concerns precisely when patients come into 

view for randomization and how extended a gap linking recruitment and the need for an 

allocation is tolerable. The minimization may be logistically more difficult to put into practice in 

an emergency situation, in which patients can come in at any time as well as need instant 

allocation, than in situations where the allocation is non-urgent and an office hour’s 

randomization service is adequate. It has been recommended that the use of more complex 

allocation methods may damage recruitment of clinicians as well as accrual of patients to the 

trial (Peto R et al, 1976). This is not the knowledge of Kalish and Begg, but they consider that 

the difficulty of the algorithm used may create practical problems for the administrators of the 

trial (Kalish LA and Begg CB, 1985). Programming errors are not infrequent when computerized 

randomization is used. As for example, one recent trial had to re-recruit over 1000 women when 

an error in the minimization algorithm caused severe imbalance (Lancet, 2001). This can be 

prevented by the routine integration of simulation exercises to make sure the minimization 

algorithm before recruitment commences (McPherson G and Campbell MK, Grant A, 2002).  

The implementation of more compound allocation schemes such as minimization can be 

unreasonably expensive, even though it has been pointed out to facilitate even minute gain in 

effectiveness to save money, particularly for centers conducting many trials concurrently (Kalish 

LA and Begg CB, 1985). Hamilton demonstrated the advantage of minimization in a state where 

the supply of a drug at centers can be restricted (Hamilton SA, 2000). The issue of using 

withdrawals following randomization can also be significant (Zielhuis GA et al, 1990; Rovers 

MM et al, 2000; Vaughan Reed J and Wickham EA, 1988). Zielhuis et al have described such a 

situation when such dropouts caused an actual trial to turn out to be imbalanced whereas 

simulations had revealed ideal balance using minimization (Zielhuis GA et al, 1990). The most 

important cause for using minimization is the need to attain balanced groups by means of respect 

to both the numbers in each treatment arm and the uniqueness of each group.  
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It has been seen that the method of minimization has such a wider adoption by clinicians and 

investigators are so much eager to venture into having a more understanding in the use of this 

method. Much credibility has been given to this technique and in the light of this scope adequate 

literature is seen to be available for one to draw conclusive evidence and investigations regarding 

this new dynamic method of treatment allocation. However the next section will focus on the 

researches which were previously done subject to the aims of this study. 

2.5  PREVIOUS RELATED RESEARH 

2.5.1 The Method of Minimization Proposed by Pocock and Simon 

                 -Properties with Regards to Balance and Inferential Validity. 

This study focused on the minimization method developed by Pocock and Simon (1975), which 

is a somewhat controversial treatment allocation method proposed for sequential randomized 

trials that require balancing over several factors. The researcher pointed out that the main reason 

for this controversy concerns the validity of conventional analyses following minimization. 

Another aspect of statistical properties is power and it was not further investigated in this study. 

By use of simulations, the method’s properties with regards to balance and inferential validity 

were investigated.  

Results showed that minimization yields tight balance, which has also been shown in previous 

studies. Due to the limited number of replications used in the simulation study, the researcher 

found it difficult to draw extensive conclusions regarding the validity of standard inferential 

procedures following the use of minimization. However, nothing indicated that the standard tests 

used in the simulation study -ordinal logistic regression, and frequency table analysis does not 

have satisfactory properties. The researcher recommended that studies where minimization has 

been used should be analyzed using randomization tests. 

2.5.2 The Method of Minimization for Allocation to Clinical Trials: a Review  

The researchers defined minimization as a largely non-random method of treatment allocation 

for clinical trials, and conducted a systematic literature search to determine its advantages and 

disadvantages compared with other allocation methods. A total of articles which amount to 71 

were assessed. Reviews on advantages and disadvantages of minimization as well as the 

comparison of minimization with other methods were carried out. It was clear that a number of 
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authors have used computer simulations to prove that minimization is a better method as 

compared to other allocation methods such as simple (unrestricted) randomization, restricted 

randomization, stratified allocation methods and other allocations. Further reviews on the 

current status of minimization evidenced from published papers and empirical evidence was 

done. The most common design was permuted blocks within strata, minimization was considered 

as infrequently used and not a well-known technique. 

Many authors discussed the effect of minimization on the nominal level of the significance test 

and on the power of the test (alpha and beta errors). Additionally, the analysis of covariance 

resulting from minimization was more powerful than that resulting from randomization, despite 

the fact that the differences were not enormous. Birkett used simulations to compare 

minimization with simple and stratified randomization (Birkett NJ, 1985). Minimization resulted 

in conservative levels of significance using Student’s t test, and although minimization produced 

improvements in power compared to stratification against selected hypotheses, little or no 

increase in power was seen unless “actual” cut points were used. Birkett (1985) suggests that the 

use of analysis of covariance in the analysis may further enhance power. Tu et al. conducted 

simulations using data from two actual trials (Tu D et al, 2000). They established that 

minimization was inferior to stratified allocation in reducing alpha and beta errors and was 

almost comparable to simple randomization in this regard. 

A recommendation on which allocation method to use was reviewed and it was found that few 

authors make unqualified recommendations as to whether minimization should be used in 

practice in preference to other methods. At least two articles came out wholly in favour of the 

minimization method, the other referring to minimization as the platinum standard if 

randomization is the gold standard (Vaughan Reed J and Wickham EA, 1988) (Treasure T and 

MacRae KD, 1998). Other authors cite minimization as the technique of choice (or one of a 

number of methods of choice) in smaller trials when it is desirable to attain balance in a number 

of prognostic factors (Simon R, 1979) (Campbell MK and McPherson G, 2001). Kernan et al. 

believe minimization preferable to stratification techniques when more than four such variables 

are used.  

Despite the advantages of minimization and the recommendations by many commentators to use 

it, the research has showed that the use of the technique is still rarely reported in randomized 
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trials. This may possibly have resulted in a number of trials displaying significant treatment 

imbalance between groups unnecessarily. The researchers additional urged that research into the 

efficiency of minimization in more complex designs is necessary. In summary, therefore, it was 

believed that the results of the review suggested that minimization is a highly effective method 

for treatment allocation, and advocated for a wider implementation of the technique within the 

clinical trial field. 

2.5.3 Comparison of Randomization Techniques for Clinical Trials with    

    Data from the HOMERUS-Trial  

Numerous methods of randomization are available to create comparable intervention groups in a 

study.W.J. Verberk et al.(2005) considered a HOMERUS-trial, were they compared the 

minimization procedure with a stratified and a non-stratified method of randomization in order to 

test which one is most suitable for use in clinical hypertension trials. The second aim of this 

article was to describe the baseline characteristics of the HOMERUS-trial.  

The HOMERUS population consisted of 459 mild to-moderate hypertensive subjects (54% 

males) with a mean age of 55 years. These patients were prospectively randomized with the 

minimization scheme to either the office pressure (OP) group, where antihypertensive treatment 

was based on office blood pressure (BP) values, or to the self-pressure (SP) group, where 

treatment was based on self-measured BP values. Minimization was compared with two other 

randomization methods, which were performed post-hoc: (i) nonstratified randomization with 

four permuted blocks, and (ii) stratified randomization with four permuted blocks and 16 strata. 

Additionally, numerous factors that might influence outcome were investigated for their effect 

on BP by 24-h ambulatory blood pressure monitoring (ABPM). Minimization and stratified 

randomization methods did not lead to significant differences in 24-h ABPM values between the 

two treatment groups. Non-stratified randomization resulted in a significant difference in 24-h 

diastolic ABPM between the treatment groups. Factors that caused significant differences in 24-h 

ABPM values were: region, centre of patient recruitment, age, gender, microalbuminuria, left 

ventricular hypertrophy and obesity.  

The researchers finally concluded that minimization and stratified randomization are appropriate 

methods for use in clinical trials. Several outcome factors must be taken into account for their 
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potential influence on BP levels. The author recommended that due to the large number of 

potential outcome factors that can influence BP levels, minimization should be the preferred 

method for use in clinical hypertension trials, as it has the potential to randomize more outcome 

factors than stratified randomization. 

2.5.4    An Investigation of Minimization Criteria 

Angie Wade et al (2006) developed an automated package for patient allocation which 

incorporated a simulation arm. They demonstrated how simulation of data can help to determine 

the input parameters to be used in a subsequent application of minimization. Several scenarios 

were simulated and within the selected scenarios, increasing the number of factors did not 

substantially adversely affect the extent to which the treatment groups were balanced with 

respect to the prognostic factors.  

Weighting of the factors tended to improve the balance when factors had numerous categories 

with only a minor negative effect on the factors with a smaller number of categories. When 

interactions between factors were included as minimization factors, there was no major reduction 

in the balance overall. The researchers finally concluded that, with the advent of widely available 

computing facilities, researchers can be better equipped to implement minimization as a means 

of patient allocation. Simulations prior to study commencement can assist in the choice of 

minimization parameters and can be used to justify those selections. 

2.5.4 New Algoritm for Treatment Allocation Reduced Selection Bias and Loss of Power     

               in Small Trials 

The researchers’ objectives were focused on clinical trials where patients become available for 

treatment sequentially. Especially in trials with a small number of patients, loss of power may 

become an important issue, and also when treatments are not allocated equally or if prognostic 

factors differ between the treatment groups. They presented a new algorithm for sequential 

allocation of two treatments in small clinical trials, which are concerned with the reduction of 

both selection bias and imbalance. 

With this algorithm, an element of chance is added to the treatment as allocated by minimization. 

The amount of chance depends on the actual amount of imbalance of treatment allocations of the 
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patients already enrolled. The sensitivity to imbalance may possibly be tuned. They performed 

trial simulations with different numbers of patients and prognostic factors, in which they 

quantified loss of power and selection bias. 

With their method, selection bias was seen to be smaller than with minimization, and loss of 

power was lower than with pure randomization or treatment allocation according to a biased coin 

principle. The method combines the conflicting aims of reduction of bias by predictability and 

reduction of loss of power, as a result of imbalance. The technique might be of use in small 

trials. 

2.5.6   Power of Minimization versus Stratification Methods (Previous Studies) 

Various researchers have studied and compared stratification with minimization. Focusing on 

power, this section will concentrate mostly on previous researches done on power comparison 

for the minimization treatment allocation technique and stratification. In the light of this context, 

initial simulations studies comparing the power of minimization and stratification tended to use 

unrealistic datasets with normally distributed and independent variables. Only three recent 

studies have somehow shaded some light on overcoming this deficiency. 

2.5.4.1 Adjustment of Treatment Effect for Covariates in Clinical Trials: Statistical      

                        Regulatory Issues 

 Tu et al (2000) sampled data from two datasets of actual subjects with known binary outcome 

and covariates. Taking sample sizes of 50, 200 and 400, they examined the type1 and type2 

errors associated with the minimization technique, stratified randomization with a block size of 

two and simple unstratified randomization with a block size of two. With the assumption that the 

correct stratified analysis technique is used, the authors found that the performance of 

minimization largely depends on the presence or absence of covariate interactions that predict 

outcome. Minimization was overshadowed with stratification in datasets with interactions. In 

datasets without covariate interaction, minimization accounting for three or four prognostic 

factors was less powerful than stratified randomization for trials of size 50 and 200 but 

approached equality for trials of size 400.The seemingly poor performance of minimization in 



Maximization of Power in Randomized Clinical Trials using the Minimization Treatment Allocation 

Technique 

- 39 - 

 

one of the datasets was attributed to interactions between the covariates that are predictive of 

outcome. 

2.5.4.2 Comparison of Stratification and Adaptive Methods for Treatment     

            Allocation in an Acute Stroke Clinical Trial    

In contrast of the latter study, Weir and Less (2003) found advantages for minimization over 

stratified randomization in trials of 1000 subjects and a normally distributed outcome variable. 

The aim of this comparative study was to compare statistical power in stratification and adaptive 

methods for treatment allocation in an acute stroke clinical trial. The study was based on the 

following theoretical aspects, (i) Achieving balance on prognostic factors between treatment 

groups in a clinical trial is important to ensure that any observed treatment effect may be 

attributed to the treatment itself, (ii) Improving the balance on prognostic factors also potentially 

increases the statistical power attained in a trial, (iii) Substantial imbalances may occur by 

chance if simple randomization is used, (iv) Allocation of the treatment according to stratified 

random blocks based on clinical features is the conventional approach to obtain treatment groups 

that are as similar as possible. 

Basing on this the researchers proposed an alternative approach known as minimization which is 

generally known as adaptive stratification. They assessed the feasibility of minimization in the 

context of a clinical trial of insulin in controlling plasma glucose level following acute stroke. 

Determination of suitable settings for the parameters in the adaptive stratification was done by 

implementation of simulation studies. The researchers further assessed; the optimal probability 

for allocating a patient to the preferred treatment group, the number of variables that could be 

incorporated in the adaptive stratification algorithm, the weighting that should be given to each 

variable, and whether interactions between variables should be included. 

They then compared the statistical power across a range of simulated treatment effects between 

trials where treatments were allocated by stratified random blocks and by adaptive stratification. 

Finally they considered the importance of the method of analysis in realizing the gain in power 

which may potentially be achieved by allocating treatments using stratified random blocks or 

adaptive stratification. 
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2.5.4.3 Choosing an Optimal Treatment allocation Method in Randomized Clinical  

            Trials (Poster) 

Quinaux et al (2001) provided a comparison of stratified randomization and minimization in 

trials of size 400 and censored survival data sampled from real data. The simulations accounted 

for centre and additionally one, three and five prognostic variables. The main conclusion was 

that pre-stratification provided relatively little gain in power over post-stratification. In terms of 

the comparison between minimization and stratification, there was a little difference in power for 

the two randomization methods.      

2.6 CONCLUSION     

All aspects that govern the use, outcomes and nature of the minimization scheme have been 

discussed on a relatively wider perspective in this chapter. Introduced by Pocock and Simon in 

1975 this method was aimed to replace other existing randomization methods. The method is 

seen to be usually preferred in academics than industry as mentioned by Tu et al. (2000). 

Since this technique minimizes imbalances between treatment groups over important prognostic 

factors, many authors agreed that it yields tight balance as compared to other treatment allocation 

techniques. Few studies have investigated the effect of the probability of allocation { }kp but 

other investigators argued to keep it between 1 and 0.75. Though minimization has more 

advantages than disadvantages it has a potential of selection bias and it is advised to be 

implemented in small trials in which a few factors are known to have an effect on outcome. 

In terms of power, quite a number of researchers have investigated the power of minimization 

compared to other randomization schemes using simulation studies. It has power over 

confounding factors without the need of splitting the individual samples into too numerous strata. 

Less power is noticed in datasets with interactions between covariates, having 3-4 prognostic 

factors and sample size of 50 and 200 but powerful at 400. Sample size was seen to be the most 

significant factor affecting statistical power. 80% power is considered to be the moderately 

acceptable level even though quite a number of investigators need much higher levels of power 

for a study. A few studies have focused on investigating the power of minimization and some 

researchers highlighted that more research needs to be done into the efficiency of minimization. 
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The minimization method is seldom reported in trials and is seen to be used in small trials due to 

the conflicting aims of reduction of bias by predictability and reduction of loss of power as a 

result of imbalance. This chapter gave an insight on the vast amount of research that still needs to 

be done on this adaptive method in the academic world. In this context one can explore more 

since little has been done to investigate the statistical implications in using minimization 

treatment allocation technique in order to come up with decisive conclusions that can lead to a 

wider adoption of this method. With all this literature at hand, this study will just focus on ways 

to maximize power using the minimization technique as a method of treatment allocation. 
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CHAPTER THREE (3) 

STATISTICAL METHODOLOGY AND DESIGN 

3.1 INTRODUCTION   

This chapter will present the statistical methods and designs used in this study and their 

justification. Since a simulation approach is to be implemented in this study, various forms of 

incorporating statistical techniques in SAS are to be described as well as the simulation of data 

and power calculation. The data to be simulated is categorical hence more aspects on categorical 

data handling will also be highlighted in this chapter. 

3.2 HYPOTHESIS 

The primary aim of this study is to test the null hypothesis that there is no difference in treatment 

effect against the alternative hypothesis that the effect of treatment 1 (new drug) is better than the 

effect of treatment 2 (placebo). This can be denoted as: 

0 1 2: 0H β β− =    

1 1 2: 0H β β− ≠      

Where 
1β  is the effect due to treatment 1 and 

2β  is the effect due to treatment 2.  

3.3 RESEARCH DESIGN 

A simulation study was conducted using SAS programming language. Initially two ordinal 

categorical response variables having six levels each with higher levels representing better 

response was simulated, one for each treatment group together with three other categorical 

prognostic factors, where two were binary (two levels each) and one with four levels. 

Dummy variables were used to distinguish different treatment groups. The probability of 

allocation to either treatments ( kP ) was set to range from 0.1 to 1 and the minimization treatment 

allocation algorithm (given in the appendix B as code_3) was used to randomly assign subjects 

to either treatment 1 (new drug) or treatment 2 (placebo).The sample size was initially set at 50. 

Since the response variables were polytomous and ordinal, ordinal logistic regression using the 

PROC LOGISTIC procedure in SAS was used for determining the differences between the 
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treatment groups by taking note of the behavior of the odds ratio output and the use of the 

CONTRAST statement in SAS. 

3.4 ANALYSIS ISSUES 

Most standard tests which are used for statistical inference assume random treatment assignment. 

This assumption does not hold with dynamic allocation techniques; hence such tests are not 

necessarily valid from a statistical point of view. Permutation tests have been used to analyze 

data from trials which uses the minimization method (Scott N.W et al, 2002). Currently, 

conventional tests are being used to analyze data in most trials which uses dynamic allocation 

schemes. Regarding post-adjustment, the general consensus is that, if pre-adjustment methods 

(such as minimization) are employed, post-adjustment procedures should be used as well, by 

means of an analysis of variance or other methods of analysis. Post-adjustment procedures adjust 

imbalances in the analysis stage of the trial. Examples of such methods include, analysis of 

variance or covariance (when the primary outcome is quantitative), logistic regression (when the 

outcome is binary or polytomous), and Cox-regression (for time to event data). Any post-

adjustment procedure used should be planned and stated before the trial begins. In this study the 

logistic regression approach was used since the outcomes were categorical. (http:www.consort-

statement.org/statement/revisedstatement.htm.) 

3.5 CATEGORICAL VARIABLES (SCALE OF MEASUREMENT) 

In this study the data to be generated and used will be having measures that are categorical. 

Categorical data are the ones presented in tabular form, known as contingency tables. 

Categorical data analysis is concerned with the analysis of categorical response measures 

regardless of whether any accompanying explanatory variables are also categorical or 

continuous. 

An important framework for consideration in determining the appropriate analysis of categorical 

variables is their scale of measurement. This section will describe the various scales of 

measurement that are related with categorical response variables. Categorical response variables 

include: 

i. Dichotomous response variables. 

ii. Ordinal response variables. 
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iii. Nominal response variables. 

iv. Discrete counts. 

v. Grouped survival times. 

Dichotomous responses are those that have two possible outcomes, for example yes and no. If 

the outcome from any clinical trial is dichotomous, then the analysis investigates the relationship 

between the responses and treatment groups. 

When categorical responses represent more than two possible outcomes and often these possible 

outcomes take some inherent ordering, such response variables have an ordinal scale of 

measurement, for example low, medium and high. The order of the response levels is clear but 

there is no clue as to the relative distances between the levels. The outcomes can be analyzed 

using the proportional odds model to assess the relationship between the response variable, 

treatment groups and other prognostic factors. This study is concerned with this type of response 

variable. 

One can also combine some of the levels to produce a dichotomous outcome. If there are more 

than two outcome categories, and there is no inherent ordering to the categories, then the 

resulting measurement scale is nominal, for example “which of the four presidential candidates 

did you vote for?” There is no underlying scale for such outcomes and no apparent way in which 

to order them. Here one can test for association in the categorical table. 

Categorical response variables sometimes include discrete counts. Instead of falling into 

categories that are labeled (yes, no), the outcomes are numbers (1, 2) or (0, 1). The analysis in 

this case is concerned with modeling means of the responses as a function of other prognostic 

factors. Lastly, another type of response variable is one that represents survival times where 

tracking of the number of patients with certain outcomes over time is done. 

3.6 DUMMY VARIABLES 

A dummy variable is an arithmetical variable used in regression analysis to symbolize subgroups 

of the sample in a study. In this research, dummy variables are used to distinguish different 

treatment groups. In the simplest case, one would use a 0, 1 dummy variable where a patient is 

given a value of 0 if in the control group or 1 if in the treatment group. Dummy variables are 

useful because they enable the use of a single regression equation to represent multiple groups. 
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This means that there is no need to write out separate equation models for each subgroup. The 

dummy variables operate like 'switches' that turn a range of parameters on and off in an equation.  

Another advantage of a 0, 1 dummy-coded variable is that even though it is a nominal-level 

variable one can treat it statistically like an interval-level variable. For instance, taking an 

average of a 0, 1 variable, this will result in having proportions of 1’s in the distribution. 

Whenever one have a regression model with dummy variables, one can always see how the 

variables are being used to represent multiple subgroup equations by following the two steps 

described below (http://www.socialresearchmethods.net/kb/dummyvar.php):  

• create separate equations for each subgroup by substituting the dummy values  

• find the difference between groups by finding the difference between their equations  

3.7 COMPARISON OF PROPORTIONS 

3.7.1 Difference of Proportions (DP) 

Given a response Y and a predictor X , one can compare two levels of X at a given level of 

Y using / / ,j h j iDP h i= π − π ∀ ≠ levels of X . 

⇒ 1 1DP− ≤ ≤ . 

 

0DP = ⇒Independence if it happens for all pairs of rows h and i of X at all levels, j  of the 

response Y . One can test the significance of DP by setting 0 / /: ( 0)j h j iH DPπ = π = . Suppose one 

have proportions 0.09 and 0.009, then 0.08DP = . For proportions 0.79 and 0.709, 0.08DP = . 

But DP for proportions 0.09 and 0.009 is actually more defined than that for 0.79 and 0.709. 

Therefore the difference of proportions is not the best measure for comparing proportions in all 

cases. In fact, for proportions close to 0 and 1, the DP is not a good measure; instead their ratio 

would be more appropriate. 

3.7.2 Relative risk (RR) 

The ratio of proportions, which is more preferable to the DP in some cases, is defined as: 

/

/

,
j h

j i

RR h i
π

= ≠
π

 

For the ratios of proportions above,  
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1

0.09
10

0.009
RR = =

 

 

2

0.79
1.11

0.709
RR = =  

0.09 is much larger than 0.009 than 0.79 is to 0.709. Using RR, the value of 1 implies 

independence of variables. 

3.7.3 Odds Ratios  

Suppose one has a response variableY , the odds (chances) that the response is in the 
thj level of 

Y instead of the thk level, j k≠ , within the thi level of the predictor X is: 

 
/

/

j i ij

i

k i ik

π π
Ω = =

π π
, j k≠ , different levels of the response. 

• 1iΩ =  ⇒ the thj and the thk responses are equally likely to occur 

• 1iΩ <  ⇒ thj response is less likely compared to the thk response 

• 1iΩ >  ⇒ thj response is more likely compared to the thk response 

Interpretations are based on the same level of the predictor. 

• /1

1

/1

j

k

π
Ω =

π
⇒odds of j vs k at 1

st level of X  

• /2

2

/2

j

k

π
Ω =

π
⇒  odds of j vs k at 2

nd
  level of X  

The Odds Ratio: 1

2

Ω
θ =

Ω
, [0, )θ∈ ∞ , measures the likelihood of a predictor Y between X  levels. 

• 0 1< θ < , ⇒  the particular level of Y is less likely in the 1
st
 level of X     

compared to the 2
nd
 level of X  

• 1θ = , ⇒  equal likelihood, independence 

• 1θ > , ⇒  less likely in the 2nd level than the 1st level.  
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To test the significance of the measure, we use the following hypothesis: 

 

Reject 0H if 1 CI∉  

 

1
2

1
1

1

1
OR RR

 − π
 =
 − π
 

, In general, the ijOR = θ for *I J table is given by 
( 1)( 1)

( 1) ( 1)

ij i j
ij

i j i j

+ +

+ +

π π
θ =

π π
 

 

For  *I J =3*2, 11 22
11

12 21

π π
θ =

π π
  ,     21 32

21
22 31

π π
θ =

π π
 , 12 23

12
13 22

π π
θ =

π π
 

3.8      LOGISTIC REGRESSION: Polytomous (Multinomial) and Ordinal 

             Logistic Models 

Logistic regression was implemented as a procedure to cater for the polytomous, ordinal nature 

of the response variables. It is part of a category of statistical models called generalized linear 

models. This extensive class of models consists of ordinary regression and ANOVA, as well as 

multivariate statistics such as ANCOVA and loglinear regression. The LOGISTIC and 

GENMOD procedures are used in SAS system to fit logistic regression models by specifying the 

response variable and the explanatory variables in a MODEL statement and it fits the model via 

maximum likelihood estimation.  

Logistic regression allows one to predict a discrete outcome, such as group membership, from a 

set of variables that may be continuous, discrete, dichotomous, or a mixture of any of these. In 

general, the dependent or response variable is dichotomous, such as presence/absence or 

success/failure. Discriminant analysis is as well used to foretell group membership with only two 

groups. On the other hand, discriminant analysis can only be used with continuous independent 

variables. Thus, in instances where the independent variables are categorical, or a mixture of 

continuous and categorical, logistic regression is preferred.  
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3.8.1 Model Fitting  

The dependent variable in logistic regression is usually dichotomous, that is, the dependent 

variable can take the value 1 with a probability of success p , or the value 0 with probability of 

failure 1- p . This type of variable is called a Bernoulli or better known as a binary variable. 

Although not as common and not discussed, applications of logistic regression have also been 

extended to cases where the dependent variable is of more than two cases, known as multinomial 

or polytomous, (Tabachnick and Fidell, 1996) used the term polychotomous.    

As mentioned before, the independent or predictor variables in logistic regression can take any 

form. That is to say, logistic regression makes no assumption about the distribution of the 

independent variables. They do not have to be normally distributed, linearly related or of equal 

variance within each group. The relationship between the predictor and response variables is not 

a linear function in logistic regression, instead, the logistic regression function which is used, is 

the logit transformation of θ :     

( )

( )

1 1 2 2

1 1 2 2

.........

.........
1

i i

i i

x x x

x x x

e

e

α β β β

α β β β
θ

+ + + +

+ + + +
=

+
   

     

Where α  is the constant of the equation and, β  is the coefficient of the predictor variables. An 

alternative form of the logistic regression equation is: 

 ( ) ( )
( )

( )1 1 2 2log log .........
1

i i

x
it x x x x

x

θ
θ α β β β

θ

 
= = + + + +     − 

 

The goal of logistic regression is to correctly predict the category of outcome for individual cases 

using the most parsimonious model. To achieve this objective, a model is formed that includes 

all predictor variables that are helpful in predicting the response variable. Quite a lot of different 

options are available during model formation. Variables can be entered into the model in the 

order specified by the researcher or logistic regression can test the fit of the model once each 

coefficient is added or deleted, called stepwise regression.     
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Stepwise regression is used in the exploratory phase of research but it is not recommended for 

theory testing (Menard and Scott, 1995). Theory testing is the testing of a priori theories or 

hypotheses of the associations among variables. Exploratory testing makes no a-priori 

assumptions concerning the associations between the variables, thus the objective is to determine 

relationships. Backward stepwise regression appears to be the most preferred method of 

exploratory analyses, where the analysis begins with a full or saturated model and variables are 

eliminated from the model in an iterative process. The fit of the model is tested after the removal 

of each variable to make sure that the model still sufficiently fits the data. After no more 

variables can be eliminated from the model, the analysis has been accomplished.     

There are two main uses of logistic regression. The first is the prediction of group membership. 

Since logistic regression calculates the probability or success over the probability of failure, the 

results of the analysis are in the form of an odds ratio. For example, logistic regression is often 

used in epidemiological studies where the result of the analysis is the probability of developing 

the disease under study after controlling for other associated risks. Logistic regression as well 

provides information of the associations and strengths among the variables. Logistic regression 

consists of several types of regression models which include binary logistic regression, ordinal 

logistic regression, polytomous logistic regression and many others. The next section will discuss 

two of these regression models which are ordinal and polytomous since they were used in this 

study.  

3.8.2 Ordinal Response: Proportional Odds Model 

The proportional odds model extends logistic regression to hold with an ordinal response 

variable. If the response variable y is ordinal, the categories can be ordered in a natural way such 

as health status ‘good/moderate/bad’. The polytomous logistic regression model can be applied 

but does not make use of the information about the ordering and use of cumulative probabilities, 

cumulative odds and cumulative logits. Considering 1k +  ordered categories, these quantities are 

defined by  

( ) 1 ......... iP Y i p p≤ = + +  
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( )

1

1 1

.......
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i

i k

P Y i p p
odds Y i

P Y i p p+ +

≤ + +
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( ) ( )
( )

log ln , 1,...........,
1

P Y i
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The cumulative logistic model for ordinal response data is given by; 

( ) 1 1log ....... , 1,...........,i i im mit Y i X X i kα β β≤ = + + + =  

Like the polytomous logistic regression model, we have k  model equations and one coefficient 

ijβ  for each category/covariate combination. Hence, the general cumulative logistic regression 

model contains a large number of parameters. However, in some cases a more parsimonious 

model is possible. It follows that the cumulative odds are given by: 

( ) 1 1exp( ) exp( ....... ), 1,...........,i i im modds Y i X X i kα β β≤ = + + + =  

This means that the k  odds for each cut-off category i  differ only with regard to the intercepts 

iα  in other words, the odds are proportional. Hence, McCullagh P, (1980) used the term 

proportional odds model. The relatively stringent proportional odds assumption may be 

especially valid in cases where the ordinal response y  is related to an underlying latent 

continuous variable (McCullagh P, 1980). However, categories assessed by an observer are 

another important type of ordinal variables. Such variables frequently occur in biomedical 

research. Anderson JA, (1984) pointed out that for assessed ordinal response variables are 

proportional odds model which are not flexible enough to cover the range of problems. He 

proposed a general class of models for ordinal data called ‘stereotype ordered regression models’ 

which include the proportional odds model as a special case. The proportional odds model is now 

the most commonly used logistic regression model for ordinal response, for two reasons. Firstly, 

it has the convenient feature that the effect of a covariate on y can be quantified by one 

regression coefficient, and hence the calculation of one common odds ratio is possible; therefore, 

the presentation of results is short and simple. Secondly, standard statistical software with 
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additional features such as stepwise variable selection procedures is now available for 

calculations. 

3.8.3 Polytomous Response: Nested Dichotomies 

If the response variable y  is discrete with more than two categories, for example y = marital 

status defined in 3 categories ‘married, divorced, separated or widowed and single’, then the 

standard binary logistic regression model is not applicable. One possible way to handle such 

situations is to split the categorical response y  in several ways, for example y1=’married 

yes/no’, y2=’single yes/no’, and to apply binary logistic regression to each dichotomous variable. 

However this will result in several different analyses for only one categorical response. A more 

structured approach is to formulate one model for the categorical response by means of 

generalized logits. Suppose that y has 1k +  categories and the probability for category i  is given 

by ( ) iP y i p= =  for 1,......., 1i k= + , then the k  generalized logits are given by; 

1 1

log ( ) ln ln , 1,.........,
1 ( ...... )

i i

k k

p p
it Y i i k

p p p +

   
= = = =   

− + +   
 

This means that the generalized logits relate the probability ip  for the categories 1,.........,i k=  

the reference category 1k + . For m  covariates the general polytomous logistic regression model 

becomes: 

1 1log ( ) ........ , 1,.........,i i im mit Y i X X i kα β β= = + + + =  

Note that the polytomous logistic model is given by k  equations if y  has 1k +  categories and 

that we have one logistic coefficient ijB  for each category/covariate combination. Hence, it is not 

possible to summarize the effect of a covariate on the response y  by a single measure such as 

one odds ratio. Although the polytomous model offers the advantage of simultaneously testing 

the effect of a covariate on all response categories, polytomous logistic regression generates a 

cumbersome amount of statistical information which is difficult for physicians to understand. For 
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example given a polytomous response with, say, three categories, we construct our model as 

follows: 

 

� Let  1iπ  : the probability that response 1=  for subject i 

  2iπ  : the probability that response 2=  for subject i 

  3iπ  : the probability that response 3=  for subject i 

For subject i and response choice j, let iX be a column vector of the explanatory variables and 

'

jβ  be a row vector of coefficients for category j. The model is  

 

( )'ln , 1,............, 1
ij

j i

iJ

X j J
π

β
π

 
= = − 

 
. 

 

Each category is compared with the highest category 3=J , known as the reference category. 

The above equations can be solved to yield:  

 

( )
( )

( )
'

1
'

1

exp
, 1,............, 1

1 exp

j i

ij j

j i

j

X
j J

X

β
π

β
−

=

= = −
+∑

. 

The proportional odds model is attractive if the response is ordinal, and the proportional odds 

assumption also holds. However, if the response is purely nominal (for example, vote Tory, vote 

Liberal, vote Reform, vote NDP), or if the proportional odds assumption is untenable, one 

particularly simple strategy is to fit separate models to a set of m - 1 dichotomies derived from 

the polytomous response.  

• Each dichotomy can be fit using the familiar binary-response logistic model, and,  

• the 1m−  models will be statistically independent (so that likelihood-ratio 2G  statistics 

will be additive) if the dichotomies are chosen as nested dichotomies.  
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Nested dichotomies: These are successive binary partitions of the response categories into nested 

sets. As for example, the response categories {1, 2, 3, 4} could be divided first as {1, 2} versus 

{3, 4}. Then these two dichotomies might be divided as {1} versus {2}, and {3} versus {4}. On 

the other hand, these response categories might be divided as {1} vs. {2, 3, 4}, then {2} versus 

{3, 4}, and lastly {3} versus {4}.  

3.9  DATA SIMULATION 

3.9.1 Simulation options 

From previous studies by Angie Wade et al. (2006) it was estimated that 200 simulations would 

allow quantification of the 95th percentile of the distribution to within ± 0.2 standard deviations 

of that distribution with 95% confidence. Increasing the number of simulations to 2500 or 5000 

would increase this precision substantially to ± 0.06 and 0.04 respectively. Further doubling of 

the number of simulations to 10000 would only further increase precision by less than 0.01 

standard deviations. Angie Wade et al. (2006) finally concluded that 5000 simulations would be 

adequate for a comparison of minimization criteria. For further accuracy of results in this study, 

10000 simulations were performed using a SAS program.  

3.9.2 Generation of Variables 

To randomly generate the study population, a simulation study was conducted using SAS. The 

program was implemented and developed from the ideas of Pocock and Simon. The simulated 

trial consisted of initial sample size of 50 patients having three categorical prognostic factors 

profactor_1, profactor_2 and profactor_3, where profactor_1 and profactor_2 were binary factors 

and profactor_3 having four levels. The response variables trt1_placebo and trt2_drug are ordinal 

and having six levels with higher levels representing better response (that is 3 to 5). The 

generation of these subjects, prognostic factors and response variables was done using the SAS 

codes provided in appendix B. The simulation trial was meant to initially distribute the 

covariates as shown in table 3-1 below; the output is provided in the appendix C: 
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Table 3-1  

PROGNOSTIC FACTOR FACTOR LEVEL # OF PATIENTS PERCENTAGE

profactor_1 1 32 64

2 18 36

profactor_2 1 27 54

2 23 46

profactor_3 1 12 24

2 11 22

3 18 36

4 9 18

 

 

3.9.3 Creating Dummy Variables 

Dummy variables were defined to distinguish different treatment groups. In this case 0 and 1 

were used as dummy variables, where a patient is given a value of 0 if in the placebo group and a 

value of 1 if in the treatment group (code provided in appendix B). 

3.9.4 Allocation of Treatments 

PROC IML was used to generate the algorithm for minimization allocation technique. It is a 

matrix-based programming language within the SAS statistical package. It contains numerous 

commands for performing a variety of common matrix operations. A total of 10000 replications 

were used in allocating patients to the two treatment groups. The minimization algorithm used in 

this study took into account the technique described by Pocock and Simon which is not an 

algorithm, but a methodology with recommended options for possible algorithms based on the 

minimization technique. The technique used in this study described three steps for the 

minimization. 

i. Determining the amount of variation. The function D - which measures the “amount of 

variation” at each level of each factor, was measured by the range method (difference 

between the highest and lowest value).  

ii. Measuring the total imbalance for each treatment. The function kG - which measures the 

“total amount of imbalance” in treatment numbers which would exist at all factor levels 

of the new patient if treatment k  were assigned to that patient was used. kG  was 
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measured by the sum of marginal imbalances, id . That is, let rikN  be the number of 

patients allocated to treatment k  for factor level r  of prognostic factor i . When there are 

two treatments, treatment 1 and treatment 2, the amount of imbalance for one factor level 

was measured as 
1 2ri riN N− . The overall amount of imbalance was measured as the 

summation of all 
1 2ri riN N− . (see Code 3-1 below) 

SAS Code 3-1 

m[i,7]=ranuni(0); 

if m[i,33]>m[i,34] then do; 

if m[i,7]>0.75 then A[i,k]=0; else 

if m[i,7]<=0.75 then A[i,k]=1; 

end; else 

if m[i,33]<m[i,34] then do; 

if m[i,7]>0.75 then A[i,k]=1; else 

if m[i,7]<=0.75 then A[i,k]=0; 

end; else 

if m[i,33]=m[i,34] then do; 

if m[i,7]>0.5 then A[i,k]=1; else 

if m[i,7]<=0.5 then A[i,k]=0; 

end; 

iii. The code above was also used to assign an allocation probability to the ranked candidate 

treatments. The probability of assignment of each treatment in the list of treatments 

ranked on their value of kG , denoted by { }kP  was set to range from 0.1 to 1. For 

such{ }kP , the randomization method used a bias probability of allocating the treatments 

which minimizes the imbalance. In this study this method first checked to verify if there 

is a difference in lack of balance for each of the treatment assignments. If there is no 

difference, treatment allocation was random, that is, { }kP  was set to range from 0.1 to 1. 

SAS provides several functions to work as random number generators, in this case 
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RANUNI was used to generate random numbers between 0 and 1 which have a uniform 

distribution. 

 

3.9.5 Generating the Dataset 

For generating the dataset, arrays were used to merge code_1 which consisted of prognostic 

factors and response variables to A which consisted of just treatment groups. If the value in 

column {i} = 0 for dataset A then that particular subject will be assigned a response value 

corresponding to trt1_placebo in code_1, else a response value corresponding to trt2_drug 

code_1 will be assigned to that particular subject. This was achieved by the code 3-2 below: 

SAS Code 3-2 

DATA dataset_1; 

MERGE code_1 A; 

ARRAY col{10000} col1-col10000; 

ARRAY response{10000} response1-response10000; 

DO i=1 to 10000; 

IF col{i}=0 THEN response{i}=trt1_placebo;  

ELSE 

IF col{i}=1 THEN response{i}=trt2_drug; 

END; 

RUN; 

3.9.6 Investigating Balance of Treatment Groups 

It is of interest to investigate the effect of varying parameters within the minimization algorithm 

on treatment balance. Macro ‘balla’, available in appendix B was used to test whether the two 

treatment groups are equally allocated or not by estimating the total number of subjects allocated 

to each treatment group. 

A total of 10000 simulations were executed for each scenario and PROC MEANS was used to 

calculate the mean balance between the two treatment groups. The mean balance, the standard 

deviation together with the maximum and minimum values were observed and used to see the 

resulting imbalances which occurred for each particular simulation. Results were recorded and 
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they are available in appendix A. The next section will discuss and describe how power was 

calculated. 

3.10 POWER CALCULATION 

3.10.1 Background 

Simulation has turned out to be a well known component of contemporary statistical study. In 

elements of Computational Statistics (2002) James Gentle reports that approximately half of the 

articles that are appearing in the Journal of the American Statistical Association incorporated 

simulation studies as part of the reported research (Gentle, 2002). Simulation can be used for a 

variety of purposes and a recent book by Fan and colleagues describes numerous simulation 

applications that can be implemented in the SAS system (Fan, Felsovalyi, Sivo et al., 2003).  

A general and moderately simple application is the use of simulation for determining the power 

of a statistical test. Statistical power analysis characterizes the capability of a study to detect a 

significant effect size, for example, the difference among two population means. It also 

determines the sample size that is essential to provide a preferred power for an effect of scientific 

importance. Suitable planning reduces the possibility of conducting a study that will not create 

constructive results and determines the most responsive design for the resources on hand. Power 

analysis is now essential to the health and behavioral sciences, and its use is progressively 

growing wherever experimental studies are performed.  

Quite a lot of power formulas are available for logistic regressions models. One formulated by 

Hsieh and colleagues is chiefly remarkable (Hsieh, Bloch, and Larsen, 1998). It is used in the 

PASS software and it has an extraordinary modification to the formula that adjusts the sample 

size for the impact of covariates. In this case, ρ  is the multiple correlation coefficient among the 

main predictor variable and additional covariates. Hsieh and colleagues adjust the sample size 

according to the following formula: 

 

21

unadjusted

adjusted

N
N

ρ
=

−
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Hosmer and Lemeshow proposed that this modification may be too conservative (Hosmer and 

Lemeshow, 2000). Another way to avoid this argument is to use a simulation approach to 

determine the power of logistic regression models. One can use either the p-values for a Wald 

statistic, a score statistic, or a likelihood ratio statistic in order to decide whether the chief 

predictor of a given model qualifies as statistically important according to some particular level 

of significance. This approach of using p-values is the one which was used in this study but in 

addition to the probabilities of the Chi-Square and the odds ratios confidence intervals. The 

section below will highlight how power was simulated using the logistic regression models. 

3.10.2 Power Calculation Using the Logistic Regression Approach 

The primary interest is to determine whether the effect in treatment 1 is different from the effect 

in treatment 2. Since the response variables were having more than two levels, PROC 

LOGISTIC was used to fit the proportional odds model. Furthermore the responses were ordinal; 

hence this fulfilled the assumption of the PROC LOGISTIC. The code below requests that 

PROC LOGISTIC fit a proportional odds model; 

SAS Code 3-3 

%DO i=1 %TO 10000; 

proc logistic data=dataset_1; 

TITLE2 'Logistic Regression Model with Polytomous Ordinal Response Variable'; 

class profactor_1 profactor_2 profactor_3 col&i; 

model response&i=profactor_1 profactor_2 profactor_3 

col&i/*selection=forward*/; 

Macros were used (codes available in appendix B) to execute these commands for all the 

simulated datasets. The macros were aimed to fit the logistic models for all the simulated 

response variables against respective prognostic factors and treatment groups. PROC LOGISTIC 

produces various output including, parameter estimates, their standard errors, and statistics to 

assess model fit. In addition, it also provides several model selection methods which puts 

predicted values and other statistics into output data sets, and includes a number of options for 

controlling the model fitting process.  
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The CONTRAST statement was used to compare the difference in effect in treatment 1 versus 

treatment 2. With satisfactory goodness of fit, it is appropriate to examine the odds ratio output 

as well as the Wald Chi-Square and probabilities of Chi-Square from the contrast estimate 

output. These parameters were taken from each set of output by the following SAS codes; 

SAS Code 3-4 

DATA powerr1(keep=lowercl uppercl); 

SET testlogreg; 

/*removing other variables(taking odds confidence limits for treatments)*/ 

IF variable in (' profactor_1',' profactor_1',' profactor_1') or 

effect in ('profactor_1 1 vs 2','profactor_2 1 vs 2','profactor_3 1 vs 4', 

'profactor_3 2 vs 4','profactor_3 3 vs 4') THEN DELETE; 

RUN; 

SAS Code 3-5 

DATA power1(keep=probchisq contrast waldchisq); 

SET testllogreg;/*importing the contrastestimate table from the above macro*/ 

RUN; 

 

Code 3-4 was used to take the parameters lowercl – which is the lower confidence limit of the 

predicted odds ratios and uppercl-which is the upper limit of the odds ratio estimates from the 

odds ratio output and code 3-5 was used to take the parameters probchisq (probabilities of chi-

square), contrast (variable names of the two treatment groups-reference point) and waldchisq 

(Wald Chi-Square) from the contrast estimate output. Power was calculated by taking the 

number of times the null hypothesis was rejected over the total number of replications made. 

Number of times  rejected
Power = 

Total number of replications

oH
 

The hypothesis was tested using three different tests/statistics. 

i. Probabilities of Chi-Square /  p-values 
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These were obtained from the contrast estimate output. Thus the CONTRAST statement 

computed the test statistic for 1 2:oH β β= , that is the hypothesis of equal slope for the 

two treatment groups. For each probability of chi-square value of the resultant contrast 

between treatment 1 and treatment 2 the null hypothesis was rejected when 

probability of chi-square < (0.05) where   is the significance levelα α  

 

ii. Wald Chi-square tests 

A Wald test is a statistic that takes the form of the squared value ratio for the estimate to 

its standard error. It follows an approximate chi-square distribution when the sample size 

is sufficiently large. The Wald chi-square value was used to test for the hypothesis 

1 2:oH β β=  by rejecting the null hypothesis when Wald chi-square > 3.8415  at 5% 

significance level. 

 

Under the null hypothesis Wald Chi-Square follows a Chi-Square distribution with 1 

degree of freedom. The hypothesis of equal effect rates for groups 1 2 and β β  is rejected 

if 2

1,Wald Chi-Square > αχ , where 2

1,αχ   is the 100  percentageα  point of the Chi-Square 

distribution with 1 degree of freedom. In this case 2 2

1, 1,0.05 3.8415αχ χ= =  which is 

obtainable from the 2χ  statistical tables.  

 

iii. 95% Wald Confidence limits (Odds Ratios) 

The hypothesis of interest was; 

 

1: 1 versus : 1

that is rejected when 1  OR

oH OR H OR= ≠

∉
 

 

The hypothesis was rejected when the value 1 was not an element of the confidence 

interval meaning that there is a significant difference between treatment 1 and treatment 

2. 
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PROC MEANS was used to generate the needed power for the three different tests by taking the 

number of times the null hypothesis was rejected in each test and dividing it by the total number 

of replications. 

3.11 CONCLUSION 

This chapter has presented the different statistical tests and methodologies that were 

implemented in the data analysis. Previous literature has mentioned quite a number of procedures 

that were used in this study, the analysis of the results and their reporting will be presented in the 

next chapter.  It also highlighted how the obtained results shall be interpreted comparative to the 

research objectives.  
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CHAPTER FOUR (4) 

DATA ANALYSIS AND RESULTS 

4.1    INTRODUCTION 

This chapter recapitulates the methods and applications mentioned in the previous chapter. It 

forms the linchpin of the entire research work with detailed discussions of the reporting and 

interpretation of the outcomes. Computations of the various statistics produced in the outputs are 

illustrated in order to give a clear explanation of these statistics and their use in interpretation of 

the outcomes. With this at hand, ordinal logistic regression output variables shall be discussed as 

well as graphical presentation of findings will be done in order to have a clear and detailed 

reporting of results. The next section will discuss how each simulated dataset was analyzed. 

4.2 INTERPRETATION OF PROC LOGISTIC OUTPUT 

The LOGISTIC procedure is used to model cumulative logits by performing ordinal logistic 

regression using the proportional odds model. It fits the proportional odds model whenever the 

response variable has more than two levels. Thus, there is a need to ensure that one indeed, has 

an ordinal response variable otherwise PROC LOGISTIC will assume that one does. It is of great 

importance to ensure that the ordering of the response variables is correct when one is using 

ordinal data. The procedure still performs an analysis if the variables are incorrectly ordered, but 

the results will be erroneous. It is somehow a burden for the user to specify the correct order and 

then to check the results. 

The “Response Profile” table in Output 4-1 shows that the responses are ordered correctly in 

terms of increasing response. For these data, ordering is not a problem since the total row counts 

are reasonably large.  
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SAS Output 4-1 

Response Profile 

Ordered 

Value response1 

Total 

Frequency 

1 0 10 

2 1 18 

3 2 13 

4 3 17 

5 4 13 

6 5 29 

 

Probabilities modeled are cumulated over the lower Ordered Values. 

 

The procedure next prints the “Class Level Information” table, which shows how 

parameterization takes in the form of incremental effects for the three prognostic factors and the 

treatment groups. 

SAS Output 4-2                                     

Class Level Information 

Class Value 

Design 

Variables 

profactor_1 1 1   

 2 -1   

profactor_2 1 1   

 2 -1   

profactor_3 1 1 0 0 

 2 0 1 0 

 3 0 0 1 

 4 -1 -1 -1 
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Class Level Information 

Class Value 

Design 

Variables 

COL1 0 1   

 1 -1   

 

 

For the appropriateness of the proportional odds assumption the PROC LOGISTIC prints out a 

table for the proportional odds test. The performed test is a score that determines whether, if one 

fits a different set of explanatory parameters kβ  (in this case the parameters are profactor_1, 

profactor_2, profactor_3 and col&i, where col&i is the composition of the two treatment groups) 

for each logit function. The sets of these parameters are considered to be equal; hence the 

assumed model is as follows;                    

( ) 'log hik k hi kit Xθ α β= +  

The tested hypothesis is that there is a common parameter vector β  instead of distinct kβ  , that 

is; 

0 :  for all kH kβ β=  

Thus if the null hypothesis is rejected, then it implies that the assumption of proportional odds is 

also rejected, and consider a different approach, such as modeling generalized logits. If the null 

hypothesis is not rejected, then the test supports the assumption of the proportional odds. This 

test has ( )2t r× −  degrees of freedom, where t  are the parameters to be compared for the t  

explanatory variables across ( )2r −  logits and in this case 4t =  and  r  is the number of 

response levels which in this case is 6. 

Sample size requirements for this test are relatively demanding, thus approximately five 

observations are required at each outcome of each main effect. This condition was met since the 

initial sample size was far greater than five. Caution must be practiced in the interpretation of 

any resulting significance in samples that are small since they may make the statistic large, and 
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in this regard non-significant results are always informative. When the proportionality 

assumption does not hold for all explanatory variables, but having proportionality for some then 

the partial proportional odds model is an alternative model that can be fit. However when there 

appears that there is no proportionality, then the most appropriate alternative approach may be to 

treat the data as nominal and fit a generalized linear model. The output below displays this score 

test;  

SAS Output 4-3                       

Score Test for the 

Proportional Odds 

Assumption 

Chi-Square DF Pr > ChiSq 

119.1398 24 <.0001 

 

Chi-Square takes the value 119.1398 with 24 degrees of freedom. This shows that it is clearly 

significant, and so the assumptions of proportional odds hold for these data. 

The tests for assessing model fit through explanatory capability are also supportive in relation to 

the logistic mode. The likelihood ratio test has a value of 43.9676 with 6 degrees of freedom and 

the score has a value of 35.9457 with 6 degrees of freedom as reflected in the output below. 

SAS Output 4-4 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 43.9676 6 <.0001 

Score 35.9457 6 <.0001 

Wald 36.9890 6 <.0001 

 

Output 4-5 below contains the “Type 3 Analysis of Effects” table profactor_1,  profactor_3 

together with the treatment groups represented by ‘col47’ are all influential effects. For those 
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effects with 1 degree of freedom each, the tests are the same as printed for the parameter 

estimates listed in the output below (Analysis of Maximum Likelihood Estimates). 

SAS Output 4-5 

Type 3 Analysis of Effects 

Effect DF 

Wald 

Chi-Square Pr > ChiSq 

profactor_1 1 11.3773 0.0007 

profactor_2 1 0.0778 0.7803 

profactor_3 3 26.0993 <.0001 

COL47 1 4.4974 0.0339 

 

 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 0 1 -2.9959 0.3913 58.6301 <.0001 

Intercept 1 1 -1.9191 0.3175 36.5368 <.0001 

Intercept 2 1 -1.2424 0.2877 18.6467 <.0001 

Intercept 3 1 -0.1168 0.2636 0.1965 0.6576 

Intercept 4 1 0.7726 0.2747 7.9114 0.0049 

profactor_1 1 1 0.7390 0.2191 11.3773 0.0007 

profactor_2 1 1 -0.0522 0.1872 0.0778 0.7803 

profactor_3 1 1 1.6846 0.3393 24.6492 <.0001 

profactor_3 2 1 0.1780 0.3224 0.3046 0.5810 

profactor_3 3 1 -0.2875 0.3195 0.8100 0.3681 

COL47 0 1 0.4008 0.1890 4.4974 0.0339 

 

Another output of importance is the odds ratio estimates. Model fitting is most easily interpreted 

by considering the odds ratios corresponding to the parameters, for the output below:  
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• 0.4008 in the output above is the increment to log odds of a better effect for treatment 1; 

the odds ratio 2.229 in the output below indicates that treatment 1 is 2.229 times more 

likely to achieve a better outcome than the placebo group.  

• 1.6846 in the output above is the increment to log odds for level 1 and 4 of profactor_3; 

the odds ratio 26.042 in the output below indicates that level 1 of profactor_3 is nearly 26 

times more likely to achieve a better outcome than level 4.  

SAS Output 4-6 

Odds Ratio Estimates 

Effect 

Point 

Estimate 

95% Wald 

Confidence Limits 

profactor_1 1 vs 2 4.384 1.857 10.348 

profactor_2 1 vs 2 0.901 0.432 1.877 

profactor_3 1 vs 4 26.042 6.553 103.499 

profactor_3 2 vs 4 5.772 1.521 21.900 

profactor_3 3 vs 4 3.624 0.980 13.400 

COL47       0 vs 1 2.229 1.063 4.676 

 

The CONTRAST statement provides a mechanism for obtaining modified hypothesis tests. It is 

similar to the CONTRAST statement in PROC GLM and PROC CATMOD, depending on the 

coding systems used with any classification variables concerned.  

The CONTRAST statement enables you to specify a matrix, L, for testing the hypothesis  

0Lβ =  Optionally, the CONTRAST statement enables one to estimate each row, '

jl β , of Lβ  

and test the hypothesis ' 0jl β = . The computed statistics are based on the asymptotic chi-square 

distribution of the Wald statistic. Output 4-7 below shows that treatment 1 and treatment 2 are 

different because Wald chi-square (4.3152) > 3.8415  and to further support this 

Probability of chi-square (0.0378) < (0.05) where   is the significance levelα α . This actually 

tells us that there is a treatment effect that is significant between these two treatments and in this 

case the null hypothesis is being rejected in favor of the alternative hypothesis. 
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SAS Output 4-7 

Contrast Test Results 

Contrast DF 

Wald 

Chi-Square Pr > ChiSq 

col&i =1 vs col&i =0 1 4.3152 0.0378 

 

Contrast Rows Estimation and Testing Results 

Contrast Type Row Estimate 

Standard 

Error Alpha 

Confidence 

Limits 

Wald 

Chi-Square Pr > ChiSq 

col&i =1 vs col&i =0 EXP 1 1.4715 0.2737 0.05 1.022

1 

2.118

7 

4.3152 0.0378 

 

4.3    POWER ANALYSIS 

In the previous section we have seen how each and every simulated dataset was analyzed using 

the logistic regression approach. This section will present and report on the outcomes of power 

analysis and all the findings drawn from this analysis. The analysis is comprised of a graphical 

exploratory presentation using the STATISTICA package accompanied by a confirmatory 

significance test.  

 

The parameters that were tested include the sample size, the probability of allocation and the 

probability of allocation given that the treatment groups are equally balanced. For each 

parameter under investigation, the effect on treatment balance for each respective parameter was 

also investigated to ensure that any effect on power is due to the parameter itself not imbalances 

within the treatment groups. The simulated results are presented in Appendix A. 
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4.3.1 Sample Size Considerations 

POWER

Power versus Sample Size

Alpha = 0.5

Probability of Allocation = 0.75

Probability of Allocation given that Treatments are Equally Balanced = 0.5
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 FIGURE 4-1 : POWER VS SAMPLE SIZE 

There was an increase in power as the sample size increased. A steep increase in power was seen 

from a sample size of 50 to 225, and then as the sample size further increased from 250 to 400 

there was no difference in power. From the plots above it can be seen that maximum power is 

attained with a minimum sample size of 300.  
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In terms of treatment balance, sample size has no effect to the method of minimization. The 

minimization technique achieves tight balance within treatment groups despite any change in 

sample size. This result can be justified by the graph below where the graph is constant at all 

simulations. 

BALANCE

Treatment Balance (Trt1 : Trt2) Versus Sample Size
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FIGURE 4-2 : TREATMENT BALANCE VS SAMPLE SIZE 
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4.3.2 Probability of Allocation { }kP  

POWER

Power Versus Probability of Allocation

Alpha = 0.5

Sample Size = 300

Probability of Allocation given Treatments are Equally Allocated = 0.5
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FIGURE 4-3 : POWER VS PROBABILITY OF ALLOCATION 

 

The probability of allocation { }kP  has small effect on power as compared to sample size. As 

{ }kP  increased, there was a gradual increase in power from 0.1 to 0.25. The plots above show 

that maximum power can be attained by a value of { }kP  between 0.35 and 1 with a sample size 

of 300 at 5% significance level. { }kP  has an effect on the balancing of treatment groups (graph 

given below in figure 4-4). Imbalances can be noticed for all values of { }kP  between 0.1 and 0.5.  
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BALANCE

Treatment Balance (Trt1 : Trt2) Versus Probability of Allocation

Alpha = 0.5

Sample Size = 300

Probability of Allocation given Treatments are Equally Allocated = 0.5

Probability of Allocation

T
re

a
tm

e
n
t 
B

a
la

n
c
e
 (
T
rt

1
 :
 T

rt
2
)

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

 

FIGURE 4-4 : TREATMENT BALANCE  VS SAMPLE SIZE 
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4.3.3 Probability of Allocation when Treatment Groups are equally     

   Balanced { }kP  

POWER

Power Versus Probability of Allocation given Treatments are Equally Balanced

Alpha = 0.5

Sample Size = 300

Probability of Allocation = 0.75
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FIGURE 4-5 : POWER VS PROBABILITY OF ALLOCATION WHEN TREATMENT GROUPS ARE EQUALLY BALANCED  

 

The value of { }kP  (the probability of treatment allocation) for treatment allocation when 

treatment 1 and treatment 2 are equally allocated has no effect on power for { }kP  greater than 

0.1. Hence all values of { }kP  give the same power for a sample size of 300. Below is the plot of 

probability of allocation when treatment groups are equally balanced versus treatment balance, 

and the same results as those for sample size and power are noticed. The graph is constant at the 

value 0.5 for treatment balance. 
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BALANCE

Treatment Balance (Trt1 : Trt2) Vs Probability of Allocation given Treatment

Alpha = 0.5
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Probability of Allocation = 0.75
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FIGURE 4-6 : TREATMENT BALANCE  VS PROBABILITY OF ALLOCATION WHEN TREATMENT GROUPS ARE EQUALLY 

BALANCED 

 

The primary aim of this study was to test the null hypothesis that there is no difference in 

treatment effect against the alternative hypothesis that the effect of treatment 1 (new drug) is 

better than the effect of treatment 2 (placebo). Three tests which include odds ratios, wald chi-

square and chi-square probabilities were used to test for this hypothesis and the results are 

summarized in table 4-1 below.  
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Table 4-1 

 

POWER VS 

VARIABLE 

INVESTIGATE

D VARIABLE  

TESTS 

P-VALUES ODD RATIOS 

WALD-

CHISQUARE 

Power vs 

Sample Size
 

Sample Size

p 0.75

p 0.5

k

kr

=

=

 

 
200

rejected

for

n ≥
  

125

rejected

for

n ≥
  

125

rejected

for

n ≥
 

Power vs 

Probability

of Allocation

 

Probability

of Allocation

n=300

p 0.5kr =

 
 

0.15

rejected

for

p ≥
  

 k

rejected

for

p∀
 

 
 k

rejected

for

p∀
 

Power vs 

Probability

of Allocation/

Trts are Balanced

 

Probability

of Allocation/

Trts are Balanced

n=300

p 0.5
k
=

 

 
 kr

rejected

for

p∀
 

 
 kr

rejected

for

p∀
  

 kr

rejected

for

p∀
 

 

 

To establish if there was a significant difference between the independent variables, normal 

probability plots were used to see whether the data were normal or not. The data satisfy the 

assumption of normality hence ANOVA was appropiate to use for testing difference of means. 

From the results of the ANOVA tests, of the three variables that were under investigation, 

sample size and probability of allocation had the most significant effect on power whilst the 

probability of allocation when treatment groups are equally balanced had no significant effect. 

Turkey’s studentised range (HSD) test was further used to determine were the difference in 
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power existed in all the three variables. Sample size and probability of allocation showed some 

significant difference in power whilst the probability of allocation when treatment groups are 

equally balanced had no significant difference meaning that the powers were significantly equal 

for all the simulated scenarios. 

4.4   CONCLUSION     

This chapter has in brief presented all the analysis and reporting of results. Sample size is seen to 

have a greater significant effect on power, which is also the case in previous studies. The 

minimization technique achieves tight balance within treatment groups regardless of any change 

in sample size. The probability of allocation { }kP  has a small effect on power as compared to 

sample size. Imbalances can be noticed for all values of { }kP  between 0.1 and 0.5, hence { }kP has 

significant effect on balance. The value of { }kP  for treatment allocation when treatment 1 and 

treatment 2 are equally allocated has no significant effect to power and balance. The next chapter 

will give the overall conclusion and discussions for this study mainly basing on the outcomes 

given in this chapter. 
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CONCLUSIONS AND DISCUSSIONS 

5.1 INTRODUCTION   

The main aim of this study was to investigate the maximization of power in clinical trials where 

minimization randomization technique is used as a method of treatment allocation. This chapter 

sums up the work undertaken in this study and articulates the extent to which the research meets 

the research goals. And finally, it makes suggestions for future research work. The conclusions 

drawn from this study are presented below. 

5.2    DISCUSSIONS AND CONCLUSIONS   

In this article, some common treatment trial scenarios were simulated and compared the results 

in terms of the distribution of balance between treatment groups and power. Whilst only a few 

selections of potential scenarios can be shown, this study has illustrated how prior investigation 

helps quantify the sensitivity of minimization to the choice of input parameters such as the 

probability of allocation and sample size. Other parameters such as, weighting of prognostic 

factors, number and type of factors was not investigated in this study.  

The use of minimization as a means of treatment allocation is seen to be increasing. Decisions 

must to be made concerning the precise form of implementation. Choice of input parameters may 

influence the extent to which the process is successful in ensuring equality of patients between 

treatment groups and the resultant power for that particular trial. Improving the balance on 

treatment groups also potentially increases the statistical power attained in a trial. This study has 

shown how a simple minimization algorithm can be used to allow researchers to investigate the 

effects of varying the input parameters prior to study commencement. The advent of the wide 

availability of computing technology makes minimization a more realistic choice for many 

researchers, therefore it is vital that they make use of the technique most effectively.  

This article has reviewed specific aspects on power of minimization techniques and also a review 

of literature in the use and applications regarding the minimization technique. The results from 

the reviewed papers provided that there is fairly conclusive evidence on the advantages and 

disadvantages of the minimization method within randomized controlled trials. From the reviews 

it can be concluded that minimization is an effective method for allocating participants to 

treatment groups within a randomized controlled trial. In the majority of cases, minimization has 
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been shown to outperform simple randomization (when { }kp  is set at 0.5) in achieving balanced 

treatment groups. This greater performance is particularly noticeable when trial sample sizes are 

small.  

A number of trials have displayed significant treatment imbalance between groups unnecessarily.  

Since this technique minimizes imbalances between treatment groups many authors agreed that it 

yields tight balance as compared to other treatment allocation techniques. This was also noticed 

in this study, the technique exhibited tight balance between treatment groups for most of the 

simulated scenarios. Few studies have investigated the effect of the probability of allocation 

{ }kp and furthermore other investigators argued to keep it between 1 and 0.75, this study also 

agrees to the issue of keeping { }kp  between 1 and 0.75 but considering other statistical 

properties such as bias it is rather wiser to set { }kp  at 0.75.  

Though the statistical analysis is complex and not yet clearly worked out (Halpern J and Brown 

BW, 1986; Lachin JM et al, 1988), in this regard this study has used the necessary assumptions 

and computations concerning the analysis of categorical data from clinical trials which use 

minimization as a method of treatment allocation. Nevertheless minimization has a potential of 

selection bias and it is advised to be implemented in small trials in which a few factors are 

known to have an effect on outcome, hence according to the simulated scenarios the most 

advisable sample size should be 300 in order to achieve maximum power levels. However a 

sample size of 200 can also be considered as adequate since one can achieve 80% power, which 

is considered to be the moderately acceptable level even though quite a number of investigators 

need much higher levels of power for a study. 

Quite a number of researchers have investigated the power of minimization compared to other 

randomization schemes using simulation studies. Sample size was seen to be the most significant 

factor affecting statistical power. This was also the case in this study were a significant increase 

in power was noticed when the sample size was increased as compared to other parameters. 

Though few studies have focused on investigating the power of minimization and some 

researchers highlighted that more research needs to be done into the efficiency of minimization, 

this study is somehow a stepping-stone in venturing more into this latter aspect. In summary, 

therefore, from the results presented in the previous chapter and the evidence from previous 
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researches, it is safe to suggest that minimization is a highly effective method for treatment 

allocation, and can advocate wider adoption of the technique within the clinical trial field. 

5.3 RECOMMENDATIONS 

Not many authors made unqualified recommendations as to whether minimization must be used 

in practice in preference to other techniques. Although considering minimization as valid and as 

efficient as any other allocation method, this study recommends the use of minimization because 

of its high ability to balance between treatment groups and availability of software that can 

handle the computations. Lachin et al. recommend complete, permuted block or urn 

randomization over covariate adaptive methods like minimization because of the implications for 

the analysis and because allocation sequences cannot be pre-generated (Lachin et al., 1988)  

This paper has investigated some of the issues that arise in the practical application of the 

minimization allocation technique, which has risen sharply in recent years. Simulations have 

been performed using the most common scenario of two treatment groups. Datasets have been 

simulated under different minimization criteria to show how outcomes may vary as the input 

parameters are changed and suggest that this sort of approach should become standard practice in 

most clinical trials. Therefore it can be recommended that: 

i. Simulations can be usefully employed prior to study commencement to determine the 

best parameters to use.  

ii. Different statistics for calculating the desired power should be used to avoid taking too 

big or too small a sample to achieve the desired power. 

iii. A balanced allocation of subjects between treatment groups should be used to obtain the 

highest power for a test. If unequal allocation has to be carried out, it has to be taken into 

consideration when carrying out sample size considerations. 

iv. It is important that researchers justify the choices they make with regards to the 

procedure for allocating patients in a real life situation. 

v. Various tests should be used in the analysis of results so as to get correct and reliable 

report of the outcomes. 
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5.4    FUTURE AREAS OF RESEARCH   

In some cases it might be of greater interest to incorporate existing data for investigations using 

the minimization method. This study has aimed at showing how a relatively simple minimization 

algorithm, generated using the SAS package, can be used to assist clinicians when they have 

decided to utilize minimization and need to determine the optimal parameters to achieve reliable 

results in clinical trials. The package simplifies the feasibility of the procedure and hence may 

make this the preferred allocation technique even when there are a small number of prognostic 

factors that have to be taken into account.  

Vast amount of research still needs to be done on this adaptive method in the industrial world, 

recent guidelines for the pharmaceutical industry recommend that a random element should be 

incorporated into deterministic dynamic allocation procedures like minimization. In choosing the 

allocation method consideration should also be given to the organizational setup involved, for 

example the availability of computing facilities and whether trials require enrolment outside 

business hours. Further research into the efficiency of minimization in more complex designs 

such as in cluster randomized trials and cross-over trials, has also been suggested since research 

on minimization has been somewhat limited to simpler designs (Scott N.W et al, 2002). Pocock 

SJ believes that having a relatively straightforward randomization scheme may be more 

important than attempting theoretical optimality with more complex designs (Pocock SJ, 1975).  

A potential area for further research in minimization is in methods for analyzing data, as this is 

currently debated but in this study ordinal logistic regression was used since the data was 

categorical. McEntegart also notes that the effect of sample size on the choice of minimization 

functions has not been studied (McEntegart DJ, 2003). Additional education for clinicians and 

investigators on technicalities concerning the minimization treatment allocation method and 

instructions on its smooth integration into clinical studies might be advantageous. 
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5.5    CONCLUDING REMARKS 

The primary aim for using minimization is the desire to achieve balanced groups with respect to 

both the members in each treatment arm and the characteristics of each group. This study has 

shown how variation of parameters using simulations can be a useful tool in assessing balance 

and statistical power characteristics of the minimization allocation algorithm. Maximum power 

can be achieved with a sample of size 300 but a relatively small sample size of 200 can be 

adequate to have the minimum required power of 80%. The probability of allocation should be 

fixed at 0.75 and set to 0.5 if the treatment groups are equally allocated.The number of 

individuals in each treatment arm is almost the same using these parameters, thus minimization 

yields tight balance, which is always the case in previous studies.  
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APPENDIX A 

{ }
{ }

  probability of allocation to treatment k (trt1_placebo or trt2_drug)

 = probability of allocation to treatment k given trt1_placebo = trt2_drug

 = significance level

LOWERCL = mean for the wald 

k

kr

p

p

α

=

odds ratio lower confidence limits

UPPERCL =  mean for the wald odds ratio upper confidence limits

PROCHISQ = p-value for the contrastestimates output (mean)

WALDCHISQ = mean for the wald chisq values

POWER_PC = generated power using PROCHISQ

POWER_WC = generated power using WALDCHISQ

POWER_CL = generated power using wald odds ratio confidence limits

MINIMUM = minimum value/percentage for treatment balance

MAXIMUM = maximum value/percentage for treatment balance

MEAN = overal measure of balance between treatment groups(mean of min and max)

STDV = standard deviation of mean

 

Power and Sample size 
  

{ } 0.75kp =
 , 

 { } 0.5krp =
,  

0.05α =  

SAMPLE 

SIZE 

LOWERCL UPPERCL PROCHISQ WALDCHISQ POWER_PC POWER_WC POWER_CL STDV 

50 0.4582315 4.2084516 0.5419675 0.7573912 0.0216000 0.0216000 0.0213000 0.1453807 

 0.4557906 4.1912045 0.5465505 0.7304822 0.0210000 0.0210000 0.0210000 0.1413713 

 0.4556066 4.1865055 0.5464727 0.7333802 0.0204000 0.0204000 0.0204000 0.1416158 

 0.4564008 4.1955163 0.5454048 0.7372095 0.0207000 0.0207000 0.0207000 0.1423737 

 0.4541034 4.1684066 0.5483638 0.7276468 0.0211000 0.0211000 0.0211000 0.1403494 

75 0.8265419 4.8560352 0.2424451 2.5063071 0.2273000 0.2273000 0.2273000 0.4191089 

 0.8293328 4.8782894 0.2356100 2.5223161 0.2245000 0.2245000 0.2245000 0.4172735 

 0.8269196 4.8621079 0.2390416 2.5053674 0.2238000 0.2238000 0.2238000 0.4168028 

 0.8286351 4.8727259 0.2373188 2.5183139 0.2252000 0.2252000 0.2252000 0.4177324 

 0.8228665 4.8365229 0.2435153 2.4752843 0.2210000 0.2210000 0.2210000 0.4149412 

100 0.8824023 3.8485921 0.2092848 2.8318108 0.2669000 0.2669000 0.2669000 0.4423618 

 0.8871219 3.8715640 0.2050804 2.8717982 0.2781000 0.2781000 0.2781000 0.4480853 
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 0.8861303 3.8659906 0.2052745 2.8606489 0.2756000 0.2756000 0.2756000 0.4468279 

 0.8859420 3.8658210 0.2061315 2.8618014 0.2753000 0.2753000 0.2753000 0.4466544 

 0.8860727 3.8640664 0.2038096 2.8541147 0.2752000 0.2752000 0.2752000 0.4466373 

125 1.1303697 3.7161979 0.0620331 5.6975847 0.6754000 0.6754000 0.6754000 0.4959890 

 1.0945630 3.9004530 0.0779850 5.1394910 0.6088000 0.6088000 0.6088000 0.4948470 

 1.0766591 3.9925808 0.0859613 4.8604441 0.5756000 0.5756000 0.5756000 0.4942763 

 1.1017240 3.8636020 0.0747950 5.2511100 0.6221000 0.6221000 0.6221000 0.4950760 

 1.1010080 3.8672870 0.0751140 5.2399480 0.6208000 0.6208000 0.6208000 0.4950530 

150 1.1351826 3.7336743 0.0601300 5.7609414 0.6901000 0.6901000 0.6901000 0.4624753 

 1.1349843 3.7326656 0.0604825 5.7594275 0.6794000 0.6794000 0.6794000 0.4667306 

 1.1350670 3.7330860 0.0603360 5.7600580 0.6838000 0.6838000 0.6838000 0.4649580 

 1.1350339 3.7329178 0.0603944 5.7598060 0.6820000 0.6820000 0.6820000 0.4656668 

 1.1350280 3.7328900 0.0604040 5.7597640 0.6817000 0.6817000 0.6817000 0.4657850 

175 1.1592502 3.4951390 0.0505382 6.3000910 0.7358000 0.7358000 0.7358000 0.4409283 

 1.1406328 3.6000947 0.0668521 5.9514886 0.6750000 0.6750000 0.6750000 0.4684217 

 1.1495012 3.6296282 0.0645716 6.0724937 0.6926000 0.6926000 0.6926000 0.4614627 

 1.1638398 3.5098815 0.0596164 6.3673092 0.7337000 0.7337000 0.7337000 0.4420430 

 1.1640100 3.5104280 0.0505827 6.3697997 0.7336000 0.7336000 0.7336000 0.4420840 

200 1.1891946 3.3329314 0.0363778 6.9833354 0.7972000 0.7972000 0.7972000 0.4021049 

 1.1912855 3.3394409 0.0370123 7.0213981 0.7994000 0.7994000 0.7994000 0.4004693 

 1.1904140 3.3367290 0.0367480 7.0055390 0.7984000 0.7984000 0.7984000 0.4011510 

 1.1907628 3.3378135 0.0368537 7.0118824 0.7988000 0.7988000 0.7988000 0.4008782 

 1.1908210 3.3379940 0.0368710 7.0129400 0.7989000 0.7989000 0.7989000 0.4008330 

225 1.2983138 3.4520970 0.0159462 9.1265338 0.9188000 0.9188000 0.9188000 0.2731557 

 1.3003260 3.4575170 0.0158670 9.1640080 0.9185000 0.9185000 0.9185000 0.2735840 

 1.2993591 3.4545342 0.0163280 9.1493618 0.9156000 0.9156000 0.9156000 0.2780007 

 1.3033053 3.4659203 0.0153257 9.2161288 0.9211000 0.9211000 0.9211000 0.2695961 

 1.3009970 3.4593240 0.0158400 9.1765000 0.9184000 0.9184000 0.9184000 0.2737270 

250 1.4303236 3.6219274 0.0046391 12.0825793 0.9861000 0.9861000 0.9861000 0.1170819 

 1.4315897 3.6256746 0.0050102 12.1096850 0.9823000 0.9823000 0.9823000 0.1318653 
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 1.4310620 3.6241130 0.0048560 12.0983900 0.9838000 0.9838000 0.9838000 0.1257060 

 1.4312732 3.6247378 0.0049174 12.1029086 0.9852000 0.9852000 0.9852000 0.1281695 

 1.4313080 3.6248420 0.0049280 12.1036600 0.9831000 0.9831000 0.9831000 0.1285800 

275 1.4795417 3.5898864 0.0027602 13.6711128 0.9915000 0.9915000 0.9915000 0.0918074 

 1.4744463 3.5769816 0.0028682 13.5619222 0.9924000 0.9924000 0.9924000 0.0868504 

 1.4765690 3.5823590 0.0028230 13.6074200 0.9920000 0.9920000 0.9920000 0.0889160 

 1.4757202 3.5802078 0.0028412 13.5892199 0.9921000 0.9921000 0.9921000 0.0880897 

 1.4755790 3.5798490 0.0028440 13.5861900 0.9922000 0.9922000 0.9922000 0.0879520 

300 1.5168079 3.5413727 0.0015955 15.1354860 0.9970000 0.9970000 0.9970000 0.0582132 

 1.5235493 3.5583772 0.0016033 15.2858446 0.9971000 0.9971000 0.9971000 0.0537762 

 1.5207400 3.5512920 0.0016000 15.2232000 0.9970000 0.9970000 0.9970000 0.0556250 

 1.5218640 3.5541261 0.0016014 15.2482550 0.9974000 0.9974000 0.9974000 0.0548855 

 1.5220510 3.5545980 0.0016020 15.2524300 0.9972000 0.9972000 0.9972000 0.0547620 

325 1.5487364 3.4982424 0.000964152 16.5505251 0.9988000 0.9988000 0.9988000 0.0346220 

 1.5504540 3.5023740 0.0010240 16.5924800 0.9982000 0.9982000 0.9982000 0.0419820 

 1.5500653 3.5013184 0.0010790 16.5846547 0.9976000 0.9976000 0.9976000 0.0489334 

 1.5525599 3.5075611 0.0010298 16.6422562 0.9982000 0.9982000 0.9982000 0.0423903 

 1.5505680 3.5026490 0.0010280 16.5952800 0.9981000 0.9981000 0.9981000 0.0424730 

350 1.5270686 3.3407412 0.000928443 16.6934704 0.9883000 0.9883000 0.9883000 0.0458734 

 1.5339733 3.3562378 0.0011065 16.8796134 0.9978000 0.9978000 0.9978000 0.0459476 

 1.5240665 3.3339543 0.0010891 16.6174056 0.9973000 0.9973000 0.9973000 0.0518939 

 1.5283690 3.3436440 0.0010410 16.7301600 0.9944000 0.9944000 0.9944000 0.0479050 

 1.5284560 3.3438380 0.0010490 16.7326100 0.9949000 0.9949000 0.9949000 0.0480400 

375 1.4451616 3.0669420 0.0017938 15.1325775 0.9957000 0.9957000 0.9957000 0.0654365 

 1.4433320 3.0631024 0.0018139 15.0807698 0.9958000 0.9958000 0.9958000 0.0669343 

 1.4440940 3.0647020 0.0018060 15.1023600 0.9955000 0.9955000 0.9955000 0.0663100 

 1.4437894 3.0640623 0.0018089 15.0937217 0.9965000 0.9965000 0.9965000 0.0665599 

 1.4440230 3.0645530 0.0018060 15.1003400 0.9972000 0.9972000 0.9972000 0.0663680 

400 1.5180968 3.1465356 0.0006282 17.7510756 0.9996000 0.9996000 0.9996000 0.0199970 

 1.5173303 3.1449191 0.000667485 17.7287560 0.9990000 0.9990000 0.9990000 0.0264496 
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Power and Probability of Allocation to Treatment k when Treatments are Balanced 

 { } 0.75kp =  , 0.05α =  ,  300n =   

 1.5164408 3.1430027 0.000629508 17.7017764 0.9991000 0.9991000 0.9991000 0.0299880 

 1.5175219 3.1453232 0.0006577 17.7343359 0.9997000 0.9997000 0.9997000 0.0248365 

 1.5171600 3.1445480 0.0006500 17.7234600 0.9992000 0.9992000 0.9992000 0.0266480 

         

{ }krP

 

LOWERCL UPPERCL PROCHISQ WALDCHISQ POWER_PC POWER_WC POWER_CL 

0.1 1.5166434 3.5399216 0.0016448 15.1366884 0.9969000 0.9969000 0.9969000 

 1.5182351 3.5449791 0.0016677 15.1678728 0.9962000 0.9962000 0.9962000 

 1.5192986 3.5451616 0.0016639 15.1691253 0.9968000 0.9968000 0.9968000 

 1.5182169 3.5449464 0.0016745 15.1674553 0.9961000 0.9961000 0.9961000 

 1.5178973 3.5441608 0.0016853 15.1603195 0.9960000 0.9960000 0.9960000 

0.2 1.5181888 3.5440452 0.0014754 15.1684759 0.9979000 0.9979000 0.9979000 

 1.5165606 3.5433215 0.0016533 15.1523484 0.9964000 0.9964000 0.9964000 

 1.5165811 3.5433408 0.0016432 15.1528554 0.9966000 0.9966000 0.9966000 

 1.5178717 3.5440190 0.0016484 15.1597296 0.9965000 0.9965000 0.9965000 

 1.5157823 3.5438091 0.0016443 15.1575681 0.9964000 0.9964000 0.9964000 

0.3 1.5157880 3.5384479 0.0017540 15.1156921 0.9961000 0.9961000 0.9961000 

 1.5182434 3.5449376 0.0016371 15.1679931 0.9964000 0.9964000 0.9964000 

 1.5172473 3.5449357 0.0016410 15.1682947 0.9969000 0.9969000 0.9969000 

 1.5194358 3.5453934 0.0016328 15.1723809 0.9964000 0.9964000 0.9964000 

 1.5187574 3.5463149 0.0016369 15.1791138 0.9963000 0.9963000 0.9963000 

0.4 1.5174106 3.5426059 0.0017166 15.1515860 0.9959000 0.9959000 0.9959000 

 1.5179544 3.5442581 0.0016736 15.1617017 0.9962000 0.9962000 0.9962000 

 1.5196935 3.5436882 0.0016610 15.1552407 0.9963000 0.9963000 0.9963000 

 1.5168515 3.5440521 0.0016551 15.1588804 0.9971000 0.9971000 0.9971000 

 1.5179228 3.5442456 0.0016608 15.1604894 0.9962000 0.9962000 0.9962000 

0.5 1.5181834 3.5449649 0.0015795 15.1634864 0.9966000 0.9966000 0.9966000 
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 1.5178371 3.5439786 0.0016451 15.1586486 0.9970000 0.9970000 0.9970000 

 1.5197972 3.5438820 0.0016456 15.1577314 0.9962000 0.9962000 0.9962000 

 1.5178471 3.5439696 0.0016456 15.1590576 0.9964000 0.9964000 0.9964000 

 1.5208688 3.5440364 0.0016431 15.1594510 0.9967000 0.9967000 0.9967000 

0.6 1.5193936 3.5479416 0.0016212 15.1948106 0.9969000 0.9969000 0.9969000 

 1.5212732 3.5426559 0.0016369 15.1453858 0.9965000 0.9965000 0.9965000 

 1.5162732 3.5426559 0.0016369 15.1453858 0.9969000 0.9969000 0.9969000 

 1.5171771 3.5424339 0.0016358 15.1431148 0.9965000 0.9965000 0.9965000 

 1.5187160 3.5437142 0.0016506 15.1557817 0.9964000 0.9964000 0.9964000 

0.7 1.5220518 3.5543729 0.0015453 15.2530862 0.9967000 0.9967000 0.9967000 

 1.5193184 3.5450532 0.0016453 15.1701245 0.9964000 0.9964000 0.9964000 

 1.5183369 3.5451972 0.0016696 15.1703595 0.9962000 0.9962000 0.9962000 

 1.5201375 3.5446533 0.0016461 15.1658243 0.9964000 0.9964000 0.9964000 

 1.5181638 3.5447071 0.0016503 15.1666291 0.9959000 0.9959000 0.9959000 

0.8 1.5172124 3.5429940 0.0018252 15.1437330 0.9948000 0.9948000 0.9948000 

 1.5185406 3.5431314 0.0016381 15.1523301 0.9965000 0.9965000 0.9965000 

 1.5175682 3.5433865 0.0016555 15.1522742 0.9963000 0.9963000 0.9963000 

 1.5137660 3.5439353 0.0016445 15.1563388 0.9964000 0.9964000 0.9964000 

 1.5147660 3.5439353 0.0016445 15.1563388 0.9957000 0.9957000 0.9957000 

0.9 1.5196384 3.5486881 0.0015332 15.1966509 0.9970000 0.9970000 0.9970000 

 1.5178016 3.5440682 0.0016373 15.1568141 0.9964000 0.9964000 0.9964000 

 1.5185823 3.5435382 0.0016455 15.1518509 0.9960000 0.9960000 0.9960000 

 1.5150856 3.5423343 0.0016566 15.1406026 0.9963000 0.9963000 0.9963000 

 1.5167507 3.5414576 0.0016510 15.1332052 0.9964000 0.9964000 0.9964000 

1 1.5108953 3.5273320 0.0016860 14.9990921 0.9969000 0.9969000 0.9969000 

 1.5175148 3.5431723 0.0016419 15.1512809 0.9965000 0.9965000 0.9965000 

 1.5185264 3.5433121 0.0016515 15.1511278 0.9964000 0.9964000 0.9964000 

 1.5174663 3.5435628 0.0016455 15.1513269 0.9959000 0.9959000 0.9959000 

 1.5155159 3.5431856 0.0016428 15.1512663 0.9965000 0.9965000 0.9965000 

        



Maximization of Power in Randomized Clinical Trials using the Minimization Treatment Allocation 

Technique 

- 94 - 

 

 

Power and Probability of Allocation to Treatment k      

 300n =  ,  { } 0.5krp =
 ,  

0.05α =  

{ }kp
 

LOWERCL UPPERCL PROCHISQ WALDCHISQ POWER_PC POWER_WC POWER_CL 

0.10 1.1965878 4.8792735 0.0849362 6.2273265 0.6586000 0.6586000 0.6586000 

 1.1980043 4.8922196 0.0849262 6.2311371 0.6542000 0.6542000 0.6542000 

 1.2002443 4.8801284 0.0873339 6.2705581 0.6569000 0.6569000 0.6569000 

 1.1982788 4.8838738 0.0857321 6.2430072 0.6565000 0.6565000 0.6565000 

 1.1988425 4.8854073 0.0859974 6.2482341 0.6558000 0.6558000 0.6558000 

0.15 1.3130748 4.2886037 0.0393668 8.3306163 0.8170000 0.8170000 0.8170000 

 1.3153460 4.3019209 0.0398553 8.3586495 0.8182000 0.8182000 0.8182000 

 1.3152104 4.2952623 0.0396111 8.3446329 0.8196000 0.8196000 0.8196000 

 1.3139265 4.2335977 0.0385500 8.3611288 0.8164000 0.8164000 0.8164000 

 1.3141394 4.3148461 0.0395958 8.3437569 0.8175000 0.8175000 0.8175000 

0.20 1.3867418 4.0050477 0.0192633 10.1420379 0.9068000 0.9068000 0.9068000 

 1.3848575 4.0016034 0.0192711 10.1114180 0.9079000 0.9079000 0.9079000 

 1.3857997 4.0033256 0.0192672 10.1267280 0.9073000 0.9073000 0.9073000 

 1.3853286 4.0024645 0.0192692 10.1190730 0.9076000 0.9076000 0.9076000 

 1.3856819 4.0031103 0.0192677 10.1248142 0.9074000 0.9074000 0.9074000 

0.25 1.4293061 3.8203553 0.0109286 11.5411255 0.9513000 0.9513000 0.9513000 

 1.4158607 3.7850963 0.0103511 11.2819937 0.9540000 0.9540000 0.9540000 

 1.4301759 3.8181476 0.0077912 11.5501783 0.9690000 0.9690000 0.9690000 

 1.4201295 3.7921004 0.0105345 11.3750586 0.9520000 0.9520000 0.9520000 

 1.4252679 3.8181136 0.0101294 11.4530274 0.9510000 0.9510000 0.9510000 

0.30 1.4615107 3.7092703 0.0057331 12.7211847 0.9770000 0.9770000 0.9770000 

 1.4836488 3.7632920 0.0052486 12.7740997 0.9800000 0.9800000 0.9800000 

 1.4673809 3.7230872 0.0056770 12.8332361 0.9740000 0.9740000 0.9740000 

 1.4680720 3.7291142 0.0055366 12.8449679 0.9770000 0.9770000 0.9770000 
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 1.4612777 3.7090782 0.0061701 12.7150313 0.9670000 0.9670000 0.9670000 

0.35 1.4940599 3.6643517 0.0037414 13.8473449 0.9863000 0.9863000 0.9863000 

 1.4769980 3.6183663 0.0040835 13.4968639 0.9870000 0.9870000 0.9870000 

 1.4934179 3.6611793 0.0045833 13.8463608 0.9870000 0.9870000 0.9870000 

 1.4833860 3.6385321 0.0042665 13.6181144 0.9840000 0.9840000 0.9840000 

 1.4828679 3.6355563 0.0045030 13.6196113 0.9840000 0.9840000 0.9840000 

0.40 1.5039849 3.6082699 0.0026763 14.3924255 0.9917000 0.9917000 0.9917000 

 1.5268327 3.6638437 0.0027925 14.9016318 0.9930000 0.9930000 0.9930000 

 1.5047588 3.6114628 0.0026621 14.4065662 0.9940000 0.9940000 0.9940000 

 1.5001712 3.6022176 0.0028515 14.3004720 0.9910000 0.9910000 0.9910000 

 1.5041023 3.6095848 0.0028130 14.3923871 0.9870000 0.9870000 0.9870000 

0.45 1.5096224 3.5764369 0.0022648 14.7226946 0.9933000 0.9933000 0.9933000 

 1.4998233 3.5528434 0.0025123 14.5072361 0.9930000 0.9930000 0.9930000 

 1.5120372 3.5826389 0.0030572 14.7792947 0.9940000 0.9940000 0.9940000 

 1.5102720 3.5771593 0.0023014 14.7438447 0.9920000 0.9920000 0.9920000 

 1.5019704 3.5558141 0.0026045 14.5665111 0.9880000 0.9880000 0.9880000 

0.50 1.5101645 3.5532672 0.0022059 14.8503118 0.9940000 0.9940000 0.9940000 

 1.5113454 3.5563285 0.0023556 14.8792935 0.9930000 0.9930000 0.9930000 

 1.5170653 3.5707880 0.0021976 14.9039062 0.9890000 0.9890000 0.9890000 

 1.5274831 3.5949101 0.0017005 14.8414336 0.9970000 0.9970000 0.9970000 

 1.5015605 3.5319592 0.0020622 14.6537562 0.9950000 0.9950000 0.9950000 

0.55 1.5125232 3.5453805 0.0019267 14.9686677 0.9951000 0.9951000 0.9951000 

 1.5147784 3.5510224 0.0017362 15.0199583 0.9970000 0.9970000 0.9970000 

 1.5139216 3.5509001 0.0024115 14.9922616 0.9910000 0.9910000 0.9910000 

 1.5241157 3.5741564 0.0022258 14.9360158 0.9930000 0.9930000 0.9930000 

 1.5137670 3.5481645 0.0017911 14.9982200 0.9970000 0.9970000 0.9970000 

0.60 1.5187506 3.5532902 0.0018294 15.1461123 0.9952000 0.9952000 0.9952000 

 1.5305748 3.5827188 0.0018111 15.4130874 0.9950000 0.9950000 0.9950000 

 1.5172569 3.5492179 0.0018021 15.1122568 0.9970000 0.9970000 0.9970000 

 1.5214708 3.5608520 0.0020051 15.2048767 0.9940000 0.9940000 0.9940000 
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 1.5060318 3.5228218 0.0022213 15.0536141 0.9920000 0.9920000 0.9920000 

0.65 1.5156903 3.5423327 0.0017477 15.0922643 0.9964000 0.9964000 0.9964000 

 1.5266028 3.5679205 0.0021700 15.3523169 0.9920000 0.9920000 0.9920000 

 1.5200920 3.5526630 0.0016187 15.1973056 0.9970000 0.9970000 0.9970000 

 1.5132398 3.5362241 0.0018492 15.0372478 0.9970000 0.9970000 0.9970000 

 1.5200328 3.5530208 0.0017162 15.1920428 0.9960000 0.9960000 0.9960000 

0.70 1.5199596 3.5507400 0.0017664 15.2012284 0.9961000 0.9961000 0.9961000 

 1.5219070 3.5559078 0.0020552 15.2479341 0.9940000 0.9940000 0.9940000 

 1.5104633 3.5269847 0.0017328 15.0883177 0.9970000 0.9970000 0.9970000 

 1.5193894 3.5489168 0.0016176 15.1883284 0.9960000 0.9960000 0.9960000 

 1.5177223 3.5448909 0.0017262 15.1490885 0.9940000 0.9940000 0.9940000 

0.75 1.5168079 3.5413727 0.0015955 15.1354860 0.9970000 0.9970000 0.9970000 

 1.5181834 3.5449649 0.0015795 15.1634864 0.9966000 0.9966000 0.9966000 

 1.5178371 3.5439786 0.0016451 15.1586486 0.9970000 0.9970000 0.9970000 

 1.5197972 3.5438820 0.0016456 15.1577314 0.9962000 0.9962000 0.9962000 

 1.5178471 3.5439696 0.0016456 15.1590576 0.9964000 0.9964000 0.9964000 

0.80 1.5172745 3.5419549 0.0016345 15.1481574 0.9967000 0.9967000 0.9967000 

 1.5167371 3.5426713 0.0016531 15.1444289 0.9971000 0.9971000 0.9971000 

 1.5177257 3.5437199 0.0016418 15.1553171 0.9962000 0.9962000 0.9962000 

 1.5177525 3.5437789 0.0016466 15.1563874 0.9966000 0.9966000 0.9966000 

 1.5171728 3.5430825 0.0016524 15.1487865 0.9970000 0.9970000 0.9970000 

0.85 1.5173931 3.5416351 0.0014653 15.1521740 0.9976000 0.9976000 0.9976000 

 1.5169154 3.5442150 0.0012709 15.1734845 0.9967000 0.9967000 0.9967000 

 1.5164030 3.5390238 0.0013500 15.1297504 0.9966000 0.9966000 0.9966000 

 1.5200259 3.5487947 0.0018061 15.2118898 0.9970000 0.9970000 0.9970000 

 1.5075786 3.5482622 0.0016789 15.1270776 0.9975000 0.9975000 0.9975000 

0.90 1.5186146 3.5443160 0.0014619 15.1818238 0.9971000 0.9971000 0.9971000 

 1.5171975 3.5410743 0.0018614 15.1539871 0.9970000 0.9970000 0.9970000 

 1.5131428 3.5304111 0.0013921 15.0581857 0.9970000 0.9970000 0.9970000 

 1.5095247 3.5219872 0.0014778 15.0749538 0.9970000 0.9970000 0.9970000 
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Treatment Balance and Sample size 
 

{ } 0.75kp =
 , 

 { } 0.5krp =
,  

0.05α =  

 1.5115831 3.5264821 0.0013546 15.0225606 0.9980000 0.9980000 0.9980000 

0.95 1.5153765 3.5359381 0.0014857 15.1133844 0.9972000 0.9972000 0.9972000 

 1.5065920 3.5438897 0.0016380 15.1177390 0.9960000 0.9960000 0.9960000 

 1.5105892 3.5238136 0.0017432 15.0112003 0.9965000 0.9965000 0.9965000 

 1.5152889 3.5357080 0.0014125 15.1103967 0.9960000 0.9960000 0.9960000 

 1.5101238 3.5232433 0.0014418 15.0922841 0.9972000 0.9972000 0.9972000 

1.00 1.5173509 3.5401066 0.0015052 15.1670454 0.9974000 0.9974000 0.9974000 

 1.5133189 3.5306700 0.0017429 15.0814661 0.9970000 0.9970000 0.9970000 

 1.5211241 3.5493599 0.0017184 15.1595829 0.9975000 0.9975000 0.9975000 

 1.5187782 3.5442118 0.0017355 15.2012879 0.9980000 0.9980000 0.9980000 

 1.5255204 3.5590808 0.0015101 15.3587473 0.9970000 0.9970000 0.9970000 

        

SAMPLE 

SIZE 

MINIMUM MAXIMUM MEAN STDV 

50 0.4200000 0.5600000 0.4993000 0.0206963 

 0.4000000 0.5800000 0.5003960 0.0209257 

 0.4028125 0.5834375 0.5001706 0.0208681 

 0.4050000 0.5750000 0.5001220 0.0208684 

 0.4000000 0.6000000 0.5001680 0.0208445 

75 0.4533333 0.5600000 0.4998133 0.0139771 

 0.3866667 0.5600000 0.4999920 0.0141277 

 0.4266667 0.5733333 0.4999973 0.0140963 

 0.4033334 0.5600000 0.4999473 0.0140901 

 0.4085417 0.5641667 0.4999685 0.0140967 

100 0.4600000 0.5400000 0.4999600 0.0106448 

 0.4600000 0.5500000 0.5000770 0.0104716 
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 0.4568750 0.5485938 0.5000312 0.0104955 

 0.4600000 0.5475000 0.5000478 0.0105149 

 0.4500000 0.5500000 0.4999830 0.0104700 

125 0.4720000 0.5360000 0.5000643 0.0084456 

 0.4640000 0.5360000 0.4999920 0.0084280 

 0.4560000 0.5360000 0.4999464 0.0084863 

 0.4640000 0.5360000 0.4999648 0.0083534 

 0.4620000 0.5360000 0.4999740 0.0084240 

150 0.4733333 0.5266667 0.4999333 0.0067558 

 0.4666667 0.5333333 0.4999860 0.0070364 

 0.4700000 0.5300000 0.4999597 0.0068961 

 0.4683334 0.5316667 0.4999728 0.0069663 

 0.4695833 0.5304166 0.4999629 0.0069136 

175 0.4800000 0.5200000 0.5000457 0.0058582 

 0.4742857 0.5314286 0.4999463 0.0061200 

 0.4771428 0.5257143 0.4999960 0.0059891 

 0.4757143 0.5285715 0.4999712 0.0060546 

 0.4767857 0.5264286 0.4999898 0.0060054 

200 0.4800000 0.5150000 0.4999950 0.0054868 

 0.4750000 0.5250000 0.5000545 0.0054007 

 0.4775000 0.5200000 0.5000247 0.0054437 

 0.4762500 0.5225000 0.5000396 0.0054222 

 0.4771875 0.5206250 0.5000284 0.0054383 

225 0.4755556 0.5155556 0.4995911 0.0047343 

 0.4770370 0.5200000 0.4997980 0.0047490 

 0.4755556 0.5244444 0.4999018 0.0047450 

 0.4800000 0.5200000 0.4998996 0.0047678 

 0.4777778 0.5222222 0.4999007 0.0047564 

250 0.4800000 0.5160000 0.5001000 0.0041713 

 0.4800000 0.5200000 0.4999508 0.0042510 
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 0.4800000 0.5180000 0.5000254 0.0042111 

 0.4800000 0.5190000 0.4999881 0.0042311 

 0.4800000 0.5182500 0.5000160 0.0042161 

275 0.4836364 0.5163636 0.5000764 0.0040604 

 0.4800000 0.5200000 0.5000349 0.0039904 

 0.4818182 0.5181818 0.5000556 0.0040254 

 0.4809091 0.5190909 0.5000453 0.0040079 

 0.4815909 0.5184090 0.5000530 0.0040210 

300 0.4866667 0.5133333 0.5000767 0.0035789 

 0.4833333 0.5166667 0.4999477 0.0035323 

 0.4850000 0.5150000 0.5000122 0.0035556 

 0.4841667 0.5158334 0.4999800 0.0035440 

 0.4847916 0.5152083 0.5000041 0.0035527 

325 0.4861538 0.5138462 0.5001617 0.0035319 

 0.4845510 0.5154490 0.5000120 0.0030810 

 0.4830769 0.5169231 0.5000111 0.0033104 

 0.4830769 0.5169231 0.5000037 0.0033482 

 0.4875000 0.5125000 0.5000222 0.0025852 

350 0.4885714 0.5114286 0.4999257 0.0030026 

 0.4857143 0.5171429 0.5000166 0.0030866 

 0.4871428 0.5142857 0.4999711 0.0030446 

 0.4864286 0.5157143 0.4999939 0.0030656 

 0.4869642 0.5146428 0.4999768 0.0030498 

375 0.4906667 0.5120000 0.5000160 0.0029128 

 0.4853333 0.5146667 0.5000320 0.0028191 

 0.4880000 0.5133333 0.5000240 0.0028659 

 0.4866667 0.5140000 0.5000280 0.0028425 

 0.4866667 0.5140000 0.5000250 0.0028600 

400 0.4890000 0.5100000 0.4994600 0.0027398 

 0.4875000 0.5125000 0.4999677 0.0026144 
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Treatment Balance and Probability of Allocation to Treatment k when Treatments are Balanced 

 { } 0.75kp =  , 0.05α =  ,  300n =   

 0.4875000 0.5125000 0.5000130 0.0026345 

 0.4878750 0.5118750 0.4998408 0.0026458 

 0.4882500 0.5112500 0.5000130 0.0026345 
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{ }krP  
MINIMUM MAXIMUM MEAN STDV 

0.1 0.4833333 0.5133333 0.5019733 0.0032188 

 0.4866667 0.5133333 0.5016933 0.0033115 

 0.4933333 0.5166667 0.5019500 0.0032621 

 0.4900000 0.5133333 0.5020733 0.0034322 

 0.4933333 0.5166667 0.5020433 0.0032527 

0.2 0.4900000 0.5133333 0.5013376 0.0034347 

 0.4900000 0.5166667 0.5016267 0.0034398 

 0.4900000 0.5133333 0.5013600 0.0032906 

 0.4900000 0.5100000 0.5014367 0.0033103 

 0.4866667 0.5166667 0.5015333 0.0033055 

0.3 0.4900000 0.5166667 0.5011067 0.0034267 

 0.4900000 0.5133333 0.5008233 0.0032744 

 0.4900000 0.5166667 0.5008400 0.0035741 

 0.4900000 0.5166667 0.5009467 0.0034260 

 0.4866667 0.5133333 0.5010467 0.0034423 

0.4 0.4866667 0.5133333 0.5005167 0.0035183 

 0.4833333 0.5166667 0.5003333 0.0036104 

 0.4833333 0.5166667 0.5004367 0.0035543 

 0.4866667 0.5133333 0.5004300 0.0036264 

 0.4866667 0.5133333 0.5006167 0.0035149 

0.5 0.4866667 0.5133333 0.5000767 0.0035789 

 0.4833333 0.5133333 0.5000033 0.0034610 

 0.4866667 0.5100000 0.4999100 0.0035861 

 0.4866667 0.5166667 0.4998433 0.0037268 

 0.4866667 0.5133333 0.4999667 0.0035356 

0.6 0.4866667 0.5133333 0.4996951 0.0034530 

 0.4866667 0.5133333 0.4996033 0.0035994 

 0.4900000 0.5133333 0.4995700 0.0035426 

 0.4866667 0.5133333 0.4994733 0.0036274 
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 0.4833333 0.5133333 0.4993500 0.0035247 

0.7 0.4866667 0.5100000 0.4990114 0.0033653 

 0.4866667 0.5100000 0.4990633 0.0034109 

 0.4866667 0.5100000 0.4988800 0.0035469 

 0.4833333 0.5100000 0.4991467 0.0033690 

 0.4900000 0.5100000 0.4990100 0.0035181 

0.8 0.4866667 0.5100000 0.4986200 0.0033159 

 0.4766667 0.5133333 0.4984833 0.0034722 

 0.4833333 0.5166667 0.4986133 0.0035841 

 0.4866667 0.5100000 0.4985233 0.0036116 

 0.4866667 0.5133333 0.4984133 0.0036463 

0.9 0.4866667 0.5100000 0.4982098 0.0034823 

 0.4866667 0.5100000 0.4981067 0.0033239 

 0.4833333 0.5100000 0.4982300 0.0032180 

 0.4833333 0.5100000 0.4980600 0.0032800 

 0.4866667 0.5100000 0.4979367 0.0034204 

1 0.4866667 0.5100000 0.4977444 0.0031629 

 0.4833333 0.5100000 0.4979033 0.0033105 

 0.4866667 0.5166667 0.4978900 0.0033720 

 0.4833333 0.5100000 0.4975133 0.0032291 

 0.4833333 0.5100000 0.4975133 0.0033673 
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Treatment Balance and Probability of Allocation to Treatment K
      

 300n =  ,  { } 0.5krp =
 ,  

0.05α =  

{ }kp  
MINIMUM MAXIMUM MEAN STDV 

0.10 0.0566667 0.9433333 0.4958700 0.3849012 

 0.0600000 0.9400000 0.4855000 0.3867404 

 0.0500000 0.9400000 0.5034333 0.3875621 

 0.0500000 0.9500000 0.4927067 0.3841906 

 0.0500000 0.9500000 0.4949667 0.3851182 

0.15 0.0833333 0.9133333 0.5038767 0.3390351 

 0.0933333 0.9033333 0.5304233 0.3347048 

 0.0900000 0.9033333 0.5186900 0.3378706 

 0.0866667 0.9000000 0.4915233 0.3385000 

 0.0900000 0.9066667 0.5049000 0.3386087 

0.20 0.1466667 0.8633333 0.5100433 0.2906893 

 0.1266667 0.8566667 0.5032767 0.2901321 

 0.1266667 0.8633333 0.4985100 0.2885636 

 0.1433333 0.8600000 0.4971967 0.2884522 

 0.1333333 0.8500000 0.4978467 0.2889940 

0.25 0.1766667 0.8166667 0.5024173 0.2408541 

 0.1633333 0.8266667 0.5123167 0.2408001 

 0.1766667 0.8300000 0.4916800 0.2424776 

 0.1933333 0.8300000 0.5029900 0.2421489 

 0.1566667 0.8266667 0.4969867 0.2416612 

0.30 0.2233333 0.7966667 0.4935738 0.1914325 

 0.2266667 0.7800000 0.5024400 0.1935088 

 0.2133333 0.7866667 0.5088567 0.1933849 

 0.2300000 0.7866667 0.5013500 0.1914303 

 0.2366667 0.7833333 0.4862733 0.1916220 

0.35 0.2633333 0.7466667 0.4982333 0.1442508 
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 0.2766667 0.7233333 0.4998267 0.1445906 

 0.2833333 0.7466667 0.5059833 0.1465971 

 0.2600000 0.7333333 0.4968667 0.1438473 

 0.2700000 0.7233333 0.5003033 0.1435579 

0.40 0.3066667 0.6766667 0.5020167 0.0978883 

 0.3300000 0.6833333 0.4956733 0.0984949 

 0.3233333 0.6900000 0.5011567 0.0993617 

 0.3100000 0.6866667 0.4980933 0.0979071 

 0.3166667 0.7033333 0.5028833 0.0999360 

0.45 0.3666667 0.6566667 0.5018533 0.0585238 

 0.3633333 0.6366667 0.5022033 0.0576932 

 0.3600000 0.6566667 0.5034533 0.0580337 

 0.3600000 0.6500000 0.4993233 0.0591688 

 0.3666667 0.6500000 0.4983367 0.0585165 

0.50 0.3800000 0.5866667 0.4999267 0.0302894 

 0.4166667 0.5833333 0.5000000 0.0291354 

 0.3933333 0.6066667 0.5003567 0.0301300 

 0.4133333 0.5933333 0.5005100 0.0285865 

 0.4066667 0.6033333 0.5001333 0.0296099 

0.55 0.4366667 0.5466667 0.5007284 0.0144878 

 0.4400000 0.5566667 0.5002767 0.0149920 

 0.4433333 0.5533333 0.4998133 0.0150692 

 0.4333333 0.5766667 0.5004633 0.0152266 

 0.4466667 0.5466667 0.5001267 0.0145647 

0.60 0.4633333 0.5300000 0.4997727 0.0089718 

 0.4666667 0.5333333 0.4999167 0.0084622 

 0.4633333 0.5333333 0.5001367 0.0089545 

 0.4666667 0.5333333 0.4997767 0.0088830 

 0.4566667 0.5300000 0.5000133 0.0088575 

0.65 0.4766667 0.5200000 0.5000967 0.0062126 
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 0.4766667 0.5200000 0.4999567 0.0058916 

 0.4766667 0.5200000 0.5001167 0.0059600 

 0.4733333 0.5266667 0.4998500 0.0059816 

 0.4800000 0.5266667 0.5000333 0.0059489 

0.70 0.4833333 0.5266667 0.5002300 0.0047238 

 0.4733333 0.5166667 0.4999933 0.0046211 

 0.4833333 0.5166667 0.4998933 0.0044507 

 0.4833333 0.5233333 0.4999600 0.0044040 

 0.4833333 0.5166667 0.4998133 0.0045322 

0.75 0.4866667 0.5133333 0.5000767 0.0035789 

 0.4866667 0.5166667 0.5000733 0.0035756 

 0.4833333 0.5133333 0.4999833 0.0035310 

 0.4866667 0.5133333 0.5000367 0.0034253 

 0.4800000 0.5133333 0.5000300 0.0035933 

0.80 0.4900000 0.5100000 0.4999933 0.0030089 

 0.4866667 0.5100000 0.4997467 0.0030241 

 0.4900000 0.5100000 0.4999333 0.0028291 

 0.4900000 0.5100000 0.5000267 0.0027861 

 0.4900000 0.5100000 0.5001200 0.0028115 

0.85 0.4900000 0.5133333 0.5001267 0.0024383 

 0.4900000 0.5100000 0.4998800 0.0024614 

 0.4866667 0.5100000 0.4998733 0.0023689 

 0.4933333 0.5066667 0.4999333 0.0023854 

 0.4933333 0.5066667 0.5000233 0.0023272 

0.90 0.4933333 0.5066667 0.5000701 0.0020267 

 0.4933333 0.5066667 0.5000433 0.0019182 

 0.4933333 0.5066667 0.4999467 0.0020388 

 0.4933333 0.5066667 0.5000000 0.0019954 

 0.4933333 0.5066667 0.4999367 0.0019407 

0.95 0.4933333 0.5033333 0.5001270 0.0015827 



Maximization of Power in Randomized Clinical Trials using the Minimization Treatment Allocation 

Technique 

- 106 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0.4933333 0.5066667 0.5000633 0.0015379 

 0.4933333 0.5066667 0.4999967 0.0016440 

 0.4966667 0.5066667 0.5000467 0.0015918 

 0.4933333 0.5066667 0.4999733 0.0016404 

1.00 0.4966667 0.5033333 0.5000233 0.000983407 

 0.4966667 0.5033333 0.5000333 0.0010328 

 0.4966667 0.5033333 0.4999767 0.0010277 

 0.4966667 0.5033333 0.4999900 0.000960752 

 0.4966667 0.5033333 0.4999767 0.0011307 
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APPENDIX B 
/* 
---------------------------------------------------------------------------- 
SAS SIMULATION CODE: MINIMIZATION TREATMENT ALLOCATION 
---------------------------------------------------------------------------- 
 
2009 Copyright (c) by Marange C.S 
MSc Biostatistics and Epidermiology 
Department of Statistics  
FortHare University 
South Africa 
 
--------------------------------------------------------------------------- 
*************************************************************************** 
Generation of n Subjects, Prognostic Factors and Response Values 
*************************************************************************** 
--------------------------------------------------------------------------- 
*/ 
DATA code_1(keep=patient trt1_placebo trt2_drug profactor_1 profactor_2 
profactor_3); 
DO n=1 TO 50; 
patient=n; 
/*Two binary categorical prognostic factors 1&2 both with two levels and one 
with four levels,factor 3*/ 
profactor_1=rantbl(20,0.65,0.35); 
profactor_2=rantbl(21,0.55,0.45); 
profactor_3=rantbl(22,0.30,0.31,0.26,0.13); 
/*Two ordinal response variables both with six levels, trt1_placebo and 
trt2_drug*/ 
slope=-0.9259*profactor_1-0.4746*profactor_2-0.9819*profactor_3; 
func_1=1.5434+slope; p1=exp(func_1)/(1+exp(func_1)); 
func_2=3.0177+slope; p2=exp(func_2)/(1+exp(func_2)); 
func_3=3.66417+slope; p3=exp(func_3)/(1+exp(func_3)); 
func_4=4.4565+slope; p4=exp(func_4)/(1+exp(func_4)); 
func_5=5.5567+slope; p5=exp(func_5)/(1+exp(func_5)); 
trt1_placebo=rantbl(23,p1,p2-p1,p3-p2,p4-p3,p5-p4,1-p5)-1; 
odds=2; 
a1=p1/(odds-odds*p1+p1); 
a2=p2/(odds-odds*p2+p2); 
a3=p3/(odds-odds*p3+p3); 
a4=p4/(odds-odds*p4+p4); 
a5=p5/(odds-odds*p5+p5); 
trt2_drug=rantbl(24,a1,a2-a1,a3-a2,a4-a3,a5-a4,1-a5)-1;; 
OUTPUT; 
END; 
RUN; 
ODS RTF FILE='output111'; 
PROC PRINT DATA=code_1; 
RUN; 
PROC FREQ DATA=code_1; 
RUN; 
ODS RTF CLOSE; 
/* 
--------------------------------------------------------------------------- 
*************************************************************************** 
Creating Dummy Variables 
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*************************************************************************** 
--------------------------------------------------------------------------- 
*/ 
DATA code_2; 
SET code_1; 
KEEP patient trt1_placebo trt2_drug p trt 
a1 a1_a a1_b 
a2 a2_a a2_b 
b1 b1_a b1_b 
b2 b2_a b2_b 
c1 c1_a c1_b 
c2 c2_a c2_b 
c3 c3_a c3_b 
c4 c4_a c4_b 
a_bal b_bal 
profactor_1 profactor_2 profactor_3; 
trt=0; p=0; 
a1=0; a1_a=0; a1_b=0; 
a2=0; a2_a=0; a2_b=0; 
b1=0; b1_a=0; b1_b=0; 
b2=0; b2_a=0; b2_b=0; 
c1=0; c1_a=0; c1_b=0; 
c2=0; c2_a=0; c2_b=0; 
c3=0; c3_a=0; c3_b=0; 
c4=0; c4_a=0; c4_b=0; 
IF profactor_1=1 THEN a1=1; 
IF profactor_1=2 THEN a2=1; 
IF profactor_2=1 THEN b1=1; 
IF profactor_2=2 THEN b2=1; 
IF profactor_3=1 THEN c1=1; 
IF profactor_3=2 THEN c2=1; 
IF profactor_3=3 THEN c3=1; 
IF profactor_3=4 THEN c4=1; 
a_bal=0; b_bal=0; 
PROC SORT; 
BY patient; 
RUN; 
/*PROC PRINT DATA=code_2; 
RUN; 
/* 
--------------------------------------------------------------------------- 
*************************************************************************** 
Allocating Subjects to Treatments,trt1_placebo & trt2_drug 
*************************************************************************** 
--------------------------------------------------------------------------- 
*/ 
OPTIONS nonotes nosource nonumber nodate; 
%MACRO alloc; 
PROC iml; 
A=shape(0,50,10000); 
B=shape(0,10000,34); 
do k=1 to 10000; 
use code_2; 
read all var {patient profactor_1 profactor_2 profactor_3  
trt1_placebo trt2_drug p trt 
a1 a1_a a1_b 
a2 a2_a a2_b 
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b1 b1_a b1_b 
b2 b2_a b2_b 
c1 c1_a c1_b 
c2 c2_a c2_b 
c3 c3_a c3_b 
c4 c4_a c4_b 
a_bal b_bal 
} into m; 
do i=1 to 50; 
do j=9 to 30 by 3; 
m[i,33]=m[i,33] + ABS(m[i,j]*(m[i,j+1]-m[i,j+2]+1)); 
m[i,34]=m[i,34] + ABS(m[i,j]*(m[i,j+1]-m[i,j+2]-1)); 
end; 
/*allocation of patients to either treatment1 or treatment2 using the  
probability of allocation{Pk}*/ 
m[i,7]=ranuni(0); 
if m[i,33]>m[i,34] then do; 
if m[i,7]>0.75 then A[i,k]=0; else 
if m[i,7]<=0.75 then A[i,k]=1; 
end; else 
if m[i,33]<m[i,34] then do; 
if m[i,7]>0.75 then A[i,k]=1; else 
if m[i,7]<=0.75 then A[i,k]=0; 
end; else 
if m[i,33]=m[i,34] then do;/*random assignment if treatments are balanced*/ 
if m[i,7]>0.5 then A[i,k]=1; else 
if m[i,7]<=0.5 then A[i,k]=0; 
end; 
if i<50 then do; 
do j=9 to 30 by 3; 
m[i+1,j+1]=m[i,j+1]; 
m[i+1,j+2]=m[i,j+2]; 
if A[i,k]=0 then m[i+1,j+1]=m[i+1,j+1]+m[i,j]; else 
if A[i,k]=1 then m[i+1,j+2]=m[i+1,j+2]+m[i,j]; 
end; 
end; 
if i=50 then do; 
do j=1 to 34; 
B[k,j]=m[50,j]; 
end; 
end; 
end; 
end; 
CREATE A FROM A; 
APPEND FROM A; 
CREATE B FROM B; 
APPEND FROM B; 
quit; 
run; 
run; 
%MEND; 
%alloc; 
/* 
--------------------------------------------------------------------------- 
*************************************************************************** 
Creating The Dataset 
*************************************************************************** 
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--------------------------------------------------------------------------- 
*/ 
DATA dataset_1; 
MERGE code_1 A; 
ARRAY col{10000} col1-col10000; 
ARRAY response{10000} response1-response10000; 
DO i=1 to 10000; 
IF col{i}=0 THEN response{i}=trt1_placebo;  
ELSE 
IF col{i}=1 THEN response{i}=trt2_drug; 
END; 
RUN; 
/*PROC PRINT DATA=dataset_1; 
RUN;*/ 
/* 
--------------------------------------------------------------------------- 
*************************************************************************** 
Estimating Balance of Treatment Groups Using 10000 Replications 
*************************************************************************** 
--------------------------------------------------------------------------- 
*/ 
ODS LISTING CLOSE; 
%MACRO balla (dp); 
%DO i=1 %TO 10000; 
PROC MEANS DATA=dataset_1 n mean std; 
VAR col&i; 
output out=balance mean=means std=deviaton ; 
RUN; 
data &dp; 
set &dp balance; 
ip=&i; 
RUN; 
%END; 
%MEND; 
DATA testballa; 
SET _null_; 
RUN; 
%balla(testballa); 
DATA balance1(keep=means); 
SET testballa; 
run; 
ODS LISTING; 
PROC MEANS DATA=balance1; 
VAR means; 
RUN; 
/* 
--------------------------------------------------------------------------- 
*************************************************************************** 
Ordinary Logistic Regression Approach Using 10000 Replications 
*************************************************************************** 
--------------------------------------------------------------------------- 
*/ 
/*ODS RTF FILE='output1';*/ 
ODS LISTING CLOSE; 
%MACRO logreg (dt); 
%DO i=1 %TO 10000; 
proc logistic data=dataset_1; 
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TITLE2 'Logistic Regression Model with Polytomous Ordinal Response Variable'; 
class profactor_1 profactor_2 profactor_3 col&i; 
model response&i=profactor_1 profactor_2 profactor_3 col&i/*selection=forward 
expb */ ; 
Ods output oddsratios=ore; 
RUN; 
/*creating the dataset for the odds ratio output*/ 
DATA &dt; 
SET &dt ore; 
it=&i; 
RUN; 
%END; 
%MEND; 
DATA testlogreg; 
SET _null_; 
RUN; 
%logreg(testlogreg); 
 
%MACRO llogreg (ds); 
%DO i=1 %TO 10000; 
/*ods graphics on;*/  
/*PROC LOGISTIC PROCEDURE for modeling the categorical variables*/ 
proc logistic data= dataset_1 /*plots(only)=(effect(polybar) 
oddsratio(range=clip))*/;  
   class profactor_1 profactor_2 profactor_3 col&i /*param=ref*/; 
   model response&i = profactor_1 profactor_2 profactor_3 col&i /;  
   oddsratio col&i;  
   oddsratio profactor_1;  
   oddsratio profactor_2;  
   oddsratio profactor_3; 
   /*using the CONTRAST STATEMENT to compare treatment effect*/ 
   contrast ' col&i =1 vs col&i =0' col&i 1 -1/ estimate=exp; 
   ods noresults; 
   ods output contrastestimate=contrast; 
   RUN; 
   /*creating the dataset for the contrast estimates output*/ 
   DATA &ds; 
   SET &ds contrast; 
   is=&i; 
   RUN; 
   /*ods graphics off;*/ 
%END; 
%MEND; 
DATA testllogreg; 
SET _null_; 
RUN; 
%llogreg(testllogreg); 
/*ODS RTF CLOSE;*/ 
/* 
--------------------------------------------------------------------------- 
*************************************************************************** 
Power Simulation Using 10000 Replications 
*************************************************************************** 
--------------------------------------------------------------------------- 
*/ 
DATA power1(keep=probchisq contrast waldchisq); 
SET testllogreg;/*importing the contrastestimate table from the above macro*/ 
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RUN; 
DATA powerr1(keep=lowercl uppercl); 
SET testlogreg; 
/*removing other variables(taking odds confidence limits for treatments)*/ 
IF variable in (' profactor_1',' profactor_1',' profactor_1') or 
effect in ('profactor_1 1 vs 2','profactor_2 1 vs 2','profactor_3 1 vs 4', 
'profactor_3 2 vs 4','profactor_3 3 vs 4') THEN DELETE; 
RUN; 
DATA power2; 
SET power1; 
SET powerr1; 
DO i=1 TO 10000; 
/*setting the power parameters to zero(initiation of parameters)*/ 
power_pc = 0; 
power_cl = 0; 
power_wc = 0; 
/*testing the null hypothesis that there is no treatment difference against 
the alternative hypothesis that there exsist a treatment effect*/ 
IF probchisq < 0.05 THEN power_pc = power_pc + 1;  
ELSE power_pc = power_pc;/*reject H0 if probchisq < alpha(0.05)*/ 
IF lowercl > 1 THEN power_cl = power_cl + 1; 
ELSE power_cl = power_cl;/*reject H0 if 1 is not an element of CL*/ 
IF waldchisq > 3.8415 THEN power_wc = power_wc + 1; 
ELSE IF probchisq < 0.05 THEN power_wc = power_wc + 1; 
ELSE power_wc = power_wc;/*reject H0 if waldchisq > 3.8415*/  
END; 
RUN; 
PROC PRINT DATA=power2; 
RUN; 
ODS LISTING; 
PROC MEANS DATA=power2; 
VAR power_pc power_cl power_wc Lowercl Uppercl probchisq waldchisq; 
RUN;/*power=(number of times in which H0 was rejected)/(total number of 
replications)*/ 
 
/************************************END***********************************/ 
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APPENDIX C 

      - Distribution of variables. Output produced from Code_1;                 
 

               

Obs patient profactor_1 profactor_2 profactor_3 trt1_placebo trt2_drug 

1 1 2 1 4 4 5 

2 2 1 2 3 5 4 

3 3 1 1 1 1 0 

4 4 2 1 3 4 5 

5 5 2 1 1 3 3 

6 6 2 2 3 5 5 

7 7 1 1 3 4 5 

8 8 2 2 2 4 4 

9 9 1 1 4 5 0 

10 10 1 2 3 2 5 

11 11 1 1 1 1 0 

12 12 2 1 3 5 5 

13 13 1 2 2 1 5 

14 14 2 2 1 0 4 

15 15 1 1 2 2 1 

16 16 1 2 4 4 5 

17 17 1 1 3 5 3 

18 18 1 2 1 1 4 

19 19 1 2 2 3 3 

20 20 1 1 3 3 4 

21 21 1 2 2 2 1 

22 22 2 2 2 5 3 

23 23 1 2 2 5 1 

24 24 1 1 1 5 2 

25 25 1 1 2 0 1 
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Obs patient profactor_1 profactor_2 profactor_3 trt1_placebo trt2_drug 

26 26 1 1 1 1 2 

27 27 2 1 3 4 5 

28 28 2 2 3 4 5 

29 29 2 2 2 5 5 

30 30 1 2 3 5 5 

31 31 2 1 2 5 4 

32 32 2 1 3 5 3 

33 33 1 1 3 1 5 

34 34 1 1 3 5 3 

35 35 2 2 3 3 5 

36 36 2 1 4 5 5 

37 37 1 1 2 3 4 

38 38 1 1 4 2 0 

39 39 1 2 4 4 5 

40 40 1 2 4 2 4 

41 41 1 2 3 4 3 

42 42 1 1 3 3 2 

43 43 1 2 1 1 1 

44 44 2 1 4 4 5 

45 45 1 1 1 0 1 

46 46 1 2 1 1 0 

47 47 2 2 4 5 5 

48 48 1 1 1 0 0 

49 49 2 2 3 5 5 

50 50 1 1 1 1 0 
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profactor_1 Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

1 32 64.00 32 64.00 

2 18 36.00 50 100.00 

 

 

profactor_2 Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

1 27 54.00 27 54.00 

2 23 46.00 50 100.00 

 

profactor_3 Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

1 12 24.00 12 24.00 

2 11 22.00 23 46.00 

3 18 36.00 41 82.00 

4 9 18.00 50 100.00 

 

 

trt1_placebo Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

0 4 8.00 4 8.00 

1 9 18.00 13 26.00 

2 5 10.00 18 36.00 

3 6 12.00 24 48.00 

4 10 20.00 34 68.00 

5 16 32.00 50 100.00 
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trt2_drug Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

0 7 14.00 7 14.00 

1 6 12.00 13 26.00 

2 3 6.00 16 32.00 

3 7 14.00 23 46.00 

4 8 16.00 31 62.00 

5 19 38.00 50 100.00 

 

 


