VYV
i

~ \ 8
IN VIDE
LUMINE| BIMyg
TUO | LUMEN

University of Fort Hare

Together in Excellence

Implementation of a Facebook Crawler for Opinion
Monitoring and Trend Analysis Purposes: A Case Study of

Government Service Delivery in Dwesa
A thesis submitted in fulfillment of the requirements of the degree of
Masters of Science
In
Computer Science
By

Mfenyana Sinesihle Ignetious

Acknowledgements

I would like to express my sincere gratitude to my supervisors Ms. Nyalleng Moroosi and
Prof. Mamello Thinyane for their continuous support during the time of my research. They were
patient, motivational and imparted immense knowledge to me. Their invaluable guidance was of
greater significance during the processes of carrying out my research and the writing of this

thesis. | could not have imagined having better supervisors and mentors for my research.

I would also like to thank the University of Fort Hare Computer Science Department and
its Head of Department, Mr. S.M Scott for allowing me the privilege of pursuing the Masters of

Computer Science degree in their department.

Further, 1 would like to thank Telkom South Africa, for sponsoring my undergraduate
and postgraduate studies. Without the financial support from Telkom South Africa, |1 would not

have reached this level in my studies.

Special mention also goes to the Telkom Centres of Excellence for their support during
the process of conducting the research project by providing equipment used in this research and
transport when visiting the research site (Dwesa community).

A vote of thanks also goes to my lab mates for their valuable suggestions and ideas at a

time when the research had become extremely tough and confusing.

I would also like to thank my mother, Ms. Xoliswa Mfenyana, for her motivational words

during the challenging phases of my research.

Above all, I would like to thank the Lord God Almighty for the blessings and wisdom He

bestowed upon me.

Declaration
I, Mfenyana Sinesihle Ignetious, student number 200807365, hereby declare that this dissertation
is my own original work. All the information extracted from other sources is acknowledged as

such.

Signature:

Date:

Publications
Some parts of this research were published during the course this research. The following are the

two papers which were published in relation to this research:

Sinesihle I Mfenyana, Nyalleng Moroosi, 2012: Development of Social Networking Sites (SNSs)
Trend Analysis Tool. SATNAC conference held from 2 to 5 September in 2012, at Fancourt in
George, Western Cape, South Africa.

S.I. Mfenyana, N. Moroosi, M Thinyane and S.M. Scott: Development of a Facebook Crawler
for Opinion Trend Monitoring and Analysis Purposes: Case Study of Government Service
Delivery in Dwesa. International Journal of Computer Applications 79(17):32-39, October 2013.
It was published by the Foundation of Computer Science, New York, USA.

Abstract

The Internet has shifted from the Web 1.0 era to the Web 2.0 era. In the contemporary era of
web 2.0, the Internet is being used to build and reflect social relationships among people who
share similar interests and activities. This is done through services such as Social Networking
Sites (Facebook, Twitter etc.) and the web blogs. Currently, there is a very high usage of Social
Networking Sites (SNSs) and blogs where people share their views, opinions, and thoughts. This
leads to the production of a lot of data by people who post such content on SNSs. As a result,
SNSs and blogs become the ideal platforms for opinion monitoring and the trend analysis. These
SNSs and Blogs could be used by service providers for tracking what the public thinks or
requires. The reason being, having such knowledge can help in decision making and future
planning. If service providers can keep track of such views, opinions or thoughts with regard to
the services they provide, they can better their understanding about the public or clients’ needs
and improve the provision of relevant services. This research project presents a system prototype
for performing opinion monitoring and trend analysis on Facebook. The proposed system crawl
Facebook, indexes the data and provides user interface (Ul) where end users can search and see
the trending of a topics of their choice. The system prototype could also be used to check the
trending topics without having to search. The main objective of this research project was to
develop a framework that will contribute in improving the way government officials, companies
or any service providers and normal citizens communicate regarding services they provide. This
research project is premised on the conceptualization that if the government officials, companies
or any service providers can keep track of the citizen’s opinions, views and thoughts with regards
to services they provide it can help improve the delivery of such services. This research and the
implementation of the trend analysis tool is undertaken in the context of the Siyakhula Living
Lab (SLL), an Information and Communication Technologies for Development (ICTD)

intervention for Dwesa marginalized community.

Keywords: Social networking Sites, Focused Web Crawlers, Information Retrieval, Facebook,
ICTD, SLL.

Acronyms and Abbreviations

API Application Programming Interface

End-User Person who actually uses a particular product

GUI Graphic User Interface

HTML Hyper Text Markup Language

ICT Information and Communications Technology

ICTD Information and Communication Technology for Development
IDE Integrated Development Environment

JSP Java Server Page

JSS Junior Secondary School

OWL Ontology Web Language

OWLIR Ontology Web Language and Information Retrieval

SLL Siyakhula Living Lab

SSS Senior Secondary School

SUMO Suggested Upper Merged Ontology

System-Administrator Person who is responsible for upkeep, configuration, and

reliable operation of the system

Ul User Interface

URL Uniform Resource Locator
WwWwW World Wide Web

JSON JavaScript Object Notation

Table of Figures

Figure 1: High [eVel SYStEM OVEIVIEWcccuiiiiiiciiecic et 4
Figure 2: Social Media Stats and Facts 0F 2013cccooiiiieiiiie e 10
Figure 3: Crawler OVEIVIEW [33]....cuo i 13
Figure 4:The General IR ProCesses [40].ueueerieiiriiisieiieieie et 16
Figure 5: Overall System ArChiteCtUrE[S57]...ccveuiiieiieiice et 22
Figure 6: SNS Known and have Accounts 0N RESUILS............ccvveieiieiicie e 26
Figure 7: SNS being used the MOSt RESUILSccoiiiiiiiiicice e 27
Figure 8: Average scale Usage 0f SNS........coiiiie e 28
Figure 9: Main Usage 0f SNSS RESUILS.........ccveiiiiiiieiicc e 29
Figure 10: How do they access SNSS RESUILSccveiieieiiciece e 30
Figure 11: Possibility of Using SNSs in Future for the Residents not using the SNSs Results ... 31
Figure 12: Employment StatuSeS RESUILSc.ooviiiiiiiiiiiiieeeee e 32
Figure 13: Age group and SNSs Usage RESUILS...........cocviiiiieiiie e 33
Figure 14: Current way of Communication with their Local Government Results...................... 34

Figure 15: Need for Optimizing the current way of Communication and the possible

Improvements by developed SYStEM TESUILScoiiiiiiiiieee e 34
Figure 16: The Prototyping ProCeSS[64]cciveiiiiieiieiieic ittt sre e 36
Figure 17: System User FUNCLIONAIITIEScccciiiiiiiciicc e 38
Figure 18: Facebook Crawling and Data ColleCtion...........cccceiiiiiiiniiinisneee e 41
Figure 19: Keyword Searching, Content Matching and Term Frequency Analysis module........ 43
Figure 20: Words Correlation ANAIYSIScccveiiiieiieieee et sreenae s 45
Figure 21: KeYWord SEarChingc.cocvoiiiiiiecie ettt ste e esre e 46
Figure 22: Check WOrd FrEQUENCIESc.eiiiiiieieiieste ittt 48
Figure 23: SYStem ATCHITECIUIEcc.oiiiiiiieiee bbb 50
Figure 24: System USEr INTEITACEc.oiiiiiiiieee bbb 57
Figure 25: Facebook Crawling, Text Extraction and Text INdeXingcccccovvvevieiviesieeneesnenn, 58
Figure 26: Call 1APArSer CIaSSccuiiiuieiiieiie ittt ettt ae b e abe e re e e ae e saee s 59
FIQUIE 27 TAPAISEE CIASSveiiieiieie sttt bbb 60
Figure 28: Call JAVAPAISET CIASScc.oiviiiiiiieiieieee et 60

FIgure 29: JAVAPAISEr ClaSSveviiieiiieieeieseesiesie st e e e e e e see s e e naesse e teeneesseesneaneesneesneeneeas 61

Figure 30: LUCENE INAEX CIASSEScuveivieieiie et se ettt e e nneenteenee s 62
Figure 31: Method for TeXt INAEXINGccviiiieieieiee e 62
Figure 32: Keyword Searching, Content Matching and Frequency Analysis search controller
(000] 04T 0T0] 0 =T o | S TSP RPN 63
Figure 33: CONStructor MEtNOM..........ccveiiiiiice e 64
FIQUIE 34: INEX IMANAGETcueeieteiteete ettt bbbttt n bbb 64
Figure 35: SEArch IMENOM.cuiiiiiiie e 64
Figure 36: Search SUMO Ontology Methodccoveiiiiiiieieie e 65
Figure 37: Search SUMO Ontology Methodcccooiiiiiiieiecc e 66
Figure 38: Search SUMO Ontology Methodc.cooiiiiiiiiieiee e 67
Figure 39: Content MAECNINGooviiiiiiiiieee e 67
Figure 40: Search Method Adding results to the final array and returning it...........ccccccoovevvennens 68
Figure 41: Word Class for Comparing Words in the array..........ccccccevveveiieenieeie s seesie e 68
Figure 42: Frequency Analysis Methodccoiiiiiiiiiieeee e 69
Figure 43: Java Beans for Frequency AnalysiS RESUILS.........cccceiiiiiiiiiiniiinceee e 69
Figure 44: Read Results from Search Controller COmponentcccoeveveeieeieiie v 70
Figure 45: Create Bar Graph for Frequency Analysis ReSUILScccoeiieiieve i 70
Figure 46: Keyword Searching, Content Matching and Correlation Analysis Search Controller
L OSSR 71
Figure 47: Constructor MEtNOM...........cooiiiiieiece et 71
Figure 48: INdeX Manager ClaSsS........ccvciiiieiiiie sttt te e esae e 72
Figure 49: SEarch IMENOM.ccuo it 72
Figure 50: Index Searching and Data retrieval ... 73
FIQUIE 5L: STOP = WOKAS.......ovieeeeie ettt ettt ettt e ba e be e e e sreesteenesneesneenre s 73
Figure 52: Content MatCRINGcoiiiiieie e 74
Figure 53: FreqUENCY ANAIYSIScvoiiiiiiiieieee bbbt 74
Figure 54: Class for Putting and Retrieving Data the Final array...........c.ccocooviiinnencnciennnnn 75
Figure 55: Read Results from Search Controller Componentccccveveiiievie e 75
Figure 56: Create Scatter Plot Graph for Correlation Analysis ReSUltsSccccevvvevieiiicinnnn, 76
Figure 57: SEArch CONTIOIIEN.........c.oii i 77

Vi

Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:

COoNSLrUCIOr IMEENOM.couiiiieieieie e e 77
INAEX MaNAQET CIASSeiiieiicie et reene e 77
SEAICN METNOM. ... it 78
SEAICN METNOM. i et 78
JAVA BEANS ... 79
Read Results from Search Controller and Display the Resultscccccceveiiveieennnne 79
SEAICN CONTIONIET 80
CONSEIUCLOr MELNOM........ceeiiiiiiee et e 81
1T L=y Q1Y =g T PSSP 81
SEAICH MELNOU..... .ot et reas 81
Text Retrieval from LUCENE INEXovveieeieiie e 82
CONENT MAEICHING ... 82
Adding Results to the Final Array and returning it to Search Controller.................... 83
FrequenCy ANGIYSIScoiiieiic et ae s 83
Word Class for Comparing Words 0N @n AITAYcceeerererenereneeieieneesre e 84
JAVE BBANS ... 84
Reading the Results from the Search Controller Componentccccccvvveveiiieieennns 85
Create the Bar Graph for Content Matching and Frequency Analysis..............c......... 85
Keyword searching, Content Matching and Correlation Analysis Interface............... 86
Keyword searching, Content Matching and Frequency Analysis Interface................ 86
keyword Searching INterface..........ccooveiviiii e 87
Content Matching and Frequency Analysis Interfaceccccocoovvvveieeiiiic e, 87
Facebook Data in JSON FOIMAL........c.cccveiiiiierieieseese e see e 88
Parsed TeXIUAI Data..........ccevueiiereeieiie et e ettt eseeeneesneenes 89
Keyword Searching, Content Matching and Frequency Analysisccccccovveivennns 89
Keyword Searching, Content Matching and Correlation Analysis Results 90
Keyword Searching RESUITLS ..o 91
Content Matching and Frequency Analysis ReSUILS...........ccocriiiiiiieie i 92
Index Searching ReSPONSE TIMEiiiiiiiieciie sttt 93
SUMO RESPONSE THME....euiieitieiieesiie ettt ettt te e e ettt e be e sra e ba e saaeanbeenneas 94
SUMO RESPONSE TIME...c.eiiiiiiieiieieitesie sttt sttt st nre s 94

vii

Figure 89: System Usability Testing Results

viii

Contents

ACKNOWIEAGEMENLS ...ttt et et et esbe e e e e e sbeenteeneesreeteaneenneas i
DTl P =1 [0 o TSP PO ORISR i
PUBTICALIONS. ...ttt bbbt et ettt bbb e b e ene e ii
AADSTTACT ...t bbbttt b bbb e s 1\
ACronyms and ADBDIEVIATIONSviiiiiiie e re e e e ae e ere s v
TADIE OF FIQUIES ...ttt Vi
1 Chapter One — Research INtrOdUCTION..............oiiiiiiiieicee e 1
IO] (T [o4 A T o PSP 1
1.2 Prop0oSed SYSTEM OVEIVIEWcueiuiiiiiieiiiestesie sttt sttt sttt sttt 3
1.3 Research Problem STatemMeNt..........c.oiiiiiie e 4
1.4 Project AIM and ODJECTIVES.ciiiieieieie ittt 6
1.5 TRESIS OULIING ...ttt bbbt ne e e 6
1.8 CONCIUSION. ...ttt sttt b e s et e e et e sbeebesbeebeaneeneeneas 7
2 Chapter Two: Literature Review and Background Study..........c.cccceevveiiiiiiieiccicseee e 8
P 1 oo [Uod o] o PP URORPRPSRR 8
2.2 Social Networking SiteS (SNSS) ...cueciiiieie ettt 8
2.3 Popular SNSs, their Brief History and their Statistical USagecccooveveiieiieve e 8
2.4 WED CraWIEIS ...ttt bbbt e et bt e et beeneene e e e e 10
241 CTAWING PONCIES ...ooooooooooeoeeeeoe oo eeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseseeeeseseeesessseeeeeseeeeesessessssessssereseerrreee 10
2.4.2 GENeral CraWIEr ATCHItECIUNE.oooooooooeoeeoeoeeoeeeeeeeeeeeeeeee e sseeseeeesssessssesssssessssesseesseeseesereree e 11
2.4.3 CTAWING AIGOTItIMS ...oooooooo oo sessssssssessesssssssssssesssrrrree 13

2.5 INTOrmMation RELMHEVALccioiiiiiiiee ettt 14
2.5.1 THE GENEIAl IR PIOCESSES. ...ovvvooooooeoeeooeoeeeeeeeeeeeeeeeee e ses s esseeeeeseee e sessseesssesssssseessssssesssesssrrrree 14

2.6 Opinion Tracking and Trend @analySiScovviiieiie i 16
2.6.1 TTENd DEtECHON FIOM TEXE.....ovvvvvvvvvveevessssaseseeeeeessssssssessssssss s 17

2.7 REIAIEA WOTK ...ttt bttt sbe b neenreas 18

s N Oo] 0 1o] [0 1] 1o] o FHUETTRT TR 21

3 Chapter Three: Research Methodology, System Design and Core Used Technologies............. 22
K300 I 11 £ T [N o1 1o o OO ST STRRPPRTR 22
3.2 Research MethoTOIOQYcccveiieiiiieie ettt re e e nreas 22

3.2.1 FRASIDIIITY STUAY....e.eieeeieieieei ettt sttt ettt b ekt st b e e e s e e Rt e Rt e b e e Eeebe e en s e s e e st et e e beebesbenbe e eneeneene 22
B VL (=] 0 B 1= =] o] o] =T o OO SOU SRS 34
B BV (=] 0 T =1 oo OSSOSO SRS 36
KT I 1Y) (=11 T LTS T | o PSSR SRRSO 36
3.3.1 System User FUNCLIONAl REQUITEIMENTScouiirieiiiieieieisieiesie ettt ettt ettt se et sbe et nesbesennereneene s 36
3.3.2 SYSTEM LOW LEVEI DESIGNveieiieieieieieiieie ettt ettt b ettt e bt a sttt nn et e e et s 39
3.3.3 SYSLEM HiGh LEVEI DESIGNeeitirietiiiteiieie ettt ettt s ettt bttt ne et et et b et et et e b st et et e neere e ene s 48
KR 0o (o] [V Y o] o SRR ROTRRUPTRTR 56

4 Chapter four: System IMplementationccccoviiieiiiiic i 57
I [(o T [Tox { [o [OOSR 57
4.2 Facebook Crawling, Text Extraction and Text INAeXiNgccccvvvvrireienenienenineseeeeenes 57
4.3 INAEX SEAICNINGcueiiiieei ettt 61

4.3.1 Keyword Searching, Content Matching and Frequency ANAIYSIS ..o 62
4.3.2 Keyword Searching, Content Matching and Correlation ANAIYSIS ... 70
4.3.3 KEYWOIT SEAICHING .. vttt sttt e bt s b et et es et e e bt ebe e beebe e es e s e eR e ebe et e ebe st e b e s e aneabeebeebenbebeneensareaneas 76
4.3.4 Content Matching and FreqUENCY ANAIYSIS........cuiviiiieiriieisieisi ettt bbb n e 80
R O L= gl 101 (<] =T YRS 86
Y O] 1 (o] (V1] o] o TSR 87

5 Chapter Five: System Testing and Experimental RESUILScccccvvviieeiiiie e 88
oI R [1 (0o [N o1 1o RO 88
5.2 System FUNCHIONAL TESTINGeovieieieiieie bbb 88

5.2.1 Facebook Crawling, Text Extraction and Text INdeXing RESUILSccovieirieiiiiinieiree s 88
5.2.2 INEX SBAICIINGveitiiiietietieti ettt ettt ettt ettt e b et est et e beeEe st e b e s e st e s e e Rt e b e e be et e s en s e s e e st et e e beebe st et e e eneare e 89
5.3 System Performance tESTINGcoueuiieiiiiiiiiee e e 92
5.4 System USabilIty TESTINGcveiiiiieieiesieseie e e 94
TS J 0] 1o1 [V 157 o] o OO RR 96

6 Chapter: Discussion and CONCIUSIONcuviiiiieieiie e sae e nres 97

6.1 INEFOUUCTION ...ttt bbbt b et e et bbbt n et e e e 97
6.2 THESIS SUMIMAIYeeteeie sttt ettt et e et e s e s te et e e seesbeestesseesseeneeaneesseenseaneenrens 97
6.3 Objectives Achieved and DISCUSSIONc.civiiieiieieeie e ee e sre e nrees 98
6.4 Problems ENCOUNTEIEA........ccuoiiiiiiieieeie ettt sttt esteeeesneenneas 99
6.4.1 University of FOrt Hare’s NEtWOTK SECUTILYovvvvvvvvvvvevesssssmaissssssesssesssssssssssssssssnns 99

6.4.2 SYSEEM DEVEIOPMENL......ooooooooooe oo eeeeeeeeee oo oo eeeeeeeeeseeeeeeeeeee s eeeeeeeeee e s s e s eeseeeesseeeeseseeeseesssssesessesesssssssseseseseereee 99

B.4.3 SUMO USAGEooooooooeoo oo eeeoee oo e eeee e 100

6.5 Data COBCTION ...ttt bbb 101
6.6 FULUIE WOTK ...ttt be e e nreeneenes 102
RO =) -1 I O] o (1] o] o USROS 102

B R (] =110 USRS 103
8 Appendix — Questionnaire which was used for Data Collectioncccceecvvvevieivniesinnnnn, 109
8.1 Questionnaire for Data COECtioN IN DWESAcccoveiierieiieiiee e 109

Xi

Chapter One - Research Introduction

Introduction

Developing countries like South Africa have adopted the use of Information and Communication
Technologies (ICTs) to support rural development. This is usually termed ICT for Development
(ICTD) and has seen many initiatives being undertaken towards achieving the socio-economic
goals for the development of rural communities. One such initiative is the Siyakhula Living Lab
(SLL). This initiative aims to improve social and economic situations in rural areas [1]. This
research proposes the development of a system which can collect data from populations in
disparate geographic and socio-economic using Social Networking Sites (SNSs) from which
opinion monitoring and trend analysis will be performed. While a system such as the one we
propose has a wide applicability we will look at it in the space of rural communities using it to

communicate to government agencies.

SNSs are used by people to connect with each other for business or personal purposes. They
build and reflect social relationships among people who share similar interests and activities
[2][3][4]. These SNSs are also used by many businesses and governments to inform, engage and
serve citizens. In government, this is done through government 2.0, which is the usage of social
media tools to facilitate the conversations between governments institutions and citizens to shape

polices, support local government democracy and improve services [5].

These free and easy to use cloud based applications provide individuals, organizations and
societies an easy and cheaper way of communication [6]. SNSs’ services provide content sharing
through the publication of documents and links and also through messages exchanged using
communication tools. These functionalities allow for the use of SNSs as a collaborative opinion
mining platform. There are a lot of factors motivating for the use of SNSs for opinion trend
analysis. Firstly, SNSs are easy to use and provide a cheap way of communication as evidenced
by a growth in their usage [7]. Additionally, most SNSs data can easily be accessed by the use of
supported Application Programming Interface (APIs). These are commonly developed by the

SNS development team.

The applicability of the proposed system is wide-ranging; however in this research the focus is
on improving service delivery in marginalized rural communities, which form the field site of
this research. In this research we mine opinions from constituents with a special interest in
monitoring trends about service delivery in marginalized rural communities of South Africa. The
proposed system seeks to improve or optimize consultation principle, one of the eight Batho Pele
Principles initiatives. Batho Pele (Sesotho word, meaning “People First” in English) was
launched in 1997 in South Africa because the preceding public service system was believed not
to be people-friendly and lacked the skills and attitudes to meet the developmental challenges
facing the country. The idea of this initiative was the need to transform public service at all
levels [8]. The consultation principle refers to the process of interacting with, listening to and
learning from the people whom you serve by staying in touch with them so that you can find out
what services they need, how they would like their services to be delivered and what they are not

satisfied with [8]. The following are factors that affect service delivery in rural communities:

Access - long distances and poor road infrastructures which separate rural areas and developed
regions of the country, leave populations in rural areas poorly integrated in their economies and
polities.

Cost - poor road infrastructures separating rural areas and developed regions of the country
increases the costs of goods deliveries and that discourages providers of goods and services from
reaching the rural areas resulting in a situation where rural areas are left under-developed.
Quiality - infrastructures (e.g. road, telecommunications, education, and health care centers) are
poor in most rural areas of South Africa [9]. These usually chase away professional and skilled

people who would bring development in such areas.

The SLL, where this research is being undertaken, is an ICTD initiative which was developed to
provide ICT solutions for most of the problems being faced by the Dwesa community through e-
Commerce portals, e-Learning solutions, e-Government services and e-Health applications [9].
Dwesa is a coastal region located in the former homeland of the Transkei in the Eastern Cape,
South Africa. Residents of Dwesa have to travel more than 40km to visit different government
offices at the Willowvale Business Centre and approximately 80km to the Idutywa Business

Centre to submit their complaints or access public services [10]. Taking into account the fact that

rural areas of South Africa consist largely of unemployed people, the costs of reaching municipal
offices can be prohibitively expensive. A classical example was observed during the visits at
Dwesa community for computer literacy trainings which were conducted by the SLL team every
month during the course of this research. Some community residents were traveling
approximately more than 5km to 10km to reach schools where the computer literacy trainings
where usually held. Some of the residents would not have transport for traveling to those schools
where the trainings where normally held. That in turn would result in situation where some of the
residents would be left out from the service which was being provided. That also suggests that
some community residents do not fully participate in the community activities such as ward

meetings, budget meetings etc. which are commonly held at the same schools.

The proposed system prototype will provide a cost effective solution for communication between
companies, government officials, or organizations which seek to find out about the public or
clients’ views, opinions, ideas etc. about the services they provide. In this research project, the
proposed system will be used to enable the local government in Dwesa (and other communities
in South Africa) to determine the trending topics and discussions that are related to service
delivery within their jurisdiction. This is achieved through the implementation of a focused
Facebook crawler and opinion trend analysis tool. Focused crawler is a topic-driven web crawler
which selectively retrieves relevant web pages to a predefined set of queries or topics [11]. The
crawler extracts statuses and comments feeds which are then used for opinion monitoring and

trend analysis purposes.

Proposed System Overview
Figure 1, gives the proposed system overview. It is followed by a discussion of how data flow

will occur inside the system and the functionality of modules on the proposed system.

Social media site

=

SUMO OWL

@ User application

A

Server Side
System

LUCENE INDEX

Figure 1: High level system overview

The proposed system will consist of two parts; a user graphic interface which will be responsible
for facilitating user query searches, data visualization and data display, and a server-side system.
The Second is the server-side, which will perform most of the proposed system functionalities
such as data gathering from Facebook, text parsing, prepossessing, indexing and handling user

queries by performing the logic of the system.

The server-side system will consist of a back-end server, ontology and index, and front-end
server. The back-end server will be responsible for crawling SNS gathering data, parsing text and
indexing the text. The front-end server will be responsible for handling the communication
between user graphical interface and the index by providing the logical handling of queries and
performing the content matching, correlation analysis, trend analysis, keyword searching from
the indexed textual data and gives the feedback to end-user queries. The detailed system is given
in Chapter 3.

Research Problem Statement
There are many challenges when it comes to communication between service providers and the

people they are serving. It is always utmost important for the service providers to know the

sentiments of the public and/or clients towards the services or products they provide. The
problem of communication between service providers and their clients usually arises because the
clients could be widely geographically separated. That makes it very difficult for service
providers to collect data which they can use to better understand their clients’ needs. This
research is aimed at providing a communication bridge between the consumers and the service

providers.

The current government public service system has many drawbacks when it comes to its ability
to satisfy the consultation principle. These include long distances, lack of transport and high
travel costs. These are the main challenges when it comes to fully accomplishing the consultation
principle between rural areas’ residents and their local governments of South Africa[12].
Currently, local governments achieve the consultation principle through call-ups of ward
committees, budget consultations, ward meetings, Integrated Development Planning Forums,
among other issues, whenever they want people to participate in consultations and decision-
making processes at a local level [13]. Due to the complexities and costs associated with the
above mentioned solutions many people do not participate in consultative and decision-making
processes. This is compounded by the fact that there is a high prevalence of unemployment
amongst most rural residents in South Africa. A classical example is that of the Dwesa

community where the SLL is located and is spread over a radius of 40km [14].

The current challenges faced in rural areas of South Africa, namely; poor or limited access to
socio-economic infrastructure and services such as water resources, reliable road network, power
supply, and telecommunication networks, have not been fully attended to by government
officials because:
1. Local government is not aware of how bad the situation is for people residing in rural
areas because they cannot express their views.
2. People in rural areas do not have good and cheap means of expressing/reporting their
living situations to government officials due to the fact that there are no government
infrastructure setups in those areas which collect their views and options. This was also

observed at Dwesa community where this research was based at.

Project Aim and Objectives

The main aim of this research was to implement a focused Facebook crawler which will extract
and analyze views and opinions of people from Facebook. In general, the proposed framework
provides two high level functionalities: (a) text extraction from SNS (Facebook) and (b) data
analysis and visualization, which consists of parsing text from data obtained from Facebook,

preprocess, index, visualize and provides search functionality.

The proposed system is intended to be deployed at SLL and used by the residents of Dwesa
community. The system after deployment will then be used by the local government officials in
Dwesa community to monitor trending topics about the services they provide. The specific

objectives for this research project were to:

1. Investigate the feasibility of an electronic sentiment monitoring tool for rural area
residents. Specifically, this is to learn if the use of SNSs is prevalent enough in rural
environments that an SNS sentiment mining tool can be used to track views and opinion
of marginalized communities.

2. Evaluate different crawling policies and select one we believe to be suitable for our
research.

3. Investigate and identify the key requirements for a Facebook Crawler that can be used for
opinion monitoring and trend analysis purposes.

4. Design, develop, implement and test a Facebook Crawler for Opinion Monitoring and
Trend Analysis Purposes.

5. Study the feasibility of sentiment analysis and general Data Mining in multi-lingual/non-
English Speaking environments.

6. Investigate general problems faced by rural communities when communicating with their
local government.

7. Investigate the methods they are currently using to communicate with their government.

Thesis Outline

Chapter One: [Introduction to the research project] this chapter provides an introduction to the
research project. It sets out the research aims and objectives, research problem statement,
projected system overview and provides the thesis outline.

Chapter Two: [Literature Review] this chapter sets out the literature review. It gives a necessary
research background by exploring the theoretical framework related to our research domain. It

then analyses the related work which has been done under our research domain.

Chapter Three: [Research Methodology, System Design and Core Used Technologies] this
chapter discusses the research methodology used in this research. It also discusses the functional
and non-functional system attributes. The chapter also gives the low and high level system

design.

Chapter four: [System Implementation] this chapter discusses the implementation details of the

developed system in this research.

Chapter Five: [System Testing, Experimental Results and Future Work] this chapter discusses
the system testing, experimental results and concludes by giving the possible extension

suggestion which could in future be added to our developed system.

Conclusion
This chapter introduced the research overview and also presented the proposed system overview.
In addition the problem statement and the project aim as well as the specific of objectives were

outlined. The chapter concludes by giving the thesis organization.

Chapter Two: Literature Review and Background Study

Introduction
This chapter gives the background to the study. It will help readers to understand our proposed
research domain which is social web mining, with applications in opinion monitoring and trend

analysis from SNSs.

Social Networking Sites (SNSs)

In literature there are many definitions of social networking sites. Two of these were chosen for
the purposes of this research project. The first one was advanced by [15] where they defined
SNSs as networks which allow individuals to: (1) construct a public or semi-public profile within
a bounded system, (2) articulate a list of other users with whom they share a connection, and (3)
view and traverse their list of connections and those made by others within the system. The
second definition was advanced in 2007 [16] and also provides a useful definition of SNS. In this
definition, SNSs were defined as networks made of a set of nodes and a set of ties. Nodes refer to
the individuals, organizations or societies, while ties represent a particular type of relationship

between the nodes such as friendship, family and co-workers among others.

SNSs are ideal examples of Web 2.0, not only because of their social networking aspects which
include the user as a first class object, but also due to their use of new user Ul technologies. Web
2.0 is an umbrella term that is used to represent Web sites which incorporate a strong social
component; involving user profiles, friend links or Web sites which encourage user generated
content in the form of; text, video, and photo postings along with comments, tags, and ratings.
Web 2.0 may also include Web sites that have gained popularity in recent years and are subject

to fevered speculations about valuations and initial public offering prospects [17].

Popular SNSs, their Brief History and their Statistical Usage

Currently there are hundreds of SNSs in use and among them Facebook, Twitter and LinkedIn
are the top three popular SNSs. Facebook has 750,000,000 estimated unique monthly visitors and
is ranked second on the compete rank. Twitter has 250,000,000 estimated unique monthly
visitors and is ranked twenty four on compete rank and LinkedIn has 110,000,000 estimated

unique monthly visitors and is ranked forty four on the compete rank [18]. All of these SNSs

support different technological affordances, wide range of interests and practices [15].

Facebook was launched by Mark Zuckerberg in 2004. Initially, Facebook was only available to
Harvard university students. Today, anybody who is 13 years or older and has a valid E-mail
address can register to Facebook [19]. Facebook, like any other SNS, could be regarded as the
message board which serves as the primary asynchronous messaging mechanism between friends
[20], by controlling the posting of statuses, comments, uploading of photos etc. by the Facebook
users. Facebook servers and organizes the content posted on its servers in a chronologically order
with the date and time stamped. The most recently posted content is put at the top of the
Facebook page. Facebook also tags the posted content to the Facebook users who posted the
actual content through use of user IDs (Identify Documents) and names of the facebook users
who posted the actual contents. Facebook has more than 800 million active users and more than

50% of these users log on in any given day[21].

Twitter is a micro blogging service launched in 2006 by Jack Dorsey, Biz Stone, and Even
Williams and currently records over 140 million active users that generate over 340 million
tweets per day [22]. Twitter is currently the most popular on line micro blogging service, which
enables its users to send and receive text-based posts, known as “tweets” [22]. Each message sent
through twitter cannot be more than 140 characters in length. That is the feature which
differentiates it from traditional web blogging because the content that can be posted is limited.
The Micro blogging service has a strict constraint in content size unlike traditional blogging
services[23]. This idea originated from Short Message Service (SMS) technology over mobile
devices such as Smartphones where a user can use SMS to send a message to twitter, and the
message will be forwarded to many other Twitter users that are related or connected to the
sender. Twitter was built to share thoughts or ideas instantly. However, major Television (TV)
networks and news gradually started to use Twitter to provide updated news to the public.
Twitter is now a media platform in which ordinary users can be in the front line of breaking news
[19].

LinkedIn was launched in 2003 and currently is the world’s largest professional network with
over 175 million members and growing rapidly [24][25]. LinkedIn is used by people to build

professional networks and find career development opportunities. Employers also use this SNS

to look into the profile information of users to search for potential employees. LinkedIn helps
people to advertise themselves and it also helps employers to spot potential candidates for the job

posts they have [26].

The infographic below shows the sizes as well as the rate of growth of the most popular SNSs.
This data was prepared by the GlobalWebIndex study, which prepared data on web usability
statistics. In this research we did not look at Google+ and Pinterest for study as they are not as

widely used in South Africa as they are in the United States.

SOCIAL MEDIA STATS & FACTS OF 2013

TWO FACTORS DRIVING SOCIAL MEDIA IN 2013

Older Users Adoption —

.- Mobile — 79% On Twitter the ages 55-64 are
with the number of people the fastest growing, with 79%
accessing the internet via a growth rate since 2012. On G+
mobile phone increasing by and Facebook ages 45-54 are

60.3% 60.3% to 818.4 million In the the fastest growing, with 46%
= last 2 years. and 56% growth rate.

f Facesook
Ofrutns aa movons

Facebook continues to Daity ° m
grow and make money via oo

ads and mobile users. The

latest facts and figures from ':n:n& m
its earnings call for the first
I T
1
L 3 bile ads

Mobiie ads
RO

Mol
@o13 an

o TWITTER |

Twitter is the fastest
growing social network in
the world by active users.
Twitter's fastest growing
age demographic Is 55
to 64 year olds,
registering an increase In
active users of 79%.

rj YOUTUBE j

YouTube reaches more
US. adults ages 18-34
than any cable network.
Hours of video watched
DOUBLED from last May
when only 3B hrs were
watched.

8§ GOOGLE PLUS j

Google+ is making an

- G+ active user basa grew
impact on the social il m o
media universe and is e /
now the second largest °

socialmetwork. @ fomunez012 - March 2013

[unkeDin |

The largest professional v E %

business network on the
planet continues to grow
but not at the pace of

(]
Twitter or Google+. D U 5 U = 0o + T*

2 new users join
Linkedin every second

INFOGRAPHIC BROUGHT TO YOU BY:
growing sxcial media sSUrgagro GlobalWebindex Study « Visually « Gigaom «

Figure 2: Social Media Stats and Facts of 2013

As indicated by the infographic, while the rate of growth of Twitter and Google+ is much higher
than that of Facebook, the monthly Facebook users far-outstrip Twitter and Google+ users.

10

—
| —

Additionally, Facebook is much older than both Tweeter and Google+ and thus we believe that

our targets users, rural marginalized, will most probably know of Facebook over these other two.

YouTube is another SNS that has very high usability. However, given the cost of data in South
Africa, we doubt that a lot of our users have the means to be very regular users of YouTube.
While they may occasionally use YouTube, for our purposes we need a highly utilized system so
that we can get enough data for statistical significance. With all this in mind, we decided on

Facebook as the best SNS to crawl.

Web Crawlers

A web crawler is a computer program that browses the World Wide Web in a methodical,
automated manner or in an orderly fashion [27]. Web crawlers are used by search engines to
create a copy of all the visited pages, which they save on a single directory and subsequently
indexes to provide fast searches. Web crawlers are also used for automating maintenance tasks
on web sites, such as checking links or validating Hyper Text Markup Language (HTML) code.
Also, they are used along with data extractors to collect structured knowledge in different fields
by processing unstructured textual data automatically [28]. Web crawlers can also be used the
same way as they are used for traditional websites for gathering data on SNSs but, when they are

employed for such tasks they have to go through SNSs’ APIs designated for those SNSs[29].

In our research Facebook Graph API was used in the development of our crawler. Graph API is
a simple HTTP based API that gives access to the Facebook social graph. It acts as the interface
which application developers can use to access Facebook database servers [30]. In Facebook
database servers, Facebook users are uniquely identified by IDs. To access users’ data, their user
account IDs are used. The way of accessing data on different SNSs is determined by the APIs of
those specific SNSs. This is because SNSs’ APIs supports different types of data accessing
mechanisms; some users allow their data to be accessed through queries. In that case, SNS
provides searchable interface, either by providing an APl or HTML form as the way of accepting
queries and giving feedbacks to the end user. Some SNSs’ APIs allow their data to be accessed
more or less the same way as traditional crawling methods, where links that are found from seed
HTML are extracted and added to the to-be visited list which is then used for crawling such a
specific SNS [29].

11

—
| —

Crawling Policies

SNSs are similar to the World Wide Web (WWW) which is a huge collection of web pages
linked to each other by hyperlinks and keeps evolving every second, where a new piece of
information is added [31]. Given its dynamic nature, the WWW, crawler, for it to be more
effective and more efficient, should take into consideration the four crawling policies which
determine the behavior of any web crawler [28]. These polices optimize the work follow of any
web crawler by taking time, relevance of feedback and network resources into consideration.

The following are the four crawling policies:

Selection policy - Web crawler should be able to download or crawl a fraction of the Web due to
the size of the Web, because trying to crawl the entire Web will require a lot of bandwidth and
bandwidth is a limited resource[28]. In short, this police states which pages to be downloaded or
crawled from the Web [27].

Reuvisit policy — crawling the web can take really long time and the by the time the crawling
process finishes there is high possible that there could be some events that could have occurred,
such creation, updating and deletion of the web content[28]. This police states when a crawler

should check for changes to the web content[27].

Politeness policy — according to [27], this police specify how web crawlers should behave in

order for them not to overload web sites and/or database servers.

Parallelization policy - A parallel crawler is a crawler that runs multiple processes in parallel
with the goal of maximizing the download rate while minimizing the overhead from

parallelization and to avoid repeated downloads of the same page [32].

General Crawler Architecture

In this section we discuss the general activity flow in the web crawling process. This will help to
give a clear overview of how a web crawler functions. In its simplest form, a crawler starts with
one or few Uniform Resource Locator(s) (URL) to reach specific web pages. From there, it uses
the links from such pages to reach other pages [33]. In general, every crawler consists of the

following:

12

—
| —

Frontier - the list of seed URLSs or user account IDs in SNS such as Facebook, populated by a
user or any other program such as non-visited nodes. This list is updated as the crawling process

is occurring by adding newly found URLSs to the to-be visited list.

Crawling loop — this is the stage where most of the crawling process occurs. When web
crawling initiates, the web crawler starts by selecting the next URL(s) or user account ID from
the to-be visited from the frontier. It then fetches the corresponding pages through a Hypertext
Transfer Protocol (HTTP) request and extracts relevant information from the web page. If new

URLSs or user account IDs are discovered, they are added to the to-be visited list of URLSs in the

frontier[33].

\/

Initialize frontier with seed
URLs

,,,,,,,,,,,, /

Done
Check for termination —-

Not done

Pick up URL from No URL /

frontier
URL

\/

Crawling loop

Fetch page

\

Parse page

\j

———| Add URLs to frontier

Figure 3: Crawler Overview [33]

Referring to Figure 3, the following are the processes which occur during the crawling process in

their preceding order:

13

—
| —

1. Initialize frontier: with seed URLs, the frontier is the to-be visited list of a crawler that
contains the URLs of unvisited pages.

2. Check for termination: Checks if the frontier is empty. If not, it returns the next URI to be
analyzed.

3. Fetch page: Obtains the web page through an HTTP client request.

4. Parse page: Creates a parser on the page to extract useful information such as URLs or
the wanted content and possibly guide the next step of the crawler, and also eliminate

irrelevant information.

The crawler we developed is initialized by providing it with the ID of Facebook user which
his/her friends are to be crawled. The crawler starts buffering all the IDs of user’s friends, from
there, it then extracts first user account ID then crawl the latest data feed when it is done move

to the next user stops when last friend on the list is crawled.

Crawling Algorithms

The web as mentioned is a huge collection of web pages which evolves every second, it is
important to select a good crawling algorithm that crawls only a fraction of the web not the entire
web. Even large search engines do not crawl and index the entire web [34]. The Facebook statics
usage given above of active SNSs user (Facebook) suggest that it is also impossible and
ineffective to crawler the entire SNS graph, there is need of choosing crawling algorithm which
will be able to determine the fraction of SNS graph that is most relevant to a user’s needs. In this
section, we will give a brief overview of two main algorithms which already exist on this field of

web data mining; general purpose crawlers and focused crawlers.

General Purpose Crawlers

This is an algorithm intended to crawl as many as possible web resources. This algorithm is used
to traverse the web structure as complete as possible in order to find all the possible targets web
database servers reachable from the given starting set of URLs through the outgoing links.
General-purpose crawlers collect pages and/or web resources covering different topics. This
algorithm is used by traditional search engines, for collecting and indexing as many web
resources as possible. This algorithm allows traditional search engines to be able to retrieve

pages that are relevant to every user’s queries. When a user submits the query, the engine will

14

—
| —

give feedback as an ordered list of pages ranked according to a particular matching algorithm
[35]. Users can submit their queries in the form of a text, describing the information they are
requesting for, the underlying Information Retrieval Model will then find the documents or web
resources of interest which will help users to meet their information needs and make it easier for

them to accomplish their information seeking activities.

This algorithm is used by search engines when they try to build up web graphs as complete as
possible, which they use to give feedbacks to most of users’ queries or topics [36]. Unlike
focused crawlers, the feedback of general purpose crawler is not personalized. Different users
with different interests, knowledge and preferences, if they all submit the same query, will obtain
same results [35]. This algorithm cannot be used if the intention is to obtain information from the

web database servers for a specific domain.

Focused Crawlers

According to [11] a focused crawler is a topic-driven web crawler which selectively retrieves
relevant web pages to a predefined set of queries or topics. The advantages of focused crawlers
are that they require minimum storage space, can employ techniques to crawl part of the deep
Web that General Purpose Crawlers cannot reach, update frequently to keep stored information
up to date, gives accurate results and utilizes minimum time as well as bandwidth to download
pages [31][35] . They can be used for many applications such as public sentiment analysis,
keeping track of public opinions about certain market products [37], keep track java code
repositories [38] etc. On this research focused crawler will be employed for Facebook data feed

collects which will then be used for trend analysis purposes.

Information Retrieval

According to [39] Information retrieval (IR) is the process of finding material (usually
documents) of unstructured nature (usually text) that satisfies information from within
collections (usually stored on computers) [39]. The actual goal of IR systems is to search and

retrieve the most relevant documents to the user’s information needs.

The General IR Processes
Figure 4 shows the general processes of IR system, squared boxes representing data and rounded

boxes representing processes [40]. According to [41] any information retrieval should support

15

—
| —

three basic processes which are content representation of documents, user’s information need
representation and the comparison of the two representations to give feedback to the end user. IR
system for it to accomplish the above mentioned processes should also have these aspects Ul,
query processing, searching and ranking [42].

— Information Problem Documents
T C Representation)
v v
Query Indexed documents
(Comparison)

v

(Feedback) - Retrieved documents

Figure 4:The General IR Processes [40]

User Interface

The IR system used in this thesis is Lucene java search library (the high-performance, scalable
IR library [43]) and it does not provide Ul. The Ul is the most important aspect of any IR system
as its design brings the tradeoff between user-friendliness and performance of any IR system
[44]. In literature there are many different kinds of commonly used Ul methods such as
keyword-based, natural language-based, form-based and graph based interfaces. In this thesis
keyword-based and graph-based methods were used. In Figure 4*“feedback” part represents user
Ul as it accepts user queries and gives back feedback to the users. Further discussions will be
done in the design and implementation chapters as the display and visualization of data matters

the most in this thesis.

Query Processing

Query processing is the process of transforming a query into an internal form that can be
interpreted by the system. Lucene achieves this by the use of its already developed analyzers to
convert user query text into terms that can be used for searching the index. During this process

text user query undergoes several processes such as stop-word elimination, stemming and other

16

—
| —

application specific tasks[43]. In Figure 4, query processing is the Information Problem
presentation. Lucene StandardAnalyzer was used for query processing. Further discussion on its

usage will be given on the implementation chapter.

Searching

In Figure 4 is the phase where Query and the Indexed documents comparison occur. In general
this is the phase where query terms are searched against the inverted index and retrieve all the
documents that contain the occurrences of the query terms. There are different methods of
searching the index but in this thesis two searching methods, Lucene keyword search and

MatchAllIDocsQuery search were used.

Indexing

Lucene only indexes data available in textual format. The input text data in Lucene is stored in
an inverted index data structure, which is stored on file system or in memory as a set of index
files[43]. Figure 4 illustrates the documents representation process. Documents indexing
optimize the query performance and improve the response times to user queries. The index was

developed in this thesis and its development details will be given in the implantation chapter.

Ranking

Ranking is the process of assigning scores to search results according to the matching quality
between the query terms and the documents [41]. The documents are then presented to the user
in a descending order. Documents with high scores are regarded as the most relevant documents
presented to the user on top of the retrieval documents list. To rank the search results and give
back the most relevant documents based from the scores, Lucene uses a combination of Vector
Space Model (VSM) and the Boolean model [45]. The VSM is used to calculate the number of
times the query term appears in a document relative to the number of times the query term
appears in all the documents in a collection with the document containing a large number of the
query term regarded as the most relevant document. The Boolean model is used to narrow down
the documents to be scored, by selecting the matching documents according to user query using
Boolean logic [41][45]. Basically, the IR model used by Lucene is VSM with Boolean

capabilities.

17

—
| —

Opinion Tracking and Trend analysis

SNSs’ data can be a valuable source of data for opinion trend analysis if mined and filtered
properly. This data can be used for many purposes such as customer relationship management,
public opinion tracking about politics and sports. Through these blogs and SNSs, subjective
information is generated by people expressing their views and opinions based on various topics

or subjects.

A good example of subjective information collection can be found on blogs on “Yahoo news”
which amongst other topics, focuses on various aspects of political covering the entire spectrum
of politics related issues [46]. In this arena normal citizens express their opinions on everyday
political issues, politicians communicate their ideas, journalists criticizing the government and
all this data is open to all. Such data can be gathered through systems which can automatically
track opinions of the public enabling decision makers to make sense of the enormous body of

opinions expressed on the SNSs and traditional blogs.

The process of tracking most emerging topics or events that attract the attention of a large
fraction of Blogs or SNSs users is called trend analysis [47]. Trend analysis by definition is the
analysis of changes over time. In this research we are mainly focusing on opinion trend analysis,
we proposed to develop a system which will help government officials to see most trending
government service delivery related topics on Facebook.

Trend Detection from Text
Pranav [48] classifies trend detection methods which are currently being used, from a text data,

as fully-automatic and semi-automatic.

Fully-automatic these are the systems that accept the input collection of textual data and
generate a list of emerging topics. These systems provide the graphical visualization which helps
the end user to examine the actual emerging trends based on the evidence provided by the

system[48].

Semi-automatic these are the systems that require a user input such as a topic and then outputs
the evidence that helps in determining whether that topic is emerging or not. Such systems
provide a descriptive report of the available evidence[48].

()
| 18)

The two methods are used in this thesis and their usages are described in Chapter 3 and Chapter

4 when discussing the system design and system implementation.

Related work

In this section, we give a review of prior work on crawling social networking sites, web mining
and sentiment or opinion analysis. In literature most research papers on SNS are based on SNSs
structure analysis and sentiment analysis. We start by giving the background SNSs data mining,

how it started and progressed till today as it has attracted many researchers form different fields.

In 2012 [49], the editors of Special Issue on a Decade of Mining the Web, provided a brief
overview of how Web mining evolved from the first Web mining workshop (WEBKDD’99).
The workshop took place at the KDD’99, with the theme International Conference on Discovery
and Data mining. They mentioned that during that time web data mining challenges and
opportunities were very different compared to contemporary ones. Social Web by that time did
not exist, Semantic Web was emerging. The major aim of web mining was to understand what

users want and to help them to perform simple tasks inside web sites.

In 2008 in the 10" WEBKDD workshop the series of core web mining were closed because they
reached maturity. From there, the research domain of web mining shifted to topics of knowledge
discovery such as recommendation engines, model adaptation for user profiling, understanding
communities and monitoring their evolution, modeling and interpreting user searches [49]. In
2102, Boldrini et al did their research with the aim of creating EmotiBlog, a fine grained
annotation scheme for labeling subjectivity data in non-traditional textual genres [50]. Their
research was motivated by massive data which is available on Web 2.0, which is made available
by people through the use of new communication tools such as blogs, forums and reviews which
people from all over the world employ as a source of information in addition to traditional
textual genres such as newspaper articles[50]. They argued that it can be difficult to identify
subjective data because of the mixture of text styles, a wide range of topics and sources, multiple
languages, grammar and spelling mistakes, informal language, use of colloquialisms or slang,

extensive amounts of data, continuous updating of information.

The other part of their research was to develop technologies to organize textual information, not

just in terms of topical content, but also taking into account the emotions and opinions

19

—
| —

embedded, as well as the source of the discourse. They confined their scope of research by only
focusing on three languages (English, Spanish and Italian) and three topics. The main objectives
of their research were to: design a fine-grained annotation schema able to capture the linguistic
means of affective expression in non-traditional textual genres, annotate a collection of blog
posts using the resulting schema, and evaluate the robustness of the scheme creating Machine

Learning models using the annotated elements [50].

In 2011, Papadopoulos et al proposed a survey for community detection in the context of social
media [51]. Their objective was to address two aspects which they felt are not addressed in the
context of social media which are: performance aspects of community detection methods,
namely computational complexity, memory requirements and possibility for incremental updates
of already identified community structure, and interpretation and exploitation of community
detection results by Social Media applications. They elaborated on methods for detecting and
monitoring communities as the SNS evolves. They were focusing particularly on the issue of
algorithm performance, but they also elaborated on different applications of community

detection, such as user profiling, event detection and tag disambiguation.

In 2012, Tuzhilin did a research survey on Customer relationship management (CRM) and Web
mining: the next frontier [52]. The argument of the research was that CRM can advance the
series of Web mining field for the next decade even though CRM in mid-2000s had a period in
which it was ineffective due to various reasons, including (but not limited to) high failure rates of
various CRM projects, disillusionment with CRM systems, and disappointments with the results
generated by various CRM applications in the industry. In 2012, Hagberg developed a news
reading system [53]. The system was responsible for delivering interesting news to specified user
based from the previous activities on Facebook. The system crawl Facebook for user information

and subsequently retrieves relevant news for the specified user.

In 2007, Chau et al [54] proposed parallel crawling for online social networks. This was a
continuation of the work by Cho et al [55] where they proposed three general architectures for
parallel crawlers and the metrics which could be used to evaluate them. Those architectures
were; Independent architecture, an architecture that has no coordination which exists among

crawlers, Dynamic assignment architecture, architecture with a central coordinator, and the Static

20

—
| —

assignment which is the architecture where the web is partitioned and assigned to each crawler,

and the crawlers coordinate themselves once crawling has started.

Then Chau et al [54] proposed Dynamic assignment architecture which they established would
be suitable to be used for crawling SNSs. On their architecture they enhanced the naive breath-
first crawling strategy by making it parallel by moving the queue to a master machine and
distribute crawling of web pages across agent machines which were distributed across network.
Agents were responsible for the crawling of a user data on the network and return the feedback
to the master machine. The master machine was responsible for maintaining global consistency

of the queue and ensures that a user was crawled only once.

In 2011, Catanese et al [56] they did their research on Crawling Facebook for Social Network
Analysis Purposes. They were collecting datasets about friendships of users in Facebook. They
collected friend lists of friends and stored them for analysis where they were looking for
connectivity between friends. They used two different SNS sampling algorithms Breath-first-
search (BFS) and Uniform sampling. They evaluated the two algorithms but chose BFS because
it was giving them good results. BFS includes an agent that executes data tasks and a First-In-
First-Out (FIFO) queue.

BFS operates as follows, an agent contacts the Facebook server, providing credentials required
for the authentication through cookies. Once logged in, the agent starts crawling pages, visiting
the friend list page of the logged user and extracts friend list, adding friends’ user-1Ds to be
visited FIFO queue and, cyclically, they were revisited in order to retrieve their friends lists. In
2011, Costa et al [7] proposed a framework for building web mining applications in the world of
blogs and their case study was product sentiment analysis. They used BFS sampling on their
system. Their work is closely related to our proposal the difference being that they were mining
blogs not SNSs and their system was not for rural development in the sense that they assumed

everyone can speak, read and write proper English.

In 2013, Kim et al [57] implemented a prototype system for detecting trend and bursty keywords
from Twitter stream data. To detect trend and bursty keywords, it first selects candidate
keywords from tweets by performing simple syntactic feature based filtering. And then, merge

various keyword variants using several heuristics and select bursty keywords based on the term

21

—
| —

frequency. By tracing the popularity transition of such trend keywords, it then determined bursty

keywords. The following diagram Figure 5, is their system prototype overall architecture.

Keyword Collector | Keyword Merger [| Trend Detector [
» Extract candidate > Merge acronym ™1 Remove stopwords
keywords keywords

l

4
R » Receive raw data Merge reduction
> using Twitter Calculate TF keywords
Streaming API

§ /}-\ \ Trend keywlords history
Twitter Server Merge

_/ typo&spacing

u keywords Select bursty

keywords

TF of candidate keywords

Figure 5: Overall System Architecture[57]

Their system first collects user tweets via Tweeter Streaming APl and extracts candidate
keywords from them (tweets) by calculating their term frequency (TF). It then identifies various
word variants which are considered some full keywords and merge them semantically with the
same keywords also adjusting their term frequencies accordingly. It then determines trend
keywords based on their rank and bursty keywords are selected from them based on the temporal
pattern of their popularity. Their work is different to ours in that their work is not domain
specific as ours focuses on government service delivery. The other difference is that their work
was based tweets, which are limited to only 140 characters unlike Facebook statuses which are

not limited.

Conclusion

This chapter presented a brief literature review relating to this research project. The literature
review was done so that an understanding of the tools that were to used when developing the
proposed system could be obtained. The chapter was basically focusing on the background study
of the proposed domain in this study. The chapter concludes by giving an outline of a few related

works which have been done under research domain.

22

—
| —

Chapter Three: Research Methodology, System Design and Core Used

Technologies

Introduction

This chapter describes the research methodology employed in collecting data, advancing the
developmental model and identifying the prototyping method relevant for this research project. It
also discusses the low level system and high level system. The Low level system in this chapter
focuses on the structures of each and every module in the developed system while high level
system design gives the interaction details between the modules that constitute the system. This
chapter basically discusses the research methodology used in conducting this research and the

system design.

Research Methodology

The research method that was followed in this research consists of a combination of well-
established research methods which are requirements gathering, system development and system
testing. The research methodology that was used was the quantitative research methodology as

we had to collect data from Dwesa community using questionnaires.
Feasibility Study

Informal interviews, Observations and Questionnaires

The system is developed specifically for use by the Dwesa community but the system can be
easily deployed for use in any rural area with Information and Communications Technology
(ICT) access; upon that we had to understand the community so we could properly specify the

functional and non-functional system requirements.

During the course of this research, the research site was constantly visited for one week per
month by the SLL research team. During the visits, the SLL research team conducted computer
literacy trainings and also got to know more about the research site at large. The literacy
trainings were mainly focusing on teaching Dwesa residents how to use computers, teaching
them how to create word documents, how to use LibreOffice calc for calculations etc. and the

basics of using internet such as creating emails, Google searching, singing up on SNSs sites etc.

23

—
| —

During these computer literacy trainings we could get time to interact with Dwesa residents and
teachers who were attending to and get to know more about the situations they are living under.
Just one thing that most Dwesa residents complained about was the availability of transport when
they need to go to Willowvale town, a town located approximately 40 km from their location.
The residents use public buses mostly as their main source of transport to and from town. The
buses cannot reach some of the places because of the bad road networks. They also travel long
distances to and from bus stations. The time spent there by the research team gave a clear
understating of the need of these ICTD initiatives in rural areas of South Africa. Informal
interviews were also conducted during these computer literacy trainings. The objectives which
were motivating informal interviews were to find out; how people of Dwesa community are
currently reporting the issues regarding government service delivery to their local government
and what are the drawbacks on the system they are using. The informal interviews and
observations were preliminary studies, which were then used to formulate a proper questionnaire
for data collection. The main objective of the questionnaire was to validate the problems which

were noticed during the visits while the research was being carried out.

The questionnaire was used to find out how people of Dwesa are currently reporting the issues
related to government service delivery that they are facing. The questionnaire focused on finding
out about; SNSs currently being known and used, methods currently being used to communicate
their problems with their current local government, and the possibility of the improvements the
developed system could bring. The use of the questionnaire made us to describe our study as
quantitative research. Nancy [58] describes quantitative research as the research that uses
numerical data and statistical analysis to obtain information about the world, giving the
opportunity to describe and examine the possible relationship among variables. According to
[59], quantitative research can be classified into four categories as survey research, correlational
research, experimental research and causal-comparative research. In this research, quantitative

survey research method was used for data collection and analysis.

Sukamolson [59], described survey research as the research which uses scientific sampling and
questionnaire design to measure characteristics of the population with the statically precision.
This research method is usually used for finding people’s sentiments towards any phenomenon

of interest, with the common goal of collecting data that will represent a certain population. The

24

—
| —

accuracy of the collected data is mainly dependent on the sample size compared to the actual
population size being studied. The idea behind this approach is that the margin for random error
should be smaller by finding a larger survey sample [60]. In this research, the survey sample was
smaller due to the number of drawbacks but assumptions had to be made by the author, because
the author also grew up in marginalized rural areas like the research site of this study. A few of
the drawbacks that resulted in finding small survey sample will be outlined in Chapter 5 under
the section Problems Encountered. The idea of collecting data was to collect data after computer
literacy trainings which were usually held at Ngabarha Senior Secondary School (SSS) and
Mpume Junior Secondary School (JSS) conducted by SLL research team which the author was

part of.

The problems mentioned in Chapter 5 under the section Problems Encountered resulted in a
situation where the author would have to visit the schools that he could, to collect data. The
schools that were randomly visited to constitute the survey sample were: Mpume JSS, Ngwane
JSS, Nggeza JSS, Lurwayizo JSS and Nondobo JSS. The travel costs and time constraints were
the reasons for not visiting all the schools that are involved in the SLL initiative. In terms of the
cost, the SLL research team’s transport was not budgeted for visiting all the schools for data
collection. In terms of time, there was a need for sufficient time to consider the main reason
behind the visits to Dwesa community which was to conduct computer literacy trainings.
Nevertheless, the author was able to get 16 respondents from the schools which were visited. The
questionnaire which was used in collecting data entails three sections; Section A, Section B, and
Section C which all have different objectives.

Questionnaire Results Discussion
The results which were found from the different sections will be discussed in this section. To
start with, the findings of section A will be discussed, as it is the first section from the

questionnaire which was used in collecting data.

Section A

The main objective of this section was to find out about the SNSs residents of Dwesa know, the
SNSs they have accounts on and the SNSs they use the most. This section in short was mainly
meant to establish the people’s attitudes towards SNSs networks. This was done so as to see if

the use of SNSs as means to better Dwesa residents’ communication with their local government

25

—
| —

https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/mpume-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/ngane-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/ngane-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/ngqeza-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/lurwayizo-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/nondobo-jss

would be possible. The other reason was to find out if the chosen SNS, Facebook is known and

used in that region in order to avoid the assumption that Facebook is being used everywhere.

The first question from Figure 6 was meant to see if the respondents know any SNS. The top
three most popular SNSs, Facebook, Twitter and LinkedIn were used as the options for
respondents to choose from and the option to mention a few other SNSs they know. The results
displayed on Figure 6, Facebook was the most known SNS with 14 respondents out of the 16
respondents which were involved in the survey sampling professing knowledge of its existence.
The second question was meant to find out the SNSs that people of Dwesa already have accounts
on with Facebook also being the SNS that most respondents have accounts on. Only one
respondent had accounts on Twitter and LinkedIn. Based on these results, it can be easy to
assume that there are many people who did not participate in the survey, who know and have
Facebook accounts compared to other SNSs. There were only two respondents who did not know
any SNSs and seven who did not have accounts from any SNSs.

16
14 -
12 -
10 - ® Which SNSs do you know
among the following?
8
6 ® Which SNSs do you have
accounts on, among the
a following?
2
0
Facebook Twitter LinkedIn None

Figure 6: SNS Known and have Accounts on Results

The option where people were given a chance to mention few SNSs they know, “WhatsApp” the
cross-platform mobile messaging [61] was confused by respondents for being an SNS-. Almost
all the respondents knew “WhatsApp” and were using this application more as compared to the

SNSs themselves.

26

—
| —

The following question on Figure 7 was meant to find out the most used SNSs by the people who
have accounts in different SNSs. Out of the sixteen respondents which were involved in the
survey, eight of them professed to be using Facebook frequently as compared to other SNSs.
There were no respondents who frequently used other SNSs as compared to Facebook. The other
half of the respondents indicated that they did not use SNSs mostly. This question was mainly
used to check whether or not there are any people who use Facebook, so that we could know if
the choice of using Facebook as the source data for performing the objectives of this research
was justifiable. the fact there are people who are using Facebook in Dwesa implies that, data will
be available from the people of Dwesa on Facebook which represents their views, opinions,

thoughts etc. concerning the government service delivery and issues they are facing.

Which SNS, do you use the most?

m Which SNS, do you use
the most?

[B T Y 2 =) I N B v + B X

Facebook Twitter LinkedIn None

Figure 7: SNS being used the most Results

The following question was an extension of the question from Figure 7. The reason for this was
to know how much data should be expected from the SNS they chose from the above questions.
The reason being, when people hardly update their status, comment, upload a picture, it implies
that there will not be much data to expect. Figure 8, shows their usage scale of this specific SNS
from less than once a month, meaning that such a person hardly ever logs in on the SNSs as
compared to people who use SNSs on a daily routine. Most respondents, who were involved in
the research survey, indicated that they use SNS daily meaning that they login on this SNS

almost most every day. There were two respondents that said they used a SNS once in two

27

—
| —

weeks. The other two said they used SNS once in a week and less than once a month. These

results are presented on Figure 8.

Do you use the SNS selected from
number 3, on average?

H Do you use the SNS
selected from number 3,
on average?

o = NW R

Less than once every once a week Daily
oncea two weeks
month

Figure 8: Average scale Usage of SNS

The fact that people at Dwesa use Facebook, and that there are people who use Facebook in their
daily life routines does not suggest that they are always posting statuses, comments or uploading
pictures. There are a lot of things which they could be doing ranging from reading other people
statuses, checking trending news at those specific moments or just looking at other people’s
statuses. With those facts in mind, we had to supplement the questions in Figure 8, by the
following question in Figure 9 which was meant to find out the most activities they usually
perform on the SNSs.

The following questions were used to measure the possibility of the data that could be found
from the SNSs, the people of Dwesa are using. Few actions which were normally done by people
on Facebook ranged from updating statuses, reading other people’s statuses, advertising etc. and
were used as the questions to measure the activities the people Dwesa are mostly performing.
The assumption being, if many people post statuses and comments it would be possible to get
their subjective data which could be used to track their opinions, views, thoughts, ideas etc. and
also perform trend analysis from the textual data they would be producing. Figure 9, presents the

results found from the survey sample. Four respondents said they used SNSs most of the time to

28

—
| —

send messages and three used SNS mostly to update statuses and the other two used SNSs to

read other people’s statues and uploading statuses.

What are your main uses of the
SNSs?

4.5

a
3.5

3 .
2.5

2 .
1.5
0_% i . . m What are your main uses

0 T T T T] of the SNSs?

2 o o
AN SO B
o > ¥ & &
&{} \BQ\O ‘7"”(\ \,’b{\&
R &

Figure 9: Main Usage of SNSs Results

There were no respondents who said they used SNSs for instant chatting. This could be attributed
to the fact that such people may be using WhatsApp as this application was found to be known
by most respondents. The other assumption could be the reason that all of the respondents said
they mostly used their mobile phones to access the internet and/or SNSs. The results are

provided in Figure 10.

29

—
| —

How do access internet and/or SNSs?
10
9
8
7
6
5 .
4 ® How do access internet

and/or SNSs?
3
2
X -:E
0 T
Mobile Phone Personal Through SLLs
computer

Figure 10: How do they access SNSs Results

This implies that they buy data bundles or airtime to access these services. It costs more to stay
online on a SNS chatting compared to the already developed mobile instant applications like
WhatsApp. There was one respondent who also uses a personal computer and two which access
internet and/or SNSs through SLLs. This leads to the conclusion that most people in Dwesa
frequently use their mobile phones to access the internet because 100% of the respondents use

their mobile phones to access the internet with a few using devices other than mobile phones.

Section B

The main objectives of this section were to find out the reasons of not using SNSs from the
respondents who were not using SNSs. It was also intended to be used in order to find out if they
would ever be interested in using SNSs in the near future.

The first question was intended to ask the reasons of not using SNSs. The researcher’s
assumptions were that people might not be using SNSs because they either do not know SNSs
exists or were not interested on using them or do not know how to use them or do not have
access to them and they are reluctant to ask for help in cases where they do know how to use
them. The second question was intended to ascertain if they would ever be interested in being
trained on how to use SNSs. Three respondents from the first question said they were not
interested in using the SNSs and on the second question four respondents indicated that they

maybe be interested in using SNSs.

30

—
| —

4.5
4
3.5
3
2.5
2
1.5 m If you do not use the
1 - SNSs, could you please
0.5 state why.
0 1
® would be interested in
& L & o & . .
\Q} ¢ ,;5@'@ & S using SNSs in the future?
@ & D <o
\90 2 \)‘9 &
A & O &
(\0$ Qf} Q"\(\ N
\k. A () 3
W& AN O
6 &6\ \’C&- bo
> (\0 60(\

Figure 11: Possibility of Using SNSs in Future for the Residents not using the SNSs Results

These findings in section B were then compared with the findings in section because it is
possible that people could not be using the SNSs or not accessing internet because they do not
have devices to access internet or they do not have money to buy internet bundles or air-time.
The other reason could be that they are old, based on the researcher’s experience as elderly

people in rural areas do not use SNSs with some not even knowing that SNSs exist.

Section C

This section was used to find the particulars of the respondents such as employment status and
their age groups. The survey respondents which participated in our data collection were mostly
teachers from the schools we visited. The teachers were either employed on a full-time or a part
time basis. The other two participants were local residents who were attending the computer

literacy training.

31

—
| —

14
12 +
10 +
8 -
6 -
4 - H Are you
2 - W Use SNSs
o | m i I N |
\0~\th \OAQ‘b \OA‘?'b \°~\Q’b &
e@Q e"(\Q e‘(\Q e@Q £
;Q((\z 'i)@@ c,é\, N
S

Figure 12: Employment Statuses Results

As can be seen in Figure 12, out of the 12 full-time employed teachers, seven of them used social
network and one from the local residents also use SNSs. This implies that most employed people
can afford to use SNS and some already use SNSs. The other thing which was also noticed from
the results is that even unemployed people can afford to and use SNSs. As earlier stated, another
reason why people are not using SNSs is their age. The results from Figure 13 bellow, focused
on the age group of people between 46-55 years. Of the six respondents who belong in that age
group only one used SNSs. This was to validate the notion that elderly people in most rural areas
of South Africa do not use SNSs.

32

—
| —

M Are you

3 m Use SNSs

O n T T 1
under 16 16-25 26-35 36-45 46-55 56-65 over65

Figure 13: Age group and SNSs Usage Results

This section aimed at establishing the factors which usually lead a situation in which some
people do not use SNSs at all. The following section was the last section from the questionnaire
which was used for data collection.

Section D

This section mainly focused on finding out about the methods currently employed by the people
of Dwesa community to relay the problems they are facing to their current local government, so
as to establish the possible improvements the developed system could bring to the community.
All respondents were asked to respond to this section where someone is using SNSs or not but,
one of the respondents did not respond to it on the basis that he/she was not into politics. This
was also observed as one of the reasons why there is lack of development in rural areas. Some

people do not want to participate in anything which involves government related issues.

The first question was meant to find out about the method they are using communicate with their
local government. This was done so as to know how appropriate the proposed method in this
research would be when used in Dwesa. Based on the results on Figure 14, it was found out that
people in Dwesa call ward meetings whenever they want to address community related issues.
There were few respondents who were saying they phone call, send E-mails or go to the

government offices themselves.

33

—
| —

How do you communicate with your
local government

12
10 ~
8 -
6 - B How do you communicate
4 - with your local
government
2 | .
Nl B i B
Call Phone call E-mail Other
meetings

Figure 14: Current way of Communication with their Local Government Results

The other two questions which were asked on this section are the ones on Figure 15.

14
12
B Do you feel like there is a
10 - need to optimize
communication between
8 - people of Dwesa and
Local government?
6 - B The developed system
could improve
4 communication between
community and the local
2 government?
0 .
Yes No

Figure 15: Need for Optimizing the current way of Communication and the possible Improvements by developed system
results

The reasons for asking these two questions were to find out if people of Dwesa are happy with
current way they are using and to establish if they think the system developed in this research
will optimize their communication strategies or not. Thirteen respondents said there is a need for
the optimization of the current way of communicating with the government. Further, eleven of

the respondents thought the developed system in this research would optimize their

communication with their local government.

Through informal interviews reasons for the need for a change in their communication were
asked for. The respondents said: 1) some people do not have time to attend meetings; 2) if there
are many people who ask questions they usually get the feedback long after the meetings were
held, sometimes they usually have to collect money to phone call the government officials for the
responses because they usually take time to respond; 3) it is difficult for them to tell government
officials what they are thinking or want because government offices are far from their

community (Dwesa).

This information helped us to realize the possible important communication aspects which our
developed system will bring to the Dwesa community. The system is developed in open source
technologies and it uses Facebook which is the most widely used SNSs. The advantages that this
SNS offers such as a cheaper way of communication and easy-to- use, will be valuable when the
system is deployed to monitor the trends as the local government and local people will be able to

communicate in a free and cheaper way.

Literature review

Through a literature review of similar previous works on our research domain, we were able to
design and foresee the appropriate tools which could be used to develop our system. A review of
programming languages and most of the tools which were previously used to develop similar
systems was also carried out. A brief review of the tools that were chosen and used to develop
the system and its usage is given on the System Architecture subsection below.

System Development

The Iterative Incremental Development approach was used in developing the system. The
Iterative Incremental Development approach is a combination of the Iterative approach, which
refers to an approach that allows cycling through the development phases from requirements
gather to the final developed system deliverable[62] and Incremental approach which is an
approach that allows the development of various parts in different stages and schedules which
are then integrated when they are completed[62]. This development approach allowed us to

35

—
| —

develop the proposed system in different modules which were then incremented and were also

revised later whenever research objectives were not met.

Evolutionary prototyping

Evolutionary prototyping was used on the development of the system because the actual
system’s functional and non-functional requirements were not all known from the beginning of
the project. During the process of the development of the prototype, every part of the prototype
was reviewed and tested. If the results were satisfactory we would then move to the next step and
develop the next part of the prototype. The first system prototype was developed and tested and
additions were later made to optimize the prototype functionality and its usage. The first system
prototype was then published in International Journal of Computer Applications IJCA[63].

Initial Prototype

y

> User Review of Prototype

. . NO e YES OBJECTIVES
Revise or Refine Prototype Satisfied? ATTAINED

Figure 16: The Prototyping Process[64]

The above diagram, Figure 16, was adopted from [64], to best illustrate the process which
followed during the time of the development of the system. After the initial prototype, the
prototype was then reviewed and some refinements were made with new additions being made to
ensure that the system is more usable. The following were the few limitations which were found
on first prototype after it was reviewed: The first prototype needed too much human

intervention. It would require the system administrator to supply train dataset when needed for

36

—
| —

calculating the trends from Facebook. It would also require the system end-user to think of
almost all the keywords he/she wishes to search. A more detailed and improved system design

will be discussed in the System High Level Design subsection.

System Testing
During its development phase, the system was constantly modularly tested. The detailed system
testing and evaluation with the experimental results are given in chapter 5.

System Design
The section is mainly meant to give the detail system user functional and non-functional

requirements, low level system design and the high level system design.

System User Functional Requirements
Figure 16 shows the actual users which are expected to use and operate the system, the end-users
and system administrator. To start with, the roles of the system administrator will be elaborated,

followed by the actions the end-user will be able to perform in order to get the data of interest.

For the administrator to be able to operate the developed system, he/she needs to have Facebook
account and be registered as a Facebook developer on it. This enables one to get the access
token, which is needed for communication between Facebook servers and the developed system.
The access token is an opaque string used by applications to make graph API calls when posting,
deleting, or retrieving data from Facebook servers. It is also used by other applications which are
not using it for making graph calls and other Facebook pages. The system administrator, after
registering as Facebook developer, will need to get the access token from Facebook and supply it
to the system. By so doing, the system will be authenticated to access Facebook users’ data. The
system will then retrieve data form Facebook database servers and when it is done, it will stop.
After which, the time taken to crawl Facebook and index data will be displayed on the console

when the process is done.

There are four systems functional requirements that the end-user can perform to get data of
interest. These are, keyword searching, searching correlated words, search word frequencies and
lastly checking words frequencies from the entire index. There is no specific order that should be

followed when executing these functionalities. They all are built to optimize the system and to

37

—
| —

make more data that can be retrieved and analyzed to make sense out of the data found from

Facebook, the SNS used in this research.

Initiate System

Keyword Searching

System-Administrator
Search word

Correlation

End-User

Check Word
Frequenicies

Search
Word
Frequencies

Figure 17: System User Functionalities

The functionalities which are provided by the developed system all have different business logics
but share the Ul. They also give back different kinds of feedback to end-users based on their
logics. As prior stated, there is no stipulated manner in which these functionalities should be
executed. An end-user can start Keyword Searching by typing the search keyword and the
system will retrieve all the content from the index which contains the searched word. The results
will be the top ten statuses and comments, their selection criteria and the reason for limiting the

displayed results will be discussed in the high level system design subsection. The end-user

38

—
| —

could also be interested in knowing the words which mostly occur with the searched keyword
that functionality is handled by the search word correlation. The system accepts the keyword
from the end-user then searches the index, and then retrieves all the content which matches the
searched keyword and tokenizes, removes all the stop-words (the common words that contain no
sematic content) which will be found from the content retrieved from the index based from the
stop-words provided to the system as the train dataset. It then calculates the frequencies of the
tokens, from which tokens with the highest frequencies being regard as the words which are
highly correlated with searched word. The results are then displayed in a scatter plot for end-user

to analyze.

The check word frequencies module is different to the other modules as it does not require
keyword search for searching the index. This sub-module accepts the user input as the button
click then retrieves all the data found from the index. The data is then preprocessed by
tokenizing and filtering the stop-words. The frequencies of the tokens which are not filtered are

then calculated. The results are then visual in the bar graph.

The last system module which is search word frequencies is used in conjunction with the already
developed Suggested Upper Merged Ontology (SUMO). The reasons for using the already
developed ontology were; to make the developed system more dynamic so that it could be
possible to use for different purposes but not limiting it government service delivery, it was
impossible to predict the possible words which could be found from the data retrieved from
Facebook SUMO was to help through the words already on it. This system sub-module accepts

the user input as the keyword then searches the ontology and retrieves data from the ontology.

The data is then processed by separating joined words and removed the found delimiters.
Thereafter this sub-module retrieves all the data found from the index and then matches it with
data from the ontology. The frequencies of the matching words are then calculated. From there,
the end-user can know what trending words from Facebook are. The results are visualized on
bar graphs so that the end-user can easily see the words with high frequencies (trending). All the
index searching sub-modules require search keyword for searching the index except check word
frequencies sub-module. For all index searching sub-modules if there is no data found matching

the searched keyword, there will be no results returned to the end-user.

39

—
| —

System Low Level Design

This section is aims at giving the detailed interactions between the components that constitute
each every module in the developed system in this research. The developed system consists of
two modules Facebook Crawling, Text Extraction and Text Indexing and Index Searching.
Facebook Crawling, Text Extraction and Text Indexing serve the purposes of collecting data
from Facebook. Index Searching module has four sub-modules serve the purposes of checking
the correlation of the keywords, checking trending words, trend analysis based from the data
found from the ontology and index, and the keyword searching for retrieving the actual content

in the index.

The module for collecting data from Facebook will be discussed first giving the actions needed
to be performed by the system administrator and the expected actions to be performed by the
system in order to accomplish the desired goal, which is to get data feeds from Facebook,
preprocess and index for later usage. As previously stated this module will be operated by the
system administrator and the administrator will be required to have obtained the access token

from Facebook servers.

The actions that will be performed by the system administrator, end-users and components that
constitute each system module will be denoted by the word “message and the number” from the

top to the bottom based from their sequence of occupancies.

40

—
| —

System-Admin System Facebook Facebook-Server

: Message1

Message2

ED Message3d

T
|
|
|
|
|
T |
|
|
|
i Messaged :

Figure 18: Facebook Crawling and Data Collection

Message 1 - the administrator supplies the access token to the system, by copy the string

provided by Facebook server and supplying the string to the system.

Message 2 - the administrator is required to initiate the system so that system can start

communicating with Facebook servers.

Message 3 - the system, after it has been initiated, starts by checking if there is any created
index. If found, the index then deletes all the contents found from the index and if there is no

index found, it creates a new index.

Message 4 — the system sends the authentication request to Facebook using the provided access

token.

Message 5 - Facebook replies by accepting or denying the request if the access token is invalid.

41

—
| —

Message 6 — the messages in the square boxes from messages 6 to 12 represent the processes
which reoccur up until the system finishes crawling and indexing the data from Facebook.
Message 6 is the message sent by the system to the Facebook servers requesting for friends’ user

IDs.

Message 7 — Facebook replies by providing the requested data, which are Facebook user account
IDs.

Message 8 - the system calls the class for parsing the actual user IDs into plain textual data.

Message 9 - Uses the Facebook user account IDs from Message 8 to request for the statuses and

comments of the users with account IDs and if found takes one latest status of every user.
Message 10 - Facebook sends back the actual requested data statuses and their comments.
Message 11 - calls the class for parsing the retrieved data into plain textual data.

Message 12 - the system then writes the data to the index. The messages reoccur until the last

friend’s user ID and the status are both crawled from Facebook.

Message 13 - the system then sends the actual time it took to crawl Facebook and index data in

the console when it is done.

The following four diagrams represent the underlying system architectures of the four system
user functionalities mentioned in Figure 17. The following is the underlying system architecture
for keyword searching, content matching and term frequency analysis sub-module (Search word
Frequencies, Figure 17). This sub-module is an OWLIR (Ontology Web Language and
Information Retrieval) sub-system because it uses SUMO and Lucene information retrieval

systems. According to [65] the use of this system architecture has the following advantages:

1. It uses the sematic information to guide the query answering process;

2. It enables answers with a well-defined syntax and semantics that can directly be
understood and further processed by automatic agents or other software tools; and

3. Provides information that is not directly represented as facts in the WWW, but which can

be derived from other facts and some background knowledge.

42

—
| —

End-User User-Interface Middieware: SController : SManager Surmo-0WL IndexManzager Lucensaindex

i Message1 i I
1 1
Message? I

T
|
|
|
|
/| | Messaged |

Messaged

Messages

| Messaged

|
|
MessageT

i T Niessagas

| |
; f f
| |
I Messages I
TeE T T T T T T t——— ==

Figure 19: Keyword Searching, Content Matching and Term Frequency Analysis module

Message 1 — the user supplies the keyword to be used to search the index.
Message 2 — the Ul accepts the keyword parameter and passes it to system middleware.

Message 3 — the middleware then passes the searched keyword to search manager class, which is
the class that performs most of the core tasks of this module.

Message 4 — the search manger class then searches for the ontology using the provided keyword.

Message 5 — the ontology gives the feedback as the data that matches the search keyword,
preprocessed and the data is then stored in an array.

Message 6 - the search manager then requests for the path to the index directory by verifying the

provided path to the index, also checking if there is any index in such specified index directory.

Message 7 — message regarding the verification of the index path.

43

—
| —

Message 8 - the search manager then searches for the index by retrieving all the data found in the

index.

Message 9 — The index then gives feedback by providing all the contents from it. The data is
then tokenized so that it could be single which could be matched against the data found from the

ontology.

Message 10 - the search manager matches the words from the ontology and the words from the
index from the two developed arrays. The frequencies of the matching words are then calculated.

The frequencies and the matching words are then stored in an array.

Message 11 - the search manager then send feedback the array created in Massage 10, to the

middleware.
Message 12 - the middleware also passes the array to UI.

Message 13 - At background of the Ul, a bar graph is created based from the data on the array

from middleware.
Message 14 - the data then visualized for the end users to do analysis from it.

The following diagram represents the underlying system architecture of the search keyword
correlation module from Figure 17. This system module is similar to the above mentioned
module Figure 19; they both require keyword for searching the index. The first three messages
from Figure 19 and Figure 20 are similar. However, the difference from the two diagrams lies in
that search manager in Figure 19 starts by searching the ontology while in Figure 20 the search

manger starts by searching the index only and does not use the ontology at all.

44

—
| —

End-User User-Interface Middleware: SContraller . SManager Indexhanager Lucenalndex

: IMessage : :
II ‘ Message2 :

’| | Message3d

Messaged

IMessages

I Messageb
i

I
Message? U
_________ L

I:D Messagai2

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L
: Message11
________ |
D |
| |
| |
|
|
|
|
|
|
|

Figure 20: Words Correlation Analysis

Message 4 - the search manager then requests for the path to the index directory by verifying the

provided path to the index, also checking if there is any index in such specified index directory.
Message 5 — is a message regarding the verification of the index path.

Message 6 — the search manager then searches the index by retrieving all data that matches the

keyword from the index.

Message 7 — The index then gives feedback by providing all the contents matching the searched
keyword. The data is then tokenized and stored in an array so that it can be used for word

frequencies calculation.

Message 8 - matches the array of the word tokens from the index with stop-words array provided
as training dataset. The words found from both arrays are regarded as the stop words and do not

add to the array which is created for calculating the frequencies of the words which are not the

45

—
| —

stop-words. The array of the words which are not found with the words from the stop-words will

be added on the new array.

Message 9 -calculates the frequencies of the words from the array created from Massage 8. The
frequencies and the actual words are then stored in the final array which will be used to visualize
the data.

Message 10 - the search manager then sends the feedback, the array created in Massage 9, to the

middleware.
Message 11- the middleware also passes the array to the Ul.

Message 12 - At background of the Ul, the scatter plot graph is created from the data in the array
located in the middleware and the array of the random which are used at the values for axes. The

range of random numbers depends on the size of the array from the middleware.
Message 13 - the results are then visualized to the end-user.

The following is the underlying system architecture of the keyword search module mentioned in

Figure 17.

End-User User-Interface Midd|leware: SController . Shanager Indexhanager Lucenaindex

i hessagel i

|

: |
,| | Messazel |
]

T
I
I
I
I
II | Message3 |

Messaged

| Messaged
|

|

|

|

|

|

| . |

| I

| I

| MessageT
N N 1
| T

|

|

Messaged J::I
Meszaged

Figure 21: Keyword Searching

46

—
| —

Starting from message 1 to message 6, messages and responses sent and received by different
components constituting the modules from Figure 20 and Figure 21 are similar. There is nothing
much which is performed by this module besides reading the index and displaying the content
(Statuses or Comments) which match the searched keyword.

Message 7 — The index then gives feedback by providing all the contents matching the searched
keyword. The data that is given as the feedback is the top ten statuses and comments that have

higher hits of the searched keyword. The results are then stored in the array.

Message 8 - the search manager then sends feedback, the array created in Massage 9, to the

middleware.
Message 9 - the middleware also passes the array to the Ul.

Message 10 - the results are then displayed to the end-user, and thereafter the end-user can read

them.

The following figure, Figure 22 is the underlying architecture of check word frequencies module
described in Figure 17. This module is different from the other three modules which are designed
to be used by the end-users in that it does not requires the keyword to search the index and

calculate the word frequencies.

47

—
| —

End-User User-Interface Middleware: SConiroller . SManager IndexManager Lucenelndex

T T T
! Messagel ! : I | |
/| | Message? I : I :
i /‘ ‘ Message3 I I I
|
| i Messaged I :
| |
| | Messages l
| I T
| | : Messages :
| | T
I I Mess;age? M
| M T T T T rTTT T T T T =
| | l
| |
| | D::) Messages
| |
| | I
| | I:D Messaged
| | 1
| | |
| |
| | Messagell D
| _________
| Messagell |
|
I:L_::) Messagel?
Messageld |:|
i ——

Figure 22: Check Word Frequencies

This module only requires the end-users to click the button and then the system will search the
index, retrieve data from the index, calculate word frequencies and visualize the data in a bar
graph. This module is designed to be used when the end-user wants to check the trending words
from data collected from Facebook. The following messages below describe the processes that

occur when this module is being executed.
Message 1 - the user submits the search request by clicking the button.
Message 2 - the middleware then gets initiated.

Message 3 — the middleware initiates the search manager class through the use of the construct

with no parameter.

Message 4 - the search manager then requests for the path to the index directory by verifying the
provided path to the index, in the process checking whether or not there is any index in such

specified index directory.

48

—
| —

Message 5 — is a message regarding the verification of the index path.

Message 6 — the search manager then searches the index by retrieving all data that is found from

the index.

Message 7 — The index then gives feedback by providing all of its data contents. The data is then
tokenized and stored in an array so that it could be used for content matching and words

frequency calculation.

Message 8 - the content matching is done with the provided stop-words and the words from the
array created in message 7. The words which are not found matching are then stored in the new

array.

Message 9 - the frequencies of the words from the array created from Message 8 are then
calculated and also sorted in a descending order and stored in the final array to be used for data

visualization.

Message 10 - the search manager then sends feedback, the array created in Massage 9, to the

middleware.
Message 11 - the middleware also passes the array to the UI.

Message 12 - At background of the Ul, a bar plot graph is created based on the data on the array

from middleware.
Message 13 - the results are then visualized to the end-user.

The following subsection is the high level system design which is meant to give the interactions
of the modules that constitute the entire developed system package and the brief background

study of the used technologies in developing the system.

System High Level Design

The system is developed with open source technologies, because the SLL from where the system
will be deployed uses open source software which is free. The system is developed in different
modules which were constantly tested and later integrated together to form one system package.

The developed framework serves two high level functionalities which are outlined as follows:

49

—
| —

1. Data extraction from Facebook, text extraction, text preprocessing and text indexing.
2. Index searching which consists of four sub-modules which are outlined as follows:
» Keyword searching, content matching and frequency analysis;
» Keyword searching, content matching and correlation analysis;
» Content matching and frequency analysis; and
» Keyword searching.

These sub-modules are integrated together with one Ul. The Ul is developed in such a manner
that it eases the usage of the system. These high level system functionalities and the undertaken
literature review informed the design of the system. The following diagram illustrates the high

level system architecture of the developed system in this research.

TEXT INDEXING

RestFB &
Jackson
O OWL FACEBOOK CRAWLING
ene

\\@D TEXT EXTRACTION

,//

—

\ LT /

\ ’// ‘//////>h 0%
g “9“*

USER INTERFACE
m

Graphs

Figure 23: System Architecture

]
50,

—

The system architecture above in Figure 23Figure 23 illustrates the internal and external structure
of system modules integrated together in one package to form one system. The following
subsections provide a brief background overview of the tools used and the design details of the
different modules of the developed system starting from the back-end to the front-end. The
whole system is developed on Linux Ubuntu operating system and Netbeans IDE platforms

because they are open source technologies.

Facebook Crawling and Text Extraction

This system module was developed to crawl Facebook. There was a need to take into
consideration the four polices described in chapter 2, under sub-section Web Crawling Policies.
The following sub-sections discuss how we used the policies when we were designing and

implementing the proposed system in this research.

Selection policy

The Facebook graph is larger and keeps evolving. Trying to crawl whole of it would require
more bandwidth and larger data storages. As such, we created the crawler in the manner that it
only crawl data feeds of users who are direct friends with the seed node. We used Breath-first-
search (BFS) SNS sampling algorithm, which includes an agent that collects seed’s friends user-

ID’s and an agent which is responsible for crawling friends’ data feeds.

In BFS sampling algorithm web pages are crawled the way they are discovered [66]. Friends’
user-1Ds were put in a First-In First-out queue. Our crawler operates as follows: an agent
contacts the Facebook server, providing a Facebook access token required for the authentication
and permissions for accessing users’ data. Once logged in, the agent starts crawling seed friends
list collecting friends user-IDs putting the in FIFO queue. This queue enables the developed
crawler to crawl the data feeds of all the seed’s friends, taking one latest feed. The developed
crawler is a focused crawler because it only crawl Facebook SNS and even from Facebook is
basically focusing on data feeds. Focused crawlers can operate in two different modes batch
mode, where they collect pages related to the topic periodically or in on-demand crawling mode
where it collects pages at the request of a user query[67]. Our developed crawler currently
operates on-demand crawling; a user has to log in first to Facebook and request an access which

it then supplies to the crawler as ID seed or the start node of crawling process. The main

51

—
| —

advantages of using Focused crawlers are that they require minimum local storage as they

download only relevant pages and utilize bandwidth efficiently.

Revisit policy

Given the dynamic nature of Facebook this policy needed to be taken into account so that it
could be possible to collect raw data which will be used for current or recent opinion trend
analysis from Facebook.

Politeness policy

To accomplish this policy, the crawler should follow the three obligations; Firstly, it should
identify its self as it is, this will serve many purposes such as counting the number of visits to the
web database server and to manage the bandwidth allocated to web crawlers. Secondly, it must
obey the crawler exclusion protocols which specify the parts of the server an administrator is
willing to allow for crawling. Lastly the crawler should use its bandwidth efficiently; it should
not download one page from the web site simultaneously and should give enough time between
the two consecutive download[68]. Our crawler accomplished this policy because to identify
itself it uses a Facebook access token to communicate with Facebook database web servers
through Graph API. Through the same Facebook access token, our crawler is able to request data
access permissions from Facebook database server. Further, friends data feeds are collected
sequentially starting from the first user, collecting all data feeds and going to the next user data

feeds when crawling is done, up to the end of the friends list.

Parallelization policy
We did not accomplish this policy on our crawler as it only uses user account IDs from FIFO
queue as seeds for our crawler to crawl the Facebook graph. These user account IDs are loaded

to our crawler frontier sequentially.

This is the system back-end module developed on top RestFB and Jackson java libraries. RestFB
is a simple client java based library alternative for the Facebook Graph API written in Java [69].
This library is used by developers for communicating with Facebook database servers.
FacebookClient interface was used to communicate with Facebook Graph API. This interface
specifies how the Facebook graph API client is supposed to operate [70]. The sub- classes
FetchConnection and FetchObject of FacebookClient were used for extracting friends’ user

52

—
| —

account ID’s and data feeds from Facebook respectively. All data extracted from Facebook was
returned in JsonObjects, an unordered collection of name/value pairs. JavaScript Object Notation
(JSON) is a lightweight data-interchange format between machines and humans [71]. The data
was also filtered by specifying the parameters to retrieve from Facebook and that eased the
process of data mapping through java beans when parsing text. The extracted Facebook data was
then parsed to plain text using Jackson library. The parsing of Facebook data was done for two

reasons:

1. The user account IDs were parsed to get actual value of user account ID. The user
account ID was then used as reference to retrieve the latest status update together with

associated comments of the specific user.

2. The data feeds which is the actual data indexed, were parsed because Lucene only

indexes plain text.

Lucene open source java library developed by the Apache organization for high text indexing
and efficient search algorithms performance was used for indexing and adding searching
functionality on the system. Collecting data from Facebook Breath-first-search (BFS) SNS
sampling algorithm was used, which includes an agent that collects seed’s friends user-ID’s and
an agent which is responsible for crawling friends’ data feeds. In BFS sampling algorithm web

pages are crawled according to the way they are discovered [66].

The Facebook Crawling and Text Extraction module operates as follows: it contacts the
Facebook server, providing Facebook access token required for the authentication and
permissions for accessing users’ data. Once logged in, the agent starts crawling seed’s (logged in
Facebook user) friends list extracting friends’ user-1Ds and also crawling data feeds of each and
every user in First-In-First-Out (FIFO) queue manner. Facebook data feeds are arranged in a
chronological order with the most recent data feed appearing at the top Only the top data feed
that is the last status update in every friend’s Facebook account is crawled and indexed. This
allows the tracking of the trending topic, on the network of the seed node.

Text Indexing
This system module was built on top Lucene information retrieval java library. The Facebook

Crawling and Text Extraction module as aforementioned was developed for Facebook data

53

—
| —

extraction and text parsing; the text was then indexed using Lucene. Lucene only indexes data
available in textual format. The input text data in Lucene is stored in an inverted index data
structure, which is stored on file system or in memory as a set of index files. On the development
of this module we used different Lucene library classes to accomplish the objective of
developing a working index. The following are the core indexing classes which were used during

the development of the index: Directory, Analyzer, and IndexWriter.

Directory is the abstract class used to represent the location where the index files are to be or
stored. We also used its sub-class FSDirectory store index files in the actual file system. This
sub-class was used because we were getting large sizes of data and such data was also intended
to be used for trend analysis purposes. The Analyzer class was used for converting the text data
into a fundamental unit of searching, which is called a term. During analysis, the text data goes
through multiple operations such as extracting the words, removing common words, ignoring
punctuation, words stemming, also converted into tokens, and these tokens are added as terms in
the Lucene index. There are already built-in Lucene analyzers which differ in the way they

tokenize the text and apply filters, but in our development we used the StandardAnalyzer.

The IndexWriter class was used for creating and maintaining an index and its constructor accepts
a Boolean that determines whether a new index must be created or an existing index is opened
[43]. The IndexWriter class also provides methods for adding, deleting, or updating documents
in the index. To avoid duplications and ensuring that most recent statuses were used, we used the
deleteAll method every time new data was about to indexed. Lastly, Document class was used to
represent a collection of fields, and the data was stored under two fields “title” and “content”.

Title being status or comments and the content being the actual data we obtained from Facebook.

Index Searching
This module defines how end user’s queries, content matching, correlation analysis and trend
analysis are done. This module from our system consists of four modules whose designs will be

discussed in the following sub-sections.

Content Matching and Frequency Analysis
This system module adopted a fully-automatic method for trend analysis from text and term-

document matrix. Term-document matrix is the frequency of terms or words in a collection of

54

—
| —

documents, with documents being columns and rows representing terms. We provided our
system with the collection of textual data in an array, which are regarded as stop-words train
dataset. This module then, starts by checking if the words from the array are also available from
the index. The frequencies of words which are found from the array and the index are not
calculated. To access data from Lucene we used MatchAll query to retrieve all the documents
from the Lucene index, then tokenized the retrieved data to enable us to match terms from the
array and tokenize terms from index and to also be able to calculate word frequencies which are
found not matching.

Keyword Searching, Content Matching and Frequency Analysis

This system module adopted the semi-automatic method for trend analysis for text in the index.
It used SUMO data and data from the Lucene index for content matching and frequency analysis.
SUMO is the largest formal public ontology in existence today with different domain ontologies
on it [72]. The use of SUMO was to ensure that our system would not be restricted to the
government service delivery related topics only. The usage of the SUMO aimed at giving the
developed system in this research the ability to retrieve data from different domains in cases
where end-users wanted to check trending topics which are not government services delivery

related.

Through this system module, an end-user supplied a keyword to be searched. The module then
regards the search keyword as the class which could be found from the SUMO. Thereafter, the
module then searches for the SUMO with the keyword. If the class name matching the searched
keyword is found the supper-class, sub-class and the instances of such specific found are then
retrieved and preprocessed by removing unnecessary delimiters and separating the joined words.

The words are then stored in an array to be used as the train dataset.

This module also uses MatchAll Lucence query to retrieve all the data found from the index.
The data found from the index is then tokenized to single tokens. The tokens are then also stored
in an array. The two arrays, the one which acts as the train dataset created from data found from
the ontology and the actual data found from the Lucene index are then matched. The words
which are found matching from the two arrays are stored in a different array. The algorithm for
selecting these words is: every token from the index is checked if it is there from the train dataset
array. If the token is found from the train dataset array is then added to a new array regardless of

55

—
| —

how many times the token is found from the index data. Its instances are stored in the new array
according to its number occurs. The newly created array is then used to calculate the frequency
of the words that are found matching from the SUMO and Lucene index. The results are then
visualized to the end-user the trending words on a bar graph. This module is used to check the

trends from the entire index in the system.

Keyword Searching, Content Matching and Correlation Analysis

This system module also adopted a semi-automatic method for detecting the trends from the
textual data found from our index. This module also requires the keyword to be searched but it
differs from the previously described module in that it searches the index only and it does not use
SUMO. This module searches the index using the normal keyword searching method and
retrieves all the data found matching the searched keyword. The data is then tokenized and stored
in an array. This module has a stop-words array provided to it as the train dataset for
preprocessing data retrieved from the index by removing them, as the stop-words occur almost in
every textual data. The two arrays are then matched by looking for the words that occur in both
arrays. The words whose frequencies match are not calculated. The correlation in this module is
calculated and determined based on the word frequencies, with the words with higher
frequencies being regarded as the words with higher correlations. The results are then visualized

on a scatter plot for the end-users to analyze and draw conclusions.

Keyword Searching

This sub-model enables the keyword searches. Based on results from the above described
modules an end-user can search the most correlating and/or trending words through this system
feature, to get the content where they can see what has been said on Facebook in relation to the
words which were found correlating or trending. Keyword searching is not limited to searching
for words found in the above described modules but can also accept any query and retrieves the
documents that match the query. To limit the number of documents retrieved we used Lucene
TopScoreCollector class and limited the results to top 10 documents with the highest hit scores.
The reason for limiting the results which are retrieved through this system module is to make it

easy for the end-user to easily get the sentiments of the retrieved content form the index.

56

—
| —

User Interface

The Ul was created using JavaServer Pages (JSP) and linked to each of the four index searching
modules with different java servlets. The servlets are responsible for accepting queries from JSP
and passing them to index searching modules and accepts the feedback from these modules and
passes them back to be displayed and/or visualized on JSP page. Jfreechart bar graphs and
scatter plot are used to visualize results from content matching and frequency analysis, keyword
searching, content matching and frequency analysis, and keyword searching, content matching

and correlation analysis modules. Results from the keyword are displayed in the play text.

Figure 24: System User Interface

The Uls for each and every module was developed and tested separately and they were all called
to function in one Ul to make one system package. The interfaces were developed according to

the functionality they are supposed to offer and the expected results.

Conclusion

In this chapter we discussed the research methodology used and described the method used for
collecting data at Dwesa, development model used during the development of the system and the
prototyping method used for developing our system. This chapter also gave a brief background
study of the technologies which were selected from the literature and used in the development of
our system. The chapter sought to ensure that the reader easily understands the implementation
details of the system which will be given in the next chapter, chapter four.

57

—
| —

Chapter four: System Implementation

Introduction

This chapter discusses the implementation details of the system developed in this research. The
previous chapter discussed the research methodology, the system design and the brief review of
the technologies used. This chapter will focus on the actual system implementation starting with
the module for crawling Facebook, gathering data, parsing text and text indexing. It will also
discuss the sub-modules developed for indexing searching module and concludes with a

discussion on the implementation of the UI.

Facebook Crawling, Text Extraction and Text Indexing

This module was developed in java programming language on Netbeans and Linux Ubuntu as
mentioned in the previous chapter. Figure 25 is the actual code and the logic of this module. The
other codes for parsing and indexing textual data will also be given and explained in this section.

35 FacebookClient facebookClisnt = new DefaultFacebooRCllent(CAACEdE0selcBADT1] PoHKUZzZWW20KE0T3gD907gATUVvbKNEDUNgI20S1kuYvKe g
@ com.restfb. Connect10n<J50nObJect> connectlon = facebook(Client.fetchConnection("/me , JsonObject.class,
37 Parameter.with(' fields", ;

38 ObjectMapper mapper = new 0bj ectMapper()

39 for (List<JsonObject= jsonObjects : connection) {

40 for (JsonObject jsonObject : jsonObjects) {

41 String json = jsonObject.toString();

42 IdParser user = mapper.readValue(json, IdParser.class);

43 JsonObject connact = facebookCllent fetchObject (user.getID() + feed/", JsonObject.class,

44 Parameter. m_v:h(summary ', true), Parameter.with("limit", 1},

45 Parameter.with('"fields", "message,created_time, comments));

46 String jsonl = connect.toString(2);

47 JavaParser userl = mapper.readValus(jsonl, JavaParser.class);

43 try { %

49 ArrayList<JavaParser.Data> projects = (ArraylList<lavaParser.Data=) userl.getDatal();

50 for (JavaParser.Data p : projects) {

51 addDoc(w, '"Statuses", p.getMessage());

52 ArrayList<JavaParser.Data.Comments .Datal> project = (ArrayList<JavaParser.Data.Comments.Datal=) p.getCommen
52 for {JavaParser.Data.Comments.Datal ¢ : project) {

54 addDoc(w, "Comments', c.getMessage());

55 }

56 1

@ } catch (Exception e) {

58 System.out.print({e.getMessage());

59 1

50 1

&5l 1

Figure 25: Facebook Crawling, Text Extraction and Text Indexing

The first line, line 35 in Figure 25 is the FacebookClient class which is used to communicate
with Facebook. This class accepts the string access token for authenticating our crawler to
Facebook servers. The access token as already stated entails the permissions of the data that we
were allowed to access on Facebook servers. The second line uses the privileges of the
FacebookClient class to access the friends list of the first node (the logged in user Facebook user,

who requested the access token). To request the friends list of the first node fetchConnection

58

—
| —

method of FacebookClient is used, to specify that we are requesting to access friends’ data we
“/me/friends/”. To specify the type of the data to be returned, we used JsonObject class and also
specified the actual data that we wanted to retrieve about each and every friend in the friends list
using ‘“Parameter.with(“”’)” method to request only friends user IDs. The fetchConnection
method returns data in JsonObject list. Lines 39 and 40 in Figure 25 show how to read the
objects in the JsonObject list. Every read object in the list is then converted to string (Figure 25,
line 41) so that it can be possible to parse to plain text which in turn can be used to request the
latest status and comments of such specific user ID.

42 String json = jsonﬁlbject.:toStrirdwg();‘)
%] IdParser user = mapper.readValue(json, IdParser.class);
44 JsonObject connect = facebookClient.fetchObject(user.getID() + "/feed/", JsonObject.class,

45 Parameter.with("summary", true), Parameter.with("limit", 1},
a5 F[:@rameter.wifh(fields", "message,created time, comments''));

Figure 26: Call IdParser Class

Line 43 in Figure 26 shows how to call a class that is used to pass the ID JsonObjects to plain
text. We declared a variable of a class IdParser and used getID method of the IdParser method to
get the actual ID in the JsonObject. The IdParser class is used in conjunction with ObjectMapper
class (Line 38, Figure 25) to map JsonObjects of Jackson library described in the previous
chapter.

Line 44 in Figure 26 shows how status is read from Facebook of every use ID using fetchObject
method FacebookClient. To specify that, we wanted the data feeds of the friends from Facebook
servers we used “user.getlD +”/feed/”” and the data JsonObjects as specified by the use of
JsonObject class. The data retrieved was also filtered through the use of “Parameter.with (**’)”

method by specifying the fields we wanted to get on the JsonObject data.

Figure 27 is the actual implementation IdParser class developed in Java Beans. This was
developed according to the data we were getting from Facebook of friends user IDs. This class is

called every time a new or next user 1D is to be used and needs it to be parsed to plain text.

59

—
| —

7 public class IdParser

8 private String id; [:&
9

10 public String getlID() {

11 T return this.id;

12 }

13 public void setID(String id) {
14 T this.id = id;

15 1

15

17

18 I

Figure 27: IdParser class

The feeds that we were getting also needed to be passed as they were also returned in
JsonObjects from Facebook servers. The data feeds like user IDs also needed to be converted to
strings (line 47 in Figure 28) for them to be easy to be parsed to plain text. This was necessary
since we had to use Lucene index to index the data that we were getting from Facebook servers.

To parse textual data feeds from Facebook servers JavaParser class was used. To call this class
we declared JavaParser variable, line 49 Figure 28. The data feeds that we were getting from
Facebook servers were in the JsonObjects arrays format and JavaParser class was developed to
parse and return the textual data from those JsonObjects. Line 51 in Figure 28 shows the
declaration of the variable which was used to parse the statuses data feeds we were getting from
Facebook. Line 54 in Figure 28 shows the declaration of the variable which was used to parse the

comments which were found associated with such a specific status.

47 String jsonl = connect.toString(2);

48

(o] JavaParser userl = mapper.readValue(jsonl, JavaParser.class);

50 try {

il ArraylList<JavaParser.Data= projects = (Arraylist<JavaParser.Data=) userl.getData();
52 for (JavaParser.Data p : projects) {

53 addDoc(w, "Statuses", p.getMessage());

54 ArrayList=lavaParser.Data.lomments .Datal= project = (ArrayList<lavaParser.Data.lomments.Datal=)
= p.getComments() .getData() ;

56 for (JavaParser.Data.Comments.Datal ¢ : project) {

57 addDoc (w, "Comments", c.getMessage());

Figure 28: call JavaParser class

Line 50 in Figure 28, shows how to declare the variable of JavaParser class. The JavaParser class
was developed in a manner that would enable it to parse the contents of the JsonObject array. It
was developed on top of Jackson Library. This class is called every time there is new or next
data feed to be parsed. The JsonObjects data feeds were containing the status and the comments

60

—
| —

associated with such specific status, but the comments were also in another nested JsonObject
array inside the actual JsonObject array containing the data feed. Lines 52 and 53 show how the
statuses were parsed from JsonObject data feed and indexed to Lucene index using “addDoc”
method. Lines 54, 55, 56 and 57 show how the comments were read from the JsonObject data
feed array parsed to plain textual data and also indexed to Lucene index using the same method
“addDoc”.

The snipped code in Figure 29 is JavaParser class. We could not include the entire code due to its
length. The length of the this class was as a result of the objects we had to map when we were
parsing the JsonObject data feeds, as the class developed in reference to the structure of the data

feeds we were getting from Facebook servers.

10 public class JavaParser {
11
12 private ArraylList=JavaParser.Data= data;
13
14 = public static class Data {
15
16 private String created time;
17 private String id;
18 private String message;
19
20 @ public String getCreated_time() {
21 return this.created time;
22| | 1
23
| 24 O public void setCreated time(String created_tim&l {
25 this.created time = created time;
26| 1
27
28 o public String getId() {
29 return this.id;
30 - 1
31
32 o public void setId(String id) {
33 this.id = id;
34 + 1
35
36 o public String getMessage() {
37 return this.message;
38 1
39
40| & public void setMessage(String message) {

Figure 29: JavaParser Class

Figure 30 and Figure 31 show how Lucene was used to create and index the data respectively.
Figure 30 shows Lucene classes that were used to preprocess textual data, create the index and
specify the directory in which the index will be created on, the class to configure index writer

and lastly the index writer class respectively. The last line, Line 33 in Figure 30 is the

61

—
| —

IndexWriter method described the in previous chapter that is used to delete the contents of the
index. This method is used every time the Facebook crawler module is being executed and new
content is to be added. The usage of this method is to avoid duplications of statuses in cases
where Facebook users did not update new statuses if this module had been ran before as their old

statuses in our index and on Facebook will be the same.

sl

29 StandardAnalyzer analyzer = new StandardAnalyzer(Version.LU(

30 FSDirectory index = FSDirectory.openinew File("/home/mfeny ndex3"));
31 IndexWriterConfig config = new IndexWriterConfig(Version.LUCE ;

32 IndexWriter w = new IndexWriter(index, config];

33 w.deleteAll();

34

Figure 30: Lucene Index classes

The following figure, Figure 31 is the method used to index text to Lucene index. This method
accepts three parameters IndexWriter variable, the tittle name to be used to identify different
fields in the index once created and the actual content to be indexed. Referring to Figure 28 and
Figure 25 where this method is used the fields names used are “Statuses” and “Comments” and
the actual data to be indexed are “p.getMessage” and “c.getMessage” to be stored under fields

statuses and comments respectively.

&7 private static void addDoc(IndexWriter w, String tithe, String cont) throws I0Exception {
&8 Document doc = new Document();

E9 doc.add{new TextField("title", title, Field.Store.YES));

70 doc.add(new TextField('"content", cont, Field.Store.YES));

71 w.addDocument (doc) ;

72 I

73 1

Figure 31: Method for Text Indexing

In this section we described the development of Facebook crawling that is gathering data from
Facebook servers, text extraction that is text parsing and text indexing. The next section will
discuss the development of index searching modules which are used to handle end-user queries

and perform data analysis.

Index Searching
This section discusses the four index searching sub-modules which were developed to search the
created index in the previous described module Facebook Crawling, Text Extraction and Text

Indexing system module. These sub-modules differ in the way they search the index, use the

62

—
| —

data they retrieve from the index and the way they visualize and/or display the results to the end-
user. To start with, we will describe the keyword searching, content matching and frequency
analysis modules. When discussing each module we will start by its middleware component, the
component that performs the controlling of the searching process by passing the messages to and
from different components of the module, and then proceed to discuss the search manager
module with their different expected results and lastly discuss how the results are visualized or
displayed in the user-interface. These modules were developed in different sub-packages and

having different JSPs which were created as the different modules’ Uls.

Keyword Searching, Content Matching and Frequency Analysis

The snipped code is the middleware for this module. This middleware accepts the user query
through line 28 as shown in Figure 32 below. The search manager class is then called through
line 29 and also supplies it with the keyword searched. RequestDispatcher is used to receive and
forward the messages between the JSP and the search manager class as shown in line 31 of

Figure 32.

20 @wWebServliet(name = "SControler”, urlPatterns = {"/SControler"})

21 public class SControler extends HttpServiet {

22

23 private static final long serislVersionUID = 1L;

24

25 @0verride

&) public void doPost({HttpServletRequest request, HttpServletResponse response)
27 throws I0Exception, ServlietException {

28 String searchWord = request.getParameter("ssarchiord");

29 SMnagear searchManager = new SMnager(searchWord) ;

30 List searchResult = searchManager.search(];

31 RaquestDispatcher dispatcher = request. getRequesﬂklspatcher(Searching.jsp");
32 reguest.setAttribute("searchResult", searchResult);

33 dispatcher. forward(request, response);

34 1

35

35 @0verride

@ public voild doGet(HttpServlietRequest reguest, HttpServlietResponse response)
38 throws I0Exception, ServletException {

39 T doPost (request, response);

40 1

41 1

Figure 32: Keyword Searching, Content Matching and Frequency Analysis search controller component

The search manager class is initiated through the constructor that accepts the actual query issued
by the end-user. The constructor method used by the middleware above Figure 32 is shown in

Figure 33. The constructor also initiates the class which sets the path to the created index. The

63

—
| —

name on the class that sets the path to the directory that stores the index is called in line 38,
Figure 33.

37 public SMnager(String searchWord) throws I0Exception {
38 this.indexManager = new Mangelndex(];

39 this.searchWord = searchWord;

40 1

Figure 33: Constructor Method

The following diagram Figure 34 is the actual class that keeps the path to the directory where the

index is created and stored by the system module described in the first section of this Chapter.

12 public class Mangelndex {

13 private final FSDirectory indexDir;
14 public MangeIndex() throws I0Exception {
| il T this.indexDir = FSDirectory.open(new File("/home/mfenyanasi/Documents/inde
16 1
17 public FSDirectory getIndexDir() {
18 T return this.indexDir;
19 I
200 } D

Figure 34: Index Manager

When the index and the keyword are all initialized, the “search()” method in Figure 35 is then
initiated. This method returns the list of an actual data which will be visualized to the end user.
As stated in Chapter 3, this module starts by searching the SUMO ontology, retrieves the
superclasses, sub-classes and instances that match the searched keyword, preprocess data and

temporarily stores it in the array for later usage.

139 O public List search() {

140 List searchResult = new ArraylList();

141 List<String= stopWords = searchOntology(searchWord) ;

142 stopWords.add{ssarchword) ;

143 List<String> words = new ArraylList<String=();

144 Arraylist<String= wrds = new ArraylList<String=();

145 String delims = ;

148 try {

147 IndexReader reader = DirectoryReader.open(indexManager.getIndexDir());
148 IndexSearcher indexSearcher = n{w IndexSearcher(reader);

149 Query query = new MatchAllDocsQuery();

158 TopDocs docs = indexSearcher.search(guery, reader.maxDoc());
151

152 for (ScoreDoc scoredoc : docs.scoreDocs) {

153 Document doc = indexSearcher.doc(scoredoc.doc);

154 try {

155 StringTokenizer st = new StringTokenizer(doc.get("content”), delims);
156 String str = (String) st.nextElement();

157 words.add(str);

158, } catch (Exception egl) {

159 B

180

161 reader.closel() ;

Figure 35: Search Method

64

—
| —

This function is executed by the snipped codes illustrated in Figure 36, Figure 37, and Figure 38.
Line 141 in Figure 35 reads all the data retrieved from the ontology into the search method
which it then uses for content matching and frequency analysis of the matching words. In line
147 in Figure 35, search method opens the index enabling it to be read. Line 149, in Figure 35
shows the Lucene query used to retrieve all data that is stored in the index. The data is then
tokenized; the delimiters which were used to tokenize the data are defined in line 145, Figure 35.
The delimiters are then used in line 155, in Figure 35 to tokenize the data that is retrieved from
the index. The data is then converted to string data type and stored in the array in line 156 and

157 respectively for later use in content matching and frequency analysis, as shown in Figure 35

The following three figures are the snippet codes for the method of reading SUMO ontology. In
Figure 36, line 75 the path to the SUMO ontology directory is specified. Line 76 is assigning the
keyword to be used when searching the ontology as this method accepts the string parameter
which is the searched keyword.

74 & public List<String= searchOntology(String searchWord) {

75 String inputFileMame = home/mfenyanasi/Documents/Library/SUMO.owl";
76 String j = searchWord;

77 List<String= sihle = new ArraylList=String=();

78 try {

79 OntModel inf = ModelFactory.createlntologyModel() ;

80 InputStream in = FileManager.get() .open{inputFileName) ;
81 inf.read(in, 1

82 ExtendedIterator classes = inf.listClasses();

83 while (classes.hasNext()) {

84 OntClass obj = (OntClass) classes.next();

85 String className = obj.getlLocalMame() .toString();

86 boolean found = false;

87 if (j.equalslgnoreCase(classhame)) {

88 if (obj.hasSubClass()) {

89 for (Iterator i = obj.listSubClasses(true); i.hasMNext();) {
S0 OntClass ¢ = (OntClass) i.next();

91 String st = c.getlLocalName() .toString();
92 String s = st;

93 Stringl] r = s.split("(?=\\p{lUpper})");
94 for (String ss : r) {

95 if(sihle.contains(ss)) {

96 T else {

97 sihle.addAll(Arrays.aslist(ss));

o8 1

99 }

100 1

101 }

Figure 36: Search SUMO Ontology Method
As earlier mentioned this method reads the superclasses, sub-classes and the instances of the

searched keyword which is treated as the class when searching the ontology as declared in line

82, Figure 36. Line 88, in Figure 36 checks if the searched keyword has the sub-classes if it does

65

—
| —

then iterates over them and retrieves all the sub-classes from SUMO which match the searched
keyword. In cases where the sub-classes where found, they were returned as joined words but it
could be observed that they were two or three words in one. There was therefore a need to
separate those words because we needed those words for content matching as there is no one
who writes like that on Facebook. It was challenging or practically impossible to find any
matching words between the content from the created index and the content from the ontology.
The splitting of the words was done using the Upper case delimiter as the words were
differentiated by the use of the upper case latters and this was done in line 93, Figure 36. The
words were then added to an array which was to be returned to the search method mentioned in
Figure 35.

102 if (obj.hasSuperClass()) {

103 - for (Iterator 1 = obj.listSuperClasses(true); i.hasMext();) ﬂ
104 OntClass ¢ = [(OntClass) i.next();

105 String st = c.getlocallName() .toString();
108 String s = st;

107 String[] r = s.split{"(?=\\p{Upper})");
108 for (String ss : r) {

109 if(sihle.contains(ss)) {

110 } else {

111 sihle.addAll(Arrays.aslist(ss));

112 T

113 1

114 1

115 }

Figure 37: Search SUMO Ontology Method

The above snipped code in Figure 37 is also part of the search ontology method. The code reads
the superclasses if the searched keyword has them. The superclasses were returned as the joined
words, and were also separated using the upper case delimiter as they were joined together with

the start of the other word shown by the upper case letter.

The following snipped code is the code for retrieving the instances of the searched keyword. It
starts by checking if the searched keyword has the instances, if does it then it starts retrieving
them. The delimiters which were used in processing the instances were different from those
which were used for superclasses and sub-classes. The delimiters to be used were decided based
on the ones which were noticed during the implementation of this method. The delimiters which
were used are shown in Figure 38, line 120. The instances, sub-classes and superclasses were all
temporarily saved in one array, line 125, the array which was used to store the retrieved data
from the ontology.

66

—
| —

The line codes in Figure 36, line 86 and Figure 38, line 129 and line 130 were used to control the
searching of the ontology, in such a manner that when the searched data was found and retrieved,
the searching of the ontology should be stop. These lines of codes where needed because the
searching processes would continue till the end of the SUMO OWL file.

118 ExtendedIterator clase = obj.listInstances();
117 while (clase.hasMNext()) {

118 Individual inst = (Individual) clase.next();
119 String s = inst.getLocalMName() .toString();
120 String delimis = "[- _ 1+";

121 String[] arr = s.split(delimis);

122 for (String ss : arr) {

123 if(sihle.contains(ss)) {

124 1 else {

125 sihle.addAll(Arrays.aslist(ss));
126 1

127 }

128 }

1259 found = true;

130 break;

131 }

132 }

133 } catch (Exception) {

134 System.out.println(e.getMessage());

135

136 return sihle;

137] - 1

Figure 38: Search SUMO Ontology Method

The created array is then returned when the search ontology method is called, line 136 Figure 37.

The following snipped code in Figure 39, is the part of the search() method in Figure 34 which is
used for content matching and for storing the words which are found matching. The created array

is then used for frequency analysis, which is done in Figure 42.

163 for (int 1 = 0; i < words.size(); i++) {

164 boolean found = false;

165 for (int §j = 8; j = stopWords.size(); j++) {
166 if (words.get(i).equalslgnoreCase(stopWords.get(j))) {
167 found = true;

168 break;

169 I

170 1

171 if (found) {

172 wrds.add(words.get (1)) ;

173 1

174 1

Figure 39: Content Matching

The following snipped code is the very last part of the search method in Figure 35 which was
implemented for word frequency analysis and saving data to the array which will later be

returned by the search method for results visualization.

67

—
| —

12
176
177
178
i
180
181
182
153
154
185
186
187
186

Word[] frequency = new SMnager(searchWord) .getFrequentWords(wrds) ;
for (int 1 = 0; 1 = freguency.length && 1 = 10; i++) {
Word w = frequency[i];
ResultsBean resultBean = new ResultsBean() ;
resultBean.setTitle(w.word) ;
resultBean.setContent (w.count) ;
searchResult.add(resultBean) ;

} catch (I0Exception gx) |

) s

return searchResult;

Figure 40: Search Method Adding results to the final array and returning it

This snipped code uses the “Word class” for keeping track of the words in the array, by making

sure that the words get their actual frequency values. This works in conjunction with method

described in Figure 42.

42
43
44
45
45
47
48
49

51
52
53
54
55
56

-[=] public class Word implements Comparable<Word= {
String word;
int count;

= public Word(String word, int count) {
this.word = word;
this.count = count;
- T
@lverride
= public int compareTo(Word otherWord) {
if (this.count == otherWord.count) {
return this.word.comparaTo(otherWord.word) ;
}
return otherWord.count - this.count;
- Iy

Figure 41: Word Class for Comparing Words in the array

The word class in Figure 41 helps the method in Figure 42 by keeping track of the already

calculated frequency and their corresponding words. This class is called in line 59 Figure 42 and

used to keep track of the words and their corresponding frequencies in line 61 Figure 42. The

frequencies of the words are then calculated and the results are then returned to the searched
method line 176, Figure 40.

68

—
| —

58
59
60
61
62
a3

65
55
67
68
69
70
71
72

public Word[] getFrequentWords(ArrayList=String= words) {
HashMap=String, Word= map = new HashMap<String, Word=();
for (String s : words) {
Word w = map.get(s);
if (w == null) {
w = new Word(s, 1);
I else {
W.Ccount++;
}

map.put(s, w);
I
Word[] list = map.values().toArray(new Word[1{}];

Arrays.sort(list);
return list;

} N

Figure 42: Frequency Analysis method

The array is sorted in line 70, Figure 42; this feature of this method helped in limiting the

number of words we wanted to visualize to the end-user because results are sorted in a

descending order with the word with the higher frequency occurring as the first element in the

array. The array in line 71 Figure 42 is returned whenever this method is called. Line 177 Figure

40 shows that we were only interested in the ten most occurring words with higher frequencies.

The array list that was returned from the frequency analysis method in Figure 42 and contained

two different data types, strings which were the actual words and the values of their frequencies

as integers.

11~ public class ResultsBean {
12 private String title;

14 private int content;

public String getTitle() {
return title;

¥

public void setTitle(String title) {
this.title = title;

¥

public int getContent() {
return content;

¥

public void setContent(int content) {
this.content = content;

N
=y
C—m — — —

¥

Figure 43: Java Beans for Frequency Analysis Results

When putting and retrieving the data on the final array list the above class in Figure 43 of java

beans was used. The array was then returned to the middleware, the search controller as shown in

69

—
| —

Figure 32, line 32. The following snipped JSP code shows how we were reading the results from

middleware as described in Figure 32.

154| &1 <55

155 List searchResult = (List) request.getAttribute("searchResult");
156 Arraylist<Integer= val = new ArraylList<Integer=();

157 ArrayList<String= terms = new ArraylList<String=();

158 int resultCount = 0;

159 if (null != searchResult) {

160 raesultCount = searchResult.size();

161 }

162 for (int 1 = 0; 1 =< resultCount; i++) {

163 ResultsBean resultBean = (RegultsBean) searchResult.get(i);
164 String title = resultBean.gewlitle();

165 int cont = resultBean.getContent();

166 terms.add(title) ;

167 val .add(cont) ;

168 Sg=

Figure 44: Read Results from Search Controller Component

The results from the middleware were then read into two different arrays, one for integers and
one for strings in lines 156 and 157 respectively. The elements of theses arrays were then used
to create the bar graph for data visualization. The snipped code in Figure 45 was used to create a

bar graph on top of Jfreechart java library.

173 Hﬂ <5

174 if (resultCount >= 10) {

175 try {

176 OutputStream out2 = response.getOutputStream();

177 DefaultCategoryDataset dataset = new DefaultCategoryDataset() ;

178

179 dataset .setValue(val.get (@), "Mos ds", terms.get(0));
180 dataset.setValue(val.get (1), , terms.get(1));
181 dataset.setValue(val.get(2), terms.gat(2));
182 dataset.setValue(val.get(3) , terms.get(3));
183 dataset.setValue(val.get(4) , terms.get(4));
184 dataset.setValue(val.get(5), , terms.get(5));
185 dataset.setValue(val.get(6), , terms.get(6));
186 dataset.setValue(val.get(7), , terms.get(7));
187 dataset.setValue(val.get(8), , terms.get(8));
188 dataset.setValue(val.get(9), , terms.get(9));
189

190 JFreeChart chart = ChartFaCtory createEarChart(Keyword se ontent
191 u f thier Fr

192 dataset PlotUrlentatlmn CAL, true true true);

193 chart .setBackgroundPaint (Colo

194 response.setContentType("image 8

195 ChartUtilities.writeChartAsPNG(0%‘[2 chart, 1560, 450);

196 out2.close();

197 } catch (Exception e) {

198

1s9

200 i

201 S

Figure 45: Create Bar Graph for Frequency Analysis Results

In this sub-section we have discussed the internal development of the keyword searching, content
matching and frequency analysis sub-module. Its outer interface will be discussed in the Ul
implementation section. In the following sub-section we will discuss the internal development of

keyword searching, content matching and correlation analysis.

70

—
| —

Keyword Searching, Content Matching and Correlation Analysis

This module like the previously described index searching module accepts the keyword to be
searched and starts the searching process. The difference with this module is that it does not use
SUMO for content matching and frequency analysis. This module as aforementioned accepts the
searched keyword and searches the index and retrieves all the content that matches the searched

keyword.

The code in Figure 46 is the middleware which controls the searching of this sub-module like the
one described in Figure 32. This also accepts the end-user query and passes it to the search

manager class which is the class that does most of the business logic of this module.

17 @wWebServlet(name = "SearchController", urlPatterns = {"/SearchController"})

18 public class SearchController extends HttpServliet {

18

20 private static final long serialVersionUID = 1L;

21

22 @dverride

@ public void doPost(HttpServletRequest request, HttpServletResponse response)
24 throws I0Exception, ServletException {

25 String searchWord = request.getParameter("searchword");

26 SearchManager searchManager = naw SearchManager(searchWord) ;

27 List searchResult = searchManager.search();

28 RequestDispatcher dispatcher = request.getRequestDispatcher("Search.izp");
29 request .setAttribute("searchResult"”, searchResult) ;

30 dispatcher.forward(request, response);| h

31 1

32

33 @dverride

@ public void doGet(HttpServletRequest regquest, HttpServletResponse response)
Eisl throws I0Exception, ServletException {

35 T doPost (request, response);

37 1

38 B

Figure 46: Keyword Searching, Content Matching and Correlation Analysis Search Controller Class

The snipped code in Figure 47 is the constructor used to initiate the search manger class. This
constructor is then used in line 26 Figure 46 to initiate the search manager class. After the search
manager class has been initiated, the search() method which is used to search and perform the

business logic of this module is also initiated in line 27, Figure 46.

32

33 public SearchManager(String searchWord) throws I0Exception {
34 this.searchWord = searchWord;

35 this.indexManager = new IndexManager();

35 this.analyzer = new StandardAnalyzer(Version.LUCENE 42);
37 }

38

Figure 47: Constructor Method

71

—
| —

The constructor also initiates the index manager class which is used to define and manage the

path to the index created by the Facebook Crawling, Text Extraction and Text Indexing module.

The following class in Figure 48 is used to define and keep the path to the created index.

I
I

public class IndexManager {
| private final FSDirectory indexDir;

public IndexManager() throws I0OException {

this.indexDir = FSDirectory.open(new File("/home/mfenyanasi/Documents

b

public FSDirectory getIndexDir() {
return this.indexDir;

}

Figure 48: Index Manager Class

After the keyword has been accepted by the search manager class and the index manager class

has been accepted the search() method in Figure 49 is then called to perform the actual index

searching and the data processing and analysis.

This method is like a list data type method that returns results on a list array. In The snipped code

in Figure 49 line 44 is used to open the index, using the method defined in index manager class

defined in Figure 48 “getIndexDir” method. The snipped code in Figure 49 also defines the

QueryParser method which is used to define the fields to be searched from the index in line 49.

The search() method is then assigned the keyword to be used for searching the index in line 53,

Figure 49.

rEJ

public List search() {

List searchResult = new ArrayList();

IndexSearcher indexSearcher = null;

IndexReader reader = null;

try {
reader = DirectoryReader.open(indexManager.getIndexDir()]);
indexSearcher = new IndexSearcher(reader);

} catch (IOException ioe] {
System.out.println(ioe.getMessage());

}

QueryParser gueryParser = new MultiFieldQueryParser(Version.LUCENE_42, new String[]{"content”,

Query query = null;
try {
query = gueryParser.parse(sesarchWord) ;
} catch (ParseExceptify e) {
System.out.println{e.getMessage());
I

Figure 49: Search Method

title"}, analyzer);

The keyword is then used to search the index in line 75, Figure 50. Line 50 also specifies that the

query should be searched against the entire index and should retrieve all the content that is found

matching the searched keyword from the index.

72

—
| —

The retrieved data is then tokenized in line 79 using the delimiters which are defined in line 70
Figure 50. The delimiters where chosen based from the few that were noticed from the data that

we obtained from the Facebook servers.

by

59 ArrayList<String=> wrds = new ArrayList<String=();

70 String dil = "[- . * O

71 List<String= words = new ArrayList<String=();

72 if (null != query && null != indexSearcher) {

73 try {

74 indexSearcher.search(query, collector);

@ TopDocs docs = indexSearcher.search(query, reader.maxDoc());
76 for (ScoreDoc scoredoc : docs.scoreDocs) |

77 Document doc = indexSearcher.doc(scoredoc.doc) ;
78 try {

79 StringTokenizer st = new StringTokenizer(doc.get("content"), dilk
80 System.out.printlni{doc.get("content"));

81 String str = (String) st.nextElement();

82 words,add(str);

83 } catch (Exception gl) {

84 i

85

86 reader.closel() ;

87 } catch (I0OException e) {

88 System.out.println(e.getMessage());

89 }

o0 1

Figure 50: Index Searching and Data retrieval

The tokens are then stored in an array in array line 82, which is declared in line 69 in the above
figure. As previously stated in Chapter three, there was a need to remove stop-words as these are
the words which almost occur in every statement and because the correlation in this thesis is
analyzed based on the frequencies of the words that were found reoccurring from the content
retrieved matching the searched keyword. Figure 51 are the few stop-words which were used as
train dataset for testing the functionality of this module.

&1 List<String> stopWords = Arrays.asList("can't", "cannot", "couldn't", "didn't", "do", "does
B2 doing , don t-, during , naa , having , ne", he'd , dia |, he's°, her”,

Figure 51: Stop - Words

The following snipped code Figure 52 is used for content matching and the removal of the found
stop-words. The words that are not found as the stop-words are then stored in an array in Line
100, Figure 52, which will be used to calculate the frequencies of the words from the content

retrieved because it is matching the searched keyword.

73

—
| —

=V T
91 for (int 1 = 0; 1 < words.size(); i++) {

=) boolean found = true;

g3 for (int j = 0; j = stopWords.size(); j++) {

o4 if (words.get(i).equalsIgnoreCaTg(StopWords.get(j))j 1
95 found = false;

g6 break;

a7 1

=l3) 1

=] if (found) {

100 wrds.add(words.get(i));

181 }

182 1

Figure 52: Content Matching

The following snipped code in Figure 53 is the very last part of the search() method in Figure 49
and is used for calculating the frequencies of the words from the array created in the code
described in Figure 52 line 100. The code in Figure 53 also puts the results of word frequencies

and the actual words to the final array that will be returned by the search() method.

103 Set«<String= unique = new HashSet<=String=(wrds) ;

104 for (String key : unique) {

105 SearchResultBean resultBean = new SearchResultBean() ;
106 resultBean.setTitle(Collections. freguency(wrds, key));
107 resuUltBean.setContent (key) ;

108 searchResult.add(resultBean) ;

109 i

110 return searchResult;

111 L 1

Figure 53: frequency Analysis

The adding of the frequencies of the words is done in line 106 and the adding of the words is
done in line 107, Figure 53. This is all done using the Java Beans class described in Figure 54.
This class is also used for reading the created array for data visualization. The search() method

then returns the results in line 110 Figure 53 to the middleware defined in Figure 46.

74

—
| —

7 public class SearchResultBean {

3 private int title;

9

10 private String content;

11

12 public int getTitle() {

13 T return title;

14 B

15 b
16 public void setTitle(int title) {
17 T this.title = title;

18 1

18

20 public String getContent()

21 T return content;

22 1

23

24 public void setContent(String content) {
25 T this.content = content;

26 }

27

28 1

Figure 54: Class for Putting and Retrieving Data the Final array

The following snipped code in Figure 55, is used to read data from the middleware component in
Figure 46. This code reads data into two different arrays, one for the actual frequencies which is
of integer data type and the other for the actual words which as of string data type as shown in

lines 33 and line 34 respectively.

30| <%

31 List searchResult = (List) request.getAttribute('searchResult");
32 int resultCount = 0@;

33 ArrayList=<Integer= val = new ArrayList<=Integer=();
34 ArrayList<String= terms = new ArrayList=String=();
35 if {null != searchResult) {

36 resultCount = searchResult.size();

37

38 1

39

40 int[] rand = new int[resultCount];

41

42 for (int 1 = 8; 1 = resultCount; i++) {

43 SearchResultBean result{?an = (SearchResultBean) searchResult.get(i);
44 int title = resultBean.getTitle();

45 String cont = resultBean.getContent();

a5 terms.add(cont) ;

47 val.add(title);

45 rand[i] = (int) (Math.random() * resultCount);
49

500 - S

51 <55 1

52 % %=

Figure 55: Read Results from Search Controller Component

To visualize the data from these arrays Jfreechart scatter plot was used. The scatter plot was used
because it was impossible to predict the number of words that could be correlated to the searched
keywords and had the same values of frequencies. The creation of the scatter plot requires the
XY dataset, and from our data we only had frequency values which in this case are Y dependent

75

—
| —

values. For X, the independent values we generated were random numbers that are in a range of

the size of the array from the middleware component, in line 40 Figure 55.

52| L £

53| <5

54 if (resultCount == 1) {

55 try {

56 OutputStream out? = response.getOutputStream();

57 X¥Series series = null;

58 XYSeriesCollection xySeriesCollection = new XYSeriesCollection();

59 for (int i = 0; i < terms.size(); i++) {

60 for (int x = 0; x < val.size(); x++) {

61 series = new XYSeries(terms.get(i));

52 1

63 series.add(rand[i], val.get(i));

64 xySeriesCollection.addSeries(series) ;

55 1

86 JFreeChart chart = ChartFactory.createScatterPlot("Most Occuring Words Search Results",
'l 67 Most Occuring Wor . Exact number of| Occurances", xySeriesCollection,

68 PlotOrientation.VERTTCAL, true, true, true);

59 XYPlot plot = (XYPlot) chart.getPlot(); h

70 plot.setDomainCrosshairVisible(true) ;

71 plot.setRangeCrosshairVisible(true);

72 chart .setBackgroundPaint (Color.white) ;

73 response.setContentType("image/png") ;

74 ChartUtilities.writeChartAsPNG (out2, chart, 1006, 350);

75 out?.close();

78 } catch (Exception g) {

77 1

78 1

79 b %=

Figure 56: Create Scatter Plot Graph for Correlation Analysis Results

The above snipped code in Figure 56 is used for creating the scatter plot for visualizing the
correlation results. The values for creating the plot graph are assigned in line 62 and add to
XYSeries in line 63. The scatter plot is then created in line 65 using the Jfreechart java library.

The following sub-module to be discussed is the keyword searching module.

Keyword Searching

This sub-module is basically used for searching the actual content that is indexed from Facebook
severs. This module is different from the two previously discussed sub-modules for index
searching module in the sense that it only retrieves the top ten statuses and/or comments and
does not perform any text preprocessing and data analysis. The similarity is its structure, as it
also has the search controller described in Figure 57, which is also meant for accepting the
keyword searched from the end-user and passes it to the search manager class which does all the

business logic of this module.

76

—
| —

@wWebServliet(name = "Controller”, urlPatterns = {"/Controller"})
public class Controller extends HttpServliet {

@dverride

public void doPost(HttpServlietRequest request,

throws I0Exception, ServletException {
String searchWord = request.getParameter("searchWord");
ManageSearching searchManager = new ManageSearching(searchWord);
List searchResult = searchManager.search();

RequestDispatcher dispatcher = request.getReguestDispatcher("KeyWordSearch.jsp

request.setAttribute("searchResult", searchResult);
dispatcher.forward(request, response);

}

@0verride

public void dJEet(HttpServletRequest request, HttpServletResponse response)

throws I0Exception, ServletException {
doPost (request, response) ;

Figure 57: Search Controller

HttpServlietResponse response)

The constructor is used for accepting the searched keyword, initialize the index manager class

and also initiate the search manger class by in invoking the search() method which does all the

searching process and data processing. The following snipped code in Figure 58 is the

constructor method used by this sub-module.

20
28
30
31
32
33

public ManageSearching(String searchWord) throws IOException {

this.searchWord = searchWord;
this.indexManager = new Managerlndex(];

this.analyzer = new StandardAnalyzer(Version.LUCENE 42);

Figure 58: Constructor Method

The following class in Figure 59 is the index manager class that is used to define and manage the

path to the directory where the index is created and stored.

13
14
15
15
17

19
20
21

public class ManagerIndex {

T
T

¥

private final FSDirectory indexDir;
public ManagerIndex() throws IOException {
this.indexDir = FSDirectory.open{new File("/home/mfenyanasi/Documents/ind

I3
public FSDirectory getIndexDir() {

return this.indexDir;

Figure 59: Index Manager Class

The following snipped code in Figure 60, is the first part of the search(). Line 45 is used to open

the index and assign the actual keyword to be searched as a query to be used to search the index

which is done in line 49.

77

—
| —

37 O public List search() {

38 List searchResult = new ArraylList();

39 IndexSearcher indexSearcher = null;

40 try {

41 IndexReader reader = DirectoryReader.open(indexManager.getIndexDir());
42 indexSearcher = new IndexSearcher(reader);

43 } catch (IDException ice) {

44 System.out.println({ice.getMessage());

45 B

45 QueryParser queryParser = new QueryParser(Version.LUCENE 42, "content', analyzer);
47 Query query = null;

45 try {

49 query = quaryParser.parse(szarchWord) ;

50 1 mﬁtch (ParseException e) {

51[System.out.println({e.getMessage(]);

52 1

Figure 60: Search Method

The following snipped code in Figure 61, is the last part of the search() method for keyword
searching sub-module. This snippet code is basically used to retrieve the top ten statuses and/or
comments that match the searched keyword from Lucene index using TopScoreDocCollector
method. Line 52 in Figure 61 defines the number of pages to be retrieved and
TopScoreDocCollector class is used in line 53. This class retrieves the documents with top
scoring hits and limit the number of the retrieved documents based on the number specified in
line 52 Figure 61.

52 int hitsFerPage = 10;

53 TopScorebDocCollector collector = TopScoreDocCollector.create(hitsPerPage, true);
54

55 if (null !'= query && null != indexSearcher) {

56 try {

57

58 indexSearcher.search(guery, collector);

59 ScoraDoc[] hits = collector.topDocs() .scorebocs;
60 for (Scoreboc hit : hits) {

51 int docld = hit.doc;

52 Document d = indexSearcher.dofN docld) ;
g3 Beans resultBean = new Beans();

&84 resultBean.setTitle(d.get("titla"));

65 resultBean.setContent(d.get("content”));
56 searchResult.add(resultBean) ;

67 }

58 } catch (IOExceptibn &) {

59 System.out.println{e.getMessage());

70 }

71 1

72 return searchResult;

73 L 1

74 1

Figure 61: Search Method

The top ten documents which are retrieved are then stored in array which will be returned by the
search() method of this sub-module to the search controller component described in Figure 57.
The above snippet code used the class defined in Figure 62, to add the data to the final array that
will be returned to the search controller component in Figure 57. This snippet code returns the

actual retrieved content to search controller component class using line 72 in Figure 62.

78

—
| —

The class in Figure 62 is also used to retrieve the data that is stored in the array create Figure 61.

[N S N]
BN
— — — —

public class Beans {
private String title;

private String content;
public String getTitle() {
return title;
¥
public void setTitle(String title) {

this.title = title;
I

public String getContent() {
return content;
i

public void setContent(String content) {
this.content = content;
}

Figure 62: Java Beans

The data that is retrieved from the index is also needed to be displayed to the user-interface so

that it can be seen and read by the end-users. The following snipped code in Figure 63 is used to

retrieve data from the search controller method using line 112. The data is then displayed to the

end-user using line 123 Figure 63.

111
112
113
114
115
115
117
118
119
120
121
122
123
124
125
126
127
128
129

=

<55

%=
=TR=

=/TR
<tr=

List searchResult = (List) request.getAttribute('scarchResult");
int resultCount = 0Q;
if (null != searchResult) {
resultCount = searchResult.size() ;
I

for (int 1 = 0; 1 < resultCount; i++) {
Beans resultBean = (Beans) searchResult.get(i);
String title = resultBean.getTitle();
String cont = resultBean.getContent();

<TD class="title"=<h3=<A href="<&%=title%=>"><F=CcontS></h3></TD>

=
<td=<hr /=</td=</tr=
%5

I
S5

Figure 63: Read Results from Search Controller and Display the Results

In this sub-section we have discussed the internal implementation of the keyword searching sub-

module. This module as it has been observed was just meant to retrieve the actual data that is

stored in the created index. This was developed so that the end-users could read and get the

sentiments of the statuses and/or comments written by Facebook users in regard to any subject

79

—
| —

they would be talking about. The following sub-section will discuss the content matching and

frequency analysis.

Content Matching and Frequency Analysis

This is the last sub-module for indexing searching modules. This sub-module is different from
the other three sub-modules which have been described in previous sub-sections above. This sub-
module does not require the keyword to search the index. It only requires the end-user to press a
button to initiate it. The development of this module was to add a feature to our system which
will enable the end-users to be able to just check the trending words from Facebook without

having to think of what to search.

The discussion of its internal development will follow the same precedence of starting with the
search controller component shown in Figure 64. This sub-module unlike the other three sub-
modules does not require a keyword to search the index. Line 28 in Figure 64 shows the
constructor which is used to initiate the search manager class. The constructor does not require

the keyword to be searched.

22 @WebServiet (name = "Controllller”, urlPatterns = {"/Controllller"})

23 public class Controllller extends HttpServlet {

24 private static final long serialVersionUID = 1L;

25 @lverride

@ public void doPost(HttpServlietRaquest request, HttpServlietResponse response)

27 throws I0Exception, ServlietException {

28 DManager searchManager = new DManager() ;

29 List searchResult = searchManager.search();

30 RequestDispatcher dispatcher = reguest.getRequestDispatcher('Trends.jsp");
' 31 request .setAttribute("searchResult", searchResult) ;

32 dispatchear.forward(request, response);

33 :

34 @0verride

@ public void doGet(HttpServlietRequest request, HttpServletResponse response)

36 throws IOException, ServlietException {

37 T doPost(request, response);

38 I

39 }

Figure 64: Search controller

The following snipped code in Figure 65 is the constructor which is used to initiate the index
manger class and also invoke the search() method for this sub-module. This does not accept the
keyword to be searched as it is an empty constructor.

80

—
| —

31 this.indexManager = new MIndex();

30 T ﬁublic DManager() throws I0Exception {
32

h

Figure 65: constructor Method

The class in Figure 66 is the class which used for defining and managing the path of the index

for this module.

e

il7y public class MIndex {

1|18 private Enal FSDirectory indexDir;
19 public ndex() throws I0Exception {
20 T this.indexDir = FSDirectory.open(new File("/home/mfenyanasi/Documents/index3")) ;
21 1
22 public FSDirectory getIndexDir() {
23 T return this.indexDir;
24 1
25
26 1

Figure 66: Index Manger

The following snipped code in Figure 67 is the first part of the search() method for this sub-
module. The array in line 69 is the train dataset which was used for system functional testing.
These were the stop-words which were used as train dataset for removing stop-words that were
to be found from the content which was retrieved from the index. The reason for removing stop-

words is because they do not have sematic meaning and usually occur on every statement or

document.
66 public List search() {
67 List searchResult = new ArraylList():

Figure 67: Search Method

The following snipped code in Figure 68, is part of the search() method for this sub-module. It is
used for retrieving the entire content stored in the index to be processed by removing the stop-
words and storing it to an array which will later be used for content matching and the selection of
the words which would not be the stop-words. To retrieve all the data found in the index

MatchAllDocsQuery of Lucene is used in line 85 in Figure 68. The data is then tokenized in line

81

—
| —

90 using the delimiters defined in line 80. The data is then added to an array in line 92 which will

be matched against the stop-words in Figure 67.

List<String= words = new ArrayList<String=();
ArrayList<String= wrds = new ArrayList<String=();
String delims = ;

try {
IndexReader reader = DirectoryReader.open(indexManager.getIndexDir());
IndexSearchar indexSearcher = new IndexSearcher(readar) ;
Query query = new MatchAllDocsQuery(];
TopDocs docs = indexSearcher.search(guery, reader.maxDoc());
for (Scoreloc scoredoc : docs.scorelocs) {
Document doc = indexSearcher.doc(scoredoc.doc) ;

try {
StringTokenizer st = new StringTokenizer(doc.get("content"), delims);
String str = (String) st.nextElement();

words.add(str) ;
} catch (Exception el) {
I
I

reader.close() ;

Figure 68: Text Retrieval from Lucene Index

The following snipped code in Figure 69 is also part of the search() method of this sub-module.

This snippet code is used for content matching and the selection of words that are not the stop-

words and adds them to the new array which will be used to calculate the frequencies of the

words found not to be the stop-words from the index content.

reader.close();
for (int 1 = 0; 1 < words.size(); i++) ﬂ
boolean found = true;
for (int j = 0; j = stopWords.size(); j++) {
1f (words.get(1i).equalslgnoreCase(stopWords.get(j))) {
found = false;
break;

h
b
if (found) {
wrds . add(words.get(i));

3

Figure 69: Content Matching

The following snippet code in Figure 70 is the very last part of the search() method for this sub-

module. This code is used to calculate the frequencies of the words from the array created in

Figure 69. It also returns the results of the word frequencies and the actual words to the search

controller component described in Figure 64.

82

—
| —

110 Word[] freguency = new DManager().getﬁkequentWords(wrds);
111 for (int 1 = 0; i = freguency.length && i = 10; i++) {
112 Word w = frequency[i];

113 RBeans resultBean = new RBeans();

114 resultBean.setTitle(w.word) ;

115 resultBean.setContent (w.count) ;

116 searchResult.add(resultBean) ;

117 T

115 1} catch (IOException ex) {

119 1

120 return searchResult;

121 L 1

122 1

Figure 70: Adding Results to the Final Array and returning it to Search Controller

The following method in Figure 71 is the method used by the search() method in line 110 Figure
70 to calculate frequencies of the words from the array created in Figure 69. This method is used

in conjunction with the class in Figure 72.

a4

50 public Word[] getFrequentWords({Arraylist<String> words) {|
il HashMap<String, Word= map = new HashMap<String, Word=() ;
52 for (String s : words) {

53 Word w = map.get(s);

54 if (w = null) {

55 w = new Word(s, 1);

55 1 else {

57 W.count++;

58 }

59 map .put (s, w; h
60

al Word[] list = map.values().toArray(new Word[]{});

52 Arrays.sort(list);

63 return list;

g4 L 1

Figure 71: Frequency Analysis

The method described in Figure 71 accepts the array list of strings and then calculates their
frequencies. The class in Figure 72 is used to keep track of the words which are already in the
array and their corresponding frequencies. The frequencies calculated by the method in Figure
71 are then sorted in line 62 with the word with the highest frequency being the first element of

the array that is being returned to the method in Figure 71.

83

—
| —

[

34 |- public class Word implements Comparable<Word= {]

35
36
37| =
38
39
40|
41

43
44
45
46
47| +
48 L }

String word;

int count;

public Word(String word, int count) {
this.word = word;
this.count = count;

¥

@0verride h‘

public int compareTo(Word otherWord) {
if (this.count == otherWord.count) {
return this.word.compareTo(otherWord.word) ;
T

return otherWord.count - this.count;

Figure 72: Word Class for Comparing words on an Array

When the calculation and the sorting of the words frequencies is returned to the search(), the

search() method then adds the frequencies and the actual words in the final array that will be

later returned to the search controller component described in Figure 64.

— — —1 —1

public class RBeans {
private String title;

private int content;

public String getTitle() {
return title;

I

public void setTitle(String title) {
this.title = title;

}

public int getContent() {
return content;

h

public void setContent(int content) {
this.content = content;
}

Figure 73: Java Beans

The class described in Figure 73 is also used for retrieving the data stored in the final array, for

data visualization. The data in the search controller component is then read using the snippet

code in Figure 74 line 15. The data is then read into two different arrays that are then used for

data visualization by this sub-module. The data is read into two arrays one which is of string data

in line 17 and the other which is the of the integer data type in line 15 Figure 74. The strings are

the actual words from the index content and the integers are the actual frequencies of the words.

84

—
| —

14 [<%

15 List searchResult = (List) request.getAttribute("searchResult");
16 ArrayList<Integer= val = new ArrayList<Integer=();

17 ArrayList<String= terms = new ArraylList<String=();

18 int resultCount = 0;

19 if {(null !'= searchResult) {

20 resultCount = searchResult.size();

21 1

22 for (int 1 = 0; 1 =< resultCount; i++) {

23 RBeans resultBean = (RBeans) searchResult.get(i);
24 String title = resultBean.getTitle();

25 int cont = resultBean.%SFContent();

26 terms.add(title) ;

27 val .add(cont]) ;

28 L %=

Figure 74: Reading the Results from the Search Controller Component

The data is then visualized using the Jfreechart bar graph. The snippet code in Figure 75 is used
to create the bar graph. On the development of this module we decided to only visualize the top
ten trending words with their actual frequency values. The bar graph for this sub-module is

created using line 43 in Figure 75.

29 [<%

30 try {

31 OutputStream cut2 = response. getOutputSt ream() ;

32 DefaultCategoryDataset dataset = naw DefaultCategoryDataset()

33 dataset .setValue(val .get(8), 0s , terms.get(Q))

34 dataset .setValue(val .get(1), , terms.get (1))

35 dataset .setValus(val.get(2), , terms.get(2))

35 dataset .setValus(val.get(3), , terms.get(3))

37 dataset .setValue(val.get(4), , terms.get(4))

38 dataset .setValue(val.get(5), , terms.get(5));

39 dataset .setValue(val.get(6), , terms.get(6))

40 dataset .setValue(val.get(7), , terms.get (7))

41 dataset .setValue(val.get(8), , terms.get(8))

42 dataset .set\}a'Lue(va'L .get(9), "f te ms. get (9))

43 JFreeChar’t char’t = Char‘tFactory cre g -ds Search Results
44 s", dataset P'LotOrlemtatlon VERTICAL, true, true, true);
45 chart. SetEackgroundPamt(Color

45 response.setContentType("image ¥:

47 ChartUtilities. wrlteChartAsPNG(outZ chart, 100@, 350);

438 out?.close(); %
49 } catch (Exception g) {

50 t

51 L %=

52 <55

53 T 1

54 %=

Figure 75: Create the Bar Graph for Content Matching and Frequency Analysis

In this sub-section we have discussed the internal implementation of the content matching and
frequency analysis sub-module. This was the last sub-module which was developed for index
searching module and data analysis. The following section discusses the development of the
system Ul that is used to join the four sub-modules of the index searching module to form one

system package.

85

—
| —

User Interface

In this section we will discuss the development of the Ul in Figure 24, in chapter three under
high level system design. The index searching modules discussed in previous sub-sections have
different Uls and search controller components. The interfaces are then called in one interface to

form one system package.

The following snipped code in Figure 76 is used to call the Keyword searching, Content
Matching and Correlation Analysis Interface. The search controller component is called in line

118. This interface also accepts the keyword to be searched in a form of text in line 123.

118 [<FORM id=searchForm action=SearchController>

119| [<TABLE=

120| [<TBODY=

121| & =TR=

122| [<TD colspan="3"=

123 =<INPUT name=searchWord id=searchWord ty text size="40"=
124 =<INPUT id=doSearch type=submit value= SearchTerms elation=
125 </TD=

125 =/TR=

127 </TBODY=

128 =/TABLE=

129 </FORM=

Figure 76: Keyword searching, Content Matching and Correlation Analysis Interface

The following snipped code in Figure 77 is used to call the Keyword searching, Content
Matching and Correlation Analysis Interface. The search controller component is called in line

115. This interface also accepts the keyword to be searched in a form of text in line 110.

104
105
106
107

<FORM id=searchForm action=SControlers>
<TABLE=
<TBODY=
108 <TR=
109 <D colspan="3"=
110 <INPUT name=searchWord id=searchWord type=text size="40"=
111 <INPUT id=doSearch type=submit value=SearchT/rendingT
112 - </TD=>
113 - =/TR=
114 - =/TBODY=
115, - </TABLE=
116| - =</FORM=

117

Jis]
C
[}
(]
]
W

Figure 77: Keyword searching, Content Matching and Frequency Analysis Interface

The following snipped code in Figure 78 is used to call the Keyword searching interface. The
search controller component is called in line 131. This interface also accepts the keyword to be
searched in a form of text in line 136.

86

—
| —

13w

131 [<FORM id=searchForm action=Controller=

132 [<TABLE=

133| & <TBODY=

134 [<TR>

135| <TD colspan="3">

136 <INPUT name=searchWord id=searchWord type=text size="40">
137 <INPUT id=doSearch type=submit value=KeyWordSearch>
138 </TD=

139 </TR=

140 =/TBODY=

141 =</TABLE=

142 </FORM> R

143

Figure 78: keyword Searching Interface

The following snipped code in Figure 79 is used to call the Content Matching and Frequency
Analysis Interface. The search controller component is called in line 144. This interface also

does not accept the keyword to be searched like the three previously described interfaces.

144

= <FORM id=searchForm action=Controllller=
145 [<TABLE=
145 [=<TBODY=
147 [=TR=
148 [<TD colspan="3"=
149 <INPUT id=doSearch type=submit value=CheckTrendingTerms=
150 </TD=>
151 </TR=> s
152 </TBODY=
153 =/TABLE=
154 </FORM=
Figure 79: Content Matching and Frequency Analysis Interface
Conclusion

The chapter started by introducing and discussing the implementation of the Facebook crawler,
text extraction and the text indexing using Lucene java library. It continued by discussing the
implementation of the index searching and modules and concluded by discussing the
implementation of the user-interface. The next chapter will discuss the system testing process
and present the experimental results.

Chapter Five: System Testing and Experimental Results

Introduction
The Chapter discusses the system functional testing and the experimental results. It starts by
describing the testing of the system back-end that is the Facebook Crawling, Text Extraction and

Text Indexing and also provides the results which were found. It then moves on to the testing of

87

—
| —

the system’s front end index searching modules and also gives a brief explanation of the system

outputs.

Due to the limited data we could collect, these results serve only as a proof that the system does
pass functional tests. We have used the following examples to illustrate to the reader that the
system can be used in targeted opinion mining as well as general trend tracking. We discuss the

difficulties encountered in gathering extensive data in chapter 6.
System Functional testing

Facebook Crawling, Text Extraction and Text Indexing Results

In this research project we were supposed to develop a system prototype for opinion monitoring
and trend analysis. For this system prototype to work we needed to gather data from social
networks, we chose to limit the scope of the project by only focusing on Facebook. The
following diagram in Figure 80 is the structure and data format which we obtained from
Facebook. The data as aforementioned in the previous chapter was in the JSON array and the

comments were also in the nested array as can be observed in Figure 80.

{
"data": [{
"comments": {
"data": [{
"can_remove": false,
"created time": "2013-12-07T17:32:42+0000",
"from": {
"id": "100004387262990",
"name": "Thobeka Charlotte"

s
"id": "1379152532336712 5686", %
"like_count": @,
"message": "Gud9yt u 2,we alsc lv u.",
"user_likes": false
H.
"paging": {"cursors": {
"after": "MQ==",
"before": "MQ=="
Tr
s
"created time": "2013-12-07T14:39:46+0000",
"id": "100007259341154 1379152532336712",
"message”: "Good night people, just for you to know I love you all like serious......... "
.
"paging": {
"next": "https://graph.facebook.com/100007259341154/feed?fields=message,created_time,comments.
"previous": "https://graph.facebook.com/100007259341154/feed?fields=message,created_time,comme
}
I3

Figure 80: Facebook Data in JSON Format

The data in the in Figure 80 is the status and there is one comment which was posted on that
status. There was need to parse the data to parsed to be a plain textual data for it to be able to be

88

—
| —

indexed using Lucene java library. The following diagram Figure 81 is the textual data parsed
from the data JSON data presented in Figure 80.

Status Good night people, just for you to know I Tove you all like serious.........
Comment Gud9yt u 2,we also 1v u.

Figure 81: Parsed Textual Data

The textual data was then indexed using Lucene index. The actual time this module takes to
crawl, parse text and index textual data depends on the actual size of the content that is retrieved
from the facebook database servers. The testing of the index functionality was then done through
performing searching through the index searching modules described in the following section,

Index Section.

Index Searching
In this section we discuss the visual results for our work, the results that the end-users will come
in contact with. However, there are also a lot of technical results we achieved during this

research project to make the system work as it should.

Keyword Searching, Content Matching and Frequency Analysis

Testing this module had some limitations such the data format from SUMO was totally different
to the data that is likely to be found from Facebook. This was because of the writing styles and
wrong spellings which are normally found from facebook and while SUMO uses correct

spellings of the words.

4.00 b

g 250
<235
S 200

0.00

Katolskakyrkan Missionssael... Welsh A Bibeltrogna Crusaders Episcopal Evangelical
Found Matching Words

Figure 82: Keyword Searching, Content Matching and Frequency Analysis

The other drawback which was noticed in using SUMO was that it was time consuming to try

and found out about all text delimiters that they used in defining the words on SUMO. The last

drawback which was noticed in using SUMO is that it was taking time to search the ontology
which jeopardized the response time of the system. In order to test the functionality of this
module, we needed three people with Facebook user accounts to update their statuses and write
some comments on them with some few words we were getting from the ontology. We then
initiated our system to crawl Facebook, preprocess the data we were getting from Facebook and
then index. We then performed the searching through this module to see the functionality of the
system. We searched the word “Church” and the results from Figure 82 were found. The results
suggest that it possible to use the ontologies for opinion monitoring and the trend analysis from
the SNSs data.

Keyword Searching, Content Matching and Correlation Analysis

After the death of one of the greatest world icon, the former South Africa first black President
Nelson Rolihlahla Mandela was announced on the 5™ December 2013, it filtered all over the
SNSs and the Internet. That in turn prompted us to know what people on the network from
Facebook which we were using to test our system were saying about the death of Mr. Mandela.

w100 [] .

0.00 0.25 0.50 0.75 1.00 1.25 1,50 1,75 2.00 2.25 2,50 2,75 3.00 3.25 3.50 3.75 4.00 4.25 4,50 4.75 5.00 5.25 5.50 5.75 6.00 6.25
Most Occuring Words

| m Yholandikholwa e #Mandela & ahhh Rest = An + Kazba Paparazi|

Figure 83: Keyword Searching, Content Matching and Correlation Analysis Results

On the 6™ of December 2013, the day after the tragic of passing the South African president we
crawled Facebook. We collected statuses and comments of the Facebook users which are in the
network with the Facebook user account we were using in this research project for testing
purposes. The reason gathering data from Facebook on such day, we wanted to see the trends
about the passing of our former first black president. We then searched his surname “Mandela”
to see the words which were mostly used in the statuses and comments that matched the searched

keyword. The results of the searched keyword are visualized in Figure 83. The word “Rest” was

90

—
| —

the word with the highest frequency as can be observed in Figure 83. This word was most
occurring on the statuses and comments of Facebook users which were mourning about the

passing of our former president.

Keyword Searching
The section discusses the keyword searching module. As aforementioned in Chapter 3 and 4, this
module retrieves statuses and/or comments that match the searched keyword. It also limits the

maximum number of the retrieved statuses and/or comments to ten based on their hits.

KeywordSearch

Rest in peace tata Rholihlahla Nelson Mandela..we will forever love and miss you...uggatso ulufezile...

T alaiz seem impossible until iz done....... R.IP NELSON U'L B MISSD #SADADAEZ#

Rest In Peace tata, The greatest man South Africa, Africa, the World has ever had. Long Live... | believe its now
that you have your own Rest. President Nelson Rholihlahla Mandela.

The great man in history, "nelson rholihlahla mandela” rest in peace madiba, dlomo, zondwa, mthembu, vele
bambhentsele, yem-yem, mntande, nggolomsila....... akumnandanga kwi south africa yonke xa kunje!!!

Yho!andikholwa tata Madiba is dead mmmm!"ndisothukile yaz"kodwa ke besekhulile uDiba masimkhululeni
ahambe.lala ngoxolo tata Nelson rholihlahla Mandela sohlala sikukhumbula tata wam.

ahhh Dalibhunga uwile umthi omde madoda, the father of the nation. Nw the big three is together once more
Oliver Tambo, Walter Sisulu n Nelson Rolihlahla Mandela. Rest in peace Diba dnt forget to tell em abt the trouble

Two Zuma n Juju.

Figure 84: Keyword Searching Results

Figure 84 above presents the results which are the statuses and/or comments which were
retrieved after we searched the keyword “Nelson” from our system. The retrieval of the actual
statuses and comments feature in our system was developed so that end-users could get the
actual sentiments of the content which is found matching the searched keyword. With the results
displayed of the keyword searched, an end-user who knows IsiXhosa and English could simply
understand that the people who wrote the statuses and comments in Figure 84 were actually
expressing their condolences to the Mandela family. The data as aforementioned was collected
on the 6™ December 2013.

91

—
| —

Content Matching and Frequency Analysis

The section presents the results of the last module in index searching modules. This module as
aforementioned in Chapter four, the system implementation chapter, does not require the
keyword search input for it to start searching the index. This module starts retrieving the data
from the index and starts calculating the frequencies of the words found from the index. That
implies that the trending words are not calculated based on the keyword searched but on the

whole index.

0]

8 5.0

c 4.5

b

8 4.0

v 3.5

(=]

w 3.0

=]

w 2.5

2
2.0

5

2 1.5

‘g 1.0

% 0.5

w
0.0

Happy Thnk Aybo Ewe Haibo hopefully Ayibori Barack Bawo Bus
Most Occuring Words

|l Most Occuring Words|

Figure 85: Content Matching and Frequency Analysis Results

The results in Figure 85 were the results of the content matching and frequency analysis found
after we collected and indexed on 12 December 2013. These results were the words with higher
frequencies, even though there were probably more words with frequencies of one but we limited

our results to ten.

System Performance testing

According to [73] performance testing is the technical investigation done to determine the
responsiveness, speed scalability characteristics of product under test. In this research we were
mainly focusing on testing the responsiveness of our developed system. This was done so that we
could determine if the end-users would be satisfied with the performance characteristics of the

system.

As it has been noticed from the previous chapters, chapter 3 and chapter 4 the design and the
implementation of the Index searching sub-modules were different. Their response times are also
different. The response times of the three Index Searching sub-modules Keyword Searching,

92

—
| —

Content Matching and Frequency Analysis, Keyword Searching and Content Matching and
Correlation Analysis were all equal. The reason for their response times to be same is that they
only search the index and analyze and visualize the data. Figure 86 shows the response time
which was found after test modules were tested. The three sub-modules have the response time
of second and that suggested that the end-users will not have to wait too long for the system to
give back the feedback.

kwli zizwe ubungumzekelo

MNxeba elisentliziyweni lelona libuhlungu kuba kaloku alibethwa ngu moya

Idandathekile imiphefumlo yabantwana base Africa, zophukile intliziyo

Sithi thina nto zaziyo, sithi bekufanele, sithi enggondweni bekumele

Ifikile kaloku ingwelo yokufa nangelilixa, ayahamba ze nangoku

Kodwa isithathele inggondi, intsika yesizwe

It's upon us to live and keep the legacy you fought and plawed upon us, alive

Aghh!!! DAlibhunga, Zondwa zintshaba, Yemyem, Sopitsho
Phumala ngo xolo Tata Mandela ulifezi olwakho uggatso kulomhlaba umagada ahlabayo

nde graaam!!!!
BUILD SUCCESSFUL (total time: 1 second)

Figure 86: Index Searching Response Time

The fourth Index Searching sub-module Keyword Searching and Content Matching and
Frequency Analysis as it was described in the previous chapters, chapter 3 and chapter 4 its
design and the implementation is different to the rest of the other three Indexing Searching sub-
modules. This sub-module start by searching the SUMO retrieve, preprocess data before the data
could be used for content matching and frequency analysis. The searching of the SUMO takes
little long when compared to searching the index. The response times when searching the
SUMO is not constant as compared when searching the index. As it has been noticed it only
takes one second to search and retrieve data from Lucene index. Figure 87 and Figure 88 Shows

the response times we were getting when searching the SUMO.

93

—
| —

Financial
Transaction
Change

of

Possession

Dual

Object

Process
ExerciseAnOption
BLITI D SHCCFSSFIN (total time: 13 seconds)

Figure 87: SUMO Response Time

In Figure 87 above is the response time we got when we were searching the “Transaction” from
the SUMO.

Team

Sport

Racing

Olympic

Games

Gymnastics

Golf

Boxing

Bodybuilding

Game

BUILD SUCCESSFUL (total time: 12 seconds)

Figure 88: SUMO Response Time

In Figure 88 above is the response time we got when we were searching the word “Sport” from

the SUMO.

The average response time when searching SUMO was 12.5 seconds when calculated from the
response times we were getting during the time we were testing the our developed system. This
response time compared to the response times of the other three Index Searching sub-modules is
a bit too slow. This in turn means that end-users will have to wait for some time for the system
to get the feedback when using this Index Searching sub-module. The overall system response
time is less than one minute that means the response of time of the system will be good for end-

users.

System Usability Testing
The usability testing of the system was performed at computer science masters lab. There were

five participants which were involved in the usability system testing. Three participants were the

94

—
| —

computer sciences masters students and the other two students where from other departments.
The questions which were asked were ranked from strongly agree to strong disagree, strongly
agree referring to positive response and strongly referring to negative answer while undecided
referring to neutral response. The ranking of the questions was done so that we could find the

sentiments of the participants towards the system developed in this research project.

The system was explained to the participants and the results each sub-module should return were
explain. Each participant was then given time to use the system. When the participant was
finished using the system were then asked to answer the questionnaire which was to be used to
get their sentiments towards the system. The questions and the responses from the participants

are shown in following figure, Figure 89.

Strongly Disagree

Disagree
& M You were satisfied with the

system performance?
| would use this system again?

Undecided
B The system answered my
questions?
Agree B The system was easy to use?
Strongly Agree
0 1 2 3 4 5 6

Figure 89: System Usability Testing Results

There was one participant who was not satisfied with the performance of the system and the
other four participants agreed that they were satisfied with the performance of the system. All the
participants agreed that they would love to use the system in future. They were also asked if the

system was able to answer the queries they issuing and all the participants agreed that the system

95

—
| —

was able to answer their queries. Participants were also asked if it was easy to use the system and
four participants agreed that it was easy to use the system. There was one participant which
could not decide about the easiness of the system. Based from the results which we got after the
system usability testing we can assume that the system after deployment will be usable by the

people of Dwesa.

Conclusion

In this chapter we discussed the system functional testing on which we were mainly focusing on
the system outputs the system end-users will come across when they are using the system.
Chapter then went to discuss the system performance testing and there we were mainly focusing
on the system response time. The chapter concluded by the discussion of the usability which was

meant to get the sentiments of the participants who were involved in this system usability testing.

96

—
| —

Chapter: Discussion and Conclusion

Introduction

This chapter gives a summary of the thesis, it then go to discuss objectives achieved. The
problems which were encountered during the course of this research are also discussed in this
chapter. The chapter concludes by giving the recommendations of the possible extensions that

can be added on the system.

Thesis Summary

There are many traditional ways of collecting data such as questionnaires, observations, formal
and informal interviews etc. These, when used, have some drawbacks such as travel costs, data
collection and data analysis which both require some expert knowledge and are also time
consuming. The data in normal cases is collected and analyzed to answer some specific questions
or to find some insights about some specific aspects about a certain population. It is a time
consuming and costly process if for example, manufacturing companies can use these traditional

methods to collect data from public with the objectives of finding out:

1. What people think about the product they produce;
2. What the public sentiments towards the product they are producing; and

3. What improvements could possibly be made to try and meet their clients’ needs?

This research project proposed and developed a system prototype which could be used to
mitigate the problems which normally come with the traditional ways of data collection and data
analysis. Nowadays SNSs have become a popular communication tools among Internet users,
where millions of users share opinions, views, thoughts, and ideas on different aspects of life
almost every day. People communicate through these SNSs by positing content that makes more
data about the public to be available on these SNSs. The developed system prototype is
developed to be used by the Dwesa community local government officials for them to easily
monitor opinions of the public and see the trending topics about the services they provide. The
system is designed in such a manner that it could be used for many different applications, but in

this research it was meant to be used for the government service delivery case study.

97

—
| —

Objectives Achieved and Discussion

Based on the system implementation discussed in chapter 4 and the system testing discussed in
chapter 4 perspectives, the developed system meets and satisfy the research objectives specified
in chapter 1. The following were the specific objectives which were proposed in this research

project:

Investigate and identify the key requirements for a Facebook Crawler that can be used for
opinion monitoring and trend analysis purposes.

Through thorough literature review which was conducted on the research key requirements and
the tools which could be used for developing the system of this nature were identified. Through
literature we also able to best select the tools which used to develop the system that was

proposed in this research.

Design, develop, implement and test a Facebook Crawler for Opinion Monitoring and
Trend Analysis Purposes.
After extensive literature review were then able to design, develop and implement the proposed

as that can be witnessed from chapter 3 and chapter 4.

Investigate general problems faced by rural communities when communicating with their
local government.
This objective was achieved through data collection and data analysis. The findings of the data

collected were discussed in chapter three, under feasibility Study.

Investigate the methods they are currently using to communicate with their government.
This objective was also addressed through the data collection and data analysis. The findings

were discussed in chapter 3 under feasibility study.
In overall conclusion, all the objectives which were proposed in this research were fully satisfied.

The following section will discuss the problems which were encountered during the course of

this research.

98

—
| —

Problems Encountered
From the onset of this research, there were some limitations which we faced. This section is

meant to discuss some few limitations which were experienced during this research project.

University of Fort Hare’s Network Security

This restricted us from using the university proxy server whenever we wanted to access and
gather data from Facebook through Graph API. There was then a need for us to use the USB
(Universal Serial Bus) Modem to access and gather data from Facebook. The use of a Modem
led to a situation in which there was need to buy data bundles which was costly. However, the
problem will not occur in Dwesa where the system will be deployed, because the network
security system in the SLL is different to the one which is being used at the University of Fort

Hare as the system was also tested there.

System Development

During the system development phase there were some few problems which were encountered.

Facebook Crawler

Not only was a problem of network security that was encountered during the development of the
Facebook crawler which was to be used gather data from Facebook. There was also a problem of
using the RestFB java library which was used to communicate with Facebook. There was a time
where we planned to crawl user data feeds in for week, the idea was to crawl data feeds of week
per each user. The idea was practically impossible to implement the system would crawl
Facebook pass the date parameters we were setting. That would require more data to be used
when crawling data feeds and it would take to finish. That led to situation where we had to
change our system to only crawl only the latest statuses of the Facebook who were in the
network of the count which was used in this research for test purposes. The other problem was
experience when parsing text from JSON data to plain text using Jackson java library. This
needed to be updated every time when there was a new feature added on Facebook. If the code
that was used to parse text was not updated in accordance with updates Facebook the system
would not run and reported error of undefined object. That suggested that system administrator
would need training of how to keep updating the script that is used to parse text from JSON data
format to plain. The problem only occurs when there is a new feature which is added on

Facebook. The last problem on the development of the Facebook crawler, even though we were

()
L 9)

specifying the parameters which were to specify the fields of JSON that wished to get, JSON
would be returned with lot of that we did not need. That will results in situation where we had to

write a very long script to parse textual data from JSON format.

Data Filtering

After the network security and text parsing problems were resolved and we were able to crawl
Facebook and collect data, we began to experience problems of determining the delimiters which
could be used to preprocess the textual data which was to be then used for term frequency

analysis and correlation analysis.

The reason being there are many different stop-words used on Facebook and the people could
write one in many different ways. An example would be the case where we wanted to remove
the “lol”, where it could be written as “looool” or “lool”. The other problem was that people
would keyboard special keys when writing the statuses or comments along with the text they
would be posting. A practical could be observed from Figure 82 from the “Yho!andikholwa”, the

phrase in English means “I cannot believe” and “Yho” being just an expression of being startled.

Additionally, while we settled on the idea of using stop-words, we realize that encoding the exact
words is a weakness in our development. In the future we would like to employ an intelligent
algorithm which will study facebook status words and come up with a collection to frequently
used stop words and their most common spelling. We also believe that perhaps instead of
searching for stop-words, we could use target words. For example, given a user that is looking up
“service delivery” we would look for words such as roads, water, schools, etc. We believe that
this method can also be implemented through the use of Ontologies or other expert systems that

use Semantic Webs.

SUMO Usage

The limitations were on the usage of the SUMO. The words on SUMO are mostly written in
correct spellings while in Facebook, users mostly write words in different styles. This led to a
situation in which it was difficult to find matching words from Facebook and SUMO which
could be used to calculate term frequencies. The other problem was determining delimiters
which could be used to process data from SUMO as it contained a lot of data and was time

100

—
| —

consuming to try to learn all delimiters which could be possibly used for preprocessing the data.
The other minor problem which was experienced on using the SUMO was the response time
where searching it and the SUMO contains words in English. That in turn suggests that it will be
difficult for non-English speakers to use this system sub-module. The last problem could be
observed from Figure 81 the Index searching sub-module results. The problem with the results is
the letter “A” which does not convey any meaning. The problem occurred because there was a
word from SUMO which was having consecutive upper letters. When the data from SOMO was
being the consecutive preprocessed that results that letter to being treated as of the words which
were used for content matching and frequency analysis. As mentioned in previous chapters that
upper case delimiter was also used to separate the joined words from SUMO, that means words
with the consecutive upper letters, letters will be regarded as the stand alone words which be
used for frequency analysis.

Data collection

During the period of collecting data, the following were the drawbacks from getting larger

survey sample:

1. Distance between University of Fort Hare (UFH) and research site (Dwesa) — the
distance between the UFH and Dwesa community restricted the author from conducting
constant visits to the research site. The researcher would only visit the research site when
there was a computer literacy training to be conducted during a specific week of every
month. The literacy trainings were sometimes not conducted due to transport problems and
the conditions of the Dwesa roads after some weather conditions which would restrict cars
from travelling.

2. Transport — the transport did not only affect the researcher from constantly visiting the
research site but also affected the Dwesa residents from reaching the schools where the
trainings were usually conducted (Mpume and Ngabarha). The people who were attending
the computer literacy trainings were from different regions of Dwesa and their regions were
identified by the names of the schools from their regions. These are the schools which are
involved in SLL initiative: Badi SS, Hlabizulu JSS, Kunene SPS, Lower Ngwane JPS,
Lurwayizo JSS, Lurwayizo SS, Mevana JSS, Mpume JSS, Mthokwane JSS, Ngoma JSS,
Nggeza JSS, Ngwane JSS, Nondobo JSS, Ngabara SS, Nquba JSS, Ntubeni JSS and

Zwelidumile SS. People were attending trainings at one of the two schools where the

(]
l101j

https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/badi-ss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/hlabizulu-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/kunene-sps
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/lower-ngwane-jps
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/lurwayizo-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/lurwayizo-ss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/mevana-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/mpume-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/mthokwane-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/ngoma-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/ngqeza-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/ngane-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/nondobo-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/nqabara-ss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/nquba-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/ntubeni-jss
https://sites.google.com/a/ict.ru.ac.za/sll/sll-schools/zwelidumile-ss

trainings were usually held based on the distance they would travel; that meant the closest

school in their region. The problem for some of them would be getting transport, a factor

which resulted in some of them failing to attend the trainings due to the long distances which

they had to travel. This was a significant problem for both the residents and the researcher

during the data collection process.

3. Weather conditions — as prior stated, weather conditions were a challenge especially after

heavy and/or steady rain falls because transport for the SLL research team and the residents

who travelled with the cars used to restrict them from attending the trainings. The situation

was worse for people who travelled on foot to and from the trainings, because it would be

very cold.

Future Work

This section discusses the possible extensions which could be added on the developed system in

this research. The following are some of the extension suggestions which could be added on the

system presented on this thesis:

1.

2.

Collect data from Twitter — this research was mainly focusing on gathering data from
one SNS, Facebook. In future, data could also be collected from Twitter as it is one of the
SNSs in use today. This would allow the system to gather more data from these two
different SNSs as it was noticed from the literature that Twitter is the most popular
microblogging platform.

Add a feature on our system interface which will allow the system to continuously
display the content from the created index- This feature will allow the end-users to
easily read the index content without having to search, but if they find something which
catches their interests, they can then search it through the same developed system in this
research.

In literature there is a lot of work that has been focusing on sentiment analysis from

Twitter textual, sentiment analysis could also add a good value in future on our work.

Overall Conclusion

In this thesis we have presented the research done and outlined the development of the proposed

system that will probably improve the way the government and local people communicate. The

102

—
| —

implementation of the facebook crawler for opinion monitoring and trend is a success story,
although its deployment at Dwesa where the system is intended to be used still remains a future
proposal and/or development. The success of the system when performing its actual main duty,
which is to provide a cheap way of communication between government officials and the local
people, will be determined by the reviews of the targeted end-users, after the system has been

tested and deployed at Dwesa.

103

—
| —

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

“Project Activities | Siyakhula Living Lab.” [Online]. = Available:
http://siyakhulall.org/?q=activities. [Accessed: 20-Sep-2013].

P. Chiu, C. M. K. Cheung, and M. K. O. Lee, “Online Social Networks: Why Do ‘We’
Use Facebook?,” J. Mark. Res., vol. 19, pp. 67-74, 2008.

C. M. K. Cheung, P. Chiu, and M. K. O. Lee, “Computers in Human Behavior Online
social networks : Why do students use facebook ?,” Comput. Human Behav., vol. 27, no.
4, pp. 1337-1343, 2011.

A. Nadkarni and S. G. Hofmann, “Why do people use Facebook?,” Pers. Individ. Dif., vol.
52, no. 3, pp. 243-249, 2012.

M. Srivastava, “Social Media and Its Use by the Government,” J. Public Adm. Gov., vol.
3, no. 2, pp. 161-172, Jul. 2013.

R. Bassett, T. Chamberlain, S. Cunningham, and G. Vidmar, “Data Mining and Social
Networking Sites: Protecting Business Infrastructure and Beyond,” Data Min. Soc. Netw.
Sites, vol. Volume XI1,, no. 1, pp. 352-357, 2010.

E. Costa, R. Ferreira, P. Brito, I. I. Bittencourt, O. Holanda, and A. Machado, “Expert
Systems with Applications A framework for building web mining applications in the
world of blogs : A case study in product sentiment analysis,” Expert Syst. Appl., vol. 39,
no. 5, pp. 4813-4834, 2012.

“Batho Pele: Improving government service.” [Online]. Available:
http://www.etu.org.za/toolbox/docs/govern/bathopele.html. [Accessed: 18-Sep-2013].

M. Thinyane, H. Slay, A. Terzoli, and P. Clayton, “A Preliminary Investigation into the
Implementation of ICTs in Marginalized Communities,” in SATNAC, 2006, p. No 213.

B. T. Jakachira, “Implementing an integrated e-Government functionality for a
marginalized community in the Eastern Cape , South Africa Master of Science in
Computer Science University of Fort Hare by,” no. November, 2009.

S. Batsakis, E. G. M. Petrakis, and E. Milios, “Improving the performance of focused web
crawlers,” Data Knowl. Eng., vol. 68, no. 10, pp. 1001-1013, 20009.

C. House, Z. Streets, and I. Services, Report on the Evaluation of the Implementation of
the Batho Pele Principle of Consultation, no. October. THE PUBLIC SERVICE
COMMISSION (PSC) Commission House Cnr. Hamilton & Ziervogel Streets Arcadia
0083 Private Bag X121 Pretoria 0001, 2007.

104

—
| —

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

“Municipal Service Delivery.” [Online]. Available:
http://www.etu.org.za/toolbox/docs/localgov/munservice.html. [Accessed: 18-Sep-2013].

Farai Makombe, “Developing a help-desk system for a multi-purpose ICT platform in a
marginalised setting Master of Science Computer Science University of Fort Hare By
Farai Makombe,” no. January, 2011.

N. B. Ellison, “Social Network Sites: Definition, History, and Scholarship,” J. Comput.
Commun.

K. G. Provan, a. Fish, and J. Sydow, “Interorganizational Networks at the Network Level:
A Review of the Empirical Literature on Whole Networks,” J. Manage., vol. 33, no. 3, pp.
479-516, Jun. 2007.

K. Differences, G. Cormode, and B. Krishnamurthy, “Key Differences between Web1.0
and Web2.0,” pp. 1-30, 2008.

Eb. Rank, “Top 15 Most Popular Social Networking Sites.” [Online]. Available:
http://www.ebizmba.com/articles/social-networking-websites. [Accessed: 01-Oct-2013].

F. G. C. Hwang Kai, Dongarra Jack, Cloud Computing Over Cluster , Grid Computing : a
Comparative Analysis, vol. 1, no. 1. Morgan Kaufmann, 2011.

C. Wilson, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao, “Beyond Social Graphs,” ACM
Trans. Web, vol. 6, no. 4, pp. 1-31, Nov. 2012.

E. Protalinski, “Facebook has over 845 million users | ZDNet.” [Online]. Available:
http://www.zdnet.com/blog/facebook/facebook-has-over-845-million-users/8332.
[Accessed: 01-Oct-2013].

E. Kontopoulos, C. Berberidis, T. Dergiades, and N. Bassiliades, “Expert Systems with
Applications Ontology-based sentiment analysis of twitter posts,” Expert Syst. Appl., vol.
40, no. 10, pp. 4065-4074, 2013.

K. Ivana and M. Mihi¢, “Business Intelligence: The Role of the Internet in Marketing
Research and Business Decision-Making,” UDC 65.012.34004.738.5, pp. 69-86, 2010.

Pamela Lewis Dolan, “10 tips to using LinkedIn - amednews.com,” 2011. [Online].
Available: http://www.amednews.com/article/20110725/business/307259969/4/.
[Accessed: 01-Oct-2013].

“The Value of LinkedIn — LinkedIn Overview Video | LinkedIn Help Center.” [Online].
Available: http://help.linkedin.com/app/answers/detail/a_id/45. [Accessed: 01-Oct-2013].

105

—
| —

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

P. Bhattacharyya and S. F. Wu, “Social Network Model based on Keyword
Categorization,” in International Conference on Advances in Social Network Analysis and
Mining, 2009.

S. S. Dhenakaran and K. T. Sambanthan, “Web Crawler - An Overview,” vol. 2, no. 1, pp.
265-267, 2011.

B. Pontes, S. Rocha, R. Luis, and T. Santos, “Example-Driven, Content-Based,
Distributed Crawling and Extraction for Online Social Network Analysis,” 2006.

J. L. Hao Wang, Richard Frost, “Social Network Crawling and Properties Analyzing
Using Different Sampling Methods,” pp. 1-23, 2012.

“Graph APL” [Online]. Available: https://developers.facebook.com/docs/reference/api/.
[Accessed: 01-Oct-2013].

P. Bedi, A. Thukral, and H. Banati, “Focused crawling of tagged web resources using
ontology,” Comput. Electr. Eng., Oct. 2012.

J. P. G. Sharma Shruti, A.K.Sharma, “A Novel Architecture of a Parallel Web Crawler,”
Int. J. Comput. Appl., vol. 14, no. 4, pp. 3842, 2011.

G. Pant, P. Srinivasan, and F. Menczer, “Crawling the Web,” springer, pp. 153-177,
2004.

U. Pisa, D. Informatica, and A. Signorini, “The Indexable Web is More than 11 . 5 billion
pages Categories and Subject Descriptors,” pp. 56, 2005.

A. Micarelli and F. Gasparetti, “Adaptive Focused Crawling,” pp. 231-262, 2007.

F. Van De Maele, “Ontology-based Crawler for the Semantic Web Felix Van de Maele
Ontology-based Crawler for the Semantic Web Felix Van de Maele,” no. May, 2006.

M. M. Mostafa, “More than words : Social networks ’ text mining for consumer brand
Avenida das Forcas Armadas Lisbon , Portugal,” Expert Syst. Appl., 2013.

E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi, “Sourcerer: mining
and searching internet-scale software repositories,” Data Min. Knowl. Discov., vol. 18, no.
2, pp. 300-336, Oct. 2008.

C. D. Manning, P. Raghavan, and H. Schiitze, An Introduction to Information Retrieval,
Online edi., no. c. 2009.

W. B. Croft, Knowledge-based and statistical approaches to text retrieval, vol. 8, no. 2.
IEEE Computer Society, 1993, pp. 8-12.

106

—
| —

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

D. Hiemstra, Using language models for information retrieval. Copyright ¢ 2000 Djoerd
Hiemstra, Enschede, The Netherlands.

D. Yalamanchi, “SIDEFFECTIVE - SYSTEM TO MINE PATIENT REVIEWS:
SENTIMENT ANALYSIS Abstract of the Thesis Sideffective - System to Mine Patient
Reviews : Sentiment Analysis,” 2011.

M. Mccandless, E. Hatcher, and O. Gospodnetic, Lucene in Action, Second Edi. Manning
Publications Co. 180 Broad St. Suite 1323 Stamford, CT 06901.

G. Brajnik, S. Mizzaro, C. Tasso, and L. Rizzi, “Evaluating User Interfaces to Information
Retrieval Systems: A Case Study on User Support,” 19th Int. Conf. Res. Dev. Inf. Retr.,
no. August, pp. 128-136, 1996.

G. Ingersoll, “Apache Lucene - Scoring,” Copyr. © 2006 Apache Softw. Found. All rights
Reserv., pp. 1-6, 2006.

“Yahoo News ZA - Latest World News South Africa News Headlines.” [Online].
Available: http://za.news.yahoo.com/. [Accessed: 20-Sep-2013].

M. Mathioudakis and N. Koudas, “TwitterMonitor : Trend Detection over the Twitter
Stream,” pp. 5—7.

P. Kadam, “Trend Detection and Visualization and Custom Search.”

M. Spiliopoulou, B. Mobasher, O. Nasraoui, and O. Zaiane, “Guest editorial: special issue
on a decade of mining the Web,” Data Min. Knowl. Discov., vol. 24, no. 3, pp. 473-477,
Mar. 2012.

E. Boldrini, A. Balahur, P. Martinez-Barco, and A. Montoyo, “Using EmotiBlog to
annotate and analyse subjectivity in the new textual genres,” Data Min. Knowl. Discov.,

vol. 25, no. 3, pp. 603-634, Mar. 2012.

S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and P. Spyridonos, “Community detection
in Social Media,” Data Min. Knowl. Discov., vol. 24, no. 3, pp. 515-554, Jun. 2011.

A. Tuzhilin, “Customer relationship management and Web mining: the next frontier,”
Data Min. Knowl. Discov., vol. 24, no. 3, pp. 584-612, Feb. 2012.

J. Hagberg, “Development of a News Reading System,” 2012.

D. H. Chau, S. Pandit, S. Wang, and C. Faloutsos, “Parallel Crawling for Online Social
Networks,” pp. 1283-1284, 2007.

J. Cho and H. Garcia-Molina, “Parallel crawlers,” Proc. Elev. Int. Conf. World Wide Web
-WWW 02, p. 124, 2002.

107

—
| —

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

S. Catanese, P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Crawling Facebook for
Social Network Analysis Purposes,” Methodology, vol. abs/1105.6, pp. 07, 2011.

D. Kim, S. Rho, and E. Hwang, “Detecting Trend and Bursty Keywords Using
Characteristics of Twitter Stream Data,” Int. J. Smart Home, vol. 7, no. 1, pp. 209-220,
2013.

S. K. G. Nancy Burns, The Practice of Nursing Research: Conduct, Critique and
Utilization, 5th ed. Elsevier/Saunders, 2005, p. 780.

S. Sukamolson, “Fundamentals of quantitative research,” Lang. Inst. Chulalongkorn
Univ., 2007.

N. Fox and N. M. Hunn, Amanda, “Sampling and Sample Size Calculation Authors,”
NIHR RDS East Midlands / NIHR RDS Yorksh. Humber, 2009.

“WhatsApp :: Home.” [Online]. Available: http://www.whatsapp.com/.

A. Cockburn, “Using Both Incremental and Iterative Development,” Technol. Softw. Eng.,
no. May, pp. 27-30, 2008.

S. I. Mfenyana, N. Moroosi, M. Thinyane, and S. M. Scott, “Development of a Facebook
Crawler for Opinion Trend Monitoring and Analysis Purposes: Case Study of
Government Service Delivery in Dwesa,” Int. J. Comput. Appl. (0975 — 8887), vol. 79, no.
17, pp. 32-39, 2013.

M. Carr and J. Verner, “Prototyping and Software Development Approaches,” City Univ.
Hong Kong. Retrieved January, vol. 8, p. 2008, 1997.

X. W. Jun Cai, Vladimir Eske, “Semantic Web & Ontologies,” pp. 1-30.

M. Najork and J. L. Wiener, “Breadth-First Search Crawling Yields High-Quality Pages,”
pp. 114-118, 2001.

“Chapter 1 Web Crawling.” [Online]. Available:
http://grupoweb.upf.es/WRG/course/slides/crawling.pdf.

M. Najork, “Web crawler architecture,” Microsoft Res. Mt. View, CA, USA, pp. 3-5, 2009.

“RestFB - A Lightweight Java Facebook Graph API and Old REST API Client.” [Online].
Available: http://www.restfb.com/. [Accessed: 20-Sep-2013].

“FacebookClient (RestFB).” [Online]. Available:
http://restfb.com/javadoc/com/restfb/FacebookClient.html. [Accessed: 20-Sep-2013].

“JSON.” [Online]. Available: http://www .json.org/. [Accessed: 20-Sep-2013].

108

—
| —

[72] “The Suggested Upper Merged Ontology (SUMO) - Ontology Portal.” [Online].
Available: http://www.ontologyportal.org/.

[73] D. R. I.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, “Chapter 2 — Types of
Performance Testing, Performance Testing Guidance for Web Applications,” 2007.
[Online]. Available: http://msdn.microsoft.com/en-us/library/bb924357.aspx. [Accessed:
10-Jan-2014].

109

—
| —

Appendix - Questionnaire which was used for Data Collection

In the section is the actual question which was used during the period of collecting the data at
Dwesa community. The results which were found after analysis the data that was collected are
discuss in Chapter 3 under the Feasibility Study section.

Questionnaire for Data collection in Dwesa

The main objective of the questionnaire is to validate the problems which were noticed during
the visits while the research was being carried out. It also seeks to find out how people of Dwesa
are currently reporting the issues related to government service deliveries that they are facing.
These objectives in mind, we will be able to determine the significance of our research study.
This research on its perspective is not intended to take over any current methods which are
currently being used, but to optimize the way of doing things with efforts of improving
communication between people and their local government official. The questionnaire seeks to
find out: Social Networking Sites currently being used, Methods Currently being used to
communicate problems with current local government, and the possibility of the improvements

the developed system could bring.

Thank you for taking the time to fill in this questionnaire; it should only take 20 minutes. Your
answers will be treated with complete confidentiality. If you have any questions about this

questionnaire, please free to ask any question.
Section A

1. Which SNSs do you know among the following: (please tick all that apply)

Facebook O
Twitter O
LinkedIn O
Other

2. Which SNSs do you have accounts among the following: (please tick all that apply)

Facebook O

110

—
| —

Twitter O

LinkedIn O

Other

3. Which one do you use most: (please tick one)

Facebook O
Twitter O
LinkedIn O
Other

4. Do you use the SNS select from number 3, on average: (please tick one)
Less than once a month
once a month
once every two weeks
once a week
two or three times a week
Daily

OoOoo0o0ooan

5. What are your main uses of the SNS? (please tick all that apply)
Update Statuses
Read other people’s statuses
Upload pictures

CD Send messages

CDI Instant messaging O
Advertising

OoOooOoaog

O

Other

If you DO NOT use any SNSs please go to question 11 (Section B)
If you DO use the SNSs, please continue with question 6 below.

6. a. Which application do you use most? (please tick one)
Update Statuses O

111

—
| —

Read other people’s statuses
Upload pictures

CDIl Send messages

CDIII Instant messaging
Advertising

oo

OO

Other

b. What is your main reason for using SNSs? (Please tick one)

to support course of study
leisure/general enjoyment
independent learning/research
looking for jobs

Keeping in touch with family/friends

O OOooao

Other(please say how)

7. How do access internet and/or SNSs?
Mobile Phone
Personal computer

Only through Siyakhula Living Labs

Other(please say how)

8. If you have access to use SNS elsewhere, please say where:

(please tick all that apply)
home
school/college/university
cybercafe

work

OoOoo0ono

Other(please say where)

—

112

—t

9. Do you consider yourself in using SNSs:
a beginner
an intermediate user
a fairly experienced user
a very experienced user
10. Do you see the importance of using SNSs as communication tools?

OoOooao

Yes O
No O
If yes, how important is it SNSs providing communication platform in your life?
Very important O
Quite important O
Not very important O
Not at all important O
10. Which of these statements most reflects your view of the SNSs services?
a vital service O
an add-on service, secondary to other library services O
an unnecessary expense O

Please give a reason for your view:

Section B

11. If you do not use the SNSs, could you please say why: (please tick one)
didn’t know they were there

no interested on using them

don’t know how to used them

don’t have access to them

no-one to help/reluctant to ask for help
Other(please say what)

OoOooono

12. Would you be interested in training on how to use the SNSs?
Yes
No

oo

Please now continue with sections C and D

Section C. (All respondents)

113

—
| —

13. Are you a resident of Dwesa?
Yes
If yes, please indicate your postcode below:

No
If no, are you visiting from:

Residence

postcode

14. Do you have access to Siyakhula Living Labs?
Yes
No

15. Are you:
male
female

16. Are you:
full-time employed
part-time employed
self-employed
not in paid employment
student
student and working
retired

OO

OoOoooooao

Other(please say what)

17. Are you:
under 16
16-25
26-35
36-45
46-55
56-65
over 65

114

—

OOoO0O0oOoono

—t

18. How would you describe your ethnic background?
White

Black African
Other(please say what)

oo

19. Do you consider yourself to have a disability?
No
Yes

OO

please specify

Section D. (All respondents)

20. How do you communicate with your local government?
Call meetings
Phone call
E-mail

Other, please specify

ooao

21. Current way of communication, do you find it easy and effective when expressing your
views in regard to services delivery issues or any other issues you as community are facing
to local government?

Yes O
No O
If no, why say please specify:
22. Are there any local government offices close to Dwesa?

Yes O
No O
If yes, do you find it easy to reach them?

No O
Yes O

If no, where are the closest offices that you usual report your problems?
Please specify:

115

—
| —

23.

24,

25.

26.

Have you ever feel like there is a need to optimize communication between people of Dwesa
and Local government?

Yes O

No O

Are there any ways the developed system could improve communication between you and
the local government?
Yes O

No O

Can you mention few problems Dwesa as a community is facing in terms
government services delivery, state below:

If there any problems, in your opinion what are the reasons those problem are
not attended by government?

Thank you very much for taking the time to complete this questionnaire.
Please hand it back to a member of staff, or put it in the box provided.

If you have any other comments in regard with the research conducted, please add them below:

Thank You, Your Contribution on our research much appreciated

N
|

J._ Telkom Centre of Excellence

University of Fort Hare I (: I >

Together in Excellence

116

—
| —

