
BERA VIOURAL MODEL DEBUGGING

IN

UNDA

TIlESIS

Submitted in fulfilment of the

requirements for the Degree of

DOcrOR OF PHILOSOPHY

of Rhodes University

by

DAVID ANDREW SEWRY

January 1994

Abstract

This thesis investigates event-based behavioural model debugging in Linda. A study is presented of

the Linda parallel programming paradigm, its amenability to debugging, and a model for debugging

Linda programs using Milner's CCS. In support of the construction of expected behaviour models,

a Linda program specification language is proposed. A behaviour recognition engine that is based on

such specifications is also discussed.

It is shown that Linda's distinctive characteristics make it amenable to debugging without the usual

problems associated with paraUel debuggers. Furthermore, it is shown that a behavioural model

debugger, based on the proposed specification language, effectively exploits the debugging opportunity.

The ideas developed in the thesis are demonstrated in an experimental Modula-2 Linda system.

Keywords: Concurrent programming, debugging aids, Linda, CCS, parallel debugger.

ii

Acknowledgements

My supervisors, Peter Clayton and Peter Wentworth, are to be specially thanked for the contributions

they have made to my research. I have valued, and will continue to value, their knowledge of the field

of research, advice, criticism, and motivational support. In the true spirit of supervisors, they have

given much. They also deserve special mention for reading draft copies of this thesis in the

meticulous way they did.

The Parallel Processing Group (PPG) at Rhodes University has provided a stimulating environment

in which to work. It serves not only as a willing forum in which to present ideas, but also as a pool

of collective wisdom, quite happy to be tapped. Thank you, PPG.

I am also very grateful for the time, opportunity, financial support and plentiful words of

encouragement given to me by Prof Pat Terry, the Head of the Department of Computer Science, and

general mentor.

My family rightly deserve applause too. They have tolerated my absence, "remoteness", and lack of

attention, not to mention bad holidays, without complaint.

I also acknowledge the financial support of the loint Research Committee, Rhodes University, and the

Foundation for Research Development, South Africa.

iii

"

Contents

Ust of Figures viii

1.

2.

Introduction 1

1.1

1.2

1.3

Motivation

Summary of Results

Thesis Organisation

1

4

6

Related Work 7

2.1 Event-Based Debuggers 8

2.1.1 Introduction... 8

2.1.2 Issues............ 8

2.1.3 Discussion............ 9

2.1.4 Details of Event-Based Debuggers .. 11

2.2 Bebavioural Model Debuggers 16

2.2.1 Introduction...... 16

2.2.2 Issues • . • • .. 16

2.2.3 Discussion......................... 17

2.2.4 Details of Behavioural Model Debuggers 19

2.2.4.1 Sequential•....... 19

2.2.4.2 Parallel 20

2.3 Problem In Context .. 26

iv

3.

4.

s.

Unda 29

3.1 Linda. 29

3.1.1 A Brief History 29

3.1.2 The Basic Paradigm .. 30

3.1.3 Programming in Linda 33

3.2 An Experimental Modula-2 Linda System 37

3.2.1 Modula-2 Linda .. 37

3.2.2 An Example Modula-2 Linda Program 37

3.3 Conclusion . 40

A Model for Debugging Unda Programs 41

4.1 The Debugging Model . 41

4.2 CCS..... 44

4.3 Modal Logic and the Modal Mu-Calculus•.. . •........ 47

4.4 Linda .. 48

4.4.1 Properties of Linda .. 48

4.4.2 Formal Specifications .. 49

4.4.2.1 Previous Work • . . . • 49

4.4.2.2 A Formal Specification of Linda 53

4.4.2.3 Observations and Properties • 61

4.5 Linda witb Debugger . 74

4.5.1 Properties of Linda with Debugger. • 74

4.5.2 Formal Specifications .. 76

4.5.2.1 A Formal Specification of Linda with Debugger. 76

4.5.2.2 Observations and Properties .. 81

4.6 A Comparison of the Behaviour of Linda and Linda with Debugger 87

4.7 Conclusion. .. 90

A Specification Language for Linda Programs 92

5.1

5.2

5.3

A Mechanism for the Specification of Behaviour

Previous Work

An Experimental Linda Program Specification Language

5.3.1 Introduction

92

94

96

96

5.3.2 Design Foundations•. •. 96

5.3.3 Language Syntax 98

5.3.4 Language Semantics .. 107

v

6.

7.

5.4 Specification Techniques 111

5.5 Example .. 115

5.6 Conclusion. .. 119

Behavioural Models 120

6.1 From Specifications to Models to Recognition Engines•... 120

6.2 Previous Work 122

6.3 Internal Model Representation 123

6.4 Model Construction .. 127

6.5 The Model at Work. .. 128

6.5.1 Model Control . 128

6.5.1.1 Informal Description. .. 128

6.5.1.2 Formal Description 129

6.5.2 Model/Linda System Integration 130

6.6 Conclusion. .. 133

Conclusions and Future Research 134

7.1 Conclusions. .. 134

7.1.1 Introduction............... 134

7.1.2 Contributions of the Thesis .. 135

7.2 Future Research 137

7.3 In Closing 141

Bibliography 142

Appendices

A. Glossary of Symbols

B. CCS Specifications

B.l Linda System

B.2 Linda System with Debugger

C. An Alternative Debugging Model

vi

D. Syntax of the Linda Program Specification Language

E. Modula-2 Linda Programs and Associated Program Specifications

E.l Dining Philosophers

E.2 Readers and Writers

E.3 Cross Product of Two Matrices

E.4 Prime Numbers

E.5 N-Queens Problem

E.6 Arithmetic Expressions

F. Modula-2 Linda System

F.l Distinguishing Characteristic

F.2 Details of the Implementation

F.2.1 System Overview

F.2.2 General Action of the System

F .2.3 System Specifics

F.2.3.1 Establishing/Severing Process-Server Communication

F.2.3.2 Executing Linda Primitives

F.2.3.3 The eval-primitive

G. Modula-2 Linda System with Debugger

G.l Implementation Strategy

G.2 Details of the Implementation

G.2.1 System Overview

G.2.2 General Action of the System

G.2.3 System Specifics

G.2.3.1 Specification Parser and Internal Model Constructor

G.2.3.2 Multiple, Identical Processes

G.2.3.3 Model Control and Behaviour Comparison

vii

List of Figures

6.1 Recognition process • 120

6.2 Model construction .. 121

6.3 Recognition process with expected behaviour model constructor 122

6.4 Internal model of expected behaviour .. 125

6.5 Internal model of a Linda program .. 126

6.6 Modula-2 Linda system. .. 131

6.7 The specification handler. .. 131

6.8 Modula-2 Linda system with specification handler • . • . . . • 132

F.1 Modula-2 Linda system. .. F2

G.1 Modula-2 Linda system with debugger G2

G.2 Specification graph with partially-defined transitions G6

viii

Chapter 1

Introduction

1.1 Motivation

The development of software for sequential, uni-processor machines is well-supported by programming

environments that include, as a matter of course, program debuggers. Few programmers can claim

to write fault-free software the first time round, and sooner or later most programmers find a need to

utilise program debuggers to aid the debugging process.

The ANSI/lEEE standard glossary of software engineering terms defines debugging as , "the process

of locating, analyzing and correcting suspected faults", where fault is defined to be an accidental

condition that causes a program to fail to perform its required function.

Sequential debugging (the process of debugging a sequential program) is essentially a cyclic process.

Given a faulty program, the user develops and tests a variety of hypotheses to determine the cause of

a program fault. Once a suspicion is confirmed, a repair is attempted and then validated. If the fault

is eliminated, all well and good. If it is not eliminated, the user repeats the process. In the

development of hypotheses, the user typically suspends program execution at various points in the

program, known as breakpoints. At such points the system state (contents of program variables,

memory and registers) is examined for anomalies. If no anomalies are detected, the execution is

continued to a breakpoint later on in the code. Alternatively, the program is re-executed and

suspended at a breakpoint earlier on in the code. This enables the user to home-in on suspected faults.

The single most important contributing factor to the success of cyclic debugging is the single thread

of control of sequential programs - using the same input data, the exact same program execution path

can be faithfully reproduced each time the program is executed.

The development of software for parallel, mUlti-processor machines lags behind its sequential

counterpart, especially in the area of support tools [Pan91b]. Whilst there may be an ever-increasing

number of parallel machines, parallel programming paradigms, and languages, support tools like

1

2

parallel debuggers (debuggers for parallel programming languages) have not attracted the same degree

of attention.

Debugging parallel programs is not an easy task, and is complicated by the following factors:

• Parallel program execution lacks reproducibility. A parallel program is composed of

mUltiple threads of control each executing asynchronously. Processes may

communicate with other processes or access shared variables. Where two or more

processes attempt to access a shared variable simultaneously (one to read and the other

to write), a race condition exists as a result of which either the new or the old value

contained in the shared variable is accessed. Should the parallel program be re

executed, even with the same input data, there is no guarantee that, with race

conditions, the same path of execution will be followed.

• Where such race conditions exist, the setting of breakpoints or the simple insertion of

write statements in the parallel program can alter a critical race and consequently the

path of execution of the parallel program. As attempts are made to learn more about

the faulty behaviour, the fault may disappear or reappear in another form. This "probe

effect" [Gai86] severely hampers the debugging process.

• Parallel program non-determinism that arises from race conditions is difficult to

counter. It may depend on CPU load or network traffic, neither of which the user can

control.

• The order of occurrence of events in a parallel program is difficult to determine. The

lack of a global state [Lam78] complicates and confounds attempts to order the events

of concurrently executing processors.

A variety of techniques have been adopted by current parallel debuggers [McD89], each of which

contains limitations:

• Cyclic or breakpoint-based parallel debuggers employ traditional cyclic debugging

techniques. For each active process, a debugger is spawned. For programs that do

exhibit race conditions, the technique is inadequate. Faults can be suppressed whilst

the debugger is applied only to manifest themselves again when the debugger is

removed.

• Event-based debuggers view parallel programs as parallel sequences of events. Such

event sequences are generated, stored in event histories and then analysed. The

parallel program must be instrumented directly, or indirectly at the run-time support

system level, to generate event information which might then render it subject to the

3

"probe effect".

• Visual debuggers, based on program events, attempt to provide a display of the flow

of control and the distributed data structures associated with the parallel program. The

volume of information generated by the parallel program that must be organised by

the debugger is overwhelming.

• Static analysis debuggers perform a dataflow analysis on the parallel program without

executing the parallel program. The class of error that can be detected is limited to

synchronisation errors (deadlock) and data usage errOrs (uninitialised program

variables).

A further technique that builds on the event-based technique is the behavioural model technique. The

event-based technique concentrates attention on the generation and analysis of event sequences. In

the behavioural model technique, program execution is preceded by a specification of the expected

behaviour either of the program as a whole, or of part of the program. The specification is used to

construct a model of the program's expected behaviour which is then compared with the actual, run

time behaviour. The behavioural model is constructed in terms of program events, and validated in

terms of sequences of actual program events, in which case the term event-based behavioural model

technique is applicable. Behavioural model debuggers improve on event-based debuggers: a

structured approach to debugging is adopted, and violations between expected and actual behaviour

are detected automatically.

Linda! [GeISS) is one of many parallel programming paradigms. It is not a programming language

on its own but rather a collection of primitives which, when implemented in a standard sequential

language, gives rise to a new parallel programming language or Linda dialect. Linda is based on a

central content-addressable store, known as tuple space, in which data, known as tuples, are stored and

removed by the constituent processes of a parallel program. Typically, a master program places work

into tuple space, and slaves remove the work, act on it, and then return the results to tuple space for

extraction by the master. Processes always succeed in adding tuples to tuple space but may be blocked

on removal of a tuple pending tuple availability. Furthermore, processes are both spatially and

temporally decoupled: spatially decoupled in that processes produce tuples without knowledge or care

of which process/es may consume them, and temporally decoupled in that communication takes place

via tuple space and not directly or explicitly between processes (both processes need not

simultaneously engage in the communication). There is no notion of explicit message passing between

processes, message passing timeouts, shared variables, synchronisation, or timing considerations of any

kind. Processes simply add tuples to, or attempt to remove tuples from, tuple space. Processes may

make no assumptions about the time at which a tuple space operation takes place or its duration. The

duration of a tuple space operation is defined as non-deterministic. Linda not only exhibits

1 Linda is a trademark of Scientific Computing Associates.

4

characteristics that favour successful debugging, but also presents an attractive environment in which

to apply behavioural model techniques of debugging: by virtue of the Linda primitives, Linda

processes decompose naturally into parallel and sequential components, spatial and temporal

decoupling promote a process-oriented approach to debugging, program events can be based on Linda

primitives, and the non-deterministic duration of tuple space operations provides an appropriate niche

for debugger activity.

This thesis investigates Linda's amenability to debugging using an event-based behavioural model

technique of debugging.

1.2 Summary of Results

The investigation shows that Linda programs are amenable to debugging using an event-based

behavioural model technique of debugging. The programming paradigm upon which Linda is based

lends itself to debugging, and promises some respite in respect of the problems that beset parallel

program debugging.

The investigation includes:

• A study of the Linda parallel programming paradigm, its amenability to debugging,

and a model for debugging Linda programs using Milner's Calculus of

Communicating Systems (CCS) [Mil89).

• The definition of an experimental Linda program specification language.

• The use of the specification language to construct models of expected behaviour of

Linda programs.

• The use of an event-based behavioural model technique of debugging to debug Linda

programs.

A Linda program is composed of a suite of processes each executing asynchronously but

communicating with each other indirectly via tuple space. An individual process is composed of Linda

primitives (the parallel component or coordination component) and other host language code (the

sequential component or computation component). This separation or layered composition of Linda

primitives and other host language code conveniently demarcates the area of interest of a parallel

debugger. Whilst the computation component is crucial from an individual process point of view, it

is the Linda primitives and their consequent interaction with tuple space that is the province of a Linda

debugger. Tuple space represents the core of the Linda system. It sanctions all tuple space activity,

and is the sole keeper of tuple space information. Tuple space alone embodies the (parallel) state

5

space of a Linda program. The primitives and tuple space interactions serve as the atomic events of

a Linda program.

To debug the parallel aspects of Linda programs, attention need merely be focussed on Linda

primitives and their consequent interaction with tuple space, and tuple space itself.

Tuple space interaction time and the duration of the ensuing interaction is defined as non-detenninistic.

This implies, that, at any stage in the program's execution, tuple space interaction can be suspended

and the state space examined, with impunity. Processes continue their execution until they attempt

to execute a Linda primitive at which stage execution is suspended until tuple space interaction is

again permitted. Interaction can be suspended at any time (between, during, just after, and just before

completion of a tuple space request). Whilst tuple space interaction remains suspended, a consistent

state space prevails, and any number of checks and analyses can be performed.

The Linda program specification language proposed by this thesis, based on Milner's CCS, enables

the user to specify accurately the actions of a Linda program, in terms of Linda primitives and their

interactions with tuple space. It excludes all computation detail, and forces the parallel component

of a Linda program into the limelight. The specification phase precedes any coding, and naturally

fonns an integral part of the program design effort.

Program specifications are used to construct models of the expected behaviour of Linda programs.

Models are constructed that represent the expected behaviour of Linda programs (as a collection of

the behaviour of individual processes), at various levels of abstraction and from various points of view.

The models of expected behaviour are used as the basis of an event-based behavioural model

debugger. The debugger fonns an integral part of the Linda system, requires no program

instrumentation and is not subject to the "probe effect". The models also serve as a basis for static

analysis of the Linda programs.

To test the effectiveness of the technique, an experimental Modula-2 [Wir85] Linda system with

debugger has been implemented. It confonns to the event-based behavioural model approach in which

Linda programs are specified, "fleshed out" in the Modula-2 Linda dialect, and then executed. At run

time, the expected behaviour is compared with the actual behaviour, and inconsistencies are reported.

Experience shows that:

• the specification phase forces the programmer initially to pay attention to the parallel

component of the program and to delay consideration of the sequential component

until later,

• the specification language is able to specify the parallel component of Linda programs

6

at varying levels of specificity and abstraction, and from various points of view,

• debugging is performed in a more structured manner, and on the basis of a formal

model of expected behaviour, than is the case when an intuitive, "seat of the pants"

approach is adopted,

• fault detection is automated,

• the debugger and the Linda system are well-integrated - after program specification,

the system functions, from an external point of view, as a standard Linda system.

1.3 Thesis Organisation

This thesis is organised as follows:

Chapter 2 outlines previous work related to event-based and behavioural model debuggers.

Chapter 3 describes the Linda parallel programming paradigm and an experimental Modula-2 Linda

system. A number of example Modula-2 Linda programs can be found in Appendix E, and a

discussion of the implementation of the Modula-2 Linda system can he found in Appendix F.

Chapter 4 investigates Linda's amenability to debugging, and presents a model for debugging Linda

programs. The investigation makes use of the formal specification language CCS. A brief discussion

of the CCS notation is contained in section 4.2, and a glossary of symbols can be found in Appendix

A. CCS specifications of the full Linda system and the full Linda system with debugger can be found

in Appendix B. An alternative model for debugging Linda programs that approaches the debugging

problem from a different angle, but that maintains the same advantages inherent in the first model is

also developed. A discussion of it, together with the corresponding CCS specifications, can be found

in Appendix C.

Chapter 5 introduces an experimental specification language in which Linda programs can be

specified. The syntax of the specification language can be found in Appendix D. A number of

example Linda program specifications can be found in Appendix E.

Chapter 6 indicates how the specification language is used to construct models of the expected

hehaviour of Linda programs. The models are then used as the basis of a behavioural model debugger

for Linda. A discussion of the implementation of the Modula-2 Linda system with debugger can be

found in Appendix G.

Chapter 7 presents concluding remarks and topics for future research.

Chapter 2

Related Work

The topic of parallel debuggers has, and will continue to be, the focus of attention of many researchers

[pan91a], [pan93]. The problem has been approached from a variety of angles ranging from the

application of traditional sequential debugging techniques in the parallel domain, to event-based

debuggers, to behavioural model debuggers, to visual debuggers, and, finally, to debuggers that

perform static analyses on parallel programs, each heralding varying degrees of success (good reviews

are contained in [McD89] and [Moen]).

The state of parallel debugger research can be described succintly as follows: The literature contains

relatively few reports on traditional, cyclic-based parallel debuggers, for example [Ada86], [Gri88],

most of which are set aside for their inability to deal with the multiple threads of control, and the

"probe effect" . Debuggers that perform a variety of static analyses on parallel programs are increasing

in popularity, expecially when the "probe effect" stifles all progress using other techniques, but the

unacceptable time and space requirements of the technique retards their widespread adoption (a broad

review is contained in [Net91]). Visual debuggers [Utt89] gained popularity by reducing the

complexity of the program by the use of graphics but they remain hamstrung by the volume of

information that must be processed. Interesting attempts have been made to construct debuggers that

operate on automatically parallelised code but give the user the impression that the target program is

still the original sequential program [Pin91], [Coh91]. Transformations from parallelised code back

to sequential code cause problems. Novel use of sound to debug parallel programs (the execution of

the program is translated into a sequence of sounds by associating each program construct with a

distinct sound) has also attracted passing interest [Fra91]. Event-based parallel debuggers (see section

2.1) that view parallel programs as parallel sequences of events and analyse them accordingly, capture

the lion's share of the parallel debugger market, whilst behavioural model debuggers (see section 2.2)

that construct expected behaviour models of the program and compare them to actual behaviour, are,

for the most part, still on the periphery.

This chapter describes research efforts related to the implementation of event-based parallel debuggers

and behavioural model parallel debuggers, most of which are event-based. The study attempts to

7

8

formulate a framework within which behavioural model debuggers can be examined and in terms of

which they can be constructed.

(Event-based behavioural model techniques of debugging are applied in sequential debuggers.

Although this thesis addresses parallel debuggers, a short review of such sequential debuggers is

included for completeness.)

2.1 Event-Based Debuggers

2.1.1 Introduction

Event-based debuggers cover a broad spectrum of parallel debuggers, and are distinguished by their

event-specification and recognition capabilities, as well as the actions that are taken as a result of the

occurrence of an event Some debuggers consider every statement in the parallel program an event,

whilst others would consider interprocess communication only as an event Still others provide the

user with sophisticated mechanisms by which patterns of events or compound events can be specified

and recognised They are, however, bound by their common view of parallel programs as parallel

sequences of events. Once an event has occurred, it can be disregarded, recorded for later analysis

or replay, used to support a graphic display of program execution, or used as a reason to suspend

program execution and to transfer control to the user. (It is a moot point whether the highly

sophisticated event-based debuggers with advanced pattern recognition and reporting facilities are

event-based or event-based behavioural model debuggers, and hence the need for a study of event

based debuggers.)

2.1.2 Issues

McDowell [McD89] raises a number of issues relating to event-based debuggers:

What constitutes an event?

How are events defined? Is it necessary to instrument/annotate either the target program

source code or run-time support system to generate events?

Can compound events be defined in terms of primitive events?

How are events generated? To what extent is the "probe effect" present in the event

generation process?

How are compound events recognised?

Are any events regarded as unimportant? Is the recognition process capable of ignoring or

filtering-out unimportant information?

What happens to an event after it has been recognised? Is event information recorded and

later analysed at the user's convenience, or is it given graphical interpretation and displayed

9

on a monitor?

2.1.3 Discussion

An event refers to the occurrence of some interesting activity during the execution of a program. The

term "interesting activity" has attracted broad definition in the literature. Following the trend

established by sequential debuggers, the execution of each and every program statement is an event

([Ols91a), [Rub89), [Zer91) . Calls to system and user-defmed procedures and functions are events

([Ba189), [Hse89)). Whenever the status of program entities, for example, procedures, functions,

program variables, expressed in terms of and coupled with certain boolean conditionals and boolean

guards, known as commands, becomes true, it constitutes an event ([Lop89), [Rub89), [Zer91)).

Changes in these entities, without any coupling, [Gai85), and a simple program variable and label trace

([GoI89), [Hse89)) constitute an event. Debuggers based on program annotations (see below) provide

access to all, or parts of, the source program in terms of which events may be described ([Bru83),

[Luc91), [Ros91)). Process creation, termination and interprocess communication are events ([Bai86),

[Car91), [Els89), [Gai85), [GoI89), Hou89), [Hse89), [LeB85a), [Ros91), [Rub89), [Smi85), [Ven89),

[Zer91)). For low-level hardware-based debuggers ([Laz86), [Rub89), [Zer91 D, bus activity at the

memory address and I/O channel level are events. There is broad consensus that activities related to

processes are important events that should command priority. There is a measure of support for

regarding procedure and function entry/exit as important, whilst most argue that should events be

described at a lower level of granularity than that, the number of events that would be generated would

be voluminous and too detailed. The nature of the implementation of the debugger

(hardware/software) may promote a higher or lower level of granularity. There is a need to isolate

a critical set of activities for which primary events are generated that provides an accurate picture of

the program's behaviour and that is neither too detailed nor too succint.

Most debuggers provide a core set of primitive events that usually relate to process management and

system utilities ([Els89), [Hou89), [Smi85), [Ven89)). [Lin89), [Ven89) only provide access to a fixed

set of events. These events are defined implicitly and require no user intervention. User-defined

events are normally indicated by source code instrumentation/annotation ([Bru83), [Gai85), [GoI89),

[Hse89), [KiI91), [Luc91), [Rub89), [Zer91)). The process could be as simple as the insertion of a

special sequence of characters prior to a program statement ([Luc91), [Ros91)) or as complex as event

commands that are fed to the debugger prior to or at run-time ([Bai86), [Bat89), [Laz86], [LeB85a),

[Lop89), [Ols91 a D. Compound events are also defined. Compound events attempt to relate a number

of primitive events into a single event. They are usually defined in terms of primitive events, and may

subscribe to a hierarchy in which further compound events may be defined in terms of primitive events

and newly-defined compound events ([Bai86), [Bat89), [EIs89), [Hse89), [0Is91a), [Ros91), [Rub89),

[Smi85), [Zer91 D. Path rules are also used to define compound events [Bru83). Path rules contain

the specification of the compound event as a generalised path expression - a path expression [Cam74)

with predicates, history variables, and path functions.

10

Event generation is almost exclusively performed by extra code added to the target program or run

time support system. Target programs that have been instrumented to include event definitions are

submitted to a preprocessor tbat converts the definitions into calls to debug routines that generate event

messages. These messages contain information regarding the nature of the event and some form of

timestamp to facilitate the generation of a partial order of even Is. Compound evenls are generated as

a result of the occurrence of ils constituent primitive evenls, and also manifest themselves in the form

of messages. It bas become increasingly popular to restrict tbe set of evenls to a few primitive evenls

that are generated by the run-time support system. The target program does then not require any form

of manipulation to ready it for debugging. With tbe possible exception of hardware-based debuggers,

all debuggers fall foul of the "probe effect" during event generation. The instrumentation of the target

program code and/or the run-time support system alters the execution path of the program and

precludes reproducibility. Most systems make a concerted effort to reduce the impact of the intrusion

by restricting and improving the efficiency of the event-generating code, and by reducing the event

message size. There is a need to investigate debugging methods and programming paradigms in which

debugging can be performed that are non-intrusive.

Vast numbers of events are generated during the execution of parallel programs - in strict quantitative

terms, it represents many megabytes of information. In event-based debuggers, evenls are merely

routed to some sink (file, conSOle) and the user is left to interpret the data. Most effort is concentrated

on the intelligent usage of the data. Whilst merely browsing through the event information using a

standard editor may suffice in a sequential environment, the complexity of tbe information collected

in a parallel environment necessitates a far more sophisticated approach. All event information can

be viewed on a scroll able display ([Gai85), [Laz86), [Lop89)) but the user is quickly overcome with

detail. Intricate windowing systems with folding capabilities tbat permit movement up and down in

the event information hierarchy provide some respite [Ven89]. Window-based execution environmenls

are also used ([Luc91), [Ros91)). The use of graphical interpretations of the underlying event

information greatly reduces the complexity of the data. User-defined or system-allocated views are

associated with certain data, and acls as an aid to extract deeper meaning from the data. The views

can be dynamic animations, scrollable graphs, or static diagrams ([Rub89), [Zer91)). The idea is to

reduce the textual information into a 2- or 3-D picture that represenls time, process and code. In other

systems, for each active process, a demon process ([Bai86), [Smi85)) is fired that collecls event

information as it is generated, and takes predefined action automatically. Researcb is also focussed

on tbe recording of event information in a bistory file for later replay ([Car91), [For89), [GoI89),

[LeB87), [Lin89), [Lop89), [Smi85)). Whilst the program executes, all event information is recorded.

On program termination, the user enters a replay system based on the recorded data. The system

replicates the execution path just followed, independent of all other paths that may be possible, in an

environment that usually permils variable execution speed and traditional debugging facilities, for

example, breakpoinls, program variable inspection.

The introduction of event-based debuggers has aided the development of parallel programs immensely.

Such debuggers are capable of detecting most program faulls but do encounter difficulty in dealing

11

with faults that are masked by timing perturbations. Most debuggers attempt to minimise the

intrusiveness of their technique. Replay systems attempt to outflank the issue entirely. Where no or

very limited "probe effect" is crucial, passive-monitoring of bus and channel activity has reported

success. Of primary concern with event-based debuggers is the necessity for the user to infer or

deduce from event streams the nature and underlying cause of program faults. The process is not

automated.

2.1.4 Details of Event-Based Debuggers

The following are a representative selection of event-based debuggers (some are referred to in the

preceding discussion). A short summary of each debugger is provided in which details of their

structure and operation are discussed. The intention of this section is to provide the reader with an

overall view of a particular debugger, and can be skipped without loss of continuity.

The following system implements an event-based debugger:

CBUG [Gai85) is a window-based parallel debugger for C [Ker78). It targets attention at both

low-level (program variables) and high-level (interprocess communication) aspects of the program.

Debugging tools include: snapshot dumps, conditional breakpointing, execution tracing, single

stepping, interactive breaks, process creation, and interprocess communication.

The C source code is annotated prior to compilation to install debug hooks (line numbers, labels,

jumps to CBUG entry point) that generate event information. At run-time, each process is associated

with a window, and a command entry window for debug commands.

The window-based environment provides the user with a "lively" display of the program as a whole,

its component processes, and its process interactions. The debug commands are mostly lOW-level,

cannot be structured into a compound command, and are excessively intrusive - "with slow tracing the

probe effect is very obvious".

Rather than executing on the same processor as the target program, the following event-based

debuggers are implemented on separate hardware:

DISDEB [Laz86) is an event-based debugger for the Mara system [Mar81]. Parts of DISDEB

execute on separate hardware to that on which the program being debugged executes.

The system is composed of a command interpreter and a number of separate software modules that

execute on individual Programmable Debugging Aid boards. The programmable boards monitor bus

12

and 110 channel activity, the occurrence of which is expressed in terms of events and sequences of

events as specified by the programmer via the global command interpreter.

At run-time, the occurrence of events is displayed on the operator's console.

DISDEB operates at a particularly low level - memory location addresses and 110 channel activity, and

counters. No higher level, abstract view of the program under scrutiny is permitted. It is claimed that

the use of additional, dedicated debug hardware precludes the "slowing down [of] the processes being

debugged", and that the user can control program execution, "while, in most cases, maintaining the

real-time operation of the target system". The lack of debugger intrusiveness is not convincing.

The Makbilan machine consists of two (almost identical) parallel machines, one on which the

target program executes, and the other on which the MAD (Monitoring, Animating, Debugging)

system [Rub89], [Zer91] executes.

Parallel programs are instrumented to generate notice of so-called interesting events (IE). Events are

categorised into user's simple IE, for example, loading and storing into a variable, breakpoints,

systems's simple IE, for example, process creation and termination, processor load, and hardware

simple IE, for example, a new value of various status registers. Compound events are "boolean

predicates interrelating the state of several simple events". The language in which the compound

events are defined has the full power of path rules [Bru83]. Events are generated, filtered to ignore

unimportant events and to trigger compound events (as described by the user), and finally used to add

to and to manipulate a shared database of debug information. Various views are associated with

specific events, and the data associated with the event are given multiple graphical interpretations on

a graphics display.

Simple and compound events specify possible scenarios of program execution. That certain events

(primitive or compound) do not occur, and hence are not displayed graphically, only indicates that the

system is not behaving as expected or as specified. There is no indication of where or why. The

utilisation of the second processor for the MAD system must reduce the level of debugger

intrusiveness but that amount which remains, together with the required program instrumentation, must

provoke the "probe effect". At the time of writing the article, the authors indicate that "[since] the

Makbilan parallel machine is currently under construction, ... we have yet to witness the full power

of non-intrusiveness",

13

The following event-based debuggers include a replay component that facilitates varying degrees of

post-execution analysis:

SPIDER [Smi85) provides mechanisms for accessing and controlling interprocess activities in

a mUlti-process system. It operates at a high level and specifically precludes program source code and

data access.

The SPIDER system is composed of a kernel that implements the mUlti-process model. At run-time,

a variety of separate processes are active: a kernel process, a user command interface process, zero

or more programs (one for each process), and zero or more fired debug demon processes. The kernel

is also modified to execute the debug demon processes and to manage the collection of process

transcriptions.

The command interface gives the user access to a variety of aspects of the system: interprocess

objects, interprocess events, programs in processes, and the transcription of interprocess events. The

kernel responds to such user commands, and either acknowledges the command and acts on it, or

informs the user of the occurrence of a particular event. Groups of commands can be housed together

in user-programmed demons. The commands are triggered when a predicate, a boolean expression

defined over information available in the kernel about processes and events, becomes true.

Interprocess events can also be recorded for replay. The replay process generates the recorded events

in the same way as processes would normally do under normal execution, except that the kernel is not

involved. These events can then be manipulated by the user or a demon as if under normal execution.

User interactions and demons interfere with the normal sequence of interprocess events. The set of

events is also rigid, and demons provide a limited mechanism for the construction of compound events

or higher levels of program abstraction.

PDME [Lop89) is both a sequential and parallel program debugging and measuring

environment that supports widely used debugging techniques and performance evaluation.

PDME operates in one of two modes: break mode where the user interacts with PDME via a console

to display the state of the target program, and to define an experiment, and run mode where target

programs are executed under the control of PDME, subject to an experiment, with results displayed

on the console or recorded in a file.

Experiments are defined in terms of commands that accurately describe an event and the action to be

taken as a result of the event. An event specification is composed of one or more accesses (a

specification of target program entities - procedures, variables, constants, program statements, and an

access mode - read, write, start, complete), and a conditional (a boolean expression over target

14

program variables, literals, constants). A guard (a boolean expression over target program variables,

literals, constants) may precede a command, in which case, the command is active (opened) or deactive

(closed). At run-time, the guards are evaluated, events are triggered when the execution reaches an

access point, and pursuant actions are taken. Results are routed to the console and/or recorded in a

file for later analysis.

The complexity of the overall experiment is determined by the complexity of the constituent

command specifications. Events are not predefined, nor rigid, and only limited by the ingenuity of

the user. A hierarchy of event specification is not permitted. For parallel debugging, the debugging

process is conducted at a very low-level, fraught with detail, and close to the source code. It is

difficult to see how a high-level, abstract view of process activity would be easily defined, if at all.

Ooldszmidt et al [OoIS9] provide an event-based debugger for occam [InmS4] programs.

The debugger is composed of two categories of tools: a language specific category in which the

program is instrumented to generate event information, and a language independent category in which

functions are provided that display, query, replay, and analyse event information.

The user inserts event-generating directives in the occam source code to trigger a program variable

and/or label trace, to set breakpoints, and to schedule priorities for the process. (Process creation,

termination, and interprocess communication is recorded automatically.) On in'l(ocation, the debugger

compiles the annotated program, and executes the code. During execution, event information is

recorded in a database which is analysed later. Entries in the database are timestamped using an

algorithm that reflects causality. Analyses on the event information contained in the database include

queries on the state of the computation at a particular point, and temporal assertions to be checked by

the assertion checker. Prolog [CloS4] is used to implement the analytic tools and the database.

The debugger successfully separates information gathering (language specific) from information

analysis (language independent) but is intrusive and generates vast amounts of information.

Clouds [LinS9] is an event-based debugger constructed as part of the support tools for the

clouds system [DasSS], [DasS7], [LeBSSb] that centres on execution replay.

The system supports a fixed set of basic events based on Object requests and responses. At run-time,

events are caught by the kernel interface, timestamped, packaged into event records, and stored in a

database. The database is then used to support execution replay under which the user views execution

at various, typically two, levels of detail, for example, inter-object communication and then detailed

object execution.

15

Filtering techniques applied during both event generation and replay reduce the volume of event

information. User-defined events are not permitted.

Carver et al [Car91) and Tai and Carver [Tai91) describe a debugger based on deterministic

execution debugging. The objective is to generate an instrumented version of a program such that on

repeated executions of the program, the same execution path is followed. The user can then debug

that specific execution with impunity.

The target program (P) is instrumented to generate event information, based on synchronisations

known as synchronisation sequences - "SYN-sequences". The instrumented program (P') is executed,

with certain input data (I), and event information is recorded that represents a particular execution path

(E). The original program (P) is then instrumented again, this time in the light of the recorded event

information, so that, on execution of the second instrumented program (P"), using the input data (I),

the same execution path (E) always results.

The technique does not require manipulation of the compiler, run-time system or operating system.

The debugger is language-based in that the program itself is instrumented, and it remains a program

written in the original language. It does incur a run-time overhead. Its value is found in its ability

to reproduce program behaviour. (Instant Replay [LeB87) is a similar replay effort centred on an

implementation-based instrumentation scheme. Agora [For89) is similar to Instant Replay.)

The following event-based debugger adopts an overt monitoring rather than debugging stance:

GRIP [Ven89) is a graphics-based, real-time monitor/debugger for occam programs [Inm84)

that makes use of a watchdog to monitor channel activity.

The basic unit of event is an interprocess communication or channel communication. A pre-processor

transforms the occam program so that channel run-time behaviour can be mapped to source code

channel names. At run-time, the channel watchdog captures channel activity information which is then

used to provide a graphical display of: the state of the "sending" and "receiving" processes connected

to the channel, the percentage activity of a specified channel in relation to all other channels, channel

latency, channel function, global channel activity, and a history reflecting the last few values

communicated over the channel.

The user can fold or unfold the screen display for a particular channel, and alter the execution speed

of GRIP to permit "a more controlled observance of channel behaviours".

The user has no control over the specification of events, is required to deduce errors from event traces,

and could be overcome by the volume of information that is produced by the watchdog. Selection of

16

a slower GRIP execution speed alters execution sequence - "timing perterbations (sic) are compensated

for", although the compensating mechanisms are not discussed.

2.2 Behavioural Model Debuggers

2.2.1 Introduction

Behavioural model debuggers build models of the expected behaviour of parallel programs prior to

program execution, and then check that the actual program behaviour, captured at run-time, matches

the expected behaviour. The program can then be said to be faulty or fault-free with respect to the

expected behavioural model. The automatic detection of program faults is a distinguishing

characteristic of behavioural model debuggers. Behavioural model debuggers are usually accompanied

by a specification language or specification mechanism in which the expected behaviour of the

program is specified.

2.2.2 Issues

A study of behavioural model debuggers reveals a number of basic issues:

How is the model of the expected behaviour of the target program specified? Is a special

purpose language used that is dependent on the target programming language, or is a generic

specification language used that is independent of the target programming language? Are the

specifications expressed in terms of underlying program events? Is a separate file used to

contain the specifications or are specifications merely annotations to the target program?

What is the relationship, if any, between the syntactic and semantic model of the specification

language and that of the target programming language?

Can the specifications be used for anything else other than to check program behaviour? Can

they be used to support or be part of the program design phase?

Is a model constructed of the expected behaviour of the program as a whole or only selected

parts of the program that the user deems important?

Does the specification process support the construction of higher levels of event abstraction?

What internal model or formalism is used to represent the behavioural model?

Other than operational semantics, does the model embody any further information regarding

the target program?

Does the debugger execute in its own space or that of the target program? Does the model

have access to the state-space or data-space or a subset of these spaces of the target program?

What mechanisms are used to recognise and match the actual and expected program

behaviour? To what extent is the "probe effect" present in the recognition process?

What information does the recognition process provide to the user during the debugging

17

process?

2.2.3 Discussion

Expected behaviour is specified using program annotations or a specification langauge. Most

specification languages are special-purpose and target a particular programming language and paradigm

(Bat89), [Bai86), [Bm83), [KiI91), [LeB85a), [0Is91a)). Whilst they may share common aspects, they

remain very distinct A close relationship exists between the semantic model of the debugger and that

of the target programming language and paradigm. For systems that specify behaviour by way of

program annotations ([Luc91), [Ros91)), the specifications are frequently provided in the target

programming language itself. Where the underlying semantic constructs for parallelism are distinct,

applicability of a specification language to a wide diversity of environments is unlikely.

Specification languages are subjected to the same level of rigour as any normal programming lanaguge,

that is, formal syntactic and semantic definition.

Specifications are expressed in terms of underlying events that are either primitive or user-defined.

Where specifications are defined by way of program annotations, any number of activities and program

entities can be included as the basis of events.

Specifications are stored in a separate file from which either program annotations are automatically

made, or entirely separate debug processes or demons are generated that embody the specifications.

Programs are also annotated directly with specifications. The submission of specifications in a

separate file to that of the target program is gaining in acceptability.

Most systems use the specifications for debugging alone. Some systems that require the user to

annotate the target program manually use the specifications to define module interfaces, even before

any code is developed [Luc91). It seems reasonable to use the specifications early on in the software

design and development phase. Authors refer to the usefulness of such ideas but go no further.

It is unusual that debuggers require that the entire program be specified. Most require that the user

specify that part of the program that is believed to be at fault, and then to whatever degree of detail.

Multiple specifications of the same piece of code, each from different semantic angles, are sometimes

permitted. In some debuggers, a detailed approach is required whereby all processes are specified

individually, and in full [Bai86]. Researchers argue that programmers ought to be able to concentrate

attention on suspect code rather than on the entire program. Full specification is also regarded as

onerous but this depends heavily on what is specified.

A variety of mechanisms are used to specify events, both primitive and compound: regular expressions,

constrained expressions [Hou89), extended regular expressions ([Bat89), [Els89), [Hou89), [KiI91)),

18

path expressions, predicate path expressions, generalised path expressions [Bru83), data path

expressions [Hse89), and path rules (a generalised path expression and a path action) ([Bru83),

[Rub89), [Zer91)). The progression of formalisms represents an increased desire to capture ever more

detailed events, to maintain greater past information upon which to base decisions about current event

validity, and to take action pursuant to the occurrence of an event Such specification formalisms find

realisation in finite-state automata ([Bru83), [Els89)), shuffle automata [Bat89), predecessor automata

{Hse89), graphs and trees (where leaf nodes represent primitive events and intemal nodes represent

compound events) [0Is91a).

Early debuggers tend to operate solely on the current event and information pertinent to it alone. The

event is verified, and the next event awaited. For more efficient debugging, it is apparent that more

information is required about the target program's execution than just the current event. History

variables, counts of specific events, and previous events are now maintained (and hence, the increased

complexity of internal model formalism) ([Bai86), [Hse89)). Some debuggers permit access to the

target program's state space or data space ([Bai86), [Bru83), [Els89)) but most maintain a subset of

these spaces from which information is gleaned.

Debuggers that are implemented as separate processes ([Bai86), [OIs91a)) execute in their own state

space. Debuggers that are implemented in the form of program annotations execute in the same state

space as the target program [Luc91) and, of course, have access to those spaces (program annotations,

scattered throughout the target program, are converted into target program source code and compiled

together with the target program). The latter technique runs the risk of the target program corrupting

the debugging code. Separate state spaces are preferable but do provide some hindrance, if the state

space of the target program must be navigated.

The "probe effect" is as present in behavioural model debuggers as it is in event-based debuggers.

Events are generated, compound events constructed/recognised, and then tested against behavioural

models, all of which require an element of time. For systems that suspend process execution whilst

an event is tested, the "probe effect" is more manifest.

The information that is presented to the user during execution is dependent on the nature of the

specifications. They may be specifications of behaviour that may not violated (and if they are, a

message is generated) ([Bat89), [EIs89), Hou89), [LeB85a), [Ols91a)), or specifications of events that

may occur (and that on occurrence cause a message to be generated) ([Bai86), [Bru83), Hse89),

[Luc91), [Ros91)). Where selected sections of the target program are specified as events, the debugger

may generate no information - no primitive or compound event is recognised. The debugger may

inform the user of the occurrence of an event or execute certain commands without user intervention

[Bru83) . For debuggers that require a full specification of the target program, each event is checked

against the behavioural model, and mismatches may result in target process suspension or an alert to

the user [Bai86). Some debuggers provide the user with partial match information [Bat89).

Essentially, if the specification is partial, the debugger informs the user directly or indirectly, via some

19

predefined action, of the occurrence of some event If the specification is in full, each event is

checked and mismatches are reported. It is possible, that should the specification be in full and certain

state information be maintained that some form of analysis be performed on the internal model, and

answers to questions of deadlock be provided.

The primary contribution of behavioural model debu(!&ers is their formal approach to debugging, the

possible use of the behavioural models as an aid to software design and development, and the

automatic detection of violations between expected and actual behaviour.

2.2.4 Details of Behavioural Model Debuggers

The following are a representative selection of behavioural model debuggers (some are referred to in

the preceding discussion). A short summary of each debugger is provided in which details of their

structure and operation are discussed. The intention of this section is to provide the reader with an

overall view of a particular debugger, and can be skipped without loss of continuity.

2.2.4.1 Sequential

The following debuggers are event-based behavioural model debuggers for sequential environments:

Dalek [Ols91a), [Ols91b) is an event-based behavioural model debugger for sequential C

programs, although the authors express an intention to extend the model of debugging to concurrent

programs. The authors state that current sequential debuggers have limited control over actions taken

at breakpoints, and have no mechanisms by which "several logically related breakpoints [can be

correlated) into a single, more abstract occurrence". Dalek attempts to overcome these problems.

The user is provided with a general-purpose debugging language, based on the GDB debugger

language [Sta89), in which events are defined, raised, recognised, and combined. High-level events

are defined in terms of primitive events, which in turn are defined to capture the occurrence of any

interesting activity in the code's execution. A directed graph is used to store event specifications, in

which leaf nodes represent primitive events, and nodes "higher-up" in the graph (interior nodes)

represent high-level events.

At run-time, Dalek executes as a separate process to that of the target program being debugged.

Control is transferred to the Dalek process at user-specified breakpoints in the target program's

execution at which time events are raised which might be used to raise higher-level events.

[San93) describes extensions to this work. Instead of using in-line code to perform the checks,

separate tasks are spawned to check the target program code.

20

Analyzer [Luc91] is a specification-based debugger for Anna (annotated Ada) [Luc87].

Using the Anna specification language, Ada [Geh84) programs are annotated to include specifications,

in terms of program requirements, of the expected behaviour of the program. The Analyzer converts

the specifications into code which, together with the program code, is then compiled in the usual way.

At run-time, the target program is executed under the control of the debugger to which control is

transferred whenever the program violates a specification.

It is not a requirement of the system that the entire program is annotated - the user uses annotations

to home-in on faulty code. The automatic detection of violations of specifications, the structured

debugging process, and its usefulness in earlier stages of program development (as formal

specifications of module interfaces) are attractive components.

2.2.4.2 Parallel

The following are typical event-based behavioural model debuggers for parallel environments:

Baiardi et al [Bai83b], [Bai86) describe an event-based behavioural model debugger for a CSP

based [Hoa78) language ECSP [Bai81],[Bai83a].

The behaviour of the processes constituting the parallel program are each specified in terms of atomic

event specifications that describe either channel communication, process termination, or the

connection/disconnection of one process to/from a set of input ports of another process. An in-house

specification language uses these events to define one or more partial orders of events for each

process. The partial order of events represents the allowed sequences of process interactions for a

particular process. For each process, a debugger process (implemented as an ECSP process) is

launched that embodies these specifications. Atomic event generation is performed by an instrumented

run-time support system that would otherwise normally handle the actions upon which the atomic

events are based. At run-time, the debugger processes are informed of events, and these are then

checked against the expected behaviour. Whilst an event is being checked, the process that generated

the event is suspended. If the event is permitted, the process is resumed, otherwise control is returned

to the user at which stage, the process can be terminated, the whole program can be aborted, or the

values of certain variables can be changed and the process resumed at a later point

The model of the expected behaviour of the program includes aspects of both a denotational and

axiomatic model: denotational in that it describes process state and possible sequences of events that

may occur, for example, communication with this process then that process, and so on, and axiomatic

in that it is expressed in terms of events and the number of occurrences of each event, for example,

a particular event must occur after a number of occurrences of some other event.

21

A special delay operator in the specification language ensures that whilst a process is suspended on

a check, all other processes that are involved in a non-deterministic event choice together with the

suspended process are delayed.

The debugger is significant in that the semantic model of the debugger follows the ECSP language

closely, that the behaviour of individual processes is specified and not the program as a whole, and

that the specifications form a hierarchy from event specifications to behaviour specifications.

However, the instrumented run-time support system, process delay and the detailed specifications that

are required mitigate against the debugger.

Bruegge and Hibbard [BruS3) discusses the use of path rules to specify the expected behaviour

of sequential and parallel programs and to define the aCtion to be taken when expected and actual

behaviour differ. (The paper addresses the use of path rules as a means of debugging primarily

sequential programs but concludes with a discussion of its applicability to parallel programs. Its

importance lies more in the parallel than the sequential domain and so is included here.)

Path rules consist of an event recognition part (a generalised path expression) and an path action (a

function that is called on match/mismatch of an event). Processes are instrumented to include such

path rules, and the component path functions and path actions are executed as the computation

proceeds.

Path expressions are a convenient formalism for the specification of the execution path, control flow,

of a parallel program. The development of generalised path expressions can be traced back to basic

path expressions. Basic path expressions are regular expressions, with operands known as path

functions, that can be recognised by finite-state automata. Andler [And79) developed predicate path

expressions by extending basic path expressions to include history variables, TERM and Acr, for

descibing the history of computation, and predicates. Generalised path expressions extend predicate

path expressions by enhancing the nature of the path function, by permitting the inclusion of any

program variable in a predicate, and by providing a pre-defined path function, to refer to the change

in state of a variable.

Bruegge notes that path rules automatically detect behavioural violations (the user need not make any

deductions from traces), reduce the volume of output data necessary to monitor the system, and permit

observation of the system at a level of abstraction in which the user is currently thinking. The use of

path expressions as the basis of a parallel debugger is discussed briefly but the success or possible

success of an implementation is not specified. It is not understood how the level of intrusion would

not be significant.

22

Bates describes work on behavioural abstraction [Bat83a] and event-based behavioural

abstraction [Bat83b], [Bat89] that forms the basis of an event-based behavioural model debugger.

Characteristic atomic program behaviours are described in the Event Definition Language (EDL)

[Bat82], [Bat87]. Each description is divided into three sections: the event class (primitive or

clustered/compound), for compound events, filtering conditions that describe relationships between

event classes constituting the compound event, and a set of expressions that bind values to event

instance attributes. Compound events are described as a combination of primitive events using

temporal and relational constraints. Each event has a time and location attribute associated with it.

These descriptions constitute the model of the expected behaviour of the program.

The run-time support system is instrumented to generate atomic events, for example, task creation,

open-file. The events are routed to an event recogniser that matches these events/sequence of events

with the primitive or compound event specifications. On a successful match, an event instance record

is generated and is transmitted to the user for notification. Not all atomic events are of interest to

primitive and compound event specifications, and unimportant atomic events are filtered from the

event stream.

The need to filter event information to gather only important events and the need to recognise patterns

of events (for compound events) rules out the use of a finite-state automaton behaviour recognition

formalism, and necessitates the use of a shuffle-automaton (a shuffle-automaton is a finite-state

automaton-like formalism that fires on transitions based on groups of symbols rather than on single

symbols).

The generation of atomic event information and its distribution to an abstraction node of the toolset

does effect the order of process execution. Given that a program must be debugged, the user is not

required to provide models of its total behaviour but just models of those aspects that strike the user

as important for the purpose of debugging. Whilst this reduces the volume of specification that is

required, the user may never chance upon the faulty section of the program. Indeed, "when user

models match actual system behaviour, the user has attained an understanding of some aspect of the

system and might need to shift viewpoints or focus more closely on suspected components". The

degree to which the program will be debugged seems unnecessarily dependent on the programmer's

ability to specify ever more complicated compound events. A measure of relief is afforded by the

event recogniser that produces "information regarding the goodness of fit for models yet to be

satisfied", but the nature of this information is not specified.

Hseush and Kaiser [Hse89] describe a debugger that is based both on a data flow and a control

flow model, and that employs data path expressions as the debugging formalism. In data-oriented

debugging, problem or fault behaviour and program behaviour are described in terms of data, whilst

in control-oriented debugging, the behaviour or abstract entities are described in terms of control

23

constructs which are bound to the syntax and semantics of the base language.

Data path expressions extend generalised path expressions [Bru83] by permitting data events to appear

as path functions. An event is an assertion that a particular program state, point in the execution of

the program, or activity has been reached. Three categories of events are presented in data path

expressions: a data event, for example, an event is generated when a program variable contains a

particular value or is in a particular range of values, a control event, for example, an event is generated

when a particular procedure, function, or group of named statements is called, and a message event,

for example, an event is generated when a message is sent or received. The authors envisage the

construction of a partial ordering graph [Lam78] to represent the execution of the program, and against

which the data path expressions will be checked.

In [Hse90], their work is continued, and they describe a hierarchy of data path expressions using a

hierarchy of extended Petri net models (pet8!], and the use of predecessor automata as an

implementation vehicle for safe data path expressions (data path expressions that express general

bounded parallelism). A predecessor automaton is a finite-state automaton that fires on transitions that

are based both on the current event and predecessor events. It can thus recognise or generate partial

ordering graphs and strings.

The user specifies expected program behaviour in the form of data path expressions, and these are then

translated into a predecessor automaton. Hardware and software is instrumented to generate primitive

events, the occurrence of which are channelled to a data path expression recogniser. The recogniser

filters unimportant events, and regulates the stream of events to preserve partial ordering, before using

them as the basis for a transition in the predecessor automaton. At run-time, the system indicates

whether the data path expression was matched or not.

[Pon9!] is a more recent, although not much changed, account of the research.

Rosenblum [Ros9!] describes the use of the Task Sequencing Language (TSL) [HeI8S] to

specify, by way of program annotations, the correct behaviour of a concurrent program in terms of

patterns of events [Bat83b].

The TSL compiler transforms the annotations into calls to appropriate run-time procedures that

organise event information. Basic, user-defined and compound events are permitted.

At run-time, patterns of events are compared against the specification. If a specification violation

occurs, the program is suspended and control is transferred to the user interface. The interface

provides the functionality of a traditional symbolic debugger, for example, single-stepping and

breakpointing, but at a higher level of abstraction.

24

Execution replay is emphasised in the following event-based bebavioural model debuggers:

Radar [LeB85a) is a monitor/debugger that provides a post-mortem view of the execution of

Pronet [Mac82) programs. Pronet is significant in that it is composed of two sub-languages: a

network specification language (NETSLA) that is used to initiate process execution and to control the

communications environment, and a process description language (ALSTEN).

Primitive events, for example, process creation, termination, interprocess communication, and user

defined events are permitted. User-defined events are specified in the network specification, and

include details of actions that must be carried out on the occurrence of events.

At run-time, event information is generated by special communication libraries and recorded, together

with an event number (to provide a partial order of events), and replayed later using a graphical

display.

The facilities that are provided for user-defined events are limited, and no facility is provided to define

higher level abstract events. That event information is logged to a file, does reduce the level of

debugger intrusiveness but not completely. The authors argue that since message receipt is non

deterministic, suspending one process out of a group from which messages may be received (whilst

data is logged for it) does not preclude receipt of messages from the others in the group that are not

suspended.

Belvedere [Hou89) is a pattern-oriented, trace-based, post-mortem debugger that attempts to

match communication patterns with user-defined events.

Primitive events include GETs and PUTs of messages, and process and channel creation and deletion.

Patterns are described as abstract events using constrained expressions [Bat89). At run-time, as

primitive and abstract events are identified, they are placed in a relational database where they become

the target of queries, and the basis for the animation of process interactions.

Whilst the graphical component provides an improved understanding of process interaction, the authors

cite a number of problems: the lack of generality of the automatic animation displays, the modelling

and query language, and the behavioural model, and the limited system feedback provided for missing

or extraneous behaviour.

The Amoeba debugger [Els89) is an event-based debugger that, in addition to the provision

of facilities for event specification and capture, also provides many facilities that are found in

sequential debuggers, for example, memory inspection and modification, and breakpoints.

25

Primitive events are generated by an annotated run-time support system each time a process invokes

a system service. The user provides the debugger with patterns (sequences of events), filters

(mechanisms by which unimportant events are ignored), and recognisers (sequences of events are

specified making use of extended regular expressions that are then implemented as finite-state

automata for recognition purposes) directly or via a file. At run-time, events are generated by the

system, fed into the event stream where they are checked to determine whether they match any of the

patterns. On recognition of an event sequence, a list of user-specified commands is executed.

Commands that insert a new event into the stream can be executed at this stage. This affords the user

the opportunity of specifiying hierarchies of event abstractions based on the occurrence of sub-events.

The breakpoint facility and the annotation of the run-time support system disturbs the execution

sequence of the program. The debugger resides in the same dataspace as the process being debugged

(the debugger is implemented as a special library), and runs the risk of its data structures being

corrupted by the debugged process. The mechanism by which higher levels of event abstraction is

implemented, is unnatural.

The following systems build models of expected program behaviour not necessarily for debugging

purposes, but for monitoring, performance monitoring, or static analysis:

ChaosMON [Kil91) is a system designed to capture and display program performance

information. Whilst it is not a debugger, it incorporates a number of issues pertinent to the

specification and construction of behavioural models of programs. Essentially, the user specifies

models of the application program and its performance, and views performance accordingly.

An attribute language is used to create a description of the high-level application program. Model

components are mapped to program components (processes, objects), and attributes of components to

program variable expressions. A view language, based on Bates' work [Bat89), is used to create

performance models, specified as performance views. Primitive views are mapped to attributes of the

high-level program model, and abstract views are specified in terms of primitive views. These views

are used to introduce probes into the target program which generate information on which the graphic

displays of the program's performance are based.

Formal, operational models of the behaviour of target programs are the basis of an event-trace

monitoring system described by [Dor92). An abstract model of the behaviour of the target system is

constructed prior to system execution. It, together with event information that is produced by the

system, is then used to monitor the system.

Graph-grammars with grouped rules form the basis of the model formalism. In the formalism,

transitions are related to event instances, transition rules are related to an event, which is comprised

26

of a collection of event instances, and a sequence of transitions is related to an execution of the

system. The model also supports the addition of attributes and attribute evaluation rules to measure

system performance. The authors note that "the abstract behaviour of the system is described in terms

of abstract system views and transition rules, [whilst) the concrete behaviour of the running system

is formulated in terms of states and transitions".

Once the model is constructed, it is used to manage the collection of information that is generated by

an instrumented system. As events occur, they each represent a step of the monitored system which

can be interpreted by performing an operation on the system's model.

The system reduces the amount of information that must be collected in the event-trace by recording

events and not the event-instances that comprise the event

TOTAL [Sha90) is an Ada program static-analysis toolkit in which Ada programs are

expressed as Petri nets and analysed accordingly.

The toolkit is comprised of two subsystems: a translator subsystem that transforms Ada programs into

different representations, and an information display subsystem that provides the interface between the

user and the query analysis system. The translator subsystem, and the intermediate program forms are

of particular interest.

Although the ultimate goal of the subsystem is to produce a Petri net representation of the original

program, an intermediate form is used in which the program is expressed in the Ada Tasking Language

(All). The All is a formalism in which all aspects of an Ada program are specified that effect its

tasking behaviour. In the translation process, a special utility takes the original program and filters

out all program statements that do not effect its tasking behaviour, and expresses the remainder in

All. This representation accurately reflects the behaviour of the parallel component of the original

program. At this stage, rather than use it as the basis for a run-time debugger, it is used as the basis

for static analysis.

2.3 Problem In Context

A number of event-based and behavioural model debuggers are available, each of which approach the

problem from different perspectives. Whilst none of the debuggers solve the debugging problems

entirely, the individual techniques employed make valuable contributions to debugger technology.

Problems that continue to frustrate implementors include: the "probe effect" (in all its guises),

simplicity of event specification (both primitive, compound, and at various levels of abstraction),

simplicity and sufficiency of behaviour specification, and smooth debugger/target system integration.

27

Linda dialects exist for a variety of languages but studies of the underlying Linda paradigm, its

amenability to debugging, and, indeed, Linda debuggers are scarce.

DR.PAL (Distributed Real-time Program Animation Language) [Bus89] is an event-based

viewer/debugger that enables the user to develop, debug and view Linda programs. The user focusses

attention on specific aspects or "significant occurrences" of the algorithm by setting graphics flags that

are embedded within program comments. The flags trigger views or "graphical windows", generated

by code written in DR.PAL, that animate aspects of the algorithm. DR.PAL commands control speed

of program execution, view selection, and the variables that must be traced. The authors state that

program development effort and time are reduced, and that program data structures are more readily

understood. "Significant occurrences" are not detailed, nor is the nature of the DR.PAL language.

TupleScope [Ber90a] is an event-based monitor and debugger for Linda programs developed at Yale

University. It is graphics-based and provides the user with a clear view of tuple space activity. Tuple

space operations serve as events and potential breakpoints. At such breakpoints, the entire Linda

program is suspended. The user is also provided with the TupleScope Debugging Language to aid the

debugging process. Commands are constructed in the language that test tuple fields, tuple space

operations, and process numbers. The commands are fonnulated as boolean conditionals followed by

actions that are executed when the conditionals are true. Actions include Linda program suspension,

activation of a display filter, display colour change, and storage of the current contents of tuple space

to a file. A post-mortem replay facility is also provided. Whilst TupleScope ranks with the more

advanced event-based debuggers, the debugging process is not automated, suffers from a volume of

detail problem, and although the TupleScope Debugging Language does provide a higher level of

event abstraction mechanism, it is insufficiently powerful to describe complex behaviours.

This thesis addresses these particular (Linda) concerns and those described in the preceding sections,

in the context of an event-based behavioural model debugger for Linda.

• Unlike the hardware-based debuggers of ([Laz86],[Rub89],[Zer91]), most debuggers are

subject to the "probe effect". A study is made of the Linda parallel programming paradigm

to determine its amenability to debugging, and the extent to which the implementation of the

proposed debugger is susceptible to the "probe effect" .

• A limited, controllable, primitive event set is considered.

• Like ([Bai86],[Bat89],[Bru83]), a separate specification language is defined.

• Specification of expected behaviour by way of program annotation ([Luc91],[Ros91]) is not

deemed desirable (the code and data space of the debugger and the target program is usually

mixed), and a separate file is used to house the specifications.

• Despite some opposition to full specification of all participating processes [McD89] (undue

burden on programmers, volume of specification), Linda is receptive to such a strategy without

the reported disadvantages.

• A "probe-effect"-free event generation and collection mechanism is explored.

28

• A simplistic behaviour recognition formalism is sought The automata described by

([Bat89],[Bru83],[Hse89]) serve as starting points.

• A more simplified history file and replay system than (Tai91] is investigated.

• The debugger both utilises and produces information. Greater use of all this information, in

the software development cycle, is explored.

• The success of the debugger is partly based on transparency of the integration of the debugger

with the base Linda system. This issue is considered at all times.

Chapter 3

Linda

In this chapter the Linda parallel programming paradigm is discussed. The Linda model, inCluding

the basic primitives, certain implementation issues, as well as programming imperatives are presented.

An experimental Linda system is also discussed that represents an implementation of a Modula-2

Linda dialect.

3.1 Linda

3.1.1 A Brief History

Linda is a parallel programming paradigm that, in recent years, has aroused great interest in the

research community, not least of which for its pure simplicity.

First described in [GeI8S), and then in [Ahu86), [GeI88), [Car89a), it is based on the notion of a

central content-addressahle store, known as tuple space, and a handful of primitives that manipulate

tuple space. Linda programs are composed of a number of processes that use these primitives to add

and to remove information from tuple space. Linda comes to life when tuple space and the primitives

are implemented in some standard sequential programming language, and in so doing, gives rise to

a new Linda dialect. Distinctive to the paradigm is the intermediary role played by tuple space - Linda

processes communicate indirectly with each other via tuple space. As a result, processes are

temporally and spatially decoupled.

The Linda model has been used to implement efficient solutions for parallel searches for DNA

sequences, the travelling salesman problem, matrix applications, and database applications [Car88),

[Car90b).

The basic Linda paradigm has not escaped modification, and a number of variants have appeared in

29

30

the literature: Polymorphic Linda [But91a], Persistent Linda [And91], Multiple Tuple Space Linda

[Cia91], and Kernel Linda [LeI90].

Today, numerous Linda dialects exist across a broad spectrum of host languages:

C [Cla92],[Bj087],[Bus89],[She93]

Concurrent Smalltalk [Mat88]

Fortran [Sci93]

Lisp [Yue90]

Modula-2 [Bor88]

ProSet [Has91]

Prolog [Mac90]

Scheme [Dah90]

to name but a few, and implementation platforms: transputers (a popular platform), Sun, HP/Apollo,

Sequent, Encore, Cray, Convex, Intel iPSC, nCube, NeXT, Mac and i860 computer servers.

Commercially, Linda and Network Linda are available from Scientific Computing Associates, and

Tuplex is available from Torque Systems Inc.

Apart from new Linda dialects and implementations of Linda on different platforms, current research

targets more efficient implementations (tuple space organisation, tuple match strategies) [Car90a],

[Car93], and programming environments, for example, the Linda Program Builder [Ahm91a],

[Ahm91b].

3.1.2 The Basic Paradigm

The central components of Linda are tuple space and the Linda primitives.

Tuple space is a content-addressable store in which tuples are added and removed by Linda processes.

A bag, in which multiple copies of the same tuple may exist, implements tuple space.

Tuples are ordered lists of typed fields or elements, for example:

(3, 'heUo', 7.2)

is a tuple of 3 elements: an integer, a string, and a float.

Tuples are added to tuple space using the out primitive, for example:

out(3, 'hello', 7.2)

31

The process that executes the out primitive does not block - it adds the tuple to tuple space and then

continues to execute.

Tuples are removed from tuple space using the in or read primitives. They both specify a template

that is used to describe the tuple that must be removed, for example:

in(3, 'hello', 7.2)

read(3, 'hello', 7.2)

Fields in the template must be matched identically but formal parameters (known as "formal" tuple

elements) may be used, for example:

in(?I, 'hello', ?F)

read(?I, 'hello', ?F)

Here, the range of possible matching values is broadened to any integer for ?I (instead of just 3), and

any float for ?F (instead of just 7.2). On tuple match, the corresponding integer and float are assigned

to I and F respectively. In the case of in, the matching tuple is then removed from tuple space, and

in the case of read, a copy of the matching tuple is removed from tuple space. If more than one tuple

matches the template, one is chosen non-deterministically. This non-deterministic tuple selection is

an important trademark of the Linda paradigm. If no tuple matches the template, the issuing process

is blocked pending the arrival of a suitable matching tuple'.

Predicate forms of in and read are also provided:

inp(3, 'hello', 7.2)

readp(3, 'hello', 7.2)

that entail the same semantics as In and read but do not block on tuple template mismatch. They both

return TRUE, if a tuple match is found, otherwise FALSE, for example:

if inp(3, 'hello', 7.2)

then (* do something *)

else (* do something else *)

1 Linda does not prescribe any particular policy with respect to the action that must ensue on the arrival of a suitable
matching tuple. For any tuple that is awaited, a list of associated in and read requests may exist. Possible actions include:
service all read requests, and choose one In request at random; service a subset of read requests, and choose one In request
at random. [Mit92a] and [Mit92b] suggests that rather than blocking any unsuccessful requests, tlblocked rr requests are
merely re-submitted together with all new requests. This policy allows healthy tuple space competition to dictate the policy,
and hence, the greatest non-determinism.

32

So far, tuples represent passive data structures that are added to or removed from tuple space based

on tuple templates. So-called active data structures, or live data structures, are also permitted. Active

data structures represent some form of computation which, on completion, results in a passive data

structure. The eval2 primitive implements such active data structures. For example:

eval('square root', 25, sqrt(2S))

Thple space recognises the active data structure, implicitly creates a process to compute the value for

each tuple element, and awaits the results. On completion, the active data tuple

('square root', 25, sqrt(2S))

is replaced by the passive data tuple

('square root', 25, S)

which is then available for removal or copy.

A number of important features characterise tuples and tuple space operations:

1. Thples are not labelled or identified in any manner. On addition to tuple space, they become

anonymous and addressable or removable by content only. Tuple space requests are NOT of

the form

out(producerProcess, ConsumerProcess, <Tuple»

In(producerProcess, ConsumerProcess, <Tuple»

To produce a tuple, the name of the consumer is not required. To consume a tuple, the name

of the producer is not required. Linda processes are spatially decoupled.

Furthermore, consumer and producer processes need not execute simultaneously. Producer

processes can terminate before the consumer starts to execute, and requests for tuples can be

made before the relevant producer starts to execute. Linda processes are temporally

decoupled.

If point to point communication is desired, it can be implemented easily. Extra addressing

2 The implementation of the eval primitive is the most problematic of all Linda primitives, and has given rise to the
largest number of interpretations. The problem relates to the values that are bound to the arguments of eval, and the
environment and order in which the tuple elements are evaluated. Typically. arguments inherit bindings from tbe
environment of the process that executes the eval only for whatever names are cited explicitly, and no bindings for any free
variables. A non-deterministic argument evaluation order is best applied.

fields are merely added to the tuple, for example

out('prodprocname', 'conprocname', <Tuple»

in('prodprocname', 'conprocname', <Tuple»

33

2. Tuple space operations are not bound by a specific time frame. Tuple space requests are NOT

of the form

in«Tuple>, TlmeOutTime)

where TlmeOutTlme might indicate the maximum length of time the issuing process is

prepared to wait for <Tuple>. The paradigm does not place any upper or lower bound on the

length of time it takes to begin to service and to complete a request. The duration of tuple

space operations is non-deterministic.

3. Tuple space operations are atomic. Tuple space operations are dealt with completely before

new requests are considered.

3.1.3 Programming in Linda

Linda programming techniques are described in [Car86], [Car88), [Car89b], and [Car90b]. The basic

styles of parallelism, as well as the basic Linda application program data structures are presented. A

brief review follows:

1. Styles of Parallelism

a) result parallelism

The parallel computation is constructed in tenns of the result that must be produced. Many separate

but identical processes are spawned that generate part of the result For example, determine all prime

numbers between 2 and some limit: for each number in the range spawn a process that determines

whether the number is prime. Characteristic of result parallelism is the vast number of processes that

are spawned.

b) agenda parallelism

The parallel computation is structured on the master-slave model in which the master generates tasks

and the slaves do the work. Normally the computation is initiated by a master who spawns a group

of processes that then scavenge for work. The master generates tasks, the slaves seize them, complete

the associated work, and then submit the results to the master. For example, determine all prime

numbers between 2 and some limit: the range is divided into sections, each section of which is

converted into a task, which are then attended to by slaves. Characteristic of agenda parallelism is the

34

limited number of processes that are spawned, limited tuple space interaction and the implicit workload

balancing that occurs ("fast" slaves, or slaves that attend to a task of limited work, get more work

rather than idling).

c) specialist parallelism

The parallel computation is structured in terms of independent components each of which conducts

a specialised task. For example, determine all prime numbers between 2 and some limit: structure

the solution as a series of specialist sieves (from the Sieve of Eratosthenes), that is, a 2-sieve that

removes multiples of 2, then a 3-sieve that removes multiples of 3, and so on. Characteristic of

specialist parallelism is the pipelined approach, and the possibility of an uneven distribution of

workload amongst specialist processes.

Under Linda, agenda parallelism achieves greatest success.

2. Data Structures

Data is categorised as follows:

a) live data structures: a process represents the portion of the data structure that it will create

(appropriate for result parallelism).

b) distributed data structures: many processes share direct access to many data objects

(appropriate for agenda parallelism).

c) message passing: no data objects are shared but processes communicate information by

message passing (appropriate for specialist parallelism).

Distributed data structures include:

a) Semaphores

To execute a V on semaphore 'sem':

out('sem')

To execute a P on 'sem':

in('sem')

To initialise a semaphore's value to n, execute:

out('sem')

n times.

,

35

b) Tasks

Task creation:

out('task', TaskDescriptor)

Task withdrawal:

in('task', ?NewTask)

The set of task descriptors nonnally includes a "poison pill" - a task descriptor that represents

"no more tasks to be perfonned" . Slaves recognise the "poison pill" and commit suicide.

c) Name-accessed structures

Structures are given a distinct name, for example, 'count':

in('count', ?count)

(. some computation on Count .)

out(' count', count)

Note that the in provides mutually-exclusive access to the 'count' structure. The juxtaposed

use of in and out, as exemplified in the above example, is commonly found in Linda

programs.

d) Barriers

Barriers are mechanisms by which the overall computation can be synchronised:

out(' barrier' , n)

At the barrier, individual processes modify the barrier (they indicate that they have reached

the barrier):

in(,barrier', ?vaI)

out('barrier', val-I)

and await all other processes' arrival at the barrier:

read('barrier', 0)

e) Position-accessed structures

distributed array:

(,A', 1, 1, <element»

(' A', 1, 2, <element»

('A', 1, 3, <element»

(' A', 2, 1, <element»

and so on.

distributed table:

streams:

(' primes', 1, 2)

('primes', 2, 3)

(,primes', 3, 5)

and so on

(' stream', 1, vall)

(' stream', 2, val2)

('stream', 3, val3)

and so on.

The head and tail of the stream are controlled by two further tuples:

('stream', 'bead', 1)

('stream', 'taU', 3)

To read from the stream:

in('stream', 'bead', ?index)

out('stream', 'bead', index + 1)

in('stream', index, ?vaI)

To write to the stream:

in(,stream', 'tail', ?index)

out('stream', 'tail', index + 1)

out('stream', index + 1, newvalue)

36

37

3.2 An Experimental Modula-2 linda System

An experimental Modula-2 Linda system' was constructed so that the ideas developed in this thesis

could be tested in a real environment.

3.2.1 Modula-2 Linda

Modula-2 Linda restricts the user to the use of integers and strings as tuple element types.

The usual semantics are ascribed to out, in, read, iop, and readp, but eval has the following

semantics:

eval takes a single string tuple element that names an executable code file. The tuple

space server forks a new process that executes the code contained in the file. No

active data tuple is maintained nor does a passive data tuple result from the execution.

Users may also create processes independently of the eval primitive by merely executing the

appropriate Linda process code file.

3.2.2 An Example Modula-2 Linda Program

The following Linda program' implements the cross-product of two matrices. The solution is

modelled on the agenda style of parallelism.

Algorithm for the master process:

begin

start a number of worker processes,

add the relevant rows and columns of the two matrices to tuple space,

add the first work seed to tuple space, and

await the results

end.

} Details of the implementation can be found in Appendix F .

• Further examples can be found in Appendix E.

Algorithm for a worker process:

begin

loop

extract a work seed from tuple space,

place the "next" work seed in tuple space,

if the work seed is poisoned

end

end.

then terminate

else get the relevant row,

get the relevant column,

compute the cross product,

add the result to tuple space

MODULE mastercrossp ;
(*----------------*)
(* Modula-2 Linda programs Cross product of two matrices

Process I master

Implementation of the crOBS product of two matrices.
*)

FROM EasylnOut IMPORT WriteStrinq, WriteLn, Writelnti

TYPE
MATRIX - ARRAY [1 • • 3] OF ARRAY [1 • • 3] OF INTEGER;

VAR
Ml,K2 / M3 J MATRIX;
Index, I, J, Value I INTEGER;

PROCEDURE PrintMatrix (Matrix I MATRIX);
VAR

I, J I INTEGER;
BEGIN

FOR I , - 1 TO 3 DO
FOR J , - 1 TO 3 DO

WriteInt(M2[I,J], 4)
END;
WriteLn

END
END PrintMatrix;

BEGIN
(* initialise the matrices *)

MI[I,I] ,= l ' , MI[I,2] ,= 2 • , MI[I,3]
MI[2,I] ,- I ; MI[2,2] ,= 2 ; MI[2,3]
MI[3,I] ,- 1; MI[3,2] ,- 2 ; MI[3,3]

,= 3 ;
,- 3 ;
,- 3 ;

M2[I,I] ,= 4; M2[I,2] ,= 5; M2[I,3] ,= 6;
M2[2,I] ,= 4; M2[2,2] ,= 5; M2[2,3] ,= 6;
M2(3,1] 1 = 4; M2[3,2] 1= 5; M2[3,3] ,- 6;

38

(* start 3 workers *)
eval (. crossp') ;
eval (• crosap') ;
eval (, crossp') ;

(* add all rows to tuple space *)
FOR I ,- 1 TO 3 DO

oute 'r', I, MllI, 1], M[I,2], MIl,3]);
END;

(* add all columns to tuple space *)
FOR I ,- 1 TO 3 DO

out('c', I, M[l,I], M[2,I], M[l,I]};
END;

(* add work seed to tuple space *)
oute 'next', 0);

(* get the answers back - In any order *)
FOR Index ,- 1 TO 9 DO

in(?l, ?J, ?Value);
H3 [I,J] ,- Value

END;

(* print results *)
WriteString('First matrixl'); WriteLn;
PrintMatrix(Ml); WriteLni
WriteString('Second matrixl'); WriteLn;
PrintMatrix(M2); WriteLn;
WriteString('Cro88 Productl'); WriteLn;
PrintMatrix(H3); WriteLn

END mastercro8sp.

MODULE crosap;
(*----------*)
C* Modula-2 Linda programs Cross product of two matrices

Processt worker

Implementation of the cross product of two matrices.
*)

TYPE
VECTOR

VAR
ARRAY!l •. 3) OF INTEGER;

Seed, I, J I INTEGER;
Row, Col I VECTOR;

BEGIN
LOOP

(* get element number to compute *)
in('next', ?Seed};

(* set up next piece of work *)
out('next', Seed + 1);

IF Seed >- 9
THEN (* no more work *)

EXIT
END;

39

I ,= (Seed DIV 3) + 1;
J 1- (Seed MOD 3) + Ii

(* get the appropriate row *)
read('r', I, ?Row[l], ?Row[2], ?Row[3]);

(* get the appropriate column *)
read('c', J, 7Col[1], 7Col[2], ?Col[3]);

(* compute the result *)
out(I, J, Row[l]*Col[l] + Row[2] * Col[2] + Row[3] * Col[3]);

END
END crosap.

3.3 Conclusion

40

Linda is a sinlple model of parallel programming that employs a central content-addressable store,

known as tuple space, and a handful of prinlitives (out, in, read, inp, readp, and eval) with which

processes add and remove information, known as tuples.

Linda is not a language, but when tuple space and the associated prinlitives are implemented in any

sequential language, a powerful new parallel programming language results. In this way, many so

called Linda dialects have been developed.

Modula-2 Linda is an experimental Linda implementation. It supports tuple space and the six Linda

primitives (albeit with a restricted semantics for the eval-primitive) for a constrained set of tuple

element types (strings and integers). Notwithstanding these constraints, it demonstrates the Linda

programming philosophy adequately.

Chapter 4

A Model for Debugging Linda Programs

The previous chapter detailed the Linda parallel programming paradigm. This chapter presents a

model for debugging Linda programs that is based on behavioural model techniques of debugging.

An informal discussion of the model is followed by a formal approach wherein the basic Linda model

and the Linda debugging model are expressed in the Calculus of Communicating Systems (CCS)

[Mil89]. Observations are made and important properties are derived, in the Modal mu-Calculus

[Koz83]:

1. of the basic model that show that Linda programs are amenable to debugging, and

2. of the debugging model that show that the debugger avoids certain problems inherent in other

debuggers.

4.1 The Debugging Model

Behavioural model techniques of debugging require that the programmer specify the expected

behaviour of the parallel program prior to program execution. At run-time the actual behaviour is

compared with the expected behaviour, and inconsistencies are reported Any deviation from the

expected behaviour is deemed to constitute a program execution fault. The debugging process, as

such, begins with the specification of the expected behaviour (the static phase), is followed at run-time

by the comparison of the actual versus the expected behaviour (the dynamic phase), and culminates

with the declaration that the program satisfied its expected behaviour or with the detection of

comparison anomalies somewhere along the way.

Behavioural model techniques of debugging represent a much changed strategy with regard to

debugging than has been adopted previously (whether in the sequential or parallel programming

domain). Traditional techniques embrace an approach wherein the user sets breakpoints in the

program's execution path at which the program state is examined. If, in the sole opinion of the user,

41

42

all "looks OK", execution is allowed to proceed to the next breakpoint or to conclusion. Alternatively,

the user detects what is considered to be anomolous behaviour for which an appropriate solution can

be generated, and terminates the execution of the program. The user is required to deduce, from the

program state, reasons for correct or faulty behaviour. Whilst a plethora of facilities may exist that

aid the deductions, they remain mere tools. The success of the entire process is a direct function of

the user's deductive powers, and the use, as opposed to misuse or abuse, of the appropriate tools at

the appropriate time.

Behavioural model techniques attempt to remove much of the burden of the debugging process from

the user, and to locate the entire process in a more formal domain. The user is required to follow a

rigid sequence of steps that is aimed at a structured debugging process, rather than an ad hoc approach

that is based on useful tricks. In essence, the user plays a much more passive role.

Expected program behaviour is defined in terms of program events. A wide variety of program

actions can constitute a program event, and their definition varies from system to system. In the

simplest case, the execution of every program statement, every memory location access, indeed any

program execution action, is an event. Such a scenario is unquestionably all-embracing, but deficient

in that it makes no discrimination between useful/interesting events and events that are of marginal

significance. The volume of events that are generated is also quite overwhelming. A more useful

strategy is to regard event occurrence at a higher level of abstraction; for example, to regard the

execution of a procedure/function call as an event. So, given the following program fragment (Pi):

ReadData(a);

(* program code that excludes any procedure calls *)

ProcessData(a);

(* program code that excludes any procedure calls *)

PrintResults(a);

the corresponding expected behaviour, based on procedure/function calls, is:

Expected_Behaviour pf = ReadData(a).ProcessData(a) .PrintResults(a)

Here, should the program fragment be executed, the actual behaviour would match the expected

behaviour. If the expected behaviour was specified as follows:

43

Expected _Behaviour PI = ReadData(a).PrintResults(a) .ProcessData(a)

a program execution fault would be reported at PrintResults(a).

The use of procedure/function calls as events allows the behaviour of a program to be considered in

more abstract terrns and, on a practical note, reduces the volume of events to a more manageable level.

Unfortunately it does not discriminate between "important" and "unimportant" procedures and

functions.

In a parallel programming context, a discriminator could separate calls to procedures and functions

charged with the responsibility of process creation, process termination, and interprocess

communication from calls to other procedures and functions. Event lists generated as a result of the

occurrence of such calls would paint a picture of reasonable resolution of the parallel activity of the

program under inspection. But what of Linda?

Linda programs are composed of a suite of processes that interact/communicate indirectly with each

other via tuple space. Processes themselves are divided logically into a parallel or coordination

component, wherein the Linda primitives are found, and a sequential or computation component that

glues together the Linda primitives and the process as a whole. If processes are described purely in

terms of Linda primitives, a clear picture is obtained of the parallel nature of the processes. Should

the Linda primitives be the sole source of Linda program events, an equally clear picture is revealed

to the debugger of the parallel nature of the processes.

This work utilises the Linda primitives

out, in, read, Inp, readp, eval

as the source of Linda program events. For example, given the following Linda program fragment

(lpf):

inC?a)j

(* computation code *)

inC?b)j

C* computation code *)

outCa*b)j

44

the corresponding expected behaviour, based on Linda events, is:

Expected _Behaviour /PI = in(?a).in(?b).out(a-b)

Should the program fragment be executed, the actual behaviour would matcb the expected behaviour.

(It is worth noting that the Linda primitives, in all likelihood, find realisation in the form of procedures

and functions in the host language. In practical terms, the use of Linda primitives as the source of

program events translates to nothing more than the use of procedures and functions as the source of

program events, but discriminating against all procedures and functions that do not implement a Linda

primitive.)

In general, the expected behaviour of a Linda process is defined as an ordered collection of Linda

events. The expected behaviour of a Linda program is then defined as the sum of the expected

behaviour of the individual processes of which the Linda program is composed:

where: 1.

2.

P = set of all process identifiers

pEP

Given that some form of internal model of expected Linda program behaviour exists, run-time data

(actual behaviour) must be obtained against which to perform the behavioural con'iparisons. A Linda

environment is composed of a suite of processes and tuple space to which all processes, by way of

Linda primitives, appeal for attention. Since Linda events are based on Linda primitives, tuple space,

on attending to a Linda primitive, signals the occurrence of the corresponding Linda event, and

initiates a behavioural comparison. In practical terms, as each process (Process,) requests tuple space

attention by means of a Linda primitive, and gains attention, the associated Linda event is generated

and compared with the next expected event in Expected _Behaviourp• The debugger compares the

actual event with the expected event, and posts a reply to tuple space. If the events compared

unfavourably, the debugger also signals a process fault to the "environment" (in an actual

implementation, a tuple space monitor constitutes the "environment"). Tuple space receives the result

of the comparison, and continues execution.

The debugging model is simple, and is based on a limited set of well-defined program events. It is

also independent of the expected behavioural model construction process and the nature of the

behavioural model itself.

4.2 CCS

The Calculus of Communicating Systems (CCS) is a formal specification language that is frequently

45

used to specify parallel systems and their implementations. The resultant definitions are examined,

compared for equivalences, and generally used to reason about the systems so defined, all within the

confines of a formal methodology.

CCS models individual computation as an agent that changes state via inter-agent "actions". Complex

systems and agents are defined by building complex agent expressions in CCS. Agent expressions,

in turn, are composed of "actions", agents, and a set of operators over agents.

Agents are entities within a system that synchronise their activities through complementary named

ports/labels that are drawn from the set Act of actions:

Act =

where: 1.

A U AU {r}

A and A are sets of observable actions between which there is a one-to-one

correspondence via -:

2. "t is the silent action which is not observable.

For example, some Agent] could synchronise activity or communicate with some other Agent2 via the

complementary labels in and in, where the overbar designates an output label. Furthermore, output

labels may be parameterised by an expression, and input labels parameterised by a variable.

The following operations are defined on agents:

Given the agents P and Q:

1. action prefix:

a.P .!4p

The agent a.P performs the action a and evolves into P .

2. exclusive selection (summation) (+):

if P .!4P' and Q .4Q'

then (P + Q) .!4 P'

or

(P + Q) .4Q'

The agent P + Q can perform either the action a or b and evolve into either P' or Q'

respectively.

3. composition (I):

parallel action

if P -4P'

if Q -4Q'

then plQ -4 P' IQ
then plQ PIQ'

if P -4P' and Q Q'

then plQ -4P'IQ'

46

The agent PIQ can perform either the action a, Ii arT and evolve into P'IQ, pIQ', or P'IQ'

respectively. Note how. is used to represent communication on complementary named ports,

and is not observable.

4. restriction (\):

restricted communication on labels

if P -4P' and a, Ii ff-L

then PIL "'-P'IL

the agent P may only communicate on a, if a and Ii are not contained in the sort (collection

of labels) L. Note that the silent action (.) can not be restricted.

5. relabelling ([f)):

label renaming function

if P -4P' then P[f) l!j) P' [f)

label a in agent P is renamed.

The agent incapable of any action is represented by O.

Agents are usually defined in the following manner:

agent do' agentexpression

Recursive definitions are also permitted, that is, agentexpression may contain agent. For example, an

agent that repeatedly communicates on label in1 and then on in2 is modelled as:

Agentl do'
= in]. in2Agentl

The -- transition system states that given the agents P and Q and some action a then the interpretation

47

of P Q is that P may evolve into Q by performing the observable action a.

For silent (t) actions, a second transition system, =<>, is derived. The set of transitions is {~I a E A

U {S}} where ""'is the transitive reflexive closure of , so that P ""'Q if P may evolve into Q by

performing zero or more silent actions, and that ~ = "'" "'" if P may evolve into Q by

performing zero or more silent actions, followed by a, followed by zero or more silent actions.

Equivalence relations are defined between agents that are based on action capabilities. One such

equivalence is observational equivalence. Intuitively, two complex systems are observationally

equivalent, if they always exhibit the same observable behaviour (silent (t) activity aside), that is, if

an observed action of one expression can be matched by an observed action of the other expression

so that the resulting states are themselves observationally equivalent.

Observational equivalence (-) is defined between agents P and Q such that:

P - Q, iff for each action a:

a) if P' is such that P p', then either 1) there is a Q' such that Q ~Q' and P' ~ Q', or

2) a = 1: and P' - Q, and conversely,

b) if Q' is such that Q Q., then either 1) there is a P' such that P ~p' and P' ~ Q', or

2) a = 1: and P - Q'.

(Consult [Wa187] for an introduction to CCS, and [Mil89] for a comprehensive discussion of CCS.)

4.3 Modal Logic and the Modal Mu-Calculus

The properties of parallel systems can be described in modal and temporal logics. In a generalisation

of Hennessy-Milner logic [Hen80], [Hen8S], so-called logic formulae are constructed from boolean

connectives and the modal operators [K] and <K>, where K is a set of actions (in Hennessy-Milner

logic, only single actions are permitted in the modalities). The abstract syntax definition for these

formulae are:

All processes have the property tt; no process has the property ff; a process has the property <1>, II
<1>" if it has both the property <1>, and <1>,; a process has the property <1>, V <1>" if it has either the property

<1>, or <1>,; a process has the property [K]<I> (necessity), if after every performance of any action in K,

each resultant process has the property <1>; and a process has the property <K><I> (possibility), if after

the performance of at least one action in K, the resultant process has the property <1>.

The logic does not accord any special status to silent (1:) activity. Silent activity can, however, be

introduced by two new modalities:

Ull
« »

weak necessity

weak possibility

48

wherein the occurrence of zero or more silent actions (~ is embodied. Further modalities can then

be introduced:

UK]) II II [K] II II
<<1(» ::= « » <1(> « »

where: K is a subset of observable actions.

The modal logic is able to express local capabilities (the system is able to perform some sequence of

action/s) and immediate necessities (the system must perform some sequence of action/s) but not

enduring capabilities (the system must always be able to perform some sequence of action/s) or long

term inevitabilities (the system must eventually be able to perform some sequence of action/s). So that

such temporal properties may be expressed, the modal mu-caIculus [Koz83), in an extended form

[Sti91), is used that extends the modal logic to include propositional variables and fixed point

operators. The above abstract syntax is augmented as follows:

where 1.

2.
3.

... I z I vZ.cjl I JlZ.cjl

Z is a propositional variable

vZ.cjl is the maximal fixed point operator (v) in the modal equation Z

JlZ.cjl is the minimal fixed point operator (;l) in the modal equation Z

The modal logic and modal mu-calculus are used to define properties that processes exhibit. It is also

frequently the case that equivalence relations are defined between processes that are based on the

properties that they do or do not possess.

(Consult [Sti92) for an informative discussion of modal and temporal logics for processess.)

4.4 Linda

4.4.1 Properties of Linda

Chapter 3 detailed the Linda parallel programming paradigm. The six primitives were introduced, as

were the spacial and temporal decoupling of processes, and the non-deterministic duration of tuple

space operations. Prior to embarking on any formal specification, the properties embodied in the

49

primitives, the decoupling, and the non-detenninism merit highlight.

A distinguishing characteristic of the Linda primitives is their commitment to interaction with tuple

space, once interaction is initiated. When a process makes a request on tuple space, it does not "back

off" or "time-out" until the request is serviced.

Allied to this commitment is the time duration of tuple space operations. In [Mar90), a time and

event-action paradigm is introduced for the study of debugging tools for parallel and distributed

software. A variety of tenns are introduced, a few of which are relevant to this discussion:

event (e) occurs (0) at time t; (Linda equivalent: tuple space interaction requested)

event (e) is recognised (r) at time t; (Linda equivalent: tuple space attention gained)

initiates (I) action (a) at time r... (Linda equivalent: tuple space starts processing request)

tenninates (I) action (a) at time I~. (Linda equivalent: tuple space completes processing

request)

The following values are derived:

event recognition latency (t; - t;)

action enabling latency (r... -t;)

duration of action «(. -r...)
event processing time (f. .• - t;)

In Linda, the sum of the values constitutes the duration of a tuple space interaction. This duration is,

however, defined as non-detenninistic. This provides tuple space with widespread licence to conduct

any number of time-variant activities, possibly related to debugging, without violating the underlying

paradigm.

Linda processes are both spatially and temporally decoupled . . Processes interact indirectly via tuple

space - processes do not name the process with whom they ultimately interact, indeed the relevant

processes may not even execute simultaneously.

4.4.2 Formal Specifications

4.4.2.1 Previous Work

Researchers have specified the Linda parallel programming paradigm in a number of fonnalisms,

notably CCS, both the basic and the fulI calculus [Mil89), and Z [Hay87), [Spi92). A distinguishing

characteristic of the attempts that have been made is the level of abstraction at which the paradigm

is modelIed which seems to reflect the relative "distance" from actual implementation at which the

50

specification is made. In general, the more abstract is the specification, the greater is the degree of

non-determinism that is permitted.

Mifsud [Mif92a), (Mif92b) uses CCS to explore the semantics of Linda with special emphasis on the

integration of Linda into a suitable host language. Careful consideration is taken of the order of

argument tuple evaluation, tuple element assignment (actual to formal), and the integration of Linda

into a sequential imperative language. A high level of abstraction is adopted in the specification of

tuple space and the individual Linda primitives. Agents are defined that specify the behaviour of tuple

space, and the six Linda primitives (in, read, inp, readp, out, eval). Of importance, is the treatment

of unsuccessful in and read operations. In Mifsud's mOdel, if no match can be found between the

request template and a free tuple, the corresponding in or read agent resubmits the request anew, in

competition with all other tuple space requests. This effectively implements a "busy wait" policy. The

resubmission policy is demonstrated in the following extract from the overall defmition:

TupleSpace(M)

InTuple(M, u)

In(u)

where: 1.

2.

3.

do'

do'

do'

intuple(u).InTuple(M, u) +
rdtuple(u).RdTuple(M, u) +
addtuple(u)AddTuple(M, u)

if (match M u = 0)

then fiiII.TupleSpace(M)

else gettuple(u').TupleSpace(M')

intuple(u).(fail.ln(u) + gettuple(u'AssignTuple(u, u'))

Tuple space (M) is defined as a multiset over which the operations multiset

union (\!I) and multiset difference (U) are defined.

M = M' l!I {u}

u' E matchM u

match M u = {u' I matchtuple(u, u')}

matchtuple(u, u') compares template u for equality with free tuple u'

4. AssignTuple(U, u') takes a template and a free tuple, and assigns actual values

to formal fields.

Repeated requests can be thought of as "internal chatter" - since the process can not engage in any

further activity, the semantics of in are preserved. The absence of any form of explicit blocking on

unsuccessful requests obviates the necessity for any form of policy on the following issues:

which blocked in(u) is serviced by an appropriate out(u')?

are all read(u)'s that are waiting on a common u' serviced by the corresponding out(u')?

In which order are they serviced? Is some in(u) serviced as well? In which case, which

51

in(u)?

Tuples are added to tuple space with no further considerations - the policy is inherent in the definition.

read's, in's, and repeated read's and in's all compete for tuple space attention on an equal footing.

Hazelhurst [Haz90] uses CCS to specify the semantics of Linda (tuple space and Linda primitives).

Agents are defined that specify the behaviour of tuple space and the six Linda primitives. A far more

explicit approach is adopted where aspects of the Linda implementation are reflected. Of importance

is the use of a blocking mechanism for unsuccessful tuple space requests. Tuple space is modelled

as a triple:

TS<R,I,T>

where: l.

2.
3.

T

I

R

=

=

=

free tuples

processes blocked on in(u)

processes blocked on read(u)

4. I and R are sets each element of which is composed of the process name and

the tuple template.

Whenever tuple space is unable to find a match between a tuple template and a free tuple, the process

and tuple template are added to lor R. (Arguments to the primitives include the tuple template as well

as the originating process to which a reply can be later sent.) Each time a new tuple (u') is added

to tuple space, a subset of those processes blocked on R pending addition of such a tuple (u') are

serviced, and anyone of those processes blocked on I pending addition of such a tuple (u') are

serviced The blocking mechanism is demonstrated in the following extract from his overall definition:

TS(R, I, T)
dor

tgive(x,p).

if p(x,T) = 0
then TS(R, I U {(x,p)}, T)

else LY EPI,1) tgetly).TS(R, I, T - {y})

+

Inp(x)

where: 1.

2.

3.

4.

5.

dof

p(x,I)

p(x,R)

p(x,1)

tadd(x).

~N~*RIPN '
if p(x,I) = 0

then TS(R -N, I, T W {x})

else ~(y.PIEP(,~ tgetiy)·TS(R-N, I-{(y,p)}, 1)

tgl ve(x,p).tgetiy)

= {(y,p) Ell match(x,y)} for any x E Tuples

= {(y,p) E R I match(x,y)} for any x E Tuples

= {y E T I match(x,y)} for any x E Tuples

52

match(x,y) is a boolean function that performs a match between tuples x and

y.

PN = il(y.pIEN tgetiy)

Essentially Hazelhurst provides explicit definition for the actions pursuant to read, in, and out

operations, whereas Mifsud allows healthy competition for tuple space attention to determine the action

policy.

Jensen [J en90] uses CCS to explore the semantics of tuple space and the correctness of an

implementation. The semantics of a Linda language, a Linda language with respect to tuple space,

and tuple space are defined. Use is made of inference (transition) rules to specify the behaviour of

tuple space and processes.

Ciancarini et al (the article is co-authored by Jensen) [Cia92] specify Linda semantics in SOS [PloS1],

CCS, Petri Nets, and the Chemical Abstract Machine [Ber90b], and then compare the specifications.

The basis of the CCS specification is a translation from the Linda calculus to CCS and agents.

Butcher [But91b] and Hasselbring [Has92] use Z to specify the semantics of Linda-2 and ProSet-Linda

respectively. [But91b] concentrates attention on the semantics of the Linda model and makes as few

assumptions about the host language as possible. [Has92], like [Mif92b], provides a more all

embracing definition of the host language and the Linda model.

None of the specifications place any form of restriction on timing (wait times before tuple space

attends to a request or duration of tuple space operations), or fairness (given two or more processes

awaiting the addition of the same tuple, there is no guarantee that all requests will be serviced

53

eventually). This affords the broadest non-determinism and least constraint on implementations.

4.4.2.2 A Formal Specification of Unda

The following specification defines the semantics of the Linda parallel programming paradigm. The

actions of tuple space as well as those of individual processes are provided. Like [But91b] as few

assumptions as possible are made about the host language, save that it has a type system, and each

specific type supports a set of values:

T

where: l.

2.

set of all types

VTi is a value of type T

.Lr is a formal of type T

Furthermore, T is a set of distinct types so for any Ti, Tj E T, VTi and VTj are disjoint.

A tuple element is a pair

(v:T) I T ETA ((v E VT) V (v = .Lr»

The element is either an actual value or a formal (.1) of a particular type (T).

A tuple (u) is composed of either any number of tuple elements or a process identifier:

u = (VI :TI, v2:T2, •• . , v.:T J V process identifierl

Tuple space (M) is defined as a multiset.

Given two tuples, u and u':

u =
u' =

(vI:TI> v,:T2, ••• , vn:TJ

(v~ :1"1' v;:T;, ... , V~ :T:a)

1 The eval-primitive takes a single tuple element (a process identi fier) which identifies the process that must be spawned.

a boolean tuple match function is defined as follows:

match tuple (u, u')

= m = n /\;.} match value (v;:T;, y;:1'J
m .. n false

matchvalue(v;:T;, y;:1'J
= true

false otherwise

A further function:

match(M, u) = {u' I u' EM /\ matchtuple(u, u')}

returns a set of tuples that match u.

In this work, the Linda primitives are defined as follows:

out(u) add (passive) tuple (u) to tuple space

in(u) if matching tuple (u') in tuple space

then extract tuple u' from tuple space

else wait until tuple u' is available

read(u) if matching tuple (u') in tuple space

then extract a copy of tuple u' from tuple space

else wait until tuple u' is available

inp(u) if matching tuple (u') in tuple space

then extract tuple u' from tuple space

else return false

readp(u) if matching tuple (u') in tuple space

then extract a copy of tuple u' from tuple space

else return false

eval(u) instantiate process (u)

54

The definition of Linda comprises two major components: tuple space and processes. Linda processes

are modelled by individual agents, and communicate with tuple space via a number of ports that

55

represent tbe Linda primitives. For in, read, inp, and readp, dual ports are provided tbat represent

a request for tuple information and a reply from tuple space. For out, a single port is provided, since

it does not solicit reply information. Unsuccessful inp and readp operations are informed of their

failure by communication on a failure port. Special signals are generated, via appropriately named

ports, on operation completion and process termination - they constitute interaction with the

environment (observers) and not interaction with any specific agent of the (Linda) system.

Unsuccessful in and read requests are not blocked within tuple space pending arrival of appropriate

tuples but are rejected by tuple space and re-submitted by the relevant process, as is done in [Mif92b].

It is important to note that a different communication port is used to re-submit requests. In the

debugger, it is necessary to distinguish between original and re-submitted requests. Since all tuple

space requests are treated with equal priority, no violation of the underlying paradigm is experienced

by different communication ports for original and re-submitted requests.

The definition resembles that found in [Mif92b] but differs in the following respects: explicit Linda

process agents are defined that communicate with tuple space on labels indexed by process identifier

(the debugger requires that a process identifier accompany all tuple space requests that it checks), the

assignment of actual values to formal tuple fields is not specified, extra agents and ports have been

utilised. [Haz90]'s rigorous treatment of unsuccessful tuple space requests over-constrains what are

generally regarded as acceptable Linda semantics.

Tuple space is modelled by the TS(M) agent:

TS(M) do'

TSinreq(M, U, p) do'

TSrdreq(M, U, p) do'

TSinpreq(M, U, p) do'

out.(u).TS(M~ {u}) +
inreq.(u).TSinreq(M, U, p) +
repinreqlu). TSinreq(M, U, p) +
rdreqlu).TSrdreq(M, U, p) +
reprdreqlu).TSrdreq(M, U, p) +
inpreqlu).TSinpreq(M, U, p) +
rdpreqlu). TSrdpreq(M, U, p)

if match(M, u) ~ 0

then fa iI.TS(M)

else inlu').TS(M - {u'})

if match(M, u) ~ 0

then fai I. TS(M)

else rdlu').TS(M)

if match(M, u) ~ 0

then fail.TS(M)

else inplu').TS(M - {u'})

TSrdpreq(M, U, p) if match(M, u) = 0

then fall.TS(M)

else rdplu').TS(M)

Processes are modelled by the Processp agent:

Processp

ProcessOutp

Processln/u)

ProcessRd/ u)

Processlnpp

ProcessRdpp

In TS(M) and Processp:

1. u E set of all tuples

2. u' E match(M, u)

"" =

"" =

"" =

"" =

"" =

"" =

outlu).ProcessOutp +
inreqlu).Processln/u) +
rllriiiJu).ProcessRdlu) +
inpreq/u).Processlnpp +
rdpreqlu).ProcessRdpp +
term~O

done!,Processp

inlu').dOiie;Processp +
fail. rep i nreql u).Processln/u)

rd/u').dDiie;Processp +
fail. reprdreq/u).ProcessRdlu)

fail.reslfalse).Processp +
inplu'). re s ltrue).Processp

fail.res/false).Processp +

rdp/ u'). re s ltrue).Processp

3. P = set of all process identifiers

4. pEP

Note how:

1. repinreq and reprdreq are used to re-submit unsuccessful in and read requests,

2. done is used to signal out, in, and read operation completion,

3. res is used to signal successful or otherwise inp and readp operation completion, and

56

57

4. term-is used to signal process tennination.

The Linda system is then specified as follows:

Linda do' (TS(M)IProcessJIProcess,I··· I Process,J1L

where: L = {UpEP (out I' inreqp repinreqp inp rdreqp reprdreqp rdp inpreqp inpp rdpreqp

rdpp) U fail}

The specification so far does not model the eval-primitive. Rather, it models the action of a Linda

system in terms of tuple space, all the processes of which the Linda program is composed, and certain

tuple space actions. No consideration is taken of process instantiation - all processes are considered

instantiated ab initio. Whilst the specification does not accurately reflect Linda (there is no dynamic

process creation), it does possess the very desirahle property of a finite state space. All processes and

process actions are known in advance, and can he analysed accordingly.

The introduction of dynamic process creation is now considered.

It is true of most Linda implementations that a single process, usually a master or distinguished

process, is instantiated whenever the Linda system is started. Thereafter all further processes, known

as spawned processes, are instantiated using the eval-primitive. To include such an eval mechanism

in the specification, individual processes must be accorded the capability of spawning processes.

Tuple space must also be infonned each time a process spawns a process. (Strictly speaking, tuple

space need not be infonned - it is merely a synchronisation that does not impact on tuple space.

However, when the debugger is introduced, all process behaviour, including process creation, is

checked from within tuple space, and it needs to know of all process activity.) Tuple space (TS) and

processes (Processp) are augmented with an evallabel:

TS(M) do'

eval/u). TS(M)

Processp
do'

eval/u).(donep.Processp I Process)

Here, the process infonns tuple space of its intention to spawn a new process after which it goes ahead

and does so.

The Linda system is then specified as follows:

Linda

where: l.

2.

"" (TS(M)IProcess,)IL

Process, is the distinguished process.

L = {Up E P (out" inreq" repinreq" in" rdreq" reprdreq" rd" inpreq"

inp" rdpreq" rdp" eval) U fail}

58

Process, spawns new processes that themselves are able to spawn new processes. The modified

specification certainly caters for dynamic process creation but also introduces an undesirable infinite

state space - no constraint is placed on the number of processes that may be created. As a result,

many useful analyses of the system are precluded.

The specification of a Linda system is now explored that provides for a limited form of dynamic

process creation within a finite state space.

The specification models the action of a Linda system in terms of tuple space, all the processes of

which the Linda program is composed, and tuple space actions (as in the original specification).

Again, a distinguished process is utilised that is instantiated whenever the Linda system is started (as

is the case in the first attempt at the inclusion of eval). However, so that all processes, except the

distinguished process, are not capable of action until they are actually spawned, all spawned processes

are forced to wait on a signal (start",,), pursuant to an appropriate eval, after which they become active.

The specification is modified as follows:

TS(M) ""

eval.(u).TS(M)

Process, "" ou t l u).ProcessOut, + =

inreqlu).Processlnlu) +
rdreqlu).ProcessRdlu) +
inpreqlu).Processlnp, +
rdpreqlu).ProcessRdp, +
eva Ilu). s tar t •. ProcessEval,

term-;'O

ProcessEval, "" done ,.Process,

Process",

ProcessSI",

ProcessStEval",

where: 1.

2.

3.

59

'!! slarl",.ProcessSI",
.or

OUI",(u).ProcessStOul", + =

inreq",(u).ProcessSlln",(u) +
rdreq",(u).ProcessSIRd",(u) +
inpreq",(u).ProcessSdnp", +
rdpreq"(u).ProcessStRdp,,, +
eva I ",(u). s I ar I .. ProcessSIEval",

term~.O

do' done ",.ProcessSt"

Process} is the distinguished process.

Process", represents a spawned process that awaits a start signal on s tar t.,

where u is a process identifier, and sp E (P - {I}).

ProcessOut}> Processln}, ProcessRd}, Processlnp}, ProcessRdp}, and

ProcessStOut"" ProcessSdn", ProcessStRd", ProcessStlnp", ProcessStRdp",

are the same as ProcessOulJ' ProcesslnJ' ProcessRdJ' ProcesslnpJ'

ProcessRdpp but for a change in agent name (inclusion of St) and index (1).

4. done is used to signal eva I-operation completion.

The Linda system is then specified as follows':

Linda

where: 1.

2.

3.

do' (TS(M)IProcess} IProcess, 1 ... I Process.J\L

Process} is the distinguished process.

Process, .. Process, are spawned processes.

L = {Up E P (outJ' inreqJ' repinreqJ' inJ' rdreqJ' reprdreqJ' rdJ' inpreqJ'

inpJ' rdpreqJ' rdpJ' evalJ' start) U fail}

No single process is started more than once - every process that forms part of the Linda program, even

multiple instances of the same process, is represented by a different Processp• Since all processes are

represented, the state space is finite. Essentially, dynamic process creation is provided within the

confines of a finite state space, but subject to the upper limit of the n process "slots" defined in the

system.

As is demonstrated above, CCS is quite able to model systems that can increase unboundedly. Indeed,

[Mil89] notes that "this takes us out of the realm of direct descriptions of physical systems, and opens

up the possibility of more abstract descriptions such as the generation of tasks in a parallel

2 A full specification of the Linda system can be found in Appendix B.

60

programming language". However, he also indicates the disadvantages of such "unboundedness" -

observation equivalence is undecidable. The proposed bounded approach constrains the system to a

finite state in terms of which analyses may be performed ([Hoa78) also concentrates attention on

bounded process activation). Similar approaches are adopted in implementations of concurrency, for

example, the PAR construct of occam [Bur88), and the Do in parallel of HUL [Cla89), both of

which need to know the maximum number of processes at compile time.

It should be noted that each process request of tuple space is composed of a sequence of events, the

sum of which constitutes the request, and falls within the bounds of the time duration of the tuple

space request:

Request Response Process Request Completion

from TS Reaction Completed Signal

out/u) yes donep

inreq/u) fall resubmit no

or

in/u') yes donep

rdreq.(u) fai I resubmit no

or

rdiu') yes donep

inpreq/u) fai / yes resifalse)

or

inPiu') yes res/true)

rdpreq/u) fai I yes res/false)

or

rdp/u') yes resitrue)

eval/u) star tu yes donep

It is important to note that, in any real implementation of Linda, processes are not connected directly

to tuple space but are decoupled by some form of tuple space library. The library accepts process

requests, passes them on to tuple space, awaits replies which it then routes back to the process. Most

importantly, it re-submits unsuccessful in and read requests - the process itself is not responsible for

the implementation of the re-submission process. Similar action applies to the eval-primitive - the

library is responsible for spawning processes, not the parent process.

A separate tuple space library is coupled to each process so that a typical Linda system is composed

of tuple space, mUltiple tuple space libraries, and as many processes. A single tuple space library

through which all process requests are routed does not implement the Linda paradigm - the moment

any process executes an unsuccessful in or read request, the tuple space library does not entertain any

61

further process requests until the unsuccessful request succeeds (which it never will, since no new

tuples can be added to tuple space).

4.4.23 Observations and Properties

CCS is a particularly apposite formalism in which to specify the Linda Parallel Programming

Paradigm. The basic calculus provides a sufficient set of operators (and from which further operators

can be derived), and the full calculus (which includes value-passing communication) provides

adequately for the data component of Linda. CCS also provides for the natural expression of the non

deterministic duration of tuple space operations.

Fundamental to CCS is the communication that takes place between agents through complementary

named ports, for example, a and a. Such communication takes place between agents whenever they

are capable of performing the complementary actions, for example:

A
dor

a.mA

B
dor

aJ..B =

System
dof

(AIB)\{a}

Here A is capable of receiving information on a, and B is capable of delivering information on a. In

the context of System, communication takes place between A and B on these ports. Given the

following additional definitions:

C

System1

dof

dof
a.q.C

(AIBIC)\{a}

communication is possible between A and B, and between C and B, using the complementary ports

a-a. A choice is made between the two, at which stage the process not selected to engage in

communication is forced to wait until communication is possible.

In the context of Linda,

Linda
dof

(TS(M) Iprocessl IProcess, I ... IProcess.J1L

many processes are capable of communicating with tuple space but tuple space is only capable of

communicating with anyone of the processes at a time - the others are forced to wait their tum. In

this way, the actual action of Linda processes is mirrored perfectly.

So that the evolution of an agent may be analysed, the expansion law ([MiI89] page 67) is used.

62

For the Linda agent defined above, the expansion law provides for a full derivation of all Linda

programs. For the agent:

(TS(M) iProcess]lProcessJIL

the expansion law provides for a full derivation of all the actions in which Process] and Process, may

engage.

In the following observations, specific actions, as opposed to all possible actions, are examined for the

given processes. That is, the agent is examined subject to some sequence of actions, for example:

Process]:

Process,:

eval,(2), out,("a"), out,("b") <terminate>

in,("a") <terminate>

These particular actions represent specific instances of Linda processes. Derivations based on these

actions alone permit observations to be made that are applicable to a subset of all possible actions.

A suitable interpretation for "subset" would be "a particular Linda program".

This approach could well be thought of as a shorthand version of:

(TS(M) iProcess] iProcessJIL

where: Process]

Process,

d<'
=
d<'

evai/2).s tar t ,.out/"a").donerout /"b").doner term7.0

start,. inreq,{"a").(jaii.Process, + in,("a ").done" term-;'O)

In other CCS definitions of Linda ([Haz90], [Cia92]), Linda primitives are modelled individually.

Process activity is then modelled as a sequence of actions selected from these models, for example,

in [Haz90), the following agent represents a Linda system in which two processes and tuple space

interact:

(TS<R,I,T> i Outl"a").Out/"b").O i In,(c) .O)\L

where: taddlx)

tgivelx,p).tget.(y)

The expansion rule is then used to demonstrate the evolution of the system. The approaches are

essentially the same: in this work, the proposed approach selects specific actions, from the set of all

possible actions, and in a specific order, whilst the approach that is adopted by [Haz90] selects actions,

in their own right, and forms a sequence. A similar course of action is followed by [Cia92).

63

Given that tuple space is initially empty (M = 0), a number of observations' can made. The

following laws are used in the derivations:

Law 1: Expansion Law

Let P = (p,[t;11 ... 1P.[f.l)\L, with n " 1

Then

P = L {[,(a).(P, [t;11 ... IF, [t;11 ... I p. [f.1)\L :

Pi ~ p;, [,(0.) fEL U l}

+ L {"t.(P, [f,11 ... I P; [t;11 ... I P; [fjll ... I p. [f.1)\L :

Pi 14F"Pj .!4~,f,(11) = 1712), i .. j}

Where /; is the identity function ld, and using P[ld] = P:

Then

P = L {a.(P, I ... I F, I ... I p.)\L :

Pi ~ P" a ff. L U l}

I P; I ... IP.)\L:

Pi 4F" Pj ~ P;, i .. j}

Law 2: The case of n = 1 of the Expansion Law relating prefix with restriction

(aQ)lL = o ifaELUl

aQlL otherwise

Law 3: A derived law relating prefix with restriction

Let

s = (a,.P, I a,.P, I ... I a •. P.)\L, with n " 1

3 Terms in the expanded agents are numbered for easy reference. For example,

3.1

refers to a term in step 3 of an expansion that is descended from term 1 in the immediately preceding step. Where the
immediately preceding term evolves into more than one, say three, terms, the new terms are numbered:

3.1.1
3.1.2
3.1.3

If reference is made to: 3 it refers to all terms in step 3 .

Then

s=

Law 4: Monoid Law

Law 5: Composition Law

o if (aJ E L U L) II (a, E L U L) II ...

II (a. E L U L)

(al'PI i a,.P, i··· i a •. P.)1l
otherwise

1. Thple space preserves tuples.

64

For a given Linda program that consists of a single process that adds a tuple to tuple space

and then retrieves the tuple, the process tenninates:

Processl : ou.,("a"), io,("a") <terminate>

(TS(M)iProcess)\L

;;.(TS(M \!J {"a"})iProcessOutJ)\L

;;.doneATS(M \!J {"a"})iProcess)\L

;;.donel.;;.(TSinreq(M \!J {"a"}, "a ", 1) iProcessinl"a "))\L

;;.done I' ;;. ;;.(TS(M) idone I.ProcessJ)\L

;;.done]";;.;;.dOnel.(TS(M) iProcessl)\L

;;.doneJ. ;;. ;;.done]" t erm~(TS(M) iO)\L

using Law 5:

using Law 3:

o

1.1

2.1

3.1

4.1

5.1

6.1

7.1

8.1

Note how the identity, in tenns of the originating process, of free tuples is not preserved in

65

tuple space - free tuples are anonymous.

2. Tuple space does not create tuples.

For a given Linda program that consists of a single process that attempts to retrieve a tuple

from tuple space, the process does not termninate but indulges in infinite "internal chatter"

(diverges):

=
=

=

=

=

in,("a "), oul,("a") <terminate>

(TS(M)IProcess,)\L

"t.(TSinreq(M, "a ", 1) jProcesslnl"a "))\L

"t."t.(TS(M)lrepinreql"a").Processlnl("a"))\L

"t."t. "t.(TSinreq(M, "a ",1) IProcesslnl"a"))\L

"t."t."t."t. (TS(M) I rep i nr eql ("a") .ProcessI n 1 ("a")) \L

1.1

2.1

3.1

4.1

All further requests to extract tuple ("a') are met with equal failure. This also demonstrates

the implicit "busy wait" mechanism of the in request. A similar derivation exists for the read

request with the same result.

3. The specification of tuple space does not guarantee fairness.

For a given Linda program that consists of two processes, one that adds a tuple and one that

attempts retrieve the same tuple, both processes terminate, if both are guaranteed tuple space

attention, regardless of the order of attention, otherwise not:

Processl :

Process2:

eval,(2), oul,(" a ") <terminate>

in,("a") <terminate>

3.1 If action oul,("a") precedes in,("a "), the processes terminate:

(TS (M) IProcess IIProcessJ \L

= "to (TS(M) I s tar t 2.ProcessEvall jProcessJL

= "t."t. (TS(M) IProcessEvalllProcessStJL

= "t."t. done I. (TS(M) IProcess IIProcessStJL

1.1

2.1

3.1

66

= T:t. done I' T. (TS(M I!J {"a"}) jProcessOut I jProcessSt J IL 4.1

= T.T.donerT.doneATS(M I!J {"a"})IProcessljProcessStJIL + 5.1.1

T.T.donel.T.T.(TSinreq(M I!J {"a"}, "a ",2)lprocessStOut11

Processln,{"a"»1L 5.1.2

= T.T.doner T.done1. term~.(TS(M I!J {"a"})IOIProcessStJIL + 6.1.1

T.T.done1.T.done,.T.(TSinreq(M I!J {"a"}, "a ",2) IProcess1 1

ProcessStln,{"a"»1L + 6.1.2

T.T.done rT.T. donel. (TSinreq(M I!J {"a"}, "a ",2)IProcessl 1

ProcessStln,{"a"»1L + 6.2.1

T. T. done r "to T. T. (TS(M) IProcessOut11 done ~ProcessSt J IL 6.2.2

= T.T.done1.T.done1. t erm-;' T.(TSinreq(M I!J {"a"}, "a",2)101

ProcessStln,{"a"»1L + 7.1

T.T.donerT.done,.T. term-;'(TSinreq(M I!J {"a"}, "a ",2) 101

ProcessStln,{"a"»1L + 7.2.1

T."t. done 1.T. done,.T. T.(TS(M) IProcess11done ~ProcessStJIL + 7.2.2

T.T.donel.T.T.donel. term-;'(TSinreq(M I!J {"a"}, "a ",2) 101

ProcessStln,{"a"»1L + 7.3.1

T.T.donerT.T.donel·T.(TS(M)IProcess1Idone,.ProcessStJIL + 7.3.2

T. T. done l ' T. T. T. done l ' (TS(M) jProcess I I done ~ProcessStJ IL + 7.4.1

T. T. done r T. T. T. done,. (TS(M) jProcessOut11ProcessStJ IL 7.4.2

= T."t.done1.T.doner term-;' T.T.(TS(M)IOldone,.ProcessStJIL + 8.1

T.T.done1.T. done,.T. term-;' T.(TS(M)IOldone,.ProcessStJIL + 8.2

T.T.donerT.done,.T.T. term-;' (TS(M) 10ldone,.ProcessStJIL + 8.3.1

T.T.donerT.done,.T.T.done,.(TS(M)lprocessljProcessStJIL + 8.3.2

T.T.done1.T.T.donel. term~.T.(TS(M)IOldone,.ProcessStJIL + 8.4

"to T.done 1."t. "t.done I.T. t e rm-;' (TS(M) 10ldone,.ProcessStJIL + 8.5.1

T.T.donerT.T.donel·T.done,.(TS(M)lprocessIIProcessStJIL + 8.5.2

T.T.done1.T.T.T.donel. term-;'(TS(M)IOldone,.ProcessStJIL + 8.6.1

T. T. done r T. T. T. done I' done,. (TS(M) IProcess I IProcessStJ IL + 8.6.2

T.T.donerT.T.T.done,.donel ·(TS(M)IProcessIIProcessStJIL + 8.7.1

T.T. doner T.T.T. done,. term~.(TS(M)jProcessOut1IO)1L 8.7.2

= -r:t. doner-r. done,. term-;' -r.-r. done,.(TS(M) 10lProcessStzi\L +
-r.-r.doner-r. done •. -r. term-;' -r.done,.(TS(M)IOlprocessStzi\L +
-r.-r.doner"t.done •. -r.,. term~.done,.(TS(M)IOIProcessStzi\L +
-r."t.done ,."t. done •. -r:t.done,. t e rm-;'(TS(M) 10lProcessStzi\L +
"t.-r.done r"t. don e •. ,:t. tIOiIe; t e rm~(TS(M) IProcess, 10)\L +
-r."t.doner"t.-r.doner term-;' "t. done,.(TS(M) 10lprocessStzi\L +
,."t.doner"t.-r.doner,. term~. done,.(TS(M)IOIProcessStzi\L +
-r."t.doner,.-r.done,.,.done,. term~.(TS(M)IOIProcessStzi\L +
-r.-r.doner,.-r.~,.done,. term~(TS(M)lProcess,IO)\L +
"t.-r.done r"t. '.-r. done 1" t e rm-;'done,. (TS(M) 10 IProcessStzi\L +
-r.-r.done,.-r.-r.-r.donerdone,. term-;'(TS(M)IOIProcessStzi\L +
-r.-r.doner,.-r.,. donerdone,. term~(TS(M)IProcess,IO)\L +

"t.,.doner-r."t.-r.done,.~ term~. (TS(M)IOIProcessStzi\L +
, .-r.doner"t."t., .done,.done,. term~.(TS(M)lProcess,IO)\L +
-r.-r.doner"t."t.,.done,. term~done,.(TS(M)IProcess,IO)\L

= -r.-r.doner"t.done,. term~.-r."t.done,. term~(TS(M)IOIO)\L +
-r.,.doner,.done •. ,. term-;' -r.done,. term~(TS(M)IOIO)\L +
-r.,.doner"t.done •. , .,. term~.done,. term~(TS(M)IOIO)\L +
-r.,.done,.-r.done •. -r.,.done,. term-;' term~(TS(M)IOIO)\L +
-r.,.doner,.done •. , .,.done,. term~ term-;'(TS(M)loIO)\L +
-r.,.done,.,."t.done, . term-;' "t. don e,. term~(TS(M)loIO)\L +
' ."t. done,., .-r. done, .,. term~.done,. term~(TS(M)IOIO)\L +
-r.-r.done,.-r.-r.done,.,.done,. term-;' term~(TS(M)IOIO)\L +
-r.-r.doner-r.-r.done,.,.done,. term~. term-;'(TS(M)IOIO)\L +
-r.-r.done,.-r.-r.-r.doner term~.done,. term~(TS(M)IOIO)\L +
-r.-r.done,.,."t."t. doner done,. term-;' term~.(TS(M)IOIO)\L +
-r.'. done,.-r.-r.-r. done,. done,. term~ terni;".(TS(M)IOIO)\L +
"t."t. done,."t.-r."t. done,. done,. term~. term~.(TS(M)IOIO)\L +
"t.-r. doner,.-r.,.done,. done,. t e rm~. term-;'(TS(M)IOIO)\L +
"t:t. doner,."t."t. done,. term~done,. term-;'(TS(M) 1010)\L

67

9.1

9.2

9.3

9.4.1

9.4.2

9.6.5

9.6

9.7.1

9.7.2

9.8

9.9.1

9.9.2

9.10.1

9.10.2

9.11

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

using Law 5:

= ,.,.doner ,.done1. term; ,.,.done,. term; (TS(M))\L +
,.,.done1.,.donel"" term; '.done,. term~.(TS(M))\L +
,.,.done1.,.donel",."t. term;done,. term~.(TS(M))\L +
,.,.done1.,. done,."t."t. done,. term; term;(TS(M))\L +
,.,.doner ,. done,.,."t.done,. term~. term;(TS(M))\L +
"t.,.doner"t."t.doner term; "t.done,. term;(TS(M))\L +
"t.,.doner ,.,.done1."t. term;done,. term;(TS(M))\L +
,."t.done1."t."t.done1."t.done,. term; term;(TS(M))\L +
,.,.done1."t.,.done1."t.done,. term; term;(TS(M))\L +
,.,.done1."t.,.,.done1. term;done,. term;(TS(M))\L +
"t.,.done1."t."t."t.doner done,. term; term;(TS(M))\L +

,.,.done1.,."t.,.done1.done,. term; term;(TS(M))\L +
"t."t.done1."t.,.,.done,.doner term; term~.(TS(M))\L +
,."t.doner ,."t.,.done,.done1. term~. term;(TS(M))\L +
"t."t.done 1'" "t.'. done,. t erm; done1. t erm;(TS(M))\L

using Law 3:

=

using Law 4:

= 0

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14

11.15

68

12.1-12.15

3.2 If action in,("a") precedes action out,(" a "), and Process1 is guaranteed tuple space attention,

the processes terminate:

(TS(M)IProcess1iProcessul\L

= ,.(TS(M)ls tar t ,.ProcessEvai1 lProcessulL 1.1

= '."t. (TS(M) IProcessEvai11ProcessStulL 2.1

= "t."t. done r(TS(M) IProcess11ProcessStulL 3.1

= "to '. done r "to (TSinreq(M, "a ",2) IProcess 1IProcessStln,(" a")) \L 4.1

= "t."t. done l' "to "t.(TS(M) IProcess11 rep i nreq,("a ").ProcessStln,("a "))\L 5.1

= T:t.done)"T:t:t.(TS(M \!J {"a"})lProcessOutjl

=

rep i nr eq,(" a") .ProcessStln,(" a")) \L

T.T.done)"T.T.T.dOiie;:(TS(M \!J {"a"}) IProcessjl

repinreq,("a").ProcessStln,("a"))\L +
T. T. done)" T. T:t. T. (TSinreq(M \!J {"a"}," a", 2) IProcessO utj 1

ProcessStln,("a"))\L

6.1

7.1.1

7.1.2

= T.T.done)"T.T.T.ttone;: term~.(TS(M \!J {"a"})IOI

repinreq,("a").ProcessStln,("a"))\L +
T.T.done)"T.T.T. done)"T. (TSinreq(M \!J {"a"}, "a ",2) IProcessj 1

ProcessStln'("a"))\L +
T. T. done j' T. T. T."t."t. (TS(M) IProcessOutj Idone ,.ProcessS t) \L +
T:t.donej."t."t:t."t.doneATSinreq(M \!J {"a"}, "a ",2) IProcessj 1

ProcessStln,("a"))\L

= T."t.done)""t."t.T.done)" term-;' T.(TSinreq(M \!J {"a"}, "a ",2) 101

8.1.1

8.1.2

8.2.1

8.2.2

ProcessStIn,("a"))\L + 9.1

T."t.done)""t."t.T.done)""t. te rm-;'(TSinreq(M \!J {"a"}, "a ",2) 101
ProcessStln,("a"))\L + 9.2.1

T."t. done j' "t."t. T. dOne j' "t."t. (TS(M) IProcess j Idone ,.ProcessSt) \L + 9.2.2

"t."t.donej."t."t."t."t.done j. te rm-;'(TSinreq(M \!J {"a"}, "a ",2) 101
ProcessStln,("a"))\L + 9.4.1

T."t. done j' "to "t.T. "t.donej."t. (TS(M) IProcess j Idone 2.ProcessSt)\L + 9.4.2

T."t.done j."t."t.T.T."t.doneATS(M)IProcess jldone2.ProcessSt)\L + 9.3.1

T."t. done)" "t."t. T."t."t. done,. (TS(M) 1 done j.Process j IProcessSt) \L 9.3.2

= T."t.donej ."t.T.(see derivative 3.1 (7. *))

69

3.3 If both processes gain tuple space attention non-deterministically, the processes mayor may

not terminate.

Informally, after process instantiation, the processes behave in the following way (even though

some actions are "t-actions, action names from the perspective of the process are used) :

either outl"a")A.B.C.D.E end

or inreq,("a").fail. goto Z

Z. either out;("a")A.B.C.D.E end

or rep inreq,("a ").jail. goto Z

70

where: A

B do'
=
do' --C inreqi"a").ini"a")
do' --D done,
do' E = term,

A,B, C,D,E can occur in any order as long as A precedes B, and C precedes D

precedes E.

The derivations are:

(TS(M) IProcess} !process) \L

= "t.(TS(M) Is tar t ,.ProcessEvai} !process)L 1.1

= "t."t. (TS(M) IProcessEvai} !processSt)L 2.1

= "t."t.done }"(TS(M) IProcess} IProcessSt)L 3.1

= "t:t. done }""t. (TS(M I!l {"a"}) IprocessOut} IProcessSt)\L + 4.1.1

"t."t. done 1" "t. (TSinreq(M, "a ",2) IProcess} !processStln,(" a")) \L 4.1.2

= (see derivative 3.1 (4.1)) + 5.1

"t."t. done 1" "t."t. (TS(M) !process} I rep i n req,(" a ").ProcessStln,(" a")) \L 5.2

= (see derivative 3.1 (4.1)) + 6.1

"t:t. done}."t."t."t. (TS(M I!l {"a"}) IProcessOut} I
repinreq,("a").ProcessStln,("a"))\L + 6.2.1

"t."t. done 1" "t."t. 't. (TSinreq(M, "a ",2) IProcess} !processStln,(" a")) \L 6.2.2

= (see derivative 3.1 (4.1)) + 7.1

(see derivative 3.2 (6.1)) + 7.2

"t.'t.done}.'t."t.(see derivative 3.3 (4.1.2)) 7.3

In more succint terms, zero or more unsuccessful requests to remove tuple ("a'1 are followed

by a single request to add tuple ("a"), followed by a single request to remove tuple ("a'}

with tuple operation completion (done" done}) and process termination (term-;'

71

t e rm-;) signals occurring at the relevant places.

In this case, it is possible that Process) is never able to gain tuple space attention - Process,

!'beats" it to it. However, the moment action outi"a") succeeds, that is, Process} gains tuple

space attention, both actions succeed. It is in this scenario that the more deterministic

specification found in [Haz90), in which unsuccessful tuple space requests are blocked (and

in which the associated process is suspended), precludes starvation.

4. Tuple space is safe.

No two iu requests can be met on the same tuple.

For a given Linda program that consists of two processes, both of which attempt to remove

the same tuple from tuple space, only one process terminates.

=

=

=

=

=

=

=

Process):

Process,:

outtC"a "), evall(2), iul("a") <terminate>

in,("a") <terminate>

(TS(M)IProcess)iProcess,)\L

't.(TS(M W {"a"})IProcessOut)iProcess,)\L

't.doneATS(M W {"a"})IProcess}IProcess,)\L

't.done}.'t.(TS(M W {"a"})ls tar t ~ProcessEval}iProcess,)\L

't.done }.'t.'t.(TS(M W {"a"})IProcessEval} iProcessSt,)\L

't.done} .'t.'t.done} .(TS(M W {"a"})lprocess}iProcessSt,)\L

't.done}.'t.'t.done}.'t.(TSinreq(M W {"a"}, "a", 1) IProcesslnl"a") I
ProcessSt')\L +

't.done}.'t.'t.done}.'t.(TSinreq(M W {"a"}, "a ",2)IProcess}1

ProcessStln,("a "»\L

't.done }.'t.'t. done}.'t.'t.(TS(M) Idonel'Process} IProcessS t,)\L +

't.done} .'t. 't.done}.'t.'t.(TS(M)IProcess}ldone~ProcessSt,)\L

1.1

2.1

3.1

4.1

5.1

6.1.1

6.1.2

7.1

7.2

= T.donel·T.T.donel ·T.T.doneATS(M)~roceSSIIProcessSt,)\L +
T.done I.T. T.donel.T. T. T.(TSinreq(M, "a ",2) Idone I.Processll

ProcessStln,("a"))\L +
T.donerT.T.donel.T.,.donez.(TS(M)lprocessllprocessSt')\L

,.done I'" ,.doner ,·,·,. (TSinreq(M, "a", 1)IProcess/nl"a ") I
done?ProcessSt,)\L

8.1.1

8.1.2

8.2.1

8.2.2

72

At this stage, it can be seen that one of the processes has successfully retrieved "a" and will

tenninate, and the other process has already requested or will request "a" from an empty tuple

space, and will indulge in infinite internal chatter.

The general capability of tuple space is best described as an infinite ability to perfonn any action

selected from a group of actions, coupled with a total inability to perfonn any other actions. Having

engaged in a certain action, tuple space may be obligated to perfonn certain sub-actions. This general

capability is exemplified in the following definition and fonnula:

TSset do'

TS(M)

Up E P {outl" inreql" repinreql" rdreql" reprdreql" inpreq"

rdpreql" evalp }

vex. [-TSset)ff A
ApEP «out/u» X A

<inreq/u) >

«fail> XV <inlu'» X) A
<repinreqlu) >

«fad> XV <inlu'» X) A
<rdreq/u) >

«fail> XV < rdlu') > X) A
<reprdreql u) >

«Jail> XV <rdlu'» X) A
<inpreqlu)>

«Jai I> X V < inplu'» X) A
< rdpreq/u) >

«fai I> X V <rdplu'» X) A
<evallu» X))

Similarly, the capability of processes is an infinite ability to perform any action selected from a group

of actions, coupled with a total inability to perfonn any other actions. Processes need not perfonn any

particular action, but having engaged in a particular action, the process is obligated to perfonn certain

sub-actions, for example, the repetition that models the capability of the in and read operations.

Processes are also permitted to tenninate after which they are incapable of any further action. The

73

capability of the distinguished process differs from that of spawned processes in respect of its

immediate ability to act, versus having to wait until instantiation. The following definitions and

formulae exemplify the capability of both the distinguished process and spawned processes (Processp,

where p =] is the distinguished process, and p >] represents all other processes):

Psetp

PStartedp

Processp

<lo' =
<lo'

{out,. inreq,. rdreq,. inpreq,. rdpreq,. eval,. term~}

veX [-Psetp)ff A

rtp>]

p =]

<au t/u) > <donep>X A
< inreq/u» (v(y.(<in/u') > <dDne;>X) V

(<fail> < repinreq/u» Y))) A
<rdreq/u» (v(y.«rd/u'»<dDne;>X) V

«fai/> < reprdreq/u»y))) A
< inpreq/u»((<mp/u') > < res/true) >X) V

«fail> < res/false»X) A
<rdpreq/u»((<rdplu') > < re s/true) >X) V

«fail> < resifalse) >X) A
<eva1lu»<s tart.> <danep>X A
<term~>[-)ff)

<startp> PStartedp A [-Iff

PStartedp A [-Iff

Once committed to a tuple space operation, that is, communication has taken place on any of the

complementary ports (as in, autp-aut,. inreqp-inreq,. rdreqp-rdreqp inpreqp- inpreq,. rdpreqp

rdpreqp and evalp-evalp), a process may not engage in any new tuple space request until the current

request is completed. Similarly, tuple space may not accept any new requests from any process until

it has dealt completely with the current request. This requirement is exemplified in the following

definitions and formulae:

Only(K) <lo' «K>tt A [-K]ff)

TS(M) ([-TSset]ff A
Ape p «autp(u» Only(TSset) A

<inreqiu»((<fail> Only(TSset)) V
(<iniu'» Only(TSset))) A

<repinreq/u»((<fai I> Only(TSset)) V
« iniu') > Only(TSset))) A

<rdreqiu»((<fai I> Only(TSset)) V
«rdiu'» Only(TSset))) A

<reprdreqlu»((<fall> Only(TSset)) V
«rdlu'» Only(TSset))) A

PCommitp do'

Processp

4.5 Linda with Debugger

<inpreqiu»((<fai I> Only(TSset)) V
« inPiu'» Only(TSset))) /I.

<rdpreqiu»((<fa i I> Only(TSset)) V
«rdpiu'» Only(TSset))) /I.

<evalp(u» Only(TSset)))

/I.
<outiu»[-donep)ff /I.
< inreqiu» (v(X.«iniu'»[-dOiieJff) V

«fail> < rep rnreqp(u) >X))) /I.
<rdreqiu» (v(X.«rdiu'»[-dOiieJff) V

«fail> < reprdreqiu) >X))) /I.
<inpreqiu»((<inpiu'» [-resitrue))ff) V

«fail> [-res/false)] f f)) /I.
<rdpreqiu»((<rdpiu'»[-resltrue)) f f) V

(<!ail> [-resp(false)]ff)) /I.
<eva lp(u»<s tar t.>[-donep]ff /I.
<term~>[-]ff)

'!Ip>1

p=1

<startp> PCommitp /I. [-]ff

PCommitp /I. [-)ff

4.5.1 Properties of Linda with Debugger

74

Section 4.1 detailed the debugging model. During the static phase, a model of the expected behaviour

of the program is constructed in terms of Linda program events, that is, Linda primitives. During the

dynamic phase, the actual behaviour of the program is compared against the expected behaviour.

Specifically, as tuple space attends to requests, the corresponding Linda event is generated and used

as the basis of the comparison.

The establishment of a global state space in a sequential programming environment is trivial - the

program is suspended at some point, and code and data space is available for inspection with no

further effort In a parallel programming environment, a consistent global state space is hard to

establish. Individual processes execute independently, possibly on different processors, with different

clocks that are not synchronised, and attempts to suspend execution on all processors simultaneously

is complex. Linda presents a very different set of circumstances. Tuple space, in particular, plays a

pivotal role. All parallel program activity is controlled by tuple space. Tuple space is the repository

for all free tuples, and also controls, or implements, the mechanisms behind which processes are

75

blocked/unblocked in pursuance of particular tuples. Indeed, at any instance in the program's

execution, tuple space is in possession of all relevant information concerning the execution of the

program. It alone embodies the global state space, from a parallel point of view, of a Linda program.

Furthermore, no extra effort is required to establish the global state - suspension of tuple space activity

is sufficient. It may be argued that the suspension of tuple space activity alone, without suspension

of any or all process activity, does not lead to a consistent global state space. However, an expressed

tenet of the paradigm, as noted in section 4.4.1, is the non-deterministic duration of tuple space

operations, where duration includes the time a process waits before tuple space begins to attend to its

request. Processes continue to execute until they request tuple space interaction, at which stage they

suspend activity whilst tuple space activity is suspended. Such process suspension is indistinguishable

from suspension that results from wait times induced when tuple space is attending to other requests.

With the possible exception of programs that execute in environments where hardware-based parallel

program debuggers are active, most parallel programs themselves, or the run-time support systems with

which they interact, are instrumented to generate notice of the occurrence of program events. In so

doing, different programs are produced that execute with different timing constraints and, possibly,

execution paths. Since Linda primitives form Linda program events, and since notice of event

occurrence is generated within the protective (timing) confines of tuple space, the original and

"debugged" versions of the program are indistinguishable, both syntactically and semantically.

All program actions that result in program events are embodied in the Linda primitives, and a single

mechanism within tuple space generates all events (there is no need to route events anywhere). Event

collection strategies and event collection are therefore unnecessary activities - they are functions of

the underlying paradigm.

A major problem faced by parallel debuggers is the determination of the order in which events occur.

Elaborate mechanisms exist whereby partial orders of events are provided. For the most part, the

partial order is based on causality, for example:

Process, sends a message m to Process., and

ProcessB receives a message m from Process,

the order is:

send message m

receive message m

Linear orders of events are difficult to obtain and are normally the preserve of debuggers that operate

at the hardware level. Tuple space, on the other hand, presents a natural linear order of events by the

manner in which it deals with all Linda primitives one at a time. As each Linda event is generated,

a copy is appended to a history file which, at any stage of the program's execution, represents a linear

76

order of events. Again, no extra effort is required.

4.5.2 Formal Specifications

4.5.2.1 A Formal Specification of Linda with Debugger

The specification of the Linda system that was defined in section 4.4.2.2 is modified to represent the

Linda system with the debugger. It involves the introduction of a new agent to represent the debugger,

as well as the development of some policy by which the result of the comparison of actual and

expected behaviour is communicated to the system.

The debugger, or more specifically the comparison of actual and expected behaviour, can be included

in the Linda system in a number of ways, as can the result of the comparison be utilised in many ways

with different consequences.

The following factors influence the design of the debugger:

1. Point of inclusion

The protective confine that tuple space provides is fundamental to the approach that is taken in the

Linda debugger. The debugger must be included as a function of tuple space,,(TS), where timing

constraints are not prevalent.

2. Nature of the comparison request

The debugger is asked to check whether the behaviour of a particular process is consistent with the

behaviour that is expected of that process. The debugger must be provided with the process name and

tuple space operation (primitive and tuple). (This fact may clarify the reason why a process identifier

(,,) is included in all tuple space requests, for example, inreqlu), in the base Linda system - indeed,

the monitor-like action of tuple space coupled with the synchronous communication obviates the

necessity for process identification.)

3. Role of the debugger

The debugger compares behaviour and generates match/mismatch results. What is the system to do

with these results? It can utilise the result to continue execution, on a match, or to terminate some

component of the system or the whole system (debugger, tuple space, offending process, all processes),

on a mismatch. Alternatively, the result, match or mismatch, can be communicated to the environment

after which execution continues. In the first instance, the debugger fulfils an active, influential role,

whereas in the second, the debugger fulfils the role of a passive monitor.

77

There is little merit in the termination of an erroneous process from a suite of processes - there is a

close knit relationship between the processes that would be rendered meaningless, if one process is

terminated. Either no processes or all processes are terminated. At a much more fundamental level,

it is intended that the processes that constitute the Linda program be invariant on application or

removal of the debugger. If processes must take cognisance of behavioural comparisons (as they

would be obliged to do so if they terminate on mismatch), this would have to be reflected in the very

nature of the Linda primitives and would result in physically different processes. (It is possible to

argue that all Linda primitives generate some form of reply from tuple space (either an

acknowledgement, a boolean result on the predicate forms, or a tuple) and a match/mismatch reply

merely adds to the list. Furthermore, even if processes took cognisance of behavioural comparisons,

it may be argued that processes ought to be invariant until mismatch occurs, and not thereafter.) If

match results are broadcast to the environment but process execution continues regardless, processes

remain invariant, and the observer is at liberty to take action or not. In concrete terms, the observer

could be faced with a graphic display of tuple space and the debugger, and be prompted with match

results generated by the debugger. The results could be ignored (the specification may be incorrect)

or the system could be terminated on serious mismatches. From the process point of view, execution

appears normal, for example, some requests may block - they unexpectedly request data never in tuple

space, or unexpectedly add or remove data, but nonetheless execute Linda primitives in the manner

dictated by the paradigm.

The proposed policy' requires that tuple space, on receipt of a tuple space request, ask the debugger

to check the behaviour. The debugger checks the behaviour, the result is transmitted back to tuple

space, and execution continues regardless (essentially a synchronisation event). In the event that the

debugger declares a mismatch, it also broadcasts the bad news to the environment. (Bidirectional

communication between the debugger and tuple space seems meaningless if tuple space disregards the

result. It does, however, require that tuple space wait for the result before attending to the current and

subsequent requests. During this time, the debugger can not only conduct the comparison but also

gain access to an undisturbed tuple space to conduct any further tests or analyses.)

Using the specification of the base Linda system, a Linda system with debugger is developed.

The Debugger must check all requests made of tuple space, and register an objection whenever a

mismatch occurs between expected and actual behaviour. A suitable sort for Debugger:

Debugger: {Up E P (checkout" checkin" checkrd" checkinp" checkrdp" checkeval"

fai lout" fai I in" fai Ird" fai I inp" fai Irdp" fai leva I,,)
U result}

~ An alternative policy is developed in Appendix C. In this model, it is argued that processes ought to be invariant until
a mismatch occurs, at which stage the offending process is terminated. A model is developed that demonstrates such
invariance and controls process termination in cases of mismatch, but that still embodies the usual Linda properties .

The debugger is then defined as follows:

Debugger

where: 1.

2.

3.

,.r
checkoullu).

(resull .Debugger +
fa iloullu). resul I.Debugger) +

checkinlu).

(resull.Debugger +
fai I inlu).resul I.Debugger) +

checkrdlu).

(resull.Debugger +
failrdlu).resull .Debugger) +

checkinplu).

(resull.Debugger +
fall inplu).resul l.Debugger) +

checkrdplu).

(resull.Debugger +
fai I rdplu).resul I.Debugger) +

checkevallu).

(resull.Debugger +
fall eva llu). resul I.Debugger)

u E set of all tuples

P = set of all process identifiers

pEP

78

Whilst the result is always transmitted back to tuple space, a failure message is also broadcast if a

mismatch occurs.

Tuple space CTS) is modified to include communication with the debugger. A new tuple space agent

CTSD) results:

TSD(M) do' outlu).checkoullu).resull.TSD(M I!J {u}) +
inreqlu).checkinlu).result.TSDinreq(M, U, p) +
repinreqlu).TSDinreq(M, u, p) +
rdreqiu).checkrdiu).resull.TSDrdreq(M, U, p) +
reprdreq(lu).TSDrdreq(M, U, p) +
inpreqiu).checkinPiu).resull.TSDinpreq(M, U, p) +
rdpreqiu). checkrdpiu).resull. TSDrdpreq(M, U, p) +
evallu). checkeva Il u).resull. TSD(M)

TSDinreq(M, U, p) if match(M, u) = 0

then fail.TSD(M)

else inlu').TSD(M - {u'})

TSDrdreq(M, U, p) do' if match(M, u) = 0
then fa i I.TSD(M)

else rdlu').TSD(M)

TSDinpreq(M, U, p) do' if match(M, u) = 0
then fai I. TSD(M)

else inplu').TSD(M - {u'})

TSDrdpreq(M, U, p) do' if match(M, u) = 0
then faII.TSD(M)

else rdplu').TSD(M)

wbere: 1.

2.

3.

4.

u E set of all tuples

u' E match(M, u)

P = set of all process identifiers

pEP

79

Note bow, on re-submission of unsuccessful in and read requests, tbe debugger is not called to cbeck

tbe validity of tbe operation - the check is performed the first time the request is considered. Agent

name changes (TS to TSD, and TSinreq to TSDinreq, etc.) account for the only difference between the

definitions for TSDinreq, TSDrdreq, TSDinpreq, and TSDrdpreq and the definitions for TSinreq,

TSrdreq, TSinpreq and TSrdpreq. The definitions of all agents in the process collection (Process!>

Processp) remain the same.

The Linda system with debugger is then defined as follows':

LindaD

where: 1.

2.

do' ((TSD(M) IDebugger) ILdl
ProcessJIProcess,1 ... IProcessJIL

Ld = {UpEP (checkout" checkin" checkrd" checkinp" checkrdp" checkevalp)

U result}

L = {UpEP (out" inreq" repinreq" in" rdreq" reprdreq" rd" inpreq" inp"

rdpreq" rdp" evalp) U fail}

Although it is not intended that LindaD include facilities for tbe construction of a history file, it is

S A full specification of the Linda system with debugger can be found in Appendix B.

80

worthwhile to consider what mechanisms would be required to support such a venture.

A history file is merely a collection of events that took place during some execution of a program.

The value of the file is vested in how accurately it reflects the actual order in which events took place.

In the context of LindaD, a history file can be generated that reflects a linear order of events - tuple

space operation indivisibility, and the fact that tuple space deals completely with the current request

before it attends to any new request ensures this. TSD(M) and Debugger can be modified so that each

time an event of some significance occurs, notice of the event is posted to a history agent. Significant

events might include:

1. initial process request,

2. behaviour mismatch, and

3. result of tuple space operation.

The first two could be accommodated accordingly:

Debugger
.. ,

checkout/u).

(resul t.Debugger +
histfai lout/u).f'="al""'· I-=ou"'t"/u).

resul t.Debugger) +
checkin/u).

(resull.Debugger +
his t fa il.n/u).f·:CCa I'" I"':in:-:/u).

resull.Debugger) +
checkrd/u).

(resull .Debugger +
his Ifail rd/u).f,~al"·I:CCrdTC/u) .

resul t.Debugger) +
checkinp/u).

(resul t.Debugger +
his I fa i I inp/u).f~a~i Iri"'n"'pp""(u).

resull.Debugger) +
checkrdpiu).

(resull .Debugger +
his I fa il rdp/u).f°-:-al""'·I"'rdL'P""'/u).

resul t.Debugger) +
checkeval/u).

(resull .Debugger +
his t fa i I eva I /u).f~a I'" l"'e"-va~I"/u) .

resull.Debugger)

TSD(M)

History do'

oul/u).hls tout/u).

checlwut/u).result.TSD(M l!J {u})

inreq/u).his t In/u).

checkln/u).result.TSDinreq(M, II, p)

repinreq/u).h i s t repin/u).

+

+

TSDinreq(M, II, p) +

rdreq/u).h 1St rdlu).

checkrdlu).result. TSDrdreq(M, II, p) +
reprdreq(lu).h is treprdlu).

TSDrdreq(M, II, p) +

inpreqlu).hi s t inplu).

checkinplu).result.TSDinpreq(M, II, p) +
rdpreqlu).his trdplu).

checkrdplu).result.TSDrdpreq(M, II, p) +

eva1lu).his tevallu).

LpEP

checkeva llu).result. TSD(M)

(histoutlu).History +
histinlu).History +
histrepinlu).History +
histrdlu).History +
histreprdlu).History +
histinpp(u).History +
histrdPlu).History +
histevallu).History +
histfailoutlu).History +
histfailinl u).History +
histfailrdlu).History +

histfailinPlu).History +
histfailrdplu).History +
histfailevall u).History)

81

where: History can be incorporated into LindaD which is then further restricted by the sort

of History.

4.5.2.2 Observations and Properties

In section 4.4.2.3 a number of observations and properties were noted of Linda, specifically of tuple

space and processes. Issues of tuple creation and preservation, lack of tuple space fairness, and tuple

space safety were investigated. In LindaD, tuple space and processes exhibit the same properties. The

82

derivation sequences that may be developed differ from those in section 4.4.3.2 in so far as extra tenns

result from behavioural mismatches, and added silent activity that occurs as a result of hidden

communication with the debugger.

For example, that tuple space preserves tuples is shown as:

out,("a "), iD,("a") <terminate>

(TSD(M) IDebugger)ILdlProcess I) IL

= "t.«checkout l"a").result.TSD(M I!j {"a"})IDebugger)ILdl

ProcessOutl)IL 1.1

= "t."t.«result.TSD(M I!J {"a"})I(resul t.Debugger +
fa; [outl"a").resu[t.Debugger))ILdlprocessOut)1L + 2.1.1

"t.doneA(checkout l"a").result.TSD(M I!j {"a"})lDebugger)ILdl

Processl)IL 2.1.2

= "t."t."t. «TSD(M I!J {"a"}) lDebugger)ILdIProcessOutl) IL + 3.1.1

"t."t.fa i loutl"a").«result. TSD(M I!j {"a"})lresu[t.Debugger))ILdl

ProcessOutl)IL + 3.1.2

"t:t. donel. «result. TSD(M I!j {"a"})I(resu[t.Debugger +
fa; [outl"a").resul t.Debugger))ILdIProcessl)1L + 3.1.3

"t.doneJ."t.«result.TSD(M I!J {"a"})I(resul t.Debugger +
fa; loutl"a").resu[t.Debugger))ILdIProcessl)1L 3.2

= "t."t."t.doneA(TSD(M I!J {"a"}) lDebugger)ILdIProcessl)1L + 4.1

"t."t.fai [outl"a"):t.«TSD(M I!j {"a"})IDebugger))ILdl

ProcessOutl)IL + 4.2.1

"t."t.fa i lout l"a").donel.«result. TSD(M I!J {"a"})lresul t.Debugger))ILdl

ProcessJ)IL + 4.2.2

"t."t.doner"t.«TSD(M I!J {"a"})IDebugger)ILdIProcessl)1L + 4.3.1

"t."t.donerfalloutl"a").«result.TSD(M I!J {"a"})lresul t.Debugger)ILdl

Process)IL + 4.3.2

"t.doner"t."t.«TSD(M I!J {"a"})IDebugger)ILdIProcessl)1L + 4.4.1

"t.doner"t.fai lou tl"a "). «result. TSD(M I!J {"a"})lresul t.Debugger)ILdl

Processl)IL 4.4.2

•

= -c:t.-c.doneJ.-c.((checkinl"a ").result. TSDinreq(M I:!l {"a"}, "a ",1) IDebugger)ILdl

Process!nl"a"))IL + 5.1

u.fai loutl"a").-c.doneJ.((TSD(M I:!l {"a"})IDebugger)ILdl

ProcessJ)IL +
u.fai loutJ("a").donel"-c.((TSD(M I:!l {"a"})lDebugger)ILdl

ProcessJ)IL +

5.2

5.3

-c.-c.donel"-c.-c.((checkwl"a").result.TSDinreq(M I:!l {"a"}, "a",l)IDebugger)ILdl

Process1nl"a"))IL + 5.4

u.donel"fai lou tl"a ").-c. ((TSD(M I:!l {"a"})lDebugger)ILdl

5.5

-c.doneJ.-c.-c.-c.((checkinl"a").result.TSDinreq(M I:!l {"a"}, "a ",1) IDebugger)ILdl

Process!nl"a"))IL + 5.6

-c.donel"-c.fai loutl"a").-c.((TSD(M I:!l {"a"})lDebugger)ILdl

5.7

Two distinct terms emerge (renumbered for convenience):

((checkinl"a").result.TSDinreq(M I:!l {"a "}, "a ",1) IDebugger)ILdl

Process!nl"a"))IL +
((TSD(M I:!l {"a"}) IDebugger)ILdIProcessJ)1L

5.1

5.2

= -c. ((result. TSDinreq(M I:!l {"a"}, "a",1)I(resul t.Debugger +
fallwl"a") .resu/ t.Debugger))ILdIProcesslnl"a"))1L + 6.1

-c. ((check wl"a").result.TSDinreq(M I:!l {"a"}, "a",I)IDebugger)ILdl

Process!nl"a"))IL + 6.2

= u.((TSDinreq(M I:!l {"a"}, "a ",I) IDebugger)ILdIProcesslnl"a "))IL + 7.1.1

-c.fai I i nl"a "). ((result. TSDinreq(M I:!l {"a"}, "a",1)lresul t.Debugger))ILdl

=

Processln,("a"))1L + 7.1.2

-c.-c. ((result. TSDinreq(M I:!l {"a"}, "a",1)I(resul t .Debugger +
fai I inl"a").resul t.Debugger))ILdIProcess!nl"a"))1L 7.2

-c.-c. -c. ((TSD(M)IDebugger)ILdldone J.Process)1L + 8.1

-c.fai l inl"a").-c.((TSDinreq(M I:!l {"a"}, "a ",1) IDebugger)ILdl

Processlnl"a"))1L + 8.2

u.-c.((TSDinreq(M I:!l {"a"}, "a ",1) IDebugger)ILdIProcesslnl"a "))IL + 8.3.1

-c.-c.fai I inl"a").((result.TSDinreq(M I:!l {"a"}, "a",J)lresul t.Debugger))ILdl

Process!nl"a"))IL 8.3.2

83

84

= ,. ,. ,. don e }. ((TSD(M) IDebugger) ILdlProcess) IL + 9.1

,.fai I inl"a ").,., .((TSD(M) IDebugger)ILdldone}"Process})1L + 9.2

,. ,. ,. ,. ((TSD(M) lDebugge r) ILdldone }"Process}) IL + 9.3

,;.,;.fai I inl"a ").,. ((TSDinreq(M ~ {"a"}, "a ",I) IDebugger)ILdl

Process/nl"a"))IL 9.4

= ,;.,;.,.done}. term-;:((TSD(M)IDebugger)ILdIO)IL + 10.1

,.[ai I inl"a").,.,.doneA(TSD(M)IDebugger)lLdIProcess,)1L + 10.2

, . ,. ,. ,. done}" ((TSD(M) IDebugger) ILdIProcess,) IL + 10.3

'.'.fal I inl"a").,.,.((TSD(M)IDebugger)ILdldone}"Process,)1L 10.4

= ,;.,;.,.done,. term~.((TSD(M)IDebugger)ILdIO)IL + 11.1

,.fai I inl"a").,;.,;.done,. term-;:((TSD(M)IDebugger)ILdIO)IL + 11.2

,;.,;.,;.,;.done}. term~.((TSD(M)IDebugger)ILdIO)IL + 11.3

, . ,. fa iii n l" a"). ,. ,. done A (TSD(M) IDebugger)ILdIProcess,)1L 11.4

= ,;.,;.,.done,. term-;:((TSD(M)IDebugger)ILdIO)IL + 12.1

,.fai I inl"a").,.,.done,. term-;:((TSD(M)IDebugger)ILdIO)IL + 12.2

,.,.,;.,;.done,. term-;:((TSD(M)IDebugger)ILdIO)IL + 12.3

,.,.[ai I inl"a").,;.,;.done,. term-;:((TSD(M)IDebugger)ILdIO)IL 12.4

using Law 5:

= ,;.,;.,.done}. term-;:((TSD(M)IDebugger)ILd)IL + 13.1

,.fai I inl"a").,;.,;.done,. term-;:((TSD(M)IDebugger)ILd)IL + 13.2

,;.,;.,;.,;.done,. term-;:((TSD(M)IDebugger)ILd)IL + 13.3

,;.,;.fai I tnl"a").,.,.done}" term-;: ((TSD(M) IDebugger)ILd)IL 13.4

using Law 3:

= 14.1-14.4

using Law 4:

= 0

It should be noted that the properties hold, regardless of any possible inconsistency between actual and

expected behaviour.

85

The general capability of tuple space remains invariant under Linda and LindaD. Tuple space's ability

to perform certain activities and its inability to perform any otber activities is maintained. The

assertion tbat certain sub-actions be performed consequent to initial communications is also preserved.

TSset do'

TSD(M)

Up E P {out" inreq" repinreq" rdreq" rerdreq" inpreq"

rdpreq" evalp }

vex. [-TSset]ff A
ApEP «out.(u» <"t> <"t> X V

<inreq.(u» <"t> <"t>

«fail>XV<in.(u'»X) A
<repinreq.(u) >

«fail> XV <in.(u'»X) A
<rdreq.(u» <"t> <"t>

«fail> XV <rd.(u'» X) A
<reprdreq.(u) >

«fail> XV < rd.(u') > X) A
<inpreq.(u» <"t> <"t>

«faiZ> XV <inp.(u'»X) A
<rdpreq.(u» <"t> <"t>

«fai l> X V <rdp.(u'» X) A
<eva/iu» <"t> <"t> X))

The definition for tuple space maintains tbe necessity to complete all tbe processing tbat is related to

the current request before a new request is attempted:

Only(K) do'

TSD(M)

«K>tt A [-K]ff)

([-TSset]ff A
ApEP «out.(u» <"t> <"t> Only(TSset)

<inreq.(u» <"t> <"t>

«fai l> Only(TSset) V
<in.(u'» Only(TSset))

<repinreq.(u)>

«fa il > Only(TSset) V
< in.(u') > Only(TSset))

<rdreq.(u» <"t> <"t>

«fai l> Only(TSset) V
<rdiu'» Only(TSset))

A

A

A

A

<reprdreq/u)>

«fail> Only(TSset) V
<rdiu'» Only(TSset))

<inpreq/u» <1:> <1:>

«fad> Only(TSset) V
< inpiu'» Only(TSset))

<rdpreqiu» <1:> <1:>

(< fa i I > Only(TSset) V
<rdpiu'» Only(TSset))

<eval/u» <1:> <1:> Only(TSset))

86

A

A

A

Tuple space alone generates notice of the occurrence of all program events. Immediately after tuple

space receives a request (excluding re-submitted requests) from a process, notice of the event is

generated. An event is never generated at any other time:

EventOut do'

EventGenerators do'

RepeatRequests do'

TSD(M) 1=

UpEP {checkOut" checkin" checkrd" checkinp"

checkrdp" checkevalp}

Up E P {out" inreq" rdreq" inpreq" rdpreq" evalp}

Up EP {repinreq" reprdreqp}

vex. «->tt A
[EventGenerators] <EventO ut> X A
[EventOut]ft A
[RepeatRequests] X A
[-(EventGenerators U RepeatRequests U

EventOut)] X))

Neither the debugger nor any process is capable of generating notice of an event:

Debugger 1= vex. ([EventOut]ff A [-]X))

Processp 1= vex. ([EventOut]ft A [term~][-]ft A [- term~]X))

Notice of the occurrence of an event is communicated to the debugger, where it is used to check

expected versus actual behaviour:

Eventln "of Up E p {checkout" checkinp checkrd" checkinpp checkrdp"

checkevalp}

Debugger v(x.

87

«Eventln> «result>XV
~--

VpEP «failoutp><resul t> XV
<fai 1 inp><resul t> X V
<fai Irdp><resul t> X V
<fai I inpp><resul t> X V
<fai lrdpp><resul t> X V
<fai levalp><resul t> X))))

Neither tuple space (obviously) nor any process is capable of receiving notice of the event:

TSD(M) v(x. ([Eventln]ff A [-]X))

Processp v(X. ([Eventlnjff A [term~][-jff A [-term~]X))

4.6 A Comparison of the Behaviour of Linda and Linda with Debugger

[Mil89] describes equivalence relations (particularly observational equivalence) between agents that

is based, intuitively, on an equivalence between agents in terms of observable action capabilities. It

is instructive to explore observational equivalence (~) between Linda and LindaD, that is:

Linda - LindaD

The two agents are defined as:

Linda

LindaD

where: 1.

2.

do' (TS(M)IProcess,iProcess21··· I Process)\L

do' ((TSD(M) IDe bugger) \Ldl

Process,IProcess2 1 ... IProcess)\L

Ld = {Up E P (checkoutI' checkinp checkrdp checkinp I' checkrdp I' checkeval,,)

U result}

L = {UpEP (outp inreqp repinreqp inp rdreqp reprdreqp rdp inpreqp inpp
rdpreqp rdpp evalp) U fail}

An essential and desirable property of the specification of the Linda system and the Linda system with

debugger is the invariance of the specification of processes (both the distinguished process and

spawned processes). Since composition and restriction preserve bisimilarity ([MiI89] page 113), it is

sufficient to consider:

TS(M) ~ (TSD(M)IDebugger)\Ld

88

instead of Linda and LindaD.

Analysis (restrictions are omitted for brevity):

1. TS(M) - left member

Initial actions (outp inreqp replnreqp rdreqp reprdreqp mpreqp rdpreqp evalp) of the left

member:

2. TS(M~ {u})

3. TSinreq(M, U, p)

4. TSinreq(M, U, p)

5. TSrdreq(M, U, p)

6. TSrdreq(M, U, p)

7. TSinpreq(M, U, p)

8. TSrdpreq(M, U, p)

9. TS(M)

1. TSD(M)IDebugger - right member

The actions (outp inreqp repinreqp rdreqp reprdreqp mpreqp rdpreqp evalp) are matched

in the right member by:

2. checkout/u).result.TSD(M ~ {u})IDebugger

3. checkin/u).result.TSDinreq(M, U, p)lpebugger

4. TSDinreq(M, U, p)IDebugger

5. checkrd/u).result.TSDrdreq(M, U, p)lpebugger

6. TSDrdreq(M, U, p)IDebugger

7. checkinp/u).result.TSDinpreq(M, U, p)lpebugger

8. checkrdp/u).result.TSDrdpreq(M, U, p)lpebugger

9. checkeva l/u).result.TSD(M)Debugger

If no mismatch is encountered, the right member engages in silent activity ("I: - request to check; 1: -

reply), which is matched in the left member by ~ (no activity) :

10. TS(M~ {u})

11. TSinreq(M, U, p)

12. TSinreq(M, U, p)

13. TSrdreq(M, U, p)

14. TSrdreq(M, U, p)

15. TSinpreq(M, U, p)

89

16. TSrdpreq(M, U, p)

17. TS(M)

10. TSD(M I!J {u})IDebugger

11. TSDinreq(M, U, p)IDebugger

12. TSDinreq(M, U, p)IDebugger

13. TSDrdreq(M, U, p)IDebugger

14. TSDrdreq(M, U, p)IDebugger

15. TSDinpreq(M, U, p)IDebugger

16. TSDrdpreq(M, U, p)IDebugger

17. TSD(M)IDebugger

If a mismatch is encountered, the right member engages in a silent action (t - request to check), a

failure signal, and a further silent action (t - reply). The silent activity is matched in the left member

by l; but there is no equivalent for the failure signal.

From 10, 11, 12, 13, 14, 15, 16, and 17, equivalent patterns of behaviour are exhibited that are

matched by both the left and right members.

Since the failure signal of the right member is not matched by the left member:

TS(M) .p (TSD(M)IDebugger)lLd

and hence:

Linda .p LindaD

However, if the possibility of failure is excluded from the system:

Debugger do' checkouliu).resull.Debugger +
checkiniu).resull.Debugger +
checkrdiu).resul t.Debugger +

checkinPiu).resul t.Debugger +
checkrdpiu).resul t.Debugger +
checkevallu).resul t.Debugger

and resul I only transmits a favourable reply, then the following bisimulation holds:

TS(M) = (TSD(M)IDebugger)ILd

Intuitively, if no mismatch can occur, that is, the processes behave as expected, the Linda system

exhibits the same behaviour as the Linda system with debugger.

Alternatively, if the broadcast is internalised:

(TSD(M)IDebuggerIError)\Ld U Lf

where: 1. Error ~ Lp E P (failoulp(u).Error +

failin.(u).Error +
failr~(u).Error +
failinp.(u).Error +
failrdp.(u).Error +
faileval.(u).Error)

2. Lf = {Up E P (failoul" fai1in" failrd" failinp" failrdp" faileval)}

then the following bisimulation holds:

TS(M) ~ (TSD(M)IDebuggeriError)\Ld U Lf

90

Intuitively, if failure signals are not broadcast to the environment (are not observable) but dealt with

internally, the Linda system exhibits the same behaviour as the Linda system with the debugger.

4.7 Conclusion

A model for debugging Linda programs has been presented that is based on an event-based

behavioural model technique of debugging.

The technique requires the user to construct a model of the expected program behaviour prior to

program execution. At run-time, actual program behaviour is compared with expected program

behaviour. Any inconsistencies between actual and expected behaviour are considered to be program

faults. Expected behaviour is defined in terms of program events, which in the context of Linda

programs, relates to Linda primitives (or tuple space operations).

Since the behavioural model reflects the parallel component of the Linda program, the technique

demands that the user pay specific attention to the parallel component during the model construction

process. The overall approach that is adopted in the technique is formal, is composed of a set

sequence of steps, and, due to its automated character, requires that the user playa far more passive

role during program execution, but a far more active role during program development than is the case

when traditional breakpoint styles of debugging are employed.

A CCS specification of both the basic Linda model and the Linda model with debugger has also been

91

presented. A number of observations have been made, and properties derived of the basic model and

of the debugging model. Linda's commitment to tuple space interaction after the initiation of

interaction, non-deterministic duration of tuple space operations, and the spatial and temporal

decoupling of processes contribute to a general amenability to debugging. The Linda system that

includes the debugger is able to establish a global state, generate events, and record a linear order of

events without adversely effecting the execution of the Linda program to the extent that the "probe

~ffect" is demonstrated. Linda programs are invariant on application or removal of the debugger.

Observational equivalence is shown between the basic model and the debugging model when no

behavioural mismatches occur, or when mismatch signalS are caught by an internal error handler.

Chapter 5

A Specification Language for Linda
Programs

Fundamental to behavioural model techniques of debugging is the construction of a model of the

expected behaviour of the program under review. The previous chapter proposed a model of

debugging that requires a specification of the actions of all the processes that constitute the Linda

program. The specification must embody the parallel component (tuple space interaction) of the

individual processes without the added baggage of all the other host language sequential code. To this

end, some mechanism must be developed whereby this behaviour may be specified, and from which

an appropriate model may be constructed. This chapter presents an experimental Linda program

specification language.

5.1 A Mechanism for the Specification of Behaviour

Prior to the development of any specification mechanism, a clear idea must be established of what is

meant by the term "behaviour", and the exact nature of that which must be specified.

The proposed Linda debugger targets the coordination component of the Linda program!. Its domain

of interest is the Linda primitives and their interaction with tuple space. For the following example:

in (,counter', ?Counter);

Temp := Counter;

I The computation component is considered by a standard sequential debugger that may be applied to the appropriate

Linda process.

92

WriteString(,Old value of Counter: ');

WriteInt(Counter, 4);

out('counter', Counter + 1);

WriteString('New value of Counter: ');

WriteInt(Counter + 1, 4);

93

only those statements in boldtype concern the Linda debugger. Indeed emphasis is greater than that:

only those statements that appear in boldtype are subject to the scrutiny of the debugger. The

behaviour of a Linda program refers specifically to the Linda primitives that are executed. A

behaviour specification is an ordered collection of Linda primitives that are expected to be executed.

The specification attempts to capture the expected operational behaviour of a Linda program - what

is the program expected to "do"? In terms of exactly what must be specified, a number of levels of

concern can be identified.

A global level specifies the behaviour of a process as an ordered list of all the primitives that the

process will execute at run-time, for example:

in(?a)

in(?b)

out(a*b)

At this level, emphasis is placed on the need to specify a complete list of primitives. That is, for the

given process, no other primitives will be executed other than those specified and in that order. This

reflects the general behaviour specification of the process in terms of what it must execute.

On a specific level, process activity may be constrained further by other specific behavioural patterns

or requirements. For example, a sequence of primitives may be repeated a minimum or maximum

number of times, or the number of times a certain primitive is executed may not exceed the number

of times another primitive is executed.

The specification language and the specifications themselves form part of a debugger, and the

specification of behavioural patterns tbat are of interest to users debugging their programs is crucial.

On a debugging level, a user may wisb to ascertain whether the behaviour of a process includes some

highly-specific sequence of actions or sub-behaviour, for example:

in(37, 'bello')

out('too many bello')

94

within the lifetime of a process.

Furthermore, whilst any individual specification at any of these levels constitutes a behavioural

specification of some aspect of the process, there is no reason why a multitude of specifications, at

any level, could not constitute the behavioural specification of the process. It is quite conceivable that,

as the characteristics of a particular Linda program are better understood, further behavioural

specifications are added to enhance the overall specification, and to guard against undesirable

behaviour. ("View" is a good metaphor for the various program specifications.) The Linda process

would then have to satisfy each specification simultaneously for it to be said to be executing according

to its expected behaviour.

The specification mechanism must be able to give expression to the program's behaviour at all of these

levels.

A simple specification language, designed specifically for Linda programs, is proposed that is able to

give expression to the program's behaviour at a multiplicity of levels, to varying degrees of detail, and

that can handle more than one specification per process.

It is important to note that such program specifications can impact Linda program development

beneficially. Following sound software development practices, program specification should precede

any program implementation. (Indeed, such specification can form an integral part of the software

development cycle.) For Linda programs, this means that the coordination component enjoys full

attention without any competition from the excessive detail of the computation component. The

strategy forces the programmer to consider:

all the individual processes,

process interaction via tuple space, and

the composition of each tuple

all within the confines of a structured specification language prior to program implementation.

5.2 Previous Work

Section 2.2.3.2 contains a full report on behavioural model debuggers. This discussion summarises

the attempts that have been made to specify program behaviour.

All behavioural model debuggers include some formal mechanism with which to specify behaviour.

It usually takes the form of a special-purpose programming language or command language that

requires behaviour to be specified in a rigid format. [Bai86], [Bat83b], [Bru83] and [Hse89] require

a specification file, separate from the parallel program file, to be generated, whilst [Ros91] and

95

[Luc91) require that the parallel program be annotated. The specifications normally consist of a

multitude of event (primitive and compound) specifications that each have sub-sections for the actual

event specification, guards or constraining expressions that control firing conditions, and action-clauses

that indicate what must ensue as a result of the occurrence of the event.

[Bai86) describes a special-purpose specification language in which is defined a partial order on the

events of a process. For each process, all interactions in which it takes part are defined. Operators

are: sequencing, non-determinism, iteration, reversing (the definition of future behaviour as a function

of past behaviour), parallelism, and user interaction. Assertions are permitted that define predicates

on the value of the variables of a process and the debugger state. [Bat89) also uses a special-purpose

specification language to define events. Each event specification is composed of three sections: the

event specification as a function of primary events, a series of expressions that constrain event

occurrence, and a series of bindings that indicate how values must be bound to event instance

attributes upon event occurrence. An extended form of regular expression is used to specify events

that includes a shuffle operator. All operand events that are connected to the shuffle must occur but

the order of occurrence is unimportant. The shuffle operator permits the expression of concurrency

amongst participating events in the shuffle. [Hou89) uses the same formalism. [Els89) uses an

extended form of regular expression to specify events. The extension is in the form of a permutation

operator that is akin to the shuffle operator of [Bat89J. [Bru83) uses a modified version of path

expressions known as path rules to specify behaviour. A path rule consists of an event recognition

part (a generalised path expression) and a path action (a function that is called on event

match/mismatch). Generalised path expressions evolved from path expressions (a regular expression

with repetition, sequencing, and exclusive selection operators, and operands (path functions) that are

the names of functions defined on the data types). Path expressions express restrictions on the allowed

sequences of operations and the flow of information. Predicate path expressions extend basic path

expressions to include history variables and predicates that are associated with path functions.

Generalised path expressions extend predicate path expressions to include any program variable in

predicates, and predefined path functions. [Hse89) uses an extended form of generalised path

expressions known as data path expressions to specify behaviour. Data path expressions permit data

events to appear as path functions.

It is frequently the case that a regular expression or a extension of a regular expression is used as the

base formal ism in which to specify behaviour. The basic regular expression controls the sequence of

valid symbols whilst the extensions add further operators (shuffle operator), constraints on firing

conditions, access to counters and program variables, and ever more elaborate specification of actions

that ensue on event occurrence.

Specification languages are characteristically small, in terms of syntactic constructs, and reflect a

minimalist mindset.

It is not standard practice that the behaviour of the entire program be specified ([Bai86) does, however,

96

require full specification). More usually, the user is able to specify as many events as desired which,

collectively, may reflect some abstraction of the behaviour of the whole program.

5.3 An Experimental Linda Program Specification Language

5.3.1 Introduction

Section 5.1 detailed a number of base requirements that the specification language must satisfy,

namely, that Linda primitives form the base components of the language, and that facilities be

provided for multiple specifications or views of Linda processes. Using these as non-negotiable basics,

a language is constructed that combines the Linda primitives in simple and more complex alliances

to provide a useful set of forms with which to specify program behaviour.

Central to the proposed way in which Linda programs must be specificied, is the necessity to specify

the complete behaviour of all participating processes. This does, however, conflict with the desire to

provide specific and debugging level specifications where isolated process behaviour might be

targetted. The language must make allowance for this.

It is also anticipated that once the global level specification is complete, further specific and debugging

level specifications will be added as the program is debugged. The language should facilitate the easy

inclusion of additional specifications.

It is also desired that the specifications, especially the global level specifications be used for more than

just the basis of the behavioural models. If a similar semantic, and syntactic, base is employed by the

specification language that matches or approximates the host Modula-2 Linda dialect, the specification

could well be used as a starting point for final program implementation (the specification could be

"fleshed-out"). (It ought to be noted that such a strategy may propagate errors from the specification

into the final implementation. A measure of safety is, of course, provided by the specific and

debugging level specifications.)

Issues of language expressivity and sufficiency are difficult to quantify. Example specifications

provide some indication of these qualities.

5.3.2 Design Foundations

Section 5.2 detailed a variety of behaviour specification techniques. Most are special-purpose

languages in which behaviour is expressed in some form of regular expression. In the design of a

specification formalism, both the Linda paradigm and the underlying model of the proposed debugger

exert considerable influence.

97

Linda processes are both spatially and temporally decoupled - processes need not know of the

existence of other processes, nor do the processes with whom they interact indirectly have to execute

simultaneously. As a result, process behaviour specifications do not include any reference to other

processes, and essentially specify a straightforward sequence of events. A parallel operator is not

required.

The model of debugging dictates that the debugger compare behaviour and provide tuple space with

the results of the comparison (which tuple space ignores). If a mismatch in behaviour results, the

debugger also informs the environment. The notion of user-defined actions executable on event

match/mismatch is not applicable. Path actions or similar constructs are not necessary. Behaviour

specifications that take the form of program annotations normally provide access to target program

entities, for example, procedures, functions, variables and parameters. The proposed model of

debugging does not make use of annotations but uses a separate specification that exists as part of the

tuple space management system. As part of the tuple space management system, it does not have

access to target program entities but is privy to tuple space information. Such information may be

used to develop more comprehensive specifications. For example, if a tagged value is removed from

tuple space, incremented, and then replaced in tuple space, a tentative specification might be:

in(' counter', ?int)

out(,counter', int)

where: a type specifier only is used.

A more useful specification is:

in(,counter', ?Counter)

out(,counter', Counter + 1)

where: the correctness of the out-operation is dependent on the value assigned to

Counter during the in-operation.

The specification formalism must also be able to accept multiple specifications per process.

Based on past research, first consideration is given to regular expressions as the specification

formalism. They are adequate for all requirements except for the representation of changing tuple

space information. Multiple regular expressions cater for multiple specifications.

As an alternative to strict regular expressions, the use of CCS, or a subset of CCS, as the specification

formalism is explored. In chapter 4, value-passing CCS was used to specify the Linda paradigm. As

would have been expected, the specification of individual processes makes use of a limited subset of

CCS (action prefix (input and output of values), inactive agent, and summation) - no composition,

98

relabelling or restriction constructs are used. Furlbermore:

it has a conditional (if) construct for added expressivity, and

it has all the syntactic constructs (and associated semantics) Ibat are found in regular

expressions:

sequencing

alternation

repetition (*)
(Kleene star)

Reg. Expr.

ab

a+b

(a)*b ...

and the derived repetition(+) operator:

repetition (+)

value-passing CCS

a.b

a+b

A = a.A + b

A= a.B

B = a.B + b

The use of CCS to specify the behaviour of concurrent systems is well-known. CCS has also been

used to analyse the behaviour of imperative languages [Fre90], [Hen83]. In [Fre90], programs written

in Lunsen (an imperative language with constructs for concurrency and communication) are initially

translated into a typed CCS2 and then to basic CCS, after which the program's behaviour is

analysed'. The thrust of the exercise is to examine the parallel component of Ibe program.

The feasibility of a similar approach is apparent: in this work, the experimental Modula-2 Linda

system is hosted in an imperative language; the coordination component is clearly identifiable; and the

translation to a value-passing CCS is well-defined. Additionally, multiple value-passing CCS

specifications cater for mUltiple process specifications. Consequently, the proposed specification

language is based on value-passing CCS, with its syntax based on the language described by [Bru91].

5.3.3 Language Syntax

The language' supports the specification of the behaviour of a Linda program from a multiplicity of

2 The typed CCS language is much like the language developed by [Bru91] for value-passing CCS.

1 Both Lunsen (at the program level) and VP-CCS place restrictions on the language to make it finite-state . In Lunsen,
types of variables may only motain finitely many elements, and arbitrary recursion is not permitted. In VP-CCS, types of
variables may also only contain finitely many elements. Analysis is conducted with the use of the Edinburgh Concurrency
Workbench [Cle88].

~ A full listing of the language syntax (expressed in extended BNF notation) can be found in Appendix D,

99

behavioural angles and at a variety of levels. The underlying objective is to provide constructs that

enable the user to specify accurately the behaviour of a Linda program at the level of the Linda

primitives.

A specification for a single process is typically composed of a number of sub-specifications each of

which define alternate behavioural specifications or views of the process:

spec <SpecNamel>;

<Specification>

endspec

spec <SpecNameN>;

<Specification>

endspec

Each sub-specification is syntactically and semantically independent of the other sub-specifications.

Typically, one sub-specification specifies a general behavioural pattern, and any number of other sub

specifications specify other behavioural patterns.

Comments are permitted in the specification language, and take the following form:

/* comment */

<Specification> is divided into two sections: a variable declaration section, and the body of the sub

specification. The specification language provides facilities whereby variables may be declared in

which actual tuple data is stored that has been matched with formal tuples:

var

<Identifierl >, <Identifier2> : <TypeIdentifter>;

<Identifier3> : <Typeldentijier>;

The data is used in expressions that form part of future tuple elements and boolean expressions. It

strengthens the specification base.

The body of the sub-specification is composed of any number of sub-processes:

process <ProcessNamel>

= <CompoundStatement>;

process <ProcessNameN>

= <CompoundStatement>

that collectively specify the behaviour of the Linda process.

<CompoundStatement> is composed both of simple statements that relate to:

reference to other <ProcessName> 's,

Linda primitives, and

process termination

and constructors. Simple statements are separated by the sequencing operator, ".", for example:

a. b • ...• c

where: a, b, and c are simple statements.

100

Processes may make reference to other processes, and themselves. Such a reference is an effective

goto-statement, and is the vehicle by which iteration is implemented. For example:

process Arithmetic

= /* get task */
/* get data */
/* perform computation */

/* return result */
/* now go get next task */
Arithmetic

and

process Partl

=

1* now off to second part *1

Part2

process Part2

=

1* completed, so back to first part *1

Partl

The statements that relate to Linda primitives are:

out(tuple)

in(tuple)

read(tupJe)

inp(tupJe)

readp(tupJe)

evaJ(tupJe)

out(< TElement»

- inC <TElement»

read(<TElement»

inp(<TElement»

- readp(<TElement»

eval(<TElement»

Tuple element, < TElement>, detail may be provided:

<Element! >, .. . , <ElementN>

at varying levels of specificity:

<Expression>

int

str

? <Identifier>

?int

?str

an integer expression or string constant

an anonymous actual integer

an anonymous actual string

a named formal integer or string

an anonymous formal integer

an anonymous formal string

where: int and str are type identifiers.

101

For example:

var

I: int,.

C aunt, Name : sir,.

m(?Coun~ int, 1+4, ?str)

aut(mt, m~ int)

readp('my _name', ?Name)

102

In line with the semantics that are attached to eval, its <TElement> is restricted to a single actual

string that names an executable process.

Alternatively, a tuple may be specified using the wild tuple indicator:

•

The wild tuple indicator represents any tuple, that is, a tuple that is free of any composition

constraints, for example:

inp(*)

read(*)

where: mp(*) represents the universal set of all inp primitives, and read(*)

represents the universal set of all read primitives.

An even more powerful wild Linda primitive statement:

•

is also defined. The wild Linda primitive represents anyone of the Linda primitives to which may

be coupled any tuple. For example, any three Linda primitives that separate out(3) and out(4) can

103

be specified as follows:

out(3). *. *. *.out(4)

where: 'represents the universal set of all Linda primitives and possible tuples.

The wild Linda primitive construct is used to ignore irrelevant behaviour. The wild Linda primitive,

specified Linda primitive, wild tuple, and named and anonymous tuple elements constitute a hierarchy

of specificity or degrees of "don't care".

Linda processes do not normally have infinite behaviour, and the specifications must provide a

mechanism by which process termination may be signalled. (Process termination in the sense that no

further tuple space operations - Linda primitives - are executed by the Linda process'.) The NIL

statement reflects such a condition, for example:

process SomeTask

= /* first part of task */
/' second part of task */

/' last part of task '/

NIL

A random-construct' (similar to the shuffle-operator [Bat89] and the permutation-operator [Els89J)

random (<LindaPrimitive> . { <LindaPrimitive> })

provides for the specification of a group of actions that may occur in random order. For example:

random(in(?I).out(4).in(37))

S It is important to remember that the Modula-2 Linda system is such that processes are required to both initiate and
sever tuple space interaction by a special call on the tuple space management system. The "initiate" call signals a desire
to interact whilst the "sever" call signals the cessation of interaction. In this way, the tuple space management system is
provided with boundaries within which interaction is still possible.

6 The current implementation of the language supports a trivial form of the construct. A sequential order of occurrence
must be followed, that is, the actions must occur in the same order as they appear in the random·cxmstruct.

Each action specified in the group must occur once, and once only.

Two constructors implement alternation. An internally-decidable if-statement:

if (<Condition>

then <CompoundStatement>

else <CompoundStatement»

104

provides for alternate specification paths based on a condition that is either one of the Linda predicate

forms:

inp(<TElement»

readp(< TElement»

or an integer or string boolean expression. For example:

var

Action : str;

process Arithmetic

= ,0 get task 0,
in(?Action).

'* check for 'no more tasks' descriptor *'
if (Action = 'no more '

then '* you're done 0,
NIL

else ,0 get data 0,
,0 perform computation 0,
'* return result *'
,0 now go get next task *'
Arithmetic)

.'

105

An externally-decidable choice-statement:

choice (<CompoundStatement>

<CompoundStatement>

< CompoundStalemenl»

provides for multiple alternate specification paths. In this case, although only one specification path

is eventually fOllowed, more than one specification path is available for satisfaction - each of which

is equally correct. The first simple statement found in each <CompoundSlatemenl> serves as the

trigger by which alternate paths are chosen. The trigger may be a simple statement, that is:

OUI(<TElement»

inC <TElement»

read(< TElement»

inp(< TElement»

readp(<TElement»

eval(<TElement»

NIL

or, if it is not one of the above, the following semantics apply:

<ProcessName> . the first simple statement in the sub-process indicated by

<ProcessName>

if-statement predicate conditional:

the predicate conditional

expression conditional:

the first simple statement in either the then-clause or the

else-clause

choice-statement - nested choice-statements are "flattened", that is:

choice (<Ca>

choice (

<Cd»

is equivalent to:

choice (<Ca>

<Cb>

<Cc>

<Cd»

<Cb>

<Cc»

106

The search for trigger simple statements may encounter nested, contiguous <ProcessName>-, if-, and

choice-statements, in which case, the search process is defined to be recursive.

An example of the use of the choice-statement is:

process MasterArithmetic

= choice (out(' + ')Addition

out(' - ').Subtraction

out(' *,).M ultiplication

out(' I').Division);

process Addition

= /* some specification */

process Subtraction

= /* some specification */

process Multiplication

= /* some specification */

process Division

= /* some specification */

where: the specification permits the associated Linda process only to add either '+',
' - ' ••••• or '/' to tuple space and then to continue as specified.

107

5.3.4 Language Semantics

A number of semantic rules apply.

1. Sub-specification names, <SpecName> 's, must be distinct.

2. Sub-process names, <ProcessName> 's, within a particular sub-specification must he distinct.

Sub-process names are further constrained by the requirement that one of the names must

match the name of the Linda process that is being specified. For example, if the Linda

process is named Primes, an acceptable specification is:

spec PrimesGeneral;

process Primes

= /* some specification */

endspec

The sub-process SO named is the sub-process at which specification checking is begun - a start

symbol.

3. All variable identifier names within a particular sub-specification must be distinct. Identifiers

that are used in <Expression> 's, for example:

out(l+l)

i/«l = 10
then

else ...)

must also be initialised by previous use as a formal tuple element, for example, either:

in(?l)

read(?l)

or a Linda primitive predicate form, for example:

inp(?/, inl)

readp(?I, Sir)

that fires TRUE.

4. Actual and expected behaviour is compared in the following manner:

a) The Linda primitive, for example, in or out, must match.

b) Tuple arity must be equal.

c) For each tuple element:

both elements must be formal or actual,

both elements must be of the same type,

for an actual element:

108

if both elements are defined (not anonymous), the value of the expression must

be equal

for both formal and actual elements:

if either is anonymous, a match is declared

d) If the wild tuple indicator is used, the Linda primitive name, for example, read or

out, alone must match.

e) If the wild Linda primitive is used, as long as a Linda primitive occurs, a match is

declared regardless.

Note that the usual Linda tuple rules that match templates with free tuples do not apply .

5. The externally-decidable choice-statement offers a number of match possibilities. The

particular match strategy followed is :

a) In the event that an anonymous inl or sir is used, it excludes from the range of inl's

or sir's all specific instances used in other tuples coupled to the same type of Linda

primitive found as the trigger elsewhere in the choice-statement, for example:

choice (OUI(J2)

OUI(inl))

then a candidate out(12) does not match oUI(inl).

109

b) In the event that a wild tuple is used, it excludes from the universal set of tuples, all

tuples coupled to the same type of Linda primitive found as the trigger elsewhere in

the choice-statement, for example:

choice (out('hello', 87)

out(*). ".)

then a candidate out('hello', 87) does not match out(*).

c) In the event that the wild Linda primitive is used, it excludes from the set of all Linda

primitives, all Linda primitives and associated tuples found as the trigger elsewhere

in the choice-statement, for example:

choice (out('answer'). ".

*. ".)

then a candidate out('answer') does not match •.

6. The specification must provide a complete specification of all the Linda primitives that will

be executed by the Linda process. No provision is made for part-specification of processes.

For example, it is insufficient to specify the behaviour of a process that executes the primitive

out(54) sometime in its lifetime, amongst many other Linda primitives as:

spec Examplelncorrect;

process Example

= out(54).NIL

endspec

The interpretation that is ascribed to the above specification is: the Linda process, Example,

executes one, and only one, Linda primitive (out(54» in its lifetime. The correct specification

is:

spec ExampleCorrect;

process Example

= choice (*.Example

out(54).Examplel);

110

process Example]

= choice (NIL

*.ExampleJ)

endspec

Note how the wild Linda primitive is used to by-pass or ignore behaviour.

7. Whilst syntactically correct, some constructs specify no behaviour - they lack any action

specification. For example:

and:

and:

process A

= A;

process B

= C;

process C

= B;

process D

= choice (D

process E

= D;

E);

The interpretation that is ascribed to processes A, B, C, D, and E is: they are all incapable of

performing any Linda primitives and do not terminate.

It may, however, be the case that the process never interacts with tuple space but does

terminate, in which case, the appropriate specification is:

process A

= NIL

111

5.4 Specification Techniques

The facilities that are provided by the language can be used to generate a wide variety of

specifications.

(In the specifications that follow, the actions (a/, a" a" ... ,a,) refer to Linda primitives, and Next,

Next], Next2 are <ProcessName> 's.)

1. A single a/-action:

process Example

= a/.Next;

2. A sequence of actions (a/, a" a,):

process Example

= a j .a2·aJ.Next;

3. Internally-decidable alternation:

process Example

= al ·

if (<Condition>

then a,.Nextl

else a,.Next2);

4. Externally-decidable alternation:

process Example

= aj ,

choice (

5. Infinite iteration:

process Example

a,.Nextl

a,.Next2);

= a/.a, a •. Example

6. Deterministic iteration:

process Example

= if (< Condition>

then a/.a, a,.Example

else Next)

7. Non-deterministic iteration:

process Example

= choice (a/.a, a,.Example

Next)

112

8. The if-statement and choice-statement implement alternation. If a common specification must

be followed after all alternates, it must be specified explicitly, for example:

or:

process Example

= if (< Condition>

then a/.Example1

else a,. Example 1)

process Examplel

= f* some specification *f

process Example

= choice (

process Examplel

arExamplel

a,.Examplel)

= f* some specification *f

The construction of the global level specifications may be approached in a programming-like manner,

where the actions are specified as they would appear in the final Linda program. The specific level

and debugging level specifications, on the other hand, are usually moulded in the form of properties

that the process must satisfy.

Some common properties include:

1. Only one of a set of actions (a" a" a3):

process Example

= choice (aJ.Next

a,.Next

a,.Next)

2. Always one of a set of actions (a" a" a,):

process Example

= choice (aJ.Example

a,. Example

a,.Example)

113

In this case, infinite behaviour is expected. The addition of a NIL-statement as one of the

choices pennits finite behaviour.

3. A minimum number, say three, of aI-actions:

process Example

= aJ.ar aJ.Example1

process Example1

= choice (Next

aJ.Example1)

4. A maximum number, say three, of aI-actions:

process Example

= choice (Next

aJ.Example1);

process Example1

= choice (Next

aJ.Example2);

process Example2

= choice (Next

a/.Next);'

5. Zero or more a,-actions:

process Example

= choice (Next

a/.Example)

6. One or more acactions (this is similar to 3 above):

process Example

= a/.Examplel;

process Examplel

= choice (Next

a/.Examplel)

7. One or more of a sequence of actions (a" a" a,):

process Example

= choice (a,. a,. a3.Examplel

a/.a,. *.Example

a/. *.Example

*.Example) ;

process Examplel

= choice (*.Examplel

NIL)

1 The specification of minimum and maximum number of actions begs the introduction of a replicate-operator:

"rep" tIC' [<LowerBound] "," [UpperBound) "," <Statement> { "." <Statement> } ")11

This is discussed in more detail in the final chapter.

114

115

5.5 Example

The use of the specification language is demonstrated in the following example':

Problem:

Solution:

A number of simple arithmetic operations must be performed. Each operation is

composed of an operator (+, -, ., f), and two atomic operands.

A Linda solution, in the agenda-style of parallelism, is proposed in which a master

process starts a number of slaves, adds tasks to tuple space and retrieves the results,

whilst slaves scavenge for work, do the work, and return the answers to tuple space.

Task tuples are structured as follows:

task_id, operator

Each task tuple is associated with a data tuple that is of the form:

task_id, operand, operand

The master process adds all tasks and task data to tuple space, retrieves all the

answers and then posts a poison task to tuple space. Slaves continue to extract tasks

and task data until the poison task is retrieved at which stage they return the poison

task and terminate.

A possible specification for the master is as follows:

spec Arithmetic;

f* Master process that adds tasks to tuple space and retrieves results *f

var

Answer: inl;

process Master

f* start a number of slave processes *f
= choice (addtasks

eval('Slave ').Master)

8 Further examples can be found in Appendix E.

process addtasks

f* continue adding tasks to tuple space until no more tasks available *f

= choice (getresults

out(int, ' + '} .addoperands

out(in!, ' - '}.addoperands

out(int, '*'}.addoperands

out(int, '!'). addoperands};

process addoperands

= f* add operands *f

out(int, int, int}.

f* organise next task *f

addtasks;

process getresults

= choice (f* add poison task *f

out(int, 'end').

ends pee

f* you're done *f

NIL

f* retrieve answer *f

in(int, ?Answer}.

f* get more answers *f

getresults}

A possible specification for the slave process is as follows:

spec Arithmetic

f* Slave process that scavenges for tasks and task data, performs

computations, and returns results *f

var

Task Jd., OpI, Op2 : int;

Operator: str;

116

process Slave

= /* get task */

in(?Task Jd, ?Operator).

/* check if poison task */
if (Operator = 'end'

then /* yes, return it */
out(Task Jd, Operator).

/* and terminate */
NIL

else calculate)

process calculate

= /* get task data */

in(Task Jd, ?Opl, ?Op2).

/* perform computation, and return result */

if (Operator = '+'

endspec

then out(Task Jd, Opl +Op2).

Slave

else if (Operator = '- '

then out(Task Jd, Opl-Op2).

Slave

else if (Operator = '*'

then out(Task Jd, Opl *Op2).

Slave

else if (Operator = '/'

then out(TaskJd, Opl DIV Op2).

Slave

else NIL))))

117

Any number of other behavioural patterns may be specified:

spec AtLeastOneAddition;

f* Check that at least one addition operation is performed

in the lifetime of the process *f

var

Operator: str;

process Slave

= inC ?int, ?Operator).

in(*).

out(*).

if (Operator = '+ '
then ignoreallelse

else Slave);

process ignoreallelse

= choice (NIL

*.ignoreallelse)

endspec

spec AtLeastOneAnsweris11;

f* Check that at least one answer of 11 is computed by

the process in its lifetime *f

process Slave

= choice (*.Slave

out(int, 11).ignorealleise);

process ignoreallelse

= choice (NIL

*.ignorealleise)

endspec

118

5.6 Conclusion

spec NoTwoConsecutiveOuts;

/* Check that no two consecutive out operations are performed by

the process in its lifetime */

process Slave

= choice (NIL

ends pee

*.Slave

out(*).choice (NIL

in(*).Slave

read(*).Slave

inp(*).Slave

readp(*).Slave

eval(*).Slave))

119

An experimental specification language for Linda programs has been presented that is based on value

passing CCS. It is used to specify the expected behaviour of the processes that constitute a Linda

program, and from which a model of the expected behaviour is then constructed.

The language provides facilities whereby the parallel component of Linda programs may be specified,

in terms of Linda primitives, at varying degrees of specificity and from any number of behavioural

levels or views (global, specific, and debugging). The language is also able to specify the expected

behaviour in terms of properties that must be satisfied by a Linda process. A process specification

is typically composed of a variety of sub-specifications, each of which specifies its entire expected

behaviour from a different behavioural angle. (The requirement that the entire behaviour of a process

be specified is relaxed somewhat by the wild tuple and wild Linda primitive forms.) This contrasts

with many other such systems in which specific events are specified that only model particular aspects

of the program's overall behaviour. A multiplicity of sub-specifications is encouraged.

It is not the author's experience that Linda programs contain inordinately many tuple space operations.

Since Linda primitives form the core of the specification language, the length of the specification is

manageable.

Whilst the language has minimal syntactic constructs that could well be expanded, the language

nonetheless contains a core set of useful constructs that demonstrate adequately the principles

underpinning the debugging methodology.

Chapter 6

Behavioural Models

Chapter 4 explored a mechanism for debugging Linda programs that is based on behavioural model

debugging. Central to the technique is the construction of models of the expected behaviour of

programs. Chapter 5 described an experimental Linda program specification language that is used to

specify expected program behaviour, and in terms of which the expected behavioural model is then

constructed. This chapter describes the internal model representation, the model construction process,

modellLinda system integration, and model control during program execution.

6.1 From Specifications to Models to Recognition Engines

Expected behaviour models act as recognition engines that accept actual behaviour, and produce notice

actual
behaviour

Figure 6.1 Recognition process

Recognition

Ecgine

120

"expected behaviour" I

"unexpected behaviour"

121

of whether the behaviour was expected or unexpected (see Figure 6.1).

The recognition process is cyclic - actual behaviour is composed of a number of events, each of which

is checked by the model. The model recognises the actual behaviour of the target program or declares

a mismatch at some point

Chapter 5 detailed a specification language for Linda programs with which the expected behaviour of

the program may be specified in terms of Linda primitives. This specification forms the source of

information from which the desired model is constructed (see Figure 6.2).

Linda program
specifications

Figure 6.2 Model construction

Model

Constructor

model of expected
behaviour

Given that an appropriate model of the expected behaviour of the program exists, it is used as the basis

of a recognition engine (see Figure 6.3).

122

Linda program
specifications Model

Constructor

model of expected
behaviour

actual "expected behaviour" /

behaviour Recognition "unexpected behaviour"

Engine

Figure 6.3 Recognition process with expected behaviour model constructor

As the target Linda program executes, the recognition engine checks actual Linda primitives with

expected Linda primitives as found in the model.

6.2 Previous Work

Section 2.2.3.2 contains a full report on behavioural tnodel debuggers. A summary is now provided

of attempts that have been made to construct models of expected behaviour, recognition engines and

the recognition process.

Regular expressions and variants of regular expressions are predominantly used to specify behaviour.

Finite-state automata and variants of finite-state automata implement these regular expressions and

form the basis of recognition engines.

[0Is91a] and [Ols91b] use directed dataflow graphs as the model in which leaf nodes define primitive

events and internal nodes define compound events. [Bai86] implements specifications that define

partial orders of events of a process as a process in the target programming language. The resultant

process executes simultaneously with the target process, and awaits event information which it checks.

[Bru83] uses a finite-state automaton to implement generalised path expressions. The automaton

123

resides in the address space of either the debugger or the target process where it recognises process

behaviour and takes appropriate action upon event occurrence. [Bat89] uses a shuffle-automaton to

implement regular expressions based on patterns of symbols. Simple finite-state automata are

insufficient: to recognise sets (patterns) of symbols; to base transitions on relational expressions that

are based on attributes of input symbols; and to handle concurrent pattern matching. [Els89] uses

finite-state automata to implement a slightly extended form of regular expressions (they include

concatenation, alternation, repetition and permutation operators). [Hse89] uses predecessor automata

to implement data path expressions. Predecessor automata fire on transitions that are based on both

the current event and predecessor events. They recognise partial ordering graphs as well as strings.

Where specifications are provided in CCS, they are implemented as a series of transition graphs, as

in the Concurrency Workbench [Cle93].

The increase in complexity of specification formalism (as noted in Chapter 5) has necessitated an

increasingly complicated implementation equivalent, and recognition process.

6.3 Internal Model Representation

The task of checking actual with expected behaviour is the responsibility of a recognition engine. In

this work, recognition engines are based on program specifications expressed in the Linda program

specification language. This section discusses a strategy for the implementation of recognition engines.

The implementation must cater for:

1. the inclusion of information in Linda primitives that may not be static, and

2. multiple specifications for ' each Linda process.

In previous work, frequent use is made of finite-state automata to implement recognition engines.

Expressed simplistically, behaviour recognition can be thought of as a process in which a stream of

tokens is recognised as valid or not. For languages based on regular expressions, finite-state automata

form an appropriate implementation for corresponding recognition engines. Finite-state automata are

defined as follows:

124

Definition:

where:

A non-detenninistic (finite-state) automaton (NFA) D is as-tuple (Q, T, Ii, S, F),

1. Q is a finite non-empty set, elements of which are called states.

2. T is an alphabet.

3. Ii is a function (transition function) from Q X (T U {An into the set of subsets of Q.

4. SEQ is a start symbol.

5. F ~ Q is a non-empty set of final states.

In the context of the Linda debugger, the Linda primitives are the alphabet ('I), and the points in the

program's execution at which a particular primitive (or set of primitives) is expected constitute the

various states (Q). The alphabet does, however, require closer examination. Section 5.3.2 proposed

that the specification language permit tuple infonnation to be specified in the Linda primitives, for

example:

out(Number)

Here, Number is not defined statically but is dependent on the particular binding that is operable at

the time the primitive is encountered in the recognition process. Tokens in the proposed language are

composed of values that may change from time to time - the alphabet is dynamic. Unfortunately, an

NFA requires that the alphabet be static (predefined), and is therefore inadequate.

In this work, an extended NFA is proposed that differs from the standard NFA in respect of the

alphabet and the transition function .

An environment, E, is defined

E = U :., {(Namei, Value;)}

where: n is the number of named variables in E.

in which a set of tuples, (Namei , Value,), is maintained that associates a Value i with each Namei. The

alphabet is subject to the environment

and the transition function is modified accordingly

125

The full definition of the extended NFA is as follows:

Definition: An extended non-deterministic (finite-state) automaton (ENFA) D is a 6-tuple (Q, E,

T, 0, S, F), where:

1. Q is a finite non-empty set, elements of which are called states.

2. E is an environment of tuples that bind names to values.

3. TE is an alphabet.

4. 0 is a function (transition function) from Q X (TE U {A}) into the set of subsets of Q .

5. SEQ is a start symbol.

6. F!;::; Q is a non-empty set of final states.

For example, in Figure 6.4

in(?l) ou/(l) in(?l) ouc(l)

8 ~0 ~0 -0 -0
on ~

Figure 6.4 Internal model of expected behaviour

the following ENFA is depicted:

Q = {V,W,x;Y,Z}

o = Q X (TE U {A})

S = V

F = {Z}

at the various states, E and TEare as follows:

at V:

at W,X:

TE = inC?!), out(!)

E={}

TE = inC?!), out(17)

E = {(!,17)}

at Y,Z: T. = inC?!), out(9)

E = {(!,9)}

The internal model representation is further complicated by:

126

1. the requirement that a behavioural specification be provided for each Linda process, and

2. the option of mUltiple behavioural specifications (or sub-specifications) per Linda process.

To cater for these requirements, a compound internal model is used (see Figure 6.5).

ENFA 1,1 ENFA 1,2 ENFA I,DS 1

Internal Model

(linda Program)

ENFA 2,1 ENFA 2,2 ENFA 2,ns 2

Figure 6.5 Internal model of a Linda program

p.

ENFA n,l ENFA 11,2 ENFA II,IlS D

For each sub-specification, a separate ENF A, and private environment, is constructed that manages a

particular abstraction of the process.

In summary, the internal model of a Linda program is the summation of the internal models of all its

constituent processes:

InternalModelLindaProgralfl =

where: l.

2.

P is the set of all process identifiers

pEP

The internal model of a single process is the summation of all the internal models that represent its

127

mUltiple sub-specifications:

=

where: ns, is the number of sub-specifications for process p.

And the internal model of a sub-specification is an ENFA:

=

6.4 Model Construction

A labelled transition graph (G) is used to implement the ENFA. Coupled to G is an environment (E)

in which tuples are maintained that associate a value with a name. Wherever names are referenced

in G, an appropriate hook is maintained to this environment.

The implementation of the internal model of the Linda program is composed of the implementation

of all the internal models of all participating processes:

= Lp E P Imp/Modelp

For each process, a graph is constructed and an environment is maintained for each sub-specification:

Imp/Modelp =

Process specifications expressed in the Linda program specification language are parsed, and converted

into a graph. Most language constructs translate into a state with a single output transition.

Alternation constructs translate into a state with two output transitions (in the case of the if-statement),

and more than one output transition (in the case of the choice-statement).

Some graph post-processing is performed in which nested choice-statements are "flattened", multiple

reference to the same sub-process and termination (NIL-nodes) in the same choice-statement are

removed, and attention is drawn to empty specifications, for example:

process A

= B;

process B

= A;

128

It is standard practice that non-deterministic finite-state automata are converted to deterministic finite

state automata prior to their use as recognition engines. It imposes greater construction time but

improves recognition time. The requirement that symbols (Linda primitives) need not be fully-defined

at model construction time (they are dynamic) precludes any conversion. For example, a state may

be defined to have two transitions, namely, out(l) and out(J). Dependent on the values bound to I and

J, the transitions mayor may not be deterministic. Furthermore, they may be placed within some

cycle, in which case the state may change from deterministic to non-deterministic, or vice versa, for

example:

process A

= choice (NIL

out(I). in(?I)A

out(J). in(? J)A)

As a result, the recognition engine is forced to pursue multiple paths when behaviour is checked.

6.5 The Model at Work

6.5.1 Model Control

6.5.1.1 Informal Description

Internal models are constructed for all processes participating in the Linda program, and their actual

behaviour is checked against these models.

The following, iterative, checking process is defined:

1. For each internal model, the debugger sets a current state marker equal to the start state.

2. As processes interact with tuple space, the debugger is informed of the nature of the

interaction and the originating process.

For each interaction:

Based on the associated environment for each model, the debugger updates all next

expected Linda primitives (transitions) at the current state.

The debugger then tests the actual behaviour against the behaviour as expected

(transitions) in each sub-specification for that process.

129

If the behaviour is accepted by all sub-specifications, a match is declared, otherwise

a mismatch is declared.

Based on the valid transitions, the current state marker is updated to reflect the new

state.

For each model, the associated environment is updated to reflect any new bindings.

The checking process continues until all processes terminate interaction with tuple space.

Note that the behaviour of processes is checked simultaneously, as each process requests tuple space

interaction. Although tuple space requests from the various processes are interleaved in time, the

requests for a single process represent a linear stream of behaviour.

6.5.1.2 Formal Description

The internal model of the target Linda program is composed of a number of ENFA for each process.

The Linda program satisfies its expected behaviour, if, for every ENF A, the stream of behaviour

(symbols) is accepted and a final state is reached. (For programs that have infinite behaviour, the

problem is undecidable.)

A current state is maintained for each ENFA that represents a sub-specification

currentstatep,i

where: l.

2.

3.

P is the set of all process identifiers

pEP

i is the i" sub-specification

Since the graphs are non-deterministic, a set is used to represent the current state (multiple paths are

followed in parallel).

The standard algorithm for the recognition of a language by a deterministic machine [Bac79) is used

as the basis for the algorithm that implements the matching process for any process (p E P).

130

{ Algorithm to determine, for some process p (E P), whether a given sequence of behaviour Bp

(E TEp,,*) is in the language recognised by the ENFA machine Dp,i = (Qp,i' Ep.i ' TEp.i' b, Sp.i

, Fp,J.}

for all i do

currentstatep,i := 0 U Sp,i;

behaviour := first behaviour symbol in Bp;

satisfied := true;

while Bp not exhausted do

for all i do

end;

for all states in currentstatep,i

update TEp.i;

for all i do

currentstatep,i = b(currentstatep,' behaviour);

if currentstatep,i = 0

then satisfied := false;

"Mismatch"

else update Ep,i

nextbehaviour(behaviour)

for all i do

if NOT currentstatep,i E Fp,i

then satisfied := false;

if satisfied

then "Process satisfied expected behaviour"

else "Process did not satisfy expected behaviour".

6.5.2 Model/Linda System Integration

The experimental Modula-2 Linda system is composed of a server that manages tuple space and

mechanisms that enable processes to communicate with the server and to interact with other processes

via tuple space (see Figure 6.6).

131

TSUb Process 1

Server

TSLib 1-<----..... Process 2

Tuple Space

TSLib 1--- -_-1.. Process n

Figure 6.6 Modula-2 Linda system

A separately executing specification handler constructs and manages the model, and implements the

recognition engine (see Figure 6.1).

Specification Handler

Figure 6.7 The specification handler

The server communicates with the specification handler via a single link. Information that is carried

by the link includes:

1. notice of new processes that initiate communication with the server and of old processes that

sever communication with the server,

2. actual process behaviour, and

,

3. the results of expected and actual behaviour comparisons.

Figure 6.8 illustrates the overall system.

TSUb

Server

TSLib

Tuple Space

TSUb

Specification Handler

Figure 6.8 Modula-2 Linda system with specification handler

Process t

Process 2

Process •

132

The standard Linda system requires minimal change to incorporate the specification handler' . The

selVer code is modified at appropriate points to include communication with the specification handler,

whilst Linda application program (process) code remains unchanged. Since the specification handler

is a separate program, it executes in its own code and data space. Its execution is free of side-effects -

it does not modify the state or order of computation sequence of any Linda process. Neither can it

access the code or data space of any Linda process - for the data in which it is interested (tuples

added/removed from tuple space), it maintains copies of its own.

1 Details of the implementation of the debugger can be found in Appendix G.

133

6.6 Conclusion

An expected behaviour model, based on specifications provided in the experimental specification

language for Linda programs, has been presented that acts as a recognition engine.

A new formalism, an extended non-deterministic finite-state automaton (ENFA), is proposed to

represent the model. In a standard non-deterministic finite-state automaton (NFA), the alphabet is

static, whilst in an ENFA the alphabet is dynamic. The evolving nature of tuples that are coupled to

the Linda primitives (symbols of the language) necessitate the new formalism. The value of

conversion from a non-deterministic to deterministic automaton, either at model construction time or

later, is acknowledged, but made impossible by the dynamic alphabet.

Multiple ENFA's implement the facility whereby processes may be accompanied by more than one

sub-specification.

A labelled transition graph implements the ENFA. So that changing values associated with named

tuple elements may be recorded, a separate environment (in which values are associated with names)

is maintained for each ENFA.

The behaviour recognition algorithm is based on a standard algorithm for the recognition of a language

by a non-deterministic machine. A Linda program is said to satisfy its eXl!ected behaviour, if all

models (ENFA's) for each process accept the stream of behaviour for the process it represents, and

reaches a final state.

The recognition engine is implemented as a standalone program (independent of the Linda tuple space

server and Linda program code). The server provides the engine with a stream of process behaviour

which it then checks. The server code is modified slightly to include communication with the engine.

Linda process code remains unchanged. The recognition engine executes in its own code and data

space, separate from that of the server and all Linda processes. The execution of the recognition

engine is side-effect free - it does not modify the state or execution sequence of the process

computation.

Chapter 7

Conclusions and Future Research

7.1 Conclusions

7.1.1 Introduction

The development of fault-free sequential and parallel programs is widely recognised as a non-trivial

exercise. Programmers of all levels of competence acknowledge that the programming process

requires a whole host of skills, included in which is a touch of serendipity.

In sequential programming environments, it is commonplace to discover, amongst other utilities,

program debuggers that aid the inevitable debugging process. Sequential debugging is a well

understood, yet continually improving, process. It is supported by a broad spectrum of debuggers,

some of which constitute a more than comprehensive set of manipulative devices that are designed to

ferret out the most stubborn of faults.

In parallel programming environments, the situation is very different. Support tools like debuggers,

are less frequently encountered and are of questionable use. Debugging parallel programs is made

difficult by an inability to reproduce reliably the behaviour of the program, by the influence of the

"probe effect", by non-determinism, and by a difficulty in determining the order of OCCurrence of

events in concurrently executing processes. Attempts to construct parallel debuggers have included

the application of sequential debugging teChniques in the parallel domain, event-based debuggers,

visual debuggers, and static analysis debuggers. Their success is limited and variable, partly as a result

of the suppression of faults on application of the debugger, the "probe effect", the production of

excessive debug detail, or a restriction on the class of faults that can be detected.

This thesis has proposed the use of an event-based behavioural model technique of debugging to debug

Linda programs.

134

135

7.1.2 Contributions of the Thesis

The investigation of the Linda parallel programming paradigm, and the model for debugging Linda

programs shows that Linda programs are amenable to debugging using an event-based behavioural

model technique of debugging.

The proposed model of debugging is as follows:

1. A specification, in terms of Linda primitives, is provided of the actions of each process that

constitute the Linda program. An experimental specification language for Linda programs is

used.

2. The specifications are used to construct models of the expected behaviour of the Linda

program upon which behaviour recognition engines are based.

3. At run-time, the behavioural models are used to compare expected with actual program

behaviour. Inconsistencies are reported.

It is found that

• The non-deterministic duration of tuple space operations provides the debugger with

a convenient slot into which to place its activity without effecting the Linda program

semantics or introducing the vagaries of the "probe effect".

• The Linda primitives form a simple, well-defined set of primitive events.

• Spatial and temporal process decoupling promote a process-specific or process

oriented debugging approach.

• The design of the debugger is such that it is not necessary to write any code to

implement event-generation and event-collection mechanisms. Whereas other

debuggers are forced to program special event generation and collection code, the

Linda primitives themselves form the only events, and the extant routing of requests

to tuple space is an in-place event collection mechanism.

• A global program state space, representing the coordination component of the Linda

program, is established whenever tuple space interaction is suspended.

• Tuple space provides a convenient place at which to linearize requests. As it deals,

synchronously, with each request, the debugger exploits the opportunity to generate

notice of event occurrence.

• Since the debugger is designed to interact with tuple space only, Linda processes are

136

invariant on application or removal of the debugger.

• Milner's observational equivalence is shown between the basic Linda model and the

Linda debugging model when no behavioural mismatches occur, or when mismatch

signals are caught by an internal error handler.

The model of debugging demonstrates a number of desirable properties:

• The explicit process specification phase forces the programmer to concentrate attention

on the coordination component to the exclusion of the computation component.

• It imposes a structured approach to debugging that is based on a formal model of

expected versus actual behaviour, and program transitions from valid states to valid

states.

• The debugging process is automated, and requires that the user play a far more

passive role during program execution but a more active role during program

development than is the case with other parallel debuggers.

• It improves Linda program design by demanding that programs be specified.

Important aspects of the specification language include:

• Linda programs are specified

on a per process basis,

in terms of Linda primitives,

at varying degrees of specificity, and

from any number of behavioural levels or views.

• Unlike some systems in which specific events are specified that only model particular

aspects of the program's overall behaviour, Linda processes must be specified in full

(the degree of specificity may vary, but the specification must still describe full

process behaviour).

• Multiple specifications of the same process from different views is facilitated and

encouraged.

• The length of specifications is manageable.

• The number of syntactic constructs in the language

is minimal,
adequate to demonstrate the principles that underpin the debugging

methodology, but

should be expanded to capture extra behavioural patterns.

137

Of the expected behaviour models

• They are represented by a new, yet simple, formalism, an extended non-deterministic

finite-state automaton (ENFA). A labelled transition graph implements the ENFA.

• Multiple specifications of the same process are handled easily by multiple ENFA's.

The implementation of the debugger is such that

• Unlike many other parallel debuggers (especially those that annotate the target code),

the Linda debugger executes in its own code and data space, and is side-effect free.

7.2 Future Research

A number of issues remain unexplored by this thesis. Future research includes the following:

• History Files and Replay

The production of a history file was considered in chapter 4. However, it was not included

in the final definition, nor was it implemented in the final experimental Modula-2 Linda

system with debugger. The construction of a full replay system, based on the history file,

should be considered. Since a linear order of events is available, a fully-reproducible program

execution sequence is possible. The replay system could be a simple browse facility, or a full

blown reconstruction of the execution.

• Tuple Space Organisation

The Linda paradigm is based on a single, logical tuple space to which all process requests are

directed. Logical tuple space deals with all requests, in sequence, and in a monitor-like

[Hoa74] fashion. On receipt of a request, tuple space generates notice of the associated event

to the debugger for validation. The single stream of events generated by the single, logical

tuple space is pivotal to the success of the debugger. In the event that logical tuple space is

implemented as a single, physical tuple space, the proposed debugging methodOlogy holds.

However, in an attempt to improve tuple space performance, physical tuple space has taken

on many new forms, namely

partitioned tuple space: based on requests that will be made by processes,

tuple space is divided into partitions that service distinct sets of processes,

138

distributed tuple space: tuple space is distributed (broken-up) into multiple

tuple spaces that may reside across a network of processors, and

replicated tuple space: tuple space is replicated across a network of

processors.

The resultant individual sub-tuple spaces are autonomous but, in the case of distributed and

replicated tuple spaces, may communicate with each other. The lack of a single, physical

tuple space impacts negatively on the notion of a single stream of events - system performance

is improved at the expense of debugging opportunity. The following needs to be assessed:

the extent to which the proposed model of debugging may be applied to a

Linda system in which tuple space is partitioned, distributed or replicated, and

the extent to which the benefits of the proposed model of debugging and

alternative implementations of logical tuple space can be derived by the

development of a system that implements both.

The formal model of debugging developed in chapter 4 can be used in the assessment. In that

chapter, a Linda system

Linda d<'

and a Linda system with debugger

LindaD d<'

(TS(M)iProcess,iProcess2 i ... i Process,J1L

((TSD(M) iDebugger) ILdi

Process,iProcess2i ... iProcess,J1L

were specified. The following bisimulation was investigated:

Linda ~ LindaD

reduced to

TS(M) ~ (TSD(M)iDebugger)ILd

If tuple space in the Linda system with debugger were replaced with, for example, a replicated

tuple space (TSRepD(M)), a LindaRepD system results:

LindaRepD do' ((TSRepD(M)iDebugger)ILdi

Process, iProcess2i ... iProcess,J1L

139

The following bisimulation can then be investigated:

LindaD ~ LindaRepD

reduced to

TSD(M) ~ TSRepD(M)

(This assumes that Debugger and all processes are invariant under LindaD and LindaRepD.)

If this bisimulation can be established, the model of debugging developed in chapter 4 can be

applied to a Linda system in which tuple space is replicated. The same procedure follows for

a partitioned or distributed tuple space.

• The Specification Language

Chapter 5 described an experimental specification language for Linda programs. The language

contains a core set of constructs that demonstrate the model of debugging adequately, but

more work needs to be done on the kinds of constructs that best express behavioural patterns.

Some constructs that may prove useful include

a replicate-operator

"rep" "(" [<LowerBound>] "," [<UpperBound>] ","

<Statement> { "." <Statement> } ")"

that permits a sequence of actions to occur repeatedly within a lower and

upper bound, and

a predefined primitive-count function

CNT "(" <LindaOp> ")"

that gives the specification access to the number of times a particular Linda

primitive has occurred.

At a more fundamental level, the nature of the language could also be examined. Presently,

the specifications detail the series of actions that the process must carry out. It would be

worthwhile to consider the incorporation of constructs that specify actions that the process

must NOT do. Rather than specifying the action or range of actions that are currently

140

pennissable, the negative form may be far more succinct.

• The Edinburgh Concurrency Workbench

The Edinburgh Concurrency Workbench (CWB) is an automated tool which caters for the

manipulation and analysis of concurr.ent systems expressed in CCS or a modal logic. Since

the specification language is based on value-passing CCS, the possibility of interaction

between the debugger and the CWB should be investigated. Essentially, the process

specifications could be translated to basic CCS, submitted to the CWB, and analysed to

detennine immediate and eventual process progress, possible deadlock, and so on. Particular

process properties could also be investigated. The following issues would need attention:

the translation of language constructs not based on value-passing CCS to basic

CCS (changing tuple element information),

the state-space explosion on translation from value-passing to basic CCS, and

CWB and debugger integration.

• Speculative Evaluation

The debugger is only active when processes interact with tuple space (and tuple space requires

the debugger to validate a process request). It is likely that the debugger will have periods

in which it is inactive. During this period, the possible future behaviour of processes could

be analysed - for similar purposes and in much the same way as the CWB may be utilised (it

may be a good place to call on the expertise of the CWB).

• Alternate Behavioural Model Representation

The present implementation of the behavioural model is a labelled transition graph in which

transitions are based on single Linda primitives. Transition graphs that represent random

constructs are characterised by an "explosive" structure as a result of the many permissable

orders of occurrence of actions. For a large random sequence of actions, the "explosion" is

dramatic, brought about mainly by the single-action transition. It is worth considering a

strategy where transitions are based on a set of actions. In the simplest case, that is, where

a single action constitutes the transition, a singleton set results. Then, for a particular state,

if the actual action is found in the set, it is an expected action. If so, it is removed from the

set, and, if the set is then empty, a transition is made to the next state. For large random

sequences of actions, the set would be larger, but the transition rules identical. Manageable

graph sizes would rcsul t.

141

• User Interface

The widespread availability of high-technology graphics monitors and windows-based support

software simplifies the construction of quality user interfaces. Not only could the action of

the debugger, the process specifications (expressed as a labelled transition graph), and tuple

space be depicted, but many of the ideas present in TupleScope [Ber90a 1 could be

incorporated, for example, tuple space browse facilities, and highlight mechanisms for specific

tuples.

7.3 In Closing

The ever-increasing demand for computing power places a high premium on the development of fast

machines, most of which are parallel processor-based. To date, researchers have been hard-pressed

to match the hardware development with software of comparable quality. New paradigms,

methodologies, and indeed, ways of thinking are required. Linda combined with an event-based

behavioural model technique of debugging offers a contribution to the new order.

Bibliography

[Ada86)

[Ahm91a)

[Ahm91b)

[Ahu86)

[And79)

[And91)

[Bac79)

[Bai81)

[Bai83a)

Adams, E., Muchnick, S.S. Dbxtool: A Window-Based Symbolic Debugger for Sun

Workstations. Software - Practice and Experience, 16(7), 653-669, 1986.

Ahmed, S., Gelernter, D. Program Builders as Alternatives to High-Level Languages.

Technical Report: YALEU/DCS/RR-887, Department of Computer Science, Yale

University, 1991.

Ahmed, S., Carriero, N., Gelernter, D. The Linda Program Builder. In: Proceedings

of the 3'd Workshop on Languages and Compilers for Parallelism, Irvine, 1990. Also:

Languages and Compilers for Parallel Computing II, MIT Press, Cambridge,

Massachusetts, 1991.

Ahuja, S., Carriero, N., Gelernter, D. Domesticating Parallelism - Linda and Friends.

Computer, 19(8), 26-34, 1986.

Andler, S. Predicate Path Expressions: A High-Level Synchronisation Mechanism.

Ph.D Thesis, Department of Computer Science, Carnegie-Mellon University, 1979.

Anderson, E.G., Shasha, D. Persistant Linda: Linda + Transactions + Query

Processing. Lecture Notes in Computer Science, 574, 93-109, 1991.

Backhouse, R.C. Syntax of Programming Languages: Theory and Practice. Prentice

Hall International, London, 1979.

Baiardi, F., Fantechi, A., Tomasi, A., Vanneschi, M. Mechanisms for a robust

distributed environment in the MuTeam kernel. In: Proceedings of 11th Fault-tolerant

Computing Symposium, 24-29, 1981.

Baiardi, F., Fantechi, A., Vanneschi, M. Language constructs for a robust distributed

environment. In: The MuTeam Experience in Designing Distributed Systems of

Microprocessors. Bologna, Italy: Tecnoprint, 25-84, 1983.

142

[Bai83b]

[Bai86]

[Bat82]

[Bat83a]

[Bat83b]

[Bat87]

[Bat89]

[Ber90a]

[Ber9Ob]

[Bj087]

[Bor88]

[Bru83]

143

Baiardi, F., De Francesco, N., Matteoli, E., Stefanini, S., Vaglini, G. Development of

a Debugger for a Concurrent Language. ACM SIGPlan Notices, 18(8), 98-106, 1983.

Baiardi, F., De Francesco, N., Vaglini, G. Development of a Debugger for a

Concurrent Language. IEEE Transactions on Software Engineering, SE-12(4), 547-

553, 1986.

Bates, P.e., Wileden, J.e. Event Definition Language: An Aid to Monitoring and

Debugging of Complex Software Systems. In: Proceedings of the 15th Hawaii

International Conference on Systems Science, 1982.

Bates, P.e., Wileden, J.e. An Approach to High-level Debugging of Distributed

Systems (Preliminary Draft). ACM SIGPlan Notices, 18(8), 107-111, 1983.

Bates, P.C., Wileden, J.e. High-Level Debugging of Distributed Systems: The

Behavioural Abstraction Approach. Journal of Systems and Software, 3(4), 255-254,

1983. Reprinted in: Tutorial: Distributed Software Engineering (ed. Shatz, S.M. and

Wang, J-P.), 205-214, IEEE Computer Society Press, Washington, 1989.

Bates, P.C. The EBBA Modelling Tool, a.k.a. Event Definition Language. Technical

Report: 87-35, University of Massachusetts, 1987.

Bates, P.e. Debugging Heterogeneous Distributed Systems Using Event-Based Models

of Behavior. ACM SIGPlan Notices, 24(1), 11-22, 1989.

Bercovitz, P, Carriero, N. TupleScope: A Graphical Monitor and Debugger for Linda

Based Parallel Programs. Research Report: YALEU/DCS/RR-782, April 1990,

Department of Computer Science, Yale University, 1990.

Berry, G., Boudol, G. The Chemical Abstract Machine. In: Proceedings of the 1~

ACM Conference on Principles of Programming Languages, 81-94, 1990.

Bjornson, R. A Linda User's Manual. Scientific Computing Associates, New Haven,

Connecticut, June 1987.

Borrrnan, L., Herdieckerhoff. M., Klein, A. Tuple Space Integrated in Modula-2:

Implementation of the Linda Concept on a Hierarchical Multiprocessor. In : Jesshope

and Reinartz (eds.), Proceedings of CON PAR '88, Cambridge University Press, 1988.

Bruegge, B., Hibbard, P. Generalized Path Expressions: A High-Level Debugging

Mechanism (Preliminary Draft). ACM SIGPlan Notices, 18(8),34-44, 1983.

[Bru91]

[Bur88]

[Bus89]

[But91a]

[But91b]

[Cam74]

[Car86]

[Car88]

[Car89a]

[Car89b)

[Car90a]

[Car90b]

144

Bruns, G. A Language for Value-Passing CCS. Technical Report: ECS-LFCS-91-

175, Laboratory for Foundations in Computer Science, Department of Computer

Science, Edinburgh University, 1991.

Bums, A Programming in occam 2. Addison-Wesley, Wokingham, England, 1988.

Busalacchi, P.J. Linda on Transputer-based Personal Computer. In: Proceedings of

the Australian Transputer and OCCAM User Group Conference, 53-57, Glasshouse

Theatre, Royal Melbourne Institute of Technology, July 6-7, 1989.

Butcher, P., Zedan, H. Lucinda - A Polymorphic Linda. Lecture Notes in Computer

Science, 574, 126-146, 1991.

Butcher, P. A Behavioural Semantics for Linda-2. Software Engineering Journal,

July, 196-204, 1991.

Campbell, R.H., Habermann, AN. The Specification of Process Synchronisation by

Path Expressions. Lecture Notes in Computer Science, 16, 89-102, 1974.

Carriero, N., Gelemter, D., Leichter, J. Distributed Data Structures in Linda. In:

Proceedings of the 13~ Symposium on Principles of Programming Languages, St

Petersburg, Fla., January, 1986.

Carriero, N., Gelemter, D. Applications Experience with Linda. ACM SIGPlan

Notices, 23(9), 173-187, 1988.

Carriero, N., Gelemter, D. Linda in Context Communications of the ACM, 32(4),

444-458, 1989.

Carriero, N., Gelemter, D. How to Write Parallel Programs: A Guide to the

Perplexed. ACM Computing Surveys, 21(3), 323-357, 1989.

Carriero, N., Gelernter, D. Tuple Analysis and Partial Evaluation Strategies in the

Linda Precompiler. In: Gelernter, D., Nicolau, A and Padua, D. (eds) Languages and

Compilers for Parallel Computing, 114-125, MIT Press, Cambridge, Massachusetts,

1990.

Carriero, N., Gelernter, D. How to Write Parallel Programs: A First Course. MIT

Press, Cambridge, Massachusetts, 1990.

[Car91]

[Car93]

[Cia91]

[Cia92]

[Cla89]

[Cla92]

[Cle88]

[Cle93]

[Cl084]

[Coh91]

[Dah90]

[Das85]

145

Carver, R.H., Tai, K-C. Replay and Testing for Concurrent Programs. IEEE

Software, 66-74, March, 1991.

Carriero, N. Private Communication. 1993.

Ciancarini, P. Parallel Logic Programming using the Linda Model of Computation.

Lecture Notes in Computer Science, 574, 110-125, 1991.

Ciancarini, P., Jensen, KK, Yanklevich, D. The Semantics of a Parallel Language

Based on Shared Dataspaces. Technical Report: 26/92, University of Pisa, 1992.

Oayton, P.G. Interrupt-Generating Active Data Objects. Ph.D Thesis, Department

of Computer Science, Rhodes University, 1989.

Clayton, P.G., Wentworth, E.P., Wells, G.c., de-Heer-Menlah, F.K An

Implementation of Linda Tuple Space under the Helios Operating System.

SACJ/SART, 6, 3-10, 1992.

Oeaveland, R., Parrow, J., Steffen, B. The Concurrency Workbench: Operating

Instructions. Technical Note: 10, Laboratory for Foundations in Computer Science,

Department of Computer Science, Edinburgh University, 1988.

Cleaveland, R., Parrow, J., Steffen, B. The Concurrency Workbench: A Semantics

Based Tool for the Verification of Concurrent Systems. ACM Transactions on

Programming Languages and Systems, 15(1), 36-72, 1993.

Clocks in, W., Mellish, C. Programming in Prolog. Springer-Verlag, 1984.

Cohn, R. Source Level Debugging of Automatically Parallelized Code. ACM

SIGPlan Notices, 26(12), 132-143, 1991.

Dahlen, U. Scheme-Linda. Technical Report EPCC-TN90-06, Department of

Computer and Information Science, Linkoping University, Linkoping Sweden,

September, 1990.

Dasgupta, P., LeBlanc, RJ., Spafford, E. The Clouds Project: Design and

Implementation of a Fault-Tolerant Distributed Operating System. Technical Report:

GIT-ICS-85/29, School of Information and Computer Science, Georgia Institute of

Technology, Atlanta, Georgia, 1985.

[Das87]

[Dij68]

[Dor92]

[Els89]

[For89]

[Fra91]

[Fre90]

[Gai85]

[Gai86]

[Geh84]

[GeI85]

[GeI88]

[GoI89]

146

Dasgupta, P., leBlanc, R.J., Appelbe, W. The Clouds Distributed Operating System:

Functional Details and Related Work. Technical Report: GIT-ICS-87/42, School of

Information and Computer Science, Georgia Institute of Technology, Atlanta, Georgia,

1987.

Dijkstra, E.W. Cooperating Sequential Processes. In: Genuys, F. (ed.), Programming

Languages, Academia, N. Y., 43-112, 1968.

Dorr, H. Monitoring with Graph-Grammars as formal operational Models. In: (eds)

Kuchen, R., Loogen, R. Proceedings of the 4th International Workshop on the

Parallel Implementation of Functional Languages, Aachen, 1992.

Elshoff, I.J.P. A Distributed Debugger for Amoeba. ACM SIGPlan Notices, 24(1),

1-10, 1989.

Forin, A. Debugging of Heterogeneous Parallel Systems. ACM SIGPlan Notices,

24(1), 130-140, 1989.

Francioni, J.M., Albright, L., Jackson, J.A. Debugging Parallel Programs using

Sound. ACM SIGPlan Notices, 26(12), 68-75, 1991.

Fredlund, L., Jonsson, B., Parrow, J. An Implementation of a Translational Semantics

for an Imperative Language. Lecture Notes in Computer Science, 458, 246-262,1990.

Gait, J. A Debugger for Concurrent Programs. Software - Practice and Experience,

15(6), 539-554, 1985.

Gait, J. A Probe Effect in Concurrent Programs. Software - Practice and Experience,

16(3), 225-233, 1986.

Gehani, N. Ada: An Advanced Introduction Including Reference Manual for the Ada

Programming Language. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.

Gelernter, D. Generative Communication in Linda. ACM Transactions on

Programming Languages and Systems, 7(1), 81-112, 1985.

Gelernter, D. Getting the Job Done. Byte, 13(12),301-308, 1988.

Goldszmidt, G.S., Katz, S., Yemini, S. Interactive Blackbox Debugging for

Concurrent Languages. ACM SIGPlan Notices, 24(1), 2171-282, 1989.

[Gri88]

[Has91]

[Has92]

[Hay87]

[Haz90]

[He185]

[Hen80]

[Hen83]

[Hen85]

[Hoa74]

[Hoa78]

[Hou89]

[Hse89]

147

Griffin, J.H., Wasserman, H.J., McGavran, L.P. A Debugger for Parallel Processes.

Software - Practice and Experience, 18(12), 1179-1190, 1988.

Hasselbring, W. On Integrating Generative Communication into the Prototyping

Language ProSet. Informatik-Bericht: 05-91, Essen University, December 1991.

Hasselbring, W. A Formal Z Specification of Pro-Set Linda. Technical Report: 04-

92, Fachbereich Mathematik und Informatik, Essen University, 1992.

Hayes, I. Specification Case Studies. Prentice Hall, New York, 1987.

Hazelhurst, S. A Proposal for the Formal Specification of the sematics of Linda.

Technical Report: 1990-14, Department of Computer Science, University of the

Witwatersrand, 1990.

Helmbold, D., Luckman, D.C. TSL: Task Sequencing Language. In: Proceedings of

the Ada International Conference, 255-274, Cambridge University Press, Cambridge,

England, 1985.

Hennessy, M., Milner, R. On Observing Nondeterminism and Concurrency. Lecture

Notes in Computer Science, 85,295-309, 1980.

Hennessy, M., Li, W. Translating a Subset of Ada into CCS. In: Bjoener, D. (ed.),

Formal Description of Programming Concepts II, 227-249, North-Holland,

Amsterdam, 1983.

Hennessy, M., Milner, R. Algebraic Laws for Nondeterminism and Concurrency.

Journal of the Association for Computing Machinery, 32, 137-162, 1985.

Hoare, C.AR. Monitors: An Operating System Structuring Concept.

Communications of the ACM, 17(10),549-557, 1974.

Hoare, C.AR. Communicating Sequential Processes. Communications of the ACM,

21(8),666-677, 1978.

Hough, AA, Cuny, J.E. Initial Experience with a Pattern-Oriented Parallel Debugger.

ACM SIGPlan Notices, 24(1), 195-205, 1989.

Hseush, W., Kaiser, G.E. Data Path Debugging: Data-Oriented Debugging for a

Concurrent Programming Language. ACM SIGPlan Notices, 24(1), 236-247, 1989.

[Hse9O]

[Inm84]

[Jen9O]

[Ker78]

[KiI91]

[Koz83]

[Lam78]

[Laz86]

[LeB85a]

[LeB85b]

[LeB87]

[LeI9O]

148

Hseush, W., Kaiser, G.E. Modelling Concurrency In Parallel Debugging. ACM

SIGPlan Notices, 25(3), 11-20, 1990.

Inmos Ltd. Occam Programming Manual. Prentice-Hall, 1984.

Jensen, KK The Semantics of Tuple Space and Correctness of an Implementation.

Research Report: 788, Yale University, 1990.

Kerningham, B. W., Ritchie, D.M. The C Programming Language. Prentice-Hall,

Englewood-Cliffs, New Jersey, 1978.

Kilpatrick, c., Schwan, K ChaosMON - Application-Specific Monitoring and Display

of Performance Information for Parallel and Distributed Systems. ACM SIGPlan

Notices, 26(12), 5767, 1991.

Kozen, D. Results on the Propositional mu-Calculus. Theoretical Computer Science,

27,333-354, 1983.

Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM, 21(7), 558-565, 1978.

Lazzerini, B., Prete, c.A. DISDEB: An Interactive High-Level Debugging System for

a Multi-Microprocessor System. Microprocessing and Microprogramming, 18, 401-

408, 1986.

LeBlanc, R.I., Robbins, A.D. Event-Driven Monitoring of Distributed Programs.

Proceedings of the 5th International Conference on Distributed Computing Systems,

Denver, Colorado, 515-522, 1985. Reprinted in: Tutorial : Distributed Software

Engineering (ed. Shatz, S.M. and Wang, J-P.), 215-222, IEEE Computer Society Press,

Washington, 1989.

LeBlanc, R.I., Wilkes, c.T. Systems programming with Objects and Actions. In:

Proceedings of the 5th International Conference on Distributed Computing Systems,

Denver, Colorado, 1985.

LeBlanc, T.I., Mellor-Crummey, J.M. Debugging Programs with Instant Replay.

IEEE Transactions on Computers, C-36(4), 471-482, 1987.

Leier, W. Linda Meets Unix. IEEE Computer, 23(2), 43-54, 1990.

[Lin89]

[Lop89]

[Luc87]

[Luc91]

[Mac82]

[Mac90]

[Mar81]

[Mar90]

[Mat88]

[McD89]

[Mif92a]

[Mif92b]

[Mil89]

149

Lin, C-C., LeBlanc, R.I. Event-Based Debugging of Object/Action Programs. ACM

SIGPlan Notices, 24(1), 23-34, 1989.

Lopriore, L. A User Interface Specification for a Program Debugging and Measuring

Environment. Software - Practice and Experience, 19(5), 437-460, 1989.

Luckman, D.C. et al. Anna: A Language for Annotating Ada Programs. Lecture

Notes in Computer Science, 260, 1987.

Luckman, D.C., Sankar, S, Takahashi, S. Two-Dimensional Pinpointing: Debugging

with Formal Specifications. IEEE Software, January, 74-84, 1991.

Maccabe, AB. Language Features for Fully Distributed Processing Systems. Ph.D

Thesis. Technical Report: GIT-ICS-82/12, School of Information and Computer

Science, Georgia Institute of Technology, Atlanta, Georgia, 1982.

MacDonald, N. Prolog-Linda. CS4 Project Report, Department of Computer Science,

Edinburgh University, 1990.

Martin, LR. Mara: An Overview of the Civil Implementation. Rapporto Interno

Selenia, SPM 2.1, 1981.

Marinescu, D.C., Lumpp, J.E., Casavant, T.L., Siegel, H.I. Models for Monitoring

and Debugging Tools for Parallel and Distributed Software. Journal of Parallel and

Distributed Computing, 9, 171-184, 1990.

Matsuoka, S., Kawai, S. Using Tuple Space Communication in Distributed Object

Oriented Languages. In: Proceedings of OOPSLA '88, San Diego, September, 276-

284, 1988. Also in: ACM SIGPlan Notices, 23(11), 276-284, 1988.

McDowell, C.E., Helmbold, D.P. Debugging Concurrent Programs. ACM Computing

Surveys, 21(4), 593-622, 1989.

Mifsud, A A Semantic Description of Mseq-Linda in CCS. Draft Report, 1992.

Mifsud, A Semantic Development of Distributed Linda Systems. M.Sc Thesis,

Department of Computer Science, Edinburgh University, 1992.

Milner, R. Communication and Concurrency, Prentice Hall, New York, 1989.

[Moe92)

[Ne(91)

[01s91a)

[01s91b)

[Pan91a)

[pan91b)

[Pan93)

[Pe(81)

[Pin91)

[Pl081)

[Pon91)

[Ros91]

[Rub89]

150

Moe, P. PanParallacea: A System for Debugging and Monitoring Parallel Programs.

Ph.D Thesis, Department of Computer Systems, Norwegian Institute of Technology,

1992.

Netzer, R.H.B. Race Condition Detection for Debugging Shared-Memory Parallel

Programs. Ph.D Thesis, Department of Computer Science, University of Wisconsin

Madison, 1991.

Olsson, R.A., Crawford, R.H., Ho, W.W. A Dataflow Approach to Event-Based

Debugging. Software - Practice and Experience, 21(2), 209-229, 1991.

Olsson, R.A., Crawford, R.H., Ho, W. W., Wee, C.E. Sequential Debugging at a High

Level of Abstraction. IEEE Software, May, 27-36, 1991.

Pancake, C.M., Utter, P.S. A Bibliography of Parallel Debuggers, 1990 Edition.

ACM SIGPlan Notices, 26(1), 21-37, 1991.

Pancake, C.M. Software Support for Parallel Computing: Where are we headed?

Communications of the ACM, 34(11), 53-64, 1991.

Pancake.C.M., Netzer, R.H.B. A Bibliography of Parallel Debuggers, 1993 Edition.

This bibliography is available via anonymous ftp at: cs.orst.edu and

wilma.cs.brown.edu

Peterson, J.L. Petri Net Theory and The Modelling of Systems. Prentice-Hall,

Englewood-Cliffs, New Jersey, 1981.

Pineo, P.P., Soffa, M.L. Debugging Parallelized Code using Code Liberation

Techniques. ACM SIGPlan Notices, 26(12), 108-119, 1991.

Plotkin, G. A Structured Approach to Operational Semantics. Technical Report:

DAiMI FN-19, Department of Computer Science, Aarhus University, 1981.

Ponamgi, M.K., Hseush, W., Kaiser, G.E. Debugging Multithreaded Programs with

MPD. IEEE Software, May, 37-43, 1991.

Rosenblum, D.S. Specifying Concurrent Systems with TSL. IEEE Software, May,

52-61, 1991.

Rubin, R.Y., Rudolf, L., Zernik, D. Debugging Parallel Programs in Parallel. ACM

SIGPlan Notices, 24(1), 216-225, 1989.

[San93]

[Sci93]

{Sha90]

[She93]

[Smi85]

[Spi92]

[Sta89]

[Sti91]

[Sti92]

[Tai91]

[Utt89]

[Ven89]

151

Sankar, S., MandaI, M. Concurrent Runtime Monitoring of Formally Specified

Programs. Computer, 26(3), 32-41 , 1993.

Fortran-Linda Update. Scientific Observations (publication of: Scientific Computing

Associates lnc.), Fall 1993.

Shatz, S.M., Mai, K, Black, c., Tu, S. Design and Implementation of a Petri Net

Based Toolkit for Ada Tasking Analysis. IEEE Transactions on Parallel and

Distributed Systems, 1(4), 424-441, 1990.

Shekar, KH., Srikant, Y.N. Linda Sub System on Transputers. Computer Languages,

18(2), 125-136, 1993.

Smith, E.T. A Debugger for Message-based Processes. Software - Practice and

Experience, 15(11), 1073-1086, 1985.

Spivey, J.M. The Z Notation: A Reference Manual, Prentice Hall, New York, 1992.

Stallman, R.M. GDB Manual (The GNU Source Level Debugger), Third Edition,

GDB version 3.1, Free Software Foundation, Cambridge, MA. January, 1989.

Stirling, C. An Introduction to Modal and Temporal Logics for CCS. Lecture Notes

in Computer Science, 491, 2-20, 1991.

Stirling, C. Modal and Temporal Logics for Processes. Technical Report: ECS

LFCS-92-221, Laboratory for Foundations in Computer Science, Department of

Computer Science, Edinburgh University, 1992.

Tai, K-C., Carver, R.H., Obaid, E.E. Debugging Concurrent Ada Programs with

Deterministic Execution. IEEE Transactions on Software Engineering, 17(1),45-63,

1991.

Utter, P.S., Pancake, C.M. Advances in Parallel Debuggers: New Approaches to

Visualization. Theory Center Technical Report: CTC89TR18, 12/89, Cornell Theory

Center, Cornell University, 1989.

Venables, P.J., Zedan, H. Debugging and Monitoring Highly Parallel Systems with

GRIP. Microprocessing and Microprogramming, 28, 79-84, 1989.

[WaI87]

[Wir85]

[Yue90]

[Zer91]

152

Walker, D. Introduction to a Calculus of Communicating Systems. Technical Report:

ECS-LFCS-87-22, Laboratory for Foundations in Computer Science, Department of

Computer Science, Edinburgh University, 1987.

Wirth, N. Programming in Modula-2 (3'd edition). Springer-Verlag, New York, 1985.

Yuen, C.K., Wong, W.F. BaLinda Lisp: A Parallel List-Processing Language. In:

Proceedings of the 2'd IEEE International Workshop on Tools for Artificial

Intelligence, Faifax, Virginia, 618-624, November, 1990.

Zernik, D., Rudolf, L. Animating Work and Time for Debugging Parallel Programs

Foundation and Experience. ACM SIGPlan Notices, 26(12), 46-56, 1991.

Appendix A

Glossary of Symbols

A glossary of symbols.

Tuples

u

u'

.1

Entities

I

s

L

P

E,F

x

e

b

.p
f

tuple (template)

free tuple that matches u

formal tuple element

label

action sequence

sort

agent

agent expressions

value variable

value expression

boolean expression

formula of process logic

relabelling function

Ai

Set Constructions

o

U
I!J
x

Action Constructions

T
S

Transitions

Basic Agent Constructions

I.E

o
E+F

LiE/Ei

ElF

TIiE1Ej

ElL

Elf]

empty set

set difference

set union

multiset union

indexed set {Xi: i E l} (I understood)

silent action

label complement

empty action sequence

I-transition

silent transition

transitive reflexive closure of -4

bL.b

prefix

inactive agent

summation

summation over an indexing set

composition

composition over an indexing set

restriction

relabelling

A2

Value-Passing Agent Constructions

l(x).E

T(e).E

if b then E

A(X) ~f E

Agent Equivalence Relation

Basic Logical Constructions

prefix (input of values)

prefix (oulput of values)

conditional

parametric agent definition

observational equivalence

possibility

conjunction

satisfaction

Derived Logical Constructions

tt truth

ff falsity

[s] cj> necessity

<<S» cj> weak possibility

[[s]] cj> weak necessity

V iEI cj>i disjunction

Extended Logical Constructions

z
vZ.cj>

"Z.cj>

propositional variable

maximal fixed point operator (v) in the modal equation Z

minimal fixed point operator (;t) in the modal equation Z

A3

Appendix B

CCS Specifications

This appendix contains CCS specifications for the full Linda system and the full Linda system with

debugger.

B.l Linda System

The definition is composed of three sections, namely: tuple space (TS(M», the distinguished process

(ProcessJ), and spawned processes (Process,,) :

TS(M) do'

TSinreq(M, U, p) do'

TSrdreq(M, U, p) do'

outlu).TS(M l!J {u}) +

inreqlu).TSinreq(M, U, p) +
repinreqlu).TSinreq(M, u, p) +
rdreqlu).TSrdreq(M, u, p) +
reprdreqlu).TSrdreq(M, u, p) +
inpreqlu). TSinpreq(M, U, p) +
rdpreqlu).TSrdpreq(M, U, p)

evallu).TS(M)

if match(M, u) = 0
then fail.TS(M)

else inlu').TS(M - {u'})

if match(M, u) = 0

then fai I.TS(M)

else rdlu').TS(M)

Bl

B2

TSinpreq(M, U, p) '!! if match(M, u) = 0
then fail.TS(M)

else inp/u').TS(M - {u'})

TSrdpreq(M, u,p) dof if match(M, u) = 0

then fai I.TS(M)

else rdp/u '). TS(M)

ProcessJ
dof

outlu).ProcessOutJ + =

inreqlu).Processlnlu) +
rdreqlu).ProcessRdlu) +
inpreqlu).ProcesslnpJ +
rdpreqlu).ProcessRdpJ +
evallu).s tar t •. ProcessEvaiJ
term;O

ProcessOutJ
dof

done J.Process J =

Processlnlu)
dof

inlu').doneJ.ProcessJ +
fail. rep inreqJ(u).ProcesslnJ(u)

ProcessRdlu) dof
rdlu').done}"ProcessJ +
fail. reprdreq/ u).ProcessRdlu)

ProcesslnpJ
dof

fail.reslfalse).ProcessJ +
inplu'). re s ltrue).ProcessJ

ProcessRdpJ dof fail.resJfalse).ProcessJ +
rdpl u'). re s ltrue).ProcessJ

ProcessEvalJ
dof

done J.Process J =

Process"
dof

start".ProcessSt"

ProcessSt"
dof

out "(u).ProcessStOut,, + =

inreq,,(u).ProcessStIn,,(u) +
rdreq,,(u).ProcessStRd,,(u) +
inpreq"(u).ProcessStlnp,, +
rdpreq"(u).ProcessStRdp,, +
eva I ,,(u). s tar t •. ProcessStEval"

term-:;'.O

ProcessStOut", done ",.ProcessSt",

ProcessStln",(u) do' in",(u').done;;,.ProcessSt", + =

fail. rep i nreq",(u).ProcessStln",(u)

ProcessStRd",(u) do' rd",(u').done;,.ProcessSt", + =

ProcessStInp",

ProcessStRdp",

ProcessStEval",

where: 1.

2.

3.

4.

5.

do' =

do'
=

do' =

fail. reprdreq",(u).ProcessStRd",(u)

fail. res ",ifaise).ProcessSt", +
inp",(u'). res ",(true).ProcessSt",

fail.res",ifaise).ProcessSt", +
rdp ",(u'). res ",(true).ProcessSt",

done .,..ProcessSt",

u E set of all tuples

u' E match(M, u)

P = set of all process identifiers

pEP

sp E (P - {l})

The Linda system is then specified as follows:

Linda

where: 1.

2.

3.

do' (TS(M) IProcess] IProcess, I ... I Process.J1L

Process] is the distinguished process.

Process, .. Process, are spawned processes.

L = {Up E P (outp inreqp repinreqp inp rdreqp reprdreqp rdp inpreqp

inpp rdpreqp rdpp evalp start) U fail}

B3

B4

B,2 Linda System with Debugger

The definition is composed of four sections, namely: tuple space (TS(M)), the debugger (Debugger),

the distinguished process (Process}), and spawned processes (Process",):

TSD(M) do'

TSDinreq(M, U, p) do'

TSDrdreq(M, U, p) do'

TSDinpreq(M, U, p) do'

TSDrdpreq(M, U, p) do'

Debugger do'

out/u). checkou t/u). result. TSD(M I!J {u})

inreq/u).checkin/u).result.TSDinreq(M, U, p)

repinreq/u).TSDinreq(M, U, p)

rdreq/u).checkrd/u).result.TSDrdreq(M, U, p)

reprdreq(/u).TSDrdreq(M, U, p)

inpreq/u).checkinp/u).result.TSDinpreq(M, U, p)

rdpreq/u).checkrdp/u).result.TSDrdpreq(M, U, p)

eval/u).checkeva I/u). result. TSD(M)

ifmatch(M, u) = 0
then fail .TSD(M)

else in/u').TSD(M - {u'})

if match(M, u) = 0
then fai I.TSD(M)

else rd/u '). TSD(M)

if match(M, u) = 0
then fai I.TSD(M)

else inp/u').TSD(M - {u'})

if match(M, u) = 0
then fai I.TSD(M)

else rdp/u').TSD(M)

checkout/u).

(resul t.Debugger +
fai lout/u).resul t.Debugger) +

checkin/u).

(resul t.Debugger +
fai I in/u).resul t.Debugger) +

checkrd/ u).

(resul t.Debugger +

failrd/u).result.Debugger) +

+

+
+
+
+
+
+

BS

checkinpp(u).

(resul t.Debugger +
fa i I tnplu). resul t.Debugger) +

checkrdplu).

(resul t.Debugger +
fa II rdplu). resul t .Debugger) +

checkevallu).

(resul t.Debugger +
fai I evallu).resul t.Debugger)

ProcessJ
do' outlu).ProcessOutJ +

inreqlu).Processlnlu) +
rdreqlu).ProcessRdlu) +
inpreqlu).ProcesslnpJ +
rdpreqlu).ProcessRdpJ +
evallu).s tar t",ProcessEvalJ
term~O

ProcessOutJ
do' done /,Process J =

Processlnlu) do' inlu').done/'ProcessJ + =
fail.repinreqlu).Processlnlu)

ProcessRdlu) do' rdlu').done/'ProcessJ + =
fail.reprdreqlu) .ProcessRdlu)

ProcesslnpJ do' fail. re s lfa/se).ProcessJ + =
inplu'). res II true).ProcessJ

ProcessRdpJ do' fail.reslfa/se).ProcessJ + =
rdplu'). res ltrue).ProcessJ

ProcessEvalJ
do' done/,ProcessJ =

Process.,. do' start"P.ProcessSt"P

ProcessSt"P do' out",(u).ProcessStOut", + =
inreq",(u).ProcessStln.,(u) +
rdreq.,(u).ProcessStRd,,(u) +
inpreq,,(u).ProcessStlnp"P +
rdpreq.,.(u).ProcessStRdP"P +

ProcessStOut", d<' =

ProcessStIn",(u) d<' =

eva I ",(u).s tar t,.ProcessStEvai",

term~.O

done ",.ProcessSt",

in",(U').do-ne;;,.ProcessSt", +
fail. rep inreq",(u).ProcessStIn",(u)

B6

ProcessStRd",(u) d<' rd",(u').dDne;..ProcessSt", + =

ProcessStlnp '"

ProcessStRdp",

ProcessStEval",

where: 1.

2.

3.

4.

5.

d<' =

d<'

d<' =

fail. reprdreq",(u).ProcessStRd,,(u)

fail. res",ifalse).ProcessSt", +
inp",(u'). res ",(true).ProcessSt"

fail. res .,ifaise).ProcessSt" +

rdp ,,(u'). re s ",(true).ProcessSt",

u E set of all tuples

u' E match{M, u)

P = set of all process identifiers

pEP

sp E (P - {J})

Note that in Linda and LindaD, the definitions for the distinguished process (Process!), and spawned

processes (Process",) are the same.

The Linda system with debugger is then defined as:

LindaD

where: 1.

2.

d<' ((TSD(M) iDebugger)\Ldi

Process!iProcess,i ... iprocessJ\L

Ld = {Up E P (checkoutI' checkinI' checkrdI' checkinpI' checkrdpI' checkevalp)

U result}

L = {Up E P (outI' inreqI' repinreqI' inI' rdreqI' reprdreqI' rdp inpreqp inpI'

rdpreqI' rdpI' evalp) U fail}

Appendix C

An Alternative Debugging Model

Section 4.5.2.1 suggested that Linda processes ought to be invariant on application or removal of the

debugger. However, it may be argued that processes ought to be invariant until a mismatch occurs

in actual and expected behaviour, at which stage they are terminated. This theme is now explored.

If processes must terminate as a result of behavioural inconsistencies, they must be informed of such

inconsistencies, that is, a match result message must be routed back to the process. It is reasonable

to suggest that such message transmission fits the current model, since all Linda primitives generate

some form of reply from tuple space (either an acknowledgement, a boolean result or a tuple) and a

match/mismatch reply merely adds to the list

Essentially the debugger must transmit the result of the behavioural comparison to tuple space which

must then act on the result, and then transmit it on back to the relevant process. To do this, new

labels are introduced to the debugging model: good - good and bad - bad communicate comparison

results between the debugger and tuple space, and goodreq - goodreq and badreq - badreq

communication comparison results between tuple space and processes.

The definition is composed of four sections, namely: tuple space (TS(M»), the debugger (Debugger),

the distinguished process (Process,), and spawned processes (Process",):

TSD(M) do' out/u).checkout/u).

(good.goodreq.TSD(M I!J {u}) +
bacLbadreq. TSD(M»

inreq/u).check in/u).

(good.goodreq.TSDinreq(M, U, p) +
bacLbadreq. TSD(M»

repinreq/u). TSDinreq(M, U, p)

Cl

+

+
+

TSDinreq(M, U, p) do'

TSDrdreq(M, U, p) do'

TSDinpreq(M, U, p) do'

TSDrdpreq(M, U, p) do'

Debugger do'

C2

rdreqiu). checkrdiu).

(good.goodreq.TSDrdreq(M, U, p) +
bad.badreq.TSD(M» +

reprdreq(iu).TSDrdreq(M, u, p) +
inpreqiu).check inPiu).

(good.goodreq"TSDinpreq(M, u, p) +
bad.badreq.TSD(M» +

rdpreqiu). checkrdpiu),

(good.goodreq.TSDrdpreq(M, U, p) +
bad.badreq.TSD(M» +

evalp(u).checkeva I p(u).

(good.goodreq.TSD(M) +
bad.badreq.TSD(M»

ifmatch(M, u) = 0

then fa i I.TSD(M)

else iniu').TSD(M - {u'})

if match(M, u) = 0

then fa i I.TSD(M)

else rdiu '). TSD(M)

if match(M, u) = 0

then faII.TSD(M)

else inpiu').TSD(M - {u'})

if match(M, u) = 0

then fai I. TSD(M)

else rdplu').TSD(M)

checkoutiu).

(gooa.Debugger +
falloutiu).bad.Debugger)

checkini u).

(gooa.Debugger +
fail iniu).bad.Debugger) +

checkrdi u).

(gooa.Debugger +
fai I rdiu).bad.Debugger) +

+

C3

checkinp/u).

(good.Debugger +
fai I inp/u).batLDebugger) +

checkrdplu).

(good.Debugger +
fai I rdp/u).badDebugger) +

checkevall u).

(gootLDebugger +
fai leval/u).bad.Debugger)

Processj
dof out /u).(goodreq.ProcessOutj +

badreq. term~(false).O) +
inreq/u).(goodreq.Processln/u) +

badreq. term~(false). O) +
rdreq/u).(goodreq.ProcessRd/u) +

badreq. term~(false). O) +
inpreq/u).(goodreq.Processlnpj +

badreq. term~(false).O) +
rdpreq/u).(goodreq.ProcessRdpj +

badreq. term~(false). O) +
eva I/u).(goodreq.s tar t .. ProcessEvalj

badreq. te rm~(false). O) +
term~(true). O

ProcessOutj
dof done j.Process j

Processln/u)
dof

in/u').donej.Processj + =
fail. rep inreq/u).Processln/u)

ProcessRd/u)
dor

rd/u').donerProcessj + =
fail. reprdreq/u).ProcessRd/u)

Processlnpj
dor

fail.resj(false).Process j + =
inp/ u'). re s /true) .Processj

ProcessRdpj
dof fail.resj(false).Processj + =

rdp l u'). re S /true).Process j

ProcessEvalj
dof

donerProcess j =

C4

Process", ~ start",.ProcessSt",

ProcessSt", do' out",(u).(goodreq.ProcessStOut", + =
badreq. term-;"(jaise).O) +

inreq",(u).(goodreq.ProcessStln",(u) +
badreq. term-;"(jaise).O) +

rdreq",(u).(goodreq.ProcessStRd",(u) +
badreq. term-;"(jaise).O) +

inpreq",(u).(goodreq.ProcessStlnp", +
badreq. term-;"(jaise).O) +

rdpreq",(u).(goodreq.ProcessStRdp", +
badreq. term-;"(jaise).O) +

eva I ",(u).(goodreq.s tar t •. ProcessStEval",

badreq. term-:;'(false).O) +
term-;"(true).O

ProcessStOut", do' done ",.ProcessSt", =

ProcessStln",(u) do' in",(u').done",.ProcessSt", +
fail. rep inreq",(u).ProcessStln",(u)

ProcessStRd",(u) do' rd",(u').done.,.ProcessSt", +
fail.reprdreqlu).ProcessStRdlu)

ProcessStlnp",
<10,

fail. re s .,(jaise).ProcessSt., + =
inp",(u').res.,(true).ProcessSt",

ProcessStRdp '"
do' fail. res",(jaise).ProcessSt", + =

rdp.,(u·). res ",(true).ProcessSt",

ProcessStEval., do' done ",.ProcessSt",

where: l. u E set of all tuples

2. u· E match(M, u)

3. P = set of all process identifie,s

4. pEP

5. sp E (P - {l})

Note that in Linda and LindaD. the definitions for the distinguished process (Process l). and spawned

processes (Process",) are the same.

C5

The Linda system with debugger is then defined as:

LindaD

where: 1.

2.

do' ((TSD(M)IDebugger)ILdl

Process, IProcess, I ... IProcessJIL

Ld = {UpEP (checkout" checkin" checkrd" checkinp" checkrdp" checkevalp)

U good U bad}

L = {UpEP (out" inreq" repinreq" in" rdreq" reprdreq" rd" inpreq" inp"

rdpreq" rdp" evalp) U fail U goodreq U badreq}

Appendix D

Syntax of the Linda Program Specification
Language

The following is a top down description of the syntax of the Linda program specification language.

The customary BNF extensions are used in the defintion:

{}

[]
"boldface tl

zero or more

zero or one

terminal symbol

The specification language is case-sensitive. The specification may be entered in free-format.

1. CompoundSpecification .. - <CompoundBlock> {<CompoundBlock>}

2. CompoundBlock ..- IIspec" <SpecName> ";11

<Specification>

"endspec"

3. Specification ..- <Declarations> <P.rocesses>

4. Declarations ..- {"var" <CompoundDeclaration>}

5. CompoundDeclaration ..- <SimpleDeclaration>

{<SimpleDeclaration> }

6. SimpleDeclaration ..- <IdentList> ":" <Typeldentifier>"j"

D1

D2

7. IdentList ..- <Identifier> {"," <Identifier>}

8. Processes ..- <ProcessSpec> {";" <ProcessSpec>}

9. ProcessSpec ..- "process" <ProcessName> "="

<CompoundStatement>

10. CompoundStatement .. - {<Statement> "."} <FinalStatement>

11. Statement .. - <Random>

<LindaPrimitive>

12. FinalStatement ..- "ir' <If Statement>

"choice" <ChoiceStatement>

<ProcessName>

IINIL"

13. Random .. - "random" n(" <LindaPrimitive>

{ "." <LindaPrirnitive> } ")"

14. LindaPrimitive ..- <LindaOp>

<WildOp>

15. LindaOp ..- <LindaNonPredOp>

<LindaPredOp>

16. LindaNonPredOp ..- <NonPredicateOp> <Tuple>

17. LindaPredOp ..- <PredicateOp> <Tuple>

18. NonPredicateOp ..- "outll

"in"

"read ll

'Ieval"

19. PredicateOp ..- "inpll

"readp"

20. Tuple .. - lie' <TElement> 11)11

D3

21. TElement .. - <WildSymbol>

<Element> {"," <Element>}

22. Element ..- <TypeIdentifier>

<Expression>

"?" <Formalldentifier>

23. WildOp ..- <WildSymbol>

24. If Statement ..- 11(" <Condition>

"tben" <CompoundStatement>

"else" <CompoundStatement> ")"

25. Condition ..- <Linda Condition>

<ExprCondition>

26. LindaCondition ..- <LindaPredOp>

27. ExprCondition ..- <Expression>

28. Expression ..- <SimpleExpression>

[<RelationaIOp> <SimpleExpression> 1

29. SimpleExpression ..- [U+1I 1
11

_"] <Tenn>

{ "+" t 11." I nOR" <Term>}

30. Term .. - <Factor>

{ 11*11 I "DIV" I "MOD" I nAND"

<Factor>}

31. Factor .. - <Identifier>

<Integer>

<String>

ne' <Expression> II)"

"NOT" <Factor>

32. RelationalOp ..- "<11 1">" 1"<=11 1">=11 11'#" 1"=11

33. ChoiceStatement ..- "(" <CompoundStatement>

{ "I" <CompoundStatement>} ")"

D4

34. SpecName ..- <Identifier>

35. ProcessName .. - <Identifier>

36. FormalIdentifier .. - <Identifier>

<TypeIdentifier>

37. Identifier .. - <Letter>

{<Letter> I <Digit> I <Other>}

38. TypeIdentifier .. - "iot'l
Iistrll

39. WildSymbol .. - ...It

40. Integer .. - INTEGER

41. String .. - nt II {<PrintableChar>} "'"

42. Letter ..- "a"l"b" 1···JIIZtl I
itA" I "B" 1 ... lnz"

43. Digit ..- "0" ... "9"

44. Other ..- n[" I "]" I "." I "_"

45. PrintableChar .. - Implementation defined printable character

Appendix E

Modula-2 Linda Programs and Associated
Program Specifications

The following is a collection of example Modula-2 Linda programs and the associated specifications.

E.1 Dining Philosophers

The dining philosophers problem [Dij68], describes the activities of dining philosophers who share
common resources (forks).

The philosophers are seated at a table, and alternately eat and think. A single fork is placed between
each philosopher. To eat, philosophers must first grab the forks on both their immediate lefthand and
righthand sides. Once a philosopher has eaten, the forks are returned to the table, after which a period
of thought is entered. It is imperative that two forks are used to eat, only forks adjacent to a
philosopher may be used by that philosopher, forks that have been used must be put down before they
may be used again, and no deadlock occur (deadlock occurs when all philosophers pick up one fork
and then wait for the other to become free - which, of course, it does not).

The solution centres on the use of room tickets ([Car90b] page 183) to solve the specific problem of
deadlock. One less room ticket than there are philosophers is made available in the dining-room.
Before a philosopher attempts to eat (and therefore grab any forks), a room ticket must be obtained.
This ensures that, at any time, at least one philosopher is able to grab two forks, and eat.

The master process (mastphil) indicates the number of dining philosophers, spawns the requisite
constant number of philosophers, sets the dining-room (philosopher tags, forks, room tickets), and then
terminates. Individual philosopher processes (phil) repeatedly get room tickets and forks, eat, return
the forks and room tickets, and then think.

The mastphil specification makes use of a single sub-process. Note that the same identifier is used
as both the Linda program MODULE name and the sub-process name. The phil specification employs
variables to store the number of dining philosophers, and an identifying philosopher tag. Two sub
pocesses are used, the second of which is recursive. The choice-statement provides for continued
dining or termination.

El

MODULE mastphil;
(*------------*)
(* Modula-2 Linda programs

ProceSSl
Dining philosophers
master

An implementation of the dining philosophers problem.
*)
CONST

NumPhils - 3;
VAR

I f INTEGER;

BEGIN
out{"num philosophers", NumPhils);

(* start philosophers *)
FOR I s= 0 TO NumPhils - 1 DO

eval (" phil")
END;

(* add philosopher tags, forks and
room tickets *)

FOR I ,= 0 TO NumPhil. - 1 DO
out("philtag", I);
out("fork", I);
IF I < NumPhils - 1

THEN out("room ticket ");
END

END

(* now that the dining-room is set for action, terminate *)

END mastphil.

spec Global;

'*--------*' 1* Program spacificatioDI Dining philosophers
.... tpbil

*'

Process I
Specification level,
o.scriptiolu

process mastphil

global
Spawn philosophers, and .et the dining-room ready
for action.

- '* add the number of philosophers coming to dine */
out('num philosophera', 3).
1* start philosophers */
aVal('pbil').
eval('phil').
eval('phil').
/* add tags, forks, and room tickets */
out('philtag', 0). out('fork', 0). out('room ticket').
out('philtag', 1). out('fork', 1). out('room ticket').
out('philtag', 2). out('fork', 2).
1* and now you're done */
NIL

ends pee

MODULE phil;
(*--------*)
(* Modula-2 Linda program.

Process I
Dining philosophers
philosopher

An implementation of the dining philosophers problem.
*)

VAR
Index, NurnPhils, I: INTEGER;

BEGIN
read (" num philosophers ", ?NurnPhils);

E2

(* ge t a philosopher tag *)
in ("phil tag", 7I);

FOR Index 1= 1 TO 4 DO
(* start by THINKING *)
(* get a room ticket *)

in ("room ticket");
(* get forks *)

in (.. fork", I) ;
in (" fork", (I + 1) MOD NumPhils);

(* now EAT *)
(* return forks *)

out(" fork", I) ;
out(" fork", (I + 1) MOD NumPhils);

(* return room ticket *)
out("room ticket ")

END

END phil.

spec Globali

/*--------*' /* Program specificatioDI Dining philosophers
phil

*;

Proces.,
Specification l evel,
Description,

global
Get the number of dining philosophers, an identifying
tag, and then dine .

var
I, HumPbil. , inti

process phil
- /* bow many philosophers are dining? */

read('nua philosopherB', ?NuaPbils).
/* acquire a unique tag */
in('pbiltag', 11).
1* now dine */
dine;

process dine
- choice (

I
NIL
;* TIIINK *;
in('room ticket').
in('fork', I).
in('fork', (1 + 1) MOD NUDPhilB) .
/* BAT */
random(out('fork', I).

dine)

out('fork', (I + 1) MOD NUDPhi1s).
out('room ticket'».

endspec

E3

E4

E.2 Readers and Writers

The readers and writers problem describes the action of a storage device to which mutiple processes
wish to write, and from which multiple processes wish to read ([Car90b] page 184). Essentially, many
readers or a single writer may have access to the device, but not both.

The master process (rnastrw) spawns a user-specified number of readers and writers, and initialises the
name-accessed (to store the number of readers and writers that are currently active) and stream
structures (to store access request orders). Individual reader and writer processes (readprc and
writeprc) repeatedly wait for an appropriate time to act, and then read or write respectively.

In the mas trw specification, the choice-statement is used to control the spawning of unspecified
numbers of readers and writers. Note how control is directed to common specifications after each
eval-operation. The readprc and writeprc specifications are similar, and are able to handle
unlimited numbers of read and write operations respectively.

MODULE mas trw;
(*----------*)
(* Modula-2 Linda programs Readers and Writers problem

Processs master

An implementation of the readers and writers problem.
*)

FROM EasylnOut
FROM ConNum
FROM EntryExit

IMPORT WriteString, WriteLn, Writelnt;
IMPORT StrToUnsigned_16i
IMPORT argY, argc;

VAR
Index, NumReaders, NumWriters I INTEGER;
Success t BOOLEAN;

BEGIN
StrToUnsigned 16(argv~[11A, 10, NumReaders, Success);
IF NOT Success

THEN Wri teString (" Problem with number of readers - try again") i
WriteLni
HALT

ELSE WriteString ("Number of readers J ");

END;

Writelnt(NumReaders,4);
WriteLn;
StrToUnsigned_16(argv~[2]~, 10, NurnWriters, Success);
IF NOT Success

THEN WriteString("Problem with number of writers - try again");
writeLn;
HALT

ELSE WriteString("Number of writers~ H);
Writelnt(NumWriters, 4);
WriteLn

END

(* start a number of readers and writers *)
FOR Index ~= 1 TO NumReaders DO

eval (" readprc")
END'
FOR' Index 1= 1 TO NumWriters DO

eval("writeprc")
END;

(* initialise counters *)
out("writers", 0);
out("active-readers", 0);
out("rw-head", 1);
out("rw-tail", 1)

END rnastrw.

spec Global;
'*--------*/ '* Program specificatioDa

Process I
Specification level,
Description I

Readers and writers
... trw
global
Spawn a number of readers and writers, and initialise
a number of nam. accessed and stream structure ••

*'

process mastrw '* start a number of reader and writer processe. */
- choice (addoounters

I eval('re.dprc').aaatrw
eval('writeprc').mastrw);

process addcounterB
/* initiali •• counters */
out('writer.', 0) .
out('active-r •• derB', 0).
out('rw-bead', 1).
out('rw-tail', 1).
NIL

endspec

MODULE readprc;
(*-----------*)
(* Modula-2 Linda program I Readers and writers problem

Process I reader

An implementation of a reader of the readers and writers problem.
*)

CONST
NUMREADS 2;

VAR
I, Discard I INTEGER;

PROCEDURE Increment (CounterName I ARRAY OF CHAR) 1 INTEGER;
(* Increment CounterName-accessed structure by 1 *)

VAR
Value I INTEGER;

BEGIN
in (CounterName, ?Value);
out (CounterName, Value + 1);
RETURN Value

END Increment;

PROCEDURE Decrement (CounterName I ARRAY OF CHAR) I INTEGER;
(* Decrement CounterName-accessed structure by 1 *)
VAR

Value I INTEGER;
BEGIN

in (CounterName, ?Value};
out (CounterName, Value - 1);
RETURN Value

END Decrement;

BEGIN
FOR I 1 - 0 TO NUMREADS DO

read ("rw-head", Increment (Mrw-tail")) ;
read("writers", O};

Discard la Increment (" active-readers") ;
Discard 1= Increment (" rw-head ") ;

(* READ 11 *)

Discard 1= Decrement (" active-readers")
END

END readprc.

E5

spec Global;

'*--------*'
/* Program specificatioDr

Proce •• a
Readers and writers
readprc

Specification level,
Descriptionr

global
Repeatedly I add reader job to queue,

var
Value , inti

wait for job to reach head of queu.,
increment number of readers,
del.t. job from queue,
READ
decrement number of readers

process raadprc
- choice (MIL

I /* .tart read process */ '* add READBR job to queue */
in('rw-tail', lVaIua).
out('rw-tail', Value + 1).
/* wait for job to reach head of queue *'
read('rw-b •• d', Value).
/* wait for DO writer. *'
read('writera',O).
t. incrament number of readers -

can have aultiple readers *'
in('Active-reader.', lV.lua).
out('_ativ.-readers', Value + 1).
1* del.t. READBR job frca queue - this allows

the next job to fire */
in('rw-h •• d', ?Value).
out('rw-head', Value + 1).
'* READ II *'
1* atop reading *1
in('aetive-readerB', ?Value).
out('aetive-readers', Value 1).
1* repeat the process *1
readpre)

ends pee

MODULE writeprc;
(*------------*)
(* Hodula-2 Linda program I Readers and writers problem

Processt writer

An implementation of a writer of the readers and writers problem.
*)

CONST
NUMWRITES ""' 3;

VAIl.
I, Discard I INTEGER;

PROCEDURE Increment (CounterName t ARRAY OF CHAR) I INTEGER;
(* Increment CounterName-accessed structure by 1 *)
VAIl.

Value I INTEGER;
BEGIN

in (CounterName, ?Value);
out (CounterName, Value + 1);
RETURN Value

END Increment;

E6

PROCEDURE Decrement (CounterName l ARRAY OF CHAR) , INTEGER;
(* Decrement CounterName-accessed structure by 1 *)
VAR

Value , INTEGER;
BEGIN

in (CounterName, ?Value)i
out(CounterName, Value - 1);
RETURN Value

END Decrement;

BEGIN
FOR I 1= 0 TO NUMWRITES DO

read("rw-head", Increment("rw-tail"» i
read("writers", 0);
read (" active-readers" I 0);

Discard 1= Increment("writers");
Discard I = Increment (" rw-head") ;

(* WRITE II *)

Discard s= Decrement ("writers")
END

END writeprc.

spec Global;
'*--------*/
/* Program specificationr

Processr
Readers and writers
writ.pre

*/

Specification levalr
Descriptionr

global
Repeatedlyr add writer job to queue,

var
Value I inti

wait for job to reach head of queue,
wait for no other writers,
wait for no other readers,
increment number of writers,
delete job from queue,
WRITB,
decrement number of writers

process writeprc
- choice (NIL

I /* start write process */
/* add WRITER job to queue */
in('rw-tail', lValue).
out('rw-tail', Value + 1).
/* wait for job to reach head of queue */
read('rw-head', Value).
/* wait for no other writers */
read(Twriters', 0).
1* wait for no readers *1
read('active-readers', 0).
1* increment number of writers *1
in('writers', lValu.).
out('writers', Value + 1).
/* delete WRITBR job from queue - this allows

the next job to fire */
in(Trw_head', lValue).
out (' rw-head', Value + 1).
1* WRITB 11 */
/* stop writing *1
in('writers', lValu.).
out('writers', Value - 1).
/* repeat the process */
writeprc)

endspec

E7

E8

E.3 Cross Product of Two Matrices

The following Modula-2 Linda program determines the cross product of two matrices. Details of the
program can be found in section 3.2.2.

A master process (mastcrossp) spawns a user-specified number of workers, adds the respective rows
and columns of the matrices to tuple space, adds a work seed, and then awaits the results. Results are
collected in random order. Worker processes (crossp) scavenge for a work seed, and immediately
replace it with the seed's successor. If the work seed is poisoned, the process terminates. Otherwise,
the worker retrieves the relevant row and column from tuple space, computes the result, and adds it
to tuple space.

In the mastcrossp specification, no ordering is required on the addition of row and column data (the
current implementation of the random-construct does, hawver, impose a sequential ordering). Results
are extracted from tuple space in random order. Since values for I, J, and Value are not used, the
variables are superfluous - each tuple element could be replaced by Hnt. The following varying
degrees of specificity could have been employed: in(*), in(Hnt, ?int, Hnt), or in(?I, ?J,

?Value). The getresults sub-process merely provides for a more readable specification. In the
crossp specification, internally decidable alternation (if), based on the value of Seed, determines
process termination.

MODULE mastcroSSpi
(*--------------*)
(* Modula-2 Linda program s Cross product of two matrices

Process! master

Implementation of the cross product of two matrices.
*)

FROM EasylnOut
FROM ConNum
FROM EntryExit

IMPORT WriteStrinq, WriteLn, Writelnt;
IMPORT StrToUnsigned_16i
IMPORT argv, argc;

TYPE
MATRIX = ARRAY [l •• 3J OF ARRAY [l •• 3J OF INTEGER;

VAR
Ml,M2,M3 , MATRIX;
NumWorkers, Index, I , J, Value, INTEGER;
Success , BOOLEAN;

PROCEDURE PrintMatrix (Matrix, MATRIX);
(* Print Matrix *)
VAR

I, J , INTEGER;
BEGIN

FOR I ,= 1 TO 3 DO
FOR J t= 1 TO 3 DO

WriteInt(M1[I,JJ, 4)
END;
WriteLn

END
END PrintMatrixi

BEGIN
(* initialise
M1[1,l) ,= 1
M1[2,lJ ,= 4
M1 [3,1 J ,= 7

M2[l,lJ ,= 2
M2[2,lJ ,= 7
M2[3,lJ ,= 5

the matrices
M1[1,2) ,- 2
M1[2,2J ,= 5
M1[3,2J ,= 8

M2[1,2) ,= 3
M2[2,21 t= 2
M2[3,2) ,= 7

with arbitrary
M1[1,3J ,= 3 • ,
M1[2,3) ,& 6 ;
M1[3,3J ,= 9 ;

M2 [1,3) ,- 5
M2 [2,3 J ,= 3
M2[3,3J , - 2

values *)

strToUnsigned 16(argv~[1]~, 10, NurnWorkers, Success);
IF NOT Success

THEN WriteString("Problem with number of workers - sorry try again ");
WriteLn;
HALT

ELSE WriteString("Number of workers. ");
Writelnt(NumWorkers, 4);
WriteLn

END;

(* start a number of workers *)
FOR Index , - 1 TO NumWorkers DO

eval (It crosap")
END;

(* add all rows to tuple space *)
FOR I t= 1 TO 3 DO

out(Mr", I, M1[I,!], Ml{I,2], Ml[I,3)
END;

(* add all columns to tuple space *)
FOR I .= 1 TO 3 DO

out (.. c .. , I, M2 [1 , I], M2 [2 , I), M2 [3, I])
END;

(* add work seed to tuple space *)
out("next", 0);

(* get the answers back - in any order *)
FOR Index .= 1 TO 9 DO

in(?1, ?J, ?ValUe)i
M3[I,J) S"" Value

END;

(* print results *)
WriteString("First matrix I ") i WriteLni
PrintMatrix(Ml); WriteLn;
WriteStrinq("Second matrixl"); WriteLn;
PrintMatrix(M2); writeLn;
WriteString("Cross Product I "); writeLn;
printMatrix(M3); WriteLn

END mastcrossp.

spec Global;
/*--------*/
/* Program specification I

Process I
Specification level.
Descriptions

Cross product of two matrices
... tcro •• p
global
Spawn workers, add rows and columns of matrix to
tuple space, add work seed, and await results.

*f

var
I, J, ValUe lint;

process mastcrossp
/* start a number of worker processes */

- choice (addrowcolumndata
I eval('crossp').mastcrossp);

process addrowcolumndata
/* place the rows of the matrix in tuplespace */

random(out('r',l,int,int,int) .
out('r',2,int,int,int).
out('r',3,int,int,int».

/* place the columns of the matrix in tuplespace */
random(out{'c·,l,int,int,int).

out(' c' ,2,int,int,int).
out('c ' ,3,int,int , int».

/* place a worker seed in tuplespace */
out (, next', 0) .
getresults;

E9

process gat results
/* now get the results out of tuplaspace *1

- inC?I, 7J, lValuG).
in(?l, 7J, lVaIus).
in(?l, 7J, lV.lus).
in(?l, 1J, lV.lu.).
in(?l, 1J, lV.lu.).
in(?I, 1J, lV.Iue).
in(?l, 1J, lV.Iu.).
in(?l, 1J, lValu.).
in(?I, 1J, lValue).
,. now you're done *'
NIL

endspec

MODULE crosap;
(*----------*)
(* Modula-2 Linda program: Cross product of two matrices

worker Process I

Implementation of the cross product of two matrices.
*)

FROM EasylnOut IMPORT WriteString, Writelnt, WriteLn;

TYPE
VECTOR ARRAY[1 •. 3] OF INTEGER,

VAA
Seed, I, J J INTEGER;
Row, Col I VECTOR;

BEGIN
LOOP

(* get element number to compute *)
in('next', ?Seed);

(* set up next piece of work *)
out('next ' , Seed + 1);

IF Seed >= 9
THEN (* no more work *)

EXIT
END;

I := (Seed OIV 3) + 1;
J 1 - (Seed MOD 3) + 1;

(* get the appropriate row *)
read('r', I, ?Row[l], ?Row[2], ?Row[3]):

(* get the appropriate column *)
read('c', J, ?Col[l], ?Col[2], ?Col[3]),

(* compute the result *)
out(I, J, Row[l]*Col[ll + Row[2] * Col[2] + Row[3] * Col[3]);

END (* LOOP *)
END crossp .

ElO

spec Global;
/*--------*' '* Program specificatioDs

Process I
CrOBB product of two matrices
crossp

*/

Specification levels
Descriptions

global
Get a work ••• d, and return its succeSBor. If seed
poisoned, terminate . otherwise, get relevant row and
column, and return result.

var
Seed,
Rov(ll, Row[2], Row[l1,
Col[l], Col[2], Col[3] I intI

process crossp '* get a work .eed *'
in('next',?Seed) . '* replace it with the next work Bead *'
out('next',Seed+l).
if (Se.d >- 9

then NIL
el.e '* get the respective row */

read('r',(Seed DIV 3) + 1,?Row[1],?Row[2],?Row[3]).
1* and column */
read('c',(Seed MOD 3) + 1,?Col[1],?Col[2],?Col[3]) . '* return the result to tuple.pace *'
out«S •• d DIV 3) + 1,

(Seed MOD 3) + 1,
(Row[l]*Col[l] + Row[2]*Col[2] + Row[3]*Col[J]».

crosap

endspec

Ell

E12

E.4 Prime Numbers

The following Linda program determines the number of prime numbers that occur within a particular
range. The solution centres on the fact that, if k is prime, the primality of all numbers from k+ 1 to
k' can be determined ([Car90b 1 page 86). Individual workers operate on sub ranges of the total range.

The master process (mastpriJne) spawns a user-specified number of workers, seeds the first task (a
subrange specification), and then awaits the results. For all prime numbers returned by workers, those
that are required to determine the prirnality of other numbers in future ranges, are added to tuple space.

Worker processes (prime) scavenge for a task seed, and replace it with its successor or the poison
seed. If the task seed is poisoned, the process terminates. Otherwise, for each odd number in the
sub range, it retrieves all previously determined prime numbers that are required to determine the
primality of the current subrange. All new prime numbers are added to tuple space (in a batch).

The mastprime and prime specifications are characterised by vigorous use of recursive sub-processes
and a nested choice-statement.

MODULE mastprime;
(*-------------*)
(* Modula-2 Linda program: Prime numbers

Process~ master

Determination of the number of prime numbers in some range.
*)

FROM EasylnOut
FROM ConNum
FROM EntryExit

IMPORT WriteString, WriteLn, Writelnt;
IMPORT StrToUnsigned_16;
IMPORT argY, argc;

CONST
LIMIT - 200; (* determine primes up to 200 *)
GRAIN = 6; (* in worker portions of 6 *)

VAR
Primes, Primes2 1 ARRAY [O .. 40} OF INTEGER;
NewPrimes I ARRAY (C .. GRAIN-I] OF INTEGER;
I, NumWorkers, FirstNurn, Hum, NumPrimes, NP2 1 INTEGER;
Success, EndOfTable I BOOLEAN;

BEGIN
StrToUnsigned_16(argv A [1]A, 10, NumWorkers, Success);
IF NOT Success

THEN WriteString (" Problem with number of workers - sorry try again") ~
WriteLn;
HALT

ELSE WriteString (" Number of workers, ");
Writelnt(NumWorkers, 4);
WriteLn

END;

(* initialise data structures with data for the first five prime numbers *)
Primes[O] := 2; Primes2[O] ,= 4;
Primes[l] 1= 3; Primes2[1] ,= 9;
Primes[2) ,= 5; Prirnes2[2] ,= 25;
Primes[3) t= 7; Primes2[3] 1::Z 49;
Primes[4] t= 11; Primes2[4] 1= 121;
NumPrimes 1= 5;

(* clear out remaing structure *)
FOR I := 5 TO 40 DO

Primes(I) := 0; Prirnes2(I) 1= 0
END;

(* start a number of worker processes *)
FOR I J= 1 TO NumWorkera DO

eval (, prime')
END;

C* start searching for more prime numbers at the last
prime number + 2 - the last prime must be odd, skip the next
even, and start at the next odd *)

FirstNum ~= Prirnes[NumPrimes-l] + 2;

(* initiate the first task *)
cut('next task', FirstNum)i

EndOfTable s- FALSE;
FOR Num 1- FirstNum TO LIMIT BY G~N DO

(* get the first batch of prime numbers from any worker *)
in('results', Num, ?NewPrimes[O], ?NewPrimes[l], ?NewPrimes(21 ,

?NewPrimes[3], ?NewPrimes[4], ?NewPrimes[S])i

FOR I .= 0 TO GRAIN-l DO
IF NewPrimes[I] I 0

THEN Primes[NumPrimes) t- NewPrimes[I];
Writelnt(NewPrimes[I], 4);

END
END

END;

IF NOT EndOfTable
THEN NP2 ,- NewPrimes[I] * NewPrimes[I];

END;

(* check whether the new prime number will be
required in the future *)

IF NP2 > LIMIT
THEN EndOfTable ,= TRUE;

NP2 1= -1
END;
out('primes', NumPrimes + 1, NewPrimes[I], NP2);

NumPrimes 1= NumPrimes + 1

WriteString("Number of primesI ");
Writelnt(NumPrimes, 4);
writeLn

END mastprime.

spec Global;
/*--------*'
/* Program specifications

Process'
Prime nUDlbers
... tpri.e
global

*/

Specification levels
Descriptions

var

Spawn workers, initiate the first task, and then
await results. Add certain of the results to tuple
space.

NewPrimes[Ol, NewPrime.[l], NewPri.ea[2],
NewPrimes[31, NewPri •• a(4], NewPrimes[S] tint;

process mast prime
- choice (firattask

I '* start worker process */
eval('prime').mastprime);

process firsttask '* initiate the first task */
out('next task', 13).
dealwithsubranges;

E13

process dealwithsubranges
/* deal with the Bubrange. in which prime. must be determined *1
choice (/* full range completed *1

NIL
/* get the next .et of rasults from a subrange *'
inC'rasults', int, ?N.wPrimea[O], 1HawPri.es[1],

1NawPrimes[2], 1HewPrimas[3],
?NewPrimesl'], 7NewPri.es[5]).

cODsiderprimes)i

process considerprimes
1* deal with all primes generated *1
choice (1* .11 pri ••• considered, deal with next subrange *1

dealwithsubrang ••
1* must the prime be placed in tuple space? */
choice (1* y •• , it will b. needed *1

out('pri ••• ', int, int, iDt).
considarpri ••• '* not needed in the future */
cODsiderpri ••• »

end.pec

MODULE prime:
(*---------*)
(* Modula-2 Linda program. Prime numbers

Processl worker

Determination of the number of prime numbers in some range .
*)

FROM EasyInOut IMPORT WriteString, WriteLn, Writelnt;

CONST
LIMIT
GRAIN ...

200; (* determine primes up to 20 *)
6; (* in worker portions of 6 *)

VAR
Primes, Primes2 , ARRAY [0 •. 40] OF INTEGER;
MyPrimes s ARRAY [O .• GRAIN-l] OF INTEGER;
I, Limit, Start, Count, FirstNum, Num, NumPr!mes, NP2 , INTEGER;
EndOfTable, OK 1 BOOLEAN;

BEGIN
(* initialise data structures with data for the first five prime numbers *)
Primes [0] I"'" 2; Primes2[0] 1- 4;
Primes[1] 1= 3; Primes2[1] ,= 9;
Primes(2) 1= 5; Primes2[2] s=- 25;
Primes [3] ,= 7; Primes2[3] ,= 49;
Primes[4] 1= II: Primes2[4] ,= 121;
NumPrimes 1= 5;

(* clear out remaining structure *)
FOR I .= 5 TO 40 DO

Primes[I] 1= 0; Primes2{I] ,= 0
END;
FOR I • = 0 TO GRAIN - 1 DO

MyPrimes[I] , - a
END;

EndOfTable 1= FALSE;

LOOP
in (, next task', ?Num);
IF Num - 1

THEN (* return poison seed *)
out (, next task', Num);
EXIT

ELSE Limit ,= Num + GRAIN;
IF Limit> LIMIT

THEN (* replace with poison seed *)
out('next task', -1);
Limit ,= LIMIT

E14

END
END

END prime.

ELSE (* replace with successor seed *)
out('next task', Limit)

END;
Start r= Num;
Count r= 0;
FOR I 1- 0 TO GRAIN - 1 DO MyPrimes[IJ r = 0 END;
WHILE Num < Limit DO

WHILE ((NOT EndOfTable) AND (Num> Primes2[NumPrimes-l))) DO
read('primes', NumPrimes + I, ?Primes[NumPrimes],

?Primes2[NumPrimes]);
IF Primes2(NumPrimes] < 0

THEN EndOfTable r- TRUE
ELSE NumPrimes I~ NumPrimes + 1

END
END;
OK f= TRUE;
(* search table of primes starting at the second

position - the number is odd and will thus never
be divisible by 2 - the first prime *)

I 1= 1;
LOOP

IF I >a NumPrimes
THEN EXIT
ELSE IF Num MOD Primes!I] - 0

THEN OK t= FALSE;
EXIT

END;
IF Num < Primes2[I]

THEN EXIT
END

END;
I r= I + 1

END;
IF OK

THEN MyPrirnes[Count) 1- Num;
Count 1 - Count + 1

END;
(* check if next number in section is prime; ignore

even numbers - num always initially odd *)
Num 1= Num + 2

END;
out('results', Start, MyPrimes[O], MyPrimes[l], MyPrimes[2],

MyPrimes[3], MyPrimes[4], MyPrimes[51) ;
Count 1= 0

spec Global;
/*-------- */
/* Program specification 1

Process 1

Specification level:
Description:

Prime numbers
prime
global
Repeatedly 1 get a task seed

if no more work, terminate
otherwise, get data required to

E15

det.~in. primality of numbers in subrange
return naw prime numbers

*1

var
Hum, Primes[NumPrimes1, Primes2(HumPrimes] : inti

process prime
- /* get next task descriptor */

in('next task', ?Num).
if (Hum - -1

then /* no more work, return descriptor */
out('next task', HUIIl) .
NIL

else if «Hum + 6) > 200
then /* last task,

) ;

insert "no more tasks" descript.or wI
out(/next taak', -1).
primel •

• l.e 1* there are more tasks,
in.ert next task descriptor *1

out('next taak' f Hum + 6).
prillele

process primel.
1* deal with all numbers in the subranga allocated for this task *1
choice (/* gat data required for each number *1

prill.alb '* check for prillality of aach number, and
out all pri ••• found in the subrange */

out. ('r •• ult.', Nwa, int, int, int, int, int., int).
/* go get next. taak *1
pri ••) ;

process primelb

endspec

/* read all previously determined prim.. that are required to
d.t.~iD. whether. number in 8ubrange i. prima *1

choice ('* mora n •• dad *1
read('pri ••• ', int, ?Prim •• [NumPrima.], ?Prim •• 2[NumPrimes]).
primalb
/* got all that are requied *'
primela)

E16

E17

E.5 N-Queens Problem

The N-Queens problem determines, for a given chessboard size (say, nxn), the ways in which n queens
can be arranged such that no queen is threatened by any of the other n-1 queens. The solution entails
a master and a number of workers. For a possible board arrangement, the master solves the problem
partially (dependent on some "depth" factor, BossLimit), and then leaves the completion of the
solution to a worker. An n-element vector, Board, is used to store the row position in which a queen
is placed for each n columns.

The master process (mastqueen) spawns a worker for each partially-evaluated solution, and then awaits
the solutions. Worker processes (queen) extract partial solutions from tuple space, and return any full
solutions that they might develop.

The specifications are characterised by their brevity.

MODULE mastqueen;
(*-------------*)
(* Modula-2 Linda program, N-Queens problem

*)

Process~ master

Determine the ways in which n queens can be arranged on a nxn chessboard
such that no queen is threatened by any of the other n-1 queens.

FROM EasylnOut IMPORT WriteString, WriteLn, Writelnt;

CONST
BoardSize
BOBSLimit
KnownSolns

TYPE
BOARD

VAR

5 ;
1;
10;

ARRAY [0 .. BoardSize-11 OF INTEGER;

Board I BOARD;
NumSolutions I INTEGER;

PROCEDURE IsSafe (Q, Col, Distance I INTEGER) I BOOLEAN;
VAR

Be I INTEGER;
BEGIN

IF Col < 0
THEN RETURN TRUE

END;
Be 1= Board[Col];
IF «Q = BC) OR

(Q-Distance = BC) OR
(Q+Distance - Board[Col))

THEN RETURN FALSE
ELSE RETURN (IsSafe(Q, Col-l,Distance+l))

END
END IsSafe;

PROCEDURE PlaceQueens (NumPlaced t INTEGER);
(* Attempt to place the queens on the board *)
VAR

Q, Pos z INTEGER:
BEGIN

FOR Q ,= 0 TO BoardSize-l DO
IF IsSafe(Q, NumPlaced-1, 1)

THEN Pos zs NumPlaced;
Board(Pos] z= Q;
Pos z= Pos + 1;
(* the master determines valid positions for the first

BossLimit columns, and then leaves the remainder of the
solution to the worker *)

IF Pos < BossLimit
THEN PlaceQueens(Pos)

ELSE (* out a task *)

END
END

END

END PlaceQueensi

out ("partials", Pos, Board [0], Board [1], Board [2] ,
Board]3], Board]4]);

(* start a worker process *)
eval ("queen ·) ;

PROCEDURE PrintBoard (Board, BOARD);
VAR

I, J I INTEGER;
BEGIN

FOR I ,- 0 TO BoardSize-! DO
WriteInt(Board]I], 3)

END;
WriteLn;
FOR I t = a TO BoardSize-l DO

FOR J ,; 1 TO Board]I] DO
WriteString("- ")

END:
WriteString("Q "I;
FOR J 1= 1 TO BoardSize - Board[I] - 1 DO

WriteString(,,_ ")
ENO;
WriteLn

END;
WriteLn

END PrintBoard;

BEGIN
PlaceQueens(O);

(* now get all the solutions *)
NumSolutions t= 0;

WHILE NumSolutions , KnownSolns DO
InitialiseTuple(Tuple);
in (II completed", ?Board [0], ?Board [1], ?Board [2] ,

?Board]3], ?Board]4]);
PrintBoard(Board):
NumSolutions 1= NumSolutions + 1

END

END mastqueen.

spec Global;
/*--------*'
/* Program specificatioD! N-gueens

mastqu •• n
global

*'

Process,
Specification level.
Descriptiona

var

Spawn workers for each partial solution developed,
and then await the results.

Board[O], Board[l], Board[2], Board[J], Board[4] lint;

process mastqueen
- choice (getre.ults

I out (,partials' , int, int, int, int, int, int).
eval ('queen') •
mastqueen) ;

process getresults
- choice (NIL

I in(' completed', ?Board[O], ?Board[l], ?Board[2],
?Board]3], ?Board[4]).

getrasul ts)

endspec

E18

MODULE queen;
(*---------*)
(* Modula-2 Linda programs N-Queens

*)

Process. worker

Determine the ways in which n queens can be arranged on a oxn chessboard
such that no queen is threatened by any of the other 0-1 queens.

CONST
BoardSize = 5;

VAH
NumPlaced : INTEGER;
Board I ARRAY [O .. BoardSize-l] OF INTEGER;

PROCEDURE IsSafe (Q, Col, Distance f INTEGER) I BOOLEAN;
VAH

Be I INTEGER;
BEGIN

IF Col < 0
THEN RETURN TRUE

END;
Be 1= Board[Co!];
IF ((Q = BC) OR

(Q-Distance = BC) OR
(Q+Distance - Board[Col»)

THEN RETURN FALSE
ELSE RETURN (IsSafe(Q, Col-l,Distance+l»

END
END lsSafe;

PROCEDURE PlaceQueensW (NumPlaced I INTEGER);
VAH

0, Pos t INTEGER;
BEGIN

FOR Q 1= 0 TO BoardSize-l DO
IF rsSafe(Q, NumPlaced-l, 1)

THEN Pos 1= NumPlaced;
Board[Pos] ,- OJ
Pos 1 = Pos + 1;
IF Pos < BoardSize

THEN PlaceQueensW(Pos)
ELSE (* out a solution *)

END

out("completed", Board[O), Board[1], Board(2],
Board(3), Board(4)

END
END

END PlaceQueensW;

BEGIN
(* get a task *)
in{ "partials ", ?NumPlaced, ?Board[O], ?Board[l], ?Board[2],

?Board(3) , ?Board(4);
PlaceQueensW(NumPlaced);

END queen.

E19

spec Global;
/*--------*/
/* Program specificationt

Processt

*/

Specification level t
Descriptiont

var
NumPlaced,

N-Queens
queen
global
Bxtract a partial solution from tuple space, and
return completed solution., if any.

Board[O], Board[l], Board[2], Board[3], Board[4] lint;

process queen
• in('partials', 1NumPlaced, 1Board[O], 180ard[1], 1Board[2],

?Board[3], ?Board[4]) .
addresults;

process addresults
• choice (NIL

endspec

I out('completed', int, int, int, int, int).
addr •• ults)

E20

E2l

E.6 Arithmetic Expressions

The following Linda program implements a simple arithmetic expression handler. Details of the
program can be found in section 5.5.

The master process (mastarith) spawns a user-specified number of workers, adds the tasks to tuple
space, and retrieves the results. Once all results have been retrieved, a poison task is added to tuple
space. Worker processes (arith) repeatedly scavenge for tasks. If the task descriptor is poisoned,
the process terminates. Otherwise, task data is retrieved, and a result is computed, after which it is
returned to tuple space.

The arith specifications are characterised by their mUltiple sub-specifications, use of the wild tuple
indicator, wild Linda primitive statement, nested choice-statements, and alternation constructs in which
alternates are succeeded by common specifications.

MODULE mastarith;
(*-------------*)
(* Modula-2 Linda programs Simple arithmetic expression handler

ProceSSt master

Implementation of a simple arithmetic expression handler.
*)

FROM LindaHQ
FROM EasylnOut

IMPORT STRING;
IMPORT Filelnput, Readlnt, ReadWord, ReadLn,

FROM Strings
FROM ConNum
FROM EntryExit

WriteString, WriteLn, Writelnti
IMPORT Compare;
IMPORT StrToUnsigned_16i
IMPORT argv, argc;

VAR
NumWorkers, Opl, Op2, Index, Tag, Answer 1 INTEGER;
Action t STRING;
Success t BOOLEAN;

BEGIN
StrToUnsigned 16(argvA [1]A, 10, NumWorkers, Success);
IF NOT Success

THEN WriteString("Problem with number of workers - sorry try again");
WriteLn;
HALT

ELSE Wri teString (" Number of workers: ") i
WriteInt(NumWorkers, 4);
WriteLn

END;

(* start a number of worker processes *)
FOR Index := I TO NumWorkers DO

eval (, arith')
END;

FileInput;
Tag := 0;
LOOP

ReadWord(Action)i
IF Compare(Action, "end") 0

THEN EXIT
ELSE Tag := Tag + 1;

ReadInt (Opl);
ReadInt(Op2);

END
END;

Wri teInt (Tag, 3); Wri teString ("t ");
WriteInt{Opl, 3); WriteString(Action); WriteInt{Op2, 3); WriteLn;
out(Tag, Action);
out(Tag, OpI, Op2);

(* now ge t back the answers *)
FOR Inde x 1 - 1 TO Tag DO

in(Inde x, ?Answer);
WriteStr ing("Answer for "); Writelnt(Index, 3); WriteStri ng("ist ");
Writelnt(Answer, 4); WriteLn

END;

(* add poison task descriptor *)
out(Tag, 'end')

END mastarith .

spec Global;
/*--------*'
/* Program specificatioDs

Process,
simple arithmetic expression handler
... tarit.h
global

E22

Specification laval ,
Descriptions Spawn a number of workers, add ta&k to tuple &pace, and

retrieve results. Pinally, add a poison task descriptor
i8 added to tuple space.

*'
var

Answer • inti

process mAstarith
choice (.ddtasks

I aval('arith ').mastaritb);

process addtasks
• choice (gatresults

out(lnt, '+ ') . addoperands
out(lnt, '- ').addoparands
out(int, '*').addoperands
out(int, 'I').addoperands);

process addoperands
1* add operands *1
out (int, int, int).
/* go get next expre •• ion *1
addt.sks;

process getresults
- choice (1* DO more results,

so add end of tasks descriptor *1
out(int, 'end').
/* you're done */
NIL
/* get an.wer *1
in(int, lAnswer).
1* go next answer */
getresul ts)

endspec

MODULE arith;
(*---------*)
(* Modula-2 Linda programs

Process ,
Simple arithmetic expression handler
worker

Impleme ntation of a simple arithmetic expression handler .
*)

FROM LindaHQ
FROM Strings

VAR

I MPORT STRING;
I MPORT Compare ;

apI, Op2, I ndex, Tag, Answer, INTEGER;
Ac tion : STRING;

BEGIN
LOOP

(* get t a sk *)
in(?Tag, ?Action) i

IF Compare (Action, " end") = 0
THEN (* replace poison task *)

out(Tag, Action);
EXIT

ELSE (* get operands *)
in(Tag, ?Opl, ?Op2)i

END
END

END arith.

(* add answer to tuple space *)
IF Compare(Action, " +") ... 0

THEN out(Tag, Opl+op2)
ELSE IF Compare(Action, tI_H) _ 0

THEN out(Tag, Opl-Op2)

END

ELSE IF Compare(Action, " ' ") = 0
THEN out(Tag, Opl DIV Op2)

END

ELSE IF Compare(Action, 10*") = 0
THEN out (Tag, OplOOp2)
ELSE EXIT

END
END

spec Global,

/*--------*'
/* Program specificatioD:

Proe ••• 1

Specification laval,
Description:

Simple arithmetic expression handler
arith
global
Repeatedly: Bxtract a task descriptor from

tupla space.

E23

If descriptor poisoned, terminate
otherwise, get task data, compute result,
and return result to tuple space. 0'

var
Tag , Opi, Op2 lint;
Action , str;

process arit.h
- in(?Tag, ?Act.ion) .

if (Action. 'end'
then out(Tag, Action).

NIL
else in(Tag, lOp!, ?Op2).

if (Action. '+'
then out(Tag, Opl + Op2).

arith
el.e if (Action - '-'

then out(Tag, Opl - Op2) .
arith

else if (Action. ,*,
then out(Tag, Op! * Op2).

arith
else if (Action - '/,

then out(Tag, Opl DIV Op2).
arith

else NIL»)))

endspec

spec AtLeastOneAdditioD;
/*--------------------*/
/* Program specificatioDI

Process I

*/

Specification levelt
Descriptiont

var
ActioD z str;

proce.. arith
- in(?int, ?Action).

in(*) •
out(*).
if (Action - '+'

then aritha
else arith);

process arit.ha
- choice (

I
NIL
*.aritha)

end.pec

spec OneAnswerofm1nusll;
/*--------------------*/
/* Program specificat.iont

Processz

*/

Specificat.ion level,
Descriptiont

*.arith

Simple arithmetic expression handler
arith
specific
Check that the action of the worker includes,
at least, one addition operation.

Simple arithmetic expression handler
arith
specific
Cheek that the action of the worker includes the
addition to tuple space of, at least, one answer
of -11.

process arith
- choice (I

out(int, -ll).aritha)1

process aritha
- choice (

I
endspec

NIL
*.aritha)

spec NoTwoConsecutiveOut.s;
/*----------------------*/
/* Program specificat.ion!

Process!
Specification level,
Description,

*/

process arith
- choice (

ends pee

I
NIL
*.aritb
out(*).choice

Simple arithmetic expression handler
arith
specific
Check that the action of the worker does not include
two consecutive out operations.

NIL
in(*). arith
read(*) .arith
iop(*) .arith
readp(*) .arith
eval(*) . arith»

E24

Appendix F

Modula-2 Linda System

The Modula-2 Linda system is an experimental system in which the ideas that were developed in this

thesis could be tested.

F.l Distinguishing Characteristic

Modula-2 Linda is a streamlined, functional Linda dialect that supports all the basic Linda primitives:

out, in, read, inp, readp, and eval, for a limited set of tuple element types, namely, integers and

strings.

F.2 Details of the Implementation

F.2.1 System Overview

The system is implemented as a series of modules that provide tuple manipulation and tuple space

interaction facilities, and a tuple space server. Tuples are implemented (in concrete Linda) as abstract

data types (Modula-2 does not provide for variable numbers of parameters), and Linda primitives as

procedures and functions. A standard fork-mechanism is used to spawn processes, and a file-based

transport layer is used to implement communication between processes and the tuple space server in

particular, and between system components in general. A system diagram can be found in Figure F.l.

Fl

KBMonilor

,

KbSvFiJe ~
,

/,-rJ
,/", ,,{j

, -, --- --
L-___ &_N_e_' ____ ~--~~~~~-------~

Legend:

rJ -file

----+- - module dependency

- - -> - data flow

Figure F.l Modula-2 Linda System

-----t]

LSvFile

" ,
Pl#l

, , ,

to: Pl, P2, Po

F2

Index to Figure F.l:

1.

2.

3.

4.

5.

6.

7.

8.

LindaHQ

TupleManager

Linda

KBMonitor

Server

Pl, P2, Pn

KBSvFile

LSvFile

the master module that contains base definitions and global

communication file names.

tuple manipulation facilities (construction, comparison and

communication).

Tuple space connect/disconnect facilities, and Linda primitives.

keyboard monitor.

tuple space server.

Linda processes.

keyboard-server communication file.

Linda-server communication file.

9. P1#1,

P2#2,

Pn#n private (process) Linda-server communication files.

F3

The Modula-2 Cross System (MCS) v.4.4 of Modula-2 implemented on a Sun 4 workstation running

SunOS 4.1.1 is used to implement the system.

F.2.2 General Action of the System

A Modula-2 Linda program is a collection of standalone Modula-2 programs, each of which

implements a Linda process (multiple copies of the same program may be executed simultaneously

to create the effect of multiple, identical processes).

Prior to Linda program execution, the Modula-2 Linda run-time system is started by launching the

Linda server (it also launches the keyboard monitor). Thereafter, processes are started either by using

the eval-primitive or by manual instantiation at the operating system level (usually a main or master

process is manually instantiated after which it spawns further processes using the eval-primitive).

After instantiation, a typical sequence of process actions is as follows:

connect to tuple space;

interact with tuple space;

disconnect from tuple space.

(Abstract Modula-2 Linda would not include connect/disconnect activities.)

Requests to connect to or disconnect from tuple space are channelled from the Linda module to the

server via a predefined Linda-server file (LSvFile). On connection, a private communication file is

established between the process and the server through which general tuple space requests and replies

are routed. On disconnection, the private file is erased, and communication is severed.

The Linda server maintains:

1. a list of process descriptors that represent processes that are currently connected to the server,

and

2. a list of free tuples.

The server polls the private files for interaction requests, as well as the Linda-server file for

connect/disconnect requests. Processes fight for temporary control of the Linda-server file but make

leisurely use of their private file. The list of free tuples is modified as tuples are added to and

F4

removed from tuple space.

Two implementation strategies were tested for unsuccessful in and read requests:

1. processes that submit unsuccessful in and read requests are blocked, pending the arrival of

appropriate tuples. The server maintains lists of blocked in and read requests. On arrival of

an appropriate tuple, all matching read requests are serviced, and one matching in request,

selected non-deterministically, is serviced.

2. processes that submit unsuccessful in and read requests are required to re-submit the request

together with all other process requests (in practice, the Linda module controls the re

submission - the process is not aware of any internal policy or haggling that occurs between

the Linda module and the server).

Both are acceptable interpretations of the Linda paradigm.

The server also maintains a graphical display of the state of tuple space, and the activities of the server

(current request, request servicibility, result of request). It is anticipated that the user, having

instantiated a master process, will concentrate attention on this display to monitor system activity.

F.2.3 System Specifics

F.2.3.1 Establishing/Severing Process-Server Communication

Processes inform the server of their desire to communicate by calling on the connect service offered

by the Linda module. This places an appropriate request in the Linda-server file that includes the

name of the requesting process.

The server deals with requests to connect in the following manner:

1. a private server-process communication file is created (the name of the file is a combination

of the process name and an internal descriptor),

2. a descriptor is added to the process descriptor list that includes all relevant process data

(process name, communication file name, file handle, and process status),

3. and, finally, a "successful connect" reply is posted in the Linda-server file that also includes

the name of the private communication file. The reply is collected by the Linda module. The

private communication file is then used for all future communications (except the final

disconnect request).

Processes sever communication with the server by calling on the disconnect service offered by the

Linda module. The sequence of events that ensues is much the same as the events that ensue when

F5

communication is initially established with the server. The Linda-server file conveys the request to

the server that then deletes the private communication file, and informs the process, again via the

Linda-server file, that communication has been severed.

On connection, the request includes the name of the process but on disconnection, the request includes

the name of the private communication file, so that processes are identified correctly.

F.2.3.2 Executing Linda Primitives

Linda primitives are implemented in the Linda module as procedures and functions. All primitives

take a single tuple parameter, and, in the case of inp and readp, return a boolean result. Tuples are

implemented as abstract data types (ADD.

Prior to and just after the call to the appropriate Linda primitive procedure/function, the facilities of

the TupleManager are used to initialise, construct, and finally clear the tuple structure, that is:

initialise the tuple ADT;

construct the tuple ADT;

call the appropriate Linda primitive procedure/function;

clear the tuple ADT (deallocate memory).

Tuples are constructed by successive addition of tuple elements to the tuple ADT.

Within the Linda module, further TupleManager facilities are used to write/read tuple information

to/from the private communication file.

F.23.3 The eval-primitive

Section 3.2.1 provided a brief description of the eval-primitive. It takes a single string tuple element

that names an executable Modula-2 code file. The server forks a new process that executes the code

contained in the file. It does not add a process descriptor to the process descriptor list but awaits a

formal request from the process just instantiated to connect to the server. No partially-evaluated active

data tuple is maintained nor does any passive data tuple result from the execution of the process (other

than those that are added to tuple space in the normal course of events).

Appendix G

Modula-2 Linda System with Debugger

The Modula-2 Linda system discussed in Appendix E is modified to include a behavioural model

debugger.

G.t Implementation Strategy

The Modula-2 Linda system code is modified to generate notice of the occurrence of events (process

server interaction based on Linda primitives). Such notice is communicated to a separately executing

behavioural model debugger that checks the behaviour, and posts replies back to the server for its

consideration.

G.2 Details of Implementation

G.2.1 System Overview

The debugger is implemented as a series of modules that provide facilities for the construction of

internal models of expected behaviour (based on behavioural specifications), and mechanisms (a

recognition engine) to compare actual and expected process behaviour. The debugger is connected

to the Linda server via a single communication file through which process-server connect/disconnect

requests, notice of tuple space interactions, and results of behavioural comparisons are channelled.

A system diagram can be found in Figure G.l.

Gl

I
!

I TupleManager I
L -

I

-

I

I
Legend:

. file

- - module dependency

---. - data flow

lindaHQ I
I

I

~
SpecHQ I

11 1
I SpecParser

~ 1 r
SpecManager I

L..

~

rJ Plspec

f-
",,"', rJ Plspec.pars

'--• rJ P2spoc

""" " rJ P2spec.pars

"'rFl UPnspec

rJ Pnspec.paTS

SpecSv File

Specify 1<---·rJ <- - -r.1 Server

Figure G.t Modula-2 Linda System with Debugger

G2

Index to Figure G.1:

1. LindaHQ

2. TupleManager

3. SpecHQ

4. SpecParser

the master module that contains base definitions and global

communication file names.

tuple manipulation faciliti es (construction, comparison,

communication).

the master specification module that contains the internal behavioural

model data structures.

specification language parser and internal model construction and

facilities .

5.

6.

7.
8.

SpecManager

Specify

Server

SpecSvFile

9. P1spec,

P2spec,

Pnspec

P1spec.pars, 10.

P2spec.pars,

Pnspec.pars

behaviour recognition engine.

process specification handler and server-debugger interface

tuple space server.

specification handler-server communication file.

process specification files.

specification parser list files.

G3

The Modula-2 Cross System (MCS) v.4.4 of Modula-2 implemented on a Sun 4 workstation running

SunOS 4.1.1 is used to implement the debugger.

G.2.2 General Action of the System

Each Linda process is supported by a behavioural specification. The specification is normally defined

prior to process code development, and is stored in a file separate to that of the process.

As part of the Linda server initialisation code, the specification handler is launched using a standard

fork-mechanism. A specification handler-server file (SpecSvFile) is also created for communication

between the server and the specification handler.

After instantiation (either manually for the distinguished process or by eval), whenever a process

attempts to connect to tuple space, the specification handler is immediately informed. The

specification file that is associated with the process is read, parsed and an internal model' of the

expected behaviour of the process is constructed. On completion, the server, and then the process, are

informed of successful tuple space connection. (A variety of conditions may preclude tuple space

connection, for example, lack of a specification file, parse errors, in which case connection is not

permitted and the process is terminated.) At this stage, the recognition engine, based on the

behavioural specifications supplied to the specification handler, is ready to check behaviour. Each

time the process interacts with tuple space, the request and the requesting process name are referred

to the specification handler for checking. It compares the request with that which is expected2
, and

returns the result of the comparison to the server. If the behaviour matches, the tuple space server

1 If the process has been specified at more than one level of abstraction, more than one model is constructed.

l If multiple models exist, multiple comparisons are made, each of which must succeed [or a match to be declared.

G4

continues to execute as normal. For mismatched behaviour, two approaches were tested:

1. the offending process is informed, and then terminated.

2. the tuple space server disregards the mismatch result, and continues to execute as normal.

Whenever a process disconnects from tuple space, the specification handler is again informed. It

-checks the corresponding internal models to determine whether no further activity was expected (it is

in a final state), and replies to the server accordingly.

Notice of behavioural comparisons that result in a mismatch are also posted to the graphics display

maintained by the tuple space server.

G.2.3 System Specifics

G.2.3.1 Specification Parser and Internal Model Constructor

The Linda program specification language is used to specify process behaviour (see chapter 5). Each

specification is composed of one or more sub-specifications that specify the behaviour of the process

at different levels of abstraction. The goal is to construct internal models, one for each sub

specification, to which is coupled an environment within which it exists.

A recursive descent, LL(l) parser is used to process the behavioural specifications.

For each sub-specification, the parser generates a labelled transition graph and a private environment

(a collection of named memory locations) in which tuple information is maintained. Graph transitions

are based on tuple space interactions. Since tuples may be based on run-time tuple information

contained in the associated environment, the initial graph is incomplete. (See section G.2.3.3 for a

further discussion on how and when the graph is complete.) Such incompleteness precludes

conversion from a non-deterministic to deterministic graph.

G.2.3.2 Multiple, Identical Processes

It is frequently the case that the same Linda process, represented by a single Modula-2 program, is

instantiated repeatedly. For example, given the Modula-2 program "crossp", multiple instances may

be invoked using the eval-primitive:

eval{'crossp');

eval{' crossp ');

G5

Since each 'crossp' process is associated with the same, single specification file, each instance of

'crossp' has the same expected behaviour. In the unlikely event that identical processes must exhibit

differing expected behaviour (it may be necessary to monitor the particular behaviour of an instance

of a process), different named files must be used that house identical code, for example:

eval{' crosspl');

eval{' crossp2');

Separate specifications are then required for 'crosspl' and 'crossp2'.

G.2.3.3 Model Control and Behaviour Comparison

Actual process behaviour is recognised by following multiple search paths in each graph that

implements a sub-specification. A current state (actually a set of states) reflects the position in the

multiple paths that has been reached by the recognition process.

Initially the current state is set to the start state in each graph. As successive behaviour is recognised,

transition/s are taken to new state/s, until a final state is reached. Since the internal model is

composed of a number of graphs that represent the many sub-specifications, the recognition process

takes place a number of times, one for each graph.

Transitions from a particular state are only fully-defined when that state is reached. At that stage,

relevant values are extracted from the environment that are used to complete the available transitions.

G6

In Figure G.2, when state B is reached, values for 1 are extracted from the environment to complete

oUI(l+1) and oul(l).

I

o
in(?l) 1

oUI(l+1)

8
!

Figure G.2 Specification graph with partially-defined transitions

After a particular transition has been made, the environment is modified to reflect any changes brought

about by the transition. The TupleManager module provides facilities for comparing actual behaviour

(input symbols) with graph transitions.

	SEWRY DAVID A DPHIL-TR94-25a
	SEWRY DAVID A DPHIL-TR94-25b

