

An Investigation of Hair Modelling and Rendering

Techniques with Emphasis on African Hairstyles

Submitted in fulfilment of the requirements

for the degree of Master of Science

of Rhodes University

by

Deborah Michelle Patrick
February 2004

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

Abstract

Many computer graphics applications make use of virtual humans. Methods for modelling and

rendering hair are needed so that hairstyles can be added to the virtual humans. Modelling and

rendering hair is challenging due to the large number of hair strands and their geometric

properties, the complex lighting effects that occur among the strands of hair, and the complexity

and large variation of human hairstyles. While methods have been developed for generating hair,

no methods exist for generating African hair, which differs from hair of other ethnic groups.

This thesis presents methods for modelling and rendering African hair. Existing hair modelling

and rendering techniques are investigated, and the knowledge gained from the investigation is

used to develop or enhance hair modelling and rendering techniques to produce three different

forms of hair commonly found in African hairstyles. The different forms of hair identified are

natural curly hair, straightened hair, and braids or twists of hair.

The hair modelling techniques developed are implemented as plug-ins for the graphics program

LightWave 3D. The plug-ins developed not only model the three identified forms of hair, but

also add the modelled hair to a model of a head, and can be used to create a variety of African

hairstyles. The plug-ins significantly reduce the time spent on hair modelling. Tests performed

show that increasing the number of polygons used to model hair increases the quality of the hair

produced, but also increases the rendering time. However, there is usually an upper bound to the

number of polygons needed to produce a reasonable hairstyle, making it feasible to add African

hairstyles to virtual humans.

The rendering aspects investigated include hair illumination, texturing, shadowing and anti-

aliasing. An anisotropic illumination model is developed that considers the properties of African

hair, including the colouring, opacity and narrow width of the hair strands. Texturing is used in

several instances to create the effect of individual strands of hair. Results show that texturing is

useful for representing many hair strands because the density of the hair in a texture map does

not have an effect on the rendering time. The importance of including a shadowing technique

and applying an anti-aliasing method when rendering hair is demonstrated. The rendering

techniques are implemented using the RenderMan Interface and Shading Language.

A number of complete African hairstyles are shown, demonstrating that the techniques can be

used to model and render African hair successfully.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

Acknowledgements

I would like to thank my supervisor, Prof. Shaun Bangay, for his valuable help and guidance

over the duration of this research. Furthermore, I would like to thank Prof. George Wells for his

support and assistance during the writing up of this thesis.

Many thanks also go to Adele Lobb, Madeleine Wright, Jason Penton and Matthew Gibb for

proofreading the drafts of this thesis, to the members of the Rhodes University Computer

Science department for their support, to the people who allowed me to use photographs of their

hairstyles, and to the National Research Foundation (NRF) for providing funding.

Finally, I would like to thank my family and friends for their support and encouragement.

Many trademarks are mentioned throughout this thesis. All trademarks are the property of their

respective owners.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

Table of Contents

1 INTRODUCTION..9

1.1 Problem Statement.. 9
1.1.1 Hair Modelling.. 10
1.1.2 Hair Rendering ... 11

1.2 Thesis Structure .. 11

2 RELATED WORK... 12

2.1 Background .. 12
2.1.1 The State of Hair Simulation Research ... 12
2.1.2 Computer Generated Hair in Films... 12
2.1.3 Hair Simulation Tools .. 14

2.2 Hair Modelling ... 15
2.2.1 Introduction... 15
2.2.2 Implicit Models ... 16
2.2.3 Explicit Models ... 19
2.2.4 Cluster Models .. 24
2.2.5 Interactive Hair Modelling Systems .. 28

2.3 Hair Rendering ... 30
2.3.1 Introduction... 30
2.3.2 Illumination Models.. 31
2.3.3 Shadowing ... 38
2.3.4 Texturing ... 43
2.3.5 Anti-aliasing.. 48

2.4 Summary .. 52

3 MODELLING AFRICAN HAIR ... 54

3.1 Natural Curly Hair .. 54
3.1.1 Concentric Textured Layers... 55
3.1.2 Placing Layers on a Head Model .. 56
3.1.3 Using Opacity Maps to Define Hair.. 57

3.2 Straight Hair ... 58
3.2.1 Using Curves to Define a Hairstyle... 58
3.2.2 Placing Curves on a Head Model.. 59
3.2.3 Representing a Strand of Hair ... 60

3.3 Braids and Twists of Hair.. 61
3.3.1 Using Curves to Define Braids and Twists in a Hairstyle ... 62
3.3.2 Placing Curves on a Head Model.. 62
3.3.3 Creating Braids and Twists with Generalized Cylinders... 63
3.3.4 Representing Strands of Hair... 70
3.3.5 Additional Texturing... 70

3.4 Summary .. 70

4 IMPLEMENTING PLUG-INS ... 72

4.1 LightWave 3D .. 72
4.2 Hair Modelling Plug-ins.. 73

4.2.1 HPLayer .. 73
4.2.2 HPCurve.. 77
4.2.3 HPDuplicate.. 81
4.2.4 HPTwist ... 83
4.2.5 HPBraid... 88
4.2.6 HPPolyline .. 93
4.2.7 HPGeneralizedCylinder ... 97

4.3 Summary .. 103

5 RENDERING AFRICAN HAIR .. 104

5.1 Introduction .. 104

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

5.1.1 Setting Up the Scene ... 104
5.1.2 RenderMan and LightMan ... 105

5.2 Illumination Model ... 107
5.2.1 Introduction... 107
5.2.2 Our Illumination Model.. 109
5.2.3 Implementing the Illumination Model as a Shader... 112
5.2.4 Implementing the Illumination Model in Textured Layers ... 113

5.3 Shadowing.. 113
5.3.1 Adding Shadows to Explicitly Modelled Hair ... 114
5.3.2 Self-shadowing in Layers ... 116

5.4 Texturing .. 117
5.4.1 Texturing Layers to Create the Effect of Hair .. 117
5.4.2 Representing Individual Hair Strands in Braids and Twists ... 119
5.4.3 Adding Additional Texture to the Head... 122

5.5 Anti-aliasing ... 125
5.5.1 Introduction... 125
5.5.2 Supersampling with RenderMan.. 125
5.5.3 Using Textures .. 125

5.6 Summary .. 126

6 DISCUSSIONS AND RESULTS .. 127

6.1 Introduction .. 127
6.2 Modelling Results ... 128

6.2.1 Modelling Natural Curly Hair... 128
6.2.2 Modelling Straight Hair ... 131
6.2.3 Modelling Hairstyles with Braids and Twists of Hair .. 139

6.3 Rendering Results... 146
6.3.1 Illumination Model ... 146
6.3.2 Shadowing ... 152
6.3.3 Texturing ... 154
6.3.4 Antialiasing ... 161

6.4 Final Results ... 164
6.5 Summary .. 166

7 CONCLUSION.. 169

7.1 Thesis Overview... 170
7.2 Future Work ... 174
7.3 Thesis Contributions ... 175

8 REFERENCES.. 176

APPENDIX A - TEXTURED LAYERS HAIR SHADER .. 186

APPENDIX B - DIFFERENT FILTER TYPES ... 187

APPENDIX C - INTERPOLATION... 188

C.1 Determining the Control Hairs to Interpolate Between.. 188
C.2 Interpolating a Hair Between Two Control Hairs .. 189

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

List of Figures

Figure 1.1: Three forms of hair commonly found in African hairstyles. .. 9
Figure 2.1:�%DE\�0ROO\��6LG¶V�VLVWHU��DQG�$NL� ... 13

Figure 2.2: Sully with key hairs defined and Sully rendered... 13

Figure 2.3: Different ways to represent a strand of hair modelled explicitly. 21

Figure 2.4: Placing strands of hair onto a surface... 23
Figure 2.5: Calculating a section of a strand of hair... 25

Figure 2.6: A cluster. .. 26

Figure 2.7:�.DML\D�DQG�.D\¶V�LOOXPLQDWLRQ�PRGHO� ... 32

Figure 2.8: Anjyo HW�DO�¶V�LOOXPLQDWLRQ�PRGHO� .. 35
Figure 2.9: Obtaining normals. .. 37

Figure 2.10: Hair rendered with and without self-shadowing. .. 38

Figure 2.11: Percentage closer filtering... 39

Figure 2.12: The visibility function for a pixel. .. 40
Figure 2.13: Obtaining a set of opacity maps. .. 41

Figure 2.14: Modelling and rendering hair using textured strips. ... 45

Figure 2.15: Texture maps.. 46

Figure 2.16: Texturing concentric layers. ... 47

Figure 2.17: Texture maps.. 47

Figure 2.18: Aliasing and anti-aliasing. .. 49

Figure 2.19: Pixels considered as square boxes.. 51

Figure 3.1: Examples of African hairstyles with natural curly hair. ... 54

Figure 3.2: The result of an opacity map applied to concentric layers.. 55

Figure 3.3: Hair represented by textured layers.. 56

Figure 3.4: Placing layers over selected polygons.. 57

Figure 3.5: Using opacity maps to define the shape, thickness and distribution of hair strands. 57

Figure 3.6: Examples of African hairstyles with straight (relaxed) hair. 58

Figure 3.7: Automatically creating curves using a control curve.. 59

Figure 3.8: African hairstyles with hair in the form of a braid and twists. 61

Figure 3.9: Braided (twisted) hair in a variety of styles. .. 63
Figure 3.10: Cross section of a twist. .. 64

Figure 3.11: The shape of a curve in a twist along the z-axis.. 64

Figure 3.12: A curve in a twist viewed from different angles. .. 64

Figure 3.13:�'LIIHUHQW�VWDUWLQJ�YDOXHV�RI� �IRU�HDFK�FXUYH� .. 65
Figure 3.14: Cross section of a braid... 66

Figure 3.15: The shape of a curve in a braid along the z-axis. .. 66

Figure 3.16: Different flatness. .. 66

Figure 3.17: Cross sections of a cylinder placed along a curve... 67
Figure 3.18: A reference frame. ... 67

Figure 3.19: Calculating a reference frame. .. 68

Figure 3.20: A generalized cylinder with and without twisting... 68

Figure 3.21: Aligning a cross section perpendicular to a curve... 69
Figure 4.1: Creating layers, using polygon normals for displacement.. 74

Figure 4.2: Creating a layer, using vertex normals for displacement. ... 74

Figure 4.3: The HPLayer plug-LQ¶V�LQWHUIDFH� ... 76

Figure 4.4: A message assisting the user... 76
Figure 4.5: Using the HPLayer plug-in to create and place layers on a head model. 76

Figure 4.6: A control hair consisting of four segments and five control points. 78

Figure 4.7: Placing a control hair in the centre of a selected triangle. .. 78

Figure 4.8: A message assisting the user... 79

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

Figure 4.9: The HPCurve plug-LQ¶V�LQWHUIDFH�... 80

Figure 4.10: A message assisting the user... 80
Figure 4.11: Using the HPCurve plug-in to design a hairstyle. ... 80

Figure 4.12: The HPDuplicate plug-LQ¶V�LQWHUIDFH�... 82

Figure 4.13: Using the HPDuplicate plug-in... 83

Figure 4.14: The HPTwist plug-LQ¶V�LQ WHUIDFH� ... 85
Figure 4.15: A message assisting the user... 85

Figure 4.16: Different twist values. ... 86

Figure 4.17: Twists with the same curves, but different numbers of control points. 87
Figure 4.18: Converting a curve into a twist... 88

Figure 4.19: Using the HPTwist plug-in. .. 88

Figure 4.20: Viewing a braid from different angles. .. 89

Figure 4.21: The HPBraid plug-LQ¶V�LQWHUIDFH� ... 90
Figure 4.22: A message assisting the user... 90

Figure 4.23: Different braid values.. 91

Figure 4.24: Converting a curve into a braid. ... 92

Figure 4.25: Using the HPBraid plug-in. .. 93
Figure 4.26: Converting a curve defined by control points in to a polyline. 94

Figure 4.27: Using FreezeCurves to convert an open curve into a polygon. 94

Figure 4.28: The HPPolyline plug-LQ ¶V�LQWHUIDFH� ... 95

Figure 4.29: Converting curves to polylines so that they can be rendered. 96
Figure 4.30: Using the HPPolyline plug-in. .. 97

Figure 4.31: Creating a generalized cylinder. ... 98

Figure 4.32: The HPGeneralizedCylinder plug-LQ¶V�LQWHUIDFH� .. 99

Figure 4.33: Changing the properties of a generalized cylinder. ... 100
Figure 4.34: Converting a curve into generalized cylinders. ... 101

Figure 4.35: Using the HPGeneralizedCylinder plug-in for braids and twists. 101

Figure 4.36: Using the HPGeneralizedCylinder plug-in. ... 102

Figure 5.1: Three point lighting set-up.. 104

Figure 5.2: The effect of the Key, Fill, and Back lights, and the final result. 105

Figure 5.3: Using a conventional illumination model. ... 107

Figure 5.4: Important vectors in a conventional illumination model. ... 108

Figure 5.5: Important unit vectors in our illumination model.. 109

Figure 5.6: All strands of hair have the same colour.. 111

Figure 5.7: Rendering hair without shadows and with traditional shadow maps....................... 115

Figure 5.8: Rendering hair without self-shadowing and with self-shadowing. 116

Figure 5.9: An opacity map and a tangent map. ... 118

Figure 5.10: Applying textures to concentric layers... 118

Figure 5.11: Mapping a texture onto a generalized cylinder. .. 120

Figure 5.12: Cylinders with and without the seam problem. ... 121

Figure 5.13: The texture and U values. ... 121
Figure 5.14: Texturing generalized cylinders. .. 122

Figure 5.15: Tessellations... 123

Figure 5.16: A toroidal texture... 124

Figure 5.17: Adding an additional texture onto the scalp. ... 124
Figure 5.18: Adding additional textured layers onto the scalp. ... 124

Figure 6.1: Two hairstyles modelled with concentric layers. .. 128

Figure 6.2: Improving the shape of a natural curly hairstyle. .. 129

Figure 6.3: Rendering times when using different numbers of layers... 129
Figure 6.4: Hair represented by different numbers of layers. .. 130

Figure 6.5: Hair represented by different numbers of layers with the same height.................... 131

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

Figure 6.6: Placing layers too far apart. .. 131

Figure 6.7: Two explicitly modelled hairstyles. ... 132
Figure 6.8: Fixing and Removing Stray Hairs. ... 132

Figure 6.9: Rendering times when using different numbers of curves.. 134

Figure 6.10: The quality of hair produced with different numbers of curves............................. 135

Figure 6.11: Rendering times when using different numbers of segments. 137
Figure 6.12: The quality of hair produced with different numbers of segments. 138

Figure 6.13: Hairstyles containing braids and twists.. 139

Figure 6.14: Braids and twists with different numbers of clusters. ... 140
Figure 6.15: Rendering times when using different numbers of clusters.................................... 141

Figure 6.16: Overlapping clusters.. 141

Figure 6.17: Rendering times when using different numbers of segments. 142

Figure 6.18: Braids represented by generalized cylinders created with different numbers of
segments. .. 143

Figure 6.19: Rendering times when using different numbers of sides.. 144

Figure 6.20: Twists represented by generalized cylinders that have different numbers of sides.

... 145
Figure 6.21: Black and brown hair with and without the diffuse component............................. 146

Figure 6.22: Using different values for the excess brightness term. ... 147

Figure 6.23: Using different coloured lights. .. 148

Figure 6.24: Including the surface colour in the equation for the specular component. 149
Figure 6.25: Using different light reflection and light transmission values................................ 150

Figure 6.26: Illuminating hair represented by textured layers. .. 151

Figure 6.27: Rendering times when using different shadow map resolutions. 152

Figure 6.28: Using different shadow map resolutions.. 153
Figure 6.29: Creating different hair types. .. 154

Figure 6.30: Rendering times for different hair densities represented with textures. 155

Figure 6.31: Different hair densities. ... 156

Figure 6.32: Reusing a texture to create the effect of hair. .. 156

Figure 6.33: Texturing generalized cylinders. .. 157

Figure 6.34: Concentric generalized cylinders. .. 158

Figure 6.35: Applying a bump map... 158

Figure 6.36: Different coloured braids. ... 159

Figure 6.37: Colour map... 160

Figure 6.38: Unwanted artefacts at the edges. .. 160

Figure 6.39: Supersampling at different sampling rates... 162

Figure 6.40: Rendering times when using different sampling rates. ... 163

Figure 6.41: Rendering times when using different filters... 164

Figure 6.42: Natural curly hair... 164

Figure 6.43: Straightened hair.. 165

Figure 6.44: Braids of hair. .. 165
Figure 6.45: Twists of hair. .. 166

Figure B.1: Using different filter types to render an image. .. 187

Figure C.1: Calculating the distances between a random point and the three sides of a triangle.

... 188
Figure C.2: An unrealistic interpolated strand of hair.. 190

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

1 INTRODUCTION

1.1 Problem Statement

Methods for modelling and rendering hair using computer graphics are needed so that hairstyles

can be added to virtual humans. Applications that require virtual humans with hair include

virtual worlds, computer games, films and advertisements. Several methods have been developed

for generating hair, and although some methods produce very convincing results, most methods

only work well for particular types of hair under specific conditions. The use of these methods

can be seen in recent films such as Monsters, Inc. [Disney 2001], in computer games such as

Final Fantasy X [Square 2001], and on avatars such as Ananova [Ananova 2003].

As of yet, no methods exist for generating African hair specifically. African hair differs from

hair of other ethnic groups. It is curly or kinky, contains melanin that causes it to have a dark

colouring, and can be opaque due to large, dense pigment granules [Deedrick 2000]. Due to the

difference in hair type and cultural traditions, African hairstyles are different from hairstyles of

other ethnic groups. They often contain patterns with braids and twists of hair [Klein 2002].

The goal of this thesis is to present methods for simulating African hair, so that a variety of

African hairstyles can be added to virtual humans. To achieve this goal we develop or enhance

hair modelling and rendering techniques to produce different forms of hair commonly found in

African hairstyles. Our hair modelling techniques are implemented as plug-ins for the graphics

program LightWave 3D. Our hair rendering techniques are implemented as shaders compatible

with the RenderMan Interface.

A B C

Figure 1.1: Three forms of hair commonly found in African hairstyles.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

INTRODUCTION Problem Statement 10

We identify three forms of hair commonly found in African hairstyles. Figure 1.1 shows

examples of African hairstyles containing the three different forms of hair, namely natural curly

hair (A), straightened hair (B), and braids or twists of hair (C). We aim to develop modelling and

rendering techniques that produce these three forms of hair that may then be used by an artist to

create an African hairstyle.

In order to simulate hair three aspects need to be considered. These aspects are hair modelling,

hair rendering and hair dynamics. Hair modelling deals with the� VSHFLILFDWLRQ� RI� WKH� KDLU¶V�

geometry, and the density, distribution, orientation and shape of the individual hair strands. Hair

rendering involves lighting and shading hair, and is responsible for anti-aliasing techniques. Hair

dynamics looks at hair movement and collision detection [Magnenat-Thalmann et al. 2000].

Often these three aspects are related to one another. In this thesis we investigate hair modelling

and hair rendering techniques. Techniques for hair dynamics are beyond the scope of the

investigation. In many African hairstyles, the hair does not move much with respect to the head.

1.1.1 Hair Modelling

Hair modelling is challenging due to the large number of hair strands, their geometric properties,

and the complexity and large variation of human hairstyles. The average African scalp contains

between 100,000 and 150,000 extremely thin (between 0.05mm and 0.09mm) and very curly

strands of hair, which are often straightened (using a process called relaxing) or styled into

braids or twists [LeBlanc et al. 1991]. Extensions (fake hair usually in the form of braids) can

also be added to the hair. Considering the shape of each individual strand of hair when modelling

hair is tedious and impractical. With these considerations in mind, our hair modelling techniques

for the three different forms of hair must achieve several goals:

x� They must be able to add or place the hair onto a model of a head.

x� They must be able to represent the shape and geometric properties of the form of hair

they are modelling.

x� They must overcome the problem of modelling a large number of hair strands.

x� They must allow a user to model a variety of hairstyles with ease.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

INTRODUCTION Thesis Structure 11

1.1.2 Hair Rendering

Hair rendering is challenging and computationally expensive due to the large number of hair

strands, the thin geometric shape of a strand of hair, and the complex lighting effects that occur

among the strands of hair. Due to the geometry and orientation of individual strands of hair,

anisotropic specular highlights appear in the hair. These highlights form definite patterns across

the hair, even when individual strands of hair cannot be seen. The strands of hair and the head

cast shadows on each other. The colour of hair differs from person to person, and may also differ

from strand to strand, or even within a strand. If the hair has a light colour (which is not the case

for African hair) a haloing effect is produced under backlighting conditions due to the hair being

partially transparent. In addition, because the width of a strand of hair is very small in

comparison to the rendered image, several strands of hair often contribute to the shading of a

single pixel, which results in a serious aliasing problem. In order to render the African hair

produced with our hair modelling techniques, several rendering aspects must be considered:

x� An appropriate anisotropic illumination model must be used.

x� Shadowing must be implemented.

x� An anti-aliasing technique must be applied.

Instead of modelling individual strands of hair, it is possible to use a texture that represents

strands of hair and produces the effect of hair when the image is rendered. Texturing is a useful

rendering aspect that solves the problem of modelling the large number of hair strands required,

but does not always produce very realistic results. In this thesis, we make use of various

texturing techniques for African hair.

1.2 Thesis Structure

Chapter 2 discusses the state of hair simulation within the field of computer graphics and reviews

the literature on existing hair simulation techniques, focusing on hair modelling and hair

rendering techniques. Chapter 3 introduces the techniques we develop to model the three

identified forms of African hair. The implementation of these techniques as plug-ins for the

graphics program LightWave 3D is discussed in Chapter 4. In Chapter 5 the rendering of hair

modelled with our techniques is discussed. In Chapter 6 our results are presented and a number

of issues relating to our techniques are considered. Chapter 7 concludes the thesis and suggests

directions for future work.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

2 RELATED WORK

2.1 Background

2.1.1 The State of Hair Simulation Research

Research to develop methods for the simulation of hair began just over two decades ago. Csuri et

al. were the first to address the subject when they rendered fur-like volumes in the paper

³7RZDUGV� DQ� ,QWHUDFWLYH� +LJK�9LVXDO� &RPSOH[LW\�$QLPDWLRQ� 6\VWHP´�SXEOLVKHG� LQ� �����>Csuri

et al. 1979]. Until then virtual characters were bald, had hats or similar objects placed on their

heads, or were given a hairstyle created using a few polygons and maybe a texture [Magnenat-

Thalmann et al. 2000]. Since then, much research has been done to develop hair simulation

techniques and the quality of computer-generated hair has improved greatly. This is mainly due

to the increase in computing power and the graphics industry striving to produce photorealistic

images, which has consequently lead to more applications using computer generated humans

with hair. In the late 1980s several techniques relating to hair synthesis were published, but most

of the techniques were for simulating fur rather than long hair [Anjyo et al. 1992]. In more recent

years, work has been published on techniques to simulate long human hair. However, hair

simulation research is not complete: hair dynamics is still an area constrained by computing

power, there are no simple methods for producing different hairstyles, and the optical properties

of hair still need to be explored. The current state of technology and hair simulation research is

not at a stage where it is possible to produce any hairstyle in any condition (e.g. wet hair, greasy

hair, etc.) that is able to blow in simulated wind in real time with complete rendering and

collision detection [Magnenat-Thalmann et al. 2000]. In this thesis we aim to further hair

simulation research by investigating ways of producing different African hairstyles, which to our

knowledge have not yet been considered.

2.1.2 Computer Generated Hair in Films

The results of previous hair simulation research can be seen in the numerous examples of

computer-generated hair that occur in applications today. One application where examples of

computer-generated hair can be seen is film production. In the past few years several films have

been released that include simulated hair. In 1995 Pixar released Toy Story, the first full-length

digital film. In Toy Story computer graphics techniques are not only used for special effects, but

to create the entire film, including the characters (which of course need hair!). %DE\�0ROO\¶V�KDLU�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Background 13

is produced using a procedural texture created by Darwyn Peachey, while the hair for characters

ZLWK�VWUDLJKW�KDLU��VXFK�DV�6LG¶V�VLVWHU��LV�SURGXFHG�XVLQJ�OD\HUV�RI�JHRPHWU\�ZLWK�D�IHZ�F\OLQGHUV�

placed on top, designed by Eliot Smyrl (see Figure 2.1) [Computer Graphics World 1995].

Figure 2.1: Baby MROO\��6LG¶V�VLVWHU��DQG�$NL�

Copyright © Disney / Pixar and © Square.

Since the release of Toy Story several other digital films have been produced such as Monsters,

Inc., Ice Age and Final Fantasy. In 0RQVWHU¶V� ,QF��� 6XOO\¶V� KDLU� is modelled as a chain of

particles linked by stiff springs. As many as 28,000 key hairs are modelled and a shader called a

builder is used to generate the in-between hairs (see Figure 2.2) [Robertson 2001]. Final

Fantasy, released in 2001, has the most realistic simulations of long human hair. In the film

$NL¶V�KDLU�LV�PRGHOOHG�DV�D�GHIRUPDEOH�VXUIDFH��)RU�VRPH�RI�WKH�VLPXODWLRQV�WKH�0D\D�FORWK�SOXJ-

in is used (see Figure 2.1) [Chang et al. 2002].

Figure 2.2: Sully with key hairs defined and Sully rendered.

Copyright © Disney / Pixar.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Background 14

Other films, where examples of computer-generated fur can be seen, include Jumanji, 101

Dalmations [Lengyel 2000], Mighty Joe Young and Stuart Little��6WXDUW�/LWWOH¶V� IXU� LV�PRGHOOHG�

in Maya and then rendered using RenderMan [Bredow 2000], while proprietary software by

'UHDP� 4XHVW� DQG� ,QGXVWULDO� /LJKW� DQG�0DJLF� �,/0�� LV� XVHG� WR� FUHDWH�0LJKW\� -RH�<RXQJ¶V� IXU�

[Robertson 1999]. Adding fur was and still is very time consuming. For example, according to

Robertson [1999], Rebecca Petrulli-Heskes, the lead Viewpainter at ILM, used 21 texture maps

WR�FRQWURO�WKH�SDUDPHWHUV�RI�0LJKW\�-RH�<RXQJ¶V�IXU��7KHVH�PDSV�WRRN�VL[�PRQWKV�WR�SDLQW�

2.1.3 Hair Simulation Tools

Tools to simulate hair are becoming more widely available to artists. A decade ago techniques to

add hair to virtual characters were only available to the large effects studios, but today there are a

number of commercially available graphics programs and plug-ins that allow a user to simulate

suitable hair or fur [Robertson 1995]. These include Maya Fur, Shag, and Shave, which are plug-

ins for the three-dimensional (3D) graphics programs Maya, 3D StudioMAX, and LightWave

3D, respectively. Typically, these plug-ins allow a user to describe the overall shape of hair by

defining a few key hairs. Additional hairs are then procedurally created using ray tracing

[Lengyel 2000]. The user is also able to control certain attributes such as hair length, colour,

transparency, thickness and curliness [Robertson 1999].

The commercial hair simulation tools are large and sophisticated, but they are not always able to

produce the effects an artist desires, and they are usually costly. During the production of Toy

Story, hair simulation tools were just starting to be produced, however, the artists relied on their

own creativity using a combination of resources to achieve the hair they were after [Computer

Graphics World 1995]. Many artists still do this today, as there is a trade off between effort and

artistic freedom. The more automated graphical effects such as hair production become, the less

freedom artists have to produce a specific look. Furthermore, each resource has its own strengths

and weaknesses, and by using a combination of resources an artist is able to avoid the

weaknesses. In this thesis we implement our hair modelling techniques using plug-ins that aim to

GHFUHDVH� PRGHOOLQJ� WLPH� ZLWKRXW� VXEVWDQWLDOO\� UHVWULFWLQJ� WKH� DUWLVW¶V� IUHHGRP�� 2XU� UHQGHULQJ�

techniques are implemented using the RenderMan Interface and Shading Language. This allows

the hair to be modelled in any modelling program that is able to export the model as a

RenderMan Interface Bytestream (RIB) file.

The next sections in this chapter examine hair modelling and rendering in greater detail.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 15

2.2 Hair Modelling

2.2.1 Introduction

Hair modelling deals with the spHFLILFDWLRQ�RI� WKH�KDLU¶V�JHRPHWU\��DQG�WKH�GHQVLW\��GLVWULEXWLRQ��

orientation and shape of the individual hair strands [Daldegan et al. 1993]. Modelling hair is

RIWHQ� WHGLRXV�DQG�WLPH�FRQVXPLQJ��VR�WKH�VLPSOHVW�ZD\�WR�JHQHUDWH�KDLU��IURP�WKH�DUWLVW¶V�SRLQt of

view, is not to model it at all, but rather to apply two-dimensional (2D) textures of hair to

polygons. This method is not only simple to use, but also requires relatively little rendering time

when compared with other methods. It is therefore frequently used to generate the appearance of

hair in real-time applications such as computer games. Unfortunately, the complex geometry,

shading and dynamics of strands of hair are not reproduced by textured polygons [Kim and

Neumann 2000], and other methods, although more expensive and time consuming, produce

better results in terms of realism.

Since modelling hair is tedious and time consuming, Grabli et al. [2002] attempt to construct

models of hair automatically, by retrieving the geometry of hair strands from photographs.

Although their approach to acquiring hair models would be useful, it is still in an early stage of

research and does not produce a complete hair model. Currently, therefore, 3D modelling

techniques need to be applied in order to obtain hair models for virtual characters. Other than

modelling the geometry of strands of hair, researchers have proposed methods that produce the

appearance of hair using 3D textures or lighting models [Khouas et al. 1998].

The methods available for modelling hair can be divided into three main categories: those that

model hair implicitly, those that model hair explicitly, and those that use a combination of

implicit and explicit techniques to model hair as clusters. Each category has advantages and

disadvantages, and depending on the circumstances different methods will be more suitable than

others. Lengyel [2000] and Ward et al. [2003] use a combination of hair models to generate hair

for applications where the distance of the hair from the viewer varies. Different hair models are

XVHG� GHSHQGLQJ� RQ� WKH� OHYHO� RI� GHWDLO� UHTXLUHG� GXH� WR� WKH� KDLU¶V� GLVWDQFH�� +DLU� PRGHOOLQJ�

techniques proposed by several researchers in each of the three categories are discussed below.

To assist a user in modelling hair, some researchers have developed interactive systems with user

interfaces. These are also discussed below.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 16

2.2.2 Implicit Models

Implicit hair models define the shape of hair using mathematical functions. The geometry of

each individual strand of hair is never explicitly modelled. Instead hair is viewed

macroscopically and an illusion of hair and its complexity is created.

Since implicit models do not explicitly model each individual strand of hair, they are able to

overcome the problem of modelling the large number of hair strands required. They describe the

complexity of hair in a compact way, they are not tedious to use, and it is often possible to create

a variety of hair appearances with the same defining functions just by changing the values of a

few parameters. A disadvantage of implicit models is that they have high computational costs.

When rendering the hair the mathematical functions that define the hair have to be solved for the

values of the parameters. It may also be difficult to define appropriate functions that describe the

precise appearance of hair or a hairstyle. Additionally, most dynamics models are based on

physical laws. Animating and deforming strands of hair that are not explicitly defined using

physical laws is difficult [Dischler 1999].

Kowalski et al. [1999] present an algorithm that can be used to render non-photorealistic,

stylised hair. Their method uses strokes that suggest complexity of hair without explicitly

defining it. The method is based on techniques of depicting complexity that have been used in art

and illustration for centuries. Implicit hair models that aim to produce more realistic hair than the

stylised hair produced by Kowalski et al. [1999] include volumetric models, models based on

fluid flow, and lighting models that create the appearance of hair.

2.2.2.1 Volumetric Models

Volumetric models create the appearance of hair by applying a 3D texture (or volumetric texture)

of hair onto a surface. Hair is modelled using a volumetric density function . The models are able

to produce very convincing representations of fur or short hair, but are not appropriate for

modelling long hair. Long hair has more complex shapes and interactions than fur or short hair,

and because volumetric models do not explicitly define the geometry of individual strands of

hair, there is no control over individual hair strands and the complex shapes and interactions of

long hair cannot be reproduced [Hadap and Magnenat-Thalmann 2000].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 17

Hypertexture

Perlin and Hoffert [1989] developed a volumetric texturing technique that produces a 3D texture

in a region of space. The 3D texture, called hypertexture, is produced by evaluating changes in

density in the texture space. Perlin and Hoffert show that hypertexture can be used to create the

illusion of fur by generating a furry donut and a furry ball. The fur is made curly by applying a

noise function that displaces the points in the texture space. Several authors [Sourin et al. 1996;

Bidasaria 1995] have modelled hair using volumetric approaches inspired by hypertexture.

However, hypertexture is restricted to geometry that can be analytically defined, so the illusion

of fur can only be applied to objects such as spheres, cubes or donuts [Magnenat-Thalmann et al.

2000].

Texels

.DML\D� DQG�.D\� >����@� H[WHQG� 3HUOLQ� DQG� +RIIHUW¶V� Kypertexture approach so that 3D textures,

such as fur, can be applied to objects of arbitrary shape. Their method considers hypertexture as

a 3D rectangular volume, called a texel, which is tiled onto the complex geometry in a similar

manner to 2D textures [Magnenat-Thalmann et al. 2000]. In each texel, a density, surface frame

and bidirectional light reflectance function parameters are stored. The rectangular shape of the

texels may be deformed when the texels are mapped onto a surface in order to prevent gaps or

overlapping from occurring between adjacent texels [Kajiya and Kay 1989].

Kajiya and Kay show that texels can be used to create the illusion of fur on complex geometry

by modelling fur on a teddy bear. A texel containing parallel cylinders, whose tangent vectors all

lie perpendicular to the surface on which the texel is mapped, is used to model fur as straight

lines perpendicular to the scalp. Since the texel consists of parallel hairs perpendicular to the

REMHFW¶V�VXUIDFH�� WKH�IUDPH�DQG�ELGLUHFWLonal reflectance function are constant, so only density is

stored in the texel [Kajiya and Kay 1989]. The fur rendered on the teddy bear is impressive,

showing that texels can be used to model short hair successfully. However, finding the

appropriate texel for a desired appearance can be difficult, and rendering times are slow due to

the volumetric nature of the texel [Van Gelder and Wilhelms 1997]. Neyret [1998; 1995] extends

.DML\D�DQG�.D\¶V�WH[HO�PRGHO�VR�WKDW�LW�FDQ�EH�XVHG�IRU�PXOWLUHVROXWLRQ��E\�SUH-filtering the texels

at different scales.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 18

Concentric Shells

Lengyel [2000] uses a simplified volumetric model to generate short hair. His model represents

hair using a set of concentric, partially transparent, textured layers displaced from the surface.

The textured layers, called shells, are slices of volumetric texture. Since 2D slices of texture are

used rather than a 3D texture, the method is able to render hair much faster than hypertexture or

texels. However, when the concentric shells are viewed edge-on, the hair appears transparent

near the silhouettes and spaces between the shells become apparent. To improve the

representation of the hair near silhouettes, Lengyel et al. [2001] place textured fins perpendicular

to the surfaces near the silhouettes. They also extend the concentric shell method so that fur can

be placed on objects with an arbitrary shape. This is done by repeatedly pasting patches of

concentric, partially transparent shells over the surface until it is covered.

Papaioannou [2002] preVHQWV�D� UHSRUW�EDVHG�RQ�LPSOHPHQWLQJ�/HQJ\HO¶V�FRQFHQWULF�VKHOO�PHWKRG�

>/HQJ\HO�����@��,Q�WKH�UHSRUW�3DSDLRDQQRX�H[WHQGV�/HQJ\HO¶V�DSSURDFK�WR� LQFOXGH�VKDGRZV�FDVW�

by hairs onto other hairs and onto the skin below.

2.2.2.2 Fluid Flow

Hadap and Magnenat-Thalmann [2001; 2000] model hair shape as streamlines of fluid flow after

observing that there are similarities between hair shape and fluid flow. Since fluid is volumetric

in nature, volumetric techniques are used to model the hair. However, the hair is rendered

explicitly using polylines. Due to the continuum property1 of fluid, hair-to-hair collision

avoidance is automatically implemented and hair-to-body avoidance is described by the flow of

fluid around an obstacle. Curls and waves in hair are modelled with vortices and turbulence in

flow respectively. Although there are many similarities between hair and fluid flow, there are

also differences. Hair strands tend to cluster, while streamlines do not [Hadap and Magnenat-

Thalmann 2000]. The fluid-flow method is not useful for producing knots and braids [Magnenat-

Thalmann et al. 2000].

1
7KH�FRQWLQXXP�SURSHUW\�RI�IOXLG��³1R�WZR�VWUHDPOLQHV�RI�D�IOXLG�IORZ�LQWHUVHFW��KRZHYHU�FORVH�WKH\�PD\�JHW��ZLWK�

DQ�H[FHSWLRQ�RI�IORZ�VLQJXODULWLHV´�>+DGap and Magnenat-Thalmann 2000].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 19

2.2.2.3 Fake Fur Lighting Model

Instead of rendering hair directly, Goldman [1997] presents a lighting model he calls the fakefur

algorithm, which gives the appearance of thin coats of fur on skin. His model is a probabilistic

model that calculates the expected value of light reflected within small areas of the surface. The

model assumes that the parameters of the fur change slowly across the skin. Due to this

assumption lighting calculations can be performed on a reference hair. The reflected light from

individual fur strands and the skin below is blended using the opacity of the fur in that area. This

is calculated using the probability of a ray hitting a hair in the area. This method has much lower

computational costs than other methods, but is only effective in situations where the hair is

viewed from a distance and the geometry of the hair strands is not visible [Goldman 1997].

2.2.2.4 Implicit Model Summary

The implicit hair models create the illusion of hair using mathematical functions, and do not

explicitly model the geometry of each individual hair strand. They are able to create very

convincing representations of fur or short hair, and are not tedious to use when modelling hair.

However, defining an appropriate function to describe the appearance of hair required may be

difficult, and computation costs when rendering are usually high. With the exception of the fluid

flow model, implicit hair models are not appropriate for modelling long hair, and none of the

models are useful for modelling braids of hair. Therefore implicit hair models would not be

useful for modelling straight African hair or the braids and twists in African hair.

2.2.3 Explicit Models

Explicit hair models are brute-force methods that model the geometry of each individual strand

RI� KDLU�� 7KH\� DUH� WKHUHIRUH� ³LQWXLWLYH� DQG� FORVH� WR� UHDOLW\´� >0DJQHQDW-Thalmann et al. 2000].

However, because each individual strand of hair is considered, modelling hair using an explicit

method is extremely time consuming (modelling a hairstyle can take five to ten hours

[Magnenat-Thalmann et al. 2000]) and may be expensive in terms of computation time and

memory usage [Kong and Nakajima 1999]. Unlike implicit models, explicit models view the hair

microscopically and have control over the shape and movement of each individual strand of hair.

They are therefore suitable for modelling long hair. To decrease the modelling and computation

time, only a few keys hairs are often modelled, and the shape and dynamics of the other hairs are

determined from these key hairs. However, due to even distributions of strands of hair, explicit

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 20

models do not model braids in hair effectively [Kim and Neumann 2002]. Explicit models were

the first attempts to model long hair [Magnenat-Thalmann et al. 2000]. Later models such as

cluster models or fluid flow avoid explicitly modelling individual strands of hair to decrease

computational costs. However, computing power is increasing and explicit models may now be

useful.

2.2.3.1 Representing Strands of Hair

The geometry of individual strands of hair can be defined using lines, curves, cylinders, or

surfaces [Kim and Neumann 2000]. Van Gelder and Wilhelms [1997] use an explicit method to

model fur. They do not consider long human hair. Using their method, which randomly adds hair

to a triangular mesh of an animal, they compare four ways of representing strands of hair. The

hair strands are represented as single lines, polylines (connected linear segments), Non-Uniform

Rational B-Spline (NURBS) curves, or NURBS surfaces. The results of Van Gelder and

:LOKHOPV¶� UHVHDUFK� VKRZ� WKDW� SRO\OLQHV� DUH� DQ� DSSURSULDWH� PHWKRG� IRU� UHSUHVHQWLQJ� KDLU�

effectively and efficiently. Single lines, although fast, are not able to model the curved shape of a

strand of hair. NURBS curves and NURBS surfaces provide a more accurate representation of a

strand of hair than a polyline, but render at slower rates than polylines. Polylines provide a

reasonable appearance of hair at an acceptable rendering rate and are therefore the preferred

method.

Kong and Nakajima [1999] reduce the amount of memory required and the time spent on

modelling and rendering hair by modelling fewer, thicker hairs. However, to increase the quality

of the hair, thick surface hairs close to the viewer are broken down into many thinner strands of

hair. To determine the surface hairs an opacity buffer created from a visible volume buffer is

used.

Figure 2.3 illustrates different methods that have been used to represent a strand of hair that is

modelled explicitly. The different methods include polylines (A), splines (B), particle systems

(C) and trigonal prisms (D). These methods are discussed below.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 21

 A B C D

Figure 2.3: Different ways to represent a strand of hair modelled explicitly.

Polylines

The use of polylines to represent hair can be seen in work by several researchers [Rankin and

Hall 1996; Daldegan et al. 1993; Anjyo et al. 1992; LeBlanc et al. 1991]. In many instances the

user is able to specify certain properties of the polyline, such as its length, thickness and colour.

Anjyo et al. model the downward bending of a strand of hair due to gravity using a simplified

cantilever beam
2
 simulation with the fixed side corresponding to the root of the hair. To create

cutting or combing effects they apply external forces [Anjyo et al. 1992].

Splines

Several researchers [Ward et al. 2003; Lao et al. 2002; Lee et al. 2002; Iones et al. 2000;

Thalmann et al. 1996] use splines instead of polylines to model hair. Lao et al. [2002] use B-

spline curves. Lee et al. [2002] render hair as Cardinal splines, and simulate the downward

EHQGLQJ� RI� D� VWUDQG� RI� KDLU� XVLQJ� $QM\R� HW� DO�¶V� FDQWLOHYHU� EHDP� VLPXODWLRQ�� $OWKRXJK� HDFK�

individual strand of hair is explicitly modelled, the strands of hair are grouped into wisps and a

key hair in the centre of the wisp determines the shape of each strand. Iones et al. [2000]

represent each strand of hair as a spline defined by a number of control points. The number of

control points used is determined by the complexity and length of each strand of hair. Thalmann

et al. [1996] represent each hair strand as a NURBS. The vertices of the NURBS are considered

as control points of a spline and are used to determine and alter the shape of the strand of hair.

Ward et al. [2003] model individual strands of hair as subdivision curves using control points.

2A cantilever beam is a beam with one side fixed.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 22

Particle Systems

Heinen and Walter [2001] model each strand of hair (representing fur) as a path of a particle,

which is then rendered as a polyline or collection of connected cylinders. Particle systems do not

explicitly model the geometry of hair strands (like most explicit hair models), however, the

shape of each individual strand of hair is explicitly defined.

Trigonal Prisms

Watanabe and Suenaga [1992] represent a strand of hair using a connected set of trigonal prisms.

The trigonal prisms are used as a rough approximation for cylinders to reduce the number of

polygons used. To increase the quality of hair produced, smooth shading is applied to the

trigonal prisms. Different types of hair are produced by changing the values of various

parameters such as thickness, colour, length, amount of twist, and the number of trigonal prisms

used for each hair strand. To decrease the amount of time spent on modelling, the hair strands are

grouped into wisps, and the values of the parameters are set for each wisp.

2.2.3.2 Placing Strands of Hair on a Head Model

Techniques are required to place explicitly modelled strands of hair onto a model of a head, and

researchers have used several different methods to do this.

Control Hairs

Daldegan et al. [1993] present a technique that places strands of hair onto a head model by first

creating a number of characteristic strands of hair (called control hairs) on the triangular patches

representing the scalp of the head model. The control hairs (or key hairs) define a hairstyle, and

at most, one control hair is placed on each triangular patch. The rest of the hair strands are then

added to the head model by duplicating the control hairs on each patch. The duplicated hairs

have the same initial shape, length and orientation as the control hair, and are randomly placed in

the same triangular patch as the control hair. The number of hairs duplicated is user defined.

Like Daldegan et al., Lao et al. [2002] and Iones et al. [2000] present techniques that use control

hairs to define the shape of hair strands in different areas on the head model, and automatically

create more strands of hair using the control hairs and interpolation techQLTXHV�� ,RQHV� HW�DO�¶V�

technique allows strands of hair to be created on both NURBS and polygonal surfaces.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 23

Subdividing Triangles

Thalmann et al. [1996] developed a technique that places hair strands onto a surface by placing a

strand of hair onto each vertex of the triangles that make up the surface. The triangles are then

subdivided into four smaller triangles and strands of hair are placed onto the vertices of the new

triangles. The control points of the new hair strands are interpolated from the control points of

KDLU�VWUDQGV�SODFHG�RQ�WKH�YHUWLFHV�RI�WKH�WZR�RULJLQDO�WULDQJOHV�VXUURXQGLQJ�WKH�QHZ�KDLU�VWUDQG¶V�

vertex. The process of subdividing triangles and placing strands of hair onto vertices is repeated

until enough strands of hair have been created for the required density (see Figure 2.4).

Figure 2.4: Placing strands of hair onto a surface.

Other Techniques

Lee et al. [2002] developed a hair modelling system that places strands of hair onto a head model

using a growth map determined by the density of hair required. The growth map is placed onto a

user-defined area of the head model, where the user would like hair to be placed. Van Gelder and

Wilhelms [1997] use a technique that determines the number of hair strands placed onto a

surface according to the viewing distance, and Heinen and Walter [2001] uniformly distribute a

user-defined number of hairs over the surface.

Anjyo et al. [1992] propose a technique that considers collision detection. To make the collision

detection and placement of strands of hair onto a surface of a head model faster, the head model

is approximated by an ellipsoidal hull.

Hair strand interpolated

from the four other hair

strands

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 24

2.2.3.3 Explicit Model Summary

The explicit hair models are brute-force methods that model the geometry of each individual

strand of hair. Modelling hair using an explicit method is extremely tedious and may be

expensive in terms of computation time and memory usage. To decrease the modelling and

computation time, key hairs are often used. The explicit hair models are suitable for modelling

long and short hair, but are not appropriate for modelling braids of hair. Therefore, an explicit

model would be useful for modelling straight African hair, but would not be useful for modelling

braids and twists in African hair.

2.2.4 Cluster Models

Cluster (or wisp) hair models make use of the observation that strands of hair tend to form

clumps in nature (especially when the hair is wet or oily). Strands of hair are modelled in groups

or clumps called clusters. The methods explicitly model the shape of each cluster and then

implicitly add details of individual strands of hair by procedurally rendering strands of hair

(using volume rendering techniques), or by applying hair textures to the surfaces defining the

cluster. The clusters are usually added to the head model using similar methods as those used to

add explicitly modelled strands of hair. For example, Wang and Yang [2001] and Chen et al.

[1999] define a hairstyle with a number of characteristic clusters (similar to control hairs), and

then automatically create and place other clusters onto the head model using the characteristic

clusters. Kim and Neumann [2002] use a different method, however. A parametric (Catmull-

Rom spline) patch is wrapped over the head model where hair should be placed, and clusters are

distributed over the patch rather than the head model. Their technique reduces the hair placement

problem to a 2D problem rather than a 3D problem.

Cluster models reduce the number of hair strands that need to be modelled (making it easier to

model hair), but are often not able to reproduce the variations needed between strands of hair in a

cluster. The models are therefore useful for modelling characteristics such as braids, but are not

useful for modelling curly hairstyles where the shapes of adjacent hair strands vary greatly [Kim

and Neumann 2002]. The cluster models developed can be categorized into two groups: those

that create or render individual strands of hair in a cluster using some sort of distribution, and

those that apply textures to the surfaces making up each cluster to create the effect of many

strands of hair. Several cluster models in each group are discussed below.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 25

V1

V1

V2

V2 P

P

V1

V2

P .

2D Distribution Map

Continuous

Trigonal Prism

2.2.4.1 Clusters with Individual Strands of Hair

Most hair cluster methods model the shape of each cluster explicitly, and then add the details of

individual strands of hair by implicitly modelling the individual strands of hair during rendering.

Several methods that fall into this category of cluster models are discussed below.

Trigonal Prisms

Chen et al. [1999] model hair in clusters of between 1 and 255 strands of hair. Each cluster is

created using a continuous trigonal prism defined by three B-spline curves. To create individual

strands of hair, a 2D distribution map is assigned to each cluster. The 2D distribution map is a

2D array that defines the distribution of strands of hair on a cross section of the trigonal prism.

The position of a section of each strand of hair is determined by mapping 2D points from the

distribution map into 3D space using two pairs of vectors determined by the edges of two

triangles (see Figure 2.5). Because the 2D distribution map may define points that are outside the

cross section of the trigonal prism, the shape of the cluster is not necessarily triangular. By

changing the shape and density of the points in the 2D distribution map, or by linking the

calculated points that make up the strands of hair in different ways (e.g. with straight lines or

sine curves), a variety of hair types can be created using the same cluster structure (i.e. using the

same B-spline curves or continuous trigonal prisms).

Figure 2.5: Calculating a section of a strand of hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 26

The model is able to create hairstyles that contain artificial objects, such as hair bands, by

placing restrictions on the clusters, or by requiring the clusters to pass through certain regions in

3D space. Chen et al. [1999] mention that a braid of hair can be created with three hair clusters,

but they do not provide details on how to implement a braid. A method for creating a braid with

three groups of hair can be found in a paper by Lee et al. [2002], who model hair explicitly, but

control the individual strands of hair in clusters.

Generalized Cylinders

Wang and Yang [2001] and Xu and Yang [2001] developed an interactive hair designing system

based on an extended cluster hair model that represents each cluster as a generalized cylinder

rather than a continuous trigonal prism. A distribution map is used to define the positions of

individual strands of hair at cross sections of the generalized cylinder. The individual strands of

hair are never explicitly modelled. Instead, they are procedurally created during rendering using

volume rendering techniques [Xu and Yang 2001].

Kim and Neumann [2002] developed a multi-resolution hair modelling system, which also uses

generalized cylinders to define the boundaries of hair clusters. Using their system, each cluster

can be subdivided into smaller clusters for more detail (down to a single strand of hair). The

individual strands of hair are assigned to generalized cylinders based on their position on the

head model. Each strand of hair is represented by a polyline.

Linked Mass-Points

Plante et al. [2001] model hair in clusters created with mass points linked by damped springs.

Each cluster is defined by a curve, and is created by linking a number of cross sections of the

cluster along the curve. Each cross section is defined by four mass points (see Figure 2.6).

Figure 2.6: A cluster.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 27

To create the individual strands of hair in each cluster a set of 2D points are generated according

to a given distribution and mapped onto each cross section of the cluster. Corresponding points

in the cross sections are then linked to form Catmull-Rom curves representing strands of hair. To

create a more natural appearance of hair, jittering is applied to the points defining the individual

strands of hair.

Thin Shell Volumes

Kim and Neumann [2000] propose a method for adding the detail of combed hair strands to

hairstyles modelled with surfaces, defined parametrically (e.g. by NURBS) or with polygons.

The details of hair strands are added by constructing a thin shell volume containing strands of

hair onto each surface. The thin shell volume is created by displacing the surface in the direction

of its normals. To create the individual strands of hair in each volume, sets of particle positions

are defined and distributed according to the desired combing effect. Each set of particle positions

is then connected to form a curve, which represents a strand of hair.

2.2.4.2 Textured Clusters

Instead of rendering individual strands of hair in a cluster, it is possible to create the illusion of

strands of hair by applying textures to the geometry of each cluster. Hair modelled using a

textured cluster method is usually less accurately represented than hair modelled using other

PHWKRGV�� DQG� WKH� KDLU¶V� YROXPH� LV� QRW� VLPXODWHG�� +RZHYHU�� WKH� PHWKRG� GRHV� QRW� UHTXLUH� DQ�

expensive volumetric rendering technique, and therefore has a higher rendering performance

than other methods. Consequently, the method is often used to model hair for real-time

applications.

Textured Strips

Koh and Huang [2001] model hair in clusters using 2D strips, represented by NURBS surfaces.

To create the illusion of individual strands of hair, texture maps are applied to each strip. We

examine the application of the texture maps in more detail in Section 2.3.4.3. Ward et al. [2003]

DQG�*XDQJ� DQG�=KL\RQJ� >����@� PRGHO� KDLU� LQ�VWULSV�EDVHG�RQ�.RK�DQG�+XDQJ¶V� WH[WXUHG-strip

method.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 28

Textured Generalized Cylinders

Ward et al. [2003] model clusters of hair as strips when the hair is viewed from a distance or

when fine details cannot be seen. When the hair is viewed more closely, the clusters are

represented with generalized cylinders rather than strips.

2.2.4.3 Cluster Model Summary

The cluster hair models make use of the observation that strands of hair tend to form clusters in

nature. The methods explicitly model the shapes of clusters of hair, and then implicitly add

details of individual strands of hair by rendering them procedurally, or by applying hair textures

to the surfaces defining each cluster. Since the strands of hair are modelled in clusters, the time

spent on modelling a hairstyle is decreased, but variations between strands of hair in a cluster are

not usually reproduced. A cluster technique would be useful for modelling braids and twists in

African hair, but it would not be useful for modelling natural curly African hair where the shapes

of adjacent hair strands vary greatly.

2.2.5 Interactive Hair Modelling Systems

Creating 3D hairstyles is a time-consuming process and requires a skilled artist [Chen et al.

1999]. There are an infinite number of human hairstyles that can be produced, and the previous

sections in this chapter show that many hair-modelling techniques have been developed to model

different types of hairstyles. However, only a few researchers present interactive systems based

on their techniques that allow artists to design desired hairstyles with ease.

An advantage of explicit and cluster models is that the user has control over the shape of each

individual strand of hair or cluster. However, in order to model the shape of a strand of hair or

cluster explicitly, design tools are needed. Most interactive hair modelling systems are therefore

designed to provide an interface for explicit or cluster hair modelling techniques. Interactive hair

modelling systems are discussed below.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Modelling 29

2.2.5.1 Systems with Standard 2D Input Devices

Most interactive hair modelling systems allow a user to design a hairstyle by creating, editing

and previewing a representation of the 3D hairstyle on a computer screen. The hairstyle can

usually be viewed from a perspective and/or three orthogonal viewpoints. Functions are provided

by the system to import a head model; create, edit and arrange representations of hair (such as

curves or generalized cylinders) on the head model; and to specify rendering properties, such as

the position of a light source. These functions are usually activated and controlled using an input

device with two degrees of freedom, such as a mouse. To create and edit the hairstyle, the

functions include operations such as selection, translation, rotation, scaling, copying and pasting

parts of the hair.

Interactive Systems for Explicit Models

Interactive systems that implement explicit hair models include a system by Watanabe and

Suenaga [1992] and HairStyler by Daldegan et al. [1993].

:DWDQDEH� DQG�6XHQDJD¶V�V\VWHP� >����@�DOORZV� D� XVHU� WR�FUHDWH�D�KDLUVW\OH�ZLWK�WULJRQDO�SULVPV��

The user is able to define values for 12 parameters (which represent hair characteristics such as

length, thickness, density and colour). Unfortunately, the same parameter values are used for

every strand of hair, and individual strands of hair cannot be edited separately.

HairStyler allows a user to define a hairstyle interactively using a few control hairs. To create a

full head of hair, a user-defined number of hairs are created by the system using the control hairs.

Initially these strands of hair have the same shape, length and orientation as the control hairs.

However, the user is able to edit individual strands of hair at a later stage [Daldegan et al. 1993].

Interactive Systems for Cluster Models

Interactive systems that implement cluster hair models include a system by Kim and Neumann

[2002], HET (Hairstyle Editing Tool) by Chen et al. [1999], and V-HairStudio developed by Xu

and Yang [2001] and improved by Wang and Yang [2001].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 30

.LP�DQG�1HXPDQQ¶V� V\VWHP�>����@� DOORZV�XVHUV� WR�PRGHO� D� KDLUVW\OH�LQWHUDFWLYHO\�ZLWK�FOXVWHUV�

represented by generalized cylinders. A user is interactively able to subdivide a cluster, at any

level, into smaller clusters for more detail.

In HET [Chen et al. 1999] hair is modelled in clusters represented by continuous trigonal prisms.

The system is able to combine an image of a face with a hairstyle stored in a database, allowing

complicated hairstyles to be reused.

Xu and Yang [2001] developed V-HairStudio based on a cluster model that represents clusters of

hair with generalized cylinders. Wang and Yang [2001] extend the system so that clusters can be

controlled, created and edited in groups of many clusters.

2.2.5.2 Systems with Specialized Input Devices

Lee et al. [2002] present an interactive hair modelling system that is based on an explicit model.

The system creates strands of hair based on a distribution map placed on a user-defined area of a

head model. A user is able to edit individual strands of hair interactively using styling operations,

which change the lengths, positions and curvatures of the hair strands. However, unlike most

interactive hair modelling systems that use a standard input device with two degrees of freedom,

/HH�HW� DO�¶V�V\VWHP�XVHV�D�VSHFLDO�KDUGZDUH�URWRU�SODWIRUP�DQG��'�WUDFNHUV��$FFRUGLQJ� WR�/HH�HW�

al. their system decreases the amount of time required by a user to create and edit a hairstyle

because a user is able edit the hair using both their hands, imitating a real hair styling process.

2.3 Hair Rendering

2.3.1 Introduction

Hair rendering involves lighting and shading hair, and is responsible for anti-aliasing techniques.

Due to the large number of hair strands, their thin geometric shape, and the complex lighting

effects that occur among the strands of hair, hair rendering is challenging and computationally

expensive. In this section we discuss different techniques that have been developed to render

hair.

The rendering techniques used depend on the method employed to model the hair. The easiest

way to render hair would be to model each individual strand of hair as a curved cylinder, and

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 31

then render the cylinders using conventional rendering techniques. However, the large number,

complex shape and narrow width of hair strands have caused researchers to model hair either

implicitly, with cluster techniques, or explicitly as 2D polylines or splines.

Hair that has been modelled implicitly is usually ray traced [Kajiya and Kay 1989; Perlin and

Hoffert 1989]. However, Hadap and Magnenat-Thalmann [2000] render implicitly modelled

strands of hair as explicit polylines, and Lengyel [2000] applies conventional texture-mapping

techniques to concentric shells to produce the effect of hair. The results of ray-traced hair are

often very realistic, but computation and memory costs are high [Papaioannou 2002]. Hair that is

modelled with a cluster technique is usually rendered as explicit polylines or produced using a

texturing technique (conventional texture mapping or a volumetric method). A variety of

techniques can be used to render hair that has been modelled explicitly.

Different illumination models and shadowing techniques developed for rendering hair are

discussed below, as well as texturing and anti-aliasing techniques.

2.3.2 Illumination Models

2.3.2.1 Introduction

Explicitly rendering each individual strand of hair as a cylinder is impractical due to the number

and size of the hair strands. An illumination model is therefore needed that is able to reproduce

the optical properties of hair. Two important optical properties that affect the appearance of hair

are anisotropic highlights (caused by the geometry and orientation of individual strands of hair)

and haloing under backlighting conditions, which is prominent in light-coloured hair (due to the

hair being partially transparent) [LeBlanc et al. 1991].

2.3.2.2 .DML\D�DQG�.D\¶V�$QLVRWURSLF�/LJKWLQJ�0RGHO

Probably the most well-known illumination model used for rendering hair, which has been used

by several researchers [Ward et al. 2003; Kim and Neumann 2002; Iones et al. 2000; Kong and

Nakajima 1999; Daldegan et al. 1993; LeBlanc et al. 1991@�� LV� .DML\D� DQG� .D\¶V� DQLVRWURSLF�

lighting model [Kajiya and Kay 1989]. The lighting model calculates the illumination for a thin

cylinder, or segment of a single strand of hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 32

Figure 2.7 shows a thin cylinder and the important vectors and angles used in the illumination

model to calculate the light intensity at a point p. T is the tangent vector that represents the

direction of the hair, L is the light vector that points towards the light source, V is the eye vector

that points towards the viewer, R is the reflection vector that points in the direction of reflected

light, and
�
 and � are the angles between T and L, and T and V respectively. All the vectors are

normalized [LeBlanc et al. 1991].

Figure 2.7: .DML\D�DQG�.D\¶V�LOOXPLQDWLRQ�PRGHO��

The diffuse component, � diffuse, is obtained by integrating LambHUW¶V� &RVLQH� /DZ� DORQJ� WKH�

circumference of the half of the cylinder visible from (and illuminated by) the light source:

� diffuse = Kdsin(
�
)

where Kd is the diffuse reflectance coefficient. Since the calculation is independent of the eye

vector V, self-shadowing is not considered and the hairs are fully lit even when the viewer and

the light sources are on opposite sides of the hair. However, since most hair is partially

translucent, the model provides an acceptable approximation of the diffuse component. The area

in shadow is assumed to transmit a similar amount of light through the hair towards the viewer as

that reflected from the illuminated side [LeBlanc et al. 1991].

The specular component, � specular, is obtained using a Phong light reflection model modified for

a thin cylindrical surface. Because the cylinder representing a strand of hair is so thin (usually a

L T

V

�

R

� p x�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 33

polyline), the surface normals at each point along the cylinder point in all directions

perpendicular to the tangent vector, causing light to be reflected in all directions around the

cylinder. The reflection vector is therefore a cone around the cylinder (see Figure 2.7). The angle

(� +
�
 í� �) between the eye vector V and the specular reflection vector R (the part of the cone

closest to V) is used as the angle in a standard Phong equation to obtain the modified Phong

equation for the specular component:

� specular = Ks cos
n
(� +

�
 í� �)

where Ks is the specular reflection coefficient and n is the Phong exponent specifying the

sharpness of the highlight [Kajiya and Kay 1989].

Using the diffuse and specular components, together with an ambient component, the light

intensity, � hair, of a point p on a hair strand can be calculated using the equation:

� hair(p) = LaKa + ��Li (� diffuse(p) + � specular(p))

where La and Li are the light intensities of the ambient light and each light source i respectively,

and Ka is the ambient reflection coefficient (or ambient component) [LeBlanc et al. 1991].

AltKRXJK� .DML\D� DQG� .D\¶V� PRGHO� LV� D� ZHOO-known illumination model that considers the

anisotropic property of hair and produces reasonable results, it does not implement the effect of

backlighting (i.e. haloing), which is prominent in light-coloured hair.

2.3.2.3 Adding Backlighting

<DQJ� DQG� 2XK\RXQJ� >����@� H[WHQG� .DML\D� DQG� .D\¶V� PRGHO� E\� DGGLQJ� D� EDFNOLJKWLQJ� HIIHFW��

Using density maps, the backlighting effect is calculated by computing the intensity of the light

passing through overlapped hairs. The extended illumination model is represented by the

equation:

� hair(p) = LaKa + ��Li (� diffuse(p) + � specular(p)) + ����íDi) Li f(�)

where Di is a value obtained from the density map and (1íDi) represents the fraction of the ith

OLJKW¶V� LQWHQVLW\� UHDFKLQJ� WKH� YLHZHU�� 7KH function f(�) is an ad hoc function that specifies

whether or not backlighting should take place depending on the angle � between the light vector

L and the eye vector V. When L and V are on opposite sides of the hair backlighting takes place

and f(�) has a value of 1. When no backlighting occurs f(�) has a value of 0 [Yang and

Ouhyoung 1997].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 34

Watanabe and Suenaga [1992] also implement a backlighting effect, using a double z-buffer to

compute the thickness of the hair at each pixel. Pixels with low values, representing thin areas of

hair, are given higher intensity values. The illumination model they use is not given.

2.3.2.4 &RQVLGHULQJ�/LJKW�5HIOHFWLRQ�DQG�7UDQVPLVVLRQ��*ROGPDQ¶V�,OOXPLQDWLRQ�0RGHO�

2QH�RI�WKH�ZHDNQHVVHV�RI�.DML\D�DQG�.D\¶V�PRGHO�LV�WKDW�LW�GRes not consider the direction of the

viewer, and hairs are fully lit even when the light source is behind the hair. Instead of adding a

EDFNOLJKWLQJ�HIIHFW�OLNH�<DQJ�DQG�2XK\RXQJ��*ROGPDQ�>����@�PRGLILHV�.DML\D�DQG�.D\¶V�PRGHO�

so that both light reflection and light transmission are considered by taking into account the

direction of the viewer and the translucency of the hair. An attenuation factor is introduced into

.DML\D� DQG� .D\¶V� OLJKW� LQWHQVLW\� HTXDWLRQ� WR� DGMXVW� WKH� UHODWLYH� WUDQVPLVVLRQ� DQG� UHIOHFWLRn of

light. The modified illumination model is represented by the equation:

� hair(p) = LaKa + ��Li fdir (� diffuse(p) + � specular(p))

where fdir is the directional attenuation factor, and represents the reflection and transmission

properties of the hair [Goldman 1997].

The directional attenuation factor fdir is calculated using:

fdir = ((1+ �)/2)� reflect + ((1í �)/2)� transmit

where � transmit and � reflect vary in the range [0, 1] and represent the amounts of forward and

backward scattering, and � represents the relative directionality of L, V and T.

The cosine of the angle between the vectors (TxL) and (TxV), represented by � , is calculated

using:

� = ((TxL�����TxV)) / (|TxL||TxV|).

When L and V are on the same side of the hair there is front lighting, and � > 0. When L and V lie

on opposite sides of the hair there is back lighting, and � < 0 [Goldman 1997].

The values of � reflect and � transmit should be similar for light-coloured hair, while � reflect should have

a much large value than � transmit when the colour of the hair is dark. When � reflect and � transm it are

both 1 there is no�GLIIHUHQFH�EHWZHHQ�*ROGPDQ¶V�PRGHO�DQG�.DML\D�DQG�.D\¶V�PRGHO�>*ROGPDQ�

����@�� 5HVHDUFKHUV� ZKR� XVH� *ROGPDQ¶V� LOOXPLQDWLRQ� PRGHO� LQFOXGH� *UDEOL� HW� DO�� >����@� DQG�

Chang et al. [2002].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 35

2.3.2.5 Simplifying the Specular Component

Anjyo et al. [1992] introduce an anisotropic lighting model that produces reasonable results for

dark-coloured, glossy hair. Like Kajiya and Kay their lighting model calculates the illumination

for a thin cylinder, or segment of a single strand of hair, which is usually represented by a line

segment in a polyline. Since the illumination model is developed for dark, glossy hair, Anjyo et

al. ignore the diffuse component.

The specular component, � specular��EDVHG�RQ�%OLQQ¶V�VSHFXODU�PRGHO� >%OLQQ�����@��LV�D�VLPSOLILHG�

computation of the speculaU� WHUP�LQ�.DML\D�DQG�.D\¶V�PRGHO��%OLQQ¶V�VSHFXODU�PRGHO�FDOFXODWHV�

the specular component � specular at a point p on a surface by:

� specular(p) = Ks (N�H)
n

where Ks is the specular reflection coefficient, N is the surface normal at p, H is the halfway

vector between L and V, and n is an exponent specifying the sharpness of the highlight. Since p

lies on the surface of a very thin cylinder when illuminating hair, the surface normal at p lies in

all directions perpendicular to the tangent vector T. Anjyo et al. take the normal N to be the

normal on the plane spanned by the vectors H and T (see Figure 2.8).

Figure 2.8: $QM\R�HW�DO�¶V�LOOXPLQDWLRQ�PRGHO�

L T

V

N

H
�

 p x�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 36

Therefore:

N�H = cos � �= (1 í��T�H)
2
)

1/2

and the specular component at p is defined as:

� specular(p) = Ks{1 í��T�H)
2
}

n/2
 [Anjyo et al. 1992].

The light intensity, � hair, of a point p on a hair strand is calculated using the equation:

� hair(p) = LaKa + ��Li (� specular(p))

where La, Li and Ka are defined as before and � specular(p) is calculated using the equation above

[Anjyo et al. 1992].

2.3.2.6 Adding an Excess Brightness Exponent

Due to the anisotropic property of hair, the surface normal at each point on a hair strand points in

many directions, causing an increased and more uniform intensity of light over the surface.

%DQNV� >����@�PRGLILHV�.DML\D�DQG�.D\¶V�PRGHO�E\�DGGLQJ� DQ�H[FHVV�EULJKWQHVV�H[SRQHQW��k, to

the diffuse component, � diffuse, in order to compensate for the average increase in light intensity

on objects such as hair:

� diffuse = Kd sink(
�
)

2.3.2.7 Using Texture Maps and Hardware-Assisted Lighting

/HQJ\HO� >����@�DQG�/HQJ\HO�HW�DO��>����@�XVH�DQ�LOOXPLQDWLRQ�PRGHO� WKDW�FRQWDLQV�%DQN¶V�GLIIXVH�

component with an excess brightQHVV� H[SRQHQW� DQG� $QM\R� HW� DO�¶V� VLPSOLILHG� VSHFXODU�

component. Since Lengyel and Lengyel et al. model hair with concentric textured layers, the

values of the tangent vector T are stored in a texture map, and the light and halfway vectors, L

and H, are assigned to a hardware texture matrix. At runtime a lookup table is used to compute

the light intensity at each point:

� hair(u, v) = Ka + Kd (1 í�u2)k /2 + Ks (1 í�v2)n/2

where u = T�L and v = T�H [Lengyel et al. 2001]. Because L and H are encoded using a texture

matrix, the technique only works when the viewer and light directions are the same for each

point.

Lengyel [2000] presents a second illumination technique that is able to illuminate hair with

different viewer directions. The technique uses standard hardware-assisted lighting. However,

since a thin cylinder represents a strand of hair, and the surface normals at each point along the

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 37

cylinder point in many directions, a new normal is calculated at each point and passed to the

graphics hardware to be used as the normal in the standard hardware illumination model.

To calculate the new normal at a point p, the light vector L and halfway vector H are projected

onto the plane perpendicular to the tangent vector T at that point (see Figure 2.9):

NL = L í��T�L)T

NH = H í��T�H)T, where H = (L+V)/2

Ideally, the vector NL (projection of L) should be used as the normal when calculating the diffuse

component, and the vector NH (projection of H) should be used as the normal when calculating

the specular component. However, the standard hardware illumination model can only take one

normal. To solve the problem Lengyel calculates a new normal as a weighted combination of NL

and NH��WRJHWKHU�ZLWK�WKH�XQGHUO\LQJ�PHVK¶V�QRUPDO�NM:

N = BLNL + BHNH + BMNM

where BL + BH + BM = 1 [Lengyel 2000].

Figure 2.9: Obtaining normals.

2.3.2.8 Considering Secondary Scattering of Light

The latest research by Marschner et al. [2003] shows that taking secondary scattering of light

into consideration enables more realistic results to be obtained. Marschner et al. examine and

measure the scattering of light from strands of human hair. They describe a hair stranG� DV�³D�

WUDQVSDUHQW�HOOLSWLFDO�F\OLQGHU�ZLWK�DQ�DEVRUELQJ�LQWHULRU�DQG�D�VXUIDFH�FRYHUHG�ZLWK�WLOWHG�VFDOHV´��

Their research shows that due to internal reflection and the tilt of the scales, a multiple specular

T

L

NL

H

NH

V

 p x�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 38

highlight occurs and there is variation in scDWWHULQJ�ZLWK� URWDWLRQ� DERXW� WKH� KDLU� VWUDQG¶V� D[LV��

Using the results from their experiments they present a new shading model that models the

PXOWLSOH� VSHFXODU� KLJKOLJKW� DQG� DSSUR[LPDWHV� WKH� HIIHFW� FDXVHG� E\� WKH� KDLU� VWUDQG¶V� URXJK��

elliptical surface. Their model considers not only surface reflection and refractive transmission,

but also internal reflection.

2.3.3 Shadowing

2.3.3.1 Introduction

Shadowing is an important factor when rendering realistic hair. Strands of hair cast shadows onto

the head and each other. The importance of self-shadowing (hair casting shadows onto hair) can

be seen in Figure 2.10 (an image created by Lokovic and Veach [2000]), which shows hair

rendered with and without self-shadowing. Unfortunately, adding shadows to hair is difficult and

computationally expensive due to the large number of hair strands.

Figure 2.10: Hair rendered with and without self-shadowing.

2.3.3.2 Ray Tracing

Ray tracing is a useful technique for generating accurate shadows. Since implicitly modelled hair

is usually ray traced, shadows are often generated using ray tracing for implicitly modelled hair.

Unfortunately, due to the large number of hair strands, ray tracing hair is expensive in terms of

rendering time [LeBlanc et al. 1991], and therefore is often avoided, especially when hair is

modelled explicitly or in clusters.

2.3.3.3 Traditional Shadow Maps

Shadow maps are more efficient for producing shadows than ray tracing. Traditional shadow

maps store the depth values of the closest points from the point of view of each light source.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 39

WKHQ�WKH�VFHQH�LV�UHQGHUHG��VKDGRZV�DUH�DGGHG�E\�FKHFNLQJ�HDFK�SRLQW¶V�GHSWK�DJDLQVW�WKH�GHSWK�

in the shadow map to see if it is in shadow [Ahokas 2002]. A disadvantage of traditional shadow

maps is that aliasing occurs when creating and sampling shadow maps for very small or semi-

transparent objects, such as hair. Small objects cause the depth values to change frequently and

transparent objects produce partial shadows, which shadow maps cannot handle [Kim and

Neumann 2001].

LeBlanc et al. [1991], however, use shadow maps, together with pixel blending, to generate

shadows for hair. They explain that stochastic sampling can be used to reduce aliasing when

shadow maps are created, and they use percentage closer filtering to reduce aliasing when

sampling the shadow maps.

Figure 2.11: Percentage closer filtering.

Figure 2.11 [Ahokas 2002] shows the difference between percentage closer filtering (bottom)

and ordinary filtering (top). To determine whether a point is in shadow its depth (z value), in this

case 22, is compared to a region of several pixels in the shadow map. When ordinary filtering is

XVHG� WKH� YDOXHV� LQ� WKH� VKDGRZ�PDS� DUH� ILOWHUHG�� DQG� WKH� SRLQW¶V�GHSWK� LV� FRPSDUHG� WR�D�VLQJOH�

value, resulting in a binary value of 1 (the point is in shadow) or 0 (the point is not in shadow, as

in this case). Because the result is a binary value, and each point is either fully in shadow or not,

aliasing may occur. Using percentage closer filtering, the depth of the point is first compared to

each value in the shadow map, resulting in a set of binary values. The binary values are then

filtered to obtain a grey-scale value, in this case 0.44. The grey-scale value specifies the degree

of shadow for the point, and solves the aliasing problem [LeBlanc et al. 1991].

10 9 8

8 48 50

50 51 49

10 9 8

8 48 50

50 51 49

Filter

Filter Compare

Compare 31.4

 1 1 1

 1 0 0

 0 0 0

< 22 ?

< 22 ?

0

0.44

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 40

LeBlanc et al. render the scene without hair and the hair separately in order to pixel blend the

hair. Shadow maps are created separately for the scene and the hair, and are then combined to

create a single composite shadow map for each light source. First the scene is rendered without

hair using the composite shadow maps. Hair is then rendered with the composite shadow maps

and blended with the scene [LeBlanc et al. 1991].

$XWKRUV�ZKR� XVH�/H%ODQF� HW�DO�¶V�VKDGRZLQJ�PHWKRG� LQFOXGH�,RQHV�HW� DO�� >����@�DQG�<DQJ�DQG�

Ouhyoung [1997].

2.3.3.4 Deep Shadow Maps

Lokovic and Veach [2000] enhance traditional shadow maps by developing deep shadow maps.

Instead of storing a single depth value for each pixel in an image, deep shadow maps store a

function that represents the visibility at all possible depths for each pixel in the image. This

function, called the visibility function, records how the intensity of the light decreases as it

passes through the pixel to each depth (see Figure 2.12).

Figure 2.12: The visibility function for a pixel.

Deep shadow maps are able to generate shadows for partially transparent and volumetric objects.

They also have smaller storage requirements (due to the use of compression) and are faster to

access (due to pre-filtering) than traditional shadow maps when high-quality shadows are

desired. They also support mip-mapping, which reduces lookup costs when different scales are

used.

However, deep shadow maps are more expensive to compute than traditional shadow maps of

the same pixel resolution because they require many more samples to be taken for each pixel

[Lokovic and Veach 2000].

Pixel

Light

Source

1

0 z
Depth

Light Intensity

(Visibility)

Surface or Object

in the Scene

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 41

/RNRYLF�DQG�9HDFK¶V�GHHS�VKDGRZ�PHWKRG�ZDV�XVHG�WR�UHQGHU�6XOO\¶V�KDLU�IRU�WKH�ILOP�Monsters,

Inc. [Robertson 2001].

2.3.3.5 Opacity Shadow Maps

Kim and Neumann [2001] generate shadows using a faster approximation of deep shadow maps,

which they call opacity shadow maps [Kim and Neumann 2001]. Instead of storing a visibility

function for each pixel, opacity shadow maps approximate the decrease in light intensity for each

pixel using a set of opacity maps.

Each opacity map stores the opacity of the pixels at a certain depth, and can be seen as the

RSDFLW\�PDS�IRU� D� VOLFH�RI� WKH�YROXPH�EHLQJ�UHQGHUHG�SHUSHQGLFXODU� WR�WKH� OLJKW¶V�GLUHFWLRQ��VHH�

Figure 2.13). The opacity values in adjacent opacity maps are then sampled and interpolated to

obtain an approximation of the decrease in light intensity [Kim and Neumann 2001].

Figure 2.13: Obtaining a set of opacity maps.

:DUG�HW�DO��>����@�XVH�.LP�DQG�1HXPDQQ¶V�RSDFLW\�VKDGRZ�PDS�WHFKQLTXH�WR�VKDGRZ�hair.

2.3.3.6 Other Shadowing Methods

Chen et al. [1999] add shadowing to hair using a variation of the traditional shadow map method,

which they call the shadow mask method. Instead of storing depth information (the z value) of

the closest points in a shadow map, Chen et al. store the x, y, and z coordinates. A radius is added

to the points in the shadow map so that each point represents a sphere in 3D space. To determine

if a point is in shadow, its z-value is compared to a range of values in the shadow mask.

Light

Source

1 2 3 4 5

 1 2 3 4 5

Surface or Object

in the Scene

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 42

Kong and Nakajima [2000; 1999] developed a shadowing technique that uses an opacity buffer

constructed from a visible volume buffer to determine shadowing. The volume containing the

hair strands is broken up into a number of cubical cells3. An opacity buffer is then constructed

which stores the light intensity, or amount of shadow, in each cell. To calculate the values in the

opacity buffer, a visible volume buffer is constructed that stores values representing the density

of hair strands in each cubical cell. Since shadowing is calculated for cubical cells rather than at

every point, the method is not as accurate as other shadowing methods, such as the shadow map

methods [Kong and Nakajima 1999]. Kong and Nakajima [2000] believe that the colour of each

hair strand should be distinguishable from the colours of adjacent hair strands. To implement the

property they calculate the intensity of each hair strand by multiplying the intensity of the cubic

cell it is contained in by a factor randomly selected from a range of values.

2.3.3.7 Shadowing Layers

Several researchers model hair with layers. Lengyel [2000], Lengyel et al. [2001], and

Papaioannou [2002] model hair with textured shells, while Kim and Neumann [2000] model hair

in thin shell volumes. To add the effect of hair self-shadowing, these researchers assume that

inner hairs closer to the head are more likely to be in shadow than outer hairs.

Lengyel [2000] and Lengyel et al. [2001] implement the effect of self-shadowing by making the

surface colour of the lower layers closer to the head darker than that of the higher layers.

Papaioannou [2002] improves their shadowing method for relatively flat layers by rendering the

layers in multiple passes. In the first pass, colour and opacity maps are added to each layer. The

opacity maps define the distribution and thickness of the hair strands (see Section 2.3.4.4). Then,

in subsequent passes the current surface colour of the layer is multiplied with the opacity of the

layers above it. However, before the opacity of each layer above is added to the current layer, the

layers above are shifted according to the angle of incident light and the distance between the

layer and the current layer. Papaioannou also describes a method for approximating self-

shadowing by applying noise to the uniform areas of the texture maps to differentiate the

individual hairs and create the effect of self-shadowing.

To add the effect of self-shadowing, Kim and Neumann [2000] calculate the amount of shadow

in a layer using the amount of shadow in the layer above. For each cell in a layer, the amount of

3
 The number and size of the cells is determined by the amount of memory available and the accuracy of the

shadows required.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 43

shadow is calculated by adding the amount of shadow in the cell above it to a value that

represents the density of the hair in that cell. The value representing the density of hair is

proportional to the number of particles in the cell (opacity of the cell) multiplied with a constant

representing the thickness of each hair strand.

2.3.4 Texturing

2.3.4.1 Introduction

In addition to illumination and shadowing, texturing may be used to increase the realism of

objects in a rendered scene [Watt 1989]. Texturing creates the appearance of surface detail by

varying the properties of the surface from point to point [Ebert et al. 1994] when it is not

possible, or practical, to model the surface detail explicitly with polygons or other geometric

primitives [Foley et al. 1990]. In order to create the appearance of surface detail (i.e. add a

texture to a surface) an image, called a texture map, is mapped onto the surface. The process is

called texture mapping, and the image may be a photograph or created by an artist. Alternatively,

the texture applied to the surface may be created procedurally [Foley et al. 1990]. A single

texture map can be mapped onto the surface, or a smaller texture map may be repeatedly mapped

(or tiled) onto the surface [Neyret and Cani 1999]. The subject of texturing is large and there are

many methods available for creating and adding textures to a surface. A full assessment of the

different texturing techniques available with their advantages and disadvantages is beyond the

scope of this project.

Since textures create the effect of detail without the detail having to be modelled explicitly,

texturing seems an appropriate method for creating the effect of a large number of hairs on a

surface. It is simple to use and requires relatively little rendering time when compared to explicit

hair modelling techniques. However, it does not reproduce the complex geometry, shading or

dynamics of hair [Kim and Neumann 2000], and therefore does not produce results that are as

realistic as those produced by other methods. In this section we discuss techniques that have

been developed to create hair or fur textures, and we look at work where researchers have used

texturing to help create the appearance of hair or fur.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 44

2.3.4.2 Creating Hair or Fur Textures

.KRXDV�HW�DO�� >����@�SUHVHQW�D�PHWKRG� IRU�FUHDWLQJ�IXU� WH[WXUHV��7KHLU�PHWKRG� LV�EDVHG�RQ�³WKH�

PRGHOOLQJ�RI� WKH�DXWRFRUUHODWLRQ�IXQFWLRQ�RI�IXUOLNH�WH[WXUH�DQG�D��'�$XWR5HJUHVVLYH�V\QWKHVLV�´�

The method is able to create textures of fur with different lengths and orientations.

Mao et al. [2000] present a technique to generate hair texture on 3D models of heads. Given a

head model, together with a vector field defining the directions of the hair strands, their

technique creates a hair texture procedurally on the head model using the Line Integral

Convolution algorithm. To help a user define and modify a vector field they provide a sketch-

based interface.

The Line Integral Convolution algorithm is a flow (or vector field) visualization technique that

creates a texture by blurring an image of white noise in the direction of a given vector field. The

images produced by line integral convolution contain similarities to photographs of hair. From a

distance long fibres in the direction of the vector field can be seen in a line integral convolution

image, similar to the strands of hair that can be seen flowing in a certain direction in a

photograph of hair. However, when viewed close up, a line integral convolution image contains

randomly varying pixel intensities due to the original image being white noise, and a photograph

of hair also contains randomly varying pixel intensities due to the complex interaction of light

and shadow that occurs between the strands of hair. Due to this similarity, Mao et al. use the line

integral convolution algorithm to produce a texture of hair, and suggest that the complex shading

calculations that are used to generate realistic hair can be avoided [Mao et al. 2000].

Since the hair texture is generated procedurally at runtime, the texture does not need to be stored

or mapped onto the head model. However, it does require a set of vectors representing the

direction of hair strands at different points on the head model. The hair textures produced by the

technique give the appearance of hair, however, the quality of the hair produced is not very high.

The boundary between the hair and skin causes the appearance of hair on the head model to be

unrealistic, and the volumetric nature of hair is not captured [Mao et al. 2000].

2.3.4.3 Textured Strips

Textures are used to create the effect of hair, and to avoid explicitly modelling each individual

strand of hair. Unfortunately, applying a texture of hair to a head model does not usually produce

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 45

very realistic results, even if the hair texture resembles real hair (see the discussion on Mao et

DO�¶V�ZRUN�LQ�WKH�VHFWLRQ�DERYH���2QH�UHDVRQ�IRU�WKH�XQUHDOLVWLF�UHVXOWV�LV�WKDW�WKH�RYHUDOO�VKDSH�RI�

the hairstyle is not reproduced. Koh and Huang [2001] (see Section 2.2.4.2) use hair textures to

create the appearance of clusters of hair strands, so that each individual strand of hair does not

need to be modelled, allowing the method to be used to create the appearance of hair in real-time

applications. However, instead of applying a hair texture directly to the head model, Koh and

Huang [2001] apply hair textures (and alpha maps) to 2D strips or NURBS surfaces that are

placed on the head model to create a hairstyle. Several other authors use the method to create

hair [Ward et al. 2003; Guang and Zhiyong 2002], and a number of tutorials explaining how to

implement the method in various 3D graphics applications using different 2D imaging programs

can be found on the web [Lind 2003; Moelzer 2003; Comet 2000; Silas 2000].

 A B C D E

Figure 2.14: Modelling and rendering hair using textured strips.

Figure 2.14 illustrates the method. A hairstyle is defined on a 3D head model by positioning a

number of 2D strips (in layers) on the head model (A). The 2D strips may have different shapes

and sizes [Koh and Huang 2001] and are usually modelled with parametric surfaces (NURBS)

because they are easier to work with [Moelzer 2003], but can also be modelled with polygons.

Each strip represents a group of hair strands. To create the effect of groups of hair strands when

the strips are rendered, texture maps are applied to each strip. Usually two different texture maps

are applied to each strip. The first texture map is an image of a hair texture (or colour map) that

defines the colour of the hair strands represented by the strip (B). The second texture map is an

alpha map, also known as an opacity map, that defines transparency on areas of the strip, and

creates the illusion of complex geometry and individual strands of hair (C) [Koh and Huang

2001]. Together the textures create the effect of hair (D). The hair texture and alpha map used to

create the diagrams in Figure 2.14 are shown in Figure 2.15. Hair texture maps and alpha maps

can be created in a 2D imaging program.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 46

The alpha map can also be used to modify the specularity across the strips [Comet 2000], and as

a bump map [Moelzer 2003] to enhance the illusion of individual strands of hair.

Figure 2.15: Texture maps.

Sometimes there may be gaps between the strips of hair, causing parts of the scalp underneath

the hair to be seen (see the top of the head in diagram D of Figure 2.14 for an example). To fix

the problem, Lind [2003] and Comet [2000] paint (or place) a cap onto the top of the head under

the hair. The cap is painted (or textured) a dark colour and makes the gaps in the hair less

noticeable (see diagram E in Figure 2.14).

The method renders hair faster than other methods that model hair explicitly or with volumetric

WHFKQLTXHV��+RZHYHU��WKH�KDLU¶V�YROXPH�LV�QRW�FDSWXUed by the method [Koh and Huang 2001].

2.3.4.4 Texturing Concentric Layers

Other authors that use textures to create the effect of hair include Lengyel [2000], Lengyel et al.

[2001] and Papaioannou [2002]. These authors present techniques to model short hair using

concentric shells, which were mentioned in Section 2.2.2.1. To create the effect of hair, texture

maps are applied to concentric layers, called shells. However, the texture maps are not images of

hair strands, such as those mentioned in the two previous sections, and they do not create the

appearance of hair on their own. Instead the texture maps represent slices of 3D space occupied

by strands of hair, and when they are applied to a set of layers they create the effect of hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 47

The texture maps can be created in a number of ways. Lengyel [2000] and Lengyel et al. [2001]

create the texture maps as four-channel (RGBA) images. One image is mapped onto each layer.

A set of RGBA images for the layers is created by filtering 3D hair strands into a texel array.

The hair strands are created using a particle system and are represented by centrelines with a

radius. To filter the hair strands into the texel array, and thus obtain a colour and opacity for each

WH[HO��D� WDOO�*DXVVLDQ�ILOWHU� LV�XVHG��(DFK� KDLU�VWUDQG¶s centreline is sampled at a high resolution

(supersampled) and a weighted contribution is added to each texel [Lengyel 2000].

Lengyel [2000] maps a single texture over the entire surface of each layer. Lengyel et al. [2001]

improve the method by repeatedly pasting a smaller texture over each layer, thus reducing the

amount of texture memory needed and allowing surfaces with an arbitrary shape to be textured

HDVLO\�� �/HQJ\HO�HW� DO�¶V� WH[WXUHV�KDYH� D� WRURLGDO� V\PPHWU\�VR� WKDW� WKH\�FDQ� EH� WLOHG���/HQJ\HO�HW�

al. [2001] also place textured fins perpendicular to the surface to improve the appearance of the

fur near silhouettes. The fin textures are created using the same method that was used for the

layer textures. However, the volume containing the 3D hair strands is sampled in a different

direction. Alternatively, an artist could also create the textures manually [Lengyel et al. 2001].

 A B

 C D

Figure 2.16: Texturing concentric layers.

Figure 2.17: Texture maps.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 48

Papaioannou [2002] adds two texture maps to each layer. The first, and most important texture

map is an opacity (or alpha) map that defines the opacity across a layer, and consequently

determines the distribution and thickness of the hair strands. Papaioannou creates the opacity

maps by blurring a greyscale image of noise. High intensities in the image represent areas where

there is a hair strand. To alter the thickness of the hair strands so that they thin out as they move

away from the scalp, Papaioannou creates different opacity maps for the different layers by

thresholding the image of noise at different values. The second texture map is a colour map that

specifies the colour of the hair strands. Usually, the same colour map is used for each layer, but

different colour maps may be applied to the different layers to vary the colour of each hair strand

[Papaioannou 2002]. Figure 2.16 illustrates the use of the two texture maps to create the effect of

fur. In diagram A, six concentric layers are created to represent fur. Diagram B shows the effect

produced when an opacity map is applied to each layer and diagram C shows the effect produced

when a colour map is applied to each layer. When both texture maps are applied to the layers the

effect of fur is created, as can be seen in diagram D. Figure 2.17 shows the opacity and colour

maps used.

2.3.4.5 Examples in Films

Examples of films where texturing is used to create the appearance of hair include Toy Story and

Interview with the Vampire. In Toy Story��'DUZ\Q�3HDFK\�XVHV�D�SURFHGXUDO� WH[WXUH�RQ�³VROLG�

SLHFHV´� WR� create the effect of curly hair for the baby, Molly; and Eliot Smryl uses painted

textures on layers of geometry or cylinders to create the effect of straight hair for characters such

as Sid, the neighbourhood bully [Computer Graphics World 1995]. In Interview with the

Vampire, Kevin Mack and other artists at Digital Domain apply texture maps to modelled hair

for the vampire Claudia, whose hair changes from straight to curly in a transformation scene.

The texture maps are created in Amazon 3D Paint using paLQWLQJV�DQG�³SLHFHV�RI�WKH� OLYH-action

SODWHV´�[Robertson 1995].

2.3.5 Anti-aliasing

2.3.5.1 Introduction

Aliasing refers to unwanted artefacts, or image flaws, that occur due to inadequate sampling

[Ebert et al. 1994]. Rendered hair often suffers from aliasing, as several thin strands of hair

contribute to the shading of each pixel. The left diagram in Figure 2.18 shows an example of a

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 49

common aliasing artefact. In the diagram the curves are jagged instead of smooth. Several anti-

aliasing methods exist to remove or reduce aliasing artefacts. The most common and widely

used method is supersampling. Other methods include prefiltering (area sampling) and stochastic

sampling [Watt 1989]. The diagram on the right in Figure 2.18 shows the curves with anti-

aliasing applied.

Figure 2.18: Aliasing and anti-aliasing.

In this section we examine the anti-aliasing methods that are used by researchers when rendering

hair. Normally one of two anti-aliasing techniques is used when rendering hair that has been

modelled explicitly, or in clusters where each individual strand of hair is explicitly rendered. The

two techniques, namely supersampling and pixel blending, are discussed below. To reduce

aliasing in hair that is modelled implicitly or in clusters using 2D or 3D textures, a technique

known as mip-mapping is applied. We discuss mip-mapping below, as well as a technique called

distance-based culling, which reduces the number of hair strands rendered as the distance

between the viewer and the hair increases.

When rendering hair, several researchers rely on graphics hardware for anti-aliasing. For

example Ward et al. [2003] use NVIDIA GeForce hardware for multi-sampling and Anjyo et al.

[1992] used a VGX graphics board for supersampling. Other researchers, such as Watanabe and

Suenaga [1992] who present a trigonal prism method to explicitly model hair, do not consider

anti-aliasing at all, while some researchers do not need to consider anti-aliasing as the hair

simulation method they use avoids aliasing. For example, Perlin and Hoffert [1989] model hair

LPSOLFLWO\�XVLQJ�K\SHUWH[WXUH��EXW�PDQXDOO\�DGMXVW�WKH�K\SHUWH[WXUH�³WR�EH�IUHTXHQF\�FODPSHG´�VR�

that an anti-aliasing technique is not needed.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 50

2.3.5.2 Supersampling

A common, anti-aliasing technique used by several researchers to render hair is supersampling,

also known as oversampling or postfiltering. Supersampling involves sampling at a higher

resolution than the display resolution. Instead of taking one sample for each pixel, a number of

samples are taken and then combined (filtered), usually by averaging [Foley et al. 1990]. The

number of samples taken and the shape of the filter used may differ between different

supersampling methods [Watt 1989]. Since a number of strands of hair may contribute to each

pixel, many samples need to be taken for each pixel (there should be at least as many samples

taken for each pixel as the number of hair strands that contribute to each pixel [Neyret 1998]).

Supersampling can be computationally expensive when many samples are taken for each pixel,

and it has high memory requirements when the samples have to be stored before they are filtered

[Watt 1989].

Researchers who use supersampling when rendering hair include Lee et al. [2002], Yu [2001],

Bredow [2000], Kim and Neumann [2000], Kong and Nakajima [2000], and Rankin and Hall

[1996].

2.3.5.3 Pixel Blending

Since a large number of samples are often needed to effectively render hair with supersampling

(making supersampling computationally expensive), LeBlanc et al. [1991] propose another

technique for anti-aliasing hair, known as pixel blending. The technique is based on an anti-

alising method known as box filtering (or unweighted area sampling). To render an anti-aliased

image, each pixel is considered as a square box (see Figure 2.19), and the intensity of each pixel

is computed by blending the intensities of the hair strands and non-hair objects that lie inside the

square box.

Using normal box filtering the intensity I of each pixel is calculated using the equation:

I = PBB��� PjHj

where B is the intensity of the background (hairless image), PB is the portion of the square box

not covered by hair, Hj is the intensity of the j
th
 hair strand in the box (calculated using an

illumination model), and Pj is the portion of the square box covered by the jth hair strand.

Unfortunately, due to strands of hair overlapping, finding the precise value of Pj is extremely

expensive [LeBlanc et al. 1991].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Hair Rendering 51

Figure 2.19: Pixels considered as square boxes.

LeBlanc et al. [1991] simplify the filtering so that it is less expensive by assuminJ�WKDW�³WKH�KDLU�

LQWHQVLW\� LQIRUPDWLRQ�LV�GLVWULEXWHG�HYHQO\´� LQ�WKH�VTXDUH�ER[��7KH�LQWHQVLW\�RI�HDFK�SL[HO�LV�WKHQ�

calculated by blending the intensities of the hair strands in proportion to the area of the square

box they cover. Initially the intensity of the pixel is set to the value of the background (hairless

image). The intensities of the hair strands are then blended into the pixel in reverse depth order,

so that the intensity of the pixel In after blending in the intensity of the n
th
 hair strand Hn is:

In = (1 í�Pn)Iní� + PnHn

where Pn is the proportion of the square box the n th hair strand covers, and I0 equals the intensity

of the background [LeBlanc et al. 1991].

An advantage of the pixel-blending technique is that it can be implemented easily using the alpha

channel in existing frame-buffer architectures. The proportion of the square box that each hair

VWUDQG�FRYHUV�LV�VWRUHG�LQ�WKH�DOSKD�FKDQQHO��DQG�XVHG�WR�EOHQG�WKH�KDLU�VWUDQG¶V�LQWHQVLW\�ZLWK�WKH�

current intensity of the pixel [LeBlanc et al. 1991].

6HYHUDO� UHVHDUFKHUV� XVH� /H%ODQF� HW� DO�¶V� SL[HO-blending technique to render hair [Chen et al.

1999; Yang and Ouhyoung 1997; Thalmann et al. 1996]. Iones et al. [2000] use a subpixel Z-

buffer to render hair, which removes aliasing in a similar maQQHU� WR� /H%ODQF� HW� DO�¶V� SL[HO-

blending technique. Kim and Neumann [2002] render anti-aliased strands of hair using a

technique similar to pixel blending in which segments of polylines representing strands of hair

are ordered using a visibility ordering algorithm and then blended using alpha values.

Pixel

Square box

Overlapping

strands of hair

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Summary 52

2.3.5.4 Mip-Mapping

Texture maps applied to surfaces in a scene are prone to aliasing artefacts when the resolution of

the texture is not well matched to the display resolution (a pixel in the rendered image represents

many pixels in the texture image, or a pixel in the texture image is represented by many pixels in

the rendered image) [Ebert et al. 1994]. To reduce aliasing artefacts in textures (especially when

the distance between the viewer and the textured surface changes), a technique known as mip-

mapping is applied. Using mip-mapping, multiple resolutions of the texture are pre-computed by

filtering the original texture. The pre-computed texture with a well-matched resolution to the

display resolution is then chosen and used during rendering to produce an anti-aliased texture

[Neyret 1998].

Researchers who use mip-mapping to render anti-aliased hair include Lengyel et al. [2001] and

Lengyel [2000], who create the effect of hair using concentric textured layers. Neyret [1998;

����@�H[WHQGV�.DML\D� DQG�.D\¶V��'� WH[WXUH��WH[HO��PRGHO� �VHH�6HFWLRQ�����������ZKLFK�LV�DEOH� WR�

create the illusion of fur, by developing a technique based on mip-mapping that is able to obtain

multi-scale representations of a texel.

2.3.5.5 Distance-Based Culling

Unfortunately, when applying an anti-aliasing technique, blurring may appear in the image as a

result of filtering [Watt 1989]. Van Gelder and Wilhelms [1997] find that strands of fur tend to

become a smooth surface (as a result of blurring) when viewed from a distance. To solve the

problem they automatically adjust the number of fur strands rendered, depending on the distance

of the fur from the viewer, using a technique known as distance-based culling.

2.4 Summary

In this chapter we discuss techniques that have been developed to simulate hair, focusing on hair

modelling and rendering techniques. We find that many techniques have been developed and

some impressive results have been produced, which can be seen in several applications including

film production. Commercial hair simulation tools are becoming more widely available to artists,

and several researchers have developed interactive systems with user interfaces for their

techniques. However, there is no one superior technique, and most techniques work well only in

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RELATED WORK Summary 53

certain situations. We do not find any techniques that are developed specifically for African hair

or hairstyles.

The hair modelling techniques can be divided into three categories: those that model hair

implicitly, those that model hair explicitly, and those that use a combination of implicit and

explicit techniques to model hair as clusters. The hair rendering techniques discussed include

illumination models, shadowing techniques, anti-aliasing methods and texturing.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

3 MODELLING AFRICAN HAIR

Techniques for simulating African hair are required so that African hairstyles can be added to

virtual humans. The aim of this thesis is to present hair modelling and rendering techniques that

will assist a user in creating a variety of African hairstyles with ease. We identify three forms of

hair commonly found in African hairstyles and develop techniques to model and render these

different forms of hair: natural curly hair, straightened hair, and braids or twists of hair. We leave

it up to the user of our techniques to create a hairstyle. This gives the user the flexibility to create

the exact hairstyle they want, and allows a variety of different hairstyles to be produced with the

same technique.

This chapter considers our development or enhancement of hair modelling techniques in order to

model the different forms of African hair. Each technique presented provides the user with a way

of placing hair onto a head model and of representing the shape and geometric properties of the

form of hair being modelled. The techniques are also able to overcome the problem of modelling

the large number of hair strands required.

3.1 Natural Curly Hair

Natural African hair is short and curly, and many African people keep their hair in hairstyles

consisting of the short, curly form of hair. Figure 3.1 shows examples of African hairstyles with

the natural curly hair. In order for a user to create the types of hairstyles shown in Figure 3.1, we

need to develop a hair model that is able to produce the characteristic of short, curly hair

effectively.

Figure 3.1: Examples of African hairstyles with natural curly hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Natural Curly Hair 55

The review of hair modelling techniques in Section 2.3 indicates that there are many different

techniques available, and that the techniques can be categorized as implicit, explicit or cluster

models depending on the way they represent hair. We choose to use an implicit hair modelling

technique to model the natural, curly form of African hair. An implicit hair modelling technique

seems the most appropriate technique to use for two reasons. Firstly, the hair is very curly.

Modelling straight hair explicitly or in clusters is expensive due to the large number of polygons

or line segments required. Curly hair requires many more polygons or segments than straighter

hair, making the explicit and cluster models even more expensive. Secondly, a hairstyle

comprised of natural curly hair tends to appear as a layer of hair over the scalp. The layer of hair

has a constant thickness and pattern, analogous to a layer of fur, and since fur is successfully

modelled using implicit hair modelling techniques (see Section 2.2.2), an implicit model seems

appropriate for modelling short, curly African hair.

3.1.1 Concentric Textured Layers

2XU� LPSOLFLW�PRGHO� LV�EDVHG�RQ�/HQJ\HO¶V�concentric shell method [Lengyel 2000] (see Section

2.2.2.1), which creates the illusion of fur. Our model represents hair with concentric textured

layers that can be thought of as slices of 3D texture. The layers are created parallel to the scalp

one above another. In order to create the effect of hair, an opacity map is applied to each layer.

The opacity map controls the opacity across the layer and defines what part of the layer

represents hair and what part does not. Opaque areas on the textured layer represent slices of hair

strands, while transparent areas represent spaces in between the hair strands. Consequently, the

opacity maps control the characteristics of the hair being modelled. Texture maps are also

applied to the layers to control the illumination of the hair. When many layers are placed close to

one another they produce the effect of hair. The approach of applying opacity maps to layers is

illustrated in Figure 3.2. To generate the pre-processed opacity maps we use a different method

to Lengyel [2000] (see Section 5.4.1). However, both methods produce equivalent results. Figure

3.3 shows straight hair and curly hair represented by textured layers.

Figure 3.2: The result of an opacity map applied to concentric layers.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Natural Curly Hair 56

Figure 3.3: Hair represented by textured layers.

3.1.2 Placing Layers on a Head Model

One of the requirements for our proposed hair models is to provide the user with a method for

placing hair onto a model of a head. We therefore need a way of placing the textured layers that

represent short curly African hair onto the scalp of a head model.

We first need to ascertain the region on the head model where the user would like hair to be

placed. The user defines the region by selecting the polygons on the head model on which they

would like hair to be placed (we assume the model of the head is a polygonal structure). We then

create layers on which textures can be placed, above the selected polygons. The number of layers

and their height are obtained from the user, allowing the user to control certain properties of the

hair. This allows a user to create different hairstyles consisting of natural curly hair using the

same modelling technique.

7KH�OD\HUV�DUH�FUHDWHG�E\�GLVSODFLQJ�FRSLHV�RI� WKH�VHOHFWHG�SRO\JRQV¶�YHUWLFHV� LQ�WKH�GLUHFWLRQ�RI�

their normal. The displaced vertices are then connected in the same manner as the vertices of the

selected polygons on the head model, and each new polygon is given texture coordinates that are

the same as the texture coordinates of the selected polygon below it. More precisely, for each

vertex i on layer k

Vi
k
 = Vi

0
 + (k * h / n) * Ni

0

where Vi
0
 is the vertex position of the vertex on the head model, Ni

0
 is the vertex normal and h

and n are the height and number of layers defined by the user (see Figure 3.4) [Lengyel 2000].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Natural Curly Hair 57

Figure 3.4: Placing layers over selected polygons.

3.1.3 Using Opacity Maps to Define Hair

Once layers of geometry have been created in order to place hair on a head model, opacity maps

must be applied to the layers in order to define the characteristics of the hair. These opacity maps

are able to define the shape and thickness of the strands of hair, as well as specify the distribution

of hair on the head model (see Figure 3.5). Since the geometry of each individual strand of hair

is not explicitly modelled and an opacity map is able to control the distribution and number of

hairs placed on the head, the problem of a large number of hair strands is not an issue in this

case.

Figure 3.5: Using opacity maps to define the shape, thickness and distribution of hair strands.

To produce the opacity maps we generate random curly splines in 3D space, and then take slices

of the 3D space at specific heights. The number of slices and the height at which each slice is

taken depends on the number and height of the layers used. Each slice is then used as an opacity

map. The regions where splines exist are shown as white areas on the opacity map, and represent

hair, while regions where no splines exist are represented with black. At the same time we

Vi
3

Vi
2

Vi
0

Vi
1

Ni
0

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Straight Hair 58

generate tangent maps, which are used in our illumination model (see Sections 5.2.4 and 5.4.1).

Our method differs from that of Papaionnou [2002] who creates opacity maps from greyscale

LPDJHV� RI� QRLVH� �UDQGRP� LQWHQVLW\� YDOXHV��� 3DSDLRQQRX¶V�PHWKRG� LV� QRW� DEOH� WR�SURGXFH� FXUO\�

hair. Lengyel [2000] creates the opacity maps by growing hair with a particle system. His

method is able to produce curly hair, and could have been used instead of our spline method, as

could any other equivalent approach.

3.2 Straight Hair

African people often straighten their naturally curly hair using a process called relaxing. Figure

3.6 shows examples of African hairstyles with hair that has been straightened. The literature

review in Chapter 2 shows that implicit hair modelling techniques are not appropriate for

modelling long hair, and cluster methods are better at modelling hairstyles where hair is grouped

into clusters rather than smooth hairstyles. We therefore choose to model straight hair in African

hairstyles explicitly. However, the literature review also shows that an explicit method may be

computationally expensive and modelling hair may be tedious. Computing power is increasing,

and techniques such as the use of key hairs can be used to decrease the amount of time spent on

hair modelling. We investigate the effectiveness of the explicit model for modelling smooth

hairstyles containing straight hair.

Figure 3.6: Examples of African hairstyles with straight (relaxed) hair.

3.2.1 Using Curves to Define a Hairstyle

The problem of a large number of hair strands is accentuated when each individual strand of hair

has to be modelled. It is therefore important that we find a way of overcoming this problem if an

explicit model is to be used to model straightened African hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Straight Hair 59

We overcome the problem by using control hairs to define a hairstyle. Our approach is similar to

that taken by Daldegan et al. [1993] in their interactive hair modelling system, called HairStyler

(see Section 2.2.3.2). A number of control hairs are placed on the head model. These control

hairs are used to describe a hairstyle, and to define the shape and geometric properties of hair

strands in their area on the head model. Since we would like a user to be able to use our hair

model to define a variety of hairstyles, the control hairs are represented by curves, which are

easy to bend and modify, and which are a close representation of strands of hair in reality. To

create a full head of hair more curves are automatically defined and placed on the head model

using the shape and geometric properties of the control hairs (also called control curves) to

define the properties of the new curves (see Figure 3.7). By using a few control hairs that define

a hairstyle, many strands of hair can be modelled automatically. This reduces the amount of time

a user has to spend on modelling a hairstyle, and allows us to overcome the problem of

modelling a large number of hair strands.

Figure 3.7: Automatically creating curves using a control curve.

3.2.2 Placing Curves on a Head Model

To fulfil the requirements of our hair model a way of placing the curves that represent strands of

straight hair onto a model of a head is required. This section describes the techniques we use to

place control curves onto a head model and to generate additional curves that are required,

automatically.

As with our implicit model, we assume that the head model is a polygonal structure, and we ask

the user to select the polygons on the head model where they would like hair to be placed. Our

method for automatically placing strands of hair onto a head model (discussed later in this

section) requires the selected polygons on the head model to have the same number of sides.

Since a polygon with any number of sides can be converted into a number of triangles, and

triangles always lie in a single plane, we convert all selected polygons that have more than three

sides to triangles. Once a region on the head model where the user would like hair to be placed is

defined, and the region is made up of triangles, control hairs can be placed onto the region.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Straight Hair 60

To place control hairs onto a selected region of the head model we place a single curve (that

represents a control hair) in the centre of each triangle that makes up the region. Since the scalp

on a head is not flat, more than one polygon is needed to model the top of a head. However, the

scalp does not contain complex geometric detail, and therefore does not require a very large

number of polygons to model it. The selected region therefore consists of approximately between

10 and 40 polygons (converted into triangles), which is appropriate for the number of control

curves needed. The polygons are also usually of similar size, so the control curves are

approximately evenly spaced over the selected region. The curves placed on the head model need

an initial direction. We place each curve in the direction of the normal of the triangle on which it

is placed. The length of the curve and the number of control points that constitute the curve are

obtained from the user. Excluding the end points, at least one control point is needed in order to

bend the curve. Increasing the number of control points provides greater control over the bends

in the curve, but increases the amount of work needed to model a hairstyle. We allow the user to

decide how many control points are needed per curve.

Once control curves have been added to the head model, the user may bend and modify the

curves in order to create a desired hairstyle. A technique is needed to create a full head of hair

once the user is satisfied with the hairstyle defined by the control curves. The technique should

generate curves and place them onto the head model automatically. To model the curves

automatically, we make a number of copies of each control curve. The copies are placed on the

head model by placing them randomly on the same triangle as the original control curve from

which they were copied. They are also placed in the same direction as the original control curve.

The number of copies of each control curve is obtained from the user. By changing the number

of copies, a user is able to define the density of the hair in the hairstyle.

3.2.3 Representing a Strand of Hair

Curves are a close representation of strands of hair in reality, and are therefore useful for

modelling hair. However, it is not always possible to render them (depending on the application

being used). We therefore use curves to help a user define a hairstyle, but convert them to

alternative geometry before rendering.

Originally we considered representing each strand of hair as a generalized cylinder. A

generalized cylinder is an approximation of a curved cylinder and is a more accurate

representation of a strand of hair than a chain of straight segments. However, a generalized

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Braids and Twists of Hair 61

cylinder requires an extremely large number of very small polygons in order to represent a strand

of hair accurately. The number and size of the polygons required to represent hair using

generalized cylinders is impractical, and so an alternative representation is needed.

7KH�UHVXOWV�RI�9DQ�*HOGHU�DQG�:LOKHOPV¶�>����@�UHVHDUFK�VKRZ that polylines (a chain of straight

segments that approximate a curve) are an appropriate method for representing hair effectively

and efficiently. Although they do not provide the most accurate representation of a strand of hair,

they provide a reasonable appearance at an acceptable rendering rate. We therefore provide a

technique for converting each curve that represents a strand of hair into a polyline.

3.3 Braids and Twists of Hair

Many common African hairstyles contain hair that has been styled into the form of a braid or

twist. Figure 3.8 shows two African hairstyles. The first hairstyle contains a braid of hair and the

second hairstyle contains twists of hair.

Figure 3.8: African hairstyles with hair in the form of a braid and twists.

We develop a cluster hair modelling technique to model hair in the form of braids and twists.

Cluster models model clumps of hair rather than each individual strand of hair (see Section

2.2.4). The average scalp contains between 100,000 and 150,000 strands of hair [LeBlanc et al.

1991]. These strands of hair are usually styled into approximately 20 to 30 braids or twists in an

African hairstyle (see Figure 3.9). By using a cluster model, only the shape of the wisps of hair

that form braids and twists are modelled, rather than each individual strand of hair. This reduces

the complexity and time required to model braids and twists of hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Braids and Twists of Hair 62

3.3.1 Using Curves to Define Braids and Twists in a Hairstyle

Our cluster model uses generalized cylinders to model the wisps of hair that make up a braid or

twist of hair. Since only a small number of braids or twists are commonly found in an African

hairstyle, and a wisp of hair is much thicker than an individual strand of hair, it is possible to

represent each wisp of hair in a braid or twist with a generalized cylinder. Curves are placed onto

a head model to define the braids or twists in a hairstyle. Curves are easy to bend and modify,

and a single curve is able to specify the overall shape of a braid or twist of hair. These curves are

then converted into a number of curves where each curve defines a wisp of hair in a braid or

twist. Our model allows a user to specify several characteristics of the braid or twist, such as the

number of wisps of hair that constitute it. The new curves are then converted to generalized

cylinders and texture maps are applied to the generalized cylinders to create the effect of a

cluster of individual strands of hair. The user does not have to worry about the path of each

cluster, or how a braid or twist is made. Many strands of hair are modelled automatically. This

reduces the amount of time a user has to spend on modelling a hairstyle, and allows us to

overcome the problem of modelling a large number of hair strands.

3.3.2 Placing Curves on a Head Model

A variety of different hairstyles can be created with braids and twists. We divide the different

hairstyles into two groups in order to place curves that represent the braids or twists effectively

on a head model. The first group consists of braids that protrude from the scalp (see the first two

hairstyles in Figure 3.9). In order to place curves on the head model that represent braids or

twists from these hairstyles, we use the same method as the control curve method for straight

hair discussed in Section 3.2.2. The user is able to bend the curves in order to define the shape of

each braid or twist, and if more curves are needed they can be modelled automatically using the

control curves. The curves are initially placed perpendicular to the scalp (in the direction of the

scalp�SRO\JRQV¶�QRUPDOV���6LQFH�WKH�EUDLGV�DQG�WZLVWV�LQ�WKLV�JURXS�RI�KDLUVW\OHV�WHQG�WR�SURWUXGH�

from the scalp, the method of initially placing the control curves perpendicular to the scalp

works.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Braids and Twists of Hair 63

Figure 3.9: Braided (twisted) hair in a variety of styles.

The second group of hairstyles are commonly called cornrow hairstyles and they contain braids

that lie parallel to the scalp (see the last two hairstyles in Figure 3.9). For these hairstyles, using

the control curve method in Section 3.2.2 is not an effective way of placing curves on a head

model. The braids lie parallel to the scalp, making it hard for the user who has to bend the curves

so that they do not appear to be protruding from the scalp. Also, the braids tend to start at the

front of the head and end at the back of the head. Therefore, the starting points of each braid are

not evenly distributed around the head, so placing a single curve in each triangle that makes up

the selected region of the scalp is not an appropriate way of placing the curves on the head

model. We therefore use a different method of placing curves on a head for the cornrow

hairstyles. Since the hairstyles do not usually consist of a large number of braids, and therefore a

large number of curves are not required, we manually place curves across the scalp.

3.3.3 Creating Braids and Twists with Generalized Cylinders

Once curves have been placed on the head model, and the user has bent them so that they

represent the overall shapes of individual braids or twists of hair, the curves need to be converted

into a user-defined number of curves, where each curve represents a wisp of hair in the braid or

twist.

3.3.3.1 Braids and Twists

We define the shape of a curve in a twist by the parametric equation:

x = r cos (
�
)

y = r sin (
�
)

z = N
�

where
�
 is an angle,

�
 �����DQG�r, k � R, r ����

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Braids and Twists of Hair 64

Figure 3.10: Cross section of a twist.

The z-axis represents the curve that is being converted into a twist. Figure 3.10 shows a cross

section of a twist (the viewer is looking along the z-axis). As the angle
�
 increases, the curve

twists around the z-axis (or original curve defining the twist of hair), and at the same time moves

along the z-axis, as shown in Figure 3.11.

Figure 3.11: The shape of a curve in a twist along the z-axis.

7KH� ³VSHHG´� DW�ZKLFK� WKH� FXUYH� PRYHV� DORQJ� WKH� z-axis determines the amount of twist in the

curve. In other words the smaller the increase along the z-axis with respect to the increase in
�
,

the more times the curve twists around the z-axis, and the larger the increase along the z-axis

with respect to the increase in
�
, the less twist the curve has. This is controlled by k. Smaller

values of k will result in more twist than larger values of k. The radius r determines the thickness

of the twist the curve creates. Figure 3.12 shows examples of a curve twisting around another

curve from different angles.

Figure 3.12: A curve in a twist viewed from different angles.

x

 y

0

r

�
� ����� ��� �����

 z

�
� ��

�
 = 0

�
� �� �

 r

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Braids and Twists of Hair 65

The curve is twisted around the z-axis, which represents the original curve defining the twist of

hair. However, the z-axis represents a straight line, and a curve defining the twist of hair is

unlikely to be a straight line. In order to solve the problem we calculate each point along the

twisting curve using a reference frame that consists of three perpendicular vectors. The reference

frame represents the x-, y-, and z-axes, and is positioned in 3D space so that the vector

representing the z-axis lies in the direction of the tangent of the original curve at each point. We

discuss reference frames in more detail in the next section when we look at generalized

cylinders.

To create a twist of hair a few wisps of hair are usually twisted together. We represent each wisp

of hair as a twisting curve. Each curve has the same radius r and is defined by the same

parametric equation. However, we add an offset to the angle
�
 for each curve, so that the curves

twist at different positions along the original curve. Figure 3.13 shows four examples of a twist.

The value of
�
 differs for each of the three curves maNLQJ�XS�WKH�WZLVW�E\����� ����� ���DQG�� ���

radians (or 0Û����Û����Û�DQG����Û��LQ�HDFK�H[DPSOH�UHVSHFWLYHO\�

Figure 3.13: 'LIIHUHQW�VWDUWLQJ�YDOXHV�RI�

�
�IRU�HDFK�FXUYH�

In order for different twists to be created according to the needs of the user, we obtain the

number of twisting curves making up the twist from the user. The radius, amount of twist, and

difference in the starting angle between curves are also obtained from the user.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Braids and Twists of Hair 66

The same method is used to define a braid of hair rather than a twist of hair. However, we use a

different parametric equation to define the shape of the curves. The shape of each curve is

defined by the parametric equation:

x = r cos (
�
)

y = r sin (2
�
) / f

z = N
�

where
�
 is an angle,

�
 �����DQG�f, r, k � R, r ����DQG�f ����

Figure 3.14: Cross section of a braid.

Figure 3.14 shows a cross section of a curve in a braid (viewed along the z-axis), and Figure 3.15

shows a curve in a braid twisting around the z-axis.

Figure 3.15: The shape of a curve in a braid along the z-axis.

We introduce the constant f into the parametric equation for a braid so that a user is able to

control the flatness of the braid. A value between 1.0 and 3.0 for f gives the best results. Figure

3.16 shows examples of a braid with the value of f set to 1.0, 2.0 and 3.0 respectively.

Figure 3.16: Different flatness.

0

x

 y

r

�
� ����� ��� �����

 z

�
� ��

�
 = 0

�
� �� �

 r

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Braids and Twists of Hair 67

3.3.3.2 Generalized Cylinders

Each curve that defines a wisp of hair in a braid or twist is converted into a generalized cylinder

on which textures are placed to create the effect of a cluster of hair strands.

A generalized cylinder is a cylinder produced by placing cross sections of the cylinder along a

3D curve (see Figure 3.17) [Bloomenthal 1990]. We use a circular cross section, however

another shape such as an ellipse could also be used.

Figure 3.17: Cross sections of a cylinder placed along a curve.

To align the cross sections correctly, so that they are perpendicular to the curve, we use reference

frames. A reference frame consists of three perpendicular vectors and a point, and is used to

define position and orientation. Our reference frame at a point p on the curve consists of a vector

T, representing the tangent of the curve at p, a normal N, and a binormal B (see Figure 3.18). The

vectors N and B lie on the same plane as the cross section, perpendicular to the curve.

Figure 3.18: A reference frame.

We use a reference frame similar to the Frenet frame [PlanetMath 2003]. Given a space curve:

p� � �t)

where t is the parametric position of a point p on the space curve, the vectors T, N and B making

up the Frenet frame at point p are calculated as:

 T = V/|V|, where V� ����� �t)

 N = K/|K|, where K = T

 B = T x N [PlanetMath 2003].

T

 p
N

B

x�

 d

dt
 d

dt

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Braids and Twists of Hair 68

We use a different method to calculate the vectors, assuming it is not always possible to obtain

the equation for the curve. The reference frames are calculated only at known points along the

FXUYH��WKH�FXUYH¶V�FRQWURO�SRLQWV�DQG�RWKHU�FDOFXODWHG points (see Section 4.2.7.1)). The tangent

vector T is obtained by normalising the calculated tangent, CT, at point p:

T = CT/|CT|, where CT = p (i + 1) í�p(i í���

p(i + 1) and p(i í��� are the closest known points on the curve before and after point p. The vectors N

and B are calculated by rotating the frame defined by OT, ON, and OB, where:

OT = (0.0, 1.0, 0.0)

ON = (1.0, 0.0, 0.0)

OB = (0.0, 0.0, 1.0)

so that OT is in the same direction as T. The angle � , between T and OT, is defined by:

� = cos
í�

 ((T . OT)/(|T| |OT|))

N and B are computed by rotating ON and OB by the same angle � , about the axis:

(T x OT)/(|T| |OT|)

The new directions of ON and OB define the vectors N and B (see Figure 3.19).

Figure 3.19: Calculating a reference frame.

Figure 3.20: A generalized cylinder with and without twisting.

B

N

T

OT

ON

OB

�

x�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Braids and Twists of Hair 69

x�x�

x�

x�x�

x�T

 N

B

N

B

x�x�

x�x�

x� x�
r �

c

 p
x�

x�

Unfortunately, calculating reference frames using either of the methods above for each control

point along the curve causes a twisting problem (see Figure 3.20). To solve the problem, rotation

minimizing frames can be used. An initial reference frame is defined at the beginning of the

curve and then propagated along the curve using small local rotations [Bloomenthal 1990]. We

use our method above to calculate the reference frame for the first control point on the curve,

after which we use the reference frame generation method by Ken Sloan, discussed by

Bloomenthal [1990]. Instead of using the vectors OT, ON, and OB to calculate each frame, the

binormal vector B0 from the previous frame is used. We calculate the tangent vector T. The

vectors N and B are then calculated using the equations below:

N = B0 x T

B = T x N [Bloomenthal 1990].

Once the reference frame for a point p has been obtained, the cross section of the generalized

cylinder at that point can be defined on the plane described by N and B. If a point c = (cx, cy) is a

point on the 2D cross section of the generalized cylinder, it can be converted to a 3D point on the

surface of the generalized cylinder as:

(px + cxNx + cyBx, py + cxNy + cyBy, pz + cxNz + cyBz) [Bloomenthal 1990].

Since we use a cylindrical cross section:

cx = r * cos(
�
)

cy = r * sin(
�
)

where r is the radius of the generalized cylinder and
�
, dependent on the number of sides of the

generalized cylinder, determines the position of the point c on the circumference of a circle. The

radius and number of sides making up a generalized cylinder are user defined. Therefore, the

user is able to specify the thickness of the generalized cylinder (cluster of hair) and control the

number of sides, and therefore the number of polygons, making up the generalized cylinder.

 A B C

Figure 3.21: Aligning a cross section perpendicular to a curve.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Summary 70

Figure 3.21 shows a cross section of a generalized cylinder (B) aligned perpendicular to a curve

(C) using a reference frame (A). The generalized cylinder is approximated by six sides.

3.3.4 Representing Strands of Hair

Texture maps can be applied to the generalized cylinders that represent clusters of hair to create

the effect of many strands of hair. The texture maps may be images of hair strands, or they may

be generated procedurally. We discuss the texture maps in more detail in Section 5.4.2.

3.3.5 Additional Texturing

Sometimes flatly parted hair on the scalp can be seen in African hairstyles that contain braids

and twists. This hair is not part of the braids and twists. For example, parted hair on the scalp can

be seen in the first and third hairstyles in Figure 3.9. In the first hairstyle, the hair on the scalp is

parted into diamond shapes that tessellate over the scalp, and a single twist of hair protrudes

IURP� WKH�FHQWUH�RI�HDFK� ³GLDPRQG´�� ,Q� WKH third hairstyle, the hair has been parted into parallel

strips to create a number of braids, forming a cornrow hairstyle. However parted strips of hair

that are not in the braids can be seen on the scalp. In the second and fourth hairstyles, only braids

can be seen. To create the effect of parted hair that can be seen between braids and twists in a

hairstyle, we place a cap on the scalp. Our method is inspired by the cap technique [Lind 2003;

Comet 2000] discussed in Section 2.3.4.3. Lind [2003] and Comet [2000] place dark coloured

caps onto the scalp to make gaps between textured strips less noticeable. However, instead of

placing darkly coloured caps onto the scalp, we place texture maps representing tessellated

patterns of hair. The texture maps are discussed in more detail in Section 5.4.3.

3.4 Summary

In this chapter we discuss the hair modelling techniques we use in order to model the three forms

of African hair we identified in Chapter 1. We use an implicit hair modelling technique based on

/HQJ\HO¶V� FRncentric shell method to model the natural, curly form of African hair, an explicit

hair modelling technique that uses control hairs similar to an approach taken by Daldegan et al.

[1993] to model straight African hair, and we develop a cluster hair modelling technique, using

textured generalized cylinders, to model hair in the form of braids and twists. Our techniques do

not create an entire hairstyle. Instead, they are designed so that they can be used by an artist (or

user) to create the hairstyle they want, and so that a variety of different hairstyles can be

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

MODELLING AFRICAN HAIR Summary 71

produced with the same technique. Each technique provides the user with a way of placing hair

onto a model of a head and uses an implicit, explicit or cluster hair modelling technique to define

the shape and geometric properties of the form of hair it is modelling. Ways of overcoming the

problem of modelling the large number of hair strands required are also discussed for each

technique. The implementation of the three hair modelling techniques is discussed in the next

chapter.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

4 IMPLEMENTING PLUG-INS

To implement our hair modelling techniques we develop several plug-ins. Using a combination

of these plug-ins, a user is able to model a variety of African hairstyles interactively. In this

chapter we describe the plug-ins and some of the implementation issues involved in creating the

plug-ins, which are implemented for LightWave 3D.

4.1 LightWave 3D

LightWave 3D (or LightWave) is a graphics program used for modelling, animating and

rendering. Many applications today make use of virtual humans that are created and animated in

LightWave, or a similar program, and most of these programs have an architecture that supports

plug-in development. A plug-in is a dynamically linked library (.dll) that extends the

functionality of a program. Plug-ins are imported into a system and become commands that can

be used like any other command in the program. Instead of implementing an entire system that

imports head models in different formats, has a user interface, and provides tools to perform a

variety of operations, we use an existing program (in this case LightWave) and then create plug-

ins that add to the functionality of the program so that the three forms of African hair can be

modelled with ease to create a variety of hairstyles.

LightWave plug-ins are grouped into different categories, called classes. The different classes

perform different tasks and are placed in LightWave at different points. The plug-ins created to

model hair belong to either the Modeler Command Sequence class or the Mesh Edit Tool class.

Both Modeler Command Sequence plug-ins and Mesh Edit Tool plug-ins create and modify

geometry. However, Modeler Command Sequence plug-ins are able to issue commands, which

usually correspond to actions the user could execute through the LightWave interface, while

Mesh Edit Tool plug-ins allow a user to create and modify geometry interactively. Both classes

have access to mesh editing functions, which create, modify and obtain information about the

points and polygons of the geometry. LightWave also provides scan functions to enumerate

points and polygons allowing information to be obtained or geometry to be modified. For each

point or polygon, they reference a callback function, which is supplied by the programmer

[Wright 2001].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 73

4.2 Hair Modelling Plug-ins

We implement seven plug-LQV� �WKDW� DOO� KDYH� QDPHV� VWDUWLQJ� ZLWK� ³+3´� IRU� ³+DLU� 3OXJ-LQ´�� LQ�

order to model the three forms of hair found in common African hairstyles:

x� HPLayer and HPCurve are plug-ins that place layers or control curves on a head model over

the polygons on which a user wishes to place hair. HPLayer creates the layers needed to

model curly hair implicitly (see Section 3.1.2), while HPCurve creates the control curves

used to define a hairstyle of straight hair, or braids or twists of hair (see Sections 3.2.2 and

3.3.2 respectively).

x� HPDuplicate is used to create more curves automatically, based on the control curves that

define a hairstyle. This plug-in is used for modelling explicit strands of straight hair (see

Section 3.2.2). It can also be used when more control curves are needed to define braids or

twists of hair (see Section 3.3.2).

x� HPTwist and HPBraid convert curves into twists and braids of many curves (see Section

3.3.3.1)

x� HPPolyline and HPGeneralizedCylinder are plug-ins that convert curves into polylines and

generalized cylinders that can be rendered. HPPolyline is used when modelling explicit

strands of straight hair (see Section 3.2.3), while HPGeneralizedCylinder is used to

represent clusters of hair in a braid or twist (see Section 3.3.3.2). HPGeneralizedCylinder

could also be used to model explicit strands of straight hair. However, we found that

representing each strand of hair with a generalized cylinder is expensive in terms of

computation time and memory usage.

The details of each plug-in, as well as implementation issues considered when creating each

plug-in, are discussed below.

4.2.1 HPLayer

In Section 3.1 we describe a technique for modelling the short curly form of African hair using

concentric textured layers. To implement the technique we develop a plug-in, which we call

HPLayer. The HPLayer plug-in creates the concentric layers of geometry on which textures can

be placed to produce the effect of hair. The plug-in does not, however, create the texture maps or

place them on the layers (the texture maps are discussed in Section 5.4.1). In order for a range of

hairstyles to be created using the plug-in, the number and height of the layers are obtained from

the user.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 74

4.2.1.1 Implementation

The HPLayer plug-in is designed to create and place layers above selected polygons. In order to

create the layers the plug-in must create geometry similar to the selected polygons and then

displace the geometry by a certain distance from the surface. Since the thickness and quality of

hair required by a user may vary, the number of layers created and their displacement from the

surface are user-defined. The user is also asked to provide a surface name, which the plug-in

assigns together with successive numbers to each layer.

To create the layers, the plug-in could make copies of each selected polygon and then displace

WKH�FRSLHV� LQ� WKH�GLUHFWLRQ�RI�WKH�SRO\JRQ¶V�QRUPDO��7KLV�PHWKRG�ZRUNV�ZKHQ�WKH�VXUIDFH�LV�IODW��

However, when the surface is bent (such as the surface that represents the top of a head), the

normals of the selected polygons do not have the same direction, and gaps form between the

polygons that make up the layers (see Figure 4.1).

Figure 4.1: Creating layers, using polygon normals for displacement.

To solve the problem, the HPLayer plug-in makes copies of the vertices that make up the

selected polygons, and then displaces the points (copies of the vertices) in the direction of their

normal. Connecting the displaced points in a manner similar to the vertices from which they

were copied creates new polygons, and the new polygons form layers without the undesired gaps

(see Figure 4.2).

Figure 4.2: Creating a layer, using vertex normals for displacement.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 75

It is important to make sure that polygons share vertices (i.e. that there are no duplicate points) in

order to apply smooth shading to each layer.

4.2.1.2 LightWave Implementation Issues

The HPLayer plug-in is implemented as a Mesh Edit Tool plug-in. The vertex normals are not

available from the Server Development Kit (SDK) [Subrahmanyam 2002], so our plug-in has to

obtain them before creating the layers. The vertices that belong to each polygon are available

from the SDK. To obtain the normal for a vertex the plug-in finds all the polygons that share that

vertex, and then cDOFXODWHV� WKH� QRUPDO�DV� WKH� DYHUDJH� RI� WKH� SRO\JRQV¶�QRUPDOV� >:ULJKW�����@��

The plug-in then performs a polygon scan. If a polygon has been selected the plug-in creates a

number of new polygons whose vertices are calculated by displacing the selected polygRQ¶V�

vertices in the direction of their normals. The number n of new polygons created depends on the

number of layers specified by the user, and the displacement di of each new polygon i is taken

as:

di = (h / n) * i

where h is the height of the layers determined by the user. The method creates a number of

layers, but the polygons that make up each layer do not share points. To remove duplicate points,

VR�WKDW�SRO\JRQV�VKDUH�D�SRLQW��/LJKW:DYH¶V�Merge Points command can be used [Wright 2001].

The plug-in is implemented as a Mesh Edit Tool so that the user can adjust the height of the

layers by dragging their mouse up and down. If the plug-in had been implemented as a

Command Sequence plug-in, the Merge Points command could have been called automatically by

the plug-in to remove duplicate points. Unfortunately, Mesh Edit Tool plug-ins cannot call

commands, so the user must execute the Merge Points command manually, by pressing the

³PHUJH�SRLQWV´�FRPPDQG�EXWWRQ�RQ�WKH�LQWHUIDFH�

The plug-LQ¶V� LQWHUIDFH� LV� SUogrammed so that the plug-in appears to be a tool that is part of

LightWave. The user is provided with a numeric panel (see Figure 4.3) in which they may enter

the number and height of the layers, as well as a surface name. A number is added to the end of

the surface name to identify each layer. For instance, if the user provides the surface name

³OD\HUVXUIDFH´�� WKH�SOXJ-LQ�ZLOO� DVVLJQ� WKH�VXUIDFH�QDPH�³OD\HUVXUIDFH�´� WR�DOO�WKH�SRO\JRQV� WKDW�

PDNH� XS� WKH� ILUVW� OD\HU�� WKH� VXUIDFH� QDPH�³OD\HUVXUIDFH�´� WR�DOO�the polygons that make up the

second layer, and so on. This simplifies placing different textures on each layer. The user may

also control the height of the layers by holding down the left mouse button and dragging the

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 76

mouse up and down to increase and decrease the height. A message is displayed at the bottom of

the screen to assist the user (see Figure 4.4).

Figure 4.3: The HPLayer plug-LQ¶V�LQWHUIDFH�

Figure 4.4: A message assisting the user.

4.2.1.3 Results

 A B C D E

Figure 4.5: Using the HPLayer plug-in to create and place layers on a head model.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 77

Figure 4.5 demonstrates the use of the HPLayer plug-in. A head model is created or imported

LQWR�/LJKW:DYH¶V�0RGHOHU� �$��� 3RO\JRQV� RQ�ZKLFK�KDLU�VKRXOG� EH� SODFHG�DUH�VHOHFWHG� �%���DQG�

then the HPLayer plug-in is run. In the diagram 20 layers are created. The layers have a height of

10cm in total (the head model has dimensions
4
 of approximately 180cm x 250cm), and the

VXUIDFH� QDPH� LV� ³OD\HUVXUIDFH´� �VR� WKH� OD\HUV� KDYH� WKH� VXUIDFH� QDPHV� ³OD\HUVXUIDFH�´��

³OD\HUVXUIDFH�´�� «�� ³OD\HUVXUIDFH��´�� �&��� $OWKRXJK� WKH� OD\HUV� DUH� JLYHQ� GLIIHUHQW� VXUIDFH�

names, the surface properties, such as the surface colour, assigned to each layer remain as

defaults (D). These can be changed (E), and texture maps can be applied to the layers to produce

the effect of hair. The surface properties and textures are discussed in Section 5.4.1.

4.2.2 HPCurve

In Section 3.2 we describe a technique for modelling straight hair explicitly. To overcome the

problem of modelling a large number of hair strands, the technique uses control hairs to define a

hairstyle, and then creates a full head of hair by automatically multiplying the control hairs. To

create the control hairs we implement a plug-in called HPCurve that places control curves on

selected polygons of a head model. The plug-in creates one curve for each selected polygon and

then adds the curve to the centre of the polygon. A user is then able to bend and modify the

curves in order to design a hairstyle.

The HPCurve plug-in can also be used when modelling braids and twists with our cluster

technique, described in Section 3.3. The technique uses curves to define the overall shape of a

braid or twist of hair. To place the curves on a head model, a user may either add them manually

or use our HPCurve plug-in.

4.2.2.1 Implementation

Since the HPCurve plug-in is designed to create control hairs and place them on a head model,

implementation of the plug-in involves the creation of control hairs and the placement of control

hairs onto a head model. Each control hair is represented by a curve, which can be bent to form

the shape of a strand of hair. Since the length and curliness of strands of hair vary greatly, we

allow the length of the curve and the number of control points constituting the curve to be user-

GHILQHG��7KH�FRORXU�DQG�RWKHU�VXUIDFH�SURSHUWLHV�RI�VWUDQGV�RI�KDLU�RQ�D�SHUVRQ¶V�KHDG�PD\�DOVR�

4
 Note: The dimensions for the hair, head models, and samples of hair used in this thesis are not necessarily life size,

but could be given the correct scale if needed.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 78

vary, so the control curves created are assigned a user-defined surface name, which specifies

their surface properties.

The curve is created as a straight line consisting of n segments and (n + 1) control points. The

control points are evenly spaced so that all the segments have the same length: d / n, where d is

the length specified by the user (see Figure 4.6). After the plug-in has created the curve, the user

may move the control points to define the shape of a strand of hair. This may cause the segments

between the control points to be different lengths. In LightWave a curve cannot be rendered

directly. The control hairs must therefore be converted to another form such as a polyline or

generalized cylinder, before they are rendered. (Sections 4.2.6 and 4.2.7 discuss plug-ins that

convert curves to polylines and generalized cylinders.)

Figure 4.6: A control hair consisting of four segments and five control points.

To add control hairs to a head model, the plug-in places a control hair in the centre of each

selected triangle (the plug-in could add control hairs to the centre of any selected polygon, but

the HPDuplicate plug-in discussed in Section 4.2.3, which makes copies of the control hairs,

requires the control hairs to be placed on triangles). Therefore, the first thing the plug-in does is

check to see that all selected polygons are triangles. If they are not triangles, the plug-in does

nothing but display a message telling the user to convert all polygons to triangles. If they are

triangles, the centre point of each triangle is calculated and a control hair is created and placed at

WKH�FHQWUH�SRLQW��LQ�WKH�GLUHFWLRQ�RI�WKH�WULDQJOH¶V�QRUPDO��VHH�)LJXUH������

Figure 4.7: Placing a control hair in the centre of a selected triangle.

The control hair and triangle it is placed on are grouped together using tags. The plug-in checks

to see whether a triangle has already been assigned a tag; if it has, the control hair is given the

same tag value; otherwise a tag value is assigned to both the control hair and the triangle it is

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 79

placed on. The tags are used by the HPDuplicate plug-in (see Section 4.2.3), which needs to

know which triangle each control hair is placed on.

4.2.2.2 LightWave Implementation Issues

The HPCurve plug-in creates geometry (control hairs) and could belong to the Command

Sequence or Mesh Edit Tool class. The first thing the plug-in does is check to see that all

selected polygons are triangles, which is often not the case. Implementing the plug-in as a

Command Sequence class would allow the plug-in to issue the LightWave command TRIPLE,

which converts polygons into triangles by subdivision [Wright 2001]. Using the TRIPLE

command, the plug-in could automatically convert any selected polygons with more than three

sides into triangles. This would allow the user to select any polygons on the head model on

ZKLFK� WKH\� ZRXOG� OLNH� KDLU� WR� EH� SODFHG� UHJDUGOHVV� RI� HDFK� SRO\JRQ¶V� QXPEHU� RI� VLGHV��

Unfortunately, Command Sequence plug-ins do not behave as interactive tools, and it is

important that the user is able to adjust the length of the control curves interactively with their

mouse. Entering a value for the exact length required is often difficult ² it is easier to adjust the

length by dragging a mouse up and down.

The HPCurve plug-in is implemented as a Mesh Edit Tool plug-in. Mesh Edit Tool plug-ins

cannot issue commands, so the user is required to convert selected polygons into triangles

manually (which can be done by clicNLQJ� WKH� ³WULSOH´� FRPPDQG� EXWWRQ� RQ� WKH� LQWHUIDFH��� 7R�

assist the user, a message is displayed telling the user to convert all selected polygons to triangles

first (if they are not already triangles), as shown in Figure 4.8.

Figure 4.8: A message assisting the user.

The plug-LQ¶V� LQWHUIDFH� LV� SURJUDPPHG� VR� WKDW� WKH� SOXJ-in appears to be a tool that is part of

LightWave. The user is provided with a numeric panel (see Figure 4.9) on which they may enter

the length, number of segments and surface name of the control hairs. The user may also control

the length of the curves created by holding down the left mouse button and dragging the mouse

up and down to increase and decrease the length. Messages are displayed at the bottom of the

screen to assist the user (see Figure 4.10).

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 80

Figure 4.9: The HPCurve plug-LQ¶V�LQWHUIDFH�

Figure 4.10: A message assisting the user.

4.2.2.3 Results

 A B C D E

Figure 4.11: Using the HPCurve plug-in to design a hairstyle.

The images in Figure 4.11 demonstrate the use of the HPCurve plug-in. Polygons upon which

hair should be placed are selected (A) and converted into triangles (B) before the HPCurve plug-

in is run. In the diagram 30 control curves are created. The curves consist of four segments and

have a length of 9cm (the head model has dimensions of approximately 16cm x 25cm). The

VXUIDFH�RI�HDFK�FXUYH� LV� FDOOHG� ³+DLU6XUIDFH´� DQG� WKH�VXUIDFH�SURSHUWLHV� DUH�GHIDXOWV��DOWKRXJK�

they can be changed (C). The user is able to bend and modify the control curves to define a

hairstyle using the tools available in LightWave (D and E).

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 81

Since the control curves do not define a complete head of hair, and curves cannot be rendered in

LightWave, other plug-ins can be used after HPCurve to multiply the control hairs, or to convert

them into braids, twists, polylines or generalized cylinders (see Sections 4.2.3±4.2.7 for a

description of these plug-ins).

4.2.3 HPDuplicate

When modelling straight hair explicitly we use a technique where curves, representing strands of

hair, are automatically created and placed onto a head model to decrease the amount of time a

user spends on modelling strands of hair. The curves are based on control curves. The technique

is discussed in Section 3.2. To implement the technique we develop a plug-in called

HPDuplicate. The HPDuplicate plug-in makes a user-defined number of copies of each selected

control hair and randomly places the copies on the same triangle of the head model as the control

hair from which they were copied. The plug-in creates curves that represent strands of explicitly

modelled straight hair. However, it can also be used to create extra control curves if needed.

Control curves are used to define hairstyles for explicitly modelled hair (Section 3.2) or to define

the shape of braids and twists of hair (see Section 3.3).

4.2.3.1 Implementation

The HPDuplicate plug-in is designed to reduce the time a user spends on modelling hair, by

creating and placing a large number of curves, representing hair strands, onto a head model. In

order to reduce the modelling time, the plug-in must automatically model the curves into

reasonable shapes so that they represent a hairstyle. To implement the plug-in, we need to

consider automatic creation and shaping of curves, and the placement of curves onto a head

model. Since the number of hairs on a head varies from person to person, the number of curves

should be user defined.

We assume that the user has defined a hairstyle (or braids or twists of hair) using the HPCurve

plug-in (see Section 4.2.2). Like the control hairs created with the HPCurve plug-in, each

automatically created curve consists of n segments and (n + 1) control points. However, the

number of segments is not user defined. Instead, the number of segments, as well as the shape,

length and surface properties of the curve, is determined by a control hair. Since we assume that

a user has designed a hairstyle (or braids or twists) with control hairs, the plug-in can use

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 82

selected control hairs to create, shape and place a user-defined number of curves onto the head

model.

For each selected control hair, the HPDuplicate plug-in scans all the polygons to find the triangle

on the head model on which the control hair is placed. The plug-in then creates a user-defined

number of curves. Each curve is created as a copy of the selected control hair. Using the

coordinates of the control points that make up the selected control hair, a curve can be created

that has the same number of segments, length and shape as the control hair. The plug-in makes

FRSLHV� RI� WKH� FRQWURO� KDLU¶V� FRQWURO� SRLQWV� DQG� WKHQ� WUDQVODWHV� WKHP� E\� D� UDQGRP�DPRXQW��7KH�

translated control points are then used to create the new curves. These have the same shape as

the control curve, but are positioned at different points in the triangle on which the control curve

is placed. The random amounts used to translate the points are calculated by finding a random

point in the triangle on which the control curve is placed. Since different algorithms are needed

to find random points in polygons with different numbers of sides, the HPCurve plug-in (see

Section 4.2.2) makes sure all control curves are placed on triangles, so that the HPDuplicate

plug-in can use an algorithm that finds a random point in a triangle [Turk 1990]. The curve is

also given the same surface name as the control hair.

4.2.3.2 LightWave Implementation Issues

Since the HPDuplicate plug-in is designed to create, shape and place hair strands on a head

model automatically, to reduce the amount of time and effort a user has to spend on modelling

hair, it is not designed as an interactive tool, and is therefore implemented as a Modeler

Command Sequence plug-in rather than an Mesh Edit Tool plug-in. The plug-in uses only mesh-

editing functions and does not issue any commands. It could, therefore, also have been

implemented as a Mesh Data Edit class, which is a subset of the Command Sequence class. The

Mesh Data Edit class has access to mesh editing functions, but cannot issue commands [Wright

2001].

Figure 4.12: The HPDuplicate plug-LQ¶V�LQWHUIDFH�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 83

The number of hair strands (copies of each selected control hair) the plug-in must create is

obtained from the user. An interface is implemented to obtain the information (see Figure 4.12).

4.2.3.3 Results

 A B

Figure 4.13: Using the HPDuplicate plug-in.

Figure 4.13 demonstrates the use of the HPDuplicate plug-in. A hairstyle is defined by 30 control

curves (A). All the control curves are selected and the HPDuplicate plug-in is run. A total of

1,800 curves are automatically created (60 duplicates are made of each control curve) resulting

in a hairstyle containing many strands of hair (B). The automatically created strands of hair have

the same surface properties as the control curves, but the properties can be changed.

4.2.4 HPTwist

We initially define a twist of hair with a curve, which is easy to bend and useful for defining the

overall shape of the twist. To convert the curve into a twist we create several curves that twist

around the initial curve to form the twist (see Section 3.3.3). We implement the technique as a

plug-in, called HPTwist, which converts selected curves into a user-defined number of curves

that are twisted together. The user is able to define the thickness of the twist, as well as the

number of curves, amount of twist, and surface name of the curves constituting the twist. This

allows a variety of twists that meet the needs of the user to be created with the same plug-in.

4.2.4.1 Implementation

The HPTwist plug-in is designed to make modelling twists of hair easy and to reduce the time a

user spends on modelling a hairstyle. To create each curve in the twist automatically, we

calculate the values of several points for the curves. These points are used as control points and

are connected to form the new twisting curves. The values of the points are calculated at each

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 84

control point of the original curve using a reference frame and the parametric equation defined in

Section 3.3.3.1. The algorithm used is shown below:

For each curve i making up the twist {

�

 = angle difference between curves * i
 For each control point k along the original curve {

 Calculate point pk on the twisting curve

�
 =

�
 + amount of twist

 }
 Connect points p0 to pn to create a new curve that twists around the original curve

 (n is the total number of control points on the original curve)

}

To calculate point pk on the twisting curve:

 Obtain the reference frame at k

(i.e. obtain vectors N and B that lie perpendicular to the tangent at k)
Calculate x and y using the parametric equation for a curve in a twist.

(x = r * cos (
�

) and y = r * sin (
�

))
pk [j] = N[j] * x + B[j] * y + k[j], where j = 0, 1, 2.

The amount of twist, obtained from the user, represents the increase in
�
 as the curve twists

around the original curve. The smaller the value of
�
 with respect to the distance between the

control points of the original curve, the less twist the new curve has.

Because the original curve may consist only of a few control points, the user is able to specify

the number of samples taken between the control points (i.e. more values are calculated for the

new curve). If the number of samples n, specified by the user, is more than one, (n í����SRLQWV�RQ�

the curve between each set of adjacent control points are calculated and used together with the

FRQWURO� SRLQWV� WR� IRUP� WKH� ³FRQWURO� SRLQWV´� RI� WKH� RULJLQDO� FXUYH�� 7KH� PHWKRG� IRU� FDOFXODWLQJ�

points on a curve between control points is discussed in Section 4.2.6.2.

The number of samples taken affects the amount of twist in the twisting curve. A large number

of samples will result in smaller distances between control points for every increase in
�
, and

therefore more twist in the curve. The same number of samples is taken between each pair of

control points, and the samples are evenly spaced between each pair of control points. However,

if the distances between the pairs of control points are not the same, the twist will become more

or less pronounced depending on the relative distances. To avoid the problem the user should try

to keep the relative spacing between pairs of control points on the original curve as similar as

possible when defining the shape of the curve.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 85

4.2.4.2 LightWave Implementation Issues

The HPTwist plug-in is implemented as a Mesh Edit Tool plug-in, allowing the user to adjust the

thickness of the twist by dragging their mouse left and right, and the amount of twist by dragging

their mouse up and down.

The plug-in also has a numeric panel (see Figure 4.14) that allows the user to enter values for the

user-defined parameters, and a message assisting the user (see Figure 4.15).

Figure 4.14: The HPTwist plug-LQ¶V�LQWHUIDFH�

Figure 4.15: A message assisting the user.

7KH�³1XPEHU�RI�FXUYHV´�RQ�WKH�QXPHUic panel represents the number of curves making up the

WZLVW�� WKH�³5DGLXV´�GHWHUPLQHV� WKH� WKLFNQHVV�RI�WKH� WZLVW��WKH�³$PRXQW�RI�WZLVẂ �LV� WKH�FKDQJH� LQ�
�
�HDFK� WLPH�D�QHZ�SRLQW�RQ� WKH�FXUYH� LV�FDOFXODWHG��WKH�³$QJOH�EHWZHHQ�FXUYHV´�LV�WKH�GLIIHUHQFH�

in
�

 fRU� WKH�GLIIHUHQW� FXUYHV�DW� HDFK�SRLQW��WKH�³1XPEHU�RI�VDPSOHV´�GHWHUPLQHV�WKH�QXPEHU�RI�

new control points needed between the control points on the original curve in order to create

PRUH� FRQWURO� SRLQWV� IRU� WKH� QHZ�FXUYHV�� DQG� ³6XUIDFH´�VSHFLILHV� WKH�VXUIDFe name of the new

curves.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 86

4.2.4.3 Results

The examples in Figure 4.16 show how the different user-defined values affect the results of the

twist created. All the values are kept constant for each example, except the values of the variable

we are testing. The constant values used (unless otherwise stated) are:

Number of curves: 3

Radius: 20cm

Amount of twist: 10.0Û

Angle between curves: 120.0Û

Number of samples: 10

Surface:�³+DLU'HIDXOW´

 A B C

 D E F

Figure 4.16: Different twist values.

In Figure 4.16 the original curve defining each twist has a length of 2m and consists of four

segments. Diagrams A and B show twists consisting of different numbers of curves. In each

diagram the twists consist of three, four, five and six curves. In Diagram A the angle between the

curves has been changed as well in order to space the curves evenly. The angle between the

curves is 120Û����Û����Û�DQG���Û�����Û���QXPEHU�RI�FXUYHV���,Q�'LDJUDP�%�WKH�DQJOH�EHWZHHQ�WKH�

curves is 60Û��'LDJUDP�&�VKRZV�WZLVWV�ZLWK�UDGLL�RI���FP����FP����FP�DQG���FP��,Q�'LDJUDP�'�

the amount of twist varies. The values for the amount of twist are 10Û�� ��Û�� ��Û� Dnd 40Û�� ,Q�

Diagram E the angle between the curves varies. The angle is 30Û����Û����Û�DQG����Û��,Q�'LDJUDP�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 87

F the twists have different numbers of samples. The number of samples for each twist is 10, 20,

30 and 40.

The amount of twist is determined not only�E\�WKH�³$PRXQW�RI�WZLVẂ ��EXW�DOVR�E\� WKH�³1XPEHU�

RI�VDPSOHV´��If the user doubles the amount of twist, it will produce the same curves that would

be produced if the user doubled the number of samples. However, the numbers of control points

on the curves will double when the number of samples is doubled, but not when the amount of

twist is doubled. Therefore, by adjusting the number of samples and (inversely) the amount of

twist, it is possible to produce the same curves with different numbers of control points.

Figure 4.17: Twists with the same curves, but different numbers of control points.

In Figure 4.17 the amount of twist and number of samples for each curve are set to 10Û�������Û��

20; 20Û�� ��� DQG� ��Û�� ��� $OO� IRXU� WZLVWV� KDYH� WKH� VDPH� VKDSH�� EXW� GLIIHUHQW� QXPEers of control

points.

To implement the HPTwist plug-LQ�VR� WKDW� WKH�³1XPEHU�RI�VDPSOHV´�GHWHUPLQHV�WKH�QXPEHU�RI�

control points, but does not have an affect on the amount of twist, the plug-in would have to be

LPSOHPHQWHG�VR�WKDW�WKH�YDOXH�IRU�WKH�³$PRXQW�RI�WZLVẂ �LV�DXWRPDWLFDOO\�FKDQJHG�ZKHQHYHU� WKH�

YDOXH�IRU�WKH�³1XPEHU�RI�VDPSOHV´�LV�FKDQJHG�

³$PRXQW�RI�WZLVW´� �³$PRXQW�RI�WZLVW´����n1 / n2)

where n1� LV� WKH� QHZ� YDOXH� IRU� WKH�³1XPEHU�RI�VDPSOHV´�DQG�n2 is the previous value for the

³1XPEHU�RI�VDPSOHV´�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 88

Figure 4.18: Converting a curve into a twist.

Figures 4.18 and 4.19 demonstrate the use of the HPTwist plug-in. Figure 4.18 shows a curve

converted into a twist represented by three curves. Figure 4.19 shows a hairstyle defined by 100

curves (A). Each curve is converted into three curves that define a twist using the HPTwist plug-

in (B). The original curves are defined by four segments. The curves representing each twist are

defined by 40 segments, lie 120Û� DSDUW�� DQG� UHSUHVHQW� D� WZLVW�ZLWK� D�UDGLXV� RI��PP��Whe head

model has dimensions of approximately 24cm x 26cm). They have a surface name specified by

the user and default surface properties, which can be changed.

 A B

Figure 4.19: Using the HPTwist plug-in.

4.2.5 HPBraid

Like a twist, a braid of hair is initially defined by a curve. To convert the curve into a braid we

implement a plug-in, called HPBraid, which converts selected curves into a user-defined number

of curves that twist around the initial curve to form a braid. The thickness, flatness, number of

curves and surface name of the curves the braid consists of are user defined. The user is also able

to adjust the amount of twist in the braid.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 89

4.2.5.1 Implementation

To implement the HPBraid plug-in, curves that twist around the original curve are created

automatically, using the same method that was used to implement the HPTwist plug-in: the

control points of the automatically-created curves are calculated and then connected to define the

curve. To calculate the control points, a reference frame is used together with the parametric

equation for a braid (presented in Section 3.3.3.1) and the user-defined values of several

parameters. The reference frame is calculated at each control point on the original curve.

However, the user may specify that more control points are needed. If the value of the number of

samples n obtained from the user is greater than 1, (ní��� FRQWURO� SRLQWV� DUH� DGGHG� EHWZHHQ�

adjacent control points on the original curve.

The shape of a braid viewed along the x-axis towards the y-z plane is not the same as the shape

of the braid viewed along the y-axis towards the x-z plane (see Figure 4.20).

Figure 4.20: Viewing a braid from different angles.

Since the braid is automatically created from a curve that lies in any direction in 3D space, the

braid may not lie in the desired direction. To solve the problem we allow the user to rotate the

braid b\� ��� UDGLDQV� �RU� ��Û��� 7KLV� LV� LPSOHPHQWHG� E\� VZLWFKLQJ� WKH� YDOXHV� RI� x and y in the

parametric equation (defined in Section 3.3.3.1).

4.2.5.2 LightWave Implementation Issues

The HPBraid plug-in is implemented as a Mesh Edit Tool plug-in, allowing the user to adjust the

thickness of the braid by dragging their mouse left and right, and the amount of twist in the braid

by dragging their mouse up and down.

 z

 z

 y

x

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 90

The plug-in also has a numeric panel (see Figure 4.21) that allows the user to enter values for the

user-defined parameters, and a message assisting the user (see Figure 4.22).

Figure 4.21: The HPBraid plug-LQ¶V�LQWHUIDFH�

Figure 4.22: A message assisting the user.

The parameters on the numeric panel for the HPBraid plug-in are the same as those for the

HPTwist plug-in (see Section 4.2.4.2), except that the user may also enter a value to flatten the

EUDLG� �³)ODWQHVV´�� DQG� PD\� VHOHFW� ³,QYHUW"´� WR� VZDS� WKH� YDOXHV� RI�x and y so that the braid is

URWDWHG�E\� ���UDGLDQV��RU���Û��

4.2.5.3 Results

The examples in Figure 4.23 below show how the different user-defined values affect the results

of a braid created. In each example the top diagram shows a view of the braid on the x-z plane,

and the bottom diagram shows a cross section of the braid viewed along the z-axis. All the values

are kept constant for each example, except the values of the variable we are testing. The constant

values used (unless otherwise stated) are:

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 91

Number of curves: 3

Radius: 20cm

Flatness: 2.0

Amount of twist: 10.0Û

Angle between curves: 120.0Û

Number of samples: 10

Surface:�³+DLU'HIDXOW´

Invert?: Not selected

 A B C

 D E F

 G H I

Figure 4.23: Different braid values.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 92

The original curve defining each braid in Figure 4.23 has a length of 2m and consists of four

segments. Diagrams A and B show braids consisting of different numbers of curves. In each

diagram the braids consist of three, four, five and six curves. In Diagram A the angle between

the curves has been changed as well, in order to space the curves evenly. The angle between the

curves is 120Û����Û����Û�DQG���Û�����Û���QXPEHU�RI�FXUYHV���,Q�'LDJUDP�%�WKH�DQJOH�EHWZHHQ�WKH�

curves is 60Û��'LDJUDP�&�VKRZV�WZLVWV�ZLWK�UDGLL�RI���FP����FP����FP�DQG���FP��,Q�'LDJUDP�'�

the flatness of the braids varies. The braids have a flatness of 1, 1.5, 2 and 2.5, respectively. In

Diagram E the values for the amount of twist are 10Û����Û����Û�DQG���Û�� ,Q�'LDJUDP�)�WKH�DQJOH�

between the curves varies. The angle is 30Û����Û����Û� DQG� ���Û�� ,Q�'LDJUDP�*�WKH� EUDLGV� KDYH�

different numbers of samples. The number of samples for each braid is 10, 20, 30 and 40.

'LDJUDP�+�VKRZV�WKH�UHVXOWV�ZKHQ�³,QYHUW"´�LV�VHOHFWHG��7KH�ILUVW�WZR�EUDLGV�KDYH�WKH�VDPH�XVHU-

GHILQHG�YDOXHV��ZLWK�D�IODWQHVV�RI������EXW�³,QYHUW"´�KDV�EHHQ�VHOHFWHG�IRU� WKH�VHFRQG�EUDLG��7KH�

last two braids also hDYH� WKH�VDPH�XVHU�GHILQHG�YDOXHV��EXW�KDYH�D�IODWQHVV�RI������³,QYHUW"´�KDV�

been selected for the last braid. Diagram I shows that like the HPTwist plug-LQ��WKH�³$PRXQW�RI�

WZLVẂ �DQG�³1XPEHU�RI�VDPSOHV´�GHWHUPLQH�WKH�WZLVW�� LQ� WKLV�FDVH�LQ�D�EUDLG��DQG�FDQ be adjusted

to produce braids that have curves with the same shape, but different numbers of control points.

7KH�ILUVW�EUDLG¶V� DPRXQW� RI� WZLVW�DQG� QXPEHU�RI� VDPSOHV�DUH��0Û�DQG����VDPSOHV��UHVSHFWLYHO\��

The second braid has an amount of twist of 50Û�DQG�Whe value of 2 for its number of samples.

Figure 4.24: Converting a curve into a braid.

Figures 4.24 and 4.25 demonstrate the use of the HPBraid plug-in. Figure 4.24 shows a curve

converted into a braid represented by three curves. Figure 4.25 shows a cornrow hairstyle

defined by 14 curves (A). Each curve is converted into three curves that define a braid using the

HPBraid plug-in (B). The original curves are defined by ten segments. The curves representing

each braid are defined by 100 segments, lie 120Û�DSDUW��KDYH�D�IODWQHVV�RI����DQG�UHSUHVHQW�D�EUDLG�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 93

with a radius of 2mm (the head model has dimensions of approximately 24cm x 26cm). They

have a surface name specified by the user and default surface properties, which can be changed.

A B

Figure 4.25: Using the HPBraid plug-in.

4.2.6 HPPolyline

We use curves to model straight hair explicitly (see Section 3.2, and the HPCurve and

HPDuplicate plug-ins in Sections 4.2.2 and 4.2.3). They are easy to bend, and are a close

representation of a strand of hair in reality. However, it is not possible to render curves in

LightWave, so the curves need to be converted to other geometry before rendering. We convert

the curves into polylines (see Section 3.2.3). To do this, we implement a plug-in, called

HPPolyline, which converts all selected curves into polylines. The plug-in creates polylines that

have a user-defined number of segments.

4.2.6.1 Implementation

To implement the plug-in we need a method for converting a curve, which is defined by a few

control points [Nakakihara 2001], into a number of connected line segments, so that the line

segments approximate the shape of the curve. A simple approach is to join the adjacent control

points that define the curve with straight lines (defined as two-point polygons in LightWave

[Nakakihara 2001]). In other words, control point i is joined with control point i + 1, where first

control point <= i < last control point. Unfortunately, the approach does not produce polylines

that represent high-quality approximations of the curve if too few control points are used with

respect to the curvature in the shape of the curve. Since the curves are used to define a hairstyle,

and a user has to move the control points of each control curve to a desired position manually,

most curves will only contain a few control points. To solve the problem our plug-in finds a

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 94

user-defined number of points along the curve between the control points and uses them with the

control points to create two-point polygons. Figure 4.26 shows a curve defined by control points

(A) converted into a polyline (C). The figure also shows that using too few two-point polygons

will cause a low quality approximation of the curve (B).

 A B C

Figure 4.26: Converting a curve defined by control points into a polyline.

4.2.6.2 LightWave Implementation Issues

The HPPolyline plug-in converts curves into polylines that can be rendered. LightWave contains

a command called FREEZECURVES that is able to convert curves into polygons. Unfortunately,

the command converts all open curves into� FORVHG� FXUYHV� �E\� MRLQLQJ� WKH� FXUYH¶V� HQG� SRLQWV��

before converting the curve into a polygon (see Figure 4.27) [Nakakihara 2001]. Since strands of

hair usually bend and must remain as open curves, the command is not useful. Because we need

a command that converts curves into chains of two-point polygons, we develop the HPPolyline

plug-in.

Figure 4.27: Using FreezeCurves to convert an open curve into a polygon.

The HPPolyline plug-in is implemented as a Modeler Command Sequence plug-in. It is not

implemented as a Mesh Edit Tool plug-in because it does not require the user to determine

values interactively. The plug-in has an interface (see Figure 4.28) that is used to obtain the

number of two-point polygons (called segments) between consecutive control points that the user

wishes the polyline to be made up of. The value is a small positive integer that can be typed in,

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 95

and therefore does not need to be determined interactively. Since the plug-in does not issue any

commands, it could have been implemented as a Mesh Data Edit plug-in (a plug-in that has

access to mesh editing functions like the Modeler Command Sequence plug-ins, but cannot issue

commands [Wright 2001]).

Figure 4.28: The HPPolyline plug-LQ¶V�LQWHUIDFH�

To convert each curve into a polyline, the plug-in creates a set of points based on the positions of

the control points and a user-defined number of points along the curve between the control

points. The created points are then used to create two-point polygons, forming a polyline. Since

new points and polygons are created to produce the polyline, the original curve is neither

modified, nor part of the new polyline, and it can be deleted. The curve is not modified into a

SRO\OLQH�� EXW� UDWKHU� LW� LV� XVHG� WR� GHILQH� WKH� SRO\OLQH�� VR� WKH� WHUP� ³FRQYHUW´� LV� SUREDEO\� QRW�

accurate. However, the curve appears to be converted into a polyline, so we describe the plug-in

DV�RQH�WKDW�³FRQYHUWV´�FXUYHV�LQWR�SRO\OLQHV�

The positions of the control points are needed to create the new points for the polyline and can

be obtained from the SDK [Wright 2000]. To find the positions of the points along the curve

between control points (which are needed if the user wants more than one segment between

control points) we need to calculate the positions, as they cannot be obtained from the SDK

automatically. To find any point p(t) on a curve created in LightWave between position i and

position (i+1), where 0 < i < numcontrolpoints í����ZH�XVH�>:ULJKW�����@�

p(t) = h1 * p1 + h2 * p2 + h3 * r1 + h4 * r2

where p1 and p2 are the control points on either side of p(t), r1 and r2 are the tangents of the

control points, h1, h2, h3 and h4 are Hermite coefficients, and 0 ��t �����7KH�ILUVW�DQG�ODVW�FRQWURO�

points (i = 0 and i = numcontrolpoints í����DUH�XVHG�WR�FDOFXODWH�WKH�WDQJHQWV�RI�WKH�ILUVW�DQG�ODVW�

points on the curve. These control points are defined using EDPF_CCSTART and EDPF_CCEND in

LightWave. If EDPF_CCSTART and EDPF_CCEND have not been defined, imaginary points are

created, using the closest three existing points. The Hermite coefficients are defined by:

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 96

t2 = t * t;

t3 = t2 * t;

 h2 = 3.0 * t2 í�t3 í�t3;

 h1 = 1.0 í�h2;

 h4 = t3 í�t2;

 h3 = h4 í�t2 + t; [Wright 2002]

where t lies between 0 and 1, and is determined by the number of two-point polygons (segments)

the user specifies they would like between each set of control points.

Once the positions of the points are determined they can be used to create the points and two-

point polygons, using functions from the SDK.

4.2.6.3 Results

Figure 4.29 shows the results when curves are converted to polylines consisting of different

numbers of segments. The original curves (shown in diagram A) consist of four segments. In

Diagrams B and C the curves have been converted into polylines with one and four segments

between the control points of the original curve, respectively. The quality of the polylines in

Diagram B is less than the quality of those in Diagram C, but the polylines in Diagram C contain

four times as many two-point polygons as those in Diagram B. There is therefore a trade off

between using a small number of two-point polygons (which require less storage space and

rendering time) and the quality of the polyline produced.

 A B C D

Figure 4.29: Converting curves to polylines so that they can be rendered.

In Diagram D the curves have been converted to polylines consisting of two segments between

the control points of the original curve. The quality of the second and fourth polylines is good,

but the first and third curves need to be approximated by more segments in order to produce

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 97

polylines that have a good quality. Therefore, the number of segments needed for each polyline

depends on the shape of the curve. Our plug-in places the same user-defined number of segments

between each set of control points, and may therefore create an unnecessary number of

segments. For instance, the second curve in each diagram is a straight line and can therefore be

approximated using a polyline consisting of one segment. However, 16 segments are used to

approximate the curve in Diagram C in order to increase the quality of all the polylines in the

diagram. A more advanced approach would be to consider the tangents or angles between control

points and create extra segments (two-point polygons) only when needed.

 A B

Figure 4.30: Using the HPPolyline plug-in.

Figure 4.30 demonstrates the use of the HPPolyline plug-in. A hairstyle is created with 1,830

curves, and each curve consists of four segments (and five control points) (A). All the curves are

selected and the HPPolyline plug-in is run. Each curve is automatically converted into a polyline

with 16 segments (four segments are created between each pair of adjacent control points on the

original curve), resulting in an almost identical hairstyle that can be rendered (B).

4.2.7 HPGeneralizedCylinder

To model braids and twists of hair we use generalized cylinders, which represent wisps of hair

making up the braids and twists. The wisps are initially defined by curves and are then later

converted into generalized cylinders (see Section 3.3). To implement the technique we develop a

plug-in, called HPGeneralizedCylinder, which converts selected curves into generalized

cylinders. The plug-in places circular cross sections along each selected curve to form a

generalized cylinder. Unlike curves, generalized cylinders can be rendered, and although the

plug-in is mainly developed to generate generalized cylinders on which textures can be placed to

produce the effect of a cluster of hairs in a braid or twist, the plug-in can also be used to render

individual strands of hair. The user may define the thickness, number of sides, and number of

segments (between the control points on the curve) that make up each generalized cylinder, as

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 98

well as whether the thickness of the generalized cylinders must remain constant, or taper off

towards the end (furthest from the scalp). The user can also specify a surface name and UV map

name. The UV map name is used when mapping textures onto the generalized cylinders, and is

discussed in more detail in Section 5.4.2. Asking the user to define properties of the generalized

cylinders allows a variety of generalized cylinders that have different qualities to be produced

with the same plug-in.

4.2.7.1 Implementation

To convert a curve into a generalized cylinder, circular cross sections are placed along the curve

and aligned perpendicular to the curve using reference frames (see Section 3.3.3.2). The cross

sections are then joined to form the generalized cylinder. Before the cross sections can be

calculated or aligned, the points along the curve where the cross sections are to be placed need to

be determined. A simple approach would be to calculate and place the cross sections at the

control points of the curve (because the positions of the control points can be obtained from the

SDK). However, placing cross sections at the control points only, does not provide accurate

results when the curve is defined by a small number of control points. Curves are usually defined

by only a few control points, because the user has to move the control points manually to shape

the curve. The more cross sections calculated along the curve, the higher the quality of the

generalized cylinder. In order for our plug-in to produce generalized cylinders with a desired

quality, we implement the plug-in using a technique that calculates the cross sections not only at

the control points, but also at a user-defined number of points along the curve between the

control points. The method for calculating points on a curve between control points is discussed

in Section 4.2.6.2.

Figure 4.31: Creating a generalized cylinder.

x�

x�

x�

x�

x�

x�

x�

x�

x�

x�

x�
x�

x�

x�

x�

x�

x�

x� x�

x�

x�

x�

x�

x�

x�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 99

The positions of the control points and selected points along the curve between the control points

DUH�REWDLQHG�DQG�VWRUHG�LQ�DQ�DUUD\��7KH�YDOXHV�LQ�WKH�DUUD\�UHSUHVHQW�WKH�FRQWURO�SRLQWV�RI�D�³QHZ�

FXUYH´� �DOWKRXJK� WKH� FXUYH� LV� QRW� FUHDWHG� Ln LightWave) and are used to calculate the cross

sections. The points along the circumference of adjacent cross sections are joined to form

polygons (triangles) that make up the generalized cylinder (see Figure 4.31).

4.2.7.2 LightWave Implementation Issues

The HPGeneralizedCylinder plug-in is implemented as a Mesh Edit Tool plug-in so that the user

can adjust the thickness of the generalized cylinders created by dragging their mouse up and

down. The plug-in has a user interface (see Figure 4.32), which allows the user to enter values

for the thickness and quality of the generalized cylinders, as well as a surface name, UV map

name, and whether or not the generalized cylinders taper off towards a point at one end. The

quality of a generalized cylinder can be adjusted by changing the number of sides or segments

that constitute it. The more sides or segments it contains, the higher its quality. However, more

sides or segments result in more polygons, which require more storage space and have longer

rendering times. We leave it up to the user to determine these values.

Figure 4.32: The HPGeneralizedCylinder plug-LQ¶V�LQWHUIDFH�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 100

4.2.7.3 Results

 A B

 C D

Figure 4.33: Changing the properties of a generalized cylinder.

A user is able to specify values for certain properties of the generalized cylinders created with

the HPGeneralizedCylinder plug-in. The properties that can be changed by the user include the

thickness, number of sides, number of segments, surface name, UV map name, and whether the

generalized cylinder has a constant thickness or tapers off on one end. Figure 4.33 shows results

when values for the properties are changed. All the generalized cylinders in the figure are created

from curves made up of four segments (defined by five control points) with a length of 2m. In

diagram A the thickness is changed. The generalized cylinders are made up of eight sides, with

one segment between the original control points of the curve, and have thicknesses of 50mm,

100mm, 150mm and 200mm. In diagram B the number of sides making up the generalized

cylinder is changed. The generalized cylinders have a thickness of 150mm, with one segment

between original control points, and are made up of four, six, eight, and ten sides. The diagram

shows that generalized cylinders made up of more sides approximate a circular cylinder more

accurately than generalized cylinders with fewer sides, however, more sides results in more

polygons, higher storage requirements, and slower rendering times. In diagram C the number of

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 101

segments calculated between the control points has been changed. The generalized cylinders

have a thickness of 150mm, and eight sides. The number of segments that have been created

between the control points is one, two, three, and four. The shape and accuracy of the

generalized cylinders in the diagram are the same. This is due to the fact that the curves are

straight lines and do not bend. Diagram D shows the difference between a generalized cylinder

with a constant thickness and one that tapers off on one end. In all the diagrams the generalized

F\OLQGHUV� KDYH� EHHQ� JLYHQ� D� VXUIDFH� FDOOHG� ³+DLU6XUIDFH´�� DQG� WKH� UV� PDS� QDPH� ³+DLU89´��

However, the names of the surface and UV map, and the surface properties, can be changed.

Figure 4.34: Converting a curve into generalized cylinders.

Figure 4.34 shows an example of a curve (A) converted into a generalized cylinder with 4

segments (B), 20 segments (C), and 40 segments (D).

 A B

Figure 4.35: Using the HPGeneralizedCylinder plug-in for braids and twists.

A

B

C

D

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Hair Modelling Plug-ins 102

Figures 4.35 and 4.36 show the use of the HPGeneralizedCylinder plug-in. In Figure 4.35 a braid

(A) and twist (B) are defined by three curves (top). Using the HPGeneralizedCylinder plug-in the

curves are converted into generalized cylinders, which can be used to represent a cluster of hair

(middle). The generalized cylinders created have eight sides. To create the appearance of a

circular generalized cylinder smooth shading is applied (bottom). Figure 4.36 shows two

hairstyles. The top hairstyle consists of braids of hair, and the bottom hairstyle consists of twists

of hair. Each braid and twist is defined by three curves and has a radius of 2mm (the head

models have dimensions of approximately 20 cm x 25 cm) (A). The HPGeneralizedCylinder

plug-in is used to convert the curves into generalized cylinders that represent clusters of hair (B).

The generalized cylinders created for the braids have a radius of 1.4mm, and the generalized

cylinders created for the twists have a radius of 1.8mm. The generalized cylinders are given a

surface name, default surface properties and a UV map. The surface name can be used to change

the surface properties of the generalized cylinders, for example the default surface colour can be

changed to black (C). The UV map name can be used to add textures to the generalized cylinders

in order to create the effect of individual strands of hair (see Section 5.4.2).

A B C

Figure 4.36: Using the HPGeneralizedCylinder plug-in.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

IMPLEMENTING PLUG-INS Summary 103

4.3 Summary

In this chapter we discuss seven plug-ins that we develop in order to implement the three hair

modelling techniques discussed in Chapter 3. A description of each plug-in is given together

with some of the implementation issues involved in creating the plug-in for LightWave. Using a

combination of the plug-ins a user is able to model a variety of African hairstyles containing the

three identified forms of African hair: curly hair, straight hair, and braids or twists of hair. The

rendering of hair modelled with our plug-ins is discussed in the next chapter.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

5 RENDERING AFRICAN HAIR

In order to render modelled African hair, several rendering aspects need to be considered. These

aspects include an illumination model, shadowing techniques, anti-aliasing and texturing. In this

chapter we discuss the different rendering techniques we use to render African hair that has been

modelled using the plug-ins discussed in Chapter 4. The rendering is done using a renderer

compatible with the RenderMan Interface, and the African hair modelled with our plug-ins in

LightWave is exported as a RIB (RenderMan Interface Bytestream) file using LightMan [Dapper

2001].

5.1 Introduction

5.1.1 Setting Up the Scene

In order to render hair (or any object), a scene containing the modelled hair (or object) together

with a camera and lights needs to be set up. We use the classic three point lighting set-up [Birn

2000], demonstrated in Figure 5.1.

 Top View Side View

Figure 5.1: Three point lighting set-up.

Three spotlights, called a Key light, Fill light and Back light, are placed in the scene. The Key

light and Fill light are placed on opposite sides of the camera, and the Back light is placed behind

the object. The colours of the lights are set to white. The Key light provides the main lighting in

the scene. It has a high intensity (we use 100%), casts shadows and affects specular highlights in

Key light Fill light

Back light

Camera

Key light
Back light

Fill light

Camera

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Introduction 105

the scene. However, a scene lit with only the key light contains hard shadows and a large

contrast between light and dark (see diagram A of Figure 5.2). To soften the shadows and lower

the contrast of light and dark, a Fill light is placed in the scene. The Fill light has a much lower

intensity than the Key light (we use 40%), and does not cast shadows or affect the specular

highlights. The effect of the Fill light can be seen in diagram B of Figure 5.2. The Back light,

also called the Rim light, is used to create a rim of light around the top or side of the object,

which helps to separate the object from the background (especially when they are both dark).

The intensity of the Back light is high (we use 80%), and it casts shadows, but it does not affect

the specular highlights in the scene. The effect of the Back light can be seen in diagram C of

Figure 5.2. Diagram D in Figure 5.2 shows the lighting effect when all three lights are used

[Policarpo 2003].

 A B C D

Figure 5.2: The effect of the Key, Fill, and Back lights, and the final result.

5.1.2 RenderMan and LightMan

5.1.2.1 RenderMan

We use a renderer compatible with the RenderMan Interface
5
 to render the scene containing the

modelled African hair. The RenderMan Interface (or RenderMan) is an industry standard

technical specification designed by Pixar [Pixar 2003] to transfer a description of a scene from a

modelling program to different rendering programs [Pixar 2000]. The description of the scene is

usually passed to the renderer in a file with a RenderMan Interface Bytestream (RIB) file format

[Lancaster 2003].

5 RenderMan is a registered trademark of Pixar.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Introduction 106

There are many renderers that adhere to the RenderMan standard. These includH� 3L[DU¶V�

PhotoRealistic RenderMan (PRMan) [Pixar 2003], Blue Moon Rendering Tools (BMRT) [Gritz

1999], RenderDotC [Dot C Software 2002], 3Delight [3Delight 2002], and Air [SiTex Graphics

2003]. The renderers use different rendering methods to render a scene. For instance

RenderDotC and Air use a scanline method, PRMan and 3Delight use the REYES scanline

method, and BMRT uses ray tracing [Lancaster 2003].

LightWave has its own renderer, but we choose to use a renderer compatible with RenderMan

instead, for a number of reasons:

x� RenderMan is an industry standard and is not dependent on the hardware, operating system,

or rendering algorithm used [Pixar 2000]. A number of modelling programs have support

for exporting a scene as a RIB file [Lancaster 2003]. Using RenderMan our modelled hair

can be rendered using any rendering algorithm, or our rendering techniques can be applied

to hair that has been modelled in any modelling program that has RenderMan support.

x� The RenderMan Interface contains a Shading Language, which is used to write programs

called shaders. The shaders are used during rendering to set the material and lighting

properties of surfaces [Pixar 2000]. The Shading Language makes developing and

implementing an illumination model for hair easy.

x� Other reasons, provided by Dapper [2001], include quality (especially when using textures),

speed, memory efficiency, and flexibility.

5.1.2.2 LightMan

In order to render the scene containing modelled African hair using a renderer compatible with

the RenderMan interface, the scene modelled in LightWave needs to be converted into the

RenderMan RIB format. To do this we use LightMan developed by Dapper [2001]. LightMan is

a collection of LightWave plug-ins that enable a scene modelled in LightWave to interface with

a number of RenderMan compatible Renderers, including PRMan, BMRT, RenderDotC, and Air

[Dapper 2001]. The collection of plug-ins include a shader plug-in, which replaces surfaces with

RenderMan compatible shaders; an object replacement plug-in, which replaces objects with RIB

Archives and custom RIB statements; and a main plug-in, which does the actual RIB export

[Dapper 2003].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Illumination Model 107

5.2 Illumination Model

This section looks at the illumination model, and shaders using the RenderMan Interface, that we

use to illuminate African hair.

5.2.1 Introduction

5.2.1.1 Using a Conventional Illumination Model

As we pointed out in Section 2.3, the easiest way to render hair is to model each individual

strand of hair as a curved cylinder and then render the cylinders using conventional rendering

techniques. An example of hair rendered with a conventional illumination model can be seen in

Figure 5.3. Each strand of hair is modelled as a simplified cylinder using a thin six-sided

generalized cylinder (that has a length of 4m and a radius of 1cm).

Figure 5.3: Using a conventional illumination model.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Illumination Model 108

The illumination model used has an ambient, diffuse and specular component. The diffuse

component, � diffuse, is calculated using the Lambertian shading model [Foley et al. 1990] and the

specular component, � specular�� LV� FDOFXODWHG� XVLQJ� %OLQQ¶V� VSHFXODU� PRGHO� >%OLQQ� ����@�� D� OHVV�

expensive version of the Phong illumination model, that uses the halfway vector [Watt and Watt

1992]:

� diffuse = Kd (L���N)

� specular = Ks (N���H)
n
, where H = (L + V) / 2

where Kd and Ks are the diffuse and specular coefficients, n is the Phong exponent specifying the

sharpness of the highlight, and L, N, H and V are vectors as shown in Figure 5.4.

Figure 5.4: Important vectors in a conventional illumination model.

The light intensity, � surface(p), of a point p on a surface of one of the generalized cylinders is

calculated using the equation:

� surface(p) = LaKa + ��Li (� diffuse(p) + � specular(p))

where La and Li are the light intensities of the ambient light and each light source i, respectively,

and Ka is the ambient reflection coefficient.

The result obtained using a conventional illumination model on simplified cylinders (generalized

cylinders) is appropriate for African hair. However, due to the large number, complex shape, and

narrow width of strands of hair, modelling each strand of hair as a thin, bent cylinder on a model

of a head is impractical (because too many polygons are needed). As a result, researchers have

developed other methods to model hair (see Section 2.2), and in this thesis we model hair

explicitly with polylines (see Sections 3.2, 4.2.2, 4.2.3 and 4.2.6). Unfortunately, the

conventional illumination model discussed above is not appropriate for lighting hair modelled

with polylines instead of generalized cylinders, because it calculates the light intensity at a point

on a surface that has a normal pointing in one direction.

In section 2.3.2 we describe a number of illumination models (or extensions of an illumination

model) that have been presented by researchers in order to render hair that is modelled with

N (normal)

L (light)
H (halfway)

V (viewer)

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Illumination Model 109

polylines. In the section below, we describe the illumination model we use to illuminate African

hair.

5.2.2 Our Illumination Model

5.2.2.1 Introduction

Our illumination model consists of an ambient, diffuse and specular component, and like most

KDLU� LOOXPLQDWLRQ� PRGHOV�� LW� LV� EDVHG� RQ� .DML\D� DQG� .D\¶V� DQLVRWURSLF� OLJKWLQJ� PRGHO� >����@��

However, a number of researchers have made improvements to different components in Kajiya

DQG�.D\¶V�PRGHO��VHH�6HFWLRQ���������DQG�ZH�FRPELQH�VHYHUDO�RI�WKHVH�LPSURYHPHQWV�WR�GHYHORS�

our model.

5.2.2.2 The Ambient, Diffuse and Specular Components

The ambient component, � am bient, is calculated as usual, using:

� ambient = LaKa

where La is the total intensity of ambient light in the scene and Ka is the ambient reflection

coefficient determined experimentally.

Figure 5.5: Important unit vectors in our illumination model

T L

V

H

 p x�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Illumination Model 110

7KH�GLIIXVH�FRPSRQHQW�LV�FDOFXODWHG�XVLQJ�.DML\D�DQG�.D\¶V�GLIIXVH�WHUP�>����@�ZLWK�WKH�H[FHVV�

brightness exponent presented by Banks [1994] and implemented by Lengyel [2000] and

Lengyel et al. [2001]. The equation used is:

� diffuse = Kd{1 í��T�L)
2
}

k /2

where T and L are the tangent and light vectors respectively (see Figure 5.5), Kd is the diffuse

reflection coefficient determined experimentally, and k is the excess brightness exponent. Banks

recommends a value of 4.7635 for k. The equation is the same as� .DML\D� DQG�.D\¶V� GLIIXVH�

equation when k has a value of 1.

The specular component, � specular (implemented previously by Anjyo et al. [1992], Lengyel

>����@�DQG�/HQJ\HO�HW�DO��>����@��LV�FDOFXODWHG�XVLQJ�%OLQQ¶V�VSHFXODU�PRGHO�>%OLQQ�����@��ZKLFK�

VLPSOLILHV� WKH� FRPSXWDWLRQ�IRU�WKH�VSHFXODU�WHUP�LQ�.DML\D�DQG�.D\¶V� LOOXPLQDWLRQ�PRGHO�>����].

The equation used is:

� specular(p) = Ks{1 í��T�H)
2
}

n/2

where Ks is the specular reflection coefficient, n is the Phong exponent, H is the halfway vector,

and T is the tangent vector along the length of the hair (see Figure 5.5). The values of Ks and n

are determined experimentally, and H is calculated as the vector between L (the light vector) and

V (the eye vector):

H = (L + V) / |L + V|

Together the three components can be used to calculate the light intensity, � hair, of a point p on a

hair strand using the equation:

� hair(p) = LaKa + ��Li (� diffuse(p) + � specular(p))

where Li is the light intensity of each light source i. However, this equation does not consider the

direction of the viewer when calculating the diffuse component, and hairs are fully lit even when

the light source is behind the hair.

5.2.2.3 Adjusting the Relative Transmission and Reflection of Light

For light-coloured hair (e.g. blonde hair) our equation above provides an acceptable

approximation of the light intensity at a point, even though the direction of the viewer is not

considered, because the hair is partially transparent and transmits light through the hair.

However, African hair contains dense pigment granules that cause it to be far more opaque than

other types of hair [Deedrick 2000]. African hair therefore does not transmit light through the

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Illumination Model 111

hair, and the direction of the viewer with respect to the direction of the light needs to be taken

into account in the equation above.

To add directionality to our hair illumination model so that both light reflection and light

transmission are considered, we use a technique developed by Goldman [1997]. We add a

directional attenuation factor, fdir, to our model, so that the light intensity, � hair, at a point p on a

hair strand is calculated using the equation:

� hair(p) = LaKa + ��Li fdir (� diffuse(p) + � specular(p))

where fdir is the directional attenuation factor. The details of the attenuation factor fdir can be

found in Section 2.3.2.4.

5.2.2.4 Extra Features that Could be Added

Other features that could be added to our illumination model include backlighting and a variation

in colour between strands of hair or within a strand of hair. However, these features are more

important for light-coloured hair. Since African hair is opaque it does not transmit light and

haloing is not as prominent under backlighting conditions [LeBlanc et al. 1991]. Also the colour

of adjacent strands of hair, or within an individual strand of hair, tends to be the same (see Figure

5.6). However, a user using our plug-ins to create explicitly modelled hair is able to change the

surface properties of individual strands of hair manually, if they want different strands of hair to

be different colours. To change the colour within a strand of hair they would need to add a vertex

colour map to the strands of hair [Nakakihara 2001].

Figure 5.6: All strands of hair have the same colour.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Illumination Model 112

5.2.3 Implementing the Illumination Model as a Shader

Since we render hair with a renderer that is compatible with the RenderMan Interface, we

implement our illumination model as a shader using the RenderMan Shading Language:

surface HairShader (float Ka = 0.0, Kd = 0.5, Ks = 0.5, Kn = 0.1, Kb = 1.0, Fr = 1.0, Ft = 1.0;)

{
 vector T = normalize (dPdv); /* The hair tangent vector */

 vector H, Ln, V = ínormalize(I); /* The halfway, light, and eye vectors */
 uniform float nondiff, nonspec; ��7KH�OLJKW¶V�FRQWULEXWLRQ��

 float k, Fdir; /* The directional attenuation factor */

 /* The ambient component */

 Ci = Cs * Os * Ka * ambient();

 /* The diffuse and specular components */
 illuminance (P) {

 /* Get the next non-ambient light vector */

 Ln = normalize(L);
 /* Calculate the directional attenuation factor */

 k = ((T^Ln).(T^V))/((length(T^Ln))*(length(T^V)));
 Fdir = (((1 + k)/2) * Fr) + (((1 í k)/2) * Ft);

 /* Calculate the diffuse component */
 nondiff = 0;

 lightsource ("__nondiffuse", nondiff);
 if (nondiff < 1)

 Ci += Cl * Cs * Os * Kd * pow ((1 í pow ((T.Ln), 2)), Kb/2) * Fdir;

 /* Calculate the specular component */
 nonspec = 0;

 lightsource ("__nonspecular", nonspec);
 if (nonspec < 1) {

 H = normalize(Ln+V);
 Ci += Cl * Os * Ks * pow ((1 í pow ((T.H), 2)), 1/(Kn*2)) * Fdir;

 }

 }

 /* The incident ray opacity */
 Oi = Os;

}

Not all lights in a scene are required to contribute to the specular and diffuse components. For

instance our scene is set up with three lights and only the Key light contributes to the specular

component (see Section 5.1.1). The statements:

nondiff = 0; nonspec = 0;

 lightsource ("__nondiffuse", nondiff); and lightsource ("__nonspecular", nonspec);

 if (nondiff < 1) {....} if (nonspec < 1) {....}

are used to determine whether a light contributes to the diffuse and specular components

respectively. When the scene is set up in LightWave the user is able to set the properties of the

lights. LightMan exports the scene into a RenderMan RIB file format and sets the value of

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Shadowing 113

_nondiffuse and _nonspecular to 0 if the light contributes to the component and 1 if the light

does not contribute to the component [Dapper 2001].

The value of the Phong exponent, n, is calculated as 1/Kn, rather than Kn (as done by the default

RenderMan shaders). Therefore, the value of Kn will usually be a value between 0 and 1 rather

than some large value such as 200 [Pixar 2000].

5.2.4 Implementing the Illumination Model in Textured Layers

The illumination model, implemented as a shader in the section above, is developed for

rendering hair that is modelled explicitly with polylines. However the same illumination model

can also be used to add lighting effects to hair that is modelled using textured layers (discussed

in Section 3.1). To apply the illumination model to textured layers, slight modifications are made

to the shader presented in the section above. The modified shader can be found in Appendix A.

Since the hair strands are represented by a texture rather than explicitly, the tangent vector for

each hair strand is stored in a texture map (represented by tangentTexture), and the line that

obtains the tangent vector in the original shader:

vector T = normalize (dPdv); /* The hair tangent vector */

is replaced with:

 vector T;
 color t = color texture (tangentTexture);

 setxcomp (T, comp (t, 0)); /* x is represented by the red component */
 setycomp (T, comp (t, 1)); /* y is represented by the green component */

 setzcomp (T, comp (t, 2)); /* z is represented by the blue component */
 normalize (T);

More information about the texture map can be found in Section 5.4.1.

5.3 Shadowing

Adding shadows to hair is important in order to create realistic looking hair. In this section we

discuss the methods we use to add shadows to our explicitly modelled hair and to create the

effect of self-shadowing in textured layers that represent hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Shadowing 114

5.3.1 Adding Shadows to Explicitly Modelled Hair

5.3.1.1 Introduction

In Section 2.3.3 we discuss several methods that can be used to add shadows to hair. In order to

add shadows to our explicitly modelled hair we use traditional shadow maps. In Section 2.3.3 we

point out that other shadowing methods, such as ray tracing and deep shadow maps, produce

higher quality shadows than traditional shadow maps. However, we choose to use traditional

shadow maps because they have faster rendering speeds than other shadowing techniques [Tezel

and Teo 2002]. We render our hair using a renderer that adheres to the RenderMan Interface. All

renderers that implement the RenderMan Interface are required to be able to create depth maps

(traditional shadow maps), whereas not all the renderers are able to implement ray tracing [Pixar

2000]. Deep shadow maps would be a better technique to use and are implemented in Release 11

RI�3L[DU¶V�UHQGHUHU�3KRWR5HDOLVWLF�5HQGHU0DQ�>3L[DU�����@�

5.3.1.2 Implementing Shadow Maps Using RenderMan

To implement shadow maps using RenderMan, a shadow map must first be created for each light

source, in the scene, that casts shadows (in our case the Key light and Back light). This can be

done using the RiDisplay and RiMakeShadow procedures:

 5L'LVSOD\�³VKDGRZPDS�SLF´�³]ILOH´�³]´

5L0DNH6KDGRZ�³VKDGRZPDS�SLF´�³VKDGRZ�W[´

The RiDisplay statement creates a file called ³VKDGRZPDS�SLF´ that contains depth value (z value)

information generated from the point of view of the related light source, and the RiMakeShadow

statement converts the shadowmap.pic file into a shadow map [Pixar 2000].

The shadow maps are then accessed by light source shaders (using the shadow shading language

function), which calculate the amount of light that arrives at a point:

5L/LJKW6RXUFH�³OZVSRWOLJKW´�����³VKDGRZQDPH´�³VKDGRZPDS�W[´�

shadow (shadowname, Ps)

The RiLightSource statement specifies the light source shader (e.g. ³OZVSRWOLJKW´) and shadow map

(e.g. ³VKDGRZPDS�W[´) to be used, and the shadow function is called within the light source shader

to access the shadow map and obtain a value for the point Ps.

Since we model hair and place it in a scene with three lights in LightWave, and then use

LightMan to export the scene before rendering it with a RenderMan compatible renderer, most of

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Shadowing 115

the shadow map implementation is done for us. In LightWave we specify which of the lights cast

shadows, and we set values for the area of the scene affected by the light and the resolution of

the shadow map. We then use LightMan to export the hair and lights. LightMan automatically

adds the statements required to produce the necessary shadow maps into the RIB file describing

the scene, and creates a light source shader for LightWave spotlights (³OZVSRWOLJKW�VO´) that is able

to access shadow maps.

5.3.1.3 Results

Figure 5.7 demonstrates the result when hair (modelled explicitly with polylines) is rendered

without shadowing (A) and with shadow maps (B). The hair rendered with shadow maps is more

realistic than the hair rendered without, and seems to have more depth. The hair rendered without

shadows appears very flat.

 A B

Figure 5.7: Rendering hair without shadows and with traditional shadow maps.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Shadowing 116

5.3.2 Self-shadowing in Layers

We model curly African hair with textured layers (see Section 3.1). To add the effect of self-

shadowing in the hair we assume the hair represented by layers closer to the scalp is in more

shadow than hair further away from the scalp. To implement this effect we use a technique

implemented by Lengyel [2000] and Lengyel et al. [2001]. We make the surface colour of the

lower layers closer to the scalp darker than the colour of higher layers further away from the

scalp.

5.3.2.1 Results

Figure 5.8 shows the result when hair, represented by textured layers, is rendered without self-

shadowing (top) and with self-shadowing using the technique described above (bottom).

Figure 5.8: Rendering hair without self-shadowing and with self-shadowing.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Texturing 117

5.4 Texturing

We use texturing in several instances to create the effect of hair or to enhance the realism of a

hairstyle created with our plug-ins (discussed in Chapters 3 and 4). We apply texture maps to

layers (created with the HPLayer plug-in) to create the effect of curly hair, to generalized

cylinders (created with the HPGeneralizedCylinder plug-in) to create the effect of many strands

of hair, and to a cap placed on the head model to enhance the realism of a hairstyle. The creation

and mapping of the texture maps are discussed below.

5.4.1 Texturing Layers to Create the Effect of Hair

5.4.1.1 Introduction

To create the effect of short, curly African hair we use an implicit model that represents hair with

concentric textured layers (see Section 3.1). To create concentric layers we use the HPLayer

plug-in (discussed in Section 4.2.1). Once the layers have been created they must be textured to

create the effect of hair. We apply an opacity map and a tangent map to each layer. The opacity

maps define the shape, thickness and density of the hair strands, and the tangent maps store the

tangent vectors of hair strands, which are required when using our illumination model (see

Section 5.2.4). The layers are also given appropriate values for their surface properties, which

are used in the illumination model when rendering the hair. The surface properties include a

surface colour (which determines the colour of the hair and is used for creating the effect of self-

shadowing, discussed in Section 5.3.2), diffuse reflection coefficient, specular reflection

coefficient, Phong exponent and brightness exponent (see Section 5.2.2).

In order to create the opacity and tangent maps we generate random curly splines in 3D space,

and then take slices of the 3D space at specific heights. Each slice is used to create an opacity

map and a tangent map. Areas where splines exist are shown as white areas on the opacity map

and represent hair, while areas where no spline exists are represented with black. The tangent of

each spline at the point where the slice is taken is stored in the tangent map using a colour. The

x, y, and z components of each tangent vector are represented by the red, green, and blue

components of the colour, respectively. Figure 5.9 shows an example of an opacity map (A) and

a tangent map (B).

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Texturing 118

 A B

Figure 5.9: An opacity map and a tangent map.

5.4.1.2 Implementing the Texturing with a Shader

A set (opacity map and tangent map) of texture maps is assigned to each layer, and the layers are

rendered with a shader that uses the texture maps. The shader we use is similar to our shader

discussed in Section 5.2.3, except that the tangent vectors are obtained from the tangent map (see

Section 5.2.4), and the surface opacity, Os, is replaced with:

Os * float texture (opacityTexture)

where opacityTexture represents the opacity map. A copy of the complete shader can be found in

Appendix A.

5.4.1.3 Results

 A B C D

Figure 5.10: Applying textures to concentric layers.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Texturing 119

Diagrams B and D in Figure 5.10 show the effect when texture maps are applied to concentric

layers to create the effect of hair. Diagrams A and C show the hair modelled with concentric

layers, but without texture maps applied. In Diagrams A and B the surface colour of the layers is

grey. The surface colour of the layers in Diagrams C and D has been set to black.

5.4.2 Representing Individual Hair Strands in Braids and Twists

5.4.2.1 Introduction

To model braids and twists of hair we define wisps of hair using curves, which are later

converted into generalized cylinders with the HPGeneralizedCylinder plug-in (see Sections 3.3

and 4.2.7). The generalized cylinders represent wisps of hair. To create the effect of individual

strands of hair in each wisp, texture maps can be applied to the surfaces of the generalized

cylinders. The texture maps may be photographs of hair or textures created with a paint program.

Alternatively, procedural textures could be added to create the effect of individual strands of

hair. We use a paint program to create hair texture maps. The method we use is based on a

technique presented by Koh and Huang [2001] (see Section 2.3.4.3). We create a texture map (or

alpha map) that defines transparent (no hair) and opaque (hair) areas on the surface of the

generalized cylinders. The alpha map is used to create the illusion of complex geometry. A

second texture map (or colour map) may also be created and mapped onto the generalized

cylinders to define the colour of the hair strands. However, the colour map is not essential. The

colour of the hair strands will be determined by the surface colour of the generalized cylinder

representing them if a colour map is not supplied. The surface colour of the generalized cylinders

can be changed to any desired colour.

5.4.2.2 Texturing Generalized Cylinders

In order to apply a texture map to a surface, the texture map must be mapped onto the surface so

that each point on the surface is related to a unique point in the texture map (represented by U

and V coordinates). Using LightWave, a user may set the UV coordinates for each point

manually or the user may apply a projection that automatically determines UV coordinates for

each point. The choices of projections include planar, cylindrical, and spherical projections.

However, the projections do not always produce accurate results, and some of the UV

coordinates often have to be adjusted manually [Nakakihara 2001].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Texturing 120

To make texturing generalized cylinders easier, our HPGeneralizedCylinder plug-in

automatically defines the UV coordinates of the polygon vertices in a generalized cylinder. When

the plug-in is run, the user is asked to provide a surface name and a UV map name. The surface

QDPH� LV� XVHG� WR� LGHQWLI\� WKH� VXUIDFH� RI� WKH� JHQHUDOL]HG� F\OLQGHU�� 8VLQJ� /LJKW:DYH¶V� 6XUIDFH�

Editor panel [Nakakihara 2001], the properties of the surface (e.g. colour, transparency, and

specularity) can be changed by the user, and a texture can be applied to the surface. Because the

UV� FRRUGLQDWHV� DUH� DXWRPDWLFDOO\� GHILQHG�� DOO� D� XVHU� KDV� WR� GR� LV� VHOHFW� ³89´� DV� WKH� W\SH� RI�

projection, the name of the generDOL]HG�F\OLQGHU¶V�UV map (which they provided when they ran

the plug-in), and an image (for the texture map).

Our HPGeneralizedCylinder plug-in assigns UV coordinates, so that an entire image is mapped

vertically and once onto a generalized cylinder: the orientations of the patterns in the image are

important and the image is not tiled over the generalized cylinder. The mapping used is shown in

Figure 5.11.

Figure 5.11: Mapping a texture onto a generalized cylinder.

A seam problem occurs when a texture is wrapped around geometry so that some vertices (along

the seam) require two UV coordinate values [Nakakihara 2001]. Considering the six-sided

generalized cylinder in Figure 5.11, a seam problem will occur along the generalized cylinders

because the points with a U value of 0.0 (the left side of the texture map) also need a U value of

1.0 (the right side of the texture map). Figure 5.12 shows an example of a cylinder with and

without a seam problem. In the left diagram (with a seam problem) most of the texture has been

squashed and mapped backwards onto a polygon (because the U value on the left side of the

V

U

1.0

0.0 1.0 0.83 0.0 0.16

 0.0 0.16 0.0

0.0

0.25
0.25

0.75

0.75

1.0 1.0

0.5
0.5

0.33
0.33

(0.16, 0.75)

(0.16, 0.75)

0.83

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Texturing 121

polygon should have a value of 0.0 and 1.0. Instead it only has a value of 1.0, causing a mapping

with the values 1.0 to 0.16 instead of 0.0 to 0.16) (see Figure 5.13).

Figure 5.12: Cylinders with and without the seam problem.

Figure 5.13: The texture and U values.

We take the seam problem into consideration when implementing the HPGeneralizedCylinder

plug-in. The polygon vertices along the generalized cylinder where the sides of the texture meet

(U = 0.0 and U = 1.0) are given two sets of UV values. This is implemented using the pntVPMap

function from the LightWave SDK [Wright 2001].

5.4.2.3 Results

Figure 5.14 shows an example of a texture map applied to three generalized cylinders to create

the effect of three clusters of hair in a braid. Diagram A shows a braid represented by three

generalized cylinders. In Diagram B the surface colour of the generalized cylinders has been

changed to black. Diagram C shows the generalized cylinders with the texture map (shown on

the right in Figure 5.14) applied as an alpha map. The texture map defines the opacity across the

surface of each generalized cylinder, and is used to create the effect of many strands of hair.

0.0 0.16 0.33 0.5 0.66 0.83 1.0

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Texturing 122

Figure 5.14: Texturing generalized cylinders.

5.4.3 Adding Additional Texture to the Head

5.4.3.1 Introduction

For some hairstyles that contain braids and twists, flatly parted hair can be seen on the scalp (see

Section 3.3.5). This hair is not part of the braids or twists. When modelling and rendering these

hairstyles, extra texture maps can be placed onto the scalp to represent the flatly parted hair. Our

technique of adding an extra texture map to the scalp is inspired by the cap technique [Comet

2000] (see Section 2.3.4.3).

5.4.3.2 Creating the Texture Maps

The parted hair forms a tessellation
6
 over the scalp [Gilmer 1998]. (See Figure 5.15 for more

information about tessellations.) Since a tessellation occurs, instead of creating a single texture

map for the entire scalp, a smaller texture map, which uses less memory and requires less

redundant work to create, can be created and then tiled over the surface [Neyret and Cani 1999].

6
 A tessellation is a pattern formed when a fundamental shape is tiled in a way so that each shape does not overlap

another and no region is left uncovered [Gilmer 1998].

A

B

C

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Texturing 123

Figure 5.15: Tessellations.

The small texture can be created using 2D painting software. Since the texture is tiled, it must

have a toroidal
7
 topology so that it joins correctly with itself when tiled (no noticeable seams

must appear between two tiles) [Neyret and Cani 1999].

Instead of tiling a texture on the scalp to represent parted hair, a few textured layers can be added

to the scalp to form a 3D cap. The textured layers can be created using our HPLayer plug-in (see

Section 4.2.1) and the method discussed in Section 3.1.

In real life, the positions of the shapes in the tessellation are determined by the position of the

braids or twists in a hairstyle. When applying an additional texture map to represent flatly parted

hair on a scalp, it is important to make sure that the positions of the shapes in the texture

representing the flatly parted hair correspond to the positions of the braids or twists on the head.

One way to make sure that they correspond is to create an appropriate texture, and map it onto

the scalp, before defining the braids or twists in the hairstyle. Using this method, the positions of

the braids or twists in a hairstyle are determined by the positions of the shapes in the tessellation.

The method produces accurate results when a tessellation that corresponds to the desired

positions of the braids or twists is used.

7
 The left edge of the texture fits next to the right edge of the texture, and the top edge fits with the bottom edge

[Neyret and Cani 1999].

The triangle, square and hexagon are the only regular polygons that are able to form a
tessellation [Gilmer 1998].

³7HVVHOODWLRQV�FDQ�EH�SURGXFHG�IURP�LUUHJXODU�SRO\JRQV�RU�D�FRPELQDWLRQ�RI�SRO\JRQV´�

[Gilmer 1998].

Irregular shapes that tessellate can be created by modifying one of the three regular

polygons that tessellate [Gilmer 1998].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Texturing 124

5.4.3.3 Results

Figure 5.16 shows an example of an additional texture that can be placed onto a scalp to

represent flatly parted hair. Diagram A shows the shape that tessellates over the scalp, and

Diagram B shows a texture map with a toroidal topology that can be tiled over a surface to form

a tessellation of the shape. Figure 5.17 illustrates the texture tiled onto the scalp of a head model.

 A B

Figure 5.16: A toroidal texture.

Figure 5.17: Adding an additional texture onto the scalp.

Figure 5.18 shows an example of a texture map that is tiled onto four concentric layers created

with the HPLayer plug-in. The textured layers form a 3D cap on the scalp, which represents

flatly parted hair.

Figure 5.18: Adding additional textured layers onto the scalp.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Anti-aliasing 125

5.5 Anti-aliasing

5.5.1 Introduction

To reduce aliasing in rendered hair we use supersampling, which is supported by RenderMan.

Supersampling involves sampling at a higher resolution than the display resolution, and then

filtering the samples to produce the final image pixels (see Section 2.3.5.2).

5.5.2 Supersampling with RenderMan

The number of samples taken and the type of filter used are set with the RiPixelSamples and

RiPixelFilter RenderMan commands respectively:

RiPixelSamples xsamples ysamples

RiPixelFilter filterfunc xwidth ywidth

When� RQO\� RQH� VDPSOH� LV� WDNHQ� SHU� SL[HO� �³RiPixelSamples 1 1´� LV� FDOOHG�� DQWL-alising is not

implemented. Sampling rates greater than one in the horizontal (xsamples) and vertical

(ysamples) directions implement anti-aliasing and reduce aliasing artefacts. Larger sampling rates

produce higher quality images than lower sampling rates, but they have slower rendering times

(see our results in Section 6.3.4.1) [Pixar 2000].

RenderMan supports a number of standard filter functions, including a box filter, Catmull-Rom

filter, Gaussian filter and Sinc filter. The filter type is specified by filterfunc in the RiPixelFilter

command, and xwidth and ywidth set the size of the filter in pixels [Pixar 2000]. The type and size

of the filter we use is obtained through experimentation.

5.5.3 Using Textures

In Section 2.3.5.4 we state that texture maps applied to surfaces are prone to aliasing artefacts

when the resolution of the texture is not well matched to the display resolution. To reduce the

aliasing artefacts a technique known as mip-mapping can be applied. Mip-mapping is usually

needed when the distance between the viewer and the textured surface changes. Since hair

animation and dynamics is not the focus of this thesis, we do not consider the effect produced

when the distance between the viewer and the textured surface changes, and we do not use mip-

mapping when applying textures to represent hair. Instead we apply textures with resolutions that

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

RENDERING AFRICAN HAIR Summary 126

match the display resolution (through trial and error), for the single distance between the viewer

and textured surface that we are using, to avoid aliasing artefacts in the textures.

5.6 Summary

In this chapter we discuss the rendering techniques we use in order to render hair that has been

modelled using our plug-ins discussed in Chapter 4. These rendering techniques include several

rendering aspects: an illumination model, shadowing techniques, texturing and anti-aliasing. The

rendering is done using a renderer compatible with the RenderMan Interface, and the African

hair modelled with our plug-ins in LightWave is exported as a RIB file using LightMan. In the

next section we discuss several aspects relating to our modelling and rendering techniques and

present results.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

6 DISCUSSIONS AND RESULTS

6.1 Introduction

This thesis presents hair modelling and rendering techniques that that can be used to create a

variety of African hairstyles with ease. In Chapter 3 we discuss the hair modelling techniques we

develop in order to model curly hair, straight hair, and braids and twists of hair. The techniques

not only model the different forms of hair, but also place the hair modelled onto a model of a

head, and are developed so that the problem of modelling a large number of hair strands is

overcome. In Chapter 4 we consider the implementation of the techniques using plug-ins for

LightWave, allowing a user to model a variety of African hairstyles interactively. In Chapter 5

we discuss the rendering techniques we use in order to render the hair, which include an

illumination model, shadowing techniques, texturing, and anti-aliasing. In this chapter we

discuss significant results and several issues regarding our hair modelling and rendering

techniques.

This Chapter is divided into three parts. In the first part (Section 6.2) we show results and discuss

issues relating to our hair modelling techniques. For each technique we show that different

hairstyles can be created with relative ease, and examine the effect that certain variables have on

rendering time and image quality. The shape of a natural curly hairstyle modelled with our

implicit technique may appear unrealistic due to the structure of the underlying mesh. We

discuss a method for improving the shape. We also discuss the issue of stray hairs that may

appear when modelling hair using our explicit technique and overlapping clusters that may occur

when modelling braids with our cluster technique. In the second part (Section 6.3) we show

results and discuss issues relating to our hair rendering techniques. We examine the effects

produced by different components of our illumination model, with particular reference to black

African hair, and show the result of rendering implicitly modelled hair represented by textured

layers with a modified version of our illumination model. We examine the effect that different

shadow map resolutions and self-shadowing have on rendering time and image quality. We

discuss several issues relating to textures, and we investigate the effect of using different

sampling rates and filters when implementing supersampling to remove aliasing artefacts. In the

third part (Section 6.4) we show that our hair modelling and rendering techniques can be used to

create a variety of African hairstyles by presenting a number of hairstyles created with the

techniques.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 128

6.2 Modelling Results

6.2.1 Modelling Natural Curly Hair

6.2.1.1 Modelling Different hairstyles with Our Implicit Technique

A B C D

Figure 6.1: Two hairstyles modelled with concentric layers.

Figure 6.1 shows two short, curly hairstyles modelled with our implicit hair modelling technique.

The first hairstyle (shown in diagrams A and C) consists of very short hair, while the second

hairstyle (shown in diagrams B and D) consists of slightly longer hair. Both hairstyles are

represented by 20 concentric layers modelled with the HPLayer plug-in. The total height of the

layers in the first hairstyle is 5cm, while the total height of the layers in the second hairstyle is

10cm (the head model has dimensions of approximately 180cm x 250cm). Diagrams A and B

show the modelled hairstyles, while diagrams C and D show the final rendered results. It takes

approximately 5±10 minutes to model the hairstyles, apply the pre-processed texture maps and

set the surface properties. More examples of different hairstyles created with our implicit hair

modelling technique can be found in Section 6.3.3.

6.2.1.2 The Shape of a Natural Curly Hairstyle

Hair modelled with our implicit hair modelling technique is represented by concentric textured

layers that are created parallel to the scalp above selected polygons. The shape of the layers is

determined by the selected polygons, causing the boundary of the hairstyle represented by the

layers to be dictated by the underlying mesh. This may cause the shape of the hairstyle to be

unrealistic. To improve the shape of a hairstyle an extra opacity map that defines the overall

shape of the hairstyle may be applied to each layer.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 129

 A B C

Figure 6.2: Improving the shape of a natural curly hairstyle.

Diagram A in Figure 6.2 shows a hairstyle with a shape dictated by the underlying mesh.

Diagram B shows the hairstyle with a more realistic shape, and Diagram C shows the extra

opacity map that was applied to each layer to define the shape of the hairstyle in Diagram B.

6.2.1.3 The Number of Layers Used

Figure 6.3 shows the rendering times of hair samples created with different numbers of layers.

The graph shows that the rendering time increases linearly, in proportion to the number of layers

used.

Rendering Times for Different Numbers of Layers

0

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14 16 18 20

Number of Layers

R
e

n
d

e
ri

n
g

 T
im

e
 /
 [

s
e

c
o

n
d

s
]

Figure 6.3: Rendering times when using different numbers of layers.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 130

The rendered hair samples, created with different numbers of layers, can be seen in Figure 6.4.

The samples show that larger numbers of layers produce better results, and hair represented by

too few layers does not look realistic. In this example, at least 12 layers are needed to produce

reasonably realistic-looking hair. However, because the number of layers affects the rendering

time, we would not suggest using more layers than are needed.

Figure 6.4: Hair represented by different numbers of layers.

2 4

6 8

10 12

14 16

18 20

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 131

The distance between the layers in each sample in Figure 6.4 is the same. Therefore the total

height of the layers differs for each sample. In Figure 6.5 we show the results when 20 layers and

10 layers are used to represent hair, where the distance between the layers in the two samples

differs, but the total height of the layers is the same. The hair represented by 10 layers appears

thinner than the hair represented by 20 layers.

Figure 6.5: Hair represented by different numbers of layers with the same height.

Figure 6.6 illustrates that unrealistic results are obtained when the layers are placed too far apart

from one another. In the figure, the hair is represented by five layers that have the same height as

the layers in Figure 6.5. However, the distance between the layers is too large, causing gaps to

appear between the layers so that specks of hair are seen instead of the effect of strands of hair.

Figure 6.6: Placing layers too far apart.

6.2.2 Modelling Straight Hair

6.2.2.1 Modelling Different Hairstyles with Our Explicit Technique

Figure 6.7 shows two different hairstyles modelled with our explicit hair modelling technique.

The top hairstyle is defined by 30 control hairs initially created with the HPCurve plug-in. Each

control curve consists of four segments and has five control points. It takes approximately one

hour to design the hairstyle by modifying the control curves (moving the control points). The

control point closest to the scalp is not moved as it represents the root of the hair strand. The

final hairstyle is created by randomly placing 80 copies of each control curve onto the head

20 10

5

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 132

model. The copies are automatically created and placed on the head model using the

HPDuplicate plug-in. The bottom hairstyle is defined by 68 control hairs and takes

approximately 2½ hours to design. The final hairstyle is produced by automatically creating 40

copies of each control hair. The figure shows that using our explicit hair modelling technique

different hairstyles can be modelled.

Figure 6.7: Two explicitly modelled hairstyles.

6.2.2.2 Stray Hairs

When explicitly modelling hair, we overcome the problem of modelling the large number of hair

strands required by automatically creating and randomly placing most of the hair strands on the

head model using our HPDuplicate plug-in. Sometimes a few hair strands are created that have

an unwanted shape or appear in the wrong place. For example, in the left image in Figure 6.8 a

few hairs on top of the head have an unwanted shape and three of the hairs at the bottom are in

the wrong place.

Figure 6.8: Fixing and Removing Stray Hairs.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 133

Fortunately, the problem of unwanted stray hairs is easily solved because the hair strands are

explicitly modelled. By selecting and moving control points of the stray hairs, the shape of the

hairs can be modified, and unwanted hairs can be selected and deleted. In Figure 6.8 the shapes

of the stray hairs on top of the head that appear to end in mid air are changed by selecting the

control points at the end and moving them down towards the head. The three hair strands at the

bottom that have been placed in an unwanted position are not needed, and may be deleted,

producing the image on the right.

It is possible to design a hairstyle with control hairs and then procedurally render the rest of the

hair strands without ever explicitly modelling them. The LightWave plug-in SasLite, a simplified

YHUVLRQ� RI�:RUOH\�/DERUDWRULHV¶� FRPPHUFLDO�SOXJ-in Sasquatch, uses this method [Nakakihara

2001]. An advantage of the method is that the storage requirements are much lower than our

explicit technique. However, the technique does not provide a way for stray hairs to be modified

or deleted, and the users have to keep rendering the hair and adjusting values until they have the

desired image.

6.2.2.3 The Number of Curves Used

Figure 6.9 shows rendering times when different numbers of curves are used to model a

hairstyle. The hairstyle tested is designed with 30 control hairs, each consisting of five control

points. Using the HPDuplicate plug-in, n copies (duplicates) of each control hair are made and

randomly placed on the head model to create a full hairstyle. The curves are converted into

polylines with five segments between control points. The hairstyle is then rendered in

LightWave without anti-aliasing or shadowing (NN), without anti-aliasing but with shadow

mapping (NS), with anti-aliasing but no shadowing (AN), and with anti-aliasing and shadow

mapping (AS).

7KH� VFHQH� FRQVLVWV� RI� RQH� VSRWOLJKW� DQG� /LJKW:DYH¶V� GHIDXOW� LOOXPLQDWLRQ� PRGHO� LV� XVHG�� :H�

render the hair on its own without the head geometry and then with the head geometry. The

results in Figure 6.9 show that the rendering time increases linearly in proportion to the number

of curves used. Adding a shadow map does not have a large effect on the rendering time, but

when anti-aliasing is applied rendering is much slower, and the rendering times increase

significantly with respect to the number of curves used. Adding the head model (consisting of

728 polygons) does not have a large effect on the rendering time. This is due to hidden surface

removal. Although more polygons are added to the scene, the strands of hair that appear behind

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 134

the head do not have to be rendered. The rendering times are satisfactory when real-time

rendering is not required.

Rendering Times for the Hair Only

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

10 20 30 40 50 60 70 80 90 100 110 120

Number of Duplicates

R
e

n
d

e
ri

n
g

 T
im

e
 /
 [

s
e

c
o

n
d

s
]

NN

NS

AN

AS

Rendering Times with Head Model

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

10 20 30 40 50 60 70 80 90 100 110 120

Number of Duplicates

R
e

n
d

e
ri

n
g

 T
im

e
 /

 [
s

e
c

o
n

d
s

]

NN

NS

AN

AS

Figure 6.9: Rendering times when using different numbers of curves.

Images of the hair rendered can be seen in Figure 6.10. The labels under the images represent the

number of duplicate curves created for each control curve, and, in brackets, the total number of

curves making up the hairstyle. The hairstyles in the images become similar in appearance and

quality as the number of curves is increased. Thus, although a large number of polygons are

needed to represent hair explicitly, there is an upper bound on the number of polygons needed to

produce a reasonable hairstyle. Generating more hair strands than needed will increase the time

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 135

taken to render the hair without improving the visual quality of the hair. The number of hairs

needed is well below the number actually present on a human head [Patrick and Bangay 2003].

 10 (330) 20 (630) 30 (930) 40 (1,230)

 50 (1,530) 60 (1,830) 70 (2,130) 80 (2,430)

 10 (330) 20 (630) 30 (930) 40 (1,230)

 50 (1,530) 60 (1,830) 70 (2,130) 80 (2,430)

Figure 6.10: The quality of hair produced with different numbers of curves.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 136

6.2.2.4 The Number of Segments making up Polylines

Because curves cannot be rendered in LightWave, we convert curves representing strands of hair

into polylines before rendering. Polylines approximate a curve and our HPPolyline plug-in

allows the user to specify the quality of the approximation by entering the number of segments

between control points. We investigate the effect the number of segments making up a polyline

has on the quality of the hair and the rendering time. Figure 6.11 shows rendering times when

polylines representing strands of hair in a hairstyle consist of different numbers of segments. The

hairstyle tested consists of 1,230 curves, and each curve has five control points. Using the

HPDuplicate plug-in, the curves are converted into polylines consisting of n segments between

the control points, and therefore a total of n x 4 segments. The hairstyle is rendered in

LightWave without anti-aliasing or shadowing (NN), without anti-aliasing but with shadow

mapping (NS), with anti-aliasing but no shadowing (AN), and with anti-aliasing and shadow

mapping (AS). The scene consists of� RQH� VSRWOLJKW�DQG�/LJKW:DYH¶V�GHIDXOW� LOOXPLQDWLRQ�PRGHO�

is used. We render the hair on its own without the head geometry and then with the head

geometry.

The results in Figure 6.11 show that the rendering time increases linearly in proportion to the

number of segments used. Shadow maps do not have a large effect on the rendering time, but

anti-aliasing increases the rendering times significantly. Adding the head model (consisting of

728 polygons) decreases the rendering time by less than a second. The results are similar to the

results for different numbers of curves (Section 6.2.2.3), so we conclude that increasing the

number of segments will increase the rendering time. Figure 6.12 shows the quality of hair

produced when the polylines, representing strands of hair, consist of different numbers of

segments.

The labels under the images represent the number of segments between control points, and, in

brackets, the total number of segments making up each polyline. The quality of the hair strands

increases and approximates a curve more accurately as the number of segments used increases.

However, the difference in quality becomes negligible after a certain number of segments have

been used (for the hairstyle shown in Figure 6.12 at approximately 20 segments per hair strand).

Therefore, polylines can be used to represent strands of hair even though they are only

approximations, and there is an upper bound on the number of segments needed to produce a

reasonable strand of hair. Using more segments than needed increases the time taken to render

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 137

the hair without improving the visual quality of the hair. For the simple hairstyle shown in Figure

6.12, 16±20 segments per hair strand are appropriate.

Rendering Times for the Hair Only

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 3 4 5 6 7 8 9 10

Number of Segments Between Control Points

R
e

n
d

e
ri

n
g

 T
im

e
 /

 [
s

e
c

o
n

d
s

]

NN

NS

AN

AS

Rendering Times with Head Model

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 3 4 5 6 7 8 9 10

Number of Segments Between Control Points

R
e

n
d

e
ri

n
g

 T
im

e
 /

 [
s

e
c

o
n

d
s

]

NN

NS

AN

AS

Figure 6.11: Rendering times when using different numbers of segments.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 138

 1 (4) 2 (8) 3 (12) 4 (16)

 5 (20) 6 (24) 7 (28) 8 (32)

 1 (4) 2 (8) 3 (12) 4 (16)

 5 (20) 6 (24) 7 (28) 8 (32)

Figure 6.12: The quality of hair produced with different numbers of segments.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 139

6.2.3 Modelling Hairstyles with Braids and Twists of Hair

6.2.3.1 Modelling Different Hairstyles with our Cluster Technique

Figure 6.13: Hairstyles containing braids and twists.

Figure 6.13 shows two different hairstyles modelled with our cluster hair modelling technique.

The top hairstyle is a cornrow hairstyle initially defined by 14 curves that are manually placed

across the scalp. Each curve consists of ten segments. It takes approximately 40 minutes to

modify the curves so that they represent the desired hairstyle. The curves are converted into

braids using the HPBraid and HPGeneralizedCylinder plug-ins. The HPBraid plug-in is used to

convert each curve into three curves that define a braid, and the HPGeneralizedCylinder plug-in

is used to convert the curves into generalized cylinders that represent clusters of hair. The bottom

hairstyle consists of twists of hair. The hairstyle is initially defined by 30 control curves that are

placed on the head using the HPCurve plug-in. It takes approximately one hour to modify the

curves so that they represent the desired hairstyle. More curves are created from the control

curves using the HPDuplicate plug-in so that the final design for the hairstyle consists of 100

curves. The 100 curves are converted into twists using the HPTwist and HPGeneralizedCylinder

plug-ins. The HPTwist plug-in is used to convert each curve into three curves that define a twist,

and the HPGeneralizedCylinder plug-in is used to convert the curves into generalized cylinders

that represent clusters of hair. The figure shows that using our cluster hair modelling technique

different hairstyles can be modelled.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 140

6.2.3.2 The Number of Clusters in a Braid or Twist

Figure 6.14 shows braids (left) and twists (right) created with different numbers of clusters. The

figure shows that at least three clusters should be used in order to create a realistic braid or twist.

The braids and twists consisting of more than five clusters do not appear significantly different.

Figure 6.14: Braids and twists with different numbers of clusters.

Figure 6.15 shows the times taken to render the braid and twist samples shown in Figure 6.14.

The rendering times increase as the numbers of clusters, representing the braids and twists,

increase. Each cluster is made up of 1,536 polygons.

1

2

3

4

5

6

7

8

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 141

Rendering Times when using Different Numbers

of Clusters

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Number of Clusters

R
e

n
d

e
ri

n
g

 T
im

e
 /
 [

s
e

c
o

n
d

s
]

Braid

Twist

Figure 6.15: Rendering times when using different numbers of clusters.

6.2.3.3 Overlapping Clusters

Figure 6.16: Overlapping clusters.

Depending on the number of clusters used and the angle between the clusters, some of the

clusters representing a braid may overlap. Diagram A in Figure 6.16 shows an example of a

braid in which clusters overlap. The braid consists of four clusters, and there is a difference of

90Û� EHWZHHQ� WKH� VWDUWLQJ� DQJOHV� RI� WKH� FOXVWHUV�� 7KH� SUREOHP� RI� RYHUODSSLQJ� FOXVWHUV� FDQ� EH�

solved by changing the value of the angle between the clusters slightly. This can be done by

using a�VOLJKWO\�GLIIHUHQW�YDOXH�IRU�³$QJOH�EHWZHHQ�FXUYHV´�ZKHQ�FUHDWLQJ�WKH�FXUYHV�WKDW�GHILQH�

A

B

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 142

the clusters in the braid using the HPBraid plug-in. In Diagram B, most of the overlapping has

been removed by setting the difference in starting angles between the clusters to 80Û�UDWKHU�WKDQ�

90Û�� 7KH� GLVDGYDQWDJH� RI� VHWWLQJ� WKH� GLIIHUHQFH� LQ� VWDUWLQJ� DQJOHV� EHWZHHQ� WKH� FOXVWHUV� WR� ��Û�

rather than 90Û� IRU� IRXU� FOXVWHUV� LV� WKDW� WKH� FOXVWHUV� DUH�QRW� HYHQO\�VSDFHG� �DOWKRXJK� WKH� DQJOH�

between the clusters is set to 80Û�� Whe angle between the first and last cluster will be 120Û��

because 4 x 80Û� ����Û�DQG�QRW����Û��

6.2.3.4 The Number of Segments Making up a Generalized Cylinder

Rendering Times for Generalized Cylinders

Created with Different Numbers of Segments

5

5.5

6

6.5

7

7.5

8

1 2 3 4 5 6 7 8

Number of Segments Between

Control Points

R
e

n
d

e
ri

n
g

 T
im

e
 /
 [

s
e

c
o

n
d

s
]

Smooth Shading

Constant Shading

Figure 6.17: Rendering times when using different numbers of segments.

Figure 6.17 shows the times taken to render braid samples consisting of three clusters. The

clusters in each sample are represented by generalized cylinders created with different numbers

of segments. The original curves defining the clusters have 16 segments, and each generalized

cylinder has eight sides. Therefore a generalized cylinder created with n segments between each

set of control points on the original curve will have a total of n x 16 segments and n x 16 x 8 x 2

polygons (each segment along the eight sides is represented by two triangles). Each braid sample

consists of n x 16 x 8 x 2 x 3 (or n x 768) polygons (the braid is made up of three clusters

represented by three generalized cylinders). Figure 6.17 shows that the rendering time increases

as the number of segments making up each generalized cylinder increases. The figure also shows

that the rendering time is slightly longer (by approximately 3%) when smooth shading is used

instead of constant shading. Figure 6.18 shows the braid samples rendered with constant shading

(left) and with smooth shading (right). The quality of the braid samples produced increases as the

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 143

number of segments used increase. However, when smooth shading is applied the difference in

quality when different numbers of segments are used is negligible after a certain number of

segments (at about four segments between control points for the samples in Figure 6.18). The

quality of the braid samples rendered with smooth shading is also substantially better than the

quality of the braid samples rendered with constant shading. Therefore, the least number of

segments that produce an appropriate quality should be used to create the generalized cylinders,

and although smooth shading has slightly longer rendering times than constant shading, it

produces substantially better results, especially when lower numbers of segments are used, and

should therefore be considered.

Figure 6.18: Braids represented by generalized cylinders created with different numbers of

segments.

1

2

3

4

5

6

7

8

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 144

For the braid sample of hair shown in Figure 6.18 we would choose to create the generalized

cylinders with four segments between the control points of the defining curves, and would render

the generalized cylinders with smooth shading.

6.2.3.5 The Number of Sides Making up a Generalized Cylinder

Figure 6.19 shows the times taken to render twist samples consisting of three clusters. The

clusters in each sample are represented by generalized cylinders that have different numbers of

sides. The original curves defining the clusters have 16 segments, and each generalized cylinder

is created with four segments between each pair of control points on the original curve.

Therefore, a generalized cylinder with n sides will have a total of n x 16 x 4 x 2 (or n x 192)

polygons (each segment is represented by two triangles), and each twist sample (represented by

three generalized cylinders) will have a total of n x 192 x 3 (or n x 576) polygons. Figure 6.19

shows that the rendering time increases as the number of sides making up each generalized

cylinder increases. Figure 6.20 shows the twist samples rendered with constant shading (left) and

with smooth shading (right). The quality of the twist samples produced increases as the number

of sides making up the twists increase. However, when smooth shading is applied the difference

in quality when different numbers of sides are used is negligible from a certain number of sides

(at five sides for the samples in Figure 6.20). Therefore the least number of sides that produce an

appropriate quality should be used to create the generalized cylinders. For the sample of a twist

of hair shown in Figure 6.20 we would chose to give the generalized cylinders five sides.

Rendering Times for Generalized Cylinders

Created with Different Numbers of Sides

5

5.5

6

6.5

7

7.5

8

1 2 3 4 5 6 7 8

Number of Sides

R
e

n
d

e
ri

n
g

 T
im

e
 /
 [

s
e

c
o

n
d

s
]

Smooth Shading

Constant Shading

Figure 6.19: Rendering times when using different numbers of sides.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Modelling Results 145

Figure 6.20: Twists represented by generalized cylinders that have different numbers of sides.

3

4

5

6

7

8

9

10

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 146

6.3 Rendering Results

6.3.1 Illumination Model

6.3.1.1 The Effect of the Diffuse Component

Our illumination model includes a diffuse component, which we implemented in a shader

(written with the RenderMan Shading Language) using the equation:

Ci += Cl * Cs * Os * Kd * pow ((1 í pow ((T.Ln), 2)), Kb/2) * Fdir; (see Section 5.2.3)

The variables Ci, Cl, Cs, and Os� UHSUHVHQW� WKH�ILQDO�FRORXU�� OLJKW¶V�FRORXU��KDLU�VXUIDFH¶V�FRORXU�

and�KDLU�VXUIDFH¶V�RSDFLW\��UHVSHFWLYHO\�>3L[DU�����@��$IULFDQ�KDLU�XVXDOO\�KDV�D�YHU\�GDUN�FRORXU�

and is often black. If the colour of the hair is set to black, Cs will be black (i.e. 0) and the final

colour Ci will be black (because the result of any colour multiplied with black (the value 0) is

black). Therefore the diffuse component has no effect and is not needed in the illumination

model when the hair surface colour is set to black. Figure 6.21 shows the results of black hair

(represented by polylines) rendered with (A) and without (B) the diffuse component and brown

hair (represented by polylines) rendered with (C) and without (D) the diffuse component. The

figure shows that using the illumination model without the diffuse component will render black

hair no matter what the surface colour of the hair is.

 A B C D

Figure 6.21: Black and brown hair with and without the diffuse component.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 147

6.3.1.2 The Excess Brightness Exponent

The diffuse term in our hair illumination model contains an excess brightness exponent presented

by Banks [1994] to compensate for an average increase in light intensity on objects such as hair.

Banks recommends a value of 4.7635. When the value is 1 the excess brightness term has no

effect on the results of illumination model. Figure 6.22 shows hair rendered with an excess

brightness term value of 1 (A), 4.7635 (B), 10 (C), and 20 (D). We use brown hair to show the

effect of the term clearly, because as we concluded in Section 6.3.1.1 above, the diffuse

component has no effect when the surface colour of the hair is black. By including the excess

brightness exponent in our illumination model, the user has the option of adjusting the light

intensity if they choose to give their African hair a colour other than black.

 A B C D

Figure 6.22: Using different values for the excess brightness term.

6.3.1.3 The Effect of the Specular Component

The specular component in our illumination model is implemented in a shader (written with the

RenderMan shading language [Pixar 2000]) using the equation:

Ci += Cl * Os * Ks * pow ((1 í pow ((T.H), 2)), 1/(Kn*2)) * Fdir; (see Section 5.2.3).

As in the equation for the diffuse component (see Section 6.3.1.1), the variables Ci, Cl, and Os

UHSUHVHQW� WKH� ILQDO� FRORXU�� OLJKW¶V� FRORXU� DQG� KDLU� VXUIDFH¶V� RSDFLW\� UHVSHFWLYHO\� >3L[DU� ����@��

However, unlike the equation for the diffuse component, we do not include Cs��WKH�KDLU�VXUIDFH¶V�

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 148

colour) in the equation for the specular component. The colour of the hair therefore has no effect

on the colour of the specular highlights rendered in the hair.

Using our equation, the colour of the specular highlights is influenced by the colours of the lights

illuminating the hair. Figure 6.23 shows an example of black and brown hair illuminated with

three white lights (A), an off-white (cream) Key light (B), a slightly blue Key light (C), and a

cream Key light with a blue Fill light (D). Since the Fill light is set with a much lower intensity

than the Key light, and is set not to affect the specular component (see Section 5.1.1), diagram D

is very similar to diagram B.

 A B C D

Figure 6.23: Using different coloured lights.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 149

If Cs is added to the equation for the specular component the surface colour will influence the

specular highlights on the hair. The equation is:

Ci += Cl * Cs * Os * Ks * pow ((1 í pow ((T.H), 2)), 1/(Kn*2)) * Fdir;

7KH�UHVXOW�SURGXFHG� LV� ILQH� IRU�FRORXUHG�KDLU��EXW� WKH�VSHFXODU�KLJKOLJKWV�³GLVDSSHDU´�ZKHQ� WKH�

equation is used in our shading model to illuminate black hair. Figure 6.24 shows black hair and

brown hair illuminated with our shader that does not contain Cs in the equation for the specular

component (A and C) and with a shader that does contain Cs in the equation for the specular

component (B and D).

 A B C D

Figure 6.24: Including the surface colour in the equation for the specular component.

A variable representing the colour of the specular highlights, specularcolour, could have been

added to the specular equation in our shader [Pixar 2000], which would allow the user to

determine the colour of the specular highlights. The equation for the specular component would

then become:

Ci += Cl * Os * specularcolour * Ks * pow ((1 í pow ((T.H), 2)), 1/(Kn*2)) * Fdir;.

6.3.1.4 Light Reflection and Transmission

We added a directional attenuation factor to our illumination model (a technique developed by

Goldman [1997]) so that both light reflection and light transmission are considered. Figure 6.25

shows the results when different values of light reflection (Fr) and transmission (Ft) are used in

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 150

our illumination model to render brown hair with only the Back light in the scene. We use brown

hair for the example because the Back light only contributes to the diffuse component (see

Section 5.1.1) and the diffuse component has no effect when the surface colour of the hair is

black (which was concluded in Section 6.3.1.1). The values of Fr and Ft used to render each

diagram are:

Diagram A: Fr = 1.0, Ft = 1.0

Diagram B: Fr = 1.0, Ft = 0.0

Diagram C: Fr = 1.0, Ft = 0.5

Diagram D: Fr = 0.5, Ft = 0.5

 A B C D

Figure 6.25: Using different light reflection and light transmission values.

When both Fr and Ft equal 1.0, the directional attenuation factor has no effect in the illumination

model, and the hair is illuminated even though the Back light is on the opposite side of the hair

to the viewer (A). This effect is appropriate for light coloured hair that is slightly transparent.

However, African hair is usually opaque [Deedrick 2000]. African hair can be illuminated

correctly, so that light is not transmitted through the hair by setting Ft equal to 0.0 (B). The

amount of light transmitted can be adjusted (to correspond to the opacity of the hair being

rendered) by setting Ft to different values (C and D). Since the Back light and the viewer are on

opposite sides of the hair, the value of Fr has no effect on the hair rendered in Figure 6.25.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 151

6.3.1.5 Black Hair Conclusion

When rendering black, opaque African hair, our illumination model does not need a diffuse

component and the directional attenuation factor could be implemented as a constant value (with

Fr equal to 1.0 and Ft equal to 0.0). However, African hair does not always have a totally black

surface colour, and a user may want a certain amount of light to be transmitted through the hair.

Our illumination model with a diffuse component and directional attenuation factor allows

African hair, with different colours and opacities, to be illuminated, and can also be used to

illuminate other types of hair.

6.3.1.6 Including our Illumination Model in Textured Layers

Figure 6.26 shows the result when hair represented by textured layers is rendered with (top) and

without (bottom) our illumination model. The light intensity varies in the hair rendered with our

illumination model, while the hair rendered without our illumination model is a constant

intensity.

Figure 6.26: Illuminating hair represented by textured layers.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 152

6.3.2 Shadowing

6.3.2.1 Using Different Shadow Map Resolutions

We use traditional shadow maps to add shadows to our explicitly modelled hair (see Section

5.3.1). Figure 6.27 shows the rendering times of a sample of hair rendered using shadow maps

with different resolutions. The shadow maps are created from the point of view of the Key light

(see Section 5.1.1). The results in Figure 6.27 show that using a shadow map with a higher

resolution results in a higher rendering time. Figure 6.28 shows the sample of hair rendered with

the shadow maps of different resolutions. If the resolution of the shadow map is too low, the

quality of the image produced is poor. The results in Figure 6.28 also show that the difference in

quality for different shadow map resolutions is negligible after a certain resolution (in this

example at a resolution of approximately 2048 x 2048 pixels). Therefore the lowest resolution

that produces an appropriate quality should be chosen. For the sample of hair shown in Figure

6.28 we would chose a shadow map resolution of 2048 x 2048 pixels.

Rendering Times for Different Shadow Map

Resolutions

32

64

128

256

512

4096

2048

1024
0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Shadow Map Resolution / [pixels x pixels]

R
e

n
d

e
ri

n
g

 T
im

e
 /
 [

s
e

c
o

n
d

s
]

Figure 6.27: Rendering times when using different shadow map resolutions.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 153

 32 x 32 64 x 64 128 x 128 256 x 256

 512 x 512 1024 x 1024 2048 x 2048 4096 x 4096

Figure 6.28: Using different shadow map resolutions.

6.3.2.2 Self-shadowing in Layers

To add the effect of self-shadowing to hair represented by textured layers, we make the surface

colour of the lower layers closer to the scalp darker than the colour of higher layers further away

from the scalp (see Section 5.3.2). Since only the surface colour of the layers is changed, adding

self-shadowing to hair represented by textured layers has no effect on the rendering time.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 154

6.3.3 Texturing

6.3.3.1 Using Different Texture Maps and Surface Colours to Render Different Types of

Hair with Our Implicit Technique

 A B

Figure 6.29: Creating different hair types.

Figure 6.29 shows that different types of hair can be created for the same hairstyle by using

different texture maps and surface properties. In diagram A the texture maps are created from

840 splines and the surface colour is set to black. In diagram B the texture maps are created from

240 splines and the surface colour is set to red. In both diagrams the texture maps have been tiled

16 times over each layer (because smaller texture maps are less expense to create and store).

6.3.3.2 Using Texture Maps that Represent Different Hair Densities

By using texture maps in our implicit hair modelling technique, the problem of modelling a large

number of hair strands is overcome. The texture maps are automatically generated, so a user does

not have to model strands of hair explicitly. Unfortunately, as a result the user does not have

control over the shape of each individual strand of hair. However, a user is able to specify the

density and curliness of the hair strands represented by the textures. Because the texture maps

are pre-processed, the density of the hair (number of hair strands represented by the textures)

does not affect the rendering time. Figure 6.30 shows the rendering times for samples of hair

with different densities. Each hair sample is modelled with 20 layers. The texture maps applied

to the layers in each sample are created using different numbers of splines to create different hair

densities. The graph shows that the samples took roughly the same time to render (each sample

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 155

took approximately 47 seconds). The different samples of hair with different densities are shown

in Figure 6.31.

Rendering Times for Different Hair Densities

20

25

30

35

40

45

50

55

60

120 240 360 480 600 720 840 960

Density / [splines]

R
e

n
d

e
ri

n
g

 T
im

e
 /
 [

s
e

c
o

n
d

s
]

Figure 6.30: Rendering times for different hair densities represented with textures.

Since the textures have the same resolution, they have the same storage requirements (unless

compressed). Therefore the density of the hair represented by textures does not affect the storage

requirements of the hair. Smaller texture maps that represent hair can be tiled over a surface if

they have a toroidal topology. The smaller texture maps have smaller storage requirements and

require less time to process.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 156

Figure 6.31: Different hair densities.

6.3.3.3 Reusing Texture Maps

Figure 6.32: Reusing a texture to create the effect of hair.

120 240

360 480

600 720

840 960

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 157

Another advantage of using texturing is that the textures are pre-processed and can be reused.

Figure 6.32 shows two hairstyles created on different head models using the same texture maps

and a braid and twist that have been textured with the same texture map to create the effect of

many strands of hair.

6.3.3.4 Texturing Braids to Create the Effect of Many Strands of Hair

Texture maps are applied to generalized cylinders with our cluster hair modelling technique in

order to create the effect of many strands of hair. A texture map (or opacity map) is used to

define hair and no hair areas across the generalized cylinders. Areas where no hair exists are

rendered as transparent areas. However, we find that the technique does not produce realistic

results when used to create a braid or twist, because clusters of hair behind other clusters can be

seen through the transparent areas (see diagram A in Figure 6.33).

Figure 6.33: Texturing generalized cylinders.

To solve the problem we use three concentric generalized cylinders for each cluster instead of a

single generalized cylinder. The three generalized cylinders are created using the same defining

curve, but have slightly different radii (see Figure 6.34). Each generalized cylinder is textured

and given a surface colour. To create the effect of self-shadowing, the generalized cylinders

closer to the centre can be given darker surface colours than the outer generalized cylinders.

Diagram B in Figure 6.33 shows the result produced when three generalized cylinders are used.

The generalized cylinders have a radius of 5cm, 6cm, and 7cm respectively. A disadvantage of

A

B

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 158

using three generalized cylinders for each cluster is that number of polygons representing each

cluster is tripled, and increasing the number of polygons that represent a cluster causes an

increase in rendering time (see the previous results in Sections 6.2.3.4 and 6.2.3.5). For the rest

of the results in this section we use three generalized cylinders to create each cluster.

Figure 6.34: Concentric generalized cylinders.

Diagram A in Figure 6.35 shows the result when only an opacity map is applied to each

generalized cylinder. We find that using a texture map as a bump map as well as an opacity map

enhances the effect of individual strands of hair. Diagram B in Figure 6.35 shows the result when

a texture map is applied as an opacity map and a bump map.

Figure 6.35: Applying a bump map.

generalized

cylinders

A

B

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 159

Different coloured hair can be created using our cluster hair modelling technique by changing

the surface colour of the generalized cylinders representing clusters of hair, or by applying

another texture map that represents colour to the generalized cylinders. Figure 6.36 shows a

number of different coloured braids of hair that are represented by generalized cylinders created

with our cluster hair modelling technique.

Figure 6.36: Different coloured braids.

A

B

C

D

E

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 160

Diagram A in Figure 6.36 shows a braid of hair with the default surface properties. The braid can

be used to represent black hair (B) or any other colour of hair (C) by changing the surface colour

of the generalized cylinders making up the braid. Each cluster in the braid can be given a

different colour (D) if the curves defining the braid are converted into generalized cylinders

separately and each given a different surface name. The colour in each cluster of hair can vary by

applying a texture map to the generalized cylinders representing the clusters (E). Figure 6.37

shows the texture map that was used to specify the colour of the braid in Diagram E (in Figure

6.36).

Figure 6.37: Colour map.

6.3.3.5 Unwanted Boundary Effects

Figure 6.38: Unwanted artefacts at the edges.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 161

Additional textures are added to the head to create the effect of flatly parted hair (see Section

5.4.3). Since the parted hair forms a tessellation over the scalp, a single texture map does not

have to be created for the entire scalp. Instead a smaller texture map that has a toroidal topology

can be created and tiled over the scalp. Depending on the texture map used, unwanted boundary

effects caused by the representation of incomplete shapes may appear at the edges due to the

WH[WXUH� PDS¶V� WRURLGDO� WRSRORJ\��)LJXUH� ����� KLJKOLJKWV� LQFRPSOHWH� VKDSHV� �RU� XQZDQWHG�

artefacts) that occur at the edges due to the tiled texture map having a toroidal topology.

Therefore, there is a trade off between creating a single texture map, which requires more

memory and is more time consuming to create, and tiling a texture that may result in a few

unwanted artefacts.

6.3.4 Antialiasing

6.3.4.1 Supersampling at Different Sampling Rates

To reduce aliasing in rendered hair we use supersampling, which involves sampling at a higher

resolution than the display resolution and then filtering the samples to produce the final image

pixels (see Section 5.5). Figure 6.39 shows the results when different sampling rates are used to

render a sample of hair. The labels under the images represent the sampling rate in the horizontal

and vertical directions, and, in brackets, the total number of samples taken for each pixel. The

images show that the quality of the rendered hair increases as the sampling rate increases, but the

difference in quality becomes negligible after a certain sampling rate (in this example at a rate of

approximately 16 samples per pixel). Figure 6.40 displays the time taken to render the sample of

hair with different sampling rates, and shows that the rendering time is higher for larger

sampling rates. Therefore, there is a trade off between image quality and rendering time when

using supersampling when rendering an image. We suggest using the lowest sampling rate that

produces images with a reasonable quality, or the sampling rate at the point where increasing the

sampling rate further will have an insignificant effect on the improvement of image quality.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 162

 1 (1) 2 (4) 3 (9) 4 (16)

 5 (25) 6 (36) 7 (49) 8 (64)

Figure 6.39: Supersampling at different sampling rates.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Rendering Results 163

Rendering Times for Different Sample Values

1
4

9

16

25

36

49

64

40

60

80

100

120

140

0 10 20 30 40 50 60 70

Samples / [samples per pixel]

R
e

n
d

e
ri

n
g

 T
im

e
 /
 [

s
e

c
o

n
d

s
]

Figure 6.40: Rendering times when using different sampling rates.

6.3.4.2 Different Filters

Because supersampling involves sampling at a higher resolution than the display resolution, the

samples taken need to be filtered before producing the final image. RenderMan supports a

number of standard filter functions, including a box filter, Catmull-Rom filter, Gaussian filter

and Sinc filter [Pixar 2000] (see Section 5.5). Figure 6.41 shows the rendering times when

different types of filters are used with supersampling to render a sample of hair. The sample of

hair was rendered using each filter with a supersampling rate of 4 samples per pixel and 16

samples per pixel, and a filter width of two pixels. We did not find any significant difference in

rendering time or image quality between the different types of filters. The images rendered using

the different filters can be seen in Appendix B. For this example the type of filter used does not

matter, and any filter could be used. We suggest choosing the type and size of the filter through

experimentation.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Final Results 164

Rendering Times for Different Filters

72

74

76

78

80

82

84

86

88

90

92

Box Triangle Catmull-Rom Gaussian Sinc

Filter Type

R
e

n
d

e
ri

n
g

 T
im

e
 /
 [

s
e

c
o

n
d

s
]

4 samples per pixel

16 samples per pixel

Figure 6.41: Rendering times when using different filters.

6.4 Final Results

Figures 6.42 ± 6.45 show photographs of African hairstyles containing different forms of hair

together with a similar hairstyle that has been generated using our hair modelling and rendering

techniques.

Figure 6.42: Natural curly hair.

Figure 6.42 shows natural curly hair. The computer-generated hair created with our implicit hair

modelling technique is less dense than the hair in the photograph, and appears slightly fuzzy.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Final Results 165

However, it is still convincing, and may be made denser by applying texture maps created with

more splines.

Figure 6.43: Straightened hair.

Figure 6.43 shows straightened hair. The computer-generated hair created with our explicit hair

modelling technique is convincing. However, it appears smoother than the hair in the

photograph, which has a slightly wavy texture. Possible ways of creating straightened hair with a

slightly wavy texture would be to apply a texture map along the length of the hair, or to

explicitly model wavy strands of hair. As a result of our control hair technique (discussed in

Sections 3.2.1 and 3.2.2) the computer-generated hairstyle appears to consist of clumps of hair.

The hair is the photograph also appears to clump, but not as much. To create straightened hair

without clumps of hair, an interpolation technique should be used to create the hair strands in

between the control hairs. Interpolation is discussed in more detail in Appendix C.

Figure 6.44: Braids of hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Summary 166

Figure 6.45: Twists of hair.

Figures 6.44 and 6.45 show hairstyles with braids and twists of hair. Figure 6.44 shows a

cornrow hairstyle containing braids of hair, while Figure 6.45 shows a hairstyle containing twists

of hair. In each figure, the computer-generated hair created with our cluster hair modelling

technique appears visually convincing.

The African hairstyles created with our hair modelling and rendering techniques in figures 6.42 ±

6.45 are convincing, and demonstrate that our techniques can be used to model and render

African hair successfully.

6.5 Summary

In this chapter we provide several results, and discuss a number of issues, relating to our hair

modelling and rendering techniques.

We show that our implicit, explicit and cluster hair modelling techniques can be used to create a

variety of different African hairstyles with relative ease. Tests are performed on samples of hair

to examine the effect that certain variables have on rendering time and image quality. The

variables tested include the number of layers used to produce curly hair, polylines used to

produce straight hair, and clusters used to represent braids and twists of hair; the number of

segments making up a polyline or generalized cylinder; and the number of sides representing a

generalized cylinder. Examining the results of the tests, we conclude that increasing the number

of polygons used when modelling hair will increase the quality of the hair produced, but will also

increase the rendering time. A large number of polygons are needed to represent hair explicitly

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Summary 167

or with clusters. However, for most of the variables there is an upper bound on the number of

polygons needed to produce a reasonable hairstyle. Generating more polygons than needed will

increase the time taken to render the hair without substantially improving the visual quality of

the hair. We suggest setting the variables to values that create the least number of polygons

needed to provide an appropriate quality. The shape of a hairstyle modelled with our implicit

hair modelling technique may appear unrealistic due to the structure of the underlying mesh. We

show that the shape can be improved by applying an extra opacity map. We also discuss the

issue of stray hairs that may appear when modelling hair using our explicit technique, and

overlapping clusters that may occur when modelling braids with our cluster technique. We

provide solutions to overcome these problems.

We examine the effects different components of our illumination model have on the rendered

image of a sample of hair, and conclude that the diffuse component has no effect and is not

needed, and the directional attenuation factor could be implemented as a constant value, when

black, opaque African hair is rendered. However, we leave them in the illumination model so

that African hair with different colours and opacities can be rendered. The result of rendering

implicitly modelled hair represented by textured layers with a modified version of our

illumination model is shown.

We examine the effect that different shadow map resolutions and self-shadowing have on

rendering time and image quality. We conclude that the lowest resolution that produces hair with

an appropriate quality should be chosen for a shadow map, because higher resolution shadow

maps have higher rendering times. Adding self-shading to hair represented by layers does not

have an effect on the rendering time.

We discuss several issues relating to textures. We show that different types of hair can be created

for the same hairstyle by applying different texture maps, and different hair densities can be

created with texture maps without affecting the rendering time, because the texture maps are pre-

processed. We demonstrate that texture maps can be reused. We discuss the issue of texturing

braids and twists to create the effect of many strands of hair in a cluster, and show that texturing

three concentric generalized cylinders produces a better result than texturing only one. We find

that using a texture map as a bump map as well as an opacity map enhances the effect of

individual strands of hair, and we show that different coloured hair can be created using our

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DISCUSSIONS AND RESULTS Summary 168

cluster hair modelling technique. The issue of incomplete shapes (or unwanted artefacts) that

occur when tiling a texture onto a head model is also discussed.

Tests are performed on samples of hair to examine the effect that different sampling rates and

filters have on rendering time and image quality when supersampling is implemented to remove

aliasing artefacts. Examining the results of the tests, we conclude that increasing the sampling

rate increases the quality of the hair produced, but also increases the rendering time. However,

the difference in quality becomes negligible after a certain sampling rate, so we suggest using the

lowest sampling rate that produces images with a reasonable quality, or the sampling rate at the

point where further increases will have an insignificant effect on the improvement of image

quality. We did not find any significant difference in the rendering time or image quality of hair

rendered with different filters, so we suggest choosing the type and size of the filter through

experimentation.

Finally, different African hairstyles created with our hair modelling and rendering techniques are

presented in the chapter. The hairstyles presented demonstrate that our techniques can be used to

simulate African hairstyles that contain curly hair, straight hair, or braids or twists of hair. In the

next chapter we conclude the thesis and suggest directions for future work.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

7 CONCLUSION

The aim of this research is to provide hair modelling and rendering techniques that can be used

to add African hairstyles to virtual humans. In the Introduction we identify three forms of hair

commonly found in African hairstyles, namely natural curly hair, straightened hair, and braids or

twists of hair. Our goal is to develop hair modelling and rendering techniques that produce these

three forms of hair, so that a user employing our techniques can design an African hairstyle.

Our hair modelling techniques are developed with several goals in mind:

x� They need to be able to add or place hair produced onto a model of a head.

x� They need to be able to represent the shape and geometric properties of the form of hair

they are modelling.

x� They need to overcome the problem of modelling a large number of hair strands.

x� They need to be developed so that a user can model a variety of hairstyles with ease.

The hair modelling techniques presented satisfy the goals above and are implemented as plug-ins

for the graphics program LightWave. We find that plug-in development for LightWave is not

easy, and several issues encountered when developing plug-ins to implement our hair modelling

techniques are discussed.

In order to render the African hair produced with our hair modelling techniques, several

rendering aspects are investigated, and techniques to implement each aspect are presented. In

particular:

x� An appropriate anisotropic illumination model is developed.

x� Shadowing techniques are presented.

x� Anti-aliasing is described.

x� Texturing techniques that create the effect of individual strands of hair are presented.

Our hair rendering techniques are implemented using shaders and a renderer compatible with the

RenderMan Interface. Although LightWave has its own renderer, we use RenderMan for several

reasons. RenderMan is an industry standard and the RenderMan Interface contains a shading

language that is useful for developing and implementing rendering techniques.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

CONCLUSION Thesis Overview 170

7.1 Thesis Overview

In Chapter 2 we present a thorough review of existing hair modelling and rendering techniques.

In the chapter we find that many techniques have been developed and some impressive results

have been produced, which can be seen in several applications including film production.

Commercial hair simulation tools are becoming more widely available to artists and several

researchers have developed interactive systems with user interfaces for their techniques.

However, there is no one superior technique, and most techniques only work well for particular

types of hair under specific conditions. No previous techniques exist that are developed

specifically for African hair or hairstyles.

The hair modelling techniques are divided into three categories: those that model hair implicitly,

those that model hair explicitly, and those that use a combination of implicit and explicit

techniques to model hair as clusters. Each category has advantages and disadvantages.

Examining the advantages and disadvantages we conclude that an implicit model would be the

most useful technique for modelling natural curly African hair, an explicit model would be the

most appropriate method for modelling straightened African hair, and a cluster technique would

be the best method for modelling braids and twists of African hair.

The rendering techniques investigated in Chapter 2 include illumination models, shadowing

techniques, anti-aliasing methods and texturing. We find that an anisotropic illumination model

is needed to render hair accurately, due to the narrow width of each strand of hair; shadowing

and anti-aliasing techniques must be implemented in order to render realistic hair; and texturing

methods can be used to create the effect of a large number of individual strands of hair.

In Chapter 3 we discuss the hair modelling techniques we use in order to model the three

identified forms of African hair. Each technique is able to place hair onto a model of a head

using a selection of polygons or a few control curves.

An implicit model, based on a technique that uses concentric textured layers, is used to model

natural curly African hair. The shape, thickness, density and distribution of the individual strands

of hair are defined by texture maps (or opacity maps) that control the opacity across each

concentric layer. Since the individual strands of hair are represented by texture maps and do not

have to be explicitly modelled, modelling a large number of hair strands is not an issue.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

CONCLUSION Thesis Overview 171

To model straightened African hair we use an explicit hair modelling technique. Each individual

strand of hair is represented by a curve. To overcome the problem of modelling a large number

of hair strands, we implement a technique that uses control hairs. The user defines a hairstyle

with a few control curves, and these are then used to create and define the shape of many more

strands of hair automatically.

We develop a cluster hair modelling technique to model African hair in the form of braids and

twists. Initially the overall shape of each braid or twist is represented by a curve defined by a

user. The curve is then converted into a number of curves that define the shape of the wisps of

hair making up the braid or twist, and each wisp of hair is modelled as a cluster of hair using a

textured generalized cylinder. Since the strands of hair in each braid are modelled as clusters

represented by textured generalized cylinders, a large number of individual strands of hair do not

have to be modelled. Additional textures may be placed onto the scalp to create the effect of

parted hair that is not part of braids or twists.

In Chapter 4 we discuss seven plug-ins for LightWave that we develop in order to implement our

hair modelling techniques. Using a combination of the plug-ins a user can interactively model

hairstyles that contain curly African hair, straightened hair or braids or twists of hair. By

implementing our techniques as plug-ins for an existing modelling program we do not have to

implement an entire system that imports head models in different formats, has a user interface, or

provides tools to perform a variety of operations. Our plug-ins add to the functionality of

LightWave so that the three forms of African hair can be modelled with ease to create a variety

of hairstyles. However, we find that plug-in development for LightWave is not easy. In the

chapter we give a description of each plug-in together with some of the implementation issues

involved in creating the plug-in for LightWave.

In Chapter 5 we discuss the rendering techniques we use in order to render hair that has been

modelled using our plug-ins. The rendering techniques discussed include an illumination model,

shadowing, texturing and anti-aliasing. We develop an illumination model for rendering African

hair created with our implicit and explicit hair modelling techniques, because conventional

illumination models are not appropriate. We apply shadowing to explicitly modelled African hair

using traditional shadow maps and show that hair rendered with shadow maps appears more

realistic and seems to have more depth than hair rendered without shadow maps. We create the

effect of self-shadowing in implicitly modelled hair represented by textured layers by making the

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

CONCLUSION Thesis Overview 172

surface colour of the lower layers closer to the scalp darker than the colour of the higher layers

further away from the scalp. We use textures to create the effect of hair and to enhance the

realism of a hairstyle, by applying texture maps to layers to create the effect of curly hair, to

generalized cylinders to create the effect of many strands of hair, and to a cap placed on the head

model to enhance the realism of a hairstyle. We reduce aliasing in rendered hair by using

supersampling.

The rendering is done using a renderer compatible with the RenderMan Interface, and the

African hair modelled with our plug-ins in LightWave is exported as a RIB file using LightMan.

In Chapter 5 we also discuss the classic three point lighting set-up, which we use to test our

rendering techniques. Because a renderer compatible with the RenderMan Interface is used, our

illumination model is implemented as a shader using the RenderMan Shading Language.

In Chapter 6 we present several results, and discuss a number of issues relating to our hair

modelling and rendering techniques. We show that our implicit, explicit and cluster hair

modelling techniques can be used to create a variety of different African hairstyles with relative

ease. Tests are performed on samples of hair to examine the effect that different variables have

on rendering time and image quality. Examining the results of the tests, we conclude that

increasing the number of polygons used when modelling hair will increase the quality of the hair

produced, but also increase the rendering time. A large number of polygons are needed to

represent hair explicitly or with clusters. However, for most of the variables there is an upper

bound on the number of polygons needed to produce a reasonable hairstyle. Generating more

polygons than needed will increase the time taken to render the hair without substantially

improving the visual quality of the hair. We suggest setting the variables to values that create the

least number of polygons needed to provide images of an appropriate quality. The shape of a

hairstyle modelled with our implicit hair modelling technique may appear unrealistic due to the

structure of the underlying mesh. We show that the shape can be improved by applying an extra

opacity map. We also discuss the issue of stray hairs that may appear when modelling hair using

our explicit technique and overlapping clusters that may occur when modelling braids with our

cluster technique. We provide solutions to overcome these problems: the stray hairs can be

modified or deleted because they are explicitly modelled with our explicit hair modelling

technique, and the overlapping among clusters can be removed by changing the angle between

the curves that originally defined the clusters.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

CONCLUSION Thesis Overview 173

We examine the effects different components of our illumination model have on the rendered

image of a sample of hair. Results show that a diffuse component is not needed in the lighting

model used to illuminate black, opaque African hair, and the colour of the hair should not affect

the specular highlights. However, we leave the diffuse component in the illumination model so

that African hair with different colours and opacities can be rendered. Due to the opacity of

African hair, light reflection and transmission must be considered. The result of rendering

implicitly modelled hair represented by textured layers with a modified version of our

illumination model is shown.

We examine the effect that different shadow map resolutions and self-shadowing have on

rendering time and image quality. We conclude that the lowest resolution that produces hair with

an appropriate quality should be chosen for a shadow map, because higher resolution shadow

maps have higher rendering times. Adding self-shading to hair represented by layers does not

have an effect on the rendering time.

We discuss several issues relating to textures. We show that different types of hair can be created

for the same hairstyle by applying different texture maps, and different hair densities can be

created with texture maps without affecting the rendering time because the texture maps are pre-

processed. We demonstrate that texture maps can be reused. We discuss texturing braids and

twists to create the effect of many strands of hair in a cluster, and show that texturing three

concentric generalized cylinders produces a better result than texturing only one. We find that

using a texture map as a bump map as well as an opacity map enhances the effect of individual

strands of hair, and we show that different coloured hair can be created using our cluster hair

modelling technique. The issue of unwanted boundary effects that occur when tiling a texture

onto a head model is also discussed.

Tests are performed on samples of hair to examine the effect that different sampling rates and

filters have on rendering time and image quality when supersampling is implemented to remove

aliasing artefacts. Examining the results of the tests, we conclude that increasing the sampling

rate increases the quality of the hair produced, but also increases the rendering time. However,

the difference in quality becomes negligible after a certain sampling rate, so we suggest using the

lowest sampling rate that produces images with a reasonable quality, or the sampling rate at the

point where increasing the sampling rate any more will have an insignificant effect on the

improvement of image quality. We do not find any significant difference in the rendering time or

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

CONCLUSION Future Work 174

image quality of hair rendered with different filters, so we suggest choosing the type and size of

the filter through experimentation.

Finally we present different African hairstyles created with our hair modelling and rendering

techniques. The hairstyles presented demonstrate that the techniques presented in the thesis can

be used to simulate African hairstyles that contain curly hair, straight hair, or braids or twists of

hair.

7.2 Future Work

Methods for simulating hair using computer graphics are needed so that hairstyles can be added

to virtual humans. In this thesis we contribute to hair simulation research by investigating hair

modelling and rendering techniques in order to produce different African hairstyles. When

simulating hair three aspects need to be considered: hair modelling, hair rendering, and hair

dynamics. However, due to time constraints and the maximum length permitted for a thesis,

techniques for hair dynamics (which involves the movement of hair and its interaction with

objects, the air and itself [Magnenat-Thalmann et al. 2000]) are beyond the scope of the

investigation. Therefore, future work could concentrate on investigating hair dynamics

techniques that could be used in conjunction with our hair modelling and rendering techniques in

order to simulate African hair for virtual humans.

More specifically we recommend:

x� An investigation of African hair movement and the development of a dynamics model,

which could be used to animate African hair modelled with the techniques discussed in this

thesis. Due to the curliness and types of hairstyles produced, the dynamics of African hair

differs from that of other hair, and in many African hairstyles the hair does not move much

(if at all) with respect to the head.

x� The development of methods for collision detection and response, which are needed when

animating hair, and which can also be useful when modelling hair to ensure that strands of

hair do not intersect with other objects such as the head.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

CONCLUSION Thesis Contributions 175

x� An investigation into improving the performance of our hair modelling and rendering

techniques so that African hair can be placed on virtual humans used in applications that

require real-time performance. The investigation should include the application of multi-

resolution techniques (e.g. mip-mapping and distance-based culling) to improve

performance and image quality when the distance between the viewer and the hair changes.

7.3 Thesis Contributions

As outlined in the introduction to this chapter, the goal of this research is to provide hair

modelling and rendering techniques that can be used to add African hairstyles to virtual humans.

As demonstrated throughout this thesis, this goal has been achieved, making the following

contributions:

x� A comprehensive review of the literature on existing hair modelling and rendering

techniques.

x� The development of three hair modelling techniques, which are designed to model different

forms of hair commonly found in African hairstyles. The techniques are developed to model

natural curly hair, straightened hair and braids or twists of hair, and can be used to produce a

variety of African hairstyles, for which no specific methods existed previously.

x� The enhancement of an illumination model that can be used to render African hair.

x� An investigation of several rendering aspects, emphasizing the importance of including a

shadowing technique and applying an anti-aliasing method when rendering hair, and

demonstrating the usefulness of using texturing to represent many strands of hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

8 REFERENCES

[3Delight 2002] THE 3DELIGHT TEAM. 2002. 3Delight. Available online at:

 http://www.3delight.com/.

[Ahokas 2002] AHOKAS, T. Shadow Maps. Seminar on Computer Graphics, Helsinki University

of Technology Telecommunications Software and Multimedia Laboratory. Available online

at: http://www.tml.hut.fi/Opinnot/Tik-111.500/2002/paperit/timo_ahokas.pdf.

[Ananova 2003] ANANOVA LTD. 2003. Available online at: http://www.ananova.com/video.

[Anjyo et al. 1992] ANJYO, K., USAMI, Y., AND KURIHARA, T. 1992. A Simple Method for

Extracting the Natural Beauty of Hair. In Computer Graphics (Proceedings of ACM

SIGGRAPH 92), 26(2), ACM, 111±120.

[Banks 1994] BANKS, D. 1994. Illumination in Diverse Codimensions. In Proceedings of ACM

SIGGRAPH 94, ACM Press / ACM SIGGRAPH, 327±334.

[Bidasaria 1995] BIDASARIA, H. 1995. A New Method for Modeling of Hair-Grass Type

Textures. ACM Conference on Computer Science, 109±113.

[Birn 2000] BIRN, J. 2000. Three-Point Lighting for 3D Renderings. Available online at:

http://www.3drender.com/light/3point.html. (Adapted from [Digital] Lighting & Rendering,

by J. Birn, published by New Riders, 2000).

[Blinn 1977] BLINN, J. 1977. Models of Light Reflection for Computer Synthesized Pictures.

Computer Graphics (Proceedings of SIGGRAPH 77), 11(2), 192±198.

[Bloomenthal 1990] BLOOMENTHAL, J. 1990. Calculation of Reference Frames along a Space

Curve. In A. Glassner, editor, Graphics Gems, vol. 1, Academic Press, 567±571.

[Bredow 2000] BREDOW, R. 2000. Chapter 5: Fur in Stuart Little. Advanced RenderMan 2: To

RI_INFINITY and Beyond, SIGGRAPH 2000 Course 40, 89-117. Available online at:

http://www.185vfx.com/stuart_fur.html.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

REFERENCES 177

[Chang et al. 2002] CHANG, J., JIN, J., AND YU, Y. 2002. A Practical Model for Hair Mutual

Interactions. ACM SIGGRAPH Symposium on Computer Animation, San Antonio, 73±80.

[Chen et al. 1999] CHEN, L., SAEYOR, S., DOHI, H., AND ISHIZUKA, M. 1999. A System of 3D

Hair Style Synthesis Based on the Wisp Model. The Visual Computer, 15 (4), 159±170.

[Comet 2000] COMET, M. 2000. 3D Hair Tutorial. Available online at:

http://www.comet-cartoons.com/toons/3ddocs/hair/.

[Computer Graphics World 1995] COMPUTER GRAPHICS WORLD. 1995. Believable Hair in a

Fantasy World. Computer Graphics World, November 1995. Available online at:

 http://cgw.pennnet.com/Articles/Article_Display.cfm?Section=Archives&Subsection=Displ

ay&ARTICLE_ID=47683&KEYWORD=hair%20raising&x=y.

[Csuri et al. 1979] CSURI, C., HACKATHORN, R., PARENT, R., CARLSON, W., AND HOWARD, M.

Towards an Interactive High Visual Complexity Animation System. In Computer Graphics

(Proceedings of ACM SIGGRAPH 79), 13(2), ACM, 289-299.

[Daldegan et al. 1993] DALDEGAN, A., THALMANN, N., KURIHARA, T., AND THALMANN, D.

1993. An Integrated System for Modeling, Animating and Rendering Hair. Computer

Graphics Forum (Eurographics 93), 12(3), Blackwell Publishers, 211±221.

[Dapper 2001] DAPPER, T. 2001. LightMan 1.1. Available online at:

 http://www.td-grafik.de/softw/lightman.php.

[Dapper 2003] DAPPER, T. 2003. LightMan Version 1.1 Documentation. Available online at:

 http://www.td-grafik.de/softw/lightman/doc/index.html.

[Deedrick 2000] DEEDRICK, D. Hairs, Fibers, Crime, and Evidence. 2000. Forensic Science

Communications, 2(3). Available online at:

 http://www.fbi.gov/hq/lab/fsc/backissu/july2000/deedric1.htm#Racial Determination.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

REFERENCES 178

[Dischler 1999] DISCHLER, J. 1999. A General Model of Animated Shape Perturbation. Graphics

InterfacH�¶��, 140±147.

[Disney 2001] ©DISNEY ENTERPRISES, INC./PIXAR ANIMATION STUDIOS. 2001. 0RQVWHU¶V�,QF�

 Available online at:

 http://disney.go.com/disneyvideos/animatedfilms/monstersinc/index2.html.

[Dot C Software 2002] DOT C SOFTWARE. 2002. RenderDotC v3.3.5. Available online at:

 http://www.dotcsw.com/.

[Ebert et al. 1994] EBERT , D., MUSGRAVE, F., PEACHEY, D., PERLIN, K., AND WORLEY, S. 1994.

Texturing and Modeling: A Procedural Approach, Second Edition. AP Professional,

Academic Press, 1994.

[Foley et al. 1990] FOLEY, J., VAN DAM, A., FEINER, S., AND HUGHES, J. 1990. Computer

Graphics: Principles and Practice, Second Edition in C. Addison-Wesley, 1990.

[Gilmer1998] GILMER, G. 1998. Mathematical Patterns in African American Hairstyles.

Available online at:

 http://www.math.buffalo.edu/mad/special/gilmer-gloria_HAIRSTYLES.html.

[Goldman 1997] GOLDMAN, D. 1997. Fake Fur Rendering. In Proceedings of ACM SIGGRAPH

97, ACM Press / ACM SIGGRAPH, 127±134.

[Grabli et al. 2002] GRABLI, S., SILLION, F., MARSCHNER, S., AND LENGYEL, J. 2002. Image-

Based Hair Capture by Inverse Lighting. In Proceedings of Graphics Interface 2002, 51±58.

[Gritz 1999] GRITZ, L. 1999. Blue Moon Rendering Tools, User Manual, Release 2.5. Available

online at: http://www.bmrt.org/bmrtdoc/bmrtdoc.html.

[Guang and Zhiyong 2002] GUANG, Y., AND ZHIYONG, H. 2002. A Method of Human Short Hair

Modeling and Real Time Animation. Proceedings of the 10 th Pacific Conference on

&RPSXWHU�*UDSKLFV�DQG�$SSOLFDWLRQV��3*¶���, 435±438.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

REFERENCES 179

[Hadap and Magnenat-Thalmann 2000] HADAP , S. AND MAGNENAT-THALMANN, N. 2000.

Interactive Hair Styler based on Fluid Flow. Proceedings of Eurographics Workshop on

Computer Animation and Simulation 2000, 87±100.

[Hadap and Magnenat-Thalmann 2001] HADAP , S. AND MAGNENAT-THALMANN, N. 2001.

Modeling Dynamic Hair as a Continuum. In Eurographics Proceedings 2001, 20(3).

[Heinen and Walter 2001] HEINEN, F. AND WALTER , M. 2001. GLFurry - An Interactive 3D Fur

Modeling System. Proceedings of the XIV Brazilian Symposium on Computer Graphics and

,PDJH�3URFHVVLQJ��6,%*5$3,¶���, 379.

[Iones et al. 2000] IONES, A., KRUPKIN, A., VOLODARSKY, S., AND ZHUKOV, S. 2000. Fur and

Hair: practical modeling and tendering techniques. International Conference on Information

Visualisation (IV2000), 145±151.

[Kajiya and Kay 1989] KAJIYA, J. AND KAY, T. 1989. Rendering Fur with Three Dimensional

Textures. In Computer Graphics (Proceedings of ACM SIGGRAPH 89), 23(3), ACM, 271±

280.

[Khouas et al. 1998] KHOUAS, L., ODET, C., AND FRIBOULET, D. 1998. 3D Furlike Texture

Generation by a 2D Autoregressive Synthesis. Winter School in Computer Graphics, The

6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RPSXWHU�*UDSKLFV�DQG�9LVXDOL]DWLRQ�¶��, 171±177.

[Kim and Neumann 2000] KIM, T. AND NEUMANN, U. 2000. A Thin Shell Volume for Modeling

Human Hair. IEEE Computer Animation, 104±111.

[Kim and Neumann 2001] KIM, T. AND NEUMANN, U. 2001. Opacity Shadow Maps.

Eurographics Workshop on Rendering, 177±182.

[Kim and Neumann 2002] KIM, T. AND NEUMANN, U. 2002. Interactive Multiresolution Hair

Modeling and Editing. ACM Transactions on Graphics, 21(3), 620±629.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

REFERENCES 180

[Klein 2002] KLEIN, B. 2002. African American Hairstyle Exhibit. American Mosaic: Radio

Magazine, Broadcast 15 February 2002. Available online at:

 http://www.manythings.org/voa/02/020215am_t.htm.

[Koh and Huang 2001] KOH, C., AND HUANG, Z. 2001. A Simple Physics Model to Animate

Human Hair in 2D Strips in Real Time. In Proceedings of Eurographics Workshop on

Computer Animation and Simulation, 127±138.

[Kong and Nakajima 1999] KONG , W., AND NAKAJIMA, M. 1999. Visible Volume Buffer for

Efficient Hair Expression and Shadow Generation. Computer Animation 1999, 58±65.

[Kong and Nakajima 2000] KONG, W., AND NAKAJIMA, M. 2000. Hair Rendering by Jittering

and Pseudo Shadow. ComputeU�*UDSKLFV�,QWHUQDWLRQDO��&*,¶���, 287±291.

[Kowalski et al. 1999] KOWALSKI, M., MARKOSIAN, L., NORTHRUP, J., BOURDEV, L., BARZEL,

R., HOLDEN, L., AND HUGHES, J. 1999. Art-Based Rendering of Fur, Grass, and Trees. In

Proceedings of ACM SIGGRAPH 99, ACM Press / ACM SIGGRAPH, 433±438.

[Lancaster 2003] LANCASTER, T. 2003. RenderMan® Repository. Available online at:

http://www.renderman.org/RMR/.

[Lao et al. 2002] LAO, W., KONG, D., AND YIN, B. 2002. An Improved Algorithm for Hairstyle

Dynamics. Fourth IEEE ,QWHUQDWLRQDO� &RQIHUHQFH� RQ� 0XOWLPRGDO� ,QWHUIDFHV� �,&0,¶���,

535±540.

[LeBlanc et al. 1991] LEBLANC, A., TURNER, R., AND THALMANN, D. 1991. Rendering Hair

using Pixel Blending and Shadow Buffers. In The Journal of Visualization and Computer

Animation, Vol 2, 92±97.

[Lee et al. 2002] LEE, C., CHEN, W., LEU, E., AND OUHYOUNG, M. 2001/2002. A Rotor Platform

Assisted System for 3D Hairstyles. Journal of Winter School in Computer Graphics, 10,

271±278.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

REFERENCES 181

[Lengyel et al. 2001] LENGYEL, J., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2001. Real-Time

Fur over Arbitrary Surfaces. In Proceedings of Interactive Symposium on 3D Graphics,

227±232.

[Lengyel 2000] LENGYEL, J. 2000. Real-Time Fur. Eurographics Rendering Workshop 2000,

243±256.

[Lind 2003] LIND, C. 2003. Creating a Head with Hair in Maya. Available online at:

 http://www.caligraphics.dk/Maya/hair/hair.htm.

[Lokovic and Veach 2000] LOKOVIC, T. AND VEACH, E. 2000. Deep Shadow Maps. In

Proceedings of SIGGRAPH 2000, ACM, New York, 385±392.

[Magnenat-Thalmann et al. 2000] MAGNENAT-THALMANN, N., HADAP , S., AND KALRA, P. 2000.

State of the Art in Hair Simulation. International Workshop on Human Modeling and

Animation, 3±9.

[Mao et al. 2000] MAO, X., KIKUKAWA, M., KASHIO, K., AND IMAMIYA, A. 2000. Automatic

Generation of Hair Texture with Line Integral Convolution. International Conference on

Information Visualisation (IV2000), 303±308.

[Marschner et al. 2003] MARSCHNER, S., WANN JENSEN, H., CAMMARANO, M., WORLEY, S.,

AND HANRAHAN, P. 2003. Light Scattering from Human Hair Fibers. In Proceedings of

SIGGRAPH 2003, 780±791.

[Moelzer 2003] MOELZER, E. 2003. Creating Polygon Hair. Available online at:

 http://www.newtek.com/products/lightwave/tutorials/modeling/hair/.

[Nakakihara 2001] NAKAKIHARA, D., BARTON, S., AND MARSHALL, B. 2001. LightWave 3D

Seven Reference Guide. NewTek.

[Neyret 1995] NEYRET, F. 1995. A General and Multiscale Model for Volumetric Textures. In

*UDSKLFV�,QWHUIDFH�¶���3URFHHGLQJV, 83±91.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

REFERENCES 182

[Neyret 1998] NEYRET, F. 1998. Modeling Animating and Rendering Complex Scenes using

Volumetric Textures. IEEE Transactions on Visualization and Computer Graphics 1(4),

55±70.

[Neyret and Cani 1999] NEYRET, F. AND CANI, M. 1999. Pattern-Based Texturing Revisited. In

Proceedings of ACM SIGGRAPH 99, ACM Press / Addison-Wesley Publishing Co., 235±

242.

[Papaioannou 2002] PAPAIOANNOU, G. 2002. A Simple and Fast Technique for Fur Rendering.

Technical Report, University of Athens. Available online at:

 http://cgi.di.uoa.gr/~georgep/fur/fur2002.pdf

[Patrick and Bangay 2003] PATRICK, D. AND BANGAY, S. 2003. A LightWave 3D Plug-in for

Modeling Long Hair on Virtual Humans. In Proceedings of AFRIGRAPH 2003, ACM

SIGGRAPH, 161±166.

[Perlin and Hoffert 1989] PERLIN, K. AND HOFFERT, E. 1989. Hypertexture. In Computer

Graphics (Proceedings of ACM SIGGRAPH 89), 23(3), ACM, 253±262.

[Pixar 2000] PIXAR. 2000. The RenderMan Interface, Version 3.2. Available online at:

https://renderman.pixar.com/.

[Pixar 2002] PIXAR ANIMATION STUDIOS. 2002. Pixar Releases RenderMan 11. Available online

at: https://renderman.pixar.com/products/news/prman11_release.html.

[Pixar 2003] PIXAR ANIMATION STUDIOS �� ������ 3L[DU¶V� 5HQGHU0DQ��� $YDLODEOH� RQOLQH� DW��

https://renderman.pixar.com/.

[PlanetMath 2003] PLANETMATH. 2003. Frenet Frame Definition. Available online at:

 http://planetmath.org/encyclopedia/TNBFrame.html.

[Plante et al. 2001] PLANTE, E., CANI, M., AND POULIN, P. 2001. A Layered Wisp Model for

Simulating Interactions inside Long Hair. Eurographics Workshop on Computer Animation

and Simulation 2001, 139±148.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

REFERENCES 183

[Policarpo 2003] POLICARPO. 2003. 3 Point Lighting Setup and Light Layer Compositing.

Available online at: http://www.newtek.com/products/lightwave/tutorials/animation/3point-

light/.

[Rankin and Hall 1996] RANKIN, J. AND HALL, R. 1996. A Simple Naturalistic Hair Model. ACM

SIGGRAPH Computer Graphics 30(1), ACM Press, 5±9.

[Robertson 1995] ROBERTSON, B. 1995. Hair-Raising Effects. Computer Graphics World,

October 1995. Available online at:

 http://cgw.pennnet.com/Articles/Article_Display.cfm?Section=Archives&Subsection=Displ

ay&ARTICLE_ID=47604&KEYWORD=hair%20raising.

[Robertson 1999] ROBERTSON, B. 1999. PuttinOn Hairs. Computer Graphics World, January

1999. Available online: http://cgw.pennnet.com/Articles/Article_Display.cfm?Section=

 Archives&Subsection=Display&ARTICLE_ID=50214&KEYWORD=hair%20raising.

[Robertson 2001] ROBERTSON, B. 2001. Monster Mash. Computer Graphics World, October

2001. Available online at: http://cgw.pennnet.com/Articles/Article_Display.cfm?Section=

Archives&Subsection=Display&ARTICLE_ID=120494&KEYWORD=hair%20raising.

[Silas 2000] SILAS, F. 2000. Creating Photo-Realistic Hair in Animation Master. Available

online at: http://www.franksilas.com/Hair.htm.

[SiTex Graphics 2003] SITEX GRAPHICS, INC. 2003. Air 2.6. Available online at:

http://www.sitexgraphics.com/html/air.html.

[Sourin et al. 1996] SOURIN, A., PASKO, A., AND SAVCHENKO, V. 1996. Using Real Functions

with Application to Hair Modelling. Computers and Graphics, 20(1), 11±19.

[Square 2001] SQUARE CO., LTD. 2001. Final Fantasy X. Available online at:

 http://www.square-enix-usa.com/index.html.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

REFERENCES 184

[Subrahmanyam 2002] SUBRAHMANYAM, P. 2002. Re: Static vertex normals (was [LW-P]).

LightWave Plugin Developers Mailing List. Available online at:

 http://groups.yahoo.com/group/lw-plugin/message/7691.

[Tezel and Teo 2002] TEZEL, A., AND TEO, L. 2002. On RenderMan 11 - Interview with Dana

Batali from Pixar. CGNetworks. Available online at:

 http://www.cgnetworks.com/story_custom.php?story_id=96&page=.

[Thalmann et al. 1996] THALMANN, N., CARION, S., COURCHESNE, M., VOLINO, P., AND WU, Y.

1996. Virtual Clothes, Hair and Skin for Beautiful Top Models. Computer Graphics

International, 132±141.

[Turk 1990] TURK, G. 1990. Generating Random Points in Triangles. In A. S. Glassner, editor,

Graphics Gems I. Academic Press, 24±28.

[Van Gelder and Wilhelms 1997] VAN GELDER, A. AND WILHELMS, J. 1997. An Interactive Fur

Modeling Technique. *UDSKLFV�,QWHUIDFH�¶��, 181±188.

[Wang and Yang 2001] WANG, T., AND YANG, X. 2001. A Design Tool for the Hierarchical Hair

Model. Proceedings of the Fifth International Conference on Information Visualisation

�,9¶���, 186±191.

[Ward et al. 2003] WARD, K., LIN, M., LEE, J., FISCHER , S., AND MACRI, D. 2003. Modeling

Hair Using Level-of-Detail Representations. Proceedings of the 16
th

 International

&RQIHUHQFH�RQ�&RPSXWHU�$QLPDWLRQ�DQG�6RFLDO�$JHQWV��&6¶���, 41±47.

[Watanabe and Suenaga 1992] WATANABE, Y., AND SUENAGA, Y. 1992. A Trigonal Prism-

Based Method for Hair Image Generation. IEEE Computer Graphics and Applications, 47±

53.

[Watt 1989] WATT , A. 1989. Fundamentals of Three-Dimensional Computer Graphics.

Addison-Wesley, 1989.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

REFERENCES 185

[Watt and Watt 1992] WATT, A., AND WATT , M. 1992. Advanced Animation and Rendering

Techniques: Theory and Practice. ACM Press, 1992.

[Wright 2000] WRIGHT, E. 2000. Scenscan Sample. Available online at:

 http://www.lightwave3d.com/developer.

[Wright 2001] WRIGHT, E. 2001. LightWave Development Documentation. Available online at:

http://www.lightwave3d.com/developer.

[Wright 2002] WRIGHT , E. 2002. Re:[LW-P] value on curve in Modeler. LightWave Plugin

Developers Mailing List. Available online at:

 http://groups.yahoo.com/group/lw-plugin/message/6781.

[Xu and Yang 2001] XU, Z., AND YANG, X. 2001. V-HairStudio: An Interactive Tool for Hair

Design. IEEE Computer Graphics and Applications, 36±43.

[Yang and Ouhyoung 1997] YANG, T. AND OUHYOUNG, M. 1997. Rendering Hair with Back-

lighting. 3URFHHGLQJV�RI�&$'�*UDSKLFV�¶��, 291±296.

[Yu 2001] YU, Y. 2001. Modeling Realistic Virtual Hairstyles. Proceedings of the 9th Pacific

Conference on Computer Graphics and Applications 2001, Tokyo, 295±304.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

APPENDIX A - Textured Layers Hair Shader 186

APPENDIX A - Textured Layers Hair Shader

We implement an anisotropic illumination model as a shader, using the RenderMan Shading

Language [Pixar 2000]. The modified shader used to illuminate African hair that is modelled as

textured layers (and discussed in Section 5.2.4) is given below:

surface HairShader (float Ka = 0.0, Kd = 0.5, Ks = 0.5, Kn = 0.1, Kb = 1.0, Fr = 1.0, Ft = 1.0;
 VWULQJ�RSDFLW\7H[WXUH� �³´��WDQJHQW7H[WXUH� �³´�)

{

 /* The hair tangent vector */
 vector T;

 color tt = color texture (tangentTexture);

 setxcomp (T , comp (tt, 0));
 setycomp (T , comp (tt, 1));

 setzcomp (T, comp (tt, 2));
 normalize (T);

 vector H, Ln, V = ínormalize(I); /* The halfway, light, and eye vectors */
 uniform float nondiff, nonspec; ��7KH�OLJKW¶V�FRQWULEXWLRQ��

 float k, Fdir; /* The directional attenuation factor */

 /* The ambient component */
 Ci = Cs * Os * float texture (opacityTexture) * Ka * ambient();

 /* The diffuse and specular components */
 illuminance (P) {

 /* Get the next non-ambient light vector */
 Ln = normalize(L);

 /* Calculate the directional attenuation factor */
 k = ((T^Ln).(T^V))/((length(T^Ln))*(length(T^V)));
 Fdir = (((1 + k)/2) * Fr) + (((1 í k)/2) * Ft);

 /* Calculate the diffuse component */
 nondiff = 0;

 lightsource ("__nondiffuse", nondiff);
 if (nondiff < 1)
 Ci += Cl * Cs * Os * float texture (opacityTexture) * Kd *

 pow ((1 í pow ((T.Ln), 2)), Kb/2) * Fdir;

 /* Calculate the specular component */

 nonspec = 0;
 lightsource ("__nonspecular", nonspec);

 if (nonspec < 1) {
 H = normalize(Ln+V);
 Ci += Cl * Os * float texture (opacityTexture) * Ks *

 pow ((1 í pow ((T.H), 2)), 1/(Kn*2)) * Fdir;

 }
 }

 /* The incident ray opacity */
 Oi = Os * float texture (opacityTexture);

}

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

APPENDIX B - Different Filter Types 187

APPENDIX B - Different Filter Types

 A B C D E

Figure B.1: Using different filter types to render an image.

Figure B.1 shows a sample of hair rendered with different filters: Box filter (A), Triangle filter

(B), Catmull-Rom filter (C), Gaussian filter (D), and Sinc filter (E). The top images are

supersampled by taking 4 samples per pixel, and the bottom images are supersampled by taking

16 samples per pixel.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

APPENDIX C - Interpolation 188

 t1 t2

 t3

 p x�

A

B C

d1

d2 d3

px
x�

APPENDIX C - Interpolation

We use an explicit hair modelling technique (discussed in Section 3.2) to model straightened

African hair. To reduce the amount of time spent on hair modelling, a hairstyle is defined by a

few control hairs, which are placed in the centre of triangles making up the region of the head

model where hair should be placed. To create a full head of hair, other hairs are automatically

created by making a number of copies of each control hair. The copies are placed on the head

model by placing them randomly on the same triangle as the original control hair from which

they were copied. Simply making a number of copies of each control hair and placing them at

random points on the same triangle tends to create clumps of hair. To produce a hairstyle without

clumps of hair, an interpolation technique should be used when automatically creating strands of

hair using control hairs. Correctly interpolating hairs is a complex problem. Several issues are

discussed below.

C.1 Determining the Control Hairs to Interpolate Between

Before a new hair can be created, the two control hairs from which it is to be interpolated need to

be determined. Our explicit hair modelling technique creates a new hair by making a copy of the

control hair in the centre of a triangle, and randomly placing the copy in the same triangle. Using

an interpolation technique, the random point in the triangle where the new hair should be placed

is determined. The first control hair is then the control hair in the centre of the triangle. The

second control hair should be the control hair in the centre of the neighbouring triangle closest to

the random point. To find the closest neighbouring triangle, the shortest distances between the

random point and the three sides of the triangle should be calculated. Figure C.1 shows a random

point p in a triangle consisting of vertices t1, t2, and t3, and the shortest distances d1, d2 and d3

between the random point and the three sides of the triangle.

Figure C.1: Calculating the distances between a random point and the three sides of a triangle.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

APPENDIX C - Interpolation 189

The distance d1 can be calculated using:

d1 = | p í�px |

The point px is calculated as:

px = t1 + C

where

C = ((B���A) / |B|
2
) B,

A = p í�t1, and

B = t2 í�t1.

The distances d2 and d3 can be calculated in a similar manner.

The closest neighbouring triangle is the triangle that shares the side closest to the random point.

In Figure C.1 the distance d3 is the shortest distance of the distances d1, d2, and d3. Therefore the

side determined by vertices t1 and t3 is the closest side, and the control hair in the neighbouring

triangle that shares the side determined by t1 and t3 is used.

There may not be a control hair in the closest neighbouring triangle. This occurs when creating

strands of hair near the edges of a hairstyle. One solution is to interpolate the new hair from a

single control hair (i.e. make a copy of the first control hair, using the same method as our

explicit hair modelling technique).

C.2 Interpolating a Hair Between Two Control Hairs

Once two control hairs have been determined, a new hair can be interpolated using the two

control hairs. The points along the new hair should be calculated as a weighted average of the

points along the two control hairs using the equation:

C1W2 + C2W1

where C1 and C2 are corresponding points on the first and second control hairs respectively. W1

and W2 are calculated using:

W1 = n1 / (n1 + n2) and W2 = n2 / (n1 + n2)

where n1 and n2 are the distances between the random point and the first and second control hairs

respectively.

A method is needed to determine the corresponding points on the two control hairs. If the control

hairs have the same number of control points, the control points could be used. However, the

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

APPENDIX C - Interpolation 190

x�

x�
x�

x� x�

x�

x�
x�

x�

x�

x�

x�

control points are not usually evenly spaced along the control hairs, and the control hairs may not

have the same number of control points. It may be useful to parameterise the control hairs by arc

length first, and give them the same number of control points. Problems may arise when the two

control hairs bend in different directions. For instance an interpolated hair will pass through the

centre of the head when interpolated from two control hairs on opposite sides of a parting. The

length of an interpolated hair may also be too short or an unrealistic shape, as shown in Figure

C.2. There may also be places in a hairstyle where interpolation is not wanted, for example in a

hairstyle consisting of straight long hair and a fringe, interpolation is not wanted between the

short hair in the fringe and the long hair. The fringe is a clump of short hair separate from the

long hair, and interpolation would result in strands of hair varying in length between the fringe

and the long hair. The problems discussed show that interpolating strands of hair is a complex

problem, and an investigation that is beyond the scope of this thesis is needed in order to

interpolate between two control hairs in a realistic manner.

Figure C.2: An unrealistic interpolated strand of hair.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

