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Abstract 
 
 

Lead Oxide (PbO) is the main material used for the preparation of the 

active material for the positive and negative electrodes in the lead acid 

battery where the electrochemical reaction that provides the electrical 

energy of the battery takes place. The particle size distribution and 

surface area characteristics of the lead oxide play a major role in the 

electrical performance of the completed battery. The two most 

commonly used processes to manufacture PbO in the lead acid battery 

industry are the Barton pot and the Ball mill processes. These two 

processes produce oxides that differ in particle size distribution, particle 

shape and surface area. It is generally accepted that the Ball mill 

process produces an oxide with a smaller mean particle size with a 

higher surface area and better initial electrical performance than the 

Barton pot process to the detriment of an initial higher capital and 

running cost.  

 

The study showed that it is possible to improve the surface area and 

particle size distribution characteristics of Barton pot oxide, by 

subsequently hammer milling the oxide particles before the paste 

manufacturing process.  

The results showed that there was an initial reduction in the particle 

size with an increase in the surface area. This increased the 

electrochemical performance in terms of the high rate discharge. 

However, further hammering of the oxide reduced the average particle 

size only slightly with little change in the surface area and a reduction in 

the electrochemical performance. 

 

The study showed that an improvement in Barton pot oxide can be 

achieved with a hammering of the oxide in order to obtain a uniform 

particle  size with improved surface area and an improved high rate 

performance of the electrochemical cells made with such an oxide.  
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As a comparison, the particle size  and surface area characteristics of 

Ball mill lead oxide subjected to the hammer milling process was also 

studied. The results showed a similar effect to the Barton pot oxide on 

the particle size distribution. However, there was no appreciable change 

in the surface area due to the hammer milling process. 
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Chapter 1  

Overview 

 

 

1.1 Introduction 

 
Lead oxide (PbO) is the main starting material for the manufacture of 

the active material in the lead acid battery. The active material is where 

the chemical reaction with sulphuric acid takes place to produce 

electrical energy. Lead oxide is made by reacting molten lead with the 

oxygen that is present in air, as shown in equation 1. 

 
 
  2Pb   +   O2   ?    2PbO   (1) 
 
 

In a typical medium sized battery manufacturing facility that produces 

6000 to 7000 automotive batteries per day, PbO is produced at a rate of 

800 – 1000 kg per hour using 3 - 4 lead oxide mills  that are capable of 

producing between 50 - 70 tons of PbO per day.  Since the quality of the 

electrode depends on the PbO produced, this process is extremely 

critical in the battery manufacturing process and often limits the 

consistency of producing a high quality battery.   

 
The two most common manufacturing methods used to produce lead 

oxide powder in the lead acid battery industry are the Barton pot 

process and the Ball mill process1.  In the Barton pot process, molten 

lead is poured into a reactor vessel. A rotating paddle agitates the lead 

to maximise the exposure of the lead to the air. The lead reacts with the 

oxygen in the air to form lead oxide. The lead oxide powder is removed 

from the reactor vessel using an air extraction system into a cone 

shaped silo where it is stored before further processing. 
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In the Ball mill process, solid balls of lead are fed into a rotating reactor 

vessel. As the balls of lead rub against each other, friction causes the 

lead balls to heat up. The lead reacts with oxygen to form lead oxide, 

which is removed from the reactor vessel using air suction. 

 

The lead oxide powder produced by these two processes differs in their 

shape, reactivity, particle size, surface area and phase composition. In 

general the lead acid battery industry would aim at maximising the oxide 

production rate while maintaining a consistent oxide quality that has a 

small particle size with a high surface area. This, in turn, will produce 

an electrode with repeatable  electrical performance. 

 

In general the Ball mill process produces lead oxide that has a smaller 

particle size and higher surface area than that of the Barton pot 

process1,2,3. However; the Barton pot process has a lower initial capital 

cost for the company. The process is also more energy efficient and is 

cheaper to operate 1. If an industry had initially started with the Barton 

pot process, it would be extremely costly and impractical to change to 

the Ball mill process if only a finer oxide is required. Other factors such 

as the increased running costs of the Ball mill process would also have 

to be taken into account. 

 

1.2 Aim 

 
The aim of this study was to investigate the possibility of improving the 

physical characteristics of lead oxide produced by the Barton pot 

process. It is desirable  to produce an oxide with a consistent smaller 

particle size and a higher surface area. This was done by passing the 

lead oxide through an additional grinding step, before being used for 

further manufacturing. The study considered the following:   

 

1. The change in particle size and surface area of the standard Barton 

pot oxide by repetitive grinding through a laboratory scale hammer 
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mill. As a comparison the effect of this hammering process on Ball 

mill oxide was also investigated. 

2. A comparison of the physical and chemical characteristics of the 

Barton pot and Ball mill oxide after subjecting it to repetitive grinding 

in a hammer mill. 

3. The electrochemical performance of a flat plate positive electrode 

made with the Barton pot oxide that was subjected to different 

degrees of grinding. 

 

1.3 The basic process of lead - acid battery manufacturing 

 
The electrochemical principles of the lead-acid battery system was 

discovered more than one hundred years ago by Planté4. Since then, 

many developments in the manufacturing technology, covering a range 

of materials , have occurred that have made the lead acid battery one of 

the most versatile and cost effective energy storage devices available.  

 

The lead acid battery derives its name from the fact that the basic 

components making up the battery are lead and sulphuric acid. When 

compared with other energy storage devices, the cost of the raw 

materials used to manufacture lead acid batteries is relatively low. This 

has allowed the lead acid battery to remain competitive against other 

battery technologies in terms of cost per unit of energy. On the 

environmental side, the lead acid battery industry has over the years 

developed one of the best recycling systems to recover the lead from 

spent batteries. There is presently an efficient recycling system in place 

whereby spent batteries are returned to the manufacturer when they are 

replaced with a new one. From these spent batteries, approximately 

95% of the lead can be recovered, where the lead is purified, and then 

reused to manufacture lead for the battery industry5,6. This has resulted 

in there being very little contamination of the environment from spent 

batteries, and in particular, lead. 
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The basic manufacturing process of the lead acid battery is given 

pictorially in figure 1 

 

Figure 1 : Pictorial overview of the lead acid battery process 
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A brief description of the various processes is outlined below. 

 

1.3.1   Lead oxide manufacturing 

 
Pure Lead at various purity levels (99.97%, 99.99% or 99.999%) is 

converted into lead oxide powder in the presence of air in a reactor 

vessel that uses either the Barton pot process or the Ball mill process 

(equation 1). The lead used is either recycled lead from spent batteries 

or virgin lead obtained from a mining process. A more detailed 

explanation of this process is provided in chapter 3. 

 

1.3.2   Grid manufacturing 

 
A lead alloy is used to form the positive and negative electrode 

supporting current collector called a grid. This is done by using, either, 

a grid casting , continuous casting, or an expanded metal process. The 

lead alloy usually contains small amounts of either antimony or calcium 

and tin to provide hardness to the grid structure. Additional alloying 

elements like Cu, Se, S, As, Ag are often added to improve grid 

castability and to provide the necessary characteristics for extend ing 

the grid’s durability. The main function of the grid is to support the 

active material and to act as a current carrier for the electrical energy 

when the battery is charged and discharged. 

 

1.3.3  Plate manufacturing 

 
The lead oxide powder is mixed with dilute sulphuric acid and various 

additives to form either a positive or negative paste. This active material 

is then pressed into the grid to form the positive or negative electrode 

or plate. The electrodes are then placed into a high humidity curing 

chamber where the active material develops the correct crystal 

structure, surface area and porosity.  The active material also develops 

the necessary strength during the curing process to enable them to be 



 6

handled in the battery assembly process. The chemical equations that 

occur during the curing process are as follows7. 

 

PbO   +   H2SO4     ?    PbSO4   +   H2O    (2) 

PbSO4    +   3PbO   ?    3PbO. PbSO4       (3) 

PbSO4   +   4PbO  ?    4PbO. PbSO4               (4) 

2Pb   +   O2   ?  2PbO       (5) 

3PbO. PbSO4    =  Tri-basic lead sulphate also known as T3 

4PbO. PbSO4    = Tetra-basic lead sulphate also known as T4         

 

In general battery manufacturers would prefer the formation of tri -basic 

lead sulphate (T3) crystals for automotive battery applications. The 

properties of T3 crystals are that they form the skeletal structure of the 

final formed active material and are smaller and are easily converted to 

the formed PbO2 phase8. In certain applications the formation of T4 

crystals are preferred which are larger and create a much stronger 

electrode that has better capacity cycling ability9.    

The final cured material gives the skeletal structure that gives the 

mechanical strength for the electrode to be handled during battery 

assembly and during its electrochemical application.   

 

1.3.4 Battery assembly  

 
The positive and negative electrodes are assembled into cells and are 

separated by using porous separators made from polyethylene (PE), 

paper, polyvinylchloride (PVC) or rubber.  The positive and negative 

electrodes are connected in parallel to form a cell group. The 

electrode’s thickness, size and their numbers per cell depend on the 

energy and power specifications and application of the battery.  This is 

usually calculated by considering the theoretical energy density of the 
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active material present. By increasing the number of plates in the 

battery an increase in the energy output is achieved. By increasing the 

number of cells in series, the power output of the battery is increased. 

The lead acid battery cell has a nominal voltage of 2V and, in a typical 

automotive battery, six cells are connected in series to produce a 12 

volt battery. Polypropylene or polycarbonate plastic is usually used for 

the housing container of the battery.  

 

1.3.5  Battery formation 

 
Dilute sulphuric acid is added to the cells followed by an electrical 

charge in order to polarize the electrodes. During this process lead 

dioxide is formed at the positive electrode and lead, also known as 

sponge lead is formed at the negative electrode.  

 

The formation reaction equations are as follows7: 

 

Positive electrode 

3PbO. PbSO4   +   3 H2SO4    ?    4 PbSO4    +   3 H2O              (5) 

PbSO4     +   2H2O   ?    PbO2   +   H2SO4   +   2e -    +   2H+  (6) 

 

Negative electrode 

3PbO. PbSO4     +   3 H2SO4      ?    4 PbSO4    +   3 H2O  (7) 

PbSO4     +   2e -    +   2H+     ?    Pb   +   H2SO4     (8) 

 

The final stage of the battery manufacturing process involves the 

cleaning, labelling and an electrochemical performance test. 
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1.4 The lead-acid battery as a preferred motor vehicle battery 
 

The lead acid battery is still considered as the preferred battery 

technology for automotive battery applications even though it has a 

number of disadvantages. 

• Lead is a very heavy metal, which makes the final product’s mass 

comparatively high.  

• Another disadvantage is that approximately one third of the 

battery mass is made up of non energy producing parts such as 

the grids, posts and connectors that are also made of lead. These 

are merely current carrying conductors that have about 16 times 

the resistivity of copper5. Attempts have been made to replace the 

current collectors with other types, but none have proven to be 

commercially successful. 

• Lead is also toxic which means that costly environmental control 

measures are needed to ensure a safe manufacturing and supply 

environment. 

• The lead acid battery contains corrosive sulphuric acid that can 

cause damage or injury if the battery housing leaks or breaks. 

• The lead acid battery produces an explosive mixture of hydrogen 

and oxygen gas during charging which can lead to an explosion 

when exposed to a naked flame or spark. 

 

However the advantages of the lead acid battery system outweigh the 

disadvantages. 

• Lead is relatively inexpensive when compared with other metals 

used for battery manufacturing5. 

• Lead is easily smelted (the melting point of lead is about 330oC) 4. 

• Lead i s easily recyclable5. 

• The lead acid battery has one of the highest cell voltages when 

compared with other battery types. 
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In terms of the cost/unit energy, there is currently no other battery type 

that can compete with the lead acid battery10.  The lead acid battery can 

also be used in many diverse applications, from small portable miners 

cap lamp batteries to large UPS cells that are able to deliver large 

amounts of capacity and power. 

This has resulted in the continued competitiveness of the lead acid 

battery as a renewable source of energy in the global market today.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 10

Chapter 2 

 
Technological advances in the lead acid industry 

 

 

Advances in the lead acid battery used in automotive applications are to 

a large extent driven by the manufacturers of new motor vehicles. As 

the electrical requirements for new motor vehicles change, greater 

demands are required from the battery in terms of performance at a 

competitive cost per unit. This requires the battery manufacturer to 

continually improve the manufacturing processes and to use advanced 

materials to make a battery.  

 

An example is the requirement to decrease the size of the engine 

compartment in modern vehicles. This resulted in the need for smaller 

sized batteries to deliver the same performance with a lower mass. 

However, the more compact engine compartment has resulted in a rise 

in the battery operating temperature, and in some cases specialised 

insulation of the battery from the heat generated by the engine is used. 

 

There has also been an increase in the service intervals for motor 

vehicle owners. This has introduced the need for a low maintenance or 

maintenance free battery. The hazards associated with the corrosive 

electrolyte in a normal flooded type battery has led to the development 

of the valve regulated lead acid (VRLA) battery, where the electrolyte is 

immobilised in absorptive glass mat separators (AGM) or a silica gel11. 

Further developments in vehicle electric traction technology have led to    

the development of batteries that have an improved energy to weight 

ratio.  

 

The following areas are considered by battery manufacturers to improve 

the performance of the application of the lead-acid battery. These are 

the energy and power density, life cycle ability, maintenance reduction, 
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VRLA technology, and materials and manufacturing process 

optimisation.   Each of these points will be briefly discussed. 

 

2.1  Improvement in energy density 

 
The energy density of a battery can be classified as the number of 

amperes (A) that a battery can deliver over a period of time (h). In an 

automotive battery this is usually measured over a 20 h period at 

relatively low currents to a lower voltage limit of 10.5 V. For example, a 

100 Ah battery should be able to deliver a current of 5 A for 20 h.  This 

is referred to as the amp hour (Ah), or C20   capacity of a battery.  

 

This test simulates low current applications  in the vehicle like alarm 

systems, interior lights, parking lamps or radios when the engine is 

turned off. Since the discharge period is long and the current draw is 

low, the kinetics of the discharge reaction is relatively slow, and there is 

enough time for the acid to diffuse into the pores of the active material 

for the energy producing reaction to occur. In these types of 

applications a large percentage of the available active material on the 

electrodes can be utilised to deliver the required capacity.  

 

According to Faraday’s law, the theoretical amount of positive and 

negative active material required to produce 1 Ah of energy can be 

calculated. 4.463 g of positive active material (PbO2) and 3.866 g of 

negative active material (Pb) is required to produce 1 Ah of electrical 

energy4. However, in practice only 45 to 55 % of the theoretical energy 

value is achieved in a battery. This implies that about twice the 

theoretical amount of active material is required to achieve a given 

capacity value. 

 

Over the past few years, improvements in the energy density without 

compromising the battery’s life cycle ability has been limited, and is 

largely governed by the equipment available to manufacture the battery. 

One example of improving the energy density was the use of thinner 
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electrodes.  In order to do this, specialised equipment was needed to 

manufacture thinner grids and automated handling systems were 

developed to handle the more delicate electrodes without causing 

damage to them. The result was that less lead was used for the grids 

and that the energy to mass ratio of the battery (Ah/kg) was improved. 

 

2.2  Improvement in Power density 

 
The power density of a battery is defined as the maximum current that a 

battery can deliver over short periods of time at a given temperature. 

This simulates the starting or cranking of the vehicle  engine. It is also 

called the crankability of the battery. Various international and specific 

customer specifications are used to evaluate the cranking ability of a 

battery (appendix II).  It is normally done at low temperatures e.g. 0oC,  

-18oC,  or  -29oC and high currents (150 – 500 A) to a specified cut-off 

voltage (6 V, 7.2 V, or  8.4 V) over a period of seconds (30 s, 60 s or 

150  s).  Due to the short duration and high current involved, the kinetics 

of the discharge reaction is largely dependent on the surface reaction of 

the acid with the electrodes and is limited by the diffusion rate of the 

acid into the active material4. Only a small portion of the active material 

is utilised in order to deliver the required power.  

 

Improvements in the power density require an increase in the surface 

area and porosity of the active material in contact with the acid and a 

reduction in the internal resistance of the battery according to Ohm’s 

law (V = IR)11. The increase in the surface area of the electrodes is 

achieved by reducing the thickness of the electrodes by using better 

manufacturing processes. This allows for more plates to be packed in 

the same cell space, thus increasing the overall surface area exposed to 

the sulphuric acid. For example, the thickness of the electrodes that 

was commonly used in automotive batteries in the 1950’s was 5 mm 

compared with the 0.9 mm that is presently being used13. This was 

accomplished by improvements in grid casting and plate pasting 

technology.  
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The internal resistance of the battery was reduced by improving the 

separator material that is used between the positive and negative 

electrode. In the past, wooden, rubber, paper, or PVC separators were 

used4. The most common material that is currently being used for 

separators is microporous polyethylene. It has a very low electrical 

resistance and improvements in separator technology has enabled the 

production of thinner separator sheets with a high puncture resistance14. 

 

2.3  Improvement in life cycle capacity 

 
The three main factors that determine the battery’s life cycle capabilities 

are:  

1)  The operating temperatures (higher temperatures reduce life  cycle). 

2)  The cycle duty (how many repeated discharges and charges the 

battery underwent at a certain depth of the discharge (DOD)). 

3)  The quality of the materials and manufacturing processes used to 

assemble the battery. 

 

1)  An increase in the battery’s operating temperature results in an 

increase in the kinetics of the chemical reactions in the battery. This 

results in an increase in the corrosion of the lead components (grids 

and connectors), an increase in the water-loss due to electrolysis and 

an increase in the shedding of the active material. It is beneficial to 

ensure that the battery’s operating environment is kept at a relatively 

low temperature.  Some motor manufacturers have opted to place the 

battery in the boot of the car rather than under the bonnet. However; 

this requires the additional cost of longer high power cables. All 

energy-consuming devices in a car are rated in terms of power 

(watts). Since the battery voltage is fixed at 12 V, the use of high 

currents for starting would require thicker cables in order to sustain 

the load  

 



 14

Another method used by motor vehicle manufacturers to reduce the 

battery operating temperature is to install heat shielding devices 

around the battery.  

 

2)  The cycle duty of the battery was improved by the addition of special 

additives such as glass fibres to the positive electrode and to include 

the use of glass mat separators so that the active material adhesion 

to the grid is increased. State of health indicators on batteries were 

introduced to allow consumers to check the level of charge of the 

battery ensuring that the battery is kept at a maximum charge 

condition. 

 

3)   The improvement in manufacturing processes was achieved through 

the implementation of quality systems, improvement in the process 

technology and automation that has resulted in batteries of 

consistent quality. This has reduced the number of premature battery 

failures and increased the supply of a consistent product that would 

supply the capacity for a number of years. 

 

2.4  Maintenance reduction 

 
The water-loss or gassing of the battery occurs during the charging of 

the battery at a sufficiently high potential where water is electrolysed to 

produce oxygen at the positive electrode and hydrogen at the negative 

electrode. This requires that the water lost during operation would have 

to be replenished in the battery at various service intervals. The service 

was normally done outside the control of the battery manufacturer where 

there was little control over the pur ity of the water used, and the correct 

service interval chosen. 

 

The water-loss in a lead acid battery increases when there is an 

increase in foreign metal species (that are not Pb) in the battery12.  For 

example, Fe, Ni, Cu may come from impure water, and Sb from the grid 

alloy used to manufacture the positive electrode.  Since the Sb content 
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in lead-acid battery grids can vary between 1 - 10% depending on the 

battery application, it plays a major role in the water-loss properties of 

the battery15.  The Sb can dissolve into the acid electrolyte and migrate 

to the negative electrode where it would be electrochemically plated and 

contribute to the increase in hydrogen gassing. Improvements in grid 

casting and lead alloy technology has allowed battery manufacturers to 

reduce the antimony content in the lead alloy to below 1% in recent 

years. 

 

The development of calcium lead alloys that uses calcium and tin 

eliminates the use of antimony completely.  Today a car battery using a 

calcium lead alloy can operate without the need for replenishing the 

water for a number of years16. 

 

2.5 Valve regulated lead-acid batteries (VRLA) 

 
The need for a completely maintenance-free battery in terms of having 

to replenish the lost water has led to the development of the valve 

regulated battery (VRLA). In this battery technology the H2SO4 is 

immobilised by containing it in an absorptive glass mat (AGM) separator 

or in a gelled silica system17. During battery charging the oxygen 

generated at the positive electrode passes through pores or cracks in 

the glass mat or gel and is consumed at the negative electrode ( called 

recombination)11.  

The gases inside the battery are maintained at a relatively high 

pressure with the excess gas vented via a pressure valve. The 

immobilised electrolyte allows for the battery to be placed near sensitive 

electronic equipment without the problems of acid spills or the emission 

of dangerous gases.  

However, due to the high cost of this type of battery in comparison to 

the conventional flooded type and the reduced ability to work under high 

temperatures, the use of this technology has been limited in motor 

vehicle (SLI) applications18.  
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2.6 Materials and manufacturing process improvements 

 
The global energy demand for storage devices with a high performance 

to mass ratio (lighter batteries with better performance) has forced 

battery manufacturers to look for improvements in every aspect of their 

business, in particular the use of raw materials. For example, the 

battery housings that were previously made from hard rubber were 

replaced by polypropylene. Besides the reduction in mass and cost, 

polypropylene has the additional advantage of being recyclable. 

 

Expanded metal or continuous casting processes in the manufacturing 

of electrode grids are replacing the gravity cast process, where very thin 

electrodes can be produced at a much faster rate.  

 

There is a legal requirement to monitor the concentration of Pb in the 

employee’s blood and to maintain it below set levels. This has resulted 

in the improvement of the dust extraction systems in battery factories to 

provide a more environmentally friendly area for the employees. 

 

The formation process of the battery is amongst one of the longest 

stages in battery manufacturing. It may take between 15 and 100 h to 

form an automotive battery depending on its size and capacity. In order 

to reduce the formation time, modern formation rooms use water-bath 

cooling processes combined with high charging currents. 

 

This study will investigate the improvement of manufacturing the lead 

oxide in order to produce improved electrodes with better electrical 

performance. 
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Chapter 3  

 
The lead oxide manufacturing process 

 
 
 
The consistency of making a lead oxide with well defined physical 

properties is important in terms of obtaining the quality of the electrodes 

that will produce the necessary electrical performance in the battery.  

During the oxide manufacturing process, various properties of the oxide 

are carefully monitored to ensure that they comply within pre-

determined specifications. These specifications include particle size, 

density, reactivity, surface area and free lead. The objective is to 

produce an oxide that has a relatively small average particle size within 

a narrow range of particle size distribution with a high surface area to 

provide the best reactivity with H2SO4. 

 

The Barton pot and Ball mill processes manufacture a lead oxide that 

differs in their respective physical properties, and therefore also 

influence the characteristics of their final application differently. The 

differences between these two processes and their properties are 

explained as follows: 

 

3.1 Barton pot process 

 
The schematic in figure 2 shows the various components in the Barton 

pot process19. In the Barton pot process, pure lead ingots are fed into a 

lead melt pot [A] where the lead is liquefied.  The molten lead is fed into 

the reaction vessel [B] through an opening in the top of the reaction pot 

[C]. This opening also allows for the air to enter the reaction vessel for 

the oxygen to react with the lead. The molten lead is agitated in the 

reaction pot using the stirring paddle  [D] to increase the exposure of the 

lead to the air, and is oxidised to lead oxide (equation 1). To remove the 

lead oxide from the reaction pot, a suction air draft is created using the 

exhaust fan [E]. The force of the air draft is usually controlled by 
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opening or closing the vents in the system. This also allows for a steady 

stream of oxygen to flow into the reaction vessel and a suction force to 

remove the oxide powder from the reactor. 

The oxide particles have to travel up the almost vertical exhaust duct [J] 

against the gravitational force in order to exit the reaction pot. This 

process acts as a particle size classification system [F]. Particles of 

certain sizes will have enough velocity to get to the top of the duct 

leaving the reaction vessel, whereas the larger size particles will return 

to the reaction vessel until they are small enough to be removed.  

 

 

Figure 2:   Schematic of a typical Barton pot process 
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The cone shaped cyclone [G] causes a swirling action on the oxide. As 

the oxide hits against the walls of the cyclone it falls down into a screw 

conveyer which moves the oxide into silos where the final product is 

stored. The bag-house [H] acts as a filter to prevent any of the oxide 

from exiting the system and polluting the environment. 

 

Initially, heat has to be applied to the reaction vessel using a gas burner 

[I], but once the exothermic oxidation reaction progresses, enough heat 

is normally generated to maintain a relatively consistent reaction 

temperature. The temperature of the reaction vessel can be controlled 

by adjusting the flow rate of Pb and air flow, or by the addition of water 

to the reaction vessel. 

   

Since molten lead is added to the reactor vessel, this process is often 

called a high temperature process. 

 

3.2 Ball mill process 

 
The schematic in figure 3 shows the typical components of the Ball mill 

process3. 

In this process solid balls or slugs of lead are first cast using a ball 

caster [A]. The solid balls of lead are fed into a rotating reactor vessel 

[B]. As the balls of lead rub against each other, friction causes the 

temperature to rise. Air is introduced into the reactor vessel by creating 

a draft through the system by using an extractor fan [C] in a similar way 

as is done with the Barton pot process. The lead reacts with the oxygen 

in the air to form lead oxide, which is then removed from the reactor 

vessel using the extraction draft into a storage system. 

Since solid lead balls are added to the reactor vessel, this process is 

often referred to as a low temperature process. 
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Figure 3:   Schematic of a typical  Ball mill process 

 

 

 

 

 

3.3 Lead resources for the production of lead oxide  

 
The quality of lead used in the manufacturing of lead oxide is referred to 

as three nines (99.97%), four nines (99.99%) or five nines (99.999%). 

This depends on the level of purity that the manufacturer requires, 

which will influence the water-loss characteristics of the final battery. 

There are two main sources of pure lead also known as refined soft lead 

(RSL), available in the battery industry. The sources of lead are known 

as primary lead and secondary lead. 

Primary lead is also referred to as virgin lead. This is lead that is mined 

as a Galena ore4. There are no lead mines in South Africa and all 
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primary lead has to be imported. The major source of primary lead in 

South Africa comes from China and Australia where the purity of the 

lead is normally 99.99% or 99.999%. 

 

Secondary lead is also referred to as recycled lead and comes from the 

recycling of spent or used batteries. The lead is usually purified to a 

purity level of 99.97% by South African lead smelters. Improving the 

lead purity level further, required additional processes, which are more 

costly.  

 

3.4 Typical pure lead specifications 

 
Various independent bodies like ASTM and DIN have produced 

standards for lead to be used for the production of lead oxide. Due to 

the high cost of very pure standards, the lead smelting and battery 

industries have also developed lead specifications with a greater 

emphasis on the final product application. Table 1 shows a typical 

comparison of these lead standards19. 
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Table 1:  Comparison of pure lead standards 

 

Chemical impurities in Pb (max allowed) 

 ASTM 

Wt %  

Flooded 

Battery 

Wt %  

VRLA battery 

Wt %  

Antimony (Sb) 0.0005 0.001 0.0005 

Arsenic (As) 0.0005 0.001 0.0005 

Tin (Sn) 0.0005 0.001 0.001 

Copper (Cu)  0.0010 0.0015 0.001 

Silver (Ag) 0.0025 0.005 0.0025 

Bismuth (Bi) 0.025 0.03 0.025 

Zinc (Zn) 0.0005 0.001 0.001 

Tellurium (Te) 0.0001 0.0005 0.00010 

Nickel (Ni) 0.0002 0.0005 0.0002 

Iron (Fe) 0.001 0.001 0.001 

Cadmium (Cd) - 0.001 0.001 

Manganese (Mn) - 0.0005 0.0001 

Selenium (Se) - 0.0005 0.001 

Thallium (Tl) - 0.01 0.01 

Lead (Pb) 

By difference 

99.97 99.97 – 99.99 99.99 

 

 

One example of the lead smelting industry’s initiative was the study of 

the effect of bismuth on battery performance. Bismuth is a naturally 

occurring element in mined lead and is often found in concentrations 

higher than the required standards. However, it is costly to remove in 

the lead purification process. Studies carried out on the effect of 

bismuth revealed that a certain level of bismuth is beneficial to battery 

performance20. This allowed the lead smelter to propose a product for 

the battery industry that had higher bismuth levels than what was 

previously tolerated20. 
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3.5 The phases of lead oxide produced 

 

The lead oxide produced by either of the two processes described 

previously consists of three components in varying proportions. They 

are α -PbO, β -PbO and free lead. 

 

a) α -PbO 

 
The crystals of α-PbO are tetragonal in shape and are often referred to 

as Litharge or as the red modification due to its reddish colour 4. 

This is the preferred form of the oxide due to  its smaller crystal size and 

its ease of conversion to the sulphate phase1. It is formed at 

temperatures below 480oC1 . 

 

b) β -PbO 

 
The crystals of β -PbO are orthorhombic in shape and are often referred 

to as Massicot or the yellow modification due to its yellowish colour1.  

This phase is formed at temperatures above 480oC and tends to 

promote the formation of larger crystals in the cured plate which may 

lead to reduced battery performance1,26. 

Even though the reaction vessel is usually kept below 480oC, localized 

temperature effects may cause the formation of β-PbO especially in the 

Barton pot process.  It is generally accepted in the battery industry that 

a maximum of 15% of β-PbO is allowed1. Only very small amounts of   

β-PbO are produced in the Ball mill process where the friction process 

has minimal localized high temperature effects. 

 

c) Free lead 

 
This is some of the finely divided un-oxidised lead that remains in the 

lead oxide powder. About 25 – 35% of the oxide is “free lead” and is an 

important component for the subsequent curing process in which the 
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lead is then oxidized into PbO and the formation of either T3 or T4 

crystals in the high humidity curing process21. The curing process is an 

important process in developing the “cementing” properties of the active 

material to the grid to form a physically strong electrode. 

 

3.6 Lead oxide Characteristics 

 
Since lead oxide is the main starting material in the manufacturing 

process of the lead acid battery, variations in lead oxide quality could 

result in variations in the electrical performance of the final product. It is 

therefore important for a manufacturing process to consistently produce 

a good quality lead oxide within specified physical parameters. 

 

During the lead oxide manufacturing process, certain tests are 

performed to determine its characteristics, and are often specific to the 

lead acid battery industry. All these tests usually relate to the particle 

size, surface area and reactivity of the oxide. These characteristics are 

the free lead, the apparent density, the acid absorption number, the 

particle size distribution and the surface area.  

 

3.6.1 Free lead (%) 

 
The free lead is an important element that is used to control the lead 

oxide manufacturing process. The free lead percentage is usually 

determined by the mill operator on an hourly basis, and adjustments are 

made to the oxide mill controls accordingly. A simple wet chemistry 

technique is used whereby a sample of lead oxide is dissolved in a 5 % 

solution of boiling acetic acid22. The residual free lead is removed, 

dried, and determined as a percentage of the original lead oxide 

sample. The detailed test method is provided in appendix II.  
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3.6.2  Apparent density (g/ inch3) 

 
This test gives an indication of the particle size of the oxide and is also 

known as the Scott number22. A sample of lead oxide is allowed to fall 

into a 1 inch3 cup along successive angled glass slides that are 

mounted in a cylindrical box. Small particles will give a lower value than 

larger particles22. This technique was developed uniquely for the battery 

industry as a cheap and quick method of achieving particle size 

information. This test is often carried out at the lead oxide mill by the 

operator. Variations in apparent density will have an impact on the 

paste mixing and curing reaction. The apparatus used to determine the 

apparent density is shown in appendix II (fig 38). 

 

3.6.3 Acid absorption number (mg H 2SO4/g PbO) 

 
The acid absorption test is done to determine how fast the oxide will 

react with dilute sulphuric acid. The results are expressed in milligrams 

of acid per gram of oxide22. 

The acid absorption number relates to  the particle size and surface area 

of the oxide. The larger the number, the more reactive the lead oxide 

will be. If there are large variations in the acid absorption number during 

lead oxide manufacturing, the paste mixing process would become 

inconsistent. The rate of acid addition in the paste mixing process is 

usually pre-determined according to the system’s ability to control the 

temperature rise during paste mixing. If the oxide quality is not 

consistent, variations in the paste quality and final electrode quality 

would result.  

 

3.6.4 Particle size analysis  (µm) 

 
There are a number of methods to determine the particle size 

distribution of dry powders.  Some methods are relatively quick and 

simple to use in a production environment, while others are more 

complex and require expensive equipment. 
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Some of the techniques are: 

a)  Fisher particle size analysis 

b)  Retention on a 45 µm mesh 

c)  Laser diffraction particle size distribution  

 

a)  Fisher particle size 

 
This is a relatively simple method that measures the average particle 

size of a sample of oxide using the air-permeability principle. This 

principle employs the fact that particles in the path of a regulated air 

flow will affect that air flow in relationship to their size. The lead oxide 

sample is placed into a sample tube, compacted with a set torque and 

placed in the path of a regulated air flow.  The flow of air through the 

oxide sample is measured by means of a calibrated manometer and the 

average particle size is determined. A typical lead oxide would have a 

Fischer particle size of 2 µm. The apparatus used for this determination 

is pictorially shown in appendix II (fig 39). 

 

b) Retention on a 45 µm mesh 

 
This method measures how many lead oxide particles are larger than 45 

µm. This is a simple and quick method where a value of less than 5% is 

desired in the manufacturing process.  

 

c)  Laser diffraction particle size distribution  

 
This is a more sophisticated method using laser diffraction to determine 

the particle size distribution over a wide range of particle size. A sample 

of lead oxide is usually dispersed in water as the medium and the 

particle size distribution is calculated using an algorithm that assumes 

that all particles are spherical in shape and a distribution of size is 

obtained. The results of the mass median diameter (MMD), the volume 

mean diameter and the surface area mean diameter (Sauter mean) are 

calculated. 
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3.6.5 Surface area analysis   

  
The most widely used method to determine the surface area of lead 

oxide in the battery industry is the BET surface area nitrogen adsorption 

method. In this method the sample of lead oxide is cooled to liquid 

nitrogen temperatures. Nitrogen gas is passed through the sample and 

the amount of nitrogen that adsorbs onto the surface of the lead oxide is 

measured. The BET surface area is determined by measuring the 

monolayer amount of nitrogen adsorbed on the surface of the particles. 

  

3.7 Comparison of Barton pot and Ball mill lead oxide 

 
The Barton pot and Ball mill processes produce an oxide that differs in 

particle size, shape and physical properties. A narrow particle size 

distribution is preferred since this allows for a consistent reaction of the 

oxide with H2SO4 in the paste mixing process to develop the required 

crystal structure in the active material. The particle size distribution 

range does not only depend on the process used, but also on the 

process control that is exercised during the lead oxide manufacturing. 

Older oxide mills tend to have less sensitive controls and as a result an 

oxide with a wider particle size distribution range is often produced.  

 

During the manufacturing process, in order to obtain a consistent 

particle size, a slower production rate is often required. This in turn 

reduces the amount of material produced and the number of batteries 

that can be built in a particular day.  

 

Table 2 shows a comparison of some of the properties of oxide made 

using the Barton pot and Ball mill oxide processes 1,2,19,23,24,25. 
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Table 2:  Comparison of Barton pot and Ball mill oxide  

 

 Barton pot Ball Mill 

Particle shape Rounded Flatter 

Average BET 
surface area (m2/g) 

0.7 2.5 

Acid absorption No 
(mg H2SO4 / g PbO) 

150 – 200 200 – 250 

Average particle 
size (µm) 

3 – 4 2 – 3 

Free lead ( % ) 18 – 28 25 – 35 

Oxide crystal  
structures (wt%) 

5 – 30 % ß-PbO 

Balance a-PbO 
100% a-PbO 

Paste mixing 
Characteristics 

Makes a softer paste that 

is easier to paste 

Makes a stiffer paste that 

may require careful control 

Paste curing Average curing rate Slightly faster curing rate 

Batter performance Lower initial capacity Good initial capacity 

Deep cycle ability Usually good Sometimes good 

Investment  
considerations  

Lower initial and operating 

and maintenance costs, 

compact in size, relatively 

quiet to run 

Higher initial, operating 

and maintenance costs . 

Requires more space and 

is noisier 

 

 
3.8 Hammer milling Barton pot oxide 

 
The objective of this study was to investigate the possibility of 

improving the physical properties of Barton pot oxide by increasing its 

surface area and reducing its particle size . This was done by passing 

the oxide through a hammer mill after it was made by the Barton pot 

process and before it was transported to the paste mixer.  

The process of hammer milling Barton Pot oxide is not new. Early 

Barton pot oxide mills produced a very course oxide which resulted in 

electrode manufacturing problems and excessive active material 

shedding22. To solve this problem the oxide was passed through a 

hammer mill in order to make it more usable. This practice was later 

discontinued as technology improvements such as more sensitive 
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detection and control devices as well as computer aided control systems 

in the Barton Pot process allowed for the production of a finer oxide22.  

 

With the ever increasing requirement for improved battery performance   

and the need for greater production output, this hammer milling process 

can offer a solution to further improving the consistency of oxide 

particles with a higher production rate.  
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Chapter 4  

Experimental 

 
 
 
4.1 Hammer milling of oxide 

 

A laboratory size hammer mill (micro hammer mill “Culatti” type 5) was 

used to grind the lead oxide. The specifications of the hammer mill are 

given in appendix I. 

Lead oxide, made by using the Barton Pot process was received from a 

local battery manufacturer and ground by repeatedly passing it through 

the hammer mill. This was done about 20 times, with samples taken at 

selected intervals to determine the change in the following 

characteristics: 

a) Particle size distribution analysis by laser diffraction using a 

Malvern particle size analyzer (model MSS). 

b) BET surface area analysis by nitrogen adsorption using a 

Micrometrics BET analyser (model Gemini ). 

c) Free lead analysis by using a standard wet chemistry method used 

in the battery industry (appendix II). 

d) Acid absorption number by using a standard method used in the 

battery industry (appendix II). 

e) The particle size and shape were studied using an Olympus 

optical microscope (model PMG3) and a Phillips scanning electron 

microscope (SEM) model (XL30). 

f) Phase composition analysis by XRD using a Brucker model (D8 

advance) diffractometer. 

 

These experimental techniques were discussed in section 3.6. 

As a comparison, oxide made by a Ball mill process was acquired from a 

different battery manufacturer and was also milled 20 times and 

evaluated in the same way as the Barton pot oxide. 
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4.2 Evaluation of positive electrode electrical performance 

 

Positive electrodes were made with the milled oxide taken at selected 

intervals and the electrical performance of the cell was evaluated. The 

lead oxide (300 g) and a binder (0.3  g supplied by a local battery 

manufacturer) were mixed with water (35 ml) in a container using a 

bench top stirrer. Sulphuric acid (24 ml, 1.4 S.G.) was slowly added to 

the mixture over a 15-20 min period using a burette while the mixture 

was continually stirred to form a stiff paste. This paste was pressed 

onto a lead alloy grid to form a pasted positive electrode. The grid size 

used was the XLTP type Pb-Ca alloy which had a Ca composition of 

0.05%.  

 

The electrodes were cured by placing them into a high humidity chamber 

set at 22oC and a humidity of 85% for 24 hours. The plates were then 

allowed to air dry to develop the optimum strength for a further 24 

hours. The active material mass of the cured plate was determined and 

found to be between 65 and 70 g per single plate. The rated C20 

capacity of 9 Ah per positive plate was used as specified by the local 

battery manufacturer for this plate type. Single battery cells were 

assembled using one positive plate and two negative plates, which were 

separated by a polyethylene envelope separator. The negative plates 

were supplied by the local battery manufacturer and were the XLTN 

expanded metal Pb-Ca alloy negatives with a Ca composition of 0.1%. 

 

The formation process was done by filling the cells with 1.240 S.G.  

sulphuric acid which was supplied by the local battery manufacturer and 

formed at ambient temperature using 44 Ah (5C20) of energy. Since the 

positive plate was rated at 9 Ah, a total Ah input of 5C20 was used to 

form the cells as is commonly used in the battery industry.  

The theoretical number of Ah required to form a cell is 227 Ah/kg7. On 

average, the positive plates contained 70 g of active material which 
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meant that 632 Ah/kg (2.8 times the theoretical value) was used to form 

the cells in practice.  

All formation and electrochemical evaluation tests were done using the 

Maccor series 2000 battery tester. 

The formation profile  was done using the steps shown in table 3: 

 

Table 3:  Formation program for 9 Ah cells  

 

Mode Current Hours Ah 

Rest 0 0.33 0 

Charge 1.75 20 35 

Charge 1.2 7.75 9.3 

Total  28.08 44.3 

 

 

After the formation process the electrical performance of the cells was 

evaluated by determining the energy density. The cells were discharged 

at 0.45 A until the voltage reached 1.75 V. The Ah capacity measured 

was converted to Ah/kg by dividing by the mass of the active material. 

The cells were then charged at a voltage of 2.67 V with a current 

maximum of 2 A for 24 h. Five of these capacity tests were done. 

 

The power density was determined by discharging the cells at 10 A, 20 

A and 40 A at ambient temperature until the voltage reached 1.2 V.  The 

result in Ah was converted to Ah/kg by dividing by the cured active 

material mass. The cells were then recharged at 2.67 V with a current 

maximum of 2 A for 20 h. 
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Chapter 5  

Results and discussion 

 

 
5.1 XRD phase analysis of lead oxide 

 

The XRD phase analysis results of the lead oxide from the Barton pot 

and Ball mill processes before the hammer milling process is shown in 

table 4. 

 

Table 4:     XRD phase analysis results 

 

 Barton pot Ball mill 

a- PbO (%) 79 100 

ß- PbO (%) 21 - 

 

 

The results showed that the Ball mill oxide contained no ß-PbO. The 

reason for this is the lower temperature at which the Ball mill operates 

and is in line with what was reported in the literature2. 

 
 

5.2 Particle size distribution by laser diffraction 

 

5.2.1   Barton pot process  

 
The effect of repeatedly passing a sample of PbO made using the 

Barton pot process through the hammer mill and its influence on the 

particle size distribution is shown in figure 4. 
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Figure 4:  Particle size distribution of Barton pot oxide 
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The oxide, as received from the manufacturer, before being subjected to 

the hammering process showed a modal diameter (most commonly 

occurring particle size) of 5 µm. The effect of repeatedly passing the 

oxide through the hammer mill resulted in a reduction of the modal 

diameter from 5 µm to 3 µm. There was also a decrease in the 

frequency of the modal diameter as the sample was hammered. This 

was due to the fact that as the larger particles were reduced in size and 

the particle size distribution curve shifted towards the finer particle size. 

During the first 5 passes through the hammer mill, the particle size 

distribution range shifted from 0.8-17 µm to 0.7-15 µm. However, from 

10-20 passes through the hammer mill, the overall particle size range 

remained between 0.5-14 µm.   
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The biggest change in the particle size distribution range occurred 

during the first few passes through the hammer mill. There was no 

significant change in the particle size distribution range after 10 passes 

through the hammer mill. Only a change in the frequency within the 

particle size distribution range was observed. This would imply that 

there is an initial reduction in the particle size range after which a limit 

is approached and the rate of change becomes slower. 

Additional graphs of repeated experiments are shown in Appendix III 

(figures 40 and 42) and showed very similar trends.  

 

The 3D view of the particle size distribution curve is shown in figure 5 

where the shift in the modal diameter is more clearly visible. 

 

Figure 5:  Particle size distribution – 3D view 
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The statistics of the particle size distribution are calculated by the 

instrumental software using international method (BS2955:1993)27. The 

results are shown in table 5 where: 

D[4,3] is the volume mean diameter 

D[3,2] is the surface area mean diameter or Sauter mean 

D(v,0.5) is the mass mean diameter (MMD) – the particle size at which 

50% of the sample is larger and 50% is smaller than this size 

D(v,0.1) is the particle size for which 10% of the sample is below this 

size 

D(v,0.9) is the particle size for which 90% of the sample is below this 

size 

Span is the measure of the width of the particle size distribution. The 

smaller the value, the narrower the distribution, and is calculated as  

{d(0.9)-d(0.1)}/d(0.5)}. 

 

Table 5:  Calculated statistics of the particle size distribution 

 

 No of times through the 

hammer mill 

 0 5 10 20 

Volume mean diameter 

D[4,3] (µm) 

4.47 4.20 3.72 3.46 

Surface area mean diameter 

 D[3,2] (µm) 

3.24 2.96 2.57 2.19 

Mass mean diameter (MMD) 

D(v,0.5) (µm) 

3.93 3.71 3.25 2.91 

10% of particles < this size 

D(v,0.1) (µm) 

1.77 1.59 1.37 1.07 

90% of particles < this size 

D(v,0.1) (µm) 

7.99 7.54 6.79 6.70 

Specific surface area 

SSA (m2/g) 

0.185 0.203 0.234 0.275 

Span (µm) 1.58 1.60 1.66 1.93 
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The results showed that there was a decrease in the mean diameters of 

the particle size distribution as the sample was repeatedly passed 

through the hammer mill. The particle size at which 10% and 90% of the 

sample was smaller than this size also decreased. There was an 

increase in the specific surface area and the span as the sample was 

repeatedly hammered. The result of the hammering process decreased 

the particle size mean diameters with an increase in the specific surface 

area. The cumulative % of the particles that are smaller than a given 

size is shown in figure 6. The % on the y-axis corresponds to the % of 

particles smaller than the corresponding µm value on the x-axis. A 

statistical analysis of the variance (ANOVA) of the various means is 

shown in appendix V. 

 

Figure 6:  Effect on cumulative % of passing oxide through 

the hammer mill 
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The results showed a shift in the cumulative particle size distribution 

towards a finer particle size as the oxide is hammered. There is a 

negligible difference between 10 and 20 passes through the hammer mill 

indicating that the shift in particle size distribution becomes smaller as 

the sample is repeatedly hammered. This limiting effect is more clearly 

seen in figure 7, where a 3D representation of the cumulative % particle 

size distribution is shown. 

 

Figure 7:  Cumulative % particle size distribution – 3D view  
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5.2.2   Ball mill process 

 

The effect of repeatedly passing a sample of Ball mill lead oxide through 

the hammer mill and its influence on the particle size distribution is 

shown in figure 8. 

 

Figure 8:  Particle  size distribution of Ball mill oxide 
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The results showed that the Ball mill oxide had a fairly wide range of 

particle sizes.  The sample, as received from the manufacturer, before 

being subjected to the hammer milling process, had a modal diameter of 

14 µm. After 20 passes through the hammer mill this diameter was 

reduced to 9 µm. There was also a decrease in the % of the modal 

diameter as the sample was repeatedly hammered, where the extent of 

the shift was reduced as the sample was continually hammered. Since 

the distribution of the particles would always sum to 100% (figure 10), it 
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is the fraction of the various particle sizes that have changed during the 

hammer milling process. 

The 3D effect of the particle size distribution curve is shown in figure 9. 

 

Figure 9:  Ball mill particle size distribution 
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The statistics of the particle size distribution is shown in table 6. The 

explanations of the terms are in section 5.1.2. 

 

 

Table 6:  Calculated statistics of the particle size distribution for 

Ball mill oxide 

 

 No of times through the 

hammer mill 

 0 3 13 20 

Volume mean diameter 

D[4,3] (µm) 

12.35 10.05 9.09 8.32 

Surface area mean diameter 

 D[3,2] (µm) 

4.21 1.84 2.10 1.33 

Mass mean diameter (MMD) 

D(v,0.5) (µm) 

9.60 7.43 6.59 5.70 

10% of particles < this size 

D(v,0.1) (µm) 

1.88 0.91 1.20 0.51 

90% of particles < this size 

D(v,0.1) (µm) 

25.04 22.97 20.64 19.94 

Specific surface area 

SSA (m2/g) 

0.143 0.326 0.286 0.451 

Span (µm) 2.421 2.969 2.950 3.409 

 

 

The results showed that there was a decrease in the mean diameters as 

the lead oxide was repeatedly passed through the hammer mill. The 

particle size at which 10% and 90% of the sample was smaller than this 

size also decreased. There was an increase in the specific surface area 

and the span as the sample was repeatedly hammered. The result of the 

hammering process on the Ball mill oxide similarly showed a decrease 

in the particle size mean diameters with an increase in the specific 

surface area. A statistical analysis of the variance (ANOVA) of the 
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various means is shown in appendix V (tables 17,18). The results 

showed that the variation seen in the particle sizes during the hammer 

milling process was statistically significant and not due to experimental 

error. 

 The cumulative % of the particles that are smaller than a given size is 

shown in figure 10.  

 

 

Figure 10:  Effect on cumulative % of passing Ball mill oxide 

through the hammer mill 
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The results showed a shift in the cumulative particle size distribution 

towards a finer particle size as the oxide is hammered. The shift to the 

finer particle sizes became smaller as the oxide was continually 

hammered. This is more clearly shown in the 3D graph in figure 11. 
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Figure 11:   Cumulative % particle size distribution – 3D view   
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5.2.3  Summary – Barton pot and Ball mill particle size analysis  

 
The results showed that the Ball mill sample was a much courser oxide 

with a larger range in particle sizes. The mean particle size of the Ball 

mill oxide was 12 µm when compared with 5 µm for the Barton pot 

oxide. This is different to what is often referred to in the literature where 

average Ball mill particle sizes of 2-3 µm are generally reported2,19. 



 44

However, a comparison of Ball mill oxides from various battery plants 

showed a wide range of particle size means from this process25. The 

Barton pot oxide had a negligible number of particles greater than 15 

µm whereas the Ball mill oxide had particles as large as 70 µm.  

 

The wide particle size distribution of this Ball mill sample may be due to 

a poor process control in the manufacturing of the oxide where the age 

and process control ability of the equipment may have contributed to the 

wide range of particles produced.  

 

Since the particles of the Ball mill are flatter in shape19, the laser 

diffraction system would have determined on average a larger particle if 

viewed from its larger side when compared with its narrower side. This 

would have changed the particle size distribution spectrum slightly since 

the algorithm used to determine the particle size assumed that the 

shape of the particle was spherical. The particle shape will be discussed 

in more detail in section 5.4. 

 

Passing the Ball mill oxide through the hammer mill produced a much 

larger reduction in the particle size distribution range. This was most 

likely due to the flat shaped nature of the starting material. 

 

In the Barton pot oxide more than 90% of the particles were less than 10 

µm when compared with the ball mill process where 50% of the particles 

were < 10 µm before being passed through the hammer mill. Hammer 

milling the Ball mill oxide 20 times improved this percentage to 80%. 

 

The hammer milling of both types of lead oxide showed a similar trend 

in the reduction of the particle size distribution range with the 

improvements becoming smaller as the number of times passed through 

the hammer mill increased. Even though the process of hammer milling 

Ball mill oxide was not the primary aim of this study, the results showed 

that a significant reduction in the particle size distribution could be 
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achieved. This was most likely due to the much courser nature of the 

Ball mill oxide before the start of the hammer milling process. 

 

5.3 BET surface area analysis and acid absorption number 

 

The BET surface area analysis and acid absorption number 

determination are different methods that relate to the surface area of 

the oxide. While the BET method requires expensive equipment, the 

acid absorption method is quick and inexpensive, and can be readily 

used in the factory environment. 

 

5.3.1  Barton pot lead oxide 

 
The BET surface area analysis of the Barton pot lead oxide after it was 

repeatedly passed through the hammer mill is shown in figure 12. 

 

Figure 12:    BET surface area of Barton pot lead oxide 
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A similar trend to the results of the particle size analysis was observed 

with the BET surface area analysis. Initially, after a few hammer milling 

cycles the surface area increased, but after about 8 passes through the 

hammer mill, the increase in surface area with subsequent hammering 

was reduced. The lower values obtained after 14 and 16 passes through 

the hammer mill was most likely due to experimental error as the results 

of additional experiments (appendix III fig 44) confirmed. 

 

The acid absorption number, which relates to the surface area of the 

particle showed a slight increase after 12 passes through the hammer 

mill. Thereafter there was no significant change in the acid absorption 

number. This is shown in figure 13. 

 

 

Figure 13:    Acid Absorption number of Barton pot oxide 
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5.3.2   Ball mill lead oxide 

 

The BET surface area analysis of the Ball mill lead oxide after it was 

repeatedly passed through the hammer mill is shown in figure 14. 

 

 

Figure 14:   BET surface area of Ball mill lead oxide 
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The results showed that repeatedly hammering the Ball mill sample 

produced no significant change in the surface area of the oxide. There 

was an initial slight decrease in the surface area after the hammer 

milling process had started and no subsequent change after about 20 

passes through the hammer mill. 
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The acid absorption number results of the Ball mill lead oxide after it 

was repeatedly passed through the hammer mill are shown in figure 15. 

 

Figure 15:    Acid Absorption number of Ball mill oxide 
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The results showed that there was initially a slight decrease and then an 

increase in the acid absorption number which was similar to the trend 

shown in the BET surface area results. However, there was no 

significant difference in the results between the oxide that was not 

hammered and that that had been passed through the hammer mill 20 

times.  

 

 

5.3.3   Summary - BET surface area and acid absorption number 

 
The BET surface area analysis and the acid absorption number of the 

Barton pot and Ball mill oxides did not show the same trend as with the 

particle size distribution. The Barton pot sample showed an initial 

increase in the BET surface area and acid absorption number, and then 
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tended to show a negligible variation as the oxide was continually 

passed through the hammer mill.  

The Ball mill oxide showed a slight decrease in the BET surface area 

and acid absorption number initially, however, there was no signi ficant 

difference between the non-hammered oxide and the one that was 

hammered 20 times. 

 

The cause of this is most likely related to the shape of the Ball mill 

particles which are flatter in shape as compared with the more rounded 

Barton pot particles. The particle size distribution analysis showed that 

there was a reduction in the size of the oxide grains as the sample was 

passed through the hammer mill. The BET surface area results of the 

Ball mill oxide would suggest that the particles are broken up along the 

larger surface plane. The results also suggest that the surface area of 

the flatter side of the grain is much larger than the narrower side.  The 

surface area of a flatter particle that is ground or broken would not 

change as much as a more rounded particle that is broken. 

 

In order to compare the particle shapes of the two different oxides, a 

shape factor was determined by dividing the results obtained from the 

BET surface area (fig 12, 14) by the SSA (table 4, 5) obtained from the 

laser diffraction technique. The SSA values are calculated by the 

instrumental software by assuming that the particles are spherical. A 

change in the BET/SSA relationship would suggest that the particle 

shape had changed as a result of the hammer milling process. This 

would be an important factor especially in the Ball mill process since the 

oxide particles are flatter in shape2. The resultant graph is shown in 

figure 16. 
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Figure 16:    Particle shape factor 
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The results showed that there was no significant difference in the 

BET/SSA values for the Barton pot oxide as the sample was repeatedly 

passed through the hammer mill. However, the Ball mill oxide showed a 

significant decrease after the first few passes through the hammer mill, 

followed by a gradual decrease as the sample was repeatedly 

hammered. This suggests that the shape of the Ball mill particles had 

changed during the hammer milling process whereas for the Barton pot 

process the shape of the particles remained the same. Further evidence 

of this is shown in the SEM studies in section 5.4. 
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5.4 Free lead percentage 

 

The free lead content of the lead oxide is an important parameter in the 

lead acid manufacturing process since it is necessary in the high 

humidity curing process.  

 

5.4.1   Barton pot process 

 
The effect of the hammer milling process on the free lead content of 

Barton pot oxide is shown in figure 17. 

 

 

Figure 17:   Free lead % of Barton pot lead oxide  
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The results showed that the free lead content of the lead oxide 

remained relatively consistent after each repeating step of the hammer 

milling process. This would imply that the hammer milling process does 

not influence the free lead content. 
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5.4.2 Ball mill process 

 

The effect on the free lead content when Ball mill lead oxide was 

repeatedly passed through the hammer milling process is shown in 

figure 18. 

 

Figure 18:   Free lead % of Ball mill lead oxide  
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The results showed no significant variation in the free lead as a result of 

repeatedly passing the oxide through the hammer milling process except 

for a slight decrease after the 10th, 15 th and 20th cycle. 

 

5.4.3   Summary – Free lead % in Barton pot and Ball mill oxide 

 
For both the Barton pot and Ball mill oxides there was no significant 

variation in the free lead due to the hammer milling process.  This 

implies that for both types of lead oxide the hammer milling process 

does not cause the free lead in the oxide to oxidise further. The free 

lead % in the Ball mill oxide was greater than the Barton pot oxide. This 
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is a function of the oxide manufacturing process and is similar to  the 

values reported in the literature (table 2).  

 

 

5.5 SEM and optical microscope studies of lead oxide 

 

5.5.1  Barton pot oxide 

 
Selected Barton pot samples were studied using SEM to determine if 

there was any visual variation in particle shape and size when the oxide 

was repeatedly passed through the hammer mill. The results are shown 

in figures 19-21. 

 

 

Figure 19:   Barton pot oxide before the hammer milling process 
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Figure 20:  Barton pot oxide after 10 passes through hammer mill 

 

 

 

 

Figure 21:   Barton pot oxide after 20 passes through hammer mill 
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Selected Barton pot oxide samples were studied using an optical 

microscope to determine the effects of the hammer milling process on 

the Barton pot oxide. The results are shown in figures 22 – 24. 

 

Figure 22:   Barton pot oxide before the hammer mill process 

 

50X magnification 

 

Figure 23:   Barton pot oxide after 10 times through the hammer mill 

 

50X magnification 
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Figure 24:   Barton pot oxide after 20 times through the hammer mill 

 

 

 

50X magnification 

 

The SEM photograph of the Barton pot oxide before the hammer milling 

process (fig 19), showed that the oxide particles were relatively rounded 

in shape with some larger particles > 10 µm clearly visible. After 10 

passes through the hammer mill (fig 20) a finer range of particles could 

be seen. A more uniform and finer range of particles could be seen after 

20 passes through the hammer milling process (fig 21). 

 

The optical micrograph of the Barton pot sample, before the hammer 

milling process (fig 22), showed that the free lead particles (dark spots) 

and the lead oxide particles were more rounded in shape. After being 

passed through the hammer mill (fig 23,24) the lead oxide tended to 

have a more consistent appearance in terms of its particle size. 
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5.5.2   Ball mill oxide 

 

Selected Ball mill samples were studied using the SEM to determine if 

there was any variation in particle shape and size when the oxide was 

repeatedly passed through the hammer mill. The results are shown in 

figures 25-27. 

 

 

Figure 25:   Ball mill oxide before the hammer milling process 
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Figure 26:  Ball mill oxide after 10 passes through hammer mill 

 

 
 

 

Figure 27:   Ball mill oxide after 20 passes through hammer mill 
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Selected Ball mill oxide samples were studied using an optical 

microscope to determine the effects of the hammer milling process on 

the Ball mill oxide. The results are shown in figures 28 – 30. 

 

Figure 28:   Ball mill before the hammer milling process 

 

 
50X magnification 

 

Figure 29:  Ball mill oxide after 10 passes through the hammer mill 

 
50X magnification 
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Figure 30:   Ball mill oxide after 20 passes through the hammer mill 

 

 

50X magnification 

 

The SEM micrograph of the Ball mill oxide, before the hammer milling 

process (fig 25), showed very large irregular particles > 20 µm. The 

shape of the particles appeared to be flatter and irregular in shape. 

After 10 passes through the hammer mill (fig 26) the size of these 

particles was reduced and the shape of the particles became less 

irregular. After 20 passes through the hammer mill (fig 27) the shape of 

the particles appeared more rounded. 

 

The optical micrograph of the Ball mill oxide, before the hammer milling 

process (fig 28) showed that the free lead particles (dark areas) were 

elongated and almost needle-like in shape. The lead oxide particles 

were more irregular in shape. After the hammer milling process (fig 29, 

30) the oxide tended to have a more consistent appearance with the 

oxide particles having a similar particle size. 
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5.5.3  Summary – SEM and optical microscope study of Barton pot 

  and Ball mill lead oxide 

 

The SEM study of the Barton pot and Ball mill oxides before the hammer 

milling process showed that there was a distinct difference in the 

particle shape and size. The Barton pot particles were more rounded 

whereas the Ball mill particles were more irregular and flatter in shape. 

During the hammer milling process the Barton pot oxide maintained the 

rounded particle shape whereas the Ball mill oxide, which had a flatter 

shaped particle would break up and become more rounded in shape. 

This supports the change in shape factor BET/SSA discussed previously 

(fig 16). 

 

The optical micrographs showed that the Barton pot and Ball mill oxides 

had a distinct difference in the shape of the free lead and lead oxide 

particles. The Barton pot oxide and free lead particles were more 

rounded in shape, whereas the Ball mill had more irregular shaped 

oxide particles and needle-like lead particles. 
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Chapter 6  

 

Electrochemical evaluation of the positive electrode 

made by using Barton pot lead oxide 

 

 

6.1 Cured positive electrode 

 

6.1.1  XRD phase analysis  

 
The XRD phase analysis results of the cured plates made using Barton 

pot lead oxide that was passed through the hammer mill 0, 3, 10 and 20 

times respectively is shown in table 7. 

 

 

Table 7:    XRD phase analysis of cured electrodes 

 

 No of times passed through the hammer 

mill 

 0 3 10 20 

a -PbO (%) 24.6 37.0 29.2 40.9 

T3 (%) 27.3 38.6 36.2 33.8 

MBS (%) 47.2 23.3 33.6 24.2 

 

T3 :Tri-basic lead sulphate 

MBS :Mono-basic lead sulphate  

 

The results showed that predominantly T3 crystals were produced in the 

cured active material. The variation in T3 can be attributed to sample 

analysis where only a small sample from an entire plate was taken, and 

not due to the grinding process. 
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6.1.2   BET surface area analysis of the cured electrodes 

 

The BET surface area analysis results of the cured positive  electrodes, 

made using Barton pot oxide are shown in figure 31. 

 

Figure 31:   BET surface area of cured positive plates 
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The results showed that there was a slight increase in the surface area 

of the cured positive electrode once the oxide had been passed through 

the hammer mill. This change was not significant, but a finer oxide could 

influence the paste mixing process due to the greater reactivity of the 

finer oxide with the H2SO4 used in this process. The slightly higher 

surface area of the cured electrodes that were made using hammer 

milled oxide may result in a slightly more reactive electrode when H2SO4 

is added to the battery cell at the start of the formation process.  
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6.2 Cell Formation  

 

The formation voltage profiles of the cells prepared using Barton pot 

lead oxide that was passed through the hammer mill is shown in figure 

32. 

 

Figure 32:  Formation voltage profiles 
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The results showed that there were small voltage differences during the 

first 5 hours of the formation process, after which the voltage profiles 

were very similar. The slight variation of the voltage profiles at the start 

of the formation process could be explained by the variation in the 

reaction of the H2SO4 with the active material when the acid was added 

to the cell.  

3PbO. PbSO4   +  3 H2SO4   ?   4 PbSO4    +  3 H2O  (9) 

 

This would result in slight variations in the cell resistance which would 

result in a voltage variation at the start of the formation process 
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according to Ohm’s law (V = IR). Since batteries are formed using a 

constant current, a higher voltage would indicate a higher resistance to  

accepting the charge and result in a reduced active material conversion 

efficiency during formation. 

 

6.3 Analysis of the formed plates 

 

6.3.1  XRD phase analysis  

 

The XRD phase analysis results of the formed positive electrodes that 

were made using Barton pot oxide that was passed through the hammer 

mill is shown in table 8. 

 

Table 8:    XRD phase analysis of formed positive electrodes 

 

 No of times passed through the hammer 

mill 

 0 3 10 20 

aPbO2 (%) 13.8 14.0 10.7 17.8 

ßPbO2 (%) 45.8 66.8 66.8 59.1 

PbSO4 (%) 40.4 19.3 22.5 23.1 

 

 

The results showed similar levels of a-PbO2 in the formed active 

material. A lower level of ß-PbO2 and more PbSO4 was found in the 

plate made using oxide that had not been passed through the hammer 

mill.   
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6.3.2   BET surface area analysis  

 

The BET surface area analysis results of the formed positive electrodes 

made using Barton pot oxide that was passed through the hammer mill 

is shown in figure 33. 

 

Figure 33:   BET surface area of formed positive electrodes 
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The results showed that there was an increase in the surface area of the 

positive electrodes that were made using Barton pot oxide that had been 

passed through the hammer mill 3 and 10 times, followed by a decrease 

in surface area for the active material made with oxide that had been 

hammered 20 times. This change in surface area may be related to the 

differences observed in the formation voltage profiles (fig 32) where the 

electrodes made using oxide that had been passed through the hammer 

mill three times showed a reduced resistance during the initial stages of 

formation while the 20 times electrode showed an increased resistance. 

This may have resulted in the variation of the surface area in the formed 

active material. 
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6.4 C20 capacity tests 

 

6.4.1   Initial capacity testing 

 

The results of the first 20 h capacity test at the rated capacity of 9Ah at 

ambient temperature are shown in figure 34. 

 

 

Figure 34:   Initial C20 capacity tests 
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The results showed that the performance of the cells improved after 3 

passes through the hammer mill, and then started to decline in the cells 

made with oxide that had been passed though the hammer mill 10 and 

20 times. The 10 passes cell was still better than the 0 passes cell, 

while the performance of the 20 passes cell was worst than the cell 

made with oxide that had not been passed through the hammer mill. A 

similar trend was observed when the experiments were repeated. This is 

shown in appendix IV (fig 45, 48). 
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The trend shown in the results tends to suggest that the hammer milling 

process of oxide does improve the initial performance of the cell, but 

that further hammer milling results in a deterioration of the cell 

performance.   

 

 

6.4.2    Capacity cycles 

 

The results of the C20 capacity cycling tests on the cells made using 

Barton pot oxide that had been passed through the hammer mill is 

shown in figure 35. 

 

Figure 35:   Capacity cycling tests 
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x20 :Passed 20 times through the hammer mill 

 

The results showed that all the cells achieved a similar capacity value 

after 3 capacity cycles. After the third cycle there was a decrease in the 

capacity values, with the 20 times sample showing the largest decay in 

performance and the 0 times sample the smallest. 
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It would seem that grinding the oxide to remove the course particles is 

beneficial to cell performance, but too much grinding can lead to a 

decrease in the electrochemical performance of the cells. Additional 

experiments showing a similar trend is shown in appendix IV  (fig 46, 

49). 

 

6.5  Power density determination using high currents 

 

The high current performance of the cells  made using Barton pot oxide 

that had been passed through the hammer mill is shown in figure 36. 

The tests were done at 10 A, 20 A and 40 A respectively at ambient 

temperature. 

 

Figure 36:   High current discharge tests 
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The results in figure 36 showed a similar trend to the C20 capacity 

testing with an improvement in performance up to 10 passes, followed 

by a decrease in the performance of the cell with the 20 passes oxide 

sample. There was a slight difference in the trend observed, in that the 
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sample with 10 passes showed a slightly higher current density to the 

one seen in the low current tests where there was only an improvement 

in performance up to the 3 passes sample. 

The biggest improvement was seen at the higher current of 40 A where 

the percentage increase in the performance was 48% compared with 

14% and 8% for the 10 A and 20 A discharges respectively. This is most 

likely related to the reaction kinetics during the discharge reaction at 

higher currents, where the reaction is more dependant on the active 

material surface area exposed to the acid and the diffusion rate of the 

acid becomes a limiting factor. Evidence of this can be seen in the BET 

surface area results (fig 33) which showed an increase in the active 

material surface area of the electrodes made using the hammer milled 

oxide. 

The results showed that the hammer milling process improved the high 

rate performance of the cells, but that there was a limit after which no 

improvement and a decrease in the performance was observed. 

 

The trend observed during the high current tests was similar to that of 

the BET surface area results (fig 33). This is most likely due to the fact 

that at high currents the performance is more dependent on surface 

area due to the short duration of the discharge period. Additional 

experiments showing a similar trend is shown in appendix IV  (fig 47, 

50). The analysis of variance in appendix V (table 20) showed that the 

variation in performance from 1 to 20 hammer milling steps was not 

significant. However, the variation from 1-10 milling steps (table 21) was 

statistically significant. This confirmed the observation that continued 

hammer milling of the oxide produced a reduced improvement in 

electrical performance. 
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6.6  Evaluation of the “float” current 

 

The recharge current profile towards the end of the recharge period 

after the 5 th C20 capacity test is shown in figure 37. This was done to 

determine if the hammer milling process had any effect on the “float 

current” as this would give an indication of the water loss properties of a 

cell. The water loss characteristics of a battery are affected mainly by 

the purity of the lead used to manufacture the lead oxide and by the 

choice of lead alloy for the grid. While it was not expected for the 

hammer milling process to affect the water loss characteristics of the 

battery, this test was performed as it is an important parameter that is 

monitored by battery manufacturers. The recharge was done at a 

constant voltage of 2.67 V with a maximum current of 2 A.  

 

Figure 37:   Recharge current profile   
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The results showed that the cells reached the 2.67 V charge level in the 

order of its capacity achieved (the lower capacity cells reached 2.67 V 

first). The current then rapidly decreased to the float current level and, 

towards the end of the recharge process, the currents in all the cells 

was similar. This showed that the hammer milling process on the oxide 

had no effect on the recharge current at the end of the recharge process 

and would not affect the water loss characteristics of the cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 73

Chapter 7  

Conclusions 

 

 

1. The effect of passing Barton pot oxide repeatedly through a hammer 

mill reduced the mean particle size  from 5 to 3µm. The effect was 

more pronounced during the first few passes through the hammer 

mill. Wi th repeated passes the effectiveness of the particle size 

reduction diminished and there was very little difference between 10 

and 20 passes through the hammer mill. The optimum number of 

passes through the hammer mill was found to be 6-8 times after 

which continued grinding produced negligible improvements. 

 

A similar trend was seen when the ball mill oxide was repeatedly 

passed through the hammer mill. Since the starting material of the 

ball mill oxide had a larger particle size distribution, the initial 

improvements were better with the tendency to approach a limit after 

about 8 passes through the hammer mill. 

 

2. Repeatedly passing the Barton pot oxide through the hammer mill 

resulted in an increase in the BET surface area of the oxide. The 

trend was similar to the particle size distribution where there was an 

initial increase which levelled out after about 8 passes through the 

hammer mill. A similar effect was observed with the acid absorption 

number which relates to the surface area. 

 

A similar trend was not seen when the Ball mill oxide was repeatedly 

passed through the hammer mill. The Ball mill oxide had a larger 

surface area of 2.3 m2/g, which did not change appreciably during the 

hammer milling process. This was attributed to the fact that the Ball 

mill particles had a flatter shape and when the hammer milling 

process split up the particles, the surface area did not change 

appreciably. The breaking of the particles resulted in a change in the 
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particle shape, which can be related to  the shape factor. The shape 

factor is a comparison between the results of the surface area 

obtained by two different techniques. 

 

3. The hammer milling process did not appreciably change the free lead 

percentage in either the Barton pot or the Ball mill samples. This is 

an important parameter in the lead acid battery process as a loss of 

free lead in the oxide would result in processing problems during the 

electrode preparation. 

 

4. When the Barton pot and Ball mill oxides were compared using 

optical and scanning electron microscopy it was found that the Barton 

pot oxide particles were more rounded in shape whereas the Ball mill 

oxide particles had a flatter and more irregular shape. The free lead 

particles were more rounded in the Barton pot oxide and were needle 

like in shape in the Ball mill oxide. During the hammer milling 

process, the Barton pot particles were reduced in size, but 

maintained their almost rounded shape. However, the Ball mill 

particles were reduced in size and the irregular shapes became more 

rounded. 

 

5. The hammer milling of Barton pot oxide showed improvements in the 

electrical performance of the positive electrode at both low (capacity 

tests) and high (HRD tests) current rates to a certain limit. At low 

rates improvements were observed with 3 passes through the 

hammer mill whereas at high current rates the improvement was 

observed up to 10 passes through the hammer mill. Thereafter the 

electrical performance would tend to decrease. Repeti tive grinding of 

the oxide also resulted in a faster decay of the energy density during 

the capacity cycling. 

 

6. Since the greatest effect in the first few passes through the hammer 

mill was the removal of the very course particles >15 µm, it would 
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seem that the removal of the course particles results in the 

improvement in electrical performance. Further refining of the oxide 

through additional grinding did not result in further improvements in 

the electrical performance of the positive electrode. The requirement 

for a fine particle  lead oxide for battery manufacturing should not 

only be limited in terms of an upper limit, but as the study showed, 

also be limited to a lower limit in size. Barton pot oxide with a mean 

particle size of 4-5 µm and with a negligible number of particles 

above 15 µm seems to be preferred. 

 

7. It has been shown that the hammer milling of Barton pot oxide has an 

important role to play in producing a lead oxide capable of producing 

electrodes with better electrical performance. It may also provide 

battery companies with an opportunity to increase lead oxide 

production rates by making a courser oxide and then removing to 

course particles using a hammer mill without having to invest in an 

additional costly lead oxide production plant.  

 

Since most battery companies have more than one oxide mill that 

may produce a variation in oxide quality, the hammer milling process 

may be useful to stabilise the particle size distribution of the oxide 

from the various sources in order to produce electrodes that can 

deliver a more consistent electrical performance. 

 

It has been shown that the hammer milling of Barton pot lead oxide 

can improve the electrode performance, especially the high rate 

performance. It is recommended to the manufacturer to scale up the 

process where a larger hammer mill capable of processing 1000 kg of 

oxide would be used.  The oxide can then be processed through the 

system in the normal way and complete batteries can be assembled 

for evaluation. 

It is recommended that the hammer mill be positioned between the 

oxide storage silos and the paste mixing process. This would allow 
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for only stabilised or aged oxide and not hot, freshly made oxide to 

be passed through the hammer milling process.  

While it may not be feasible to have multiple passes through the 

hammer mill at an industrial level, the design of the hammer mill 

should be such that the oxide flow rate and grinding speed can be 

adjusted to provide a similar oxide in a single pass to the ones 

obtained with multiple passes in the laboratory hammer mill. 
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Appendix I 

 

Hammer Mill Specifications 
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Appendix II 

Test methods  
 
 
 

Free lead % 

Acid absorption number 

C20 capacity and cranking test 

Apparent density apparatus 

Fischer particle size apparatus 
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WILLARD CHEMICAL METHODS 

 

Subject :   Test for free lead content of oxide   

WCM:   1.20 

Issue date:  January 2000 

 

Method 

 Gravimetric 

 

Apparatus 

 100 ml acetic acid 

 

Reagent 

% % acetic acid – add 100 ml acetic acid to 1800 ml of deionised 

water and mix.  

  

Procedure 

Weigh out accurately 2.5 g of oxide into a 100 ml beaker. 

Add 60 ml of 5 % acetic acid and heat to boil 

When solution is clear, remove from the hot plate. 

Pour off the solution and wash the residual lead three times with 

tap water. 

Place in a drying oven for one hour at 105 – 120 oC. 

Remove from the oven and allow to cool to room temperature. 

Determine the mass of the residual lead. 

 

Calculation 

 

% free lead  = Mass of residual lead   *   100 
    Mass of oxide sample  
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WILLARD CHEMICAL METHODS 

 

Subject :   Determination of acid absorption in lead oxide  

WCM:   1.21 

Issue date:  September 1999 

 

Specification (General) 

150 -200 mg sulphuric acid reacted per gram of grey oxide 

 

Reagents 

Sulphuric acid S.G. 1.095 – 1.105 

Sodium hydroxide 1N 

Phenolphthalein indicator (1% solution in ethanol or for 100 ml 1.0 g 

phenolphthalein in 50 ml alcohol, dissolve, add 50 ml water, then mix)  

 

Apparatus 

Flask shaker 

100 ml and 25 ml pipettes 

500 ml round bottom flasks with stoppers 

250 ml beakers 

Filter funnels and stands 

Filter paper 542 

 

Method 

Preheat about 120 ml of sulphuric acid S.G. 1.100 for each sample to be 

determined to 34 oC. The grey oxide sample size should always be 

adjusted to consist of 35.0 g lead oxide (PbO). Thus the free lead of the 

grey oxide must be determined first. 

Grey oxide sample size = (35/(100 - % free lead)) x 100 

Accurately weigh out the sample onto a piece of paper 

Pipette 100 ml of the pre-heated sulphuric acid into a dry 500 ml round 

bottom flask 

Add the grey oxide while swirling the flask 
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Stopper the flask and clamp on the shaker 

Adjust flask shaker to 20 rpm. Set the timer for 10 minutes and switch 

the shaker on. After 10 minutes remove the flask from the shaker and 

allow to stand for 5 minutes.  

Filter the acid into a 250 ml beaker through filter paper 542. Allow the 

filtrate to cool. 

Pipette 25 ml of the filtrate into a 250 ml Erlenmeyer flask. 

Add about 50 ml de-ionised water and a few drops of phenolphthalein 

indicator solution and then titrate with 1N sodium hydroxide solution. 

Record the result 

 

For the blank determination pipette 25 ml of the sulphuric acid S.G. 

1.100 used into a 250 ml Erlenmeyer flask and titrate with 1N sodium 

hydroxide solution using phenolphthalein indicator solution as indicator. 

Record the result 

 

Colour change with titration is from colourless to pink. 

 

Calculation 

Acid absorption = ((blank reading – sample reading) x 4 x 49.03) 

      Sample mass 

 

Acid absorption units = mg sulphuric acid per gram of grey oxide 
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IEC 95-1 test method for lead acid batteries 

 

Capacity check Ce  

 

Throughout the duration of the tests, the battery shall be placed in a 

water-bath at a temperature of 25 ± 2oC. The upper surface of the 

battery shall be at least 15 mm but no more than 25 mm above the level 

of the water. If several batteries are in the same water-bath then the 

distance between them and also the distance to the walls of the bath 

shall be at least 25 mm.  

 

The battery shall be discharged with a current In (rated capacity/20) kept 

constant at ± 2% of the nominal value until the terminal voltage falls to 

10.5 ± 0.05 V. The duration t (h) of this discharge shall be recorded. 

The beginning of the discharge shall take place from 1 h to 5 h from the 

time of the end of charging. 

 

The capacity Ce is:  Ce  =  t . In  (Ah) 

 

 

Cranking performance test 

 

After a rest period of 1 h to 5 h after preparation according to Clause 

4.2 the battery shall be placed in a cooling chamber with (forced) air 

circulation at a temperature of -18 ± 1oC for a minimum of 20 h or until 

the temperature of one of the middle cells has reached -18 ± 1oC. 

 

The battery shall then be discharged – either within or outside the 

cooling chamber within 2 min after the end of the cooling period with a 

current I (rated current). This current shall be kept constant to within    

± 0.5% during the discharge. 

After 60 s discharge, the terminal voltage shall be recorded. It shall be 

no less than 8.4 V. 
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Figure 38:   Apparatus used to determine the apparent density of 

                   lead oxide 
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Figure 39:   Apparatus used to determine the Fischer particle size 

 of lead oxide 
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Appendix III 

 

Additional experimental results – Lead oxide 

 

 

Particle size analysis 

BET surface area 
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Figure 40:  Barton pot oxide particle size distribution (exp 2) 
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Figure 41:  Cum% - Barton pot oxide (exp 2) 
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Figure 42:  Barton pot particle size distribution (exp 3) 
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Figure 43:  Cum % - Barton pot oxide (exp 3) 
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Table 9:   Barton pot particle size distribution before hammer 
milling  

Result: Histogram Table

ID: mtr4 x0 Run No:    97 Measured: 11/18/02 10:52AM
File: LAURANCE Rec. No:  598 Analysed: 11/26/03 3:02PM
Path: C:\SIZERS\DATA\ Source: Analysed

Range: 300RF mm Beam:  2.40 mm Sampler: MS17 Obs':  34.6 %
Presentation: 3THD Analysis:  Polydisperse Residual:  2.945 %
Modifications: None

Conc. =   0.0166 %Vol Density =   9.980 g/cm^3 S.S.A.=  0.1853 m^2/g
Distribution: Volume D[4, 3] =    4.47 um D[3, 2] =    3.24 um
D(v, 0.1) =    1.77 um D(v, 0.5) =    3.93 um D(v, 0.9) =    7.99 um
Span = 1.584E+00 Uniformity = 4.878E-01

Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume
Under %

  0.055    0.00
  0.061    0.00
  0.067    0.00
  0.074    0.00
  0.082    0.00
  0.090    0.00
  0.099    0.00
  0.109    0.00
  0.121    0.00
  0.133    0.00
  0.147    0.00
  0.162    0.00
  0.178    0.00
  0.196    0.00
  0.217    0.00
  0.239    0.00
  0.263    0.00
  0.290    0.00
  0.320    0.00
  0.353    0.00
  0.389    0.00
  0.429    0.00
  0.473    0.00
  0.522    0.00
  0.576    0.00

Under %
  0.635    0.00
  0.700    0.01
  0.772    0.04
  0.851    0.22
  0.938    0.63
   1.03    1.19
   1.14    1.98
   1.26    3.06
   1.39    4.47
   1.53    6.33
   1.69    8.66
   1.86   11.44
   2.05   14.79
   2.26   18.74
   2.49   23.24
   2.75   28.28
   3.03   33.80
   3.34   39.72
   3.69   45.91
   4.07   52.25
   4.48   58.59
   4.94   64.81
   5.45   70.80
   6.01   76.54
   6.63   81.85

Under %
   7.31   86.44
   8.06   90.30
   8.89   93.48
   9.80   95.98
  10.81   97.85
  11.91   99.11
  13.14   99.81
  14.49  100.00
  15.97  100.00
  17.62  100.00
  19.42  100.00
  21.42  100.00
  23.62  100.00
  26.04  100.00
  28.72  100.00
  31.66  100.00
  34.92  100.00
  38.50  100.00
  42.45  100.00
  46.81  100.00
  51.62  100.00
  56.92  100.00
  62.76  100.00
  69.21  100.00
  76.32  100.00

Under %
  84.15  100.00
  92.79  100.00
 102.3  100.00
 112.8  100.00
 124.4  100.00
 137.2  100.00
 151.3  100.00
 166.8  100.00
 183.9  100.00
 202.8  100.00
 223.6  100.00
 246.6  100.00
 271.9  100.00
 299.8  100.00
 330.6  100.00
 364.6  100.00
 402.0  100.00
 443.3  100.00
 488.8  100.00
 539.0  100.00
 594.3  100.00
 655.4  100.00
 722.7  100.00
 796.9  100.00
 878.7  100.00
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Table 10:  Barton pot particle size distribution after 5 passes 
through the hammer mill 

 
Result: Histogram Table

ID: mtr4 x5 Run No:   175 Measured: 11/19/02 10:00AM
File: LAURANCE Rec. No:  716 Analysed: 11/26/03 3:13PM
Path: C:\SIZERS\DATA\ Source: Analysed

Range: 300RF mm Beam:  2.40 mm Sampler: MS17 Obs':  23.7 %
Presentation: 3THD Analysis:  Polydisperse Residual:  3.417 %
Modifications: None

Conc. =   0.0096 %Vol Density =   9.980 g/cm^3 S.S.A.=  0.2031 m^2/g
Distribution: Volume D[4, 3] =    4.20 um D[3, 2] =    2.96 um
D(v, 0.1) =    1.59 um D(v, 0.5) =    3.71 um D(v, 0.9) =    7.54 um
Span = 1.606E+00 Uniformity = 4.969E-01

Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume
Under %

  0.055    0.00
  0.061    0.00
  0.067    0.00
  0.074    0.00
  0.082    0.00
  0.090    0.00
  0.099    0.00
  0.109    0.00
  0.121    0.00
  0.133    0.00
  0.147    0.00
  0.162    0.00
  0.178    0.00
  0.196    0.00
  0.217    0.00
  0.239    0.00
  0.263    0.00
  0.290    0.00
  0.320    0.00
  0.353    0.00
  0.389    0.00
  0.429    0.00
  0.473    0.00
  0.522    0.00
  0.576    0.00

Under %
  0.635    0.14
  0.700    0.38
  0.772    0.68
  0.851    1.17
  0.938    1.85
   1.03    2.71
   1.14    3.81
   1.26    5.19
   1.39    6.91
   1.53    9.05
   1.69   11.65
   1.86   14.68
   2.05   18.23
   2.26   22.34
   2.49   26.96
   2.75   32.07
   3.03   37.62
   3.34   43.51
   3.69   49.64
   4.07   55.87
   4.48   62.09
   4.94   68.14
   5.45   73.93
   6.01   79.44
   6.63   84.49

Under %
   7.31   88.77
   8.06   92.32
   8.89   95.15
   9.80   97.28
  10.81   98.82
  11.91   99.73
  13.14   99.94
  14.49  100.00
  15.97  100.00
  17.62  100.00
  19.42  100.00
  21.42  100.00
  23.62  100.00
  26.04  100.00
  28.72  100.00
  31.66  100.00
  34.92  100.00
  38.50  100.00
  42.45  100.00
  46.81  100.00
  51.62  100.00
  56.92  100.00
  62.76  100.00
  69.21  100.00
  76.32  100.00

Under %
  84.15  100.00
  92.79  100.00
 102.3  100.00
 112.8  100.00
 124.4  100.00
 137.2  100.00
 151.3  100.00
 166.8  100.00
 183.9  100.00
 202.8  100.00
 223.6  100.00
 246.6  100.00
 271.9  100.00
 299.8  100.00
 330.6  100.00
 364.6  100.00
 402.0  100.00
 443.3  100.00
 488.8  100.00
 539.0  100.00
 594.3  100.00
 655.4  100.00
 722.7  100.00
 796.9  100.00
 878.7  100.00

 



 95

Table 11:  Barton pot particle size distribution after 10 passes 
through the hammer mill 

 
Result: Histogram Table

ID: mtr4 x10 Run No:   157 Measured: 11/18/02 1:18PM
File: LAURANCE Rec. No:  694 Analysed: 11/26/03 3:10PM
Path: C:\SIZERS\DATA\ Source: Analysed

Range: 300RF mm Beam:  2.40 mm Sampler: MS17 Obs':  27.8 %
Presentation: 3THD Analysis:  Polydisperse Residual:  3.495 %
Modifications: None

Conc. =   0.0099 %Vol Density =   9.980 g/cm^3 S.S.A.=  0.2338 m^2/g
Distribution: Volume D[4, 3] =    3.72 um D[3, 2] =    2.57 um
D(v, 0.1) =    1.37 um D(v, 0.5) =    3.25 um D(v, 0.9) =    6.79 um
Span = 1.668E+00 Uniformity = 5.144E-01

Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume
Under %

  0.055    0.00
  0.061    0.00
  0.067    0.00
  0.074    0.00
  0.082    0.00
  0.090    0.00
  0.099    0.00
  0.109    0.00
  0.121    0.00
  0.133    0.00
  0.147    0.00
  0.162    0.00
  0.178    0.00
  0.196    0.00
  0.217    0.00
  0.239    0.00
  0.263    0.00
  0.290    0.00
  0.320    0.00
  0.353    0.00
  0.389    0.00
  0.429    0.00
  0.473    0.00
  0.522    0.08
  0.576    0.41

Under %
  0.635    0.70
  0.700    1.04
  0.772    1.56
  0.851    2.33
  0.938    3.35
   1.03    4.61
   1.14    6.17
   1.26    8.07
   1.39   10.37
   1.53   13.16
   1.69   16.43
   1.86   20.15
   2.05   24.38
   2.26   29.12
   2.49   34.30
   2.75   39.85
   3.03   45.70
   3.34   51.73
   3.69   57.82
   4.07   63.86
   4.48   69.70
   4.94   75.23
   5.45   80.34
   6.01   85.00
   6.63   89.09

Under %
   7.31   92.46
   8.06   95.16
   8.89   97.23
   9.80   98.69
  10.81   99.59
  11.91   99.98
  13.14  100.00
  14.49  100.00
  15.97  100.00
  17.62  100.00
  19.42  100.00
  21.42  100.00
  23.62  100.00
  26.04  100.00
  28.72  100.00
  31.66  100.00
  34.92  100.00
  38.50  100.00
  42.45  100.00
  46.81  100.00
  51.62  100.00
  56.92  100.00
  62.76  100.00
  69.21  100.00
  76.32  100.00

Under %
  84.15  100.00
  92.79  100.00
 102.3  100.00
 112.8  100.00
 124.4  100.00
 137.2  100.00
 151.3  100.00
 166.8  100.00
 183.9  100.00
 202.8  100.00
 223.6  100.00
 246.6  100.00
 271.9  100.00
 299.8  100.00
 330.6  100.00
 364.6  100.00
 402.0  100.00
 443.3  100.00
 488.8  100.00
 539.0  100.00
 594.3  100.00
 655.4  100.00
 722.7  100.00
 796.9  100.00
 878.7  100.00
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Table 12:  Barton pot particle size distribution after 20 passes 
through the hammer mill 

 
Result: Histogram Table

ID: mtr4 x20 Run No:    94 Measured: 11/18/02 10:41AM
File: LAURANCE Rec. No:  592 Analysed: 11/26/03 3:01PM
Path: C:\SIZERS\DATA\ Source: Analysed

Range: 300RF mm Beam:  2.40 mm Sampler: MS17 Obs':  39.9 %
Presentation: 3THD Analysis:  Polydisperse Residual:  3.133 %
Modifications: None

Conc. =   0.0129 %Vol Density =   9.980 g/cm^3 S.S.A.=  0.2748 m^2/g
Distribution: Volume D[4, 3] =    3.46 um D[3, 2] =    2.19 um
D(v, 0.1) =    1.07 um D(v, 0.5) =    2.91 um D(v, 0.9) =    6.70 um
Span = 1.931E+00 Uniformity = 5.927E-01

Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume
Under %

  0.055    0.00
  0.061    0.00
  0.067    0.00
  0.074    0.00
  0.082    0.00
  0.090    0.00
  0.099    0.00
  0.109    0.00
  0.121    0.00
  0.133    0.00
  0.147    0.00
  0.162    0.00
  0.178    0.00
  0.196    0.00
  0.217    0.00
  0.239    0.00
  0.263    0.00
  0.290    0.00
  0.320    0.00
  0.353    0.00
  0.389    0.00
  0.429    0.00
  0.473    0.00
  0.522    0.25
  0.576    1.17

Under %
  0.635    1.99
  0.700    2.87
  0.772    4.05
  0.851    5.51
  0.938    7.23
   1.03    9.18
   1.14   11.43
   1.26   13.99
   1.39   16.90
   1.53   20.21
   1.69   23.89
   1.86   27.89
   2.05   32.23
   2.26   36.90
   2.49   41.82
   2.75   46.93
   3.03   52.18
   3.34   57.47
   3.69   62.73
   4.07   67.88
   4.48   72.84
   4.94   77.58
   5.45   82.07
   6.01   86.13
   6.63   89.66

Under %
   7.31   92.66
   8.06   95.16
   8.89   97.14
   9.80   98.60
  10.81   99.55
  11.91   99.98
  13.14  100.00
  14.49  100.00
  15.97  100.00
  17.62  100.00
  19.42  100.00
  21.42  100.00
  23.62  100.00
  26.04  100.00
  28.72  100.00
  31.66  100.00
  34.92  100.00
  38.50  100.00
  42.45  100.00
  46.81  100.00
  51.62  100.00
  56.92  100.00
  62.76  100.00
  69.21  100.00
  76.32  100.00

Under %
  84.15  100.00
  92.79  100.00
 102.3  100.00
 112.8  100.00
 124.4  100.00
 137.2  100.00
 151.3  100.00
 166.8  100.00
 183.9  100.00
 202.8  100.00
 223.6  100.00
 246.6  100.00
 271.9  100.00
 299.8  100.00
 330.6  100.00
 364.6  100.00
 402.0  100.00
 443.3  100.00
 488.8  100.00
 539.0  100.00
 594.3  100.00
 655.4  100.00
 722.7  100.00
 796.9  100.00
 878.7  100.00
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Table 13:  Ball mill particle size distribution before passing through 
the hammer mill 

 
Result: Histogram Table

ID: BM 0103 X0 31-03-03 Run No:   218 Measured: 3/31/03 11:31AM
File: LAURANCE Rec. No:  761 Analysed: 11/26/03 3:19PM
Path: C:\SIZERS\DATA\ Source: Analysed

Range: 300RF mm Beam:  2.40 mm Sampler: MS17 Obs':  29.7 %
Presentation: 3THD Analysis:  Polydisperse Residual:  1.299 %
Modifications: None

Conc. =   0.0164 %Vol Density =   9.980 g/cm^3 S.S.A.=  0.1426 m^2/g
Distribution: Volume D[4, 3] =   12.35 um D[3, 2] =    4.21 um
D(v, 0.1) =    1.88 um D(v, 0.5) =    9.60 um D(v, 0.9) =   25.04 um
Span = 2.412E+00 Uniformity = 7.879E-01

Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume
Under %

  0.055    0.00
  0.061    0.00
  0.067    0.00
  0.074    0.00
  0.082    0.00
  0.090    0.00
  0.099    0.00
  0.109    0.00
  0.121    0.00
  0.133    0.00
  0.147    0.00
  0.162    0.00
  0.178    0.00
  0.196    0.00
  0.217    0.00
  0.239    0.00
  0.263    0.00
  0.290    0.00
  0.320    0.00
  0.353    0.00
  0.389    0.22
  0.429    0.80
  0.473    1.27
  0.522    1.70
  0.576    2.15

Under %
  0.635    2.61
  0.700    3.10
  0.772    3.64
  0.851    4.20
  0.938    4.78
   1.03    5.38
   1.14    6.02
   1.26    6.69
   1.39    7.41
   1.53    8.18
   1.69    9.01
   1.86    9.90
   2.05   10.87
   2.26   11.94
   2.49   13.10
   2.75   14.38
   3.03   15.81
   3.34   17.40
   3.69   19.18
   4.07   21.17
   4.48   23.39
   4.94   25.87
   5.45   28.62
   6.01   31.67
   6.63   34.99

Under %
   7.31   38.61
   8.06   42.49
   8.89   46.60
   9.80   50.90
  10.81   55.34
  11.91   59.87
  13.14   64.41
  14.49   68.97
  15.97   73.50
  17.62   77.79
  19.42   81.72
  21.42   85.26
  23.62   88.37
  26.04   91.00
  28.72   93.17
  31.66   94.90
  34.92   96.23
  38.50   97.21
  42.45   97.91
  46.81   98.40
  51.62   98.75
  56.92   99.01
  62.76   99.21
  69.21   99.40
  76.32   99.57

Under %
  84.15   99.71
  92.79   99.84
 102.3   99.93
 112.8   99.98
 124.4  100.00
 137.2  100.00
 151.3  100.00
 166.8  100.00
 183.9  100.00
 202.8  100.00
 223.6  100.00
 246.6  100.00
 271.9  100.00
 299.8  100.00
 330.6  100.00
 364.6  100.00
 402.0  100.00
 443.3  100.00
 488.8  100.00
 539.0  100.00
 594.3  100.00
 655.4  100.00
 722.7  100.00
 796.9  100.00
 878.7  100.00
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Table 14:  Ball mill particle size distribution after 3 passes through 
the hammer mill 

 
Result: Histogram Table

ID: BM 0103 X3 31-03-03 Run No:   236 Measured: 3/31/03 12:03PM
File: LAURANCE Rec. No:  779 Analysed: 11/26/03 3:21PM
Path: C:\SIZERS\DATA\ Source: Analysed

Range: 300RF mm Beam:  2.40 mm Sampler: MS17 Obs':  26.0 %
Presentation: 3THD Analysis:  Polydisperse Residual:  0.571 %
Modifications: None

Conc. =   0.0072 %Vol Density =   9.980 g/cm^3 S.S.A.=  0.3259 m^2/g
Distribution: Volume D[4, 3] =   10.05 um D[3, 2] =    1.84 um
D(v, 0.1) =    0.91 um D(v, 0.5) =    7.43 um D(v, 0.9) =   22.97 um
Span = 2.969E+00 Uniformity = 9.148E-01

Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume
Under %

  0.055    0.02
  0.061    0.05
  0.067    0.10
  0.074    0.17
  0.082    0.25
  0.090    0.36
  0.099    0.48
  0.109    0.63
  0.121    0.80
  0.133    0.99
  0.147    1.21
  0.162    1.46
  0.178    1.75
  0.196    2.08
  0.217    2.46
  0.239    2.88
  0.263    3.35
  0.290    3.83
  0.320    4.31
  0.353    4.77
  0.389    5.25
  0.429    5.75
  0.473    6.24
  0.522    6.72
  0.576    7.21

Under %
  0.635    7.72
  0.700    8.28
  0.772    8.88
  0.851    9.52
  0.938   10.19
   1.03   10.90
   1.14   11.68
   1.26   12.52
   1.39   13.43
   1.53   14.42
   1.69   15.50
   1.86   16.69
   2.05   17.99
   2.26   19.42
   2.49   20.98
   2.75   22.70
   3.03   24.57
   3.34   26.61
   3.69   28.83
   4.07   31.24
   4.48   33.83
   4.94   36.61
   5.45   39.57
   6.01   42.70
   6.63   45.99

Under %
   7.31   49.41
   8.06   52.95
   8.89   56.58
   9.80   60.27
  10.81   63.99
  11.91   67.73
  13.14   71.48
  14.49   75.17
  15.97   78.72
  17.62   82.08
  19.42   85.23
  21.42   88.11
  23.62   90.70
  26.04   92.96
  28.72   94.89
  31.66   96.48
  34.92   97.75
  38.50   98.70
  42.45   99.40
  46.81   99.86
  51.62   99.97
  56.92  100.00
  62.76  100.00
  69.21  100.00
  76.32  100.00

Under %
  84.15  100.00
  92.79  100.00
 102.3  100.00
 112.8  100.00
 124.4  100.00
 137.2  100.00
 151.3  100.00
 166.8  100.00
 183.9  100.00
 202.8  100.00
 223.6  100.00
 246.6  100.00
 271.9  100.00
 299.8  100.00
 330.6  100.00
 364.6  100.00
 402.0  100.00
 443.3  100.00
 488.8  100.00
 539.0  100.00
 594.3  100.00
 655.4  100.00
 722.7  100.00
 796.9  100.00
 878.7  100.00
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Table 15:  Ball mill particle size distribution after 13 passes 
through the hammer mill 

 
Result: Histogram Table

ID: BM 0103 X13 08-04-03 Run No:   247 Measured: 4/8/03 12:59PM
File: LAURANCE Rec. No:  812 Analysed: 11/26/03 3:23PM
Path: C:\SIZERS\DATA\ Source: Analysed

Range: 300RF mm Beam:  2.40 mm Sampler: MS17 Obs':  17.8 %
Presentation: 3THD Analysis:  Polydisperse Residual:  0.650 %
Modifications: None

Conc. =   0.0055 %Vol Density =   9.980 g/cm^3 S.S.A.=  0.2860 m^2/g
Distribution: Volume D[4, 3] =    9.09 um D[3, 2] =    2.10 um
D(v, 0.1) =    1.20 um D(v, 0.5) =    6.59 um D(v, 0.9) =   20.64 um
Span = 2.950E+00 Uniformity = 9.076E-01

Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume
Under %

  0.055    0.02
  0.061    0.05
  0.067    0.09
  0.074    0.15
  0.082    0.22
  0.090    0.31
  0.099    0.42
  0.109    0.54
  0.121    0.67
  0.133    0.83
  0.147    1.00
  0.162    1.18
  0.178    1.39
  0.196    1.62
  0.217    1.88
  0.239    2.15
  0.263    2.44
  0.290    2.75
  0.320    3.07
  0.353    3.39
  0.389    3.74
  0.429    4.09
  0.473    4.46
  0.522    4.85
  0.576    5.25

Under %
  0.635    5.69
  0.700    6.17
  0.772    6.70
  0.851    7.30
  0.938    7.96
   1.03    8.69
   1.14    9.51
   1.26   10.43
   1.39   11.44
   1.53   12.58
   1.69   13.84
   1.86   15.25
   2.05   16.82
   2.26   18.55
   2.49   20.47
   2.75   22.58
   3.03   24.88
   3.34   27.39
   3.69   30.10
   4.07   33.02
   4.48   36.14
   4.94   39.44
   5.45   42.90
   6.01   46.51
   6.63   50.22

Under %
   7.31   54.01
   8.06   57.85
   8.89   61.69
   9.80   65.50
  10.81   69.29
  11.91   73.01
  13.14   76.57
  14.49   79.91
  15.97   83.03
  17.62   85.90
  19.42   88.51
  21.42   90.85
  23.62   92.90
  26.04   94.68
  28.72   96.18
  31.66   97.43
  34.92   98.44
  38.50   99.19
  42.45   99.71
  46.81   99.98
  51.62  100.00
  56.92  100.00
  62.76  100.00
  69.21  100.00
  76.32  100.00

Under %
  84.15  100.00
  92.79  100.00
 102.3  100.00
 112.8  100.00
 124.4  100.00
 137.2  100.00
 151.3  100.00
 166.8  100.00
 183.9  100.00
 202.8  100.00
 223.6  100.00
 246.6  100.00
 271.9  100.00
 299.8  100.00
 330.6  100.00
 364.6  100.00
 402.0  100.00
 443.3  100.00
 488.8  100.00
 539.0  100.00
 594.3  100.00
 655.4  100.00
 722.7  100.00
 796.9  100.00
 878.7  100.00

 



 100

Table 16:  Ball mill particle size distribution after 20 passes 
through the hammer mill 

 
Result: Histogram Table

ID: BM 0103 X20 08-04-03 Run No:   253 Measured: 4/8/03 1:46PM
File: LAURANCE Rec. No:  827 Analysed: 11/26/03 3:25PM
Path: C:\SIZERS\DATA\ Source: Analysed

Range: 300RF mm Beam:  2.40 mm Sampler: MS17 Obs':  31.2 %
Presentation: 3THD Analysis:  Polydisperse Residual:  1.716 %
Modifications: None

Conc. =   0.0067 %Vol Density =   9.980 g/cm^3 S.S.A.=  0.4508 m^2/g
Distribution: Volume D[4, 3] =    8.32 um D[3, 2] =    1.33 um
D(v, 0.1) =    0.51 um D(v, 0.5) =    5.70 um D(v, 0.9) =   19.94 um
Span = 3.409E+00 Uniformity = 1.055E+00

Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume Size
(um)

Volume
Under %

  0.055    0.03
  0.061    0.07
  0.067    0.15
  0.074    0.25
  0.082    0.39
  0.090    0.56
  0.099    0.76
  0.109    1.00
  0.121    1.27
  0.133    1.58
  0.147    1.94
  0.162    2.33
  0.178    2.77
  0.196    3.27
  0.217    3.81
  0.239    4.40
  0.263    5.04
  0.290    5.71
  0.320    6.40
  0.353    7.10
  0.389    7.83
  0.429    8.58
  0.473    9.34
  0.522   10.12
  0.576   10.90

Under %
  0.635   11.71
  0.700   12.56
  0.772   13.44
  0.851   14.35
  0.938   15.29
   1.03   16.27
   1.14   17.30
   1.26   18.38
   1.39   19.53
   1.53   20.75
   1.69   22.06
   1.86   23.46
   2.05   24.97
   2.26   26.60
   2.49   28.37
   2.75   30.28
   3.03   32.36
   3.34   34.60
   3.69   37.03
   4.07   39.64
   4.48   42.44
   4.94   45.41
   5.45   48.54
   6.01   51.81
   6.63   55.20

Under %
   7.31   58.66
   8.06   62.18
   8.89   65.69
   9.80   69.17
  10.81   72.61
  11.91   75.96
  13.14   79.13
  14.49   82.06
  15.97   84.75
  17.62   87.21
  19.42   89.44
  21.42   91.44
  23.62   93.22
  26.04   94.79
  28.72   96.13
  31.66   97.28
  34.92   98.22
  38.50   98.95
  42.45   99.55
  46.81   99.96
  51.62  100.00
  56.92  100.00
  62.76  100.00
  69.21  100.00
  76.32  100.00

Under %
  84.15  100.00
  92.79  100.00
 102.3  100.00
 112.8  100.00
 124.4  100.00
 137.2  100.00
 151.3  100.00
 166.8  100.00
 183.9  100.00
 202.8  100.00
 223.6  100.00
 246.6  100.00
 271.9  100.00
 299.8  100.00
 330.6  100.00
 364.6  100.00
 402.0  100.00
 443.3  100.00
 488.8  100.00
 539.0  100.00
 594.3  100.00
 655.4  100.00
 722.7  100.00
 796.9  100.00
 878.7  100.00
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Figure 44:   Barton pot oxide BET surface area (exp 2) 
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Appendix IV 

 

Additional experimental results - electrochemical 

evaluation of cells 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 



 103

Figure 45:     Initial C20 Capacity test (exp 2) 
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Figure 46:   Capacity cycles (exp 2) 
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Figure 47:   High current tests (exp2) 
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Figure 48:   Initial C20 Capacity tests (exp 3) 
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Figure 49:    Capacity cycles (exp 3) 
 
 
 

 
 
Figure 50:    High current tests (exp 3) 
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Appendix V 

 

Statistics and experimental design  
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Barton pot oxide – ANOVA evaluation 
 
The ANOVA (analysis of variance) of the various means in table 5 was 

performed using Microsoft Excel data analysis. The statistical formulas 

and definitions may be found in “Experimental design and analysis for 

scientists and engineers” by B Zeelie28. 

 
Table 17:  ANOVA – Various mean diameters for Barton pot oxide 
 
 
Anova: Two-Factor Without Replication      
        

SUMMARY Count Sum Average Variance    
No of times through 
the hammer mill        
x0 3 11.64 3.88 0.3801    
x1 3 10.9 3.633333 0.387733    
x2 3 10.07 3.356667 0.293733    
x3 3 10.05 3.35 0.2236    
x4 3 10.04 3.346667 0.340433    
x5 3 10.54 3.513333 0.321633    
x6 3 9.76 3.253333 0.146033    
x7 3 10.33 3.443333 0.363333    
x8 3 8.9 2.966667 0.322233    
x10 3 9.54 3.18 0.3343    
x14 3 10.34 3.446667 0.359233    
x16 3 11.05 3.683333 0.848033    
x20 3 9.07 3.023333 0.570233    
        
Mass mean diameter 13 44.83 3.448462 0.067231    
vol mean diameter 13 51.48 3.96 0.0995    
SA mean diameter 13 35.92 2.763077 0.063823    
        
        
ANOVA        

Source of Variation SS df MS F P-value F crit  
Rows (No of times 
hammered) 2.362923 12 0.19691 11.70566 2.8E-07 2.183377  
Columns (various 
means) 9.377544 2 4.688772 278.732 

2.44E-
17 3.402832  

Error 0.403723 24 0.016822     
        
Total 12.14419 38          

 
SS Sum of squares 
Df Degrees of freedom 
MS Mean square 
F Calculated F- value 
P Calculated probability va lue 
Fcr i t Fcrit ical from F-tables 
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Since F  >  Fcrit ical for both columns and rows, it implies that the mean is 

changing and that the various means are different28. 

 
 
Ball mill oxide – ANOVA evaluation 
 
The results of the Ball mill oxide (table 6) was used in a similar way to 

perform an ANOVA evaluation. 

 

Table 18:  ANOVA – Various mean diameters for Ball mill oxide 
 

Anova: Two-Factor Without Replication     
       

SUMMARY Count Sum Average Variance   
No of times through the 
hammer mill       
x0 3 26.16 8.72 17.1457   
x1 3 22.24 7.413333 17.26723   
x3 3 19.32 6.44 17.5861   
x5 3 19.08 6.36 16.9461   
x7 3 17.18 5.726667 10.88263   
x10 3 13.68 4.56 4.7812   
x13 3 17.78 5.926667 12.54503   
x16 3 17.44 5.813333 12.98143   
x20 3 15.35 5.116667 12.47023   
       
vol mean diameter 9 84.83 9.425556 2.752253   
SA mean diameter 9 20.43 2.27 0.673575   
Mass mean diameter 9 62.97 6.996667 2.0128   
       
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Rows (times 
hammered) 36.62625 8 4.578281 10.64288 

4.11E-
05 2.591094 

Columns (various 
means) 238.3286 2 119.1643 277.0147 

3.85E-
13 3.633716 

Error 6.88277 16 0.430173    
       
Total 281.8376 26         

SS Sum of squares  
Df Degrees of freedom 
MS Mean square 
F Calculated F- value 
P Calculated probability value 
Fc r i t  Fc r i t i ca l  from F-tables  
 
F > F crit ical for both columns and rows which implies that the mean is 

changing and that the various means are different28. 
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High current discharge tests – ANOVA evaluation 

 

The results of the high current discharge tests in figure 50 were used to 

perform an ANOVA evaluation. The Ah/kg results at various current 

rates are shown in table 19. 

 

Table 19:  ANOVA – High rate discharge tests 

 

 Times hammered 
Discharge current (A) 0 x3 x10 x20 
10 amps 70.23 73.95 79.64 66.38 
20 amps 59.95 61.32 65.40 56.64 
 40 amps 27.57 38.03 46.03 40.96 

 

 

The results of the ANOVA evaluation by considering the results of 0 to 

20 passes through the hammer mil is shown in table 20. 

 

Table 20:  ANOVA – 0-20 passes through the hammer mill 

 

Anova: Two-Factor Without Replication    
       

SUMMARY Count Sum Average Variance   
10 amps 4 290.2068 72.55171 31.86643   
20 amps 4 243.3131 60.82827 13.17638   
40 amps 4 152.5837 38.14591 60.60329   
       
x0 3 157.7503 52.58345 495.6398   
x3 3 173.309 57.76967 332.1263   
x10 3 191.0674 63.68912 284.6313   
x20 3 163.9769 54.65895 164.5625   

       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Rows (current) 2447.583 2 1223.791 69.05143 7.22E-05 5.143249 
Columns (times 
hammered 210.6009 3 70.2003 3.960995 0.071407 4.757055 
Error 106.3374 6 17.7229    
       
Total 2764.521 11         
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The results showed that the number of times that the oxide was 

hammered was not a significant factor and that only the discharge 

current was significant since F > F cr i t only for the current. 

 

The results of the ANOVA evaluation by considering the results of 0 to 

10 passes through the hammer mil is shown in table 21. 

 

 

Table 21: ANOVA – 0-10 passes through the hammer mill 

 

Anova: Two-Factor Without Replication    
       

SUMMARY Count Sum Average Variance   
10 amps 3 223.8244 74.60812 22.42657   
20 amps 3 186.6749 62.22495 8.060337   
40 amps 3 111.6275 37.20917 85.63998   
       
x0 3 157.7503 52.58345 495.6398   
x3 3 173.309 57.76967 332.1263   
x10 3 191.0674 63.68912 284.6313   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Rows (current) 2177.814 2 1088.907 92.71069 0.000446 6.944276 
Columns (times 
hammered) 185.2729 2 92.63645 7.887164 0.040918 6.944276 
Error 46.98087 4 11.74522    
       
Total 2410.068 8         

 

The results showed that both the discharge current and the number of 

hammering steps was significant since F > Fcr i t. This implied that the 

continued hammer milling of the oxide reduced the significance of the 

hammer milling process. It suggests that some hammer milling of the 

oxide is beneficial, but subsequent hammer milling has a reduced effect. 


