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Summary 

 

The learning and analysis of algorithms and algorithm concepts are challenging to 

students due to the abstract and conceptual nature of algorithms. Algorithm animation 

is a form of technological support tool which encourages algorithm comprehension by 

visualising algorithms in execution. Algorithm animation can potentially be utilised to 

support students while learning algorithms. 

 

Despite widespread acknowledgement for the usefulness of algorithm animation in 

algorithm courses at tertiary institutions, no recognised framework exists upon which 

algorithm animation systems can be effectively modelled. This dissertation 

consequently focuses on the design of an extensible algorithm animation framework 

to support the generation of interactive algorithm animations. 

  

A literature and extant system review forms the basis for the framework design 

process. The result of the review is a list of requirements for a pedagogically effective 

algorithm animation system. The proposed framework supports the pedagogic 

requirements by utilising an independent layer structure to support the generation and 

display of algorithm animations. The effectiveness of the framework is evaluated 

through the implementation of a prototype algorithm animation system using sorting 

algorithms as a case study.  

 

This dissertation is successful in proposing a framework to support the development 

of algorithm animations. The prototype developed will enable the integration of 

algorithm animations into the Nelson Mandela Metropolitan University’s teaching 



 vi

model, thereby permitting the university to conduct future research relating to the 

usefulness of algorithm animation in algorithm courses. 

 

Keywords: Algorithm animation framework; algorithm animation system; sorting 

algorithm; technological support tools  
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Chapter 1 

Research Context and Background 

 
 

1.1 Introduction 

 

Introductory algorithm curricula encompass various concepts, one of which is the 

study of fundamental computing algorithms. In the study of computing algorithms, 

specific predefined algorithms are investigated, and the computational efficiency 

related to these algorithms is discussed. Students learn to analyse and evaluate 

algorithms based on certain criteria (IEEE and ACM 2001). This learning process can 

be simplified by the use of algorithm animations. 

 

The studying and teaching of algorithmic concepts present a constant challenge for 

both students and educators. Kehoe, Stasko and Taylor (2001) put this problem in 

perspective:  

 

“There is something difficult about understanding and analysing algorithms; 

ask any computer science student. What that something is and how to reduce 

the difficulty are two problems whose solutions are anxiously awaited by 

many students and instructors”. 
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Unlike structures and processes of other disciplines, computer algorithms and data 

structures are implementations of abstract and conceptual phenomena that have no 

physical, concrete form. As a result, the algorithms are hard to follow, and are thus 

difficult to understand and learn (Lattu, Meisalo and Tarhio 2003). Furthermore, 

students are expected to cope with the programming notations, syntax, semantics, 

structure and style of the language in which the algorithm is implemented, 

compounding an already difficult problem (Cilliers 2005). Without a full 

understanding of an algorithm, students are not able to apply and implement it to 

solve a given problem, and consequently perform poorly. 

 

Tertiary educational institutions worldwide continually face the challenge of 

maintaining satisfactory performance rates for their students (Lister and Leaney 2003). 

These institutions are constantly pursuing the use of new strategies to improve the 

throughput rate of their students, including the integration of technological support 

tools to support the curricula. The availability of computers has improved the 

accessibility of technological support tools to educational institutions and students. 

 

The remainder of the chapter outlines the research leading up to the adaptation of 

algorithm animations in an educational environment (Section 1.2) and the role played 

by algorithm animations in improving learning (Section 1.3). The focus of research 

(Section 1.4) discusses the issues concerning the implementation of an algorithm 

animation system and the related research questions. 
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1.2 Background and Prior Research 

 

Various instructional aids are employed by instructors of algorithm courses to help 

students in better comprehending and applying the algorithm concepts (Baldwin and 

Scragg 2004). A commonly used method is to provide the algorithm source code or 

pseudo-code to the students, accompanied by textual explanations and lecture 

interactions that discuss the algorithm in varying levels of detail. Students also use 

informal collaborative methods for learning. The students, for example, work in small 

groups to complete assignments together or to explain difficult concepts to each other 

(Hübscher-Younger and Narayanan 2002). These methods, however, still rely much 

on the students to construct mental models of the abstract concepts for themselves, 

thus increasing the students’ cognitive load and reducing learning effectiveness 

(Tudoreanu 2002). 

 

Related research on software visualisation has focused on making use of the power of 

the human visual system and its ability to effectively take in a large amount of 

information, detect visual patterns, and absorb pictorial representations (Roman and 

Cox 1992). Tools and techniques were created to assist understanding by providing 

visual form to abstract program concepts.  

 

“Sorting Out Sorting” (Baecker 1981) is a 30-minute algorithm animation video 

which demonstrated the characteristics and operations of nine sorting algorithms 

using animations and audio commentary. The video is regarded as the first attempt to 

bring to life and successfully exhibit the dynamic nature of algorithms to students. 

Definitive work done by Brown (1988a) explored the educational opportunities 
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offered by algorithm animations. The research output also led to the first 

computerised interactive algorithm animation system, BALSA-II (Brown 1988b). 

 

Numerous algorithm animation systems have since been developed with the purpose 

of aiding students in their study of algorithms (Wilson, Aiken and Katz 1996; 

McCauley 1998; Wiggins 1998). More recently, algorithm animation has gained 

acceptance as a valuable educational tool in algorithm courses (Garner 2003; 

Costelloe 2004).  

 

Research into the educational use of algorithm animations has focused generally on 

three interrelated processes which iterate cyclically. These research directions are 

illustrated in Figure 1.1. 

 

Figure 1.1: The interaction of current research focus on algorithm animation 

  

Initially, algorithm animation systems were developed with the simple hypothesis that 

they could help students to better understand algorithms (Stasko and Lawrence 1998). 

The systems were developed as instructional tools for computer science courses. The 

early algorithm animation systems relied primarily on intuition to guide design, as no 

1. Design and implement 

algorithm animation system 

2. Empirical testing of system in 

educational environment 

3. Identify effective feature of systems 

and system usage 
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conventions existed on what features and usage techniques were conducive to learning 

(Hundhausen 1993).  

 

The implemented algorithm animation systems act as platforms to formulate and 

validate new hypotheses. Whilst all algorithm animation systems seek to aid students 

to better understand algorithms, markedly different approaches and methods are 

utilised to attempt to achieve the results1. Each system is designed to meet the 

requirements of a given learning environment or research focus.  

 

Empirical testing of effectiveness of given systems are conducted in educational 

environments. Various methods are employed to identify and collect information, 

including pre- and post-tests to measure learning outcomes (Lawrence, Badre and 

Stasko 1994), and ethnographical studies to observe and gain feedback on students’ 

perceptions of the systems (Hundhausen 2002).  

 

Finally, supported by experiences gained from the abovementioned research foci, 

effective features and methods of integrating algorithm animation systems into 

educational usage can be identified (Saraiya, Shaffer, McCrickard and North 2004). 

This in turn promotes further research in the abovementioned research directions by 

guiding designs towards the formulation of a system for algorithm animation. 

 

The following section outlines the role algorithm animations play in algorithm courses, 

and the issues leading up to the research focus. 

 

                                                 
1 (Brown and Sedgewick 1984; Dann, Cooper and Pausch 2001; Rößling and Freisleben 2002; 
Tudoreanu 2003) 
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1.3 Relevance of the Investigation 

 

In algorithm courses, students are taught to select particular algorithms from a range 

of alternatives. Students must also be able to justify the selection of the algorithms, 

and implement the algorithm in a programming context. The categories of algorithms 

typically studied include merging, sorting and searching algorithms (IEEE and ACM 

2001). 

 

One of the goals of teaching algorithms is thus to give the students the ability to select 

and apply algorithms appropriate to particular purposes, with strong emphasis on the 

issue of comparative efficiency and feasibility of implementation (IEEE and ACM 

2001). A number of skills must be learnt by the students to achieve this result, 

including understanding the range of algorithms that address an important set of 

well-defined problems, recognising the strengths and weaknesses of each algorithm, 

and determining the suitability of the algorithms for any given scenario. 

 

Various methods have been devised to address the problem of teaching algorithms 

and comprehension of their effectiveness, such as the use of graphical materials or 

demonstrations on laboratory computers. These methods, however, have limitations in 

their capability to demonstrate algorithms (Section 1.3.1). The limitations have 

stimulated the use of algorithm animations by educators as an instructional aid in their 

courses (Section 1.3.2). Background is provided of existing local research into 

integrating technological support tools into introductory algorithm courses, thus 

highlighting the context of algorithm animation as a new area of local research 

(Section 1.3.3). The relevant factors discussed in the section are then summarised 

(Section 1.3.4). 
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1.3.1 Demonstrating Algorithms 

 

Educators and textbooks often make use of static visualisations, such as blackboard or 

textbook frame-by-frame illustrations, to aid in the teaching of algorithms and 

algorithmic concepts. The first set of images (Figure 1.2) shows an instructor 

presenting a once-off demonstration on the concepts of the Mergesort algorithm to 

students. The second image (Figure 1.3) shows an extract from an algorithm textbook, 

Data Abstraction and Problem Solving with C++ (Carrano and Prichard 2002), 

illustrating and explaining a partial sequence of a Quicksort. 

 

Figure 1.2: Once-off blackboard demonstration of a Mergesort in class. 
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Figure 1.3: Textbook illustration of a sequence in Quicksort (Carrano and Prichard 
2002). 

 

Static illustrations are, however, not capable of capturing the dynamic movement of 

data and complex data structures, nor are the materials capable of exhaustively 

illustrating algorithm examples (Stern, Søndergaard and Naish 1999). Limitations of 

static illustrations are examined in this section, supported by Figures 1.2 and 1.3. 

 

Once-off demonstrations, such as illustrations presented on a blackboard (Figure 1.2), 

mean that lecturers must constantly erase parts of the image and add new objects to 

reflect any changes made during each operation of the algorithm. This gives students 

less chance to absorb the material, since the constantly changing output of algorithms 
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mean that any work demonstrated cannot easily be noted down or reproduced for later 

self-study (Rößling and Freisleben 2000b).  

 

Furthermore, mistakes can easily be made during classroom explanations by lecturers, 

since they must simultaneously act the role of a “virtual machine” by interpreting the 

algorithm in real-time, render the illustration, comment on and explain important 

concepts and events, and answer any queries posed by students (Hamilton-Taylor and 

Kraemer 2002).  

 

Blackboard demonstrations and lecturer explanations also present another problem, as 

they can never be optimally paced to accommodate the entire class. At any average 

pace used, the smarter students are left bored and uninterested, whilst the weaker 

students are frantically taking notes, possibly without even fully understanding the 

concepts being discussed (Stern, Søndergaard and Naish 1999). 

 

As illustrated in Figure 1.3, discrete steps of an algorithm are often omitted from 

textbooks due to space constraints. Students consequently have to figure out the 

missing details for themselves based on their own understanding of the algorithm. The 

historic nature of static materials also means that only preset scenarios are illustrated, 

thus not allowing students to test or enhance their understanding of an algorithm by 

trying different cases and examples (Kann, Lindeman and Heller 1997), reinforcing 

the learning thereof.  

 

Evaluating and contrasting the performance and other characteristics of different 

algorithms, or that of an identical algorithm under different conditions are challenging 

due to the non-visible nature of the operations performed. Ironically, the power of 
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modern computers actually adds to the problem. Students implementing and executing 

different sort algorithms see the final result of the execution seemingly instantly. 

Without being given a chance to appreciate the effect, it is not surprising that students 

do not understand why or how one algorithm might be more or less efficient than 

another (Laxer 2001). Despite much discussion in class and in textbooks about the 

number of operations and the time per operation required to perform sorts, the 

students would still be left wondering as to how much worse a Bubblesort of an array 

really performs compared to a Quicksort (Rasala, Proulx and Fell 1994) of the same 

array. This is a significant drawback, since algorithm courses place a strong emphasis 

on the students’ ability to analyse and compare the performance of sorting algorithms.  

 

1.3.2 Use of Animation to Illustrate Algorithms 

 

Algorithms are time-based in nature, consisting of elementary processes that are 

executed through time. Animations, as a medium of visual communication, are well 

suited to portray how the tasks of an algorithm are performed and how the state of its 

data structure evolves over time. Specifically, some sorting algorithms make use of 

iteration or recursion techniques to perform repetitive computations, which can be 

displayed more efficiently using motion pictures shown in algorithm animations 

(Baecker 1998). Furthermore, experiments have shown possible benefits in providing 

simultaneous display of algorithm animations to provide a contrast of algorithm 

performance. 

 

Tudoreanu (2003) explains the effectiveness of algorithm animations in terms of how 

they aid in the viewers’ cognitive economy. Cognitive economy comprises of 

reduction of cognitive load and user tasks, and increase of visualisation of information. 
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Firstly, the load on the cognitive system of the viewer is minimised by reducing the 

amount of information handled by the user and reducing user tasks which do not have 

direct relevance to the computations being observed. Secondly, cognitive economy 

attempts to maximise the visual information received by the viewers which are 

relevant to the study of the algorithm. While the two goals mentioned might seem 

contradictory (the first aims to reduce information load, whilst the second increases it), 

Tudoreanu argues that the design of effective algorithm animation systems involves a 

balance between the two factors.  

 

Another approach explains that algorithm animations aid in the formation of the 

mental model due to the short cognitive distance between a concept and its 

corresponding visualisation (Bazik, Tamassia, Reiss and van Dam 1998). The more 

directly the visualisation matches the mental model, the more obvious and 

understandable it is to students. This allows them to focus on the ideas illustrated 

rather than having to put effort into disseminating the medium of presentation. 

 

An empirical study has suggested that using algorithm animations, even without 

considering the effectiveness they have in aiding algorithm understanding, might 

possibly result in faster learning (Byrne, Catrambone and Stasko 1996). At the same 

time, it is pointed out that one of the advantages of algorithm animation over a 

lecturer demonstration is that, unlike a lecturer, the algorithm animation will illustrate 

its examples for as many times as needed, effectively allowing the students as much 

time as they require to understand the material. 

 

A number of studies have observed that in anecdotal feedback, the students were 

unanimous in saying that the use of animations to learn sorting algorithms resulted in 
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a much more interesting and entertaining experience than traditional methods, and 

thus students were better motivated to learn and understand the coursework (Kann, 

Lindeman and Heller 1997; Rößling and Freisleben 2000b; Kehoe, Stasko and Taylor 

2001). Learning from animations has thus made the learning of sorting algorithms an 

intrinsic motivator, in that students learn because they are interested to find out 

something, rather than an extrinsic motivator, where students learn in order to answer 

examination questions and pass the course. This is an important factor in improving 

the effectiveness of a learning experience (Alessi and Trollip 2001). 

 

1.3.3 Overview of Existing Local Research Activities 

 

The Department of Computer Science and Information Systems (CS&IS) at the 

Nelson Mandela Metropolitan University (NMMU) is actively conducting research 

aimed at increasing the throughput of students in algorithm courses (Calitz 1997; 

Greyling 2000; Cilliers 2005). The past and current research makes use of two 

approaches in attempts to achieve the objective, namely the identification of 

potentially successful students, and the modification of teaching models. The latter 

approach has led to the development of a number of experimental tools within the 

department (Cilliers 2005). The technological support tools developed are classified 

under specific categories depending on the area of research they support. 

 

Technological support tools that support research on modifying teaching models 

undergo continuous development to incorporate new research topics and ideas. The 

tools have thus far targeted two areas, namely experimental integrated development 

environments (IDE) and visual programming languages. The research areas outlined 

in this section are presented in Figure 1.4. 
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Figure 1.4: Hierarchical presentation of research in the department of CS&IS, 

NMMU – (adapted from Cilliers 2005) 

 

Experimental IDE’s include specific tools which are not available in commercial 

software development environments. The tools are designed to assist students in 

developing their algorithm syntax and logic skills, and allow instructors to capture and 

analyse data on the students’ usage of the IDE’s. The experimental IDE’s developed 

by the Department are: 

 SimpliphIDE (Christians 2003; De Jager 2004) 

A simplified version of the Borland© DelphiTM 7.0 IDE, designed to minimise 

complexities faced by novice programmers during program creation 

 Student performance logging (Gamieldien 2003) 

Approaches to raise throughput rate actively being researched at NMMU 

Identify potentially 
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Technological 
support tool 
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An event logging module designed to integrate with the SimpliphIDE system. 

This tool allowed for the capturing of selected programming activities of students 

who use the IDE. 

 CodeWorks (van Tonder 2003) 

A lightweight JavaTM IDE with integrated tools for building GUI Java 

applications. CodeWorks is the first IDE for Java to utilise the SpringLayoutTM 

layout manager introduced in JDK 1.4. 

 Visual Code Reorganisation Tool (Henning 2004) 

The system presents partially completed programs to the students, who are then 

expected to identify and manipulate missing code pieces to correctly complete 

the program. 

 

Iconic programming languages are integrated into the initial phase of the introductory 

algorithm course to teach students introductory programming concepts. This approach 

allows the initial instructional focus to be placed on problem solving strategies rather 

than the notational mechanics of a given programming language. A number of 

interactive environments have been developed by the Department to make iconic 

languages more accessible to students: 

 B# Iconic Language (Brown 2001; Thomas 2002; Yeh 2003; Cilliers 2005) 

The B# system allows students to create algorithm program solutions using 

iconic flowcharts, with visual links between relevant program source code and 

the flowchart icons. B# also integrates a virtual flowchart interpreter, allowing 

students to execute and trace flowchart programs which they have created. 
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 Flowchart and Textual programming evaluation System (Mamtani 2004) 

The system is used to construct questionnaires regarding the learning preference 

of students’ between iconic and text-based programming languages. It also 

presents the questionnaire and captures the responses for later analysis. 

 

The current study is on a third type of technological support tool which may be 

integrated into the NMMU’s existing teaching model, namely in the area of algorithm 

animation. Algorithm animation, a subset of software visualisation, is a discipline 

which supports higher level understanding of algorithms by employing visual displays 

of algorithm concepts (Price, Baecker and Small 1998). 

 

1.3.4 Concluding Remarks on Relevant Factors 

 

Instructors traditionally employed blackboards and textbook diagrams to help 

visualise algorithms and data structures to students, which provides for more intuitive 

learning compared to simply reading the algorithm code. The discussion in Section 

1.3.1 presents a number of limitations associated with this method: 

 Once-off blackboard drawings are difficult to copy or reproduce for later 

reference; 

 Instructors may err while attempting to simultaneously draw diagrams 

on-board and present the lecture; 

 Textbook illustrations cannot represent all algorithm steps exhaustively, nor 

present novel scenarios which students are interested in, and 

 Illustrations do not demonstrate the performance and characteristics of 

algorithms. 
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The utilisation of animations is presented as a possible method to address such 

limitations, offering advantages over static illustrations through a number of factors 

highlighted in Section 1.3.2: 

 Motion images are more efficient at illustrating iterative operations of 

algorithms; 

 Animation reduces the cognitive load on the student whilst increasing 

relevant visual information; 

 Animations are more accessible to students for review outside the classroom, 

and are not limited on the number of times they may be used, and 

 Animations are more enjoyable than text or static illustration explanations, 

thus offering an intrinsic learning motivator. 

 

Section 1.3.3 outlines existing NMMU research, which aims to improve existing 

teaching models of algorithm courses through the use of experimental IDE’s or iconic 

programming languages (Figure 1.4). The limitations of static illustrations (Section 

1.3.1) serve to underscore the potential benefits of using algorithm animations in 

teaching algorithm courses (Section 1.3.2). These discussions thus support a further 

area of research, namely the use of algorithm animations as a technological support 

tool to complement current teaching methods. This forms the focus for the current 

investigation. 

 

1.4 Focus of the Investigation 

 

Research into algorithm animations is to be conducted in a similar approach to that of 

the previous areas of work (Figure 1.1). The research will provide a foundation for the 

proposal of an algorithm animation framework. A demonstration of the framework’s 
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effectiveness by means of the implementation of a prototype algorithm animation 

system will act as a vehicle for conducting further research within the university. This 

section first outlines the goals and objectives of the research (Section 1.4.1). The 

research scope is provided to define the research areas to be covered (Section 1.4.2). 

Various research questions are then posed to guide the investigation (Section 1.4.3). 

 

1.4.1 Goals and Objectives 

 

Since the demonstration of “Sorting out Sorting” (Baecker 1981), much research has 

been done in the studying of the effectiveness of algorithm animation tools in teaching 

(Hundhausen 1997; Hundhausen, Douglas and Stasko 2002). Experimental 

evaluations have shown that the use of algorithm animations in learning environments 

has had positive effects on the students’ understanding of algorithms (Hansen, 

Narayanan and Schrimpsher 2000; Hundhausen, Douglas and Stasko 2002).  

 

The purpose of this study is the design of an extensible algorithm animation 

framework and the evaluation thereof through the implementation of a prototype 

system based on the framework design concept. Algorithm animations of sorting 

algorithms will be created using the implemented prototype system as part of a case 

study to evaluate the framework design. The case study will be based on the quadratic 

and O(N log N) sorting algorithms commonly taught in introductory algorithm 

curricula (IEEE and ACM 2001). 

 

The algorithm animation framework will be designed to support a specific list of 

pedagogic requirements. A preliminary list of requirements is identified based on their 

potential effectiveness in complementing the learning strategy of the students. An 
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extant system evaluation will be performed by using the requirements identified. The 

evaluation will aid in deriving the final list of requirements to be supported by the 

framework. 

 

Extensibility of the framework will be supported through an independent layered 

design. This will allow functionality and case study extensions to be made to the 

framework. 

 

In support of the development of the prototype, an extensive literature review will be 

performed on extant algorithm animation systems and methodologies for creating 

algorithm animations. The prototype system will enable educators to create 

customised, interactive algorithm animations. The algorithm animation system will 

employ visual elements to help students understand algorithms, and analyse 

differences among algorithms through exploratory learning and interaction with the 

algorithm animation. This facility will allow students to directly compare and contrast 

algorithms utilising different scenarios. This feature is supported by having the system 

run multiple animations in parallel, thereby letting students contrast performance 

differences visually. 

 

 

 

 

1.4.2 Scope 

 

The study will focus on designing a framework for algorithm animation, and 

evaluating the framework through the implementation of the prototype. The study 
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includes research into identifying pedagogically effective features of algorithm 

animation systems (Chapter 3). A final system requirements list will be drawn up 

based on the identified features. The framework will then be designed to support the 

requirements. 

 

The framework design and prototype implementation will communicate information 

through the visual channel (visual metaphors, motion, colour). Audio elements are 

briefly introduced as a technique for complementing visual displays in algorithm 

animations; however, the technique falls outside the scope of the project and will thus 

not form part of the framework design. The prototype will be designed to run on the 

PC client platforms within the NMMU CS&IS department, on a lecture hall data 

projector or in a closed laboratory environment. 

 

The main deliverables of the study include an algorithm animation framework design, 

a prototype system implementation based on the framework, and animations of the 

sorting algorithms created using the prototype. The framework will not consider 

support for interactive dialogs, such as presenting interactive questions and quizzes. 

The evaluation of the framework will focus on the framework’s capability to provide 

for the requirements of the system. Therefore a usability evaluation of the system is 

considered to fall outside the scope of the current study. The documentation will also 

focus on providing a list of algorithm animation requirements and an extant system 

evaluation, which form a key complementary deliverable of the research in support of 

the framework and prototype. 

  

The case study consists of the building of algorithm animations based on sorting 

algorithms taught in NMMU’s introductory and intermediate algorithm courses, 
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namely the Bubblesort, Insertion sort, Selection sort, Mergesort and Quicksort 

algorithms. 

 

1.4.3 Research Questions 

 

A number of research questions have been identified to guide the investigation. Table 

1.1 lists the questions, the method to be used to answer each question, as well as the 

chapter which will address the questions.  

 

 

 

 

 

 

 

 

 

 

 

 

 Research questions Method(s) Relevant chapter 

1. What is software visualisation? Literature Study Chapter 2 

2. What is algorithm animation? Literature Study Chapter 2 

3. What elements are used to form an 
algorithm animation? 

Literature Study Chapter 2 

4. How are algorithm animations used in 
teaching and learning algorithms? 

Literature Study Chapter 2 

5. What are the issues to be considered in Literature Study Chapter 3 
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the design and specification of an 
algorithm animation framework? 

6. What are the criteria for the design of 
effective algorithm animation systems? 

Literature Study Chapter 3 

7. How do extant algorithm animation 
systems match the criteria? 

Literature Study Chapter 3 

8. What does an algorithm animation 
framework look like? 

Framework Proposal Chapter 4 

9. What are the implementation issues 
faced by developers of algorithm 
animation systems? 

Iterative Prototyping Chapter 5 

10. How effective is the proposed 
framework? 

Iterative Prototyping Chapter 5 

11. How does the algorithm animation 
prototype developed match the identified 
measurement criteria? 

Heuristic Evaluation Chapter 5 

12. What are the limitation and contribution 
of the framework and prototype? 

Conclusions and 
Summary 

Chapter 6 

Table 1.1: Research questions of the dissertation 

 

1.5 Structure of Dissertation 

 

This dissertation consists of six chapters. Figure 1.5 provides a research roadmap to 

show the flow of information within the dissertation. The figure illustrates the 

relevance of each chapter’s investigations and contributions in relation to its 

subsequent chapters. 
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Figure 1.5: Research Roadmap 

 

Chapter 1 provides background information on the problem domain, and a discussion 

of the factors leading up to the current research. The objectives and scope are then 

formulated in the context of the background discussion. A number of research 

questions are proposed to guide the investigation. 

 

Chapter 2 provides an overview of algorithm animation. The chapter will investigate 

the context of algorithm animation within software visualisation. Discussion is 
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provided to define the concept of algorithm animation, and the various techniques of 

communicating information it employs.  

 

Chapter 3 focuses on information related to the design and implementation of an 

algorithm animation system. It will discuss the various user types and system 

components of an algorithm animation usage environment. This is followed by an 

investigation into paradigms for linking algorithms to visualisations. A list of 

requirements for pedagogically effective systems is established through literature and 

extant system review. 

 

Chapter 4 provides a detailed discussion of the proposed framework design. 

Motivations are provided for the selection of visual paradigms and the framework 

structure. Each of the framework components are examined in detail. 

 

Chapter 5 documents the prototype implementation of the framework proposed in 

Chapter 4. The implementation methodologies decisions are motivated. Discussions 

are provided on the implementation of system components, system interfaces and the 

sorting algorithm animation case study. Observations gained from the implementation 

are also noted. 

 

Chapter 6 concludes the dissertation by highlighting the theoretical and practical 

achievements, contributions and implications of the research. A number of future 

research projects based on the dissertation are also identified. A bibliography and 

appendix is provided at the end of the dissertation. 
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Chapter 2 

Algorithm Animation  

 
 

2.1 Introduction 

 

Chapter 1 introduced the focus of the current investigation, which is the creation of an 

algorithm animation framework. The presentation of algorithms in an animated form 

harnesses the human visual perception to absorb and process visual information 

(Roman and Cox 1992), thereby decreasing the cognitive load of students learning 

and analysing algorithms (Tudoreanu 2003).  

 

Questions thus arise concerning how an algorithm animation is defined, what 

elements they utilise to convey information, and how they are generally used. In order 

to understand the requirements for the proposed algorithm animation framework and 

sorting algorithm case study, a number of issues are discussed. The chapter first 

identifies the classification of algorithm animation in the broader context of software 

visualisation (Section 2.2). This is followed by defining the concept of algorithm 

animation, and the elements that make up an algorithm animation (Section 2.3). A 

discussion on a number of environments where algorithm animations are used follows 
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(Section 2.4). Section 2.5 discusses the concept of illustrating algorithms using 

different levels of abstraction. 

 

2.2 Software Visualisation 

 

Computer software is becoming increasingly difficult to create and to understand due 

to its increasing complexity. Software engineers thus develop and employ a number 

of approaches to enhance the comprehensibility of software. One approach is 

software visualisation, which focuses on improving the representation, presentation 

and appearance aspects of a program (Baecker and Price 1998). Background is first 

provided on software visualisation (Section 2.2.1). An overview of the taxonomy of 

software visualisation is then provided to place the context of algorithm animation in 

the field of study (Section 2.2.2). 

 

2.2.1 Background and Definition 

 

Software Visualisation is defined as “the use of the crafts of typography, 

graphic design, animation, and cinematography with modern human-computer 

interaction and computer graphics technology to facilitate both the human 

understanding and effective use of computer software” (Price, Baecker and 

Small 1998) 

 

Software visualisation thus focuses on presenting the bigger picture of a program 

system by making software visible using graphical representations. Software 

visualisation modularises information hierarchically to enhance structural 
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understanding, which in turn supports the process of large-scale software development 

and maintenance (Eick 1998; Marcus, Feng and Maletic 2003). 

 

In brief, software visualisation involves the using of a variety of sensory inputs to 

cause the user to form a mental picture of logical structures or concepts, such as 

software source code (Price, Baecker and Small 1998). Familiar examples of software 

visualisation tools include Computer-Aided Software Engineering (CASE) tools 

(Chikofsky and Rubenstein 1988) and Nassi-Shneiderman (1973) diagrams. 

 

2.2.2 Taxonomies of Software Visualisation 

 

A number of taxonomies are available which characterise and categorise software 

visualisation using various attributes. These taxonomies serve to identify types of 

software visualisation suited to particular environments, based on the aspect of a 

program’s information which is displayed or revealed by the visualisation. 

  

Myers (1990) presented a basic taxonomy categorising software visualisation systems 

based on the level of abstraction (code, data or algorithm) and degree of animation 

(static or dynamic) of the visualisation. However, the taxonomy mainly focused on 

what the visualisation shows, passing over the issues relating to the design and 

construction of the visualisations. The shortcoming of Myer’s work was addressed by 

the taxonomy presented by Roman and Cox (1993). This taxonomy classified 

software visualisation systems along five axes, namely scope, abstraction, 

specification method, interface and presentation.  

 Scope defines the aspect of the program visualised. In other words, which part of 

the program is enhanced or represented visually. The focus can be placed at the 
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lower level, such as program source code statements, or at a higher level, such 

as program behaviours.  

 The level of abstraction of a visualisation defines the kind of information 

visualised. Visualisations can be a direct representation of a program by directly 

mapping to a particular aspect of the program, or a synthesised representation 

which involves visualising the program based on derived program data that has 

no explicit representation. The concept is discussed in Section 2.5. 

 The specification method describes the aspects of a program to be extracted, and 

how the visualisations are to be displayed. The method also affects the level of 

automation and design flexibility in creating visualisations. This issue is further 

explored in Section 3.3 and Section 4.2.1. 

 Interface characterises how visual information is presented to the viewer in 

terms of the tools available for the presentation, such as the visual actions and 

graphic objects (Section 4.8.1). Another interface issue is the level of 

interactivity available for the viewer to control various aspects of the 

visualisation display. This forms an important issue, further discussed in Section 

3.4. 

 Presentation defines the methods used by the visualisation to communicate 

information. Presentation focuses on how the visualisation is designed using, 

amongst others, graphical objects, motion and colour (Section 2.3). The aim is to 

allow the viewers to interpret the visualisation to gain or complement their 

understanding of the program being visualised. 

 

The abovementioned taxonomies focus on defining the characteristics of extant 

software visualisation systems. However, no definitive categorisation of the different 

classes of software visualisation has been offered. Stasko and Patterson (1993) 
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presented a taxonomy which focused on placing each of the classes of software 

visualisation into definitive categories. A number of classes of software visualisation 

are presented along with their characteristics in Table 2.1, namely data structure 

display, program state visualisation, program animation, algorithm visualisation and 

algorithm animation. These terms are explicitly presented to highlight the context of 

algorithm animation. Furthermore, similar terms, such as data structure, display, 

program, algorithm, visualisation and visualisation of algorithm, are often used 

throughout latter chapters to discuss algorithm animation framework related issues. 

The table will serve to separate such terms from the actual definition of software 

visualisation classifications. The criteria for Stasko and Patterson’s taxonomy (1993) 

can be mapped to Roman and Cox’s taxonomy (1993) as follows – Aspect to Scope, 

Abstractness to Abstraction, and Automation to Specification Method. The Animation 

criterion is discussed in Section 2.3.1.  

 

 Aspect Abstractness Animation Automation 

Data Structure Display low Low low high 

Program State Visualisation medium Low low high 

Program Animation medium medium medium high 

Algorithm Visualisation high High low low 

Algorithm Animation high high high low 

Table 2.1: Software Visualisation terms (Stasko and Patterson 1993) 

 

Stasko and Patterson’s taxonomy, represented in Table 2.1, defines algorithm 

animation as a high aspect visualisation focused on demonstrating program behaviour 

by employing animation techniques. Algorithm animation demonstrates algorithms at 

a high level of abstraction, focusing on particular events of interest rather than all 
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program activities. The process of designing algorithm animations has low propensity 

for automation due to the inputs required from the animation creator. The next section 

discusses algorithm animation in more detail. 

 

2.3 Algorithm Animation 

 

Algorithm animation is defined as “the process of viewing the underlying logic of a 

computer algorithm through a series of pictures that are strategically chosen to 

illustrate the algorithm in execution” (Hundhausen 1993). A further explanation of 

algorithm animation is to describe it as the dynamic visualisation of high level 

abstractions describing software (Price, Baecker and Small 1998), used to 

communicate the workings of algorithms by graphically or aurally representing its 

fundamental operations (Brown 1998). 

 

Algorithm animation is thus concerned with the representation of specific algorithms 

and their characteristics. It attempts to encourage understanding of algorithms by 

visualising their runtime behaviour and their properties and consequences thereof 

(Ball and Eick 1996). The algorithm behaviours are often represented in abstract, 

artificially highlighting or concealing certain aspects and activities of the algorithm to 

enhance its explanatory value.  

 

The presence of the word visual in software visualisation can be misleading, since 

software visualisation is not restricted only to visual elements. The primary meaning 

of visualisation is the process of forming a mental image of concepts which have no 

visual presentation, thus visualisation includes both visual and aural elements (Price, 

Baecker and Small 1993). Algorithm animations employ two channels of 
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communication, the visual channel, and the acoustic channel. The visual channel 

(Section 2.3.1) uses graphical shapes, quantitative presentations and colours whilst the 

acoustic channel (Section 2.3.2) uses pitch, volume and moving spatialised sound to 

convey information (Baloian and Luther 2001). The audio element forms part of the 

discussion on defining algorithm animation. However, it will not be considered in the 

remainder of the dissertation due to project scope constraints (Section 1.4.2). 

 

2.3.1 The Visual Aspect 

 

Algorithm animation depicts the logic of an algorithm by visualising two aspects of 

the algorithm - the data structures and the operations which manipulate the data 

structures. The following briefly describes the primary components which form the 

visual presentation of an algorithm animation, namely visual metaphors, animation 

and colour. 

 

Visual metaphors 

 

Visual metaphors can be drawn from specific application domains, or non-technical 

symbols which are familiar or easily inferable by the animation viewer (Giannotti 

1987; Jeffery 1998; Arik 2005). The visual objects used to represent data structures 

should be as self-explanatory as possible. Educational algorithm animations favour 

the use of data structures that can be represented visually in an intuitive manner 

(Gloor 1998).  
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As an example, the most commonly employed metaphor in demonstrating a list of 

elements is to map each element to a rectangle, with the rectangle’s height being 

proportional to the element’s size (Baloian and Luther 2001).  

 

Figure 2.1 gives an example of good and bad visual metaphors. The good metaphor 

presents the data using numerical elements, for which relative size can easily be 

induced. In addition, numerical elements have a value of magnitude, and thus map 

well to the rectangle visual metaphor. The bad metaphor presents data as letters of the 

alphabet, for which the relative size are more difficult to induce. Alphabetical values 

also lack any form of dimension with which to effectively present as a visual 

metaphor. 

 

 
Figure 2.1: Examples of good and bad metaphors in algorithm animations (Gloor 1998) 

 

More original and unconventional forms of visual metaphors can be applied to 

construct algorithm animations, providing that the metaphors support the concept 

being illustrated. An unconventional metaphor involves the use of metaphoric content 

beyond those conventionally found in textbook illustrations. The use of 

unconventional metaphors (Figure 2.2) has been shown to make an algorithm 
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animation more enjoyable to students. More interesting algorithm animations can thus 

better capture the students’ attention, resulting in improvement in learning and 

comprehension of the algorithm illustrated (Hübscher-Younger and Narayanan 2003). 

 

  

Figure 2.2: Example of unconventional metaphors: Fibonacci Hamsters 
(Hübscher-Younger and Narayanan 2003), and “Bubble”-Sort (Barbu, Dromowicz, 

Gao et al. 2001) 

 

Animation 

 

Traditional methods of demonstrating algorithm processes have involved the use of 

static images. A series of images can be created to show changes in the data structure 

after each step in the algorithm’s operation. However, updates in static images take 

place instantaneously, making it difficult for learners to keep track of the operations 

which are occurring. 

 

Animation is a technique for conveying visual information through motion, which is a 

perceptively efficient, low cognitive overhead visual dimension that is well suited for 

expressing change and activity (Bartram 1997). Based on the motion applications 

taxonomy (Bartram 2001), various purposes for utilising motion with specific 

relevance to algorithm animation are identified, namely awareness, emphasis and 

transition. Awareness is concerned with attracting and directing visual attention to a 
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specific viewing area. Emphasis is achieved by drawing attention to a particular visual 

object or process. Transition guides viewers through intermediate processes between 

non-temporal states. 

 

Algorithm animation makes use of smooth, continuous animation to illustrate the 

transition which occurs between each state of an algorithm, such as two values being 

exchanged by seeing two representative blocks moving towards each other’s original 

positions. This method of portraying each individual algorithm operation allows for 

the viewers’ visual systems to easily perceive and track changes (Stasko 1998b). 

Smooth animations are especially effective in illustrating the processes of more 

complex ideas and algorithms (Sonnier and Hutton 2004). 

 

Colour 

 

Colour is capable of communicating large amounts of information to the viewer 

efficiently (Brown and Hershberger 1991). The role of colour in algorithm animations 

is especially useful since it provides another visual dimension to help illustrate 

concepts. Colour is used in algorithm animations in five ways (Brown and 

Hershberger 1998a):  

1. Encoding the state of data structures – Colour is an effective tool for encoding 

state information, since few pixels and less space are needed as compared to 

using distinct shapes. 

2. Highlighting activities – Alterations of colour can be used to focus viewers on 

temporal or transient operations taking place. 
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3. Uniting multiple views – Algorithms and data structures can often be represented 

using different views. Colours are useful in visualising corresponding features 

and thus help integrate the views. 

4. Emphasising patterns – Colours used to encode information can collectively 

highlight certain trends and commonalities of a visualisation. 

5. Making history visible – Colour sequences can be used to show an algorithm’s 

history by representing a linear time order of past events or states using colour 

hues. 

 

Figure 2.3 provides an example of the concepts described above using two views of a 

Quicksort algorithm2, which uses a divide-and-conquer approach to sorting. The 

pivots which separate each sub-list are encoded in red, items which currently form the 

ignored sub-list are encoded in black, whilst the list currently being processed is 

encoded in blue. As the algorithm seeks for a new pivot within each sub-list, the 

examined item is highlighted in yellow. The unified colour scheme means that 

viewers can see how the two different views correspond in turns of operations in 

progress. The emphasis of the unique Quicksort pattern is clearly demonstrated in the 

corresponding dot plot, where each grouping of sub-list items (encoded in black) are 

boxed in by pivots (encoded in red) on each side. 

 

                                                 
2 The design of these views form part of the implementation discussion in Chapter 5. Each of the 
concepts were utilised except for using colour hues to make history visible. The case study algorithms 
were unsuited for utilising such a colour technique, and thus Figure 2.3 will not illustrate the technique. 
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Figure 2.3: Example of colour usage techniques in algorithm animation 

 

2.3.2 The Audio Aspect 

 

Sounds are usually employed as a supporting element to imageries in animations, and 

are useful for conveying information which cannot be or are difficult to visualise. In 

support of visual presentations, sounds can help reduce visual clutter by providing an 

alternative medium for information presentation (Brown and Hershberger 1991). 

Vickers and Alty (2003) argue that while vision provides excellent spatial perception, 

auditory senses can absorb many properties simultaneously and in considerable 

volumes. 

 

The element of sound can be used in algorithm animations to reinforce the visual 

elements, convey patterns, and signal exceptional conditions (Brown and Hershberger 

1998b). Whilst researchers have looked into ways to replace visuals with audio or 

increase the use of audio in algorithm animations in general, this aspect still receives 

considerably less attention due to the difficulties of mastering the medium (Baloian 

and Luther 2001).  
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2.4 Algorithm Animations in Instructional Environments 

 

Whilst the earliest algorithm animation, “Sorting Out Sorting” (Baecker 1981), was 

designed purely as a demonstrative tool, much research has since taken place in 

developing new algorithm animations and finding new ways to integrate them into the 

learning environment. Algorithm animations are used for demonstration in lectures, 

exercises in the computer laboratory, and remote viewing over the internet. 

 

2.4.1 Lecture Demonstrations 

 

Algorithm animations, with their illustrative capabilities, make for an ideal 

replacement for the typical in-class blackboard or slide demonstration (Rößling and 

Freisleben 2000b). The use of algorithm animations as a presentation aid in the 

classroom makes the lecturer’s task of explaining the concepts of the algorithms 

easier for a number of reasons. The instructor can concentrate on explaining algorithm 

concepts without having to render and re-render the blackboard, and examples can be 

re-illustrated with minimal effort. When algorithm animation systems are used in 

lectures, different scenarios can be explored with minimal fuss. The use of algorithm 

animations also benefits students’ learning due to the ability of animations and 

graphics to capture attention and maintain interest on the algorithm being studied. 

 

2.4.2 Laboratory Usage 

 

Integrating interactive algorithm animations into laboratory computers gives students 

the opportunity to further their understanding of the course work outside of the 

classroom. Students can interact with the animations at their own pace, performing 
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activities such as customising the data structure used, specifying alternative animation 

views, or analysing algorithms empirically (Gloor 1998). In addition, the students are 

able to perform these tasks as often as is required to achieve understanding of the 

algorithms taught. 

 

2.4.3 Web-based Algorithm Animation 

 

A number of algorithm animation systems have been designed to work over the 

internet architecture, typically implemented in the JavaTM platform (Brown and 

Raisamo 1997; Dershem and Brummund 1998). These systems are often made 

available on public domains and thus provide the same benefits as the interactive 

algorithm animations in a laboratory environment. In addition, web-based systems are 

platform-independent, thus increasing their ease of accessibility to students. 

 

2.5 Abstract Representations in Animation Algorithms 

 

Algorithms are dynamic sequences of actions which, although implemented in a 

programming language, still make use of abstract concepts. As seen from examples of 

the sorting algorithms in Appendix A, the actual code of the algorithm and the 

accompanying explanation are presented at different levels of abstraction.  

 

Brown (1988c; 1998) defines the content of an algorithm animation as either being 

direct or synthetic. Direct content shows isomorphic pictures representing the data 

structure of a program. Synthetic views show operations which change data or 

abstractions of the data, rather than map directly to any program variables. To be 

effective, animations must typically use a mixture of both techniques of presentation. 
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The issue of constructing direct and synthetic animation views are examined further in 

the visualisation paradigm discussion in Section 3.3. 

 

In creating algorithm animations, the visualisation designer (Section 3.2) must 

consider the level of abstraction to display to allow students to see the operations of 

the algorithm at work. Detailed views may show how values are stored and moved 

around, while generalised views present the bigger picture, such as patterns or 

performance trends of the algorithm (illustrated in Section 5.5). Showing an animation 

with too much detail will lead to distractions and irrelevant information been shown, 

whilst abstracting away too many details may hide the important execution processes 

of an algorithm (Wilhelm, Müldner and Seidel 2001). Although the construction of 

algorithm animations can be supported by algorithm animation frameworks, the level 

of abstraction of the animation is still very much influenced by how the visualisation 

designer sees and chooses to express an algorithm (Bazik, Tamassia, Reiss and van 

Dam 1998; Fleischer and Kučera 2002). The high level of abstractness also provides 

designers with a certain degree of artistic freedom in creating algorithm animations 

(Stasko and Patterson 1993). 

 

2.6 Conclusion 

 

An overview of several taxonomies has shown methods of categorising software 

visualisations. Algorithm animation is defined as a form of software visualisation 

which animates a customised high abstraction view of algorithmic operations, which 

convey information through three visual elements, namely visual metaphors, 

animation and colour.  
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A brief discussion was presented on the possible uses of algorithm animations in an 

instructional environment. This leads up to the discussion, in Chapter 3, of the various 

key roles of such algorithm animation environments, which consist of the algorithm 

animation components and algorithm animation system users. The previous 

discussion highlights the fact that the high-level concepts of each algorithm often do 

not necessary correspond to its low-level source code. Thus, the animation creator 

must decide on the concepts and operations to be animated, and in how much detail, 

in order to allow effective transfer of knowledge. 

 

This chapter has provided an overview of the various aspects of algorithm animation, 

including its context and definition, its methods of communicating information, and 

its uses. The following chapter will focus on functional issues relating to the design of 

algorithm animation systems.  
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Chapter 3 

Analysis of Algorithm Animation Systems 

 
 

3.1 Introduction 

 

Students are faced with the challenge of comprehending the abstract concepts of 

algorithms, such as operational procedures and performance characteristics, and 

applying the concepts successfully to solve computational problems. The 

contributions offered by algorithm animations as a technological support tool, and the 

techniques used by algorithm animations for demonstrating algorithm concepts were 

highlighted in Chapters 1 and 2.  

 

An algorithm animation framework is regarded as a generic design which is capable 

of supporting the requirements of an algorithm animation system. An algorithm 

animation system is intended to meet the needs of different user types whilst 

conforming to the concepts and goals of the framework design. Each component in 

the system is expected to provide technical features and functionalities which will 

allow various users to perform their tasks within the system (Rößling and Freisleben 

2002). The components and user roles which make up an algorithm animation system 

are discussed in Section 3.2.  
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Various high-level paradigms have been devised in order to connect an algorithm to 

its related visual representation, with each paradigm having a number of available 

methods of implementation. The selection of paradigms will affect the design and 

characteristic of the framework. Each of the paradigms and associated methods of 

implementation are first examined in Section 3.3. The next chapter will then evaluate 

and select a paradigm as part of the framework design (Section 4.2.1).  

 

A literature study identifies features that increase the instructional value of algorithm 

animation systems. The identified features are organised into an evaluation criteria for 

analysing algorithm animation systems (Section 3.4). This is then followed by an 

overview of a selected number of extant algorithm animation systems utilising the 

evaluation framework (Section 3.5). Based on the information gathered, a 

comparative study is performed to characterise the features of the systems and 

compile a list of requirements to be supported by the proposed framework (Section 

3.6). 

 

3.2 Algorithm Animation System - Users and Components 

 

An algorithm animation system contains a collection of components which promote 

the efficient production of algorithm animations for the creators, and easy 

accessibility of the animations by the students. When designing an algorithm 

animation system, it is important to understand the role of each component within the 

final system, and the user types served by each component or collection of 

components.  
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Figure 3.1 illustrates the interactions among the system components and user types. 

The software visualisation software developer implements each of the algorithm 

animation system components. The algorithm programmer and visualisation tool 

developer implement classes within the algorithm repository and graphical repository, 

respectively. The visualisation designer constructs algorithm animations using the 

classes in the algorithm and graphical repository. Instructors and students utilise the 

learner interface and animation player to view and control the constructed animations. 

  

 

Figure 3.1: Interaction among system components and users 

 

In this section, an investigation is performed to understand the role of the different 

user types within an algorithm animation usage environment (Section 3.2.1). The 

functionalities of the core components of an algorithm animation system are then 

discussed (Section 3.2.2). 
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3.2.1 Users within the Context of Algorithm Animation 

 

A number of users are recognised in the context of using algorithm animations in a 

learning environment. Each of these six user types is briefly discussed, based on the 

roles identified by Price et al (1998) and Naps, Rößling, Anderson et al (2003). 

 The software visualisation software developer is the user who implements the 

framework into a functional system, thus allowing the given framework to 

effectively support the activities of other users. 

 The algorithm programmer is responsible for creating the algorithm which will 

be animated by the system. Depending on the method of animation creation used 

by the framework, the programmer may or may not need to know that the 

algorithm will be visualised. 

 The visualisation tool developer creates the tools required to give a visual 

representation to program content, such as algorithms and data structures. The 

tools include visual elements (Section 2.3.1) and the mechanisms used to link 

program content to the visual elements (Section 3.3). 

 The visualisation designer takes the algorithm to be studied, identifies the 

abstract concepts which require visualisation, and maps these concepts to an 

animated visual presentation. The visualisation of algorithms is done by utilising 

the visualisation tools provided in the system. The visualisation designer must 

possess proficient understanding of an algorithm in order to create animations 

which will effectively support the comprehension of the algorithm. 

 Instructors integrate the use of the algorithm animations into their teaching 

materials to aid students in their understanding of algorithms. 
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 Students view and interact with the algorithm animation created by the 

visualisation designer, with the aim of enhancing understanding of the algorithm 

under study. 

 

This overview of the different user types in the instructional use of algorithm 

animations provides an understanding of the users’ expectations of an algorithm 

animation system. The components which support the user types are discussed in the 

following section. 

 

3.2.2 Components of an Algorithm Animation System 

 

The common mechanisms within an algorithm animation system are derived based on 

a number of examined extant designs obtained from the literature study. The 

mechanisms discussed consist of the algorithm repository, graphical repository, 

animation player/viewer and learner interface.  

 

The algorithm repository stores the algorithms which can be expressed in an animated 

format (Baker, Cruz, Liotta and Tamassia 1996; Döllner, Hinrichs and Spiegel 1997). 

Depending on the techniques used by the system to identify and visualise the relevant 

concepts and data structures, the algorithms in the repository could either consist of 

the original, unedited source code, or code annotated with specific output or event 

calls to highlight interesting events. 

 

The graphical repository stores visual objects and animation functionalities which can 

be utilised by the algorithms, either directly through API-type calls, or indirectly 
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through pre-scripted calls, to give visual representation to the algorithms (Rößling, 

Schüler and Freisleben 2000; Najork 2001). 

 

The animation player/viewer makes use of the graphic components within the 

graphical repository, and the operations from the algorithms in the algorithm 

repository, from which algorithm animation may be dynamically rendered (Brown 

and Sedgewick 1984; Colombo, Demetrescu, Finocchi and Laura 2003).  

 

The learner interface (usually implemented in the form of a GUI) allows end-users 

(the students and instructors) to interact with the system, allowing for input and 

control of the various aspects of the algorithm animations being viewed (Baker, Cruz, 

Liotta and Tamassia 1996; Syrjakow, Berdux and Szczerbicka 2000). Inputs may 

include selecting algorithms and views, setting up views, and inputting customised 

data structures. 

 

An algorithm animation system is designed with a number of components, with each 

component or collection of components supporting a subset of user types to 

accomplish specific tasks within an algorithm animation usage environment. 

 

3.3 Techniques for Creating Algorithm Animations 

 

A number of paradigms are available for connecting algorithms to visual 

representations (Price, Baecker and Small 1993). This section provides an overview of 

the paradigms, and the techniques generally employed by each paradigm to link 

algorithm actions to visual presentations. 
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3.3.1 The Imperative Paradigm 

 

The imperative (or event-driven) paradigm makes use of the interesting event concept 

to create animations. The concept consists of identifying events within an algorithm 

that have relevance to the visualisation (Brown and Sedgewick 1998). Program 

commands are placed in relevant sections of the algorithm to capture interesting 

events. The events are then conveyed to the visualisation component to produce the 

animations. Two techniques for creating visualisations can be categorised under the 

imperative approach, namely API calls and scripting language. 

 

The API technique consists of a collection of pre-defined functions for generating 

visualisations, stored in a function library. The algorithm is then animated by 

embedding the algorithm code with calls to the API functions (Figure 3.2). Typically, 

the algorithm must be written in the same programming language as the API. 

ANIMAL 3  (Section 3.5) and JAL (SiliconGraphics 1999) 4  are examples of 

API-based animation systems. 

 

Figure 3.2: Using API library calls to generate visualisation 

 

Animations can be generated using text commands defined by a scripting language 

(further discussed in Section 4.8.1). An algorithm is annotated with output statements 

at interesting events. The statements are then parsed and interpreted by the 

visualisation component to produce the relevant visual output (Figure 3.3). JSAMBA 

                                                 
3 The ANIMAL API classes are undocumented at the time of writing this dissertation. 
4 Cited in (Rößling and Freisleben 2000a). 
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(Section 3.5.5), JAWAA (Section 3.5.6) and ANIMAL (Section 3.5.7) are examples 

of script-based animation systems. 

 

Figure 3.3: Using scripting language to generate visualisation 

 

3.3.2 The Declarative Paradigm 

 

The declarative (or data-driven, state-mapping) paradigm represents algorithm 

operations visually by defining mappings between program states and visual objects 

(Roman and Cox 1993; Roman 1998). Visualisations are generated based on data 

structure related events of the algorithm (Figure 3.4). Relevant data structures are 

specified and monitored, and changes in the state of the data structures trigger events 

which update the visualisation.  

 

 
Figure 3.4: The declarative paradigm monitors state changes in the data structure 

 

In the example of the declarative paradigm shown in Figure 3.4, changes in the data 

structure state are detected by the state monitor through changes in element ID flags. 
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Two techniques for creating visualisations can be categorised under the imperative 

approach, namely comment embedding and direct animation. 

 

The comment embedding technique involves embedding animation commands into an 

algorithm without affecting its program structure. Commands which specify the data 

structures to be monitored are written as comments within the algorithm. The 

algorithm animation system’s interpreter then extracts the commands from the 

comment code (Figure 3.5). LEONARDO (Crescenzi, Demetrescu, Finocchi and 

Petreschi 2000) uses its own declarative language called Alpha, which is embedded as 

comments into C-based algorithms . 

 

Figure 3.5: Interpreter extracts the comments which describe the data structures 
being monitored 

 

Direct animation by code interpretation presents the most convenient and rapid 

method for creating animations. The system uses a virtual machine to interpret an 

algorithm and identify all data declarations (Figure 3.6). The data declarations are 

then automatically linked to visual elements. Any changes to the data state detected 

results in appropriate visualisation updates. Jeliot (Haajanen, Pesonius, Sutinen et al. 

1997) supports direct interpretation and animations of JavaTM code. The system’s 

interpreter in effect replaces the role of the visualisation designer. 

 

Figure 3.6: The virtual machine interprets the algorithm source directly to monitor 
data structure changes  
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3.3.3 Other Approaches 

 

A number of alternatives to the approaches discussed under the imperative and 

declarative paradigms exist for constructing animations of algorithms. These 

alternative approaches allow rapid creation of animations without any form of 

programming implementation (Stasko 1998a; Rößling and Freisleben 2000a). No 

formal mapping is thus needed between the visualisation and the illustrated algorithm. 

The two approaches discussed are visual editing and manual scripting language. 

 

Visual editors allow the visualisation designer to build animations using pre-defined 

tools and graphical objects. JAWAA and ANIMAL are examples of algorithm 

animation frameworks which include a visual editor (Section 3.5).  

 

Manual scripting languages offer another method for creating animations, where the 

visualisation designer writes animation commands manually using a text editor. This 

approach will utilise the same grammar structure of the scripting language approach 

discussed under the imperative paradigm (Section 3.3.1), but differ in that no 

algorithm implementation is linked to the created animation. 

 

3.4 Desirable Pedagogical Requirements for an Algorithm Animation System 

 

The availability of modern computers allows for rapid design and real-time generation 

of animations, and the ability to facilitate interaction with students. The focus of 

algorithm animations has moved beyond merely showing students an algorithm 

animation in the hope that they will understand and retain some of the algorithm 

concepts illustrated. Current emphasis is placed on identifying factors which will 
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increase the instructional value of algorithm animations (Stasko, Badre and Lewis 

1993; Saraiya 2002). Studies and observations (Roman and Cox 1992; Hundhausen 

1993) have shown that the use of algorithm animations does not in itself guarantee 

improvements in algorithm understanding. This is akin to how an immaculately 

printed textbook cannot produce effective transfer of learning if important features 

(taken for granted in any decent textbook) such as well written explanations, relevant 

case studies and informative exercise questions are not included. An important step in 

designing an algorithm animation system is thus to understand what features 

effectively complement the students’ learning strategy (Kehoe, Stasko and Taylor 

2001). 

 

The supported features of algorithm animation systems are generally fixed once the 

system has been implemented (Rößling and Freisleben 2001). Adapting and extending 

existing source code to support additional features are often a time-consuming and 

impractical process. This further highlights the need to define a clear specification of 

requirements when designing and implementing a system. A process is thus required 

to identify and motivate specific features derived from the research community.  

 

In this section, discussions are given on algorithm animation features shown to 

increase the pedagogic effectiveness of the system or broaden its usefulness within a 

teaching environment. The first part discusses a number of features based on a 

system’s interaction with the students (Section 3.4.1). This is followed by a discussion 

of system features which can further complement the learning effectiveness of an 

algorithm animation system (Section 3.4.2). The findings from the discussions are 

then summarised and presented (Section 3.4.3). 
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3.4.1 Requirements based on Levels of Engagement 

 

An interactive environment in an algorithm animation system is believed to more 

effectively attract a student’s cognitive attention and engage the mind of the student 

(Hansen, Narayanan and Hegarty 2002). Studies have suggested that rather than just 

letting students view an algorithm animation passively, better learning results may be 

obtained by allowing students to engage interactively with the animation 

(Hundhausen 2002; Naps, Fleischer, McNally et al. 2003). The observations suggest 

that the method and extent in which students are engaged with the algorithm 

animation and related learning activities have significant influence on the 

effectiveness of employing such teaching support tools (Faltin 2001; Grissom, 

McNally and Naps 2003). It is thus important to take into account the approaches of 

active engagement within the context of algorithm animation when identifying 

requirements for the system. Furthermore, a recent study has produced a taxonomy to 

define the level of engagement of students with an algorithm animation system (Naps, 

Fleischer, McNally et al. 2003). As a result, empirical studies within the research 

community can now uniformly evaluate the effectiveness of algorithm animation 

systems and features based on an established level-of-engagement framework 

(Grissom, McNally and Naps 2003).  

 

Naps et al (2003) defines a taxonomy of students’ interaction with algorithm 

visualisations based on six levels of engagement:  

1. No viewing – no algorithm visualisation is utilised 

2. Viewing – from students viewing a visualisation passively, to having them make 

adjustments on various aspects of the visualisation display 
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3. Responding – students answering questions concerning the animation during its 

execution 

4. Changing – modification of the visualisation by the student in order to increase 

understanding of an algorithm 

5. Constructing – creating a new visualisation of a given algorithm 

6. Presenting – presenting visualisations to other students to stimulate discussions 

on the given topic 

 

The taxonomy is designed to allow educators to develop systems which will take 

advantage of these various forms of engagement, and allow the developed systems to 

be evaluated using a standardised engagement level definition. Each of the 

requirements identified is organised based on the taxonomy of engagement levels 

presented by Naps et al (2003). The list of requirements is then used as a common 

framework for examining and evaluating a number of extant algorithm animation 

systems. The requirements are identified and organised based on four levels of 

engagement, namely viewing, changing, responding and constructing. The first and 

sixth level of engagement – No viewing and Presenting – are not discussed further. No 

viewing is essentially the absence of algorithm animations. Presenting involves the 

learner demonstrating an algorithm animation. It is thus an activity generally 

performed by the instructor to aid learners. However, since Presenting is inherently 

supported through Constructing, instructors can ask students to demonstrate 

animations which they have created to liven up lecture discussions. 
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Viewing 

 

Algorithm animations can be viewed as a surveillance video that records and displays 

the execution of an algorithm5. When users investigate an algorithm, they may slow 

the video down to better examine a particular event, speed through events which offer 

no further contribution to the investigation, or step through key events one at a time. 

Speed and stepping controls allow algorithm animations to adapt to the learning pace 

for a given environment, whether it is instructors demonstrating in a classroom, or 

students self-studying in the computer laboratory. The users should have a unified set 

of functions for controlling the behaviour of the algorithm animation displayed (Gloor 

1998). The system should include functionalities to pause and replay the animation. 

The ability to speed up animations will allow students and instructors to move over 

sections which are already understood (Rößling 2002). 

 

Algorithm operations may be missed by students, which may occur if the animation is 

displayed too fast. Students may also be confused by certain operations if they were 

shown while students were still mentally processing previous operations, or if the 

operations were not anticipated by the students due to unfamiliarity with a newly 

introduced algorithm. Allowing students to backtrack the animation a specified 

number of steps will allow reviewing of past operations as needed, rather than having 

to restart the animation from scratch (Naps, Eagan and Norton 2000; Rößling 2002). 

 

 

 

 
                                                 
5 Albeit a display with a high-level of abstraction. 
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Responding 

 

Algorithm animations provide immediate visual feedback of algorithm operations, 

and can thus support students in testing predictions to enhance understanding. In a 

closed-lab study performed by Byrne et al (1999), students were required to pause 

algorithm visualisation at specific points and make predictions orally. This has shown 

to significantly increase algorithm understanding. Students may be asked to make 

predictive answers independently of the animation system during the display of the 

animation (Byrne, Catrambone and Stasko 1999), or answer text-based questions 

integrated into the animation system (Jarc, Feldman and Heller 2000). The system 

should support the activity of letting students make predictive answers by running 

animations in discrete steps, thus allowing the students to pause before each 

interesting event in the animation to predict the next algorithm action (Anderson and 

Naps 2000)6. Allowing animations to run one step at a time also acts as a method for 

slowing the animation down if students have difficulty in understanding certain 

operations of an algorithm. 

 

Changing 

 

Students and instructors should be allowed to input custom data into the algorithm. 

Instructors will thus be able to demonstrate algorithm specific characteristics to 

students, such as best-case and worst-case performance scenarios (Naps, Eagan and 

Norton 2000; Saraiya 2002). Students will also be able to input their own data set into 

the algorithms to test cases beyond those offered in lectures or textbooks. An 

important advantage of an algorithm animation system over traditional static teaching 
                                                 
6 Cited in (Rößling and Naps 2002). 
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materials is a system’s support for real-time generation of animations using 

user-specified input. Users can utilise this feature to examine various cases to improve 

algorithm understanding. Most importantly, the system should support real-time 

generation of datasets, based on a provided population size and list pre-sort 

percentage level. This will allow students to create and examine case studies relating 

to complexity and performance characteristics of different sorting algorithms by 

generating and utilising meaningful test data (Section 4.4). 

 

Constructing 

 

Creating an animation of the algorithm under study would induce students to have a 

deeper understanding of the algorithm’s operations, since students must learn the 

algorithm with the intent of sharing their understanding of the algorithm concepts to 

an audience (Hübscher-Younger and Narayanan 2003).  

 

This concept was tested by Hundhausen (2002) in his observational study, where 

students were asked to construct and present an algorithm of their choosing using 

existing algorithm animation tools. In effect, the students were actively engaging with 

the algorithm animation by performing the roles of algorithm programmer, 

visualisation designer and instructor (Section 3.2.1). Hundhausen observed that while 

engaging students in such activities took significantly more time than conventional 

teaching methods, these activities did contribute to the students’ understanding of the 

algorithms studied. 
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3.4.2 Complementary Requirements 

 

A number of algorithm animation system features are identified which are believed to 

enhance the pedagogic effectiveness and usefulness of the system. Each of these 

features is discussed below. 

 

Smooth animation aids the student in tracking changes between discrete steps of an 

algorithm (Stasko 1998b). This feature forms a fundamental part of algorithm 

animation. In certain cases, such as when large datasets are being viewed, students 

should be able to disable animations and view discrete steps of the algorithm (Rößling 

and Naps 2002).  

 

Analysis features can aid students in better understanding the efficiency of an 

algorithm and the relative performance differences among various algorithms (Gloor 

1998). Algorithm efficiency can be illustrated by means of performance statistics 

collected from the animations or generated independently of the animation. Relative 

performance can be illustrated by running several algorithms simultaneously, thus 

letting the students compare the differences visually (Naps, Fleischer, McNally et al. 

2003). Using animations to demonstrate sorting algorithm races have shown to be 

very convincing in illustrating performance differences (Baecker 1998).  

 

Multiple views of an algorithm may be used in different approaches to aid students. 

Students may find the use of certain metaphors easier to understand, and thus prefer a 

certain approach of animation (Gurka and Citrin 1996). Different views may also be 

used to illustrate algorithm executions at different levels of abstraction, or 

demonstrate different characteristics, such as operational or performance trends 
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(Wilson, Katz, Ingargiola et al. 1995; Naps, Fleischer, McNally et al. 2003). In 

addition, alternative views also include information relating to the running algorithms, 

such as total execution time elapsed, and the number of operations performed. 

 

Additional materials accompanying algorithm animations may increase the 

instructional effectiveness of the animation. The materials may include simple textual 

explanations, pseudo-code or source code views (Rößling, Schüler and Freisleben 

2000). Alternatives include using multimedia elements, such as audio and video of 

instructors explaining the algorithm (Stasko, Badre and Lewis 1993). The materials 

may be presented separately, or integrated as part of the animation system.  

 

Students may utilise algorithm animations in a self-study environment, without 

narrations and explanations from instructors. This may decrease the instructional 

value of the animation, as students are expected to figure out the plot of the algorithm 

unaided. Whilst it is possible to provide static text related to an algorithm by using 

printed supplementary material, the text will not be able to highlight specific details of 

the algorithm or to explain the workings of the algorithm as the animation is running, 

like an instructor in a demonstration environment could. A system which has some 

form of data awareness will be able to provide and store dynamic output as the 

algorithm runs. Static information such as “the algorithm is now performing a swop of 

items” can then provide more context sensitive information, such as “swopping value 

7 in position[1] with item with value 4 in position[2]”, thus offering a more specific 

explanation to the students viewing the animation (Naps, Eagan and Norton 2000; 

Sumner and Banu 2003). 
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A general animation system is designed to create animations in any domain of 

knowledge, whilst domain-specific animation frameworks are limited to animating a 

specific type of algorithm and data structure. However, it has been noted that general 

purpose systems are inherently more processor intensive than topic specific 

animations (Brown and Sedgewick 1984). A balance must be found that allows a 

given animation system to construct animations for a specific domain, whilst still 

offer some degree of support for non-domain specific uses. The system should be 

designed to allow creation of animations not necessarily restricted to sorting 

algorithms, allowing for the animation of other list-based algorithms, such as merges 

and searches, without need for modification (Akingbade, Finley, Jackson et al. 2003). 

Furthermore, a system which can create animations of various associated topics can 

offer a common user interface for students studying the different topics (Rößling and 

Naps 2002).  

 

3.4.3 Summary of Requirements 

 

From the preceding discussion, a number of preliminary features are identified as the 

requirements for a pedagogically effective system. The identified requirements appear 

in Table 3.1. The effectiveness of an algorithm animation system to complement the 

students’ study of algorithms is determined by the system’s ability to engage the 

students in an active learning process (categorised as requirements R1 through R6), 

and system features which either provide additional information to enhance 

comprehensibility of the animation, or increase its usefulness in an educational 

environment (requirements R7 through R11).  
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Requirements for Algorithm Animations Section 

R1:  Allow speed control of algorithm animation 3.3.1 - Viewing 

R2:  Allow rewinding of the animation 3.3.1 - Viewing 

R3:  Accept user input data for the algorithm 3.3.1 - Changing 

R4:  Provide questions to predict algorithm behaviour 3.3.1 - Responding 

R5:  Allow stepping control of algorithm animation 
3.3.1 - Viewing 
3.3.1 - Responding 

R6:  Support construction of animation by students 3.3.1 Constructing 

R7:  Support for smooth motion 3.3.2 

R8:  Include capabilities for comparative algorithm analysis 3.3.2 

R9:  Provide multiple views of an algorithm 3.3.2 

R10:  Provide additional instructional material 3.3.2 

R11:  General purpose framework 3.3.2 

Table 3.1: List of identified requirements 

 

The list of requirements established in Table 3.1 is used as criteria for assessing a 

number of extant algorithm animation systems in the following section. The 

requirements identified, in conjunction with the extant systems overview (Section 3.5), 

will support the discussion of the finalised list of requirements (Section 3.6) for the 

proposed algorithm animation framework. 
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3.5 Overview of extant systems 

 

The purpose of the extant system analysis is to use the requirements identified in 

Section 3.4 as a platform to evaluate existing system implementations. This section 

offers an overview of seven extant algorithm animation systems. General 

characteristics and the requirements supported by each extant system are identified, 

with the specific aim of guiding the creation of the scope of requirements for the 

proposed framework. The overview of these systems7 includes a tabular summary of 

the requirements supported by the systems (Tables 3.2-3.8), based on the list 

identified in Section 3.4. Explanations are provided for requirements indicated as 

partially supported. Support for requirements which cannot be conclusively derived 

from available literature are treated as unsupported. Information is derived from a 

combination of literature studies and actual system reviews. 

 

3.5.1 Sorting Out Sorting 

 

The “Sorting Out Sorting” video (Baecker 1981; Baecker 1998), although not strictly 

defined as a system, is nevertheless, worthy of mention. The video employed a 

number of features which were unprecedented at the time in demonstrating sorting 

algorithms (Figure 3.7). These features include the use of various visual metaphors, 

including animation, colour, audio, and voice-over commentary. The operations of 

nine sorting algorithms were illustrated, followed by time versus data size 

performance graphs typically found in textbooks. The nine algorithms were then run 

simultaneous in a race to compare and contrast their performance characteristics. 

                                                 
7 Comprehensive reviews of actual systems are sometimes not possible due to systems being no longer 
available, legacy, or incompatible with available hardware and software resources. 
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Figure 3.7: Sorting Out Sorting – Demonstrating a sorting algorithm / Race of nine 
sorting algorithms using a cloud representation (Baecker 1981) 

 

Table 3.2 illustrates the support provided by “Sorting Out Sorting” based on the list of 

requirements derived in Section 3.4. The video is identified as supporting smooth 

motion (R7). Comparative algorithm analysis and multiple views of an algorithm are 

included (R8, R9). Additional material is provided through audio narratives (R10). 

Because the animations are produced as a video, all requirements are essentially of 

historical nature and thus regarded as partially supported. 

 

Requirements for Algorithm Animations Supported 
R1:  Allow speed control of algorithm animation  

R2:  Allow rewinding of the animation  

R3:  Accept user input data for the algorithm  

R4:  Provide questions to predict algorithm behaviour  

R5:  Allow stepping control of algorithm animation  

R6:  Support construction of animation by students  

R7:  Support for smooth motion ( ) 

R8:  Include capabilities for comparative algorithm analysis ( ) 

R9:  Provide multiple views of an algorithm ( ) 

R10:  Provide additional instructional material ( ) 

R11:  General purpose framework  
Table 3.2: Requirements supported by Sorting Out Sorting 

 Full support. ( ) Partial support. 
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3.5.2 Brown University Algorithm Simulator and Animator II (BALSA) 

 

The BALSA animation system (Brown and Sedgewick 1984) can be regarded as a 

concept prototype for all current systems due to the novel design concepts utilised by 

the system. The system was designed and implemented to integrate into Brown 

University’s electronic classroom concept (Bazik, Tamassia, Reiss and van Dam 

1998). BALSA dynamically generates algorithm animations by annotating Pascal 

algorithms with interesting events (Section 3.3.1), which are then used to notify and 

update animation views. BALSA is installed on workstations and displays animations 

based on scripts created by the instructors. BALSA-II (Brown 1988a, 1988b) added 

support for colour displays. BALSA-II also included the ability to run multiple 

algorithms in synchronised displays to illustrate algorithm races (Figure 3.8), similar 

to the demonstration done in “Sorting Out Sorting”.  

 

 

Figure 3.8: BALSA-II – Illustrating a mergesort using a clouds view, and a bar chart 
to show consecutive states of the data (Brown and Sedgewick 1984)  

 

Table 3.3 illustrates the support provided by BALSA-II based on the list of 

requirements derived in Section 3.4. The system supports dynamic input to generate 

animation (R3), however, literature did not specify if the feature is directly accessible 
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by students. No details were available on the level of animated motion support by 

BALSA. The system allows for speed control of algorithms (R1) and stepping 

through animations (R5). The system also supports capabilities to compare algorithms 

(R8), and show alternative animation views (R9).  

 

Requirements for Algorithm Animations Supported 
R1:  Allow speed control of algorithm animation  
R2:  Allow rewinding of the animation  

R3:  Accept user input data for the algorithm ( ) 

R4:  Provide questions to predict algorithm behaviour  

R5:  Allow stepping control of algorithm animation  
R6:  Support construction of animation by students  

R7:  Support for smooth motion  

R8:  Include capabilities for comparative algorithm analysis  
R9:  Provide multiple views of an algorithm  
R10:  Provide additional instructional material  

R11:  General purpose framework  
Table 3.3: Requirements supported by BALSA-II 

 Full support. ( ) Partial support. 

 

3.5.3 Generalised Algorithm Illustration through Graphical Software (GAIGS) 

 

GAIGS (Naps and Swander 1994) generates discrete snapshot visualisations of an 

algorithm’s data structure at interesting events. The transitions between each frame of 

the visualisation are not animated (Figure 3.9). GAIGS uses a scripting language 

which specifies visualisations based on data structures rather than graphical objects, 

thus employing the declarative approach (Section 3.3.2) for creating visualisations.  
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Figure 3.9: GAIGS – Two consecutive snapshots (Naps and Swander 1994)   

 

Table 3.4 illustrates the support provided by GAIGS based on the list of requirements 

derived in Section 3.4. The system supports the feature of rewinding the algorithm to 

a previous state and replaying sequences (R2). Support for customised data is 

included (R3). Students can step through the frames at their own pace (R5). Multiple 

representations of an algorithm are supported (R9). GAIGS supports a limited static 

display of the algorithm code been visualised, with no support provided to mark-up 

the code displayed (R10).  

 

Requirements for Algorithm Animations Supported 
R1:  Allow speed control of algorithm animation  

R2:  Allow rewinding of the animation  
R3:  Accept user input data for the algorithm  
R4:  Provide questions to predict algorithm behaviour  

R5:  Allow stepping control of algorithm animation  
R6:  Support construction of animation by students  

R7:  Support for smooth motion  

R8:  Include capabilities for comparative algorithm analysis  

R9:  Provide multiple views of an algorithm  
R10:  Provide additional instructional material ( ) 

R11:  General purpose framework  
Table 3.4: Requirements supported by GAIGS 

 Full support. ( ) Partial support. 
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3.5.4 Java Collaborative Active Textbook (JCAT) 

 

JCAT (Brown and Raisamo 1997; Najork 2001) combines passive multimedia 

materials with algorithm animations through the use of HTML pages (Figure 3.10). 

The system supports the simultaneous control and display of algorithm animations on 

different workstations using JavaTM applets. The integrated system allows the 

instructor to control the animation from a centralised control panel, and allow the 

students’ client to view the animation from a remote workstation. Students can also 

run JCAT animations in a “solo” mode, where animation controls are directly 

available to the user (Ramshaw 1997). Animations are created by adding interesting 

events to algorithms, similar to BALSA. 

 

Figure 3.10: JCAT (Ramshaw 1997; Najork 2001) 

 

Table 3.5 illustrates the support provided by JCAT based on the list of requirements 

derived in Section 3.4. Students have speed and stepping control of animations (R1, 

R5). Smooth motion is supported (R7). Display of multiple views representing one 

algorithm (R9) and display of static and context-sensitive text materials (R10) are 

supported. 
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Requirements for Algorithm Animations Supported 
R1:  Allow speed control of algorithm animation  
R2:  Allow rewinding of the animation  

R3:  Accept user input data for the algorithm  

R4:  Provide questions to predict algorithm behaviour  

R5:  Allow stepping control of algorithm animation  
R6:  Support construction of animation by students  

R7:  Support for smooth motion  
R8:  Include capabilities for comparative algorithm analysis  

R9:  Provide multiple views of an algorithm  
R10:  Provide additional instructional material  
R11:  General purpose framework  

Table 3.5: Requirements supported by JCAT 
 Full support. ( ) Partial support. 

 

3.5.5 SAMBA/JSAMBA 

 

SAMBA (Stasko, Badre and Lewis 1993) is a front-end application for the POLKA 

general purpose algorithm animation system. SAMBA takes in ASCII formatted script 

commands and generates animations based on the commands (Section 3.3.1). This 

allows for the algorithm to be written in any programming language, providing that 

appropriate outputs are generated for input into SAMBA. The scripting language 

allows students to construct and test algorithms by generating their own animations. 

JSAMBA is a Java-based applet which provides for an internet accessible and 

platform independent version of SAMBA8 (Figure 3.11). 

                                                 
8 The Java version of SAMBA (JSAMBA) is evaluated due to its easy of accessibility over the original 
SAMBA, which runs on an Unix X11 Window System. 
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Figure 3.11: JSAMBA (Duskis undated)  

 

Table 3.6 illustrates the support provided by JSAMBA based on the list of 

requirements derived in Section 3.4. Students have speed and stepping control of 

animations (R1, R5). JSAMBA allows only static text to be displayed within the 

animation view (R10). The scripting system gives more accessibility for constructing 

animations (R6), including general animations (R11). Smooth motion is supported 

(R7). 

Requirements for Algorithm Animations Supported 
R1:  Allow speed control of algorithm animation  
R2:  Allow rewinding of the animation  

R3:  Accept user input data for the algorithm  

R4:  Provide questions to predict algorithm behaviour  

R5:  Allow stepping control of algorithm animation  
R6:  Support construction of animation by students  
R7:  Support for smooth motion  
R8:  Include capabilities for comparative algorithm analysis  

R9:  Provide multiple views of an algorithm  

R10:  Provide additional instructional material ( ) 

R11:  General purpose framework  
Table 3.6: Requirements supported by JSAMBA 

 Full support. ( ) Partial support. 
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3.5.6 Java And Web-based Algorithm Animation (JAWAA) 

 

JAWAA (Pierson and Rodger 1998; Akingbade, Finley, Jackson et al. 2003) is an 

algorithm animation system which employs a scripting language, much like SAMBA. 

The visual objects and associated commands available in JAWAA are designed for 

the animation of algorithm operations, with specific support for data structure objects 

like arrays, stacks, queues, pointers and linked lists (Figure 3.12). A JAWAA Editor 

allows users to create an animation without having any knowledge of JAWAA’s 

scripting language. 

 

 

Figure 3.12: JAWAA (Rodger 2002) 

 

Table 3.7 illustrates the support provided by JSAMBA based on the list of 

requirements derived in Section 3.4. Students have speed control of animations (R1). 

The scripting language graphic system gives more accessibility for constructing 
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various animations (R6, R11). The system is implemented in a JavaTM applet, the 

embedding of static material into the client webpage is thus possible (R10). Smooth 

motion is supported (R7). 

 

Requirements for Algorithm Animations Supported 
R1:  Allow speed control of algorithm animation  
R2:  Allow rewinding of the animation  

R3:  Accept user input data for the algorithm  

R4:  Provide questions to predict algorithm behaviour  

R5:  Allow stepping control of algorithm animation  

R6:  Support construction of animation by students  
R7:  Support for smooth motion  
R8:  Include capabilities for comparative algorithm analysis  

R9:  Provide multiple views of an algorithm  

R10:  Provide additional instructional material ( ) 

R11:  General purpose framework  
Table 3.7: Requirements supported by JAWAA 

 Full support. ( ) Partial support. 

 

3.5.7 A New Interactive Modeller for Animations in Lectures (ANIMAL) and 
Java-Hosted Algorithm Visualisation Environment (JHAVE) 

 

The ANIMAL (Rößling, Schüler and Freisleben 2000) system allows the visualisation 

designer to create animations using either the AnimalScript scripting language 

(Section 3.3.1), API calls (Section 3.3.1), or through a visual editor (Section 3.3.3). 

ANIMAL allows animations to be rewinded and replayed. ANIMAL includes the 

ability to display and mark-up text, making the framework suitable for “tracing” 

program code as part of the animation (Figure 3.13). The JHAVE (Naps, Eagan and 

Norton 2000; Rößling and Naps 2002) platform can be integrated on top of ANIMAL 

to add certain features, such as accepting user-custom input and presenting interactive 

questions. 
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Figure 3.13: ANIMAL and JHAVE (Schüler and Rößling 2001) 

 

Table 3.8 illustrates the support provided by ANIMAL and JHAVE based on the list 

of requirements derived in Section 3.4. Related literature indicates that all 

requirements are supported except for the ability to support multiple animation views 

and comparative animations. The requirements met by ANIMAL and JHAVE include 

support for controlling the animation display (R1, R2, R5), accepting input data (R3), 

interactive questions (R4), smooth animation (R7), and display of algorithm 

information during animation (R10). Animations can be constructed using a number 

of approaches (R6, R11). 
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Requirements for Algorithm Animations Supported 
R1:  Allow speed control of algorithm animation  
R2:  Allow rewinding of the animation  
R3:  Accept user input data for the algorithm  
R4:  Provide questions to predict algorithm behaviour  
R5:  Allow stepping control of algorithm animation  
R6:  Support construction of animation by students  
R7:  Support for smooth motion  
R8:  Include capabilities for comparative algorithm analysis  

R9:  Provide multiple views of an algorithm  

R10:  Provide additional instructional material  
R11:  General purpose framework  

Table 3.8: Requirements supported by ANIMAL and JHAVE 
 Full support. ( ) Partial support. 

 

3.6 Scope of Requirements 

 

A number of extant algorithm animation systems were evaluated using the 

requirements framework established in section 3.4. This section highlights particular 

requirements that the various systems have or have not adequately addressed, in so 

doing emphasising support for a number of features in the proposed framework 

resulting from this study (Section 3.6.1). A number of alternative requirements were 

excluded from the final list of proposed requirements. Motivations for these decisions 

are provided (Section 3.6.2). 

 

3.6.1 Proposed Requirements for the Framework 

 

“Sorting Out Sorting” (Section 3.5.1) and BALSA-II (Section 3.5.2) provide a unique 

analytical tool by supporting running and displaying of multiple algorithms 

simultaneously to provide a visual contrast in relative efficiency. However, this idea 

has been largely ignored by consequent research into new systems. BALSA-II is a 
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system designed for a legacy Macintosh OS and is thus unsuitable for use on currently 

available platforms. Two extant systems, namely WebGAIGS (Naps and Bressler 

1998) and ANIM (Bentley and Kernighan 1991), provide functionalities for 

demonstrating multiple algorithms in parallel (R8). However, only static snapshots 

are supported. It has been suggested that there is a lack of existing systems which 

provide analytical capabilities through simultaneous animated visualisation of 

multiple algorithms (Petre, Blackwell and Green 1998).  

 

“Sorting Out Sorting”, BALSA-II, GAIGS (Section 3.5.3) and JCAT (Section 3.5.4) 

support the display of multiple views of algorithms (R9). The other extant systems 

reviewed only support the display of a single animation view. 

 

Systems such as JCAT, SAMBA (Section 3.5.5), JAWAA (Section 3.5.6) and 

ANIMAL+JHAVE (Section 3.5.7) are capable of generating smooth transitional 

animations (R7) between discrete steps of an algorithm, a display technique initially 

used in “Sorting Out Sorting”. JCAT allows the demonstrator of the animation to 

centrally adjust the display of visualisations, whilst JSAMBA, JAWAA and ANIMAL 

allow the students to control the speed, playing and stepping through of the 

visualisations (R1, R5) during viewing. ANIMAL+JHAVE is the only reviewed 

system which supports the rewinding of animations (R2), and providing interactive 

questions (R4) during the animation. 

 

GAIGS, JSAMBA, JAWAA and ANIMAL+JHAVE each make use of a scripting 

language approach to generate animations. The scripting language is utilised as a 

protocol of communication to convey algorithm event information to the animation 

display. An algorithm generates a script containing details of the algorithm’s 
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operation. Based on the given script, the system then constructs the relevant animation. 

JSAMBA, JAWAA, and ANIMAL+JHAVE are each developed around self-defined 

scripting languages. The languages provide commands for defining graphic objects 

and actions. Using the defined scripting language of the systems, general purpose 

animations (R11) can be created using the defined scripting languages. 

 

JSAMBA provides a simple interface which reads and animates prewritten scripts. 

JAWAA and ANIMAL+JHAVE have a visual editor which can be used to specify 

visual objects and animation sequences, from which the equivalent animation scripts 

can automatically be generated. JSAMBA, JAWAA and ANIMAL+JHAVE thus 

allow the visualisation designer to create animations (R6) without necessarily 

possessing extensive programming knowledge. However, due to the 

scripting-language animation generation approach used by the systems, animations 

must be recreated when a new dataset is to be demonstrated or tested. 

ANIMAL+JHAVE is the only system to adequately support direct input of datasets 

(R3) by the user without having to re-script the animation sequences manually or 

through a visual editor. 

 

“Sorting Out Sorting” provides audio commentary to guide viewers on the operations 

of the animations being demonstrated. GAIGS, JSAMBA and JAWAA allow static 

text to be displayed as part of the animation, whilst ANIMAL+JHAVE and JCAT 

allow the additional feature of displaying text based on algorithm events (R10) 

occurring during the animation.  
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Various possible requirements for algorithm animation systems were identified and 

considered based on various factors discussed above. From this, a final list of 

requirements is thus presented (Table 3.9). 

 

Requirements for Algorithm Animations Proposed 
Support 

R1:  Allow speed control of algorithm animation  
R2:  Allow rewinding of the animation  

R3:  Accept user input data for the algorithm  
R4:  Provide questions to predict algorithm behaviour  

R5:  Allow stepping control of algorithm animation  
R6:  Support construction of animation by students  
R7:  Support for smooth motion  
R8:  Include capabilities for comparative algorithm analysis  
R9:  Provide multiple views of an algorithm  
R10:  Provide additional instructional material  
R11:  General purpose framework  

Table 3.9: Scope of Requirements 
 Support 

 

3.6.2 Motivation for Excluded Requirements 

 

The support for the rewinding of algorithm animations during playback was 

considered. However, various literature (Brown 1988a; Rößling 2002; Colombo, 

Demetrescu, Finocchi and Laura 2003) in conjunction with the evaluation performed 

in Section 3.5, have suggested that the ability to rewind an animation is a feature 

rarely implemented due to technical issues.  

 

A number of methods for supporting animation rewinding were briefly investigated. 

Leonardo (Crescenzi, Demetrescu, Finocchi and Petreschi 2000) creates a virtual 

execution environment which compiles and executes its own logic visualisation 
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language using a reversible virtual CPU. ZStep95 (Lieberman and Fry 1998) stores an 

incremented history of the program execution and outputs. The implementation of the 

abovementioned methods are, however, beyond the scope of the current study. 

  

The feature for providing questions concerning the algorithm during the animation 

was also considered. However, the focus of the framework is on creating animations 

to aid in algorithm analysis (Section 1.4.2), and thus interactive questions are not 

considered part of the project scope. 

 

3.7 Conclusion 

 

This chapter investigated the requirements of an algorithm animation system, which 

necessarily covers a fairly wide scope. Issues looked at include understanding the user 

types of an algorithm animation system and the basic structure of a system. An 

investigation was then performed on available methods of transferring the actions of 

algorithms to a corresponding visualisation. An evaluation of the methods will be 

conducted in the next chapter, with motivations for the selection of the paradigm used 

for the framework. 

 

A list of desirable features for the proposed algorithm animation system was compiled 

by means of a literature review, supported by an evaluation of extant algorithm 

animation systems. The evaluation resulted in a comparative study which identified 

the features supported by the extant systems. There is currently no extant system that 

supports all of the identified requirements. “Sorting Out Sorting” (Section 3.5.1), 

BALSA-II (Section 3.5.2), GAIGS (Section 3.5.3) and JCAT (Section 3.5.4) support 

comparative analysis and multiple views of algorithms. However, support for 
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interactivity and animation construction flexibility is limited. JSAMBA (Section 

3.5.5), JAWAA (Section 3.5.6) and ANIMAL+JHAVE (Section 3.5.7) utilised a 

scripting-language approach to support a flexible animation design process, with 

ANIMAL+JHAVE in particular providing the closest match to the list of 

requirements proposed. However, these systems do not provide adequate support for 

comparative analysis and alternative animation views. 

 

Based on the evaluation conducted, a final list of requirements to be met by the 

proposed algorithm animation framework design is established. The information 

gathered from this chapter builds up to the design of an algorithm animation 

framework, discussed in Chapter 4. 
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Chapter 4 

Design of Framework 

 
 

4.1 Introduction 

 

Algorithm animation systems are created with the aim of supporting the pedagogic 

goals of an algorithm course. It has been highlighted that the effectiveness of the 

animations are highly dependent on the particular features supported by the system 

(Section 3.4). The interaction among the various user roles and animation system 

components in producing and displaying an algorithm animation was also presented 

(Section 3.2). All of the abovementioned factors must be taken into account when 

implementing an algorithm animation system. Thus, a conceptual structure is required 

to describe the systematic support for the processes of creating and viewing algorithm 

animations, in order to guide the implementation of a system. 

 

This chapter proposes an algorithm animation framework that provides instructors 

with a structured method to produce algorithm animations, whilst taking into account 

the pedagogic requirements previously identified. The chapter first outlines the 

fundamental concepts employed by the framework, and at the same time introduces 

the layered framework structure (Section 4.2). Sections 4.3 through 4.8 provide a 
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detailed discussion of each of the framework components. The discussion will follow 

the logical flow of the framework’s structure. The methods of communication used 

within the framework are explained as part of the component discussions. The 

interface components are discussed in Section 4.9. 

 

4.2 The Proposed Framework – an Overview 

 

A framework designed for interactive algorithm animation must consider a number of 

high-level issues. Each of these issues is briefly introduced. Different paradigms have 

been devised to connect algorithm concepts to visualisations (Section 3.3), with each 

paradigm typically employing certain approaches. The selection of a paradigm and 

supporting technique for the proposed framework, and the motivation thereof, are 

covered in Section 4.2.1. The structure of the framework should support the 

requirement goals and allow for practical implementation. The framework is thus 

systematically divided into component groupings called layers. The layers are 

categorised based on their generated data inputs and outputs, which are used as the 

method of communication within the framework (Section 4.2.2). The creation and 

display of multiple animations mean that synchronising the speed of the display is an 

important issue. Furthermore, the animation is used as a representation of algorithm 

speed. A structure is thus required to control the timing of algorithms (Section 4.2.3). 

 

4.2.1 Selection of Visualisation Paradigm 

 

The imperative and declarative paradigms were previously introduced as methods for 

connecting algorithms to visualisations (Section 3.3). The imperative paradigm 

typically utilised the API or scripting language approach for generating animations 
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(Section 3.3.1), whilst the declarative paradigm utilised the comment embedding or 

code interpreter technique (Section 3.3.2). The following section evaluates the 

techniques, which are grouped according to paradigms, by first categorising them 

based on two factors, namely level of automation and visualisation design flexibility 

(Figure 4.1).  

 

A high level of automation means that the visualisation tool developer pre-designs 

visualisations by specifying preset parameters during implementation of the 

visualisation component. In other words, once the parameters are set, the animation 

system will autonomously decide what the animation will look like. In contrast, a low 

level of automation will require the visualisation designer to provide more input into 

the design of the visualisation. Thus, as the level of automation decreases, the visual 

design decision shifts away from the visualisation component toward the visualisation 

designer.  

 

 
Figure 4.1: Level of automation versus Visualisation design flexibility 
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Automated visualisation is supported by the declarative approach, which visualises 

algorithms by graphically reflecting the state of their data structures. Since a common 

data state monitor and graphical interpretation are used to create visualisations 

(Section 3.3.2), the approach supports automated visualisation of any algorithms 

which utilise a supported data structure (Demetrescu, Finocchi and Stasko 2001). 

However, this also limits the flexibility to customise the visualisation of algorithms. 

The imperative approach visualises the interesting operations of an algorithm (Brown 

and Sedgewick 1998). This approach requires a more involved role from the 

algorithm programmer and visualisation designer, who are responsible for 

determining the events of interest and designing the visualisation.  

 

The proposed framework will utilise concepts from the imperative approach, 

employing a hybrid of the scripting language-based and API-based animation 

generation techniques (Figure 4.1). API libraries offer the ability to efficiently capture 

and store interesting events generated from calls embedded within algorithms (Section 

3.3.1). Script languages allow animation commands to be written manually through a 

text editor, allowing users to rapidly create custom animations without needing 

comprehensive knowledge of programming concepts. Alternatively, algorithms can 

also be annotated with output statements to generate the commands, in an approach 

similar to using API calls. Thus, by using a scripting approach, animations can be 

generated through a structured process (Section 3.3.1), or a manual but more flexible 

process (Section 3.3.3). 

 

Typical API-based methods let the visualisation designer annotate the algorithm with 

function calls which invoke visualisation instructions (Rößling and Freisleben 2000a). 

However, the function calls require parameters which define the details of the 
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visualisation. Thus, as the function calls are annotated into the algorithm, additional 

support code is needed to specify and maintain abstract information, such as visual 

object placement and movement co-ordinates. The proposed framework seeks to 

utilise the API approach to rapidly capture interesting events (Sections 4.5 and 4.6), 

and employ an intermediate process to manage and specify the abstract visual 

information (Section 4.7), which is presented using a simple scripting language 

defined for the framework (Section 4.8.1).  

 

4.2.2 Framework Structure 

 

The framework is separated into various layers, namely the data interface layer, data 

layer, the interpreter layer, the animation layer, and the animation interface layer. 

The independent layer design creates a flexible framework structure by allowing for 

modular changes and extensions to be made to the framework. Figure 4.2 shows an 

overview of the framework design, upon which the structure of the chapter is based. 

The data layer interface allows input to be made to the data layer components (Section 

4.9). The data layer consists of the data generator (Section 4.3), data structure 

definition (Section 4.4), algorithm repository (Section 4.5), and event API (Section 

4.6) components. The interpreter layer consists of the interpreter component (Section 

4.7), and the animation layer consists of the animation component (Section 4.8). The 

animation layer interface allows inputs to be made to the animation component 

(Section 4.9). The layers are defined based on the functions performed by each layer, 

and the inputs and outputs of the components within each layer. 
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Figure 4.2: Framework structure 
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The logical separation of the framework into layers assists in defining the activities of 

each user type within the algorithm animation framework (Section 3.2). In such a 

mapping, the algorithm programmer interacts with the data layer, the visualisation 

designer with the interpreter layer, the visualisation tool developer with the animation 

layer, and the students and instructors with the data and animation layer interfaces. 

Mapping the framework layers and user types according to their functions thus 

simplifies the process of creating animations. The algorithm programmer can focus on 

writing an algorithm and identifying events for animation without considering how 

the algorithm is to be animated, or the code used to generate animations. The 

visualisation designer can then design and implement an animated representation of 

the algorithm events without detailed knowledge of the original algorithm’s 

implementation. 

 

The modular design of the framework also provides for easier implementation. The 

code within each of the components can be implemented independently, which will 

allow for later modifications or upgrades to be made to individual components 

without affecting the rest of the system, providing that the component’s input and 

output remain compatible with its associated components. 

 

Each layer within the framework consists of a single component or multiple 

components working together to produce specific outputs. These outputs are utilised 

as inputs by the next layer, resulting in the generation and display of animated 

algorithms. The information for creating animations (in the form of scripts and 

commands) are passed down the respective layers in the process of creating and 

viewing an algorithm animation. The data layer interface is linked to the data layer. 

The purpose of the data layer interface is to provide the end-users (students and 
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instructors) with a consistent method of specifying algorithm, data structure and 

visualisation information. The data layer provides a list of interesting events, referred 

to as an event script (Section 4.6), which give a high-level description of the relevant 

operations of an algorithm. The interpreter layer takes the event script and converts it 

into graphical representation commands which provide low-level animation 

instructions (Section 4.8.1). The animation layer processes the animation scripts from 

the interpreter layer and produces the visualisation. The actions of the visualisation 

are controlled through input from the animation interface layer. 

 

The interpreter component is an abstract structure that allows extension by designers 

to animate different algorithms. In addition, multiple instances can be created of the 

algorithm, data structure, interpreter, and animation components within each of the 

layers. The layer instances can then combine to form different scenarios. This method 

of structuring the framework allows multiple animations to be created to support 

parallel viewing and analysis of an algorithm using different data (Figure 4.3a), or 

multiple algorithms using the same data (Figure 4.3b). 

 

 

 
Figure 4.3: Structure allows for parallel analysis of algorithms and data 
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The separation of the animation functionality into its own layer also allows for it to be 

utilised independently (Figure 4.4). The animation layer takes input in the form of a 

graphical command script. This input may be based on output from the layered 

processes of the framework. The input may also be generated manually in support of 

two requirements. Firstly, accepting manual inputs allow students to create animation 

without needing to implement an algorithm. Secondly, general purpose animations, or 

animations which are unsuitable for creating through the framework’s processes, may 

be animated directly through the animation layer using the graphical commands 

(Section 4.8.1). 

 
Figure 4.4: Modularisation of the Animation layer 

 

4.2.3 Timing and Parallel Animations 

 

An animated visualisation of an algorithm is seen as an abstract representation of the 

program states and operations of the algorithm. Beyond simply demonstrating the 

inner workings of an algorithm, animated visualisations can also make algorithm 

performance characteristics more apparent. Animations can demonstrate the speed of 

an algorithm by showing the quantity of operations needed to complete a given 

scenario. Furthermore, visual displays of multiple algorithms processing data lists 

with identical values, or the same algorithm processing different lists, provides a 

convincing contrast of performance and efficiency differences. 
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Animated algorithm demonstrations have been employed to demonstrate the time 

required for running certain algorithms (Baecker 1998). Therefore, the students 

viewing the animation will perceive it not as a representation of only the algorithm’s 

operations, but also its speed. Thus it is important for the animation to be a true 

reflection of the algorithm’s performance. However, executing and animating an 

algorithm in real-time will result in an animation which is too fast for demonstration 

purposes. In fact, if the visualisation is coupled to a “live-mode” execution of an 

algorithm, a disproportionably large amount of the total execution time will be used in 

rendering the animation. In addition, there are inherent synchronisation complexities 

associated with coordinating the execution of multiple algorithms for sorting races, 

and at the same time providing a common benchmark of performance across the 

different animations (Brown 1988a).  

 

A method is thus needed to present animations at a practical speed, while at the same 

time still act as a (reasonably) true representation of each underlying algorithms’ 

operational performance. The framework provides for the generation of an animation 

by first executing algorithms to completion, and at the same time recording interesting 

events of each algorithm in an event script (Section 4.6). The event script is then 

converted to animation graphical commands. The framework’s animation component 

thus generates visualisations independent of an algorithm’s real-time execution. The 

post-mortem approach (Diehl, Görg and Kerren 2002) simplifies the generation and 

coordination of animations, allowing the framework to simulate multiple algorithms 

running in parallel. The approach also allows the visualisation designer to create a 

standardised measure of performance across all algorithm animations.  
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The use of scripted events enables a property of time to be associated with each 

algorithm operation. Animated operations can be specified to complete based on a 

standardised time interval, rather than being dependant on the computer’s true speed. 

The time interval is calculated based on the type of operations performed and the data 

structure used (further discussed in Section 4.4.2). Time interval information is 

retained in the graphical commands and reflected through the final animation display. 

Standardising time intervals allows for a fair race when comparing algorithms, since 

each algorithm’s speed is a direct result of the cumulative time taken to perform all its 

operations, which are pre-specified with a time interval. Unpredictable factors such as 

individual computer performances, thread processing priorities, and memory caching 

methods which affect algorithm performance can thus be disregarded. 

 

The remainder of the chapter looks at each of the framework components in turn 

(Figure 4.2), discussing each component’s functionality requirements and design 

concepts. 

 

4.3 Data Generator 

 

Sorting is the process of systematically arranging elements into an ascending or 

descending order. When students study sorting algorithms, they are expected to 

understand the mechanical workings of the algorithm. Furthermore, students must 

also have an understanding of how efficiently (or inefficiently) each sorting algorithm 

would perform, based on the population size and pre-arrangement properties of the list. 

This understanding would allow students to utilise the optimal algorithm for any 

presented scenario, taking into account worst case and average case performances. 
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The proposed framework is well suited to teach the issue of relative efficiency, since 

students can easily generate an animation to visually prove and contrast how 

efficiently algorithms run. Students can experiment by trying an algorithm on a 

number of different lists, or a single list using a number of different algorithms. In 

such experiments, the framework may allow students to create lists by manually 

specifying values for each element. However, in cases where students would want to 

run tests on several sequentially dissimilar lists, each requiring >50 elements, 

manually specifying elements will become time-consuming and impractical. 

Furthermore, it would seem unreasonable to expect students to input good test data 

without some guidance (Grissom, McNally and Naps 2003). Thus, a requirement 

arises in the algorithm animation framework for the capability to let users create 

meaningful test lists in an efficient manner.  

 

A scenario often examined when learning sorting algorithms is on how the algorithm 

will perform on an unbiased random list. Thus, this section will first identify a method 

for effectively creating quasi-random ordered lists (Section 4.3.1). In order to generate 

a data list by specifying the list’s permutation attribute, a common benchmark for 

measuring data list order must first be established. Section 4.3.2 investigates methods 

for measuring data list order, based on which a definition is established for measuring 

sortedness within the framework (Section 4.3.3). The actual shuffling of lists to create 

the specified permutations is fairly simple, and is thus not discussed further. 
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4.3.1 Random Permutation of Lists9 

 

A method of observing sorting algorithm behaviour and performance is to experiment 

using order-unbiased lists. The use of lists arranged in a random permutation will 

ensure that there is no intentional bias towards the mechanisms of any particular 

sorting algorithm. One method of generating a list of elements is to obtain values from 

a seeded random number generator. However, such a method does not guarantee lists 

with a value distribution suitable for visualisation, an example of a bad distribution 

being [1, 2, 2, 2, 500, 99999…]. The framework’s list generator approaches the 

problem by generating an evenly spaced, ascending ordered list, for example [1, 2, 3, 

4, 5…]. The list is then systematically shuffled to create a randomised list. This 

section outlines the theory for creating quasi-random lists. 

 

Given a list of n unique elements, the number of possible permutations for the list can 

be worked out (Definition 4.1): 

 

Definition 4.1: Number of possible permutations for an n-sized list 

 

A method of creating a new random list sample is to have an original list containing 

values (the ordering of the values is unimportant) and a new list containing no values. 

                                                 
9 Adapted from (Stephens 1998; Pallier 2002) 
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The random list is created by randomly selecting a previously unselected element 

from the original list, and appending a copy of the element to the new list. The 

process is then repeated until all element options from the existing list are exhausted. 

Using this method, the probability of acquiring any particular permutation is thus 

known (Definition 4.2). 

 

Definition 4.2: Probability of creating any particular permutation 

 

The method thus ensures that the random sample list is an equiprobable selection from 

all possible permutations. The pseudo-code for creating a random list sample based on 

the given method is presented in Figure 4.5. 

 

Figure 4.5: Pseudo-code for randomising a list 

 

The code presents an in-place method of randomising the list, where all values before 

position i form part of the new randomised list, and values after position i are 

available for selection. 
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For i = FirstIndex to (LastIndex – 1) do 

    j = i + (LastIndex - i) × RandomFloat(Range 0 to 1) 
    j = Round( j ) 

    Swop(List[i], List[j])
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4.3.2 Approaches for Measuring Sortedness 

 

Any list L would have three properties, namely population size (n), element values, 

and a defined arrangement sequence. Arrangement sequences (or permutations) and 

randomness of lists play a critical role in the efficiency of sorting algorithms (Chen 

and Carlsson 1991; Hwang, Yang and Yeh 2000). This section identifies and 

evaluates two methods for quantifying a list’s level of sortedness. 

 

Step-Down-Runs (Measure of Disorder) 

 

Step-Down-Runs measure disorder by the number of adjacent element pairs which are 

in inverse order in a list. M(X) is the measure of disorder of sequence X, thus a higher 

value indicates a less sorted list (Knuth 1973). The maximum possible value of M(X) 

is n-1 where n is the list length and 0 represents the minimum possible value. The 

approach for working out M(X) is illustrated in Definition 4.3. Examples: M(1,2,3,4) 

= 0; M(4,1,2,3) = 1; M(2,1,4,3) = 2. 

 

Definition 4.3: Step-Down-Runs 

 

Measure of Presortedness 

 

Measure of Presortedness (or mop) is calculated by taking all possible combination 

pairs in a list, and counting the number of combinations which are correctly ordered 
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(Definition 4.4). Inv(X) is the measure of presortedness of sequence X, thus a higher 

value indicates a more sorted list (Brodal, Fagerberg and Moruz 2005). Examples: 

Inv(1,2,3,4) = 6; Inv(4,1,2,3) = 3; Inv(2,1,4,3) = 4. 

 

 
Definition 4.4: Measure of Presortedness 

 

4.3.3 Defining Array Sortedness 

 

Two approaches have been identified to define the sortedness of an input list for the 

framework. It can thus be seen that the concept of sortedness is not a universal one. 

For example, the list [4, 1, 2, 3], which is given as an example in Section 4.3.2, is a 

list with one item out of order. Whilst the results from the Step-Down-Run method are 

only minimally impacted, the mop result is significantly changed. However, an 

investigation into the relationship among the sorting algorithms and sortedness 

measurements is beyond the scope of this discussion.  

 

The framework will measure sortedness by adapting the mop method, since it 

accounts for the overall effect of each item relative to all other items in the list. The 

framework’s measurement adapts the mop value to a range between -100 and 100 

percentage sorted (where -100 is reverse sorted, 100 is perfectly sorted, and 0 

indicates an unknown random order), which will be more intuitive for users than a 

standard mop value. The number of all possible combination pairs is thus needed 

(Definition 4.5).  
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Definition 4.5: Possible combination pairs 

 

The new measurement takes the mop value (the total item pair combinations that are 

out of order) as a fraction of the total possible pair combinations, and then maps the 

value to a range of between -100 to 100. The calculation is performed as 

( 2)50100(
2

×−×
C

mop

n

), producing a percentage value which will be used as a 

measure of sortedness.  

 

4.4 Data Structure 

 

Algorithms spend a considerable portion of execution time manipulating data 

structures, using them as a means to compute a solution, and in certain cases also 

presenting the data structure as part of the solution. In the framework, the data 

structure component is used to store data which drive an algorithm’s operations with 

the aim of producing interesting events (Section 4.4.1), to use the data structure’s data 

values to construct visual representations (Section 4.4.2), and to provide a common 

reference for the cost of time associated with each event (Section 4.4.3).  

 

The data structure component plays an important part in the framework for obvious 

reasons. Algorithms in general, whether implemented specifically to be animated or 
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not, make use of data as an input for processing, for performing intermediate 

operations, and for presenting the resultant output. Algorithms must necessarily 

operate on a data structure in order to accomplish its algorithmic objectives, such as a 

sort algorithm sorting operating on an integer array to organise the elements into an 

ordered state. Thus, a data structure must support the basic read/write operations 

utilised by algorithms, allowing them to extract data for evaluation, and copy into or 

overwrite existing data.  

 

4.4.1 Accessing Data Structure from Interesting Events 

 

The data structure in the framework must complement algorithms in the process of 

producing interesting events, which describe the operations performed by the 

algorithms. Most of the interesting events that occur during algorithm operations 

involve some usage of the data structure. As a result, information relating to the data 

structure is often needed in the process of converting the events into an informative 

visualisation. 

 

The data structure used by the algorithm often forms a part of the input parameter for 

the capturing of interesting events. For example, when data elements are compared or 

swopped, or when a new data structure is declared, the associated interesting event 

must record the data list, and the positional index of the data accessed within the list. 

This information in turn allows the values of the data involved in the event to be 

queried when required (Figure 4.6). The event will thus contain adequate information 

for visualisation purposes. Furthermore, the information contains enough detail to 

support the display of context-sensitive text to narrate the operations of an algorithm 
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animation. The feature was discussed in Section 3.4.2, and forms a part of the 

requirements supported by the framework. 

 
Figure 4.6: Information captured by the algorithm as part of an interesting event 

 

4.4.2 Visual Mapping of Data 

 

Experience and literature (Section 2.3.1) have also shown that numbers are easier to 

map to a visual representation due to their scalar nature (Figure 4.7), as opposed to 

other datatypes, such as character, string and Boolean values, which have no intuitive 

visual representation that offer an easily perceptible contrast of relative size 

differences. The framework will exclusively support the use of integers as the 

primitive datatype used in its data structure for algorithms. Also, for practical reasons, 

the use of only integers will allow for a simpler implementation process. Other 

datatypes may be incorporated as virtual data, which will affect the time-cost 

associated with various operations. However, the data will contain no values, and will 

not be used by the algorithm or represented in animations. This concept is discussed 

in the following section. 
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Figure 4.7: Integers are easier to represent in an intuitive visual form10 

 

4.4.3 Operations cost 

 

When algorithms operate on a data structure, there is an associated time interval 

required for the computer to work with its physical memory. The time taken to 

perform the operation is dependant on two factors. The first factor is the memory 

“weight” of the datatype, that is, the memory space required to store a single instance 

of the datatype. For example, a Character datatype of value `A` will take considerably 

less space in memory than a String datatype of value `Algorithm Animations`. 

Operations involving a Character type will thus use less time than one involving a 

String type. The second factor is the nature of the operation performed on the data 

structure, whether data is being compared or exchanged. Given an identical instance 

of a datatype, a compare operation is faster than a exchange operation. 

 

                                                 
10 The visual styles are further discussed in Section 5.5. 
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An animation should be capable of reflecting the time-cost characteristics of the 

algorithm’s operation on a data structure. However, it is not practical to try and 

capture the time-cost for each algorithm operation, since inconsistencies may result 

due to performance differences among different computers. Inaccuracy may result due 

to lag from additional operations performed by the driver algorithm during execution, 

such as the operations to capture interesting events.  

 

Thus, a method is devised to provide a standardised way for simulating time-cost for 

algorithm operations within the framework. The framework’s data structure is 

designed to store a virtual memory size of the data, which provides a theoretical size 

of the datatype used. Each operation which works with the data structure can thus be 

associated with a virtual time cost based on the data’s memory size. Each data 

structure consists of two memory size information: the total memory size is the sum of 

each element’s memory in a complex datatype11, and the compare memory size is the 

size of the element field within the datatype which is used for relative comparisons 

among data. Total memory size and operation memory size will be identical if the 

data structure uses a single primitive datatype.  

 

When working with complex datatypes, certain operations of an algorithm might 

work on a subset of data element fields, such as the use of a single primitive within a 

datatype containing multiple primitives. An example is illustrated in Figure 4.8, where 

each primitive type is given a theoretical memory size to contrast the memory used 

for two different operations. In the example, an array of datatype Student which stores 

the name, student number and grade result of students is declared. When the array is 

to be sorted based on student number, the algorithm reads the student number field to 
                                                 
11 Examples of complex datatypes include Classes in C++ and Records in Delphi. 
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compare two Students, but when two Students need to be exchanged, all data fields 

must be accessed and modified. Under such circumstances, exchange operations, 

which work with relatively larger amounts of memory than compare operations, will 

have a relatively higher time cost.  

 

 
Figure 4.8: Effect of data size on operations 

 

Figure 4.9 summarises the role of the data structure discussed. The data array allows 

algorithms to perform their operations by reading from and writing to its values. The 

event API can also directly extract information from the data array. Algorithm events 

which operate on the data array are assigned a time-cost based on the virtual time 

information stored in the data structure. 

 
Figure 4.9: Functions of the Data Structure 
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4.5 Algorithm 

 

The algorithm component is used to store a collection of algorithms to drive 

animations. Algorithm animations are derived by first observing the activities of an 

algorithm during its execution, and then visualising the activities. The algorithm 

which is observed provides information for the content of the animation, and is 

referred to as the driver algorithm. The purpose of the driver algorithm is to generate 

a list of execution traces called interesting events, a concept which is a fundamental 

part of the imperative paradigm (Section 3.3.1).  

 

4.5.1 Driver Algorithm 

 

In the framework, interesting events are generated by running algorithm procedures in 

conjunction with the data structure types specified within the framework. The driver 

algorithm is annotated with event calls to an Event API, which captures the activities 

of interest within the algorithm. The event calls consist of program code which are 

inserted into, and form part of the executable statements of the algorithm, though the 

calls do not change the semantical structure of the algorithm. The concepts are 

illustrated in Figure 4.10 (algorithm annotator is discussed in Section 4.5.2). 
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Figure 4.10: Annotation of a driver algorithm 

 

The creation of a driver algorithm involves coding the actual algorithm, and then 

annotating the algorithm with event calls. First, an algorithm is written in the 

algorithm repository component. During implementation of the algorithm, declaration 

of data that will be used in the visualisation is restricted to data structures predefined 

in the framework. This ensures that visualisations can later access the data for display 

purposes. The implemented algorithm will initially be functionally identical to 

algorithms typically written in laboratory practical sessions, and can be run and tested 

through input created from the input generator. Validating the semantical correctness 

of the algorithms will ensure that the list of interesting events captured is an accurate 

account of the algorithm activities, in turn ensuring that the associated visualisation 

will be accurate. 

 

Once the algorithm is implemented and tested, the phenomena of interest for the 

algorithm are identified. Appropriate event calls to the Event API are then inserted 

into the algorithm, which will result in the capture of an interesting event when 

relevant sections are executed. The event call specifies the type of interesting event 
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that has occurred, and provides input parameters to the call, which contain 

information relevant to the event, such as data values or output messages (code 

examples are provided in Section 5.3.1). 

 

4.5.2 Algorithm Annotator 

 

At this point, the question arises: “which user role is responsible for annotating an 

algorithm?” In the discussion of an algorithm animation model, Brown (1988a) 

defines a user role called algorithmatician, whose function it is to implement the 

algorithm, and annotate it with appropriate event calls. This approach is logical, since 

the person implementing the algorithm is expected to possess reasonable 

understanding of its concepts and operations, and thus most able to identify the events 

which may be interesting for visualisation. However, the visualisation designer, who 

is responsible for crafting the visualisation from the algorithm’s event outputs, is also 

expected to have a good understanding of the original algorithm’s operations in order 

to produce an animation suitable for the given scenario.  

 

Based on the argument, and within the context of the proposed framework, the role of 

algorithm annotator can be taken up by either the algorithm programmer or the 

visualisation designer. Although the algorithm annotator is not directly involved in all 

of the processes for creating an animation from scratch, the algorithm concepts and 

final animation must still be understood in order to bridge the two mediums. 

 

Events of interest for an animation vary from one algorithm to another, and it is the 

task of algorithm annotators to identify and evaluate the relevance of each type of 

event. With that said, the formula of identifying interesting events is not hard-set. 
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Thus, different algorithm annotators might identify different events of interest when 

provided with an identical algorithm. While there are certain events that are essential 

for accurately portraying an algorithm, there are events which can be considered 

optional.  

 

For example, in a Bubblesort algorithm, events involving swopping items and 

comparing items must be captured, since these are the events that ultimately enable 

each item in a list to be placed in the correct order. In the same example, the capturing 

of concept events, such as noting that an additional item at the end of the array is 

sorted, may be considered optional (Figure 4.11). Thus, an algorithm can contain 

different annotations based on the preferences and perspectives of the annotator, 

depending on what optional events are seen as helpful in demonstrating the algorithm 

in the given circumstances (Section 2.5). 

 

 
Figure 4.11: Different algorithm annotators may see an algorithm differently 
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4.6 Event API 

 

An event script is a list of interesting events of a single execution of an algorithm on a 

given data structure, representing a recording of the algorithm operations which are 

pertinent to the algorithm’s visualisation presentation (Section 3.3). An interesting 

event consists of a name to identify its event type, and additional parameters which 

are applicable to the event type. Event scripts are designed to offer a generic method 

of capturing the workings of an algorithm, whereby interesting events are captured 

without the need to consider how they are to be represented visually. Thus, algorithm 

annotators can annotate an algorithm with the explicit purpose of producing an 

animation, but need no detailed knowledge of the implementation of events into 

animations.  

 

The Event API contains a pre-defined collection of interesting events. Additional 

event definitions can be added to the API if required, such as when new events are 

identified for existing algorithms, or if new types of algorithms are added to the 

framework. The events utilised will differ depending on the algorithm, but algorithms 

of similar functions or domain can make use of certain common event types. For 

example, a swop event can be used across all sorting algorithms, and may be taken to 

imply the same operation (although the event’s visual representation may differ). 

Thus, the Event API offers a method to standardise on event types which are utilised 

among groups of algorithms. 

 

The purpose of the event API is to respond to calls from an annotated algorithm’s 

event markers, create instances of the interesting event with all relevant parameter 
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inputs, and append the interesting events to an event script (Figure 4.12). The event 

script then serves as the output of the framework’s data layer. 

 

 
Figure 4.12: Function of the Event API 
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data list and index that is used for the operation. The operations consist of two types: 

operations which change the state of the data structure, such as write operations, and 

operations which do not, such as read operations. An operation event is the only event 

class that is associated with a time-cost. Within the framework, algorithm operations 

are given a time-cost as a standardise method of portraying algorithm speed. The 

speed is derived according to the type of operation performed, and the virtual memory 

size of the data structure. 

 

Conceptual events store information on events which represent abstract concepts that 

do not directly affect the algorithm’s functional goals. In other words, the driver 

algorithm did not explicitly perform a related operation which is logically linked to 

the event. The purpose of conceptual events is to provide additional information 

which will aid in the visual demonstration and explanation of the algorithm. For 

example, in a Bubblesort algorithm, by marking sorted items with a different colour, 

the students can understand why the algorithm sorts faster after each iteration (Figure 

4.11), since it is visible evidence that the algorithm no longer re-examines sorted 

items.  

 

Message events are used to send textual information through to the final algorithm 

animation’s peripheral views. A message event stores a textual message, which can be 

a combination of static text and information based on the context of an algorithm’s 

execution. The event type is used as a method for the algorithm programmer to 

convey algorithm related information to the animation viewer, acting as a form of 

real-time narration of the algorithm.  
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4.6.2 Abstraction of Algorithm Operations 

 

There are a number of common procedures which are utilised within algorithms. In 

certain cases, a single interesting event is used to represent a group of code statements 

within an algorithm. Algorithm animations aim to provide a high-level representation 

of algorithms (Section 2.3), thus certain operations may be simplified (or even 

omitted) in order to place focus on algorithm concepts rather than low-level details. 

For example, the event of swopping two items to place them in relative sequence is 

common among the sorting algorithms. In an exchange of two items, a third item is 

typically employed to temporarily store one of the item’s values, whilst the items are 

copied over to their respective positions. As a result, three operations are used to 

shuffle the items. When generating an event script, the operations are typically 

summarised into a higher level concept of a swop event (Figure 4.13). This method is 

employed in algorithm animations to demonstrate algorithm concepts whilst reducing 

unnecessary details. However, as illustrated in Figure 4.13, a detailed representation is 

nevertheless possible. 
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Figure 4.13: An algorithm may be presented in different levels of detail 

 

4.7 Interpreter 

 

The function of the interpreter is the conversion of an algorithm’s events into its 

visual presentation. The implementation of interpreters is performed by the 

visualisation designer. In order to understand the purpose of the interpreter layer, one 

must look at the layer’s input and output. The input consists of an event script from 

the data layer, which provides a detailed description of the algorithm’s operation and 

data structure related events, without any specifications regarding the events’ visual 

presentation. The output is a list of low-level graphical commands sent to the 

animation layer, which details the exact actions of the visualisation, including visual 

appearance, colour, visual object co-ordinates and action timing. However, no 

information is retained of the source algorithm’s purpose. A process is thus needed to 

transfer one medium of communication into another. 

 

var 
  list : array[1..2] of Integer; 
  temp : Integer; 
begin 
  .... 
  .... 
  temp := list[1]; 
  list[1] := list[2]; 
  list[2] := temp; 
end. 

Detailed representation 

Abstract representation 

temp 
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The interpreter is used as an intermediate component to convert event scripts into 

graphical commands. This allows for an easier process of designing algorithms and 

animations. The driver algorithm only needs to be annotated with event callers to 

register interesting events, which are then collected into an event script and processed 

by the interpreter after the algorithm has completed execution. This approach 

eliminates the need to introduce into the driver algorithm additional code and data 

declarations which control the visualisation display properties. As a result, the 

algorithm programmer and the visualisation designer need not be integrated as a 

single role, since the coding responsible for the designing of the visualisation is not 

merged as part of the driver algorithm. Furthermore, when creating new methods of 

representing an existing algorithm, a new interpreter can be designed to interpret the 

same event script from the algorithm, rather than rewriting the driver algorithm in 

order to embed new visualisation instructions. 

 

4.7.1 Component Structure 

 

The basic premise of an interpreter’s input interface is to accept interesting events 

which are relevant to a particular algorithm, and understand how the events are to be 

converted. Each event is taken and forwarded to an event interpretation procedure 

which handles the event. Within the procedure, event details are extracted and 

graphical commands are generated to represent the event. The details accessed include 

the event type, text messages, event time-cost, and data structure information (Section 

4.4), which determines the parameters for the graphical commands. The visualisation 

designer is responsible for implementing the interpreter’s procedures based on the 

type of events produced by the driver algorithm, and the designer’s envisaged 

outcome of the visualisation. Each interpreter is typically customised to process the 
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events from one algorithm (some flexibility is nevertheless possible, see discussion in 

Section 4.7.2). Thus, an interpreter which handles a Quicksort algorithm will only 

expect events related to the Quicksort, and will not need to know how to handle 

events related to a Mergesort. In order for the interpreter to process events, a simple 

event router is used to identify and forward each event to the appropriate interpreter 

procedure. 

 

A function of the interpreter is to control the properties of the visualisation and its 

graphical objects, handling the role in place of the driver algorithm. The interpreter 

component will be defined with a section to hold global properties of the defined 

visualisation, such as the type of graphical objects to use, and the colours to use for 

the objects. These properties are set by the visualisation designer. Furthermore, a 

controller section is required to manage the coordinates of all graphical objects 

created by the interpreter, with each object tracked by a unique ID based on data 

structure information. Any changes in object coordinates are kept up-to-date within 

the controller. This allows the event interpretation procedures to access object 

coordinates to generate graphical commands, and update the coordinates based on the 

events processed. The discussion in this section is illustrated in Figure 4.14. 
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Figure 4.14: Interpreter structure and operations 

 

4.7.2 Design of Interpreters for Related Algorithms 

 

Algorithms which perform a similar function commonly work with a limited set of 

operations. In the case study of five different sorting algorithms, the common 

operations they employed can easily be summarised: namely compare and swop of 

two data items. This characteristic provides for a (circumstantially) convenient 

approach for reducing the implementation time of interpreters. Since functional 

equivalent algorithms typically perform identical operations, the visual 

representations are also similar. Thus, an interpreter designed to work with the event 

script of a particular algorithm can, in certain cases, be employed to interpret event 

scripts of other functionally similar algorithms. 
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4.8 Animation 

 

The animation layer accepts graphical commands in the form of a defined scripting 

language, and generates an animated visualisation based on the commands. The 

function of the scripting language is to provide for a defined method of specifying 

graphical output to the end-user’s display. 

 

There are two sources of graphical commands, the animation component may either 

acquire input from the data layer (through the interpreter layer), or by taking the input 

directly from a text-based file. The animation layer is thus designed to be able to work 

independently of the data layer and the interpreter (discussed in Section 4.2.2). 

 

4.8.1 Scripting Language 

 

The scripting language of the proposed framework is designed to be simplistic and 

minimalist, and draws from the very basic common features of existing animation 

scripting languages. The proposed scripting language takes the basic feature set from 

extant languages, and proposing small changes to include support for the requirements 

of the framework. Various advance features of the extant languages12, such as the 

layer ordering, domain-specific or advanced graphical objects, and graphic object 

grouping, are not incorporated into the current proposed language. Expanding the 

animator with new commands at a later stage is, however, possible. The main goal of 

the proposed scripting language is to include support for giving a time-cost to certain 

actions (see ActionTimed definition), thus allowing the “time-cost” for executing 

certain operations to be produced visually. A single time unit within the animation is 
                                                 
12 See (Stasko 1997; Rößling 2000; Rodger 2002) 
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defined as 50 milliseconds. The proposed language is defined in this section and 

briefly discussed. 

 

The begin..end block (Definition 4.6) allows multiple operations to be executed 

simultaneously. All commands within the block are run as a group. When individual 

commands within a command block finish at different times, the block command is 

considered done only when all individual commands have completed their operations. 

 

 
Definition 4.6: Begin..end command 

 

There are three main groups of commands within the scripting language (Definition 

4.7), namely the graphicObject, action and actionTimed commands. Each of the 

commands are defined in the following discussions. 

 

 
Definition 4.7: General command definitions 

 

commandBlock :  

begin command* end 

command : 

graphicObject | action | actionTimed 

 

graphicObject : 

rectangleBuild 

 

action : 

actionChange | textMessage 

 

actionTimed : 

actionChangeTimed | moveRelative | delay 
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The graphicObject command is responsible for creating visual objects to represent 

data values. The command structure for creating and specifying the properties of a 

rectangle is provided in Definition 4.8.  

 

 
Definition 4.8: Rectangle visual object command 

 

Graphic objects contain properties which are either numbers (for coordinates or 

dimensions) or strings (for colours), specified in Definition 4.9. 

 

 

Definition 4.9: Visual properties command 

 

Two actions are used to modify the properties of graphic objects. The change action 

(Definition 4.10) effects a change without associating a time-cost. The result of the 

action thus occurs immediately on-screen. The changeTimed action (Definition 4.11) 

takes an additional parameter in standard time units. The action thus occurs only after 

the given time has elapsed. 

 

 
Definition 4.10: Change properties command 

 

ObjPropertyNumber : 

x | y | width | height 

ObjPropertyColour : 

bordercolour | fillcolour 

actionChange :  

change ObjectID [ObjPropertyNum Number] | [ObjPropertyColour Colour] 

rectangleBuild: 

rectangle ObjectID x y width height fillcolour bordercolour 
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Definition 4.11: Timed change properties command 

 

The progressmessage command (Definition 4.12) is unique in that it does not directly 

affect the display of the animation. The message will be presented in a separate view 

attached to the animation, displaying messages during the running of the animation. 

 

 
Definition 4.12: Message command 

 

The moveRelative (Definition 4.13) is a timed command which is specifically used to 

change the coordinate of a graphic object. The command creates a linear interpolated 

movement of the graphical object, with the movement finishing based on the time 

parameter supplied. Smooth motion can thus be supported by the animation 

component. The command makes x and y axis movements simultaneously. 

 

 
Definition 4.13: Animated movement command 

 

 

 

 

 

moveRelative : 

moveRelative TimeUnit ObjectID move-x move-y 

actionChangeTimed :  

changetimed TimeUnit ObjectID [ObjPropertyNum Number] |  
[ObjPropertyCol Colour] 

textMessage : 

progressmessage Message 
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The delay command (Definition 4.14) simply makes the animation time lapse for a set 

time without updating the properties of the graphic object on the visual display. 

 

 
Definition 4.14: Time delay command 

 

4.8.2 Animation Engine 

 

The purpose of the animation engine is to interpret a set of graphical commands into 

an animated display. Each view of an algorithm is handled by a single instance of the 

animation engine. The engine is supported by a command parser, command 

interpreter, action repository, graphic object repository, and display renderer (Figure 

4.15). The parser takes as input the graphical commands, from where the commands 

are tokenised and given to the command interpreter. The action library stores a 

repository of action classes. The graphic object library, similarly, stores a repository 

of graphic objects. The command interpreter examines the commands and parameters, 

and based on these, requests an instance of the action or graphic object, in which the 

command parameters are set. The action or command is then passed into the 

processing queue of the animation engine, which will render the scene to a view. 

 

delay :  

delay TimeUnit 
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Figure 4.15: The components supporting the animation engine 

 

The animation engine works based on an internal processing queue and graphic object 

controller. The processing queue stores all actions awaiting execution, each action is 

executed once during one clock tick. Actions which have already being executed (for 

un-timed actions) or have expired (for timed actions) are automatically removed from 

the processing queue. The scripting language is designed to allow a time-to-live for 

timed actions (actionTimed commands).  

 

4.9 Interface 

 

The components of the data layer and animation layer are connected to associated user 

interfaces, allowing specific inputs from and outputs to end-users (students and 

instructors). The purpose of the interfaces is to provide the end-users with a consistent 

method of interacting with the animations and its related options, independent of the 

type of algorithms being observed, or the style in which the algorithms are visualised. 

The data layer interface connects to the data layer, and the animation layer interface 
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connects to the animation layer. The implementation of the interfaces is discussed in 

Section 5.4. 

 

Figure 4.16 summarises the inputs provided by the data layer interface to each of the 

components. The data layer interface enables end-users to provide parameters to the 

data generator component, provide time-cost information to the data structure 

component, select driver algorithms from an algorithm class repository (Section 5.2.3), 

and specify algorithm animation views by selecting an interpreter from a class 

repository.  

 

 
Figure 4.16: Data layer interface functions 

 

Figure 4.17 shows the inputs provided by the animation layer interface to each of the 

animation components. The animation interface provides a unified control to direct 

the display of animation views. The interface can handle single animation view or 

multiple animation views running simultaneously. When multiple views are presented, 

all views will accept the same input from the interface. The interface sets the speed of 

the animation, and also contains options to play, pause and step through an animation.  
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Figure 4.17: Animation layer interface functions 

 

4.10 Conclusion 

 

The algorithm animation framework offers a theoretical foundation for the 

construction of an algorithm animation system. The framework was created based 

specifically to support the functional and pedagogic requirements outlined in Chapter 

3.  

 

Chapter 4 discussed the structure of the proposed framework, which organised the 

framework components into functional layers. The framework structure was designed 

for extensibility and ease of implementation. The core of the framework consists of 

the data layer, interpreter layer, and animation layer. The processes within each layer 

are combined to allow generation of animations from algorithms. The data layer 

manages the execution of algorithms in order to capture interesting events. The events 

are converted into graphical commands through the interpreter layer. The graphical 

commands are then processed by the animation layer to produce an animated 

visualisation.  

 

Each framework layer is made up of a component or group of components, each of 

which were discussed in detail. Within the discussions, the expected inputs and 
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outputs of each of the components were presented to illustrate their connections and 

interdependencies. Focus was placed on the design of the components and 

motivations for the designs. The next chapter discusses the implementation of a 

prototype based on the proposed framework, thus providing a practical perspective on 

the theories and concepts of the framework. 
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Chapter 5 

Algorithm Animation Prototype 

 
 

5.1 Introduction 

 

The proposed algorithm animation framework, presented in Chapter 4, is designed to 

support a number of requirements which were identified and discussed in Chapter 3. 

The framework design covered the structure of the proposed framework. Discussions 

and motivations were presented on general design considerations and each of the 

framework’s components. The final proposed framework is presented as a design 

concept to guide the implementation of an algorithm animation system.  

 

This chapter, in turn, covers the implementation of a functional prototype system to 

demonstrate the effectiveness of the proposed framework (Section 5.2 and 5.3). The 

critical components will be examined in detail, whilst simple or auxiliary components 

will only be mentioned briefly. The prototype implementation will serve as an 

evaluation of the framework design. In addition, practical experience can be acquired 

by using the prototype to create sorting algorithm animations, which form the case 

study of the research (Section 5.5). A brief overview of the user interface to support 

end-user creation and viewing of algorithm animations is also provided (Section 5.4). 
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Issues observed during the implementation of the prototype and case study will 

highlight various aspects of the framework which may or may not be practical 

(Section 5.6).  

 

5.2 Implementation Techniques 

 

This section discusses general decisions which were taken during the system design 

phase to ensure effective and successful implementation of the prototype. In the initial 

phases of the project, literature reviews and studies into extant systems provided a 

theoretical foundation of concepts within an algorithm animation environment. An 

understanding of the practical application aspects of the theoretical concepts was an 

important factor in the design of the framework and the implementation of the 

prototype system. Section 5.2.1 discusses the methodology employed to address this 

requirement.  

 

A number of component classes of the prototype system must allow for declaration of 

multiple instances of class objects, forming an important requirement in support of 

generating multiple algorithm animation scenario and views (illustrated in Section 

4.2.2). Section 5.2.2 discusses how the object-orientated model is used to support the 

process of generating multiple scenarios. In order to support effective construction 

and output of class instances on demand, specialised repositories classes are 

constructed which maintain a list of clonable class objects. The classes are maintained 

by using a hash index system (Section 5.2.3).  
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5.2.1 Prototype Methodology 

 

In order to effectively complement theoretical findings of algorithm animation 

systems with practical knowledge, the iterative prototyping methodology (Goldman 

and Narayanaswamy 1992; Kendall and Kendall 1996) was adopted for the 

implementation of the system. The methodology regards implementation of 

prototypes as a means to gain understanding of the system concepts and 

implementation requirements, and also to note trade-offs of different implementation 

designs. The iterative implementation process also meant that with each cycle, 

workable components can be reused whilst the impractical components may be 

redesigned or incrementally modified to evolve the system into its final form. 

 

A number of simple algorithm animation demonstration prototypes were continuously 

developed based on observations and results of early phase studies, serving as 

test-of-concept systems. Each of the demo prototypes was designed as a stand-alone 

implementation, allowing course instructors to display algorithm animations which 

were, notably, generated and rendered in real-time (Figure 5.1). Little flexibility is 

offered to the users. Functionalities such as algorithm and data input choices, 

animation display speed, and display content settings, were not included.  
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Figure 5.1: An early (feature free) prototype 

 

5.2.2 Use of Object-Orientation 

 

An important concept of the system is the support for parallel analysis of multiple 

scenarios, which requires the system to be able to support flexible associations 

between different combinations of data structure, algorithms and visual interpretations 

(Section 4.2.2 and Figure 4.3). In support of such requisites, an object-oriented 

approach is used to create the components, enabling multiple and different instances 

of each component to be generated, thus simplifying the process of generating unique 

cases which the end-users (students and instructors) would like to examine or 

demonstrate.  

 

In addition to allowing for multiple instances of components, the object-orientated 

approach also allows for polymorphism (Cantù 2001). Certain class groups, such as 

algorithms and interpreters, are designed to cater for different scenarios, but share a 

number of common class interfaces or routines. This concept is highlighted in the 

component implementation discussions in Section 5.3, where inheritable and interface 

routines are marked with virtual or virtual/abstract directives, respectively. 



CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE 

 124

These routines can then be inherited and extended while still maintaining an interface 

common to the parent class type. Flexibility can thus be gained by implementing with 

polymorphic design. 

 

5.2.3 Class Repository 

 

There are certain parent classes from which multiple instances are required, namely 

algorithm, interpreter, and graphic command actions and objects. These classes are 

provided with an abstract clone routine during implementation. During system 

initialisation, each parent class and its child classes are initialised and loaded into a 

predefined class repository. From the repository, an instance of any of its stored child 

classes may be requested by using a unique identification string.  

 

An extract of a generic repository’s interface is shown in Figure 5.2. The repository is 

constructed with a hash table, FHashFactory, which stores a key/class-object pair. 

The pairs are registered through the RegisterPair routine. Identification strings are 

used to search for and identify class objects. A generic instance of the class can then 

be constructed and sent as an output through the GetClass routine.  

 

 

Figure 5.2: Extract example of a repository class interface 

 

  TFactory = class(TObject) 

  private 

    FHashFactory : THashedStringList; 

  public 

    ........ 

    procedure RegisterPair(KeyName : String; AAlgorithm : TSysObject); 

    function GetClass(KeyName: String) : TSysObject; 

  end; 
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5.3 Discussions of Component Implementations 

 

The implementation of the final prototype system includes the data generator, data 

structure definition, algorithm repository, event API, interpreter, animation and 

interface components (Figure 4.2). The focus of this section is on specific 

implementation techniques which support the goals of a component. Components 

which require straightforward implementations will offer little value to the discussion, 

and are thus not included. These include specifically the data generator and data 

structure definition components. Consequently, this section covers the algorithm and 

event API (Section 5.3.1), interpreter (Section 5.3.2), and animation (Section 5.3.3) 

components. The interface implementation is covered in Section 5.4. The 

framework’s algorithm and event API components are implemented as a single unit in 

the prototype, with the motivation for this approach being addressed in Section 5.3.1. 

 

The discussions are accompanied by relevant code extracts to illustrate examples from 

the implementation. The code extracts are presented using Pascal, created through 

Borland© DelphiTM.  

 

5.3.1 Algorithm and Event API 

 

The algorithm discussion in Section 4.5 has highlighted the commonalities of 

algorithms which are designed for the same function, or are within the same domain. 

An algorithm parent class is used as a base class which different algorithm 

implementations may inherit from. Routines which are common to all algorithms are 

included as part of the base class and its inherited child classes. The most basic 
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routines consist of interfaces to execute the algorithm, and structures to store the event 

scripts generated from the execution.  

 

In the system, the event API capturing routines are integrated as part of the parent 

class of the algorithm component, rather than being implemented as a separate unit. 

Using such a method, the event API routines can contain generic code to capture 

events. If modifications need to be made, the API can be inherited and rewritten as 

needed by child classes. Alternatively, an implementation of the event API separate 

from the algorithm implementation would mean that if particular algorithms need to 

capture events in a different way, a new event capture routine must be added to the 

event API class.  

 

When different domains of algorithms are created, a new class catering for the domain 

is implemented and inherited from the base class. The new class will override parent 

routines or create additional interfaces based on new functionality requirements. New 

algorithm implementations within the domain may then inherit from the new class, 

gaining the routines and functionalities of the particular algorithm domain, instead of 

having to further modify and append the generic algorithm base class. 

 

As part of the framework design, the interesting event approach is used to identify and 

capture events from within the driver algorithm (Sections 4.2.1, 4.5 and 4.6). An 

extract of the parent algorithm class is presented in Figure 5.3. The event API forms a 

part of the algorithm class (motivated above), with a routine for each of the possible 

event types to be captured been presented with a virtual directive. Support routines 

are used to direct the event calls, thus providing a more standardised interface for 
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algorithm annotators. The support routines are marked with overload directives to 

support different routine calls.  

 

 

Figure 5.3: Extract of the algorithm class interface 

 

Figure 5.3 also shows a number of interfaces and routines common to all driver 

algorithm classes. The Sort routine, marked with a virtual directive, is responsible 

for activating the driver algorithm and performing initialisation actions, such as 

  TAlgorithm = class(TSysObject) 

    ..... 

  protected 

    FScriptList : TScriptList; 

    ..... 

 

    procedure CaptureEventCompare(List1 : TDataList; Pos1 : Integer; List2 : 

TDataList; Pos2 : Integer);virtual; 

    procedure CaptureEventExchange(List1 : TDataList; Pos1 : Integer; List2 : 

TDataList; Pos2 : Integer);virtual; 

    procedure CaptureEventCopy(List1 : TDataList; Pos1 : Integer; List2 : 

TDataList; Pos2 : Integer);virtual; 

    ..... 

 

    procedure CaptureEvent(AEventType : String; AList : TDataList);overload; 

    procedure CaptureEvent(AEventType : String; AList : TDataList; Pos : 

Integer);overload; 

    procedure CaptureEvent(AEventType : String; AList : TDataList; Pos1 : 

Integer;  BList : TDataList; Pos2 : Integer);overload; 

 

  public 

    procedure Sort;virtual; 

    procedure AssignDataList(AList : TDataList);virtual;abstract; 

 

    function Clone(AScriptList : TScriptList) : TAlgorithm;virtual;abstract; 

  end; 



CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE 

 128

clearing previous event scripts (FScriptList in figure). Routines marked with an 

additional abstract directive present a inheritable interface, which are overwritten 

and implemented by each child class. These common interfaces allow other 

components within the system to standardise routine calls to algorithm classes.  

 

A driver algorithm may be separated into multiple routines, as is the case with 

Quicksort and Mergesort (which use various support routines), since the API event 

calls and data structures are accessible to all routines within algorithm classes. The 

only constraint is that the main execution routine must be linked to the Sort routine. 

 

The actual implementations of the driver algorithms were, in fact, a fairly simple 

process, the theory of which is discussed in Section 4.5. The algorithm is created 

without any specific changes to indicate it as a driver algorithm, with the exception 

that data which need to be captured as part of an interesting event must use the 

system’s integer-based data structure (Section 4.4). Simple console-based textual 

outputs can then be used to verify the correctness of the algorithm. Based on 

experience and literature (Mukherjea and Stasko 1993), preliminary testing 

throughout the implementation of new algorithms will minimise time spent debugging 

during the creation of visualisations. While it is true that algorithm animations can 

technically be employed as a debugging tool (Section 2.2), this approach will 

generally require relatively more time than by testing the functionality of the driver 

algorithm during its implementation. 

 

Once an algorithm’s function is verified, interesting event markers are then inserted 

into the code, using the approach introduced by BALSA (Brown and Sedgewick 

1998). Figure 5.4 illustrates an implementation of a Bubblesort driver algorithm. The 
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addition of the markers does not generally hinder the readability of the algorithm, as 

the markers utilise a routine name which is easily distinguishable for the main driver 

algorithm code.  

 

 

Figure 5.4: Implementation of Bubblesort driver algorithm  

 

procedure TAlgorithmBubblesort.Sort; 

var 

  f : Integer; 

  Sorted : Boolean; 

  SortedNumber : Integer; 

  temp : Integer; 

begin 

  inherited; 

  CaptureEvent(eventLoadIntegerList, FList); 

 

  SortedNumber := 0; 

  repeat 

    Sorted := True; 

 

    for f := 0 to FList.Count - 2 - SortedNumber do 

    begin 

CaptureEvent(eventMessage,  

'Comparing [' + IntToStr(f) + '] with [' + IntToStr(f+1) + ']'); 

      CaptureEvent(eventCompare, FList, f, FList, f+1); 

      if FList.Items[f].Value > FList.Items[f+1].Value then 

      begin 

        CaptureEvent(eventExchange, FList, f, FList, f+1); 

        temp := FList.Items[f].Value; 

        FList.Items[f].Value := FList.Items[f+1].Value; 

        FList.Items[f+1].Value := temp; 

        Sorted := False; 

      end; 

    end; 

 

    CaptureEvent(eventComplete, FList, FList.Count - 1 - SortedNumber); 

    Inc(SortedNumber); 

  until Sorted; 

end; 
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Figure 5.4 highlights the routine calls to capture interesting events within the driver 

algorithm. Each of the event types identified in Section 4.6.1 are shown, namely the 

data structure definition event (eventLoadIntegerList), operational events 

(eventCompare & eventExchange), conceptual event (eventComplete) and message 

event (eventMessage). As specified in Section 4.6.1, data structure definition events 

and operational events are essential for a basic illustration of an algorithm. They are 

easily identified in a method similar to the declarative paradigm. In other words, any 

operations involving the data structure are marked as important. Conceptual events 

and message events require more in-depth knowledge of the algorithm to annotate, 

since it is used to superficially enhance or complement the animation to improve 

algorithm understanding, but do not directly represent any algorithm operations. 

 

5.3.2 Interpreter 

 

Each child interpreter class inherits from a base class which provides a common 

interface for accepting script events. An abstract interface is created for each type of 

interesting event which is usable by the driver algorithm (Figure 5.5). Thus, for each 

CaptureEvent routine in the algorithm base class, there is a corresponding script 

interpreting routine in the interpreter base class.  

 

A new interpreter child class is created for each algorithm, or domain of algorithms 

(Section 4.7.2). The use of the abstract interfaces means that while only relevant 

routines need to be implemented, all interpreters are inherently capable of accepting 

any event type. 
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Figure 5.5: Extract of a interpreter class interface 

 

Algorithm animation system research does not place much focus on low level 

algorithm-to-visualisation paradigm implementation details. That, in contrast with the 

amount of literature focusing on script-based animation systems (Stasko 1997; 

Rößling and Freisleben 2001; Akingbade, Finley, Jackson et al. 2003) and high-level 

paradigms (Brown and Sedgewick 1998; Roman 1998; Rößling and Freisleben 2000a; 

Rößling 2002), suggests that the intermediate interpretation process is open to some 

degree of flexibility. The implementation of routines for interpreting events thus made 

  TProcessor = class(TSysObject) 

    ..... 

  protected 

    FOutputScriptFileName : String; 

    //universal properties 

    FObjectColourDefault : String; 

    FObjectColourHighlight : String; 

    FObjectColourHighlightBorder : String; 

    ..... 

    function ScriptCreateList(AScriptItem : TScriptDataStructure) : 

String;virtual;abstract; 

    function ScriptCompare(AScriptItem : TScriptCompare) : 

String;virtual;abstract; 

    function ScriptExchange(AScriptItem : TScriptExchange) : 

String;virtual;abstract; 

    function ScriptCopy(AScriptItem : TScriptCopy) : String;virtual;abstract; 

    .....     

  public 

    FAnimationScriptFile : TextFile; 

    ..... 

    function ScriptInterpret(AScriptItem : TScriptItem) : 

String;virtual;abstract; 

  end; 
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use of iterative prototyping techniques, which allowed incremental development of 

the routines based on experience gained and limited documented resources.  

 

 
Figure 5.6: Implementation of an interpreter routine for an Exchange event 

 

A routine to interpret an event that exchanges two items is illustrated in Figure 5.6. 

The function first acquires the coordinates for the relevant graphical objects. 

Graphical commands are then created to plot the graphic objects towards their new 

function TProcessorDebug.ScriptExchange( 

  AScriptItem: TScriptExchange): String; 

var 

  scriptStream : String;  pointList1, pointList2 : TPointList; 

  objectID1, objectID2 : String;  offset1, offset2 : TPoint; 

begin 

  //obtain coordinates for converting to graphical commands 

  pointList1 := GetPointList(AScriptItem.ListName1); 

    ..... 

 

  AssignFile(FAnimationScriptFile, FOutputScriptFileName); 

  Writeln(FAnimationScriptFile, 'begin'); 

  //move Object1 to where Object2 is 

  offset1 := 

CalcRelativeMovement(pointList1.Items[AScriptItem.Pos1].PointPos, 

               pointList2.Items[AScriptItem.Pos2].PointPos); 

  scriptStream := 'moveRelative ' + IntToStr(AScriptItem.TimeToLive) 

    + ' ' + objectID1 + ' ' + IntToStr(offset1.X) + ' ' + IntToStr(offset1.Y); 

  Writeln(FAnimationScriptFile, scriptStream); 

  //move Object2 to where Object1 is 

    ..... 

  Writeln(FAnimationScriptFile, 'end'); 

 

  //update the object coordinates 

  SwopID(pointList1, pointList2, AScriptItem.Pos1, AscriptItem.Pos2); 

end; 
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positions. Finally, the coordinate controller is updated with the positions of the now 

exchanged objects. Figure 5.7 shows an example of the output from the routine: 

 

 
Figure 5.7: Graphical command example 

 

The outputs from interpreters, in the form of graphical command scripts (Section 

4.8.1), are placed in a standard ASCII text file. From experience, this approach has 

shown to ease the process of debugging. When problems are encountered during the 

implementation of an interpreter, the text file can be examined to find the possible 

sources of common errors, especially ones relating to command syntax and event 

interpretation. Command lines which are syntactically incorrect will result in parsing 

errors from the animation component. Interesting events, if interpreted in an incorrect 

or unsuitable manner, will often produce some unanticipated and unexplainable visual 

results. 

 

5.3.3 Animator and Timer 

 

The animator in the system is designed to accept graphical scripts stored in an 

ASCII-based text file, and render the graphics on the screen (Section 4.8). The 

animation view (Section 5.2.1) is thus functionally supported by the animator. The 

animator component renders animations based on the standard graphic language 

defined in Section 4.8.1. 

 

begin 

moveRelative 8 List70 8 0 

moveRelative 8 List71 -8 0 

end 
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The need to support parallel animation for comparative analysis (Section 3.6) means 

that support for multiple instances of the animator view is necessary. Most 

importantly, with more than one animator operating, the speed of each instance must 

be synchronised, in other words, each animator must run at an identical speed.  

 

Each animator is designed to process operations based on a timer (Figure 5.8). Each 

time the timer ticks, it will send a signal to the animator to perform a single operation 

(discussed further below). Thus, the easiest approach to ensure that all animators run 

at the same pace is to let all animators work off a unified timer. To support this 

approach, a list of all currently active animators is maintained by an animator 

controller. Each time the unified timer ticks, the same signal is sent by the animator 

controller to each animator in turn, thus triggering all animators to process exactly a 

single pending operation. Once the operation is completed, each animator waits in a 

ready state until called again. 

 

 
Figure 5.8: Multiple animators synchronised by the unified timer  

 

An animator operation is divided into two main phases, an update phase and a render 

phase. The update phase consists of iterating through an internal processing queue 

(Section 4.8.2) consisting of commands to update the state of all graphical objects in 

Unified Timer 

Animator Controller 

Animator1 Animator2 Animator3 

signal 

signal signal signal 
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memory. An internal counter is then incremented to register the completion of a single 

operation. The render phase then iterates through the graphical objects, rendering each 

onto the animation view. 

 

The functionality to control the speed of the animators is done by employing a 

standard time definition and timer multiplier. The standard time associated with a 

timer tick is 50 milliseconds (ms), thus, running the timer for one second (1000ms) 

would result in 20 ticks (and 20 operations). The time multiplier is used to artificially 

speed up or slow down the timer. To lengthen the time of an animation (in other 

words, to slow it down), the multiplier increases the standard time of the clock. This 

causes less time ticks to be registered per second, and thus reduces the frequency of 

calls to the animator.  

 

Actual implementation showed that the abovementioned technique cannot, however, 

be used for increasing animation speed (that is, by increasing the ticks per second) for 

two reasons. Firstly, the implementation of a high-resolution timer13 is beyond the 

scope of the prototype. Secondly, the refresh rate of the animator renderers will not be 

able to keep pace. In other words, even if a high-resolution timer is employed to 

register at 5ms intervals, the rendering speed of 200 frames-per-second is currently 

impractical.  

 

An alternative approach was thus employed (Figure 5.9), whereby the animator 

operation is instead adjusted. Using this approach, when the multiplier is increased to 

                                                 
13 Basic timers have limited tick interval register (Cantù 2001). For example, if the timer was set to run 
at ten-times speed of the animator’s standard time (i.e. at 5ms), the timer may realistically only register 
intervals somewhat intermittently (i.e. between 12-35ms’s). A multimedia timer linked directly to the 
OS may fair better. Regardless, it will not solve the overall problem, as explained in the main text. 
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speed up animations, the timer’s resolution is maintained at 50ms, thus it will still 

only register 20 operations-per-second. However, the call to the animator is sent with 

an additional multiplier parameter. The animator then repeats the update phase of the 

operation the same number of times as the multiplier. For example, if the multiplier is 

set to 3× , the update phase will run 3 times when a single timer signal is received by 

the animator. Once the update phase is complete, the rendering phase is then run only 

once. Thus, regardless of the multiplier speed, the animation will run at an increased 

rate by firstly performing all update operation in the background before rendering the 

scene at the end. As a result, the renderer is only expected to draw at 20 

frames-per-second, a reasonable speed for currently available PC-platforms. 

 

 
Figure 5.9: Animator processing a call with a 3x multiplier parameter  

 

 

 

 

Animator 

Timer 
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5.4 Interface Design 

 

The role of the system interface is to allow users to access and make use of the 

features offered by the system. The implementation of the system interface follows 

the specifications of each of the data layer and animation layer interfaces presented in 

Section 4.9. 

 

Each combination of data structure, algorithm and interpreter is defined as a scenario. 

Thus, when creating a scenario, the interface must enable end-users (Section 3.2.2) to 

make a selection of the algorithm, interpreter, and data list which make up the 

scenario. A unique scenario is generated for each unique case study to be examined. 

The parameters and settings for each scenario are controlled and setup through an 

associated animation panel. Once the scenario is setup, the system then visually 

represents the scenario by constructing a single animation view.  

 

The design of the prototype centres on the concept of using a unified algorithm 

animation desktop (Figure 5.10), which allows the user to control the generation and 

display of animations. The desktop acts as a centralised placement area for animation 

panels, each of which presents a particular scenario. The desktop provides an 

integrated platform for comparative analyses, allowing any number of potential 

combinations of data lists and algorithms to be created and examined. These include 

comparisons of a data list using different algorithms, or different data lists using a 

single algorithm (Figure 4.3). When multiple scenarios are to be compared, an 

animation panel is created and setup for each scenario. The animation panel, once 

created, is placed within the unified desktop. Scenarios can then be individually 

selected for parallel display. 
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Figure 5.10: Unified algorithm animation desktop 

 

When algorithm animations are created, the processes consist of setting up the 

scenario through the data layer interface (Section 5.4.1), and then selecting and 

controlling animation views from the animation layer interface (Section 5.4.2).  

 

5.4.1 Data Layer Interface 

 

The data list to be used by the algorithm is first generated, and an animation panel is 

then created to construct a scenario. This process is repeated for each animation the 

user would like to see in parallel. This section discusses the Graphical User Interface 

(GUI) designed to support the process. 
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Data Generator 

 

The interface acts as a front-end for the data generator (Figure 5.11), where multiple 

data lists are created and maintained. Parameters are entered for the population size 

and the level of sortedness for each data list created.  

 

 
Figure 5.11: Data generator interface 

 

The level of sortedness definition is based on the discussion in Section 4.3.3, where a 

measure of sortedness was adopted to express list order as a percentage level ranging 

from -100% to 100%. The concept is supported by using a slider control, allowing the 

end-user to adjust a pre-defined sorted listed in one percent increments. When the list 

is adjusted to 0%, a list of undefined ordering is generated based on the method 

discussed in Section 4.3.1. 
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Animation Panel 

 

There are two variations of the animation panel, namely the scenario-based panel and 

the script-based panel. The scenario panel, as the name suggests, allows the user to 

create a customised scenario for examination. Within the scenario-based animation 

panel, selections are made on the combination of algorithm, data structure and 

interpreter (visual representation) of the scenario (Figure 5.12). 

 

 

Figure 5.12: Scenario-based Animation Panel 

 

Figure 5.13 shows the data structure interface of the animation panel, which is used to 

select the data list to use, and to modify the virtual element properties which affect the 

operational time-cost of the algorithm animation actions (Section 4.4.3). The compare 

size field is entered manually, whilst the total size is determined by the amount (count) 

of each virtual datatype used, multiplied by the bits size of the datatype. 
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Figure 5.13: Interface for modifying the virtual element properties 

 

The script panel allows the user to directly input a pre-generated animation script file 

for display. The panel requires a single parameter, which is the location of the 

animation script file (Figure 5.14). 

 

 
Figure 5.14: Script-based Animation Panel 

 

The approach is designed to offer a flexible method for demonstrating algorithm 

animations. When the system is employed as a general purpose animation tool, or if 

students are asked to create basic animation demonstration, an animation script may 

be written manually without using a driver algorithm. The script can be written in any 

ASCII-based word processor, following the grammar presented in Section 4.8.1. 

Another use of the script panel is for demonstrating previously generated algorithm 

animations. Sometimes lecturers might want to demonstrate particular scenarios in a 

lecture or self-study laboratory environment. Under such circumstances, the animation 

script may be saved in an ASCII file in advance, and reloaded through the script panel 
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for the demonstration. Furthermore, algorithm animations which work on large data 

sets are time-consuming to generate. Thus, re-using existing scripts through the scrip 

panel presents an efficient alternative to recreating the animation through the 

scenario-based panel. 

 

5.4.2 Animation Layer Interface 

 

Once algorithm animation scenarios are setup with all the required properties, an 

animation selector is used to pick the animation to view. Multiple animations may be 

picked from the selector. Each animation is viewed through an animation view, which 

is controlled through the Play Control. The GUI used to control and view the 

animations is discussed in this section. 

 

Animation Selector 

 

The animation selector shows a list of all available animation panels on the desktop 

(Figure 5.15). Any number of animations can be selected for display, provided there is 

sufficient screen space. Although any combination of animations can be selected for 

parallel display, it is up to the user (and not the selector interface) to decide which 

animations have common relevance for side-by-side comparisons. For example, while 

it is possible to race a Bubblesort working on a large list with a Quicksort work on a 

small list, there is little meaningful knowledge to be gained from such a study. 
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Figure 5.15: Animation Selector 

 

Play Control 

 

The unified play control (Figure 5.16) is used to directly manage the display of 

animation views, and act as the interface for the unified timer (Section 5.3.3). The 

control offers the ability to play, pause and step through the animation. A slide bar is 

used to control the speed of animations. The adjustment can vary from 1/5 through to 

10 times the normal speed. 

 

Figure 5.16: Play Control interface 

 

The play control is presented as a floating toolbar which is only made visible to the 

end-user when there are initialised animation views. Figure 5.18 demonstrates the 

context in which the play control is presented. 

 

Animation View 

 

An animation view (Figure 5.17) is assigned to each animation panel which is 

selected for display. The view contains a canvas, which holds the actual visualisation. 
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The canvas is linked directly to the animation engine renderer. An information panel 

is provided on the right of the canvas. The information panel is used to display textual 

information concerning the animation being displayed. The information section of the 

panel displays messages generated from message events (Section 4.6.1). The 

operation section is designed to display an up-to-date count of the operations 

performed by the algorithm (further examined in Section 5.6). 

 

 

Figure 5.17: Animation view 

 

A key feature of the unified play control and animation view is the support for 

running multiple algorithm animations in parallel, in effect simulating an algorithm 

race (Figure 5.18). A single play control handles the display settings of all the 

animation views, including display speed, start and pause. The step through 

functionality is disabled when multiple animations are shown. 

Canvas 
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Figure 5.18: The play control managing an animation race 
 

5.5 Implementation of Case Study 

 

The implementation of sorting algorithms as a case study achieves two purposes. 

Firstly, a practical implementation of algorithm animations would serve to 

substantiate the concepts of the proposed framework, and to test the usefulness of the 

prototype system and its various components in constructing animations. Secondly, 

the availability of the sorting algorithm animations will provide immediate 

accessibility of the prototype system to algorithmic lecturers and students. 

 

The visualisation design aspect of the case study algorithm animations is based on the 

two presentation styles initially created by the “Sorting Out Sorting” video (Section 

3.5.1). The two styles consist of the rectangular blocks and grouped dots. These styles 

are referred to in the dissertation as the rectangle manhattan style, and the dot cloud 

style, respectively.  
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The usage of the abovementioned presentation styles are motivated by two reasons. 

Firstly, since the framework specification defined the use of the integer as the only 

datatype used by the data structure, this integer data type offers an inherently close 

mapping to the proposed presentation styles (Section 4.4). Secondly, the two styles 

offer a good way to demonstrate different aspects of algorithms. The rectangle 

manhattan (Figure 5.19a) can visualise small to medium size data sets to explain the 

operations of an algorithm. Visual details can also be added to enhance the animation. 

The dot cloud style (Figure 5.19b) is suitable for visualising larger data sets, where 

the step-by-step animated algorithm concept explanations are traded for discreet 

visual updates. That, in conjunction with the setup of the visualisation, where the data 

position is presented along the x-axis and the data size along the y-axis, allows the 

visualisation to present the bigger picture, showing trends and interesting algorithm 

characteristics. 

 

 

Figure 5.19: (a) Rectangle manhattan (b) Dot cloud 

 

With complex algorithms, the algorithm annotator can capture a variety of conceptual 

events (Section 4.6.1). If the additional events are appropriately presented through the 

interpreter, various interesting properties or phenomena of the algorithm are exposed.  

(a) (b) 
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Figure 5.20 shows static illustrations of an animation for a Mergesort in action. The 

concept of a Mergesort is typically easy to describe, but extremely difficult and 

time-consuming to illustrate using static material.  

 

  

 
 

  
Figure 5.20: The Mergesort animation highlights some interesting details 
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In Figure 5.20, to highlight the characteristics of the Mergesort, the implemented 

animation scenario uses conceptual events to mark items as busy being processed 

(blue), merged (red) or ignored (black). The list is continuously subdivided into 

smaller lists, with the visualisation showing the exact details on how the Mergesort 

utilises a temporary list to perform list subdivisions. Once each sub-list is divided into 

its elementary form (size = 1), the sub-lists are systematically merged to form a final 

sorted list. 

 

Figure 5.21 shows a series of illustrations for a Quicksort animation using a dot cloud 

style, highlighting the divide-and-conquer nature of the algorithm. The list is first 

chunked into boxes through iterations, with the sorting pivot (marked in red) forming 

the bottlenecks among the boxes. The sorting list is shown in blue, and the ignored list 

is shown in black. Each of the boxes is subdivided at a smaller scale until each box is 

in its elementary form (where size = 2), after which they are sorting back into the 

bigger picture. A clear advantage of using algorithm animations is that it can illustrate 

algorithm concepts or phenomena that are either too complex to visualise mentally, 

impractical to illustrate in a static format, or are not obvious to the viewer when 

represented in static formats. 
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Figure 5.21: The iterative box pattern of the Quicksort 
 

5.6 Implementation Observations 

 

An extensive review of related research delivered few resources documenting the 

low-level implementations or concepts of interpreters for algorithm animations 

(Section 5.3.2). Even though the level of difficulty was estimated to be low, it was 

nevertheless an initial cause for concern. During the prototype implementation, the 

algorithm and data generator components were first written and tested. With the data 
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layer components in place, the construction of interpreters started. However, it was 

initially difficult to see how well the interpreter and the animation component fitted 

together, especially since the animation component was not implemented, and thus 

there was no visual output available with which to validate results. To overcome this 

problem, an extant script animation system, JAWAA (Section 3.5.6), was employed 

as a temporary animation component. The temporary use of JAWAA was an efficient 

solution, since the prototype’s interpreter was designed to store the animation 

commands in an ASCII file (Section 5.3.2), which was the primary input method of 

JAWAA.  

 

Interpreters were initially implemented based on JAWAA’s scripting language. The 

actual implementation was flexible. The methods used to convert generic events into 

an animation were usually results of iterative prototyping and testing. After the 

implementation of the interpreters, the prototype’s animation component was then 

constructed. The existing interpreters were then modified to suit the script language of 

the framework, an easy process due to the similarities of the commands (Section 

4.8.1). 

 

The separation of the framework into independent layers (Section 4.2.2), coupled with 

the use of object instances (Section 5.2.2), resulted in a simpler process of 

implementation and testing of components. The streaming of events and scripts to an 

animation view is an independent process of each combination of data, algorithm and 

view (defined as a scenario to the end-user). The functions of each layer are 

completed before passing the results through to the next layer for processing (Figure 

5.22). Thus, while the prototype seem to run a number of processes, executing layer 

functions and controlling multiple views, the processes are all done in discreet steps. 
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As a result, complexities of implementing processes in parallel, such as using 

application threads, are avoided. 

 

 

Figure 5.22: Generating animations without using parallel processing 

 

The structuring of the framework, however, did have its inherent limitations. The 

interpreter took full responsibility for converting event scripts to animation commands, 

a process which strips the interesting events of its algorithmic origins and properties. 

Two problems were thus observed.  

 

Firstly, an interesting event, such as a single compare operation, is often represented 

in a rectangle manhattan view by having the examined rectangular blocks being 

highlighted, and then un-highlighted, which uses two graphical operations. This 

disparity only becomes noticeable when the user tries to run through an animation 

step-by-step. The user must click the step button once to highlight, and again to 

un-highlight, thus giving the impression that the operation actually consist of two 

steps, or that the operation is relatively time-consuming (which it is usually not).  

 

A more notable problem is concerned with the information shown to complement the 

animation (Section 5.4.5). A complementary requirement was to show efficient 

information relating to each type of operations, such as the number of exchanges and 
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comparisons performed by an algorithm. This can be used to highlight the relative 

efficiency of the algorithm. However, once the interpretation of events is done, the 

graphical scripts no longer contain event-related information. As a result, the 

animation view is unable to identify or keep count of the algorithm operations 

performed, and thus cannot display such information. 

 

5.7 Conclusion 

 

Successful implementation of the prototype from the proposed framework resulted. 

The algorithm animation framework thus proved to be an effective design for a 

system for generating algorithm animations. The layered structure of the framework, 

in conjunction with the prototype methodology, supported modularised 

implementation of the prototype. Furthermore, the prototype based on the framework 

design was capable of supporting the pedagogic requirements identified in Chapter 3. 

The user interface of the prototype, while simple, was capable of supporting the 

interaction requirements of the framework design. 

 

The implementation of the algorithm animation case studies provided an interesting 

challenge. While the concepts and exact operation of each of the sorting algorithms 

have already been defined (Appendix A), there is much that can still be learnt of the 

characteristics of an algorithm from a well planned animation. Even with the very 

limited set of animation commands offered by the framework, the visualisation 

designer still has ample opportunity to create informative animations. The structure of 

the framework was successful in supporting generation and display of multiple 

algorithm animations due to the modular concept presented in Section 4.2.2. 
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The limitation of the framework is that, due to the layer design and the use of the 

interpreter, some algorithm related information may be lost while being processed 

into animations. This meant that some supplementary information is no longer 

available for presentation with the algorithm animation.  

 



 

 154

 
 
 
 
 
 

Chapter 6 

Conclusions and Recommendations 

 
 

6.1 Introduction 

 

The challenges of teaching abstract algorithm concepts to introductory algorithmic 

students were highlighted together with the potential benefits of employing algorithm 

animations to increase the students’ algorithm comprehension (Chapter 1). The 

objective of the dissertation was thus the design and implementation of an extensible 

framework which provides for the generation and display of algorithm animations in 

an algorithm course environment. The proposed framework and implemented 

prototype will integrate into the NMMU CS&IS department’s goal of increasing 

student throughput through research and utilisation of technological support tools 

(Section 1.3.3).  

 

The pedagogic potential of algorithm animations formed the primary motivation for 

the initial study. Literature reviews showed algorithm animation as an established 

field of study with well-defined theoretical and practical background (Chapter 2). In 

support of the dissertation’s goals, studies were performed to gain an understanding of 

algorithm animation, including current and past research, extant systems, and 
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available pedagogic applications. The results of the study guided the design and 

implementation of the algorithm animation framework and its associated prototype. 

 

This chapter provides a brief summary of the research achievements (Section 6.2), 

contributions (Section 6.3), implications (Section 6.4) and limitations (Section 6.5). 

These are followed by recommendations for future research (Section 6.6). 

  

6.2 Research Achievements 

 

Chapter 1 presented a context into the utilisation of algorithm animation to support the 

teaching of algorithm courses. The goals of the research were the design of an 

algorithm animation framework, and the evaluation of the effectiveness of the 

framework through a prototype implementation. The achievement of these goals is 

evident in two areas, namely theoretical and practical. A number of research questions 

were posed to guide the investigation towards achieving these goals (Table 6.1). 

Based on these findings, questions 1 through 6 and 8 contribute to the theoretical 

achievement, while the others contribute to the practical achievement. 
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 Research questions 
Relevant 
chapter/section(s) 

1. What is software visualisation? Section 2.2 

2. What is algorithm animation? Section 2.3 

3. What elements are used to form an algorithm animation? Section 2.3 

4. How are algorithm animations used in teaching and 
learning algorithms? 

Section 2.4 

5. What are the issues to be considered in the design and 
specification of an algorithm animation framework? 

Sections 3.2 and 3.3 

6. What are the criteria for the design of effective algorithm 
animation systems? 

Section 3.4 

7. How do extant algorithm animation systems match the 
criteria? 

Section 3.5 

8. What does an algorithm animation framework look like? Chapter 4 

9. What are the implementation issues faced by developers 
of algorithm animation systems? 

Sections 5.2, 5.3 and 5.6 

10. How effective is the proposed framework? Chapter 5 

11. How does the algorithm animation prototype developed 
match the identified measurement criteria? 

Chapter 5 

12. What are the limitation and contribution of the framework 
and prototype? 

Chapter 6 

Table 6.1: Research questions of the dissertation 

 

This section provides an overview of the theoretical (Section 6.2.1) and practical 

(Section 6.2.2) achievements resulting from answering each of the research questions. 

Specific and relevant sections of the dissertation are summarised to show how the 

questions were addressed. 

 

6.2.1 Theoretical Achievements 

 

Software visualisation involves the use of graphical techniques to improve the 

presentation and appearance of programs, with the aim of facilitating understanding of 

the programs (Section 2.2). Algorithm animation is classified as a form of software 
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visualisation which visualises the working of algorithms through a high level of 

abstraction (Section 2.3). In other words, the content of algorithm animations is 

strategically chosen to focus on issues of relevance to a particular topic, whilst 

unimportant or less relevant concepts are hidden or shown only superficially (Section 

2.5).  

 

Algorithm animation involves the utilisation of primarily visual elements to represent 

the data structures of an algorithm, and to display the dynamic operations of the 

algorithm in execution. The three visual elements of algorithm animations were 

identified as visual metaphors, animation and colour (Section 2.3). Algorithm 

animations may be used in lecture demonstrations, or be made accessible to students 

in a laboratory environment or over the internet (Section 2.4). A review of software 

visualisation and algorithm animation as a field of research, the communication 

techniques employed by algorithm animations, and the educational value of algorithm 

animations formed the focus of the foundation to the study (Chapter 2). 

 

Having established an understanding of the concepts and uses of algorithm animation, 

a study is conducted into the various elements of an algorithm animation system 

(Chapter 3). A number of issues were considered to support the designing of the 

framework. Identifying the types of users within an algorithm animation system 

environment and the general components of algorithm animation systems provided an 

understanding of the functional requirements of a system (Section 3.2). Another issue 

considered was the paradigms used to connect algorithms to visualisations, which 

affect both the design and operational characteristics of an algorithm animation 

system. The two algorithm-to-visualisation paradigms identified were the imperative 

and declarative paradigm (Section 3.3).  



CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS 

 158

An important research objective was the establishment of a list of requirements which 

will effectively complement the pedagogic objective of the framework. A number of 

preliminary requirements were identified and divided into two sections (Section 3.4). 

The first section categorised requirements into an interaction level taxonomy 

proposed by Naps et al (2003), and the second section consisted of complementary 

requirements. The preliminary requirements were then reviewed, from which two 

requirements were removed due to project scope restrictions (Section 1.4.2). A list of 

nine requirements was proposed as the criteria for effective algorithm animation 

systems (Section 3.6). 

 

With the theoretical foundations and requirements established, the specification and 

design of an algorithm animation framework were proposed (Chapter 4). The 

framework is designed to support the list of requirements previously established, 

whilst also utilising the algorithm animation user, component and visualisation 

paradigm concepts. The structure of the framework was divided into independent 

layers based on the functionalities of component groups.  

 

6.2.2 Practical Achievements 

 

The list of requirements (Section 3.4) was used as an instrument for evaluating seven 

extant algorithm animation systems (Section 3.5). The evaluation showed that no 

extant system was able to address all of the requirements identified.  

 

The implementation of a prototype based on the proposed framework acted as an 

evaluation of the effectiveness of the framework design. The evaluation (Chapter 5), 

focused on determining the effectiveness of the framework through the 
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implementation of an algorithm animation system, and producing a number of sorting 

algorithm animations using the implemented system.  

 

The prototype implementation was performed using the iterative prototyping 

methodology (Section 5.2.1). Problems were encountered in implementation where 

certain informative data cannot be presented along with the algorithm animation 

(Section 5.6). Two algorithm animation design styles were successfully applied to the 

case study sorting algorithms using the prototype, namely the rectangle manhattan and 

dot cloud style (Section 5.5). The results of the prototype and successful algorithm 

animation case study implementation are indicative of the proposed framework to be 

an effective design. Furthermore, the prototype based on the framework was capable 

of supporting all the requirements identified in Chapter 3. The objectives of the 

framework design have thus been achieved successfully. 

 

6.3 Research Contributions  

 

This section outlines the research contributions, which represent the outputs and 

deliverables of the current investigation. Section 6.3.1 discusses the theoretical 

contributions, and Section 6.3.2 discusses the practical contributions. 

 

6.3.1 Theoretical Contributions 

 

Many studies have established a variety of compiled requirements intended for or 

based on algorithm animation systems (Gurka and Citrin 1996; Hansen, Narayanan 

and Hegarty 2002; Saraiya 2002; Saraiya, Shaffer, McCrickard and North 2004). The 

specification of a list of requirements was thus needed to support the design of the 
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proposed algorithm animation framework. However, literature studies, supported by 

the extant system analysis, showed that there is currently no unified and commonly 

accepted requirements framework for evaluating the effectiveness of algorithm 

animation systems in an algorithm course environment. The derived list of 

requirements (Table 6.2) is a theoretical contribution towards identifying 

instructionally effective features of algorithm animation systems. 

 

Requirements for Algorithm Animations 
R1:  Allow speed control of algorithm animation 
R2:  Allow rewinding of the animation 
R3:  Accept user input data for the algorithm 
R4:  Provide questions to predict algorithm behaviour 
R5:  Allow stepping control of algorithm animation 
R6:  Support construction of animation by students 
R7:  Support for smooth motion 
R8:  Include capabilities for comparative algorithm analysis 
R9:  Provide multiple views of an algorithm 
R10:  Provide additional instructional material 
R11:  General purpose framework 

Table 6.2: Identified Requirements 

 

The algorithm animation framework, illustrated in Figure 6.1, forms the primary 

theoretical contribution of the dissertation. The framework made use of knowledge 

gained from literature reviews and system analysis. Various design concepts were also 

proposed (Chapter 4). The framework consists of five layers, with the core layers 

placed within two user interface layers (Section 4.2.2). The framework core consists 

of the data layer, interpreter layer, and animation layer. The data layer produces 

interesting events by executing a driver algorithm with a generated data structure. The 

interpreter layer converts the interesting events into a predefined animation command 

script, which is used by the animation layer to render the algorithm animation. The 
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design allows layer outputs to be combined to produce different algorithm scenarios 

for animation.  

 

User interaction with the data and interpreter layers are provided through the data 

layer interface, and the animation layer through the animation layer interface (Section 

4.9). The layering design maps the user types with defined components or component 

groups, thereby clarifying the functions of user types within the framework. The 

algorithm programmer interacts with the data layer, the visualisation designer with the 

interpreter layer, the visualisation tool developer with the animation layer, and the 

students and instructors with the data and animation layer interfaces.  

 

Figure 6.1: Framework structure 
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6.3.2 Practical Contributions 

 

The list of requirements (Table 6.2) is used as an instrument for evaluating seven 

extant algorithm animation systems (Section 3.5). The evaluation, summarised in 

Table 6.3, forms a practical contribution of the current investigation. 

 

 
Sorting 

Out 
Sorting 

BALSA-II GAIGS JCAT JSAMBA JAWAA 
ANIMAL+

JHAVE 

R1:  Allow speed 
control of algorithm 

animation 
       

R2:  Allow 
rewinding of the 

animation 
       

R3:  Accept user 
input data for the 

algorithm 
 ( )      

R4:  Provide 
questions to predict 
algorithm behaviour 

       

R5:  Allow 
stepping control of 

algorithm animation 
       

R6:  Support 
construction of 
animation by 

students 

       

R7:  Support for 
smooth motion ( )       

R8:  Include 
capabilities for 

comparative 
algorithm analysis 

( )       

R9:  Provide 
multiple views of an 

algorithm 
( )       

R10:  Provide 
additional 

instructional 
material 

( )  ( )  ( ) ( )  

R11:  General 
purpose framework        

Table 6.3: Criteria met by extant systems 
 Support for feature ( ) Partial support for feature 
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The effectiveness of the framework was evaluated through the implementation of a 

prototype system (Figure 6.2). The algorithm animation system prototype formed the 

primary practical contribution of the research. An additional contribution is the 

animation of the sorting algorithm case studies, which illustrated the concepts of the 

algorithms using visual metaphor, animation and colour techniques. 

 

 

Figure 6.2: Prototype screenshot 

 

6.4 Implications of Research 

 

This section will discuss how the contributions of the research can be applied to future 

research and algorithm learning environments. 
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There is currently an absence of a unified and common instrument for evaluating the 

pedagogic effectiveness of algorithm animation systems. This highlights the value of 

the proposed list of requirements. The list of requirements can be used as a foundation 

for the creation of a unified algorithm animation system evaluation instrument. 

Tertiary educational institutions can also utilise the proposed requirements as a 

preliminary method for evaluating the suitability of algorithm animation systems in 

particular course environments, with the aim of integrating the systems to 

complement the institution’s existing teaching strategies. 

 

A gap currently exists within the community for a standard and widely accepted 

guideline for the design of algorithm animation systems. The proposed framework is 

presented as an effective model for addressing this gap. An independent layer 

approach was used to design the framework. As a result, iterative modification or 

improvement of various framework components can be done without affecting other 

layer components. The extensible design of the framework allows it to be further 

expanded to integrate concepts in support of current or future studies. The framework 

can thus be seen as a flexible model for supporting further research within the 

community. 

 

An evaluation was performed on seven extant algorithm animation systems based on 

the proposed list of requirements. The results of the evaluation provided a general 

understanding of the characteristics of each extant system, and may aid instructors in 

making informed decisions on the choice of algorithm animation systems to utilise in 

algorithm courses. The evaluation results can be used to support discussions of future 

system evaluations. Evaluations of additional systems will complement the 

knowledge on the extant systems, rather than act as stand-alone evaluations.  



CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS 

 165

 

The implemented prototype is a working system which may be integrated into an 

algorithm course environment. The prototype may be utilised in an interactive 

lecturing environment to demonstrate algorithms, with support for live generation and 

display of algorithm animations. This will allow instructors to provide immediate 

visualised feedback to the students’ queries. Pre-generated animations can also be 

saved and replayed in lectures to highlight specific scenarios of interest. The 

prototype development focused on the animation of sorting algorithms in particular.  

 

The immediate outcome of the implementation is two-fold. Firstly, the theoretical 

design of the framework can be tested in practice to evaluate its ability to match the 

proposed requirements. Secondly, the prototype and the sorting animations can be 

rapidly integrated as a pilot into existing algorithm curricula, complementing the 

technological support related research within the NMMU. The prototype is well suited 

for integration into laboratory environments. Students can utilise the interactive 

features of the prototype to complement their studies of algorithms. Furthermore, 

practical assignments can be created to encourage the use of algorithm animations by 

students. 

 

6.5 Limitations of Research 

 

Chapter 3 produced preliminary requirements for an algorithm animation framework, 

upon which the final list of requirements was based on. The two requirements which 

were not included were the support for rewinding of animations, and provision of 

questions to predict algorithm behaviour. 
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The support for animation rewinding was not considered due to scope limitations of 

the current research, discussed in Section 3.6.2. The provision of questions as a form 

of interactive learning may increase the comprehension of material. However, the 

scope of the project did not include features for interactive questions (Section 1.4.2).  

 

A limitation of the framework found during the implementation was discussed in 

Section 5.6. The limitation was due to the structure of the framework, which separated 

the concepts of the algorithm from that of the animation by utilising an intermediate 

interpreter process. As a result, certain informative data relating to the original 

algorithm is no longer accessible to the animation display. It is also worth mentioning 

that the final design of the framework would not have been suitable for integrating 

interactive questions with the algorithm animations. Placing interactive questions in 

relevant sections of the algorithm animation would require some understanding of the 

original algorithm’s operational context, which as mentioned, is lost on the conversion 

to the animation phase due to the independence of layers. 

 

6.6 Recommendations for Future Research 

 

The conclusion of the current investigation offers a number of possibilities for future 

research projects. These can be separated into projects that focus on theoretical 

contributions, and projects which extend the practical contributions of the system. 

 

Projects which provide theoretical contributions to the field of algorithm animations 

include the following: 
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 Empirical studies can be conducted to evaluate the pedagogic effectiveness of the 

prototype. The studies can focus on the effectiveness of the prototype as a whole, 

or concentrate on a particular group of features. 

 A critical analysis can be conducted to determine the relevance of the list of 

requirements for evaluating system effectiveness. This may result in specific 

features being added or removed. The critical analysis may be supported by the 

abovementioned empirical studies. 

 Implementation of additional case studies can be done to evaluate the feasibility 

of the framework. The case studies can include different sorting algorithms, or 

algorithms of other domains. 

 An investigation can be performed into incorporating declarative paradigm 

concepts into the framework, and how these concepts will affect the 

characteristics of the framework. 

 

A comprehensive implementation of the algorithm animation system based on the 

proposed framework can offer a number of practical contributions: 

 The system will provide a relatively reliable platform for integration into NMMU 

curricula, and to conduct empirical studies. 

 The implementation can incorporate the feature for rewinding animations. 

 During implementation, the design of the interface can incorporate established 

usability design methodologies. This may lead to further research using usability 

evaluations and eye-tracking technologies. 

 Administrative features may be included to support enabling and disabling of 

system features, which will aid empirical studies into the effectiveness of 

particular features and requirements. Administrative features may also include 
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the monitoring of student usage on particular system features, or the scenarios 

which are examined by students. 

 

The abovementioned research recommendations, which extend from the current 

research, can be used to derive ways to further improve the pedagogic potential of 

algorithm animation. 

 

6.7 Summary 

 

Algorithm animation is a technological support tool which supports the 

comprehension of abstract algorithm data and concepts. The creation of an algorithm 

animation framework to support the research strategy for increasing student 

throughput within the NMMU CS&IS formed the basis of the current research. 

 

The current research has successfully made substantial theoretical and practical 

contributions towards the research direction of the NMMU. These research 

contributions are: 

 List of requirements for algorithm animation systems. 

 A comparative study of extant algorithm animation systems using the list of 

requirements as an evaluation instrument. 

 An algorithm animation framework model to support the implementation of 

algorithm animation systems. 

 A prototype system based on the proposed framework. 

 Sorting algorithm animations implemented in the prototype system. 
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The research has satisfied the proposed goals and objectives by addressing each of the 

identified research questions. The dissertation successfully reported on the 

demonstration of the proposed algorithm animation framework as an effective design 

model. Future research will thus focus on determining the pedagogic effectiveness of 

the prototype developed in an algorithm course environment, and the effectiveness of 

the framework in supporting animations of algorithms in other programming domains. 
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APPENDIX A - Sorting Algorithms for the Case Study 

 

Sorting algorithms are one type of algorithm examined in the introductory and 

intermediate algorithm curricula. There are two classes of common sorting algorithms 

taught, namely the O( 2N ) quadratic sorting algorithms - bubble sort, selection sort, 

insertion sort and shellsort - and the O(N log N) sorting algorithms - quicksort, 

mergesort and heapsort (IEEE and ACM 2001). The sorting algorithms taught in the 

NMMU Computer Science introductory and intermediate curricula are Bubblesort, 

Insertion Sort, Selection Sort, Mergesort and Quicksort. This section explains and 

illustrates each of the sorting algorithms taught at the NMMU.  

 

The discussion on these algorithms highlights the unique operational characteristics of 

each algorithm, and the issues dealing with complexity, comprehension, 

implementation and relative efficiency. These sorting algorithms form the problem 

domain for the evaluation of the framework proposed. Examples of the sorting 

algorithms, implemented in Delphi, are included as part of the discussions. The 

sorting algorithms illustrated in this section arrange items in ascending order14. 

 

The complexity of an algorithm has a direct correlation with its relative efficiency. 

Algorithm complexity is represented using the Big-O notation, with O representing 

the complexity of the algorithm and a value N representing the population size of the 

dataset (Bailey 1999).  

 

                                                 
14This dissertation will treat a sorted list or fully ordered list as a list sorted in ascending order unless 
mentioned otherwise. 
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The Bubblesort is the simplest algorithm to comprehend, and it is typically used to 

introduce students to sorting algorithms. The selection sort and insertion sort are more 

efficient than the Bubblesort, but more complex to understand. The Mergesort and the 

Quicksort are relatively efficient sorting algorithms which are generally the most 

difficult to understand due to the concept of recursion employed. The code diagrams 

utilises the data structure presented in Figure A.1. 

 
Figure A.1.: Data Structure Definition 

 

A.1 Bubblesort 

 

The Bubblesort is generally the first sorting algorithm presented to introductory 

algorithm students due to its simple concept and ease of implementation. The 

Bubblesort functions by comparing each item in the list with the next item, and 

exchanging the items if they are out of order. The algorithm will continue to iterate 

through the list until all items are in the correct order (Figure A.2 and A.3).  

const 

  MaxElements = 10; 

 

type 

  TIntList = record 

    List : array[1..MaxElements] of Integer; 

    Count : Integer; 

  end;   
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Figure A.2: Concept of the Bubblesort 

 

Larger values “bubble” to the end of the list and smaller items towards the beginning 

of the list, hence the name of the algorithm. With the number of comparisons (N-1) 

and exchanges (potentially N-1) performed, the Bubblesort is regarded as the most 

inefficient sorting algorithm in common use, with a complexity of O( 2N ). 

 

 
Figure A.3: Implementation of Bubblesort  

procedure BubbleSort(var L : TIntList); 
var 
  f : Integer; 
  Sorted : Boolean; 
  Temp, SortCount : Integer; 
begin 
  SortCount := 0; 
  repeat 
    Sorted := True; 
 
    for f := 1 to L.Count – 1 - SortCount do 
    begin 
      if L.List[f] > L.List[f+1] then 
      begin 
        temp := L.List[f]; 
        L.List[f] := L.List[f+1]; 
        L.List[f+1] := temp; 
        Sorted := False; 
      end; 
    end; 
    SortCount := SortCount + 1; 
  until Sorted; 
 
end; 

6 1 4 3 

1 6 4 3 

1 4 6 3 

1 4 3 6 

1 3 4 6 

Notice how 6 bubbles down to its final 

position at the end of the list 
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A.2 Selection Sort 

 

The selection sort logically divides the list into two parts, the sorted part and the 

unsorted part, at any point in time. The selection sort works on the concept of 

selecting the largest item from the available remaining unsorted items. The largest 

item found is then exchanged with the item in the next position to be filled, where it 

becomes a part of the sorted list. The process repeats until there is only one item to 

select (Figure A.4 and A.5). 

 

 
Figure A.4: Concept of the Selection sort 

 

The selection sort performs significantly better than the Bubblesort since only one 

exchange is performed per pass through the list. The complexity of the selection sort 

is O( 2N ). The selection sort will produce the same performance regardless of the 

ordering of the initial list. 

6 1 4 

3 1 4 

3 1 4 6 

3 1 6 

1 3 4 6 

1 3 4 6 

Highlighted items are identified as the 

largest item in the unsorted list. Greyed 

items form the already sorted list. 

3 

6 

4 
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Figure A.5: Implementation of Selection Sort  

 

A.3 Insertion Sort 

 

The insertion sort logically breaks up a list into two parts, the already sorted part 

(place in the beginning of the list), and the unsorted part. The first item from the 

unsorted list is taken and inserted in order into the sorted list, increasing the sorted list 

size by one and decreasing the unsorted list size by one. This iteration takes place 

until the unsorted list size is zero (Figure A.6). 

procedure Swap(var L :TIntList; pos1, pos2 : Integer); 
var 
  temp : Integer; 
begin 
  temp := L.List[pos1]; 
  L.List[pos1] := L.List[pos2]; 
  L.List[pos2] := temp; 
end; 
 
 
procedure SelectionSort(var L : TIntList); 
var 
  index : Integer; 
  max : Integer; 
  numUnsorted : Integer; 
begin 
  numUnsorted := L.Count; 
 
  while numUnsorted > 1 do 
  begin 
    max := 1; 
 
    for index := 2 to numUnsorted do 
    begin 
      if L.List[max] < L.List[index] then 
        max := index; 
    end; 
 
    Swap(L, max, numUnsorted); 
    dec(numUnsorted); 
 
  end; 
 
end; 
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Figure A.6: Concept of the Insertion Sort 

 

The insertion sort is a O( 2N ) complexity sort. The time cost of the algorithm is 

dominated by the operation of inserting items into the sorted list. Due to this 

characteristic, insertion sorts are ideal for sorting a nearly ordered list. 

 

 
Figure A.7: Implementation of Insertion Sort 

 

procedure InsertionSort(var L : TIntList); 
var 
  numSorted : Integer; 
  index : Integer; 
  temp : Integer; 
begin 
  numSorted := 2; 
 
  while numSorted <= L.Count do 
  begin 
    temp := L.List[numSorted]; 
    for index := numSorted downto 2 do 
    begin 
      if temp < L.List[index-1] then 
        L.List[index] := L.List[index-1] 
      else 
        break; 
    end; 
 
    L.List[index] := temp; 
    inc(numSorted); 
  end; 
 
end; 

6 1 4 3 

1 6 4 3 

1 4 6 3 

1 3 4 6 

Greyed items form the already sorted 

list. The arrow shows where each 

unsorted item is inserted into the sorted 

list.  
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A.4 Mergesort 

 

The Mergesort takes the list to be sorted, splits the list into two equal halves, sorts 

each halve, and then merges the sorted halves into one list again. The Mergesort 

divides and sorts the list recursively, and then merges the list together to form the 

final sorted list (Figure A.8, A.9 and A.10). 

 
Figure A.8: Concept of the Mergesort 

 

The Mergesort’s complexity is O(N log N). A disadvantage of the Mergesort is its 

need to make use of a temporary list during the sorting process, thus doubling the 

memory used. Due to the concept of merging and recursion used in the algorithm, it is 

a difficult concept to explain and form a mental model of.  

4 2 1 5 3 6 

4 2 1 5 3 6 

4 2 1 5 3 6 

2 1 3 6 

1 2 3 6 

1 2 4 3 5 6 

1 2 3 4 5 6 

4 5 

5 4 

Split 

Merge 
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Figure A.9: Implementation of MergeSort supporting merge routine 

 

 

Figure A.10: Implementation of MergeSort main routine 

procedure Merge(var Data :TIntList;var Temp : TIntList; Low, Middle, High : 
Integer); 
var 
  ri, ti, di : Integer; 
begin 
  ri := low; 
  ti := low; 
  di := middle; 
 
  while (ti < middle) and (di <= high) do 
  begin 
    if Data.List[di] < Temp.List[ti] then 
    begin 
      Data.List[ri] := Data.List[di]; 
      inc(ri); 
      inc(di); 
    end 
    else 
    begin 
      Data.List[ri] := Temp.List[ti]; 
      inc(ri); 
      inc(ti); 
    end; 
  end; 
 
  while (ti < middle) do 
  begin 
    Data.List[ri] := Temp.List[ti]; 
    inc(ri); 
    inc(ti); 
  end; 
 
  Data.Count := High - Low + 1; 
  ShowList(Data); 
end; 

procedure MergeSortRecursive(var Data :TIntList;var Temp : TIntList; Low, High : 
Integer); 
var 
  n, middle, i : Integer; 
begin 
  n := High - Low + 1; 
  middle := Low + n div 2; 
 
  if n < 2 then 
    Exit; 
 
  for i := low to (middle-1) do 
  begin 
     Temp.List[i] := Data.List[i]; 
  end; 
 
  MergeSortRecursive(Temp, Data, Low, Middle-1); 
  MergeSortRecursive(Data, Temp, Middle, High); 
 
  Merge(Data, Temp, Low, Middle, High); 
 
end; 
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A.5 Quicksort 

 

The Quicksort typically consists of four steps (Figure A.11, A.12 and A.13):  

1. If there is one or zero items in the list to be sorted, return immediately.  

2. Pick an item in the list to serve as a "pivot" point (Usually the left-most element 

in the list is used).  

3. Split the list into two parts - one with elements larger than the pivot and the other 

with elements smaller than the pivot. This is done by having two markers move 

towards each other, swopping out of order items until the markers meet. 

4. Recursively repeat the algorithm for both halves of the original list/sublist.  
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Figure A.11: Concept of the Quicksort 

 

The Quicksort is the fastest commonly used general scenario sorting algorithm, with a 

complexity of O(N log N). However, the extensive use of recursion makes the 

Quicksort a difficult algorithm to comprehend and implement. 

9 8 10 12 

5 8 10 12 

5 8 10 12 

5 8 9 12 

5 

9 

9 

10 

5 8 9 12 10 

The markers show the items been examined. 

The greyed 9 acts as the first pivot.  

5 8 9 12 10 

5 8 9 12 10 

5 8 9 12 10 

5 8 9 10 12 

5 acts as the second pivot.  

12 acts as the third pivot.  

The list to the left of the first pivot (9) is then 

partitioned, followed by the list to the right 

of the pivot. (The inactive part of the list is 

greyed out) 

5 8 9 10 12 

Final, sorted list 



 

 192

 
Figure A.12: Implementation of Quicksort support routine 

 

 

Figure A.13: Implementation of Quicksort main routine 
 

The discussion illustrates the basic operations of each sorting algorithm. 

Fundamentally, all sorting algorithms continuously swop items until the list is sorted. 

The methods of item selection employed by each algorithm are what differentiate 

function partition(var L : TIntList; left, right : Integer) : Integer; 
begin 
  while true do 
  begin 
 
    while (left<right) and (L.List[left] < L.List[right]) do 
      Dec(right); 
 
    if (left<right) then 
    begin 
      Swap (L, left, right); 
      inc(left); 
    end 
    else 
    begin 
      result := left; 
      Exit; 
    end; 
 
    while (left<right) and (L.List[left] < L.List[right]) do 
      inc(left); 
 
    if (left<right) then 
    begin 
      Swap (L, left, right); 
      dec(right); 
    end 
    else 
    begin 
      result := right; 
      Exit; 
    end; 
 
  end; 
end; 

procedure QuickSort(var L : TIntList; Left,Right : Integer); 
var 
  p : Integer; 
begin 
 
  if (left<right) then 
  begin 
    P := partition(L, left, right); 
    quicksort(L, left, p-1); 
    quicksort(L, p+1, right); 
  end; 
 
end; 
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them in terms of performance and technique. These characteristics of algorithms thus 

influence the design of their associated animations. 

 

 


