

A Framework Proposal for
Algorithm Animation Systems

Chih Lung Yeh

Submitted in partial fulfilment of
the requirements for the degree of

MAGISTER COMMERCII
 in the Faculty of Business and Economic Sciences at the

Nelson Mandela Metropolitan University

January 2006

Supervisor: Prof. J.H. Greyling
Co-supervisor: Dr. C.B. Cilliers

Department of Computer Science and Information Systems

Acknowledgements

First and foremost, massive thanks to my supervisors, Jeán and Charmain, for the

confidence they had in me, and for their inputs and ideas towards the project. This

dissertation is as much their effort as it is mine. Their ever-present sense of humour

kept me sane when things were getting difficult. I thank them for helping me over

the many challenging miles (literally and figuratively).

Thanks also go to Dieter for the help and advice he has provided me with during the

implementation of the project.

Finally, I would like to thank Lee-Ann for assisting me by proofreading this

dissertation, and for her incredible patience and attention to detail.

 i

Table of Contents

Summary...v
List of Figures...vii
List of Tables ..x
List of Definitions..xi
Chapter 1
Research Context and Background..1

1.1 Introduction..1
1.2 Background and Prior Research...3
1.3 Relevance of the Investigation...6

1.3.1 Demonstrating Algorithms..7
1.3.2 Use of Animation to Illustrate Algorithms ...10
1.3.3 Overview of Existing Local Research Activities................................12
1.3.4 Concluding Remarks on Relevant Factors..15

1.4 Focus of the Investigation..16
1.4.1 Goals and Objectives ..17
1.4.2 Scope...18
1.4.3 Research Questions...20

1.5 Structure of Dissertation ..21
Chapter 2
Algorithm Animation...24

2.1 Introduction..24
2.2 Software Visualisation ...25

2.2.1 Background and Definition...25
2.2.2 Taxonomies of Software Visualisation...26

2.3 Algorithm Animation...29
2.3.1 The Visual Aspect...30
2.3.2 The Audio Aspect ...35

2.4 Algorithm Animations in Instructional Environments36
2.4.1 Lecture Demonstrations ..36
2.4.2 Laboratory Usage..36
2.4.3 Web-based Algorithm Animation...37

2.5 Abstract Representations in Animation Algorithms37
2.6 Conclusion ...38

Chapter 3
Analysis of Algorithm Animation Systems..40

3.1 Introduction..40

 ii

3.2 Algorithm Animation System - Users and Components41
3.2.1 Users within the Context of Algorithm Animation.............................43
3.2.2 Components of an Algorithm Animation System...............................44

3.3 Techniques for Creating Algorithm Animations ...45
3.3.1 The Imperative Paradigm..46
3.3.2 The Declarative Paradigm...47
3.3.3 Other Approaches ...49

3.4 Desirable Pedagogical Requirements for an Algorithm Animation System .49
3.4.1 Requirements based on Levels of Engagement51
3.4.2 Complementary Requirements..56
3.4.3 Summary of Requirements ...58

3.5 Overview of extant systems ...60
3.5.1 Sorting Out Sorting ...60
3.5.2 Brown University Algorithm Simulator and Animator II (BALSA)..62
3.5.3 Generalised Algorithm Illustration through Graphical Software
(GAIGS)...63
3.5.4 Java Collaborative Active Textbook (JCAT)65
3.5.5 SAMBA/JSAMBA ...66
3.5.6 Java And Web-based Algorithm Animation (JAWAA)68
3.5.7 A New Interactive Modeller for Animations in Lectures (ANIMAL)
and Java-Hosted Algorithm Visualisation Environment (JHAVE)69

3.6 Scope of Requirements ..71
3.6.1 Proposed Requirements for the Framework71
3.6.2 Motivation for Excluded Requirements..74

3.7 Conclusion ...75
Chapter 4
Design of Framework ..77

4.1 Introduction..77
4.2 The Proposed Framework – an Overview ...78

4.2.1 Selection of Visualisation Paradigm...78
4.2.2 Framework Structure ..81
4.2.3 Timing and Parallel Animations ...85

4.3 Data Generator ...87
4.3.1 Random Permutation of Lists ...89
4.3.2 Approaches for Measuring Sortedness ...91
4.3.3 Defining Array Sortedness..92

4.4 Data Structure ..93
4.4.1 Accessing Data Structure from Interesting Events94

 iii

4.4.2 Visual Mapping of Data..95
4.4.3 Operations cost..96

4.5 Algorithm...99
4.5.1 Driver Algorithm ..99
4.5.2 Algorithm Annotator...101

4.6 Event API...103
4.6.1 Event Classes ..104
4.6.2 Abstraction of Algorithm Operations ...106

4.7 Interpreter...107
4.7.1 Component Structure ..108
4.7.2 Design of Interpreters for Related Algorithms110

4.8 Animation ..111
4.8.1 Scripting Language ...111
4.8.2 Animation Engine ...115

4.9 Interface ...116
4.10 Conclusion ...118

Chapter 5
Algorithm Animation Prototype...120

5.1 Introduction..120
5.2 Implementation Techniques...121

5.2.1 Prototype Methodology ..122
5.2.2 Use of Object-Orientation...123
5.2.3 Class Repository ...124

5.3 Discussions of Component Implementations...125
5.3.1 Algorithm and Event API ...125
5.3.2 Interpreter..130
5.3.3 Animator and Timer..133

5.4 Interface Design ...137
5.4.1 Data Layer Interface ...138
5.4.2 Animation Layer Interface..142

5.5 Implementation of Case Study...145
5.6 Implementation Observations ..149
5.7 Conclusion ...152

Chapter 6
Conclusions and Recommendations...154

6.1 Introduction..154
6.2 Research Achievements ...155

6.2.1 Theoretical Achievements ..156

 iv

6.2.2 Practical Achievements...158
6.3 Research Contributions..159

6.3.1 Theoretical Contributions ...159
6.3.2 Practical Contributions..162

6.4 Implications of Research..163
6.5 Limitations of Research ...165
6.6 Recommendations for Future Research ...166
6.7 Summary ..168

REFERENCES...170
APPENDIX A - Sorting Algorithms for the Case Study182

A.1 Bubblesort ...183
A.2 Selection Sort ..185
A.3 Insertion Sort...186
A.4 Mergesort ..188
A.5 Quicksort...190

 v

Summary

The learning and analysis of algorithms and algorithm concepts are challenging to

students due to the abstract and conceptual nature of algorithms. Algorithm animation

is a form of technological support tool which encourages algorithm comprehension by

visualising algorithms in execution. Algorithm animation can potentially be utilised to

support students while learning algorithms.

Despite widespread acknowledgement for the usefulness of algorithm animation in

algorithm courses at tertiary institutions, no recognised framework exists upon which

algorithm animation systems can be effectively modelled. This dissertation

consequently focuses on the design of an extensible algorithm animation framework

to support the generation of interactive algorithm animations.

A literature and extant system review forms the basis for the framework design

process. The result of the review is a list of requirements for a pedagogically effective

algorithm animation system. The proposed framework supports the pedagogic

requirements by utilising an independent layer structure to support the generation and

display of algorithm animations. The effectiveness of the framework is evaluated

through the implementation of a prototype algorithm animation system using sorting

algorithms as a case study.

This dissertation is successful in proposing a framework to support the development

of algorithm animations. The prototype developed will enable the integration of

algorithm animations into the Nelson Mandela Metropolitan University’s teaching

 vi

model, thereby permitting the university to conduct future research relating to the

usefulness of algorithm animation in algorithm courses.

Keywords: Algorithm animation framework; algorithm animation system; sorting

algorithm; technological support tools

 vii

List of Figures

Figure 1.1: The interaction of current research focus on algorithm animation 4
Figure 1.2: Once-off blackboard demonstration of a Mergesort in class 7
Figure 1.3: Textbook illustration of a sequence in Quicksort 8
Figure 1.4: Hierarchical presentation of research in the department of CS&IS,
NMMU 13
Figure 1.5: Research Roadmap 22
Figure 2.1: Examples of good and bad metaphors in algorithm 31
Figure 2.2: Example of unconventional metaphors: Fibonacci Hamster, and
“Bubble”-Sort 32
Figure 2.3: Example of colour usage techniques in algorithm animation 35
Figure 3.1: Interaction among system components and users 42
Figure 3.2: Using API library calls to generate visualisation 46
Figure 3.3: Using scripting language to generate visualisation 47
Figure 3.4: The declarative paradigm monitors state changes in the data
structure 47
Figure 3.5: Interpreter extracts the comments which describe the data
structures being monitored 48
Figure 3.6: The virtual machine interprets the algorithm source directly to
monitor data structure changes 48
Figure 3.7: Sorting Out Sorting – Demonstrating a sorting algorithm / Race of
nine sorting algorithms using a cloud representation 61
Figure 3.8: BALSA-II – Illustrating a mergesort using a clouds view, and a bar
chart to show consecutive states of the data 62
Figure 3.9: GAIGS – Two consecutive snapshots 64
Figure 3.10: JCAT 65
Figure 3.11: JSAMBA 67
Figure 3.12: JAWAA 68
Figure 3.13: ANIMAL and JHAVE 70
Figure 4.1: Level of automation versus Visualisation design flexibility 79
Figure 4.2: Framework structure 82
Figure 4.3: Structure allows for parallel analysis of algorithms and data 84
Figure 4.4: Modularisation of the Animation layer 85
Figure 4.5: Pseudo-code for randomising a list 90
Figure 4.6: Information captured by the algorithm as part of an interesting
event 95

 viii

Figure 4.7: Integers are easier to represent in an intuitive visual form 96
Figure 4.8: Effect of data size on operations 98
Figure 4.9: Functions of the Data Structure 98
Figure 4.10: Annotation of a driver algorithm 100
Figure 4.11: Different algorithm annotators may see an algorithm differently 102
Figure 4.12: Function of the Event API 104
Figure 4.13: An algorithm may be presented in different levels of detail 107
Figure 4.14: Interpreter structure and operations 110
Figure 4.15: The components supporting the animation engine 116
Figure 4.16: Data layer interface functions 117
Figure 4.17: Animation layer interface functions 118
Figure 5.1: An early (feature free) prototype 123
Figure 5.2: Extract example of a repository class interface 124
Figure 5.3: Extract of the algorithm class interface 127
Figure 5.4: Implementation of Bubblesort driver algorithm 129
Figure 5.5: Extract of a interpreter class interface 131
Figure 5.6: Implementation of an interpreter routine for an Exchange event 132
Figure 5.7: Graphical command example 133
Figure 5.8: Multiple animators synchronised by the unified timer 134
Figure 5.9: Animator processing a call with a 3x multiplier parameter 136
Figure 5.10: Unified algorithm animation desktop 138
Figure 5.11: Data generator interface 139
Figure 5.12: Scenario-based Animation Panel 140
Figure 5.13: Interface for modifying the virtual element properties 141
Figure 5.14: Script-based Animation Panel 141
Figure 5.15: Animation Selector 143
Figure 5.16: Play Control interface 143
Figure 5.17: Animation view 144
Figure 5.18: The play control managing an animation race 145
Figure 5.19: (a) Rectangle manhattan (b) Dot cloud 146
Figure 5.20: The Mergesort animation highlights some interesting details 147
Figure 5.21: The iterative box pattern of the Quicksort 149
Figure 5.22: Generating animations without using parallel processing 151
Figure 6.1: Framework structure 161
Figure 6.2: Prototype screenshot 163
Figure A.1.: Data Structure Definition 182
Figure A.2: Concept of the Bubblesort 183
Figure A.3: Implementation of Bubblesort 183

 ix

Figure A.4: Concept of the Selection sort 184
Figure A.5: Implementation of Selection Sort 185
Figure A.6: Concept of the Insertion Sort 186
Figure A.7: Implementation of Insertion Sort 186
Figure A.8: Concept of the Mergesort 187
Figure A.9: Implementation of MergeSort supporting merge routine 188
Figure A.10: Implementation of MergeSort main routine 188
Figure A.11: Concept of the Quicksort 190
Figure A.12: Implementation of Quicksort support routine 191
Figure A.13: Implementation of Quicksort main routine 191

 x

List of Tables

Table 1.1: Research questions of the dissertation 21
Table 2.1: Software Visualisation terms 28
Table 3.1: List of identified requirements 59
Table 3.2: Requirements supported by Sorting Out Sorting 61
Table 3.3: Requirements supported by BALSA-II 63
Table 3.4: Requirements supported by GAIGS 64
Table 3.5: Requirements supported by JCAT 66
Table 3.6: Requirements supported by JSAMBA 67
Table 3.7: Requirements supported by JAWAA 69
Table 3.8: Requirements supported by ANIMAL and JHAVE 71
Table 3.9: Scope of Requirements 74
Table 6.1: Research questions of the dissertation 156
Table 6.2: Identified Requirements 160
Table 6.3: Criteria met by extant systems 162

 xi

List of Definitions

Definition 4.1: Number of possible permutations for an n-sized list 89
Definition 4.2: Probability of creating any particular permutation 90
Definition 4.3: Step-Down-Runs 91
Definition 4.4: Measure of Presortedness 92
Definition 4.5: Possible combination pairs 93
Definition 4.6: Begin..end command 112
Definition 4.7: General command definitions 112
Definition 4.8: Rectangle visual object command 113
Definition 4.9: Visual properties command 113
Definition 4.10: Change properties command 113
Definition 4.11: Timed change properties command 114
Definition 4.12: Message command 114
Definition 4.13: Animated movement command 114
Definition 4.14: Time delay command 115

 1

Chapter 1

Research Context and Background

1.1 Introduction

Introductory algorithm curricula encompass various concepts, one of which is the

study of fundamental computing algorithms. In the study of computing algorithms,

specific predefined algorithms are investigated, and the computational efficiency

related to these algorithms is discussed. Students learn to analyse and evaluate

algorithms based on certain criteria (IEEE and ACM 2001). This learning process can

be simplified by the use of algorithm animations.

The studying and teaching of algorithmic concepts present a constant challenge for

both students and educators. Kehoe, Stasko and Taylor (2001) put this problem in

perspective:

“There is something difficult about understanding and analysing algorithms;

ask any computer science student. What that something is and how to reduce

the difficulty are two problems whose solutions are anxiously awaited by

many students and instructors”.

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 2

Unlike structures and processes of other disciplines, computer algorithms and data

structures are implementations of abstract and conceptual phenomena that have no

physical, concrete form. As a result, the algorithms are hard to follow, and are thus

difficult to understand and learn (Lattu, Meisalo and Tarhio 2003). Furthermore,

students are expected to cope with the programming notations, syntax, semantics,

structure and style of the language in which the algorithm is implemented,

compounding an already difficult problem (Cilliers 2005). Without a full

understanding of an algorithm, students are not able to apply and implement it to

solve a given problem, and consequently perform poorly.

Tertiary educational institutions worldwide continually face the challenge of

maintaining satisfactory performance rates for their students (Lister and Leaney 2003).

These institutions are constantly pursuing the use of new strategies to improve the

throughput rate of their students, including the integration of technological support

tools to support the curricula. The availability of computers has improved the

accessibility of technological support tools to educational institutions and students.

The remainder of the chapter outlines the research leading up to the adaptation of

algorithm animations in an educational environment (Section 1.2) and the role played

by algorithm animations in improving learning (Section 1.3). The focus of research

(Section 1.4) discusses the issues concerning the implementation of an algorithm

animation system and the related research questions.

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 3

1.2 Background and Prior Research

Various instructional aids are employed by instructors of algorithm courses to help

students in better comprehending and applying the algorithm concepts (Baldwin and

Scragg 2004). A commonly used method is to provide the algorithm source code or

pseudo-code to the students, accompanied by textual explanations and lecture

interactions that discuss the algorithm in varying levels of detail. Students also use

informal collaborative methods for learning. The students, for example, work in small

groups to complete assignments together or to explain difficult concepts to each other

(Hübscher-Younger and Narayanan 2002). These methods, however, still rely much

on the students to construct mental models of the abstract concepts for themselves,

thus increasing the students’ cognitive load and reducing learning effectiveness

(Tudoreanu 2002).

Related research on software visualisation has focused on making use of the power of

the human visual system and its ability to effectively take in a large amount of

information, detect visual patterns, and absorb pictorial representations (Roman and

Cox 1992). Tools and techniques were created to assist understanding by providing

visual form to abstract program concepts.

“Sorting Out Sorting” (Baecker 1981) is a 30-minute algorithm animation video

which demonstrated the characteristics and operations of nine sorting algorithms

using animations and audio commentary. The video is regarded as the first attempt to

bring to life and successfully exhibit the dynamic nature of algorithms to students.

Definitive work done by Brown (1988a) explored the educational opportunities

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 4

offered by algorithm animations. The research output also led to the first

computerised interactive algorithm animation system, BALSA-II (Brown 1988b).

Numerous algorithm animation systems have since been developed with the purpose

of aiding students in their study of algorithms (Wilson, Aiken and Katz 1996;

McCauley 1998; Wiggins 1998). More recently, algorithm animation has gained

acceptance as a valuable educational tool in algorithm courses (Garner 2003;

Costelloe 2004).

Research into the educational use of algorithm animations has focused generally on

three interrelated processes which iterate cyclically. These research directions are

illustrated in Figure 1.1.

Figure 1.1: The interaction of current research focus on algorithm animation

Initially, algorithm animation systems were developed with the simple hypothesis that

they could help students to better understand algorithms (Stasko and Lawrence 1998).

The systems were developed as instructional tools for computer science courses. The

early algorithm animation systems relied primarily on intuition to guide design, as no

1. Design and implement

algorithm animation system

2. Empirical testing of system in

educational environment

3. Identify effective feature of systems

and system usage

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 5

conventions existed on what features and usage techniques were conducive to learning

(Hundhausen 1993).

The implemented algorithm animation systems act as platforms to formulate and

validate new hypotheses. Whilst all algorithm animation systems seek to aid students

to better understand algorithms, markedly different approaches and methods are

utilised to attempt to achieve the results1. Each system is designed to meet the

requirements of a given learning environment or research focus.

Empirical testing of effectiveness of given systems are conducted in educational

environments. Various methods are employed to identify and collect information,

including pre- and post-tests to measure learning outcomes (Lawrence, Badre and

Stasko 1994), and ethnographical studies to observe and gain feedback on students’

perceptions of the systems (Hundhausen 2002).

Finally, supported by experiences gained from the abovementioned research foci,

effective features and methods of integrating algorithm animation systems into

educational usage can be identified (Saraiya, Shaffer, McCrickard and North 2004).

This in turn promotes further research in the abovementioned research directions by

guiding designs towards the formulation of a system for algorithm animation.

The following section outlines the role algorithm animations play in algorithm courses,

and the issues leading up to the research focus.

1 (Brown and Sedgewick 1984; Dann, Cooper and Pausch 2001; Rößling and Freisleben 2002;
Tudoreanu 2003)

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 6

1.3 Relevance of the Investigation

In algorithm courses, students are taught to select particular algorithms from a range

of alternatives. Students must also be able to justify the selection of the algorithms,

and implement the algorithm in a programming context. The categories of algorithms

typically studied include merging, sorting and searching algorithms (IEEE and ACM

2001).

One of the goals of teaching algorithms is thus to give the students the ability to select

and apply algorithms appropriate to particular purposes, with strong emphasis on the

issue of comparative efficiency and feasibility of implementation (IEEE and ACM

2001). A number of skills must be learnt by the students to achieve this result,

including understanding the range of algorithms that address an important set of

well-defined problems, recognising the strengths and weaknesses of each algorithm,

and determining the suitability of the algorithms for any given scenario.

Various methods have been devised to address the problem of teaching algorithms

and comprehension of their effectiveness, such as the use of graphical materials or

demonstrations on laboratory computers. These methods, however, have limitations in

their capability to demonstrate algorithms (Section 1.3.1). The limitations have

stimulated the use of algorithm animations by educators as an instructional aid in their

courses (Section 1.3.2). Background is provided of existing local research into

integrating technological support tools into introductory algorithm courses, thus

highlighting the context of algorithm animation as a new area of local research

(Section 1.3.3). The relevant factors discussed in the section are then summarised

(Section 1.3.4).

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 7

1.3.1 Demonstrating Algorithms

Educators and textbooks often make use of static visualisations, such as blackboard or

textbook frame-by-frame illustrations, to aid in the teaching of algorithms and

algorithmic concepts. The first set of images (Figure 1.2) shows an instructor

presenting a once-off demonstration on the concepts of the Mergesort algorithm to

students. The second image (Figure 1.3) shows an extract from an algorithm textbook,

Data Abstraction and Problem Solving with C++ (Carrano and Prichard 2002),

illustrating and explaining a partial sequence of a Quicksort.

Figure 1.2: Once-off blackboard demonstration of a Mergesort in class.

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 8

Figure 1.3: Textbook illustration of a sequence in Quicksort (Carrano and Prichard
2002).

Static illustrations are, however, not capable of capturing the dynamic movement of

data and complex data structures, nor are the materials capable of exhaustively

illustrating algorithm examples (Stern, Søndergaard and Naish 1999). Limitations of

static illustrations are examined in this section, supported by Figures 1.2 and 1.3.

Once-off demonstrations, such as illustrations presented on a blackboard (Figure 1.2),

mean that lecturers must constantly erase parts of the image and add new objects to

reflect any changes made during each operation of the algorithm. This gives students

less chance to absorb the material, since the constantly changing output of algorithms

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 9

mean that any work demonstrated cannot easily be noted down or reproduced for later

self-study (Rößling and Freisleben 2000b).

Furthermore, mistakes can easily be made during classroom explanations by lecturers,

since they must simultaneously act the role of a “virtual machine” by interpreting the

algorithm in real-time, render the illustration, comment on and explain important

concepts and events, and answer any queries posed by students (Hamilton-Taylor and

Kraemer 2002).

Blackboard demonstrations and lecturer explanations also present another problem, as

they can never be optimally paced to accommodate the entire class. At any average

pace used, the smarter students are left bored and uninterested, whilst the weaker

students are frantically taking notes, possibly without even fully understanding the

concepts being discussed (Stern, Søndergaard and Naish 1999).

As illustrated in Figure 1.3, discrete steps of an algorithm are often omitted from

textbooks due to space constraints. Students consequently have to figure out the

missing details for themselves based on their own understanding of the algorithm. The

historic nature of static materials also means that only preset scenarios are illustrated,

thus not allowing students to test or enhance their understanding of an algorithm by

trying different cases and examples (Kann, Lindeman and Heller 1997), reinforcing

the learning thereof.

Evaluating and contrasting the performance and other characteristics of different

algorithms, or that of an identical algorithm under different conditions are challenging

due to the non-visible nature of the operations performed. Ironically, the power of

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 10

modern computers actually adds to the problem. Students implementing and executing

different sort algorithms see the final result of the execution seemingly instantly.

Without being given a chance to appreciate the effect, it is not surprising that students

do not understand why or how one algorithm might be more or less efficient than

another (Laxer 2001). Despite much discussion in class and in textbooks about the

number of operations and the time per operation required to perform sorts, the

students would still be left wondering as to how much worse a Bubblesort of an array

really performs compared to a Quicksort (Rasala, Proulx and Fell 1994) of the same

array. This is a significant drawback, since algorithm courses place a strong emphasis

on the students’ ability to analyse and compare the performance of sorting algorithms.

1.3.2 Use of Animation to Illustrate Algorithms

Algorithms are time-based in nature, consisting of elementary processes that are

executed through time. Animations, as a medium of visual communication, are well

suited to portray how the tasks of an algorithm are performed and how the state of its

data structure evolves over time. Specifically, some sorting algorithms make use of

iteration or recursion techniques to perform repetitive computations, which can be

displayed more efficiently using motion pictures shown in algorithm animations

(Baecker 1998). Furthermore, experiments have shown possible benefits in providing

simultaneous display of algorithm animations to provide a contrast of algorithm

performance.

Tudoreanu (2003) explains the effectiveness of algorithm animations in terms of how

they aid in the viewers’ cognitive economy. Cognitive economy comprises of

reduction of cognitive load and user tasks, and increase of visualisation of information.

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 11

Firstly, the load on the cognitive system of the viewer is minimised by reducing the

amount of information handled by the user and reducing user tasks which do not have

direct relevance to the computations being observed. Secondly, cognitive economy

attempts to maximise the visual information received by the viewers which are

relevant to the study of the algorithm. While the two goals mentioned might seem

contradictory (the first aims to reduce information load, whilst the second increases it),

Tudoreanu argues that the design of effective algorithm animation systems involves a

balance between the two factors.

Another approach explains that algorithm animations aid in the formation of the

mental model due to the short cognitive distance between a concept and its

corresponding visualisation (Bazik, Tamassia, Reiss and van Dam 1998). The more

directly the visualisation matches the mental model, the more obvious and

understandable it is to students. This allows them to focus on the ideas illustrated

rather than having to put effort into disseminating the medium of presentation.

An empirical study has suggested that using algorithm animations, even without

considering the effectiveness they have in aiding algorithm understanding, might

possibly result in faster learning (Byrne, Catrambone and Stasko 1996). At the same

time, it is pointed out that one of the advantages of algorithm animation over a

lecturer demonstration is that, unlike a lecturer, the algorithm animation will illustrate

its examples for as many times as needed, effectively allowing the students as much

time as they require to understand the material.

A number of studies have observed that in anecdotal feedback, the students were

unanimous in saying that the use of animations to learn sorting algorithms resulted in

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 12

a much more interesting and entertaining experience than traditional methods, and

thus students were better motivated to learn and understand the coursework (Kann,

Lindeman and Heller 1997; Rößling and Freisleben 2000b; Kehoe, Stasko and Taylor

2001). Learning from animations has thus made the learning of sorting algorithms an

intrinsic motivator, in that students learn because they are interested to find out

something, rather than an extrinsic motivator, where students learn in order to answer

examination questions and pass the course. This is an important factor in improving

the effectiveness of a learning experience (Alessi and Trollip 2001).

1.3.3 Overview of Existing Local Research Activities

The Department of Computer Science and Information Systems (CS&IS) at the

Nelson Mandela Metropolitan University (NMMU) is actively conducting research

aimed at increasing the throughput of students in algorithm courses (Calitz 1997;

Greyling 2000; Cilliers 2005). The past and current research makes use of two

approaches in attempts to achieve the objective, namely the identification of

potentially successful students, and the modification of teaching models. The latter

approach has led to the development of a number of experimental tools within the

department (Cilliers 2005). The technological support tools developed are classified

under specific categories depending on the area of research they support.

Technological support tools that support research on modifying teaching models

undergo continuous development to incorporate new research topics and ideas. The

tools have thus far targeted two areas, namely experimental integrated development

environments (IDE) and visual programming languages. The research areas outlined

in this section are presented in Figure 1.4.

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 13

Figure 1.4: Hierarchical presentation of research in the department of CS&IS,

NMMU – (adapted from Cilliers 2005)

Experimental IDE’s include specific tools which are not available in commercial

software development environments. The tools are designed to assist students in

developing their algorithm syntax and logic skills, and allow instructors to capture and

analyse data on the students’ usage of the IDE’s. The experimental IDE’s developed

by the Department are:

 SimpliphIDE (Christians 2003; De Jager 2004)

A simplified version of the Borland© DelphiTM 7.0 IDE, designed to minimise

complexities faced by novice programmers during program creation

 Student performance logging (Gamieldien 2003)

Approaches to raise throughput rate actively being researched at NMMU

Identify potentially
successful students

Modify teaching
model

Technological
support tool

Visual
programming

languages

Iconic programming
languages

(B#, Flowchart
Evaluation System)

Experimental IDE’s
(SimpliphIDE, Integrated

Student Performance
Logger, CodeWorks,

Visual Code Reorganiser)

Software visualisation

Algorithm Animation

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 14

An event logging module designed to integrate with the SimpliphIDE system.

This tool allowed for the capturing of selected programming activities of students

who use the IDE.

 CodeWorks (van Tonder 2003)

A lightweight JavaTM IDE with integrated tools for building GUI Java

applications. CodeWorks is the first IDE for Java to utilise the SpringLayoutTM

layout manager introduced in JDK 1.4.

 Visual Code Reorganisation Tool (Henning 2004)

The system presents partially completed programs to the students, who are then

expected to identify and manipulate missing code pieces to correctly complete

the program.

Iconic programming languages are integrated into the initial phase of the introductory

algorithm course to teach students introductory programming concepts. This approach

allows the initial instructional focus to be placed on problem solving strategies rather

than the notational mechanics of a given programming language. A number of

interactive environments have been developed by the Department to make iconic

languages more accessible to students:

 B# Iconic Language (Brown 2001; Thomas 2002; Yeh 2003; Cilliers 2005)

The B# system allows students to create algorithm program solutions using

iconic flowcharts, with visual links between relevant program source code and

the flowchart icons. B# also integrates a virtual flowchart interpreter, allowing

students to execute and trace flowchart programs which they have created.

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 15

 Flowchart and Textual programming evaluation System (Mamtani 2004)

The system is used to construct questionnaires regarding the learning preference

of students’ between iconic and text-based programming languages. It also

presents the questionnaire and captures the responses for later analysis.

The current study is on a third type of technological support tool which may be

integrated into the NMMU’s existing teaching model, namely in the area of algorithm

animation. Algorithm animation, a subset of software visualisation, is a discipline

which supports higher level understanding of algorithms by employing visual displays

of algorithm concepts (Price, Baecker and Small 1998).

1.3.4 Concluding Remarks on Relevant Factors

Instructors traditionally employed blackboards and textbook diagrams to help

visualise algorithms and data structures to students, which provides for more intuitive

learning compared to simply reading the algorithm code. The discussion in Section

1.3.1 presents a number of limitations associated with this method:

 Once-off blackboard drawings are difficult to copy or reproduce for later

reference;

 Instructors may err while attempting to simultaneously draw diagrams

on-board and present the lecture;

 Textbook illustrations cannot represent all algorithm steps exhaustively, nor

present novel scenarios which students are interested in, and

 Illustrations do not demonstrate the performance and characteristics of

algorithms.

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 16

The utilisation of animations is presented as a possible method to address such

limitations, offering advantages over static illustrations through a number of factors

highlighted in Section 1.3.2:

 Motion images are more efficient at illustrating iterative operations of

algorithms;

 Animation reduces the cognitive load on the student whilst increasing

relevant visual information;

 Animations are more accessible to students for review outside the classroom,

and are not limited on the number of times they may be used, and

 Animations are more enjoyable than text or static illustration explanations,

thus offering an intrinsic learning motivator.

Section 1.3.3 outlines existing NMMU research, which aims to improve existing

teaching models of algorithm courses through the use of experimental IDE’s or iconic

programming languages (Figure 1.4). The limitations of static illustrations (Section

1.3.1) serve to underscore the potential benefits of using algorithm animations in

teaching algorithm courses (Section 1.3.2). These discussions thus support a further

area of research, namely the use of algorithm animations as a technological support

tool to complement current teaching methods. This forms the focus for the current

investigation.

1.4 Focus of the Investigation

Research into algorithm animations is to be conducted in a similar approach to that of

the previous areas of work (Figure 1.1). The research will provide a foundation for the

proposal of an algorithm animation framework. A demonstration of the framework’s

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 17

effectiveness by means of the implementation of a prototype algorithm animation

system will act as a vehicle for conducting further research within the university. This

section first outlines the goals and objectives of the research (Section 1.4.1). The

research scope is provided to define the research areas to be covered (Section 1.4.2).

Various research questions are then posed to guide the investigation (Section 1.4.3).

1.4.1 Goals and Objectives

Since the demonstration of “Sorting out Sorting” (Baecker 1981), much research has

been done in the studying of the effectiveness of algorithm animation tools in teaching

(Hundhausen 1997; Hundhausen, Douglas and Stasko 2002). Experimental

evaluations have shown that the use of algorithm animations in learning environments

has had positive effects on the students’ understanding of algorithms (Hansen,

Narayanan and Schrimpsher 2000; Hundhausen, Douglas and Stasko 2002).

The purpose of this study is the design of an extensible algorithm animation

framework and the evaluation thereof through the implementation of a prototype

system based on the framework design concept. Algorithm animations of sorting

algorithms will be created using the implemented prototype system as part of a case

study to evaluate the framework design. The case study will be based on the quadratic

and O(N log N) sorting algorithms commonly taught in introductory algorithm

curricula (IEEE and ACM 2001).

The algorithm animation framework will be designed to support a specific list of

pedagogic requirements. A preliminary list of requirements is identified based on their

potential effectiveness in complementing the learning strategy of the students. An

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 18

extant system evaluation will be performed by using the requirements identified. The

evaluation will aid in deriving the final list of requirements to be supported by the

framework.

Extensibility of the framework will be supported through an independent layered

design. This will allow functionality and case study extensions to be made to the

framework.

In support of the development of the prototype, an extensive literature review will be

performed on extant algorithm animation systems and methodologies for creating

algorithm animations. The prototype system will enable educators to create

customised, interactive algorithm animations. The algorithm animation system will

employ visual elements to help students understand algorithms, and analyse

differences among algorithms through exploratory learning and interaction with the

algorithm animation. This facility will allow students to directly compare and contrast

algorithms utilising different scenarios. This feature is supported by having the system

run multiple animations in parallel, thereby letting students contrast performance

differences visually.

1.4.2 Scope

The study will focus on designing a framework for algorithm animation, and

evaluating the framework through the implementation of the prototype. The study

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 19

includes research into identifying pedagogically effective features of algorithm

animation systems (Chapter 3). A final system requirements list will be drawn up

based on the identified features. The framework will then be designed to support the

requirements.

The framework design and prototype implementation will communicate information

through the visual channel (visual metaphors, motion, colour). Audio elements are

briefly introduced as a technique for complementing visual displays in algorithm

animations; however, the technique falls outside the scope of the project and will thus

not form part of the framework design. The prototype will be designed to run on the

PC client platforms within the NMMU CS&IS department, on a lecture hall data

projector or in a closed laboratory environment.

The main deliverables of the study include an algorithm animation framework design,

a prototype system implementation based on the framework, and animations of the

sorting algorithms created using the prototype. The framework will not consider

support for interactive dialogs, such as presenting interactive questions and quizzes.

The evaluation of the framework will focus on the framework’s capability to provide

for the requirements of the system. Therefore a usability evaluation of the system is

considered to fall outside the scope of the current study. The documentation will also

focus on providing a list of algorithm animation requirements and an extant system

evaluation, which form a key complementary deliverable of the research in support of

the framework and prototype.

The case study consists of the building of algorithm animations based on sorting

algorithms taught in NMMU’s introductory and intermediate algorithm courses,

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 20

namely the Bubblesort, Insertion sort, Selection sort, Mergesort and Quicksort

algorithms.

1.4.3 Research Questions

A number of research questions have been identified to guide the investigation. Table

1.1 lists the questions, the method to be used to answer each question, as well as the

chapter which will address the questions.

 Research questions Method(s) Relevant chapter

1. What is software visualisation? Literature Study Chapter 2

2. What is algorithm animation? Literature Study Chapter 2

3. What elements are used to form an
algorithm animation?

Literature Study Chapter 2

4. How are algorithm animations used in
teaching and learning algorithms?

Literature Study Chapter 2

5. What are the issues to be considered in Literature Study Chapter 3

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 21

the design and specification of an
algorithm animation framework?

6. What are the criteria for the design of
effective algorithm animation systems?

Literature Study Chapter 3

7. How do extant algorithm animation
systems match the criteria?

Literature Study Chapter 3

8. What does an algorithm animation
framework look like?

Framework Proposal Chapter 4

9. What are the implementation issues
faced by developers of algorithm
animation systems?

Iterative Prototyping Chapter 5

10. How effective is the proposed
framework?

Iterative Prototyping Chapter 5

11. How does the algorithm animation
prototype developed match the identified
measurement criteria?

Heuristic Evaluation Chapter 5

12. What are the limitation and contribution
of the framework and prototype?

Conclusions and
Summary

Chapter 6

Table 1.1: Research questions of the dissertation

1.5 Structure of Dissertation

This dissertation consists of six chapters. Figure 1.5 provides a research roadmap to

show the flow of information within the dissertation. The figure illustrates the

relevance of each chapter’s investigations and contributions in relation to its

subsequent chapters.

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 22

Figure 1.5: Research Roadmap

Chapter 1 provides background information on the problem domain, and a discussion

of the factors leading up to the current research. The objectives and scope are then

formulated in the context of the background discussion. A number of research

questions are proposed to guide the investigation.

Chapter 2 provides an overview of algorithm animation. The chapter will investigate

the context of algorithm animation within software visualisation. Discussion is

Chapter 1
Research Context and

Background

Chapter 2
Algorithm Animation

Chapter 3
Analysis of Algorithm

Animation Systems

Chapter 4
Design of Framework

Chapter 5
Algorithm Animation

Prototype

Chapter 6
Conclusions and

Recommendations

CHAPTER 1 : RESEARCH CONTEXT AND BACKGROUND

 23

provided to define the concept of algorithm animation, and the various techniques of

communicating information it employs.

Chapter 3 focuses on information related to the design and implementation of an

algorithm animation system. It will discuss the various user types and system

components of an algorithm animation usage environment. This is followed by an

investigation into paradigms for linking algorithms to visualisations. A list of

requirements for pedagogically effective systems is established through literature and

extant system review.

Chapter 4 provides a detailed discussion of the proposed framework design.

Motivations are provided for the selection of visual paradigms and the framework

structure. Each of the framework components are examined in detail.

Chapter 5 documents the prototype implementation of the framework proposed in

Chapter 4. The implementation methodologies decisions are motivated. Discussions

are provided on the implementation of system components, system interfaces and the

sorting algorithm animation case study. Observations gained from the implementation

are also noted.

Chapter 6 concludes the dissertation by highlighting the theoretical and practical

achievements, contributions and implications of the research. A number of future

research projects based on the dissertation are also identified. A bibliography and

appendix is provided at the end of the dissertation.

 24

Chapter 2

Algorithm Animation

2.1 Introduction

Chapter 1 introduced the focus of the current investigation, which is the creation of an

algorithm animation framework. The presentation of algorithms in an animated form

harnesses the human visual perception to absorb and process visual information

(Roman and Cox 1992), thereby decreasing the cognitive load of students learning

and analysing algorithms (Tudoreanu 2003).

Questions thus arise concerning how an algorithm animation is defined, what

elements they utilise to convey information, and how they are generally used. In order

to understand the requirements for the proposed algorithm animation framework and

sorting algorithm case study, a number of issues are discussed. The chapter first

identifies the classification of algorithm animation in the broader context of software

visualisation (Section 2.2). This is followed by defining the concept of algorithm

animation, and the elements that make up an algorithm animation (Section 2.3). A

discussion on a number of environments where algorithm animations are used follows

CHAPTER 2 : ALGORITHM ANIMATION

 25

(Section 2.4). Section 2.5 discusses the concept of illustrating algorithms using

different levels of abstraction.

2.2 Software Visualisation

Computer software is becoming increasingly difficult to create and to understand due

to its increasing complexity. Software engineers thus develop and employ a number

of approaches to enhance the comprehensibility of software. One approach is

software visualisation, which focuses on improving the representation, presentation

and appearance aspects of a program (Baecker and Price 1998). Background is first

provided on software visualisation (Section 2.2.1). An overview of the taxonomy of

software visualisation is then provided to place the context of algorithm animation in

the field of study (Section 2.2.2).

2.2.1 Background and Definition

Software Visualisation is defined as “the use of the crafts of typography,

graphic design, animation, and cinematography with modern human-computer

interaction and computer graphics technology to facilitate both the human

understanding and effective use of computer software” (Price, Baecker and

Small 1998)

Software visualisation thus focuses on presenting the bigger picture of a program

system by making software visible using graphical representations. Software

visualisation modularises information hierarchically to enhance structural

CHAPTER 2 : ALGORITHM ANIMATION

 26

understanding, which in turn supports the process of large-scale software development

and maintenance (Eick 1998; Marcus, Feng and Maletic 2003).

In brief, software visualisation involves the using of a variety of sensory inputs to

cause the user to form a mental picture of logical structures or concepts, such as

software source code (Price, Baecker and Small 1998). Familiar examples of software

visualisation tools include Computer-Aided Software Engineering (CASE) tools

(Chikofsky and Rubenstein 1988) and Nassi-Shneiderman (1973) diagrams.

2.2.2 Taxonomies of Software Visualisation

A number of taxonomies are available which characterise and categorise software

visualisation using various attributes. These taxonomies serve to identify types of

software visualisation suited to particular environments, based on the aspect of a

program’s information which is displayed or revealed by the visualisation.

Myers (1990) presented a basic taxonomy categorising software visualisation systems

based on the level of abstraction (code, data or algorithm) and degree of animation

(static or dynamic) of the visualisation. However, the taxonomy mainly focused on

what the visualisation shows, passing over the issues relating to the design and

construction of the visualisations. The shortcoming of Myer’s work was addressed by

the taxonomy presented by Roman and Cox (1993). This taxonomy classified

software visualisation systems along five axes, namely scope, abstraction,

specification method, interface and presentation.

 Scope defines the aspect of the program visualised. In other words, which part of

the program is enhanced or represented visually. The focus can be placed at the

CHAPTER 2 : ALGORITHM ANIMATION

 27

lower level, such as program source code statements, or at a higher level, such

as program behaviours.

 The level of abstraction of a visualisation defines the kind of information

visualised. Visualisations can be a direct representation of a program by directly

mapping to a particular aspect of the program, or a synthesised representation

which involves visualising the program based on derived program data that has

no explicit representation. The concept is discussed in Section 2.5.

 The specification method describes the aspects of a program to be extracted, and

how the visualisations are to be displayed. The method also affects the level of

automation and design flexibility in creating visualisations. This issue is further

explored in Section 3.3 and Section 4.2.1.

 Interface characterises how visual information is presented to the viewer in

terms of the tools available for the presentation, such as the visual actions and

graphic objects (Section 4.8.1). Another interface issue is the level of

interactivity available for the viewer to control various aspects of the

visualisation display. This forms an important issue, further discussed in Section

3.4.

 Presentation defines the methods used by the visualisation to communicate

information. Presentation focuses on how the visualisation is designed using,

amongst others, graphical objects, motion and colour (Section 2.3). The aim is to

allow the viewers to interpret the visualisation to gain or complement their

understanding of the program being visualised.

The abovementioned taxonomies focus on defining the characteristics of extant

software visualisation systems. However, no definitive categorisation of the different

classes of software visualisation has been offered. Stasko and Patterson (1993)

CHAPTER 2 : ALGORITHM ANIMATION

 28

presented a taxonomy which focused on placing each of the classes of software

visualisation into definitive categories. A number of classes of software visualisation

are presented along with their characteristics in Table 2.1, namely data structure

display, program state visualisation, program animation, algorithm visualisation and

algorithm animation. These terms are explicitly presented to highlight the context of

algorithm animation. Furthermore, similar terms, such as data structure, display,

program, algorithm, visualisation and visualisation of algorithm, are often used

throughout latter chapters to discuss algorithm animation framework related issues.

The table will serve to separate such terms from the actual definition of software

visualisation classifications. The criteria for Stasko and Patterson’s taxonomy (1993)

can be mapped to Roman and Cox’s taxonomy (1993) as follows – Aspect to Scope,

Abstractness to Abstraction, and Automation to Specification Method. The Animation

criterion is discussed in Section 2.3.1.

 Aspect Abstractness Animation Automation

Data Structure Display low Low low high

Program State Visualisation medium Low low high

Program Animation medium medium medium high

Algorithm Visualisation high High low low

Algorithm Animation high high high low

Table 2.1: Software Visualisation terms (Stasko and Patterson 1993)

Stasko and Patterson’s taxonomy, represented in Table 2.1, defines algorithm

animation as a high aspect visualisation focused on demonstrating program behaviour

by employing animation techniques. Algorithm animation demonstrates algorithms at

a high level of abstraction, focusing on particular events of interest rather than all

CHAPTER 2 : ALGORITHM ANIMATION

 29

program activities. The process of designing algorithm animations has low propensity

for automation due to the inputs required from the animation creator. The next section

discusses algorithm animation in more detail.

2.3 Algorithm Animation

Algorithm animation is defined as “the process of viewing the underlying logic of a

computer algorithm through a series of pictures that are strategically chosen to

illustrate the algorithm in execution” (Hundhausen 1993). A further explanation of

algorithm animation is to describe it as the dynamic visualisation of high level

abstractions describing software (Price, Baecker and Small 1998), used to

communicate the workings of algorithms by graphically or aurally representing its

fundamental operations (Brown 1998).

Algorithm animation is thus concerned with the representation of specific algorithms

and their characteristics. It attempts to encourage understanding of algorithms by

visualising their runtime behaviour and their properties and consequences thereof

(Ball and Eick 1996). The algorithm behaviours are often represented in abstract,

artificially highlighting or concealing certain aspects and activities of the algorithm to

enhance its explanatory value.

The presence of the word visual in software visualisation can be misleading, since

software visualisation is not restricted only to visual elements. The primary meaning

of visualisation is the process of forming a mental image of concepts which have no

visual presentation, thus visualisation includes both visual and aural elements (Price,

Baecker and Small 1993). Algorithm animations employ two channels of

CHAPTER 2 : ALGORITHM ANIMATION

 30

communication, the visual channel, and the acoustic channel. The visual channel

(Section 2.3.1) uses graphical shapes, quantitative presentations and colours whilst the

acoustic channel (Section 2.3.2) uses pitch, volume and moving spatialised sound to

convey information (Baloian and Luther 2001). The audio element forms part of the

discussion on defining algorithm animation. However, it will not be considered in the

remainder of the dissertation due to project scope constraints (Section 1.4.2).

2.3.1 The Visual Aspect

Algorithm animation depicts the logic of an algorithm by visualising two aspects of

the algorithm - the data structures and the operations which manipulate the data

structures. The following briefly describes the primary components which form the

visual presentation of an algorithm animation, namely visual metaphors, animation

and colour.

Visual metaphors

Visual metaphors can be drawn from specific application domains, or non-technical

symbols which are familiar or easily inferable by the animation viewer (Giannotti

1987; Jeffery 1998; Arik 2005). The visual objects used to represent data structures

should be as self-explanatory as possible. Educational algorithm animations favour

the use of data structures that can be represented visually in an intuitive manner

(Gloor 1998).

CHAPTER 2 : ALGORITHM ANIMATION

 31

As an example, the most commonly employed metaphor in demonstrating a list of

elements is to map each element to a rectangle, with the rectangle’s height being

proportional to the element’s size (Baloian and Luther 2001).

Figure 2.1 gives an example of good and bad visual metaphors. The good metaphor

presents the data using numerical elements, for which relative size can easily be

induced. In addition, numerical elements have a value of magnitude, and thus map

well to the rectangle visual metaphor. The bad metaphor presents data as letters of the

alphabet, for which the relative size are more difficult to induce. Alphabetical values

also lack any form of dimension with which to effectively present as a visual

metaphor.

Figure 2.1: Examples of good and bad metaphors in algorithm animations (Gloor 1998)

More original and unconventional forms of visual metaphors can be applied to

construct algorithm animations, providing that the metaphors support the concept

being illustrated. An unconventional metaphor involves the use of metaphoric content

beyond those conventionally found in textbook illustrations. The use of

unconventional metaphors (Figure 2.2) has been shown to make an algorithm

4

6

5

2
B Z X A

Good visual

metaphor

Bad visual

metaphor

CHAPTER 2 : ALGORITHM ANIMATION

 32

animation more enjoyable to students. More interesting algorithm animations can thus

better capture the students’ attention, resulting in improvement in learning and

comprehension of the algorithm illustrated (Hübscher-Younger and Narayanan 2003).

Figure 2.2: Example of unconventional metaphors: Fibonacci Hamsters
(Hübscher-Younger and Narayanan 2003), and “Bubble”-Sort (Barbu, Dromowicz,

Gao et al. 2001)

Animation

Traditional methods of demonstrating algorithm processes have involved the use of

static images. A series of images can be created to show changes in the data structure

after each step in the algorithm’s operation. However, updates in static images take

place instantaneously, making it difficult for learners to keep track of the operations

which are occurring.

Animation is a technique for conveying visual information through motion, which is a

perceptively efficient, low cognitive overhead visual dimension that is well suited for

expressing change and activity (Bartram 1997). Based on the motion applications

taxonomy (Bartram 2001), various purposes for utilising motion with specific

relevance to algorithm animation are identified, namely awareness, emphasis and

transition. Awareness is concerned with attracting and directing visual attention to a

CHAPTER 2 : ALGORITHM ANIMATION

 33

specific viewing area. Emphasis is achieved by drawing attention to a particular visual

object or process. Transition guides viewers through intermediate processes between

non-temporal states.

Algorithm animation makes use of smooth, continuous animation to illustrate the

transition which occurs between each state of an algorithm, such as two values being

exchanged by seeing two representative blocks moving towards each other’s original

positions. This method of portraying each individual algorithm operation allows for

the viewers’ visual systems to easily perceive and track changes (Stasko 1998b).

Smooth animations are especially effective in illustrating the processes of more

complex ideas and algorithms (Sonnier and Hutton 2004).

Colour

Colour is capable of communicating large amounts of information to the viewer

efficiently (Brown and Hershberger 1991). The role of colour in algorithm animations

is especially useful since it provides another visual dimension to help illustrate

concepts. Colour is used in algorithm animations in five ways (Brown and

Hershberger 1998a):

1. Encoding the state of data structures – Colour is an effective tool for encoding

state information, since few pixels and less space are needed as compared to

using distinct shapes.

2. Highlighting activities – Alterations of colour can be used to focus viewers on

temporal or transient operations taking place.

CHAPTER 2 : ALGORITHM ANIMATION

 34

3. Uniting multiple views – Algorithms and data structures can often be represented

using different views. Colours are useful in visualising corresponding features

and thus help integrate the views.

4. Emphasising patterns – Colours used to encode information can collectively

highlight certain trends and commonalities of a visualisation.

5. Making history visible – Colour sequences can be used to show an algorithm’s

history by representing a linear time order of past events or states using colour

hues.

Figure 2.3 provides an example of the concepts described above using two views of a

Quicksort algorithm2, which uses a divide-and-conquer approach to sorting. The

pivots which separate each sub-list are encoded in red, items which currently form the

ignored sub-list are encoded in black, whilst the list currently being processed is

encoded in blue. As the algorithm seeks for a new pivot within each sub-list, the

examined item is highlighted in yellow. The unified colour scheme means that

viewers can see how the two different views correspond in turns of operations in

progress. The emphasis of the unique Quicksort pattern is clearly demonstrated in the

corresponding dot plot, where each grouping of sub-list items (encoded in black) are

boxed in by pivots (encoded in red) on each side.

2 The design of these views form part of the implementation discussion in Chapter 5. Each of the
concepts were utilised except for using colour hues to make history visible. The case study algorithms
were unsuited for utilising such a colour technique, and thus Figure 2.3 will not illustrate the technique.

CHAPTER 2 : ALGORITHM ANIMATION

 35

Figure 2.3: Example of colour usage techniques in algorithm animation

2.3.2 The Audio Aspect

Sounds are usually employed as a supporting element to imageries in animations, and

are useful for conveying information which cannot be or are difficult to visualise. In

support of visual presentations, sounds can help reduce visual clutter by providing an

alternative medium for information presentation (Brown and Hershberger 1991).

Vickers and Alty (2003) argue that while vision provides excellent spatial perception,

auditory senses can absorb many properties simultaneously and in considerable

volumes.

The element of sound can be used in algorithm animations to reinforce the visual

elements, convey patterns, and signal exceptional conditions (Brown and Hershberger

1998b). Whilst researchers have looked into ways to replace visuals with audio or

increase the use of audio in algorithm animations in general, this aspect still receives

considerably less attention due to the difficulties of mastering the medium (Baloian

and Luther 2001).

CHAPTER 2 : ALGORITHM ANIMATION

 36

2.4 Algorithm Animations in Instructional Environments

Whilst the earliest algorithm animation, “Sorting Out Sorting” (Baecker 1981), was

designed purely as a demonstrative tool, much research has since taken place in

developing new algorithm animations and finding new ways to integrate them into the

learning environment. Algorithm animations are used for demonstration in lectures,

exercises in the computer laboratory, and remote viewing over the internet.

2.4.1 Lecture Demonstrations

Algorithm animations, with their illustrative capabilities, make for an ideal

replacement for the typical in-class blackboard or slide demonstration (Rößling and

Freisleben 2000b). The use of algorithm animations as a presentation aid in the

classroom makes the lecturer’s task of explaining the concepts of the algorithms

easier for a number of reasons. The instructor can concentrate on explaining algorithm

concepts without having to render and re-render the blackboard, and examples can be

re-illustrated with minimal effort. When algorithm animation systems are used in

lectures, different scenarios can be explored with minimal fuss. The use of algorithm

animations also benefits students’ learning due to the ability of animations and

graphics to capture attention and maintain interest on the algorithm being studied.

2.4.2 Laboratory Usage

Integrating interactive algorithm animations into laboratory computers gives students

the opportunity to further their understanding of the course work outside of the

classroom. Students can interact with the animations at their own pace, performing

CHAPTER 2 : ALGORITHM ANIMATION

 37

activities such as customising the data structure used, specifying alternative animation

views, or analysing algorithms empirically (Gloor 1998). In addition, the students are

able to perform these tasks as often as is required to achieve understanding of the

algorithms taught.

2.4.3 Web-based Algorithm Animation

A number of algorithm animation systems have been designed to work over the

internet architecture, typically implemented in the JavaTM platform (Brown and

Raisamo 1997; Dershem and Brummund 1998). These systems are often made

available on public domains and thus provide the same benefits as the interactive

algorithm animations in a laboratory environment. In addition, web-based systems are

platform-independent, thus increasing their ease of accessibility to students.

2.5 Abstract Representations in Animation Algorithms

Algorithms are dynamic sequences of actions which, although implemented in a

programming language, still make use of abstract concepts. As seen from examples of

the sorting algorithms in Appendix A, the actual code of the algorithm and the

accompanying explanation are presented at different levels of abstraction.

Brown (1988c; 1998) defines the content of an algorithm animation as either being

direct or synthetic. Direct content shows isomorphic pictures representing the data

structure of a program. Synthetic views show operations which change data or

abstractions of the data, rather than map directly to any program variables. To be

effective, animations must typically use a mixture of both techniques of presentation.

CHAPTER 2 : ALGORITHM ANIMATION

 38

The issue of constructing direct and synthetic animation views are examined further in

the visualisation paradigm discussion in Section 3.3.

In creating algorithm animations, the visualisation designer (Section 3.2) must

consider the level of abstraction to display to allow students to see the operations of

the algorithm at work. Detailed views may show how values are stored and moved

around, while generalised views present the bigger picture, such as patterns or

performance trends of the algorithm (illustrated in Section 5.5). Showing an animation

with too much detail will lead to distractions and irrelevant information been shown,

whilst abstracting away too many details may hide the important execution processes

of an algorithm (Wilhelm, Müldner and Seidel 2001). Although the construction of

algorithm animations can be supported by algorithm animation frameworks, the level

of abstraction of the animation is still very much influenced by how the visualisation

designer sees and chooses to express an algorithm (Bazik, Tamassia, Reiss and van

Dam 1998; Fleischer and Kučera 2002). The high level of abstractness also provides

designers with a certain degree of artistic freedom in creating algorithm animations

(Stasko and Patterson 1993).

2.6 Conclusion

An overview of several taxonomies has shown methods of categorising software

visualisations. Algorithm animation is defined as a form of software visualisation

which animates a customised high abstraction view of algorithmic operations, which

convey information through three visual elements, namely visual metaphors,

animation and colour.

CHAPTER 2 : ALGORITHM ANIMATION

 39

A brief discussion was presented on the possible uses of algorithm animations in an

instructional environment. This leads up to the discussion, in Chapter 3, of the various

key roles of such algorithm animation environments, which consist of the algorithm

animation components and algorithm animation system users. The previous

discussion highlights the fact that the high-level concepts of each algorithm often do

not necessary correspond to its low-level source code. Thus, the animation creator

must decide on the concepts and operations to be animated, and in how much detail,

in order to allow effective transfer of knowledge.

This chapter has provided an overview of the various aspects of algorithm animation,

including its context and definition, its methods of communicating information, and

its uses. The following chapter will focus on functional issues relating to the design of

algorithm animation systems.

 40

Chapter 3

Analysis of Algorithm Animation Systems

3.1 Introduction

Students are faced with the challenge of comprehending the abstract concepts of

algorithms, such as operational procedures and performance characteristics, and

applying the concepts successfully to solve computational problems. The

contributions offered by algorithm animations as a technological support tool, and the

techniques used by algorithm animations for demonstrating algorithm concepts were

highlighted in Chapters 1 and 2.

An algorithm animation framework is regarded as a generic design which is capable

of supporting the requirements of an algorithm animation system. An algorithm

animation system is intended to meet the needs of different user types whilst

conforming to the concepts and goals of the framework design. Each component in

the system is expected to provide technical features and functionalities which will

allow various users to perform their tasks within the system (Rößling and Freisleben

2002). The components and user roles which make up an algorithm animation system

are discussed in Section 3.2.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 41

Various high-level paradigms have been devised in order to connect an algorithm to

its related visual representation, with each paradigm having a number of available

methods of implementation. The selection of paradigms will affect the design and

characteristic of the framework. Each of the paradigms and associated methods of

implementation are first examined in Section 3.3. The next chapter will then evaluate

and select a paradigm as part of the framework design (Section 4.2.1).

A literature study identifies features that increase the instructional value of algorithm

animation systems. The identified features are organised into an evaluation criteria for

analysing algorithm animation systems (Section 3.4). This is then followed by an

overview of a selected number of extant algorithm animation systems utilising the

evaluation framework (Section 3.5). Based on the information gathered, a

comparative study is performed to characterise the features of the systems and

compile a list of requirements to be supported by the proposed framework (Section

3.6).

3.2 Algorithm Animation System - Users and Components

An algorithm animation system contains a collection of components which promote

the efficient production of algorithm animations for the creators, and easy

accessibility of the animations by the students. When designing an algorithm

animation system, it is important to understand the role of each component within the

final system, and the user types served by each component or collection of

components.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 42

Figure 3.1 illustrates the interactions among the system components and user types.

The software visualisation software developer implements each of the algorithm

animation system components. The algorithm programmer and visualisation tool

developer implement classes within the algorithm repository and graphical repository,

respectively. The visualisation designer constructs algorithm animations using the

classes in the algorithm and graphical repository. Instructors and students utilise the

learner interface and animation player to view and control the constructed animations.

Figure 3.1: Interaction among system components and users

In this section, an investigation is performed to understand the role of the different

user types within an algorithm animation usage environment (Section 3.2.1). The

functionalities of the core components of an algorithm animation system are then

discussed (Section 3.2.2).

Algorithm
repository

Learner interface

Animation
player/viewer

Graphical
repository

Algorithm
Programmer

Instructors
&

Students

Visualisation
designer

Visualisation
tool developer

Algorithm Animation System

Software visualisation
software developer

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 43

3.2.1 Users within the Context of Algorithm Animation

A number of users are recognised in the context of using algorithm animations in a

learning environment. Each of these six user types is briefly discussed, based on the

roles identified by Price et al (1998) and Naps, Rößling, Anderson et al (2003).

 The software visualisation software developer is the user who implements the

framework into a functional system, thus allowing the given framework to

effectively support the activities of other users.

 The algorithm programmer is responsible for creating the algorithm which will

be animated by the system. Depending on the method of animation creation used

by the framework, the programmer may or may not need to know that the

algorithm will be visualised.

 The visualisation tool developer creates the tools required to give a visual

representation to program content, such as algorithms and data structures. The

tools include visual elements (Section 2.3.1) and the mechanisms used to link

program content to the visual elements (Section 3.3).

 The visualisation designer takes the algorithm to be studied, identifies the

abstract concepts which require visualisation, and maps these concepts to an

animated visual presentation. The visualisation of algorithms is done by utilising

the visualisation tools provided in the system. The visualisation designer must

possess proficient understanding of an algorithm in order to create animations

which will effectively support the comprehension of the algorithm.

 Instructors integrate the use of the algorithm animations into their teaching

materials to aid students in their understanding of algorithms.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 44

 Students view and interact with the algorithm animation created by the

visualisation designer, with the aim of enhancing understanding of the algorithm

under study.

This overview of the different user types in the instructional use of algorithm

animations provides an understanding of the users’ expectations of an algorithm

animation system. The components which support the user types are discussed in the

following section.

3.2.2 Components of an Algorithm Animation System

The common mechanisms within an algorithm animation system are derived based on

a number of examined extant designs obtained from the literature study. The

mechanisms discussed consist of the algorithm repository, graphical repository,

animation player/viewer and learner interface.

The algorithm repository stores the algorithms which can be expressed in an animated

format (Baker, Cruz, Liotta and Tamassia 1996; Döllner, Hinrichs and Spiegel 1997).

Depending on the techniques used by the system to identify and visualise the relevant

concepts and data structures, the algorithms in the repository could either consist of

the original, unedited source code, or code annotated with specific output or event

calls to highlight interesting events.

The graphical repository stores visual objects and animation functionalities which can

be utilised by the algorithms, either directly through API-type calls, or indirectly

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 45

through pre-scripted calls, to give visual representation to the algorithms (Rößling,

Schüler and Freisleben 2000; Najork 2001).

The animation player/viewer makes use of the graphic components within the

graphical repository, and the operations from the algorithms in the algorithm

repository, from which algorithm animation may be dynamically rendered (Brown

and Sedgewick 1984; Colombo, Demetrescu, Finocchi and Laura 2003).

The learner interface (usually implemented in the form of a GUI) allows end-users

(the students and instructors) to interact with the system, allowing for input and

control of the various aspects of the algorithm animations being viewed (Baker, Cruz,

Liotta and Tamassia 1996; Syrjakow, Berdux and Szczerbicka 2000). Inputs may

include selecting algorithms and views, setting up views, and inputting customised

data structures.

An algorithm animation system is designed with a number of components, with each

component or collection of components supporting a subset of user types to

accomplish specific tasks within an algorithm animation usage environment.

3.3 Techniques for Creating Algorithm Animations

A number of paradigms are available for connecting algorithms to visual

representations (Price, Baecker and Small 1993). This section provides an overview of

the paradigms, and the techniques generally employed by each paradigm to link

algorithm actions to visual presentations.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 46

3.3.1 The Imperative Paradigm

The imperative (or event-driven) paradigm makes use of the interesting event concept

to create animations. The concept consists of identifying events within an algorithm

that have relevance to the visualisation (Brown and Sedgewick 1998). Program

commands are placed in relevant sections of the algorithm to capture interesting

events. The events are then conveyed to the visualisation component to produce the

animations. Two techniques for creating visualisations can be categorised under the

imperative approach, namely API calls and scripting language.

The API technique consists of a collection of pre-defined functions for generating

visualisations, stored in a function library. The algorithm is then animated by

embedding the algorithm code with calls to the API functions (Figure 3.2). Typically,

the algorithm must be written in the same programming language as the API.

ANIMAL 3 (Section 3.5) and JAL (SiliconGraphics 1999) 4 are examples of

API-based animation systems.

Figure 3.2: Using API library calls to generate visualisation

Animations can be generated using text commands defined by a scripting language

(further discussed in Section 4.8.1). An algorithm is annotated with output statements

at interesting events. The statements are then parsed and interpreted by the

visualisation component to produce the relevant visual output (Figure 3.3). JSAMBA

3 The ANIMAL API classes are undocumented at the time of writing this dissertation.
4 Cited in (Rößling and Freisleben 2000a).

Algorithm with
API calls

API Library Visualisation Function calls Visualisation

commands

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 47

(Section 3.5.5), JAWAA (Section 3.5.6) and ANIMAL (Section 3.5.7) are examples

of script-based animation systems.

Figure 3.3: Using scripting language to generate visualisation

3.3.2 The Declarative Paradigm

The declarative (or data-driven, state-mapping) paradigm represents algorithm

operations visually by defining mappings between program states and visual objects

(Roman and Cox 1993; Roman 1998). Visualisations are generated based on data

structure related events of the algorithm (Figure 3.4). Relevant data structures are

specified and monitored, and changes in the state of the data structures trigger events

which update the visualisation.

Figure 3.4: The declarative paradigm monitors state changes in the data structure

In the example of the declarative paradigm shown in Figure 3.4, changes in the data

structure state are detected by the state monitor through changes in element ID flags.

Algorithm with
Output statement

Visualisation Text commands Visualisation

commands

X Value:

ID:

Z A

[0] [1] [2]

A Z X

[2] [1] [0]

Value:

ID:

 State monitor
State change

>ID[0] ID[2]

Command
Parser

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 48

Two techniques for creating visualisations can be categorised under the imperative

approach, namely comment embedding and direct animation.

The comment embedding technique involves embedding animation commands into an

algorithm without affecting its program structure. Commands which specify the data

structures to be monitored are written as comments within the algorithm. The

algorithm animation system’s interpreter then extracts the commands from the

comment code (Figure 3.5). LEONARDO (Crescenzi, Demetrescu, Finocchi and

Petreschi 2000) uses its own declarative language called Alpha, which is embedded as

comments into C-based algorithms .

Figure 3.5: Interpreter extracts the comments which describe the data structures
being monitored

Direct animation by code interpretation presents the most convenient and rapid

method for creating animations. The system uses a virtual machine to interpret an

algorithm and identify all data declarations (Figure 3.6). The data declarations are

then automatically linked to visual elements. Any changes to the data state detected

results in appropriate visualisation updates. Jeliot (Haajanen, Pesonius, Sutinen et al.

1997) supports direct interpretation and animations of JavaTM code. The system’s

interpreter in effect replaces the role of the visualisation designer.

Figure 3.6: The virtual machine interprets the algorithm source directly to monitor
data structure changes

Virtual Machine
Interpreter

Visualisation Data structure

monitors

Algorithm with
/*Comments*/

Comment
Interpreter

Visualisation Commented

commands

Data structure

monitors

Algorithm

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 49

3.3.3 Other Approaches

A number of alternatives to the approaches discussed under the imperative and

declarative paradigms exist for constructing animations of algorithms. These

alternative approaches allow rapid creation of animations without any form of

programming implementation (Stasko 1998a; Rößling and Freisleben 2000a). No

formal mapping is thus needed between the visualisation and the illustrated algorithm.

The two approaches discussed are visual editing and manual scripting language.

Visual editors allow the visualisation designer to build animations using pre-defined

tools and graphical objects. JAWAA and ANIMAL are examples of algorithm

animation frameworks which include a visual editor (Section 3.5).

Manual scripting languages offer another method for creating animations, where the

visualisation designer writes animation commands manually using a text editor. This

approach will utilise the same grammar structure of the scripting language approach

discussed under the imperative paradigm (Section 3.3.1), but differ in that no

algorithm implementation is linked to the created animation.

3.4 Desirable Pedagogical Requirements for an Algorithm Animation System

The availability of modern computers allows for rapid design and real-time generation

of animations, and the ability to facilitate interaction with students. The focus of

algorithm animations has moved beyond merely showing students an algorithm

animation in the hope that they will understand and retain some of the algorithm

concepts illustrated. Current emphasis is placed on identifying factors which will

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 50

increase the instructional value of algorithm animations (Stasko, Badre and Lewis

1993; Saraiya 2002). Studies and observations (Roman and Cox 1992; Hundhausen

1993) have shown that the use of algorithm animations does not in itself guarantee

improvements in algorithm understanding. This is akin to how an immaculately

printed textbook cannot produce effective transfer of learning if important features

(taken for granted in any decent textbook) such as well written explanations, relevant

case studies and informative exercise questions are not included. An important step in

designing an algorithm animation system is thus to understand what features

effectively complement the students’ learning strategy (Kehoe, Stasko and Taylor

2001).

The supported features of algorithm animation systems are generally fixed once the

system has been implemented (Rößling and Freisleben 2001). Adapting and extending

existing source code to support additional features are often a time-consuming and

impractical process. This further highlights the need to define a clear specification of

requirements when designing and implementing a system. A process is thus required

to identify and motivate specific features derived from the research community.

In this section, discussions are given on algorithm animation features shown to

increase the pedagogic effectiveness of the system or broaden its usefulness within a

teaching environment. The first part discusses a number of features based on a

system’s interaction with the students (Section 3.4.1). This is followed by a discussion

of system features which can further complement the learning effectiveness of an

algorithm animation system (Section 3.4.2). The findings from the discussions are

then summarised and presented (Section 3.4.3).

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 51

3.4.1 Requirements based on Levels of Engagement

An interactive environment in an algorithm animation system is believed to more

effectively attract a student’s cognitive attention and engage the mind of the student

(Hansen, Narayanan and Hegarty 2002). Studies have suggested that rather than just

letting students view an algorithm animation passively, better learning results may be

obtained by allowing students to engage interactively with the animation

(Hundhausen 2002; Naps, Fleischer, McNally et al. 2003). The observations suggest

that the method and extent in which students are engaged with the algorithm

animation and related learning activities have significant influence on the

effectiveness of employing such teaching support tools (Faltin 2001; Grissom,

McNally and Naps 2003). It is thus important to take into account the approaches of

active engagement within the context of algorithm animation when identifying

requirements for the system. Furthermore, a recent study has produced a taxonomy to

define the level of engagement of students with an algorithm animation system (Naps,

Fleischer, McNally et al. 2003). As a result, empirical studies within the research

community can now uniformly evaluate the effectiveness of algorithm animation

systems and features based on an established level-of-engagement framework

(Grissom, McNally and Naps 2003).

Naps et al (2003) defines a taxonomy of students’ interaction with algorithm

visualisations based on six levels of engagement:

1. No viewing – no algorithm visualisation is utilised

2. Viewing – from students viewing a visualisation passively, to having them make

adjustments on various aspects of the visualisation display

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 52

3. Responding – students answering questions concerning the animation during its

execution

4. Changing – modification of the visualisation by the student in order to increase

understanding of an algorithm

5. Constructing – creating a new visualisation of a given algorithm

6. Presenting – presenting visualisations to other students to stimulate discussions

on the given topic

The taxonomy is designed to allow educators to develop systems which will take

advantage of these various forms of engagement, and allow the developed systems to

be evaluated using a standardised engagement level definition. Each of the

requirements identified is organised based on the taxonomy of engagement levels

presented by Naps et al (2003). The list of requirements is then used as a common

framework for examining and evaluating a number of extant algorithm animation

systems. The requirements are identified and organised based on four levels of

engagement, namely viewing, changing, responding and constructing. The first and

sixth level of engagement – No viewing and Presenting – are not discussed further. No

viewing is essentially the absence of algorithm animations. Presenting involves the

learner demonstrating an algorithm animation. It is thus an activity generally

performed by the instructor to aid learners. However, since Presenting is inherently

supported through Constructing, instructors can ask students to demonstrate

animations which they have created to liven up lecture discussions.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 53

Viewing

Algorithm animations can be viewed as a surveillance video that records and displays

the execution of an algorithm5. When users investigate an algorithm, they may slow

the video down to better examine a particular event, speed through events which offer

no further contribution to the investigation, or step through key events one at a time.

Speed and stepping controls allow algorithm animations to adapt to the learning pace

for a given environment, whether it is instructors demonstrating in a classroom, or

students self-studying in the computer laboratory. The users should have a unified set

of functions for controlling the behaviour of the algorithm animation displayed (Gloor

1998). The system should include functionalities to pause and replay the animation.

The ability to speed up animations will allow students and instructors to move over

sections which are already understood (Rößling 2002).

Algorithm operations may be missed by students, which may occur if the animation is

displayed too fast. Students may also be confused by certain operations if they were

shown while students were still mentally processing previous operations, or if the

operations were not anticipated by the students due to unfamiliarity with a newly

introduced algorithm. Allowing students to backtrack the animation a specified

number of steps will allow reviewing of past operations as needed, rather than having

to restart the animation from scratch (Naps, Eagan and Norton 2000; Rößling 2002).

5 Albeit a display with a high-level of abstraction.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 54

Responding

Algorithm animations provide immediate visual feedback of algorithm operations,

and can thus support students in testing predictions to enhance understanding. In a

closed-lab study performed by Byrne et al (1999), students were required to pause

algorithm visualisation at specific points and make predictions orally. This has shown

to significantly increase algorithm understanding. Students may be asked to make

predictive answers independently of the animation system during the display of the

animation (Byrne, Catrambone and Stasko 1999), or answer text-based questions

integrated into the animation system (Jarc, Feldman and Heller 2000). The system

should support the activity of letting students make predictive answers by running

animations in discrete steps, thus allowing the students to pause before each

interesting event in the animation to predict the next algorithm action (Anderson and

Naps 2000)6. Allowing animations to run one step at a time also acts as a method for

slowing the animation down if students have difficulty in understanding certain

operations of an algorithm.

Changing

Students and instructors should be allowed to input custom data into the algorithm.

Instructors will thus be able to demonstrate algorithm specific characteristics to

students, such as best-case and worst-case performance scenarios (Naps, Eagan and

Norton 2000; Saraiya 2002). Students will also be able to input their own data set into

the algorithms to test cases beyond those offered in lectures or textbooks. An

important advantage of an algorithm animation system over traditional static teaching

6 Cited in (Rößling and Naps 2002).

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 55

materials is a system’s support for real-time generation of animations using

user-specified input. Users can utilise this feature to examine various cases to improve

algorithm understanding. Most importantly, the system should support real-time

generation of datasets, based on a provided population size and list pre-sort

percentage level. This will allow students to create and examine case studies relating

to complexity and performance characteristics of different sorting algorithms by

generating and utilising meaningful test data (Section 4.4).

Constructing

Creating an animation of the algorithm under study would induce students to have a

deeper understanding of the algorithm’s operations, since students must learn the

algorithm with the intent of sharing their understanding of the algorithm concepts to

an audience (Hübscher-Younger and Narayanan 2003).

This concept was tested by Hundhausen (2002) in his observational study, where

students were asked to construct and present an algorithm of their choosing using

existing algorithm animation tools. In effect, the students were actively engaging with

the algorithm animation by performing the roles of algorithm programmer,

visualisation designer and instructor (Section 3.2.1). Hundhausen observed that while

engaging students in such activities took significantly more time than conventional

teaching methods, these activities did contribute to the students’ understanding of the

algorithms studied.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 56

3.4.2 Complementary Requirements

A number of algorithm animation system features are identified which are believed to

enhance the pedagogic effectiveness and usefulness of the system. Each of these

features is discussed below.

Smooth animation aids the student in tracking changes between discrete steps of an

algorithm (Stasko 1998b). This feature forms a fundamental part of algorithm

animation. In certain cases, such as when large datasets are being viewed, students

should be able to disable animations and view discrete steps of the algorithm (Rößling

and Naps 2002).

Analysis features can aid students in better understanding the efficiency of an

algorithm and the relative performance differences among various algorithms (Gloor

1998). Algorithm efficiency can be illustrated by means of performance statistics

collected from the animations or generated independently of the animation. Relative

performance can be illustrated by running several algorithms simultaneously, thus

letting the students compare the differences visually (Naps, Fleischer, McNally et al.

2003). Using animations to demonstrate sorting algorithm races have shown to be

very convincing in illustrating performance differences (Baecker 1998).

Multiple views of an algorithm may be used in different approaches to aid students.

Students may find the use of certain metaphors easier to understand, and thus prefer a

certain approach of animation (Gurka and Citrin 1996). Different views may also be

used to illustrate algorithm executions at different levels of abstraction, or

demonstrate different characteristics, such as operational or performance trends

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 57

(Wilson, Katz, Ingargiola et al. 1995; Naps, Fleischer, McNally et al. 2003). In

addition, alternative views also include information relating to the running algorithms,

such as total execution time elapsed, and the number of operations performed.

Additional materials accompanying algorithm animations may increase the

instructional effectiveness of the animation. The materials may include simple textual

explanations, pseudo-code or source code views (Rößling, Schüler and Freisleben

2000). Alternatives include using multimedia elements, such as audio and video of

instructors explaining the algorithm (Stasko, Badre and Lewis 1993). The materials

may be presented separately, or integrated as part of the animation system.

Students may utilise algorithm animations in a self-study environment, without

narrations and explanations from instructors. This may decrease the instructional

value of the animation, as students are expected to figure out the plot of the algorithm

unaided. Whilst it is possible to provide static text related to an algorithm by using

printed supplementary material, the text will not be able to highlight specific details of

the algorithm or to explain the workings of the algorithm as the animation is running,

like an instructor in a demonstration environment could. A system which has some

form of data awareness will be able to provide and store dynamic output as the

algorithm runs. Static information such as “the algorithm is now performing a swop of

items” can then provide more context sensitive information, such as “swopping value

7 in position[1] with item with value 4 in position[2]”, thus offering a more specific

explanation to the students viewing the animation (Naps, Eagan and Norton 2000;

Sumner and Banu 2003).

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 58

A general animation system is designed to create animations in any domain of

knowledge, whilst domain-specific animation frameworks are limited to animating a

specific type of algorithm and data structure. However, it has been noted that general

purpose systems are inherently more processor intensive than topic specific

animations (Brown and Sedgewick 1984). A balance must be found that allows a

given animation system to construct animations for a specific domain, whilst still

offer some degree of support for non-domain specific uses. The system should be

designed to allow creation of animations not necessarily restricted to sorting

algorithms, allowing for the animation of other list-based algorithms, such as merges

and searches, without need for modification (Akingbade, Finley, Jackson et al. 2003).

Furthermore, a system which can create animations of various associated topics can

offer a common user interface for students studying the different topics (Rößling and

Naps 2002).

3.4.3 Summary of Requirements

From the preceding discussion, a number of preliminary features are identified as the

requirements for a pedagogically effective system. The identified requirements appear

in Table 3.1. The effectiveness of an algorithm animation system to complement the

students’ study of algorithms is determined by the system’s ability to engage the

students in an active learning process (categorised as requirements R1 through R6),

and system features which either provide additional information to enhance

comprehensibility of the animation, or increase its usefulness in an educational

environment (requirements R7 through R11).

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 59

Requirements for Algorithm Animations Section

R1: Allow speed control of algorithm animation 3.3.1 - Viewing

R2: Allow rewinding of the animation 3.3.1 - Viewing

R3: Accept user input data for the algorithm 3.3.1 - Changing

R4: Provide questions to predict algorithm behaviour 3.3.1 - Responding

R5: Allow stepping control of algorithm animation
3.3.1 - Viewing
3.3.1 - Responding

R6: Support construction of animation by students 3.3.1 Constructing

R7: Support for smooth motion 3.3.2

R8: Include capabilities for comparative algorithm analysis 3.3.2

R9: Provide multiple views of an algorithm 3.3.2

R10: Provide additional instructional material 3.3.2

R11: General purpose framework 3.3.2

Table 3.1: List of identified requirements

The list of requirements established in Table 3.1 is used as criteria for assessing a

number of extant algorithm animation systems in the following section. The

requirements identified, in conjunction with the extant systems overview (Section 3.5),

will support the discussion of the finalised list of requirements (Section 3.6) for the

proposed algorithm animation framework.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 60

3.5 Overview of extant systems

The purpose of the extant system analysis is to use the requirements identified in

Section 3.4 as a platform to evaluate existing system implementations. This section

offers an overview of seven extant algorithm animation systems. General

characteristics and the requirements supported by each extant system are identified,

with the specific aim of guiding the creation of the scope of requirements for the

proposed framework. The overview of these systems7 includes a tabular summary of

the requirements supported by the systems (Tables 3.2-3.8), based on the list

identified in Section 3.4. Explanations are provided for requirements indicated as

partially supported. Support for requirements which cannot be conclusively derived

from available literature are treated as unsupported. Information is derived from a

combination of literature studies and actual system reviews.

3.5.1 Sorting Out Sorting

The “Sorting Out Sorting” video (Baecker 1981; Baecker 1998), although not strictly

defined as a system, is nevertheless, worthy of mention. The video employed a

number of features which were unprecedented at the time in demonstrating sorting

algorithms (Figure 3.7). These features include the use of various visual metaphors,

including animation, colour, audio, and voice-over commentary. The operations of

nine sorting algorithms were illustrated, followed by time versus data size

performance graphs typically found in textbooks. The nine algorithms were then run

simultaneous in a race to compare and contrast their performance characteristics.

7 Comprehensive reviews of actual systems are sometimes not possible due to systems being no longer
available, legacy, or incompatible with available hardware and software resources.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 61

Figure 3.7: Sorting Out Sorting – Demonstrating a sorting algorithm / Race of nine
sorting algorithms using a cloud representation (Baecker 1981)

Table 3.2 illustrates the support provided by “Sorting Out Sorting” based on the list of

requirements derived in Section 3.4. The video is identified as supporting smooth

motion (R7). Comparative algorithm analysis and multiple views of an algorithm are

included (R8, R9). Additional material is provided through audio narratives (R10).

Because the animations are produced as a video, all requirements are essentially of

historical nature and thus regarded as partially supported.

Requirements for Algorithm Animations Supported
R1: Allow speed control of algorithm animation

R2: Allow rewinding of the animation

R3: Accept user input data for the algorithm

R4: Provide questions to predict algorithm behaviour

R5: Allow stepping control of algorithm animation

R6: Support construction of animation by students

R7: Support for smooth motion ()

R8: Include capabilities for comparative algorithm analysis ()

R9: Provide multiple views of an algorithm ()

R10: Provide additional instructional material ()

R11: General purpose framework
Table 3.2: Requirements supported by Sorting Out Sorting

 Full support. () Partial support.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 62

3.5.2 Brown University Algorithm Simulator and Animator II (BALSA)

The BALSA animation system (Brown and Sedgewick 1984) can be regarded as a

concept prototype for all current systems due to the novel design concepts utilised by

the system. The system was designed and implemented to integrate into Brown

University’s electronic classroom concept (Bazik, Tamassia, Reiss and van Dam

1998). BALSA dynamically generates algorithm animations by annotating Pascal

algorithms with interesting events (Section 3.3.1), which are then used to notify and

update animation views. BALSA is installed on workstations and displays animations

based on scripts created by the instructors. BALSA-II (Brown 1988a, 1988b) added

support for colour displays. BALSA-II also included the ability to run multiple

algorithms in synchronised displays to illustrate algorithm races (Figure 3.8), similar

to the demonstration done in “Sorting Out Sorting”.

Figure 3.8: BALSA-II – Illustrating a mergesort using a clouds view, and a bar chart
to show consecutive states of the data (Brown and Sedgewick 1984)

Table 3.3 illustrates the support provided by BALSA-II based on the list of

requirements derived in Section 3.4. The system supports dynamic input to generate

animation (R3), however, literature did not specify if the feature is directly accessible

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 63

by students. No details were available on the level of animated motion support by

BALSA. The system allows for speed control of algorithms (R1) and stepping

through animations (R5). The system also supports capabilities to compare algorithms

(R8), and show alternative animation views (R9).

Requirements for Algorithm Animations Supported
R1: Allow speed control of algorithm animation
R2: Allow rewinding of the animation

R3: Accept user input data for the algorithm ()

R4: Provide questions to predict algorithm behaviour

R5: Allow stepping control of algorithm animation
R6: Support construction of animation by students

R7: Support for smooth motion

R8: Include capabilities for comparative algorithm analysis
R9: Provide multiple views of an algorithm
R10: Provide additional instructional material

R11: General purpose framework
Table 3.3: Requirements supported by BALSA-II

 Full support. () Partial support.

3.5.3 Generalised Algorithm Illustration through Graphical Software (GAIGS)

GAIGS (Naps and Swander 1994) generates discrete snapshot visualisations of an

algorithm’s data structure at interesting events. The transitions between each frame of

the visualisation are not animated (Figure 3.9). GAIGS uses a scripting language

which specifies visualisations based on data structures rather than graphical objects,

thus employing the declarative approach (Section 3.3.2) for creating visualisations.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 64

Figure 3.9: GAIGS – Two consecutive snapshots (Naps and Swander 1994)

Table 3.4 illustrates the support provided by GAIGS based on the list of requirements

derived in Section 3.4. The system supports the feature of rewinding the algorithm to

a previous state and replaying sequences (R2). Support for customised data is

included (R3). Students can step through the frames at their own pace (R5). Multiple

representations of an algorithm are supported (R9). GAIGS supports a limited static

display of the algorithm code been visualised, with no support provided to mark-up

the code displayed (R10).

Requirements for Algorithm Animations Supported
R1: Allow speed control of algorithm animation

R2: Allow rewinding of the animation
R3: Accept user input data for the algorithm
R4: Provide questions to predict algorithm behaviour

R5: Allow stepping control of algorithm animation
R6: Support construction of animation by students

R7: Support for smooth motion

R8: Include capabilities for comparative algorithm analysis

R9: Provide multiple views of an algorithm
R10: Provide additional instructional material ()

R11: General purpose framework
Table 3.4: Requirements supported by GAIGS

 Full support. () Partial support.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 65

3.5.4 Java Collaborative Active Textbook (JCAT)

JCAT (Brown and Raisamo 1997; Najork 2001) combines passive multimedia

materials with algorithm animations through the use of HTML pages (Figure 3.10).

The system supports the simultaneous control and display of algorithm animations on

different workstations using JavaTM applets. The integrated system allows the

instructor to control the animation from a centralised control panel, and allow the

students’ client to view the animation from a remote workstation. Students can also

run JCAT animations in a “solo” mode, where animation controls are directly

available to the user (Ramshaw 1997). Animations are created by adding interesting

events to algorithms, similar to BALSA.

Figure 3.10: JCAT (Ramshaw 1997; Najork 2001)

Table 3.5 illustrates the support provided by JCAT based on the list of requirements

derived in Section 3.4. Students have speed and stepping control of animations (R1,

R5). Smooth motion is supported (R7). Display of multiple views representing one

algorithm (R9) and display of static and context-sensitive text materials (R10) are

supported.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 66

Requirements for Algorithm Animations Supported
R1: Allow speed control of algorithm animation
R2: Allow rewinding of the animation

R3: Accept user input data for the algorithm

R4: Provide questions to predict algorithm behaviour

R5: Allow stepping control of algorithm animation
R6: Support construction of animation by students

R7: Support for smooth motion
R8: Include capabilities for comparative algorithm analysis

R9: Provide multiple views of an algorithm
R10: Provide additional instructional material
R11: General purpose framework

Table 3.5: Requirements supported by JCAT
 Full support. () Partial support.

3.5.5 SAMBA/JSAMBA

SAMBA (Stasko, Badre and Lewis 1993) is a front-end application for the POLKA

general purpose algorithm animation system. SAMBA takes in ASCII formatted script

commands and generates animations based on the commands (Section 3.3.1). This

allows for the algorithm to be written in any programming language, providing that

appropriate outputs are generated for input into SAMBA. The scripting language

allows students to construct and test algorithms by generating their own animations.

JSAMBA is a Java-based applet which provides for an internet accessible and

platform independent version of SAMBA8 (Figure 3.11).

8 The Java version of SAMBA (JSAMBA) is evaluated due to its easy of accessibility over the original
SAMBA, which runs on an Unix X11 Window System.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 67

Figure 3.11: JSAMBA (Duskis undated)

Table 3.6 illustrates the support provided by JSAMBA based on the list of

requirements derived in Section 3.4. Students have speed and stepping control of

animations (R1, R5). JSAMBA allows only static text to be displayed within the

animation view (R10). The scripting system gives more accessibility for constructing

animations (R6), including general animations (R11). Smooth motion is supported

(R7).

Requirements for Algorithm Animations Supported
R1: Allow speed control of algorithm animation
R2: Allow rewinding of the animation

R3: Accept user input data for the algorithm

R4: Provide questions to predict algorithm behaviour

R5: Allow stepping control of algorithm animation
R6: Support construction of animation by students
R7: Support for smooth motion
R8: Include capabilities for comparative algorithm analysis

R9: Provide multiple views of an algorithm

R10: Provide additional instructional material ()

R11: General purpose framework
Table 3.6: Requirements supported by JSAMBA

 Full support. () Partial support.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 68

3.5.6 Java And Web-based Algorithm Animation (JAWAA)

JAWAA (Pierson and Rodger 1998; Akingbade, Finley, Jackson et al. 2003) is an

algorithm animation system which employs a scripting language, much like SAMBA.

The visual objects and associated commands available in JAWAA are designed for

the animation of algorithm operations, with specific support for data structure objects

like arrays, stacks, queues, pointers and linked lists (Figure 3.12). A JAWAA Editor

allows users to create an animation without having any knowledge of JAWAA’s

scripting language.

Figure 3.12: JAWAA (Rodger 2002)

Table 3.7 illustrates the support provided by JSAMBA based on the list of

requirements derived in Section 3.4. Students have speed control of animations (R1).

The scripting language graphic system gives more accessibility for constructing

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 69

various animations (R6, R11). The system is implemented in a JavaTM applet, the

embedding of static material into the client webpage is thus possible (R10). Smooth

motion is supported (R7).

Requirements for Algorithm Animations Supported
R1: Allow speed control of algorithm animation
R2: Allow rewinding of the animation

R3: Accept user input data for the algorithm

R4: Provide questions to predict algorithm behaviour

R5: Allow stepping control of algorithm animation

R6: Support construction of animation by students
R7: Support for smooth motion
R8: Include capabilities for comparative algorithm analysis

R9: Provide multiple views of an algorithm

R10: Provide additional instructional material ()

R11: General purpose framework
Table 3.7: Requirements supported by JAWAA

 Full support. () Partial support.

3.5.7 A New Interactive Modeller for Animations in Lectures (ANIMAL) and
Java-Hosted Algorithm Visualisation Environment (JHAVE)

The ANIMAL (Rößling, Schüler and Freisleben 2000) system allows the visualisation

designer to create animations using either the AnimalScript scripting language

(Section 3.3.1), API calls (Section 3.3.1), or through a visual editor (Section 3.3.3).

ANIMAL allows animations to be rewinded and replayed. ANIMAL includes the

ability to display and mark-up text, making the framework suitable for “tracing”

program code as part of the animation (Figure 3.13). The JHAVE (Naps, Eagan and

Norton 2000; Rößling and Naps 2002) platform can be integrated on top of ANIMAL

to add certain features, such as accepting user-custom input and presenting interactive

questions.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 70

Figure 3.13: ANIMAL and JHAVE (Schüler and Rößling 2001)

Table 3.8 illustrates the support provided by ANIMAL and JHAVE based on the list

of requirements derived in Section 3.4. Related literature indicates that all

requirements are supported except for the ability to support multiple animation views

and comparative animations. The requirements met by ANIMAL and JHAVE include

support for controlling the animation display (R1, R2, R5), accepting input data (R3),

interactive questions (R4), smooth animation (R7), and display of algorithm

information during animation (R10). Animations can be constructed using a number

of approaches (R6, R11).

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 71

Requirements for Algorithm Animations Supported
R1: Allow speed control of algorithm animation
R2: Allow rewinding of the animation
R3: Accept user input data for the algorithm
R4: Provide questions to predict algorithm behaviour
R5: Allow stepping control of algorithm animation
R6: Support construction of animation by students
R7: Support for smooth motion
R8: Include capabilities for comparative algorithm analysis

R9: Provide multiple views of an algorithm

R10: Provide additional instructional material
R11: General purpose framework

Table 3.8: Requirements supported by ANIMAL and JHAVE
 Full support. () Partial support.

3.6 Scope of Requirements

A number of extant algorithm animation systems were evaluated using the

requirements framework established in section 3.4. This section highlights particular

requirements that the various systems have or have not adequately addressed, in so

doing emphasising support for a number of features in the proposed framework

resulting from this study (Section 3.6.1). A number of alternative requirements were

excluded from the final list of proposed requirements. Motivations for these decisions

are provided (Section 3.6.2).

3.6.1 Proposed Requirements for the Framework

“Sorting Out Sorting” (Section 3.5.1) and BALSA-II (Section 3.5.2) provide a unique

analytical tool by supporting running and displaying of multiple algorithms

simultaneously to provide a visual contrast in relative efficiency. However, this idea

has been largely ignored by consequent research into new systems. BALSA-II is a

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 72

system designed for a legacy Macintosh OS and is thus unsuitable for use on currently

available platforms. Two extant systems, namely WebGAIGS (Naps and Bressler

1998) and ANIM (Bentley and Kernighan 1991), provide functionalities for

demonstrating multiple algorithms in parallel (R8). However, only static snapshots

are supported. It has been suggested that there is a lack of existing systems which

provide analytical capabilities through simultaneous animated visualisation of

multiple algorithms (Petre, Blackwell and Green 1998).

“Sorting Out Sorting”, BALSA-II, GAIGS (Section 3.5.3) and JCAT (Section 3.5.4)

support the display of multiple views of algorithms (R9). The other extant systems

reviewed only support the display of a single animation view.

Systems such as JCAT, SAMBA (Section 3.5.5), JAWAA (Section 3.5.6) and

ANIMAL+JHAVE (Section 3.5.7) are capable of generating smooth transitional

animations (R7) between discrete steps of an algorithm, a display technique initially

used in “Sorting Out Sorting”. JCAT allows the demonstrator of the animation to

centrally adjust the display of visualisations, whilst JSAMBA, JAWAA and ANIMAL

allow the students to control the speed, playing and stepping through of the

visualisations (R1, R5) during viewing. ANIMAL+JHAVE is the only reviewed

system which supports the rewinding of animations (R2), and providing interactive

questions (R4) during the animation.

GAIGS, JSAMBA, JAWAA and ANIMAL+JHAVE each make use of a scripting

language approach to generate animations. The scripting language is utilised as a

protocol of communication to convey algorithm event information to the animation

display. An algorithm generates a script containing details of the algorithm’s

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 73

operation. Based on the given script, the system then constructs the relevant animation.

JSAMBA, JAWAA, and ANIMAL+JHAVE are each developed around self-defined

scripting languages. The languages provide commands for defining graphic objects

and actions. Using the defined scripting language of the systems, general purpose

animations (R11) can be created using the defined scripting languages.

JSAMBA provides a simple interface which reads and animates prewritten scripts.

JAWAA and ANIMAL+JHAVE have a visual editor which can be used to specify

visual objects and animation sequences, from which the equivalent animation scripts

can automatically be generated. JSAMBA, JAWAA and ANIMAL+JHAVE thus

allow the visualisation designer to create animations (R6) without necessarily

possessing extensive programming knowledge. However, due to the

scripting-language animation generation approach used by the systems, animations

must be recreated when a new dataset is to be demonstrated or tested.

ANIMAL+JHAVE is the only system to adequately support direct input of datasets

(R3) by the user without having to re-script the animation sequences manually or

through a visual editor.

“Sorting Out Sorting” provides audio commentary to guide viewers on the operations

of the animations being demonstrated. GAIGS, JSAMBA and JAWAA allow static

text to be displayed as part of the animation, whilst ANIMAL+JHAVE and JCAT

allow the additional feature of displaying text based on algorithm events (R10)

occurring during the animation.

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 74

Various possible requirements for algorithm animation systems were identified and

considered based on various factors discussed above. From this, a final list of

requirements is thus presented (Table 3.9).

Requirements for Algorithm Animations Proposed
Support

R1: Allow speed control of algorithm animation
R2: Allow rewinding of the animation

R3: Accept user input data for the algorithm
R4: Provide questions to predict algorithm behaviour

R5: Allow stepping control of algorithm animation
R6: Support construction of animation by students
R7: Support for smooth motion
R8: Include capabilities for comparative algorithm analysis
R9: Provide multiple views of an algorithm
R10: Provide additional instructional material
R11: General purpose framework

Table 3.9: Scope of Requirements
 Support

3.6.2 Motivation for Excluded Requirements

The support for the rewinding of algorithm animations during playback was

considered. However, various literature (Brown 1988a; Rößling 2002; Colombo,

Demetrescu, Finocchi and Laura 2003) in conjunction with the evaluation performed

in Section 3.5, have suggested that the ability to rewind an animation is a feature

rarely implemented due to technical issues.

A number of methods for supporting animation rewinding were briefly investigated.

Leonardo (Crescenzi, Demetrescu, Finocchi and Petreschi 2000) creates a virtual

execution environment which compiles and executes its own logic visualisation

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 75

language using a reversible virtual CPU. ZStep95 (Lieberman and Fry 1998) stores an

incremented history of the program execution and outputs. The implementation of the

abovementioned methods are, however, beyond the scope of the current study.

The feature for providing questions concerning the algorithm during the animation

was also considered. However, the focus of the framework is on creating animations

to aid in algorithm analysis (Section 1.4.2), and thus interactive questions are not

considered part of the project scope.

3.7 Conclusion

This chapter investigated the requirements of an algorithm animation system, which

necessarily covers a fairly wide scope. Issues looked at include understanding the user

types of an algorithm animation system and the basic structure of a system. An

investigation was then performed on available methods of transferring the actions of

algorithms to a corresponding visualisation. An evaluation of the methods will be

conducted in the next chapter, with motivations for the selection of the paradigm used

for the framework.

A list of desirable features for the proposed algorithm animation system was compiled

by means of a literature review, supported by an evaluation of extant algorithm

animation systems. The evaluation resulted in a comparative study which identified

the features supported by the extant systems. There is currently no extant system that

supports all of the identified requirements. “Sorting Out Sorting” (Section 3.5.1),

BALSA-II (Section 3.5.2), GAIGS (Section 3.5.3) and JCAT (Section 3.5.4) support

comparative analysis and multiple views of algorithms. However, support for

CHAPTER 3 : ANALYSIS OF ALGORITHM ANIMATION SYSTEMS

 76

interactivity and animation construction flexibility is limited. JSAMBA (Section

3.5.5), JAWAA (Section 3.5.6) and ANIMAL+JHAVE (Section 3.5.7) utilised a

scripting-language approach to support a flexible animation design process, with

ANIMAL+JHAVE in particular providing the closest match to the list of

requirements proposed. However, these systems do not provide adequate support for

comparative analysis and alternative animation views.

Based on the evaluation conducted, a final list of requirements to be met by the

proposed algorithm animation framework design is established. The information

gathered from this chapter builds up to the design of an algorithm animation

framework, discussed in Chapter 4.

 77

Chapter 4

Design of Framework

4.1 Introduction

Algorithm animation systems are created with the aim of supporting the pedagogic

goals of an algorithm course. It has been highlighted that the effectiveness of the

animations are highly dependent on the particular features supported by the system

(Section 3.4). The interaction among the various user roles and animation system

components in producing and displaying an algorithm animation was also presented

(Section 3.2). All of the abovementioned factors must be taken into account when

implementing an algorithm animation system. Thus, a conceptual structure is required

to describe the systematic support for the processes of creating and viewing algorithm

animations, in order to guide the implementation of a system.

This chapter proposes an algorithm animation framework that provides instructors

with a structured method to produce algorithm animations, whilst taking into account

the pedagogic requirements previously identified. The chapter first outlines the

fundamental concepts employed by the framework, and at the same time introduces

the layered framework structure (Section 4.2). Sections 4.3 through 4.8 provide a

CHAPTER 4 : DESIGN OF FRAMEWORK

 78

detailed discussion of each of the framework components. The discussion will follow

the logical flow of the framework’s structure. The methods of communication used

within the framework are explained as part of the component discussions. The

interface components are discussed in Section 4.9.

4.2 The Proposed Framework – an Overview

A framework designed for interactive algorithm animation must consider a number of

high-level issues. Each of these issues is briefly introduced. Different paradigms have

been devised to connect algorithm concepts to visualisations (Section 3.3), with each

paradigm typically employing certain approaches. The selection of a paradigm and

supporting technique for the proposed framework, and the motivation thereof, are

covered in Section 4.2.1. The structure of the framework should support the

requirement goals and allow for practical implementation. The framework is thus

systematically divided into component groupings called layers. The layers are

categorised based on their generated data inputs and outputs, which are used as the

method of communication within the framework (Section 4.2.2). The creation and

display of multiple animations mean that synchronising the speed of the display is an

important issue. Furthermore, the animation is used as a representation of algorithm

speed. A structure is thus required to control the timing of algorithms (Section 4.2.3).

4.2.1 Selection of Visualisation Paradigm

The imperative and declarative paradigms were previously introduced as methods for

connecting algorithms to visualisations (Section 3.3). The imperative paradigm

typically utilised the API or scripting language approach for generating animations

CHAPTER 4 : DESIGN OF FRAMEWORK

 79

(Section 3.3.1), whilst the declarative paradigm utilised the comment embedding or

code interpreter technique (Section 3.3.2). The following section evaluates the

techniques, which are grouped according to paradigms, by first categorising them

based on two factors, namely level of automation and visualisation design flexibility

(Figure 4.1).

A high level of automation means that the visualisation tool developer pre-designs

visualisations by specifying preset parameters during implementation of the

visualisation component. In other words, once the parameters are set, the animation

system will autonomously decide what the animation will look like. In contrast, a low

level of automation will require the visualisation designer to provide more input into

the design of the visualisation. Thus, as the level of automation decreases, the visual

design decision shifts away from the visualisation component toward the visualisation

designer.

Figure 4.1: Level of automation versus Visualisation design flexibility

Automatic Manual

Low

flexibility

High

flexibility

API

Manual Scripting

Scripting

Comment Embedding

Visual editing

Code interpretation

Imperative approach

Declarative approach

CHAPTER 4 : DESIGN OF FRAMEWORK

 80

Automated visualisation is supported by the declarative approach, which visualises

algorithms by graphically reflecting the state of their data structures. Since a common

data state monitor and graphical interpretation are used to create visualisations

(Section 3.3.2), the approach supports automated visualisation of any algorithms

which utilise a supported data structure (Demetrescu, Finocchi and Stasko 2001).

However, this also limits the flexibility to customise the visualisation of algorithms.

The imperative approach visualises the interesting operations of an algorithm (Brown

and Sedgewick 1998). This approach requires a more involved role from the

algorithm programmer and visualisation designer, who are responsible for

determining the events of interest and designing the visualisation.

The proposed framework will utilise concepts from the imperative approach,

employing a hybrid of the scripting language-based and API-based animation

generation techniques (Figure 4.1). API libraries offer the ability to efficiently capture

and store interesting events generated from calls embedded within algorithms (Section

3.3.1). Script languages allow animation commands to be written manually through a

text editor, allowing users to rapidly create custom animations without needing

comprehensive knowledge of programming concepts. Alternatively, algorithms can

also be annotated with output statements to generate the commands, in an approach

similar to using API calls. Thus, by using a scripting approach, animations can be

generated through a structured process (Section 3.3.1), or a manual but more flexible

process (Section 3.3.3).

Typical API-based methods let the visualisation designer annotate the algorithm with

function calls which invoke visualisation instructions (Rößling and Freisleben 2000a).

However, the function calls require parameters which define the details of the

CHAPTER 4 : DESIGN OF FRAMEWORK

 81

visualisation. Thus, as the function calls are annotated into the algorithm, additional

support code is needed to specify and maintain abstract information, such as visual

object placement and movement co-ordinates. The proposed framework seeks to

utilise the API approach to rapidly capture interesting events (Sections 4.5 and 4.6),

and employ an intermediate process to manage and specify the abstract visual

information (Section 4.7), which is presented using a simple scripting language

defined for the framework (Section 4.8.1).

4.2.2 Framework Structure

The framework is separated into various layers, namely the data interface layer, data

layer, the interpreter layer, the animation layer, and the animation interface layer.

The independent layer design creates a flexible framework structure by allowing for

modular changes and extensions to be made to the framework. Figure 4.2 shows an

overview of the framework design, upon which the structure of the chapter is based.

The data layer interface allows input to be made to the data layer components (Section

4.9). The data layer consists of the data generator (Section 4.3), data structure

definition (Section 4.4), algorithm repository (Section 4.5), and event API (Section

4.6) components. The interpreter layer consists of the interpreter component (Section

4.7), and the animation layer consists of the animation component (Section 4.8). The

animation layer interface allows inputs to be made to the animation component

(Section 4.9). The layers are defined based on the functions performed by each layer,

and the inputs and outputs of the components within each layer.

CHAPTER 4 : DESIGN OF FRAMEWORK

 82

Figure 4.2: Framework structure

Data

Structure

Definition

Section 4.4

Animation

Section 4.8

Interpreter
Section 4.7

Algorithm

Repository

Section 4.5
Event API

Section 4.6

Data

Generator

Section 4.3

Data Layer Interpreter Layer Animation Layer Data Layer
Interface

Event Script

Section 4.2.1

Animation Command

Script

Section 4.8.1

Interface

Section

4.9

Interface

Section

4.9

Animation
Layer

Interface

Algorithm Animation Framework
Section 4.2

CHAPTER 4 : DESIGN OF FRAMEWORK

 83

The logical separation of the framework into layers assists in defining the activities of

each user type within the algorithm animation framework (Section 3.2). In such a

mapping, the algorithm programmer interacts with the data layer, the visualisation

designer with the interpreter layer, the visualisation tool developer with the animation

layer, and the students and instructors with the data and animation layer interfaces.

Mapping the framework layers and user types according to their functions thus

simplifies the process of creating animations. The algorithm programmer can focus on

writing an algorithm and identifying events for animation without considering how

the algorithm is to be animated, or the code used to generate animations. The

visualisation designer can then design and implement an animated representation of

the algorithm events without detailed knowledge of the original algorithm’s

implementation.

The modular design of the framework also provides for easier implementation. The

code within each of the components can be implemented independently, which will

allow for later modifications or upgrades to be made to individual components

without affecting the rest of the system, providing that the component’s input and

output remain compatible with its associated components.

Each layer within the framework consists of a single component or multiple

components working together to produce specific outputs. These outputs are utilised

as inputs by the next layer, resulting in the generation and display of animated

algorithms. The information for creating animations (in the form of scripts and

commands) are passed down the respective layers in the process of creating and

viewing an algorithm animation. The data layer interface is linked to the data layer.

The purpose of the data layer interface is to provide the end-users (students and

CHAPTER 4 : DESIGN OF FRAMEWORK

 84

instructors) with a consistent method of specifying algorithm, data structure and

visualisation information. The data layer provides a list of interesting events, referred

to as an event script (Section 4.6), which give a high-level description of the relevant

operations of an algorithm. The interpreter layer takes the event script and converts it

into graphical representation commands which provide low-level animation

instructions (Section 4.8.1). The animation layer processes the animation scripts from

the interpreter layer and produces the visualisation. The actions of the visualisation

are controlled through input from the animation interface layer.

The interpreter component is an abstract structure that allows extension by designers

to animate different algorithms. In addition, multiple instances can be created of the

algorithm, data structure, interpreter, and animation components within each of the

layers. The layer instances can then combine to form different scenarios. This method

of structuring the framework allows multiple animations to be created to support

parallel viewing and analysis of an algorithm using different data (Figure 4.3a), or

multiple algorithms using the same data (Figure 4.3b).

Figure 4.3: Structure allows for parallel analysis of algorithms and data

Data Quicksort Interpreter2 View2

Bubblesort Interpreter1 View1

Mergesort Interpreter3 View3

Data layer Interpreter layer Animation layer

Data1

Data2

Data3

Bubblesort Interpreter

View1

View2

View3

(a) Data layer Animation layer

(b)

Interpreter layer

CHAPTER 4 : DESIGN OF FRAMEWORK

 85

The separation of the animation functionality into its own layer also allows for it to be

utilised independently (Figure 4.4). The animation layer takes input in the form of a

graphical command script. This input may be based on output from the layered

processes of the framework. The input may also be generated manually in support of

two requirements. Firstly, accepting manual inputs allow students to create animation

without needing to implement an algorithm. Secondly, general purpose animations, or

animations which are unsuitable for creating through the framework’s processes, may

be animated directly through the animation layer using the graphical commands

(Section 4.8.1).

Figure 4.4: Modularisation of the Animation layer

4.2.3 Timing and Parallel Animations

An animated visualisation of an algorithm is seen as an abstract representation of the

program states and operations of the algorithm. Beyond simply demonstrating the

inner workings of an algorithm, animated visualisations can also make algorithm

performance characteristics more apparent. Animations can demonstrate the speed of

an algorithm by showing the quantity of operations needed to complete a given

scenario. Furthermore, visual displays of multiple algorithms processing data lists

with identical values, or the same algorithm processing different lists, provides a

convincing contrast of performance and efficiency differences.

Algorithm Animation

System

Data Layer Interpreter Layer Animation Layer

General Purpose

Animation Module

CHAPTER 4 : DESIGN OF FRAMEWORK

 86

Animated algorithm demonstrations have been employed to demonstrate the time

required for running certain algorithms (Baecker 1998). Therefore, the students

viewing the animation will perceive it not as a representation of only the algorithm’s

operations, but also its speed. Thus it is important for the animation to be a true

reflection of the algorithm’s performance. However, executing and animating an

algorithm in real-time will result in an animation which is too fast for demonstration

purposes. In fact, if the visualisation is coupled to a “live-mode” execution of an

algorithm, a disproportionably large amount of the total execution time will be used in

rendering the animation. In addition, there are inherent synchronisation complexities

associated with coordinating the execution of multiple algorithms for sorting races,

and at the same time providing a common benchmark of performance across the

different animations (Brown 1988a).

A method is thus needed to present animations at a practical speed, while at the same

time still act as a (reasonably) true representation of each underlying algorithms’

operational performance. The framework provides for the generation of an animation

by first executing algorithms to completion, and at the same time recording interesting

events of each algorithm in an event script (Section 4.6). The event script is then

converted to animation graphical commands. The framework’s animation component

thus generates visualisations independent of an algorithm’s real-time execution. The

post-mortem approach (Diehl, Görg and Kerren 2002) simplifies the generation and

coordination of animations, allowing the framework to simulate multiple algorithms

running in parallel. The approach also allows the visualisation designer to create a

standardised measure of performance across all algorithm animations.

CHAPTER 4 : DESIGN OF FRAMEWORK

 87

The use of scripted events enables a property of time to be associated with each

algorithm operation. Animated operations can be specified to complete based on a

standardised time interval, rather than being dependant on the computer’s true speed.

The time interval is calculated based on the type of operations performed and the data

structure used (further discussed in Section 4.4.2). Time interval information is

retained in the graphical commands and reflected through the final animation display.

Standardising time intervals allows for a fair race when comparing algorithms, since

each algorithm’s speed is a direct result of the cumulative time taken to perform all its

operations, which are pre-specified with a time interval. Unpredictable factors such as

individual computer performances, thread processing priorities, and memory caching

methods which affect algorithm performance can thus be disregarded.

The remainder of the chapter looks at each of the framework components in turn

(Figure 4.2), discussing each component’s functionality requirements and design

concepts.

4.3 Data Generator

Sorting is the process of systematically arranging elements into an ascending or

descending order. When students study sorting algorithms, they are expected to

understand the mechanical workings of the algorithm. Furthermore, students must

also have an understanding of how efficiently (or inefficiently) each sorting algorithm

would perform, based on the population size and pre-arrangement properties of the list.

This understanding would allow students to utilise the optimal algorithm for any

presented scenario, taking into account worst case and average case performances.

CHAPTER 4 : DESIGN OF FRAMEWORK

 88

The proposed framework is well suited to teach the issue of relative efficiency, since

students can easily generate an animation to visually prove and contrast how

efficiently algorithms run. Students can experiment by trying an algorithm on a

number of different lists, or a single list using a number of different algorithms. In

such experiments, the framework may allow students to create lists by manually

specifying values for each element. However, in cases where students would want to

run tests on several sequentially dissimilar lists, each requiring >50 elements,

manually specifying elements will become time-consuming and impractical.

Furthermore, it would seem unreasonable to expect students to input good test data

without some guidance (Grissom, McNally and Naps 2003). Thus, a requirement

arises in the algorithm animation framework for the capability to let users create

meaningful test lists in an efficient manner.

A scenario often examined when learning sorting algorithms is on how the algorithm

will perform on an unbiased random list. Thus, this section will first identify a method

for effectively creating quasi-random ordered lists (Section 4.3.1). In order to generate

a data list by specifying the list’s permutation attribute, a common benchmark for

measuring data list order must first be established. Section 4.3.2 investigates methods

for measuring data list order, based on which a definition is established for measuring

sortedness within the framework (Section 4.3.3). The actual shuffling of lists to create

the specified permutations is fairly simple, and is thus not discussed further.

CHAPTER 4 : DESIGN OF FRAMEWORK

 89

4.3.1 Random Permutation of Lists9

A method of observing sorting algorithm behaviour and performance is to experiment

using order-unbiased lists. The use of lists arranged in a random permutation will

ensure that there is no intentional bias towards the mechanisms of any particular

sorting algorithm. One method of generating a list of elements is to obtain values from

a seeded random number generator. However, such a method does not guarantee lists

with a value distribution suitable for visualisation, an example of a bad distribution

being [1, 2, 2, 2, 500, 99999…]. The framework’s list generator approaches the

problem by generating an evenly spaced, ascending ordered list, for example [1, 2, 3,

4, 5…]. The list is then systematically shuffled to create a randomised list. This

section outlines the theory for creating quasi-random lists.

Given a list of n unique elements, the number of possible permutations for the list can

be worked out (Definition 4.1):

Definition 4.1: Number of possible permutations for an n-sized list

A method of creating a new random list sample is to have an original list containing

values (the ordering of the values is unimportant) and a new list containing no values.

9 Adapted from (Stephens 1998; Pallier 2002)

)!(
!
kn

nPkn −
≡ where n is the total number of items and k is the number of

items to be selected to form the new list.

∴ The number of possible permutations of n-sized list is

!
)!(

! n
nn

nPnn =
−

=

CHAPTER 4 : DESIGN OF FRAMEWORK

 90

The random list is created by randomly selecting a previously unselected element

from the original list, and appending a copy of the element to the new list. The

process is then repeated until all element options from the existing list are exhausted.

Using this method, the probability of acquiring any particular permutation is thus

known (Definition 4.2).

Definition 4.2: Probability of creating any particular permutation

The method thus ensures that the random sample list is an equiprobable selection from

all possible permutations. The pseudo-code for creating a random list sample based on

the given method is presented in Figure 4.5.

Figure 4.5: Pseudo-code for randomising a list

The code presents an in-place method of randomising the list, where all values before

position i form part of the new randomised list, and values after position i are

available for selection.

Probability of selecting any element from an n-sized list is
n
1 .

Probability of any permutation occurring when selecting n unique elements

from an n-sized list is
!

1
1
1.....

)1(
11

nnn
=⋅⋅

−
⋅

For i = FirstIndex to (LastIndex – 1) do

 j = i + (LastIndex - i) × RandomFloat(Range 0 to 1)
 j = Round(j)

 Swop(List[i], List[j])

CHAPTER 4 : DESIGN OF FRAMEWORK

 91

4.3.2 Approaches for Measuring Sortedness

Any list L would have three properties, namely population size (n), element values,

and a defined arrangement sequence. Arrangement sequences (or permutations) and

randomness of lists play a critical role in the efficiency of sorting algorithms (Chen

and Carlsson 1991; Hwang, Yang and Yeh 2000). This section identifies and

evaluates two methods for quantifying a list’s level of sortedness.

Step-Down-Runs (Measure of Disorder)

Step-Down-Runs measure disorder by the number of adjacent element pairs which are

in inverse order in a list. M(X) is the measure of disorder of sequence X, thus a higher

value indicates a less sorted list (Knuth 1973). The maximum possible value of M(X)

is n-1 where n is the list length and 0 represents the minimum possible value. The

approach for working out M(X) is illustrated in Definition 4.3. Examples: M(1,2,3,4)

= 0; M(4,1,2,3) = 1; M(2,1,4,3) = 2.

Definition 4.3: Step-Down-Runs

Measure of Presortedness

Measure of Presortedness (or mop) is calculated by taking all possible combination

pairs in a list, and counting the number of combinations which are correctly ordered

Let ||21 ,......,, xXXXX = , then ∑
−

=

=
1||

1
)(

x

i
iCXM

Where iC = 1 if 1+> ii XX and iC = 0 if 1+≤ ii XX

CHAPTER 4 : DESIGN OF FRAMEWORK

 92

(Definition 4.4). Inv(X) is the measure of presortedness of sequence X, thus a higher

value indicates a more sorted list (Brodal, Fagerberg and Moruz 2005). Examples:

Inv(1,2,3,4) = 6; Inv(4,1,2,3) = 3; Inv(2,1,4,3) = 4.

Definition 4.4: Measure of Presortedness

4.3.3 Defining Array Sortedness

Two approaches have been identified to define the sortedness of an input list for the

framework. It can thus be seen that the concept of sortedness is not a universal one.

For example, the list [4, 1, 2, 3], which is given as an example in Section 4.3.2, is a

list with one item out of order. Whilst the results from the Step-Down-Run method are

only minimally impacted, the mop result is significantly changed. However, an

investigation into the relationship among the sorting algorithms and sortedness

measurements is beyond the scope of this discussion.

The framework will measure sortedness by adapting the mop method, since it

accounts for the overall effect of each item relative to all other items in the list. The

framework’s measurement adapts the mop value to a range between -100 and 100

percentage sorted (where -100 is reverse sorted, 100 is perfectly sorted, and 0

indicates an unknown random order), which will be more intuitive for users than a

standard mop value. The number of all possible combination pairs is thus needed

(Definition 4.5).

|}|),{(|)......(1 jin xxjijixxInv >∧<=

CHAPTER 4 : DESIGN OF FRAMEWORK

 93

Definition 4.5: Possible combination pairs

The new measurement takes the mop value (the total item pair combinations that are

out of order) as a fraction of the total possible pair combinations, and then maps the

value to a range of between -100 to 100. The calculation is performed as

(2)50100(
2

×−×
C

mop

n

), producing a percentage value which will be used as a

measure of sortedness.

4.4 Data Structure

Algorithms spend a considerable portion of execution time manipulating data

structures, using them as a means to compute a solution, and in certain cases also

presenting the data structure as part of the solution. In the framework, the data

structure component is used to store data which drive an algorithm’s operations with

the aim of producing interesting events (Section 4.4.1), to use the data structure’s data

values to construct visual representations (Section 4.4.2), and to provide a common

reference for the cost of time associated with each event (Section 4.4.3).

The data structure component plays an important part in the framework for obvious

reasons. Algorithms in general, whether implemented specifically to be animated or

!k
P

C kn
kn ≡ where n is the total number of items and k is the number of

items to be selected from the list as a unique combination

∴ The number of possible combination pairs of n-sized list is

2
2

2
P

C n
n =

CHAPTER 4 : DESIGN OF FRAMEWORK

 94

not, make use of data as an input for processing, for performing intermediate

operations, and for presenting the resultant output. Algorithms must necessarily

operate on a data structure in order to accomplish its algorithmic objectives, such as a

sort algorithm sorting operating on an integer array to organise the elements into an

ordered state. Thus, a data structure must support the basic read/write operations

utilised by algorithms, allowing them to extract data for evaluation, and copy into or

overwrite existing data.

4.4.1 Accessing Data Structure from Interesting Events

The data structure in the framework must complement algorithms in the process of

producing interesting events, which describe the operations performed by the

algorithms. Most of the interesting events that occur during algorithm operations

involve some usage of the data structure. As a result, information relating to the data

structure is often needed in the process of converting the events into an informative

visualisation.

The data structure used by the algorithm often forms a part of the input parameter for

the capturing of interesting events. For example, when data elements are compared or

swopped, or when a new data structure is declared, the associated interesting event

must record the data list, and the positional index of the data accessed within the list.

This information in turn allows the values of the data involved in the event to be

queried when required (Figure 4.6). The event will thus contain adequate information

for visualisation purposes. Furthermore, the information contains enough detail to

support the display of context-sensitive text to narrate the operations of an algorithm

CHAPTER 4 : DESIGN OF FRAMEWORK

 95

animation. The feature was discussed in Section 3.4.2, and forms a part of the

requirements supported by the framework.

Figure 4.6: Information captured by the algorithm as part of an interesting event

4.4.2 Visual Mapping of Data

Experience and literature (Section 2.3.1) have also shown that numbers are easier to

map to a visual representation due to their scalar nature (Figure 4.7), as opposed to

other datatypes, such as character, string and Boolean values, which have no intuitive

visual representation that offer an easily perceptible contrast of relative size

differences. The framework will exclusively support the use of integers as the

primitive datatype used in its data structure for algorithms. Also, for practical reasons,

the use of only integers will allow for a simpler implementation process. Other

datatypes may be incorporated as virtual data, which will affect the time-cost

associated with various operations. However, the data will contain no values, and will

not be used by the algorithm or represented in animations. This concept is discussed

in the following section.

1 5 2 3 4

List1[]

Algorithm Event API

[0] [1] [2] [3] [4] index

values

list name

Event: swop (List1[], [1], [3])

List name and index

information allows direct

access of the values if needed

CHAPTER 4 : DESIGN OF FRAMEWORK

 96

Figure 4.7: Integers are easier to represent in an intuitive visual form10

4.4.3 Operations cost

When algorithms operate on a data structure, there is an associated time interval

required for the computer to work with its physical memory. The time taken to

perform the operation is dependant on two factors. The first factor is the memory

“weight” of the datatype, that is, the memory space required to store a single instance

of the datatype. For example, a Character datatype of value `A` will take considerably

less space in memory than a String datatype of value `Algorithm Animations`.

Operations involving a Character type will thus use less time than one involving a

String type. The second factor is the nature of the operation performed on the data

structure, whether data is being compared or exchanged. Given an identical instance

of a datatype, a compare operation is faster than a exchange operation.

10 The visual styles are further discussed in Section 5.5.

1 4 5 3 2

Integer

x (position)

y
(s

iz
e)

CHAPTER 4 : DESIGN OF FRAMEWORK

 97

An animation should be capable of reflecting the time-cost characteristics of the

algorithm’s operation on a data structure. However, it is not practical to try and

capture the time-cost for each algorithm operation, since inconsistencies may result

due to performance differences among different computers. Inaccuracy may result due

to lag from additional operations performed by the driver algorithm during execution,

such as the operations to capture interesting events.

Thus, a method is devised to provide a standardised way for simulating time-cost for

algorithm operations within the framework. The framework’s data structure is

designed to store a virtual memory size of the data, which provides a theoretical size

of the datatype used. Each operation which works with the data structure can thus be

associated with a virtual time cost based on the data’s memory size. Each data

structure consists of two memory size information: the total memory size is the sum of

each element’s memory in a complex datatype11, and the compare memory size is the

size of the element field within the datatype which is used for relative comparisons

among data. Total memory size and operation memory size will be identical if the

data structure uses a single primitive datatype.

When working with complex datatypes, certain operations of an algorithm might

work on a subset of data element fields, such as the use of a single primitive within a

datatype containing multiple primitives. An example is illustrated in Figure 4.8, where

each primitive type is given a theoretical memory size to contrast the memory used

for two different operations. In the example, an array of datatype Student which stores

the name, student number and grade result of students is declared. When the array is

to be sorted based on student number, the algorithm reads the student number field to

11 Examples of complex datatypes include Classes in C++ and Records in Delphi.

CHAPTER 4 : DESIGN OF FRAMEWORK

 98

compare two Students, but when two Students need to be exchanged, all data fields

must be accessed and modified. Under such circumstances, exchange operations,

which work with relatively larger amounts of memory than compare operations, will

have a relatively higher time cost.

Figure 4.8: Effect of data size on operations

Figure 4.9 summarises the role of the data structure discussed. The data array allows

algorithms to perform their operations by reading from and writing to its values. The

event API can also directly extract information from the data array. Algorithm events

which operate on the data array are assigned a time-cost based on the virtual time

information stored in the data structure.

Figure 4.9: Functions of the Data Structure

Name : Smith

StudentNumber : 56789

Passed : True

Name : Jones

StudentNumber : 12345

Passed : True

Elements for exchange

operation – 41 bytes

Single element field for compare operation – 8 bytes

32 bytes

8 bytes

1 byte

1 4 5 3 9

Data Array

Algorithm

-Total Size

-Compare Element Size

Event API

Read/write operations

Data information

Data Structure

Operation cost

information

Events

CHAPTER 4 : DESIGN OF FRAMEWORK

 99

4.5 Algorithm

The algorithm component is used to store a collection of algorithms to drive

animations. Algorithm animations are derived by first observing the activities of an

algorithm during its execution, and then visualising the activities. The algorithm

which is observed provides information for the content of the animation, and is

referred to as the driver algorithm. The purpose of the driver algorithm is to generate

a list of execution traces called interesting events, a concept which is a fundamental

part of the imperative paradigm (Section 3.3.1).

4.5.1 Driver Algorithm

In the framework, interesting events are generated by running algorithm procedures in

conjunction with the data structure types specified within the framework. The driver

algorithm is annotated with event calls to an Event API, which captures the activities

of interest within the algorithm. The event calls consist of program code which are

inserted into, and form part of the executable statements of the algorithm, though the

calls do not change the semantical structure of the algorithm. The concepts are

illustrated in Figure 4.10 (algorithm annotator is discussed in Section 4.5.2).

CHAPTER 4 : DESIGN OF FRAMEWORK

 100

Figure 4.10: Annotation of a driver algorithm

The creation of a driver algorithm involves coding the actual algorithm, and then

annotating the algorithm with event calls. First, an algorithm is written in the

algorithm repository component. During implementation of the algorithm, declaration

of data that will be used in the visualisation is restricted to data structures predefined

in the framework. This ensures that visualisations can later access the data for display

purposes. The implemented algorithm will initially be functionally identical to

algorithms typically written in laboratory practical sessions, and can be run and tested

through input created from the input generator. Validating the semantical correctness

of the algorithms will ensure that the list of interesting events captured is an accurate

account of the algorithm activities, in turn ensuring that the associated visualisation

will be accurate.

Once the algorithm is implemented and tested, the phenomena of interest for the

algorithm are identified. Appropriate event calls to the Event API are then inserted

into the algorithm, which will result in the capture of an interesting event when

relevant sections are executed. The event call specifies the type of interesting event











Swop…





Compare…



Initial Algorithm

Event
API

Algorithm Annotator

Identify

events of

interest

Add

annotations

Event

calls

Algorithm with

Annotation

CHAPTER 4 : DESIGN OF FRAMEWORK

 101

that has occurred, and provides input parameters to the call, which contain

information relevant to the event, such as data values or output messages (code

examples are provided in Section 5.3.1).

4.5.2 Algorithm Annotator

At this point, the question arises: “which user role is responsible for annotating an

algorithm?” In the discussion of an algorithm animation model, Brown (1988a)

defines a user role called algorithmatician, whose function it is to implement the

algorithm, and annotate it with appropriate event calls. This approach is logical, since

the person implementing the algorithm is expected to possess reasonable

understanding of its concepts and operations, and thus most able to identify the events

which may be interesting for visualisation. However, the visualisation designer, who

is responsible for crafting the visualisation from the algorithm’s event outputs, is also

expected to have a good understanding of the original algorithm’s operations in order

to produce an animation suitable for the given scenario.

Based on the argument, and within the context of the proposed framework, the role of

algorithm annotator can be taken up by either the algorithm programmer or the

visualisation designer. Although the algorithm annotator is not directly involved in all

of the processes for creating an animation from scratch, the algorithm concepts and

final animation must still be understood in order to bridge the two mediums.

Events of interest for an animation vary from one algorithm to another, and it is the

task of algorithm annotators to identify and evaluate the relevance of each type of

event. With that said, the formula of identifying interesting events is not hard-set.

CHAPTER 4 : DESIGN OF FRAMEWORK

 102

Thus, different algorithm annotators might identify different events of interest when

provided with an identical algorithm. While there are certain events that are essential

for accurately portraying an algorithm, there are events which can be considered

optional.

For example, in a Bubblesort algorithm, events involving swopping items and

comparing items must be captured, since these are the events that ultimately enable

each item in a list to be placed in the correct order. In the same example, the capturing

of concept events, such as noting that an additional item at the end of the array is

sorted, may be considered optional (Figure 4.11). Thus, an algorithm can contain

different annotations based on the preferences and perspectives of the annotator,

depending on what optional events are seen as helpful in demonstrating the algorithm

in the given circumstances (Section 2.5).

Figure 4.11: Different algorithm annotators may see an algorithm differently

Algorithm
Annotator 1

Algorithm
Annotator 2

Bubblesort

Algorithm

CHAPTER 4 : DESIGN OF FRAMEWORK

 103

4.6 Event API

An event script is a list of interesting events of a single execution of an algorithm on a

given data structure, representing a recording of the algorithm operations which are

pertinent to the algorithm’s visualisation presentation (Section 3.3). An interesting

event consists of a name to identify its event type, and additional parameters which

are applicable to the event type. Event scripts are designed to offer a generic method

of capturing the workings of an algorithm, whereby interesting events are captured

without the need to consider how they are to be represented visually. Thus, algorithm

annotators can annotate an algorithm with the explicit purpose of producing an

animation, but need no detailed knowledge of the implementation of events into

animations.

The Event API contains a pre-defined collection of interesting events. Additional

event definitions can be added to the API if required, such as when new events are

identified for existing algorithms, or if new types of algorithms are added to the

framework. The events utilised will differ depending on the algorithm, but algorithms

of similar functions or domain can make use of certain common event types. For

example, a swop event can be used across all sorting algorithms, and may be taken to

imply the same operation (although the event’s visual representation may differ).

Thus, the Event API offers a method to standardise on event types which are utilised

among groups of algorithms.

The purpose of the event API is to respond to calls from an annotated algorithm’s

event markers, create instances of the interesting event with all relevant parameter

CHAPTER 4 : DESIGN OF FRAMEWORK

 104

inputs, and append the interesting events to an event script (Figure 4.12). The event

script then serves as the output of the framework’s data layer.

Figure 4.12: Function of the Event API

4.6.1 Event Classes

Four classes of events are specified by the framework. A data structure definition

event stores information on a given data structure to be used by the algorithm. The

information provided by the event allows the visualisation to examine the data

structure, and assign it a visual representation. An instance of the event is created for

every data structure that is used by the algorithm, except for data declarations which

are not presented in the final visualisation, which need not be captured. Data structure

definition events are invoked by the driver algorithm before the execution of the main

algorithm procedures. This allows the visualisation to understand subsequent events

which make use of the data structures.

Operational events communicate the crucial operations of an algorithm. The event

type consists of operations which directly utilise the data list of an algorithm. Each

event contains an attribute to identify its operation type, and a direct reference to the

Event API

Annotated Algorithm

……
……
……

Event Script

Instance of

interesting event

CHAPTER 4 : DESIGN OF FRAMEWORK

 105

data list and index that is used for the operation. The operations consist of two types:

operations which change the state of the data structure, such as write operations, and

operations which do not, such as read operations. An operation event is the only event

class that is associated with a time-cost. Within the framework, algorithm operations

are given a time-cost as a standardise method of portraying algorithm speed. The

speed is derived according to the type of operation performed, and the virtual memory

size of the data structure.

Conceptual events store information on events which represent abstract concepts that

do not directly affect the algorithm’s functional goals. In other words, the driver

algorithm did not explicitly perform a related operation which is logically linked to

the event. The purpose of conceptual events is to provide additional information

which will aid in the visual demonstration and explanation of the algorithm. For

example, in a Bubblesort algorithm, by marking sorted items with a different colour,

the students can understand why the algorithm sorts faster after each iteration (Figure

4.11), since it is visible evidence that the algorithm no longer re-examines sorted

items.

Message events are used to send textual information through to the final algorithm

animation’s peripheral views. A message event stores a textual message, which can be

a combination of static text and information based on the context of an algorithm’s

execution. The event type is used as a method for the algorithm programmer to

convey algorithm related information to the animation viewer, acting as a form of

real-time narration of the algorithm.

CHAPTER 4 : DESIGN OF FRAMEWORK

 106

4.6.2 Abstraction of Algorithm Operations

There are a number of common procedures which are utilised within algorithms. In

certain cases, a single interesting event is used to represent a group of code statements

within an algorithm. Algorithm animations aim to provide a high-level representation

of algorithms (Section 2.3), thus certain operations may be simplified (or even

omitted) in order to place focus on algorithm concepts rather than low-level details.

For example, the event of swopping two items to place them in relative sequence is

common among the sorting algorithms. In an exchange of two items, a third item is

typically employed to temporarily store one of the item’s values, whilst the items are

copied over to their respective positions. As a result, three operations are used to

shuffle the items. When generating an event script, the operations are typically

summarised into a higher level concept of a swop event (Figure 4.13). This method is

employed in algorithm animations to demonstrate algorithm concepts whilst reducing

unnecessary details. However, as illustrated in Figure 4.13, a detailed representation is

nevertheless possible.

CHAPTER 4 : DESIGN OF FRAMEWORK

 107

Figure 4.13: An algorithm may be presented in different levels of detail

4.7 Interpreter

The function of the interpreter is the conversion of an algorithm’s events into its

visual presentation. The implementation of interpreters is performed by the

visualisation designer. In order to understand the purpose of the interpreter layer, one

must look at the layer’s input and output. The input consists of an event script from

the data layer, which provides a detailed description of the algorithm’s operation and

data structure related events, without any specifications regarding the events’ visual

presentation. The output is a list of low-level graphical commands sent to the

animation layer, which details the exact actions of the visualisation, including visual

appearance, colour, visual object co-ordinates and action timing. However, no

information is retained of the source algorithm’s purpose. A process is thus needed to

transfer one medium of communication into another.

var
 list : array[1..2] of Integer;
 temp : Integer;
begin

 temp := list[1];
 list[1] := list[2];
 list[2] := temp;
end.

Detailed representation

Abstract representation

temp

CHAPTER 4 : DESIGN OF FRAMEWORK

 108

The interpreter is used as an intermediate component to convert event scripts into

graphical commands. This allows for an easier process of designing algorithms and

animations. The driver algorithm only needs to be annotated with event callers to

register interesting events, which are then collected into an event script and processed

by the interpreter after the algorithm has completed execution. This approach

eliminates the need to introduce into the driver algorithm additional code and data

declarations which control the visualisation display properties. As a result, the

algorithm programmer and the visualisation designer need not be integrated as a

single role, since the coding responsible for the designing of the visualisation is not

merged as part of the driver algorithm. Furthermore, when creating new methods of

representing an existing algorithm, a new interpreter can be designed to interpret the

same event script from the algorithm, rather than rewriting the driver algorithm in

order to embed new visualisation instructions.

4.7.1 Component Structure

The basic premise of an interpreter’s input interface is to accept interesting events

which are relevant to a particular algorithm, and understand how the events are to be

converted. Each event is taken and forwarded to an event interpretation procedure

which handles the event. Within the procedure, event details are extracted and

graphical commands are generated to represent the event. The details accessed include

the event type, text messages, event time-cost, and data structure information (Section

4.4), which determines the parameters for the graphical commands. The visualisation

designer is responsible for implementing the interpreter’s procedures based on the

type of events produced by the driver algorithm, and the designer’s envisaged

outcome of the visualisation. Each interpreter is typically customised to process the

CHAPTER 4 : DESIGN OF FRAMEWORK

 109

events from one algorithm (some flexibility is nevertheless possible, see discussion in

Section 4.7.2). Thus, an interpreter which handles a Quicksort algorithm will only

expect events related to the Quicksort, and will not need to know how to handle

events related to a Mergesort. In order for the interpreter to process events, a simple

event router is used to identify and forward each event to the appropriate interpreter

procedure.

A function of the interpreter is to control the properties of the visualisation and its

graphical objects, handling the role in place of the driver algorithm. The interpreter

component will be defined with a section to hold global properties of the defined

visualisation, such as the type of graphical objects to use, and the colours to use for

the objects. These properties are set by the visualisation designer. Furthermore, a

controller section is required to manage the coordinates of all graphical objects

created by the interpreter, with each object tracked by a unique ID based on data

structure information. Any changes in object coordinates are kept up-to-date within

the controller. This allows the event interpretation procedures to access object

coordinates to generate graphical commands, and update the coordinates based on the

events processed. The discussion in this section is illustrated in Figure 4.14.

CHAPTER 4 : DESIGN OF FRAMEWORK

 110

Figure 4.14: Interpreter structure and operations

4.7.2 Design of Interpreters for Related Algorithms

Algorithms which perform a similar function commonly work with a limited set of

operations. In the case study of five different sorting algorithms, the common

operations they employed can easily be summarised: namely compare and swop of

two data items. This characteristic provides for a (circumstantially) convenient

approach for reducing the implementation time of interpreters. Since functional

equivalent algorithms typically perform identical operations, the visual

representations are also similar. Thus, an interpreter designed to work with the event

script of a particular algorithm can, in certain cases, be employed to interpret event

scripts of other functionally similar algorithms.

Interpreter Component

Event Script

Event

Route

Visualisation Designer

Event1 Interpretation Procedure

Event2 Interpretation Procedure

Coordinate Controller
ID:L1
X/Y..

ID:L2
X/Y..

ID:L3
X/Y..

Global

Properties

Output

CHAPTER 4 : DESIGN OF FRAMEWORK

 111

4.8 Animation

The animation layer accepts graphical commands in the form of a defined scripting

language, and generates an animated visualisation based on the commands. The

function of the scripting language is to provide for a defined method of specifying

graphical output to the end-user’s display.

There are two sources of graphical commands, the animation component may either

acquire input from the data layer (through the interpreter layer), or by taking the input

directly from a text-based file. The animation layer is thus designed to be able to work

independently of the data layer and the interpreter (discussed in Section 4.2.2).

4.8.1 Scripting Language

The scripting language of the proposed framework is designed to be simplistic and

minimalist, and draws from the very basic common features of existing animation

scripting languages. The proposed scripting language takes the basic feature set from

extant languages, and proposing small changes to include support for the requirements

of the framework. Various advance features of the extant languages12, such as the

layer ordering, domain-specific or advanced graphical objects, and graphic object

grouping, are not incorporated into the current proposed language. Expanding the

animator with new commands at a later stage is, however, possible. The main goal of

the proposed scripting language is to include support for giving a time-cost to certain

actions (see ActionTimed definition), thus allowing the “time-cost” for executing

certain operations to be produced visually. A single time unit within the animation is

12 See (Stasko 1997; Rößling 2000; Rodger 2002)

CHAPTER 4 : DESIGN OF FRAMEWORK

 112

defined as 50 milliseconds. The proposed language is defined in this section and

briefly discussed.

The begin..end block (Definition 4.6) allows multiple operations to be executed

simultaneously. All commands within the block are run as a group. When individual

commands within a command block finish at different times, the block command is

considered done only when all individual commands have completed their operations.

Definition 4.6: Begin..end command

There are three main groups of commands within the scripting language (Definition

4.7), namely the graphicObject, action and actionTimed commands. Each of the

commands are defined in the following discussions.

Definition 4.7: General command definitions

commandBlock :

begin command* end

command :

graphicObject | action | actionTimed

graphicObject :

rectangleBuild

action :

actionChange | textMessage

actionTimed :

actionChangeTimed | moveRelative | delay

CHAPTER 4 : DESIGN OF FRAMEWORK

 113

The graphicObject command is responsible for creating visual objects to represent

data values. The command structure for creating and specifying the properties of a

rectangle is provided in Definition 4.8.

Definition 4.8: Rectangle visual object command

Graphic objects contain properties which are either numbers (for coordinates or

dimensions) or strings (for colours), specified in Definition 4.9.

Definition 4.9: Visual properties command

Two actions are used to modify the properties of graphic objects. The change action

(Definition 4.10) effects a change without associating a time-cost. The result of the

action thus occurs immediately on-screen. The changeTimed action (Definition 4.11)

takes an additional parameter in standard time units. The action thus occurs only after

the given time has elapsed.

Definition 4.10: Change properties command

ObjPropertyNumber :

x | y | width | height

ObjPropertyColour :

bordercolour | fillcolour

actionChange :

change ObjectID [ObjPropertyNum Number] | [ObjPropertyColour Colour]

rectangleBuild:

rectangle ObjectID x y width height fillcolour bordercolour

CHAPTER 4 : DESIGN OF FRAMEWORK

 114

Definition 4.11: Timed change properties command

The progressmessage command (Definition 4.12) is unique in that it does not directly

affect the display of the animation. The message will be presented in a separate view

attached to the animation, displaying messages during the running of the animation.

Definition 4.12: Message command

The moveRelative (Definition 4.13) is a timed command which is specifically used to

change the coordinate of a graphic object. The command creates a linear interpolated

movement of the graphical object, with the movement finishing based on the time

parameter supplied. Smooth motion can thus be supported by the animation

component. The command makes x and y axis movements simultaneously.

Definition 4.13: Animated movement command

moveRelative :

moveRelative TimeUnit ObjectID move-x move-y

actionChangeTimed :

changetimed TimeUnit ObjectID [ObjPropertyNum Number] |
[ObjPropertyCol Colour]

textMessage :

progressmessage Message

CHAPTER 4 : DESIGN OF FRAMEWORK

 115

The delay command (Definition 4.14) simply makes the animation time lapse for a set

time without updating the properties of the graphic object on the visual display.

Definition 4.14: Time delay command

4.8.2 Animation Engine

The purpose of the animation engine is to interpret a set of graphical commands into

an animated display. Each view of an algorithm is handled by a single instance of the

animation engine. The engine is supported by a command parser, command

interpreter, action repository, graphic object repository, and display renderer (Figure

4.15). The parser takes as input the graphical commands, from where the commands

are tokenised and given to the command interpreter. The action library stores a

repository of action classes. The graphic object library, similarly, stores a repository

of graphic objects. The command interpreter examines the commands and parameters,

and based on these, requests an instance of the action or graphic object, in which the

command parameters are set. The action or command is then passed into the

processing queue of the animation engine, which will render the scene to a view.

delay :

delay TimeUnit

CHAPTER 4 : DESIGN OF FRAMEWORK

 116

Figure 4.15: The components supporting the animation engine

The animation engine works based on an internal processing queue and graphic object

controller. The processing queue stores all actions awaiting execution, each action is

executed once during one clock tick. Actions which have already being executed (for

un-timed actions) or have expired (for timed actions) are automatically removed from

the processing queue. The scripting language is designed to allow a time-to-live for

timed actions (actionTimed commands).

4.9 Interface

The components of the data layer and animation layer are connected to associated user

interfaces, allowing specific inputs from and outputs to end-users (students and

instructors). The purpose of the interfaces is to provide the end-users with a consistent

method of interacting with the animations and its related options, independent of the

type of algorithms being observed, or the style in which the algorithms are visualised.

The data layer interface connects to the data layer, and the animation layer interface

Command

Parser

Animation Script

Animation

Engine

Action repository

Graphic Object

repository

“Rectangle L1 ….”

“Rectangle L2 ….”

…

Command

Interpreter

Parsed

commands

New

action/graphic

instance

action/graphic

instance

Animation

View

render

CHAPTER 4 : DESIGN OF FRAMEWORK

 117

connects to the animation layer. The implementation of the interfaces is discussed in

Section 5.4.

Figure 4.16 summarises the inputs provided by the data layer interface to each of the

components. The data layer interface enables end-users to provide parameters to the

data generator component, provide time-cost information to the data structure

component, select driver algorithms from an algorithm class repository (Section 5.2.3),

and specify algorithm animation views by selecting an interpreter from a class

repository.

Figure 4.16: Data layer interface functions

Figure 4.17 shows the inputs provided by the animation layer interface to each of the

animation components. The animation interface provides a unified control to direct

the display of animation views. The interface can handle single animation view or

multiple animation views running simultaneously. When multiple views are presented,

all views will accept the same input from the interface. The interface sets the speed of

the animation, and also contains options to play, pause and step through an animation.

A
ni

m
at

io
n

la
ye

r

Interpreter layer Data layer

A
ni

m
at

io
n

la
ye

r i
nt

er
fa

ce

Data layer interface

Interface

Data Generator Data Structure

Interpreter

Algorithm

…

parameters

Time-cost information

Algorithm selection

Interpreter selection

CHAPTER 4 : DESIGN OF FRAMEWORK

 118

Figure 4.17: Animation layer interface functions

4.10 Conclusion

The algorithm animation framework offers a theoretical foundation for the

construction of an algorithm animation system. The framework was created based

specifically to support the functional and pedagogic requirements outlined in Chapter

3.

Chapter 4 discussed the structure of the proposed framework, which organised the

framework components into functional layers. The framework structure was designed

for extensibility and ease of implementation. The core of the framework consists of

the data layer, interpreter layer, and animation layer. The processes within each layer

are combined to allow generation of animations from algorithms. The data layer

manages the execution of algorithms in order to capture interesting events. The events

are converted into graphical commands through the interpreter layer. The graphical

commands are then processed by the animation layer to produce an animated

visualisation.

Each framework layer is made up of a component or group of components, each of

which were discussed in detail. Within the discussions, the expected inputs and

In
te

rp
re

te
r l

ay
er

D
at

a
la

ye
r

D
at

a
la

ye
r i

nt
er

fa
ce

 View1

View2

View3

Animation layer

Interface

Speed

Play / pause / step through

Animation layer interface

CHAPTER 4 : DESIGN OF FRAMEWORK

 119

outputs of each of the components were presented to illustrate their connections and

interdependencies. Focus was placed on the design of the components and

motivations for the designs. The next chapter discusses the implementation of a

prototype based on the proposed framework, thus providing a practical perspective on

the theories and concepts of the framework.

 120

Chapter 5

Algorithm Animation Prototype

5.1 Introduction

The proposed algorithm animation framework, presented in Chapter 4, is designed to

support a number of requirements which were identified and discussed in Chapter 3.

The framework design covered the structure of the proposed framework. Discussions

and motivations were presented on general design considerations and each of the

framework’s components. The final proposed framework is presented as a design

concept to guide the implementation of an algorithm animation system.

This chapter, in turn, covers the implementation of a functional prototype system to

demonstrate the effectiveness of the proposed framework (Section 5.2 and 5.3). The

critical components will be examined in detail, whilst simple or auxiliary components

will only be mentioned briefly. The prototype implementation will serve as an

evaluation of the framework design. In addition, practical experience can be acquired

by using the prototype to create sorting algorithm animations, which form the case

study of the research (Section 5.5). A brief overview of the user interface to support

end-user creation and viewing of algorithm animations is also provided (Section 5.4).

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 121

Issues observed during the implementation of the prototype and case study will

highlight various aspects of the framework which may or may not be practical

(Section 5.6).

5.2 Implementation Techniques

This section discusses general decisions which were taken during the system design

phase to ensure effective and successful implementation of the prototype. In the initial

phases of the project, literature reviews and studies into extant systems provided a

theoretical foundation of concepts within an algorithm animation environment. An

understanding of the practical application aspects of the theoretical concepts was an

important factor in the design of the framework and the implementation of the

prototype system. Section 5.2.1 discusses the methodology employed to address this

requirement.

A number of component classes of the prototype system must allow for declaration of

multiple instances of class objects, forming an important requirement in support of

generating multiple algorithm animation scenario and views (illustrated in Section

4.2.2). Section 5.2.2 discusses how the object-orientated model is used to support the

process of generating multiple scenarios. In order to support effective construction

and output of class instances on demand, specialised repositories classes are

constructed which maintain a list of clonable class objects. The classes are maintained

by using a hash index system (Section 5.2.3).

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 122

5.2.1 Prototype Methodology

In order to effectively complement theoretical findings of algorithm animation

systems with practical knowledge, the iterative prototyping methodology (Goldman

and Narayanaswamy 1992; Kendall and Kendall 1996) was adopted for the

implementation of the system. The methodology regards implementation of

prototypes as a means to gain understanding of the system concepts and

implementation requirements, and also to note trade-offs of different implementation

designs. The iterative implementation process also meant that with each cycle,

workable components can be reused whilst the impractical components may be

redesigned or incrementally modified to evolve the system into its final form.

A number of simple algorithm animation demonstration prototypes were continuously

developed based on observations and results of early phase studies, serving as

test-of-concept systems. Each of the demo prototypes was designed as a stand-alone

implementation, allowing course instructors to display algorithm animations which

were, notably, generated and rendered in real-time (Figure 5.1). Little flexibility is

offered to the users. Functionalities such as algorithm and data input choices,

animation display speed, and display content settings, were not included.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 123

Figure 5.1: An early (feature free) prototype

5.2.2 Use of Object-Orientation

An important concept of the system is the support for parallel analysis of multiple

scenarios, which requires the system to be able to support flexible associations

between different combinations of data structure, algorithms and visual interpretations

(Section 4.2.2 and Figure 4.3). In support of such requisites, an object-oriented

approach is used to create the components, enabling multiple and different instances

of each component to be generated, thus simplifying the process of generating unique

cases which the end-users (students and instructors) would like to examine or

demonstrate.

In addition to allowing for multiple instances of components, the object-orientated

approach also allows for polymorphism (Cantù 2001). Certain class groups, such as

algorithms and interpreters, are designed to cater for different scenarios, but share a

number of common class interfaces or routines. This concept is highlighted in the

component implementation discussions in Section 5.3, where inheritable and interface

routines are marked with virtual or virtual/abstract directives, respectively.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 124

These routines can then be inherited and extended while still maintaining an interface

common to the parent class type. Flexibility can thus be gained by implementing with

polymorphic design.

5.2.3 Class Repository

There are certain parent classes from which multiple instances are required, namely

algorithm, interpreter, and graphic command actions and objects. These classes are

provided with an abstract clone routine during implementation. During system

initialisation, each parent class and its child classes are initialised and loaded into a

predefined class repository. From the repository, an instance of any of its stored child

classes may be requested by using a unique identification string.

An extract of a generic repository’s interface is shown in Figure 5.2. The repository is

constructed with a hash table, FHashFactory, which stores a key/class-object pair.

The pairs are registered through the RegisterPair routine. Identification strings are

used to search for and identify class objects. A generic instance of the class can then

be constructed and sent as an output through the GetClass routine.

Figure 5.2: Extract example of a repository class interface

 TFactory = class(TObject)

 private

 FHashFactory : THashedStringList;

 public

 procedure RegisterPair(KeyName : String; AAlgorithm : TSysObject);

 function GetClass(KeyName: String) : TSysObject;

 end;

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 125

5.3 Discussions of Component Implementations

The implementation of the final prototype system includes the data generator, data

structure definition, algorithm repository, event API, interpreter, animation and

interface components (Figure 4.2). The focus of this section is on specific

implementation techniques which support the goals of a component. Components

which require straightforward implementations will offer little value to the discussion,

and are thus not included. These include specifically the data generator and data

structure definition components. Consequently, this section covers the algorithm and

event API (Section 5.3.1), interpreter (Section 5.3.2), and animation (Section 5.3.3)

components. The interface implementation is covered in Section 5.4. The

framework’s algorithm and event API components are implemented as a single unit in

the prototype, with the motivation for this approach being addressed in Section 5.3.1.

The discussions are accompanied by relevant code extracts to illustrate examples from

the implementation. The code extracts are presented using Pascal, created through

Borland© DelphiTM.

5.3.1 Algorithm and Event API

The algorithm discussion in Section 4.5 has highlighted the commonalities of

algorithms which are designed for the same function, or are within the same domain.

An algorithm parent class is used as a base class which different algorithm

implementations may inherit from. Routines which are common to all algorithms are

included as part of the base class and its inherited child classes. The most basic

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 126

routines consist of interfaces to execute the algorithm, and structures to store the event

scripts generated from the execution.

In the system, the event API capturing routines are integrated as part of the parent

class of the algorithm component, rather than being implemented as a separate unit.

Using such a method, the event API routines can contain generic code to capture

events. If modifications need to be made, the API can be inherited and rewritten as

needed by child classes. Alternatively, an implementation of the event API separate

from the algorithm implementation would mean that if particular algorithms need to

capture events in a different way, a new event capture routine must be added to the

event API class.

When different domains of algorithms are created, a new class catering for the domain

is implemented and inherited from the base class. The new class will override parent

routines or create additional interfaces based on new functionality requirements. New

algorithm implementations within the domain may then inherit from the new class,

gaining the routines and functionalities of the particular algorithm domain, instead of

having to further modify and append the generic algorithm base class.

As part of the framework design, the interesting event approach is used to identify and

capture events from within the driver algorithm (Sections 4.2.1, 4.5 and 4.6). An

extract of the parent algorithm class is presented in Figure 5.3. The event API forms a

part of the algorithm class (motivated above), with a routine for each of the possible

event types to be captured been presented with a virtual directive. Support routines

are used to direct the event calls, thus providing a more standardised interface for

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 127

algorithm annotators. The support routines are marked with overload directives to

support different routine calls.

Figure 5.3: Extract of the algorithm class interface

Figure 5.3 also shows a number of interfaces and routines common to all driver

algorithm classes. The Sort routine, marked with a virtual directive, is responsible

for activating the driver algorithm and performing initialisation actions, such as

 TAlgorithm = class(TSysObject)

 protected

 FScriptList : TScriptList;

 procedure CaptureEventCompare(List1 : TDataList; Pos1 : Integer; List2 :

TDataList; Pos2 : Integer);virtual;

 procedure CaptureEventExchange(List1 : TDataList; Pos1 : Integer; List2 :

TDataList; Pos2 : Integer);virtual;

 procedure CaptureEventCopy(List1 : TDataList; Pos1 : Integer; List2 :

TDataList; Pos2 : Integer);virtual;

 procedure CaptureEvent(AEventType : String; AList : TDataList);overload;

 procedure CaptureEvent(AEventType : String; AList : TDataList; Pos :

Integer);overload;

 procedure CaptureEvent(AEventType : String; AList : TDataList; Pos1 :

Integer; BList : TDataList; Pos2 : Integer);overload;

 public

 procedure Sort;virtual;

 procedure AssignDataList(AList : TDataList);virtual;abstract;

 function Clone(AScriptList : TScriptList) : TAlgorithm;virtual;abstract;

 end;

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 128

clearing previous event scripts (FScriptList in figure). Routines marked with an

additional abstract directive present a inheritable interface, which are overwritten

and implemented by each child class. These common interfaces allow other

components within the system to standardise routine calls to algorithm classes.

A driver algorithm may be separated into multiple routines, as is the case with

Quicksort and Mergesort (which use various support routines), since the API event

calls and data structures are accessible to all routines within algorithm classes. The

only constraint is that the main execution routine must be linked to the Sort routine.

The actual implementations of the driver algorithms were, in fact, a fairly simple

process, the theory of which is discussed in Section 4.5. The algorithm is created

without any specific changes to indicate it as a driver algorithm, with the exception

that data which need to be captured as part of an interesting event must use the

system’s integer-based data structure (Section 4.4). Simple console-based textual

outputs can then be used to verify the correctness of the algorithm. Based on

experience and literature (Mukherjea and Stasko 1993), preliminary testing

throughout the implementation of new algorithms will minimise time spent debugging

during the creation of visualisations. While it is true that algorithm animations can

technically be employed as a debugging tool (Section 2.2), this approach will

generally require relatively more time than by testing the functionality of the driver

algorithm during its implementation.

Once an algorithm’s function is verified, interesting event markers are then inserted

into the code, using the approach introduced by BALSA (Brown and Sedgewick

1998). Figure 5.4 illustrates an implementation of a Bubblesort driver algorithm. The

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 129

addition of the markers does not generally hinder the readability of the algorithm, as

the markers utilise a routine name which is easily distinguishable for the main driver

algorithm code.

Figure 5.4: Implementation of Bubblesort driver algorithm

procedure TAlgorithmBubblesort.Sort;

var

 f : Integer;

 Sorted : Boolean;

 SortedNumber : Integer;

 temp : Integer;

begin

 inherited;

 CaptureEvent(eventLoadIntegerList, FList);

 SortedNumber := 0;

 repeat

 Sorted := True;

 for f := 0 to FList.Count - 2 - SortedNumber do

 begin

CaptureEvent(eventMessage,

'Comparing [' + IntToStr(f) + '] with [' + IntToStr(f+1) + ']');

 CaptureEvent(eventCompare, FList, f, FList, f+1);

 if FList.Items[f].Value > FList.Items[f+1].Value then

 begin

 CaptureEvent(eventExchange, FList, f, FList, f+1);

 temp := FList.Items[f].Value;

 FList.Items[f].Value := FList.Items[f+1].Value;

 FList.Items[f+1].Value := temp;

 Sorted := False;

 end;

 end;

 CaptureEvent(eventComplete, FList, FList.Count - 1 - SortedNumber);

 Inc(SortedNumber);

 until Sorted;

end;

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 130

Figure 5.4 highlights the routine calls to capture interesting events within the driver

algorithm. Each of the event types identified in Section 4.6.1 are shown, namely the

data structure definition event (eventLoadIntegerList), operational events

(eventCompare & eventExchange), conceptual event (eventComplete) and message

event (eventMessage). As specified in Section 4.6.1, data structure definition events

and operational events are essential for a basic illustration of an algorithm. They are

easily identified in a method similar to the declarative paradigm. In other words, any

operations involving the data structure are marked as important. Conceptual events

and message events require more in-depth knowledge of the algorithm to annotate,

since it is used to superficially enhance or complement the animation to improve

algorithm understanding, but do not directly represent any algorithm operations.

5.3.2 Interpreter

Each child interpreter class inherits from a base class which provides a common

interface for accepting script events. An abstract interface is created for each type of

interesting event which is usable by the driver algorithm (Figure 5.5). Thus, for each

CaptureEvent routine in the algorithm base class, there is a corresponding script

interpreting routine in the interpreter base class.

A new interpreter child class is created for each algorithm, or domain of algorithms

(Section 4.7.2). The use of the abstract interfaces means that while only relevant

routines need to be implemented, all interpreters are inherently capable of accepting

any event type.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 131

Figure 5.5: Extract of a interpreter class interface

Algorithm animation system research does not place much focus on low level

algorithm-to-visualisation paradigm implementation details. That, in contrast with the

amount of literature focusing on script-based animation systems (Stasko 1997;

Rößling and Freisleben 2001; Akingbade, Finley, Jackson et al. 2003) and high-level

paradigms (Brown and Sedgewick 1998; Roman 1998; Rößling and Freisleben 2000a;

Rößling 2002), suggests that the intermediate interpretation process is open to some

degree of flexibility. The implementation of routines for interpreting events thus made

 TProcessor = class(TSysObject)

 protected

 FOutputScriptFileName : String;

 //universal properties

 FObjectColourDefault : String;

 FObjectColourHighlight : String;

 FObjectColourHighlightBorder : String;

 function ScriptCreateList(AScriptItem : TScriptDataStructure) :

String;virtual;abstract;

 function ScriptCompare(AScriptItem : TScriptCompare) :

String;virtual;abstract;

 function ScriptExchange(AScriptItem : TScriptExchange) :

String;virtual;abstract;

 function ScriptCopy(AScriptItem : TScriptCopy) : String;virtual;abstract;

 public

 FAnimationScriptFile : TextFile;

 function ScriptInterpret(AScriptItem : TScriptItem) :

String;virtual;abstract;

 end;

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 132

use of iterative prototyping techniques, which allowed incremental development of

the routines based on experience gained and limited documented resources.

Figure 5.6: Implementation of an interpreter routine for an Exchange event

A routine to interpret an event that exchanges two items is illustrated in Figure 5.6.

The function first acquires the coordinates for the relevant graphical objects.

Graphical commands are then created to plot the graphic objects towards their new

function TProcessorDebug.ScriptExchange(

 AScriptItem: TScriptExchange): String;

var

 scriptStream : String; pointList1, pointList2 : TPointList;

 objectID1, objectID2 : String; offset1, offset2 : TPoint;

begin

 //obtain coordinates for converting to graphical commands

 pointList1 := GetPointList(AScriptItem.ListName1);

 AssignFile(FAnimationScriptFile, FOutputScriptFileName);

 Writeln(FAnimationScriptFile, 'begin');

 //move Object1 to where Object2 is

 offset1 :=

CalcRelativeMovement(pointList1.Items[AScriptItem.Pos1].PointPos,

 pointList2.Items[AScriptItem.Pos2].PointPos);

 scriptStream := 'moveRelative ' + IntToStr(AScriptItem.TimeToLive)

 + ' ' + objectID1 + ' ' + IntToStr(offset1.X) + ' ' + IntToStr(offset1.Y);

 Writeln(FAnimationScriptFile, scriptStream);

 //move Object2 to where Object1 is

 Writeln(FAnimationScriptFile, 'end');

 //update the object coordinates

 SwopID(pointList1, pointList2, AScriptItem.Pos1, AscriptItem.Pos2);

end;

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 133

positions. Finally, the coordinate controller is updated with the positions of the now

exchanged objects. Figure 5.7 shows an example of the output from the routine:

Figure 5.7: Graphical command example

The outputs from interpreters, in the form of graphical command scripts (Section

4.8.1), are placed in a standard ASCII text file. From experience, this approach has

shown to ease the process of debugging. When problems are encountered during the

implementation of an interpreter, the text file can be examined to find the possible

sources of common errors, especially ones relating to command syntax and event

interpretation. Command lines which are syntactically incorrect will result in parsing

errors from the animation component. Interesting events, if interpreted in an incorrect

or unsuitable manner, will often produce some unanticipated and unexplainable visual

results.

5.3.3 Animator and Timer

The animator in the system is designed to accept graphical scripts stored in an

ASCII-based text file, and render the graphics on the screen (Section 4.8). The

animation view (Section 5.2.1) is thus functionally supported by the animator. The

animator component renders animations based on the standard graphic language

defined in Section 4.8.1.

begin

moveRelative 8 List70 8 0

moveRelative 8 List71 -8 0

end

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 134

The need to support parallel animation for comparative analysis (Section 3.6) means

that support for multiple instances of the animator view is necessary. Most

importantly, with more than one animator operating, the speed of each instance must

be synchronised, in other words, each animator must run at an identical speed.

Each animator is designed to process operations based on a timer (Figure 5.8). Each

time the timer ticks, it will send a signal to the animator to perform a single operation

(discussed further below). Thus, the easiest approach to ensure that all animators run

at the same pace is to let all animators work off a unified timer. To support this

approach, a list of all currently active animators is maintained by an animator

controller. Each time the unified timer ticks, the same signal is sent by the animator

controller to each animator in turn, thus triggering all animators to process exactly a

single pending operation. Once the operation is completed, each animator waits in a

ready state until called again.

Figure 5.8: Multiple animators synchronised by the unified timer

An animator operation is divided into two main phases, an update phase and a render

phase. The update phase consists of iterating through an internal processing queue

(Section 4.8.2) consisting of commands to update the state of all graphical objects in

Unified Timer

Animator Controller

Animator1 Animator2 Animator3

signal

signal signal signal

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 135

memory. An internal counter is then incremented to register the completion of a single

operation. The render phase then iterates through the graphical objects, rendering each

onto the animation view.

The functionality to control the speed of the animators is done by employing a

standard time definition and timer multiplier. The standard time associated with a

timer tick is 50 milliseconds (ms), thus, running the timer for one second (1000ms)

would result in 20 ticks (and 20 operations). The time multiplier is used to artificially

speed up or slow down the timer. To lengthen the time of an animation (in other

words, to slow it down), the multiplier increases the standard time of the clock. This

causes less time ticks to be registered per second, and thus reduces the frequency of

calls to the animator.

Actual implementation showed that the abovementioned technique cannot, however,

be used for increasing animation speed (that is, by increasing the ticks per second) for

two reasons. Firstly, the implementation of a high-resolution timer13 is beyond the

scope of the prototype. Secondly, the refresh rate of the animator renderers will not be

able to keep pace. In other words, even if a high-resolution timer is employed to

register at 5ms intervals, the rendering speed of 200 frames-per-second is currently

impractical.

An alternative approach was thus employed (Figure 5.9), whereby the animator

operation is instead adjusted. Using this approach, when the multiplier is increased to

13 Basic timers have limited tick interval register (Cantù 2001). For example, if the timer was set to run
at ten-times speed of the animator’s standard time (i.e. at 5ms), the timer may realistically only register
intervals somewhat intermittently (i.e. between 12-35ms’s). A multimedia timer linked directly to the
OS may fair better. Regardless, it will not solve the overall problem, as explained in the main text.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 136

speed up animations, the timer’s resolution is maintained at 50ms, thus it will still

only register 20 operations-per-second. However, the call to the animator is sent with

an additional multiplier parameter. The animator then repeats the update phase of the

operation the same number of times as the multiplier. For example, if the multiplier is

set to 3× , the update phase will run 3 times when a single timer signal is received by

the animator. Once the update phase is complete, the rendering phase is then run only

once. Thus, regardless of the multiplier speed, the animation will run at an increased

rate by firstly performing all update operation in the background before rendering the

scene at the end. As a result, the renderer is only expected to draw at 20

frames-per-second, a reasonable speed for currently available PC-platforms.

Figure 5.9: Animator processing a call with a 3x multiplier parameter

Animator

Timer

Pending Op1

Pending Op2

.

.

Update phase Render phase

Pending Op4

Pending Op5

Timer call

Multiplier 3 X

Render Op

Timer call (3X)

Pending Op3

Skipped Render Op

Skipped Render Op

3 update operations and 1 render operation

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 137

5.4 Interface Design

The role of the system interface is to allow users to access and make use of the

features offered by the system. The implementation of the system interface follows

the specifications of each of the data layer and animation layer interfaces presented in

Section 4.9.

Each combination of data structure, algorithm and interpreter is defined as a scenario.

Thus, when creating a scenario, the interface must enable end-users (Section 3.2.2) to

make a selection of the algorithm, interpreter, and data list which make up the

scenario. A unique scenario is generated for each unique case study to be examined.

The parameters and settings for each scenario are controlled and setup through an

associated animation panel. Once the scenario is setup, the system then visually

represents the scenario by constructing a single animation view.

The design of the prototype centres on the concept of using a unified algorithm

animation desktop (Figure 5.10), which allows the user to control the generation and

display of animations. The desktop acts as a centralised placement area for animation

panels, each of which presents a particular scenario. The desktop provides an

integrated platform for comparative analyses, allowing any number of potential

combinations of data lists and algorithms to be created and examined. These include

comparisons of a data list using different algorithms, or different data lists using a

single algorithm (Figure 4.3). When multiple scenarios are to be compared, an

animation panel is created and setup for each scenario. The animation panel, once

created, is placed within the unified desktop. Scenarios can then be individually

selected for parallel display.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 138

Figure 5.10: Unified algorithm animation desktop

When algorithm animations are created, the processes consist of setting up the

scenario through the data layer interface (Section 5.4.1), and then selecting and

controlling animation views from the animation layer interface (Section 5.4.2).

5.4.1 Data Layer Interface

The data list to be used by the algorithm is first generated, and an animation panel is

then created to construct a scenario. This process is repeated for each animation the

user would like to see in parallel. This section discusses the Graphical User Interface

(GUI) designed to support the process.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 139

Data Generator

The interface acts as a front-end for the data generator (Figure 5.11), where multiple

data lists are created and maintained. Parameters are entered for the population size

and the level of sortedness for each data list created.

Figure 5.11: Data generator interface

The level of sortedness definition is based on the discussion in Section 4.3.3, where a

measure of sortedness was adopted to express list order as a percentage level ranging

from -100% to 100%. The concept is supported by using a slider control, allowing the

end-user to adjust a pre-defined sorted listed in one percent increments. When the list

is adjusted to 0%, a list of undefined ordering is generated based on the method

discussed in Section 4.3.1.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 140

Animation Panel

There are two variations of the animation panel, namely the scenario-based panel and

the script-based panel. The scenario panel, as the name suggests, allows the user to

create a customised scenario for examination. Within the scenario-based animation

panel, selections are made on the combination of algorithm, data structure and

interpreter (visual representation) of the scenario (Figure 5.12).

Figure 5.12: Scenario-based Animation Panel

Figure 5.13 shows the data structure interface of the animation panel, which is used to

select the data list to use, and to modify the virtual element properties which affect the

operational time-cost of the algorithm animation actions (Section 4.4.3). The compare

size field is entered manually, whilst the total size is determined by the amount (count)

of each virtual datatype used, multiplied by the bits size of the datatype.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 141

Figure 5.13: Interface for modifying the virtual element properties

The script panel allows the user to directly input a pre-generated animation script file

for display. The panel requires a single parameter, which is the location of the

animation script file (Figure 5.14).

Figure 5.14: Script-based Animation Panel

The approach is designed to offer a flexible method for demonstrating algorithm

animations. When the system is employed as a general purpose animation tool, or if

students are asked to create basic animation demonstration, an animation script may

be written manually without using a driver algorithm. The script can be written in any

ASCII-based word processor, following the grammar presented in Section 4.8.1.

Another use of the script panel is for demonstrating previously generated algorithm

animations. Sometimes lecturers might want to demonstrate particular scenarios in a

lecture or self-study laboratory environment. Under such circumstances, the animation

script may be saved in an ASCII file in advance, and reloaded through the script panel

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 142

for the demonstration. Furthermore, algorithm animations which work on large data

sets are time-consuming to generate. Thus, re-using existing scripts through the scrip

panel presents an efficient alternative to recreating the animation through the

scenario-based panel.

5.4.2 Animation Layer Interface

Once algorithm animation scenarios are setup with all the required properties, an

animation selector is used to pick the animation to view. Multiple animations may be

picked from the selector. Each animation is viewed through an animation view, which

is controlled through the Play Control. The GUI used to control and view the

animations is discussed in this section.

Animation Selector

The animation selector shows a list of all available animation panels on the desktop

(Figure 5.15). Any number of animations can be selected for display, provided there is

sufficient screen space. Although any combination of animations can be selected for

parallel display, it is up to the user (and not the selector interface) to decide which

animations have common relevance for side-by-side comparisons. For example, while

it is possible to race a Bubblesort working on a large list with a Quicksort work on a

small list, there is little meaningful knowledge to be gained from such a study.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 143

Figure 5.15: Animation Selector

Play Control

The unified play control (Figure 5.16) is used to directly manage the display of

animation views, and act as the interface for the unified timer (Section 5.3.3). The

control offers the ability to play, pause and step through the animation. A slide bar is

used to control the speed of animations. The adjustment can vary from 1/5 through to

10 times the normal speed.

Figure 5.16: Play Control interface

The play control is presented as a floating toolbar which is only made visible to the

end-user when there are initialised animation views. Figure 5.18 demonstrates the

context in which the play control is presented.

Animation View

An animation view (Figure 5.17) is assigned to each animation panel which is

selected for display. The view contains a canvas, which holds the actual visualisation.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 144

The canvas is linked directly to the animation engine renderer. An information panel

is provided on the right of the canvas. The information panel is used to display textual

information concerning the animation being displayed. The information section of the

panel displays messages generated from message events (Section 4.6.1). The

operation section is designed to display an up-to-date count of the operations

performed by the algorithm (further examined in Section 5.6).

Figure 5.17: Animation view

A key feature of the unified play control and animation view is the support for

running multiple algorithm animations in parallel, in effect simulating an algorithm

race (Figure 5.18). A single play control handles the display settings of all the

animation views, including display speed, start and pause. The step through

functionality is disabled when multiple animations are shown.

Canvas

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 145

Figure 5.18: The play control managing an animation race

5.5 Implementation of Case Study

The implementation of sorting algorithms as a case study achieves two purposes.

Firstly, a practical implementation of algorithm animations would serve to

substantiate the concepts of the proposed framework, and to test the usefulness of the

prototype system and its various components in constructing animations. Secondly,

the availability of the sorting algorithm animations will provide immediate

accessibility of the prototype system to algorithmic lecturers and students.

The visualisation design aspect of the case study algorithm animations is based on the

two presentation styles initially created by the “Sorting Out Sorting” video (Section

3.5.1). The two styles consist of the rectangular blocks and grouped dots. These styles

are referred to in the dissertation as the rectangle manhattan style, and the dot cloud

style, respectively.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 146

The usage of the abovementioned presentation styles are motivated by two reasons.

Firstly, since the framework specification defined the use of the integer as the only

datatype used by the data structure, this integer data type offers an inherently close

mapping to the proposed presentation styles (Section 4.4). Secondly, the two styles

offer a good way to demonstrate different aspects of algorithms. The rectangle

manhattan (Figure 5.19a) can visualise small to medium size data sets to explain the

operations of an algorithm. Visual details can also be added to enhance the animation.

The dot cloud style (Figure 5.19b) is suitable for visualising larger data sets, where

the step-by-step animated algorithm concept explanations are traded for discreet

visual updates. That, in conjunction with the setup of the visualisation, where the data

position is presented along the x-axis and the data size along the y-axis, allows the

visualisation to present the bigger picture, showing trends and interesting algorithm

characteristics.

Figure 5.19: (a) Rectangle manhattan (b) Dot cloud

With complex algorithms, the algorithm annotator can capture a variety of conceptual

events (Section 4.6.1). If the additional events are appropriately presented through the

interpreter, various interesting properties or phenomena of the algorithm are exposed.

(a) (b)

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 147

Figure 5.20 shows static illustrations of an animation for a Mergesort in action. The

concept of a Mergesort is typically easy to describe, but extremely difficult and

time-consuming to illustrate using static material.

Figure 5.20: The Mergesort animation highlights some interesting details

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 148

In Figure 5.20, to highlight the characteristics of the Mergesort, the implemented

animation scenario uses conceptual events to mark items as busy being processed

(blue), merged (red) or ignored (black). The list is continuously subdivided into

smaller lists, with the visualisation showing the exact details on how the Mergesort

utilises a temporary list to perform list subdivisions. Once each sub-list is divided into

its elementary form (size = 1), the sub-lists are systematically merged to form a final

sorted list.

Figure 5.21 shows a series of illustrations for a Quicksort animation using a dot cloud

style, highlighting the divide-and-conquer nature of the algorithm. The list is first

chunked into boxes through iterations, with the sorting pivot (marked in red) forming

the bottlenecks among the boxes. The sorting list is shown in blue, and the ignored list

is shown in black. Each of the boxes is subdivided at a smaller scale until each box is

in its elementary form (where size = 2), after which they are sorting back into the

bigger picture. A clear advantage of using algorithm animations is that it can illustrate

algorithm concepts or phenomena that are either too complex to visualise mentally,

impractical to illustrate in a static format, or are not obvious to the viewer when

represented in static formats.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 149

Figure 5.21: The iterative box pattern of the Quicksort

5.6 Implementation Observations

An extensive review of related research delivered few resources documenting the

low-level implementations or concepts of interpreters for algorithm animations

(Section 5.3.2). Even though the level of difficulty was estimated to be low, it was

nevertheless an initial cause for concern. During the prototype implementation, the

algorithm and data generator components were first written and tested. With the data

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 150

layer components in place, the construction of interpreters started. However, it was

initially difficult to see how well the interpreter and the animation component fitted

together, especially since the animation component was not implemented, and thus

there was no visual output available with which to validate results. To overcome this

problem, an extant script animation system, JAWAA (Section 3.5.6), was employed

as a temporary animation component. The temporary use of JAWAA was an efficient

solution, since the prototype’s interpreter was designed to store the animation

commands in an ASCII file (Section 5.3.2), which was the primary input method of

JAWAA.

Interpreters were initially implemented based on JAWAA’s scripting language. The

actual implementation was flexible. The methods used to convert generic events into

an animation were usually results of iterative prototyping and testing. After the

implementation of the interpreters, the prototype’s animation component was then

constructed. The existing interpreters were then modified to suit the script language of

the framework, an easy process due to the similarities of the commands (Section

4.8.1).

The separation of the framework into independent layers (Section 4.2.2), coupled with

the use of object instances (Section 5.2.2), resulted in a simpler process of

implementation and testing of components. The streaming of events and scripts to an

animation view is an independent process of each combination of data, algorithm and

view (defined as a scenario to the end-user). The functions of each layer are

completed before passing the results through to the next layer for processing (Figure

5.22). Thus, while the prototype seem to run a number of processes, executing layer

functions and controlling multiple views, the processes are all done in discreet steps.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 151

As a result, complexities of implementing processes in parallel, such as using

application threads, are avoided.

Figure 5.22: Generating animations without using parallel processing

The structuring of the framework, however, did have its inherent limitations. The

interpreter took full responsibility for converting event scripts to animation commands,

a process which strips the interesting events of its algorithmic origins and properties.

Two problems were thus observed.

Firstly, an interesting event, such as a single compare operation, is often represented

in a rectangle manhattan view by having the examined rectangular blocks being

highlighted, and then un-highlighted, which uses two graphical operations. This

disparity only becomes noticeable when the user tries to run through an animation

step-by-step. The user must click the step button once to highlight, and again to

un-highlight, thus giving the impression that the operation actually consist of two

steps, or that the operation is relatively time-consuming (which it is usually not).

A more notable problem is concerned with the information shown to complement the

animation (Section 5.4.5). A complementary requirement was to show efficient

information relating to each type of operations, such as the number of exchanges and

View3
View2

Data

Quicksort Interpreter2

Bubblesort Interpreter1

View1

Mergesort Interpreter3

Data layer Interpreter layer Animation layer

Data

Data

Display
Controller

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 152

comparisons performed by an algorithm. This can be used to highlight the relative

efficiency of the algorithm. However, once the interpretation of events is done, the

graphical scripts no longer contain event-related information. As a result, the

animation view is unable to identify or keep count of the algorithm operations

performed, and thus cannot display such information.

5.7 Conclusion

Successful implementation of the prototype from the proposed framework resulted.

The algorithm animation framework thus proved to be an effective design for a

system for generating algorithm animations. The layered structure of the framework,

in conjunction with the prototype methodology, supported modularised

implementation of the prototype. Furthermore, the prototype based on the framework

design was capable of supporting the pedagogic requirements identified in Chapter 3.

The user interface of the prototype, while simple, was capable of supporting the

interaction requirements of the framework design.

The implementation of the algorithm animation case studies provided an interesting

challenge. While the concepts and exact operation of each of the sorting algorithms

have already been defined (Appendix A), there is much that can still be learnt of the

characteristics of an algorithm from a well planned animation. Even with the very

limited set of animation commands offered by the framework, the visualisation

designer still has ample opportunity to create informative animations. The structure of

the framework was successful in supporting generation and display of multiple

algorithm animations due to the modular concept presented in Section 4.2.2.

CHAPTER 5 : ALGORITHM ANIMATION PROTOTYPE

 153

The limitation of the framework is that, due to the layer design and the use of the

interpreter, some algorithm related information may be lost while being processed

into animations. This meant that some supplementary information is no longer

available for presentation with the algorithm animation.

 154

Chapter 6

Conclusions and Recommendations

6.1 Introduction

The challenges of teaching abstract algorithm concepts to introductory algorithmic

students were highlighted together with the potential benefits of employing algorithm

animations to increase the students’ algorithm comprehension (Chapter 1). The

objective of the dissertation was thus the design and implementation of an extensible

framework which provides for the generation and display of algorithm animations in

an algorithm course environment. The proposed framework and implemented

prototype will integrate into the NMMU CS&IS department’s goal of increasing

student throughput through research and utilisation of technological support tools

(Section 1.3.3).

The pedagogic potential of algorithm animations formed the primary motivation for

the initial study. Literature reviews showed algorithm animation as an established

field of study with well-defined theoretical and practical background (Chapter 2). In

support of the dissertation’s goals, studies were performed to gain an understanding of

algorithm animation, including current and past research, extant systems, and

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 155

available pedagogic applications. The results of the study guided the design and

implementation of the algorithm animation framework and its associated prototype.

This chapter provides a brief summary of the research achievements (Section 6.2),

contributions (Section 6.3), implications (Section 6.4) and limitations (Section 6.5).

These are followed by recommendations for future research (Section 6.6).

6.2 Research Achievements

Chapter 1 presented a context into the utilisation of algorithm animation to support the

teaching of algorithm courses. The goals of the research were the design of an

algorithm animation framework, and the evaluation of the effectiveness of the

framework through a prototype implementation. The achievement of these goals is

evident in two areas, namely theoretical and practical. A number of research questions

were posed to guide the investigation towards achieving these goals (Table 6.1).

Based on these findings, questions 1 through 6 and 8 contribute to the theoretical

achievement, while the others contribute to the practical achievement.

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 156

 Research questions
Relevant
chapter/section(s)

1. What is software visualisation? Section 2.2

2. What is algorithm animation? Section 2.3

3. What elements are used to form an algorithm animation? Section 2.3

4. How are algorithm animations used in teaching and
learning algorithms?

Section 2.4

5. What are the issues to be considered in the design and
specification of an algorithm animation framework?

Sections 3.2 and 3.3

6. What are the criteria for the design of effective algorithm
animation systems?

Section 3.4

7. How do extant algorithm animation systems match the
criteria?

Section 3.5

8. What does an algorithm animation framework look like? Chapter 4

9. What are the implementation issues faced by developers
of algorithm animation systems?

Sections 5.2, 5.3 and 5.6

10. How effective is the proposed framework? Chapter 5

11. How does the algorithm animation prototype developed
match the identified measurement criteria?

Chapter 5

12. What are the limitation and contribution of the framework
and prototype?

Chapter 6

Table 6.1: Research questions of the dissertation

This section provides an overview of the theoretical (Section 6.2.1) and practical

(Section 6.2.2) achievements resulting from answering each of the research questions.

Specific and relevant sections of the dissertation are summarised to show how the

questions were addressed.

6.2.1 Theoretical Achievements

Software visualisation involves the use of graphical techniques to improve the

presentation and appearance of programs, with the aim of facilitating understanding of

the programs (Section 2.2). Algorithm animation is classified as a form of software

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 157

visualisation which visualises the working of algorithms through a high level of

abstraction (Section 2.3). In other words, the content of algorithm animations is

strategically chosen to focus on issues of relevance to a particular topic, whilst

unimportant or less relevant concepts are hidden or shown only superficially (Section

2.5).

Algorithm animation involves the utilisation of primarily visual elements to represent

the data structures of an algorithm, and to display the dynamic operations of the

algorithm in execution. The three visual elements of algorithm animations were

identified as visual metaphors, animation and colour (Section 2.3). Algorithm

animations may be used in lecture demonstrations, or be made accessible to students

in a laboratory environment or over the internet (Section 2.4). A review of software

visualisation and algorithm animation as a field of research, the communication

techniques employed by algorithm animations, and the educational value of algorithm

animations formed the focus of the foundation to the study (Chapter 2).

Having established an understanding of the concepts and uses of algorithm animation,

a study is conducted into the various elements of an algorithm animation system

(Chapter 3). A number of issues were considered to support the designing of the

framework. Identifying the types of users within an algorithm animation system

environment and the general components of algorithm animation systems provided an

understanding of the functional requirements of a system (Section 3.2). Another issue

considered was the paradigms used to connect algorithms to visualisations, which

affect both the design and operational characteristics of an algorithm animation

system. The two algorithm-to-visualisation paradigms identified were the imperative

and declarative paradigm (Section 3.3).

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 158

An important research objective was the establishment of a list of requirements which

will effectively complement the pedagogic objective of the framework. A number of

preliminary requirements were identified and divided into two sections (Section 3.4).

The first section categorised requirements into an interaction level taxonomy

proposed by Naps et al (2003), and the second section consisted of complementary

requirements. The preliminary requirements were then reviewed, from which two

requirements were removed due to project scope restrictions (Section 1.4.2). A list of

nine requirements was proposed as the criteria for effective algorithm animation

systems (Section 3.6).

With the theoretical foundations and requirements established, the specification and

design of an algorithm animation framework were proposed (Chapter 4). The

framework is designed to support the list of requirements previously established,

whilst also utilising the algorithm animation user, component and visualisation

paradigm concepts. The structure of the framework was divided into independent

layers based on the functionalities of component groups.

6.2.2 Practical Achievements

The list of requirements (Section 3.4) was used as an instrument for evaluating seven

extant algorithm animation systems (Section 3.5). The evaluation showed that no

extant system was able to address all of the requirements identified.

The implementation of a prototype based on the proposed framework acted as an

evaluation of the effectiveness of the framework design. The evaluation (Chapter 5),

focused on determining the effectiveness of the framework through the

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 159

implementation of an algorithm animation system, and producing a number of sorting

algorithm animations using the implemented system.

The prototype implementation was performed using the iterative prototyping

methodology (Section 5.2.1). Problems were encountered in implementation where

certain informative data cannot be presented along with the algorithm animation

(Section 5.6). Two algorithm animation design styles were successfully applied to the

case study sorting algorithms using the prototype, namely the rectangle manhattan and

dot cloud style (Section 5.5). The results of the prototype and successful algorithm

animation case study implementation are indicative of the proposed framework to be

an effective design. Furthermore, the prototype based on the framework was capable

of supporting all the requirements identified in Chapter 3. The objectives of the

framework design have thus been achieved successfully.

6.3 Research Contributions

This section outlines the research contributions, which represent the outputs and

deliverables of the current investigation. Section 6.3.1 discusses the theoretical

contributions, and Section 6.3.2 discusses the practical contributions.

6.3.1 Theoretical Contributions

Many studies have established a variety of compiled requirements intended for or

based on algorithm animation systems (Gurka and Citrin 1996; Hansen, Narayanan

and Hegarty 2002; Saraiya 2002; Saraiya, Shaffer, McCrickard and North 2004). The

specification of a list of requirements was thus needed to support the design of the

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 160

proposed algorithm animation framework. However, literature studies, supported by

the extant system analysis, showed that there is currently no unified and commonly

accepted requirements framework for evaluating the effectiveness of algorithm

animation systems in an algorithm course environment. The derived list of

requirements (Table 6.2) is a theoretical contribution towards identifying

instructionally effective features of algorithm animation systems.

Requirements for Algorithm Animations
R1: Allow speed control of algorithm animation
R2: Allow rewinding of the animation
R3: Accept user input data for the algorithm
R4: Provide questions to predict algorithm behaviour
R5: Allow stepping control of algorithm animation
R6: Support construction of animation by students
R7: Support for smooth motion
R8: Include capabilities for comparative algorithm analysis
R9: Provide multiple views of an algorithm
R10: Provide additional instructional material
R11: General purpose framework

Table 6.2: Identified Requirements

The algorithm animation framework, illustrated in Figure 6.1, forms the primary

theoretical contribution of the dissertation. The framework made use of knowledge

gained from literature reviews and system analysis. Various design concepts were also

proposed (Chapter 4). The framework consists of five layers, with the core layers

placed within two user interface layers (Section 4.2.2). The framework core consists

of the data layer, interpreter layer, and animation layer. The data layer produces

interesting events by executing a driver algorithm with a generated data structure. The

interpreter layer converts the interesting events into a predefined animation command

script, which is used by the animation layer to render the algorithm animation. The

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 161

design allows layer outputs to be combined to produce different algorithm scenarios

for animation.

User interaction with the data and interpreter layers are provided through the data

layer interface, and the animation layer through the animation layer interface (Section

4.9). The layering design maps the user types with defined components or component

groups, thereby clarifying the functions of user types within the framework. The

algorithm programmer interacts with the data layer, the visualisation designer with the

interpreter layer, the visualisation tool developer with the animation layer, and the

students and instructors with the data and animation layer interfaces.

Figure 6.1: Framework structure

Data

Structure

Definition

Animation Interpreter

Algorithm

Repository

Event API

Data

Generator

Data Layer Interpreter Layer Animation Layer Data Layer

Interface

Event

Script

Animation

Command Script

Interface

Section

Interface

Section

Animation

Layer

Interface

Algorithm Animation Framework

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 162

6.3.2 Practical Contributions

The list of requirements (Table 6.2) is used as an instrument for evaluating seven

extant algorithm animation systems (Section 3.5). The evaluation, summarised in

Table 6.3, forms a practical contribution of the current investigation.

Sorting

Out
Sorting

BALSA-II GAIGS JCAT JSAMBA JAWAA
ANIMAL+

JHAVE

R1: Allow speed
control of algorithm

animation

R2: Allow
rewinding of the

animation

R3: Accept user
input data for the

algorithm
 ()

R4: Provide
questions to predict
algorithm behaviour

R5: Allow
stepping control of

algorithm animation

R6: Support
construction of
animation by

students

R7: Support for
smooth motion ()

R8: Include
capabilities for

comparative
algorithm analysis

()

R9: Provide
multiple views of an

algorithm
()

R10: Provide
additional

instructional
material

() () () ()

R11: General
purpose framework

Table 6.3: Criteria met by extant systems
 Support for feature () Partial support for feature

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 163

The effectiveness of the framework was evaluated through the implementation of a

prototype system (Figure 6.2). The algorithm animation system prototype formed the

primary practical contribution of the research. An additional contribution is the

animation of the sorting algorithm case studies, which illustrated the concepts of the

algorithms using visual metaphor, animation and colour techniques.

Figure 6.2: Prototype screenshot

6.4 Implications of Research

This section will discuss how the contributions of the research can be applied to future

research and algorithm learning environments.

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 164

There is currently an absence of a unified and common instrument for evaluating the

pedagogic effectiveness of algorithm animation systems. This highlights the value of

the proposed list of requirements. The list of requirements can be used as a foundation

for the creation of a unified algorithm animation system evaluation instrument.

Tertiary educational institutions can also utilise the proposed requirements as a

preliminary method for evaluating the suitability of algorithm animation systems in

particular course environments, with the aim of integrating the systems to

complement the institution’s existing teaching strategies.

A gap currently exists within the community for a standard and widely accepted

guideline for the design of algorithm animation systems. The proposed framework is

presented as an effective model for addressing this gap. An independent layer

approach was used to design the framework. As a result, iterative modification or

improvement of various framework components can be done without affecting other

layer components. The extensible design of the framework allows it to be further

expanded to integrate concepts in support of current or future studies. The framework

can thus be seen as a flexible model for supporting further research within the

community.

An evaluation was performed on seven extant algorithm animation systems based on

the proposed list of requirements. The results of the evaluation provided a general

understanding of the characteristics of each extant system, and may aid instructors in

making informed decisions on the choice of algorithm animation systems to utilise in

algorithm courses. The evaluation results can be used to support discussions of future

system evaluations. Evaluations of additional systems will complement the

knowledge on the extant systems, rather than act as stand-alone evaluations.

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 165

The implemented prototype is a working system which may be integrated into an

algorithm course environment. The prototype may be utilised in an interactive

lecturing environment to demonstrate algorithms, with support for live generation and

display of algorithm animations. This will allow instructors to provide immediate

visualised feedback to the students’ queries. Pre-generated animations can also be

saved and replayed in lectures to highlight specific scenarios of interest. The

prototype development focused on the animation of sorting algorithms in particular.

The immediate outcome of the implementation is two-fold. Firstly, the theoretical

design of the framework can be tested in practice to evaluate its ability to match the

proposed requirements. Secondly, the prototype and the sorting animations can be

rapidly integrated as a pilot into existing algorithm curricula, complementing the

technological support related research within the NMMU. The prototype is well suited

for integration into laboratory environments. Students can utilise the interactive

features of the prototype to complement their studies of algorithms. Furthermore,

practical assignments can be created to encourage the use of algorithm animations by

students.

6.5 Limitations of Research

Chapter 3 produced preliminary requirements for an algorithm animation framework,

upon which the final list of requirements was based on. The two requirements which

were not included were the support for rewinding of animations, and provision of

questions to predict algorithm behaviour.

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 166

The support for animation rewinding was not considered due to scope limitations of

the current research, discussed in Section 3.6.2. The provision of questions as a form

of interactive learning may increase the comprehension of material. However, the

scope of the project did not include features for interactive questions (Section 1.4.2).

A limitation of the framework found during the implementation was discussed in

Section 5.6. The limitation was due to the structure of the framework, which separated

the concepts of the algorithm from that of the animation by utilising an intermediate

interpreter process. As a result, certain informative data relating to the original

algorithm is no longer accessible to the animation display. It is also worth mentioning

that the final design of the framework would not have been suitable for integrating

interactive questions with the algorithm animations. Placing interactive questions in

relevant sections of the algorithm animation would require some understanding of the

original algorithm’s operational context, which as mentioned, is lost on the conversion

to the animation phase due to the independence of layers.

6.6 Recommendations for Future Research

The conclusion of the current investigation offers a number of possibilities for future

research projects. These can be separated into projects that focus on theoretical

contributions, and projects which extend the practical contributions of the system.

Projects which provide theoretical contributions to the field of algorithm animations

include the following:

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 167

 Empirical studies can be conducted to evaluate the pedagogic effectiveness of the

prototype. The studies can focus on the effectiveness of the prototype as a whole,

or concentrate on a particular group of features.

 A critical analysis can be conducted to determine the relevance of the list of

requirements for evaluating system effectiveness. This may result in specific

features being added or removed. The critical analysis may be supported by the

abovementioned empirical studies.

 Implementation of additional case studies can be done to evaluate the feasibility

of the framework. The case studies can include different sorting algorithms, or

algorithms of other domains.

 An investigation can be performed into incorporating declarative paradigm

concepts into the framework, and how these concepts will affect the

characteristics of the framework.

A comprehensive implementation of the algorithm animation system based on the

proposed framework can offer a number of practical contributions:

 The system will provide a relatively reliable platform for integration into NMMU

curricula, and to conduct empirical studies.

 The implementation can incorporate the feature for rewinding animations.

 During implementation, the design of the interface can incorporate established

usability design methodologies. This may lead to further research using usability

evaluations and eye-tracking technologies.

 Administrative features may be included to support enabling and disabling of

system features, which will aid empirical studies into the effectiveness of

particular features and requirements. Administrative features may also include

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 168

the monitoring of student usage on particular system features, or the scenarios

which are examined by students.

The abovementioned research recommendations, which extend from the current

research, can be used to derive ways to further improve the pedagogic potential of

algorithm animation.

6.7 Summary

Algorithm animation is a technological support tool which supports the

comprehension of abstract algorithm data and concepts. The creation of an algorithm

animation framework to support the research strategy for increasing student

throughput within the NMMU CS&IS formed the basis of the current research.

The current research has successfully made substantial theoretical and practical

contributions towards the research direction of the NMMU. These research

contributions are:

 List of requirements for algorithm animation systems.

 A comparative study of extant algorithm animation systems using the list of

requirements as an evaluation instrument.

 An algorithm animation framework model to support the implementation of

algorithm animation systems.

 A prototype system based on the proposed framework.

 Sorting algorithm animations implemented in the prototype system.

CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS

 169

The research has satisfied the proposed goals and objectives by addressing each of the

identified research questions. The dissertation successfully reported on the

demonstration of the proposed algorithm animation framework as an effective design

model. Future research will thus focus on determining the pedagogic effectiveness of

the prototype developed in an algorithm course environment, and the effectiveness of

the framework in supporting animations of algorithms in other programming domains.

 170

REFERENCES

AKINGBADE, A., FINLEY, T., JACKSON, D., PATEL, P. and RODGER, S.H.

(2003): JAWAA: Easy Web-Based Animation from CS 0 to Advanced CS
Courses. Proc. Technical Symposium on Computer Science Education, Reno,
Navada, USA. 35:162 - 166, ACM Press

ALESSI, S.M. and TROLLIP, S.R. (2001): Multimedia for Learning: Methods and
Development. 3rd Edn, Allyn and Bacon.

ANDERSON, J.M. and NAPS, T.L. (2000): A Context For The Assessment Of
Algorithm Visualization Systems As Pedagogical Tools. Proc. First Program
Visualization Workshop, Helsinki, Finland.

ARIK, S. (2005): Algorithm Animation as a Narrative. CS-2005-03. Efi Arazi
School of Computer Science, The interdisciplinary center.

BAECKER, R. (1998): Sorting out Sorting: A case study of software visualization for
teaching computer science. In Software Visualization: Programming as a
Multimedia Experience. 369 - 381. STASKO, J., DOMINGUE, J., BROWN,
M.H. and PRICE, B.A. (eds). The MIT Press.

BAECKER, R. and PRICE, B. (1998): The Early History of Software Visualization.
In Software Visualization: Programming as a Multimedia Experience. 29 -
34. STASKO, J., DOMINGUE, J., BROWN, M.H. and PRICE, B.A. (eds).
The MIT Press.

BAECKER, R.M. (1981): Sorting out Sorting - 30 minute colour sound film,
Dynamic Graphics Project, University of Toronto.

BAILEY, D.A. (1999): Java Structures: Data structures in Java for the principled
programmer. McGraw Hill.

BAKER, J.E., CRUZ, I.F., LIOTTA, G. and TAMASSIA, R. (1996): Algorithm
Animation Over the World Wide Web. Proc. AVI '96, Gubbio, Italy. ACM
Press

BALDWIN, D. and SCRAGG, G. (2004): Instructor Notes - Tactics for Teaching
Algorithms and Data Structures: The Science of Computing. In Algorithms
and Data Structures: The Science of Computing. Charles River Media.

BALL, T. and EICK, S.G. (1996): Software Visualization in the Large. IEEE
Computer 29(4):33-43

BALOIAN, N. and LUTHER, W. (2001): Visualization for the Mind's Eye. Proc.
International Dagstuhl Seminar of Software Visualization, Schloss Dagstuhl,
Germany. 354 - 367, DIEHL, S., EADES, P. and STASKO, J. (eds).

 171

BARBU, A., DROMOWICZ, M., GAO, X., KOESTER, M. and WOLF, C. (2001):
Bubblesort Animation - Softwareergonomische Aspekte bei der Gestaltung
von WWW-basierter Lernsoftware am Beispiel vorlesungsbegleitender
Materialien zu "Sortieren". http://olli.informatik.uni-oldenburg.de/fpsort/

BARTRAM, L. (1997): Perceptual and interpretative properties of motion for
information visualization. Proc. Workshop on New paradigms in information
visualization and manipulation, Las Vegas, Nevada, United States. 3 - 7,

BARTRAM, L.R. (2001): Enhancing Information Visualization with Motion. Ph.D
thesis. School of Computing, Simon Fraser University.

BAZIK, J., TAMASSIA, R., REISS, S.P. and VAN DAM, A. (1998): Software
Visualization in Teaching at Brown University. In Software Visualization:
Programming as a Multimedia Experience. 383 - 398. STASKO, J.,
DOMINGUE, J., BROWN, M.H. and PRICE, B.A. (eds). The MIT Press.

BENTLEY, J.L. and KERNIGHAN, B.W. (1991): A System for Algorithm
Animation - Tutorial and User Manual. Computing Science Technical
Report 132. AT&T Bell Laboratories. Murray Hill, New Jersey 07974.

BRODAL, G.S., FAGERBERG, R. and MORUZ, G. (2005): On the Adaptiveness
of Quicksort. Proc. 7th Workshop on Algorithm Engineering and Experiments.

BROWN, D. (2001): B#: A visual programming tool. Honours thesis. Computer
Science & Information Systems, University of Port Elizabeth.

BROWN, M.H. (1988a): Algorithm Animation. PhD thesis. Brown University.
BROWN, M.H. (1988b): Exploring algorithms using BALSA-II. IEEE Computer

21(5):14-36.May 1988.
BROWN, M.H. (1988c): Perspectives on algorithm animation. Proc. SIGCHI

conference on Human factors in computing systems. 33 - 38, ACM Press
BROWN, M.H. (1998): A Taxonomy of algorithm animation displays. In Software

Visualization: Programming as a Multimedia Experience. 35. STASKO, J.,
DOMINGUE, J., BROWN, M.H. and PRICE, B.A. (eds). The MIT Press.

BROWN, M.H. and HERSHBERGER, J. (1991): Color and Sound in Algorithm
Animation. DEC Systems Research Center.

BROWN, M.H. and HERSHBERGER, J. (1998a): Fundamental Techniques for
Algorithm Animation Displays. In Software Visualization: Programming as a
Multimedia Experience. 81 - 101. STASKO, J., DOMINGUE, J., BROWN,
M.H. and PRICE, B.A. (eds). The MIT Press.

BROWN, M.H. and HERSHBERGER, J. (1998b): Program Auralization. In Software
Visualization: Programming as a Multimedia Experience. 138 - 143.
STASKO, J., DOMINGUE, J., BROWN, M.H. and PRICE, B.A. (eds). The
MIT Press.

 172

BROWN, M.H. and RAISAMO, R. (1997): JCAT: Collaborative active textbooks
using Java. Computer Networks and ISDN Systems

BROWN, M.H. and SEDGEWICK, R. (1984): A System for Algorithm Animation.
SIGGRAPH - Computer Graphics 18(3)

BROWN, M.H. and SEDGEWICK, R. (1998): Interesting Events. In Software
Visualization: Programming as a Multimedia Experience. 154-171.
STASKO, J., DOMINGUE, J., BROWN, M.H. and PRICE, B.A. (eds). The
MIT Press.

BYRNE, M.D., CATRAMBONE, R. and STASKO, J.T. (1996): Do Algorithm
Animation Aid Learning? Technical GIT-GVU-96-18. Georgia Institute of
Technology.

BYRNE, M.D., CATRAMBONE, R. and STASKO, J.T. (1999): Evaluating
animations as student aids in learning computer algorithms. Computers &
Education 33(4):253 - 278

CALITZ, A.P. (1997): The Development of an Evaluation of a Strategy for the
Selection of Computer Science Students at the University of Port Elizabeth.
Ph.D thesis. Computer Science & Information Systems, University of Port
Elizabeth.

CANTÙ, M. (2001): From Automation to COM+: Interfaces, Variants, and Dispatch
Interfaces: Testing the Speed Difference. In Mastering Delphi 6. 863-865.
Sybex.

CARRANO, F.M. and PRICHARD, J.J. (2002): Data Abstraction and Problem
Solving with C++. 3 Edn, Addison Wesley.

CHEN, J. and CARLSSON, S. (1991): On partitions and presortedness of sequences.
Proc. second annual ACM-SIAM symposium on Discrete algorithms, San
Francisco, California, United States. 62 - 71, Society for Industrial and
Applied Mathematics

CHIKOFSKY, E.J. and RUBENSTEIN, B.L. (1988): CASE: Reliability
Engineering for Information Systems. Proc. 14th international conference on
Software engineering. 11 - 16, IEEE Computer Society Press

CHRISTIANS, D. (2003): A Simple IDE for Delphi. Honours thesis. Computer
Science & Information Systems, University of Port Elizabeth.

CILLIERS, C. (2005): A Comparison of Programming Notations for a Tertiary Level
Introductory Programming Course. Ph.D thesis. Computer Science &
Information Systems, University of Port Elizabeth.

COLOMBO, B.A., DEMETRESCU, C., FINOCCHI, I. and LAURA, L. (2003): A
System for Building Animated Presentations over the Web. Proc. AICCSA'03

 173

Workshop on Practice and Experience with Java Programming in Education,
Tunis.

COSTELLOE, E. (2004): Teaching Programming The State of the Art. CRITE
Technical Report

CRESCENZI, P., DEMETRESCU, C., FINOCCHI, I. and PETRESCHI, R. (2000):
Reversible execution and visualization of programs with LEONARDO.
Journal of Visual Languages and Computing 11(2):125 - 150

DANN, W., COOPER, S. and PAUSCH, R. (2001): Using visualization to teach
novices recursion. Proc. Annual Joint Conference Integrating Technology into
Computer Science Education, Canterbury, United Kingdom. 109 - 112, ACM
Press

DE JAGER, S. (2004): SimplifIDE. Honours thesis. Computer Science &
Information Systems, University of Port Elizabeth.

DEMETRESCU, C., FINOCCHI, I. and STASKO, J. (2001): Specifying Algorithm
Visualizations: Interesting Events or State Mapping? Proc. International
Dagstuhl Seminar of Software Visualization, Schloss Dagstuhl, Germany.
16-30, DIEHL, S., EADES, P. and STASKO, J. (eds).

DERSHEM, H.L. and BRUMMUND, P. (1998): Tools for Web-based sorting
animation. Proc. Twenty-ninth SIGCSE technical symposium on Computer
science education, Atlanta, Georgia, United States. 222 - 226,

DIEHL, S., GÖRG, C. and KERREN, A. (2002): Animating Algorithms Live and
Post Mortem. Software Visualization, LNCS State-of-the-Art Survey
2269:46-57

DÖLLNER, J., HINRICHS, K. and SPIEGEL, H. (1997): An interactive
environment for visualizing and animating algorithms. Proc. Proceedings of
the thirteenth annual symposium on Computational geometry, Nice, France.
409 - 411, ACM Press

DUSKIS, S. (undated): JSAMBA -- Java version of the SAMBA Animation Program
-. Last updated:

EICK, S.G. (1998): Maintenance of Large Systems. In Software Visualization:
Programming as a Multimedia Experience. 35. STASKO, J., DOMINGUE,
J., BROWN, M.H. and PRICE, B.A. (eds). The MIT Press.

FALTIN, N. (2001): Structure and Constraints in Interactive Exploratory Algorithm
Learning, Springer-Verlag. 2269:213 - 226.

FLEISCHER, R. and KUČERA, L. (2002): Algorithm animation for teaching.
Software Visualization, State-of-the-Art Survey:113 - 128

GAMIELDIEN, R. (2003): Activity Logger. Honours thesis. Computer Science &
Information Systems, University of Port Elizabeth.

 174

GARNER, S. (2003): Learning Resources and Tools to Aid Novices Learn
Programming. Proc. Informing Science 2003, Pori, Finland.

GIANNOTTI, E.I. (1987): Algorithm Animator: A Tool for Programming Learning.
Proc. SIGCSE technical symposium on Computer science education, St. Louis,
Missouri, United States. 308 - 314, ACM Press

GLOOR, P.A. (1998): User Interface Issues For Algorithm Animation. In Software
Visualization: Programming as a Multimedia Experience. 145 - 152.
STASKO, J., DOMINGUE, J., BROWN, M.H. and PRICE, B.A. (eds). The
MIT Press.

GOLDMAN, N. and NARAYANASWAMY, K. (1992): Software evolution
through iterative prototyping. Proc. 14th international conference on Software
engineering. ACM Press

GREYLING, J. (2000): The compilation and validation of a computerised selection
test battery for Computer Science and Information System students. Ph.D
thesis. Computer Science & Information Systems, University of Port
Elizabeth.

GRISSOM, S., MCNALLY, M.F. and NAPS, T. (2003): Algorithm visualization in
CS education: comparing levels of student engagement. Proc. 2003 ACM
symposium on Software visualization, San Diego, California. Software
Visualization, 87 - 94, ACM Press

GURKA, J.S. and CITRIN, W. (1996): Testing Effectiveness of Algorithm
Animation. Proc. 1996 IEEE Symposium on Visual Languages. 182, IEEE
Computer Society

HAAJANEN, J., PESONIUS, M., SUTINEN, E., TARHIO, J., TERASVIRTA, T.
and VANNINEN, P. (1997): Animation of user algorithms on the Web. Proc.
IEEE Symposium on Visual Languages (VL '97). 360-367, IEEE Computer
Society

HAMILTON-TAYLOR, A.G. and KRAEMER, E. (2002): SKA: Supporting
Algorithm and Data Structure Discussion. ACM SIGCSE Bulletin 34(1).March
2002.

HANSEN, S.R., NARAYANAN, N.H. and HEGARTY, M. (2002): Designing
Educationally Effective Algorithm Visualizations. Journal of Visual
Languages and Computing 13(2):291-317

HANSEN, S.R., NARAYANAN, N.H. and SCHRIMPSHER, D. (2000): Helping
learners visualize and comprehend algorithms. Interactive Multimedia
Electronic Journal of Computer-Enhanced Learning 2(1).May 2000.

HENNING, J. (2004): Visual Code Reorganization Tool. Honours thesis. Computer
Science and Information Systems, University of Port Elizabeth.

 175

HÜBSCHER-YOUNGER, T. and NARAYANAN, N.H. (2002): Influence of
Authority on Convergence in Collaborative Learning. Proc. Computer Support
for Collaborative Learning Conference, Boulder, Colorado USA.

HÜBSCHER-YOUNGER, T. and NARAYANAN, N.H. (2003): Dancing Hamsters
and Marble Statues: Characterizing Student Visualizations of Algorithms.
ACM Symposium on Software Visualization

HUNDHAUSEN, C. (1993): The search for an empirical and theoretical foundation
for algorithm visualization - Unpublished technical report. Department of
Computer & Information Science, University of Oregon, Eugene.

HUNDHAUSEN, C.D. (1997): A Meta-Study of Software Visualization
Effectiveness - Unpublished comprehensive exam paper, Department of
Computer and Information Science, University of Oregon, Eugene.

HUNDHAUSEN, C.D. (2002): Integrating algorithm visualization technology into an
undergraduate algorithms course: ethnographic studies of a social
constructivist approach. Computers & Education 39(3):237 - 260.November
2002.

HUNDHAUSEN, C.D., DOUGLAS, S.A. and STASKO, J.T. (2002): A Meta-Study
of Algorithm Visualization Effectiveness. Journal of Visual Languages and
Computing 13(3):259 - 290

HWANG, H.K., YANG, B.Y. and YEH, Y.N. (2000): Presorting algorithms: an
average-case point of view. Theoretical Computer Science 242(1-2):29 - 40

IEEE and ACM (2001): Computing Curricula 2001 - Computer Science. The Joint
Task Force on Computing Curricula, IEEE Computer Society, Association for
Computing Machinery. http://www.sigcse.org/cc2001/

JARC, D.J., FELDMAN, M.B. and HELLER, R.S. (2000): Accessing the Benefits
of Interactive Prediction Using. Web-based Algorithm Animation Courseware.
Proc. 31st SIGCSE technical symposium on Computer science education,
Austin, Texas. 32(1):377-381,

JEFFERY, C.L. (1998): A Menagerie of Program Visualization Techniques. In
Software Visualization: Programming as a Multimedia Experience. 73 - 79.
STASKO, J., DOMINGUE, J., BROWN, M.H. and PRICE, B.A. (eds). The
MIT Press.

KANN, C., LINDEMAN, R.W. and HELLER, R. (1997): Integrating algorithm
animation into a learning environment. Computers & Education 28(4):223 -
228.May 1997.

KEHOE, C., STASKO, J. and TAYLOR, A. (2001): Rethinking the evaluation of
algorithm animations as learning aids: an observational study. International
Journal of Human Computer Studies 54(2):265 - 284

 176

KENDALL, K.E. and KENDALL, J.E. (1996): Prototyping. In System Analysis and
Design. 199 - 233. Prentice Hall.

KNUTH, D.E. (1973): The Art of Computer Programming. Reading, Mass., Sorting
and Searching. Vol. 3. Addison-Wesley.

LATTU, M., MEISALO, V. and TARHIO, J. (2003): A visualisation tool as a
demonstration aid. Computers & Education 41(2):133 - 148.September 2003.

LAWRENCE, A.W., BADRE, A.N. and STASKO, J.T. (1994): Empirically
Evaluating the Use of Animations to Teach Algorithms. Proc. IEEE
Symposium on Visual Languages, St. Louis, MO. 48-54,

LAXER, C. (2001): Treating computer science as science: An experiment with
sorting. ACM SIGCSE Bulletin 33(3):189.September 2001.

LIEBERMAN, H. and FRY, C. (1998): ZStep95: A Reversible, Animated Source
Code Stepper. In Software Visualization: Programming as a Multimedia
Experience. 277 - 292. STASKO, J., DOMINGUE, J., BROWN, M.H. and
PRICE, B.A. (eds). The MIT Press.

LISTER, R. and LEANEY, J. (2003): Introductory Programming,
Criterion-Referencing, and Bloom. Proc. 34th SIGCSE Technical Symposium
on Computer Science Education. 143 - 147,

MAMTANI, B. (2004): Web-based Presentation System for Programming Logic
Information Flow. Honours thesis. Computer Science and Information
Systems, University of Port Elizabeth.

MARCUS, A., FENG, L. and MALETIC, J.I. (2003): 3D representations for
software visualization. Proc. ACM symposium on Software visualization, San
Diego, California. 27 - ff, ACM Press

MCCAULEY, R. (1998): Warning! Instructional Animation Tools Abound on the
Web. SIGCSE Bulletin 30(4)

MUKHERJEA, S. and STASKO, J.T. (1993): Applying algorithm animation
techniques for program tracing, debugging, and understanding. Proc. 15th
International Conference on Software Engineering, Baltimore, Maryland,
United States. 456 - 465,

MYERS, B.A. (1990): Taxonomies of Visual Programming and Program
Visualization. Journal of Visual Languages and Computing 1(1):97 - 123

NAJORK, M. (2001): Web-based Algorithm Animation. Proc. DAC, Las Vegas,
Nevada, USA. ACM Press.June 18-22, 2001.

NAPS, T.L. and BRESSLER, E. (1998): A multi-windowed environment for
simultaneous visualization of related algorithms on the World Wide Web.
Proc. SIGCSE technical symposium on Computer science education, New
York, NY, USA. 277 - 281, ACM Press

 177

NAPS, T.L., EAGAN, J.R. and NORTON, L.L. (2000): JHAVE - An environment
to Actively Engage Students in Web-based Algorithm Visualizations. Proc.
Technical Symposium on Computer Science Education, Austin, TX, USA. 109
- 113, ACM Press

NAPS, T.L., FLEISHER, R., MCNALLY, M., RODGER, S.,
VELAZQUEZ-ITURBIDE, J.A., RÖßLING , G., ALMTSTRUM, V., DANN,
W., HUNDHAUSEN, C., KORHONEN, A. and MALMI, L. (2003):
Exploring the role of visualization and engagement in computer science
education. Annual Joint Conference Integrating Technology into Computer
Science Education:131 - 152

NAPS, T.L., RÖßLING , G., ANDERSON, J., COOPER, S., DANN, W., FLEISHER,
R., KOLDEHOFE, B., KORHONEN, A., KUITTINEN, M., LESKA, C.,
MALMI, L., MCNALLY, M., RANTAKOKKO, J., and ROSS, R.J. (2003):
Evaluating the Educational Impact of Visualization. Proc. ITiCSE 2003,
Thessaloniki, Greece. ACM Press

NAPS, T.L. and SWANDER, B. (1994): An Object-Oriented Approach to
Algorithm Visualization - Easy, Extensible, and Dynamic. Proc. ACM
SIGCSE Technical Symposium. 46 - 50,

NASSI, I. and SHNEIDERMAN, B. (1973): Flowchart techniques for structured
programming. ACM SIGPLAN Notices 8(8):12 - 26

PALLIER, C. (2002): Shuffle: a program to randomize lists with optional sequential
constraints. http://www.pallier.org/papers/ Last updated: 02-Sept-2005).

PETRE, M., BLACKWELL, A. and GREEN, T. (1998): Cognitive Questions in
Software Visualization. In Software Visualization: Programming as a
Multimedia Experience. 453 - 480. STASKO, J., DOMINGUE, J., BROWN,
M.H. and PRICE, B.A. (eds). The MIT Press.

PIERSON, W.C. and RODGER, S.H. (1998): Web-based animation of data
structures using JAWAA. Proc. twenty-ninth SIGCSE technical symposium on
Computer science education, Georgia, United States. 267 - 271, ACM Press

PRICE, B., BAECKER, R. and SMALL, I. (1993): A principled taxonomy of
software visualization. Journal of Visual Languages and Computing 4(3):211 -
266

PRICE, B., BAECKER, R. and SMALL, I. (1998): An Introduction to Software
Visualization. In Software Visualization: Programming as a Multimedia
Experience. 4 - 5. STASKO, J., DOMINGUE, J., BROWN, M.H. and
PRICE, B.A. (eds). The MIT Press.

RAMSHAW, L. (1997): Java-Based Collaborative Active Textbooks - Compaq
Computer Corporation. http://research.compaq.com/SRC/JCAT/ Last updated:

 178

RASALA, R., PROULX, V.K. and FELL, H.J. (1994): From animation to analysis
in introductory computer science. Proc. twenty-fifth SIGCSE symposium on
Computer science education, Phoenix, Arizona, United States. 61 - 65, ACM
Press

RODGER, S. (2002): JAWAA 2.0 The JAWAA Homepage - Java and Web based
Algorithm Animation. http://www.cs.duke.edu/csed/jawaa2/

ROMAN, G.-C. (1998): Declarative Visualization. In Software Visualization:
Programming as a Multimedia Experience. 173-186. STASKO, J.,
DOMINGUE, J., BROWN, M.H. and PRICE, B.A. (eds). The MIT Press.

ROMAN, G.-C. and COX, K.C. (1992): Program visualization: the art of mapping
programs to pictures. Proc. 14th international conference on Software
engineering, Melbourne, Australia. 412 - 420, ACM Press

ROMAN, G.-C. and COX, K.C. (1993): A Taxonomy of Program Visualization
Systems. IEEE Computer 26(12):11 - 24

RÖßLING, G. (2000): ANIMALSCRIPT - The Reference.
RÖßLING, G. (2002): Key Decisions in Adopting Algorithm Animation for

Teaching. Proc. IFIP TC3/WG3.1 & 3.2 Open Conference on Informatics and
the digital society: Social, Ethical and Cognitive Issues on Informatics and
ICT. 149 - 156, ACM Press

RÖßLING, G. and FREISLEBEN, B. (2000a): Approaches for Generating
Animations In Lectures. Proc. AACE 11th International Society for
Information Technology and Teacher Education (SITE 2000) Conference, San
Diego, California. 809-814, Association for the Advancement of Computers in
Education (AACE)

RÖßLING, G. and FREISLEBEN, B. (2000b): Experiences in using animations in
introductory computer science lectures. Proc. Technical Symposium on
Computer Science Education, Austin, Texas, United States. 134 - 138, ACM
Press

RÖßLING, G. and FREISLEBEN, B. (2001): AnimalScript: an extensible scripting
language for algorithm animation. Proc. SIGCSE technical symposium on
Computer Science Education, Charlotte, North Carolina, United States. 70 - 74,
ACM Press

RÖßLING, G. and FREISLEBEN, B. (2002): ANIMAL: A system for supporting
multiple roles in algorithm animation. Journal of Visual Languages and
Computing 13:341--354

RÖßLING, G. and NAPS, T.L. (2002): A Testbed for Pedagogical Requirements in
Algorithm Visualizations. Proc. Annual Joint Conference Integrating
Technology into Computer Science Education, Aarhus, Denmark. ACM Press

 179

RÖßLING, G., SCHÜLER, M. and FREISLEBEN, B. (2000): The ANIMAL
algorithm animation tool. Proc. Annual Joint Conference Integrating
Technology into Computer Science Education, Helsinki, Finland. 37 - 40,
ACM Press

SARAIYA, P. (2002): Effective Features of Algorithm Visualizations. Masters thesis.
Virginia Polytechnic Institute and State University. Blacksburg.

SARAIYA, P., SHAFFER, C.A., MCCRICKARD, D.S. and NORTH, C. (2004):
Effective Features of Algorithm Visualizations. Technical Symposium on
Computer Science Education - Proceedings of the 35th SIGCSE technical
symposium on Computer science education:382 - 386.March 2004.

SCHÜLER, M. and RÖßLING, G. (2001): ANIMAL - A NEW INTERACTIVE
MODELLER FOR ANIMATIONS IN LECTURES (Ver 2.0).

SILICONGRAPHICS (1999): JAL Algorithm Animation.
http://reality.sgi.com/austern/java/demo.html

SONNIER, D.L. and HUTTON, S.L. (2004): Enhancing visual aids through the use
of animation. Proc. Mid-South College Computing Conference. Mid-South
College Computing Conference

STASKO, J. (1998a): Building Software Visualizations through Direct Manipulation
and Demonstration. In Software Visualization: Programming as a Multimedia
Experience. 186-203. STASKO, J., DOMINGUE, J., BROWN, M.H. and
PRICE, B.A. (eds). The MIT Press.

STASKO, J. (1998b): Smooth, Continuous Animation for Portraying Algorithms and
Processes. In Software Visualization: Programming as a Multimedia
Experience. 104 - 118. STASKO, J., DOMINGUE, J., BROWN, M.H. and
PRICE, B.A. (eds). The MIT Press.

STASKO, J., BADRE, A. and LEWIS, C. (1993): Do algorithm animations assist
learning? an empirical study and analysis. Proc. SIGCHI conference on
Human factors in computing systems, Amsterdam, The Netherlands. 61 - 66,
ACM Press

STASKO, J.T. (1997): SAMBA Animation Designer's Package. Georgia Insitute
of Technology.

STASKO, J.T. and LAWRENCE, A.W. (1998): Empirically Assessing Algorithm
Animations as Learning Aids. In Software Visualization: Programming as a
Multimedia Experience. STASKO, J., DOMINGUE, J., BROWN, M.H. and
PRICE, B.A. (eds). The MIT Press.

STASKO, J.T. and PATTERSON, C. (1993): Understanding and Characterizing
Program Visualization Systems. Technical Report GIT-GVU-91-17
Georgia Institute of Technology.

 180

STEPHENS, R. (1998): "Ready-to-Run Visual Basic Algorithms". 2nd Edn, Wiley
Computer Publishing.

STERN, L., SØNDERGAARD, H. and NAISH, L. (1999): A strategy for managing
content complexity in algorithm animation. Proc. Annual Joint Conference
Integrating Technology into Computer Science Education, Cracow, Poland.
127 - 130, ACM Press

SUMNER, W.N. and BANU, D. (2003): JSAVE: Simple and Automated Algorithm
Visualization Using the Java Collection Framework. Tenth Annual
Consortium for Computing Sciences in Colleges Hope College. Holland.

SYRJAKOW, M., BERDUX, J. and SZCZERBICKA, H. (2000): Interactive
Web-based animations for teaching and learning. Proc. 32nd conference on
Winter simulation, Orlando, Florida. 1651 - 1659, Society for Computer
Simulation International

THOMAS, J. (2002): B# Version 2: A visual programming tool. Honours thesis.
Computer Science & Information Systems, University of Port Elizabeth.
Port Elizabeth.

TUDOREANU, M.-E. (2002): Economy of Interaction in Program Visualization:
Designing Effective Visualization Tools for Reducing User's Cognitive Effort.
Ph.D thesis. Department of Computer Science, Washington University.

TUDOREANU, M.E. (2003): Designing effective program visualization tools for
reducing user's cognitive effort. Proc. 2003 ACM symposium on Software
visualization, San Diego, California. 105 - ff, ACM Press

VAN TONDER, M. (2003): A Java Development Tool. Honours thesis. Computer
Science & Information Systems, University of Port Elizabeth. Port
Elizabeth.

VICKERS, P. and ALTY, J. (2003): Siren Songs and Swan Songs - Debugging with
music. Communications of the ACM 46(7)

WIGGINS, M. (1998): An overview of program visualization tools and systems.
Proc. ACM Southeast Regional Conference - 36th annual Southeast regional
conference. 194 - 200, ACM Press

WILHELM, R., MÜLDNER, T. and SEIDEL, R. (2001): Algorithm Explanation:
Visualizing Abstract States and Invariants. Proc. International Dagstuhl
Seminar of Software Visualization, Schloss Dagstuhl, Germany. 381 - 394,
DIEHL, S., EADES, P. and STASKO, J. (eds).

WILSON, J., AIKEN, R. and KATZ, I. (1996): Review of animation systems for
algorithm understanding. Proc. 1st conference on Integrating technology into
computer science education. 75 - 77, ACM Press

 181

WILSON, J., KATZ, I.R., INGARGIOLA, G., AIKEN, R. and HOSKIN, N. (1995):
Students' use of animations for algorithm understanding. Proc. Human
Factors in Computing Systems. 238 - 239, ACM Press

YEH, C.L. (2003): Implementing interactive tracing and debugging tools: B# (Ver3).
Honours thesis. Computer Science and Information Systems, University of
Port Elizabeth.

 182

APPENDIX A - Sorting Algorithms for the Case Study

Sorting algorithms are one type of algorithm examined in the introductory and

intermediate algorithm curricula. There are two classes of common sorting algorithms

taught, namely the O(2N) quadratic sorting algorithms - bubble sort, selection sort,

insertion sort and shellsort - and the O(N log N) sorting algorithms - quicksort,

mergesort and heapsort (IEEE and ACM 2001). The sorting algorithms taught in the

NMMU Computer Science introductory and intermediate curricula are Bubblesort,

Insertion Sort, Selection Sort, Mergesort and Quicksort. This section explains and

illustrates each of the sorting algorithms taught at the NMMU.

The discussion on these algorithms highlights the unique operational characteristics of

each algorithm, and the issues dealing with complexity, comprehension,

implementation and relative efficiency. These sorting algorithms form the problem

domain for the evaluation of the framework proposed. Examples of the sorting

algorithms, implemented in Delphi, are included as part of the discussions. The

sorting algorithms illustrated in this section arrange items in ascending order14.

The complexity of an algorithm has a direct correlation with its relative efficiency.

Algorithm complexity is represented using the Big-O notation, with O representing

the complexity of the algorithm and a value N representing the population size of the

dataset (Bailey 1999).

14This dissertation will treat a sorted list or fully ordered list as a list sorted in ascending order unless
mentioned otherwise.

 183

The Bubblesort is the simplest algorithm to comprehend, and it is typically used to

introduce students to sorting algorithms. The selection sort and insertion sort are more

efficient than the Bubblesort, but more complex to understand. The Mergesort and the

Quicksort are relatively efficient sorting algorithms which are generally the most

difficult to understand due to the concept of recursion employed. The code diagrams

utilises the data structure presented in Figure A.1.

Figure A.1.: Data Structure Definition

A.1 Bubblesort

The Bubblesort is generally the first sorting algorithm presented to introductory

algorithm students due to its simple concept and ease of implementation. The

Bubblesort functions by comparing each item in the list with the next item, and

exchanging the items if they are out of order. The algorithm will continue to iterate

through the list until all items are in the correct order (Figure A.2 and A.3).

const

 MaxElements = 10;

type

 TIntList = record

 List : array[1..MaxElements] of Integer;

 Count : Integer;

 end;

 184

Figure A.2: Concept of the Bubblesort

Larger values “bubble” to the end of the list and smaller items towards the beginning

of the list, hence the name of the algorithm. With the number of comparisons (N-1)

and exchanges (potentially N-1) performed, the Bubblesort is regarded as the most

inefficient sorting algorithm in common use, with a complexity of O(2N).

Figure A.3: Implementation of Bubblesort

procedure BubbleSort(var L : TIntList);
var
 f : Integer;
 Sorted : Boolean;
 Temp, SortCount : Integer;
begin
 SortCount := 0;
 repeat
 Sorted := True;

 for f := 1 to L.Count – 1 - SortCount do
 begin
 if L.List[f] > L.List[f+1] then
 begin
 temp := L.List[f];
 L.List[f] := L.List[f+1];
 L.List[f+1] := temp;
 Sorted := False;
 end;
 end;
 SortCount := SortCount + 1;
 until Sorted;

end;

6 1 4 3

1 6 4 3

1 4 6 3

1 4 3 6

1 3 4 6

Notice how 6 bubbles down to its final

position at the end of the list

 185

A.2 Selection Sort

The selection sort logically divides the list into two parts, the sorted part and the

unsorted part, at any point in time. The selection sort works on the concept of

selecting the largest item from the available remaining unsorted items. The largest

item found is then exchanged with the item in the next position to be filled, where it

becomes a part of the sorted list. The process repeats until there is only one item to

select (Figure A.4 and A.5).

Figure A.4: Concept of the Selection sort

The selection sort performs significantly better than the Bubblesort since only one

exchange is performed per pass through the list. The complexity of the selection sort

is O(2N). The selection sort will produce the same performance regardless of the

ordering of the initial list.

6 1 4

3 1 4

3 1 4 6

3 1 6

1 3 4 6

1 3 4 6

Highlighted items are identified as the

largest item in the unsorted list. Greyed

items form the already sorted list.

3

6

4

 186

Figure A.5: Implementation of Selection Sort

A.3 Insertion Sort

The insertion sort logically breaks up a list into two parts, the already sorted part

(place in the beginning of the list), and the unsorted part. The first item from the

unsorted list is taken and inserted in order into the sorted list, increasing the sorted list

size by one and decreasing the unsorted list size by one. This iteration takes place

until the unsorted list size is zero (Figure A.6).

procedure Swap(var L :TIntList; pos1, pos2 : Integer);
var
 temp : Integer;
begin
 temp := L.List[pos1];
 L.List[pos1] := L.List[pos2];
 L.List[pos2] := temp;
end;

procedure SelectionSort(var L : TIntList);
var
 index : Integer;
 max : Integer;
 numUnsorted : Integer;
begin
 numUnsorted := L.Count;

 while numUnsorted > 1 do
 begin
 max := 1;

 for index := 2 to numUnsorted do
 begin
 if L.List[max] < L.List[index] then
 max := index;
 end;

 Swap(L, max, numUnsorted);
 dec(numUnsorted);

 end;

end;

 187

Figure A.6: Concept of the Insertion Sort

The insertion sort is a O(2N) complexity sort. The time cost of the algorithm is

dominated by the operation of inserting items into the sorted list. Due to this

characteristic, insertion sorts are ideal for sorting a nearly ordered list.

Figure A.7: Implementation of Insertion Sort

procedure InsertionSort(var L : TIntList);
var
 numSorted : Integer;
 index : Integer;
 temp : Integer;
begin
 numSorted := 2;

 while numSorted <= L.Count do
 begin
 temp := L.List[numSorted];
 for index := numSorted downto 2 do
 begin
 if temp < L.List[index-1] then
 L.List[index] := L.List[index-1]
 else
 break;
 end;

 L.List[index] := temp;
 inc(numSorted);
 end;

end;

6 1 4 3

1 6 4 3

1 4 6 3

1 3 4 6

Greyed items form the already sorted

list. The arrow shows where each

unsorted item is inserted into the sorted

list.

 188

A.4 Mergesort

The Mergesort takes the list to be sorted, splits the list into two equal halves, sorts

each halve, and then merges the sorted halves into one list again. The Mergesort

divides and sorts the list recursively, and then merges the list together to form the

final sorted list (Figure A.8, A.9 and A.10).

Figure A.8: Concept of the Mergesort

The Mergesort’s complexity is O(N log N). A disadvantage of the Mergesort is its

need to make use of a temporary list during the sorting process, thus doubling the

memory used. Due to the concept of merging and recursion used in the algorithm, it is

a difficult concept to explain and form a mental model of.

4 2 1 5 3 6

4 2 1 5 3 6

4 2 1 5 3 6

2 1 3 6

1 2 3 6

1 2 4 3 5 6

1 2 3 4 5 6

4 5

5 4

Split

Merge

 189

Figure A.9: Implementation of MergeSort supporting merge routine

Figure A.10: Implementation of MergeSort main routine

procedure Merge(var Data :TIntList;var Temp : TIntList; Low, Middle, High :
Integer);
var
 ri, ti, di : Integer;
begin
 ri := low;
 ti := low;
 di := middle;

 while (ti < middle) and (di <= high) do
 begin
 if Data.List[di] < Temp.List[ti] then
 begin
 Data.List[ri] := Data.List[di];
 inc(ri);
 inc(di);
 end
 else
 begin
 Data.List[ri] := Temp.List[ti];
 inc(ri);
 inc(ti);
 end;
 end;

 while (ti < middle) do
 begin
 Data.List[ri] := Temp.List[ti];
 inc(ri);
 inc(ti);
 end;

 Data.Count := High - Low + 1;
 ShowList(Data);
end;

procedure MergeSortRecursive(var Data :TIntList;var Temp : TIntList; Low, High :
Integer);
var
 n, middle, i : Integer;
begin
 n := High - Low + 1;
 middle := Low + n div 2;

 if n < 2 then
 Exit;

 for i := low to (middle-1) do
 begin
 Temp.List[i] := Data.List[i];
 end;

 MergeSortRecursive(Temp, Data, Low, Middle-1);
 MergeSortRecursive(Data, Temp, Middle, High);

 Merge(Data, Temp, Low, Middle, High);

end;

 190

A.5 Quicksort

The Quicksort typically consists of four steps (Figure A.11, A.12 and A.13):

1. If there is one or zero items in the list to be sorted, return immediately.

2. Pick an item in the list to serve as a "pivot" point (Usually the left-most element

in the list is used).

3. Split the list into two parts - one with elements larger than the pivot and the other

with elements smaller than the pivot. This is done by having two markers move

towards each other, swopping out of order items until the markers meet.

4. Recursively repeat the algorithm for both halves of the original list/sublist.

 191

Figure A.11: Concept of the Quicksort

The Quicksort is the fastest commonly used general scenario sorting algorithm, with a

complexity of O(N log N). However, the extensive use of recursion makes the

Quicksort a difficult algorithm to comprehend and implement.

9 8 10 12

5 8 10 12

5 8 10 12

5 8 9 12

5

9

9

10

5 8 9 12 10

The markers show the items been examined.

The greyed 9 acts as the first pivot.

5 8 9 12 10

5 8 9 12 10

5 8 9 12 10

5 8 9 10 12

5 acts as the second pivot.

12 acts as the third pivot.

The list to the left of the first pivot (9) is then

partitioned, followed by the list to the right

of the pivot. (The inactive part of the list is

greyed out)

5 8 9 10 12

Final, sorted list

 192

Figure A.12: Implementation of Quicksort support routine

Figure A.13: Implementation of Quicksort main routine

The discussion illustrates the basic operations of each sorting algorithm.

Fundamentally, all sorting algorithms continuously swop items until the list is sorted.

The methods of item selection employed by each algorithm are what differentiate

function partition(var L : TIntList; left, right : Integer) : Integer;
begin
 while true do
 begin

 while (left<right) and (L.List[left] < L.List[right]) do
 Dec(right);

 if (left<right) then
 begin
 Swap (L, left, right);
 inc(left);
 end
 else
 begin
 result := left;
 Exit;
 end;

 while (left<right) and (L.List[left] < L.List[right]) do
 inc(left);

 if (left<right) then
 begin
 Swap (L, left, right);
 dec(right);
 end
 else
 begin
 result := right;
 Exit;
 end;

 end;
end;

procedure QuickSort(var L : TIntList; Left,Right : Integer);
var
 p : Integer;
begin

 if (left<right) then
 begin
 P := partition(L, left, right);
 quicksort(L, left, p-1);
 quicksort(L, p+1, right);
 end;

end;

 193

them in terms of performance and technique. These characteristics of algorithms thus

influence the design of their associated animations.

