
A P2P Middleware Design for Digital Access Nodes
in Marginalised Rural Areas

A thesis submitted in fulfillment of the requirements of the degree of

Master of Science

In

Computer Science

University of Fort Hare

by Ronald Wertlen

January 2010

Contents

1 Introduction 5

1.1 Background . 5

1.2 Aims . 6

1.2.1 Objectives . 7

1.3 Definitions . 7

1.4 Scope . 9

1.5 Structure . 9

2 Literature Review 11

2.1 Information and Communication Technologies for Development (ICTD) 12

2.1.1 Large ICTD Projects . 12

2.1.2 Siyakhula Living Lab (SLL) . 17

2.1.3 The Network Island Phenomenon . 18

2.1.4 Review of Telecentre Software . 20

2.1.5 Novel ICTs for MRAs . 21

2.2 Software Technology . 24

2.2.1 Open Source Middleware . 24

2.2.2 Ad-hoc Distributed Networks (P2P) . 32

2.2.3 Service Oriented Architecture . 33

2.3 Conclusion . 36

3 Methodology and Requirements Engineering 39

3.1 Methodology . 39

3.1.1 Requirements Gathering Methodology . 40

3.1.2 UML Components Methodology . 41

iii

CONTENTS CONTENTS

3.2 Applications and Services Analysis . 42

3.2.1 Current Applications . 42

3.2.2 Future Applications . 42

3.3 Requirements Specification . 44

3.3.1 High Level System Envisioning . 44

3.3.2 Business Concept Model . 45

3.3.3 A Priori Requirements . 45

3.3.4 Assumed Network Characteristics . 47

3.3.5 Use Cases . 51

3.3.6 Use Case Synopsis . 57

3.3.7 Shared Assets and Access Rights . 57

3.4 Technology Decision-Making . 59

3.4.1 Motivation for Open Source . 59

3.4.2 Motivation for Java . 60

3.4.3 Motivation for Web Services and especially SOAP-based Web Services 61

3.4.4 Motivation for P2P (/ Grid) vs. Central Solutions . 62

3.4.5 Conflicting Requirements . 62

4 System Design and Architecture 65

4.1 A Fitting Design . 65

4.1.1 Top-Down View . 66

4.1.2 Supporting Billing . 67

4.1.3 More Top-Down Considerations . 68

4.2 System Design . 69

4.2.1 Business Operations and Rules . 69

4.2.2 Business Types . 75

4.2.3 System Interfaces and Types . 76

4.2.4 Component Specification . 78

4.2.5 Proposed Component Architecture . 79

4.3 Example Components: eCommerce . 81

4.4 Information Model and Core Data Types . 84

4.4.1 Core Information Model . 84

4.4.2 Core Data Types . 86

iv

CONTENTS CONTENTS

4.5 Designing Robustness . 87

4.5.1 Pre- and post-conditions . 87

4.5.2 System bottlenecks . 87

4.5.3 System Abuse and Student Projects . 90

5 Implementation of a “Walking Skeleton” and Results 93

5.1 Technology Demonstrator based on the Spring Framework . 94

5.1.1 Demonstrator Overview . 94

5.1.2 Spring Framework Technology . 94

5.1.3 Web Services Technology . 97

5.1.4 JUnit . 98

5.1.5 Extending the System . 99

5.2 Integrating PHP . 100

5.3 Technology Experiments . 102

5.3.1 JMX . 102

5.3.2 Notes . 104

5.4 Results and Discussion . 105

5.4.1 Lessons Learned . 105

5.4.2 Middleware is Invisible . 108

5.4.3 ESTIMA Project . 109

6 Conclusion 111

6.1 Future Work . 113

7 Publications 117

7.1 Related publications . 117

List of References 119

v

CONTENTS CONTENTS

vi

List of Figures

2.1 Component layer diagrams of several middleware architectures . 28

2.2 A distributed Event-Driven Architecture as a collaboration diagram: Web services collaboration diagram

involving client, server and broker . 30

2.3 Component layer diagram of the JADE / FIPA abstract architecture . 31

2.4 Component layer diagram of a Java-based GT4 container, as an implementation of the Open Grid Services

Infrastructure. 32

3.1 Business Concept Model Mindmap, showing the relevant business concepts that are dealt with by the

middleware layer. 46

3.2 Radio survey graph of a 20 school network spanning 20km near Mqanduli, South Africa. Paths between

nodes that are darkly coloured do not allow line-of-sight (LOS) between the nodes. Links between nodes

can only be established along the lighter coloured paths. 48

3.3 High Level Use Case depicting Roles of Actors useful to the Business Process Modelling 58

3.4 Internal Use-Case showing Usage Scenarios for the different Component Types: Applications, Services

and Middleware. 59

4.1 Initial design of the system architecture, showing components and component interactions. 67

4.2 UML Use Case Diagram showing main use case of the billing system (using Internet) as developed in

[Tar07], and underlying use cases that are provided by the middleware (a.) and core use cases (b.) of the

application. 68

4.3 UML Class Diagram, depicting business interfaces that may be relevant to user of a DAN, and the

operations that they allow. 69

4.4 Direct vs. Indirect modes of service usage. 75

4.5 UML Class Diagram of business types used by the interfaces. The business types translate directly to an

interface information model, which is what the middleware data layer must represent and store. 76

vii

LIST OF FIGURES LIST OF FIGURES

4.6 UML Class Diagram of interfaces that the middleware supports and that may be relevant to developers

or integrators (contrast with figure 4.3). 77

4.7 UML Component Diagram showing the middleware components and their interfaces. 79

4.8 UML Component Diagram of the Component Architecture . 80

4.9 UML Component Diagram showing how transparency at the neighbourhood level could potentially com-

plicate matters for components, using the example of credential authentication. 81

4.10 UML Component Diagram showing the middleware architecture with two example services, MallService

and BillingService. 83

4.11 UML Class Diagram of the IMallService interface. 83

4.12 UML diagram of Core Information Model . 85

5.1 Component layer diagram of the demonstrator. Components that were implemented appear shaded. . . 95

5.2 XML configuration snippet showing how bean dependencies are expressed in Spring. Here, the DANMan-

ager bean requires a bean called dataAccessService. 96

5.3 XML configuration of the web service communication channel of the middleware. 97

5.4 Screenshot of JUnit in Eclipse IDE . 100

5.5 JConsole standard screens, showing ease of use and richness of information. 103

5.6 JConsole demonstrating dynamic MBean method and attribute discovery via Java reflection. JConsole

natively allows us to notify the bean and invoke its public methods. 104

5.7 Component Architecture showing event queues connecting basic platform components, in a staged event

driven manner (after Welsh [WCB01]). 107

7.1 Spring demonstrator package structures, left Java source, right tests. 129

viii

List of Tables

2.1 Juxtaposition of RUP and UML Components approaches to developing service-oriented architectures.

The table shows similarities in development phases, but a disjunction in the focus and artifacts of each

approach. 35

3.1 Context domains, the corresponding user roles and requirements elicitation (investigative) techniques used 41

3.2 Comparative List of Applications and Services Currently Implemented within the Siyakhula Living Lab 43

3.3 Contextual requirements . 47

3.4 Networking assumptions relating to working within Network Islands . 50

4.1 Juxtaposition of operations as defined in the monolithic eMall, and the same operations as delegated to

components. 82

5.1 Extract from ESTIMA proposal . 110

ix

LIST OF TABLES LIST OF TABLES

x

Preamble

Acknowledgments

I would like to thank –

• my wife and family (very lovingly) for their support: Work like this cannot occur without some sacrifices by the

ones with whom I most like to share my time,

• the Departments of Computer Science and the Centres of Excellence at Fort Hare and also Rhodes University for

supporting my work, and in particular Alfredo Terzoli,

• eKhaya ICT for material and research support (fees, etc.), and

• my wonderful team of proof-readers: Erika, Ford, Henry, Tanya. Thanks from the bottom of my heart.

General Notes

• Even when we break the rules, our English usage in this document follows an “open style” – as defined by the

NASA writers’ style guide [McC98].

Declaration

• This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge

and belief, the thesis contains no material previously published or written by another person except where due

reference is made in the thesis itself.

1

CHAPTER 0. PREAMBLE

Abstract

This thesis addresses software design within the field of Information and Communications Technology for Development

(ICTD). Specifically, it makes a case for the design and development of software which is custom-made for the context

of marginalised rural areas (MRAs). One of the main aims of any ICTD project is sustainability and such sustainability

is particularly difficult in MRAs because of the high costs of projects located there. Most literature on ICTD projects

focuses on other factors, such as management, regulations, social and community issues when discussing this issue.

Technical matters are often down-played or ignored entirely. This thesis argues that MRAs exhibit unique technical

characteristics and that by understanding these characteristics, one can possibly design more cost-effective software.

One specific characteristic is described and addressed in this thesis – a characteristic we describe here for the first time

and call a network island. Further analysis of the literature generates a picture of a distributed network of access nodes

(DANs) within such network islands, which are connected by high speed networks and are able to share resources and

stimulate usage of technology by offering a wide range of services. This thesis attempts to design a fitting middleware

platform for such a context, which would achieve the following aims: i) allow software developers to create solutions for

the context more efficiently (correctly, rapidly); ii) stimulate product managers and business owners to create innovative

software products more easily (cost-effectively).

A given in the context of this thesis is that the software should use free/libre open source software (FLOSS) – good

arguments do also exist for the use of FLOSS. A review of useful FLOSS frameworks is undertaken and several of

these are examined in an applied part of the thesis, to see how useful they may be. They form the basis for a walking

skeleton implementation of the proposed middleware. The Spring framework is the basis for experiments, along with

Spring-Webservices, JMX and PHP 5’s web service capabilities.

This thesis builds on three years of work at the Siyakhula Living Lab (SLL), an experimental testbed in a MRA

in the Mbashe district of the Eastern Cape of South Africa. Several existing products are deployed at the SLL in the

fields of eCommerce, eGovernment and eLearning. Requirements specifications are engineered from a variety of sources,

including interviews, mailing lists, the author’s experience as a supervisor at the SLL, and a review of the existing SLL

products. Future products are also investigated, as the thesis considers current trends in ICTD. Use cases are also

derived and listed. Most of the use cases are concerned with management functions of DANs that can be automated,

so that operators of DANs can focus on their core business and not on technology.

Using the UML Components methodology, the thesis then proceeds to design a middleware component architecture

that is derived from the requirements specification. The process proceeds step-by-step, so that the reader can follow how

business rules, operations and interfaces are derived from the use cases. Ultimately, the business rules, interfaces and

operations are related to business logic, system interfaces and operations that are situated in specific components. The

components in turn are derived from the business information model, that is derived from the business concepts that

2

CHAPTER 0. PREAMBLE

were initially used to describe the context for the requirements engineering. In this way, a logical method for software

design is applied to the problem domain to methodically derive a software design for a middleware solution. The thesis

tests the design by considering possible weaknesses in the design. The network aspect is tested by interpolating from

formal assumptions about the nature of the context. The data access layer is also identified as a possible bottleneck.

We suggest the use of fast indexing methods instead of relational databases to maintain flexibility and efficiency of the

data layer.

Lessons learned from the exercise are discussed, within the context of the author’s experience in software development

teams, as well as in ICTD projects. This synthesis of information leads to warnings about the psychology of middleware

development. We note that the ICTD domain is a particularly difficult one with regards to software development as

business requirements are not usually clearly formulated and developers do not have the requisite domain knowledge.

In conclusion, the core arguments of the thesis are recounted in a bullet form, to lay bare the reasoning behind this

work. Novel aspects of the work are also highlighted. They include the description of a network island, and aspects of

the DAN middleware requirements engineering and design. Future steps for work based on this thesis are mapped out

and open problems relating to this research are touched upon.

3

Chapter 1

Introduction

Where there’s a will, there’s a way.

Anonymous

The message must go through.

Pony Express Motto, 1860

1.1 Background

This thesis is written against the backdrop of Information and Communication Technologies for Development (ICTD)

in impoverished and marginalised rural areas (MRAs). The main problem of ICTD projects has been sustainability,

since such projects have generally only flourished as long as external resources were being delivered to the communities

where the projects were based.

The aim of sustainability, one might say, is the holy grail of ICTD pilot projects, which in the past have struggled

to show that technology introduction to MRAs makes economic sense[BEH+03]. Falling hardware costs and greater

global participation in a virtual knowledge based society are, however, tilting the scales in favour of ubiquitous ICTs

– even in MRAs [KDQ09]. In the knowledge based society it is possible to generate revenues with what you know –

i.e. just the information one has at one’s disposal has a worth, and that worth is calculated on how many parties in

5

1.2. AIMS CHAPTER 1. INTRODUCTION

the market are interested in that information. Thus, by bringing communities from MRAs into the knowledge society

through ICTs, one can potentially open new doors to build revenues for the communities[Ken08]. This requires a set of

novel applications, which offer their end users access to the tools they need to convert their knowledge into an economic

profit.

This thesis provides a software development perspective of the problem and looks at what kinds of software designs

could be of benefit in ICTD projects in MRAs. In particular, we argue that a particular kind of rural technological context

is becoming common in MRAs and that such a context can be served particularly well with a particular software design.

The specific rural context of this thesis is informed by the work of the University of Fort Hare and Rhodes University

departments of Computer Science in an Eastern Cape MRA – the Siyakhula Living Lab.

This thesis builds on several years of experience in the field.

1.2 Aims

This thesis proposes a novel middleware for rural Digital Access Nodes (DANs), such as those running at the Siyakhula

Living Lab (SLL).

The goal of the software is twofold:

1. To allow developers writing applications and services for the context of the SLL to be able to develop their

applications more effectively and efficiently

2. To provide a framework for developers to better target the needs of the end-users in the given context.

Why is this important? To date a number of networked software applications have been developed within the context

of the SLL (for a list, see table 3.2). These applications are almost exclusively stand-alone applications (in one instance

they share a database table, in theory), which belies the fact that all the applications have a common goal. This

thesis argues that the novelty and effectiveness of the applications could be increased by allowing the applications to

collaborate, especially on a contextual level. For the purposes of this thesis, this is the level at which domain knowledge

influences a middleware layer to: a) provide specific service interfaces relevant to the context and b) react transparently

to requests and events (such as timeouts) in a manner which is beneficial in the context. The argument is explored

through the implementation of a middleware layer, which is a typical technical solution to the problem of collaboration

between applications. The middleware layer exposes standardised interfaces allowing developers to develop standard,

reusable applications for the network. Through the middleware layer, developers thus have access to a set of services

existing on the network, which in past projects were being replicated within each application. The main instance of

such a service is the user authentication, which had been separately implemented by three services.

This thesis suggests that such a middleware layer can be distributed in order to allow applications transparent access

6

CHAPTER 1. INTRODUCTION 1.3. DEFINITIONS

to network services regardless of the location at which they are housed in the network. This is an important step as

it allows the network to expand more easily since the creation of new physical nodes in the network is not associated

with complete duplication of all software and hardware resources required. Naturally, access to the shared resources is

controlled.

Further, this thesis explores avenues to build a middleware layer suited to the scenario of a network of DANs – a

unique context. The network of DANs are meant to offer a variety of highly innovative applications to communities in

MRAs. This is in contrast to the goals or contexts of other middleware solutions known to the author.

1.2.1 Objectives

The objectives of this project are thus, to:

1. Design a middleware framework which can cater for future applications in the context of MRAs.

(a) The rural SLL context should be carefully considered in order to make some educated guesses as to what

sorts of future applications will run on the system, as these need to be catered for as well. For instance, the

SLL is at the time of writing negotiating the addition of GSM based resources (e.g. via the Wireless Village

project by Nokia-Siemens Networks and Vodacom).

(b) Further, the aspect of several DANs collaborating in an area is to be explored. It may be beneficial to allow

DANs to share resources, to provide the user with a better service, allowing access from anywhere within the

network.

2. Investigate open and compatible implementation technologies for the middleware framework .

(a) The framework should take into account the heterogeneous nature of the development practices at the Uni-

versities and should cater for existing applications.

(b) The SLL is particularly interested in the use of Open Source technologies to enable use and reuse of solutions

thus promoting sustainability.

1.3 Definitions

In this section we define the meaning of some key terms, that are otherwise fuzzy in meaning or used in different senses

by different authors depending on the perspective.

Component

Szyperski’s definition of a component is succinct and captures all the facets of what a component is :

7

1.3. DEFINITIONS CHAPTER 1. INTRODUCTION

“A software component is a unit of composition with contractually specified interfaces and explicit context dependencies

only. A software component can be deployed independently and is subject to composition by third parties.“ [SGM02]1

This definition highlights the idea of reusable independent units of functionality, whose behaviour is defined beforehand

and is contained in interfaces, and which capture large pieces of stand-alone functionality that can be run on their own

or in other contexts.

Services versus Applications

We use the word services to refer to basic utilities that manage one or more shared resources in a network environment.

Examples of services are login and user management, logging, backup functionality and middleware. Since the word

services is often used from a end user perspective to refer to the actual utilities provided (such as egovernment services)

there is potentially a source of confusion, which we wish to avoid in this thesis. From an end-user perspective, however,

it is not possible to tell where the boundaries of services lie. An egovernment service would typically make use of several

services in the middleware, as well as core services of the platform and this is transparent to the user. To avoid ambiguity

in this thesis, “end user services” are always labelled from a platform perspective as “application services”, or simply

“applications”, and never from an end user perspective unless the point of view is explicitly expressed as an end user

one. Such applications are usually components which are running on the network, in a web application server such as

Apache web server + PHP scripts or Apache Tomcat servlet container engine. We use the word applications to refer to

software running on the network and using the platform services to achieve some user-related aims.

Any service can also be a component.

Rural Digital Access Node

In this thesis a Rural Digital Access Node (abbreviated DAN 2) is a facility which is accessible to the public for at least a

portion of every day and is situated in an marginalised rural area (MRA), i.e. a rural area isolated from modern services

and amenities, with an impoverished population, high rates of illiteracy and an unmotivated, uninformed community.

The term “rural telecentre” is synonymous with DAN, with one exception: the DAN does not restrict users to physically

visiting the centre to access digital services. Instead the DAN focuses also on affordable means of bringing digital services

into rural homes, for instance via cheap GSM access technology or WiMAX (depending on regulatory restrictions). The

more abstract “Rural Digital Access Node” thus emphasises the unspecific and experimental nature of the facility. This

thesis makes no assumptions about the access type, whether “school-based”, telecentre, Internet kiosk or at a so-called

multi-purpose centre, or any of the many other kinds of facility. Nor does it restrict the kind of services offered to a

specific industry sectors – any digital service should be accessible. To us, the most interesting sectors in a rural context
1In [SGM02], the above definition appears after an analysis of several dozens of varying definitions of the concept of a component in

computer science. Szyperski’s exhaustive approach convinced us.
2We abbreviated the concept to DAN, because the rural context is given in this work.

8

CHAPTER 1. INTRODUCTION 1.4. SCOPE

are telecommunications, education, health, economics, and social development. All digital services thus converge within

the scope of the DAN, and through the middleware layer are encouraged to collaborate to add further information value.

Middleware

We define middleware in section 2.2.1.

1.4 Scope

The scope of this thesis is a description of the research and development work behind the middleware being proposed.

Since the requirements engineering step of the development work occurs against the background of the SLL communities,

it is necessary to understand the broader context of MRAs. The middleware layer has much greater potential for the

SLL than providing a single sign on capability. Applications that offer automatic assistance by matching user profiles

to grant criteria, or that find pertinent information more easily and actively warn users about events that require their

attention, could have a great impact in the SLL scenario. Such applications would push information to the users rather

than waiting for the users to find things out for themselves. Further, work flows integrating applications and services

could be more easily implemented. Such work flows could, for example, help ensure customer satisfaction with the

eCommerce portal.

The thesis focuses on a software design, which captures and encourages such ideas of flexibility and extensibility.

Implementation is taken as far as proof-of-concept of core ideas.

Semantic web services, a promising future technology related to the middleware, are out of the scope of this thesis.

1.5 Structure

The thesis is structured as follows:

• Literature Review – this chapter has two main sections. It introduces major ICTD concepts in the first, highlighting

factors and concepts that are of importance to software developers. It then looks at (software) technologies relevant

to ICTD in the second.

• Methodology and Requirements Engineering – this chapter has four main sections. Firstly we introduce the

methodologies that were employed in the thesis. Next, an analysis of existing and planned software provides vital

information about how the system being designed will be used. The requirements engineering section uses this

information to analyse the requirements of all the roles in known use case scenarios, as well as describing the

requirements of the context. Finally, some technology decisions are motivated from the requirements.

9

1.5. STRUCTURE CHAPTER 1. INTRODUCTION

• System Design and Architecture – this chapter derives a system design from the requirements engineering according

to the methodology. It also provides a new design of the current eCommerce system (eMall), to illustrate the major

concepts of the system design. An information model and non-functional considerations affecting the design each

also have a section in the chapter.

• Implementation and Results – this chapter primarily addresses the implemented proof-of-concept and explains the

Spring framework on which the demonstrator was based. Technologies looked at in smaller, isolated experiments,

are mentioned. The chapter closes with lessons learned, general discussion about the development of middleware

(including some important caveats!) and the ESTIMA project is also mentioned as a result.

• Conclusion – this chapter brings this thesis to a close and focuses the reader on the central arguments of this work.

• Publications – this chapter lists related publications.

• The List of References is self-explanatory.

• The Appendices bring some more technical odds and ends to light – for enthusiasts.

10

Chapter 2

Literature Review

The benefits [of awareNet social networking] should not be overlooked. In this modern world we

live in, being computer literate is no longer a luxury but a necessity. You must remember not

long ago you couldn’t get a job if you spoke only your mother tongue. These days it’s becoming

a prerequisite to have a driver’s licence and to know something about the digital world.

Thozamile Ngeju, Upstart Youth Newspaper Article (to be published 2010)

This chapter is structured in the following manner:

• Firstly we analyse the field of ICTD1.

• Secondly, we research software technology relevant to our problem: open source middleware, ad-hoc distributed

systems and Service Oriented Architecture.

• Finally, a concluding section sums up the main aspects of relevance discovered in the review of literature and prior

art.
1ICTD may not classically be seen as a field within Computer Science. However, since software is required for all Information and

Communication Technologies to operate, scientific investigations which look at the effects of innovative software and digital services that
affect socio-economic conditions of persons, may very well qualify as Computer Science, as long as they are concerned primarily with the
software aspects of the research and, to a lesser extent, with research into the impacts. The rigorous evaluation of impacts may require
assistance from economists, anthropologists and ethnographers.

11

2.0. CHAPTER 2. LITERATURE REVIEW

The selection of works introduced in this chapter are based on an examination of the context as well as the author’s

experience in working with Internet technologies and the Siyakhula Living Lab.

The aim of this chapter is to prevent this thesis from reinventing the wheel at any level.

2.1 Information and Communication Technologies for Development (ICTD2)

According to Richard Heeks3, the phenomenon of ICTs being used for development (in the sense of socio-economic

upliftment, or as Heeks puts it, “International Development”) has only been made possible recently by two main factors:

Firstly, through the Internet, whose success is in turn based for a large part on low price commodity (unspecialised)

hardware for communication and computing. And secondly, through the political will brought to bear on the subject by

the United Nation’s Millenium Development Goals (MDGs) agreed upon in 2000, but which were a result of a political

process initiated in the early to mid-1990’s[Hee08]. Heeks’ observations are borne out by several others ([BEH+03],

[DO04], [oTU07], [DB09]). ICTD is a very broad, multidisciplinary field of study (and practice), since it considers all

ICT aspects that affect international development efforts. We limited ourselves in our overview to the following research

areas:

• ICTD projects – several projects have tried to improve disadvantaged communities by bringing ICTs to them.

• Siyakhula Living Lab – this is the field intervention which informs the context of this work.

• Network topology – here we present a case for our conceptual construct of “Network Islands” based on related

literature.

• Telecentre technology – for a long time, telecentres were seen as the ideal vehicle to provide access to software and

the Internet.

• Novel ICTs for MRAs – there is a wide palette of cutting edge technologies that are proven and that have open

source (generic) versions, which might be applied with excellent results in the rural development context.

2.1.1 Large ICTD Projects

ICTD projects are necessarily multi-disciplinary undertakings. A review of literature reporting on ICTD projects shows

a number of professionals working side by side to complete the projects. The professionals come from several traditional

academic fields. We found the following fields were represented: engineering, computer science, informatics, economics,

sociology, psychology, ethnology, anthropology, education, gender studies and political studies. This breadth of subject

2 In a popular context it is also abbreviated ICT4D.
3Heeks is Professor of Development Informatics at Manchester University’s Institute for Development Policy and Management.

12

CHAPTER 2. LITERATURE REVIEW 2.1. ICTD

matter and the volume of government reports and literature on ICTD projects made the literature review more difficult,

as criteria for a selection of the literature had to be developed first.

Community Informatics and ICTD

We see Community Informatics (CI) as a subset of ICTD4. Its extensive theoretical underpinning was able to guide us

in our selection of ICTD projects to review. CI is seen by many as the founder of the telecentre movement. This is a

major point of overlap, as many of the early ICTD pilot projects involve access to computing and Internet, mainly via

telecentres ([ACG08, Sey08]). Here we briefly introduce the field of CI, before reviewing projects.

The multi-disciplinary field of CI has been growing since the mid 1990s and has a firm theoretical background, unlike

ICTD. The field has its roots in early digital community efforts in Scandinavian countries in the early 80’s[MD05].

The Journal of Community Informatics5 puts it this way, “Community Informatics (CI) is the study and the practice

of enabling communities with Information and Communications Technologies (ICTs)”. Discussing this definition, we

can quickly get to the core of some CI issues. Enabling communities, the core of the definition, is meant in a general

sense. Communities are not “enabled to do something”. Unpacking the definition further, we understand that networks

of people (communities) are transformed from dysfunctional units, which are unable to plan for contingencies and deal

with matters that they themselves perceive as problems, into units that can make use of resources in the network to

achieve things they want to. The enabling element is the Information and Communication Technology, which allows the

community to communicate within itself and without itself, with the rest of the world. Information is communicated

and allows the community to come to new realisations. CI is thus plainly engaged with complex networks of intelligent

(human) agents, each of whom occupies a specific perspective and is embedded in a network of his/her own, which informs

that perspective. Thus even as computer scientists, with perhaps limited social understanding, we can appreciate that

any CI projects are complex ventures – not necessarily because of the technology, but because of the social aspects of

such a project.

CI theories and lessons learned are essential background reading required to perceive the users requirements realis-

tically, when creating a working system for rural communities. Community members in MRAs (in Africa) are not even

familiar with other common forms of technology such as Automated Banking Tellers, home appliances, etc. A wide

variety of skills and ethical sensitivity is required on the part of developers who work in this field [And05].

4This view may be contested, as CI involves itself with any community, including ones which are in developed countries and are not
impoverished at all. The impacts of globalisation, the current economic crisis and demographic shifts such as aging, also put communities in
developed areas under strain. These communities too are in need of development, otherwise they will become the impoverished communities
of tomorrow.

5http://ci-journal.net/, downloaded 20th November 2009.

13

2.1. ICTD CHAPTER 2. LITERATURE REVIEW

ICTD Project Review

To grasp the backdrop to this project properly, we looked at several relevant works, and influential authors, relating to

the CI field6. We mention here the central points of some of the works, to highlight the major themes in ICTD and in

particular in the telecentre or public access field.

[BEH+03] (ICT for Development Contributing to the Millennium Development Goals: Lessons Learned from Seventeen

infoDev Projects), is a concluding project report and overview of large well funded World Bank projects in the

ICTD field. These projects are all concerned with access to information with respect to fulfilling the MDGs,

and thus fall into Heeks’ categorisation of ICT4D 1.0 projects, i.e. providing access. The lessons learned

are universal, succinct and apply to all projects. Central among the lessons is the theme of community

participation, as well as the theme of sustainability through application of existing cheap technologies in

local language that are easy to use. Lesson Four is particularly interesting. It states that ICT4D projects

may contribute more to MDGs when applied in rural areas. The only reason given by the authors for this

conclusion is that 70% of the world’s poor live in rural areas. While this reasoning is purely statistical and

ignores the cost of projects undertaken in rural areas, the economic law of diminishing returns supports the

conclusion that a dollar spent in a rural project may be more effective than one spent in an urban area, as

it is more likely to contribute to MDGs. The only problem we see with this reasoning, is that there may be

a critical mass of dollars required in order to make the rural project effective.

[UN 03] is an UN ICT Task Force review of “information kiosks” as far as sustainability is concerned. It is a collection

of articles, many of which could be mentioned in this listing in their own right. Their in depth review brings

out several major factors of sustainability. In addition to networking and sharing resources, they mention

the selection of the right person (“social innovator”) to drive the telecentre. This is something we cannot

as developers influence, although we do have the ability to help this person by making the technology as

easy to use as possible. Further, Stoll mentions (pp. 65) that financial sustainability is only achievable if as

broad a mixture of services as possible is offered by the telecentre. This also supports our perspective that it

must be possible to integrate as many existing services and as yet unknown services as possible into a rural

telecentre platform. Worthy of mention are two further papers, one by Fuchs (pp. 80) that claims that it

is critical to bring digital services into MRAs as quickly as possible and another by Wisner (pp. 110) that

introduces a new measure of telecentre impact. Fuchs claims that digital technology must find its way into

MRAs regardless of direct economic effects. It is the only way to spur innovation and adoption sustainably

and in a manner that really empowers the community, since the community will be gathering experiences
6Importance of the works was determined in a survey conducted by us of works that are often cited in CI literature. A paper was presented

on this work [Wer08]. Particularly works after 2001 were considered. The global recession at that time put pressure on funding agencies to
give their ad-hoc pilot project interventions a scientific footing, which improved the quality of reports produced after 2001 [IDR06].

14

CHAPTER 2. LITERATURE REVIEW 2.1. ICTD

themselves. This is similar to arguments made for the teaching of computer science in developing countries,

made by [DB09]. Wisner, introduces a framework which looks at the aggregate impact that a telecentre has

on a community, over and above financial measurements. One of the important variables she introduces is

capacity. Through the telecentre tool, the community gains capacity to undertake ventures.

[DO04] (A Rural ICT Toolkit for Africa) is another work that explicates the observations and experiences made in

World Bank projects. It is also has a strong leaning on lessons learned from ICT4D pilot projects, and is

addressed to legislators and governments primarily. It attempts to show how private-public partnerships can

provide access to rural areas affordably. An interesting observation in this work is that the rural areas may

have greater buying power than businesses generally think, if the rural diaspora is considered. Remittances

from the diaspora need to be included in the business plan.

[JH06] is a study of a South African telecentre installation. Jacobs and Herselman found in the case of one rural

village intervention, that repeatability of service was crucial to sustainability. Customers did not want to

come back to the telecentre as their results varied tremendously, arousing skepticism. An integrated platform

such as the one being developed at the SLL addresses this problem and introduces integrated solutions and

some work-flow managed processes. Further the following broad categorisation of service types is defined (in

order of increasing revenue possibility): Telecentre, DTP, Training and SMME Support.

[Med06] (Rethinking Telecentre Sustainability: How to Implement a Social Enterprise Approach – Lessons from India

and Africa) stresses that a network of like-minded people following the same aim have a greater chance of

success than if they are operating individually. This echoes findings of the UNICTF, as mentioned above.

Telecentre.org, a network of telecentre activists, operating predominantly in the Americas and South Asia

support this view, and provide an online platform for telecentre operators to share experiences[Tel09a].

Telecentre.org is funded by Microsoft and the IDRC. We note that allowing local telecentres to network

automatically and share resources should offer advantages to their sustainability.

[Ken08] (ICT: Promises, Opportunities and Dangers for the Rural Future) is an economist’s perspective on the future

of ICTD in rural areas and it is in stark contrast to the other papers reviewed here. It echoes the lesson

mentioned in [BEH+03], namely that ICTD projects have to focus on sustainability, however Kenny takes

a different angle and attacks projects that focus on the Internet and Internet-related industries, which have

been promoted by government policy in some poor areas, particularly in India. His analysis shows that

infrastructure investments in these industries alone have almost no impact on MDGs in MRAs (as well

as peri-urban areas), i.e. they do not turn such areas into productive, self-sustaining areas. Further the

infrastructure investments required are very large and they should not be risked. To put Kenny’s criticisms

15

2.1. ICTD CHAPTER 2. LITERATURE REVIEW

of novel, Internet enabled ICTD projects in MRAs into perspective, the criticism is primarily raised against

large government projects which end up benefitting corporations that cleverly make use of the instruments

that are meant to benefit the poor (i.e. impact MDGs) nor does it take the large open source movement

into account, which together with cheap mobile technology brings novel applications within reach of all, in

a hitherto unrivaled manner.

[ACG08] (Information needs and watering holes: public access to information and ICT in 25 countries) reports the

results of a survey of over 25000 telecentres (by all their various names) in 25 different countries, coordinated

by Washington University’s Center for Information & Society (CIS). The findings of the survey are principally

related to social, economic, political and environmental factors, not technical ones. This is similar to the

other papers reviewed in this background section. The findings in this report suggest that access can be

improved, by converging media (Internet, mobile phone service, radio, etc.), as well as by getting telecentres

of all types to cooperate and collaborate. Further, the paper points out that access points need to be seen as

“cool” venues, as well as redefining what trivial and non-trivial use is (e.g. are social media trivial?). Related

to this is another unpublished report from the CIS [Sey08], which besides strongly supporting Kenny’s

argument (see above) presents a succinct organisational, economic classification of the multitude of different

types of public access modes that are similar to telecentres, and which have had studies published about

them.

[KDQ09] (2009 Information and Communications for Development: Extending Reach and Increasing Impact) is the

World Bank’s 2009 report on ICTD. The latest insights in the report are that mobile applications and

technology are an important vehicle of delivery and need to be considered to give the poor connectivity, and

that broadband is an important enabling technology, whether mobile or fixed. The report does not herald

any new revelations as all of these observations may be gleaned from ones discussed above. A much more

positive appraisal of the IT and ITES (IT enabled services) industries are given by the report, it is almost

euphoric in comparison with Kenny’s appraisal, since it does not focus on MRAs. The report also repeats

the caveat that the impact of ICTD is not yet measurable. In the following section, 2.1.2, we colour in some

of these observations with additional observations from the field and look at why the ICTD scene is only

evolving slowly.

It is simple to find broad pictures and overviews of the political, environmental and social aspects of telecentres and

access. However, technical reports tend to be driven by hardware considerations, since a large part of the access problem

in MRAs is on a hardware level. However, the software level does not seem to be widely explored, from a telecentre

point of view. Even the survey run by the CIS [ACG08] of 25000 telecentres ignores the technical dimension. So we do

not know about the software aspect. We presume that the reason for this is that technology arguments are very hard to

16

CHAPTER 2. LITERATURE REVIEW 2.1. ICTD

substantiate scientifically. One need simply look at the arguments on the pros and cons of Linux vs. Microsoft operating

systems, in general. Our own feeling is that the open source movement embodies the kind of empowering spirit that we

see in the aims of Community Informatics. This is one of the reasons why we focus on FLOSS.

2.1.2 Siyakhula Living Lab (SLL)

This thesis forms part of a larger research project, the Siyakhula Living Lab (SLL), which is a member of the European

Network of Living Labs. The SLL began as the “Dwesa project” at the Universities of Fort Hare and Rhodes. The original

objective of the precursor rural testbeds project was to develop and field-test the prototype of a simple, cost-effective and

robust, integrated e-business/ telecommunication platform for deployment in marginalised communities in South Africa.

It has become a testbed for all innovative ICTs, with a focus on distributed ICTs and communication modes (GSM,

WiMAX, and Web Services)[TSTC06]. It is situated in a marginalised rural area (MRA) at the communities of Dwesa,

Cwebe and Nkwalini, in the Eastern Cape of South Africa in the Mbashe Municipality. Amalgamation of the original

project with the SELF Solar Computer Lab network ([Wer09, eKh09]) resulted in a network of public access nodes at 8

rural schools, which will ultimately form a single island spanning 30km. The technologies deployed at the participating

communities at Rural Digital Access Nodes (DAN) are geared to connect the communities with one another via a local

WiFi/WiMAX network and with others via the Internet. The fact that DANs are connected in a high-speed WAN is

crucial to this thesis. We contend that given a suitable substrate, useful eServices can flourish in MRAs as they are

driven by the needs of the community and its increasing capability to use the virtual sphere. We believe that could be

an ingredient in reaching one of the main goals of the SLL: to show that the technologies deployed can generate sufficient

revenue to sustain the running costs incurred by the ICTs themselves and to maintain interest of the community in the

project[DTMT07].

Technologies deployed (or soon to be deployed) at the SLL include the following:

• An eCommerce application which allows local traders to exhibit and sell their crafts on-line[NTM06], with a

rewards based extension to encourage usage of the shop [JTT09];

• An equitable community-based cost management scheme, implemented initially for Internet access, but which is

extensible to include other service costs[TTT07];

• An eGovernment platform, which mirrors commonly required home affairs documents, provides a communication

transport with home affairs and provides fora for local government initiatives[JMW08];

• An eJudiciary – a system that is meant to help the tribal leaders track issues in the community to promote

transparency and fairness, as well as providing important statistics about such issues in the community over time

[SM08];

17

2.1. ICTD CHAPTER 2. LITERATURE REVIEW

• BingBee, an unattended kiosk approach, which merges simple and novel hardware HCI elements, with a selection

of customised content aimed at promoting logic, literacy and numeracy skills in young children[SWL06].

• GSM and radio channels to deliver information to the community from external and internal sources.

• Agent based service provisioning, which makes available an ontology built from local knowledge to route requests

for eServices within the platform [TTC09].

• Extension to all systems which localise software for the particular area and language are being developed by native

speakers who originate from the region [DMTT08].

• Java Advanced Intelligent Networks (JAIN) based architecture for the convergence of real-time communication

technologies [TTW09].

In an effort to provide replicable service to villagers across nodes, a suitable middleware platform could be tremendously

beneficial.

What becomes clear from the applied work in MRAs is how pervasive barriers to ICTs are: wired technologies

are expensive in such areas, hence the high penetration of mobile communications as opposed to fixed telephone lines

[DO04], and there is no electricity in most such areas, although there are ongoing efforts to provide basic solar power

for instance at clinics (see the Solar Electric Light Fund (SELF) or Solar Light for Africa). Further the high level of

illiteracy means that there is no support or maintenance readily available for ICTs. Harsh environmental conditions,

moisture or heat and little secured housing are the norm in these areas. All these factors combine to create a particularly

difficult environment for ICTs.

Apart from infrastructural challenges, the poorly educated community members and cultural divergence make it

difficult for externally initiated projects to succeed. General psycho-socio-political barriers are reviewed in general in

the previous section. The SLL attempts to address all the psychological and social barriers. For instance a local field

base has been set up within the community so that student trips to the area are housed within the community. Further

the long-standing relationship with the community – over three years – has built trust and acceptance within sections

of the community.

2.1.3 The Network Island Phenomenon

Mesh Networks

Mesh networks are networks whose nodes are able to route messages between any other nodes in the network. Even if the

network is damaged, messages can continue to pass to all destinations as long as any path between the communicating

nodes exists. The original idea of the mesh comes from the topology of such a network, which resembles a lattice

18

CHAPTER 2. LITERATURE REVIEW 2.1. ICTD

arrangement. This was a handy way of laying out hardware sensors or circuits (such as CMOS circuits). The sensors

could be configured to pass on information from surrounding nodes adding their own inputs to the signal [BBLV04].

This meaning of mesh networks seems to have been lost in more recent works such as those mentioned below, which

focus on wireless mesh networks.

There are several rural single radio mesh7 or long-distance network pilots being researched in recent literature, see

for example [Joh07, PNS+07]. For an example of such a network please see 3.2. We discuss the central findings of

these projects in the section 2.1.5. These projects are typified by simple flat IP addressing at nodes, using inexpensive

WiFi hardware, in situations where maintenance of equipment is complicated and other hindrances like failing power

supply introduce network down time. Mesh networks provide a challenge to regular network technologies, owing to their

dynamism. P2P applications however are engineered to function in such scenarios (see section 2.2.2).

Characteristics of Network Islands

Within the SLL, we have also created and observed a rural single radio mesh network. We used inexpensive long-distance

wireless technologies to create rural islands of high speed connectivity. The wireless networks in the SLL span areas

in the order of 10 - 30km, but these could be increased to several 100 kilometres. We noticed that the topology of

our networks (as well as those of the other authors mentioned in this section) do not resemble a lattice at all. We

thus call them network islands. We characterise network islands by the following: within the island, high-speed links

provide excellent, redundant connectivity between nodes, while connectivity to the Internet can take place at any point

in the network over low-bandwidth links such as VSAT and GPRS or EDGE technology. We thus postulate a subclass

of wireless mesh networks, called network islands.

Advanced applications such video-conferencing may operate well within the network in a cost-effective manner. This

can for example benefit users, by allowing replication of eLearning or other digital services from one node to others

within the network. Within the SLL, researchers have been implementing and testing services and applications adapted

to the local context, which will potentially be able to make use of these characteristics [DTMT07].

WiMAX Network Islands

[AR06] also support this idea in their work. They suggest that WiMAX technology will evolve from being a Wireless

Internet Service Provision technology 8, to natively supporting a P2P WiMAX network architecture for communications

in rural areas. They argue that the IEEE 802.16e extension to the WiMAX standard (Mobile WiMAX) will free the

technology, so that communities will be able to utilise it in a similar manner to the way in which IEEE 802.11 has been
7If one considers these very inexpensive networks in terms of their hardware, then the name “single radio rural mesh network” is an apt

description. This is because the nodes often only have a single radio for connectivity to other nodes in the network, owing to ease of setup
and maintenance.

8WiMAX is currently commonly being touted for the role of backhaul technology to smaller WiFi networks or other Points of Presence
(e.g. Telecentres)

19

2.1. ICTD CHAPTER 2. LITERATURE REVIEW

used to create mesh networks. The authors specifically mention P2P as a technology, because it is the social aspect of

networking that they wish to highlight. In fact, the WiFi technology they describe is identical to the Mesh networking

technology. Angelov and Rao do mention the risks to their P2P WiMAX networking solution from regulators, and it

does seem at this point that regulations and the high cost of equipment are putting the brakes on WiMAX adoption,

however, they also caution that WiMAX adoption will take several years (from 2007), so their projection cannot be

faulted yet.

2.1.4 Review of Telecentre Software

Since telecentres are such a large part of the ICTD effort to provide access, we review commercially available (also

FLOSS) products which are used in telecentres9. Our review focused on two questions: is reusable telecentre software

available that could ease our mission? And, can we learn from the architecture of such telecentre systems? An overview

of publicly available telecentre software shows that there is a variety of telecentre software available, commercially and

in the open source domain. The following products were selected to form the basis of the review in this subsection, as

they are representative of the field:

• Cybera – an open source software available via sourceforge, using a client/server architecture

• TrueCafe, Cafezee and SmartLaunch – commercial telecentre software, using a client/server architecture

These products use a client/server architecture to provide the proprietor of the telecentre with control over the work-

stations being used by the clients. All of the commercial software reviewed uses the Windows operating system family.

In the open source pool, some versions supported only Windows, others only Linux and yet others were cross-platform.

At least in the case of the commercial software, very close integration with the operating system is intended to lead to a

high degree of control. Thus, the software is tamper-proof as far as the end-user working on a workstation is concerned.

The main features that seem to be required by proprietors are security, pricing and billing, and marketing. Thus these

systems all offer common methods of charging customers according to the time of day, pre- or post-paid, time spent at

the workstation, amount of traffic generated to the Internet and number of pages printed. The way in which the pricing

and billing work are designed to minimise losses of income due to customers not being able to pay (pre-paid models)

and due to theft by employees (ticket systems), as well as making use of demand by customers (premium time of day

charges). Security is important as customers may not use workstations or other resources when they are not allowed

to, or when the system is not logging their use. Typically this means that advanced programs like the command line or

terminal are disabled. For purposes of marketing, workstations look and feel can be changed to match the telecentre’s

corporate image. Often these systems offer integrated management and accounting modules which allow the proprietor

to view statistics on usage and revenues, as these are ultimately the factors that need to be optimised. Most Windows
9For our purposes, a telecentre is identical to a cyber cafe or Internet cafe as discussed in the previous section 2.1.1.

20

CHAPTER 2. LITERATURE REVIEW 2.1. ICTD

software requires licensing. A particular form of licensing is the network license, in which a particular software can

be executing or running a certain number of times on a particular local subnet. In order to optimise licensing costs

– which can be very high indeed – the software can also monitor and control how often a certain programme is run

simultaneously on the workstations and block execution when license conditions are violated. Licensing control is not

of interest to this thesis.

We note that the reviewed software packages are not suitable for reuse in our project. The main reason for this is that

the assumptions underlying the software architecture are related to classical telecentres (or classical telecoms functions)

and not to a DAN which offers its users all varieties of digital information and knowledge based or enabled applications.

Classical telecentres are independent entities which provide very basic services to their users. These include typically,

but are not limited to Internet access, electronic office services, other office services such as photocopying, and gaming.

Telecentres do not typically offer their users a service infrastructure which provides additional custom-built applications.

Further, the applications we are attempting to introduce are aimed at bringing knowledge society concepts10 within

the grasp of ordinary customers by introducing a technological and social layer customised to local cultural expectations

and conditions. Knowledge based services typically work with contexts, i.e. the context of the user and that of the

service can influence the functioning of the service and affect which choices it offers. This is also true of the services

at Dwesa. E.g. the eCommerce service distinguishes between specific shop keepers, customers and administrators.and

may take the number of sales a shop-keeper makes into account when charging for the service. All of these context

related facts should be encapsulated in services which provide a simple interface. For example, a call to the function

costPerUnitUsage(userToken) may return an amount which depends on the users context. The fact that the service

itself used a further module (say a social charging module) to incorporate sales information in the cost calculation should

not be required by the caller [MSZ01, TTT07].

2.1.5 Novel11 ICTs for MRAs

In this section we attempt to come closer to relevant Computer Science literature and projects. Whereas, the previous

sections inform our picture of the background to ICTD in a socio-political overview (section 2.1.1) and grassroots or

applied (section 2.1.2) manner, this section attempts to find out what technological advances are a) relevant to the

field and b) actually a result of work done in this field12. We could not find such an overview in the literature, e.g.

[UN 03]in the section “Innovations to close the Digital Divide” on pp. 113 mentions just 1 software innovation in 5

10The discussion about the value of the knowledge society and fit to rural populations in Africa is not within the scope of this thesis. There
is a large amount of literature relating to the nature of work in a knowledge society, and possibilities opened up to rural workers through
tele-work, digital content creation, etc.

11We use the term “novel”, instead of “new” or “innovative”, since: the technologies applied in the context may be old ones, not new ones;
and by innovation, we understand a novel technology application which has been widely adopted and is being used sustainably, which might
also not be the case.

12[DB09] point out that more work needs to be done by locals, in order for technology not to introduce unnecessary cultural barriers, which
is why it may be interesting to see what local technologies are seen as novel in the literature.

21

2.1. ICTD CHAPTER 2. LITERATURE REVIEW

projects mentioned (the others are all mentioned because of their innovative business models), and so we performed one

ourselves. What we found was that since one of the main factors which assists ICT adoption in MRAs is cost, technology

resulting from general market pressure and innovation is in fact the best friend of ICTD. Miniaturisation and solid state

devices seem to be much more resistant to harsh conditions in MRAs (as noted by several projects including Aleutia

[Ale07], OLPC [OLP09] and Inveneo [Inv08]) and, perhaps even more crucially, price reductions in wireless and general

technology are making ICTs more common in MRAs, without any intervention from third parties. This finding was in

part prompted by the observation that most ICTD projects use off-the-shelf technology and do not report on technical

aspects (ref. section2.1.1).

Our analysis grouped novel ICTD technology projects according to their level of completeness. Complete projects

involve application of novel technology in MRAs and they are and have been widely reproduced. An example of this is

the OLPC XO technology, which is a complete product and has been released into MRAs in thousands. Partial projects

are ones such as iPath.ch, which is an eHealth application developed for MRAs, or the ADEN project telecentre software.

These software packages need further ingredients to be released into the field (e.g. hardware, power, etc.). Situated

projects are projects that have been released into MRAs but have not been reproduced yet. Events are situated projects

that only run for a limited time period. This classification proved to be problematic in retrospect, as there was no

clear delineation of technical and other factors required for complete projects. Originally, our idea was to consider only

technical aspects, however, complete ICTD projects necessarily require a socio-political and environmental dimension

in order to be complete, which confused issues. This is evident when one reads our paper [Wer08]. We refer readers to

our paper for an analysis of individual technology projects. At this point we look at the most relevant projects, and

also mention the specific fields of Computer Science that are represented in these projects.

[BEH+03] presents an overview of 17 projects financed by the World Bank in the area of ICT4D. Batchelor raises two

relevant points over and above those mentioned in section 2.1.1: firstly, projects carried out in a rural area often have

a greater impact than those carried out in peri-urban areas, and existing technologies (radio, TV and mobile phone)

can be used to enhance the impact of ICT4D interventions. The former point illustrates the importance of the current

initiative, the latter once again underlines that a wide variety of services must be integrated with the platform to achieve

sustainability and maximum benefit for the communities.

Technology and Infrastructure for Emerging Regions (TIER) is a project at the University of California Berkeley

which has been investigating innovative technology application in developing areas, including rural developing areas. The

TIER WiLDNet (WiFi-based Long Distance (WiLD) networks) sub-project has tested and implemented long-distance

wireless networks based on 802.11 technology. They note that current 802.11 standards do not provide good connectivity

in WiLDs owing to interference from existing networks, TCP/IP collisions caused by the greater delay and inefficient

link-layer recovery. Atmospheric phenomena can also influence the quality of connectivity [PNS+07]. Lessons from the

WiLDNet research are that the idea of high-connectivity islands in MRAs is feasible and that even with high connectivity

22

CHAPTER 2. LITERATURE REVIEW 2.1. ICTD

wireless networks, bandwidth should never be wasted, as deterioration can occur owing to a number of reasons.

Aleutia and ByteWalla address the Internet connectivity problem, proposing similar solutions. Mobile devices that

travel into the city every day could be carrying messages that are sent once the network is accessed in town. Aleutia

and others mentioned this as an idea in 2008. Bytewalla on the other hand has a large number of supporters, as well

as a clear and open technology and business plan that are available online. Bytewalla may be a good example of open

source spurring adoption [JSN+09][Ale07].

The Meraka Wireless Africa Mesh project is an good project to consider, as it contributes to the creation of high-speed

wireless networks, potentially in rural areas. Situated mainly in peri-urban areas, the project uses the cheapest wireless

equipment and an innovative wireless aerial made from a recycled tin can and open source software (BATMAN) to connect

many distant nodes in a mesh network. The project is situated in northern areas of Tshwane and Mamelodi.[Joh07]

Femtocells and picocells – an example is the village connection system from Nokia – are a technology developed to

improve local reception in places that usually do not offer any, for instance cruise liners (boats) and airplanes. These

technologies are extremely interesting in the rural context. However as we have seen, regulations constrain the adoption

of these technologies in a manner that could be efficient enough for the rural context as backhaul continues to be a

problem. Combined with network islands, however, these technologies could be used to spur local development, if not

taxed in a similar way to the way in which regional networks are taxed.

We only found one technically innovative result directly addressing telecentres holistically, using open source software

– the ADEN project (as opposed to a host of commercial ventures selling a variety of mostly Microsoft Windows based

software for telecentres, although we did also find Linux based ones). Free/libre open source software (FLOSS) does

seem to generally be useful in the telecentre milieu [Baj07], it is however by no means prevalent. A closer look at

technology in this milieu is given in section 2.1.4. The Fostering Digital Inclusion (ADEN) Project of the French Foreign

Ministry is an international EU and French funded cooperation project, whose website moved to Angola in 2008 and

was unavailable at time of writing. We are not aware of any studies or published reports on the project. The ADEN

Pack is a Mandriva Linux based complete solution for telecentre managers. The software is released in a DVD form

(ISO image), which is easily installable at telecentres. Networking of telecentres is not presumed. Support forums for

the telecentre manager are mainly in French. We did not research why FLOSS is not reported upon often in the ICTD

technical domain.

Another important access software, which is FLOSS, is the Digital Doorway, a Meraka (Council for Scientific and

Industrial Research – CSIR) project in South Africa. The Digital Doorway is a self-service kiosk, which resembles modern

tourist information points found in major cities nowadays. It is a stainless steel column housing a PC running Ubuntu

Linux, which has up to 4 terminals connected to it. Internet connectivity is supplied via VSAT and an EDGE/GPRS

connection connects the access point with a central server for the purposes of monitoring and maintenance. Several of

the units are deployed in MRAs and several papers have been published about the system. The system is constructed

23

2.2. SOFTWARE TECHNOLOGY CHAPTER 2. LITERATURE REVIEW

with a variety of scripts automating common house-holding tasks and allowing access to services in a controlled manner.

Interestingly, the platform was originally based on Microsoft Windows, but was migrated to Linux ([Gus08], and per

interview with Mr. Gush).

Since the telecentre problem is principally one of communication – in a sense patching users to resources and perform-

ing exact accounting on the transactions in order to bill them afterwards, we also considered the use of communication

management (switching) software. This was done because Rhodes University has a soft-switching software based on

the Asterisk software package, which supports a wide variety functionality, all closely related to the communications

industry. The use of the iLanga soft-switch would additionally provide access to legacy telephone communications for

user, which is certainly a very important market for the telecentre [STB09, TTW09].

2.2 Software Technology

The main aims of this section are to review software technology available to us, as well as looking at software development

methodologies that are related to these technologies. Specifically, we look at middleware technologies available to us

and we introduce the benefits of ad hoc networking technology.

Since we do not find any reusable software frameworks in the ICTD domain above, we review generic software

frameworks that might form the basis of our own attempt at solving the problem.

2.2.1 Open Source Middleware

“Middleware is a distributed-system software that resides between applications and underlying platforms (operating

systems; databases; hardware), and/or ties together distributed applications, databases or devices.”[Mid09] Middleware

is an umbrella term for technologies that are primarily used to achieve one of the main programming optimisation

techniques in the Computer Science toolbox – information hiding, or encapsulation 13 – in a networked environment.

Specifically, calls made to middleware are agnostic of the location from which the service or method being called

are being answered, and of the implementation of the service. The importance of middleware is thus that it helps

software development projects and running systems successfully manage changes over time, which makes safe code

reuse possible. Middleware is often linked to component-based programming paradigms which also focuses on safe

code reuse and composition of components (see also Service Oriented Architecture (SOA), section 2.2.3) [Wik09a]. The

programming paradigm underlying the middleware implementation is however not specified, and so in this section, we

consider approaches from grid (parallel) programming and agent based approaches as well as the usual suspects.

A historical development of middleware as a concept may be understood in the following way. Original software
13The latter term usually is applied in Object Oriented programming, which uses objects to gather information and hide private information,

cleanly exposing public information of objects. However the basic idea is much older and is notably captured in Parnas’ work “On the Criteria
to Be Used in Decomposing Systems Into Modules” [Par72].

24

CHAPTER 2. LITERATURE REVIEW 2.2. SOFTWARE TECHNOLOGY

programming was imperative (assembler, C, etc.) and procedural. Complex software systems evolved and expanded

over time, which introduced problems in software written, compiled and linked in the classical manner. Advancements

in programming practice (functional programming, logic programming etc.) were introduced early on, however the bulk

of coding (common operating systems, etc.) was carried out in an imperative manner. The widespread introduction

of 3-tier and in fact N-tier systems, which separated their views, business logic and database in separate code bases,

and even separate programming technologies required glue components (middleware). Large complex systems with

several programmers working simultaneously on different aspects, could be created more efficiently if specialised tools

were used for each separate part, and if the interfaces between these parts could be managed and stabilised [author’s

experience, see also [SGM02]]. Several technologies were developed in the 90’s to deal with this aspect of computing

and they displayed various characteristics. The most commonly used and most widely hyped of the technologies at

that time was most probably the Common Object Request Broker Architecture (CORBA). CORBA was hailed as the

first open, standardised, enterprise capable technology by IT experts, who immediately saw the value of the system

in a technological sense [author’s experience]. CORBA did not live up to its expectations, although it is still in use

today, because the business results did not match up to expectations, and this partly gave impetus to the SOA school

of thought. We see middleware as a computer science concept and SOA as a related information systems or business

science concept.

There are several classifications of middleware[Wik09a]. These classifications consider in what manner the various

components are linked by middleware, e.g. are (asynchronous or synchronous) procedural calls to remote methods

allowed, are objects exchanged, is the system transactional (can calls be rolled back), etc. Such classifications have been

found to be quite theoretical and dated, as middleware tends to mix the various types of component linkage blurring such

distinctions [SGM02]. For our purposes, thus, we do not need to look at examples of all types of middleware. Instead,

we consider what the goals of our middleware platform are and review relevant technologies. Although the exact system

requirements are mentioned in the following section (3.3), we know that the system we need must link applications

developed by many developers, for a telecentre-like context, which offers services that may be expected (or not) in such

a context. We also need to consider the theory behind Service Oriented Architectures, to gain high-level requirements

that may be important. Since a lot of development will be done within the context of the SLL, FLOSS technology is

preferred, however it might be better if the platform is open and does not restrict other IDEs. The middleware should

ideally be able to link knowledge or database frameworks and make this information accessible via standardised Resource

Discovery mechanisms. The latter aspect is discussed in the following section, 2.2.2. Using these criteria, we selected

the following middleware technologies for consideration as the basis of our work:

• Component-based programming14

14The reader may notice that we have ignored a large class of popular middleware clustered around the .NET implementation. While there
are open source implementations of .NET, they are beyond the scope of this work.

25

2.2. SOFTWARE TECHNOLOGY CHAPTER 2. LITERATURE REVIEW

OSGi

– Refer to figure 2.1a. The Open Standards Gateway Initiative (OSGi) specifications “define a standardized,

component-oriented, computing environment for networked services that is the foundation of an enhanced

service-oriented architecture” in the OSGi Technical White Paper[OSG07]. These standards specify how

applications, which are termed bundles, can be added to a system and managed throughout the life-cycle

of their use. These bundles have access to a range of services offered by the framework and are subject

to security restrictions, which can be programmed. The OSGi specification was initially targeted at mobile

devices, to redress imbalances introduced by MIDP, but OSGi has proved to be very popular even in large

server applications, through integration with the Spring Framework.[OSG07]

Java EE

– Refer to figure 2.1b. Java 2 Enterprise Edition is a complete platform for the implementation of distributed

applications such as service oriented architectures or web applications. In version 5, Java EE includes an

integrated application server, called Glassfish, allowing Sun to leverage its wide range of Java technologies in

an orchestrated fashion [Sun09]. According to [SGM02], the Java EE Platform is also a complex component

framework with Enterprise Java Beans at the heart of the framework. EJBs drive the application container

(server) and provide most of the orchestrated functionality of the platform. By virtue of the nature of Java,

access to EJBs is granted to most of the components. Through the various component libraries available

in Java EE, a wide array of technologies are available to allow organised implementation of practically all

tasks necessary for SOA development from resource discovery, through to distribution and load balancing.

Glassfish is a potential technology basis for our middleware.

SOFA

– Refer to figure 2.1c. SOFA-2 is a framework and formal language, which allows developers to design ar-

chitectures using hierarchical composition of components, and then to translate these into Java code in an

explicit manner. The system addresses the fact that most service frameworks offer flat component libraries,

which have to be pieced together by the developer, whereby the onus for the management of composition

lies with the developer. SOFA-2 on the other hand (like AspectJ) uses annotations to semantically mark-up

POJOs (plain old Java objects) in order for the composition and component description to take place. At

run-time all the component descriptions are put into a system wide repository. The system is distributed

via containers called SOFANodes, which may reside anywhere in the network. SOFANodes support business

logic components in Controllers, and allow the logic to connect through connectors. Connectors are created

at run-time in order to maximise use of context knowledge and optimise communications within the system.

26

CHAPTER 2. LITERATURE REVIEW 2.2. SOFTWARE TECHNOLOGY

Connectors can allow different styles of communication such as direct method invocation or communication

buses (many-to-many communications) [BHP06, BHP+07].

JMX

– Refer to figure 2.1d. JMX is a Java standard which is intended to be used as a monitoring and managing API

for Java applications, with which one can e.g. monitor errors and start and stop services. The framework is

included in Java SE and Java EE since 2005. The JMX framework has 3 levels: the Instrumentation level,

the Agent Services level, and the Distributed Services level. Because of its wide adoption, clean interfaces

and well tested technology, JMX is an example of a middleware with a specific purpose, which is why we

include it here. Since JSR160, it also has specific remote capabilities. Managed Beans (MBeans) are the basic

building blocks of the service portion of the architecture, they expose functionality in the Agent Services and

Distributed Services levels. Calls to MBeans are handled through a proxy, which allows the system to be

completely distributed. Further, MBeans are more powerful than regular EJBs because they are able to

access resources outside of their context, such as the disk [Jav06, IBM09].

CORBA

– Refer to figure 2.1e (adapted from[Las96]). The Common Object Request Broker Architecture (CORBA) was

first released by the by the Object Management Group in 1991 and has since then evolved little to a second

version. Its early appearance is reflected in the way CORBA standardises remote procedure calls (RPC)

in a tightly coupled, strongly typed manner. To invoke methods on a CORBA 2 servant, for example, the

client may have needed to know the full signature of a method being invoked. CORBA uses the Interface

Definition Language (IDL) to generate invokable method stubs for different programming languages. Thus

although there is a generic type called “any” which does introduce looser coupling between client and servant,

since the variable types being returned may need to be translated between languages, and since they may

contain complex types such as arrays, parsing errors can occur (especially, if different ORBs were used).

CORBA does not provide the same level of abstraction as do some of the more technologies described above

[author’s experience]. Essentially, although CORBA based infrastructures are still in use today, its lack of

interoperability and other failings make it a middleware which is .[Hen06]

• Event Driven

Web Services: WSDL and SOAP, REST (AJAX, and Javascript and JSON)15

15SOAP – Simple Object Access Protocol; REST – Representational State Transfer; AJAX – Asynchronous Javascript And XML; JSON
– Javascript Object Notation. These are common web services technologies in use today. We do not differentiate between these here.

27

2.2. SOFTWARE TECHNOLOGY CHAPTER 2. LITERATURE REVIEW

(a) OSGi (b) Java EE

(c) SOFA 2.0 (d) JMX

(e) CORBA

Figure 2.1: Component layer diagrams of several middleware architectures

28

CHAPTER 2. LITERATURE REVIEW 2.2. SOFTWARE TECHNOLOGY

– Event driven architectures are becoming the de facto industry standard as far as distributed systems are

concerned, especially ones which cross organisational boundaries. They provide interoperability with a vast

number of services available from several companies accessible via the Web (certainly all the big Internet

companies, Google, Amazon, eBay, and so on offer Web Service APIs). They are also used in operational

research architectures in Grid system driven by the very popular Globus Toolkit. Last but not least, the initial

SOAP specification standardised by the W3C, coming from Microsoft is the basis of the .NET architecture and

leverages the enormous development community using Microsoft Visual Studio and the Microsoft Component

Framework (Microsoft Foundation Classes).

– Figure (2.2) shows the atomic unit of interaction for a complete Web Services call. After steps 1 & 2 have

been completed, resolving a particular service address, they do not need to be repeated for subsequent

Service requests and responses (steps 3 & 4). What should be evident in the figure, is the simplicity of

the collaboration required from the (few) roles involved. A component diagram for this scenario has not

been included, as it is trivial. There is no definition in the specification of particular components so each

application may have its own arbitrary layers, instead the standard only defines the protocol that has to

be communicated across the wire. Further using URLs as resource location descriptions and XML as the

on-the-wire format, the whole protocol is human readable, which has greatly improved use. This is in stark

contrast to CORBA, whose binary IOR addresses and focus on client and server side IDL implementations

unnecessarily restricted developers. A more detailed analysis of the technologies is given in the next section

(SOA, 2.2.3).

– FLOSS Frameworks that support Web Services include PHP natively since version 5, prior to that via the

PEAR component framework, Java natively since 1.6, prior to that through several projects (most notably

Apache Axis and Spring-WS), Ruby on Rails, etc. Since Web Services are native in newer versions of Java,

they are native to the Java EE application container server. They are also standardised in the OSGi standard

(as implemented by the Spring Framework). Web Services are thus compatible with a number of other

technologies mentioned in this section.

• Agent-based

Agent-based programming is steeped in the folklore of intelligently “acting” software agents, which act as proxies

for their human counterparts in a particular (virtual) environment (such as the World Wide Web), by carrying out

tasks for them. Naively seen16, this potentially represents vast time-saving for the human user as enormous amounts

of information can be processed by agents. Early software agent literature is filled with detailed wide typologies of

16This observation is naive, because although lazy humans do not want to browse through masses of information, the browsing process
may be vital in assisting them to ultimately possess enough knowledge to be comfortable with their choice.

29

2.2. SOFTWARE TECHNOLOGY CHAPTER 2. LITERATURE REVIEW

Figure 2.2: A distributed Event-Driven Architecture as a collaboration diagram: Web services collaboration
diagram involving client, server and broker

the various types of agents [Nwa96], whereas modern literature has much simpler streamlined typologies [Wik09b].

In fact, Haag cited in [Wik09b] claims there are only 4 types of intelligent software agent: Buyer agents or shopping

bots, user or personal agents, monitoring-and-surveillance agents and data mining agents17.

Multi-Agent Systems (MAS) seem to be well suited to the implementation of a distributed middleware, such as the

one we are trying to build, and JADE is one of the most popular scientific implementations of an agent platform

that is freely available. Analogously to the abstract developments and understanding of agent systems, early

JADE MAS platforms were implemented using CORBA middleware (IIOP) for inter-platform communications

and JAVA Remote Method Invocation (RMI) for communication within a particular platform. Later JADE MAS

extensions support Agent “platforms” built on the J2EE application container (using JBoss for instance or Spring

Framework) and use web services for messaging[Tel09b]. Further [TTC09] demonstrated an architecture called

PIASK using JADE MAS to provision eServices in the SLL. An analysis of their results is not available at the

time of writing, so we cannot judge the efficacy of their method.

Figure 2.3 shows a component layer architecture of the FIPA Abstract architecture, which is embodied in the

FIPA compliant JADE MAS platform. We see in the figure, that the basis of the FIPA architecture is its Message

Transport Service (MTS), which connects all components of MAS and supports interoperability in terms of the

Agent Communication Language(s) (ACL), resource directory services (via the Directory Facilitator) and content

17On the face of it, Agent Programming seems a noble aim to achieve, however, there is no evidence that the approach works. A quick
look at the practical track record of the methodology shows no large scale, industrial implementations of such systems, where real intelligence
could be located (e.g. Multi-Agent Systems show great promise of delivering truly new results). For instance the typology of intelligent agents
suggested by Haag does not show any intelligence at all – these are merely lexical analysis automata which can process large amounts of data
quickly and efficiently following simple or complex algorithms. Truly intelligent systems capable of logical reasoning are being built using
semantic web technology (RDF, OWL, DAML+OIL, etc.), however semantic web systems are also still in their infancy. The “semantic web”
has been heralded as the Web 3.0. Perhaps Agent systems have failed, because the WWW is not inherently a friendly collaborative place.
Technophiles and hackers deliberately build traps for automata and spend great amounts of time reverse engineering complex processes to
take advantage of programmed behaviour. [Art09]

30

CHAPTER 2. LITERATURE REVIEW 2.2. SOFTWARE TECHNOLOGY

Figure 2.3: Component layer diagram of the JADE / FIPA abstract architecture

languages used between differing FIPA agent implementations [Fou02]. The Directory Facilitator (DF) offers two

types of resource directories: services and agents. Together with an Agent Management System (AMS) and Agent

Communication Channel (ACC), the connector to other platforms, these facilities build a virtual environment in

which programmed agents can be instantiated and can perform actions [BPR01].

• Parallel

Grids and ad-hoc networks are contrasted in section 2.2.2 as they share many common aspects [FI03]. Here we look

at the middleware characteristics of Grid systems. Specifically, we consider the most widely used implementation

of the Open Grid Services Architecture (OGSA) / Infrastructure (OGSI), the Globus Toolkit. To see why Grid

technology as embodied in the Globus implementation, is middleware, consider the following statement: “While

every application [using the Globus Toolkit 4 (GT4) Grid software] has unique requirements, a small set of functions

frequently recur. For example, we must often discover available resources, configure a computing resource to

run an application or deploy a service, manage an application or service, move data from one site to another,

monitor system components, control who can do what, manage user credentials and attributes” [Fos06]. GT4

thus implements most common middleware functionality, for specialised applications requiring large scale, efficient

resource sharing, like the distribution of terabytes of astronomical data. Further, it is implemented using J2EE

and Web Services, two basic middleware technologies discussed in this section, among others. This makes GT4 a

very good candidate for middleware framework. We also found ICTD project in rural India constructing a service-

oriented Grid as middleware for their eServices application [PD07]. Although the paper cites Foster’s work on the

Globus Project, it is not clear whether the authors used the Globus Toolkit as a basis for their implementation,

which is called SORIG.

Globus is clearly a larger framework of components than either of the technologies it uses, as is illustrated in

31

2.2. SOFTWARE TECHNOLOGY CHAPTER 2. LITERATURE REVIEW

Figure 2.4: Component layer diagram of a Java-based GT4 container, as an implementation of the Open Grid
Services Infrastructure.

the following figure 2.4. The Globus Toolkit (version 4) has three application containers: Java, C and Python.

The Java container is the most advanced offering the most functionality. It builds on top of several Web Services

specifications and provides implementations of these to take care of messaging, security, discovery and resources

frameworks.

2.2.2 Ad-hoc Distributed Networks (P2P)

We understand P2P as an OSI application layer technology, which constructs mutable, ad-hoc overlay networks that have

social significance through the principle of inclusion, i.e. all nodes in the network, even those on the edges participate

in the function of the whole [WT09, FI03]. We discuss P2P technology because it is a good fit to the environmental or

contextual conditions that we found in our field testbed. We argue that the main critical success factors of sustainable

telecentre projects outlined in section 2.1.1, are a good fit to P2P technology.

We introduce them for 4 reasons:

1. High Network “Churn”. Typically the WAN architecture will be as simple as possible to prevent expensive mainte-

nance and blocking scalability etc. robustness in the face of high churn, through dynamic routing, and automatic

routing setup (the complex network theoretic foundations can be found in Newman’s work [New03]). Gummadi

et al [GGG+03]outline how Distributed Hash Table (DHT) topologies affect resilience of a network in the face of

instability (churn). Huebsch et al [HCH+05] describe the design decisions in creating an Internet scale database

system using DHTs and P2P technology.

2. Fully Distributed Resource Discovery. Since the network can fragment through missing nodes, it must be possible

32

CHAPTER 2. LITERATURE REVIEW 2.2. SOFTWARE TECHNOLOGY

to use the resources that are still available in the network, even though significant parts are missing. Static

resource tables or statically wired resource discovery services are not sufficient for the task. Peer-to-peer technology

offers implementations of efficient fully distributed resource discovery algorithms, which can be used in such a

scenario[ABZC08, Kro02, TAA+02, VDB04].

3. The Social Dimension. The champion, who is responsible for the operation of a particular telecentre, owns the

telecentre and thus feels responsible for operations. Being part of a network may dilute the feeling of responsibility,

and P2P technology can help to introduce business cases that keep the ownership of local resources, data and

customers with each telecentre [Wer03, SSDN02, AH00]. Further P2P overlay networks can help provide distributed

models for service discovery and add a degree of robustness to the network, especially if redundant WiMAX /

WiFi links are present in the network (i.e. if a mesh architecture is used for the underlying physical network)

[TAA+02, Ora01].

4. Overlay Networks. The lack of skilled personnel in the rural areas means that the setup of new nodes and

maintenance of existing nodes must be kept as simple as possible. Overlay networks implemented by middleware

software, which create secure virtual networks on top of (hence overlay) any physical network, obviate complicated

hardware setup requirements for the network (a frequent source of problems in the SLL). The software layer is also

very easy to setup and it actually works better when the network is not over-configured. There is a wide variety of

literature on the properties of differently structured overlay networks (a good overview can be found in Harwood’s

PhD Thesis [Har02]).

Further, ad hoc networking is applicable to the field of service oriented architectures. [ABZC08] have developed a SOAP

binding for the JXTA P2P technology 18. The binding allows one to distribute SOAP endpoint descriptions in an ad

hoc network. This prior work touches very closely on the sort of middleware we wish to design in this project. SOAP

is related to the Service Oriented Architecture family of technologies, mentioned below.

2.2.3 Service Oriented Architecture

The Service Oriented Architecture (SOA) paradigm is a business perspective on systems that may be built with open

middleware standards. The business management orientation of the SOA concept is immediately evident in the following

definition: “SOA is an application architecture within which all functions are defined as independent services with well-

defined invokable interfaces which can be called in defined sequences to form business processes” [CHT03], although

there is some contention about an exact definition [Sta06]. Several sources of SOA literature we looked at stressed

the importance of business risk management making ultimate decisions concerning the development of SOA based
18In their paper, Amoretti et al mention similar initiatives targetted at a Globus (Grid) environment, which should be considered within

the context of the implementation of the middleware design.

33

2.2. SOFTWARE TECHNOLOGY CHAPTER 2. LITERATURE REVIEW

systems[Mal09, Sta06, CHT03, AGA+08, AP09]. SOA is used to structure enterprise-wide systems that can offer the

entire enterprise access to information and shared services to maximise their utility within the enterprise, and also

without (in the case of externally available services). 19

[AP09] provide a good reason to look at the SOA paradigm when designing a new distributed middleware, which has

to serve a fairly complex scenario in a flexible manner; they interviewed several Finnish SOA development companies

who found that the main advantage of SOA was that it forces developers and systems architects to understand the

business processes within an organisation and indeed across organisations. The benefits of this are that if the SOA

design is performed with sufficient input from business, the system becomes flexible enough to very quickly create new

business processes and models potentially with the inclusion of third party services, which translate into new products

for the organisation. 20

SOA is generally understood to use Web Services technology (SOAP, REST), although an underlying technology

is not specified. SOA develops value out of information hiding (for instance the ability to attach legacy systems to a

modern infrastructure), automated resource discovery and guaranteed service levels, as well as the ability to compose

services into new, aggregated service hierarchies, which express business processes (as mentioned above) [JNR09]. Thus

SOA adds SLAs and composition of services into aggregated services as two additional business requirements made of

middleware, which as a technical construct does not necessarily address such requirements.[BBW09] interviewed German

companies who regularly use SOA and who create SOA solutions. Their findings were very similar to [AP09] mentioned

above, and they additionally stressed that the agility of development was greatly improved in projects using SOA. Since

this is one of the main goals of our effort, it seems that the SOA methodology may hold some lessons for us. So what

is the SOA methodology and what kinds of techniques are available?

SOMA is one of the main commercial tools available, and is part of IBM’s Rational solution package, with which a

SOA can be modelled in order to ultimately develop a working system based on the architecture. The technique seems to

aid the development process at each step from design to deployment of the finished software project[AGA+08]. In fact,

in [AGA+08], an IBM research team makes the claim that “the construct of a service and service modeling, although

introduced by SOA, is a software engineering best practice”.

SOMA and Rational Unified Process (RUP) are supported by proprietary tools. We looked for a similar open process,

which would allow us to follow a methodology just as rigorous as that proposed by the RUP, of which SOMA is an

extension. UML Components by [CD01] introduces a method of the same name which defines step-by-step, how UML

can be used to model service-oriented systems using component programming, for which open source tools exist. In

table 2.1 we juxtapose the RUP process as applied within SOMA with UML Components. Thus we are assured that

19It seems to us that the SOA methodology may have been introduced to explain the value of middleware to business persons that hold
the purse-strings in an enterprise.

20This very idea is noted by [CD01] as being the primary business motive underlying the adoption of component programming by large
companies already in 2001. Perhaps theory and practice don’t differ all that much?

34

CHAPTER 2. LITERATURE REVIEW 2.2. SOFTWARE TECHNOLOGY

RUP (Rational Unified Process)
Phases
Business Modelling & Transformations
Identification
Specification
Realization
Implementation
Deployment
Management

Objects Specified and Modelled
Services
Components
Flows
Information Flow
Service Policy
Component Contracts

Artifacts
Development Plan
Iteration Assessment
Project Measurements
Periodic Status Assessment
Work Order
Issues List
Risk List
Scenario List
Change List
Use-case Model
Software Architecture
Execution Architecture

UML Components
Phases
Requirements
Specification
Provisioning
Assembly
Test
Deployment

Objects Specified and Modelled
Interfaces
Components
Contracts

Artifacts
Business Requirements
Business Concept Model
Use Case Models
Technical Constraints
Component Specifications
Component Architecture
Components
Applications

Table 2.1: Juxtaposition of RUP and UML Components approaches to developing service-oriented architectures.
The table shows similarities in development phases, but a disjunction in the focus and artifacts of each approach.

by following the modelling process outlined in UML Components we will still be following software engineering best

practice as advocated by IBM.

A more technical exposition of SOA principles, which was published by a technical division in a large corporation,

can be found in [Sta06]. The architectural design patterns Stal introduces translate very well into software modelling and

programming constructs which can help streamline the developed classes and code. He has looked at several SOA which

are in use in the corporate environment to which he has access. He has reverse-engineered the implementations used to

create the SOA and discovered a number of useful software development patterns that can be applied to help ensure SOA

principles are adhered to in a system. The benefits of this approach are that the Development Process gets important

technical input to enable implementation of business processes with some assurance of following industry best practices,

even if the requirements are incomplete. Some of Stal’s key insights are that loose coupling is very important for

SOA implementors. Several indirection patterns should be used when constructing communication channels 21, message

21Stal also mentions the Enterprise Service Bus a technology agnostic construct, which creates a fully connected network of services
and applications, as a possible blueprint to integrate different middleware into SOA. Presumably Stal is thinking of classical middleware

35

2.3. CONCLUSION CHAPTER 2. LITERATURE REVIEW

transport systems and Class models (interfaces) in order to preserve loose coupling. Some of the patterns are: Bridge

pattern, Explicit Interface pattern, Proxy pattern, Forwarder-Receiver pattern, Reflection pattern (Factory pattern),

Store and Forward, or Message Queue Blueprint (very similar to the Staged Event Driven Architecture), Interceptor

and Reactor patterns.

Another relevant technical exposition on SOA implementation concerns the work of Amoretti et al [ABZC08], and

can be found in section 2.2.2.

2.3 Conclusion

The aims of this literature review are twofold:

1. it bootstraps our understanding of the problems faced in ICTD projects, so that we can suggest an appropriate

solution, and realistically gauge the feasibility of our project idea, and

2. it reviews useful technologies, which we might use to bootstrap our development effort in order to achieve goals

more completely, and which might prevent us from reinventing the wheel.

We find that sustainability is the holy grail of ICTD projects. Since there are no ready solutions to the problem of

sustainability, any solutions we present in this thesis should respect the best practices we mention in this chapter. We

also find that our solution should be geared toward deployment in network islands, which are a kind of network topology

we expect to emerge in the mid-term and then to vanish again.

We find that the family of telecentre software currently in use, does not offer us any possibilities for reuse. Similarities

to the telecentre (DAN) we envisage are superficial. The difference lies largely in the fact that the software running on

behalf of the end user (i.e. within the end user’s process space), with the exception of the timer which is timing use on

the workstation, is all agnostic of its runtime context. The software may as well be running on the home computer of

the child of a wealthy family in an industrialised context, as on a telecentre infrastructure tailored for MRAs.

MRAs represent an environment, which requires dynamic, robust technology, in terms of hardware as well as software,

and which stand the most to gain from ICT enabled solutions which connect people in the MRA with the outside world,

so that at least some services can begin to flow freely in both directions.

Since we cannot find an open source telecentre system which covers our requirements concerning extensibility, scala-

bility and open interfaces, we consider creating our middleware from open source components which implemented all the

required functionality of the system. In that case our contribution could be to combine these and to specify the standard

interfaces available for the system. The next chapter discusses the methodology employed to design and develop the

based legacy systems which need to be integrated into an SOA; he glosses over the fact that an SOA itself is implemented using particular
middleware. This demonstrates the difficulties of dealing with abstractions such as middleware and SOA which combine technological and
business perspectives to differing degrees.

36

CHAPTER 2. LITERATURE REVIEW 2.3. CONCLUSION

software in greater depth. We note that the methodology discussed in the following chapter is already introduced in

this section and some comparisons with other literature are made.

This section situates the project in a overarching (business) and technological context, which allows us to continue,

well informed, with the following chapter.

37

2.3. CONCLUSION CHAPTER 2. LITERATURE REVIEW

38

Chapter 3

Methodology and Requirements Engineering

"T’ain’t What You Do (It’s the Way That You Do It)"

Melvin Oliver and James Young (1939)

3.1 Methodology

This thesis, and the development work performed in its context, followed several cooperating methodologies. They apply

to various aspects of the project.

Project Management Aspect – this project is an academic exercise and as such it fits very well into the first stage of

a traditional project life cycle, which is called the project feasibility stage and consists of analytical and development

work required to produce initial code supporting some hypothesis [Schwalbe, 2006]. We create a concept and implement

a demonstrator. Deployment to the SLL and adoption by other projects as well as related evaluations, fall outside the

scope of this project. Collaboration with the other SLL programming projects takes place in the sense that one or two

existing projects could be integrated into the demonstrator. This eliminates the risk introduced by working with projects

still under development, which are following their own critical path. Within this scope, the project was developed in

an agile manner, i.e. following an iterative project life cycle. Agile project management, as described by Cockburn in

[Coc05], does not attempt to plan an entire project from begin to finish rather it attempts to optimise investigative

interactions in a team of programmers by keeping communication flowing. The goal is thus iteratively approached as

39

3.1. METHODOLOGY CHAPTER 3. REQUIREMENTS

one learns more about the problem itself and the possible solutions. One can thus say that agile project management

is not designed for one person projects. However, since the definition of the problem was very imprecise, part of the

project would involve experimentation to gain added insights into the problem, which fits well to an iterative method of

development. Thus bottom-up and top-down approaches could be combined to allow technological insights, which were

initially unknown, to shape the overall project design and requirements.

Architecture Design Aspect – the methodology we use in the technical architecture design for the distributed web

services system followed industry standard methods for service-oriented architectures. We use the UML Components

method, approximately, including some aspects of the Rational Unified Process. These methodologies can not be applied

completely, not only because of time constraints, but because the project caters for future services that are not clearly

defined. It also lacks customers who can provide the stories necessary to model complex and clear interface requirements,

as is usual in industry projects. The essence of the methodologies is applied to bundle the available information and

to clarify the clusters of services and data models that were applicable. Use of the model also lends the project some

security as far as completeness of the work is concerned. The phases that are carried out are mentioned in table 2.1,

with the exception of deployment.

Development Aspect – in keeping with the agile project management methodology, the development methodology

adopted was one of test driven development (TDD), along with the agile “the code is the documentation” methodology.

The reason for this approach is that in iterative projects, one wishes to rapidly develop working code and refactor at a

later time, once changes to the requirements have been noted. Having a good test suite is essential to this manner of

development. Further, good code documentation can ease adoption of the middleware being developed, and is essential.

A simple prototype as proof-of-concept is the aim of the development, so the emphasis in this thesis is on Architecture

design and concept modelling.

The methodologies have been chosen according to the nature of the project and the constraints that have governed

the project from the outset, apart from the technical constraints that are presented in detail in this section. These

high-level constraints concern the nature of this particular Masters programme, namely, that students work largely on

their own proposals and implementation of proposal and any group work is done very loosely within the confines of

the SLL. The project is being developed by a single person who has to cover all aspects of the project implementation

within a fixed amount of time.

3.1.1 Requirements Gathering Methodology

Our methodology for gathering the middleware requirements consisted of identifying the domains from which require-

ments could emerge, and then analysing and synthesising the requirements from each domain. Normally, requirements

engineering is kept simple by focusing on the requirements of a client, who requests that the software embed some

40

CHAPTER 3. REQUIREMENTS 3.1. METHODOLOGY

Domain User Role Investigative
Technique

Notes

Rural context Village inhabitant Observation, interview This is the context of ICTD and SLL
as described in section 2.1.

University context Programmer Publication review, code
review, mailing lists use,

interview

This is the context of the
programmers, who use the middleware
platform to develop programmes.

Business context DAN operator Case study review,
publication review,

brainstorming, interview

This is the context of the DAN
operator, who needs to perform
business transactions in order to
ensure sustainability of the DAN.

Table 3.1: Context domains, the corresponding user roles and requirements elicitation (investigative) techniques used

“business logic”1 in order to attain specific goals. Table 3.1 explains the domains we considered and the user roles

(perspectives) considered in each domain. In our case, we used a combination of investigative techniques to elicit the

requirements. Different methods predominated in different environments; the predominant methods are also mentioned

in the table.

3.1.2 UML Components Methodology

The UML Components methodology described in [CD01] is a an excellent fit to the middleware application we are

designing and modelling. There are three main reasons for this:

1. There is no main customer for the software, who might have a clear concept of the end-user goals, future business

extensions and software design understanding, which could drive the development process. A structured process

helps to keep any project on track.

2. UML Components is focused on “the server side of things” as the authors put it. Middleware is inherently related

more to server software than end-user software like GUIs. In fact, in this project, we did not develop any GUIs –

user interaction is restricted to log messages.

3. The methodology helps to produce a cleanly designed component based system, which has a service oriented

architecture, and which is a good fit to the a priori requirements with which we set off into this project.

1The term business logic is a bit of a misnomer, as it does not refer to business in the commercial sense. E.g. the term can also apply to
mathematical formulae in scientific software, which attain the goals of the scientist, but which are in no way commercially oriented.

41

3.2. APPLICATIONS AND SERVICES ANALYSIS CHAPTER 3. REQUIREMENTS

3.2 Applications and Services Analysis

3.2.1 Current Applications

Current applications were surveyed by the author in detail, within the context of a supervisory role, by the author

at the University of Fort Hare during 2007, 2008 and 2009. In this time, the author provided practical advice and

gained insights into several student projects, as well as the overall methodology of the institute, the Telkom Centre of

Excellence.

Additionally, the investigation of current applications revealed the following sorts of assets that may be relevant to

our system. The most commonly used assets that could also be shared among the applications are their data models.

These data models inherently express business models relevant to the context. These data models could also be shared

among the applications with good effect. For example, the concept of a rural user, including demographical information

and background, etc., as captured by the DAN operator at registration time, could be used by an eGovernment module to

suggest grant or bursary applications that the user might be able to make. Another kind of asset are physical resources,

such as printers and physical storage media that might be shared. Bandwidth and traffic are network related assets that

may apply to the WAN island (i.e. accessing other DANs) and on the Internet link(s). Finally, software components

(i.e. services) are also assets to the system. An example of services as assets may be the Media Platform Service, which

offers VoIP or Video Conferencing functionality to applications.

3.2.2 Future Applications

In general, future applications will make much more use of mobile access to all services delivered via the middleware.

GSM push services for audio and text should soon be included and are present in the eGovernment work. Applications

running on mobile phones, that are connected to the network resources, either via WiFi or a cellular technology, promise

to expand the size of the network and increase churn greatly, since each mobile device could represent a node in the

network. Such services are already postulated in the eCommerce work, although not implemented. Semantic web

technologies, knowledge systems, and other techniques making use of Ontologies and Reasoning systems are also a

strong future thrust, as they have the potential of ably assisting the community members (who lack knowledge) in using

the available services.

For each potential future technology, we suggest a solution that is taken into account in the requirements:

Alternative communications channels – the middleware does not ignore alternative communication channels such as

legacy and mobile telephony. We suggest that Mobicents, the framework and container of the real-time communication

solutions employed in the SLL, be linked into the middleware as a service that controls a resource. Likewise, the

middleware system would act as a resource in the Mobicents world by granting access to DAN resources. Inter-process

42

CHAPTER 3. REQUIREMENTS 3.2. APPLICATIONS AND SERVICES ANALYSIS

P
ro

je
ct

R
ol

es
T
ec

hn
ol

og
y

D
es

cr
ip

ti
on

of
th

e
W

or
k

eC
om

m
er

ce
&

ex
te

ns
io

ns
Sh

op
ow

ne
r,

sy
st

em
ad

m
in

is
tr

at
or

P
H

P
4,

M
yS

Q
L

4
(p

la
nn

in
g

is
pr

oc
ee

di
ng

on
a

re
w

ri
te

us
in

g
O

SC
om

m
er

ce
sh

op
fr

am
ew

or
k)

T
hi

s
is

an
eC

om
m

er
ce

w
eb

si
te

w
it

h
m

ul
ti

lin
gu

al
sh

op
ow

ne
r

ba
ck

en
d,

cu
st

om
er

fr
on

t-
en

d
[N

je
07

]
an

d
ex

te
ns

io
ns

[J
T

T
09

,D
M

T
T

08
].

eG
ov

er
nm

en
t

C
om

m
un

ity
m

em
be

r,
sy

st
em

ad
m

in
is

tr
at

or
,

H
om

e
A

ffa
ir

s
offi

ci
al

P
H

P,
Zo

op
fr

am
ew

or
k,

Li
nu

x,
M

yS
Q

L
5,

A
pa

ch
e

2
T

hi
s

is
an

eG
ov

er
nm

en
t

si
te

w
it

h
G

ov
er

nm
en

ta
l

se
rv

ic
es

fo
r

th
e

eJ
ud

ic
ia

ry
si

te
w

it
h

se
rv

ic
es

fo
r

tr
ac

ki
ng

ca
se

s
et

c.
[J

ak
09

]
eJ

ud
ic

ia
ry

Tr
ib

al
le

ad
er

,s
ys

te
m

ad
m

in
is

tr
at

or
(c

ha
m

pi
on

),
co

m
m

un
ity

m
em

be
r

P
H

P,
Li

nu
x,

M
yS

Q
L

5,
A

pa
ch

e
2

T
he

eJ
ud

ic
ia

ry
w

eb
ap

pl
ic

at
io

n
al

lo
w

s
th

e
co

m
m

un
ity

to
tr

ac
k

tr
ib

al
ju

st
ic

e
pr

oc
ee

di
ng

s
(w

hi
ch

ar
e

a
le

ga
lf

or
m

of
ar

bi
tr

at
io

n
in

So
ut

h
A

fr
ic

a)
,p

ro
vi

di
ng

tr
an

sp
ar

en
cy

an
d

be
tt

er
in

fo
rm

at
io

n
us

e
an

d
se

cu
ri

ty
[S

M
08

].
B

ill
in

g
an

d
R

at
in

g
E

ng
in

e
Su

bs
cr

ib
er

,s
ys

te
m

ad
m

in
is

tr
at

or
P

H
P

4,
C

ak
e

Fr
am

ew
or

k,
H

ot
C

ak
es

Fr
am

ew
or

k,
Fr

ee
R

ad
iu

s,
Li

nu
x,

M
yS

Q
L

4,
A

pa
ch

e

T
hi

s
is

an
ac

co
un

ti
ng

sy
st

em
w

it
h

no
ve

lb
ill

in
g

an
d

ra
ti

ng
pa

ra
m

et
er

s,
w

hi
ch

w
or

ks
to

ge
th

er
w

it
h

ca
pt

iv
e

po
rt

al
te

ch
no

lo
gy

.
It

is
fle

xi
bl

e
an

d
ex

te
ns

ib
le

[T
ar

07
].

W
ir

el
es

s
N

et
w

or
k

Se
cu

ri
ty

In
ve

st
ig

at
io

n
In

tr
ud

er
,h

ac
ke

r,
us

er
Fr

ee
R

ad
iu

s,
P

H
P

T
hi

s
is

an
ov

er
vi

ew
of

th
e

as
se

ts
(r

es
ou

rc
es

)
on

th
e

ne
tw

or
k

an
d

a
ri

sk
an

al
ys

is
of

po
ss

ib
le

eff
ec

ts
by

in
tr

ud
er

s
in

to
th

e
ne

tw
or

k
[M

uc
08

].
M

ed
ia

Se
rv

ic
es

P
la

tf
or

m
C

al
le

r,
ca

lle
e,

ad
m

in
is

tr
at

or
Ja

va
,M

ob
ic

en
ts

Fr
am

ew
or

k
an

d
Ja

va
A

dv
an

ce
d

In
te

lli
ge

nt
N

et
w

or
ks

(J
A

IN
)

/
SL

E
E

st
an

da
rd

T
he

M
ob

ic
en

ts
ba

se
d

sy
st

em
is

a
co

nv
er

ge
d

co
m

m
un

ic
at

io
ns

sy
st

em
,w

hi
ch

lin
ks

A
st

er
is

k
ba

se
d

P
ub

lic
Sw

it
ch

ed
Te

le
ph

on
e

N
et

w
or

ks
(l

eg
ac

y
te

le
ph

on
y)

,w
it

h
al

lI
P

(S
es

si
on

In
it

ia
ti

on
P

ro
to

co
l–

SI
P

)
ba

se
d

fo
rm

s
of

co
m

m
un

ic
at

io
n,

in
cl

ud
in

g
V

oi
ce

an
d

V
id

eo
.

[T
T

W
08

]
O

nt
ol

og
y

Se
rv

ic
e

In
di

ge
no

us
tr

ib
al

m
em

be
r,

do
m

ai
n

sp
ec

ia
lis

t,
ad

m
in

is
tr

at
or

Ja
va

,J
A

D
E

fr
am

ew
or

k
T

hi
s

is
an

In
di

ge
no

us
K

no
w

le
dg

e
Sy

st
em

s
(I

K
S)

.
It

us
es

a
M

ul
ti

-A
ge

nt
P

la
tf

or
m

an
d

O
nt

ol
og

ie
s

te
ch

no
lo

gy
to

ca
pt

ur
e

an
d

re
pr

es
en

t
kn

ow
le

dg
e

of
co

m
m

un
ity

m
em

be
rs

.
It

al
so

pr
ov

id
es

ac
ce

ss
to

eS
er

vi
ce

s
in

a
se

m
an

ti
c

m
an

ne
r.

[T
T

C
09

]

Table 3.2: Comparative List of Applications and Services Currently Implemented within the Siyakhula Living Lab

43

3.3. REQUIREMENTS SPECIFICATION CHAPTER 3. REQUIREMENTS

communications could be programmed in both worlds, on the one hand in a middleware service and on the other hand

in a mobicents Resource Adapter.

Huge number of nodes – this problem needs to be addressed by specifying an additional topology or structure for the

ad hoc network mechanism, i.e. P2P layer, of the middleware. It is common practice in P2P networks (e.g. Gnutella,

Kazaa, JXTA, BitTorrent [SRS05, TAA+02, Coh03]) to track usefulness of nodes in terms of duration of presence,

network capacity and processing speed. The most useful nodes are often promoted to super-peer nodes. Using two-tier

or multi-tier organisation the P2P layer can be optimised to support ever greater numbers of services running on ever

greater numbers of peers 2.

Semantic technologies – semantic technologies mainly affect the resource discovery layer and the data model layer

of the middleware. Semantic web services are an object of much research [MSZ01]. We suspect that the technologies

being investigated in that field can quite simply be applied to the communications layer being proposed in this thesis.

3.3 Requirements Specification

3.3.1 High Level System Envisioning

The middleware platform is a “glue” component which allows easy development, installation and administration (or

operation) of functionality required at a network of rural Digital Access Nodes (DANs). More generically expressed, the

middleware controls how components find and gain access to other components in the network.

IT staff can easily create new nodes in the network, because the middleware automatically creates an overlay network

over the configured physical network. The middleware automatically finds new nodes if permitted by the physical network

configuration and spreads service descriptions in the network.

Developers don’t create stand alone applications, instead they encapsulate their functionality as applications or

services extending the sum functionality of the system. In doing so, their modules may become discoverable on the

network to the benefit of other applications and may gain access to the assets available on the network. Developers can

thus focus on their core concern which is solving a particular problem correctly. Users of the network may rapidly gain

new functionality as core functions do not need to be developed repeatedly.

Operators run DANs to earn a living. They control the services available to community members at a particular

node and they also control how assets available from the node can be accessed by other nodes, if at all. Operators can

easily install new services and applications from online repositories, as well as controlling services (start, stop, allow

access to particular applications, deny access to particular applications).

The middleware allows users to access (or use) services in a more uniform manner. For example, they can log into

2For example, a simple heuristic for optimising the network, once such a two-tier approach were in place, might be never to allow mobile
devices to become super-peers, because of their limitations in terms of power, bandwidth and processing speed.

44

CHAPTER 3. REQUIREMENTS 3.3. REQUIREMENTS SPECIFICATION

the system once and use all services with a single set of credentials. Users must register to use the system. Their usage

of the system is logged and they may be required to pay for system usage. Their use of the system is mediated by the

operator, who can give them advice about which applications they may want to use. The operator also may provide

assistance with all other aspects of system use. Users can be recognised by their traits – in our current context that

could be a South African ID number.

All components in the system can subscribe to notifications about events that concern them.

3.3.2 Business Concept Model

Figure 3.1 depicts in a mindmap the concepts mentioned at various places in this document up to now. The three

components (Service, Application and Middleware) have already been defined in the Introduction (Section 1.3), since

they are key concepts to this work. The ideas of Assets and Data Models as they pertain to Services and Applications

have already been touched on in the requirements analysis carried out in section 3.2. Users and different user types (or

roles) are also mentioned there. The mindmap reduces these concepts to a minimal set: all types of community member

who are characterised by low literacy levels and especially low computer literacy levels are members; operators are

community members who are responsible for the operation of a DAN; administrators are technically versed IT staff who

are able to troubleshoot networks and install software correctly. The neighbourhood is a networking concept which is the

set of all the DANs that are directly connected to this DAN in a logical or physical manner. The requirements analyses

also highlighted the issue of security. The middleware uses the two concepts of user credentials and access control lists

(ACLs) to help maintain confidentiality, integrity and availability (CIA), which are widely accepted cornerstone concepts

of information security.

3.3.3 A Priori Requirements

Contextual Requirements

For the contextual requirements analysis, we grouped the university and business contexts together, since they were

identical in the SLL 3.

Table 3.3 lists the various requirements that we derived directly from these contexts for any arbitrary software

solution, which might be required to run in the SLL. The requirements themselves are discussed in the literature

review in section 2. These requirements are split into functional and non-functional groups. Although non-functional

requirements are generally not a priority for functional prototypes (as the name suggests), non-functional aspects of

applications running in the SLL determine some of the functional aspects of a middleware, so we need to look closely

at these here. The third column (“Applies”) in each subtable denotes whether we took the particular requirement into

3Business activities in the SLL were still being started at the time of writing, and they were led by the University partners

45

3.3. REQUIREMENTS SPECIFICATION CHAPTER 3. REQUIREMENTS

Figure 3.1: Business Concept Model Mindmap, showing the relevant business concepts that are dealt with by the
middleware layer.

46

CHAPTER 3. REQUIREMENTS 3.3. REQUIREMENTS SPECIFICATION

Non-Functional
Requirements

Importance A
pp

lie
s

Is Open Source Essential Yes
Is Robust High Yes

Is Inherently Secure High Yes
Installs on Diverse

Architectures
(Cross-Platform)

Medium Yes

Uses Low Bandwidth
(Internet)

Medium Yes

Does not restrict Bandwidth
(WAN)

Medium Yes

Has Low Power Demands Medium No
(a) Rural Context: Non-functional requirements

Functional Requirements Importance A
pp

lie
s

Has Existing eServices High Yes
Allows New Useful eServices High Yes

Allows Mobile Access High Yes
Is Easily Managed

(Authorisation, Access and
Accountability)

High Yes

Is Easily Administrable
(Self-Configuring and

Self-Healing)

High Yes

Allows Rich Content
(Audio / Video)

Medium Yes

(b) Rural Context: Functional requirements

Non-Functional
Requirements

Importance A
pp

lie
s

Follows Best Practices Essential Yes
Provides Transparent Access

to Resources
High Yes

Is Programming Language
Independent

High Yes

Documents of Interfaces and
Code

High Yes

Contains Examples for
Developers

Medium Yes

(c) University/Business Context: Non-functional requirements

Functional Requirements Importance A
pp

lie
s

Loose Coupling of
Components

Essential Yes

Open Interfaces High Yes
Extensible Architecture High Yes
Support for Callbacks High Yes

Clear Component
Architecture

Medium Yes

(d) University/Business Context: Functional requirements

Table 3.3: Contextual requirements

consideration in the functionality of the middleware.

3.3.4 Assumed Network Characteristics

We next examine the physical networking context within which the middleware will be deployed. In 2005, Mishra et al

(part of the TIER group at Berkeley) performed an analysis of the wireless technology options for the creation of the

Akshaya network in a hilly rural area in India, which apart from population density seems to be similar to many African

scenarios including the SLL. Although prices have changed, their core findings still hold. For rural underdeveloped

areas, a low cost per unit of demand needs to be established. The sustainability of the system may in fact thus rest on

the way it scales, which makes these assumptions important [MHF+05]. A further example network for a rural school

network near the SLL in the Mbashe district is provided in figure 3.2.

47

3.3. REQUIREMENTS SPECIFICATION CHAPTER 3. REQUIREMENTS

Figure 3.2: Radio survey graph of a 20 school network spanning 20km near Mqanduli, South Africa. Paths between
nodes that are darkly coloured do not allow line-of-sight (LOS) between the nodes. Links between nodes can only be
established along the lighter coloured paths.

48

CHAPTER 3. REQUIREMENTS 3.3. REQUIREMENTS SPECIFICATION

The list of network characteristics in table 3.4 is derived from the characteristics of graph theoretic complex networks

mentioned in [New03], as well as case studies. These are assumptions that will affect both the kinds of physical

infrastructure required for the correct proportioning of the middleware system (i.e. regarding particular numbers of

users, numbers of digital access nodes and characteristics of the network topology), as well as allowing context based

predictions of usage patterns relevant to the middleware system (as analysed in section 4.5.2). To sum up the table,

we expect a loosely connected network, with high local uptimes, and potentially a high number of nodes and users,

although in the immediate case, node and user numbers will be low.

• We note that the uptime characteristic, is interpreted as

uptime =
(MTBF −MTTR)

MTBF

where MTBF = mean time before failure, and MTTR = mean time to recovery, as per [Bre01]. We chose the

values of 0.95 for WAN uptime, which is slightly higher than 0.9 for Internet uptime. These are rough experiential

values and they take into account that it is more difficult to get the ISP to fix problems than SLL technical staff.

• The clustering coefficient of the network allows us to determine how many links there will be in the network on

average given a number of nodes. The clustering coefficient can be worked out for existing graphs, by counting the

number of unique connected triangles in the network. Another question this value allows us to answer is: ”Given

that A and B, and A and C are friends, what is the likelihood that B and C are friends?” The current testbed

network has a clustering coefficient of zero. There are no redundant links, and the star topology employed means

that only one node has “friends”. This is not a desirable state for the network. The Akshaya network mentioned

above also had a clustering coefficient of zero. The network shown in figure 3.2 was designed with redundant links

where possible, in hilly terrain similar to the Akshaya and SLL contexts. The (maximal) clustering coefficient in

this network is:

C =
6 × number of triangles in the network

number of paths of length 2
=

6 × 8
140

= 0.343

The equation is taken from Newman [New03]. We will use this value as our C value. While many real networks

have a value tending to zero or actually zero, rural mesh networks and an easier lie of the land may result in much

higher C values, so we feel this choice is justified.

• The PFNet project final report includes several detailed usage statistics describing how the network was used by

the community in a deep rural Pacific Ocean context [CLS+05]. In this report, 3.1%4 of the population living near

each DAN made use of it. 4 of the SLL DANs are situated in communities totalling 15000 persons [PPKG]. Using

the PFNet data to extrapolate the information from the SLL, we might expect about 117 users to make use of the
4Statistical outliers were removed to derive this figure.

49

3.3. REQUIREMENTS SPECIFICATION CHAPTER 3. REQUIREMENTS

Network Characteristic Estimated (Assumed) Value
Test Network Nodes (n) n ≈ 10
Max Number of Nodes (N) in Use Case N ≈ 10000
WAN Uptime (tw) tw ≈ 0.95
Internet Uptime (ti) ti ≈ 0.9
Clustering Coefficient (C) C ≈ 0.343
Average number of seats per DAN (s) s ≈ 10
Number of individual users per month, initially (ut) ut ≈ 117
Average number of user visits per month, initially (vu) vu = ut × 3 ≈ 351
Average number of uses per user visit, initially (uu) uu ≈ 1.5
Number of individual users per month, later (uθ) uθ ≈ 350
Average number of user visits per month, later (vµ) vµ = uθ × 8 ≈ 2800
Average number of uses per user visit, later (uµ) uµ ≈ 3
Average Number of Users per Node at peak time(pu)

{
if pu ! s, pu = Number of V isits p.mo.

30×6÷7×2×3 ≈ v
154.3

if pu " s, pu = s

Table 3.4: Networking assumptions relating to working within Network Islands

DAN per month. Further the PFNet data suggests that these will visit the DAN roughly 3 times a month and use

it for 1.5 different tasks (on average). These estimates are reflected in the table.

• We presume that usage statistics will increase once the eServices are released, and these assumed figures are also

reflected. We assume a roughly 200% increase in the number of users (350), two DAN visits per week (roughly

eight per month), and usage of the DAN for three different tasks.

• We also introduce a formula (pu) for the number of users at a DAN at peak time, based on a three step distribution:

level zero (zero users in twelve hrs), level one (50% of users in nine hours), level two (50% of users in three hours).

Average seats per lab is taken to be ten (we have roughly 73 seats in seven DANs). DANs are closed one day

per week and the number of days per month is taken to be thirty. Peak time users cannot exceed the maximum

number of work places at the DAN and respect the day off (i.e. peak times only occur 6 days of the week). Further

users are present for an average of an hour per visit, to keep things simple.

P2P networking assumptions

As presented in the section 2.2.2, ad-hoc networks these days are not naively structured, assuming a fully connected

graph. Instead nodes are clustered into neighbourhoods, which is a concept we believe can work well in our context. N

as assumed by us does not pose a major stumbling block to even naive P2P networks. Gnutella introduced a two-tier

topology only when the order of a million nodes was reached [SRS05]. Project JXTA presents a P2P protocol and

implementation, which in a naive operational mode can support N nodes [TAA+02]. We can thus safely assume, that

we do not need to concern ourselves with specifying a P2P topology and can leave this aspect to future work.

50

CHAPTER 3. REQUIREMENTS 3.3. REQUIREMENTS SPECIFICATION

3.3.5 Use Cases

In this section we introduce a few detailed Use Case descriptions, which focus on core issues in the system.

The use cases highlight why loose coupling is essential in the system. They demonstrate that security is a concern

in the middleware which must be addressed in the implementation. They also illustrate what sorts of associations the

following constructs have in the middleware: notifications, remote components (components located at other DANs),

the roles of human beings and software components as actors within the middleware context.

A point to note is that the user interfaces, which are used to allow the human roles access to the middleware system

layer, are not within the scope of this project. The user interfaces themselves can be seen as an application, as indicated

in figure 3.1.

The use cases are essential to the methodology we employ, as the component interfaces we will design in the next

section are modelled on this information .

Add DAN

Initiator: Administrator Goal: Add a node to extend the system

Main Success Scenario:

1. Administrator starts a fresh node.

2. Administrator waits until that the node has booted onto the network.

3. Administrator logs onto the network.

4. Administrator verifies the current node on the network.

Extensions:

• 2.a. Node network boot fails.

– Fail. In this case, the Administrator must troubleshoot the node and network connections.

• 3.a. Login fails

– Allow several retries, then fail if still not successful.

• 4.a. Verification fails

– Fail.

51

3.3. REQUIREMENTS SPECIFICATION CHAPTER 3. REQUIREMENTS

Register User

Initiator: Operator Goal: Add a new user’s information to the system

Main Success Scenario:

1. Operator logs onto the DAN.

2. Operator captures which applications the user wants to use.

3. Operator captures user information into the middleware.

4. The middleware notifies the neighbourhood of a new user in order to verify uniqueness. 5 It does not share private
information over and above e.g. ID number, in this step.

5. The middleware verifies user uniqueness.

6. The middleware notifies components that have registered for the “New User” event.

7. Components verify the captured user information.

8. The middleware returns a new user ID to the operator. The registration was successful.

Extensions:

• 1.a. Login fails

– Allow several retries, then fail if still not successful.

• 5.a. The user already exists on another DAN.

– The “Clone User“ use case is invoked instead, with the user ID found, and this use case terminates.

• 7.a. Component verification fails at one or more components.

– If access is denied to a specific application for whatever reason, then the scenario fails for this component,
but succeeds otherwise.

– If data verification fails, then the operator must correct the problem (e.g. telephone number mistyped) and
resubmit the information.

– Component specific errors may occur, they cannot block the registration of the user in general. Their success
or failure affects only the component itself not the entire scenario.

5

Since messaging is asynchronous, notification steps always succeeds.

52

CHAPTER 3. REQUIREMENTS 3.3. REQUIREMENTS SPECIFICATION

Clone User

This use case is interesting because it concerns other DANs.

Initiator: Operator Goal: To create a local account for a user with a remote account.

Main Success Scenario:

1. Operator logs onto the DAN.

2. Operator enters user ID to clone.

3. System creates a local account for the user (which is available even if the remote DAN is offline).

4. Operator updates user information pertinent to the clone account.

Extensions:

• 1.a. Login fails

– Allow several retries, then fail if still not successful.

• 2.a. The user ID cannot be verified in the neighbourhood.

– Fail. A new user account should be created.

• 2.b. The original user account information is inaccessible (DAN may be offline).

– Queue a clone request, and
– create a clone account without the original information (this can be marked as pending).

Start Component

The operator needs to know which services and applications are available on her DAN, and thus she is required to

explicitly authorise the running components. Some of these may share assets of the DAN.

Initiator: Component Goal: To authorise a component to perform actions in the DAN and in the neighbourhood

Main Success Scenario:

1. Operator logs onto the DAN.

53

3.3. REQUIREMENTS SPECIFICATION CHAPTER 3. REQUIREMENTS

2. Operator authorises the component to start locally (within the DAN).

3. Operator authorises the component to start remotely (it has access to the neighbourhood and vice-versa). The
neighbourhood is notified.

4. Operator sets which users or user groups may use the component.

Extensions:

• 1.a. Login fails

– Allow several retries, then fail if still not successful.

• 2.a. The component cannot start.

– Fail. In this case, the operator has to perform some trouble-shooting. However, compatibility issues should
be excluded, because the system should only allow the operator to start components whose versions have
been checked for compatibility.

• 4.a. Component dependencies are broken. The operator selects a too restrictive use setting and dependent
components cannot continue functioning.

– This is not an error, it is a feature of the system. The operator can restrict access to any non-core services
and influence all dependant components.

– The operator is notified of the dependancy impact of her action.

Use Service

All UsageEvents in the system are generated by an interaction between components and this use case comes into play.

Initiator: Component Goal: To successfully complete a Usage Event

Main Success Scenario:

1. Component looks up the required service, using the DiscoveryService of the middleware.

2. Component sends request to the service, accompanied by credentials for the specific request.

3. Middleware checks credentials.

4. Service processes request, resulting in a UsageEvent and returns a response to the request.

54

CHAPTER 3. REQUIREMENTS 3.3. REQUIREMENTS SPECIFICATION

Extensions:

• 1.a. The service being requested cannot be found.

– Fail. In this case, the Operator must be notified of the malfunction of an application. Troubleshooting steps
for this error should be followed.

• 2.a. Service is at a remote location which is offline.

– Is this a time-critical UsageEvent? If yes, fail.
– Otherwise, queue the message for later transmission when the service is available.

• 3.a. Credentials do not have the rights required by the UsageEvent in the services ACL.

– Fail.

• 4.a. An error occurs while processing the request.

– Time-critical error – the event occurs too late, e.g. submitting a grant proposal after the deadline.

– Communication error – the process involves communication with a 3rd party, e.g. Home Affairs, and the

communication could not take place:

∗ If the request can be queued, queue it and continue.

– System error – a technical error occurred.

– Return appropriate error response.

Check Credentials

This is an included use case, which is used by all processes that require a user to be logged in to the system.

Initiator: Component Goal: To check whether the component’s session token is in order.

Main Success Scenario:

1. A request specifying caller and callee components as well as a session token, is presented to the middleware.

2. The middleware verifies the session token is in order.

55

3.3. REQUIREMENTS SPECIFICATION CHAPTER 3. REQUIREMENTS

3. The middleware approves the token.

Extensions:

• 1.a. There is no session token.

– User credentials are supplied by the user.
– If the credentials are correct, a new session token is issued, and the process continues with step 4.
– If the credentials are incorrect, fail.

• 2.a. The session token is stale or incorrect.

– Continue with step 1.a.

Check User Rights

This is an included use case, which is used when attempting to access any component for the first time in a session.

Initiator: Component Goal: To check whether the component may gain access to a particular component.
Main Success Scenario:

1. A request specifying caller and callee components is presented to the middleware.

2. The middleware verifies that the ACL of the callee allows access.

3. The middleware allows access.

Extensions:

• 1.a. The callee is remote.

– The security check is passed to the remote middleware instance.
– If the remote service allows access, proceed to step 3.
– If not, fail.

• 2.a. The ACL does not allow access.

– Log unauthorised attempt to use a service.
– Fail.

56

CHAPTER 3. REQUIREMENTS 3.3. REQUIREMENTS SPECIFICATION

3.3.6 Use Case Synopsis

The UML Components method stresses the fact that as much precision is required in the initial business modelling as

is in the later software engineering. As programmers, we often approach a problem with a set of programming patterns

and pre-existing knowledge which help shape how we view the problem at hand. For instance, Java programmers may

tend to naturally stay away from the concept of multiple inheritance in business objects, without a deeper realisation

of the motivation for the design decisions. C++ programmers might not be so shy. As Software Architects, we are

required to distance ourselves from the implementation and to model the business processes and operations as they are

required by the end users and business owners.

For this reason, figure 3.3 includes end-user roles in the use case diagram, even though we will not be creating

any user interfaces in this project. Considerations of how user roles will interact with the system are a problem of

implementation and can be ignored at this point. But it is essential to understand what potential actors are going to

be doing with the system, in order to model the operations and interfaces required for our middleware.

Figure 3.3 is a very high level diagram which shows how the concepts introduced in the mindmap in figure 3.1 interact.

This figure is also meant to demonstrate how simple the operations we are trying to model in the middleware are from a

business perspective and to which user roles the actions are available (we list the most basic user type as “(Community)

Member”, because basic members will usually be community members, however, they may also be teachers or others,

who are not community members). It is quite clear that the middleware performs very few actions, which is correct in

our opinion6. For this reason, two of the use cases presented in section 3.3.5 involve software components as initiators.

Software components represent the actor roles within the system and can be classified into two major types. Their usage

interactions are demonstrated in figure 3.4. This is a technical business process design which implies that we will be

using the proxy design pattern to protect assets. Services can thus be understood as proxies.

3.3.7 Shared Assets and Access Rights

Assets in the system must be protected. Often these are resources that are consumed through use (in our parlance, they

are consumed through UsageEvents), such as Internet Traffic limits and hard disk space. We try to make provision here

for all the core assets of a Digital Access Node. In addition to access rights, accountability also needs to be maintained.

Accountability is essential to maintain sustainability of the telecentre, as comprehensible charging for usage needs to be

implemented.

Contrast the user models in specific applications: administrators or operators of the eGovernment service, or DHA

official have different rights in that system. These are protected by the application and for the purposes of the middleware
6Very basic components that are potential single points of failure should be as simply and clearly designed as possible to prevent errors

and bottlenecks in operation. This is especially true when a number of different programmers from different backgrounds are intended to
use the system. These ideas echo Occam’s Razor – a logical principle attributed to William of Ockham – that can be used to guide abstract
design processes, in its formulation as a law of economy. Typically it is used when formulating scientific theories.

57

3.3. REQUIREMENTS SPECIFICATION CHAPTER 3. REQUIREMENTS

Figure 3.3: High Level Use Case depicting Roles of Actors useful to the Business Process Modelling

58

CHAPTER 3. REQUIREMENTS 3.4. TECHNOLOGY DECISION-MAKING

Figure 3.4: Internal Use-Case showing Usage Scenarios for the different Component Types: Applications, Services and
Middleware.

these are just ordinary members. However, the application must be able to attach its own data models to the entities

provided by the user manager. Indeed, the eGovernment service must be able to access information stored by the

eHealth service, for instance, in order to assess which grant applications can be made. The access to the eHealth

services information is made with the credentials of the user as issued by the middleware. Abuse by the application is

limited, because the credentials’ validity will lapse with time.

Thus the identity of the user of an application is paramount to which operations can be performed by the application

and the proxy services acting on its behalf. The user credentials are passed down the chain of operations and and are

used to either allow or disallow each operation in the chain.

3.4 Technology Decision-Making

3.4.1 Motivation for Open Source

We see Open Source philosophy as a good fit to the requirements context of this project, aside from the fact that it is

an essential requirement to the project, owing to this project being part of the Siyakhula Living Lab.

The functional requirement that the middleware “allows new, useful eServices” seems to point to open source systems.

They can potentially spur adoption among “hobbyists” and entrepreneurs who will provide necessary input about required

eServices as well as usage information. The open source community may feel inclined to assist with the development

of the project for altruistic reasons. Entrepreneurs will know that they can adapt the software to their own needs and

59

3.4. TECHNOLOGY DECISION-MAKING CHAPTER 3. REQUIREMENTS

students will be able to study the code and suggest improvements. Users will be empowered and may be activated to

develop their own alternatives in the medium-term.

The functional requirement that the middleware present “Open Interfaces” to developers also points at open source

systems. While it is perfectly normal for closed source systems to present open interfaces, with time the documentation

effort grows as documenters struggle to keep up with code changes that may affect interfaces. This affects sustainability

of the system. Open source systems are not immune to this problem, but they do offer developers some assistance in

keeping interfaces transparent [author’s experience].

Finally, our results show that FLOSS is not only free but that the technical quality of several relevant FLOSS projects

is of a very high standard (see section 5.4).

3.4.2 Motivation for Java

Most of the applications developed within the Siyakhula Living Lab are written in PHP (see table 3.2) and use the

LAMP stack. PHP is very well suited to rapid application development (RAD) to test proofs-of-concept and to create

efficient web applications. Especially for smaller applications and when using optimising caching systems such as those

provided for free by the Zend system, PHP through its close binding to the Apache web server performs very well.

This is why many developers of smaller projects prefer to use PHP [author’s experience]. A middleware platform on

the other hand has other requirements. While efficiency and rapid application development are par for the course in a

Masters project, a middleware platform is potentially a single point of failure for the entire system [Wik09a] and as such

should be developed using the same requirements as we would have, say, for an operating system as regards stability and

security. We examined the requirements lists for further requirements that could influence these considerations. The

following non-functional requirements were found to be relevant in addition to the two already mentioned (robustness and

security): “follows best practices” and “cross platform support”. While there are several general purpose programming

languages around, including Java, C#, PHP and others such as C++, python, ruby, we refrained from performing

a contentious and time-consuming comparison of all these, and focused on finding out whether Java fulfills the main

technology requirements, i.e. whether it is good enough7.

Robustness – it is easy to write poor applications that can fail in most programming languages, and thus the question

of system stability is often more dependant on the developer and system designers than on the programming language.

Java’s concept of compiling into byte-code and then executing controlled byte code is a model that has since also been

adopted by the Microsoft ASP framework’s C# language. The method allows implementers of the Java Virtual Machines

7While the phrase “good enough” has become associated with agile software development, the concept has also gained ground in the study
of complex ecosystem and evolutionary principles in Biology. The combined studies of genetics and symbiosis describe complex networks
of heterogeneous organisms that co-evolve to remain alive and flourish in a competitive environment. Ultimately bio-diversity is a positive
aspect of any ecosystem and affords it a buffer against environmental interference. As time goes by, the system co-evolves to solve new
problems for mutual benefit [PA00]. By a similar consideration, the middleware system should allow various competing perspectives, that
will allow an evolving network of functionality. The choice of programming language from this perspective is irrelevant.

60

CHAPTER 3. REQUIREMENTS 3.4. TECHNOLOGY DECISION-MAKING

(JVMs) to employ elaborate garbage collection techniques to recycle system resources. It is mainly this aspect of Java,

which lends performance boosts to complex and dynamic Java systems such as examined in [TAW03]. Java also has a

longer track record as far as test suites are concerned. JUnit is currently in its 4th version and can be integrated into

development projects with minimal code impact using Java aspects. JUnit has been in use since 2002 at the latest and

has since been ported to several different languages and programming environments.

Security – A security model is built into the Java language, so that all aspects of security can be addressed from

loading of code from archives (so called JAR files) to selective execution models. Further, Java security is enhanced by

its security frameworks, which allow e.g. single sign-on in enterprise systems.

Best practices – Java has been an enterprise server open source technology of choice for some time [GvLPF01]. Many

mission critical backend systems at banking institutions in South Africa and Internet portal backends in Germany are

based on the technology [author’s experience]. As mentioned above, several modern programming languages reuse ideas

originally developed in the Java world. The Java Community Process (JCP) is a managed community process which has

produced several of the useful extensions to Java. It is an integral part of Java’s success allowing Java to grow through

a series of vetted and peer-reviewed extension to the language and framework.

Cross-platform support – Java has a proven cross-platform record, which means that middleware installations will be

able to run on most host operating systems, including mobile systems (perhaps with some adaptation to the middleware)

through the Java 2 Mobile Edition (J2ME). This is important in the heterogeneous DAN environment, in which a wide

variety of donated and machines purchased by third parties, co-exist side by side.

3.4.3 Motivation for Web Services and especially SOAP-based Web Services

We present an argument for (SOAP based) Web Services in bullet form here. The argument for a web service based

technology is quite simple to make, while the extension of the argument to SOAP follows from the arguments for

openness and best practices.

• SOAP is a stable standard since 1999.

• It is widely used, e.g. by Amazon, Google, banking systems in South Africa, etc.

• It is implemented and supported in a wide variety of technologies.

• It is thoroughly typed and well-defined, thus eliminating ambiguities in communication.

Counter-arguments are that it is very slightly bulkier than REST (a small constant order larger - not an order of

magnitude), and also requires more heavy-weight marshalling (e.g., XML vs. Javascript objects (JSON)) of objects.

The counter-arguments are generally a result of the last advantage listed above.

61

3.4. TECHNOLOGY DECISION-MAKING CHAPTER 3. REQUIREMENTS

3.4.4 Motivation for P2P (/ Grid) vs. Central Solutions

In section 2.2.2, we presented the key benefits of ad hoc networking as represented by P2P and Grid solutions and some

of the literature that supports these positions. Here we provide further motivation related to the specific requirements

of the system, as analysed in this chapter.

Ad hoc networking contrasts against client-server technology, which is also a very commonly used form of distribution

of information. Systems which handle mission critical data are often designed as client-server systems as one can reduce

security complexity and data duplication by having all critical access (e.g. to a bank account) occur via a single

gatekeeper, who is responsible for and can guarantee data integrity. We have to weigh the data integrity guarantees

made easier by the client-server architecture against the single point of failure introduced by a single gatekeeper to any

services. According to our assumptions, each node will on average be offline from the rest of the network for 18.25 days

per year (see 3.4, we calculate, (1 − tw) × 365 = 18.25). This means that any node, which does not host the central

service, may lose access to the central service for 36.5 days in the year. Several day long down times can cause users to

lose faith in the service and not wish to use it any longer [author’s experience].

Using ad hoc networking, services can be replicated in the network much more easily. Any DAN, which later installs

an Internet connection, can offer this resource to others in the network to share costs. The network becomes more easily

extensible – a key requirement of our system.

Another important argument for the introduction of P2P or Grid techniques in this work is the end user view of

the DAN. Once an end user (e.g. community member) has grasped how a service is to be utilised, she does not need

to be concerned with how or where she accesses the service. The DAN may be any gateway to electronic services, such

as a cell-phone, telecentre operator (the human interface), or a PC in a computer lab. While client/server applications

require that the server be accessible all the time, a P2P application need not be. This is particularly relevant for push

applications where users create content (or data) of some sort. For example, a community crafter can perhaps offer new

artifacts for sale using her cell phone, while in the field and with no network connection. She can perform the steps she

has learned from anywhere in the network8 (using for instance a USB drive at a connected school laboratory).

3.4.5 Conflicting Requirements

The technology underpinning the middleware platform must take cognisance of conflicting requirements. As mentioned

in table 3.1, requirements come from several contexts, which often makes prioritisation and detection (at design time) of

the conflicts difficult. We identified the following main conflicting requirement domains, which need to be balanced by the

8This introduces the problem of phishing. Clearly, users who do not understand what they are doing and instead blindly follow a recipe
do pose a security threat to the system, as they can be led to type credentials into the wrong interfaces, thus handing over their credentials
to unauthorised third parties. A number of technical means can be used to reduce this threat. For instance, a cell phone can be configured
to represent the user, thus allowing the authorisation step to be skipped when accessing the system from the cell phone. The user might then
restrict themselves to only accessing the system via their cell-phone, which would increase safety.

62

CHAPTER 3. REQUIREMENTS 3.4. TECHNOLOGY DECISION-MAKING

solution and technology proposed: System Flexibility vs. Efficiency (during runtime) and Ease-of-use vs. Complexity

(at development time). Essentially, both of these domains are attributable to the requirement of “Loose Coupling”.

Loose coupling can speed software development in almost all cases, however it slows runtime execution because of the

levels of indirection required to implement it. Some non-functional requirements affecting the design are analysed in the

following chapter. Taking a quick peek ahead (see section 4.5.2), we find that run-time efficiency is not a concern. To

keep customers happy and save power though, latency must be kept to a minimum.

Openness vs Security is another perceived conflict of priorities. However, we do not believe that it really is a conflict.

Linux is one of the most open operating systems, yet security problems concerning the Linux operating system hardly

ever arise. Open interfaces mean that a water-tight security scheme needs to be in place to protect the system.

Rich Content and Low Bandwidth Requirements are potentially conflicting requirements. This conflict is handled

by allowing rich content on the high-speed WAN, but restricting it across the Internet connection. As Internet access

improves, this restriction will gradually be able to fall away.

63

3.4. TECHNOLOGY DECISION-MAKING CHAPTER 3. REQUIREMENTS

64

Chapter 4

System Design and Architecture

Lego blocks are ideal components. The blocks can easily be used together and an elementary block

can be used in many kinds of toys. Some pieces may be more specific, which make it possible to

implement some parts of a toy with a more detailed look.

Lego Pamphlet 2009

4.1 A Fitting Design

In this section we try to create a fitting design. An intuitively fitting design, is one which:

• takes care of the requirements specified above,

• does not ignore conflicting requirements,

• and is implementable with the resources available.

Less obviously, the requirements demand that the design

• reduces dependencies between components (to allow loose coupling and component clarity) [CD01],

• and keeps component interfaces as simple and clear as possible (according to SOA principles – see section 2.2.3),

65

4.1. A FITTING DESIGN CHAPTER 4. DESIGN

• in order to be backward compatible (this final point is discussed in the next section).

The middleware software design we propose here is suited to rapid application development and agile processes. We

set up an infrastructure for easy pluggability of new services in the middleware, should new resources become available.

These stipulate that the design incorporate flexibility into the system. An important aspect of our design is to balance

the flexibility against the overall performance of the system. As many others have pointed out before (see e.g. [OW07])

system complexity comes at a cost, and is further inversely related to the performance of a system. Performance is also

important, as systems based on efficient software require less powerful hardware, which in turn (in general, although

this is not always true at low N) use less resources such as power. Power and other expenses can directly influence the

sustainability of the project and must be saved wherever possible.

In this chapter, we initially look at a high-level view of the design as introduced in initial stages of the project to

set the scene. The following sections derive interfaces and components from the requirements chapter (3) according to

the described methodology. After that we compose the components into a system architecture. An example section

presents a component decomposition for the eCommerce Application, demonstrating how other application builders can

can use the middleware framework to shape their applications according to the needs of a rural DAN. Finally a flexible

and extensible information model is proposed.

4.1.1 Top-Down View

An initial high-level design of the system (figure 4.1), which had informed initial implementation experiments is presented

in this section as the basis for a high-level discussion about some of the core design considerations behind the middleware

platform. The initial design underwent several stages of refinement1, although at a high level, the concept has remained

unchanged. A component-wise decomposition of the concept fits with the analysis in Chapter 3, thus changes have

mainly taken the form of extensions and elaborations of the ideas.

Figure 4.1 (slightly amended from [WT09]2) shows how the middleware forms an intermediary layer between Ap-

plications and Services, and allows interactions with other middleware installations. The figure also shows the physical

communications network, illustrating that DAN’s are expected to relay messages if no direct link exists between two

communicating nodes. Since the P2P communications layer allows communications between all nodes, applications and

services can assume that they are operating in a fully-connected neighbourhood of nodes. The middleware thus allows

access to services at other DAN’s transparently.

Initial implementation experiments show that the high-level design can be implemented in a Web-Services based

framework. The experiments inform subsequent design steps such as the determination of the initial boundary of the
1The simultaneous use of top-down and bottom-up (see Methodology, section 3.1) approaches ensured that an overall view was maintained,

while performing low-level implementational experiments.
2The figure published in [WT09] pre-dates naming standardisation. Originally the concept of a DAN was named rural telecentre (RT), as

can be seen in the publication.

66

CHAPTER 4. DESIGN 4.1. A FITTING DESIGN

Figure 4.1: Initial design of the system architecture, showing components and component interactions.

middleware. Since the applications being glued together by the middleware have often been designed as stand-alone

applications, their construction has duplicated functionality that could be supplied by the middleware. We did not design

the middleware by factoring any common functionality out of existing applications. That method of design would have

bloated the middleware introducing unwanted functions. It may also have omitted required functions. Instead, the most

basic use cases required to make the platform useful were selected and these formed the basis of our design, as it is

presented in the rest of this chapter. We illustrate this argument in the following section 4.1.2.

4.1.2 Supporting Billing

Here we present the reasoning that led to the exclusion of the billing function from the middleware core service. A

simplified UML Use Case diagram (figure 4.2) explains how the billing application can be used. The billing system has

several unique features which make it a reasonable candidate for inclusion in the middleware, despite our decision to

exclude it.

• The billing system can potentially be linked to every application and service in the middleware, as one can

potentially charge for any usage of any service or application in the system, including such low-level items as the

amount of time that the user is logged in, etc.

• The billing system must potentially be tightly coupled with some services, for instance to allow prepaid usage

of such a service. Prepaid usage of a service by a user often requires that the service be interrupted according

to a specific event occurring, such as a time limit or resource usage limit being reached. A common example is

67

4.1. A FITTING DESIGN CHAPTER 4. DESIGN

Figure 4.2: UML Use Case Diagram showing main use case of the billing system (using Internet) as developed in [Tar07],
and underlying use cases that are provided by the middleware (a.) and core use cases (b.) of the application.

prepaid Internet usage by traffic. As soon as a certain number of Megabytes have been up- or downloaded, the

user connection must be severed.

The use case can further be complicated if the user were to increase the limit on the fly by increasing the prepaid

amount. The component providing the service would have to be able to liaise with the billing system in near real-

time to provide this useful service. There are several designs that solve this extension of the use case, including:

restricting functionality by only allowing prepaid services linked to variables such as time, which do not require

a dependency between components; or passing control over certain prepaid billing scenarios to the real-time

component, which updates the billing system after-the-fact (in a batched modus). Both of these possible solutions

to the prepaid problem are compatible with the way we have designed the system and either can be employed.

4.1.3 More Top-Down Considerations

Considerations such as those discussed above, led to the exact division of services that the middleware platform had to

provide and the description of the components that would provide the service. Additional functionality can be added

as plug-ins. This step was important, as it determined how future applications and services will interact with existing

services. It also added order to the already created applications and services and provided a framework for understanding

them. Perhaps most importantly, the design decision regarding which operations are supported by middleware and which

not places restrictions on new application development as these are expected to fulfill business assumptions made of

68

CHAPTER 4. DESIGN 4.2. SYSTEM DESIGN

«interface type»
IUseDAN

getCredentials(u:Uid):Credentials
getSessionToken(u:Uid,c:Credentials):Token
browseServices():List
lookupService(s:String):Uid
getServiceDefinition(id:Uid):Spec
useService(id:Uid,p:Params,t:Token):Data
registerObserver(e:Event,cl:Callback,t:Token):int
notify(e:Event,t:Token):void

«interface type»
IAdministerDAN

registerDANInNeighbourhood(t:Token):int
deregisterDANFromNeighbourhood(t:Token):int
addUser(d:UserData,t:Token):Uid
cloneUser(d:UserData,t:Token):int
removeUser(u:Uid,t:Token):int
existsUserInCache(s:String,t:Token):Uid
existsUser(s:String,cl:Callback,seconds:int,t:Token):Requestid
addService(sd:ServiceData,t:Token):Uid
removeService(s:Uid,t:Token):int
startService(s:Uid,t:Token):int
setServiceACL(s:Uid,a:Acl,t:Token):int
addApplication(ad:ApplicationData,t:Token):Uid
removeApplication(a:Uid,t:Token):int
startApplication(a:Uid,t:Token):int
getUsageHistory(u:Uid,t:Token):int

Figure 4.3: UML Class Diagram, depicting business interfaces that may be relevant to user of a DAN, and the operations
that they allow.

them. For instance, the idea that no component should duplicate middleware services. In order for this to be effective,

the middleware must be simple to understand (i.e. know when you are not duplicating a service) and use – developers

should be encouraged to make use of the facilities, because they offer a real gain.

Also from a high-level perspective, a minimal set of functionality in the middleware would allow future extensions to

the middleware, without compromising backward compatibility. Interfaces could be honoured in succeeding generations

of the middleware, without breaking existing installations in the field.

4.2 System Design

4.2.1 Business Operations and Rules

These are the business interfaces group operations that were presented in the Use Cases and they express what any

person or company can “do” with a DAN. The target audience of the business interfaces is a product manager or business

owner, whose business plan is based on the functionality that will be delivered by the software. The business interfaces

are what allow the business plan to integrate with other (real or planned) aspects of the business[CD01]. In our instance,

there are several possible business partners that may need to interface to the system. As discussed in Chapter 2, these

can include eGovernment, eCommerce, audio and video communication systems that may need to interface to our system

on a business level. As expressed below, business operations involve principally usage events and administrative events.

Business users can use the system or offer use of the system to third parties through the IUseDAN interface, and they

can administer their DAN via the IAdministerDAN interface. The operations that can be carried out on the system can

be read from the UML diagram in figure 4.3.

69

4.2. SYSTEM DESIGN CHAPTER 4. DESIGN

Next we describe the clusters of operations that can be performed and list the pre and post-conditions for the most

important operation(s) in each group. The pre- and post-conditions make explicit the rules that concern the parameters

of the component interfaces as well as specifying the intended results of the business operations. Business rules tell us

more about the assumptions behind the components we are creating. They provide detail for the component design that

needs to be implemented.

Application – { Start | Stop | Add | Remove } This set of operations deals with the publication (release)

of functionality in application3 components. The add and remove operations make a new component available or

unavailable to the platform4. The administrator or operator can start and stop the application via a user interface.

Start:

Pre: The application to be started is a valid installed application (i.e. it can be located by name, its

version numbering indicates compatibility with the middleware version).

Post: The number of running applications has increased by one. The most recently started application

is the one that was started. The application is able to trigger usage events on public services.

The application and its description is locatable in the middleware’s directory. The location can

be bookmarked and may be accessed directly obviating the middleware’s directory.

Stop:

Pre: The application to be stopped is a valid running application (i.e. the post conditions mentioned

above under start apply).

Post: The number of running applications has decreased by one. The name of the stopped application

is the one missing from the list of running applications. The application is no longer accessible via

the middleware’s directory. The application is also unavailable to bookmarks that directly lead to

the launching of the application, without consulting the middleware’s directory. Services should

ignore usage events originating from the application. All credentials held by the application must

be invalidated.

Service – { Start | Stop | Add | Remove } This set of operations deals with the publication (release) of functionality

in service components. These services can be intimately bound to the functioning of the middleware, extending its set of
3Definitions of the terms “service” and “application” are given in section 1.3, it is worth repeating at this point.
4As mentioned in the final sub-section “System Interfaces and Types”, the business interfaces mention operations that are relevant from

a business perspective. It may for instance later become important to be able to add an explicit add operation, as the DAN operator
may be charged to expand the functionality at the DAN. On an implementation level, we notice that the operation occurs “automatically”.
Components can simply be included in the middleware container and they will appear at startup.

70

CHAPTER 4. DESIGN 4.2. SYSTEM DESIGN

services, or they can be specific to an application, allowing the application to provide services to other applications in a

controlled manner. As with the application components above, the add and remove operations make a new component

available or unavailable to the platform. Unlike the above, a service component must be added together with a description

of its interface (Service Data). The administrator or operator can start and stop the service via a user interface. The

main difference between the service start and stop operations relate to the difference in use case scenarios between the

two types of component (see figure 3.4).

Start:

Pre: The service to be started is a valid installed service (i.e. it can be located by name, its version

numbering indicates compatibility with the middleware version). A boolean value indicates

whether the service is neighbourhood public.

Post: The number of running services has increased by one. The most recently started service is the

one that was started. The service is able to trigger usage events on other services. The service

and its description is locatable in the middleware’s directory. The location of the service can

be bookmarked and may be accessed directly by any application in the neighbourhood, thus

obviating the middleware’s directory. 5 Since a service component can offer several – at least one

– service operations (e.g. a billing service can offer a whole set of billing-related service operations

like finding invoices, determine account limits, etc.), a number of new service operations may be

advertised in the middleware’s directory. The latest added service operations must refer to the

new service location. If marked as “neighbourhood public” the location of the service is shared

with other DANs in the neighbourhood, if it is not marked as “neighbourhood public”, then the

service may only be used by applications within the service’s DAN. By sharing we mean that the

service locations and all information about service operations are being propagated6 within the

DAN’s neighbourhood and may be accessed by any application with valid credentials within the

middleware constructed network.

Stop:

Pre: The service to be stopped is a valid running service (i.e. the post conditions mentioned above

under start apply).
5The (in-)transience of locations is an important consideration for this operation. If a new location is assigned to a service every time

it starts, then a restart of the middleware system at a DAN will invalidate all old bookmarks pointing at that DAN’s services. This is not
desirable if the system must preserve state between middleware restarts. On the other hand, since services that are public may advertise
direct links independently of the middleware, the argumentation is only relevant to proxied services. The resource location semantics are
defined in section 4.4.2.

6It is important to note that propagation of information in the network takes time, while post conditions apply immediately after a process
has completed. Thus, some post conditions may have effects that do not show immediately.

71

4.2. SYSTEM DESIGN CHAPTER 4. DESIGN

Post: The number of running services has decreased by one. The name of the stopped service is the one

missing from the list of running services. The service is no longer accessible via the middleware’s

directory. The service’s operations have been removed from the middleware’s directory, i.e.

service operation advertisements in the directory do not refer to the resource location of the

service that has been stopped. The service is also unavailable to bookmarks that directly lead

to the launching of the service, without consulting the middleware’s directory. Other services

should ignore usage events originating from the service. All credentials held by the service must

be invalidated. The neighbourhood may be notified.

DAN – { Register In | Deregister From } Neighbourhood This set of operations deals with the initialisation

of a new DAN within the network of all DANs. This operation may be initiated via a GUI by an administrator.

Register:

Pre: A DAN process has been created. It has a local name, and a globally unique ID.

Post: The DAN’s core services and other services that have been started (and not subsequently stopped)

are available via the middleware’s directory service. The DAN has a neighbourhood of which

it is part – the neighbourhood may consist of more than one DAN. The middleware’s directory

service also shows public services available to the whole neighbourhood.

Deregister:

Pre: The DAN is running (the post conditions described in the “Register” operation apply).

Post: The DAN no longer has a neighbourhood and cannot be contacted by other DAN’s. Middleware

services, including its directory, are not reachable.

User – { Add | Remove | Clone } This set of operations deals with users as far as they concern a single DAN. Since

we assume that the network is not 100% reliable, and that each DAN must manage their own information carefully, user

management operations are very important. The difference between adding and cloning a user is explained in the use

case description (section 3.3.5).

Add:

Pre: A valid user trait is supplied, with which the user can be identified on a network level (i.e. the

trait is independent of the DAN).

72

CHAPTER 4. DESIGN 4.2. SYSTEM DESIGN

Post: The number of listed users has increased by 1. The most recently added user record in the list

has a trait corresponding to the one supplied. A middleware unique ID (UID) and credential

set was generated for the user and stored with her record. The user record created has an

attribute showing that this user is a local user7. The middleware notified all relevant services

that a new user has been created via an event notification. This event is being propagated to

the neighbourhood of this DAN.

Remove:

Pre: A valid middleware unique ID (UID) is supplied. The post conditions for the above operation

apply.

Post: The user record was marked as deleted. The user credentials have been invalidated. The mid-

dleware dispatched an event notification to all relevant services that the user has been removed.

This event is being propagated to the neighbourhood of this DAN.

Clone:

Pre: A valid middleware unique ID (UID) is supplied.

Post: The number of listed users has increased by 1. The most recently added user record in the list

has a trait corresponding to the one supplied. A credential set was generated for the user and

stored with her record. The user record created has an attribute showing that this user is a

remote user (local users are created with the “add user” operation).

User – Exists (in Neighbourhood | in Cache) This operation deals with users in a network context. A version of

the operation (in Cache) is supplied that simply searches cached information and returns immediately. An asynchronous

version exists as well (in Neighbourhood), to provide more a thorough search given network latencies. It should be noted

that finding resources in a P2P network is not a trivial exercise. Processes that use the search function must be designed

to cope with incomplete result sets and latencies. It is possible that a user cannot be found even though she exists

within the network, due to DAN down time.

Exists:

Pre: A valid user trait is supplied, with which the user can be identified on a network level (i.e.

the trait is independent of the DAN). A valid callback location is supplied and the callback

implements the ICallback Interface. A number of seconds which the calling process is willing to
7All other records for this user in the network are considered to be copies, and this record is an original

73

4.2. SYSTEM DESIGN CHAPTER 4. DESIGN

wait is supplied (this should be greater than zero otherwise the cache searching version should

be used).

Post: A request ID was returned 8. After the number of seconds specified, the callback function will

be called with the request ID and a UID. If the UID is zero then the specified user could not be

found in the time given9.

Service Usage – { Browse | Lookup | Get Definition | Use } These operations are provided by the middleware

to access services in the network. The Browse and Lookup operations are fairly straightforward – an application can

browse the service directory and use this information to present a list of services to a user or it can look up the location

of a service given a name. It is transparent to the application whether the service is local or not. An application can

ask for more details about a service with the “Get Definition (Define)” operation. Some services can choose to allow

usage only via the middleware (indirect or proxied usage), whereas others can be used via the middleware or directly

via their location information. These two modes of operation are depicted in figure 4.4. The direct call will not reflect

within the middleware and service implementers are obliged to notify the middleware of the usage event10. The indirect

use operation is further explained below.

Define:

Pre: A valid unique ID that refers to a service is supplied, along with authorisation.

Post: An interface definition for this service was returned, along with middleware related data, such as

whether the service is local or not and access control information for the service.

Use:

Pre: A valid unique ID that refers to a service is supplied, along with the data required by the service

for execution (parameters), and authorisation. 11

Post: The list of usage events has been increased by at least one. At least one of the usage events has

a source matching the authorisation information supplied in the usage request and a sink that is

this service. All remaining usage events generated can be chained such that their source and sink

parameters match each other12. An integer was returned showing the result of the usage event.
8In the case the case of the synchronous version of this operation, the return value is either a valid UID or zero is returned. If the value

is zero then the user does not exist in the network. Otherwise, the user exists in the network and has the returned UID.
9It is important to note that duplicate users can thus exist in the system. This is not something that we can avoid in a network with our

assumptions. The damage can be minimised by occasionally running administrative tasks that look for duplication and resolve it. Further
the design of the system is such that it can continue working with duplication and is aware that it exists.

10An implementation level solution may provide built in detection of such events through interception or by some other means.
11The middleware evaluates the information supplied and passes the call on to the service if the information was valid, immediately logging

a usage event.
12If we describe usage events by their source and sink parameters, as pairs (A, B), and if (A, B) is the first usage event in our chain, then

a chain of usage events produced could be represented as the following set, e.g. {(A, B); (B, C); (C, D)}.

74

CHAPTER 4. DESIGN 4.2. SYSTEM DESIGN

(a) Direct Usage (Web Services Architectural Pattern)

(b) Indirect Usage (Proxy Architectural Pattern)

Figure 4.4: Direct vs. Indirect modes of service usage.

4.2.2 Business Types

Business types describe what kinds of objects we will be dealing with in the system. The UML Components methodology

distinguishes between the business interfaces and objects (called types) and implementation objects or system objects.

They represent an intermediate step, which show at a business level how the concepts are arranged in the system.

Business types are separated into core types and undifferentiated or normal types. The core types are the major

concepts on which the other concepts depend. 13

As we see in figure 4.5, the business type model is derived from the concept model (figure 3.1). Generally more

abstract concepts, i.e. ones appearing higher in the concept tree, tend to be the core types and their helpers are the

sub-concepts. The type model is a predecessor of the information model discussed later.

As may be expected, the core types in our system are Users, Services, Applications and the DAN (which is represented

by the middleware). Figure 4.5 also shows basic data associated with each of the business types. This data is part of

the Information Model discussed in section 4.4.2.

13The conceptual split between core and other types is common in programming. It is analogous to the distinction between main and
auxiliary tables in database theory.

75

4.2. SYSTEM DESIGN CHAPTER 4. DESIGN

«core»
DAN

«core»
Application

«core»
Service

«core»
User

«type»
UsageEvent

«type»
Credentials

«type»
UserType

«type»
AccessControlLists

1

*

*

1

1 *

1

*

1

*

1

1

1

1

1

1

**

Figure 4.5: UML Class Diagram of business types used by the interfaces. The business types translate directly to an
interface information model, which is what the middleware data layer must represent and store.

4.2.3 System Interfaces and Types

According to the UML Components methodology, system interfaces specify detailed interface rules, which developers

must adhere to when programming the interface’s implementation. The system interfaces are therefore a subset of the

business rules, since business rules apply to a broad range of business cases, while the system interfaces represent the

functionality in a single version of the software. Further, the system interfaces are expected to reorganise the business

interfaces. However, maintaining two sets of rules can be cumbersome and there are cases where the business rules and

system rules and interfaces can correspond [CD01]. This project assumes that the business rules and system interfaces

do correspond for the following reasons: the team working on the business and programming aspects is very small; the

scope of the project is clearly defined; and the close cooperation of business and development processes fits well to the

agile method [author’s experience]. In this design section, we refer to the business interfaces qua system interfaces, but

some refactoring is performed to cluster operations in a manner which suits creation of components better.

At the beginning of section 4.2.1, we presented business interfaces that the middleware will present to users of the

DAN. Developers (including third party integrators) are presented with a somewhat different set of interfaces. These

provide access to core middleware functionality and business types. Functionality required for end-users is composed

from a subset of functionality required by developers. Additionally, there are some interfaces that reflect requirements

for asynchronous functionality. These are based on the generic ICallback interface, e.g. ISearchCallback.

The ICallback interface must be implemented by components that wish to perform asynchronous searches or other

asynchronous usage events. The data which is passed into the notify operation on the interface depends on which

asynchronous operation was called. A request ID must be provided by the caller, so that the component can determine

to which asynchronous operation the response should be marshalled. Notifications with no request ID should be dropped.

The manager and services interfaces in figure 4.6 directly give rise to components available in the system. An

explanation of the most important system operations is given in the section on business operations (section 4.2.1), since

76

CHAPTER 4. DESIGN 4.2. SYSTEM DESIGN

«interface type»
IAuthenticationService

getCredentials(u:Uid):Credentials
getSessionToken(u:Uid,c:Credentials):Token
verifySessionToken(t:Token):boolean
deleteSessionToken(t:Token):boolean
renewSessionToken(t:Token)

«interface type»
IDiscoveryService

browseServices():List
lookupService(s:String):Uid
getServiceDefinition(id:Uid):Spec

«interface type»
IDataAccessService

getApplicationRepositories(t:Token):List
getServiceRepositories(t:Token):List
openConnection(tbl:Table,t:Token):Connection
addData(x:Data,c:Connection,t:Token):Data
deleteData(x:Data,c:Connection,t:Token):Data
getData(s:Search,c:Connection,t:Token):Data

«interface type»
IDANManager

addService(sd:ServiceData,t:Token):Uid
removeService(s:Uid,t:Token):int
startService(s:Uid,t:Token):int
useService(s:Uid,p:Params,t:Token):Data
setServiceACL(s:Uid,a:Acl,t:Token):int
addApplication(ad:ApplicationData,t:Token):Uid
removeApplication(a:Uid,t:Token):int
startApplication(a:Uid,t:Token):int
getUsageHistory(u:Uid,t:Token):int
registerObserver(e:Event,cl:Callback,t:Token):Requestid
notify(e:Event,t:Token):void

«interface type»
IPeerManager

registerDANInNeighbourhood(t:Token):int
deregisterDANFromNeighbourhood(t:Token):int
existsUserInCache(s:String,t:Token):Uid
existsUser(s:String,cl:Callback,seconds:int,t:Token):Requestid
createUserAdvertisement(u:Uid,t:Token):boolean
removeUserAdvertisement(u:Uid,t:Token):boolean
createServiceAdvertisement(u:Uid,t:Token):boolean
removeServiceAdvertisement(u:Uid,t:Token):boolean
getNodesInNeighbourhood():int
purgeRemoteAdvertisements(t:Token):int
exploreNeighbourhoodUsers(t:Token):Requestid
exploreNeighbourhoodServices(t:Token):Requestid

«interface type»
IUserManager

addUser(d:UserData,t:Token):Uid
cloneUser(d:UserData,t:Token):int
removeUser(u:Uid,t:Token):int
existsUser(u:Uid,t:Token):boolean

«interface type»
ICallback

notify(d:Data,r:Requestid)

«interface type»
IService

interrupt(t:Token):int
pause(t:Token):int
continue(t:Token):int
use(s:Uid,p:Params,t:Token):Data

«interface type»
IApplication

interrupt(t:Token):int
pause(t:Token):int
continue(t:Token):int

Figure 4.6: UML Class Diagram of interfaces that the middleware supports and that may be relevant to developers or
integrators (contrast with figure 4.3).

77

4.2. SYSTEM DESIGN CHAPTER 4. DESIGN

we assume that the business interfaces and system interfaces correspond. In the component specification below we

explain the purpose of the components and the interfaces they support.

4.2.4 Component Specification

Components offer interfaces whose names they share in this initial version of the middleware design.

DiscoveryService The discovery service is a distributed lookup service which allows one to look up resources on a

network wide basis. Resources include users and services, and there are corresponding operations for this. The

discovery service performs a similar function to UDDI or LDAP, and may be implemented using either of these

technologies.

DataAccessService The data access service provides access to the Information Model of the middleware and its

components. Operations allowed on data stored within the data layer include field based search (which can return

record sets), insertion, update and deletion of data. Further, services can authorise third parties to access their

data. The Information Model represents a point at which contextual information is concretely included in the

middleware and made accessible to components and is thus a unique feature of this middleware.

PeerManager The peer manager handles interactions external to the DAN within the peer to peer network. It acts

using notifications called advertisements, to spread information within the network. Further, the peer manager

should handle communication transport matters such as relaying of messages to peers that are not directly con-

nected – such operations are not accessible via the middleware API and do not appear here.

UserManager The user manager handles basic user information, as required for security and identification purposes.

Components can augment user information via the data access service, since the user manager stores user data in

the data layer. Credentials are specially handled and encrypted (with a salt) in the data layer. The user manager

supports the concept of a session, whereby a user can for a certain amount of time not be required to log in

repeatedly to access different services. Instead a session token is passed between components, and this token is

used to authenticate the user.

DANManager The DAN manager component composes the other manager and service components into a unified

middleware component. It also provides access to meta-operations which control the middleware such as, starting

and stopping the middleware, adding and removing components. Figure 4.7 shows how the components might fit

together in a UML Component Diagram14.

14UML Component diagrams can show both the interfaces that a component offers or implements, as well as interfaces that are used or
expected by the component. Interfaces that are implemented are denoted by a closed curve (circle) at the end of a line extending from the
component. Expected interfaces are denoted by an open curve (“U”) at the end of a line extending from the component. More information
about UML diagrams can be gleaned from any of the many UML references, e.g. [PP05].

78

CHAPTER 4. DESIGN 4.2. SYSTEM DESIGN

DANManager

DiscoveryService DataAccessService

PeerManager UserManager

DiscoveryService DataAccessService

PeerManager UserManager

IUseDAN

IAdministerDAN

IService ICallbackIApplication

IDiscoveryService

IPeerManager

IDataAccessService

IUserManager

Figure 4.7: UML Component Diagram showing the middleware components and their interfaces.

4.2.5 Proposed Component Architecture

The proposed component architecture is no more complicated than the middleware component specification shown

above. The architecture is diagrammatically presented in figure 4.8. The figure shows two isomorphic DANs – in terms

of component topology. They have the same number of services and applications and the same dependencies. Further,

the two DANs are dependent on each other. The DANs connect to each other transparently using the IPeerManager

interface – implicitly the PeerManager sub-component connects the two DANManagers. Note that actual network

boundaries are irrelevant to the architecture and components can be added to the chain of DANManagers as necessary.

Additional services and applications can also be added to each DANManager. These components could all be situated

at different physical DANs, since they are connected using web services or an equivalent distributed technology. This

is fine for network testing purposes where virtual networks can be constructed in a lab. In practice, only locally hosted

components should be accepted by a DANManager, i.e. remote components may only connect via the PeerManager

component.

P2P Network Transparency

The PeerManager enables the DiscoveryService to keep track of resources at neighbouring DANs. This transparency

at the neighbourhood level could potentially complicate matters for components. As an example, consider a user

management operation, such as credential authentication. The PeerManager may transparently connect an application

with different remote UserManager components to verify a remote user’s credentials (see figure 4.9). If the PeerManager

is able to choose an arbitrary UserManager at peer nodes, the system could behave in a random manner, occasionally

79

4.2. SYSTEM DESIGN CHAPTER 4. DESIGN

DANManager DANManager

A-App A-Svc A-Admin-App

B-App B-Svc

B-Admin-App

IPeerManagerIPeerManager

IAdministerDAN

IPeerManager

IAdministerDAN

ICallbackIServiceIUseDANIApplication

ICallbackIServiceIUseDANIApplication

Figure 4.8: UML Component Diagram of the Component Architecture

verifying credentials and occasionally not verifying them. This example is perhaps somewhat artificial, but it illustrates

a real issue. If a component has to be directed to a unique resource, such as a user, or a particular service, then it should

always be directed to the same resource. Since multiple services of the same kind are allowed within the neighbourhood,

this is potentially a critical issue.

The solution we propose here preserves loose coupling from both the perspectives of the middleware as well as the

application or service. It depends on variable referencing of resources – resources may be referred to by their unique ID

or by their (non-unique) name (see also section 4.4.2):

• The middleware makes sure that some core resources (such as user management) are always accessed locally and

that these services are unique locally. Replicable resources, e.g. an Internet connection, may be accessed locally

or remotely in the same manner. A component using the middleware need not know the difference between these.

Thus a component accessing a core resource (such as user management) will always address the resource by name

and not by UID, as it is up to the middleware to provide the correct resource.

• Service and application components must always use UID (unique IDs) of resources when they need a resource

specific to their product specific objectives. They should use names when any resource of a certain named class

will do. The middleware need not know about product specific application and service dependencies.

80

CHAPTER 4. DESIGN 4.3. EXAMPLE COMPONENTS: ECOMMERCE

IPeerManager

Example Application Component

IUserManager - Local IUserManager - Peer1 IUserManager - Peer2

Figure 4.9: UML Component Diagram showing how transparency at the neighbourhood level could potentially compli-
cate matters for components, using the example of credential authentication.

4.3 Example Components: eCommerce

In a business sense, there is a difference between applications and services. Applications are purely consumers of

resources, while services can consume resources as well as providing them (see figure 3.4 for the business use case

illustrating this point). Thus applications, which want to share data with other applications, need to specify a service

component as well. A case in point is the eCommerce product. The eCommerce product makes some of its data

available for community friendly15 billing purposes, but the data is sensitive and should be protected as it includes

money transactions. In addition to the single sign-on facility, the middleware can act as a proxy for the eCommerce

“Mall Service”. This allows an administrator to specify which applications, services and users may have access to the

Mall Service, adding a further layer of protection.

In this section we model the eCommerce product to illustrate how a software product can be implemented using

the middleware concepts proposed by us. This conceptual work should be performed for any new service or application

that needs to be included in the DAN, since it ensures that the new service or application fits to the concepts of the

middleware and that it can integrate with the existing infrastructure.

The Mall Service exposes the functionality of the mall as described in [Nje07]. Table 4.1 summarises the functions

allowed by the eMall and shows how the middleware and Mall Service take over operations – without exposing too much

detail about how the operations themselves work. The first column in the table shows the operations that were allowed

by the monolithic eMall application. The second column shows how existing middleware interfaces take over much of

the administration functionality; it also shows one new interface that needs to be added for the service.

The new interface – IMallService – is discoverable using the discovery service and it is offered as a virtual interface

by the middleware. A component diagram illustrates these new dependencies in figure 4.10. Calls can be directed to the
15“Equitable Billing” systems (proposed e.g. in [Tar07]), are rating systems which rest on socially acceptable or democratically decided

rules. For instance, a rule may say that those with most equity (the greatest stake) in the system must pay more for use and upkeep of the
system.

81

4.3. EXAMPLE COMPONENTS: ECOMMERCE CHAPTER 4. DESIGN

eMall operations by user type [Nje07]
Mall-Administrator
Log in
Manage users
View purchase orders
Manage own profile
Manage shop owners

Shop Owner / Service Provider
Manage own shop (products)
Manage purchase orders
Manage own profile

Customer
Login
Manage own profile
View own purchases
Make purchase orders

Anyone
Register
Browse the Mall
Fill shopping cart

MallService operations by component
IUserManager
Register
Login

IDataAccessService
Handle sharable, mall-specific info for:
* user (e.g. type)
* sales info
* product info

IMallService
Manage user profiles
Manage purchase orders
Manage products

ShoppingApplication
ShopManagementApplication
MallAdministrationApplication

Table 4.1: Juxtaposition of operations as defined in the monolithic eMall, and the same operations as delegated to
components.

service via the middleware by addressing the interface virtually through the useService() operation. In the figure, we

show how a third party service can be integrated with the platform while maintaining loose coupling – the middleware

is agnostic concerning the semantics of the new service, but is still able to support it and offer a new service through a

virtual interface. On the application side of the diagram, the following features are demonstrated: decomposition of user

interface functionality into separate components16; the minimal set of interfaces required for an application to access

the functionality; an administration application also has to make use of middleware functionality via IAdministerDAN;

and finally, a BillingService component also may make use of the MallService component via its interface.

In figure 4.11 we provide some more detail about the newly added interface, with example operations that flesh out

the generic operations mentioned in table 4.1. This further describes the level of contractual commitment required from

service interfaces in order to be useful to other developers.

This section demonstrates the added value of this component-wise decomposition. Other applications can take

advantage of the operations provided by the MallService component (e.g. a BillingService component), something that

was not really possible with the eMall application. Further UI functionality can be changed for products based on

the Mall Service, without affecting these 3rd party services, or the Mall Service itself. Upgrades to the MallService

component immediately apply to all the users of the service. By adhering to interfaces, applications will continue to

work even if new functionality is added or existing functionality is adapted in a compatible manner.

16This is done for illustration purposes only – the UI component could also be a single component.

82

CHAPTER 4. DESIGN 4.3. EXAMPLE COMPONENTS: ECOMMERCE

DANManager

MallService

BillingService MallUserApp MallShopApp MallAdminApp

ICallbackIServiceIUseDANIMallService

IAdministerDANIMallService

«virtual»

Figure 4.10: UML Component Diagram showing the middleware architecture with two example services, MallService
and BillingService.

«interface type»
IMallService

setUserType(u:Uid):String
getUserType(u:Uid):String
getSales(u:Uid,p:Params):List
addOrderLine(u:Uid,o:Oid,p:Product,qty:Integer):Integer
removeOrderLine(o:Oid,i:Integer):Integer
viewOrder(o:Oid):List
...and so on ...

Figure 4.11: UML Class Diagram of the IMallService interface.

83

4.4. INFORMATION MODEL AND CORE DATA TYPES CHAPTER 4. DESIGN

4.4 Information Model and Core Data Types

We propose a flexible extensible information model. This is derived from the fact that each application potentially brings

its own data model to the system and may use the middleware to share this data with other instances of the application

(for example at other DANs, if necessary and if authorised to do so). The data is private to the application component

instances and is not shareable with other components. The application also has access to the core information model

and can access globally shared information, depending on access rights. At the very least, each application can check

credentials and use the single sign-on functionality offered by the system (UserManager). Applications also have access

to the DiscoveryService, DataAccessService etc. Using these services, they can preserve their state in a distributed,

transparent fashion and provide new ways of accessing resources.

The extensible information model is needed because we cannot a priori create a data model, which captures all

possible aspects of the data needed by all components in the system, as would be normal practice in a centralised

system. We also know that modern XML databases support this kind of functionality efficiently and that XML and

web services integrate well and thus we are assured that this strategy is technically feasible. Since our database of

records does not need to have a fixed data schema, selection of records according to certain criteria (search), is less like

selection in a relational database and more like a search in indexed free-text documents. Therefore, in addition to XML

Databases, we also have the option of using hierarchical indexers such as the Apache Xindice project to manage our

data in the data access layer efficiently17.

In this section we describe the core data model in a preliminary manner. The core data model is also extensible and

the component architecture is guaranteed not to break because of the data model extensions. Security is assisted by

not allowing applications to share data. Only services may share data, and since services can allow only indirect use, a

security / trust layer can automatically be added to preserve CIA for sensitive data.

4.4.1 Core Information Model

The core information model is presented graphically in figure 4.12. It is clear that the skeleton of the Information Model

is derived directly from the business type model. In order not to over-engineer our solution, we have kept the core

information model minimal and used only ideas from the Requirements section 3.3 for this.

A further reason to keep the core information model minimal is the principle of loose coupling. 3rd party information

services that are not tightly bound to the middleware, may be better at managing the information model required for

the DAN. For instance, relevant semantic knowledge representation work has been done by [TT09]. Such a service can

be included in the network as a semantic component, able to extend the overall information much further and make the

17While our assumptions show that ultra-high performance is not initially essential to the system, good design must balance functionality
with efficiency, as a sluggish system will affect the user experience and present an additional hurdle for use to developers and community
members alike.

84

CHAPTER 4. DESIGN 4.4. INFORMATION MODEL AND CORE DATA TYPES

«core»
DAN

name:String
id:Uid

«core»
Application
name:String
id:Uid

«core»
Service

name:String
id:Uid
service:Spec

«core»
User

name:String
id:Uid
clone:Boolean
rsa_id:String
telephone:String

«type»
UsageEvent

ev:Event
source:Uid
sink:Uid
data:String

«type»
Credentials

session_token:String
pk:String

«type»
UserType
enum:String

«type»
AccessControlLists

blacklist:ACList
whitelist:ACList

«type»
HouseholdInfo

age:Integer
numDeps:Integer
rcvIncome:Boolean
disabled:Boolean
health:Integer
meta_date:Date

1

*

* 1

1

0..2 *

0..1

*

1

0..2

*

1

1

1

1

1

*

**

*

1

Figure 4.12: UML diagram of Core Information Model

85

4.4. INFORMATION MODEL AND CORE DATA TYPES CHAPTER 4. DESIGN

knowledge captured available to several applications.

In light of the above, it is necessary to explain the addition of the type – “Household Information”. Household

information helps place the model in the rural setting of the DAN. It makes contextual information available to appli-

cation developers and enables inclusion of this data in and across components. The attributes of the type are merely

sketched from information commonly used by governmental agencies such as the Departments of Public Works, Social

Development, Health, Labour, Water Affairs and Forestry, Education, Home Affairs and other organisations such as the

South African Social Security Agency (SASSA), etc.[MC08]

4.4.2 Core Data Types

In this section we consider some of the important data types from figure 4.12.

UID The most important semantic to consider here is that of the UID (Unique ID), which can act simultaneously as a

resource identifier and locator. Resource location by UID is a common practice in P2P networks that use content

addressing. The specific method of using content hashing to address items in a manner that scales well was first

described in this paper [RFH+01]18. The authors described how Distributed Hash Tables (DHTs) could be used to

partition the naming space of resource in the P2P network into a d-dimensional space. Succeeding works modified

this method to create networks with other characteristics [GGG+03]. These methods will become applicable once

the number of resources reaches into the millions. Until then, we can use simpler methods.

The concept of URIs (Uniform Resource Indicators), a W3C standard, is used primarily to identify a resource

and can simultaneously be used to locate it. A URI based naming schema for the middleware can help developers

and administrators quickly understand what is happening in the system – more so than if the UID were just an

arbitrary number19. We thus propose a UID scheme such as:

uri : DAN.Name/{S|U |A}/{Service|User|Application}.Name−Hashnumber

The following is an example UID: uri:Ngwane/S/emall-38029

Name Our solution to the problem brought up in section 4.2.5 required that a naming scheme also be implemented for

resources. While the naming of resources can be left entirely up to the resource developers, a similar scheme could

be followed as with the UID. By simply leaving off the Hashnumber in the UID, a class of resources at a particular

DAN could be identified. One might also leave the DAN.Name parameter blank, to address all resources of a

certain type in the neighbourhood. Since URI expressions are strictly defined, we suggest that the names of the

18Altnet, an American company, claimed to have patented content addressing in 1997 in the following patent [FL99]. We analysed this
patent and found that it did not predate the ground-breaking work of Ratnasamy et al[Wer06].

19This was a lesson that was learnt in the CORBA technology, whose opaque IOR resource locator IDs did not help acceptance of the
technology [Hen06].

86

CHAPTER 4. DESIGN 4.5. DESIGNING ROBUSTNESS

resources not be expressed as URIs, but that they simply follow the format, roughly. We suggest the following

naming scheme:

{DAN.Name}/Resource.Name

The following is an example name: /emall

Spec The service specification should be rigourously defined. Since we plan to be using SOAP based web services in

our system, it is logical to describe them using the official W3C web service definition language (WSDL).

Validations Several data types can undergo type checking. It is important that the middleware data access layer

natively validate core data types in order to keep core data valid. Invalid data should not be accepted. Here are a few

obvious checks that can be made: rsa_id should be a valid South African ID Number; 0 ≤ age ≤ 150; the UserType

can only be one of ’administrator’, ’operator’, or ’user’ ; etc.

4.5 Designing Robustness

4.5.1 Pre- and post-conditions

By including detailed pre- and post-conditions in the design, implementers are assisted in their test-driven development.

The specified conditions may be adapted in several cases into fairly intelligent checks of functionality. Such checks have

been shown to assist in rapid application development and the production of high quality software despite shifting goal

posts, refactoring etc. [CD01]

4.5.2 System bottlenecks

We can identify some bottlenecks in advance. In this section we look at potential bottlenecks and how they can be

minimised. Often bottlenecks only appear during actual operation, because runtime assumptions as set out in section

3.3 may not be accurate20.

The Messaging System is the bottleneck.

How many messages can we expect on the bus at one time? Apart from direct communications with services, all events

such as user additions and removals, service additions and removals, usage events and so on result in notifications which

are middleware messages flowing in the system. Our architecture very much resembles a bus architecture, in which all

communications flow along a bus.
20This is the classical difference between lab environments and real environments, contextual factors may have been misjudged and thus

portions of the software over-designed and others under-designed. This principle is also visible in the extreme programming paradigm as
expressed by Cunningham ([Cun09]) and others.

87

4.5. DESIGNING ROBUSTNESS CHAPTER 4. DESIGN

We propose equations (4.1) - (4.4) to determine the peak number of messages in the bus at any one time21.

Messages due to local usage events : nLU ≈ pu × uµ × constantmessages−per−use (4.1)

where constantmessages−per−use is estimated to be = 5

Messages due to local authentication : nLA ≈ pu × constantmessages−per−auth (4.2)

where constantmessages−per−auth is estimated to be = 3

Messages due to peers leaving or joining the network : nPC ≈ n

2
∗ (1− (tw)n) (4.3)

Peak number of messages in the bus : npeak = (nLU + nLA + nPC) ∗ constantbuffer (4.4)

where constantbuffer is a safety factor = 4

Notes to the derivation of the equations:

(4.1) The number of messages due to local events is derived by multiplying the average number of users at peak time by

the number of “uses” of the system by the users. This intermediate result is multiplied by the number of system

messages produced on average by a system “use”. The constant (constantmessages−per−use) needs to be empirically

verified.

(4.2) The number of messages due to local authentication is simply the number of users using the system at peak time,

multiplied by the number of messages per authentication (estimated at 3).

(4.3) Here the size of the neighbourhood plays a role, as information about peers joining or leaving the network must

be propagated through the network. The likelihood of such events (join / leave) is related to the WAN uptime.

Also since, the network is relatively loosely clustered, rebroadcasts of messages will probably only occur n/2 times.

This equation shows that the impact of peer churn only really makes a difference once very large values of n are

achieved.
21NB: These equations are merely a starting point for discussion and empirical measurements. They raise awareness of important non-

functional parameters, rather than serving as a gold standard by which to measure the system.

88

CHAPTER 4. DESIGN 4.5. DESIGNING ROBUSTNESS

(4.4) The number of messages in the bus during peak times is simply a sum of the previous factors. In equation (4), we

choose to add a safety buffer (constantbuffer) of 4 times the amount of traffic we calculate for the peak time, since

performance of the network also degrades at saturation. Messages generated by services registration, starting and

stopping, as well as messages due to new user registration, can be safely ignored, as their occurence is physically

constrained by the requirement of intervention by the DAN operator. We have also ignored remote usage events,

since we do not know how many usage events will be remote and how many will be local (remote usage events

may add a constant number of messages to each use). If such events occur during peak times, their presence is

accounted for by a safety buffer.

Applying these equations to table 3.4, we arrive at the following value for peak number of messages in the system

per hour:

npeak = (10× 3× 5 + 10× 3 +
10
2
× 0.4)× 4 = 668

With an average expected message size, set at 8kb, the system may expect 5.10 Mb/hr in terms of message throughput

at peak values assuming all DAN workstations are occupied and users are busily creating usage events. This amount of

traffic can comfortably be handled by the systems currently in place in addition to the existing traffic. The system can

certainly absorb several Gigabytes of data per hour.

Caveats:

1. Clearly, the middleware is not intended as as a communications bus for real-time streaming communications. It

is a control channel which handles management data allowing applications to co-exist and resources to be shared.

Real-time audio and video content may not be streamed via the notification queues.

2. Shared data may feasibly be in the Megabyte order of size. E.g. in the eGovernment application, large scanned

application form appendices may need to be uploaded. While one may want to pass these on to the data access

layer for storage, in order to share these, clearly a reference to a service local store would improve matters and

prevent huge messages from burdening the system.

The Data Access layer as a bottleneck

Supporting the entire data access layer with one database system or a single database may be simple and effective,

initially. Evaluations need to take place once the system has been running for a while and new applications have been

created to test how many components make use of a local database and how many use the shared data store as their

database. The additional processing added by a web services or communication layer which connects components may

89

4.5. DESIGNING ROBUSTNESS CHAPTER 4. DESIGN

discourage many components from using it to too large a degree, so that only shared data is actually stored there. On the

other hand, ease of programming and sufficient resources may encourage developers to use the shared data store. There

are several well-known optimisations for real-time data stores, including a separation of the write and read indexes22,

and parallelisation of the database according to content domains – to name just two [author’s experience].

4.5.3 System Abuse and Student Projects

Security restrictions within a DAN and within its neighbourhood via the mechanisms of the ACL and credentials are

designed to prevent malicious abuse of confidentiality, data integrity and authentication of identity. We assume that

since the amounts of money in the communities and the system are small, and since Internet connections are limited,

there will be little interest to maliciously abuse the system. In the long-term, security of the system must be reviewed.

Since interaction occurs via predefined web service interfaces, these should be secure. Automated updates and the

possibility of unskilled operators loading and starting Trojan Horse modules needs to be guarded against.

A primary weapon against intentional system abuse is the usage logs kept by the middleware. Using these, a system

administrator should be able to trace any component that is maliciously misbehaving and stop its components23. Also

malicious attackers can potentially be traced in this manner, so it is important that logs be kept securely and in a

tamper-proof manner by the system.

We also assume that the system can generally rely on the good intentions of student and third party developers,

as their business goals are closely aligned to that of the DAN. It is nonetheless feasible that components developed

by students will contain errors which may cause those components to malfunction. Since it is reasonable to expect

that student projects will in future be rolled out onto the middleware platform to the benefit of the community, buggy

components must be assumed. Buggy components can produce the following kinds of error situations:

• System Crash. The component provokes a bug in the middleware or in the underlying technological container.

These errors need to be handled by finding the cause of the problem, adjusting test cases to cover the incident

if necessary, and programming a patch. The patch could be released back to the DAN in need of it via a secure

automatic update mechanism.

• Incorrect message. The component cannot influence the middleware through generation of incorrect messages, as

professional components are expected to have been tested thoroughly. In this case, the buggy component should

simply stop functioning, as it gets no feedback from the system.
22The altavista web search engine first popularised this concept (building on ideas that had been around for a while [?]) – an index writing

process would update indexes creating an incremental update index, which would periodically be merged with the full index. An incoming
search would have to place two searches – one to the main (full) index and one to the update index. This separation of tasks represented a
vast increase in efficiency, as writing to a huge index is a very costly operation, while writing to a small index is not. Further the indexes
can easily be served from different machines or clusters of machines.

23We assume that the middleware has not been infiltrated – of course it is possible to rewrite the middleware to support malicious activity,
but we see this as more of a management or business problem than a technical one.

90

CHAPTER 4. DESIGN 4.5. DESIGNING ROBUSTNESS

• Denial of Service Attack (DoS). A component which generates a very large number of messages (notifications,

requests, or responses) can unintentionally perform a DoS attack on the system. The design of the architecture

can prevent this. Message queues in the middleware can prioritise and even drop messages in special circumstances,

thus dampening the effect of the DoS.

• Infinite loops. Since usage events can be chained it is possible that a service can call itself infinitely, thus wasting

system resources. The middleware should try to prevent such mishaps.

• Incorrect content. Messages that are correct in syntax, but which are erroneous in other ways are very difficult to

detect as they rely on complicated application dependant semantics. Thus, a buggy component, might erroneously

subtract X Rands from Client Y ’s account, causing real damage to a client. While the solution to this problem

is outside the scope of this project, we suggest that student components be marked in a way which will prevent

them from using services indirectly – and we will assume that critical services may only be used indirectly.

91

4.5. DESIGNING ROBUSTNESS CHAPTER 4. DESIGN

92

Chapter 5

Implementation of a “Walking Skeleton” and

Results

"There is nothing new under the sun. It has all been done before."

Sir Arthur Conan Doyle: A Study in Scarlet (1887)

In this section we discuss the implementation work done as part of this thesis (section 5.1 - 5.3) and the general results

in terms of lessons learned and general observations (section 5.4).

We investigated several frameworks in order to identify the most suitable frameworks for our design. While the

methodology employed does go to some lengths to prevent a gap between design and implementation, this thesis leaves

many aspects (most notably the messaging subsystem) unspecified. The chosen framework should thus provide some

guidelines or best practices as to the messaging system. The main intention was not to reinvent the wheel.

As outlined in the requirements we developed demonstrator components in a test-driven manner.

We chose Eclipse as the Integrated Development Environment to be used for the implementation. Minor experiments

were also performed directly from the command-line.

A technology demonstrator was developed for the Spring Framework. The demonstrator was not suitable for release

to actual users, but was rather intended as a proof-of-concept. Minor experiments were run for JMX and EJB partial

93

5.0. CHAPTER 5. WALKING SKELETON

solutions. The demonstrator and experiments are discussed in the rest of this section.

This section draws heavily on the author’s experience as software programmer and systems designer for international

companies in the USA, Germany and South Africa. Where references are not explicitly given, the reader can assume

that the statements are the author’s opinion, drawn from experience.

5.1 Technology Demonstrator based on the Spring Framework

5.1.1 Demonstrator Overview

An end-to-end technology demonstrator was implemented. It implements one operation (registerService()) and joins the

most diverse aspects of the middleware, from an out-of-process PHP client to the data access layer. It does not set up the

final architecture. Rather it is a “walking skeleton” as proposed by the Crystal Clear implementation methodology (which

is an agile method) [Coc05]. It does link several main architectural components with an implementation framework.

The demonstrator layer diagram appears in figure 5.1. As we see in the diagram, several different components

(appearing in grey) were implemented. Lower layers of the demonstrator used existing software1. The aim of the

demonstrator was to show how PHP could be connected to the Java based middleware. An initial attempt at establishing

the data access layer was also made. Both of the implemented functionalities used the Spring Framework to achieve these

ends. The demonstrator successfully allowed a PHP client to make calls to its web service interfaces, and implemented

an in-memory and JDBC (HSQLDB) based data access layer stub.

Additionally, a user interface (UI) was programmed for the demonstrator using servlet functionality. Specifically JSP

(Java Server Pages) and STL (Standard Template Library) technology was used to create a rudimentary web front-end.

The demonstrator shows how two servlet based applications (UI and web services) can co-exist in the same Spring-

controlled address space. The web services could be addressed via a URL such as http://localhost:8080/p2pmwt/mwService/

and the UI was accessible within the same address space as http://localhost:8080/p2pmwt/siyakhula.htm. The configu-

ration required that the address space be segmented for the applications via a Spring ViewResolver. This method could

be used to implement middleware services.

5.1.2 Spring Framework Technology

This section describes how the Spring framework technology was used. Snippets of code and pseudo-code explain the

basic system principles. Of all the technologies presented in Chapter 2, Spring was chosen because it represents an

industry standard framework for communications and back-end applications written in Java, and is thus a potentially

1The existing packages used in figure5.1 are commonly used Java tools. Clearly all Java programs exist in a JVM. The Tomcat servlet
container is what enables the Java servlet technology, which is used by the web service as well as the web front-end. The Spring framework
is present in the form of the core framework as well as DAO, WS and View packages.

94

CHAPTER 5. WALKING SKELETON 5.1. SPRING FRAMEWORK DEMONSTRATOR

Figure 5.1: Component layer diagram of the demonstrator. Components that were implemented appear shaded.

good fit. Its Inversion of Control (IoC) container allows the developer to focus on business logic and to develop an

application with a UI using the Model-View-Controller design pattern. We have not mentioned the MVC pattern in the

design chapter, because the UI is not within the scope of this thesis, however, we do mention it here because it is a part

of the demonstrator implementation.

Spring works by creating beans out of POJOs (plain old Java objects) which embed the functionality and operations

required. The IoC pattern means that a developer’s own code is not in control of the flow of events. Instead, POJOs

are called by the Spring Framework in response to certain pre-defined events2. The main advantage of this is that

components can be written in a way which promotes loose coupling and the benefits that come with that (as required,

see section 3.3).

The first feature of any Spring application is its configuration. In figure 5.2 we present the configuration of our

Spring application context. The application context is the method that Spring uses to create the beans that drive the

processes being implemented. An alternative mode of operation that may be used is the Spring BeanFactory, which

we do not explore further here. The application context configuration introduces the major components (which are

realised as Java beans at startup time) and shows their dependencies (a priori). This process is often called dependency

injection, a term originating from Aspect Oriented Programming. The Spring Framework documentation often refers

to “injection” or “bean injection” and we use this language below [?].

Figure 5.2 shows three beans that will be instantiated. The first two are part of the middleware, i.e. DANMan-

2Spring is often called “convention based”, because the naming of methods and bean properties is not arbitrary. Instead it is linked by
convention (or by an exact specification) to the information given in the configuration files. See also discussion on bean getters and setters
below.

95

5.1. SPRING FRAMEWORK DEMONSTRATOR CHAPTER 5. WALKING SKELETON

<bean id="serviceManager" class="za.ac.ufh.middleware.SimpleDANManager">
<property name="serviceDao" ref="dataAccessService"/>

</bean>
<bean id="dataAccessService" class="za.ac.ufh.repository.SQLDataAccessService">

<property name="dataSource" ref="dataSource" />
</bean>
<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"

destroy-method="close">
<property name="driverClassName" value="${jdbc.driverClassName}" />
<property name="url" value="${jdbc.url}" />
<property name="username" value="${jdbc.username}" />
<property name="password" value="${jdbc.password}" />

</bean>

Figure 5.2: XML configuration snippet showing how bean dependencies are expressed in Spring. Here, the DANManager
bean requires a bean called dataAccessService.

ager and SQLDataAccessService. The third bean is a Spring class which attaches a database for simpler use. The

dataAccessService bean is injected into the serviceManager bean, and the dataSource bean is injected into the dataAc-

cessService bean. This injection occurs after construction of the object, through a setter on the bean whose name follows

the convention “set” + “property name”; in the case of the first bean, this would be setServiceDao().

In the previous section (see 4.2.5) a thought experiment had shown how components could call other components

unintentionally. Spring attempts to mitigate this problem by introducing the idea of a “bean scope”. The default scope

with which a bean is created is the “singleton scope”. This scope uses the singleton pattern to construct the bean object.

That means that the constructor is private and Spring’s bean factory will always return the same bean of the type that

was first created (in this case that will have been at startup). Spring offers other well controlled methods of scoping3

beans including the prototype scope and method injection. The latter is a manner of linking beans with different

life-cycles to each other and in particular re-injecting beans with shorter lifespans into singleton beans at runtime.

Figure 5.3 shows how we set up the middleware messaging service; specifically our SOAP web services endpoint

(or sink) is defined. We reproduce the configuration here to introduce the nomenclature that appears in the following

pseudo-code algorithms (algorithms 5.1 and 5.2). According to the method introduced with figure 5.2, we see in figure 5.3

a WSEndpointHandler bean that we implemented, which has the DANManager bean injected at construction time and a

Spring web services bean which has our WSEndpointHandler bean injected. The PayloadRootQNameEndpointMapping

bean implements the web service communication details and calls our endpoint handler once a message has been received.

It passes on the full XML message that was received from the Root Qualified Name of the XML document (hence the

name of the bean class). Another feature of the configuration below are the names of the web service calls that will trigger

our endpoint. They are specified in the two prop elements and are ApplicationRequest and RegisterServiceRequest. All

other requests are ignored by this configuration.

Algorithm 5.1 explains at a very high level, how the message service boots up. Included in the sketch is the loop

with which the Tomcat webserver listens for calls of the web service. As mentioned above, Spring inverts the control

3Adding a scope to a bean or amending a bean’s scope is referred to as “scoping” here.

96

CHAPTER 5. WALKING SKELETON 5.1. SPRING FRAMEWORK DEMONSTRATOR

<bean id="servicesEndpoint" class="za.ac.ufh.middleware.ws.WSEndpointHandler">
<constructor-arg ref="serviceManager" />

</bean>
<bean class="org.springframework.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping">

<property name="mappings">
<props>

<prop key="{http://ufh.ac.za/schemas/mw}ApplicationRequest">servicesEndpoint</prop>
<prop key="{http://ufh.ac.za/schemas/mw}RegisterServiceRequest">servicesEndpoint</prop>

</props>
</property>
<property name="interceptors">

<bean class="za.ac.ufh.middleware.ws.SimpleXmlLoggingInterceptor" />
</property>

</bean>

Figure 5.3: XML configuration of the web service communication channel of the middleware.

Algorithm 5.1 High level pseudo-code explanation of how the Spring Framework invokes the demonstrator web service.
// At startup time, the IoC container creates the WSEndpointHandler bean, and
// passes in its dependency -- the DANManager bean, that has already been
// created.
handler = WSEndpointHandler(danManager); // Here our constructor is called
// the following line represents the listen loop of the webserver
while (true) { // Loop forever

// The webserver tries to get a new message (blocking)
msg = getMessage();
// A message has been received... after some initial processing,
// Spring invokes the handling of the message by our WS-Endpoint
response = handler.invokeInternal(msg);
// And returns the response from the handler to the caller
dispatch(response);

}

and so all calls are initiated by the Spring Framework. This is reflected in the pseudocode algorithm which explains

how code we wrote is called by the IoC Container and the higher level web server container.

Algorithm 5.2 explains how our web service endpoint handler calls a business operation on the DANManager. The

endpoint is responsible for further unpacking the message and making the correct call on the DANManager. At a later

stage security validations that require message level information might be added here.

5.1.3 Web Services Technology

To introduce web services, we will take a quick tour of the development of the web. What is the web? It is originally a

decentralised human readable network that is based on the twin technologies of HTTP (the Hyper-Text Transfer Proto-

col) and HTML (Hyper-Text Markup Language). HTTP is the communication protocol, which relies on Transmission

Control Protocol over Internet Protocol (TCP/IP) as a communication basis. A client opens a TCP socket on port

80 of a server and makes a request (see 7.1 for such a conversation). The server answers and the session is closed.

This means that requests were originally thought of as being stateless. The answer is meant to be read by a human

in a web browser. Early versions of HTML thus mixed formatting and content. Currently, the W3C recommends that

XHTML – which is XML (eXtensible Markup Language) – be used to carry the meaning and related CSS stylesheets

97

5.1. SPRING FRAMEWORK DEMONSTRATOR CHAPTER 5. WALKING SKELETON

Algorithm 5.2 Core demonstrator web services algorithm in pseudo-code showing how the web services end point
passes control to the DANManager, which registers a new service in this case.

// Definition of Function invokeInternal(message)
// This is what our message handler does when it is called by
// the container.
// first we note that we received a message
log.info (“called with message: “ msg.id);
// Unpack the XML to find out to which component it is addressed.
service_identity = evaluateIdXPath(message);
operation = evaluateOpXPath(message);
params = evaluateParamsXPath(message);
// Let the DANManager handle the actual operation required
// and get the result of the operation.
result = ourDANManagerBean.evaluate(operation,service_identity,params);
// Create a web services response object -- the result is embedded in XML.
response = createResponse(result);
// And the response is returned
return response;

carry the formatting information. The split allows a host of other XML technologies to leverage the meaning of the

message, including allowing machines to process4 the content. Thus XML is often referred to as a “machine-readable

format”[Wor10].

XML documents are hierarchically structured. They consist of nodes, which are named (represented by XML Tags)

and may contain some content (which can appear in the node, or be attached to the name of the tag as a name-value

pair – an attribute of the tag). The first XML technology we need to mention at this point is the XML Schema

Definition (XSD). An XSD defines valid content for a certain type of XML document. XHTML documents conform to

a specific XSD, and are thus a particular type of XML document. Web services transmit machine readable information

in messages and are commonly stateless – as was the original web. Their message format is commonly XML, which

is also understandable to humans (although namespace information does tend to clutter XML). Web services advertise

their services in a suitable WSDL file. The Web Services Definition Language (WSDL) also belongs to the XML family

of specifications.

Since we are transmitting XML in our web service messages, we can define the valid format of our messages in an

XSD. Our schema is fairly short and is reproduced in the appendix 7.1. The schema used for the demonstrator simply

defines the operations available on the middleware, which are very limited. These would have to be extended to include

all the operations in interfaces IUseDAN and IAdministerDAN.

Spring offers a simplified process to automatically generate WSDL files from our XSD.

5.1.4 JUnit

JUnit is a an open source library commonly used to implement test-driven development in Java. The convention based

functioning of the library has evolved since the first versions and JUnit functionality is now also available through Java

annotations. We created a parallel package structure to the source and placed all our tests in that parallel structure.
4They still cannot understand the content – but let us not mention the story of Semantic Web Services here.

98

CHAPTER 5. WALKING SKELETON 5.1. SPRING FRAMEWORK DEMONSTRATOR

Algorithm 5.3 Java test algorithm for adding a service
public void testRegisterService() {

int svcs_a = danManager.getServices().size(); // check number of services beforehand
// register a new service, i.e. add a service
danManager.registerService(B_IDENT + svcs_a, B_DESCRIPTION + " " + svcs_a, "http://dummy.wsdl.loc");
int svcs_b = danManager.getServices().size(); // check number of services after the addition
assertEquals(svcs_a + 1, svcs_b); // there should only be one additional service
// make a snapshot of services and check that the identifier of the latest one matches
List<BasicService> services = danManager.getServices();
BasicService service = services.get(svcs_b - 1);
assertEquals(B_IDENT + svcs_a, service.getIdentifier());

}

This is common practice with testing and ensures that tests can easily be matched to the source code that they test

[author’s experience]. The package structures can be seen in the appendices in section 7.1.

Algorithm 5.3 shows the logic used to test the addition of a service to the DANManager. The test quite clearly

echoes the business rules that were analysed in the design (see section 4.2.1, “Adding a service”) . The comments in the

code link clearly to the business rules discussed earlier.

The convenience of JUnit is demonstrated in the following screenshot (figure 5.4). JUnit is integrated into the

Eclipse IDE and can be run at any time. Unit tests promote an agile development methodology, because they provide a

good indicator that basic functionality is still intact after wide-reaching changes have been made. Such changes become

necessary, e.g., when interfaces change and code refactoring takes place. This contributes to the sustainability of the

development process, when the final goals of the development are not precisely laid out (as e.g. in this thesis).

Testing the web services is a little more complicated, because the web services endpoint described in algorithm 5.2

takes a complex object type as an argument. The argument is an XML document (named message in the algorithm)

and needs to be recreated for the test. There are two common methods to solve the problem of testing with complex

objects: either create a TestObjectFactory, which generates test objects and passes them into the test without requiring

an entire web services infrastructure to be started, or use the Mock Objects pattern[CP02]. Mock objects (similarly to

agents) implement the same interface as the argument required by the method we are testing. However, unlike the XML

Document a mock object will include logic designed to test certain aspects of the method being tested, by incorporating

delays, throwing exceptions etc. The mock object is thus more like a test agent than a simple data structure, and it is

able to provoke certain expected responses in the code.

5.1.5 Extending the System

In terms of the implementation, extending or amending the core system follows these steps:

1. install IDE

2. import project

3. make changes

99

5.2. INTEGRATING PHP CHAPTER 5. WALKING SKELETON

Figure 5.4: Screenshot of JUnit in Eclipse IDE

Integrating your project on the other hand, for instance if you have a specific technology that you need to use, will

follow these steps:

1. Design the system, taking care to decompose it into an application and a service components (if required)

2. Construct the information model and plan what information sharing and using needs to take place.

3. Implement: ensure that developed components are interface compliant (test using mock objects).

4. Integrate: Upload the system.

5. Run: register application and service, and perform end-to-end tests on the new functionality.

In both cases a design phase that covers the topics explained in section 4.3, must be performed.

5.2 Integrating PHP

An exemplary integration intended for the eCommerce system, was programmed and linked to the Spring framework

demonstrator. We created a PHP function which registered a dummy service with the middleware demonstrator. The

core elements of the PHP function can be seen in algorithm 5.4. The following is a line-by-line explanation of the code:

100

CHAPTER 5. WALKING SKELETON 5.2. INTEGRATING PHP

Algorithm 5.4 Algorithm in PHP 5 showing exemplary integration with Spring based demonstrator.
$wsdl_url = ’http://localhost:8080/p2pmwt/mwService/middleware.wsdl’;
$wsdl_ns = ’http://ufh.ac.za/schemas/mw’;
$client = new SoapClient($wsdl_url,

$options);
$registerservicerequest = new stdClass();
$registerservicerequest->Identifier

= "eCommerce Service";
$registerservicerequest->Description

= "eCommerce Service \
test registration";

$registerservicerequest->WsdlUrl
= "http://test.com/wsdl";

$rsrType = new SoapVar(
$registerservicerequest ,
SOAP_ENC_OBJECT,
"addServiceRequest",
$wsdl_ns);

try{
$response = $client->RegisterService(

$rsrType);
} catch(SoapFault $e) {

trigger_error(
’Something soapy went wrong:’
.$e->faultstring,E_USER_WARNING);

}

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(1) Create new SOAP client. The SOAP Client is a built-in PHP 5 object which can call Web Services for one

transparently.

(2) Create a PHP RegisterServiceRequest object, to which we will attach the parameters that are required by the call.

(3) Set the Identifier of our service

(4) Set the Description of our service

(5) Set the WSDL address of our service

(6) Create the SOAP “addServiceRequest” call, including the object created as a parameter.

(7) Here our SOAP client makes the call to the middleware, receiving a response ($response).

(8) The SOAP client may throw an exception or fault, which we want to catch and process.

Simple PHP functions such as the one described above can be defined for all the operations that are required from

the middleware. It is important to note that the above work is of a prototypical nature, because the interfaces to the

middleware have not been defined yet. Some more work needs to be done on the actual type signatures of the middleware

interfaces before the PHP code can be cleanly implemented.

101

5.3. TECHNOLOGY EXPERIMENTS CHAPTER 5. WALKING SKELETON

5.3 Technology Experiments

5.3.1 JMX

DANManager subcomponents are contained within the DAN Manager and are composed to present a facade with a

wide variety of functions to the web services world. Internally, these components should not communicate using web

services, as web services impose a performance penalty because of marshalling and unmarshalling of objects as XML

information. The distinction between regular services and DANManager subcomponents is clearly visible in the design

diagrams (see e.g. 4.8). It is also possible to define several communication channels for services, to allow services written

in Java to be more easily accessible from the middleware than via web services.

Spring and JMX are compatible technologies, which can assist in this task. JMX already includes all the services

required to control a service oriented architecture as explained in section 2.2.1. We repeat here, that JMX does not

conform to our requirements of language independence, which is why we chose not to make JMX (and thus by implication

Java Remote Method Invocation (RMI)) the method of communication between all components in the middleware. We

know of no bindings for PHP etc. to Java RMI, nor of any initiatives attempting such a coupling. For a tighter coupling

than web services, CORBA may be used.

The objective of the JMX experiment was to see how easily one can access methods and data on a bean via JMX.

We implemented the experiment, by altering the Sun JMX tutorial, allowing public access to methods on a bean. We

then used the standard Sun JMX management application (JConsole), which is delivered with the Sun Java SDK, to

attach to, inspect and also control our bean. In figure 5.5, we see (a.) the available JMX agents to which one can attach,

and (b.) basic information about the bean and its process. We can see summary information about the process uptime,

memory usage (in detail), the numbers of threads, class loading information and JVM information. Such information

can be very important when optimising a distributed SOA.

In figure 5.6 we see how we can manipulate the bean via the JConsole interface. Such manipulation and notification

occurs via the JMX API (which JConsole uses to implement its functionality). All functionality displayed by the

JConsole application are also available to us through the API. Thus, basing this experiment on JConsole is a quick

method of getting more insight into the possibilities afforded by JMX.

102

CHAPTER 5. WALKING SKELETON 5.3. TECHNOLOGY EXPERIMENTS

(a) Attaching JConsole to available JMX agents on local-
host.

(b) Richness of detail in the JMX standard application – JConsole.

Figure 5.5: JConsole standard screens, showing ease of use and richness of information.

103

5.3. TECHNOLOGY EXPERIMENTS CHAPTER 5. WALKING SKELETON

Figure 5.6: JConsole demonstrating dynamic MBean method and attribute discovery via Java reflection. JConsole
natively allows us to notify the bean and invoke its public methods.

5.3.2 Notes

Servlet containers and EJBs

Since we have opted to use Java, it is logical that we will be working with a container5. We used the Apache Tomcat

container in our demonstrator because it is very well integrated with the Eclipse IDE. A typical implementation deploy-

ment scenario from the author’s experience uses an Apache webserver with a Tomcat servlet container. The Apache

webserver is optimised for serving static pages and can implement optimised caching strategies, as well as allowing access

to a host of other services. It passes requests for dynamic pages on to the Tomcat container. This scenario can be used

with other servlet containers, e.g. JBoss and GlassFish.

At the time of writing a new GlassFish server version 3 implementing the new Java Enterprise Edition (Java EE)

6 APIs was released by Sun. As mentioned in section 2.2.1 GlassFish is a strong contender for middleware framework

technology along with EJBs. GlassFish (version 2) natively includes JXTA P2P capabilities. GlassFish uses JXTA for

communication between web servers 6, which is an implementational view of the task of the PeerManager.

EJBs also offer the advantages of IoC and may moreover offer several communication channels we should like

to use, such as communicating via web services and SOAP with third party services and via RMI with our own
5Several tried-and-tested containers which encapsulate the communication stack exist for Java (Tomcat, JBoss, OAS, etc.). The alternative

is an implementation of an own transport stack, which in the most extreme case uses java.nio packages for socket communication. In a less
extreme case, one could build an Apache Webserver module, or embed a Java webserver, such as Jetty, into one’s system. That way, the
lower (HTTP-level) transport layers would already be implemented in a managed fashion.

6Specifically JXTA is used for load balancing and clustering of web servers. Although our system latencies are greater than in the
aforementioned use contexts, there are strong similarities between the contexts.

104

CHAPTER 5. WALKING SKELETON 5.4. RESULTS AND DISCUSSION

services (regardless of whether they are sub-components or not). However with an increase in abstraction often comes

a performance penalty. Further experiments regarding container technology, especially concerning GlassFish and EJB

functionality and performance, should be undertaken.

Single Sign-on (SSO)

The login process is so trivial as to have been relegated to a minor task in most previous projects as reviewed in table

3.2. However, several of the projects in which we were involved started with the implementation of this functionality,

because it was a “quick win”7. It is our opinion that these efforts were wasted, as the project implementors should have

been concentrating on their core business, not on an auxiliary functionality that was only tangential to the project.

Further, login functionality, if developed from the ground up must be implemented securely, and that can prove to be

deceptively complex. For instance, there are several attacks that can be made on schemes which naively save hashed

passwords in a user database, e.g. the rainbow table attack, and such considerations were usually neglected in the

projects reviewed by the author.

We compiled a list of open source single sign-on solutions, which are widely used and respected: GIS-CAS (used in

the Grid world, e.g. by GT4 – see section 2.2.1), OpenSSO, JOSSO, Open ID (which is often not considered a SSO

scheme) [DEL97, AMM04]. The most interesting of these is Java Open SSO (JOSSO) as it is also supported by the

GlassFish servlet container. This is a further argument to experiment with the GlassFish server.

An experiment with SSO functionality should be undertaken.

5.4 Results and Discussion

5.4.1 Lessons Learned

A key result and lesson learned of this project is the design process that we carried out and documented in Chapter 4.

The design presented contains a minimal and necessary set of operations for a DAN middleware. It takes into account

basic non-functional aspects, such as security and performance, as well as functional aspects, as expressed in the use case

analysis and requirements engineering. State of the art service oriented architectural principles are applied to satisfy

the business requirements. Performance and flexibility are carefully weighed up in order to accommodate future services

and applications.

7A quick win is an easy task which helps one achieve a simple or minor tactical goal, but thereby securing some strategic objective, like
customer trust, knowledge of tools, etc.

105

5.4. RESULTS AND DISCUSSION CHAPTER 5. WALKING SKELETON

Frameworks lessons

We looked at several major frameworks in the scope of the implementation as seen above. The general ease of use of

these free/libre open source tools was excellent. They all included documentation and tutorials to speed implementation

tests and adoption. Reference documentation was thorough and even more complex questions such as method scoping

were addressed in detail. This is in stark contrast to the state of some of the FLOSS libraries the author used in the

early 2000’s. We attribute this change to the facts that:

• we only considered mainstream FLOSS software,

• the packages we considered were usually supported by a large company,

• and they had a large user base.

FLOSS has attained a level of maturity, such that it is natural for thousands of programmers to use FLOSS tools to

build a wide variety of systems. The small percentage of programmers that does put something back into the projects

are sufficient to keep the tools up-to-date and correct.

Web Services compatibility: Java <-> PHP

Theoretically, this is not an issue8, but we did find practical issues. Java very cleanly implements the XML specification

and handles XML namespaces in a manner which is consistent with the standards and what one would expect. Web

services capability is fairly new in PHP, appearing only in PHP 5. Prior to that one had to use the PEAR library or other

solutions. We found that PHP did not add the specified namespace to the included XML payload, and gave elements

in the payload the default namespace (i.e. no-namespace, for the documents we were sending). This caused problems

with the Java web services marshalling performed by the Spring framework, which expected the payload also to have a

namespace provided. The Spring behaviour could be overridden, but we could not override the PHP behaviour9. We

could not find a way to include namespaces into the message payload by using the web services API. We would have

had to perform XML processing ourselves to achieve this. Debugging this behaviour was time consuming.

This incompatibility was reminiscent of CORBA Inter-ORB compatibility test the author undertook in 2003 as part

of other projects. While the Java ORBs were able to communicate well with each other, Java C++ ORB compatibility

only worked for atomic objects, and not for vectors. Theoretically, the ORBs, using CORBA 3.2, should have been able

to communicate with each other, since CORBA 3.2 specifies its wire format.

8Since web services define their interfaces as well as the “wire format” – the format in which data is passed between applications –
integration should be trivial. This is a contrast to the case with early versions of CORBA, which were not explicitly compatible across
development technologies (see later discussion on CORBA).

9A further work-around to this problem, which we used successfully in the past when namespaces were inconsistently used by software,
is to use XPath expressions that target the local-name() of XML elements. This XPath expression ignores name-spaces and allows one to
check namespaces separately in the cases where they are required as a security or consistency check.

106

CHAPTER 5. WALKING SKELETON 5.4. RESULTS AND DISCUSSION

Figure 5.7: Component Architecture showing event queues connecting basic platform components, in a staged event
driven manner (after Welsh [WCB01]).

Since we are using open source software, it is possible to delve deeply into the problem and to find the exact cause

of the problem and even to fix it – if it is critical to the project.

Staging Components and Loose Coupling

One of the lessons that we expect will appear when stress tests are performed on the system is that components should

be connected in a staged manner. The IoC pattern is an excellent decoupling mechanism and should be employed

whether via Spring, EJB or combination of the technologies. The POJOs which implement the components should be

implemented using principles from the staged event driven architecture (SEDA) or Message Queue Blueprint (see section

2.2.3).

From an implementation aspect, these components should extend a Staging Mechanism (an interface with abstract

implementation), whereby all messages arriving are first queued, before being processed in a threaded manner. The

number of threads performing the processing for each stage, and the maximum length of the queues would be dy-

namically controlled according to demand in the system via JMX MBean interfaces. This could occur automatically

using algorithms such as those described in [WCB01], or manually via a GUI. It is highly likely that Spring and other

containers already have dynamic means to support such processing requirements.

In figure 5.7, we see the staged event driven architecture applied hypothetically to a component in our component

architecture illustrating statements made in this section.

107

5.4. RESULTS AND DISCUSSION CHAPTER 5. WALKING SKELETON

5.4.2 Middleware is Invisible

A middleware project can be a complex undertaking. This section is based on the author’s experience in three projects

which involved large scale middleware implementations, DFN S2S [Wer03] and the implementation of a distributed

real-time communications platform in a startup with more than 350 million Euros of startup capital (name may not be

disclosed) as well as a medium scale implementation – the Kapenta framework [Str10] which drives awareNet[Vil10].10

The contexts mentioned above shared the following characteristics:

• Developers were faced with a new problem context – one with which they were quite unfamiliar.

• Neither a business owner with a clear business plan, nor a system specification, nor a technical work contract were

present.

• In each case a first version of the software was developed by experienced programmers (and system designers

on one case). I.e., the programmers applied general principles that they had learned elsewhere, to the problem

domain.

In all three cases, after initial research, the software teams decided to develop their own framework, which was specific to

the problem domain. The advantage of this method is that the entire concept and code base comes from a single source

and is often internally very consistent. Shifting specifications from an unclear source can quickly be implemented, once

the framework is completed. The disadvantage of this method is that the entire concept and code base comes from a

single source (the team) and misses lessons learned that are embedded in other prior art – research literature, software

packages that address portions of the problem, etc. Combining developer blindness and project owner desire for tangible

visible results – middleware projects often end in the unsatisfactory state where ecstatic developers expound the virtues

of the “emperor’s new clothes” to perplexed and irritated business owners. Two of these projects were shelved ultimately,

even after personnel changes had been made and systems rewritten. Kapenta continues to function, because it is domain

specific (it doesn’t try to solve too many problems) and is a small and efficient package. Kapenta, too, has been rewritten

several times, however the simplicity of scope and simpler business plan have ensured that it remains in use.

The particular problem encountered with middleware is that it is difficult to construct a satisfactory walking skeleton

on which to hang functionality. The messaging system and many of the components seem to initially have no purpose

but to talk to each other in a closed circuit kind of fashion. Eventually a stage may be reached in which the middleware

functions correctly, as proved by stress-tests. However, this is not a walking skeleton as it fails to go from end to

end of the functionality chain, it only covers non-functional aspects of the project. Besides producing log messages,

this type of demonstrator produces nothing tangible. Middleware is by nature invisible – it does not however do

nothing. It facilitates interactions between compositional units, across contractually specified interfaces and making
10Not all of the following comments apply to all of the three projects mentioned, nor do all of the projects mentioned necessarily have

technical flaws. Rather this section is a psychological analysis of the dangers of middleware development.

108

CHAPTER 5. WALKING SKELETON 5.4. RESULTS AND DISCUSSION

explicit dependencies between such units. The problem with the walking skeleton is thus not the middleware, but the

functionality one that should be plugged into the middleware. Such functionality needs to be as clearly specified as the

middleware itself and aspects of it need to be demonstrated in the walking skeleton.

We feel that we have avoided these traps in this project. By concentrating on the design and not trying to completely

implement the middleware, we have managed to create an end-to-end skeleton using existing FLOSS frameworks. We

have been able to make educated technology choices which could potentially bootstrap the actual implementation of such

a middleware considerably, by allowing developers to focus on the core business elements and letting business owners

know what they should expect. We feel that we have lit a way forward which could now more easily be followed by

those that come after.

5.4.3 ESTIMA Project

The eServices and Telecommunications Infrastructure for Marginalised Areas (ESTIMA) project proposal was submitted

to the South African and Finnish knowledge partnership on ICT (SAFIPA) in September 2009. The proposal outlines

a business plan for rural Digital Access Nodes and rationalises the adoption of such a scheme in the Eastern Cape of

South Africa and beyond. The proposal is related to this thesis, as it requires a technological platform similar to the one

proposed in this thesis. The approval of the ESTIMA project, which was stringently reviewed, is in a sense a ratification

of some aspects of the ideas presented in this thesis.

In addition to some technical data presented in the proposal, the following use case was mentioned to demonstrate

the kinds of functionality that may be created in the ESTIMA project. What is visible in this use case is the width of

application functionality that can be supported by the architecture presented here.

109

5.4. RESULTS AND DISCUSSION CHAPTER 5. WALKING SKELETON

In this use case, a DAN receives and installs the platform with an eCommerce service, a mobile service

and an cost sharing service (which allows equitable sharing of the service within the community). The

software may be obtained for free in the case of an individual centre, which is trying out the system, or

it may be deployed to the centre by regional government in the context of a region wide roll-out. The

telecentre operator (a champion) is responsible for the running of the platform (paying costs associated

with the system to keep it running). The operator is trained by a partner of the factory, such as Schoolnet

SA or the Rhodes University Education Department (initially). The operator explains the system to the

community and makes sure that it is used by artisans. Artisans place their goods into a portal for sale in

the Internet. The unique value addition provided by the platform is:

• The ecommerce or shopping system itself can be any current shopping system (there are good Open

Source varieties available for free).

• Adding support for platform interfaces allows the shopping system to be easily integrated :

– with platform mobile services

– with a communal billing and rating service, which provides equitable charging of the individuals

to keep telecentre services running

– into the distributed platform security

• A shop owner’s workflow can track the completion state of the order. The shop owner is sent

reminders via SMS.

• A novel mobile phone interface, which can also be accessed, via bluetooth services to upload large

numbers of orders at any telecentre will be available.

Standardised services can all make use of similar shared services available on the platform which are easier

to develop and easier to understand for operators who have to explain them to the users. Through the

use of modern process technology such as workflow systems, transparency can be added to the system.

Table 5.1: Extract from ESTIMA proposal
110

Chapter 6

Conclusion

“The dream of reusing off-the-shelf components has taken longer to materialise than first envis-

aged.”

Cheesman and Daniels 2001.

This thesis meets all the primary objectives as set out in the introduction. Objective 1 (designing a middleware

package after a thorough requirements engineering) has been satisfactorily attained. Objective 2 (investigation of

FLOSS frameworks for the implementation of the middleware) has been completed in a theoretical sense – a number of

software frameworks were reviewed and analysed. In a practical sense, frameworks that are good enough to fulfill the

requirements were cursorily examined – a further practical investigation of the technologies needs to be undertaken. We

present a précis of the core arguments presented in this thesis, in summation of the results of this project.

In Chapter 2, we argued the following:

(1) We recognise a new sort of topology in rural village networks. Through cheap, high-speed, wireless point-to-point

equipment (among other forms of technology) village networks will, in future, span large tracts of land containing

several villages in what we call “network islands”. These networks will have poor Internet connectivity and they

are a sub-class of mesh networks (which do not define any connectivity quality to other networks).

(2) We point out prior work which supports the idea that electronic services can assist in developing marginalised

111

CHAPTER 6. CONCLUSION

rural areas. We also look at several services being developed for the rural context in a stand-alone fashion, within

our work group as well as by others.

(3) We point out prior work that supports the idea that a wide variety of eServices can assist an unsustainable rural

telecentre in making the quantum jump to sustainability and point out that resource sharing can greatly increase

the number of eServices offered at any given point in a rural network. We also introduce the idea of a DAN to

differentiate our work from the pre-existing concept of a telecentre. A DAN is always part of a network island,

just as a node is always part of a network (in graph theoretic terms).

(4) We deduce from (1), (2) and (3), that a middleware solution can facilitate technical resources at DANs within

a common network island.

A further chain of argumentation follows, spanning Chapters 3 and 4:

(5) We analyse the requirements of such a middleware looking at functional and non-functional requirements. These

are further grouped into rural and development laboratory requirements (in Chapter 3). We also compose a list

of assumptions underlying a functional network island (see tables 3.3 and 3.4).

(6) We loosely deduce from (5) the key components of a system which would fulfill the requirements (in Chapter 4).

A key feature of the design is the integration of a shared data access layer, which could store context-dependant

information models that could be shared among applications and could bootstrap new applications by allowing

developers to access resources they would not normally have been able to (thus enabling them to develop new

context-related applications).

(7) We propose formulas derived from (5) and (6), that may predict how the network usage at peak times would affect

network traffic and bandwidth (see equation 4.4). These demonstrate that the middleware can operate effectively

in network islands and add to sustainability.

In Chapter 5 we argue that Spring and a combination of other technologies, such as JMX and JUnit, could be used

to develop the system from (6). We also show that other technologies such as PHP can be integrated seamlessly.

We argue that using open source software can also improve sustainability of the DAN middleware project.

The core innovations (or novel insights) of this work can be found in the following:

• The concept of network islands (in Chapter 2);

• the requirements of a middleware for DANs (in Chapter 3);

• a component based design for an ad hoc distributed DAN middleware containing an integrated contextual infor-

mation model (in Chapter 4); and

112

CHAPTER 6. CONCLUSION 6.1. FUTURE WORK

• key lessons learned from several projects which were undertaken to implement middleware solutions (in Chapter

5).

As mentioned in Chapter 5, a key result of this project is the design process which was followed to produce the DAN

middleware design. It is worth noting that the combination of SOA and P2P principles, is fairly novel with little research

in this direction. The alignment of the design with the business analysis of the DAN do make the result new. Further

we hope that the discussion of the process itself may be revealing to readers hoping to find out about component based

software design.

Programming and software design is a lot about dreams and visions. In that sense it can be a dangerous undertaking

with undesired ramifications (see the quote at the beginning of this Chapter and section 5.4.2). To the author it is a

manner of interacting with the world which is at once { within && without | virtual && real | theoretical &&

applied } and thus one of the most deeply satisfying pursuits available to us all.

6.1 Future Work

Throughout this thesis, there are references to work which needs to be done to either refine the logical argumentation

or to add certainty to a posteriori statements (i.e. determined from empirical data). In this section we gather all of

these statements of future imperative, so as to make it clear what kinds of work may follow on from this project.

Mobile aspects relevant to the thesis

Mobile technology is very important to sustainability of rural ICT projects, as it is a very important access technology

(see e.g. section 2.1). While the mobile device as a viewing mechanism is out of the scope here (as are all UI issues),

mobile devices could be included in the middleware architecture if they have a Java Virtual Machine allowing execution

of the middleware. With IEEE 802.15 (Bluetooth) communication methods, such mobile devices can add substantial

weight and new applications to the middleware system without necessarily incurring costs1 on the owners of the devices.

Thus this important technology extension to the architecture should be evaluated from a functional perspective, in

terms of new use cases possible in the DAN. For instance, it could allow email, chat or browsing via the middleware

from mobile devices connected to the DAN, when there are no seats free in the DAN and even from outside of the DAN

during closing hours. Further, many of the assumptions in table 3.4 would need to be reassessed, i.e. a non-functional

reappraisal would also have to follow.

1Excluding electricity costs – if the device is not charged from a renewable cost free source, such as e.g. a private photovoltaic panel.

113

6.1. FUTURE WORK CHAPTER 6. CONCLUSION

P2P topologies

There are several reasons why a structured P2P topology could need to be introduced to the network. Fundamentally

these are: a very much larger maximum number N of nodes in the use cases, and the need for more predictability in the

network despite peer churn. In the former case, using the naive neighbourhood idea (as in early Gnutella protocols, such

as v0.2), separate P2P network islands within the physical network islands may be formed. Also network query flooding

might damage response times. In the latter case, structuring the peer network can reduce unpredictability and irrational

behaviour on the network. This can be done automatically, with no set up or administrative overheads, i.e. without

compromising important requirements concerning administrative overhead. Structuring of the network can occur either

via a peer differentiation, i.e. creating a super-peer network (see e.g. [Wer03]), or via data replication, typically using

DHTs (see e.g. section 2.2.2).

Refinement of mathematical predictors

Predictions about the non-functional performance can be made using equation 4.4, etc. The constants used in these

equations need to be examined as deployment occurs in order to reduce error.

Completion of the walking skeleton

Here we list some of the topics raised around the walking skeleton:

• A messaging subsystem needs to be implemented in a manner that fulfills performance and integration require-

ments, within and between components.

• GlassFish and EJB functionality and performance experiments should be undertaken.

• An experiment with SSO functionality should be undertaken. An evaluation should follow of a middleware design

with stringent SSO and ACL checking policies to determine whether such a design would be secure to the problems

introduced in section 4.5.3.

• Concrete use cases for the staged event driven architecture should be investigated on a component by component

basis, especially at components likely to be handling the majority of messages. Simulations can be run to determine

effectiveness of the method in a particular component architecture.

Development of a prototype

The skeleton should be fleshed out with advanced use cases, such as those presented in sections 4.3 and 5.4.3. The

prototype should then be tested with end-users at a very early stage in order to get early feedback and correct the

114

CHAPTER 6. CONCLUSION 6.1. FUTURE WORK

problem of a lack of business owner in the project. In this manner, the end-users may be motivated to co-create the

product.

A prototype with advanced functionality could also allow experimentation with the sorts of technology which might

not occur to grassroots users. Such advanced experimentation should also occur in the lab2.

2Advanced topics for future consideration:
• Integration of Semantic Web Services.

• Integration of Real-Time Streaming Service, including voice applications (telephony) and video conferencing.

• Security for Mobile Money and Micro-Billing Services.

• Etc. (creativity is the only limit)

115

6.1. FUTURE WORK CHAPTER 6. CONCLUSION

116

Chapter 7

Publications

Publications by the author that directly stem from this work:

• Ronald R. R. Wertlen and Alfredo Terzoli. Peer-to-Peer Web Services for Distributed Rural ICTs (2009) [WT09]

• Ronald R. R. Wertlen. An Overview of ICT Innovation for Developmental Projects in Marginalised Rural Areas

(2008) [Wer08]

7.1 Related publications

These are publications that are in progress or were peer-reviewed and published at scientific proceedings and that have

direct relevance to this work, but which are not a direct result of the work:

• Ronald R. R. Wertlen. Description of a Solar Computer Lab Network in a Marginalised Rural Area of the Eastern

Cape (2009)[Wer09]

• Bobby Jakachira and Hyppolite Muyingi and Ronald Wertlen. Implementation of a web-based E-government proxy

for a marginalized rural population (2008) [JMW08]

• Ronald R. R. Wertlen. DFN Science-to-Science: Peer-to-Peer Scientific Research (2003) [Wer03]

117

7.1. RELATED PUBLICATIONS CHAPTER 7. PUBLICATIONS

118

List of References

[ABZC08] M. Amoretti, M. Bisi, F. Zanichelli, and G. Conte, “Enabling peer-to-peer web service architectures with jxta-

soap,” in IADIS 2008: Proceedings of the IADIS International Conference on Mobile Learning, Conference

CD, Algarve, Portugal, 2008.

[ACG08] R. Ambikar, C. Coward, and R. Gomez, “Information needs and watering holes: public access to information

and ICT in 25 countries,” in 5th Prato Community Informatics & Development Informatics Conference

2008: ICTs for Social Inclusion: What is the Reality? Conference CD, Prato, Italy, Centre for Community

Networking Research, Monash University, 2008.

[AGA+08] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and K. Holley, “SOMA: A method for

developing service-oriented solutions,” IBM Systems Journal, vol. 47.3, pp. 377 – 396, 2008.

[AH00] E. Adar and B. A. Huberman, “Free riding on gnutella,” First Monday, vol. 5:10, Available online:

http://www.firstmonday.dk/issues/issue5_10/adar/index.html. Last visited: 2005-11-09, 2000.

[Ale07] Aleutia, “The aleutia project,” 2007, available online. http://www.aleutia.com/ see also

http://wiki.aleutia.com/. Last visited: 2007-04-13.

[AMM04] P. Aubry, V. Mathieu, and J. Marchal, “ESUP-Portail: open source single sign-on with CAS (central authen-

tication service),” EUNIS 2004: Proceedings of the European University Information Systems conference,

Bled, Slovenia, 2004.

[And05] N. Anderson, “Building digital capacities in remote communities within developing countries: Practical

applications and ethical issues.” Information technology, education and society, vol. 6, no. 3, 2005.

[AP09] J. Antikainen and S. Pekkola, “Factors influencing the alignment of SOA development with business ob-

jectives,” in Proceedings of the 17th European Conference on Information Systems (ECIS 2009), Verona

(Italy), September 2009.

119

LIST OF REFERENCES LIST OF REFERENCES

[AR06] B. Angelov and B. Rao, “The progression of WiMAX toward a peer-to-peer paradigm shift. IEC Newsletter

http://www.iec.org/newsletter/oct06_2/ (visited 2009-05-03),” 2006.

[Art09] C. Arthur, “It’s about money, not reputation,” Guardian Weekly, vol. 181, no. 23, pp. 30–31, 2009.

[Baj07] F. R. Bajwa, “Telecentre technology: The application of free and open source software,” 2007. [Online].

Available: http://www.apdip.net/news/apdipenote19[Lastvisited:2009-01-24]

[BBLV04] G. Barrenechea, B. Beferull-Lozano, and M. Vetterli, “Lattice sensor networks: capacity limits, optimal rout-

ing and robustness to failures,” in IPSN ’04: Proceedings of the 3rd international symposium on Information

processing in sensor networks. New York, NY, USA: ACM, 2004, pp. 186–195.

[BBW09] A. Becker, P. Buxmann, and T. Widjaja, “Value potential and challenges of Service-Oriented

Architectures - a user and vendor perspective,” in Proceedings of the 17th European Conference

on Information Systems (ECIS 2009), Verona (Italy), September 2009. [Online]. Available: http:

//tubiblio.ulb.tu-darmstadt.de/35831/

[BEH+03] S. Batchelor, S. Evangelista, S. Hearn, M. Pierce, S. Sugden, and M. Webb, ICT for Development Contribut-

ing to the Millennium Development Goals: Lessons Learned from Seventeen infoDev Projects. Washington

D.C.: World Bank, 2003.

[BHP06] T. Bures, P. Hnetynka, and F. Plasil, “SOFA 2.0: Balancing advanced features in a hierarchical component

model,” in SERA ’06: Proceedings of the ACIS International Conference on Software Engineering Research,

Management and Applications, Seattle, USA, 2006, pp. 40–48.

[BHP+07] T. Bures, P. Hnetynka, F. Plasil, J. Klesnil, O. Kmoch, T. Kohan, and P. Kotrc, “Runtime support for

advanced component concepts,” in SERA ’07: Proceedings of the ACIS International Conference on Software

Engineering Research, Management and Applications, Busan, Korea, 2007, pp. 337–345.

[BPR01] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE: a FIPA2000 compliant agent development environment,”

in Agents, 2001, pp. 216–217.

[Bre01] E. A. Brewer, “Lessons from giant-scale services,” IEEE Internet Computing, vol. 5, no. 4, pp. 46–55, 2001.

[CD01] J. Cheesman and J. Daniels, UML Components. Addison-Wesley Professional, Boston, 2001.

[CHT03] K. Channabasavaiah, K. Holley, and E. Tuggle, “Migrating to a Service-Oriented Architecture, part 1.”

2003, available online. http://www-128.ibm.com/developerworks/library/ws-migratesoa/. Last visited on

2009-11-15.

120

http://tubiblio.ulb.tu-darmstadt.de/35831/
http://tubiblio.ulb.tu-darmstadt.de/35831/

LIST OF REFERENCES LIST OF REFERENCES

[CLS+05] A. Chand, D. Leeming, E. Stork, A. Agassi, and R. Biliki, “The impact of ICT on rural development in

solomon islands: the PFnet case,” University of the South Pacific, Suva, Fiji, Tech. Rep., 2005.

[Coc05] A. Cockburn, Crystal Clear: A human powered methodology for small teams, O’Hagan, Ed. Pearson

Education Inc., Addison-Wesley, Upper Saddle River, 2005.

[Coh03] B. Cohen, “Incentives build robustness in bittorrent.” in In Proc. First Workshop on Economics of Peer-to-

Peer Systems, Berkeley, USA., June 2003.

[CP02] A. Chaffee and W. Pietri, “Unit testing with mock objects,” 2002, available online.

http://www.ibm.com/developerworks/library/j-mocktest.html. Last visited 2010-01-12.

[Cun09] W. Cunningham, “Programming principles (dry, yagni),” 2009, available online. http://c2.com/. Last visited:

2010-01-05.

[DB09] M. B. Dias and E. Brewer, “How computer science serves the developing world,” Communications of the

ACM, vol. 52, 6, pp. 74 – 80, 2009.

[DEL97] T. S. Dare, E. B. Ek, and G. L. Luckenbaugh, “Method and system for authenticating users to multiple

computer servers via a single sign- on,” US Patent 5,684,950, US Patent Office, Washington DC, 1997.

[DMTT08] S. Dyakalashe, H. N. Muyingi, A. Terzoli, and M. Thinyane, “Cultural and linguistic localization of the

shop-owner interfaces to an e-commerce platform for rural development,” in SATNAC 2008: Proceedings of

the Southern African Telecommunication Networks and Applications Conference, Wild Coast, South Africa,

2008.

[DO04] A. Dymond and S. Oestermann, “A rural ICT toolkit for Africa,” Washington D.C., 2004. [Online].

Available: http://www.infodev.org/en/Publication.23.html

[DTMT07] L. Dalvit, A. Terzoli, H. Muyingi, and M. Thinyane, “The deployment of an e-commerce platform and

related projects in a rural area in South Africa,” International Journal of Computing and ICT Research,

vol. 1, pp. 9–17, 2007.

[eKh09] eKhaya ICT, “SELF solar computer lab project. http://ekhayaict.com/ekhaya ict zwelenqaba.php (last

visited 2009-04-24),” 2009. [Online]. Available: http://ekhayaict.com/eKhayaICTZwelenqaba.php

[FI03] I. T. Foster and A. Iamnitchi, “On death, taxes, and the convergence of peer-to-peer and grid computing,”

Peer-to-Peer Systems II, Second International Workshop, IPTPS 2003, Berkeley, CA, USA, February 21-

22,2003, Revised Papers, vol. 2735, pp. 118–128, 2003.

121

http://www.infodev.org/en/Publication.23.html

LIST OF REFERENCES LIST OF REFERENCES

[FL99] D. A. Farber and R. D. Lachman, “Data processing system using substantially unique identifiers to iden-

tify data items, whereby identical data items have the same identifiers,” United States of America Patent

5,978,791, 1999.

[Fos06] I. Foster, “Globus Toolkit version 4: Software for service-oriented systems,” in IFIP International Conference

on Network and Parallel Computing, Springer-Verlag LNCS, vol. 3779, 2006, pp. 2–13.

[Fou02] Foundation for Intelligent Physical Agents (FIPA), “FIPA abstract architecture specification,” FIPA -

SC00001L, Tech. Rep., 2002.

[GGG+03] P. K. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica, “The impact of DHT

routing geometry on resilience and proximity,” in SIGCOMM, 2003, pp. 381–394.

[Gus08] K. Gush, “Towards a more personalised user experience and better demographic data on the Digital Doorway

public computer terminals.” in 5th Prato Community Informatics & Development Informatics Conference

2008: ICTs for Social Inclusion: What is the Reality? Conference CD, Prato, Italy, Centre for Community

Networking Research, Monash University, 2008.

[GvLPF01] V. Getov, G. von Laszewski, M. Philippsen, and I. Foster, “Multiparadigm communications in Java for grid

computing,” Commun. ACM, vol. 44, no. 10, pp. 118–125, 2001.

[Har02] A. Harwood, “High performance interconnection networks,” Ph.D. dissertation, School of Computers and

Information Technology, Griffith University, Queensland, Australia, 2002.

[HCH+05] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and

A. R. Yumerefendi, “The architecture of PIER: an Internet-scale query processor,” in CIDR, 2005, pp. 28–43.

[Hee08] R. Heeks, “ICT4D 2.0: The next phase of applying ICT for international development,” Computer, vol. 41,

no. 6, pp. 26–33, 2008.

[Hen06] M. Henning, “The rise and fall of CORBA,” Queue, vol. 4, no. 5, pp. 28–34, 2006.

[IBM09] IBM Corporation, “Java Management Extensions (JMX),” 2009, available online.

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp. Last visited 2009-08-28.

[IDR06] IDRC, “Acacia prospectus 2006-2011,” Program and Partnership Branch, International Development Re-

search Centre (Canada), Tech. Rep., 2006.

[Inv08] Inveneo, “Inveneo.” 2008, available online. http://www.inveneo.org/. Last visited 2008-08-12.

122

LIST OF REFERENCES LIST OF REFERENCES

[Jak09] B. T. Jakachira, “Implementing an integrated e-government functionality for a marginalized community in

the Eastern Cape, South Africa. (MSc Thesis),” Master’s thesis, University of Fort Hare, 2009.

[Jav06] Java Community Process (JCP) - JSR3, JSR160, “Java Management Extensions (JMX),” 2006, available

online. http://java.sun.com/javase/6/docs/technotes/guides/jmx/. [Last visited: 2009-12-01].

[JH06] S. Jacobs and M. Herselman, “Information access for development: A case study at a rural community

centre in South Africa,” Issues in Informing Science and Information Technology, vol. 3, pp. 295–306, 2006.

[JMW08] B. Jakachira, H. Muyingi, and R. Wertlen, “Implementation of a web-based e-government proxy for a

marginalized rural population,” in Southern Africa Telecommunication Networks and Applications Confer-

ence, Wild Coast Sun, South Africa. Telkom, Sept 2008.

[JNR09] C. Janiesch, M. Niemann, and N. Repp, “Towards a service governance framework for the Internet of

services,” in Proceedings of the 17th European Conference on Information Systems (ECIS 2009), Verona

(Italy), September 2009. [Online]. Available: http://tubiblio.ulb.tu-darmstadt.de/35831/

[Joh07] D. Johnson, “Evaluation of a single radio rural mesh network in South Africa,” in Proc. 2nd IEEE/ACM

ICTD, 2007.

[JSN+09] J. Jiang, L. Shan, H. Ntareme, A. Doria, M. Zennaro, and B. Pehrson, “Bytewalla:

Delay tolerant networks on android phones: Business idea,” 2009, available Online.

http://www.tslab.ssvl.kth.se/csd/projects/092106/sites/default/files/Business

[JTT09] N. R. Jere, M. Thinyane, and A. Terzoli, “Development of a reward based program for an e-commerce

platform for a marginalized area,” in International Conference on e-Learning, e-Business, Enterprise Infor-

mation Systems, and e-Government (EEE’09), July 13-16, 2009, Las Vegas, USA., 2009.

[KDQ09] M. Khalil, P. Dongier, and C. Z.-W. Qiang, 2009 Information and Communications for Development:

Extending Reach and Increasing Impact. World Bank, 2009, ch. Overview, pp. 3 – 17.

[Ken08] C. Kenny, “ICT: Promises, opportunities and dangers for the rural future,” in Proceedings of the Rural

Futures Conference, M. Warren, Ed. University of Plymouth, April 2008.

[Kro02] A. Kronfol, “FASD: A fault-tolerant, adaptive, scalable, distributed search engine,” Ph.D. dissertation,

Princeton University, May 2002.

[Las96] C. Lassenius, “CORBA basics,” 1996, available online. http://www.soberit.hut.fi/cls/corba

[Mal09] P. Malinverno, “SOA: Where do i start?” Gartner Research, Tech. Rep. G00165547, March 2009.

123

http://tubiblio.ulb.tu-darmstadt.de/35831/

LIST OF REFERENCES LIST OF REFERENCES

[MC08] L. Mavuso and P. Cheriyan, “System prospectus: Poverty eradication programme,” 2008, hardcopy may be

available from the Eastern Cape Government, under Document No. SDEC-00007. Classified.

[McC98] M. K. McCaskill, Grammar, Punctuation, and Capitalization: A Handbook for Technical Writers and Edi-

tors, nasa sp-7084 ed., NASA, Hampton, Virginia, 1998.

[MD05] M. J. Menou and P. Day, “Developing a sense-making framework for collective learning in latin american

community telecenter assessment,” in Paper presented at a non-divisional workshop held at the meeting of

the International Communication Association, New York, 2005.

[Med06] M. Meddie, “Rethinking telecentre sustainability: How to implement a social enterprise approach - lessons

from India and Africa,” The Journal of Community Informatics, Special Issue: Telecentres, vol. 2:3, no. 3,

pp. 265–279. [Online] Available: http://ci–journal.net/index.php/ciej/article/view/324/265, 2006.

[MHF+05] S. M. Mishra, J. Hwang, D. Filippini, R. Moazzami, L. Subramanian, and T. Du, “Economic analysis of

networking technologies for rural developing regions,” in WINE, 2005, pp. 184–194.

[Mid09] Middleware, “ACM/IFIP/USENIX 10th International Middleware Conference, Urbana Champaign, Illinois,

USA,” 2009, available online. http://middleware2009.cs.uiuc.edu (visited on 2009-11-25).

[MSZ01] S. McIlraith, T. Son, and H. Zeng, “Semantic web services,” IEEE Intelligent Systems. Special Issue on the

Semantic Web, vol. 16, no. 2, pp. 46–53, March/April 2001.

[Muc08] T. Muchenje, “Investigating security issues in a converged IEEE 802.x wireless network. (MSc Thesis),”

Master’s thesis, University of Fort Hare, 2008.

[New03] M. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, pp. 167–256,

2003.

[Nje07] S. G. Njeje, “Implementation of a robust, cost effective, e-commerce platform for disadvantaged communities

of the Eastern Cape, South Africa. (MSc Thesis),” Master’s thesis, University of Fort Hare, 2007.

[NTM06] S. Njeje, A. Terzoli, and H. N. Muyingi, “Software engineering of a robust, cost-effective ecommerce plat-

form for disadvantaged communities,” in Southern Africa Telecommunication Networks and Applications

Conference, Cape Town, South Africa., 2006.

[Nwa96] H. S. Nwana, “Software agents: An overview,” Knowledge Engineering Review, vol. 11, pp. 205–244, 1996.

[OLP09] OLPC, “The one laptop per child (OLPC) project,” 2009, available online. http://www.laptop.org/. Last

visited 2009-04-05.

124

LIST OF REFERENCES LIST OF REFERENCES

[Ora01] A. Oram, Ed., Peer-to-Peer - Harnessing the Power of Disruptive Technologies,. O’Reilly, Beijing, 2001.

[OSG07] OSGi Alliance, “About the OSGi service platform, revision 4.1,” 2007, available online.

http://www.osgi.org/Links/Documents. Last visited 2009-12-03.

[oTU07] U. C. on Trade and D. UNCTAD, “ITU/UNCTAD 2007 World Information Society report: Beyond WSIS,”

Geneva, 2007.

[OW07] A. Oram and G. Wilson, Eds., Beautiful Code: Leading Programmers Explain How They Think. O’Reilly,

Sebastopol, 2007.

[PA00] S. Paracer and V. Ahmadjian, Symbiosis: An Introduction to Biological Associations. 2nd ed. Oxford

University Press, 2000.

[Par72] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,” Commun. ACM, vol. 15,

no. 12, pp. 1053–1058, 1972.

[PD07] M. R. Patra and R. K. Das, “SORIG: a service-oriented framework for rural information grid – an implemen-

tation viewpoint,” in ICEGOV ’07: Proceedings of the 1st international conference on Theory and practice

of electronic governance. New York, NY, USA: ACM, 2007, pp. 49–52.

[PNS+07] R. K. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian, and E. A. Brewer, “WiLDNet: Design

and implementation of high performance WiFi based long distance networks,” in NSDI, 2007.

[PP05] D. Pilone and N. Pitman, UML 2.0 in a Nutshell, J. Gennick, Ed. O’Reilly Media Inc., 2005.

[PPKG] C. Pade, R. Palmer, M. Kavhai, and S. Gumbo, “Siyakhula Living Lab: Baseline study report,” available

online. http://www.dst.gov.za/links/cofisa/document/. Last visited: 2010-04-10].

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker, “A scalable content-addressable net-

work,” in SIGCOMM 2001: Proceedings of the conference of the Special Interest Group on Data Communi-

cation, San Diego, USA, 2001, pp. 161–172.

[Sey08] A. Sey, “Public access to ICTs: A review of the literature,” 2008, available online:

http://www.globalimpactstudy.org/wp-content/uploads/2009/02/ipai-lit-review-10-08.pdf [Last visited:

2009-11-23].

[SGM02] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond Object-Oriented Programming.

Addison-Wesley Professional, Boston, 2002, iSBN 0-201-74572-0.

125

LIST OF REFERENCES LIST OF REFERENCES

[SM08] M. S. Scott and H. N. Muyingi, “Investigation and development of an e-judiciary service for a citizen

oriented judiciary system in rural community,” in SATNAC 2008: Proceedings of the Southern African

Telecommunication Networks and Applications Conference, Wild Coast, South Africa, 2008.

[SRS05] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing unstructured overlay topologies in modern P2P file-

sharing systems,” in Internet Measurment Conference, 2005, pp. 49–62.

[SSDN02] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “HyperCuP- hypercubes, ontologies and efficient search

on P2P networks,” Bologna, Italy, 2002.

[Sta06] M. Stal, “Using architectural patterns and blueprints for Service-Oriented Architecture,” IEEE Software,

vol. 23, no. 2, pp. 54–61, 2006.

[STB09] Z. Shibeshi, A. Terzoli, and K. Bradshaw, “Developing toolkit for video-oriented services in the NGN envi-

ronment,” in SATNAC: Proceedings of the Southern African Telecommunication Networks and Applications

Conference, Royal Swazi Spa, Swaziland, 2009.

[Str10] Strix, “Kapenta framework (unpublished technical documentation),” 2010, available online.

http://kapenta.org.uk/. Last visited 2010-01-12.

[Sun09] Sun Microsystems, “Java Enterprise Edition (Java EE),” 2009, available online. http://java.sun.com/javaee/.

Last visited 2009-12-03.

[SWL06] H. Slay, P. Wentworth, and J. Locke, “BingBee, an information kiosk for social enablement in marginalized

communities,” in SAICSIT ’06: Proceedings of the 2006 annual research conference of the South African

institute of computer scientists and information technologists on IT research in developing countries, Gor-

don’s Bay, South Africa. South African Institute for Computer Scientists and Information Technologists,

2006, pp. 107–116.

[TAA+02] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, C.-J. Hugly, E. Pouyoul, and

B. Yeager, “Project JXTA 2.0 super-peer virtual network.” Sun Microsystems. Available online.

http://research.sun.com/spotlight/misc/jxta.pdf. Last visited 2009-04-29., Tech. Rep., 2002. [Online].

Available: http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf

[Tar07] P. Tarwireyi, “Implementation of a network cost management framework for marginalised communities.

(MSc Thesis),” Master’s thesis, University of Fort Hare, 2007.

[TAW03] L. Titchkosky, M. Arlitt, and C. Williamson, “A performance comparison of dynamic web technologies,”

SIGMETRICS Perform. Eval. Rev., vol. 31, no. 3, pp. 2–11, 2003.

126

http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf

LIST OF REFERENCES LIST OF REFERENCES

[Tel09a] Telecentre.org, “http://www.telecentre.org/notes (last visited 2009-04-23),” 2009. [Online]. Available:

http://www.telecentre.org/notes

[Tel09b] Telecom Italia Lab, “Java Agent Development Framework,” 2009, available Online. http://jade.tilab.com/.

Last visited: 2009-12-08.

[TSTC06] M. Thinyane, H. Slay, A. Terzoli, and P. Clayton, “A preliminary investigation into the implementation of

ICT in marginalized communities,” in SATNAC 2009: Proceedings of the Southern African Telecommuni-

cation Networks and Applications Conference, Stellenbosch, South Africa, 2006.

[TT09] M. Thinyane and A. Terzoli, “Universal digital inclusion: Beyond connectivity, affordability and capability,”

in ICTD2009 conference, Doha, 2009.

[TTC09] M. Thinyane, A. Terzoli, and P. Clayton, “EServices provisioning in a community development context

through a JADE MAS platform,” in IEEE/ACM International Conference on Information and Communi-

cation Technologies and Development, Doha, Qatar, 2009.

[TTT07] P. Tarwireyi, A. Terzoli, and M. Thinyane, “Implementation of an Internet access cost management system

for disadvantaged communities,” in SATNAC 2007: Proceedings of the Southern African Telecommunication

Networks and Applications Conference, Sugar Beach Resort, Mauritius, 2007.

[TTW08] M. Tsietsi, A. Terzoli, and G. Wells, “An open service delivery platform for adding value to softswitch

based telephony environments,” in SATNAC 2008: Proceedings of the Southern African Telecommunication

Networks and Applications Conference, Wild Coast, South Africa, 2008.

[TTW09] ——, “Mobicents as a service deployment environment for OpenIMSCore,” in SATNAC 2009: Proceed-

ings of the Southern African Telecommunication Networks and Applications Conference, Royal Swazi Spa,

Swaziland, 2009.

[UN 03] UN ICT Task Force (UNICTF), “Connected for development: Information kiosks and sustainability,” New

York, 2003. [Online]. Available: http://www.unicttaskforce.org

[VDB04] K. Vanthournout, G. Deconinck, and R. Belmans, “A taxonomy for resource discovery,” in ARCS 2004:

Proceedings of the International Conference on Architecture of Computing Systems: Organic and Pervasive

Computing, Augsburg, Germany, 2004, pp. 78–91.

[Vil10] Village Scribe Association, “awarenet,” 2010, available online. http://code.google.com/p/awarenet/. Last

visited 2010-01-12.

127

http://www.unicttaskforce.org
http://www.telecentre.org/notes

LIST OF REFERENCES LIST OF REFERENCES

[WCB01] M. Welsh, D. Culler, and E. Brewer, “SEDA: an architecture for well-conditioned, scalable Internet services,”

SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 230–243, 2001.

[Wer03] R. R. R. Wertlen, “DFN Science-to-Science: Peer-to-peer scientific research,” in TNC 2003: Proceedings of

the Terena Networking Conference, Zagreb, Croatia, 2003.

[Wer06] ——, “Re: Altnet goes after p2p networks with obvious patent (mailing list thread).” 2006, available online.

http://www.mail-archive.com/p2p-hackers@zgp.org/msg00260.html. Last accessed 2009-12-31.

[Wer08] ——, “An overview of ICT innovation for developmental projects in marginalised rural areas,” in 5th Prato

Community Informatics & Development Informatics Conference 2008: ICTs for Social Inclusion: What is

the Reality? Conference CD, Prato, Italy, Centre for Community Networking Research, Monash University.,

2008.

[Wer09] ——, “Description of a solar computer lab network in a marginalised rural area of the Eastern Cape,” 2009,

author’s work in progress for the Centre of Excellence.

[Wik09a] Wikipedia, “Middleware.” 2009, available online. http://en.wikipedia.org/wiki/Middleware. Last visited

2009-07-29.

[Wik09b] ——, “Software agents,” 2009, available online. http://en.wikipedia.org/wiki/Software-agent. Last visited

2009-12-07.

[Wor10] World Wide Web Consortium (W3C), “The xml 1.0 standard.” 2010, available online. http://www.w3c.org/.

Last visited 2010-01-04.

[WT09] R. R. R. Wertlen and A. Terzoli, “Peer-to-peer web services for distributed rural ICTs,” in SATNAC 2009:

Proceedings of the Southern African Telecommunication Networks and Applications Conference, Royal Swazi

Spa, Swaziland, 2009.

128

Appendices

Implemented package hierarchy

src/za/ac/ufh/domain
src/za/ac/ufh/middleware
src/za/ac/ufh/middleware/jxta
src/za/ac/ufh/middleware/ws
src/za/ac/ufh/repository

src/za/ac/ufh/web

test/za/ac/ufh/domain
test/za/ac/ufh/repository
test/za/ac/ufh/middleware
test/za/ac/ufh/middleware/jxta
test/za/ac/ufh/middleware/ws

test/za/ac/ufh/web

Figure 7.1: Spring demonstrator package structures, left Java source, right tests.

HTTP conversation

This appendix is included to demystify the way the web works. The web is driven by human readable string processing

– a powerful argument to follow in its footsteps.

// Open a TCP connection to the web server which is running on port 8080 here.

rrrw@Iridium-2:~>telnet localhost 8080

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

// Our request to the web server:

GET /p2pmwt/siyakhula.htm HTTP/1.1

Host: localhost:8080

// The web server responds. It sends a header and then a message body. The message body is encoded in HTML.

// The header....

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: text/html;charset=ISO-8859-1

Content-Language: en-US

Content-Length: 626

Date: Sat, 09 Jan 2010 13:29:48 GMT

129

CHAPTER 7. APPENDICES

// The body ...

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Siyakhula P2P Middleware </title>

XSD

This appendix is the XML Schema Definition defining the http://ufh.ac.za/schemas/mw namespace, which is the XML

namespace of all the public middleware messages that can be used to communicate with the middleware. Here we define

in an exemplary fashion, the Request and Response required for our demonstrator, namely, the RegisterServiceRequest

and RegisterServiceResponse.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://ufh.ac.za/schemas/mw" elementFormDefault="qualified"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://ufh.ac.za/schemas/mw">

<xsd:element name="Request">

<xsd:complexType>

<xsd:choice minOccurs="0" maxOccurs="1">

<xsd:element ref="RegisterServiceRequest"/>

<xsd:element ref="ServiceRequest"/>

<xsd:element ref="ApplicationRequest"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name="RegisterServiceRequest">

<xsd:complexType mixed="true">

<xsd:all minOccurs="0" maxOccurs="1">

<xsd:element ref="Description"/>

<xsd:element ref="Identifier"/>

<xsd:element ref="WsdlUrl"/>

</xsd:all>

</xsd:complexType>

</xsd:element>

<xsd:element name="RegisterServiceResponse" type="xsd:string"/>

<xsd:element name="Description" type="xsd:string"/>

<xsd:element name="Identifier" type="xsd:string"/>

<xsd:element name="WsdlUrl" type="xsd:anyURI"/>

<xsd:element name="ServiceRequest">

<xsd:complexType mixed="true">

<xsd:sequence>

<xsd:element ref="Identifier"/>

</xsd:sequence>

</xsd:complexType>

130

CHAPTER 7. APPENDICES

</xsd:element>

<xsd:element name="ApplicationRequest">

<xsd:complexType mixed="true">

<xsd:sequence>

<xsd:element ref="Identifier"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

131

	Introduction
	Background
	Aims
	Objectives

	Definitions
	Scope
	Structure

	Literature Review
	Information and Communication Technologies for Development (ICTD In a popular context it is also abbreviated ICT4D.)
	Large ICTD Projects
	Siyakhula Living Lab (SLL)
	The Network Island Phenomenon
	Review of Telecentre Software
	NovelWe use the term ``novel'', instead of ``new'' or ``innovative'', since: the technologies applied in the context may be old ones, not new ones; and by innovation, we understand a novel technology application which has been widely adopted and is being used sustainably, which might also not be the case. ICTs for MRAs

	Software Technology
	Open Source Middleware
	Ad-hoc Distributed Networks (P2P)
	Service Oriented Architecture

	Conclusion

	Methodology and Requirements Engineering
	Methodology
	Requirements Gathering Methodology
	UML Components Methodology

	Applications and Services Analysis
	Current Applications
	Future Applications

	Requirements Specification
	High Level System Envisioning
	Business Concept Model
	A Priori Requirements
	Assumed Network Characteristics
	Use Cases
	Use Case Synopsis
	Shared Assets and Access Rights

	Technology Decision-Making
	Motivation for Open Source
	Motivation for Java
	Motivation for Web Services and especially SOAP-based Web Services
	Motivation for P2P (/ Grid) vs. Central Solutions
	Conflicting Requirements

	System Design and Architecture
	A Fitting Design
	Top-Down View
	Supporting Billing
	More Top-Down Considerations

	System Design
	Business Operations and Rules
	Business Types
	System Interfaces and Types
	Component Specification
	Proposed Component Architecture

	Example Components: eCommerce
	Information Model and Core Data Types
	Core Information Model
	Core Data Types

	Designing Robustness
	Pre- and post-conditions
	System bottlenecks
	System Abuse and Student Projects

	Implementation of a ``Walking Skeleton'' and Results
	Technology Demonstrator based on the Spring Framework
	Demonstrator Overview
	Spring Framework Technology
	Web Services Technology
	JUnit
	Extending the System

	Integrating PHP
	Technology Experiments
	JMX
	Notes

	Results and Discussion
	Lessons Learned
	Middleware is Invisible
	ESTIMA Project

	Conclusion
	Future Work

	Publications
	Related publications

	List of References

