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Preface

This thesis has been motivated by the problem of assessing the statistical
significance of the outcomes from sequence alignment algorithms. Finding
similarities between sequences with entries from a finite alphabet has become
an important task in recent times — especially in biology, where a fast
growing number of sequences from the 4-letter DNA-alphabet or the 20-
letter amino acid-alphabet waits to be analyzed and understood.

In this thesis we are concerned with a class of similarity criteria, that is
widely used in biology. It expresses the similarity of two sequences by giving
an optimized local alignment. A local alignment basically gives the informa-
tion which parts of the sequences are similar and what the similarity looks
like in detail. This local alignment is optimized in the following sense. First
a score is assigned to each possible local alignment of the two sequences.
Here, the scoring scheme should be designed in such a way that scores in-
crease with the degree of similarity in the alignment. Then the maximizing
alignment is determined. This alignment, together with its score, measures
the degree of similarity between the two sequences.

We will see shortly that the scoring schemes are chosen in such a way that
determining the optimal alignment can be done in reasonable time. However
there remains the problem to understand the similarity scale that is given
by this procedure: How high does a score have to be in order to indicate that
the two sequences share some extraordinary similarity? A natural way to
answer this question would be to determine which scores one would observe
when comparing two typical unrelated sequences. If a score observed from
real data is very high compared to those typical scores, then this would
indicate a strong similarity.

Put more mathematically, the term typical unrelated has to be read as
random independent. Thus, the statistical way to answer the above ques-
tion, is to take two sequences of independently chosen random letters and
determine the distribution of the optimal local alignment score.

Although this sounds simple, this is by no means the case. The opti-
mal local alignment score is a complicated quantity, since in its calculation
a maximization over the set of all possible local alignments of the two se-
quences is involved. This makes it difficult to calculate its distribution. In
fact, from the point of view of probability theory, the resulting model is
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closely related to so-called percolation models — a class of models that has
been actively researched during the past two decades, but for which many
challenging problems still wait for their solution.

Outline

In Chapter 1 we start with explaining in more detail how optimal alignments
are defined. Their use in biology will be briefly described. To understand
why alignments are important for biologists it is also necessary to explain
some of the more theoretical biological concepts behind them. Throughout
the thesis we will repeatedly see, why the model is interesting from the
mathematical point of view. Here we start by explaining the relationship
between alignments and percolation theory. This helps understanding the
complexity of the problem. Also the statistics of optimal local alignments
lead to questions which in that form do not appear in percolation theory
but are crucial for this thesis.

In order to better understand the main results of this thesis we give an
extended overview in Chapter 2. The exposition here is heuristical and does
not claim to fulfil the requirements of mathematical precision. Its objective
is to give a readable but yet profound insight into the mathematical ideas
used. Nevertheless we always make clear where in the later chapters the
mathematically precise statements can be found.

In Chapter 3 we leave the world of alignments for a moment and give
our main general result, namely, we characterize the large deviations of
the global maximum of an independent superadditive process with negative
drift. We formulate it in a language that is inspired by large deviations the-
ory of random walks, a setting which provides the right general framework.

Results specific to the model of optimal alignments are given in Chap-
ter 4. These comprise a mathematical precise definition of the model, con-
centration inequalities for the optimal global score, large deviations results
for optimal global and local scores, a phase transition result for the mean
behaviour of the optimal local score and several results about convergence
rates. All the results here and in Chapter 3 are presented in a mathemati-
cally precise way, complementing the heuristical exhibition in Chapter 2.

Finally, we end in Chapter 5, discussing the results and practical issues
related to our results. Also we give an outlook on possible further work.
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Statistik optimaler

Sequenzalignments

Zusammenfassung

Diese Dissertation beschäftigt sich mit statistischen Fragen optimaler Sequenz-
alignments. Optimale Sequenzalignments sind ein wichtiges Werkzeug bei
der automatisierten Suche nach Ähnlichkeiten zwischen DNA- oder Ami-
nosäuresequenzen. Im Labor neu bestimmte Sequenzen werden heutzutage
routinemäßig mit großen Datenbanken bekannter Sequenzen verglichen. Die
dabei verwendeten Programme bestimmen ein optimales lokales Alignment
zwischen der neuen Sequenz und der gesamten Datenbank zusammen mit
dem Score des Alignments. Der ermittelte Score ist ein Maß für die Güte
des Alignments — je höher der Score, desto besser das Alignment.

Bei einer solchen Datenbanksuche stellt sich direkt die Frage nach der
Normierung dieser durch den Alignmentscore definierten Ähnlichkeitsskala.
Selbst wenn alle beteiligten Sequenzen rein zufällig erzeugt wären, und dem-
nach keine systematischen Ähnlichkeiten aufwiesen, würden hohe Scorewerte
oftmals auch per Zufall erzielt werden. Wie hoch muss also ein Score sein,
damit man annehmen kann, dass er nicht auch schon durch Zufall hätte
erzielt werden können? Oder, präziser ausgedrückt: Wie wahrscheinlich ist
es unter dem Nullmdell unabhängiger, zufälliger Sequenzen, optimale lokale
Scores zu erhalten, die eine vorgegebene hohe Schranke übersteigen? Diese
Wahrscheinlichkeit wird auch als der p-Wert der Schranke bezeichnet.

Dieser Frage geht diese Dissertation nach. Dabei untersuchen wir speziell
den Fall optimaler lokaler Alignments, in denen auch Lücken erlaubt sind.

Optimale Alignments

Ein Beispiel eines Alignments zweier kurzer DNA-Sequenzen findet sich im
oberen Teil von Abb. 1.1 auf Seite 2. Die im Alignment übereinander ste-
henden Positionen der Sequenzen werden als zueinander gehörig angesehen,
während mit Hilfe von Lücken die Positionen ausgerichtet werden, für die
es in der jeweils anderen Sequenz keine Entsprechung gibt.

ix



x STATISTIK OPTIMALER SEQUENZALIGNMENTS

Das Ziel ist es, ein möglichst gutes Alignment zweier gegebener Sequen-
zen zu finden. Dazu berechnet man für jedes mögliche Alignment der beiden
Sequenzen wie folgt einen speziellen, additiven Score. Man gibt sich eine
Scoringmatrix K vor, die für jede mögliche Kombination zweier Buchsta-
ben einen Eintrag besitzt. Aus dieser Matrix liest man für jedes alignierte
Buchstabenpaar den entsprechenden Wert ab und summiert diese Werte
auf. Üblicherweise besitzt die Scoringmatrix für Paare gleicher Buchsta-
ben positive und für Paare ungleicher Buchstaben negative Einträge. Die
Scoringmatrix kann dabei so gewählt werden, dass sie gewisse Buchstaben-
kombinationen in den Alignments mehr bevorzugt als andere. Der bis jetzt
berechnete Scorewert wird nun noch verkleinert, um die Anzahl der Lücken
in dem Alignments nicht zu groß werden zu lassen. Hierzu gibt man sich
zwei Parameter δ ≥ 0 und ∆ ≥ 0 vor und subtrahiert für jede Lücke im
Alignment einmal den Wert δ und für jede Gruppe von Lücken einmal den
Wert ∆. Die Parameter ∆ bzw. δ werden deshalb auch als Gap-opening-
bzw. Gap-extension-penalty bezeichnet.

Ein optimales Alignment ist nun ein Alignment, welches die so defi-
nierte Scoringfunktion maximiert. Hierbei unterscheidet man zwischen opti-
malen globalen und optimalen lokalen Alignments. Ein globales Alignment
muss alle Positionen der beiden gegebenen Sequenzen verwenden (wobei
natürlich nicht alle Positionen in alignierten Paarungen verwendet werden
müssen), während in einem lokalen Alignment nur die Positionen aus jeweils
einem beliebigen Teilintervall der beiden Sequenzen beteiligt sein müssen.
Die oben beschriebenen Datenbanksuchverfahren basieren immer auf loka-
len Alignments, da nur diese in der Lage sind Ähnlichkeiten zwischen Teilen
der beiden verglichenen Sequenzen zu finden.

Auch wenn es für zwei gegebene Sequenzen eine sehr große Anzahl mög-
licher Alignments gibt, so gibt es doch Algorithmen, die in der Lage sind, ein
optimales lokales oder globales Alignment in einer Laufzeit zu bestimmen,
die proportional zum Produkt der Sequenzlängen ist. Diese Algorithmen
basieren auf Prinzipien der Dynamischen Programmierung und sind unter
den Namen Needleman-Wunsch- (optimale globale Alignments) und Smith-
Waterman-Algorithmus (optimale lokale Alignments) bekannt.

Lokales und globales Regime

Im folgenden bezeichnen wir mit Sn bzw. Mn den optimalen globalen bzw.
lokalen Score zweier zufälliger Sequenzen der Länge n, wobei alle Buchsta-
ben der Sequenzen unabhängig gemäß einer gegebenen Verteilung µ auf dem
zugrunde liegenden Alphabet A gezogen wurden. Das Verhalten von Mn ist
sehr stark von den gewählten Scoringparametern abhängig. Aus Superaddi-
tivitätsargumenten folgt zunächst

lim
n→∞

E[Sn]

n
= sup

n>0

E[Sn]

n
=: γ ∈ R (1)
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und es stellt sich heraus, dass das Vorzeichen von γ entscheidend für das
Verhalten von E[Mn] ist. Im Fall γ > 0 verhält sich E[Mn] wie E[Sn] —
der interessante Fall ist γ < 0, denn dies bedeutet, dass optimale globale
Alignments langer Sequenzen im Mittel sehr schlechte Scores erzielen. In
diesem Fall besteht bei lokalen Alignments die Möglichkeit, einen hohen
positiven Score zu erzielen, wenn zumindest Teile der beiden Sequenzen
einander ähnlich sind. In der Tat wächst E[Mn] in diesem Fall logarithmisch
in n, genauer gesagt gibt es eine Konstante b > 0 mit

b = lim
n→∞

E[Mn]

2 log n
. (2)

Diese zwei Phasen im Verhalten von Mn wurden zuerst in [AW94] beschrie-
ben. Für die beiden Phasen haben sich die Bezeichnungen globales Regime
(γ > 0) bzw. lokales Regime (γ < 0) eingebürgert.

Die bei der Suche nach lokalen Ähnlichkeiten in Sequenzdatenbanken
verwendeten Scoringparameter müssen sinnvollerweise aus dem lokalen Re-
gime gewählt sein. Hierbei werden für die Buchstabenverteilung µ des Null-
modells üblicherweise die in der Datenbank auftretenden relativen Häufig-
keiten der Buchstaben genommen.

Die weiter unten diskutierten Ergebnisse dieser Dissertation ermöglichen
eine viel besser strukturierte Sicht auf dieses Phasenübergangsresultat als
in [AW94]. Wir diskutieren es deshalb ausführlich in dieser Dissertation,
insbesondere geben wir einen vereinfachten Beweis.

Konzentrationsungleichungen

Nachdem wir nun wissen, dass E[Sn] aus Superadditivitätsgründen asympto-
tisch linear wächst, stellt sich die Frage, wie stark die Verteilung von Sn um
ihren Erwartungswert konzentriert ist. Abschätzungen für solche Streuungen
werden gemeinhin als Konzentrationsungleichungen bezeichnet.

Für Sn wurde die entsprechende Konzentrationsungleichung bereits in
[AW94] bewiesen. Sie besagt, dass eine Konstante c existiert für die gilt

P(|Sn − E[Sn]| ≥ t) ≤ 2 exp

(

− t2

8c2n

)

. (3)

Dies wurde in [AW94] unter Benutzung der Azuma-Hoeffding-Ungleichung
bewiesen. Wir zeigen, dass sich eine vergleichbare, wenn auch geringfügig
schwächere Konzentrationsungleichung auch mit Hilfe einer isoperimetri-
schen Ungleichung beweisen lässt — einer grundlegend anderen Methoden,
die in den letzten Jahren von M. Talagrand (vgl. [Tal96]) entwickelt wurden.

Datenbankvergleich und Vergleich zweier Sequenzen

Im folgenden beschränken wir uns auf Scoringschemata und Buchstabenver-
teilungen aus dem lokalen Regime.



xii STATISTIK OPTIMALER SEQUENZALIGNMENTS

Rekapitulieren wir noch einmal die zugrunde liegende Fragestellung. Be-
zeichnen wir dazu den bei der Bestimmung des optimalen lokalen Alignments
zwischen einer neuen Sequenz und den Sequenzen einer großen Datenbank
erzielten Score mit M̄ und nehmen wir an, dass er einen Wert t erreicht
hat. Aus der Sicht der Statistik müssen wir P(M̄ ≥ t) unter dem Nullmodell
zufälliger, unabhängiger Sequenzen berechnen. Falls diese Wahrscheinlich-
keit sehr klein ist, so würde man die Nullhypothese, dass keine signifikante,
lokale Ähnlichkeit zwischen der neuen Sequenz und irgendeinem Teil der
Datenbank vorliegt, verwerfen und sich das gefundene lokale Alignment ge-
nauer ansehen.

M̄ selbst ist das Maximum von allen Scores, die bei den einzelnen Ver-
gleichen der neuen Sequenz mit den Sequenzen der Datenbank erzielt wur-
den. Unter dem Nullmodell ist M̄ also das Maximum einer gewissen Anzahl
N unabhängiger optimaler lokaler Scores aus dem Vergleich jeweils zweier
Sequenzen. Nehmen wir der Einfachheit halber einmal an, dass alle beteilig-
ten Sequenzen von der gleichen Länge n sind, so sind die N unabhängigen
Scores, über die maximiert wird, alle wie Mn verteilt.

Aus der Extremwerttheorie ist nun bekannt, dass das asymptotische
Verhalten eines Maximums von unabhängig, identisch verteilten Zufallsva-
riablen vor allem durch die Asymptotik des oberen Schwanzes der Vertei-
lung der einzelnen Zufallsvariablen bestimmt wird. Mit anderen Worten, um
P(M̄ ≥ t) zu berechnen, muss man vor allem wissen wie sich P(Mn ≥ t) für
große n und t verhält.

Alignments ohne Lücken

Als Ausgangspunkt für die Beschreibung unserer Ergebnisse zur Verteilung
von Mn im allgemeinen Fall mit Lücken, beschreiben wir zunächst den viel
einfacheren Fall optimaler lokaler Alignments ohne Lücken. Dieser lässt sich
als ein Spezialfall allgemeiner Alignments mit Lücken auffassen, indem man
z. B. ∆ = ∞ setzt. Er wurde bereits 1994 von Dembo, Karlin und Zeitouni
(vgl. [DKZ94a] und [DKZ94b]) vollständig behandelt.

Dort wurde u. a. gezeigt, dass zwei Konstanten θ∗ und K∗ existieren,
sodass gilt

lim
n→∞

P

(

Mn − 2 log n

θ∗
≤ t

)

= exp(−K∗ exp(−θ∗t)). (4)

Die Verteilungsfunktion auf der rechten Seite ist aus der klassischen Extrem-
werttheorie als Extremwertverteilung des Typs I (auch Gumbel-Verteilung)
bekannt. Sie taucht als Grenzverteilung des Maximums mehrerer unabhäng-
iger, identisch verteilter Zufallsvariablen auf, falls diese eine Verteilung mit
einem exponentiell abfallenden (oberen) Schwanz besitzen.

Daran orientiert sich auch der Beweis von Dembo, Karlin und Zeitouni.
Heuristisch formuliert zeigen sie, dass im Fall ohne Lücken Mn aufgefasst
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werden kann als das Maximum von n2 asymptotisch unabhängigen Zufalls-
variablen mit identischer Verteilung, für welche der obere Schwanz asym-
ptotisch wie K∗ exp(−θ∗t) abfällt.

Für uns wichtig ist hierbei vor allem die Charakterisierung der Kon-
stanten θ∗. Bezeichnen wir mit Λ(λ) die logarithmierte momenterzeugende
Funktion des Scores eines unter dem Nullmodell zufällig gewählten Buchsta-
benpaares, so ist θ∗ gegeben durch die eindeutig bestimmte, positive Lösung
von

log E[exp(λK(X,Y ))] =: Λ(λ) = 0. (5)

Für den Schwanz der Verteilung von Mn lässt sich (4) lesen als

P(Mn ≥ t) ∼ n2K∗ exp(−θ∗t). (6)

Dies ist die eigentliche Aussage, die benötigt wird, um die oben formulierte,
statistische Fragestellung in der Praxis zu beantworten. Es wäre wünschens-
wert, eine ebenso genaue Kenntnis der Asymptotik des Schwanzes der Ver-
teilung von Mn für den Fall optimaler lokaler Alignments mit Lücken zu
besitzen. Die Resultate der vorliegenden Arbeit sind ein Schritt in Richtung
dieses Ziels.

Große Abweichungen

Auf der Ebene der großen Abweichungen bedeutet (6), dass

lim
n,t→∞

−1

t
log P(Mn ≥ t) = θ∗

gilt, solange t = o(n) und log n = o(t) erfüllt ist. Eines unserer Hauptergeb-
nisse ist, dass dieses Ergebnis auch für den Fall optimaler lokaler Alignments
mit Lücken gilt. Wir zeigen außerdem, dass sich die oben beschriebene Cha-
rakterisierung von θ∗ in natürlicher Weise auf den Fall mit Lücken fortsetzen
lässt.

Hierzu definieren wir zunächst für jedes n die logarithmierte momenter-
zeugende Funktion von Sn als

Λn(λ) := log E[exp(λSn)].

Aus Superadditivitätsargumenten folgt für λ ≥ 0 die Existenz der Grenz-
funktion

Λ(λ) := sup
n>0

1

n
Λn(λ) = lim

n→∞

1

n
Λn(λ). (7)

Bei Alignments ohne Lücken stimmt diese Definition von Λ mit der Defi-
nition in (5) überein, denn es gilt (1/n)Λn = Λ für alle n. Im allgemeinen
Fall mit Lücken jedoch bilden die Funktionen (1/n)Λn eine echt aufsteigende
Folge und sind alle von der Grenzfunktion Λ verschieden.

Unser zentrales Theorem ist nun
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Theorem D.1. Es sei θ∗ die eindeutig bestimmte, positive Lösung von

Λ(λ) = 0,

dann gilt

lim
n,t→∞

−1

t
log P(Mn ≥ t) = θ∗,

solange t = o(n) und log n = o(t) erfüllt sind.

Desweiteren zeigen wir, dass die in (2) definierte Wachstumskonstante
b des logarithmischen Wachstums von E[Mn] mit dem eben definierten θ∗

durch die Gleichung

b =
1

θ∗

verbunden ist.
Der Beweis von Theorem D.1 beruht zum einen auf Superadditivitätsar-

gumenten, sowie auf Konvexitätsargumenten. Dabei kommt ein bereits 1974
von Hammersley in [Ham74] bewiesenes Ergebnis über Große Abweichungen
unabhängiger, superadditiver Prozesse zum Einsatz. Wir diskutieren dieses
Ergebnis ausführlich, besonders den Zusammenhang zu dem in der jüngeren
Theorie der Großen Abweichungen wichtigen Gärtner-Ellis-Theorem. Des-
weiteren benutzen wir die oben beschriebene Konzentrationsungleichung (3),
die gewisse Eigenschaften der Grenzfunktion Λ sichert.

Konvergenzraten

Im Zusammenhang mit Superadditivitätsargumenten für optimale globale
Alignments sind uns bis jetzt zwei Grenzübergänge begegnet. Zum einen in
der Definition (1) von γ, zum anderen bei der Definition (7) der Grenzfunkti-
on Λ. Aufgrund einer speziellen Zerlegungseigenschaften optimaler globaler
Alignments ist es möglich, in beiden Fällen genauere Aussagen über die
Konvergenzgeschwindigkeiten zu machen. Wir haben folgende Ergebnisse.

Theorem D.2. Es existiert eine Konstante c, so dass für n groß genug gilt

E[Sn] ≤ nγ ≤ E[Sn] + c(n log n)1/2.

Theorem D.3. Es existiert eine Konstante c, so dass für alle n und alle
λ ≥ 0 gilt

0 ≤ Λ(λ) − 1

n
Λn(λ) ≤ 1

n
λc +

1

n
log(2n + 1).

Die bei beiden Ergebnissen benutzte Zerlegungseigenschaft optimaler
globaler Alignments beruht auf einer grafischen Darstellung von Alignments
durch Pfade in einem speziellen 2-dimensionalen Gitter. Anhand dieser Dar-
stellung wird auch deutlich, dass optimale Alignments aus mathematischer
Sicht sehr eng mit Perkolationsmodellen verwandt sind. Im Gebiet der Per-
kolationsmodelle sind, trotz sehr aktiver Forschungstätigkeiten in den letzten
Jahren, noch viele der zentralen Probleme offen.
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Feinere Asymptotik

Unserem Ziel, eine feinere Asymptotik für P(Mn ≥ t) angeben zu können,
sind wir insofern näher gekommen, als wir zeigen können, dass eine Kon-
stante c existert, sodass gilt

P(Mn ≥ t) ≤ cn2t2 exp(−θ∗t).

Das Entscheidende bei dieser Abschätzung ist, dass exp(−θ∗t) der einzige
exponentielle Term in t ist. Ansonsten gibt es auf der rechten Seite nur
noch einen Term in t, der polynomial wächst. Wir vermuten, dass die obere
Abschätzung in diesem Sinne scharf ist, d. h., dass es einen Exponenten η
gibt, so dass auch eine untere Abschätzung der Form

P(Mn ≥ t) ≥ c′n2tη exp(−θ∗t)

gilt. Auch wenn wir hierfür keinen rigorosen Beweis liefern können, so haben
wir doch einen Ansatz, in dem Theorem D.3 eine entscheidende Rolle spielt.

Praxisrelevanz der Ergebnisse

In der Biologie haben sich mittlerweile einige Software-Werkzeuge etabliert,
in denen die Ähnlichkeitssuche mittels optimaler, lokaler Alignments imple-
mentiert ist. Dabei wird oft auch ein p-Wert angegeben, um den Anwendern
eine bessere Bewertung der gefunden Ergebnisse zu ermöglichen. Hierbei
wird allgemein angenommen, dass auch im Fall mit Lücken für zwei Kon-
stanten K∗ und θ∗, die natürlich von den zugrunde liegenden Scoringpara-
metern abhängen, gilt

P(Mn ≥ t) ∼ n2K∗ exp(−θ∗t). (8)

Diese Vermutung basiert zum Einen auf dem rigorosen Ergebnis im Fall ohne
Lücken und zum Anderen auf Simulationsstudien. Von einem Beweis dieser
Vermutung ist man allerdings noch um einiges entfernt. Das Hauptergebnis
der vorliegenden Arbeit sichert das Analogon von (8) zumindest auf einer
gröberen (nämlich der logarithmischen) Skala. In der Tat ist bei der Berech-
nung des p-Wertes für sehr große t nur der führende Teil der Asympotik
interessant. Dies wurde auch in der praxisorientierten Literatur erwähnt.

Darüber hinaus geben unsere Ergebnisse unter der Annahme, dass (8)
korrekt ist, eine neue Charakterisierung des Parameters θ∗ aufgrund von
Theorem D.1. θ∗ lässt sich zwar nicht direkt als die eindeutig bestimmte,
positive Lösung von

Λ(λ) = 0

berechnen, da Λ selbst als Grenzfunktion nur annäherungsweise bestimmt
werden kann. Bezeichnet man allerdings für jedes n mit θ∗n die eindeutig
bestimmte, positive Lösung von

Λn(λ) = 0,
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so folgt aus (7)
θ∗n ↘ θ∗, n → ∞.

Ausserdem lässt sich in diesem Grenzübergang die Konvergenzrate mit Hilfe
von Theorem D.3 abschätzen als

θ∗n = θ∗ + O

(
log n

n

)

.



Chapter 1

Introduction

In this introduction we give a basic overview of the role that alignments
play in biology and mathematics. Alignments are an important tool for
biologists to get information about the relations between different DNA-
or amino acid-sequences. The usage of this tool leads to the mathematical
questions on which this thesis is focused. From the mathematical point of
view, alignments are best considered to be a special model from the class of
percolation models.

1.1 Alignments and biology

1.1.1 Alignments and genealogies

Biologists consider similarities found in two DNA- or amino acid-sequences
often to be caused by common descent. Suppose you have two pieces of
DNA from which you know that they both stem from the same ancestral
sequence. In the process of inheritance (from cell to cell or from organism
to organism) the information in the ancestral sequence has been copied over
and over again; a process that opens the possibility of a great variety of mu-
tational events. Knowing the ancestral sequence and knowing the complete
genealogy, i.e. all the changes the sequences underwent during inheritance,
would enable us to exactly describe the relationship between the two se-
quences. However, this information is usually not available to us and what
we need is a good guess at how the two sequences are related.

Biologists consider the two main forms of mutational events to be sub-
stitutions and insertions/deletions. Substitution means that in the copying-
process some letter at some position is replaced by a different letter. Inser-
tions and deletions clearly refer to the situation, where one or several letters
are inserted or deleted during copying.

Considering only these two basic types of mutational events, a guess at
how two given sequences might be related should state

1
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Alignment:

ancestral sequence:

?
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†

Figure 1.1: An example for an alignment of two DNA sequences and a ge-
nealogy which is presented by this alignment. Substitution events are marked
by bullets (•), insertion and deletion events are marked by stars (?) and
crosses (†), respectively. Observe that this is only one of many possible
genealogies that are compatible with this alignment.

(i) which of the positions in the sequences are homologous, i.e. which of
the letters stem from the same letter in the ancestral sequence (but
might or might not have been changed by some substitutions) and

(ii) where (and which) letters have been inserted or deleted.

This information can conveniently be given using a gapped alignment, mean-
ing that one writes down the sequences such that the homologous positions
are aligned vertically and gaps in one or the other sequence are used at
positions where letters have been inserted or deleted. For an example see
Figure 1.1.

Recall that we wanted the alignment to be a good guess at the relation-
ship between the two sequences. The value of an alignment can only be
judged if we fix some criterion for the alignment’s quality. To explain how
such a criterion can be chosen in a biologically meaningful way, we have to
explain a few more concepts.

1.1.2 The stochastic process of mutations

On the level of the letter sequences the process of evolution is often modelled
as a stochastic process. To keep the story simple, substitutions are usually
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modelled via a continuous-time Markov-process that acts independently on
the different letters. For DNA, the most simple substitution model is the
Jukes-Cantor model ([JC69]), where all possible substitutions occur with the
same rate. Of course, much more complicated models are conceivable, the
next level being one that has different rates for transitions and transversions.
It is also possible to model the substitution-process on the amino acid-
level. In that case the substitution rates differ a lot between different letter
combinations. Still, rate matrices are usually taken to be symmetric, since
one wants the stochastic process to be time-reversible.

Also the process of insertions and deletions has to be modelled. The
classical model for this has been developed by J. L. Thorne, H. Kishino and
J. Felsenstein ([TKF91]). Roughly speaking, after a random time it chooses
a random position in the sequence and inserts or deletes a random number
of letters at that position. Again, this process is independent at different
positions.

With this stochastic process on the level of letter sequences at hand, we
can also say something about the quality of alignments. Take two sequences,
supposing one of them is the ancestral of the other and the mutation process
evolved over some fixed amount of time t. Each of the possible ways the
mutation process might have evolved has

(i) a certain probability to occur and

(ii) implies a certain alignment of the two sequences.

So what we get in fact is a probability distribution on the set of all alignments
of the two sequences: Just take a given alignment and calculate the probabil-
ity that the history was such that it produced this very alignment. We can
now answer the question about a biologically meaningful good alignment by
just taking the Maximum Likelihood alignment, i.e. the one for which this
probability is maximized.

A closer look at how the stochastic process of mutations is modelled gives
that calculating the probability of an alignment is essentially equivalent to
calculating a certain additive score of the alignment, which we will shortly
explain in more detail. The basic feature here is that this score increases with
the alignment’s probability. Hence, calculating the Maximum Likelihood
alignment is equivalent to calculating the maximum score alignment. Details
of this correspondence can be found e.g. in the article of Thorne et al.
([TKF91]) or the book of Durbin et al. ([DEKM98]).

The additive score we have just mentioned is defined as follows. First,
there is a summand for each pair of aligned letters in the alignment. The
values for the summands are taken from the scoring matrix, which has entries
for all possible letter pairings. Those entries of course depend on the chosen
model for the mutation process and on the time t. They are usually positive
for pairs of equal letters and negative for pairs of different letters. The most
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classical family of such scoring matrices are the PAM-matrices (PAM for
accepted point mutations). They have been derived from a probabilistic
model that has been adapted to a certain set of given aligned sequences.
For details cf. [DSO78].

Second, for each gap in the alignment there is a penalty subtracted. The
calculation of this penalty is based on two nonnegative parameters ∆ and
δ. For each gap subtract ∆ once and subtract δ multiplied by the length
of the gap. Thus the gap-penalty is an affine linear function in the gap’s
length. The parameters ∆ and δ are called gap-open and gap-extension
penalty, respectively. Again, the values of these two parameters depend on
the underlying stochastic process and on the time t.

As we have already mentioned, determining the maximum score align-
ment is equivalent to determining the Maximum Likelihood alignment. At
that stage it is not yet clear if, for any two given sequences, this maxi-
mization can be done in reasonable time. Fortunately, the situation is such
that this is the case. Using Dynamic Programming techniques, an algo-
rithm can be implemented which finds the maximal score alignment of two
given sequences in time proportional to the product of the sequence lengths.
Dynamic Programming techniques are especially convenient here, since the
mutation process can be interpreted as a certain Hidden Markov model,
which has the two dependent letter sequences as its output. Details about
Hidden Markov models, Dynamic Programming and, especially, alignment
algorithms can be found in [DEKM98]. In the biological world the algorithm
that determines the optimal (global) alignment of two given sequences, is
known as the Needleman-Wunsch algorithm (cf. [NW70]).

1.1.3 Getting rid of the ancestral sequence

We have just described how an optimal score alignment can be interpreted as
a Maximum Likelihood alignment under some stochastic model of evolution,
when one of the sequences is the ancestral and the second sequence has
evolved from it. However, usually, when we are given two related sequences,
it is not the case that one of them is the ancestral of the other, but both
stem from some ancestral sequence that is not available.

In order to circumvent this problem, the stochastic process of mutations
is taken to be time-reversible. This roughly means that if we are given two
typical letter sequences and we know that one of them is the ancestral of
the other, we can not say which of them is the ancestral one. This is also
reflected by the fact that the additive scoring system we have just described,
does not depend on which sequence is on top and which one is on the bottom
of the alignment. Here the term typical refers to sequences that one observes
after the process of mutations has acted for a very long time on some starting
sequence.

In our situation this time-reversibility means that we can change the time
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Figure 1.2: Since the process of mutations is time-reversible, one can always
assume that one of the two sequences is the ancestral of the other.

direction at one branch of our geneology in Figure 1.1 and therefore always
assume that for two given sequences one is the ancestral of the other. This
principle is shown in Figure 1.2. The mathematical details can be found in
[TKF91].

1.1.4 Local similarities

Up to now we have only described the situation, where one is interested in
an optimal alignment that relates the whole of the two given sequences. This
kind of optimal alignment is therefore usually called optimal global align-
ment. However, it is often the case that one does not know whether there
is a relationship between all of the sequences. In this case it makes more
sense to search for an optimal alignment of two optimally chosen subinter-
vals of the sequences. One speaks then of an optimal local alignment. On
the score side, this difference is only expressed in the way gaps at the two
very ends of the alignment are treated. If it is allowed to have arbitrar-
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ily long gaps at one or both of the ends at no cost, then the optimization
leads to the optimal local alignment. The corresponding algorithm is known
as Smith-Waterman algorithm (cf. [SW81]). Again it is based on Dynamic
Programming techniques and has a run-time which is proportional to the
product of the sequences lengths.

1.1.5 Alignments in biological practice

In biological practice alignments are used in two main ways.

The first concerns the detection of similarities between a newly deter-
mined sequence and a database of known sequences. In the past years the
techniques for determining new DNA or amino acid sequences have under-
gone an unexpected development and acceleration. It is simply due to the
quantity of newly determined sequences that it is impossible to examine
them one by one. Automatized mechanisms are needed to get a first idea of
whether a sequence contains some interesting parts.

Searching for extraordinarily good alignments across a database of known
sequences is such a mechanism. The most popular being BLAST (from:
basic local alignment search tool, cf. [AGM+90]) and FASTA (cf. [PL88]).
In principle, such tools compare the query sequence with each sequence in
the database, every time determining an optimized alignment together with
its score. Then the best of those alignments are given back. Searching for
local alignments makes sense, since the sequencing does not necessarily start
or stop at biologically meaningful positions on the molecule. BLAST and
FASTA both use the additive scoring scheme just described, but they do
not use an exact Smith-Waterman algorithm to determine their optimized
alignments. Instead, they use faster algorithms for performance reasons. An
implementation of the exact Smith-Waterman algorithm is available in the
usual FASTA packages under the name SSEARCH.

BLAST and FASTA are available for both DNA and amino acid se-
quences. For the 4-letter DNA alphabet the required scoring matrices are
relatively small. The simplest matrices distinguish only between matches
and mismatches. These matrices correspond to the Jukes-Cantor model of
substitutions. For the 20-letter amino acid alphabet, the most popular scor-
ing matrices are the so-called PAM and the BLOSUM ([HH92]) matrices —
they can be used in both packages.

The choice of the gap penalties is another crucial issue. Choosing too
small gap penalties leads to scoring schemes which incorporate into the op-
timal alignment as many matching letter pairs as possible, the gap sizes
between those matching letter positions playing only a minor role. Such
scoring schemes would be unable to detect local similarities between the
sequences, since scores increase with the number of letters used in the align-
ment. It is therefore necessary to choose high enough gap penalties. On the
other hand, if gap penalties are chosen too large, one prevents the occurence



1.1. ALIGNMENTS AND BIOLOGY 7

of gaps in optimal alignments. This is also not desirable, especially if one
wants to detect distant relationships between sequences. We see that the
scoring scheme has to be chosen carefully in order to have the necessary
sensitivity and produce the desired results in the database search.

Optimal global alignments are central for the second way in which align-
ments are used. As already mentioned above, alignments can be interpreted
as a statement on the details of the relationship between two sequences.
Those details might, e.g., be needed to construct phylogenies. A good global
alignment of two sequences is needed, since unrelated parts of the sequences
can be discarded beforehand. Again, the scoring scheme has to be chosen
carefully regarding the biological needs.

In this thesis we are mainly concerned with problems arising from the
first use of alignments just described. Especially, we are interested in the
statistical problems related to it.

1.1.6 The main problem: statistical significance

The main problem, when searching for similarities between a new sequence
and a large collection of sequences in a database, is how to evaluate the
result. The output of the alignment algorithm consists of an optimal local
alignment together with its score. Somehow, the score quantifies the degree
of similarity that can be found in the alignment. But how high does a score
have to be in order to indicate a similarity that is worth looking at? This
question can be best answered by calculating the statistical significance of
the score value.

Statistical significance means: Suppose we would build up the entire
database with independent random sequences and would also take an inde-
pendent random query sequence. What is then the probability of getting
an optimal alignment score at least as high as the value in question? If the
probability is small, then this might indicate a degree of similarity that is
unlikely to occur only by chance.

We have already mentioned in the Preface that we use independent ran-
dom sequences to give sense to the notion of unrelated sequences. For a sta-
tistical evaluation of alignments scores it is necessary to agree on a stochastic
model to generate the random sequences. This model then takes the usual
role of the null model in statistics. In accordance with widespread biological
practice, we use the simplest model where all letters of the random sequence
are drawn independently according to some distribution on the underlying
alphabet. The letter-weights of this distribution are chosen according to
letter-frequencies observed in real sequences (usually according to [RR91]).

The main problem with this simple model is that there is some statisti-
cal evidence that real-world sequences do in fact not look like the sequences
produced by this model. Especially for DNA sequences, there are strong
correlations between every third letter, since the reading-frame for trans-



8 CHAPTER 1. INTRODUCTION

lation into the amino acid alphabet is three letters long. Therefore, other
— more refined — models might be more appropriate for the generation
of unrelated sequences. Nevertheless, from the mathematical point of view,
already the simple null model is difficult enough, so we leave the problem of
dealing with more complicatd null models for further investigations.

From the practitioner’s point of view one can still try to use simulations,
if one is not able to characterize the optimal score’s distribution theoretically.
But observe that there are two issues. First, since we are interested in
the extreme upper tail of the distribution, it is clear that a naive Monte
Carlo-simulation would need a very large number of samples and therefore
be very time-consuming. Second, one would like to know the distribution
for different alphabets, different sequence-compositions and, most of all,
different scoring schemes. Ideally, a practitioner should be allowed to choose
any of these ingredients as he wants to. It would thus be desirable to be
able to characterize the optimal score’s distribution without doing time-
consuming simulations for each set of parameters. Up to now this problem
has been circumvented in the existing implementations by only allowing a
restricted set of base compositions, scoring matrices and gap penalties.

1.1.7 Many sequences vs. two sequences

Although the final aim is to evaluate the optimal score produced by a com-
parison of one sequence with all the sequences from a large database, this
can easily be reduced to the problem of comparing two sequences. We
agreed that under the null model all the sequences involved are indepen-
dent, thus each comparison of the query sequence with a sequence from
the database produces an independent optimal score. The overall optimal
score of the database comparison is then simply the maximum of these
independent scores. The statistics behind maxima of independent random
variables is quite well understood, a classical reference being the book of Em-
brechts, Klüppelberg and Mikosch ([EKM97]). The determining quantity is
the asymptotic behaviour of the upper (since we are doing a maximization)
tail of the single score’s distribution. In the case of optimal local alignments
without gaps this has also been described by R. Spang and M. Vingron in
[SV98]. There it is also discussed which problems arise from working with
real databases.

So we can finally formulate the proper statistical problem we address in
this thesis. Consider the optimal local alignment score one obtains when
comparing two sequences of independent random letters. How does the tail
of this score’s distribution behave asymptotically, when both the score and
the sequence lengths tend to infinity?

This question basically has two parts.

(i) There should be some functional relationship between the score and
the sequence lengths in the asymptotic approximation. This relation-
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ship should be universal in the sense that it should not depend on
input parameters such as letter distribution, scoring scheme, etc.

(ii) On the other hand there will be some quantities in the asymptotic
approximation, which depend on those input parameters. The exact
form of this dependence has to be determined in order to give useful
results for practice.

1.2 Optimal alignments and percolation theory

We start by describing the relationship between optimal alignments and
percolation models. When looked at from the formal point of view, optimal
alignments are closely related to classical models from percolation theory,
especially to first-passage percolation. The classic questions from percola-
tion theory appear also to be central to optimal alignments. Anyhow, new
features and problems, unknown to classical percolation theory, appear in
our setting. These new aspects derive from the concept of optimal local
scores. In classical percolation models there is no equivalent to this concept.
The questions arising from it are merely related to certain aspects of the
large deviations theory of random walks. It is thus the combination of these
two fields that justifies from the mathematical point of view why one should
deal with it. We will now describe these issues in more detail.

1.2.1 Classical first-passage percolation

First-passage percolation has been introduced 1965 by Hammersley and
Welsh in [HW65]. In fact it was the initial spark for the development of
the theory of subadditive processes. The main surveys of the subject are
still Kesten’s Saint Flour lecture note [Kes84] and Smythe and Wierman’s
book [SW78]. We start by a short description of the model and the basic
results.

We restrict ourselves to the two-dimensional case. Consider the lattice
with vertex set Z2 and with edges between all pairs of neighbouring vertices.
Assign to each edge e a random variable Te, where the Te’s should be non-
negative and drawn independently from the same distribution. A path π in
the lattice is a sequence of neighbouring edges that connects one vertex with
some other. To each path a random variable Tπ is assigned by summing up
the Te’s along the path.

The term percolation refers to the following interpretation. Think of
water percolating through a porous medium. The geometric structure of
the medium is given by the lattice, but the medium is very inhomogeneous
and this is modelled by the random variables. Interpret Te as the time
the water takes to travel through edge e. Then Tπ is the time it takes to
travel through the path π. If the water is supplied at the origin, how long
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does it take until it reaches a certain point x? To answer this question,
minimize Tπ over all paths that connect the origin with the point x and
denote the resulting quantity by S0,x. Percolation theory is concerned with
the behaviour of this random variable, or variants of it, in the asymptotics
where x is far away from the origin.

To explain some of the results, denote by Ct the set of lattice points,
for which S0,x ≤ t. Ct is a randomly-growing connected cluster in Z2 which
contains the origin. It follows from subadditivity arguments that asymptoti-
cally this cluster grows linearly with a deterministic shape B ⊆ R2, meaning
that

Ct

t
−−−→
t→∞

B a.s.

For some unit vector e ∈ R2, the value

γe := sup{λ > 0: λ · e ∈ B}

is usually called time constant of direction e. The shape B is known to be
convex, but its proper form depends on the distribution of the Te’s. There is
no general result about this dependence of B on the underlying distribution,
not even for special directions of growth.

Even harder is the question of the fluctuations of Ct around tB. It is
conjectured (cf. [NP95] and the references therein) that they are of the order
of t1/3, but there has been no rigorous proof up to now. It is interesting
that such a behaviour of the fluctuations is conjectured for a much broader
class of growth models. We will not go deeper into this, but merely refer to
the survey article of [KS91], which gives a good introduction into the field.

Much of what we have just stated holds also for the special model of
directed first-passage percolation. Here, the set of paths, over which one
is allowed to minimize, is restricted to increasing paths, where increasing
means that the vertices visited by the path have to increase in the usual
partial ordering on Z2. We mention this as we will see in the next subsection
that optimal alignments are very closely related to directed percolation.

1.2.2 Optimal alignments as a percolation model

There is a way of graphically representing alignments of two sequences that
immediately reveals the connections to percolation theory. We will explain
it here in an informal way, precise definitions can be found in Section 4.1.
This correspondence has been known at least since Arratia and Waterman’s
paper [AW94].

Consider Figure 1.3. There, the alignment from Figure 1.1 is represented
by a path in some special lattice. In fact, any possible alignment of the two
sequences can be drawn as some increasing path into this grid. Writing the
sequences as shown to the sides of the grid’s rectangle, gives a one-to-one
correspondence between aligned positions in the alignment and a collection
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Figure 1.3: Representing the alignment from Figure 1.1 by an increasing
path in a special lattice. Diagonal edges in the path correspond to aligned
positions in the sequences.

of diagonal edges in the grid that can be connected by horizontal and vertical
edges to result in an increasing path. These horizontal and vertical edges
correspond to the unaligned positions.

Let us now see that the score of an alignment can be calculated in a way
that strongly reminds of first-passage percolation theory. First we assign
a value to each edge in the lattice. For a diagonal edge, read off the two
letters belonging to it and take the corresponding entry from the scoring
matrix. To the horizontal and vertical edges, just assign the negative of
the gap-extension penalty. Observe that randomizing the sequences leads
to a random assignment of values to the diagonal edges. An important
difference to classical first-passage percolation is that these values are no
longer independent, but carry a special dependence structure.

The score of the alignment can now be calculated as follows. We start by
summing up the edge-values along the path that represents the alignment.
Were the gap-open penalty equal to zero, we would be done. But in cases
where the gap-open penalty is unequal to zero we have to subtract it once



12 CHAPTER 1. INTRODUCTION

for each of the horizontal and vertical stretches in the alignment path. This
way of assigning a value to each increasing path in the lattice is quite similar
to first-passage percolation. The extra part, which has its origins in the gap-
open penalty can be interpreted as a penalty for the path’s roughness.

Optimal alignments can now be determined in much the same way as in
first-passage percolation (the only difference being the use of a maximization
instead of a minimization; thus it would be more appropriate to speak of
last passage percolation). For the optimal global alignment, maximize the
score over all increasing paths that start in the lower left corner and end in
the upper left corner of the grid. For the optimal local score, maximize over
all increasing paths that start and end at any two vertices.

As we have already mentioned above, we want the randomness in this
picture to be generated by two independent random letter sequences. So let
us suppose that X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) are two sequences of
letters from the underlying alphabet A, in which all letters have been drawn
independently according to a given distribution µ on A. Writing these two
infinite sequences along the axis as in Figure 1.3, we get a percolation model
on the whole of the lattice, in which the diagonal values are randomized. If
we denote the scoring matrix by K, then the edge that connects the vertices
(i− 1, j − 1) and (i, j) in the lattice, gets the value K(Xi, Yj). Observe that
for the square [0, n]2 in the lattice, we have a total of n2 diagonal edges to
which values are assigned but only 2n independent random letters which
generate this random environment. It is clear that this produces certain
dependences between the diagonal values.

The two basic quantities needed in the following are the optimal global
and the optimal local score of two length n sequences. We will denote them
by S0,n and M0,n, respectively. It is clear that S0,n is the score of the
optimal path which connects (0, 0) with (n, n), whereas M0,n is the optimal
score among all paths that start and end in the square [0, n]2.

1.2.3 Questions arising from the model of optimal scores

The basic results for S0,n can, as in classical percolation theory, be derived
using superadditivity. Therefore again we have that S0,n grows asymptoti-
cally linearly in n, meaning that

lim
n→∞

S0,n

n
= γ a.s.,

where

γ := sup
n>0

E[S0,n]

n
= lim

n→∞

E[S0,n]

n

(the last equation being an existence statement for the limit). Now γ should
rather be called growth constant instead of time constant, since the values
we assigned to the edges can be negative.
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In fact, γ can even be negative. When this is the case, the average
optimal global score of two sequences deteriorates when the sequences get
longer. This turns out to be the interesting case when we are searching for
local similarities. It prevents us from just taking the longest alignment in
order to accumulate as much of the score as we can. Instead, if there are local
parts in the sequences which share some similarity, an optimal alignment of
those subparts gets a positive score. The best of those similarity-sharing
subparts are then found by the optimal local alignment algorithm.

Therefore, in the case of a negative γ, the distribution of the optimal
local score will be of a completely different character than that of the optimal
global score. Loosely, we could say that we are looking for good local parts in
a bad global environment. It is in this regime, where we want to characterize
the distribution of the optimal local score of two random letter sequences.

The fact that the optimal local score behaves completely different de-
pending on whether γ is positive or negative, has first been observed by
Arratia and Waterman in [AW94]. They call this phenomenon a phase tran-
sition for the optimal local score. The two phases described are the global
regime, where γ > 0 and the optimal local score behaves basically as the
optimal global score, and the local regime, where γ < 0. Since the main
results of this thesis can be used to simplify the original proof in [AW94],
we will come back to this later in Section 4.7. We are primarily interested
in the local regime, and many of the central ideas of this thesis only work
there. Therefore, we assume from now on that we are in the local regime,
unless otherwise stated.

Coming back to classical percolation theory, observe that there are no
quantities playing the same role as optimal local scores. Hence, we have to
look at percolation models in an essentially new way. As we have already
mentioned at the beginning of this section, the questions we address here
are merely related to the theory of large deviations of random walks. We
will explain this in more detail in Section 2.1.
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Chapter 2

Basic ideas and concepts

In this chapter we will explain some of the ideas and concepts behind the
results of this thesis. The aim is to give an easily readable yet concise
introduction to the results proved rigorously in the later chapters. Here we
merely use heuristic calculations, for which we do not claim to fulfil the
requirements of mathematical precision. Nevertheless, everything we state
is proved in the literature or will be proven rigorously later in this thesis.
We always give the relevant references.

2.1 The level of large deviations

Characterizing the distribution of optimal local scores is the main task of
this thesis. More precisely, we are interested in the asymptotic behaviour
of its tail. Several levels of exactness are conceivable, when characterizing
the tail of a distribution. The first of these is certainly the level of large
deviations, where one deals only with questions related to the leading term
of the tail’s decay. Often this leading term is exponentially decaying and
the task is to characterize the order of this exponential decay and its rate.

We will explain our answers to both questions for the case of optimal
local scores in this section. For methodological reasons we start with the
gapless case, where in fact much more is known about the optimal local
score’s distribution, but the restriction to a large deviations level already
reveals the central concepts.

2.1.1 The gapless case

Considering gapless alignments simply means that in the optimization, which
is carried out in the calculation of the optimal local or global scores, one
is not allowed to consider alignments with gaps. We start by examining
this much easier gapless case, since on the large deviations level the central
ideas also carry through to the general case. Recall that we still assume that

15
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γ < 0.
The complete picture in the gapless case has been given by Amir Dembo,

Samuel Karlin and Ofer Zeitouni ([DKZ94a] and [DKZ94b]). They give a
distributional limit theorem by proving that

lim
n→∞

P

(

M0,n − 2 log n

θ∗
≤ t

)

= exp(−K∗ exp(−θ∗t)), (2.1)

where θ∗ and K∗ are two positive constants. We will now explain this result,
and especially the role of the constant θ∗, in more detail.

Let us start with the form of the limiting distribution. Distribution
functions of this double-exponential form are known as extreme value distri-
butions of type I (or Gumbel distributions) and usually appear in the theory
of extreme values (cf. the book of Embrechts, Klüppelberg and Mikosch,
[EKM97]). For example, if one considers a sequence (Xi)i≥0 of independent
Exp(1)-distributed random variables the following limit holds

lim
n→∞

P(max(X1, . . . , Xn) − log n ≤ t) = exp(− exp(−t)).

Crucial for this result is, apart from the independence, the behaviour of the
tail of the distribution. Similar limit theorems hold for all distributions with
exponentially decaying tails. In fact, an easy substitution shows that the
maximum of n2 independent and identically distributed random variables,
with an upper tail that decays like K∗ exp(−θ∗t), behave in the limit exactly
as M0,n in equation (2.1). Is it the case that in return M0,n can be interpreted
as such a maximum? We will argue next that the answer is positive.

To start our investigation, we have to introduce another optimal score.
Let i be some vertex in the lattice shown in Figure 1.3 on page 11 and define
Ti as the maximal score one can get, when maximizing over all paths that
start at vertex i. The key lies in the observation that

M0,n
∼= max

i∈[0,n]2
Ti, (2.2)

where we do not have an exact equation because of edge effects.
We will now start by arguing that the upper tail of the Ti’s, which all

have the same distribution, has the right exponential decay, i.e. that we have

P(Ti > t) ' exp(−θ∗t) (2.3)

(for the definition of different asymptotic relations cf. Appendix A.1). This
will then help us understand that the approximation in (2.2) is not so bad for
large t, since the relevant Ti’s do not use too long paths in their optimization.

Let us analyze T := T(0,0). In the percolation picture, the restriction
to gapless alignments means that we are restricted to paths that stay on a
single diagonal. This makes it possible to characterize T as

T := max
k≥0

S0,k,
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Figure 2.1: The sequence (S0,k)k≥0 forms a random walk with negative drift
but some positive steps.

where of course we set S0,0 = 0. Also the S0,k’s can be nicely characterized:
there remains only one possible path in the maximization. This implies that
we can write

S0,k =

k∑

l=1

K(Xl, Yl),

showing that it is nothing but the sum of i. i. d. random variables. The
condition γ < 0 reduces thus to the requirement that

γ = E[K(X1, Y1)] < 0.

Putting this together, we have that the process (S0,k)k≥0 is a random walk
with negative drift but with a positive probability of taking positive steps,
since usually scoring matrices have positive entries on their diagonal. For a
picture of such a process see Figure 2.1. Also, T is nothing but the overall
maximum of such a random walk.

To characterize the rate of decay θ∗ in (2.3) we first have to introduce the
logarithmic moment generating function Λ of the score of a random letter
pair by

Λ(λ) := log E[exp(λK(X1, Y1))] (2.4)

which is convex and has Λ′(0) = γ < 0. Then θ∗ is given by the unique
positive zero of Λ, i.e.

Λ(θ∗) = 0.

To understand why this characterization is valid we first have to examine the
role of Λ in more detail. In the following we will give a heuristic argument,
which will also be helpful in the gapped case.
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It is a basic fact from the large deviations theory of sums of i.i.d random
variables that the (large deviations) rate function

r(q) := lim
n→∞

− 1

n
log P(S0,n ≥ qn)

for sums of i. i. d. random variables, where each of the summands is dis-
tributed as K(X1, Y1), is given by the Fenchel-Legendre transform (or convex
conjugate, cf. Appendix A.2) Λ∗ of Λ, i.e. by

Λ∗(q) := sup
λ∈R

{λq − Λ(λ)} (2.5)

(we refer to the [DZ93] for more precise information about large deviations
theory). This can be easily seen with the help of the following heuristic
calculation. Observe first that the supremum in (2.5) is attained at the
value λq for which Λ′(λq) = q. We can embed the distribution P0 := µ × µ
on A×A into an exponential family of distributions on A×A by defining

dPλ

dP0
(x, y) := exp(λK(x, y) − Λ(λ)).

Of course this extends in a natural way to an exponential family of distri-
butions on pairs of letter sequences of length n, i.e. on (A×A)n. This way
of switching between equivalent measures using exponential weights is also
sometimes referred to as exponential tilting.

For a given q > γ we now want to calculate the probability P0(S0,n > nq)
(an analogous argument is valid for q < γ and P0(S0,n < nq)). Observe that

Eλ[K(X1, Y1)] = Λ′(λ)

so that under Pλq we have Eλq [S0,n] = nq and an easy calculation gives

P0(S0,n > nq) = E0[1;S0,n > nq]

= e−n(λqq−Λ(λq))Eλq [exp(−λq(S0,n − nq));S0,n > nq] (2.6)

= e−nΛ∗(q)Eλq [exp(−λq(S0,n − nq));S0,n > nq].

It is well known that the truncated moment generating function

Eλq [exp(−λq(S0,n − nq));S0,n > nq]

is Θ(n−1/2) (cf. [BR60] or [Hir98]; see Appendix A.1 for notation), so

r(q) = Λ∗(q).

Let us now turn to local alignments. Using a Laplace-type approximation
one sees easily that

P0(T > t) = P0(max
i≥0

S0,i > t) ' max
i≥0

P0(S0,i > t).
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The analysis of the large deviations of S0,i now gives (with q = t/i)

P0(S0,i > t) = P0(S0,i > qi)

' e−iΛ∗(q) = e−i(λqq−Λ(λq)) (2.7)

= e
−t

“

λq−
Λ(λq)

Λ′(λq)

”

,

where the last equality follows from Λ′(λq) = q. Recall that q still depends
on i (although we supressed this dependence in the notation) so we have

lim
t→∞

(

−1

t
log max

i≥1
P0(S0,i > t)

)

= inf
λ : Λ′(λ)>0

{

λ − Λ(λ)

Λ′(λ)

}

= θ∗.

As a corollary one could state that

max
i≥0

P0(S0,i > t) ' P0(Si∗ > t) ' e−tθ∗ ,

where i∗ = t/Λ′(θ∗).
This has the following interpretation. Under P0 each summand in S0,i

has negative expectation. If we want to know how improbable it is (on an
exponential scale) to attain a large value t we can calculate how much it
costs to tilt the distribution P0 such that under the tilted distribution t is
the typical value. The tilting cost depends on two things. First we have to
pay for each letter pair we want to tilt and second the cost increases the
more we tilt. If we choose i too small, we do not have to tilt too many
letter pairs, but each of them has to be tilted very much in order to have
an overall expectation of t. Whereas if we choose i too large we have to tilt
too many letters although each of them only has to be tilted a little bit.
The value i∗ represents the right balance between this two sides. It is the
number of letters one should choose if one wants to optimize the probability
of attaining score t.

Let us now discuss in some detail the asymptotics behind (2.2). Fix a
large t and an even larger value of n. The large deviations arguments just
given, state that if we have a starting point i for which Ti exceeds the value
of t, then the piece of the diagonal that starts at point i and realizes this
score has approximately length i∗. So if we restict in (2.2) the maximization
to starting points i ∈ [0, n − i∗]2, all optimizing paths should begin and end
in [0, n]2.

For our database search application we are mainly interested in a rea-
sonable asymptotics for P(M0,n ≥ t). It is clear that we should let go t and
n together to infinity. On one hand n should grow faster than t, since an
optimal local alignment that gives a score of t is approximately of length
i∗t := t/Λ′(θ∗). Taking n too small would simply not let enough room for
such an alignment and therefore make it impossible to occur. On the other
hand it is clear that

P( max
i∈[0,n]2

Ti > t) ' P(T > t) ' e−tθ∗
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only holds if n2 does not grow exponentially in t.
Putting this together we can state that when n grows faster than t, but

not exponentially fast in t, we have

P(M0,n > t) ' P( max
i∈[0,n]2

Ti > 0) ' e−tθ∗ .

Of course much finer asymptotics for this tail have been given, to which we
will come back in Subsection 5.1.1.

2.1.2 The gapped case

The heuristic argumentation we have just given for the gapless case can also
be transferred to the case where gapped alignments are allowed. In fact,
proving these results rigorously, is one of the main results of this thesis.
This will be done in Sections 4.5 and 4.6.

Always keep in mind that we are working in the local regime, i.e. that
we have

γ < 0.

The problem in the gapped case is that S0,n is not a simple sum of n
i. i. d. random variables as in the gapless case. A complicated maximization
over many dependent paths is involved in the determination of its value.
Nevertheless, we can make quite similar calculations as in the gapless case.

To do this define for each n the logarithmic moment generating function
Λn of S0,n as

Λn(λ) := log E[exp(λS0,n)].

Again, we can use exponential tilting and define for each λ > 0 and each n
a measure Pλ,n on An ×An via

dPλ,n

dP0
(x,y) := exp(λs(x,y) − Λn(λ)),

where we denote by s(x,y) the optimal global score of the two fixed se-
quences x and y. For a given n and q > γ choose λn,q such that under Pλn,q

the expectation of S0,n is nq, i.e.

Eλn,q ,n[S0,n] = Λ′
n(λn,q) = nq.

Essentially the same calculation as in (2.6) now gives

P0(S0,n > nq) = E0[1;S0,n > nq]

= e−n[λn,qq−(1/n)Λn(λn,q)]Eλn,q ,n[exp(−λn,q(S0,n − nq));S0,n > nq]. (2.8)

Compare the crucial exponent here, which is

λn,qq − (1/n)Λn(λn,q), (2.9)
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with the corresponding exponent in (2.6). In (2.6) only the convex function
Λ appeared instead of (1/n)Λn and also λn,q did not depend on n. Although
in the gapped case the situation is more complicated, we still have that there
exists a convex function Λ with Λ′(0) = γ < 0 and

Λ(λ) = sup
n>0

1

n
Λn(λ) = lim

n→∞

1

n
Λn(λ) (2.10)

and that
λn,q −−−→

n→∞
λq.

Hence asymptotically (2.9) can again be interpreted as the Fenchel-Legendre
transform Λ∗ of Λ evaluated at the value of q, since we have

Λ′(λq−) ≤ q ≤ Λ′(λq+),

which implies that

Λ∗(q) := sup
λ
{λq − Λ(λ)} = λqq − Λ(λq).

Furthermore, it is heuristically plausible that, as in the gapless case, the
expectation in (2.8) does not contribute to the exponential rate of decay of
P0(S0,n > nq). All this gives that

P0(S0,n > nq) ' e−nΛ∗(q),

meaning that Λ∗ is the rate function of the upper tail of S0,n. That this
is the case for general independent superadditive processes has first been
observed by Hammersley in [Ham74]. We will state it more precisely in
Section 3.2.

To derive the corresponding large deviations result for local scores is, at
least in this heuristical argumentation, straightforward. Again, if we define
the Ti’s and T as in the gapless case, we roughly get that

P0(T > t) ' P0(max
i≥1

S0,i > t) ' max
i≥1

P0(S0,i > t).

Of course, in the maximization we should consider all paths that start in the
point (0, 0) and not only those that end somewhere on the main diagonal.
We will respect this issue in our rigorous proof of the result in Section 4.5,
whereas here we go on with the simplified version.

Exactly as in (2.7), we can deduce that (with q = t/i, λq such that
Λ′(λq) = q and where we assume for simplicity that Λ is differentiable)

P0(S0,i > t) = P0(S0,i > qi)

' e−iΛ∗(q) = e−i(λqq−Λ(λq))

= e
−t

“

λq−
Λ(λq)

Λ′(λq)

”

.
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Again

inf
λ : Λ′(λ)>0

{

λ − Λ(λ)

Λ′(λ)

}

= θ∗,

where θ∗ is the unique positive solution of

Λ(λ) = 0. (2.11)

All in all we have

P0(T > t) ' max
i≥1

P0(S0,i > t) ' P0(S0,i∗ > t) ' e−tθ∗ , (2.12)

where i∗ = t/Λ′(θ∗).

2.1.3 Rate functions and concentration inequalities

As we have just worked out, the upper rate function r of the process (S0,n)n≥0,
i.e.

r(q) := lim
n→∞

− 1

n
log P(S0,n > nq),

can be characterized as the Fenchel-Legendre transform of the limiting log-
arithmic moment generating function we defined in (2.10). More precisely,
this means that if we define the convex function Λ̄ as

Λ̄(λ) :=

{

Λ(λ), λ ≥ 0

∞, λ < 0

then r and Λ̄ form a pair of two convex conjugate functions on the whole
of R. See Figure 2.2 for a picture. The rigorous version of this connection
is Hammersley’s theorem, which we state in this thesis as Theorem 1 on
page 28.

What we needed in our argument was the existence of a unique positive
solution θ∗ of equation Λ(λ) = 0 which is equivalent to requiring that σl :=
Λ′(0+) < 0. It follows trivially from convex conjugacy that this in turn
is equivalent to the statement that r(q) > 0 for all q > σl. Putting this
together, it follows that θ∗ is well defined, if we can show that there exists
a value σl < 0 such that for all q > σl we have r(q) > 0.

We will show that in our model r(q) > 0 for all q > γ (recall that we still
assume γ < 0). One way to prove this is by taking a concentration inequality.
A concentration inequality gives a statement about how much a distribution
is concentrated around its center (usually represented by its mean or its
median). The first proof of a concentration inequality for the optimal global
score has again been given by Arratia and Waterman in [AW94]. It is based
on the Azuma-Hoeffding inequality ([Hoe63] and [Azu67]) and states that
for some constant c

P(|S0,n − E[S0,n]| ≥ t) ≤ 2 exp

(

− t2

8c2n

)

. (2.13)
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Figure 2.2: The two convex conjugate functions r and Λ̄.

We give the details in Subsection 4.3.1.

In the past years a different technique for proving concentration inequal-
ities has been established by M. Talagrand. It is based on isoperimetric
inequalities, and has proved to be very useful in some situations. Especially
in the longest increasing subsequence problem, the existing concentration in-
equalities could be strongly improved. For more information cf. Talagrand’s
nice article [Tal96] or the relevant parts of Steele’s book [Ste97].

The Talagrand technique is also easily applicable to our model. Unfortu-
nately, it does not give a better result than the Azuma-Hoeffding technique.
For completeness we give the result in Subsection 4.3.2.

It is immediate that the concentration inequality (2.13) is strong enough
to show that r(q) > 0 for all q > γ. It basically says that the fluctuations
of S0,n around its expectation are at most of the order of n1/2. We give the
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exact proof in Section 4.4.
Observe that in general it does not follow from Hammersley’s theorem

that r(q) > 0 for all q > γ. In fact, the negative of the volume of the Wiener
sausage in three or higher dimensions forms an example of an independent
superadditive process for which the statement does not hold. For more
details on this example and further references confer the survey article of
Grimmett ([Gri84]).

2.2 Convergence rates

The fundament for the results we have described up to now came from clas-
sical superadditivity theory. Optimal global scores can be interpreted as an
independent superadditive process, on which we applied the superadditive
ergodic theorem and Hammersley’s large deviations result. A different fam-
ily of general techniques came in with the concentration inequalities, which
helped us to see that the situation in Hammersley’s theorem is especially
nice for our model. We then only had to use some measure transformations
together with some convexity arguments to get our new large deviations
result for the optimal local score.

Now more model-specific techniques come into play. General superaddi-
tivity arguments provided us with two limiting objects, namely the growth
constant

γ = lim
n→∞

E[S0,n]

n

and the limiting logarithmic moment generating function

Λ(λ) = lim
n→∞

1

n
Λn(λ). (2.14)

We will now give two results about the rate of convergence in these limiting
procedures. A task that has to use more model-specific techniques, since, to
quote M. Steele ([Ste97], p. 13),

“Until recently, conventional wisdom held that in a problem
where a limit is obtained by subadditivity arguments, one has
little hope of saying anything about the rate of convergence.”

The ‘until recently’ here refers to results which show that for concrete models
it sometimes is possible to get results of the rate of convergence, if the model
has in fact some additivity-related structure

This has been first done by K. S. Alexander in [Ale93] for the time
constant in first-passage percolation and then also for the long-common-
subsequence problem in [Ale94]. His results can also be easily extended to
our model where we get that a constant c exists such that

E[S0,n] ≤ nγ ≤ E[S0,n] + c(n log n)1/2.
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structure.

The proof can be found in Section 4.8 and is essentially an adaptation of
the corresponding proof of the long-common-subsequence problem.

For the rate of convergence in (2.14) we have a new result which basically
says that

Λ(λ) − 1

n
Λn(λ) = O

(
log n

n

)

. (2.15)

In fact, we have two different proofs of this result, which is stated as Theo-
rem 12 in Section 4.9 and as Corollary 5 in Section 4.10. The first proof is
slightly easier than the second, but it also gives slightly worse bounds.

As already mentioned, all the convergence rate results here use the fact
that, apart from its superadditivity, the optimal global score also has some
additivity-related structure. To explain it cf. Figure 2.3. Take the optimal
path for S0,n and the secondary diagonal D. It is clear that the path has
to cross D at some vertex i. Denote by S i

0,n the optimal score of all paths

from the origin to (n, n) which go through the vertex i. Then S i
0,n can be
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split into two independent parts

Si
0,n = S(0,0),i + Si,(n,n),

where we use an obvious notation. Maximizing over all vertices on D we get

S0,n = max
i∈D

{S(0,0),i + Si,(n,n)}. (2.16)

A similar result can of course be formulated for any two points with an
arbitrary secondary diagonal between them. Also one can consider more
than one diagonal and split the path at each of them. Then one has to
extend the maximization in (2.16) to run over all possible combinations of
splitting points.

The basic result of splitting at a single diagonal is stated properly in
Lemma 4 on page 46. What we concealed up to now for simplicity reasons
is the fact that the splitting can not be done exactly the way we have claimed.
Due to the special geometry of our lattice there are paths which cross the
diagonal without hitting one of the vertices on it. Of course this pitfall is
respected in Lemma 4 and all other rigorous applications of the splitting in
this thesis.



Chapter 3

The global maximum of an

independent superadditive

processes with negative drift

Consider a random walk on R with negative drift, but a positive probabil-
ity of taking positive steps. It is well-known that, under some regularity
conditions, the global maximum of such a process has a distribution with
an exponentially decaying tail. The rate of this exponential decay is given
by the zero of the logarithmic moment generating function of the step dis-
tribution. In this chapter we will show a similar result for independent
superadditive processes. The main difference to the random walk case is
that the tail’s rate of decay will now be characterized as the zero of some
limiting logarithmic moment generating function.

Before, we treat large deviations for general independent superadditive
processes in some breadth, since we do not consider the classical texts to
be very satisfying. The primal reference [Ham74] is a good text but written
down bottom-up, which makes it difficult to extract the essence of the argu-
ment. The next reference is [Kin75], where unfortunately a small error crept
in. A more recent, surveying text on the subject is [Gri84]. What motivated
us to go that far into details, was the question about the relations of Ham-
mersley’s result to the more abstract Gärtner-Ellis-Theorem (cf. [DZ93] or
[dH00]). We hope that our exposition below will bring some light into this
relation.

3.1 Independent superadditive processes

Let (Ti,j)0≤i≤j be an independent superadditive process, i.e. it fulfils

(i) For all i ≤ j ≤ k

Ti,k ≥ Ti,j + Tj,k,

27
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(ii) the joint distribution of (Ti,j)0≤i≤j is the same as that of (Ti+1,j+1)0≤i≤j ,

(iii)
E[T−

0,1] < ∞,

(iv) for any increasing sequence 0 = i0 < i1 < i2 < . . . < ik the random
variables (Tij−1 ,ij )1≤j≤k are independent.

Of course, this is more than enough for a superadditive ergodic theorem to
hold, i.e. we have (cf. e.g. [Dur96], Section 6.6)

lim
n→∞

T0,n

n
= γ a.s., (3.1)

where

γ := lim
n→∞

E[T0,n]

n
= sup

n>0

E[T0,n]

n
∈ (−∞,∞]. (3.2)

3.2 Large deviations

The important large deviations result for independent superadditive pro-
cesses is the following

Theorem 1. For each n define the logarithmic moment generating function
Λn of T0,n on R+ as

Λn(λ) := log E[exp(λT0,n)].

Then the limits

Λ(λ) = lim
n→∞

1

n
Λn(λ) = sup

n>0

1

n
Λn(λ) (3.3)

and

r(q) = lim
n→∞

{

− 1

n
log P(T0,n > qn)

}

= inf
n>0

{

− 1

n
log P(T0,n > qn)

}

(3.4)

exist in R̄ := [−∞,∞] for λ ≥ 0 and q ∈ R. Moreover, Λ and r are convex
functions and are related by

r(q) = sup
λ≥0

{λq − Λ(λ)} (3.5)

and

Λ(λ) = sup
q∈R

{qλ − r(q)} =: r∗(λ) (3.6)

for all q in the interior of Dr := {q′ : r(q′) < ∞} and λ ≥ 0 in the interior
of Dr∗ := {λ′ : r∗(λ′) < ∞}.
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Remark 1. The result has originally been stated for superconvolutive fam-
ilies of distribution functions, which, e.g., can arise from independent sub-
additive processes. For the original version of the statement and the proof
see Hammersley ([Ham74]). Also Kingman gives a proof of the result in
([Kin75], Theorem 3.4, p. 214), but his proof, even so he closely follows
Hammersley’s arguments, is not entirely correct. We will explain this fur-
ther in Remark 3. In principle, we only translate the proof from [Ham74]
to our setting. After doing this, we will discuss the relations to the more
modern Gärtner-Ellis-Theorem.

For an illustration how the two functions r and Λ̄ might look like in a
special case, see Figure 2.2 on page 23.

Remark 2. That the two relations (3.5) and (3.6), which connect Λ and r,
remind of convex conjugation is not an accident. The only reason we do
not characterize Λ and r as a pair of conjugate convex functions is that we
do not know whether they are closed (for details about convex conjugacy
cf. Appendix A.2). Thus we could have also stated that cl(r) and Λ̄ are a
pair of convex conjugate functions, where

Λ̄(λ) :=

{

cl(Λ(λ)), λ ≥ 0

∞, λ < 0.

Proof of Theorem 1. We divide the proof into several steps, to make it more
transparent.

Step 1: Let us start with the existence of Λ(λ) for λ ≥ 0. Observe that,
since (Ti,j)0≤i≤j is an independent superadditive process, we have for λ ≥ 0

E[eλT0,m+n ] ≥ E[eλ(T0,m+Tm,m+n)]

= E[eλT0,m ]E[eλTm,m+n ]

= E[eλT0,m ]E[eλT0,n ],

so that after taking logarithms (3.3) follows by superadditivity. Observe
especially that for all n > 0 and all λ ≥ 0 we have

E[exp(λT0,n)] ≤ enΛ(λ).

Step 2: The existence of r(q) for general q ∈ R follows in much the same
way.

P(T0,m+n > x + y) ≥ P(T0,m + Tm,m+n > x + y)

≥ P(T0,m > x, Tm,m+n > y)

= P(T0,m > x)P(T0,n > y). (3.7)

Replacing x by mq and y by nq in this inequality and taking logarithms gives
(3.4) by subadditivity. Of course here we get r(q) = ∞ if P(T0,n > nq) = 0
for all n. Also we want to record that

P(T0,n > nq) ≤ e−nr(q). (3.8)
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Step 3: In this step we show that r is convex. To do this we fix an
θ ∈ (0, 1) and take m and n, which we both let go to infinity such that

m

m + n
−→ θ.

Replacing x by mx and y by ny in (3.7) gives after some rearranging

− 1

m + n
log P

(

T0,m+n > (m + n)

[
m

m + n
x +

n

m + n
y

])

≤

≤ m

m + n

{

− 1

m
log P(T0,m > mx)

}

+
n

m + n

{

− 1

n
log P(T0,n > ny)

}

.

Taking the limit we get

r(θx + (1 − θ)y) ≤ θr(x) + (1 − θ)r(y),

i.e. the convexity of r.
Step 4: We show that r(q) ≥ supλ≥0{λq −Λ(λ)}. Take any q, any λ and

any n and observe that

enΛ(λ) ≥ E[eλT0,n ] ≥ E[eλT0,n ;T0,n ≥ nq]

≥ eλnqP(T0,n ≥ nq).

Rearranging, taking logarithms and dividing by −n gives

− 1

n
log P(T0,n ≥ nq) ≥ λq − Λ(λ).

Taking the limit n → ∞ yields for all q and λ ≥ 0

r(q) ≥ λq − Λ(λ).

And finally from a maximization over λ we get that

r(q) ≥ sup
λ≥0

{λq − Λ(λ)}.

From the geometrical interpretation behind convex conjugation it is clear
that for all q ≥ Λ′(0−) we have

Λ∗(q) := sup
λ∈R

{λq − Λ(λ)} = sup
λ≥0

{λq − Λ(λ)} ≤ r(q).

Again after convex conjugation this gives r∗(λ) ≤ Λ(λ) for all λ ≥ 0.
Step 5: In this step we show that E[eλT0,n ] is finite in the interior of Dr∗ .
We start with some observations on r. From all we know up to now, r

is nonnegative, nondecreasing and convex. This already implies that there
is a value σ ≥ 0 such that

r(q) ∼ σq, as q → ∞. (3.9)
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Also we introduced independent superadditive processes in such a way that
γ > −∞. where γ is the growth constant defined in (3.2). From (3.1) it
follows thus that r(q) = 0 for all q < γ.

It is clear from the principle of convex conjugacy, that r∗(λ) = ∞ for
λ > σ and from Step 4 we also get that Λ(λ) = ∞ for λ > σ. So let us
assume that σ > 0 and take some 0 < λ < σ. Also by convex conjugation
we have that r∗(λ′) < ∞ for all 0 ≤ λ′ ≤ σ and it follows that λ is in the
interior of Dr∗ .

To argue that also E[eλT0,n ] < ∞ for our chosen λ observe first that
because of (3.8)

0 ≤ eλxP(T0,n > x) ≤ eλxe−nr(x/n) = e
−x

h

r(x/n)
x/n

−λ
i

.

The crucial thing here is on one hand we know because of (3.9) that

r(x/n)

x/n
− λ −→ σ − λ, x → +∞,

whereas, because of r(q) = 0 for all q < γ, we get that

r(x/n)

x/n
− λ −→ −λ, x → −∞.

Relating the improper integral E[eλT0,n ] via partial integration to the tail of
T0,n, some easy calculations show that this is precisely what is needed to get
the finiteness of E[eλT0,n ].

Step 6: We will now come to the last and crucial step which shows that
for λ ≥ 0 in the interior of Dr∗ we have r∗(λ) ≥ Λ(λ).

As we have discussed in Step 5, the finiteness of E[eλT0,n ] allows to par-
tially integrate it to get

E[eλT0,n ] =

∫ ∞

−∞
λeλxP(T0,n > x)dx = nλ

∫ ∞

−∞
enλyP(T0,n > ny)dy.

The main ingredient is inequality (3.8) which gives that

enλyP(T0,n > ny) ≤ eny[λ−r(y)/y].

This inequality can be exploited in several ways. First observe that for any
y < γ we have that

enλyP(T0,n > ny) ≤ enyλ. (3.10)

Second observe that from (3.9) we also get

λ − r(y)

y
→ λ − σ < 0, as y → ∞.
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So we can take 0 < ε < σ − λ and choose a b large enough such that for all
y ≥ b we have

enλyP(T0,n > ny) ≤ e−nyε. (3.11)

Third we get from the definition of r∗ that

enλyP(T0,n > ny) ≤ enr∗(λ). (3.12)

Putting this together we get

E[eλT0,n ] ≤ λn

{
∫ a

−∞
enyλdy +

∫ b

a
enr∗(λ)dy +

∫ ∞

b
e−nyεdy

}

= enλa + nλ(b − a)enr∗(λ) +
λ

ε
e−nεb

which after taking logs, dividing by n and letting n → ∞ gives

Λ(λ) ≤ max{λa, r∗(λ),−εb}.

Letting a → −∞ and b → ∞ gives the desired result.

Remark 3. In [Kin75] Kingman uses essentially the argument we have just
presented. The only difference lies in the fact that he only proves (3.6) for
λ ≥ 0 from the interior of DΛ := {λ′ : Λ(λ′) < ∞}. This set is strictly smaller
than the interior of Dr∗ in the situation shown in Figure 3.1. Observe that
although we have shown in Step 5 that Λn(λ) = log E[exp(λT0,n)] is finite
for λ ≥ 0 from the interior of Dr∗ , this still does not imply the finiteness of
Λ(λ). Still, in his formulation of the result Kingman claims that (3.5) holds
for all q in Dr. This is obviously not true in this special situation.

Remark 4. It is clear that (iii) above only assures that E[T0,1] ∈ (−∞,∞].
This is also the reason why the finiteness of γ is not clear without further
assumptions. Nevertheless, already the requirement that Λn(λ) < ∞ for all
0 ≤ λ ≤ l in Theorem 1 is enough to assure γ < ∞.

We will now examine the relations of Theorem 1 to the Gärtner-Ellis-
Theorem. For a proof of the Gärtner-Ellis-Theorem cf. [DZ93], Theorem 2.3.6,
p. 45 or [dH00], Theorem V.6, p. 54. We will state the result as needed for
our purposes.

Let (Zn) be a sequence of random variables. Define

φn(λ) := E[eλZn ]

and assume that

Λ(λ) := lim
n→∞

1

n
log φn(nλ) exists in R̄ (GE1)

0 ∈ int(DΛ), where DΛ := {λ′ ∈ R : Λ(λ′) < ∞}. (GE2)

Then we have
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Figure 3.1: The situation in which Kingman’s proof becomes erroneous.

(i) For all closed C ⊂ R we have

lim sup
n→∞

1

n
log P(Zn ∈ C) ≤ − inf

q∈C
Λ∗(q). (3.13)

(ii) For all open O ⊂ R we have

lim inf
n→∞

1

n
log P(Zn ∈ O) ≥ − inf

q∈O∩E
Λ∗(q), (3.14)

where E = E(Λ,Λ∗) is the set of exposed points of Λ∗ whose exposing
hyperplane belongs to int(DΛ).

An exposed point of a convex function R is a point, where the function is
strictly convex. First it is clear that for each value of q for which Λ∗(q) < ∞
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there exists a value λq such that

Λ∗(q) := sup
λ∈R

{λq − Λ(λ)} = λqq − Λ(λq).

If Λ∗ is strictly convex in q, then this value λq is not the maximizer in (3.2)
for different values q′ 6= q in the sense that for all we have

Λ∗(q′) > λqq − Λ(λq).

In this situation we call λq an exposing hyperplane for q.

We will see in a minute which role the set E plays in our application of
the results to independent superadditive processes. In fact, there is a further
statement from the Gärtner-Ellis-Theorem which states that if Λ satisfies

(i) Λ is lower semi-continuous on R,

(ii) Λ is differentiable on int(DΛ),

(iii) Either DΛ = R or Λ is steep, i.e., limλ→±∞;λ∈DΛ
Λ′(λ) = ∞,

then O ∩ E can be replaced by O in (3.14). The diction is that then the
family (P(Zn ∈ ·)) satisfies a large deviations principle (LDP) on R with
rate n and rate function Λ∗.

Let us now come back to independent superadditive processes. Clearly
we set Zn := (1/n)T0,n, so that with our old definition of Λn

φn(λ) = eΛn(λ/n).

For λ ≥ 0 the convergence in (GE1) has been shown in Step 1 of the proof
of Theorem 1 by superadditivity arguments. For λ < 0 convergence follows
by subadditivity with the same argument. Although we did not explicitly
require it in Theorem 1 let us also assume that (GE2) holds.

We thus can apply (3.13) and (3.14) to the sets C = [q,∞) and O =
(q,∞) to get the corresponding result for the rate function of the upper tail.
This gives

inf
p≥q

Λ∗(p) ≤ lim inf
n→∞

{

− 1

n
log P(T0,n ≥ nq)

}

≤ lim sup
n→∞

{

− 1

n
log P(T0,n > nq)

}

≤ inf
p>q
p∈E

Λ∗(p). (3.15)

In some sense the worst situation occurs when Λ is piecewise linear as shown
in the top part of Figure 3.2. In this case, all we can deduce from the
Gärtner-Ellis-Theorem alone is that the two limits lie somewhere in the
shaded region in the lower part of Figure 3.2.



3.2. LARGE DEVIATIONS 35

PSfrag replacements

Λ

inf p>q
p∈E

Λ∗(p)

infp≥q Λ∗(p)

Figure 3.2: The worst case for the two bounds in (3.15) occurs when Λ is
piecewise linear. From the Gärtner-Ellis-Theorem we only know that the rate
function lies somewhere in the shaded region. The rate function, although
being nondecreasing, is not necessarily convex.

The key in the independent superadditive situation lies in the fact that
we know much more about the two limits in (3.15). We proved in Step 2
and Step 3 above, that

r(q) = lim
n→∞

{

− 1

n
log P(T0,n > qn)

}

exists and that r is a convex function. The same can be shown by a similar
argument for

r′(q) = lim
n→∞

{

− 1

n
log P(T0,n ≥ qn)

}

.

So this extra knowledge, namely the convexity of r and r ′, immediately
implies that

r′(q) = r(q) = Λ∗(q)
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as long as there is a point q′ ∈ E with q′ ≥ q. This can be rephrased as
q ∈ int(conv(E)), where conv(E) is the convex hull of E.

Observe that in general, it is not clear that the limits used to define r
and r′ exist. If they exist, the functions are clearly nondecreasing, but not
necessarily convex. The convexity only followed from the special structure
of independent superadditive processes.

Although this looks as if Theorem 1 could be deduced from the Gärtner-
Ellis-Theorem together with some convexity arguments, this is not entirely
the case. To understand this, consider again the case depicted in the lower
part of Figure 3.1. Here Λ∗ ends on the right with a linear part. De-
note the left beginning of this linear part by q∗. It is clear that then
q∗ /∈ int(conv(E)), so that we can not deduce the identity of the two func-
tions Λ∗ and r for values q > q∗. So the same problem that occurs in the
Kingman version of Theorem 1 happens to be the weak point, if one wants
to prove the result by using the Gärtner-Ellis-Theorem.

3.3 Large deviations for the global maximum

For the global maximum of an independent superadditive process to make
sense we need some more requirements. Thus in the following we assume
the process (Ti,j)0≤i≤j to

(i) have a negative growth constant, i.e.

γ := lim
n→∞

E[T0,n]

n
= sup

n>0

E[T0,n]

n
< 0,

(ii) have a positive probability of being positive, i.e.

P(T0,1 > 0) > 0,

(iii) be linearly bounded, i.e. there is a constant c such that

T0,n ≤ cn.

In this situation the two functions r and Λ̄ from Theorem 1 essentially look
as shown in Figure 2.2.

Remark 5. Observe that from Theorem 1 it can only be deduced that

γ ≤ σl := Λ′(0+). (3.16)

Moreover, it is not even clear that σl < 0.

Remark 6. If it can be shown that r(q) > 0 for all q > γ then equality in
(3.16) follows immediately.
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Remark 7. If there is a unique positive solution θ∗ of Λ(λ) = 0, then it
follows that σl < 0 and also that r(0) > 0. This will be useful below.

Remark 8. From the linear boundedness condition it immediately follows
that (1/n)Λn(λ) is bounded from above by λc for each n. Together with the
convexity of Λ this implies the existence of a limiting slope σh of Λ(λ) for
λ → ∞.

We define the global maximum of the process (T0,n)n≥0 as

G := max
n≥0

T0,n. (3.17)

It is clear by (3.1) that G < ∞ a.s. The large deviations of G are given by
the following result.

Theorem 2. Assume that Λ(λ) = 0 has a unique positive solution θ∗. Then

lim
t→∞

−1

t
log P(G > t) = θ∗.

Before proving the theorem we need a couple of lemmas.

Lemma 1. Assume that Λ(λ) = 0 has a unique positive solution θ∗. Then

θ∗ = inf
q>0

r(q)

q
=

r(q∗)

q∗

for any value q∗ such that

Λ′(θ∗−) ≤ q∗ ≤ Λ′(θ∗+).

Proof. By convexity and since r(q) = 0 for q ≤ γ < 0 it is clear that r is
nonnegative and nondecreasing and that we can define

θ̄ := max{θ | ∀q > 0: θq ≤ r(q)}

which is the slope of the unique increasing straight line that goes through
the origin and is tangential to r. On one hand it is clear that

θ̄ = inf
q>0

r(q)

q
,

since r, as the convex conjugate of Λ̄, is a closed convex function. On the
other hand, since Λ̄ is the convex conjugate of r, it is clear that Λ̄(θ̄) = 0,
hence θ̄ = θ∗.

Lemma 2. Assume that Λ(λ) = 0 has a unique positive solution θ∗. For
all n, all λ such that Λ′

n(λ−) > 0 and all q with

Λ′
n(λ−) ≤ qn ≤ Λ′

n(λ+),

we have

θ∗ ≤ λ −
1
nΛn(λ)

q
.
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Figure 3.3: Proof of Lemma 2.

Proof. Clear from Figure 3.3.

Lemma 3. Assume that Λ(λ) = 0 has a unique positive solution θ∗. Then

lim
t→∞

min
n≥0

−1

t
log P(T0,n > t) = θ∗.

Proof. For given t and n define qt,n = t/n and λt,n as the unique value with

1

n
Λ′

n(λt,n−) ≤ qt,n ≤ 1

n
Λ′

n(λt,n+). (3.18)

(Of course, for t and n such that qt,n > σh this cannot be fulfilled, since

1

n
Λ′

n(λ+) ≤ σh,

but then P(T0,n > t) = 0 and (3.20) below is trivially fulfilled.)
The basic calculation is

P0(T0,n > t) = E0[1;T0,n > t]

= e−t[λt,n−
1
n

Λn(λt,n)/qt,n]Eλt,n,n[exp(−λt,n(T0,n − t));T0,n > t], (3.19)

where the measure Pλ,n is defined via

dPλ,n

dP
(ω) := exp(λT0,n(ω) − Λn(λ)).

Since the expectation in (3.19) is smaller than one it follows for arbitrary n
from Lemma 2 that

P0(T0,n > t) ≤ e−t[λt,n−
1
n

Λn(λt,n)/qt,n] ≤ e−tθ∗ . (3.20)
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Maximizing over n, taking logarithms and dividing by −1/t gives

lim
t→∞

min
n≥0

−1

t
log P(T0,n > t) ≥ θ∗.

For the reverse inequality choose q∗ such that

Λ′(θ∗−) ≤ q∗ ≤ Λ′(θ∗+)

and define n∗
t := dt/q∗e. Then it is clear that

P(T0,n∗

t
> t) ≥ P(T0,n∗

t
> n∗

t q
∗)

or

lim
t→∞

min
n≥0

− 1

t
log P(T0,n > t) ≤ lim

t→∞
−1

t
log P(T0,n∗

t
> t)

≤ 1

q∗
lim

n∗

t→∞

{
n∗

t q
∗

t
·
[

− 1

n∗
t

log P(T0,n∗

t
> n∗

t q
∗)

]}

=
r(q∗)

q∗
= θ∗.

Observe that from (3.20) we get the following

Corollary 1.

max
n≥0

P(T0,n > t) ≤ e−tθ∗ .

It would be interesting to also have a lower bound for the asymptotic
behaviour of maxn≥0 P(T0,n > t). A first useful step into this direction would
be to show that there exists some constant c and some exponent η > 0 such
that

max
n≥0

P(T0,n > t) ≥ c

tη
e−tθ∗ .

In principle such a result can be deduced from equality (3.19) by controlling
the rates of convergence of the terms on the right. We will discuss this issue
in more detail later.

Proof of Theorem 2. The proof is based on

max
n≥0

P(T0,n > t) ≤ P(max
n≥0

T0,n > t) ≤
∞∑

n=0

P(T0,n > t). (3.21)

The first inequality directly gives that

lim
t→∞

−1

t
log P(max

n≥0
T0,n > t) ≤ lim

t→∞
min
n≥0

−1

t
log P(T0,n > t) = θ∗,
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whereas the second gives

lim
t→∞

−1

t
log P(max

n≥0
T0,n > t) ≥ lim

t→∞
−1

t
log

∞∑

n=0

P(T0,n > t).

So all that remains to show is that

lim
t→∞

−1

t
log

∞∑

n=0

P(T0,n > t) ≥ θ∗.

Choose the value q∗ such that

Λ′(θ∗−) ≤ q∗ ≤ Λ′(θ∗+)

Observe that since we assume that θ∗ is the unique positive solution of
Λ(λ) = 0 there must be value θ̄ < θ∗ with Λ(θ̄) < 0 and a value q̄ < q∗ with

Λ′(θ̄−) ≤ q̄ ≤ Λ′(θ̄+),

otherwise we would have Λ(λ) = 0 for all λ ∈ [0, θ∗]. Using q̄ we define
n̄t := bt/q̄c.

We now split the sum in (3.21) into two parts

∞∑

n=0

P(T0,n > t) =

n̄t∑

n=0

P(T0,n > t) +

∞∑

n=n̄t+1

P(T0,n > t). (3.22)

For the first sum on the right we certainly have

n̄t∑

n=0

P(T0,n > t) ≤ (n̄t + 1)max
n≥0

P(T0,n > t),

so taking logarithms and dividing by −t gives

− 1

t
log

n̄t∑

n=0

P(T0,n > t) ≥

≥ − log(t/q̄ + 2) + maxn≥0 log P(T0,n > t)

t
−−−→
t→∞

θ∗.

Let us now handle the second sum on the right side of (3.22).
Here we define qt,n := t/n and λt,n as in (3.18). Recall the basic equality

(3.19). For convenience we set

µt,n := λt,n −
1
nΛn(λt,n)

qt,n
,

so that we can write
P(T0,n > t) ≤ e−tµt,n . (3.23)
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Figure 3.4: Illustrating (3.25).

Furthermore it is clear that for the above chosen θ̄ and q̄ we have

µ̄ := θ̄ − Λ(θ̄)

q̄
≥ θ∗.

The definition of n̄t gives that

qt,n̄t =
t

n̄t
=

t

bt/q̄c ≥ q̄,

which implies that
1

q̄
≥ n̄t

t
. (3.24)

Also we have for n > n̄t that qt,n ≤ q̄ and it follows from convexity consid-
erations which are clarified in Figure 3.4 that for such n we have

µt,n = λt,n −
1
nΛn(λt,n)

qt,n
≥ θ̄ − Λ(θ̄)

qt,n
=: µ̄t,n. (3.25)

(3.24) and (3.25) together imply that for n > n̄t

µt,n − µ̄ ≥ Λ(θ̄)

t
(n̄t − n)

or

−t(µt,n − µ̄) ≤ Λ(θ̄)(n − n̄t). (3.26)
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finally this gives

∞∑

n=n̄t+1

P(T0,n > t) ≤ e−tµ̄
∞∑

n=n̄t+1

e−t(µt,n−µ̄)

≤ e−tµ̄
∞∑

n=n̄t+1

eΛ(θ̄)(n−n̄t)

︸ ︷︷ ︸

=: c5

≤ c5e
−tθ∗ .

Again from the proof it is obvious that we have the following upper
bound.

Corollary 2. There exists some constant c > 0 such that for t large enough
we have

P(G > t) ≤ cte−tθ∗ .



Chapter 4

Alignment specific results

This is the main chapter of this thesis. Here, we present everything that
we have to say rigorously about optimal alignments of random sequences.
We will start in Section 4.1 with a precise definition of global and local
optimal alignments and explain some of their properties. In Section 4.3 we
will deal with concentration inequalities, i.e. with results about how much
the distribution of the optimal global score is spread around its mean.

Next we will come to large deviations to which three sections are devoted.
Section 4.4 deals with the large deviations of optimal global scores and
is basically an application of the large deviations results of independent
superadditive processes presented in Section 3.2. Section 4.5 is the analogue
of Section 3.3 and deals with large deviations of the optimal score with a
fixed starting point, but a free endpoint. In Section 4.6 the large deviations
of optimal local scores are presented.

After having dealt with large deviations, we are able to reprove the phase
transition result from [AW94] (together with the completion in [Zha95]).
Since we have gained substantially more insight now, we can in Section 4.7
present a better exposition than in the original papers.

Finally we have three sections about the convergence rates of the central
limiting objects. These are first the growth constant, where a bound for
the convergence rate is given in Section 4.8, and second the limiting loga-
rithmic moment generating function, for which the results can be found in
Sections 4.9 and 4.10.

4.1 Optimal alignments and combinatorial opti-

mization

In this section we will define optimal alignments as objects which naturally
appear via some combinatorial optimization in a special graphical model.
Basically, the model is a version of directed last-passage percolation with
some additional features. In last-passage percolation values are assigned to

43
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the edges of some lattice. For each path between two given vertices the
sum of the edge-values along the path is calculated. This quantity is then
maximized over all paths that connect the two vertices. We will also state
those properties of optimal alignments which are directly connected to this
graphical representation.

We will start by defining a lattice which we denote by L and which has
vertex set VL = N0×N0. To ease notation we denote points from N0×N0 by
boldface lower case letters (i, j, k, . . . ) and use ordinary lower case letters
to refer to their coordinates (i = (i1, i2), j = (j1, j2), . . . ). Also we use
the usual partial ordering on N0 × N0 that is induced by the ordering on
the coordinates, the usual addition and subtraction of points in Z × Z and
denote by || · ||1 the L1-norm. We can now define the edge set as

EL = {e = (i, j) ∈ VL × VL : j− i ∈ {(1, 0), (0, 1), (1, 1)}}.

We will refer to the different edges of EL as east-, north- or northeast-edges
in an obvious way.

Assign to each edge e ∈ EL a value se. We start with the northeast-
edges, for which the value se depends on its location. To do this we consider
two fixed sequences x = (x1, x2, . . .) and y = (y1, y2, . . .) of letters from
some finite alphabet A. To each pair of letters we assign a score using a
symmetric function K : A×A → R, called scoring matrix. For the northeast-
edge e = (i, j) we set

se := K(xj1 , yj2)

(observe that since e is a northeast-edge we have j1 = i1 +1 and j2 = i2 +1).
To all the north- and east-edges we simply assign the value of −δ, where

δ ≥ 0.
An alignment is just a path z through L that starts at some point i,

ends at some point j ≥ i and is only allowed to take steps to larger vertices.
We identify z with the edges it travels through and therefore write z =
(ez

i )1≤i≤|z|, where |z| is the length of the alignment.
We now assign to each alignment z a score sz. The principal ingredient

for sz are the sez ’s it collects along its way. In addition, we also want to
penalize paths for their roughness. To do this we subtract the value of ∆ ≥ 0
for each horizontal or vertical stretch in the path. This number of horizontal
or vertical stretches in the path is obviously a function of the alignment z
and we therefore denote it by χz. Thus sz is defined as

sz :=

|z|
∑

i=1

sez
i
− χz · ∆.

We now introduce optimal scores. Denote the set of all alignments which
start at i and end at j ≥ i by Zi,j and define

si,j := max
z∈Zi,j

sz.
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Figure 4.1: An alignment z from Zi,j. The number χz of horizontal or
vertical stretches in the path is 3. Their starting points are marked by the
bullets.

This is the optimal global score of (xi1+1, . . . , xj1) and (yi2+1, . . . , yj2). As a
convention we set si,i = 0 for all i. The optimal local score for the same two
parts of the sequences is defined as

mi,j := max
i≤k≤l≤j

sk,l.

We call any alignment z ∈ Zi,j for which sz = si,j an optimal global alignment
for (xi1+1, . . . , xj1) and (yi2+1, . . . , yj2) (or simply an optimal alignment for
si,j). Analogously we call any alignment z ∈ Zk,l, where i ≤ k ≤ l ≤ j

and for which sz = mi,j an optimal local alignment for (xi1+1, . . . , xj1) and
(yi2+1, . . . , yj2) (or simply an optimal alignment for mi,j).

Remark 9. It is clear that all alignments z in Zi,j that hit a certain set
of northeast edges have the same number of north- and east-steps between
visiting two successive northeast-edges. Of course, the order of these north-
and east-steps influences the number of direction changes χz. This number
is clearly minimal when the north- and east-steps are ordered in such a way
that all the north-steps precede the east-steps or vice versa. This implies
that when searching for optimal alignments it suffices to consider alignments
in which the north- and east-steps are ordered in one of the two ways.

Remark 10. Observe that we use the same letter s with different lower-right
indices for different objects, namely for edge-values, scores of alignments and
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Figure 4.2: Illustrating Lemma 4. In this case ||j − i||1 = 18 and d = 6.

optimal global scores. Nevertheless, this should not lead to any confusion,
since the meaning will always be clear from the index.

The collection (si,j)(0,0)≤i≤j has a nice superadditivity structure in the
sense that, whenever i ≤ j ≤ k, we have

si,k ≥ si,j + sj,k.

In addition, it also has a certain splitting property which is described by the
following

Lemma 4. Let j ≥ i. Fix some integer d with 0 ≤ d ≤ ||j− i||1. Then there
is a constant c2 (not depending on the letter sequences x and y) such that

Si,j − c2 ≤ max
k : i≤k≤j
||k−i||1=d

{si,k + sk,j} ≤ si,j.

Proof. In the cases i = j, d = 0 or d = ||j− i||1 there is nothing to prove, so
let us assume that j > i and 0 < d < ||j− i||1. Also only the first inequality
is to prove, since the second directly follows from superadditivity.

For the proof let z be an optimal alignment for si,j. As shown in Figure
4.2 the vertices {k : i ≤ k ≤ j, ||k − i||1 = d} lie on a diagonal which z has
to cross somewhere. Actually z can be modified slightly such that it hits
one of the vertices on that diagonal. Denote the modified path by z̃ and
the vertex it hits on the diagonal by kz. It is clear that, even in the worst
situation, this modification does not cost too much in the sense that

si,j = sz ≤ sz̃ + [k∗ + 2(∆ + δ)],
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where
k∗ := max

α,β∈A
K+(α, β). (4.1)

We can split z̃ into two parts by cutting it at kz. We denote these parts by
z̃1 and z̃2 resp., where z̃1 ∈ Zi,kz and z̃2 ∈ Zkz ,j. Again it is clear that in the
worst case such a splitting costs

sz̃ ≤ sz̃1 + sz̃2 + ∆.

All in all this gives with c2 := k∗ + 3∆ + 2δ

si,j − c2 ≤ sz̃ − ∆ ≤ sz̃1 + sz̃2 ≤ si,kz + skz,j

≤ max
k : i≤k≤j
||k−i||1=d

{si,k + sk,j}.

4.2 Introducing randomness

We now introduce randomness into the model by randomizing the underlying
letter sequences. On the notational side, the introduction of randomness is
reflected by the use of upper case instead of lower case letters, i.e. we write
X instead of x, Se instead of se, Si,j instead of si,j, . . . .

We randomize the letter sequences by drawing all the letters indepen-
dently according to some distribution µ on the finite alphabet A. Thus
the process (Si,j)(0,0)≤i≤j becomes an independence superadditive process in
the sense of Section 3.1. Observe that now we deal with a two-dimensional
index set, so the conditions (i) to (iv) from page 27 have to be translated
correspondingly, e.g. (ii) should read as

(ii)’ for any unit vector e ∈ N0 × N0 (i.e. e = (1, 0) or e = (0, 1)) the joint
distribution of (Si,j)(0,0)≤i≤j is the same as that of (Si+e,j+e)(0,0)≤i≤j.

Condition (iii) is fulfilled since the process satisfies

−2∆ − ||j− i||1δ ≤ Si,j ≤ k∗ min(j1 − i1, j2 − i2) ≤ k∗||j − i||1/2 (4.2)

(recall the definition of k∗ in (4.1)).
In considerations related to the growth constant γ of the superadditive

process we have to be more careful because of the two-dimensionality of the
index set. Whereas in the one-dimensional situation there is only one way to
let i go to infinity, there are many directions into which the two-dimensional
index i can go to infinity. To be more specific, let ρ = ρ1/ρ2 ∈ [−1, 1] ∩ Q,
where we require that ρ1 ∈ Z and ρ2 ∈ N and gcd(ρ1, ρ2) = 1 (we make the
convention 0 = 0/1). Denote by

Iρ := {k(ρ2 + ρ1, ρ2 − ρ1) : k ∈ N0}
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the set of vertices of L which lie on the line through the origin with slope
(ρ2 + ρ1)/(ρ2 − ρ1). In analogy to (3.2) we define

γρ := lim
n∈Iρ

||n||1→∞

E[S(0,0),n]

||n||1/2
= sup

n∈Iρ

E[S(0,0),n]

||n||1/2

and have as in (3.1)

lim
n∈Iρ

||n||1→∞

S(0,0),n

||n||1/2
= γρ a.s. (4.3)

Due to the symmetry of the scoring matrix K and since we use the L1-norm
in the definition of γρ we have

Lemma 5. For all ρ ∈ [−1, 1] ∩ Q

γρ ≤ γ0.

Proof. Let ρ ∈ [−1, 1]∩Q and ε > 0. Choose n ∈ Iρ large enough such that

E[S(0,0),n]

||n||1/2
≥ γρ − ε.

Denote by n̄ the vertex one gets by interchanging the coordinates of n. It
is clear that n+ n̄ ∈ I0. Also ||n + n̄||1 = 2||n||1 and E[S(0,0),n] = E[S(0,0),n̄]
by symmetry of K, so we get

γ0 ≥
E[S(0,0),n+n̄]

||n + n̄||1/2
≥

E[S(0,0),n + Sn,n+n̄]

||n||1
=

E[S(0,0),n]

||n||1/2
≥ γρ − ε.

Since ε > 0 was arbitrary, the proof is complete.

The Lemma shows that the northeast direction in some sense is the
dominant direction. We therefore set

γ := γ0. (4.4)

We will later see that for our purposes it suffices to consider the one-
dimensional superadditive process we get when we restrict ourselves to the
Si,j, where i, j ∈ I0. For convenience we therefore introduce the shorthand
notation

Si,j := S(i,i),(j,j),

where i, j ∈ N0 and 0 ≤ i ≤ j. (Si,j)0≤i≤j is then an ordinary one-
dimensional independent superadditive process in the sense of Section 3.1.

Also we introduce the same shorthand notation for the optimal local
score and write

Mi,j := M(i,i),(j,j).
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4.3 Concentration inequalities

In this section we derive results about the concentration of the distribu-
tion of S0,n around its mean. The main result states that the tails of the
distribution of S0,n are sub-Gaussian. We will prove this result using two
different techniques. One is a martingale technique that goes back to Hoeff-
ding ([Hoe63]) and Azuma ([Azu67]). It has first been applied to optimal
global scores by Arratia and Waterman ([AW94]), although they did not
formulate the full result for both tails. The second is a concentration in-
equality from Talagrand ([Tal96]), which gives slightly worse bounds but is
an interesting technique for problems from the field of combinatorial opti-
mization and therefore worth mentioning. Its application to optimal global
scores is new, although it has been applied to very similar problems as, e.g.,
the distribution of the longest increasing subsequence of a random sequence
(cf. [Tal96]).

4.3.1 Martingale technique

We first state the Azuma-Hoeffding inequality. For a good exposition of the
result see the very beginning of Steele’s book ([Ste97]).

Definition 1. A sequence (Di)1≤i≤n of random variables satisfies the prod-
uct identity, iff for any sequences of constants (ai) and (bi) we have

E

[
n∏

i=1

(ai + biDi)

]

=
n∏

i=1

ai.

Theorem 3. For a sequence (Di)1≤i≤n of random variables satisfying the
product identity we have

P

(∣
∣
∣
∣
∣

n∑

i=1

Di

∣
∣
∣
∣
∣
≥ t

)

≤ 2 exp

(

−t2/

(

2

n∑

i=1

||Di||2∞

))

.

Proof. See [Ste97], p. 4.

The theorem is mainly applied in the situation where the Di’s are mar-
tingale differences and the situation is such that the boundedness is clear.
Martingale differences obey some kind of orthogonality relation in the sense
that for all 1 ≤ i1 < i2 < . . . < ik ≤ n we have

E





k∏

j=1

Dij



 = 0.

This entails the product identity for the Di’s.
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Let us now come to the concrete application of Theorem 3 to optimal
global scores. To introduce a martingale structure we pair the letters from
X and Y to a sequence Z via Zi := (Xi, Yi). We then define Fk to be the
sigma-field that is generated by Z1, . . . , Zk for 1 ≤ k, i.e.

Fk := σ(Z1, . . . , Zk).

We define the Di’s as the differences of the martingale (E[S0,n|Fi])1≤i≤n, or

Di := E[S0,n|Fi] − E[S0,n|Fi−1].

It is clear that

S0,n − E[S0,n] =
n∑

i=1

Di

and the Di’s are bounded by the following

Lemma 6. There is a constant c3 such that

||Di||∞ ≤ 2c3.

Proof. We write S0,n =: s(Z1, . . . , Zn) to express the functional dependence
of S0,n from the random letter pairs. Let Ẑi be a random letter pair that is
chosen independently from (Z1, . . . , Zn) but with the same distribution as
Zi. Because of the independence

E[s(Z1, . . . , Zi, . . . , Zn)|Fi−1] = E[s(Z1, . . . , Ẑi, . . . , Zn)|Fi]

from which follows that we can write

Di = E[s(Z1, . . . , Zi, . . . , Zn) − s(Z1, . . . , Ẑi, . . . , Zn)|Fi].

Let now z1, . . . , zn and ẑi be any letter pairs from A×A. We argue that

|s(z1, . . . , zi, . . . , zn) − s(z1, . . . , ẑi, . . . , zn)| ≤ 2c3, (4.5)

where
c3 := max

α,β∈A
K(α, β) − min

α′,β′∈A
K(α′, β′)

is the maximal difference of entries one can find in the scoring matrix K.
Indeed, the worst case happens if in the optimizing alignment for

s := s(z1, . . . , zi, . . . , zn)

both letters from zi are aligned to different letters. In that case, changing
the letter pair zi to ẑi can maximally decrease s by 2c3. If the letter pairs
from zi are aligned to each other or only one of them is aligned to another
letter, s is maximally decreased by c3, whereas if they are not aligned at all
it cannot decrease. Reversing the role of zi and ẑi in this argument proves
(4.5).

Since (4.5) is true for every realization of Z1, . . . , Zn and Ẑi, the proof
is complete.
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We thus have proven the following

Theorem 4. Whenever the letter pairs Zi are chosen independently we have

P(|S0,n − E[S0,n]| ≥ t) ≤ 2 exp

(

− t2

8c2
3n

)

,

where c3 is the constant from Lemma 6.

4.3.2 Talagrand’s concentration inequality

Before applying Talagrand’s concentration inequality to optimal global scores,
we have to spend some time on a careful formulation of the result.

The abstract setting is given by the n-fold product Ωn of some probability
space Ω. For sets A ⊆ Ωn and points x ∈ Ωn we now develop a special notion
of distance.

To start with we introduce for any two points x, y ∈ Ωn the Hamming-
difference h(x, y) ∈ Rn by

h(x, y)i :=

{

0, xi = yi

1, xi 6= yi.

The usual Hamming-distance dH(x, y) could now be defined by the || · ||1-
norm of h(x, y), i.e.

dH(x, y) := ||h(x, y)||1
and then extended to measure the distance between x and A via

dH(x,A) := inf
y∈A

dH(x, y).

However we will define a different notion of distance by first introducing
the convex hull VA(x) of the set of Hamming-differences between x and the
points y ∈ A, i.e.

VA(x) := conv{h(x, y) : y ∈ A} ⊆ Rn

and then define
dT (x,A) := inf

z∈VA(x)
||z||2.

This notion of distance is sometimes referred to as Talagrand’s convex dis-
tance (cf. [Ste97]). The key now lies in the following theorem from [Tal96].

Theorem 5. Let P be a product measure on Ωn. Then
∫

Ωn

exp

(
1

4
d2

T (x,A)

)

dP (x) ≤ 1

P (A)
.

In particular

P (dT (·, A) ≥ t) ≤ 1

P (A)
exp

(−t2

4

)

.
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Proof. See [Tal96], Theorem 6.1.

To apply Theorem 5 we need the following Lemma.

Lemma 7. For any x ∈ Ωn and any A ⊆ Ωn we can find y ∈ A such that

dH(x, y) ≤
√

ndT (x,A).

Proof. This is just a special case of Lemma 6.3 in [Tal96].

We now can state and prove the analogue of Theorem 4. The appearance
of the median instead of the mean is just more convenient in the formulation
of the result, but does not produce any complications in practice.

Theorem 6. Whenever the letter pairs Zi are chosen independently we have

P(|S0,n − med(S0,n)| ≥ t) ≤ 4 exp

(

− t2

16c2
3n

)

,

where c3 is the constant from Lemma 6.

Proof. In the language of Theorem 5 we set Ω = A×A and for x ∈ Ωn we
denote by s(x) the optimal global alignment score. According to Lemma 7
and with an argument similar to the one in Lemma 6 we have that for all
x ∈ Ωn and all A ⊆ Ωn there exists a y ∈ A with

s(x) − s(y) ≤ 2c3 · dH(x, y) ≤ 2c3

√
ndT (x,A). (4.6)

In the following define

A(a) := {x ∈ Ωn : s(x) ≤ a}.
It follows from (4.6) for all x ∈ Ωn with the appropriately chosen y ∈ A(a)
that

a ≥ s(y) ≥ s(x) − 2c3

√
ndT (x,A(a)).

In particular we have

s(x) ≥ a + t =⇒ dT (x,A(a)) ≥ t

2c3
√

n
. (4.7)

(i) Applying (4.7) to a = med(S0,n) gives

s(x) ≥ med(S0,n) + t =⇒ dT (x,A(med(S0,n))) ≥ t

2c3
√

n

and we get from Theorem 5 that

P(S0,n − med(S0,n) ≥ t) ≤ P

(

dT (·, A(med(S0,n))) ≥ t

2c3
√

n

)

≤ P(A(med(S0,n)))−1 exp

{ −t2

16c2
3n

}

≤ 2 exp

{ −t2

16c2
3n

}

,

since P(A(med(S0,n))) ≥ 1/2.
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(ii) Again applying (4.7), but this time to a = med(S0,n) − t gives

s(x) ≥ med(S0,n) =⇒ dT (x,A(med(S0,n) − t)) ≥ t

2c3
√

n

which implies

1

2
≤ P(S0,n ≥ med(S0,n))

≤ P

(

dT (·, A(med(S0,n) − t)) ≥ t

2c3
√

n

)

≤ P(A(med(S0,n) − t))−1 exp

{ −t2

16c2
3n

}

This gives

P(S0,n − med(S0,n) ≤ −t) ≤ 2 exp

{ −t2

16c2
3n

}

.

4.4 Large deviations for optimal global scores

As already mentioned in Section 4.2, (Si,j)0≤i≤j forms an independent su-
peradditive process. We thus can apply the results from Section 3.1, espe-
cially Theorem 1. What is important here is that, due to the concentration
inequalities from Section 4.3, we can prove the positiveness of the large
deviations rate function r(q) for all q > γ.

Lemma 8. For the independent superadditive process (Si,j)0≤i≤j we have
for all q > γ

r(q) > 0,

where γ is the growth constant introduced in (4.4) and

r(q) := lim
n→∞

− 1

n
log P(S0,n > qn) = inf

n>0
− 1

n
log P(S0,n > qn).

Proof. Let q > γ and set ε := q − γ. Observe that because of (3.2) we have
for n large enough

n(γ − ε) ≤ E[S0,n] ≤ nγ.

This gives

P(S0,n > nq) = P(S0,n > nγ + εn)

≤ P(S0,n − E[S0,n] ≥ εn/2)

≤ 2 exp

(

− ε2n

64c2
3

)

,
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where we used Theorem 4 for the last inequality. Taking logarithms, dividing
by −n and letting n → ∞ gives

r(q) >
(q − γ)2

64c2
3

.

This nicely completes the picture we developed in Section 3.1. Since by
(4.2) S0,n is linearly bounded in n, the function Λ(λ) from Theorem 1 has a
limiting slope σh as λ → ∞. On the other hand the last Lemma proves that
Λ′(0+) = γ. So we see that Λ does not look too pathologically. Especially
it follows that in the case γ < 0 there is a unique positive solution θ∗ of the
equation Λ(λ) = 0 iff σh > 0.

4.5 Maximizing with a fixed starting point

In this section we will prove the analogue of the general results from Sec-
tion 3.3 in the world of optimal alignments. To do so, we require in the
following that (Si,j)0≤i≤j fulfils the conditions stated at the beginning of
Section 3.3. These are

γ < 0

and
P(S0,1 > 0) > 0.

Recall that the third condition is already fulfilled by (4.2). These conditions
are sufficient to assure that the equation Λ(λ) = 0 has a unique positive
solution θ∗.

Of course, if we kept on restricting ourselves to the one-dimensional
process (Si,j)0≤i≤j we could directly apply the results from Section 3.3.
But instead of defining G as in (3.17), we want to give credit to the two-
dimensionality of the problem by defining

G := max
j≥(0,0)

S(0,0),j. (4.8)

Anyway, this hardly changes the main result

Theorem 7.

lim
t→∞

−1

t
log P(G > t) = θ∗.

Proof. The statement can essentially be proved by following the line of ar-
gument for Theorem 2. We will only point out how to handle the problems
that arise from the two-dimensionality.

To extend notation we first define for all i ∈ LV

Λi(λ) := log E[eλS(0,0),i ].
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In this notation the defining equation for Λ (3.3) reads as

Λ(λ) = lim
n→∞

Λ(n,n)(λ)

||(n, n)||1/2
= sup

n>0

Λ(n,n)(λ)

||(n, n)||1/2
.

This can be extended to the statement that for all i ∈ LV we have

Λi(λ)

||i||1/2
≤ Λ(λ). (4.9)

Indeed, if we define ī as the vertex one gets by interchanging the coordinates
of i, then i + ī is a vertex on I1 with ||i + ī||1 = 2||i||1. Thus we have

Λ||i||1(λ) = log E[eλS(0,0),i+ī ]

≥ log E[eλ(S(0,0),i+Si,i+ī)]

= 2 log E[eλS(0,0),i ]

= 2Λi(λ)

by superadditivity and independence. This proves (4.9).

From this point on everything proceeds as in Section 3.3: The analogues
to Lemmas 2 and 3 can be proven, especially the basic equation (3.19) holds
in the adapted formulation and we also have

P(S(0,0),i > t) ≤ e−tθ∗

for all i ∈ LV . The only thing that changes is the number of summands in
the analogue of the first sum in (3.22), which is of the order O(t2).

The statement corresponding to Corollary 2 reads as

Corollary 3. There exists some constant c > 0 such that for t large enough
we have

P(G > t) ≤ ct2e−tθ∗ .

4.6 Large deviations for optimal local scores

From the results in Section 4.5 the following result immediately derives,
which characterizes the large deviations of M(0,0),(n,m).

Theorem 8. Let m, n and t tend to infinity in such a way that t =
o(min(m,n)) and log(mn) = o(t). Then

lim
t→∞

−1

t
log P(M(0,0),(m,n) > t) = θ∗ (4.10)
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Proof. In analogy to (4.8) we define for every i ∈ LV

Gi := max
j≥i

Si,j.

It is clear that

P(M(0,0),(m,n) > t) ≤ P

(

max
(0,0)≤i≤(m,n)

Gi > t
)

≤ mn · P(G > t). (4.11)

Taking logs and dividing by −t gives

lim
t→∞

−1

t
log P(M(0,0),(m,n) > t) ≥ θ∗

by Theorem 7 and since we assumed log(mn) = o(t).
For the reverse inequality we can simply repeat the second part of the

proof of Lemma 3 on page 38. Observe that in the notation we introduced
there we have

P(T0,n∗

t
> t) ≤ P(M(0,0),(m,n) > t),

since t = o(min(m,n)). It follows

lim
t→∞

−1

t
log P(M(0,0),(m,n) > t) ≤ lim

t→∞
−1

t
log P(T0,n∗

t
> t) = θ∗.

From (4.11) we can give an upper bound for P(M(0,0),(m,n) > t) which is
in the same spirit as Corollary 3.

Corollary 4. There exists some constant c > 0 such that for t large enough
we have

P(M(0,0),(m,n) > t) ≤ cmnt2e−tθ∗ .

4.7 A phase transition for the optimal local score

The results we have so far can nicely be used to prove the phase transition
result for optimal local scores that has first been proven by Arratia and
Waterman in [AW94] and has then been refined by Zhang in [Zha95].

4.7.1 The logarithmic phase

The logarithmic phase is the one which is more relevant for practical issues.
Heuristically said, in the logarithmic phase optimal global alignments are
always very bad, so one can do substantially better when optimizing locally.

Theorem 9. Let the scoring scheme be such that γ < 0 and such that there
is a unique positive solution θ∗ of Λ(λ) = 0. Then

lim
n→∞

M0,n

log n
=

2

θ∗
a.s.
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The proof will be split into two parts — one for the upper bound and one
for the lower bound. We put the two parts into two different lemmas, since
they use completely different techniques. We start with the upper bound,
which relies more on the results from the previous sections.

Lemma 9. Under the assumptions of Theorem 9 we have

lim sup
n→∞

M0,n

log n
≤ 2

θ∗
a.s.

Proof. Fix ε > 0. In analogy to (4.8) we define for every i ∈ LV

Gi := max
j≥i

Si,j. (4.12)

It is clear that for any t and any n

P(M0,n > t) ≤ P




⋃

(0,0)≤i≤(n,n)

{Gi > t}





≤ n2P(G > t)

≤ ct2n2e−tθ∗ ,

where we used Corollary 3. Especially for t = (2 + ε)/θ∗ log n we get

P

(

M0,n >
2 + ε

θ∗
log n

)

≤ c

(
2 + ε

θ∗

)2

(log n)2n2e−(2+ε) log n

= c

(
2 + ε

θ∗

)2 (log n)2

nε
−−−→
n→∞

0. (4.13)

If we replace n in this estimate by 2k and use the Borel-Cantelli lemma we
immediately get that

lim sup
k→∞

M0,2k

log 2k
≤ 2

θ∗
a.s.

The funny thing is that, by the logarithmic scaling, this is enough to finish
the proof. To see this, define k(n) via

2k(n)−1 < n ≤ 2k(n).

Then we have

M0,n

log n
≤

M0,2k(n)

log n
=

M0,2k(n)

log 2k(n)
· 1

1 + log
(

n
2k(n)

)
/ log 2k(n)

,

where the last fraction goes to 1 for n → ∞, since log(n/2k(n)) > log(1/2).
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Remark 11. Since we have packed most of the work into Corollary 3, our
proof of Lemma 9 is substantially shorter than the corresponding proof by
Arratia and Waterman ([AW94], Lemma 2, p. 206). That one can derive
an almost sure upper bound from the original estimate (4.13) has been
remarked by Zhang in [Zha95], although he does not give the argument.

Let us now come to the lower bound

Lemma 10. Under the assumptions of Theorem 9 we have

lim inf
n→∞

M0,n

log n
≥ 2

θ∗
a.s.

Proof. We will not repeat the proof here, which can be found in [Zha95],
but merely make a few remarks.

Observe that in our context the unique positive solutions θ∗
m of Λm(λ) =

0 converge from above to θ∗. Thus it is enough to pick an ε > 0 and choose
m large enough, such that

2

θ∗m
≥ 2

θ∗
− ε.

It is clear that (in the notation of [Zha95])

M0,mn

log n
≥ Mn

log n
−−−→
n→∞

2

θ∗m
a.s.

4.7.2 The linear phase

In the linear phase the optimal local alignments essentially look like the
optimal global alignments. The following theorem states this.

Theorem 10. Let the scoring scheme be such that γ > 0. Then

lim
n→∞

M0,n

n
= γ a.s.

The proof can essentially be found in [AW94] (Lemma 3, p. 209, together
with the remark that follows the proof). Again, the large deviations result
Theorem 1 gives a better guideline to organize the proof.

Observe first that clearly

M0,n ≥ S0,n

and we get by (4.3)

lim inf
n→∞

M0,n

n
≥ γ a.s. (4.14)

For the other direction we start with
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Lemma 11. For every ε > 0 there is a constant µ := µ(ε) > 0 such that

P(M0,n > (1 + ε)γn) ≤ n4e−µγ(1+ε)n.

Proof. Recall that

M0,n = M(0,0),(n,n) := max
(0,0)≤i≤j≤(n,n)

Si,j,

so we are done if we can show for every (0, 0) ≤ i ≤ (n, n) that

P(S(0,0),i > (1 + ε)γn) ≤ e−µγ(1+ε)n. (4.15)

As in the proof of Theorem 2 we rely on the graphical intuition that is
motivated by two facts. First we have the basic inequality

P(S(0,0),i > t) ≤ e−tµt,i , (4.16)

where
µt,i := λt,i − 1

||i||1/2Λi(λt,i)/qt,i

with

qt,i :=
t

||i||1/2
and λt,i is such that

1
||i||1/2Λ′

i(λt,i−) ≤ qt,i ≤ 1
||i||1/2Λ′

i(λt,i+). (4.17)

And second we have
1

||i||1/2Λi(λ) ≤ Λ(λ)

for all i ≥ (0, 0) and all λ ≥ 0 and all Λi’s are convex as well as Λ. (Observe
that (4.16) is even valid, if t and i are such that (4.17) does not have a
solution. In such cases we simply have P(S(0,0),i > t) = 0.)

We now define µ. To do this, choose λ̄ > 0 as the unique value for which

Λ′(λ̄−) ≤ (1 + ε)γ ≤ Λ′(λ̄+)

and set

µ := λ̄ − Λ(λ̄)

(1 + ε)γ
.

If we now set t := (1 + ε)γn, it is clear that for all (0, 0) ≤ i ≤ (n, n) we
have

qt,i ≥ (1 + ε)γ

and from this one sees immediately that

µt,i ≥ µ

which proves (4.15).
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Lemma 11 together with (4.14) now give that

lim
n→∞

M0,n

n
= γ in probability.

To get almost sure convergence an interesting new turn comes into the proof.
First, since M0,n/n is bounded from above and below, we also have that

lim
n→∞

E[M0,n]

n
= γ,

a fact which is not clear from superadditivity. The same program that has
been carried out in Section 4.3 for S0,n can be repeated for M0,n to show that
M0,n/n concentrates nicely around γ. A standard use of the Borel-Cantelli
lemma then gives almost sure convergence and the proof of Theorem 10 is
complete.

4.8 Rate of convergence to the growth constant

In this section we will give bounds for the rate of convergence of E[S0,n]/n
towards the growth constant γ introduced in Section 4.2. For this we will
use the concentration results derived in Section 4.3. The main result goes
as follows

Theorem 11. There exists a constant c4 such that for large enough n

E[S0,n] ≤ nγ ≤ E[S0,n] + c4(n log n)1/2. (4.18)

Remark 12. A similar result has first been proved by Alexander ([Ale93])
for first-passage percolation. In [Ale94] he used his methods to prove the
analogous result for the mean length of the longest common subsequence of
two random sequences. A very nice proof of the latter result has then been
given by Rhee in [Rhe95] (cf. also [Ste97], Section 1.6). Later in [Ale97]
Alexander developed a more abstract and general technique which could
also be used in our case. Using this technique one could extend the result
to optimal global scores of sequences of unequal length (i.e. where the ratio
of the sequence length converges to some constant different from 1).

Anyway, to make our exposition more readable we have chosen to follow
Rhee’s proof for our result.

To prove Theorem 11 we need the following Lemma which is the analogue
of Lemma 1 in [Rhe95] or to Lemma 1.6.1 in [Ste97].

Lemma 12. We have

P(S0,4n ≥ 2t) ≤ (4n)4P(S0,2n ≥ t − 3c2/2)
1/2,

where c2 is the constant from Lemma 4.
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Figure 4.3: Splitting z̃ into four parts.

Proof. Let z be an optimal alignment for S0,4n. There is a total number of
8n letters involved in the alignment. We can split z into four parts where in
each part exactly 2n letters are used. Basically this can be done by cutting
z at the points where it crosses the three diagonals D1, D2 and D3 (cf.
Figure 4.3). The only problem arising is that on some of the diagonals z
might not hit any vertex on them. This is analogous to Lemma 4 (cf. also
Figure 4.2). To make sure that such a path z can still be split, we have to
modify it as usually. Denote this modified path by z̃. Whereas we have

sz(X
4n
0 ,Y4n

0 ) = S0,4n,

because of the optimality of z, we still have

sz̃(X
4n
0 ,Y4n

0 ) ≥ S0,4n − 3c2.

Denote (cf. Figure 4.3) the four parts we obtain by splitting z̃ by zl and
the number of involved letters from the first resp. the second sequence by
il resp. jl, where l = 1, . . . , 4. Observe that the construction is such that
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il + jl = 2n for l = 1, . . . , 4. Furthermore we denote by Sl, l = 1, . . . , 4, the
scores of the four parts, i.e. we have

sz̃(X
4n
0 ,Y4n

0 ) = S1 + S2 + S3 + S4.

Denote now by I the set of all subintervals IX and IY of X4n
0 and Y4n

0 with
|IX| + |IY| = 2n, i.e.

I = {(IX, IY) = (Xj
i ,Y

l
k) :

0 ≤ i ≤ j ≤ 4n, 0 ≤ k ≤ l ≤ 4n, (j − i) + (l − k) = 2n}.

From all this follows that

{S0,4n ≥ 2t} ⊆ {maxSl ≥ (2t − 3c2)/4}
⊆

⋃

(IX,IY)∈I

{s(IX, IY) ≥ (2t − 3c2)/4}

and together with the crude upper bound |I| ≤ (4n)4 this implies

P(S0,4n ≥ 2t) ≤ (4n)4 max
(IX,IY)∈I

P(s(IX, IY) ≥ (2t − 3c2)/4).

This last maximum can be reexpressed by

max
(IX,IY)∈I

P(s(IX, IY) ≥ (2t − 3c2)/4) =

= max
i,j : i+j=2n

P(s(Xi
0,Y

j
0) ≥ (2t − 3c2)/4).

A simple symmetry argument now gives for arbitrary i, j with i + j = 2n

P(S0,2n ≥ t − 3c2/2)

≥ P(s(Xi
0,Y

j
0) ≥ (2t − 3c2)/4, s(X

2n
i ,Y2n

j ) ≥ (2t − 3c2)/4)

= P(s(Xi
0,Y

j
0) ≥ (2t − 3c2)/4)

2

or

max
i,j : i+j=2n

P(s(Xi
0,Y

j
0) ≥ (2t − 3c2)/4) ≤ P(S0,2n ≥ t − 3c2/2)

1/2,

which completes the proof.

Proof of Theorem 11. To prove the result we need the simple fact that for
any real-valued random variable X and non-negative u we have

E[X] ≤ u + uP(X ≥ u) +

∫ ∞

u
P(X ≥ y)dy

≤ 2u +

∫ ∞

u
P(X ≥ y)dy.
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This can be proven using partial integration. We apply this to X = S0,4n −
2E[S0,2n] with u = c(n log n)1/2 for a constant c we choose later. This gives

E[S0,4n] − 2E[S0,2n] ≤

≤ 2c(n log n)1/2 +

∫ ∞

c(n log n)1/2
P(S0,4n ≥ y + 2E[S0,2n])dy.

Using Theorem 4 and Lemma 12 the integral can be bounded by
∫ ∞

c(n log n)1/2
P(S0,4n ≥ y + 2E[S0,2n])dy

≤ (4n)4
∫ ∞

c(n log n)1/2

P(S0,2n ≥ y + E[S0,2n] − 3c2/2)
1/2dy

≤ 2(4n)4
∫ ∞

c(n log n)1/2

exp

(

−(y − 3c2/2)
2

128c2
3n

)

dy. (4.19)

Some lines of elementary calculus, which we leave to the reader, show that
for c large enough this whole term converges to 0 as n → ∞. What we have
proven so far, is

E[S0,4n]

4n
− E[S0,2n]

2n
≤ c

(
log n

n

)1/2

.

Replacing n by 2kn we get

E[S0,2k+2n]

2k+2n
−

E[S0,2k+1n]

2k+1n
≤ c

(
log(2kn)

2kn

)1/2

.

Summing this up over all 0 ≤ k ≤ j + 1 gives

E[S0,2j+2n]

2j+2n
− E[S0,2n]

2n
=

j+1
∑

k=0

E[S0,2k+2n]

2k+2n
−

E[S0,2k+1n]

2k+1n

≤ c

j+1
∑

k=0

(
log(2kn)

2kn

)1/2

≤ c4

(
log(2n)

2n

)1/2

for c4 large enough. Letting j → ∞ proves the theorem for even n. The
case of odd n trivially follows by monotonicity.

4.9 Rate of convergence to Λ

As we have seen in several results, the unique positive zero θ∗, if it exists,
of the function Λ from Theorem 1 is of great importance. Since

Λ(λ) = lim
n→∞

1

n
Λn(λ) = sup

n>0

1

n
Λn(λ) (4.20)



64 CHAPTER 4. ALIGNMENT SPECIFIC RESULTS

for all λ ≥ 0 it is also the case that

θ∗ = lim
n→∞

θ∗n = inf
n>0

θ∗n,

where the θ∗n are the unique positive zeros of the functions Λn, which exist
for large enough n. We have the following result about the convergence in
(4.20).

Theorem 12. We have

0 ≤ Λ(λ) − 1

2n
Λ2n(λ) ≤ 1

n
[2 log(2) + 2 log(2n + 1) + λc2],

where c2 is the constant from Lemma 4.

In order to prove Theorem 12 we need some more notation and a couple
of lemmas.

Let us start by defining

Ŝi,n := max
j≥i

||j−i||1=2n

Si,j

and set

Λ̂n(λ) := log E[eλŜ(0,0),n ].

We have

Lemma 13. We have

2Λ̂n(λ) − log(2n + 1) ≤ Λ̂2n(λ) ≤ 2Λ̂n(λ) + log(2n + 1) + λc2.

Proof. The optimal alignment for Ŝ(0,0),2n can be split up in the same fashion
as in Lemma 4 to get

Ŝ(0,0),2n − c2 ≤ max
i≥(0,0)
||i||1=2n

{S(0,0),i + Ŝi,n} ≤ S(0,0),2n.

From this we first get for λ ≥ 0

e−λc2eλŜ(0,0),2n ≤ max
i≥(0,0)
||i||1=2n

eλ(S(0,0),i+Ŝi,n)

≤
∑

i≥(0,0)
||i||1=2n

eλ(S(0,0),i+Ŝi,n).



4.9. RATE OF CONVERGENCE TO Λ 65

This yields, using the independence of S(0,0),i and Ŝi,n for fixed i and the

fact that Ŝi,n has the same distribution as Ŝ(0,0),n,

e−λc2E[eλŜ(0,0),2n ] ≤
∑

i≥(0,0)
||i||1=2n

E[eλ(S(0,0),i+Ŝi,n)]

= E[eλŜ(0,0),n ]
∑

i≥(0,0)
||i||1=2n

E[eλS(0,0),i ]

≤ (2n + 1)(E[eλŜ(0,0),n ])2. (4.21)

On the other hand we have for every i ≥ (0, 0) with ||i||1 = 2n,

eλŜ(0,0),2n ≥ eλ(S(0,0),i+Ŝi,n)

and as before it follows that

E[eλŜ(0,0),2n ] ≥ E[eλŜ(0,0),n ]E[eλS(0,0),i ].

Summing this up over the 2n + 1 different i’s for which this is valid gives

(2n + 1)E[eλŜ(0,0),2n ] ≥ E[eλŜ(0,0),n ]E
[ ∑

i≥(0,0)
||i||1=2n

eλS(0,0),i

]

≥ (E[eλŜ(0,0),n ])2. (4.22)

Taking logs in both (4.21) and (4.22) gives the result.

The next lemma shows how Λ and Λ̂ can be compared.

Lemma 14.

Λ̂2n(λ) ≥ Λ2n(λ) ≥ 2Λ̂n(λ) − 2 log(2n + 1)

≥ Λ̂2n(λ) − 3 log(2n + 1) − λc2.

Proof. Only the second inequality requires some work, the first is obvious
and the third follows from Lemma 13.

Use the right-hand side of Lemma 4 to get

S0,2n ≥ max
i≥(0,0)
||i||1=2n

{S(0,0),i + Si,(2n,2n)}.

By symmetry for every j ≥ (0, 0) with ||j||1 = 2n

E[eλS0,2n ] ≥ E

[

max
i≥(0,0)
||i||1=2n

eλ(S(0,0),i+Si,(2n,2n))
]

≥ E[eλ(S(0,0),j+Sj,(2n,2n))]

= (E[eλS(0,0),j ])2. (4.23)
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A simple calculation gives

(2n + 1) max
j≥(0,0)
||j||1=2n

E[eλS(0,0),j ] ≥
∑

j≥(0,0)
||j||1=2n

E[eλS(0,0),j ]

≥ E[eλŜ(0,0),n ].

This, together with (4.23), gives

E[eλS0,2n ] ≥ max
j≥(0,0)
||j||1=2n

(E[eλS(0,0),j ])2 =
(

max
j≥(0,0)
||j||1=2n

E[eλS(0,0),j ]
)2

≥ 1

(2n + 1)2
(E[eλŜ(0,0),n ])2.

Lemma 15. limn→∞ Λ̂n(λ)/n = Λ(λ) and

−[4 log(2)+log(n+1)] ≤ nΛ(λ)− Λ̂n(λ) ≤ 4 log(2)+log(n+1)+λc2 (4.24)

Proof. It is clear from Lemma 14 that Λ̂n(λ)/n converges to Λ(λ) through
even n’s. Also, |Ŝ2n − Ŝ2n+1| ≤ c for some constant c which depends on the
scoring scheme, but not on n. The convergence thus follows.

For (4.24) use Lemma 13 and Lemma 18 from the Appendix with l(n) =
log(n + 1) and u(n) = log(n + 1) + λc2 and observe that

∞∑

i=1

2−i log(2in + 1) ≤ 4 log 2 + log(n + 1).

Proof of Theorem 12. By Lemma 14 we can compare Λn and Λ̂n and use
Lemma 15 to get

0 ≤ Λ(λ) − 1

2n
Λ2n(λ)

= Λ(λ) − 1

2n
Λ̂2n(λ) +

1

2n
[Λ̂2n(λ) − Λ2n(λ)]

≤ 1

2n
[4 log(2) + log(2n + 1) + λc2] +

1

2n
[3 log(2n + 1) + λc2]

=
1

n
[2 log(2) + 2 log(2n + 1) + λc2].



4.10. MULTIPLE SPLITTING 67

4.10 Multiple splitting

We will now describe another way of deriving a result similar to the state-
ment in Theorem 12. In spite of the disadvantage of being more complicated,
this approach has the advantage of improving Theorem 12 and of providing
some formulas which might be helpful for further investigations. We will
start with a result which is much in the spirit of Lemma 4.

Let m,n ∈ N where n is a multiple of m. For some i with −n ≤ i ≤ n
we want to split the optimal alignment from (0, 0) to the point (n+ i, n− i)
at the secondary diagonals (Dj)1≤j≤n/m−1, where

Dj := {k : (0, 0) ≤ k ≤ (n + i, n − i), ||k||1 = 2jm}.

To each increasing path ~k = (k0, . . . ,kn/m), where

(0, 0) = k0 ≤ k1 ≤ . . . ≤ kn/m = (n + i, n − i)

we assign a score S~k
via

S~k
:=

n/m
∑

j=1

Skj−1,kj

and denote the set of all such paths by Kn,m,i. It is clear that for any
~k ∈ Kn,m,i we have

S(0,0),(n+i,n−i) ≥ S~k

which extends by maximization to

max
~k∈Kn,m,i

S~k
≤ S(0,0),(n+i,n−i). (4.25)

On the other hand considerations similar to the ones used in Lemma 4 give
that

S(0,0),(n+i,n−i) ≤ max
~k∈Kn,m,i

S~k
+ c2n/m. (4.26)

4.10.1 A relation between LMGFs

We now use the splitting to derive a relation between logarithmic moment
generating functions. To do so we start by defining the logarithmic moment
generating function of S~k

for ~k ∈ Kn,m,i as

Λ~k
(λ) := log E[eλS~k ] =

n/m
∑

j=1

Λkj−kj−1
(λ). (4.27)
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This logarithmic moment generating function can now be conveniently used
to describe exponential tilting along the path ~k. For a path ~k ∈ Kn,m,i and
λ ∈ R we define a measure P~k,λ

on Ω = An+i ×An−i by

dP~k,λ

dP
(ω) := eλS~k

(ω)−Λ~k
(λ).

We use this tilting to get

eΛ(n+i,n−i)(λ) = E

[

eλS(0,0),(n+i,n−i)

]

= E

[∑

~k∈Kn,m,i
eλS~k

∑

~l∈Kn,m,i
eλS~l

· eλS(0,0),(n+i,n−i)

]

=
∑

~k∈Kn,m,i

eΛ~k
(λ)E~k,λ

[

eλS(0,0),(n+i,n−i)

∑

~l∈Kn,m,i
eλS~l

]

.

Using (4.25) and (4.26) we get the final inequalities

eΛ(n+i,n−i)(λ) ≥
∑

~k∈Kn,m,i

eΛ~k
(λ)E~k,λ




max~l′∈Kn,m,i

eλS~l′

∑

~l∈Kn,m,i
eλS~l



 (4.28)

and

eΛ(n+i,n−i)(λ) ≤ eλc2n/m
∑

~k∈Kn,m,i

eΛ~k
(λ)E~k,λ




max~l′∈Kn,m,i

eλS~l′

∑

~l∈Kn,m,i
eλS~l



 (4.29)

4.10.2 Exploiting the upper bound

Since the Expectation in (4.29) is bounded by one from above and by (4.27)
we get

eΛ(n+i,n−i)(λ) ≤ eλc2n/m
∑

~k∈Kn,m,i

e
Pn/m

j=1 Λkj−kj−1
(λ)

. (4.30)

We now change the parametrization in this formula to get a more convenient
version. Observe that for each ~k all the points kj − kj−1 are in the set

{(m + h,m − h) : − m ≤ h ≤ m}.

For a fixed ~k and −m ≤ h ≤ m we define

bh := #{1 ≤ j ≤ n/m : kj − kj−1 = (m + h,m − h)}.

This defines a mapping from Kn,m,i to the set

Bn,m,i :=

{

b = (b−m, . . . , bm) :

m∑

h=−m

bh = n/m,

m∑

h=−m

hbh = i

}

.
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This mapping is not one-to-one. In fact for a given b ∈ Bn,m,i the number

of ~k ∈ Kn,m,i which are mapped onto it is easily calculated as
(

n/m

b−m, . . . , bm

)

and for each such ~k we have

n/m
∑

j=1

Λkj−kj−1
(λ) =

m∑

h=−m

bhΛ(m+h,m−h)(λ).

In this parametrization the inequality (4.30) writes as

eΛ(n+i,n−i)(λ) ≤ eλc2n/m
∑

b∈Bn,m,i

(
n/m

b−m, . . . , bm

)

exp

(
m∑

h=−m

bhΛ(m+h,m−h)(λ)

)

.

(4.31)
We want to use this inequality in the following way.

For the left hand side some limiting procedure can be carried out as
follows. First we define ρ := i/n, so that we can write n(1+ρ, 1−ρ) instead
of (n + i, n − i). Then we replace the n by kn, take logarithms and divide
by kn. From superadditivity arguments it follows then that

Λ(ρ)(λ) := lim
k→∞

1

kn
Λkn(1+ρ,1−ρ)(λ)

exists as a convex function in λ. Of course Λ(0) is just the limiting logarith-
mic moment generating function Λ introduced above.

We now want to carry out the same kind of limiting procedure on the
right-hand side.

To do this we need some more notation. First, to shorten notation we
write

xh := Λ(m+h,m−h)(λ), −m ≤ h ≤ m.

For a vector x = (x−m, . . . , xm) ∈ R2m+1 define the function fx : R2m+1 → R

as

fx(π−m, . . . , πm) := −
m∑

h=−m

πh[log(πh) − xh].

Also we need
f̃ρ(x) := max{fx(π) : π ∈ Pm,ρ},

where the maximization is over the set

Pm,ρ :=

{

π = (π−m, . . . , πm) ∈ [0, 1]2m+1 :

m∑

h=−m

πh = 1,

m∑

h=−m

hπh = ρm

}

.

Approximating the sum in (4.31) by an integral and using a Laplace approx-
imation we get the following Lemma which we will prove in Appendix A.5
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Lemma 16. We have

∑

b∈Bkn,m,knρ

(
kn/m

b−m, . . . , bm

)

exp

(
m∑

h=−m

bhxh

)

≤

≤ C ′′

(
kn

m

)2m− 1
2

e
kn
m

f̃ρ(x)

{

1 + O

((
kn

m

)−1
)}

.

Taking logarithms, dividing by kn and letting k → ∞ then gives the
following upper bound for Λ(ρ)

Λ(ρ)(λ) ≤ 1

m
λc2 +

1

m
f̃ρ(x).

All that remains is to plug in a more concrete formula for f̃ρ(x). This can
be done as shown in Appendix A.5. Especially it is shown there how to
determine the value of λρ which will be needed in the following. Recall that
the vector x is symmetric, since its entries are defined as

xh = Λm+h,m−h(λ)

so that λ0 = 0. The final upper bound for Λ(ρ) now reads as

Λ(ρ)(λ) ≤ 1

m
λc2 +

1

m
log

(
m∑

h=−m

eΛm+h,m−h(λ)+λρh

)

− ρλρ.

Especially for ρ = 0 we get the following corollary, which improves Theo-
rem 12.

Corollary 5.

Λ(λ) − 1

m
Λm(λ) ≤ 1

m
λc2 +

1

m
log(2m + 1).

Proof. Since for all −m ≤ h ≤ m

Λm(λ) := Λm,m(λ) ≥ Λm+h,m−h(λ),

we get

Λ(λ) − 1

m
Λm(λ) ≤ 1

m
λc2 + +

1

m
log

(
m∑

h=−m

eΛm+h,m−h(λ)−Λm(λ)

︸ ︷︷ ︸

≤1

)

≤ 1

m
λc2 +

1

m
log(2m + 1).



Chapter 5

Conclusions and outlook

We will now discuss in how far the results we derived in this thesis give
insight into the asymptotic behaviour of the tail of the optimal local score’s
distribution. On the level of large deviations, our description of the tail’s
behaviour is quite complete. Still, it is not completely trivial to calculate the
rate θ∗ in practice. We will come back to this problem in Subsection 5.2.1.

Now, we want to discuss how one has to read our results in order to get
finer statements about the behaviour of the tail. To better understand the
context of this discussion we start by explaining the corresponding results
for some simpler cases.

5.1 Finer tail asymptotics

The θ∗ we characterized in Section 2.1 only answered the crudest of all ques-
tions about the optimal local score’s tail behaviour: What is the leading term
in its exponential decay? Immediately the question about a finer descrip-
tion of its asymptotic behaviour arises, meaning that ideally we would like
to find two functions f and g for which

P(M0,n > t) ∼ f(n)g(t)e−θ∗t

as both n and t tend to infinity.

In this section we will use the notation from Section 2.1.

5.1.1 The gapless case

In the gapless case the right asymptotics follow from (2.1), which gives that
we should choose f(n) = ηn2 and g(t) = C∗, where ηC∗ = K∗. Without
going much into detail, this holds, since M0,n can be interpreted as the
maximum of ηn2 asymptotically independent random variables, the Ti’s for
i ∈ [0, n]2, and where each of them has a very small chance of about C ∗e−θ∗t
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of exceeding the score t. To prove that

P(Ti > t) ∼ C∗e−θ∗t (5.1)

of course requires more elaborate methods than the ones we used to char-
acterize θ∗. The main ingredient is renewal theory, details can be found
in [Igl72] or [KD92]. Again, the rigorous result is a little bit more compli-
cated, since the constant C∗ can not be taken literally in the case where
the possible values of the process (S0,n)n≥0 do not give all of R but only
a discrete subset. In this case, which is usually called the lattice case, the
asymptotic behaviour in (5.1) has actually to be replaced by a lower and an
upper bound with the constant C∗ replaced by two constants.

Dembo, Karlin and Zeitouni use the Chen-Stein-method (cf. [AGlG89])
to prove a Poisson approximation and to get the asymptotic behaviour of
P(M0,n > t). This means that basically {Ti ≥ t} and {Tj ≥ t} are asymp-
totically independent for large t, if the two vertices i and j are far enough
away from each other. Of course, in the course of the proof, the depen-
dences between {Ti ≥ t} and {Tj ≥ t} have to be controlled — a task which,
for well-behaving scoring schemes, can be done using large deviations argu-
ments. In [DKZ94b], exact criteria are given which characterize the class of
well-behaving scoring schemes — the scoring schemes which are commonly
used in practice being amongst them.

5.1.2 An intermediate case

In [SY00] D. Siegmund and B. Yakir proved a tail asymptotics for the opti-
mal local score in the somewhat artificial situation where gaps are allowed,
but not too many of them. To be more precise, they restrict the overall
number of horizontal and vertical stretches in the optimal alignment paths,
whereas the overall length of those stretches is not confined. This in fact
leads to a model which is settled between the gapless and the gapped align-
ments. What basically happens in this model is that it tries to find good
gapless parts which are not too far away from each other and combines them
to get a gapped alignment.

Concerning the asymptotic behaviour, it is of the same form as in the
gapless case, only the value of the constant K∗ has to be changed. Espe-
cially, the rate of decay θ∗ is the same as in the gapless case, i.e. it can be
characterized as the unique positive zero of the logarithmic moment gener-
ating function for the gapless case which we introduced in (2.4). As shown
in Subsection 2.1.2, the rate of decay in the real gapped case, i.e. where all
possible alignments are allowed, can be characterized as the unique positive
zero of some limiting logarithmic moment generating function. It is defined
in (2.10) and in nontrivial cases it is definitely not identical with the one
in the gapless case. This shows that the restricted optimal score, which has
been considered by Siegmund and Yakir, cannot serve as an approximation
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for the full optimal local score. Already on the coarsest scale the tail of the
latter behaves differently.

The main work in [SY00] goes into the problem of characterizing the
changed constant in front of the exponential term. The dependences be-
tween different optimal alignments become much more complicated than
in the pure gapless case and intricate calculations are necessary to control
them. The constant depends on quite a complicated way on the chosen gap
penalties, but formulas are given, which admit numerical calculations. De-
tails related to the numerics can be found in [SS01]. For a simpler model
that explains well the ideas behind Siegmund/Yakir’s work cf. [MGW02].

5.1.3 The gapped case

In the gapped case a rigorous version of full tail asymptotics is still far away.
It is conjectured, however, that the tail behaves much the same as in the
gapless case, with different constants, of course.

But let us look at the results we have. An upper bound for the tail of
M0,n is given by Corollary 4 which states that

P(M(0,0),(m,n) > t) ≤ cmnt2e−tθ∗ (5.2)

for some constant c. What we would like to have next is some corresponding
lower bound which would help to judge in how far this upper bound is sharp.
Observe that to derive (5.2) it was not necessary to control the dependences
between the Ti’s. However, this would be necessary for a lower bound, i.e.
if we were able to

(i) give a lower bound for the tail of the Ti’s and

(ii) control the dependences between the Ti’s,

this would lead to a lower bound for P(M(0,0),(m,n) > t).

Let us discuss the first point in more detail. Recall the upper bound for
P(T > t) which we gave in Corollary 3 and which states that

P(T > t) ≤ ct2e−tθ∗

for some constant c. We do not believe this upper bound to be sharp, but
what is interesting is that, apart from the leading exponential term e−tθ∗ ,
there is no other exponential term in t of some lower order, but only a
polynomial one. A first step into the direction of a more refined result
would be to also give a lower bound in which no exponential terms, apart
from the leading one, would appear. This would then imply that also in
the true asymptotic behaviour of P(T > t) there would appear no other
exponential term apart from e−tθ∗ .
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The most promising way to get a lower bound is probably to take equa-
tion (2.8) and use it for n = i∗, where

i∗ := i∗(t) := t/Λ′(θ∗). (5.3)

First observe that, although (2.12) is formulated in terms of logarithmic
equivalence, it is in fact the case that a polynomial correction term suffices
to relate the asymptotic behaviour of P(Si∗ > t) to the one of P(T > t).
Then the rewriting of (2.8) gives (with q∗ := Λ′(θ∗))

P0(S0,i∗ > i∗q∗) = e−i∗[λi∗,q∗q∗−(1/i∗)Λi∗ (λi∗,q∗)]×
× Eλi∗,q∗ ,i∗ [exp(−λi∗,q∗(S0,i∗ − i∗q∗));S0,i∗ > i∗q∗].

The exponential term on the right of this equation can be easily shown to
be of the order e−θ∗t+O(log t) = Ω(t−α) · e−θ∗t for some α ≥ 0, since we have
the convergence rate result

Λ(λ) − 1

n
Λn(λ) = O

(
log n

n

)

.

The problem is the remaining expectation, which is some kind of trun-
cated moment generating function. As we already mentioned in Subsec-
tion 2.1.1, in the gapless case it is of the order Θ(t−1/2). This stems from
the fact that in this case S0,i∗ is a sum of i∗ i.i.d. random variables and thus
the probability that it falls into the small strip [E[S0,i∗ ], E[S0,i∗ ]+δ] is of the
order Θ((i∗)−1/2) and i∗ can be replaced by t because of (5.3).

In the gapped case we do not have such a result. The only thing we know
from the concentration inequalities is that, asymptotically, the total mass
of the distribution of S0,i∗ is concentrated in a an interval around E[S0,i∗ ]
which has a length of the order o(t1/2+ε) for any ε > 0. But does this imply
that a fraction of the mass which is of order Ω(t−β) for some β > 0 can
be found in the direct vicinity of E[S0,i∗ ]? This would then be sufficient to
show that the whole expectation is of the order Ω(t−β) and finally we would
get that

P0(T > t) ≥ Ω(t−η) · e−θ∗t

for some η > 0.

5.2 Assessing the statistical significance in prac-

tice

It would certainly go beyond the scope of this thesis to give a detailed
overview of the approaches used in practice to assess the statistical signifi-
cance of the results of sequence similarity searches. We will just explain the
basic concepts in order to be able to describe in how far our result is useful.
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Motivated by the rigorous results in the gapless case, which we sketched
in Subsections 2.1.1 and 5.1.1, almost all authors assume that, also in the
gapped case, the asymptotic distribution function of the optimal local score
obtained by comparing two random sequences, is of the Gumbel-type

lim
n→∞

P

(

M0,n − 2 log n

θ∗

)

= exp(−K∗ exp(−θ∗t)). (5.4)

First heuristical arguments and an empirical verification for this have been
given by M. Waterman and M. Vingron in [WV94a] and [WV94b]. The
heuristical argument given there is based on the Chen-Stein-method ([AGlG89])
but, in contrary to the gapless case, lacks rigour. Actually, Waterman and
Vingron used computer simulations to check the validity of the heuristics.

Assuming the correctness of the Gumbel-form for the limiting distribu-
tion, the practitioner is left with mainly two problems.

(i) To estimate the two parameters K∗ and θ∗.

(ii) To check how good the approximation by the limiting distribution
function really is, since in practice we are only dealing with finite
databases consisting of finite sequences.

This thesis can only make a substantial contribution to the first of these two
problems and we will explain this in the next subsection. For the second we
refer to [Pea98], [SV98], [Mot02] and the references therein.

5.2.1 Calculating the parameters

One of the main results of this thesis is that, if one assumes the correctness
of the Gumbel-form, we have proved a characterization of the parameter θ∗,
which in a natural way extends the gapless case. Whereas in the gapless case
θ∗ is given by the unique positive zero of the logarithmic moment generating
function of the score of a randomly chosen letter pair, it is in the general
case given by the unique positive zero of some limiting logarithmic moment
generating function that arises from optimal global scores. Unfortunately,
this limiting logarithmic moment generating function can not be calculated
directly and neither can its unique positive zero; in practice it has to be
estimated.

Our results provide a recipe how to do this. If we denote for each n > 0
by θ∗n the unique positive zero of the function Λn, then it is clear from the
convergence of (1/n)Λn to Λ, that

θ∗n ↘ θ∗

as n → ∞. So, the basic idea is to estimate θ∗n for large enough n in order
to approximate θ∗.
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Our result about the rate of convergence of the Λn’s can be used here
to get an estimate for the accuracy of the approximation. Observe that it
follows from (2.15) that

θ∗n = θ∗ + O

(
log n

n

)

, (5.5)

so it should be possible to control the error made in the approximation.
As we have learned after proving our results, the characterization of

θ∗ as the unique positive zero of some limiting logarithmic moment gener-
ating function had already been conjectured by R. Bundschuh in [Bun02].
Bundschuh gives heuristic arguments and also checks whether the estimation
procedure for θ∗ just described is useful in practice. His results concerning
the latter issue are quite encouraging and we will describe them briefly.

Whereas we showed (5.5) rigorously, Bundschuh conjectures in [Bun02]
that the convergence is of the form

θ∗n = θ∗ +
c

n
+ O(n−2), (5.6)

where c is some constant, which might change from case to case. He then
estimates θ∗n for a number of moderately large values of n (concretely n = 60,
n = 80 and n = 100) and fits a function of the form a + b/n to this set of
points. The fitted parameter a then serves as an estimator for θ∗. This is
done for a number of scoring schemes and actually works well. The results
were evaluated using independent, good estimates for θ∗ which were obtained
using extensive simulations.

Of course, in principle, it is as difficult to estimate the logarithmic mo-
ment generating function Λn as it is to estimate the tail of the distribution
of S0,n, but for the values of n used here this can be done in a very short
time. The advantage is that the assumption made in (5.6) already works
well for those small values of n.

Being now able to estimate the parameter θ∗ in reasonable time, only
the second parameter K∗ remains to be estimated. Concerning this issue
we do not have any comparable result, but observe two things.

(i) Although for practical purposes it might be sufficient to assume (5.4),
it is by no means rigorously justified, that this is the right form, resp.
the right scaling.

(ii) The parameter θ∗ is by far the more important for assessing the sta-
tistical significance of database searches (cf. e.g. [Mot02]). Especially
for very small p-values the influence of K∗ becomes negligible.

Other approaches to estimate the parameters θ∗ and K∗ were mainly
based on the use of extensive simulations (cf. [AG96], [WV94a], [WV94b],
[OBH99]).
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Appendix

A.1 Asymptotic relations

For convenience we use some notation for asymptotic relations which goes
slightly beyond the usual Landau symbols. Our notation follows the one
used in the analysis of computer algorithms (cf., e.g., [CLR90]). The classical
Landau symbols are

f(x) = o(g(x)) as x → x0 :⇐⇒ lim sup
x→x0

|f(x)|
g(x)

= 0

and

f(x) = O(g(x)) as x → x0 :⇐⇒ ∃C > 0: lim sup
x→x0

|f(x)|
g(x)

≤ C.

If one wants to give an asymptotic lower bound, instead of an upper bound,
the following symbol is useful

f(x) = Ω(g(x)) as x → x0 :⇐⇒ ∃C > 0: lim inf
x→x0

|f(x)|
g(x)

≥ C,

which together with O gives a two-sided asymptotically sharp bound

f(x) = Θ(g(x)) as x → x0 :⇐⇒ f(x) = O(g(x)) ∧ f(x) = Ω(g(x)).

In large deviations theory one often is concerned with quantities which grow
or decay exponentially fast. Sometimes one is only interested in the rate of
such a growth or decay. It is therefore convenient to introduce (in the spirit
of [dH00]) the notion of logarithmic equivalence as

f(x) ' g(x) as x → ∞ :⇐⇒ lim
x→∞

1

x
(log(f(x)) − log(g(x))) = 0.
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PSfrag replacements

f

straight line with slope q−f∗(q)

Figure A.1: The geometrical intuition behind convex conjugation.

Logarithmic equivalence has one especially important property, namely that

f(x) + g(x) ' max(f(x), g(x)).

This is known as the “largest-exponent-wins” property. Of course it holds
for all sums of finitely many functions as long as the number of summands
does not grow exponentially in x.

A.2 Convex conjugation

Another principle, which plays a major role in many of the arguments of
this thesis, is convex conjugation. We will give an informal and intuitive
presentation of the basic ideas, for a more thorough threatment the reader
should consult the Rockafellar’s book ([Roc79]).

To any convex function f its convex conjugate f ∗ can be defined as

f∗(q) := sup
x∈R

{xq − f(x)}. (A.1)

We always think of convex functions as being defined on all of R and taking
values in R = [−∞,∞], since a convex function f : D → R can always be
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extended to a convex function in our sense by setting f(x) := ∞ for x /∈ D.
The set

Df := {x ∈ R : f(x) < ∞}
is called the domain of f .

The very extreme cases where f(x) = ∞ for all x ∈ R or f(x) = −∞ for
some x ∈ R can cause some inconveniences in what follows, so we exclude
them. In the usual diction this means that we restrict ourselfs to proper
convex functions.

Behind definition (A.1) a nice geometrical intuition is hidden:

To determine the value of f ∗(q) for some given q, take an infinite
straight line with slope q and move it from below towards the
function f until it touches the graph of f . The intersection of
the line with the vertical axis then gives −f ∗(q).

This principle is depicted in Figure A.1. Observe that it still works in
extreme cases as, e.g., when for a given q there is no room below f where
the straight line with slope q can be put. Then the line has to be moved
infinitely far down and we get f ∗(q) = ∞.

f∗ itself is a convex function, but with the additional property of being
closed, where for a closed convex function the epigraph

epif := {(x, y) ∈ R2 : y ≥ f(x)},

is a closed set. Convex functions and epigraphs are in a one-to-one relation,
so for any convex function f one can define its closure cl(f) by taking the
convex function with epigraph cl(epif). It is the key property of convex
conjugation that by applying the operation twice, one almost gets back to
the original function in the sense that

f∗∗ = cl(f).

The convex conjugate f ∗ is also known as the Legendre- or Fenchel-Legendre-
transform of f . This denotation is especially common in large deviations
theory, where logarithmic moment generating functions and rate functions
form convex conjugate pairs.

A.3 Some calculations

First we will show the following basic estimate for the tail of the standard-
normal distribution.

Lemma 17. For t ≥ 0 we have
∫ ∞

t

1√
2π

exp

(

−u2

2

)

du ≤ 1

2
exp

(

− t2

2

)

.
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Proof.

∫ ∞

t

1√
2π

exp

(

−u2

2

)

du =

∫ ∞

0

1√
2π

exp

(

−(y + t)2

2

)

dy

=

∫ ∞

0

1√
2π

exp

(

−y2 + 2yt + t2

2

)

dy

=

∫ ∞

0

1√
2π

exp

(

−y2

2

)

exp(−yt)
︸ ︷︷ ︸

≤1

exp

(

− t2

2

)

dy

≤ exp

(

− t2

2

)∫ ∞

0

1√
2π

exp

(

−y2

2

)

dy

︸ ︷︷ ︸

= 1
2

=
1

2
exp

(

− t2

2

)

.

Another variant of this is

∫ ∞

t
exp

(

− u2

2σ2

)

du ≤
√

2πσ2

2
exp

(

− t2

2σ2

)

. (A.2)

We show that for large enough c the integral in (4.19) converges to zero
as n → ∞. We have

2(4n)4
∫ ∞

c(n log n)1/2

exp

(

−(y − 3c2/2)
2

128c2
3n

)

dy

= 2(4n)4
∫ ∞

c(n log n)1/2−3c2/2
exp

(

− z2

128c2
3n

)

dz

≤ (4n)4
√

128πc2
3n exp

(

−(c(n log n)1/2 − 3c2/2)
2

128c2
3n

)

,

where we used (A.2) with σ2 = 64c2
3n in the inequality. For n large enough

certainly

(c(n log n)1/2 − 3c2/2)
2 ≥ c2n log n

2
,

so we get

≤ (4n)4
√

128πc2
3n exp

(

−(c(n log n)1/2 − 3c2/2)
2

128c2
3n

)

≤ (4n)4
√

128πc2
3n exp

(

−c2 log n

256c2
3

)

= (4n)4
√

128πc2
3n · n

− c2

256c2
3 −−−→

n→∞
0

for c large enough.
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A.4 A lemma for almost additive sequences

Lemma 18. Let (an)n≥0 be a sequence for which α := limn→∞ an/n exists
and for which

2an − l(2n) ≤ a2n ≤ 2an + u(2n), (A.3)

for all n and for some nonnegative functions l(·) and u(·). Then

−
∞∑

i=1

2−il(2in) ≤ nα − an ≤
∞∑

i=1

2−iu(2in).

Proof. Iterate (A.3) to get for k > 0

2kan −
k−1∑

j=0

2jl(2k−jn) ≤ a2kn ≤ 2kan +

k−1∑

j=0

2ju(2k−jn).

Dividing by 2kn and changing the index of summation to i = k − j gives

an

n
− 1

n

k∑

i=1

2−il(2in) ≤ a2kn

2kn
≤ an

n
+

1

n

k∑

i=1

2−iu(2in).

The assertion follows by letting k → ∞.

A.5 More calculations

A.5.1 Proof of Lemma 16

We show that

∑

b∈Bkn,m,knρ

(
kn/m

b−m, . . . , bm

)

exp

(
m∑

h=−m

bhxh

)

≤

≤ C ′′

(
kn

m

)2m− 1
2

e
kn
m

f̃ρ(x)

{

1 + O

((
kn

m

)−1
)}

. (A.4)

To start with we state an upper bound for multinomials which follows di-
rectly from Stirling’s formula.

Lemma 19. Let k1, . . . , km, n ∈ N with
∑m

i=1 ki = n. Then, for k1, . . . , km

large enough we have

(
n

k1, . . . , km

)

≤ (
√

2π)−(m−1)√ne
n

n

−
Pm

i=1
ki
m

log
ki
m

o

(1 + O(n−1)).
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Proof. Recall that according to Stirling’s formula

n! =
√

2πnn+1/2e−n

(

1 +
1

12n
+ O(n−2)

)

.

Plugging this into the definition of the multinomial and using

(
m∏

i=1

(

1 +
1

12ki
+ O(k−2

i )

))−1

≤ 1

and (
√

k1 · · · km)−1 ≤ 1 gives the result.

Inserting the result from Lemma 19 into the left-hand side of (A.4) and
recalling the definition of the function fx we get

∑

b∈Bkn,m,knρ

(
kn/m

b−m, . . . , bm

)

exp

(
m∑

h=−m

bhxh

)

≤

≤ (
√

2π)−2m

√

kn

m

∑

b∈Bkn,m,knρ

e
kn
m

fx( m
kn

·b){1 + O(m/(kn))}. (A.5)

The sum on the right hand side in (A.5) can be interpreted as an approxi-
mating Riemann sum to a (2m−1)-dimensional volume integral in the sense
that

(
kn

m

)−(2m−1) ∑

b∈Bkn,m,knρ

e
kn
m

fx( m
kn

·b) ≤

≤
∫

Pm,ρ

e
kn
m

fx(π)d(2m−1)(π) + En, (A.6)

with some error term En. In this approximation the approximating cells have
volume (kn/m)−(2m−1) and a diameter which is of the order of (kn/m)−1.

Since the integrand e
kn
m

fx(π) grows exponentially in k, we can not deduce
that the error term vanishes as k → ∞. Anyway, observe that the maximum
over Pm,ρ of the total differential of the integrand can be bounded by

C(kn/m)e
kn
m

f̃ρ(x)

for some constant C. The error term can then be bounded by multiplying
this upper bound by the diameter of the approximating cells which gives

En ≤ C ′e
kn
m

f̃ρ(x)
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with some constant C ′. Furthermore, a Laplace approximation of the inte-
gral gives that

∫

Pm,ρ

e
kn
m

fx(π)d(2m−1)(π) =

= C ′(
√

2π)2m−1

(
kn

m

)− 2m−1
2

e
kn
m

f̃ρ(x){1 + O(m/(kn))}.

Collecting these bounds together now shows that

∑

b∈Bkn,m,knρ

e
kn
m

fx( m
kn

·b) ≤ C

(
kn

m

)2m−1

e
kn
m

f̃ρ(x)

{

1 + O

((
kn

m

)− 2m−1
2

)}

.

Observe that the leading term in this upper bound merely came from the
error term En rather than from the Laplace approximation of the integral.
The proof of (A.4) now follows directly from (A.5).

A.5.2 Calculation of f̃ρ(x)

Recall the definition of the function fx : R2m+1 → R as

fx(π−m, . . . , πm) := −
m∑

h=−m

πh[log(πh) − xh],

where x = (x−m, . . . , xm) ∈ R2m+1. For ρ ∈ [−1, 1] we now calculate

f̃ρ(x) := max{fx(π) : π ∈ Pm,ρ},

where

Pm,ρ :=

{

π = (π−m, . . . , πm) ∈ [0, 1]2m+1 :
m∑

h=−m

πh = 1,
m∑

h=−m

hπh = ρm

}

.

From the method of Lagrange multipliers we see that for all −m ≤ h ≤ m
we have to equate

∂

∂πh

{

fx(π) + η1

[
m∑

h=−m

πh − 1

]

+ η2

[
m∑

h=−m

hπh − ρm

]}

=

= log πh − xh + 1 + η1 + η2h

to zero which gives that π is of the form

πh = C−1
x,η2

exh−η2h (A.7)
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with the normalizing constant

Cx,η2 :=
m∑

h=−m

exh−η2h.

Let us first examine the special case of η2 = 0. In this case π̂ := (π̂−m, . . . , π̂m),
where

π̂h := C−1
x,0e

xh

maximizes fx(π) in Pm,ρ̂, where

ρ̂ :=
1

m

m∑

h=−m

hπ̂h.

Especially for symmetric x, also π̂ is symmetric and it follows that ρ̂ = 0.
To get the solution for general ρ, consider the distribution µ̂ which is

defined by π̂ on the set {−m, . . . ,m}. As can be seen from the basic form
(A.7), the solution arises from an exponential tilting of µ̂. To work out the
details, define the logarithmic moment generating function Λ̂ of µ̂ as

Λ̂(λ) := log

(
m∑

h=−m

π̂heλh

)

.

For the given ρ determine the solution λρ of

Λ̂′(λ) = ρm

and define
π̄h := π̂heλρh−Λ̂(λρ).

Then π̄ maximizes fx(π) in Pm,ρ.
All that remains is to calculate f̃ρ(x) = fx(π̄). To do this, observe that

a short calculation shows that

log π̄h = xh + λρh − log

(
m∑

h′=−m

exh′+λρh′

)

,

which gives

f̃ρ(x) = log

(
m∑

h′=−m

exh′+λρh′

)

− mρλρ.
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ables, Tôhoku Math. J. 19 (1967), 357–367.

[BR60] R. R. Bahadur and R. Ranga Rao, On deviations of the sample
mean, Ann. Math. Stat. 31 (1960), 1015–1027.

[Bun02] R. Bundschuh, Rapid significance estimation in local sequence
alignment with gaps, J. Comp. Biol. 9 (2002), 243–260.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest,
Introduction to algorithms, The MIT Electrical Engineering and
Computer Science Series, MIT Press, Cambridge, MA, 1990.

85



86 BIBLIOGRAPHY

[DEKM98] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological
sequence analysis, Cambridge University Press, 1998.

[dH00] F. den Hollander, Large deviations, Fields Institute Monographs,
vol. 14, American Mathematical Society, Providence, RI, 2000.

[DKZ94a] A. Dembo, S. Karlin, and O. Zeitouni, Critical phenomena for
sequence matching with scoring, Ann. Prob. 22 (1994), no. 4,
1993–2021.

[DKZ94b] A. Dembo, S. Karlin, and O. Zeitouni, Limit distributions of
maximal non-aligned two-sequence segmental score, Ann. Prob.
22 (1994), no. 4, 2022–2039.

[DSO78] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt, A model of
evolutionary change in proteins, Atlas of protein sequence and
structure (M. O. Dayhoff and R. V. Eck, eds.), vol. 5, Natl.
Biomed. Res. Found., 1978, pp. 345–352.

[Dur96] R. Durrett, Probability: Theory and examples, 2nd ed., Duxbury
Press, Belmont, 1996.

[DZ93] A. Dembo and O. Zeitouni, Large deviations techniques and ap-
plications, Jones and Bartlett, 1993.
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