
The Synthesis of Sound

with Application in a MIDI Environment

THESIS

Submitted in Partial Fulfilment of the

Requirements for the Degree of

MASTER OF SCIENCE (APPLIED COMPUTER SCIENCE)

of Rhodes University

by

ANTHONYJAMESKESTERTON

January 1991

lie 91 - I,

11

Abstract

The wide range of options for experimentation with the synthesis of sound are usually

expensive, difficult to obtain, or limit the experimenter. The work described in this thesis

shows how the IBM PC and software can be combined to provide a suitable platform for

experimentation with different synthesis techniques. This platform is based on the PC, the

Musical Instrument Digital Interface (MIDI) and a musical instrument called a digital

sampler.

The fundamental concepts of sound are described, with reference to digital sound

reproduction.

A number of synthesis techniques are described. These are evaluated according to the

criteria of generality, efficiency and control. The techniques discussed are additive

synthesis, frequency modulation synthesis, subtractive synthesis, granular synthesis,

resynthesis, wavetable synthesis, and sampling. Spiral synthesis, physical modelling,

waveshaping and spectral interpolation are discussed briefly.

The Musical Instrument Digital Interface is a standard method of connecting digital

musical instruments together. It is the MIDI standard and equipment conforming to that

standard that makes this implementation of synthesis techniques possible.

As a demonstration ofthe PC platform, additive synthesis, frequency modulation synthesis,

granular synthesis and spiral synthesis have been implemented in software. A PC

equipped with a MIDI interface card is used to perform the synthesis. The MIDI protocol

is used to transmit the resultant sound to a digital sampler. The INMOS transputer is

used as an accelerator, as the calculation of a waveform using software is a computational­

intensive process.

It is concluded that sound synthesis can be performed successfully using a PC and the

appropriate software, and utilizing the facilities provided by a MIDI environment including

a digital sampler.

III

Table of Contents

Abstract • .. . •................•.... 11

Table of Contents iii

List of Figures .. vi

Acknowledgements Vlll

1. Introduction . • 1

2. Fundamental Concepts•......•................ 5

2.1. Sound. • . . . 5

2.2. Fourier Transforms 7

2.3. Digital Representation of Sound . 12

3. Synthesis Techniques. 16

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

4. MIDI

4.1.

4.2.

4.3.

4.4.

4.5.

Introduction•...

Evaluation of Synthesis Techniques

Additive Synthesis

Frequency Modulation Synthesis

Subtractive Synthesis•...........

Granular Synthesis

Resynthesis

Wavetable Synthesis

Sampling•. ...

Other Synthesis Techniques

Discussion

Introduction

A Brief History

MIDI Described

System Exclusive Commands

Extensions to MIDI

16

17

19

25

36

39

45

48

51

61

65

66

66

66

67

70

71

iv

4.6. An Appraisal of MIDI. 77

5. Implementation 78

5.1. Analysis and Design . 78

5.2. Synthesis Implementation 84

5.3. Transputer-based Synthesis. 88

5.4. Additive Synthesis Implementation 96

5.5. Frequency Modulation Implementation 98

5.6. Granular Synthesis Implementation .. 99

5.7. Spiral Synthesis Implementation. 104

6. Conclusion .. 106

7. Bibliography. 108

Appendices •...•........ ll6

Appendix A

AI.

A2.

A3.

Appendix B

B.1.

B.2.

B.3.

B.4.

B.5.

Appendix C

Appendix D

D.l.

D.2.

D.3.

D.4.

D.5.

A Mouse Interface for Turbo C . II 7

Mouse Basics . II 7

The Standard Mouse Calls Interface ll8

The Buffered Mouse Procedures . 122

Roland Sample Transfer. 125

Introduction . 125

Roland System Exclusive Communication 125

ROLAND S-220/S-10 specifics•.. .. .• .. 128

Criticisms of Roland Sample Transfer Methods 131

Conclusion . 133

The .ROL file format 135

Running the Synthesis Software. 137

Hardware and Software reqillrements 137

Creating Parameter Files . • . . 138

Performing Synthesis . 139

Sending Output to the Sampler 140

Possible Errors and How to Correct Them•.... 141

Appendix E

E.I.

E.2.

Appendix F

F.I.

F.2.

Appendix G

Appendix H

H.I.

H.2.

H.3.

HA.

The SMPX User Guide and Technical Infonnation

User Guide for SMPX

Technical Information

Utilities • ...•.....................

Look

Template Files

Execution Times of the Various Synthesis Techniques

Selected Source Code•..•.....

Parameter Entry

Synthesis

Pack Samples into .ROL Format

Send a .ROL file to the Roland S-220/S-10

v

144

144

148

154

154

156

158

159

160

176

184

190

Figure 1.1.

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 4.1.

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure B.l.

Figure F.l.

List of Figures

A platform for synthesis. The PC is the synthesis engine and the

MIDI protocol is used to send the sound to a Roland S-220 digital

vi

sampler, where it can be heard. 3

A simple waveform. 6

A sine wave of frequency 5 Hz and period 0.2 seconds. 7

A sine wave, a square wave and a sawtooth wave. 8

Sine waves with different phases. One wave has a phase cp = 0, and

the other has a phase of cp = rc/2. 9

A single sine wave in the time and frequency domain. 11

Each circle represents a wagon wheel. A single spoke is shown for

clarity. The initial position is shown on the left, and the position

after one frame is shown on the right. 15

A typical ADSR curve . 20

A Yamaha FM operator. From [Yamaha, 1987] 29

DX21 4-operator algorithm. From [Yamaha, 1985] 29

A sound produced from the same two sine waves. The top wave

uses additive synthesis, the bottom uses simple Chowning FM.

The sine waves have a frequency of 100 Hz and 333 Hz. The

modulation index of the FM signal is 0.9. 33

Xenakis' time frames for granular synthesis. Each filled square

represents a grain. From [Roads, 1985al. 41

The mapping between input voltage and digital values on an

ordinary and companding AID converter. 55

Open and closed loop MIDI systems. 76

The execution time of the additive synthesis procedures using

different processor combinations. 94

The granular synthesis implementation. An individual grain is

made from calculated samples. A grain set is the summation of

grains. A sound or waveform is made from grain sets placed one

after another. .. 100

Possible filter positions on a pole-zero diagram. The position on

the z-plane determines the results of spiral synthesis. 105

Roland system exclusive message format 126

A screen dump from the program LOOKEXE. This is a fine view

screen. The sound was produced using additive synthesis. 155

Figure F.2. Screen dump from the program LOOK.EXE. This is the coarse

view screen. The display shows a sound produced using additive

vii

synthesis. 155

viii

Acknowledgements

I would like to acknowledge the financial assistance of Rhodes University and The

Foundation for Research and Development. I would like to thank the Computational Fluid

Dynamics Facility of the CSIR for use of equipment and facilities, as well as allowing me

time to complete this thesis.

I would also like to thank the following people:

Dr LM.A Gledhill and Mark Honman for encouragement and allowing me to spend a lot

of time working on my thesis.

Nic Cooke, William Hayes and Caroline Handler, my M.Sc classmates, for making my M.Sc

a memorable one.

Richard Foss, my supervisor, for encouragement, guidance and help for the entire duration

of the thesis. I would also like to thank him for introducing computer music to me, and

for setting up such good facilities at Rhodes.

Prof P.D. Terry, whose enthusiasm many years ago convinced me to follow a career in

Computer Science, rather than Law.

Finally, I would like to thank Giskin Day - for everything.

All registered and unregistered trademarks are the properties of their respective holders.

1

1. Introduction

The motivation for the work described in this thesis is the lack of a readily-available,

cheap, flexible tool for synthesis experimentation. There are many fine systems available

for computer music and synthesis research. These include systems based on personal

computers like the Apple Macintosh [Lowe and Currie, 1989)[Scaletti, 1989) and the NeXT

workstation [Jaffe and Boynton, 1989). However, these platforms can be costly and may

not be readily available to the researcher. It will be shown that the combination of PC and

digital sampler, a special type of synthesizer, can be used to implement various synthesis

techniques. The Musical Instrument Digital Interface (MIDI) provides the link between

the PC and sampler.'

The basic PC is not suitable for synthesis. The limited hardware of the PC makes it

impossible to actually hear the sound produced by the machine without adding extra cards

and software. However, if the PC merely performs the calculations required to generate

a sound, other equipment can be used to play the sound.

Machines like the NeXT and the Apple Macintosh already provide tools to manipulate and

produce sound. At the lowest level, the Apple Macintosh can produce sounds using the

sound driver that forms part ofthe system software [Apple, 1985). Digidesign's SoftSynth

program allows sound to be synthesised using additive and frequency modulation

synthesis, and played back over the Apple Macintosh speaker. The Turbosynth software

by Digidesign also allows the user to create new sounds using various synthesis

techniques, as well as modify existing sounds. With the addition of cards such as the

Digidesign's Sound Accelerator card, real-time synthesis can be performed [Lowe and

Currie, 1989). The KymaIPlatypus Computer Music Workstation is based on the

Macintosh [Scaletti, 1989) using Smalltalk-80 and a dedicated card.

The NeXT is even better at sound synthesis and manipulation [Jaffe and Boynton, 1989).

Part of the standard hardware provided with the NeXT with a Digital Signal Processor

(DSP) and 16-bit stereo Digital to Analog converters (D/A). Two object-orientated class

libraries called the Sound Kit and the Music Kit are provided. The Sound Kit provides

means to record, play, display and edit sounds. It provides sampler-like facilities. The

Music Kit provides ways to represent music, control music performance, and synthesize

2

sound. However, the cost of such a system makes it more difficult to use as a general

platform l

The idea of using software tools to produce and manipulate sound at a high level is not

new. Direct digital synthesis was initially developed by Max Mathews in 1958 (Risset,

1985). A sound sample was computed and played back via a D/A converler and

loudspeaker. At first, it was implemented on general-purpose computers that allowed the

user to set up parameters, then compute and store samples, then finally hear the sound.

It is this idea that was used in the implementation described in chapter 5. Mathews also

created a series oflanguages (MUSIC I - V) that enabled the user to create complex sounds

using generator units, modifier units and connections between those units (Scaletti,

Johnson, 1988). Much of the work on digital synthesis has a basis in these MUSIC "N"

languages including MUSIC 4BF, MUSIC 7, MUSIC 360 and MUSIC 11 (Risset, 1985).

Commercial synthesizers are not a good alternative for synthesis experimentation as they

are usually dedicated to one type of synthesis only.

Another synthesis experimentation technique is to use a spreadsheet on a PC. Synthesis

using a spreadsheet is a useful tool with which to experiment with different techniques.

The output is restricted to graphs of the output, but one can see the effects of parameter

changes quickly. The types oftechniques are limited to ones that do not compute a sample

using the previous value. That type of technique causes cyclical references to cells in the

spreadsheet that are difficult to resolve. However, it is not difficult to implement

techniques such as additive synthesis and frequency modulation synthesis. Spreadsheets

provide a useful comparison to the results produced by the other synthesis programs (see

[Kesterlon, 1991]).

The platform for synthesis used in this implementation consists of a PC and a digital

sampler. The PC computes a sound using a synthesis technique. The sampler is used to

play back the sound. They are connected using the MIDI interface and protocol (see

Figure 1.1.).

The PC/sampler combination is only viable because of various new technologies that have

become available in the 1980's. The first is the PC itself. The proliferation of these

machines, and the increase in performance, make the PC a viable processing unit for

The original NeXT is apparently available in South Africa, but at a cost of
approximately R70 000. The average PC costs about R3000.

3

/' /

Enter parameters PC

Perform Synthesis
Store Sounds

I
Send to Sampler v7

PC contains:

t==j MIDI card

" Transputer board / 000

MIDI
cables

Digital Sampler I J
,/' 7
Roland _-S-220

00 I -I IIEEEOI" , ,= I-I [&]

0
0 = II / 0 10 IIII!lEEE I I I I IOJ D

Figure 1.1. A platform for synthesis. The PC is the synthesis engine and the MIDI
protocol is used to send the sound to a Roland S-220 digital sampler,
where it can be heard.

synthesis experimentation. The performance of the PC can further be improved with the

use of accelerators that utilize the VO services of the PC but perform the computation on

a faster processor. The second key technology is MIDI. MIDI is a standard physical and

4

protocol interface that permits the networking of many different synthesizers and other

devices, including computers.

The implementation described in this thesis is not meant to compete with the conventional

synthesizer, or even the more exotic and powerful computers and synthesis systems that

are available in computer music research units around the world. The aim of the work is

to show how current technology that is readily available to researchers can be combined

to form a system that can be used for synthesis experimentation.

The thesis is divided into four parts. An important part of this work is the understanding

of the fundamentals of sound with reference to sound in digital form. These concepts are

covered in the first part of the thesis. The next part examines a variety of synthesis

techniques. Techniques are evaluated according to three criteria: generality, efficiency and

control. The third part examines the MIDI protocol. Finally, the implementation of

additive synthesis, frequency modulation synthesis, granular synthesis and spiral synthesis

is described. The use of the INMOS transputer as a synthesis accelerator is described.

5

2. Fundamental Concepts

An understanding of synthesis requires an understanding of a wide range of concepts from

different disciplines; including physics, music and signal processing. The terminology used

in synthesis is a combination of the terminology of the various disciplines and this leads

to some confusion. This section attempts to explain some ofthe concepts and terminology.

2.1. Sound

Halliday and Resnick, in their introductory physics text book, describe sound as " ...

longitudinal mechanical waves" [Halliday and Resnick, 1981). These waves propagate in

solids, liquids and gases. The material particles transmitting such a wave oscillate in the

direction of propagation of the wave. The sounds one hears are generated by vibration, be

it vibrating strings (violin, piano, harp), or air columns (organ or any wind instrument)

or vibrating membranes (drum, human vocal chords, audio speakers).

This vibration, or sound, can be represented visually as a waveform (see Figure 2.1.). The

waveform measures how air pressure changes with time. There are three characteristics

of a sound that can be gleaned from studying the visual representation of a sound.

The first is loudness or volume. This is the distance between the highest level and the

lowest level. Loudness is also associated with the amplitude. The amplitude of the sound

is the distance from the origin to the peak of the wave.

The second is the pitch. This is the musical term for frequency. The higher the pitch, the

higher the frequency and the lower the pitch, the lower the frequency. Frequency is the

number of times a waveform repeats itself in a second. For example, a sine wave can be

plotted on axes of amplitude versus time (see Figure 2.2.). The sine wave repeats itself

every 0.2 seconds. The sine wave is said to have a frequency of 1/0.2 or 5 cycles per

second. The unit for frequency is the hertz (Hz). One hertz represents one cycle per

second. The time (0.2 seconds) it takes for one cycle is the period. To relate this to

musical notation, the note A above Middle C has a frequency of 440 Hz, i.e. it repeats itself

Q)

"0
::::s
:=
a.
E
<C

Figure 2.1. A simple waveform.

440 times a second and has a period of 2.27 ms.

6

olume

The third characteristic of sound is the timbre. This is the shape of the waveform. A sine

wave will have a different timbre to the square · wave or triangle wave in Figure 2.3.,

because it has a different shape.

The sine and other trigonometric functions are associated with angles. It is conventional

to measure theses angles in radians, not degrees. The conversion between degrees and

radians is 360' = 21t radians.

Phase is another important concept. It is best explained in terms of an example, ego a sine

wave described by the formula:

where e is the radian angle of the sine wave in radians, and

<\l is the phase of the sine wave.

(2-1)

Time

'gQ)
N"C
:: :::I
CU~

Eo..
i5E
z<

1.0 -

-1 . Q...

-f\ f\

0.0 0.2

- V

f\ f\ f\

0.4 0.6 0.8 1·Orime/S

V V V

Figure 2_2_ A sine wave of frequency 5 Hz and period 0.2 seconds.

7

econds

If one plotted this sine wave on an amplitude versus radian angle graph, then phase

affects the graph in the following manner: if the phase <I> = 0, then the sine wave will start

at 0 radians and cross the x axis again at It radians, and every multiple of It radians

thereafter. If phase <I> = rrl2, then the sine wave will have an amplitude equal to +1.0 at

e = 0 and an amplitude of 0 at e = -rrl2 (see Figure 2.4.). So the phase of a signal is the

shift from its normal position. If two identical signals start at different times or angles,

they are said to have a phase difference. If the phase <I> changes over time, then this will

change the signal's shape. This will be used later in additive synthesis (see section 3.3.

and 5.4.).

2.2. Fourier Transforms

Most sounds one hears are not simple waves like sine waves. This is fortunate musically

as simple waveforms, like sine waves, sound very dull. However, the analysis of a simple

Q)

'0
~

.'=
Q.
E
c:(

Q)
'0
~
:::
Q.
E
c:(

,

, Square
wave

Sawtooth

Figure 2.3. A sine wave, a square wave and a sawtooth wave.

8

Time

Ti me

Time

alGI
N"C
=:::l
co:t::: 1
E - .
... 0.
o E
Z<I:

0.5

-0.5

-1 .

~ .

\
\ , ,

\
\,.,

.I

, ,

I Phase = +1t/2
I

9

Angle/radians

Figure 2.4. Sine waves with different phases. One wave has a phase <II = 0, and the
other has a phase of <II = rrl2.

sine wave is much easier than a more complicated waveform.

Jean Baptiste Joseph Fourier (1768·1830) showed how a complicated signal could be

broken down into a summation of sine waves. This is equivalent to a prism breaking up

light into the different colours of the spectrum. The analysis of a signal using Fourier's

method is called Fourier Analysis. It is used extensively in the analysis and synthesis of

sound and many other types of signal. Fourier analysis breaks up a signal into a set of

sine waves of different frequencies. The fundamental unit of any sound is thus the sine

wave. Summing together of these sine waves reproduces the original signal. This

summation is finite under certain conditions. The signal must be periodic, i.e. it repeats

itself at regular intervals like the sine wave, square wave and triangular wave in

Figure 2.3. The signal must also be bandlimited. This means that the frequencies present

in the signal must lie within a certain range of frequencies. If one tries to analyze a signal

that contains frequencies outside that range, errors will appear. These errors are due to

aliasing. This effect is explained more fully in section 2.3.2.

10

The Fourier transform is the process by which a signal is broken down into a set of sine

waves, each having a specific frequency". A simplified explanation of how this works is

as follows: The signal is combined with a sine wave of a particular frequency. The signal

will be emphasized if that frequency is present. This process is repeated with all

frequencies.

It is very important to be able to see which frequencies make up a signal. These

frequencies define the characteristics of a signal. A signal can be represented in two ways:

as an amplitude versus time graph and as an amplitude versus frequency graph3
• The

time graph is said to represent the graph in the time domain, and the frequency is said to

be in the frequency domain.

A single sine wave in the time domain is represented as a vertical line in the frequency

domain. The height of the line in the frequency domain is the amplitude in the time

domain (see Figure 2.5.). For more complex signals, the amplitude at a point in the

frequency domain is the amplitude of the sine component at that specific frequency in the

time domain.

The process of calculating the Fourier transform is very time consuming. If one sweeps

through all the frequencies up to a limit using the simplified method described above, the

Fourier Transform would take too long. In fact, the Fourier Transform was not used

extensively until new methods of calculating the transform had been found.

2 The Fourier transform actually produces a set of complex coefficients whose
magnitude specifies the amplitude of the sine waves and whose angle is the phase.

3 Strictly speaking, the frequency domain representation of a signal is an amplitude
versus frequency graph, and an amplitude versus phase graph. The phase graph is
omitted for clarity. The frequency domain is also represented by a graph in the complex
plane. The signal will consist of real and imaginary parts of the graph on the complex
plane.

A1
Q)
'0
::s
:t::
a.
E «

Q)
'0
::s
:t::
a.
E «

A1

- f\

V

Frequency = f s

f\ f\ f\

\J V V

Figure 2.5. A single sine wave in the time and frequency domain.

11

Time

Frequency

12

Signals that have been digitised using an Analog-to-Digital (AID) converter, or that are

stored as points computed from the continuous function at intervals, are transformed using

the Discrete Fourier Transfonn'. Various methods have been devised to compute the

transfonns of discrete signals. The Fast Fourier Transfonn is the general method that is

used today (see [Bracewell, 1978]).

2.3. Digital Representation of Sound

The Analog-to-Digital (AID) and Digital-to-Analog (DIA) converter will often be mentioned

in the sections that follow. A computer must have digital data to manipulate, so the

analog signal that can be heard must be converted to digital fonn. In order to be able to

hear the results of the manipulation, a DIA can be used to produce the analog signal from

digital data. When a signal is converted to digital fonn, it is said to have been sampled.

Sampling is performed by taking a measurement of the amplitude of the signal at regular

intervals. The measurement is called a sampleS. The frequency with which the samples

are taken is called the sampling frequency. The frequency with which one samples a

signal determines whether the signal can be reconstructed completely or not. The Nyquist

or sampling theorem [Bracewell, 1978) states that a signal must be sampled at twice the

frequency of the highest frequency present. For example, if a signal contains frequencies

up to 10 Hz, then the Nyquist theorem requires the signal to be sampled at 20 Hz.

2.3.1. Frequency of the signal and sampling frequency

It is easy to confuse the sampling frequency and the frequencies present in the signal. The

sampling frequency is merely the number of times per second that one measures or

samples the signal. The frequencies present in the sound being sampled are only related

to the sampling frequency in that the Nyquist sampling frequency must be twice the

highest frequency present in the signal. For example:

• David Jaffe has excellent tutorials in [Jaffe, 1987a) and [Jaffe, 1987b) on the
Discrete FourierTransform. These tutorials require minimal mathematical knowledge and
cover the topic with the musically·orientated person in mind.

5 The term "sample" can cause some confusion. A sound recorded on a sampler, a
type of synthesizer (see section 4.9), is also called a sample.

13

The equation for a sine wave of frequency 100 Hz could be written as:

y(t)rsin(21t lOOt) (2-2)

The highest and only frequency present is 100 Hz. To sample this according to the Nyquist

theorem, the sampling frequency must be 200 Hz. This implies that a sample must be

taken every 5 ms. If one starts at t = 0 s, the next sample should be taken at t = 0.005

s and the next will be at t = 0.010 s, and so on.

2.3.2. Aliasing

If a signal is sampled at below the Nyquist rate, then aliasing occurs. Aliasing is where

a high frequency signal is mistaken for a lower frequency signal. How this occurs can be

explained using the following examples. The first example is based on one by Moore

[Moore, 1985bl. The second uses a more conventional explanation.

The standard frame speed of a film is 25 frames per second. This means that 25 still

photographs are displayed every second. This speed is required to provide the illusion of

continuous movement. If one watched a typical Western film (the ones with cowboys and

Indians), one would no doubt see a chuck wagon or stagecoach travelling at high speed (see

Figure 2.6.). If one watched a wheel ofthe wagon moving perpendicular to the viewer, the

wheel may appear to be moving very slowly or even not at all. This can be explained as

follows. Every 1125 th of a second, a picture is taken ofthe wheel. The spokes of the wheel

would be in a particular position. If one painted one of the spokes a different colour (say,

white) to the rest of the spokes, then this spoke would stand out from the rest. After the

next 1125 th of a second, the white spoke would have moved to another position. There are

various general positions the spoke could be in, relative to its previous position. The first

is that the spoke has not completed a full 360' rotation. If the spoke has travelled less

than 180', the motion would appear normal. If the spoke has travelled almost 360', the

spoke will appear to move backwards. The second case is that the spoke has revolved

exactly 360'. It would appear to have stopped completely. The third is that the spoke has

rotated more that 360' , but less than 720' . If the spoke had travelled 400', the spoke

would have appeared to have rotated only 40' (400'-360'). If the spoke travels 720' or

more, one of the previous cases would apply. So, as the wagon starts from rest and

accelerates, the spokes move forward normally. Then, the wheel appears to start moving

14

backwards as the rotation becomes close to 360· per frame. This apparent rotation slows

down to a complete halt as the rotation approaches 360· per frame. Finally, the spokes

appear to move forward again as the rotation becomes greater than 360· per frame. This

apparent motion will continue to alter as the speed of the wagon increases, with the wheel

appearing to stop on multiples of 360· rotation.

The frame speed of the film is the sampling frequency (25 Hz). At 180· of rotation for

every frame, the spoke rotates at a rate of 12.5 Hz, the sampling rate still allows the eye

to reconstruct the motion of the spoke correctly. Twenty-five hertz is the Nyquist rate as

the sampling frequency is twice the frequency of the spoke's rotation. At rotations per

frame greater than 180·, the sampling rate is not high enough to allow the eye to see the

scene correctly. The apparent motion (forwards, backwards or stationary) will be slower

that the true speed of the wheel.

The frequency of a signal that has aliasing, has lower frequency components that are not

actually present. A sine wave of frequency 200 Hz should be sampled at least 400 Hz, i.e.

every 2.5 ms. If one samples this wave at 1 kHz (every 1 ms), then one is well above the

minimum sampling frequency of 400 Hz. There should be five samples for each complete

cycle of the wave. These samples can be used to reconstruct a sine wave. If the waveform

is sampled at 250 Hz (every 4 ms), there would only be one sample point in a cycle, or at

most two. Ifthese samples are reconstructed into a signal, the result would be a sine wave

with a very low frequency.

Aliasing is very important when dealing with digital signals. It can be heard as noise

when it is present in sound. The implementations described in chapter 5 rely on the user

to limit the frequencies present to below the required rate where possible. Otherwise, the

sampler used to play back the sound can filter out the unwanted frequencies.

,

Initial position

Initial position

Initial Position

Initial Position

Rotation < 1800

Normal Rotation

Rotation> 1800

15

000000000

~~
000000000

Wheels appear to move backwards

Rotation = 3600

No apparent motion

Rotation> 360 0

Motion appears slower
Figure 2.6. Each circle represents a wagon wheel. A single spoke is shown for

clarity. The initial position is shown on the left, and the position after
one frame is shown on the right.

16

3. Synthesis Techniques

3.1. Introduction

A synthesis technique is used to convert input parameters into output. When a technique

is implemented on a computer, the synthesis technique is the algorithm used in the

computer program to turn the input parameters into a digital representation ofthe output.

This output is then converted to an analog form, or sound.

This chapter describes a variety of synthesis techniques. Apart from introducing the

techniques, the chapter gives some idea of the diversity of techniques available . •

No single dedicated hardware system could possibly implement all the techniques

mentioned in this chapter. A flexible software-based system is required. The PC can be

used as a basis for such a system, as will be seen in chapter 5. Most of the current

generation of synthesizers use dedicated Very Large Scale Integration (VLSI) devices to

implement the synthesis techniques. The Yamaha DX and SY series, Roland's LA

synthesizers, Casio CZ range and most other synthesizers use dedicated circuits. Whether

this trend will continue is not certain. The increase in processing power of general-purpose

processors may bring synthesis within the capabilities of these processors.

17

3.2. Evaluation of Synthesis Techniques

Given the wide variety of synthesis techniques, there must be some way to compare

different techniques'.

Generality A technique must be able to produce as many different types of sound as

possible.

Efficiency A technique must be fast and efficient in terms of computing time and

memory. As some indication of the speed required, Compact Disc quality

sound requires two 16-bit samples (left and right channel) be produced

44100 times per second.

Control This is a measure of how easy it is to produce the sound required by

varying the input parameters. Serra [Serra, et aI., 1988] also notes that

the important aspects of control are timbral control, simplicity of control,

intuitiveness of control, and flexibility of control.

These criteria are used to decide which technique should be chosen for implementation.

As Strawn [Strawn, 1985] points out, the motivation for choosing a synthesis technique

(and the reason for the variety of techniques that do exist) is that no single technique

satisfies all of the above criteria. There are trade-offs between the need for ease of use,

control capabilities, computational efficiency, and the ability to produce the particular type

of sound required. Serra, et al. [Serra, et aI., 1988] give an analysis of many of the

common synthesis techniques. Their conclusion is that no one technique satisfies all the

above criteria. Each technique has its advantages and disadvantages.

The simplicity and intuitiveness of control are very important. If changes of parameters

have well-understood effects on the final sound the technique is easier to use. For

example, in FM synthesis it is difficult to predict the effect of a parameter change on the

final sound that is produced.

, Serra, et al. [Serra, et aI., 1988] categories will be used for comparing synthesis
techniques.

18

Some techniques are considered better merely because they are more easily implemented

or reqtrire less hardware andlor software than other techniques. This criteria may become

less important as the capabilities of the hardware and software improve.

19

3.3. Additive Synthesis

3.3.1. Background

J. Fourier showed that a general periodic waveform could be built up entirely from simple

harmonic waves [Halliday and Resnick, 1981]. Fourier's theorem states that any periodic

waveform can be described as a sum of sinusoidal variations each with particular

frequency, amplitude and phase [Moorer, 19851.

The Fourier transform produces a spectrum from a waveform [Bracewell, 19781 that can

be used to reconstruct the original waveform completely. The Fourier transform, and its

inverse, forms the basis of the additive synthesis technique. The Fourier transform is

discussed in section 2.2. Additive synthesis can be used to create new sounds, or recreate

sounds when used in conjunction with sound analysis [Foss, 19861.

3.3.2. Explanation of technique

Strawn [Strawn, 19851 compares additive synthesis to light. A prism is used to break

down light into its components. Ifthese components are added together again, the original

light is recreated. If different components are used, a new colour is created. If a sound

is analyzed using Fourier techniques, sound is broken down into components. If these

components are added together, the original sound will be reconstructed. If one changes

any of the components, a new sound is created.

In order to understand additive synthesis, it is important to realize that a sound can be

viewed in two ways: as a function of time and as a function of frequency. This is covered

in section 2.

The components of a sound are sine waves. Additive synthesis is simply the summation

of a set of sine waves of different amplitude and phase. In acoustic instruments, the

harmonics change in amplitude and frequency and phase over a period of time [Risset and

Mathews, 19691. The change in the harmonics can be reproduced by means of changing

the phase and amplitude envelopes of each harmonic.

20

One example of an amplitude envelope is the Attack-Decay-Sustain-Release (ADSR) curve

(see Figure 3.1.). In a piano, for example, the amplitude or volume of the sound changes

from nothing to a peak when a key is pressed. This portion is the attack. The volume

then tapers off, or decays to its sustain level. The sustain usually has the longest duration

of any part of the sound. Finally, when the key is released, the sustain portion of the

sound tapers off to nothing. This portion of the curve is called the release.

,:'\ ..
:'
: ",

: '. 0 :' ... ~ : .. -~
: .. J..

*" : .. c.; : .. if . .
"Il" :' ... Sustain I
:" I
! ~ / :

: I ' •. il. : ". ~
:' I " . I .,

! I ,
! I

Key Released Time

Key Pressed

Figure 3.1. A typical ADSR curve

The amplitude envelope of each harmonic can be complicated, unlike the simple ADSR

curve in Figure 3.1. above. For example, in an acoustic piano, one might expect the

amplitude of each harmonic to decrease after the initial attack. In fact, for the higher

harmonics, the amplitude can increase from its highest attack portion [Blackham, 19781.

This must be reproduced in order to simulate that piano sound. The phase shift is the

change in phase of a harmonic over time. Blackham [Blackham, 19781 concludes that a

simulation of a piano tone requires not only an overall amplitude envelope and individual

amplitude envelopes for each harmonic, but the harmonics of different frequencies must

appear and disappear. When the sound is viewed in the frequency domain, the harmonics

appear to move about on the frequency axis.

21

The traditional definition of a hannonic is a partial that is an integral ratio of the

fundamental frequency. So, a harmonic sound is a sound that consists ofhannonic partials

only. Subjective tests proved that a hannonic piano simulation, in the true sense of

hannonic, lacks the wannth of the piano sound. The partials that are not integral ratios

add the warmth to the sound of a real piano.

All these factors can, and should, be reproduced with additive synthesis but require a great

number of parameters.

The additive synthesis summation can be expressed as follows:

y(r)=A(r)E (ao(r)sin(r.> o/+4>(r») (3-1)

where yet) is the output sample at time t,

A(t) is the overall amplitude envelope as a function of time,

ao(t) is amplitude envelope of a particular hannonic as a function of time,

OJ. is the angular frequency in radians, and

q,(t) is the phase difference as a function of time.

Each amplitude and phase envelope needs to be stored. If the changes in amplitude and

phase envelope in each harmonic are compressed in some way, the amount of data required

for each hannonic is reduced. The functions that represent these amplitude and phase

changes can be compressed by representing the envelope as a set ofline segments. Instead

of storing each envelope value, the shape is approximated using straight lines and each

end point is stored. As each output sample is calculated for the final sound, the envelope

points are interpolated using straight-line interpolation. Moorer [Moorer, 1985] estimates

the amount of data stored can be reduced by the ratio 43 to 1. This method is used in the

implementation in chapter 5.

Kleczkowski [Kleczkowski, 1989] has compressed the data in a different manner, yet still

attempts to preserve the essence of the sound. This technique is called Group Additive

Synthesis. The hannonics which have similar amplitude and frequency functions are

grouped together. Then, the common amplitude and frequency is found and is used for all

those harmonics. The lower partials should be grouped in smaller groups. This is because

the lower frequency partials have more influence on the sound than the higher frequencies.

They have a more visible effect on the appearance and sound of the final wavefonn. This

22

work is based on previous work by Risset and Wessel [Risset and Wessel, 1982] and

Charbonneau [Charbonneau, 1980].

Strawn [Strawn, 1980] has studied the methods of selecting the information from the

amplitude and frequency functions. If the correct information is selected, the sound will

remain similar to the original. He gives a technique to extract this information.

3.3.3. An evaluation of the technique

Generality

Additive synthesis can reproduce ANY audio sound that can be analyzed using Fourier

techniques. The technique can be implemented in hardware (as a series of analog or

digital oscillators with summed outputs), or in software. The concept of adding the

outputs' sound units tcgether is used in other synthesis techniques, including Yamaha's

FM synthesis (see section 3.4.) and Roland's LA synthesis (see section 3.8.).

Efficiency

This technique is not efficient. Computationally expensive tasks must be done, and there

are large numbers of envelopes and other parameters tc be dealt with.

Each partial requires a sine wave to be generated. This is a computationally expensive

exercise. Iflookup tables are used, this process can be speeded up [Moore, 1985a] [Snell,

1985]. A lookup table is a table of values, typically stored in an array. These values

correspond to the value of sine(x) at certain regularly spaced intervals. The index into the

array is calculated according to the sampling rate of the table, the sampling rate of the

required sound and the size of the table.

Not all required sine(x) values will be in the table. Normally three methods are used

[Moore, 1985a]: truncation method (index is calculated as a floating point number, then

the integer part is used as the table index); rounding method (same as truncation, but the

number is rounded up or down rather than truncated); and interpolation (some form of

interpolation is used in between table points).

23

Snell [Snell, 1985] reports on tests done at CCRMA at Stanford University. These tests

show that a 4096 point, 12-bit lookup table for a 360' sine wave was perceived as

distortion-free as a 65536 point, 16-bit table.7 However, perhaps this perception would

change if the sine wave was used in a synthesis technique. The cumulative error may

make a short table unacceptable.

A single partial (one sine wave) produces a dull uninteresting tone. To create a more

!-,seful tone, more partials are needed. Then, there are the amplitude and phase envelopes

that are needed for each partial to create a realistic sound. The storage space needed for

all these parameters is large.

The precision and number of parameters used is related to the accuracy of reproduction.

The more accurate and greater the number of parameters, the more natural a simulation

of an acoustic instrument will sound. However, large numbers of parameters bring in

problems of control as well as space problems.

Control

Large numbers of parameters and envelopes are required to produce a sound.

Manipulation of these parameters in real time appears impossible. Each parameter must

be linked to a controller for real-time manipulation. There are just too many parameters

for each parameter to be controlled individually in real-time. Saski and Smith [Saski and

Smith, 1980] and Schindler [Schindler, 1984] suggest methods to make the data more

manageable, but cannot suggest ways to make real-time control possible.

On the other hand, the sheer number of parameters make fine tuning of the sound very

easy. It is also easy to alter the sound significantly by changing the lower frequency

partials. Changing the higher frequency partials has less effect as they will not alter the

gross structure of the sound.

7 One wonders if the same results would apply today (1989/90). Compact Disc and
digital recording techniques typically play back using 16-bit samples, while they are
recorded at 18 or even 20-bit resolution. The general public is now used to hearing a
better quality of audio sound.

24

3.3.4. Future directions

Additive synthesis requires a lot of memory to store the parameters. A fast processor is

required to calculate all the harmonics and apply the envelopes in real time. This can be

done in specialized hardware, but it would be preferable to use general multi-purpose

processors.

Additive synthesis depends on the increase in processor speed and memory size.

Processors such as the Intel 80386/486, Motorola 68000 and 860 series, the !NMOS

transputer ([Purvis, et aI., 1989][Kesterton, 1990]) are all fast processors that could be used

for faster additive synthesis.

In spite of all its drawbacks, additive synthesis is still considered to be the standard

agrunst which all other synthesis techniques can be measured [Strawn, 1985].

25

3.4. Frequency Modulation Synthesis

3.4.1. Background

Risset and Mathews [Risset and Mathews, 1969] identified the importance ofthe spectral

changes in natural sounds during their duration. Frequency Modulation (FM) synthesis

is an attempt to produce these spectral changes. The technique is so named because it is

based on the method used to produce an FM radio signal.

An FM radio signal consists oftwo signals. These signals are known as the modulator and

the carrier. The carrier is a Radio Frequency (RF) sine wave - typically between 88 and

104 Mhz in South Mrica. The modulator is the audio signal which requires transmission.

The transmitted signal is a signal with a frequency centred around the carrier, but shifted

by an amount equal to the frequency of the modulator. The frequency of the modulator is

small compared to that of the carrier, so the frequency shift of the output signal is also

very small.

In FM synthesis the carrier is an audio frequency signal, not an RF signal.

John Chowning [Chowning, 1985] applied the ideas of Frequency Modulation, or FM used

in radio, to the audio part of the frequency spectrum. He was working at Stanford at the

Centre for Computer Research in Music and Acoustics (CCRMA). The original aim of the

research was to develop a computer model for vibrato [Massey, 1988b].

Vibrato is a small periodic change of pitch in a sound. This change is typically at a

frequency of 5 to 6 Hz. On a violin, the violinist produces vibrato by rocking the finger

that holds the string against the neck of the instrument. This changes the length of the

string and consequently the pitch. By moving the finger faster, the vibrato effect is

increased. By moving the finger further up and down, the frequency shift becomes more

pronounced. Vibrato can be reproduced using the low frequency oscillator (LFO) at the

output stage of an analog synthesizer. The fingertip movement of a person could be

simulated with the LFO. The frequency of vibrato is determined by the frequency ofthe

LFO. The motivation for Chowning's computer model was that analog systems were too

unstable at low frequencies to produce vibrato properly [Massey, 1988a].

26

Chowning discovered that frequencies of vibrato above 20 Hz do not resemble a sound plus

vibrato, but form a new sound altogether.

"FM is something I stumbled upon in the mid-1960's. It turned out that

one could, in a sense, 'cheat on nature'. By modulating the frequency of

one oscillator (the carrier) by means of another oscillator (the modulator),

one can generate a spectrum that has considerably more components than

would be provided by either of the two alone." John Chowning interviewed

by Roads in [Roads, 1985a).

Chowning found that although it is not a physical model for natural sound, FM synthesis

can be a powerful perceptual model for many natural sounds'.

3.4.2. Explanation of the technique

FM synthesis uses the concept of FM radio transmission, but with one important

difference. Instead of a RF carrier, an audio frequency carrier is used.

Chowning [Chowning, 1985) notes the basic formula for FM synthesis with a peak

amplitude A and where both carrier and modulator are sinusoidal:

e=,4,sin(Ilt+ lsin(~ t))

where e is the instantaneous amplitude of the modulated carrier,

a is the carrier frequency in radians per second,

t is the time in seconds,

I is the modulation index, and

P is the modulating frequency in radians per second.

(3-2)

, A physical model of a sound is a model that has the same frequency spectrum as the
natural sound. The perceptual model does not have the same spectrum but does sound
the same as the original. There appear to be features of a sound that give the listener
clues to its identity and these are reproduced by a perceptual model [Saunders, 1985).

27

The input parameters are the carrier frequency, the modulating frequency and the peak

deviation. For (3-2), an amplitude A is also required.

By applying a time varying amplitude envelope A(t), and expressing the frequency of the

carrier and modulator in Hertz, the fonnula (3-2) becomes:

e(t) =A(t)sm(21t f/+ Ism(21tfmt))

where A(t) is the overall amplitude of the waveform,

I is modulation index,

10 is the carrier frequency, and

fm is the modulation frequency.

(3-3)

The parameters of an FM signal are the carrier frequency (10), the modulation frequency

(fm) and the peak deviation (d) '. The most important part of the FM equation is the

modulation index (I). This is the ratio of the peak deviation (d) to the modulating

frequency (fm). When the modulation index (I) is zero, there is no modulation, i.e. the

second sine tenn in equation (3-3) has no effect on the outer tenn. As I increases, this

modulation tenn has more effect and the bandwidth of the output increases. I also

determines the number of components in the frequency spectrum that have sufficient

amplitude to affect the sound.

The ratio of carrier frequency to modulation frequency is important too. This determines

the number of partials and their position in the spectrum. Irrational ratios will produce

inharmonic sounds [Truax, 1985]. FM produces its complex sound via aliasing!O which

produces many partials using a few oscillators. The partials are not only at the

frequencies of the carrier and modulator (and multiples thereof), but at other frequencies

as well. Truax [Truax, 1985] notes that in FM, the fundamental is not always the

modulator or carrier frequency. He wrote a program that predicts the fundamental, based

on the carrier and modulating frequencies.

, The peak deviation is the amount by which the carrier frequency varies around its
average and is proportional to the amplitude of the modulating wave [Chowning, 1985].

!O See section 3.3.2 for an explanation of aliasing.

28

If the modulation index is varied over time, the spectrum will change. Chowning

[Chowning, 1985l considers this feature to be one of the advantages of FM synthesis. This

effect is the same as the one obtained by phase and amplitude changes of harmonics in

Additive synthesis. In the case of FM synthesis, the single parameter I will affect many

parts of the spectrum. So with very few parameters, a FM function can form a

complicated, time-varying waveform. The output can be passed on to another FM function

to further complicate the waveform. This procedure is usually repeated to generate

complex sound.

Chowning's ideas on FM synthesis form the basis of sound synthesis on the Yamaha DX

series of FM synthesizers. Yamaha and other manufacturers were shown the technique

by CCRMA at Stanford. Yamaha decided to license the technology from Stanford [Massey,

1988al. They spent nearly a decade developing the technique and implementing it on a

set of VLSI devices.

Yamaha uses a slightly different concept terminology in their DX systems [Yamaha, 1985l.

The operator forms the basic sound generating unit. An operator consists of an

oscillatorll and an amplitude envelope. It has inputs for oscillator frequency and for a

modulator. The output can be connected to the modulation input of another operator, or

back to itself (see Figure 3.2.).

Operators can be chained together to form a stack. A stack of operators in a particular

configuration is called an algorithm. Some algorithms in Yamaha's FM, sum the outputs

of different stacks. Figure 3.3. shows one of the DX21 algorithms - with four operators l2•

11 Yamaha use sine wave oscillators in all their products except the DXll and TX81Z
[Massey, 1988b]. The DXll and TX81Z have the ability to use other waveforms and
consequently generate even more complex sounds.

12 Yamaha DX instruments are divided into two categories; six or four operator
machines. The DX7 and its successor, the DX7II, use six operators for each voice. The
DX21 uses four operators for each voice.

29

.,
... .1

Oscillator : 1 Amplifier :
'I 'I , Output

Pitch Frequency Data

I

+

Modulation Data
I Envelope I

Generator
r

I \

The frequency data
and modulation data Envelope Data
are combined here.

Figure 3.2. A Yamaha FM operator. From [Yamaha, 1987]

A variation of FM synthesis is presented by Saunders [Saunders, 1985]. He suggests the

use of a triangle wave as the modulator rather than a sine wave. He also presents a

different view of FM synthesis. This is not as an FM-type signal, but a sine with a time­

varying phase:

x(t)=sin(6(t» (3-4)

where the phase is:

(3-5)

and 1, f." fm are as in (3-2) .

The instantaneous frequency f(t) is found by differentiating the phase:

(3·6)

This is just a sine wave at the modulating frequency plus a constant for the carrier

frequency.

30

ALGORITHM #5

Operator 2 Operator 4

Modulator Modulator

Operator 1
Operator 3

Carrier Carrier

I
OUT

~
Figure 3.3. DX21 4-operator algorithm. From [Yamaha, 1985]

Compare this to triangle FM, as Saunders calls it. A triangle wave is used rather than a

sine wave. Substituting the sine wave with a triangle wave, the instantaneous frequency

is:

(3-7)

The function tri(t) has amplitude [-1.0, +1.0] and a period of 21t, just like a sine.

This approach is computationally more efficient. Only one sine calculation is required.

The reason why triangle FM synthesis produces more complicated waveforms is that the

31

fundamental unit of FM is no longer a pair of sine waves, but a triangle wave with all its

sidebands. Saunders [Saunders, 1985) comments that a sound produced with triangle

waves sounds like a sine modulator with a modulation index 1.5 to 2.0 times larger.

Saunders [Saunders, 1985) also shows that an amplitude variation can be incorporated into

his triangle FM and into sine FM. Normally, this would require an extra multiplication

by some amplitude, A(t). Saunders assumes a lookup table is used for the triangle (or

sine) wave and then shows how this multiplication is redundant:

Recall that for sine FM synthesis, x(t) = sin (9(t)) (equation (3-4)).

If d is some displacement, then

sin(x+d) +sin(x-d) ~2cos(d)sin(x) (3-8)

Let the ampHtude

A~2cos(d) (3-9)

If (3-4) includes an amplitude, then:

.t{t)~Asin(6(t)) (3-10)

Combining (3-8) and (3-10):

.t{r) ~sin(6(r) +d) +sin(6(t)- d) (3-11)

Now d is calculated:

By the definition of A in (3-9),

2ros(d)=A

A
cos(d)=-

2

A d=arccos(-)
2

32

(3-12)

(3-13)

(3-14)

So, for a certain A, d could be calculated once and then used in (3-11), avoiding any

multiplication. The amplitude envelope will vary slowly compared to the sampling rate of

the signal, so d would not have to be calculated very often. This approach speeds up

computation.

3.4.3. An evaluation of the technique

Generality

FM synthesis has been used to create many different sounds. The Yamaha DX21

synthesizer (only a four-operator machine) has 128 preset sounds that range from pianos

to steel drums, a helicopter to a whistle [Yamaha, 1985l.

Additive synthesis can use the Fourier transform to analyze a sound and select the

required parameters to reproduce the sound (see section 3.3.). A sound can be analyzed

for FM synthesis using Bessel functions [Saunders, 1985]. The use and understanding of

Bessel functions is not trivial and easy as Fourier analysis. However, the newer

techniques like Linear Additive (L.A.) synthesis13 appear to have no simple method of

analysis like additive synthesis and FM.

13 See section 3.8.

33

Efficiency

FM is definitely more efficient than additive synthesis. Less computation is required to

produce a similar level of complexity of sound. For example, two sine waves combined in

an FM way proyjde a more interesting waveform than does additive synthesis, see

Figure 3.4.

Normalized Amplitude
2.

-2.

Normalized amplitude
1.

0.5

~---tro~s~~~r-~o~.~l~s--tr~--~o1r.ol~me/seconds

-0.5

-1.

Figure 3.4. A sound produced from the same two sine waves. The top wave uses
additive synthesis, the bottom uses simple Chowning FM. The sine
waves have a frequency of 100 Hz and 333 Hz. The modulation index
of the FM signal is 0.9.

In many cases, FM is more economical in terms of hardware required to produce a sound,

and it does require fewer input parameters [Strawn, 1985l.

34

Control

Control for FM synthesis is better than that for additive synthesis in that a change in one

parameter has more effect in FM. This precludes the fine control of additive synthesis.

The control is also less intuitive than that for additive synthesis.

A major disadvantage of FM synthesis is that FM parameters do not obviously produce a

certain sound. Setting up FM sounds has been a case of trial and error. The usual

approach is to take an existing but similar FM sound and adjust it to create the reqillred

sound. This problem of parameter settings has been investigated by Payne [Payne, 1987].

He has suggested two methods of producing the parameters for a Yamaha DX7 synthesizer

from a sampled sound. The first uses time-domain analysis. Payne calls it "Iterative

Phase Analysis". This has been implemented with success in analyzing musical sounds

created by the DX7 synthesizer, and some real sounds. The second method was not

implemented at that time, but is described in theory by Payne. It involves analysis in the

frequency domain. A sound is transformed into the frequency domain and the carrier is

located. The spectrum is shifted to place the carrier at zero, and then autocorrelation

functions are used to detect sidebands. ' With successive iterations, it may be possible to

find the frequencies and index envelopes of the nested modulators. Payne comments that

much work must still be done on the second method.

The way in which the partials increase and decrease as the amount of modulation is varied

cannot be changed. The amplitude of individual partials cannot be controlled [Foss, 1986].

The effects of a change in just one parameter are difficult to visualize, even Chowning

[Chowning, 1985) admits this.

"FM provides a simple way to get dynamic control of the spectrum, which

is one of the aspects of natural sounds that was difficult to reproduce on

analog synthesizers. So FM is a synthesis technique that is useful or not

depending upon the type of control one desires. It turns out to be qillte

widely used, and its usefulness is that it provides a few handles onto a

timbral space." John Chowning interviewed by Roads in [Roads, 1985a).

35

3.4.4. Future direction

In 1989, Yamaha discontinued its DX range of synthesizers. This brought to an end of one

of the most successful series of instruments of the 1980's. However, FM synthesis is still

used in Yamaha products and in products by KorgH. The emphasis is on easier use of

FM.

The latest range ofFM synthesizers from Yamaha is the V series for professional use, and

the YS series for home use [Computer Music Journal, 1989]. The V80FD uses an enhanced

version of the 16-bit, six operator FM used in the DX series. It adds new control features

to the DX-type FM. It remains compatible with the DX7, DX7II and TX802 systems".

FM synthesis is available on many other instruments. These include systems like the

Synclavier [Wilkinson, 1989) and in software products like Softsynth by Digidesign. The

technique has become a standard. It will be used for many years to come.

Korg is now controlled by Yamaha.

15 In December 1989, Yamaha announced a new type of synthesis to be used
on their products called Realtime Convolution Modulation or RCM.

36

3.5. Subtractive Synthesis

3.5.1. Background

Additive synthesis uses the summation of sine waves to produce a sound. Subtractive

synthesis starts with a signal rich in overtones and filters it to produce the required sound.

Serra, et aI. [Serra, et aI., 1988) distinguish between two types of subtractive synthesis:

analysis-based and non-analysis based. The first is used to model speech [Moorer, 1985).

The second is often used on analog synthesizers and is relatively crude [Serra, et aI., 1988).

The analysis-based synthesis is used in conjunction with linear predictive analysis of a

sound to obtain the parameters for filters [Moorer, 1985).

Subtractive synthesis which is not based on analysis is often used in analog synthesizers.

Voltage Controlled Oscillators (VCO's) are used to produce the initial signal or excitation.

Voltage Controlled Filters (VCF's) are used to filter the output of the VCO's [Foss, 1986).

3.5.2.Explanation of the technique

The basis for analysis-based subtractive synthesis is an excitation, and a time-varying

filter [Moorer, 1985). For synthetic speech, the excitation is usually a periodic waveform

such as a pulse train or white noise". Periodic waveforms are used during voiced speech,

for example vowels, and white noise for unvoiced speech. The filter models the vocal tract,

including the lips and tongue. The filter must vary with time to model the movement of

parts of the vocal tract.

An alternative oscillator is a complex oscillator. Moorer [Moorer, 1985) describes the work

of Tracy Peterson [Peterson, 1976a and 1976b). She took entire pieces of music and used

these as excitation sources. She found wide-band sources (full orchestra) to be better than

narrow-band ones. The results sound like an orchestra talking - the orchestra can be

heard but the sound is recognizable as speech. As is apparent from the title of Peterson's

16 White noise is a signal that contains all audible frequencies at random
instantaneous amplitudes.

37

paper [Peterson, 1976a], "Analysis·synthesis as a tool for creating new families of sounds",

the aim of this work is to create new sounds, not reproduce existing instruments.

The non.analysis based synthesis is used in analog synthesizers [Walruff,1983]. An analog

synthesizer uses one or more generators of a harmonically. rich sound. The filter

parameters are changed while the sound is generated. This produces the changing spectra

required for a more realistic sound. Envelope generators and different sorts of filters are

used to provide more control of the final sound.

Moorer [Moorer, 1985] suggests that although the existing techniques to model the filters

are good, the modelling of the excitation function is not good enough. His experiments

with very high order filters and complex excitation functions did not produce the extra

quality he expected.

The concepts used in subtractive synthesis have been carried over to other techniques.

Massey [Massey, 1987] comments that Casio's phase distortion technique has been made

to "look, feel and act" like subtractive synthesis.

3.5.3. An evaluation of the technique

Generality

Moorer [Moorer, 1985] states: "It has been our experience that that none of the currently

used subtractive methods produces synthetic speech or music of extremely high quality.".

So, even though the technique produces various types of sound, the sound quality does not

make this a good technique.

Efficiency

Richard Foss [Foss, 1986] comments that digital subtractive synthesis does not require as

much computation as additive synthesis. Each harmonic is not explicitly calculated as in

additive synthesis. Digital Music Systems [Walruff, 1983] rate its computational efficiency

as 'fair'. In contrast it rates additive synthesis as poor.

The efficiency of subtractive synthesis is difficult to judge as it depends on the

implementation. An oscillator can be implemented in many ways, all with different levels

38

of efficiency. Digital filters are a large topic in the field of digital electronics, and there are

numerous methods of digitally filtering a signal [Horowitz and Hill, 1980].

Control

Subtractive synthesis does not provide the spectral control of additive synthesis as one

relies on the filter to emphasize certain frequencies at a specific time. The filters provide

an indirect control of the partials, whereas the envelopes used in additive synthesis provide

direct control of the partial. Again, the degree of control depends on the implementation.

A multi-pole filter offers more control of the output, but requires more control parameters.

Walruff [Walruff, 1983] gives this form of synthesis a rating of 'fair' with regards to

spectral control.

3.5.4. Future direction

This technique appears to have application in voice synthesis. There are no longer many

analog synthesizers, so the analog application of subtractive synthesis is limited.

39

3.6. Granular Synthesis

3.6.1. Background

Granular synthesis is an attempt to generate sound from thousands of small bits of sound.

One can compare this technique to the painting technique of the Impressionist painter

Seurat (see Sunday Afternoon on the Island of La Grande Jatte [De La Croix, Tansey,

1980]). Seurat used tiny points of paint to create colour and form when viewed from a

distance. In granular synthesis, short bursts of sound are combined to form a complete

sound.

This technique is based on theories developed by Dennis Gabor in 1947 [Roads, 1985b].

Gabor disagreed with the notion that subjective hearing was best represented by Fourier

analysis. He pointed out that Fourier analysis is based on the assumption that the signal

being sampled is repeated infinitely, whereas the ear can distinguish time dependent

features of a sound. He proposed that sound be quantized. This quantization was also

based on the limits of human hearing. Gabor claimed that people must hear sounds of

between 10 to 21 ms in duration before they can be registered. Wiener [Roads, 1985bl

presented a similar argument in 1964. An attempt to measure the quantization of human

hearing was made by Mole in 1968. Mole [Roads, 1985bl estimated that the ear can

resolve about 340000 distinct volumes of sound, with an increased resolution in the centre

of the audible frequency rangel7
.

This technique was first implemented as a synthesis technique by Roads in 1975 [Roads,

1985bl. He comments:

"The main goals of this project were to design and code a working

granular-synthesis system, to fine-tune the synthesis parameters for

optimum sound quality and flexibility, to develop high-level controls over

the synthesis, and to experiment with compositional applications of the

technique." [Roads, 1985bl

l7 This technique of improving the resolution in the middle of a range is used
in some ND and D/A converters, called companding converters. This improves the
apparent resolution of the converter.

40

Roads [Roads, 1985b) classes the technique as an additive synthesis technique, while Moog

[Moog, 1988a) calls it a resynthesis technique. Perhaps it is better classified as a time­

domain additive synthesis technique.

3.6.2. Explanation of the technique

An individual grain varies in duration from 1 to 50 ms in length [Roads, 1988) although

Roads [Roads, 1985b) suggests an upper bound of 20 ms. Each grain consists of a

waveform and an amplitude envelope. The waveform can consist of simple waveforms

(sine, band-limited pulse, square wave), simple two-oscillator FM or even samples of

natural sounds. Roads [Roads, 1985b) found experimentally that a Gaussian-shaped curve

for the attack and decay, and level sustain amplitude envelope, was effective. This

envelope provided the effective amplitude lacking in a strict Gaussian (Gabor's suggestion)

and removed the transients produced by a rectangular envelope (suggested by Xenakis).

These transients are caused by the sudden change from one rectangular envelope to

another.

In granular synthesis, a sound can be formed from many thousands of grains. Grains are

far too numerous to be controlled individually. They must be grouped together to be more

controllable. The manner in which grains are grouped together form an important part

of granular synthesis. These grains are grouped as "events", each event made up of

hundreds or even thousands of grains. It is this grouping of grains which makes

manipulation possible. Two other higher-level grouping schemes have been suggested:

Xenakis' screens [Roads, 1985b), and Truax's tendency masks, ramp files and presets

[Truax, 1988).

Roads [Roads, 1985b) calls his groupings "events". Each event has twelve parameters

[Roads, 1988):

1. Beginning time

2. Duration

3. Initial waveform

4. Waveform slope (the transition rate from a sine to a bandlimited pulse

wave)

5. Initial centre frequency

41

6. Frequency slope

7. Bandwidth

8. Bandwidth slope

9. Initial grain density

10. Grain density slope

1l. Initial amplitude

12. Amplitude slope

The grains that are combined to form an event are scattered randomly in that event. The

number of grains that form the sound at any point in time depend on the two event

parameters: the initial grain density and the grain density slope.

This is not the only method that can be used to control grains. Xenakis [Roads, 1985bl

uses successive graphs of amplitude and frequency called frames. Each frame denotes a

time slice that shows the frequency and amplitude of the grains that make up the sound

at that point.

1 msec < .6. t < 10 msec

t5

Amplitude

Figure 3.5. Xenakis' time frames for granular synthesis. Each filled square
represents a grain. From [Roads, 1985al.

42

Truax [Truax, 1988] imposes a hierarchy of control on the grains. At the lowest level, four

control variables are used to determine successive grain parameters. At the next level,

these control parameters are set up as presets to control groups of grains. The rates of

change of the control variables are stored in ramp files. This forms the next level. At the

highest level, tendency masks allow graphical control of the sound. These masks are

translated to presets and ramps. All these levels of control affect the grains. The only

difference between each level is the number of grains affected by making alterations at

that level.

Granular synthesis breaks up a sound at short time intervals. Jones and Parks [Jones and

Parks, 1988] contend that although this time-scale division of sound is new in music

synthesis, it is not new in time-scale modification of speech signals. In speech synthesis,

the duration ofthe sound may need to be lengthened.or shortened without changing the

pitch. This is achieved by breaking up the sampled sound into grains using a window.

The window is a function that is smooth and non-zero about a set of samples, and zero

elsewhere. This window is applied to the sound to form the grains. If the grains are

played in succession, the complete sound could be reconstructed. The sound can be

manipulated in the following manner: The duration of the sound is decreased by

overlapping the grains. The duration ofthe sound is increased by leaving a gap between

grains. A frequency shift can be achieved by increasing or decreasing the duration of the

sound, then changing the playback rate.

Discontinuities can occur if one combines grains of sound with amplitude envelopes and

with different frequencies. Th ese cause transients as the previous grain is followed by

another grain with a different amplitude and/or frequency. Jones and Parks studied the

problem and suggested some form of phase alignment. If the grains have their phases

matched, the transients are less noticeable. Their work covers both periodic and noisy

signals (see [Roads, 1988] and [Jones and Parks, 1988]). On the other hand, Truax [Truax,

1988] claims that no transients should occur as each grain should have an attack and

decay which means that the initial and final amplitude of the grain is very small or zero.

43

3.6.3. An evaluation of the technique

Generality

Roads [Roads, 1988] mentions that the application of granular is suited to particular types

of instruments (but does not say which ones!). He also feels that this technique should be

used in conjunction with other techniques. These techniques are used to form the

individual grains. Parks and Jones [Parks and Jones, 1988] discuss its application to time

scaling of speech signals. So, granular synthesis does not appear to be a technique that

could be applied to model all types of instruments. However, as a pitch-shifting technique

in samplers, it may have potential (see section 3.9.).

Efficiency

This is not an efficient technique. In additive synthesis, the frequency domain is split up

into harmonics with individual control envelopes. For granular synthesis, the split is in

the time domain. Ifthe grain duration is shorter, more grains are required. Consequently,

a large number of grains are required (about 1000 to 2000 per second according to Truax

[Truax, 1988]).

Control

One would imagine that given the large number of grains that make up a sound, the

control problems would be enormous. Using Truax's control hierarchy, the amount of data

required would still rival additive synthesis in quantity.

3.6.4. Future directions

Granular synthesis is a technique that requires fast processing. It is only recently that

real-time granular synthesis has been possible. Truax [Truax, 1988] claims his 1986 piece

Riverrun was probably the first to be realized entirely with real-time granular synthesis.

Truax also suggests that the technique could be moved to microprocessors instead of digital

signal processors, and also to parallel processors. Jones and Parks [Jones and Parks, 1988]

make the comment that: "Expense or computational demands are no longer factors that

limit the potential of granular synthesis; the burden now lies with researchers and

composers to find new ways to use this technique."

44

An interesting aside is that granular synthesis is an audio equ.ivalent of a computer

graphics technique, particle synthesis [Roads, 1988]. This technique was developed by

William Reeves. It has been effectively used in generating pictures of fire, smoke, clouds,

grass and water. The comparison with Seurat's divisionism" has already been

mentioned.

The work of Jones and Parks [Jones and Parks, 1988] could well be applied to samplers.

No reference can be found to this technique being used in commercial samplers. They did

implement a real-time time-scale modification system on a TMS 32010 DSP chip, but

comment that this requires most of the chip's computational power.

18 This painting technique has also mistakenly been called pointillism [Da Le
Croix and Tansey, 1980].

45

3.7. Resynthesis

3.7.1. Background

Resynthesis attempts to take an existing sound, analyze .it and use the analysis to produce

a range of sounds that are related to the original.

Resynthesis predates modern digital electronics. The concept has long been used to

analyze sound, especially harmonic resynthesis. The concept of using an ex.isting sound

to produce sounds is shown by Carleen Hutchins [Hutchins, 1967]. She reported on work

by the Catgut Acoustical society which analyzed the sound from violins, and the effect that

various construction methods had on the sound. The society then produced new violins

that had allowed their "family of fiddles" to span the musical range not previously

attainable by violins. This demonstrates the aim and concept of resynthesis rather well.

Resynthesis is more a class of techniques than a specific technique itself.

3.7.2. An explanation of the technique

The first part of resynthesis is analysis. The manner in which a sound is analyzed has

implications on the way it is reconstructed later. Robert Moog [Moog, 1988al describes

three types of resynthesis. These are time-domain resynthesis, frequency-domain

resynthesis and harmonic resynthesis. This nomenclature refers not only to the analysis,

but also to the synthesis method used in each case.

Time-domain resynthesis involves breaking sound into 'slices', and modifying these

individually. One such time-domain resynthesis technique is an FM-resynthesis algorithm

described by Payne [Payne, 1987]. This uses a time-domain Hilbert transform

[Braceweli,19781 to analyze the sound and provides the parameters for a DX7 FM

synthesizer to synthesize the sound.

Frequency-domain resynthesis divides the sound into frequency bands or channels. These

channels can then be altered. When the frequency components are recombined, the

resulting sound is altered. The vocoding technique is an example of frequency-domain

analysis. A parametric or graphic equalizer performs frequency-domain resynthesis too.

46

It allows a frequency band to be boosted or cut separately from the other bands. Spiral

synthesis is another form of synthesis that uses frequency bands for analysis (see section

3.10.1).

Harmonic resynthesis is the third type of resynthesis. This is the standard method of

extracting harmonics using Fourier transforms, altering the harmonics and performing the

inverse transform on the result. Additive synthesis could be called the synthesis part of

the analysis, modification and synthesis cycle ofresynthesis.

3.7.3. An evaluation of the technique

Generality

Resynthesis can be applied to any sound. It is perhaps incorrect to describe it as a

separate technique as it encompasses so many other techniques like Granular synthesis

and Additive synthesis.

Efficiency

The efficiency depends on the analysis and synthesis techniques used.

Control

Control depends on the number of parameters extracted. Time-domain resynthesis would

be the most difficult to control, having the greatest number of parameters. Harmonic

domain resynthesis would have the same control problems as additive synthesis.

Frequency-domain resynthesis should have the least number of parameters, diviiling up

a sound into frequency bands rather than inilividual frequencies.

3.7.4. Future direction

During 1988, advertisements appeared in Keyboard magazine for a resynthesis machine.

It is called the ACXEL and is produced by a Canadian company Technos. The

advertisement claims that the system uses artificial intelligence techniques to analyze the

sound. It then programs a large number of "Intelligent Synthesis Cells" and combines

47

them to produce the resynthesized sound. Unfortunately, no reference to the machine can

be found other than these advertisements.

48

3.8. Wavetable Synthesis

3.8.1. Background

Wavetable synthesis is an extension of some concepts from subtractive synthesis and the

old analog synthesizers that use oscillators and filters. The oscillators and the

manipulation that goes on between the oscillator and the filter makes this type of synthesis

different to subtractive synthesis.

This technique shares many of the advantages and disadvantages of samplers. In fact,

techniques that Meyer [Meyer,1988] groups under wavetable synthesis include Linear

Arithmetic (LA) synthesis. LA synthesis is also closely related to sampling (see section

3.9.).

3.8.2. Explanation of the technique

The oscillator of a wavetable synthesizer consists of a table of values. The table can

consist of a single cycle of a wave and contains only a few samples (between 64 and 256

samples). This is called the "single cycle" method by Meyer [Meyer, 1987al. Alternatively,

the table consists of a single wave but is sampled at high sample rates. Consequently the

table is longer than the single cycle table. This is called the "long table" method by Meyer

[Meyer, 1987a].

To generate an oscillation, the samples in the table are played back. For a single-cycle

table, the rate at which the samples are played back determines the pitch. Thus, the

length of the table determines the frequencies available due to the Nyquist rate (see

section 2. on sampling and the Nyquist rate). This variable playback rate causes problems

at the D/A stage and reconstruction filter as these have to cope with a varying sample rate

(see section 3.9.2.1. and [Gotcher, 1988a] about variable sampling rate). As the pitch of

the oscillation is linked to the playback rate, clock noise will be present in the sound. This

creates distortion that can either complement the sound or be perceived as unpleasant

[Meyer, 1988]. The Kawai K3, PPG Wave and Sequential Prophet all use the single cycle

method.

49

The long table method generates different frequencies by skipping a certain number of

samples. For example, if a table consists of 1000 samples, playing back the 1000 samples

in a second generates a frequency of 1 Hz. If every second sample is played, then two

cycles of the table would be completed every second. This produces a frequency of 2 Hz.

Note that one would hear a frequency of 2 Hz if the wave stored in the table is a sine

wave. If it is a more complex wave, one would hear other frequencies as well. The waves

used in wavetable synthesis are usually more complicated. The Korg DW series uses this

approach.

Meyer [Meyer, 1988] describes various wavetable synthesizers. Most of these synthesizers

use Voltage Controlled Amplifiers (VCA's) and Voltage Controlled Filters (vCF's) in much

the same manner as analog synthesizers. Another method, wavetable switching, allows

a wave to be made up of different single cycle waves. The transition between different

waves can be linked to different control parameters such as keyboard velocity. The sudden

transition causes noise. This method is used on the PPG Wave. The Keytek CTS2000 uses

a similar method to wavetable switching but crossfades the single cycle waves so the

transition is less harsh. This is called cross table sampling.

Roland's D series of Linear Arithmetic synthesizers combine sampling and wavetable

oscillators. Portions of the sound are sampled, while the rest are fonned by simple

oscillators. The portion usually created with the sampled sound is the attack phase. The

sustain and release portions are then created using the oscillators. However, Roland

sometimes only use sampled sound in some voices making it more like a playback-only

sampler.

3.8.3. An evaluation of the technique

Generality

Wavetable synthesis in the strictest form does not appear to mimic acoustical sounds well.

It is better suited to the creation of new and unusual sounds. However, LA synthesis can

produce a wide variety of sounds.

50

Efficiency

Wavetable synthesis can be memory and computationally efficient. It does away with the

memory problems of sampling by storing just one cycle of a waveform. The efficiency can

be reduced by having more wavetables and by adding more complex filters.

Control

Control should be comparable with subtractive synthesis and analog synthesizers. All

three types of synthesis use oscillators and filters.

3.8.4. Future directions

Meyer [Meyer, 1988] mentions many types of wavetable synthesis. Of these, few have

lasted. The exception, Roland's LA D series, have become as popular as the DX FM

synthesizer series and appear to have become the next "standard" synthesizer. Roland can

expect some competition from Korg and its M series of synthesizers. These use a similar

technique to Roland's L.A. synthesis.

51

3.9. Sampling

3.9.1. Background

Sampling is a technique that produces output by playing back a previously recorded sound.

The technique itself is very simple. Sampling is performed by a class of instruments called

samplers. A sampler uses various modifiers used in other synthesis techniques to alter the

sound. It also has various unique modifiers.

The underlying theory of sampling was discussed in chapter 2. This discussion concerns

the different hardware and software techniques used when sampling and playing back the

sound.

Samplers and sampling is a broad topic. This discussion covers key features of the topic

and is not intended to be a complete explanation of all possible features and concepts.

3.9.2. Explanation of technique

The sampling technique can be divided into two parts. The first is the recording of the

original sound. The second is the playback or reproduction of the sound.

The recording of a sound requires specific hardware that is common to all samplers. The

sound must be converted to an electrical signal by a transducer, typically a microphone.

This signal is passed through a low pass filter to remove any spurious high frequencies

that could cause aliasing later on. This filtered signal is then converted to digital form by

an Analog to Digital (AID) converter. The samples then are stored in some form for later

use.

The playback of a sample also uses specific hardware. The samples are sent to a Digital

to Analog (D/A) converter and converted to analog form. This analog signal is filtered with

a reconstruction filter (a low-pass filter) to smooth the digital steps in the signal and

remove the high frequencies due to the DIA process, and any noise due to digital

processing.

52

There are many samplers available that can perform the functions described above. It is

the methods used to perform these functions that distinguish one sampler from another.

Analog to Digital, and Digital to Analog conversion are important fields in electronics.

There are many different types of AID and D/A converters. The major types are covered

in detail in Smith [Smith, 1987] and Meyer [Meyer, 1987b]. Analog Devices [Analog

Devices,1986] is a good reference for all aspects of AID and D/A conversion.

3.9.2.1. Sampler Features

Operating Systems

A sampler uses a microprocessor and memory to store and playback samples. The

operating system software that controls the sampler is usually not permanently built in.

Samplers use ROM or disk-based operating systems. The trend is towards disk-based

systems. In a disk-based system, the operating system is loaded off a boot disk before the

sampler will do anything. If power is lost at any stage, the system must be reloaded. This

is similar to a floppy-disk based PC. A disk-based operating system allows updates to the

system to be distributed easily and cheaply. The Roland S-50 is an example of a disk­

based system [Roland, 1985] [Milano, 1987]. Milano describes a new update to the

operating system that provides many new features to the S-50.

If suitable hardware is used, the system can be even more flexible. Kesterton [Kesterton,

1990] describes a simple sample playback system that has the potential for different

resolution D/A converters to be added to the processor. Admittedly, this does use unique

features of the INMOS transputer, the processor used in this system.

Resolution and sampling rate

The resolution of a sampler is important. The resolution is the number of bits used to

represent a sample. The more bits one uses to represent the sound, the less quantization

error there is. The quantization error is the difference between the actual voltage level

and its digital representation. The effects of this error should be reduced by the

reconstruction filter after the D/A but will always be present. The error is heard as noise.

The more bits used, the more memory required to store a sound. The dynamic range

increases as more bits used (about 6 dB per bit).

53

The human ear can hear frequencies up to about 15 kHz. According to the Nyquist

theorem, this implies the sampling rate should be at least 30 kHz. In practice, a rate of

about 2.5 times the highest frequency present should be used (i.e. 37.5 kHz). Most

samplers offer more than one sample rate. This allows sounds that do not require high

frequencies to be stored more efficiently. For example, a bass guitar or tom-toms do not

have any significant overtones above 10 kHz [Aikin, 1989], so a lower sampling frequency

can be used.

Compact Disc and Digital Audio Tape are now the benchmarks for digital audio systems.

The sound on this media is recorded at sampling frequencies 44.1 kHz and 48.0 kHz

respectively with 16-bit resolution.

However, the resolution and sampling rate is not the only factor that contributes to the

quality of the sound produced by a sampler. It also depends on the internal digital

processing and the output stages after the D/A: the analog section. A poor analog section

can introduce unwanted noise and distortion. For example, in overall performance, the 16-

bit Casio FZI0-M was rated well below that of the 12-bit Roland S-550 in listening tests

[Marans, 1989]. This is confirmed by Greenwald [Greenwald, 1989] in the lab tests of the

two instruments. The Roland has better internal digital processing algorithms or analog

input and output stages than the Casio sampler. This gives the Roland a superior

perceived sound quality.

Another trick to improve sound quality is to use oversampling. In oversampling, the D/A

at the output stage is run at a higher frequency than the normal sampling frequency. The

D/A is given a real sample, then other values are computed before the next real value.

Oversampling moves any noise due to the sampling rate out of the audio range. It also

introduces more levels in a rapidly changing signal. For example, if a signal goes from a

digital value of 1 to 10 from one sample point to the next, oversampling will introduce

more values which will make the transition smoother. For 4 times oversampling, this

increases the playback rate to 176.4 kHz. These values are interpolated by some means.

Philips CD players use a transversal filter that uses the previous 24 samples to calculate

an intermediate value that is used to produce the interpolated value. The original Philips

CD players used more reliable 14-bit D/A devices and oversampling to get a Signal to Noise

ratio (90 db for 14-bit Philips, 96 dB on standard 16-bit D/A without oversampling [Capel,

1988]).

54

Memory

Samplers require a lot of memory. For example, a sample rate of 44.1 kHz (the compact

disc sampling rate) requires 44100 samples every second. For stereo, this amount doubles

to 88200 samples. If each sample is stored in 16 bits (two bytes), this implies a storage

space of 176400 bytes (about 172 kbytes) for each second of stereo sound. A minute of

sound requires about 10.1 Mbytes of storage space.

Each sound requires memory in the sampler for storage of that sound. Most samplers

allow more than one sound to be loaded and even played simultaneously!9. Many

samplers allow for memory expansion. The most expandable system is the New England

Digital Synclavier 600 series. The PostPro version allows up to 48 Mwords of memory

[Meyer, 1989).

There are systems that use direct-to-disk recording and playback, but this technique is

usually used on digital editing suites, not samplers (again, the exception is the Synclavier).

Peter Gotcher [Gotcher, 1988a) mentions two low-cost systems - the Dyaxis by IMS and the

DSP-I000 by Compusonics. The DSP-I000 uses WORM drives. At the low end of the

scale, a 80386 AT compatible with a special I/O board and a fast hard disk, has been used

for direct-to-disk recording of stereo sound [Bunnell and Bunnell, 1989).

The amount of data required to store a sound can be reduced by using some form of

compression. Compression can be done at the NO stage or once the data has been

converted to digital form. A linear ND converter is one that maps the voltage range

linearly to the number of possible bit combinations. For example, if a linear 12-bit

converter with a range of +1- 1 Volt is used, then the Least Significant Bit (LSB) represents

a voltage of about 48,8 mV. A non-linear NO converter, like a companding converter, does

not map the input voltage linearly. A change in the LSB about 0 V requires less voltage

than a change at the extremes of the voltage range. Companding allows more dynamic

range for the same number of bits (see Figure 3.6.). Obviously, a similar non-linear D/A

must be used on the output. E-Mu and KurzweiI use this technique [Gotcher, 1987).

The data can also be compressed internally for storage purposes. This is used on direct-to­

disk machines like the Compusonics DSP series [Gotcher, 1988b) but not usually on

samplers.

!9 The AKA! S612 is the exception [Aikin, 1989). It allows one sample to be
loaded at a time. This model has now been discontinued.

55

VoltageNolts

5

o
Digital Value

-5

VoltageNolts

5

o
Digital Value

-5

Figure 3_6_ The mapping between input voltage and digital values on an ordinary
and companding AID converter.

Pitch Shifting

The most important function of a sampler is to shift the pitch ofthe sample. This enables

the sampler to produce different notes using a single recorded sound. Aikin [Aikin, 1989]

distinguishes between two different types of pitch-shifting. These are variable playback

rate and interpolation.

The first and most obvious technique is to change the speed at which the sample is played

back. The samples are sent to the D/A at different rates. However, this technique is only

56

used on more expensive samplers. There are two reasons. The first is that a D/A can only

play back at one rate at a time. Each different note must be played via a separate D/A

The second reason is that different sampling rates require different filter characteristics.

The output ofthe D/A feeds into an analog filter. This filter is tuned to have a sharp cutoff

at the sampling frequency to prevent aliasing ofthe signal. Using different sampling rates

requires an analog filter that can be altered to match the changing sampling rate. This

is difficult and expensive to build. In spite of this many samplers do use this technique

[Aikin , 19891.

The second technique is to actually change the sample data that is sent to the D/A to

create different frequencies. This overcomes the need for more than one D/A. Sound for

all the notes played is digitally mixed before it reaches the D/A stage. A single filter is

required for the output of the D/A as the cutoff frequency and other characteristics are

fixed. The alteration of sample data can be done via linear interpolation or drop/add

sample tuning.

The problems of a fixed playback rate can be shown by the following example:

If one samples a note A above middle C (440 Hz) at 30 kHz, the sampler

must play back 30000 samples every second to produce the same pitch (440

Hz). If one wanted a pitch of 880 Hz, one must play back 60000 samples

every second. The extra 30000 samples have to be produced. A pitch of

220 Hz is easier, one only needs 15000 samples. If every second sample is

skipped, the correct pitch is achieved. BUT what about frequencies that

are not integral multiples of the original pitch?

Linear interpolation uses principles from signal processing to calculate intermediate points

in between actual sample points. This calculation produces more samples per second than

were physically recorded. This calculation produces the extra samples required in the

example above. Skipping or dropping samples allows one to get rid of the samples. This

technique will distort the sound. The distortion will be heard as noise.

Compact Disc players also use interpolation during overs amp ling to improve the sound

quality as previously mentioned. CD players do not vary the playback rate but use

interpolation to provide more samples so a higher playback frequency can be used. These

extra samples are calculated in real-time. This calculation is used to remove noise caused

57

by the D/A converter. The technique of oversampling is used in the more expensive

samplers.

The simplest form of pitch shifting is drop/add sample tuning. This technique uses a D/A

at a constant playback rate. However, for higher frequencies, the samples are skipped (no

interpolation). For lower frequencies, the previous sample is repeated instead of

substituted with an interpolated value. This technique produces more noise than

interpolation.

An alternative to these techniques is a hybrid of interpolation and changing sample rate.

In this hybrid technique a band-limited signal is sampled at a much higher frequency than

the Nyquist rate requires. Less interpolation is required as there are more samples. A

digital filter is used to smooth the output.

Gotcher [Gotcher, 1988a] suggests that different techniques will be used in the future. For

example, digital signal processing techniques can be used to separate the pitch and time

elements of a signal. Then the pitch part of the signal can be adjusted to the correct pitch.

Techniques like granular synthesis can be used to do this (see section 3.6.).

Looping

A sample is made up of a linear list of sample values. The duration of a sample therefore

depends on the number of samples (and pitch shifting). However, most real sounds do not

have a fixed duration. A violin will sound for as long as the bow is drawn across the

strings. To achieve this effect, samplers loop the sound. Looping allows one to extend the

sustain portion of a short sound. The memory limitation of samplers has made looping an

important feature of samplers.

This feature is perhaps best explained in computer terminology. Imagine the samples are

stored in an array. An index into the array indicates which sample is to be played next.

This index is incremented until the end of the array is reached. When a sample is looped,

the index is incremented until a predefined point is reached. Then, the index is reset to

another position in the array, before the loop point. This process is repeated until the

sampler is instructed to end the note. This is called a sustain loop.

There are other more complicated looping procedures, including looping back and forth

between two points (so playing a part of the sound in reverse) and cross-fade looping.

58

Cross-fade looping mixes the samples in a waveform before and after the loop point to

achieve a more natural-sounding loop (see Meyer [Meyer, 19881 for more details).

One must be careful when setting loop points. Any discontinuity from one set of samples

to another will be heard as a click. Setting loop points is a difficult process. The problems

and several solutions are described by Meyer and Aspromonte [Meyer and Aspromonte,

1987] and Meyer [Meyer, 19881.

Envelopes

A sampler uses samples in memory to play back and produce a realistic sound. It can alter

the sound by changing the pitch of the sound, changing the amplitude or applying a filter.

Envelopes are used in samplers to produce different amplitudes during the playback of a

note in attempt to mimic the real instrument or provide interesting effects.

Envelopes such as ADSR curves (see section 3.3.2.) alter the amplitude of every note. The

effect of the envelope is usually tied to controller information from a MIDI device (see

chapter 4). For example, the initial velocity of a note could be a scaling factor that is

applied to the amplitude envelope.

Multiple Samples of a Single Sound

The spectrum of the sound of an acoustic instrument varies depending on the note being

played, and how it is played. It is these nuances that make acoustical instruments

interesting. A synthesis device must emulate this variation in order to sound realistic.

Large sampler systems such as the Synclavier and Fairlight rely on multiple samples of

an instrument to achieve realistic sounds. Other samplers use fewer samples but still use

more than one sample to reproduce some instruments. The Roland S-1O/220 uses four

different samples of a piano. Each sample is assigned a region on the MIDI keyboard.

Any note played within a region will be pitched shifted from the sample the region is based

on. The switch from one sample to another across regions can sound harsh. To smooth

this transition, positional cross-fading is used. Positional cross fading mixes the adjacent

samples in the overlapping region.

59

Sometimes a region on the keyboard will use one of two samples (the Casio FZ-1/1O) or

even more, depending on velocity or other MIDI controller information. This is called

velocity switching.

Multiple samples require more memory but provide more realistic sounding instruments.

More Timbral Control

Samplers can alter the timbre by using filters. The filtering can be simple filters that are

applied to the raw sample data (eg. the Roland S-10/S-220). Filtering can be more

sophisticated too. The Yamaha sampler, the TX-16W uses multi-pole real-time filters.

3.9.3. An evaluation of the technique

Generality

A sampler will reproduce ANY sound it can record, with varying degrees of success.

However, some sounds elude sampling. Often, the problem is the MIDI controller. For

example, steel drums, with their complex harmonic interaction , are difficult to play

through a sampler. A single keypress does not represent the sound well.

Efficiency

Sampling is not an efficient technique in terms of the memory and storage required. The

high sampling rates produce a lot of data. Serra et a!. [Serra, et a!., 1988] notes that

sampling is very efficient with respect to computation as not much is required to reproduce

the sound. The only computation that must be undertaken is that required for pitch

shifting.

Control

A sampler will only reproduce variations on the sound that is sampled into it. One has

limited control of that sound, using envelopes, filters and cross-fading. The method of

changing the pitch of the sound is determined by the sampler itself.

60

3.9.4. Future directions

At present, the state of the art in digital samplers is the Synclavier 600 series [Meyer,

1989]. This series allows stereo sampling at variable frequencies for long periods of time

(at a price!)20. Other systems have along way to go before they reach this level.

The profusion of Compact Disc and other digital technology must have a great influence

on sampling. Already, the mass production ofD/A systems for CD players has reduced the

price of D/A devices. Another factor is the decrease in memory chip prices and increase

in their capacity.

Sampling has become a popular method of synthesizing sound. It appears that it will

remain very popular in the future. The trend is towards better resolution of AID and DI A,

longer sampling times and faster storage and retrieval of the samples. Other synthesis

techniques, such as Roland's LA synthesis, use a hybrid of conventional techniques and

sampling to produce very realistic sounds.

20 The series 600 PostPro Synciavier has a minimum of 50 minutes sampling
time at 50 kHz/16 bits using WORM optical disk. The price, about US $200 000.

61

3.10. Other Synthesis Techniques

3.10.1. Spiral synthesis

The ear, it is sometimes stated, performs a Fourier transform on sound. This, according

to Tracy Lind Peterson [Peterson, 1985], is not strictly correct. The ear analyses sound by

breaking up the sound into bands offrequency, not individual frequencies. The bandwidth

characteristics of these bands is frequency dependent. A sound can be analyzed in terms

of the bands using a critical band transform (CBT). CBT analysis allows a sound to be

viewed in terms of complex" spirals. The spirals can be represented using sine waves,

varying in amplitude and phase, in the real and imaginary planes.

The complex spiral can be constructed out of two sine waves, one in the real plane, and the

imaginary plane. Spiral synthesis provides control of the evolution of the spiral as it is

generated.

Spiral synthesis involves the control of the resonance of a filter. If one examines the z­

plane representation of a filter, one can get information about the resonance of the filter.

The z-plane is used as a mathematical representation of a filter and as an aid to filter

design. The concepts of filter design and the z-plane are covered by Smith [Smith, 1985].

Peterson's work on spiral synthesis showed how the decay of a plucked string could be

mimicked by using spiral synthesis. The decay is normally modelled using a simple

exponential decay. The exponential decay does not work well, but spiral synthesis provides

a realistic representation.

21 Complex in the sense of it having real and imaginary components and
displayed on the complex plane.

62

3.10.2. Physical Modelling

In physical modelling, the physical and mechanical attributes of an instruments are

simulated. Instruments with greater range than their acoustical equivalents can be

simulated using the appropriate model22
.

At Stanford's Centre for Computer Research in Music and Acoustics (CCRMA), Chris

Chafe, David Jaffe and Julius Smith are all involved in research into physical modelling

(Jungleib, 1987]. They use waveshaping synthesis, a specific processing algorithm and

digital filtering. CCRMA's implementation models plucked and bowed string instruments

well, and can also be used for reed instruments, brasses, flutes and pipe organs. Julius

Smith presented a paper at 1986 International Computer Music Conference (Smith, 1986]

on the simulation of reed-bore and bow-string mechanisms.

Serra et al. (Serra, et aI, 1988] believe that this method should ultimately lead to the most

accurate imitation of any instrumental sound. However, they comment that the

computational cost of analysis and synthesis is very high. The control of such models

would also be difficult. For wood-wind instruments, however, the control aspect may not

be as difficult as Serra, et al. predict. Recent advances in wind MIDI controllers offer some

hope for the future .

3.10.3. Nonlinear Distortion or Wave shaping

This technique was developed in the late sixties and was initially associated with analog

synthesizers. It was developed independently by Risset and Schaefer and extended by

Arfib and LeBrun to a digital representation (Roads, 1985c].

A sine or cosine wave of a given frequency is fed into a non-linear device or function. The

result is a distorted waveform. The non-linear function is a transfer function that controls

how the input is distorted or altered. This concept is similar to subtractive synthesis.

However, subtractive synthesis uses a harmonically rich waveform while waveshaping uses

a sine or cosine wave.

22 Hutchins (Hutchins, 1967] described the construction of acoustical violins
and violas that fit into a different range from their normal counterparts. This was not
using digital technology, but rather painstaking experimentation with different materials
and shapes.

63

There are various extensions to this technique. One of the most obvious is to vary the

amplitude of the input sine or cosine. This creates an effect similar to a change in

modulation index in Chowning FM (see section 3.4.). According to Suen [Roads, 1985c],

a change in amplitude of the input to a nonlinear function will affect the harmonics of the

output signal. Another is to amplitude modulate the output of the system with another

frequency to produce an inharmonic spectrum. If one alters the amplitude ofthe input to

obtain interesting harmonics, then one has lost control of the output amplitude. This can

be compensated for, with some difficulty.

Roads [Roads, 1985c] predicted in 1979 that this technique would be used extensively in

the 1980's. He bases this prediction on the simplicity of implementation on digital

processors. Serra et a!. [Serra, et aI., 1988] comment that the technique is very much trial

and error with limited generality and control difficulties.

3.10.4. Spectral Interpolation

This method, proposed by Serra, et a!. [Serra, et aI, 1988] is a type of resynthesis. It

combines an analysis of sound to provide parameters for a model that can be used to

produce sound. It has been successfully used to reproduce brass and woodwind

instrumen ts.

Spectral interpolation has a basis in additive synthesis. In additive synthesis, the

amplitude of a harmonic is used to control the spectral variation of the sound. Each

harmonic has a function which approximates its amplitude over time. In spectral

interpolation, the spectrum of the entire sound at selected intervals is determined and

approximated.

To perform spectral interpolation, a tone from an instrument is first sampled and analyzed.

This analysis selects wavetable generators, the interpolation between tables and decides

on how two tables can be mixed together. It was found that one table introduced too many

discontinuities, so two are used at anyone time.

The Discrete Fourier Transform is applied to the samples. Starting with the first period

of the tone, the spectrum is approximated within an error margin. This is an iterative

process as functions are tried until they are within the error margin compared to the

64

original harmonics. Then, the successive periods are calculated until the tone has been

completely analyzed.

The spectral functions that are extracted using the analysis are then used to resynthesize

the sound. Each function generates a lookup table. The functions control two table-lookup

oscillators. The two tables are changed during the duration of the sound, one at a time.

A table will only be changed when its amplitude is zero and within the time intervals

calculated during the analysis stage.

As mentioned previously, the technique was applied most successfully to woodwind

instruments. A small amount of control data is required to produce a sound. Serra et al

[Serra, et aI., 1988) mention their ability to compress a recording of an orchestra to an

average of 400 control bytes per second and resynthesize the sound with only 10 arithmetic

operations per second. They also suggest that a combination of sampling for the initial

attack, and spectral interpolation for the rest of the sound would allow other instruments

to be synthesized successfully.

One can deduce from the description of spectral interpolation that this technique could be

difficult to use in a product with which the user could create his or her own sounds.

Perhaps the first commercial application would be to supply preset sounds.

65

3.11. Discussion

The list of techniques mentioned in this section are by no means exhaustive. An attempt

has been made to give an overview of many different types of techniques, and the

advantages and disadvantages of those techniques.

Each technique shows the delicate balance between the three evaluation criteria:

generality, efficiency and control. For example, additive synthesis gives precise control

over the sound, but makes the sound very inefficient to compute and is impossible to

control in real-time. FM improves on efficiency, but there is a lack of control of the final

sound. Sampling allows good control of the final sound in that what is sampled is

faithfully reproduced, but at the expense of storage space. All the techniques have a

situation where their balance of criteria is correct for that application. However, a range

of techniques is often not available to the synthesis experimenter.

The cliversity of the techniques make it difficult for a single system to implement more

than a few techniques. Commercial systems, as previously mentioned, usually implement

a single technique. A software-based system can be used to implement more than one

technique, as will be shown in chapter 5 .

•

66

4. MIDI

4.1. Introduction

The Musical Instrument Digital Interface (MIDI) is one of the essential technologies that

make the implementation described in chapter 5 possible.

The MIDI protocol arose from a very simple requirement: different electronic musical

instruments have to be connected together. This concept was expanded to allow MIDI to

be used for many other things, one of which is the PC/sampler communication that is used

in the implementation described in chapter 5. A part of the MIDI protocol, the MIDI

sample dump standard, also provides the means for using samplers other than the one

used in this implementation. This chapter provides an overview of MIDI.

4.2. A Brief History

The original analog synthesizers can only produce monophonic sound. This means that

only one patch could be played at anyone time, and only one note at a time, i.e. no chords.

Soon, polyphonic synthesizers were developed, but still only one instrument per synthesizer

could be used.

The limited polyphony of synthesizers had to be overcome. This was achieved by

connecting up synthesizers in a master-slave configuration. One synthesizer is a master,

producing control information as well as producing a sound. The slave (or slaves) use the

control information to trigger notes. This allows more notes to be played at anyone time,

and more instruments to be played simultaneously.

Analog synthesizers could be controlled using a system of electrical connections and a

Control Voltage (CV). The control information was typically oscillator and filter frequency.

A common convention was that 1 V represented a pitch change of 1 octave. It was usual

to find a CV output and input on the back of the old analog synthesizers. Another method

of sending information was a gate output and input. A gate output produced a certain

voltage when a key was pressed, and another when no key was pressed. Combined with

the CV signal, the pitch and duration of a note this could be passed on to the slave synthesizers.

67

Digital synthesizeTs also need some method of passing contTol information fTom one to

anotheT. VaTious manufactuTeTs developed theiT own standaTds fOT connecting theiT

pToducts that weTe incompatible with otheT manufactuTeTs. ObeTheim used a paTallel

interface to connect its own pToducts. The interface caTTies event messages and a timing

interface. Roland uses a seTial interface called DCB (Digital Communications Bus). It

tTansfeTs event and timing infoTmation between suitably equipped Roland devices.

Sequential CiTcuits pToposed a new system in 1982 [GaTvin, 1987]. This system was

adopted by otheT manufactuTeTs and the MIDI standaTd originated from this group. This

group is today known as the MIDI ManufactuTeTs Association (MMA). MIDI is not a

formal standaTd such a standaTd pToposed by the International StandaTds OTganisation

(ISO). All the majoT manufactuTeTs of commeTcial synthesizeTs belong to the MMA, so it

is economically unwise not to conform to it. The useTS of MIDI equipment have theiT own

oTganization, the International MIDI Association (IMA). It was fOTmed in 1983 as a "useTs

group" fOT MIDI".

MIDI is now incoTporated into viTtually every digital music instrument available. MIDI

was oTiginally designed to be used to contTol keyboaTd instTuments. Today, it is used to

contTol effects units, mixeTs and many otheT items. Devices that geneTate MIDI

information include keyboaTds, computeTs, sequenceTS, guitaTS and wind instTuments.

4.3. MIDI Described

The MIDI pTotocol is an event-driven netwoTk [Loy, 1985]. Events include things such as

a key is depTessed on the keyboaTd, OT a button is pTessed on a dTum machine. These

events aTe tTansmitted thTough the MIDI netwoTk. The netwoTk is a point-to-point system,

as opposed to a bus system like Ethernet. MIDI-equipped devices have MIDI IN and OUT

sockets, and an optional MIDI THRU. The IN port accepts MIDI information, OUT

tTansmits information and THRU duplicates a copy of the MIDI IN signal. This allows

many devices to be connected togetheT in iliffeTent configuTations. The configuTations

include masteT-slave, daisy chain and staT configurations; all the typical computeT netwoTk

configuTations.

23 FOT mOTe infoTmation on the inteTaction between the IMA and MMA, see
[Loy, 1985].

68

The physical system is based on computer serial communication. A opto-isolated 5 rnA

current loop is used for each point-to-point connection. A shielded twisted pair is used,

grounded at the source end. The shielded cable insures minimum noise and interference

with other cabling and electrical equipment. Opto-isolation means that each piece of

equipment is electrically isolated from the others. This prevents ground loops and

interference between different devices. It also protects the device from any incorrect

signals/voltages coming through a MIDI line. Information is transmitted at 31.25 kbits per

seconds. Loy [Loy, 1985] can find no reason for this speed other than it is 1 MHzJ32. One

could also suggest that the capabilities of electronic parts available in the early 1980's, and

the expense of faster parts could have played a role in determining the speed. The serial

data is transmitted as a start bit, 8 data bits and a stop bit. This gives a 320 microsecond

transmission time for 8 bits of data".

The software protocol of MIDI determines which bytes are sent when, and the significance

of each sequence. MIDI allows commands to be sent on 16 different channels. This allows

16 different devices to be individually controJled along a single network. To identify the

channel, each command that involves channels has the channel number at the start of the

message. Each MIDI device will examine the channel number and decide whether it must

respond to that command or not. This can be compared to an Ethernet network, where

each node looks at the packet header to see if the message is directed at it. However, in

MIDI, many different devices can respond to a single command. How and when a device

responds to a command depends on the mode the device is in.

MIDI has 3 different modes: omni, poly and mono. If a device is in omni mode, it wiJl

respond to commands on all channels but only transmit on one channel. In poly mode, a

device will receive and transmit commands on one channel only. Mono mode assigns a

voice to respond to a particular channel. It does not mean the device must produce a

monophonic sound, but rather that multiple voices on a single synthesizer can be controJled

via their own MIDI channel.

There are two types of MIDI commands: Channel commands and System commands. All

of these commands (with the exception of system exclusive commands) consist of a status

byte, foJlowed by up to two data bytes.

" The relatively slow transmission speed causes some problems when transmitting
sample data between MIDI units. For example, the Roland S-220 has to send about 60
kbytes of data, a one second sample. This takes about 16 seconds at fuJI MIDI
transmission speed.

69

STATUS BYTE - DATA BYTE 1 - DATA BYTE 2

Channel commands are used for sound generation control and mode selection [Yamaha,

1986]. These commands are:

• Note on and off: Start playing a note and stop playing a note.

• Polyphonic aftertouch: The amount of pressure applied to a key after it has been

depressed.

• Control change: A group of messages that control the control devices, ego

modulation wheels and data entry sliders on the MIDI device. The controller is

first identified then its status or value is sent. Controller numbers are assigned

according to the MIDI standard. There are gaps in the list of controllers to allow

new ones to be assigned as required.

• Mode setting: Sets the mode of the device (omni, poly, mono). Also Local on and

off, for example, on a synthesizer device with a keyboard, this command allows the

user to trigger the synthesis unit on the device from the keyboard (local on) or not

(local off)".

• Program change: This depends on the device. On a synthesizer, it could mean

change patches on a device. On an effects unit; change to another setting of

effects. In general, it is used to change a device to another predefined setting.

• Channel Aftertouch: Gives a value for the overall keyboard afterlouch on certain

types of keyboards. It regulates the effect ofthe polyphonic aftertouch command.

• Pitch Wheel: Gives the value of the pitch wheel. This command is not grouped

with other control change commands because the full range of two data bytes is

required to represent the changes.

25 This may seem a little unusual at first. The DX7 II keyboard has this
feature. It allows the user to use the keyboard as a master controller. This uses its keys
and control devices to control other synthesis units connected via MIDI. Some keyboard
players prefer to use one type of keyboard, because of the feel of the keys, layout of the
controls, etc. However, they may not like the sound it produces.

70

The system messages are overall commands that are not linked to a particular channel,

i.e. they have no channel number in the header. These are divided into three types:

System exclusive commands, system common messages and system real-time commands.

• System Exclusive: This command is used to allow manufacturers to control devices

in ways not covered by the other MIDI commands. The most common use of this

command is to dump and retrieve patches for synthesizers. Unlike other MIDI

commands, the size of this message is undefined and dependent on the

manufacturer.

• System Common: A Song Position Pointer is used on sequencer and other devices

so that they can be synchronized. 'Song Select' is used to select a song stored in

a sequencer or drum machine. Finally, a 'Tune Request' is used on some analog

synthesizers to enable an auto-tuning feature.

• System Real-time: The timing clock command acts as a synchronizing timing clock

for a MIDI network. Three commands (start, continue and stop) are -used in

conjunction with sequencers and drum machines. They start, continue or stop the

recording or playback on these devices. Another real-time message is "Active

Sensing". This is a byte sent out every 300 msec to check the integrity of the

system. If a device has active sensing on and it does not receive this command, it

will stop and send out an error message. Finally, "system reset" will initialize

devices on the MIDI network.

It must be emphasized that not all these commands are implemented on all MIDI devices.

Often, commands are used for other purposes - for example the pitch wheel command could

be used to control the volume control of a MIDI mixer. A MIDI device will usually be

supplied with a MIDI Implementation sheet in the documentation. This sheet has a

standard layout that forms part of the MIDI specification. It indicates which MIDI

commands the device receives and transmits.

4.4. System Exclusive Commands

The System Exclusive command has been described as "". the great escape hatch of MIDI"

by Loy [Loy, 1985). Any function that cannot be controlled by the other MIDI commands

71

is accessed via System Exclusive commands. Each manufacturer is given a unique number

that identifies the message as one intended for that manufacturer's equipment.

The System Exclusive message has the following format:

Byte 0 SYSTEM EXCLUSIVE COMMAND

Byte 1 MANUFACTURER'S IDENTIFIER

Byte 2 .. n Rest of the message defined by manufacturer

Byte n+1 END OF SYSTEM EXCLUSIVE

Some manufacturers, like Roland, include some form of checksum before the end of system

exclusive message. This is used to test the integrity of the data in the message.

The implementation of synthesis described in chapter 5 depends on MIDI, and more

specifically on System Exclusive commands. Roland System exclusive messages relating

to sample transfer are discussed in detail in Appendix B.

4.5. Extensions to MIDI

The lMA occasionally publishes corrections to the MIDI specification. In addition,

amendments and extensions are published. Extensions include MIDI time-code, MIDI

Sample Dump Format and MIDI Files. The amendments are added as the protocol is used

for new purposes and as required. The MIDI sample dump format has relevance to the

work described in chapter 5.

72

4.5.1. MIDI Sample Files

The use of MIDI to store and retrieve samples was not accounted for in the original MIDI

specification. Each sampler had its own method of dumping samples via MIDI System

Exclusive messages. The MIDI Sample Dump standard is an attempt to provide a

standard system for this purpose. The dump standard is used mostly for communication

between samplers and computers. At present, only some samplers support the dump

standard. Many of the software packages that manipulate samples now support the

standard.

The MIDI sample dump standard was in the process of being finalized when the

implementation discussed in chapter 5 was started. Also, the S-220 sampler used in the

implementation did not support the Sample Dump Standard. A useful extension to this

work would be to convert the output to the sample dump standard. As the number of

samplers using the sample dump standard increase, it would allow the implementation to

be used in conjunction with more samplers. The standard nature of the format could be

used to provide a better file format than the .ROL format (see Appendix C) used in the

synthesis implementation. It would also simplify the conversion of the system to other

samplers.

The MIDI sample dump standard is based on other manufacturers' protocols. For example,

it is very similar to the Roland S series sample transfer system. The Roland system (see

Appendix B) has implicit 'Wait' and 'Want to Dump' commands, as well as a 'Dump

Request' command.

The dump standard provides for two types of systems: open loop and closed loop. In the

open-loop system, the two devices have a connection from MIDI OUT of the sender to MIDI

IN of the receiver. The receiver has no way of communicating with the sender. This is

intended for simple systems. In the closed-loop system, both sender and receiver have

their MIDI OUT's connected to the MIDI IN of the other device. This allows handshaking

and consequently a more controlled transfer of data. A closed-loop system can improve the

speed of transmission and permits error recovery.

There are seven MIDI messages concerned with dumping samples. They are Dump

Request, ACK, NAK, Wait, Cancel, Dump Header and Data Packets. The message will be

73

started with the MIDI System exclusive command FO (hex), followed by 7E(hex) which

identifies it as a MIDI sample dump. Next is the MIDI channel followed by the sample

dump command number. The rest of the message depends on the command, but is always

terminated by an End of Exclusive F7(hex). The message looks as follows:

FO 7E <MIDI channel> <sample dump command id> <message dependent> ... F7

What follows is a description of each command. The hexadecimal command identifier is

in brackets after each command name:

• Dump Request (03 hex) is sent by the device requesting a sample dump. It

contains a sample number that identifies the sample. The device that receives this

message checks to see if it has the sample. It will start the dump procedure if the

sample exists. Otherwise, it will ignore the request. If an open-loop system is

used, the sender must initiate the dump.

The following four messages are only sent if the closed-loop system (handshaking) is used.

• ACK (7F hex) or 'acknowledge' is sent by the receiving device if the last data

packet was received correctly.

• NAK (7E hex) or 'no acknowledge' is sent by the receiving device if the last packet

was not received correctly. The sending device must resend the last packet

• Cancel (7D hex) is sent if the dump is to be aborted. The packet number is sent

to indicate on which packet the cancel took place.

• Wait (7C hex) is sent by the receiving device. Ifthe sender gets a Wait message,

it must not send more packets until an ACK is received. This allows the receiving

device to perform other functions while a sample transfer is taking place.

The following messages are used in the open and closed-loop system.

• The Dump Header (01 hex) contains information about the sample dump. This

information is the sample number, the sample word size (8 to 28 bits), the sample

period in nanoseconds, the sample length, the sustain loop point start and end

74

word, and the type of loop (forward only or backward/forward). This is the first

message of the sample dump to be sent from the sender.

• The Data Packet (02 hex) is the message that contains the data. This message

has a running packet count, data and a checksum. The running packet count goes

from 0 to 127. After 127, the count is reset to O. The data is at most 120 bytes

long. Each sample word is stored in the first 7 bits of the byte, for two or three

bytes, depending on sample word size. The last byte of the word is left justified

and the remainder is padded with zeros. This is to keep the message length to 128

bytes. This is considered the smallest buffer size of a MIDI device. The checksum

is the XOR of all the message bytes.

A typical sample dump transaction is as follows:

SENDER

IF a dosed-loop system THEN

Receive a Dump Request

Check. if sample avai!able

IF availa~e THEN

send ACK

ELSE (open-loop system)

Send message to initiate dump

Wail for an ACK. If no ACK is received after 2 seconds, an

open-loop system is assumed and data packets are sent

with 20 ms delays in between each packet

Send the Dump Header.

IF a dosed-loop system THEN

Receive an ACK

REPEAT

Send data pacl<et

IF a dosed-loop system

THEN receive ACK

ELSE wait 20 ms

UNTIL no more data

RECEIVER

IF a dosed-loop system THEN

Send a Dump Request

Wait for ACK

IF no ACK received, terminate

ELSE (open-loop system)

Wait for sender 10 initiate the dump

75

Check if the request is correct and there is enough memory

available.

IF dosed-loop system THEN

Send an ACK to accept the request

Receive Dump Header

IF dosed-loop system THEN

Send an ACK

REPEAT

receive data.

IF dosed-loop system

THEN

ELSE

IF data oorrect

THEN send ACK

ELSE send NAK

IF data oorrect

THEN wail for next data packet

ELSE Stop waiting for data packet

76

If the Sender receives a Cancel after the Dump Request, the Sender immediately stops the

transaction. At any time later in the dump, if a Cancel is sent to the sender, the dump is

aborted. If timeout occurs after the Sender has sent a dump request, the sender assumes

an open-loop system and sends the data packets with 20 ms delay between packets. If the

receiver sends a Wait at any time, the sender must wait for the ACK before continuing.

The hardware configuration for an open-loop system is easy to implement given the current

MIDI specification, but the closed-loop system is not. Take two devices A and B. In a

closed loop, A's MIDI OUT port is connected to t;he B's MIDI IN and B's MIDI OUT is

connected to the A's MIDI IN (see Figure 4.1.). As most devices have only one MIDI IN,

this prevents any other MIDI command coming from any other MIDI device to reach the

destination device. This 'deadly embrace' could be broken with a MIDI merge box'''

placed before the MIDI IN, but these devices are not cheap.

A typical studio configuration makes it more

convenient to use an open-loop system. This would

allow the user to experiment with a PC/sampler

configuration system without having to continually

swop cables. However, the closed-loop system

offers greater speed and more control.

The speed of MIDI is too slow for fast sample

transfer. As sample times increase and the

MDIOUT f--~

SOURCE

OESTY<4ATOoI .. ,,""
Q..OSED lOOP SYSTEM

OPEN lOOP svsnw

.. C l OUT --------.. -_-_-.:. OnlEAWDIDEVICES

I ~nm~~~-~ , ~ WID4 ~ , SClJACI:

OEST,,"TlON \.__ MIDI"!

WIDIOUT

resolution improves, the speed of MIDI will become Figure 4_l. Open and closed loop
MIDI systems.

even more critical. The Casio FZl has a parallel

port [Aikin, 1989) that allows the transfer of data at a faster rate than MIDI allows. This

can be connected to a computer or another FZ1. However, this circumvents both MIDI and

the MIDI Sample File system.

The inclusion of one loop point in the Dump Header is a contentious part of the standard.

Many samplers allow more than one loop point (including Casio FZ1, AKA! S1000,

Sequential Prophet 2000 and Studio 440 [Aikin, 1989]). One can assume that in the future

more machines will allow more than one point. The Dump Header stores no information

26 A MIDI merge combines two or more MIDI inputs into one stream. The more
expensive merge units allow the user to filter out MIDI messages and even change MIDI
channel numbers in the message.

77

about split points, layering of samplers, crossfading or any of the other many features

common to most samplers.

On the other hand, the standard is a clean and effective way of transferring the raw data

from one machine to another. It has room for future expansion and modification if

necessary.

4.6. An Appraisal of MIDI

The MIDI standard is an example of how successful a standard can be. An entire industry

has been created to provide the software and hardware that can be connected using MIDI.

Most major manufacturers of audio equipment support the MIDI standard in one way or

another. However, the limitations of MIDI are being felt as it is used to control more

sophisticated equipment. Most of the problems with MIDI arise from the fact that it is

being used for purposes for which it was not originally designed. It was originally designed

to extend control of synthesizers in a device-independent and manufacturer-independent

way.

MIDI was never designed to be a true network. It does not allow bi-directional control

flows between devices, but operates in a master-slave configuration. A potential solution

to the network problem is a product called the MIDI Tap. This device uses conventional

network technology to allow communication between MIDI devices at greater speeds and

bandwidth.

One of the problems with MIDI devices is that they do not utilize the full bandwidth of

MIDI. A MIDI device takes time to respond to MIDI commands. Loy [Loy, 1985] reports

that some of the delays associated with MIDI are actually the fault of devices, not the

standard itself. Faster processing in the MIDI device should help solve that problem.

It is possible to overload a MIDI system. Sending lots of continuous pitch-wheel data

causes delays and errors in the MIDI system. These errors and delays eventually lock up

the system. Most sequencers and computer-based sequencer packages allow the user to

discard continuous controller data in order to prevent this.

78

5. Implementation

5.1. Analysis and Design

5.1.1. Requirements

The implementation discussed in this chapter is based on the concept that the PC in a

MIDI environment can be used to develop a synthesis system. This system would permit

experimentation with different synthesis techniques. The basic requirements for such a

system are as follows:

• The system must permit experimentation with a variety of different synthesis

techniques.

• The synthesis should be performed in software, and the sample playback should

be performed on a digital sampler.

• The PC and digital sampler must communicate via the MIDI interface.

5.1.2. System Design

Four different techniques are implemented: additive synthesis, frequency modulation

synthesis, granular synthesis and spiral synthesis.

The implementation of each synthesis technique is designed according to the usual top­

down and modular design principles. The requirements mentioned in section 5.1.1. can be

used to design a synthesis system consisting of three parts. These parts are the entry of

parameters, actual synthesis and the transmission of samples to the digital sampler.

Each part of a synthesis system has specific functions that must be performed. These are

detailed below:

Enter Parameters

Accept parameter

Write to file

Perform Synthesis

Read in parameter file

Synthesis

Store waveform

Send to digital sampler

Initialize sampler

Read in waveform

Send waveform to sampler

Numerical parameter entry.

Envelope entry.

Write parameters using correct file format.

79

Read parameters using correct file format from file

created in the previous section.

Synthesis technique.

Envelope interpolation.

Sample scaling.

Write waveform to file in .ROl format.

MIDI communication.

Sampler setup via MIDI.

Read .ROl file.

Sampler communication.

Parameters allow the user to control the output produced by the synthesis technique. The

parameters for each synthesis technique are discussed in general in chapter 3 as part of

the discussion on different techniques. The techniques implemented require two types of

parameters: numbers and envelopes27.

27 The choice of techniques dictate the types of parameters reqwred. Other
techniques may require additional parameter entry capabilities not reqwred here.

80

The numeric data entry is very simple. Parameters such as harmonic frequency (additive

synthesis) or initial distance from the pole (spiral synthesis) can merely be entered as a

number. However, the use of envelopes in additive, FM, and granular synthesis makes it

tedious to enter by typing in values by hand. A graphical technique to enter envelopes

using a mouse as the input device seemed a logical alternative. The user should be able

to draw an envelope with the mouse in two ways. The first is to click on the screen which

will draw a line from the starting point to the current mouse position. The second is to

allow the user to hold down the mouse button and draw a line by moving the mouse.

There are two types of envelopes required; an amplitude envelope and a phase shift

envelope2B
• Both envelopes start at the origin of the JCY plane, and finish on the x axis.

The difference between the two envelopes is in the interpretation of the envelope values.

An amplitude envelope is interpreted as having positive values only, while the phase

envelope has both positive and negative values. The software forces the user to start and

end on the x axis. More details are given later in section 5.2.

The mouse device returns screen coordinates when the button is pressed. These values are

stored in a list of envelope points. The envelope type is also stored. The synthesis routine

interprets the envelope according to its type, so little or no processing needs to be done by

the envelope entry procedure. The points in the envelope are interpolated ifthere are gaps

in the data points provided by the mouse. This occurs when the mouse button is clicked

and a straight line is drawn between the last point and current mouse position. Appendix

A provides more details about the software that drives the mouse.

The implementation of the actual synthesis technique is encapsulated as a procedure with

a common interface. Each technique accepts a list of parameters for that technique, and

places a computed, scaled waveform in an output list. How the waveform is computed

depends on the algorithm used. The implementation of each technique is discussed later

in sections 5.3, 5A, 5.5 and 5.6.

A number of common procedures are required for each technique. This revolves around

the interpretation and interpolation of envelopes to waveforms.

2B Granular synthesis required a third type of envelope, a grain density envelope.
This is merely an amplitude envelope which controlled the number of grains in a grain set
at anyone time, not the amplitude of the waveform. See section 5.5. for details.

81

The envelope is usually a small list of'points (typically 512 points) and the envelope type.

This envelope modifies a large number of samples, typically 32767 samples. Routines are

required to map an envelope point to the individual output sample it affects, and

interpolate between two adjacent envelope points to obtain envelope values for each

sample. The envelope must also be interpreted as an amplitude or phase envelope. The

use of envelopes and the interpolation is also discussed in section 5.2.2.1.

The samples produced by the synthesis technique must be stored as digits in the range +1-

21'. This limit is imposed to reduce storage requirements. The samples are computed as

floating point numbers by the various synthesis techniques and are not in the correct

range. They are scaled to the correct range, using methods discussed in section 5.2.2.2.

The link between each phase in the system is a file. The parameter file is the link between

the parameter entry and synthesis phase. The .ROL file is the link between the synthesis

and digital sampler.

The parameter entry and synthesis are designed specifically for each synthesis technique.

Spiral synthesis requires only four parameters, so the parameter entry and synthesis

phases are combined into one program. The other three techniques use separate parameter

entry and synthesis programs. A standard file format, the .ROL format is used for the

output from all the synthesis techniques. This means that a single program could be used

to transmit samples to the sampler. The file format is discussed in Appendix C.

The transmission of samples to the sampler via MIDI is performed by a stand-alone

package (SMPX.EXE). This package is designed to load and save samples in the .ROL

format. More details on the sample transfer program can be found in Appendix E.

The breakdown offunctions into the various components described here permits synthesis

techniques to be implemented very quickly. Once the first technique, additive synthesis,

had been designed, implemented and tested; the others could be implemented very quickly.

The only delays involved the implementation of the synthesis functions, and verifying that

the technique produced the expected results. The implementation details are described in

sections 5.2, 5.4, 5.5, and 5.6.

82

5.1.3. Hardware and Software Used

The following equipment was available for the implementation described in this chapter:

• The Roland S-10/S-220 digital sampler. This was the only sampler available to

perform the required playback function. However, it proved easy to use and

relatively easy to utilize in the manner required for the software system.

• The Roland MPU401 MIDI card. This card is the de facto standard PC MIDI

interface card.

• The IBM-AT compatible is the target hardware for the software. The proliferation

of these machines means that the software can be distributed and used by others.

• A Microsoft Mouse. This is the de facto standard PC mouse system.

• The VGA graphics adaptor for the PC. This graphics card gives sufficient

resolution for envelope parameter entry.

• A PC-hosted transputer system. An INMOS B004 board with a T800 transputer

TRAM with 2Mbyte of RAM. A MC2 PC-LINK card and T800 worker card with 2

Mbyte of RAM was also used. The two systems are compatible.

The software is mainly implemented in the C language. C is used to mainUrin

compatibility with other work being done in the Computer Music Group at Rhodes

University. Transputer software was written in the occam21anguage, the native language

of the transputer. The software used was:

• Borland's Turbo C. Three versions ofthis compiler were used, namely version 1.5,

version 2.0 and finally, most of the code29 was converted to Turbo c++ version 1.0.

No C++ extensions were used in the implementation.

29 The SMPX program (see Appendix E) development was frozen after conversion to
Turbo C version 2.0.

83

• The mouse functions required some assembly language routines. These were

written initially in Turbo Assembler vl.O and later recompiled for version 2.0.

• All transputer software was developed under INMOS Transputer Development

System (TDS) version D700D using the occam2 language.

84

5.2. Synthesis Implementation

5.2.1. Introduction

The synthesis techniques implemented are additive sYnthesis, FM synthesis, granular

synthesis and spiral synthesis. In each case, the synthesis is performed in the following

three phases:

Parameter entry

Synthesis

Transfer

Parameters for the synthesis technique are entered. These are

stored in a file for the next phase. Spiral synthesis has so few

parameters that they are not stored in a file , but are typed in

directly before synthesis.

The parameters are used to produce a waveform using the

particular synthesis technique. The resultant waveform is stored

as a file in the .ROL format3O
•

The waveform is transferred to a MIDI sampler using the SMPX

program.

Once synthesis is completed, the .ROL file can be examined using the LOOK! program3!.

This proved useful in checking the overall amplitude of the waveform32
•

The synthesis phase requires the PC to perform a large number of calculations. This phase

could take as much as an hour or more, even on a 20 MHz 386 machine (without numerical

coprocessor). In order to speed up the calculations, the synthesis phase was implemented

on a transputer board attached to the PC. This improved the calculation times

dramatically.

30 See Appendix C for more information on this format

See Appendix F.

32 Instructions on how to use the software are in Appendix H.

85

5.2.2. Techniques

All the synthesis techniques required certain problems to be solved before they could be

implemented. Some of these problems required general software routines to be written.

Others required general decisions to be made about the implementations. The problems

and the solutions are discussed in the following sections. More specific information about

each of the synthesis techniques is given in sections 5.4., 5.5. and 5.6.

5.2.2.1. Envelopes

The synthesis techniques make use of envelopes for the amplitude, phase and, in the case

of granular synthesis, grain density. The envelopes are drawn by the user using a mouse.

These are stored as positive integer values from 0 to a maximum, typically 255, in a one·

dimensional array. This array contains 512 entries".

These envelopes are interpreted as having a range 0.0 to 1.0 for the amplitude and grain

density envelopes, and -1< to 1< for the phase envelopes.

The individual samples must be modified using the envelopes during the synthesis of a

waveform. As there are only 512 envelope points and 32767 sample points, the envelope

must be expanded and interpolated so that there are 32767 envelope points - one for each

sample. The interpolation method used is simple straight-line interpolation. An

alternative would have been to use a technique like Bresenham's line algorithm [Foley and

Van Dam, 1984], but this would have complicated the procedure.

5.2.2.2. Scaling of output

The sound samples, once calculated, must be stored in the .ROL format. A procedure was

written to take an array of signed 16-bit integers and produce a .ROL file. This implies

the waveform must be scaled to a signed 16-bit integer range.

This scaling was relatively simple for additive synthesis. The formula used to implement

additive synthesis (5-1) must be examined to work out the range of the output sample.

Sine(x) can only be between 1.0 and -1.0. Each harmonic's amplitude envelope is in the

33 This value is dictated by the number of pixels that can be displayed horizontally
on the VGA screen.

86

range 0 to 1.0 too, so the product is between +/- 1.0. The sum of n harmonics can only be

+/- n. Therefore, to normalize this sum, the sum must be divided by the number of

harmonics, n_ This sum is multiplied by the overall amplitude envelope (range +/- 1.0) so

the sample value will be in the range +/- 1.0. This is finally multiplied by 215 to give the

correct range.

-1.0 $ sin (x) $ 1.0

-1.0 $ a, sin(x) $ 1.0, for 0 $ a, $ 1.0

-n $ L (a, sin(x)) $ n, for a summation running from 0 to n-l

-nln $ (L (a, sin(x)))ln $ nln, for a summation running from 0 to n-l

-1.0 $ (L (a, sin(x)))ln $ 1.0, for a summation running from 0 to n-l

FM synthesis was also easy to scale as the simplified equation consisted of a single sine

multiplied by an amplitude envelope. The sample was merely multiplied by 215 to give the

correct range.

Granular synthesis and spiral synthesis did not involve simple combinations of sines or

cosines. The waveform was initially stored as a double (IEEE standard 64-bit floating

point number), then scaled to a signed I6-bit integer. In spiral synthesis, this scaling was

done by first finding the largest sample. This value was given the maximum integer value

(+32767), and the others were scaled accordingly.

5.2.2.3. Pitch of output

The pitch of the resultant waveform is determined by two factors. The first is the

frequency of the waveform due to the values of various parameters. The second is

determined by the sampler used to produce the output.

Additive synthesis uses a fixed frequency fundamental harmonic with a frequency of 440

Hz. All other harmonics have a frequency greater than this fundamental frequency. FM

synthesis allows the user to enter a carrier and modulation frequency. Unfortunately,

these frequencies do not necessarily determine the fundamental frequency (see section

87

3.4.2.). Spiral synthesis has no direct control over the pitch of the sound. Pitch is dictated

by the interaction of the various parameters. The granular synthesis implementation uses

grruns with a random frequency between two limits. The user can determine the limits

but can never tell what the lowest frequency will be. The nature of granular synthesis

makes it difficult to control the final frequency of the waveform.

The waveform passed to the sampler is packed into a format dictated by the sampler itself,

as mentioned in section 5.2.2.2. The format includes the recording key of the waveform.

This is used to decide which note on the keyboard will trigger a the true recording of the

sound. It must be remembered that a sampler produces different notes by slowing down

or speeding up the playback of the samples that make up a waveform (see section 3.9.).

The faster the playback, the higher the pitch. To achieve the correct pitch when the

waveform is played back on the sampler, the waveform must have the correct fundamental

frequency. In this implementation, the recording key was fixed at 440 Hz. Unfortunately,

only additive synthesis can be said to have the correct pitch.

5.2.2.4. Duration of output

The implementations only calculated 32767 samples per waveform. At a sampling

frequency of 30 kHz, this represented about 1.09 seconds of real-time sound at recording

key of 440 Hz (see section 5.2.2.2. above). Although one second is not long, the facilities

of the sampler enabled the sound duration to be increased by triggering lower notes on the

sampler and/or looping the sound. For example, by triggering a note one octave below the

recording key, the duration is doubled.

All the implementations contain provision for a change in duration of the sound to about

2 and 4 seconds. This would require changes to constants in the code, and recompilation.

5.2.2.5. Mouse input

The mouse was used as an input device for all envelopes. The mouse software is discussed

in Appendix A.

88

5.3. Transputer-based Synthesis

5.3.1. Introduction

The number of calculations required to produce one sample using a synthesis technique is

usually large. The number of samples per second required for reasonable sound quality

is more than 30000. There are thus two approaches that can be taken to increase the

power of a synthesis device. The first is to reduce the number of calculations required to

produce one sample. This may require an optimization of the synthesis technique, or

choosing a new technique altogether. The second is to improve the processing power of the

synthesis device. This second approach was taken in the implementation described in

section 5.3.4. Another processor, the INMOS transputer, was used in addition to the PC's

processor.

5.3.2. The !NMOS transputer

The INMOS transputers are a family of microprocessors designed for parallel processing.

Devices in this family range from a 16·bit T212 to the 32·bit T800. The transputer family

is based on the occam language and the CSP notation of Tony Hoare [Hoare, 1985]. They

are intended for multiple·instruction, multiple. data parallel processing.

The T424 transputer was announced as a product in 1983. This made it the first

commercially available microprocessor designed for parallel processing [Roelofs, 1987].

This transputer was renamed the T414 and only became widely available in early 1986

[Jesshope, 1989l. The T800 was released in early 1987 as a second generation transputer

with integrated floating·point processor. It is the T800 transputer that was used in the

implementation described in sections 5.4. to 5.7.

The T800 transputer is a 32·bit processor. It has a RISC·like architecture with limited

addressing modes and a small instruction set relative to processors like the Motorola

MC68000 family and Intel 80xxx family. It can directly address 4 Gigabytes of memory.

It has 4 asynchronous communication links that can each transfer data at 2 Mbits per

second [Jesshope, 1989]. These links can be connected to other transputers directly, to

other devices via a link adaptor (the INMOS COll) or to a switching network (the INMOS

C004). The T800 has an on·chip timer that can be used by the programmer for timing

89

purposes. The T800 has 4 kbytes of on-chip RAM that can be used by the programmer for

storing data or code. It also has a 64-bit internal floating-point processor that can run in

parallel with the integer unit. It supports task scheduling in hardware and can switch

tasks in less than one microsecond [Roelofs, 1987]. Tasks can run at two different

priorities, high or low. To allow communication between processes running on one

transputer, the external link communication is simulated using memory locations. This

makes it possible to write programs on a single transputer and later run the program in

parallel on more than one transputer. The T800 is a powerful microprocessor on it own,

and even more powerful when connected to other transputers.

INMOS has a system of motherboard cards that are hosted on various computers, such as

IBM PC's and compatible, Apollo (PC-bus) workstations, Sun SPARC stations and VME

bus computers. Daughterboards, called TRAMs, containing a transputer and RAM, attach

to this motherboard. This allows many transputers to be fitted to the motherboard. This

board communicates with the host via the host's bus.

There are other systems based on transputers . These range from single transputers hosted

on PC's to full multiple processor computer systems. One such system is the Massively

Concurrent Computer" or MC2
• A system is built up using worker cards containing a

transputer and RAM. This is much the same configuration as the INMOS TRAM.

However, each card can also be fitted into a box that has backplane containing C004

switches which allow the link connections between worker cards to be altered

electronically. The box is called a cluster. There are two types: a mini-cluster that accepts

up to eight cards, and a maxi-cluster, that accepts 16 cards. The cluster can provide power

to the worker cards. A worker card can also be connected to another card, called a link­

adaptor card. The link-adaptor card is then slotted into the PC. Only one worker card can

be connected to the link-adaptor in this manner. The link-adaptor is also used to connect

a backplane system to a PC.

Two transputer systems were used during the implementation described in this chapter.

An INMOS B004 board with a 17 MHz T800 and 2 Mbyte of memory was used for

development and testing. A MC2 PC-Link card and a worker card containing a 20 MHz

T800 and 2 Mbyte of memory was also used during development.

.. This system is designed locally by the Division for Microelectronics at the CSIR,
Pretoria.

90

5.3.3. Programming the transputer

The transputer was designed in conjunction with its native language, occam [Burns, 1988).

A transputer·based system can also be programmed in a variety oflanguages. The normal

sequential languages such as C, Pascal, Modula·2, FORTRAN and Ada are also available

for the transputer. These languages often include library routines that enable the

programmer to use parallel features of the transputer and transputer networks.

If raw execution speed is required, an occam program produces very fast and efficient code

for the transputer. Other languages can be used to provide compatibility with old,

sequential code. However, the sequential languages can also improve the speed of

development as the programmer can use familiar languages and techniques.

5.3.4. Synthesis on the transputer

The transputer is used purely as an accelerator in the implementations described in this

chapter. Each implementation can utilize the transputer by setting a flag on the DOS

command line when the program is executed. For example, the additive synthesis

performed with the transputer using the following command-line:

SADDITIVE AD1001.ADD AD1001TB -t

The "_t" is the flag that indicates the transputer must be used.

The structure of the synthesis program is to read in parameters, perform synthesis and

save the resultant waveform in the .ROL format. The transputer is only used in the

synthesis section. When the flag is set, the synthesis routine on the PC boots and loads

the transputer. It sends the synthesis parameters to the transputer and waits for the

results. The transputer then calculates the waveform using the synthesis technique, and

sends the completed waveform back to the PC. Finally the PC takes the output and

produces the .ROL file, as it would if the PC had done the synthesis calculations.

The synthesis software is written in two parts. The first is the C code that runs on the PC.

The second part is the transputer code that must be loaded onto the transputer by the PC.

The transputer code is loaded by the C code using special C functions. These functions are

described by Cooke, et al. [Cooke, et aI., 1989).

91

The transputer code is developed in occam2 under the Transputer Development System

(TDS). TDS can be used to produce a file that will boot the transputer if the file is

downloaded into the transputer. This code communicates with the PC via an occam2

channel'". The PC code uses the special routines, mentioned previously, to boot and

communicate with the transputer.

The transputer code that actually performs the synthesis is a close translation of the C

code used on the PC36
• The transputer code was not written in C for the following reasons:

C was not available at Rhodes when implementation was first started. The C code that

runs on the PC is not strictly ANSI C, so it would not be possible to take the PC code and

recompile it without alteration. The debugging facilities of transputer C are inferior to

those of Turbo C. It is easier to verify the PC version before moving the synthesis routines

to the transputer.

5.3.5. A Comparison of occam2 and C

The translation from C code to occam2 highlights the differences between these two

languages. Occam2 is a much smaller language. Many features of the standard sequential

languages are not present.

There are no records in occam2. Consequently, procedure parameters have to be passed

individually which form long and cumbersome lists37
• This also discourages data

encapsulation and modularity of code.

There are no pointers in occam2. The C code uses pointers to access the array used to

store the samples and to make the procedure parameters variable, as opposed to value

parameters. In occam2, the output array is passed as a parameter, and parameters are

variable by default.

35 A channel in occam2 is a language construct that permits communication between
two processes. The C functions and transputer hardware allow the code running on the
transputer to communicate with the PC as if it were another transputer.

36 In fact, the C code was imported to the TDS system and then altered to form the
occam2 procedure.

37 Alan Burns [Burns, 1988] holds the view that future versions of occam2 will
include records.

92

The functions of occam2 are more limited than C. The occam2 version offunctions do not

allow side-effects. The strict rules of occam2 ensure that functions are the source offewer

errors.

There are other syntactic differences. Key words are all in uppercase in occam2, the

assignment symbol is :=, not = like C. There is no 'else' statement in occam2, but the IF

statement can have multiple conditions, much like a C 'switch' statement.

C code is very easy to convert into occam2. However, in this system most of the codes did

not work immediately. Detecting and correcting errors was a laborious process. None of

the debugging aids of TDS could be used as the transputer code was not being run under

TDS, but as a bootable file. Debugging can only be done by placing statements in the

occam code that send a value to the PC. The PC code has to be altered to accept these

debug values. This is not too difficult, since the PC code usually contains statements that

receive values which report on the progress of the synthesis. A typical debugging cycle

consists of the following:

• Edit the occam code underTDS and insert the required debugging statement in the

occam code.

• Recompile and link the code.

• Make the code bootable, a stage after compiling and linking, and produce a file

that can be used to boot and load the transputer.

• Run the PC code under the Turbo debugger. This is assuming no changes are

required on the PC code.

• Hopefully, identifY the error, and go back to correct it using the TDS system.

Otherwise repeat the process of adding debugging statements.

The ideal way to develop code for the transputer is to write programs under TDS. These

programs are then run under TDS which allows the debugger to be used. Then the

program can be converted into a bootable file that can be used separately from TDS. In

this case, the method could not be used, as DOS files containing the input parameters are

not easily read by the TDS system. TDS uses a special file format for its text files that is

not a normal ASCII file.

93

Turbo C and occam2 both use IEEE format for floating point numbers. It was found that

various functions including sine, cosine and exponents produced exactly the same result.

Consequently, the results from the C-only program, and the C and transputer program can

be compared to test the transputer version . The 16-bit signed integer samples produced

on the transputer did sometimes differ by the least significant digit. This is due to the use

of rounding and truncation on the transputer when a floating point number is converted

to an integer.

5.3.6. Results

The speedup using a transputer is dramatic. The mean execution time on different

machines is illustrated in Figure 5.1. below. The figure shows the results from early

versions of the additive synthesis implementation38
.

38 A comparison between the 386 PC and the T800 based on the same machine is
given in Appendix G.

94

Execution time of additive synthesis

1

•
,

• •
N~r o£ harmonic.

Figure 5.1. The execution time of the additive synthesis procedures using different
processor combinations.

The machines used were:

• An ICL PSION XT-compatible running at 8 Mhz with an 8087 maths coprocessor.

[2] in Figure .5.1.

• A PCM Sapphire AT-compatiable running at 20 Mhz with a 10 MHz 80287 maths

coprocessor. [3] in Figure 5.1.

• A PCM Ruby 386 machine running at 20 MHz with no coprocessor. [1] in

Figure 5.1.

• A PCM Ruby 386 machine running at 20 MHz with a MC' worker card containing

one T800 INMOS transputer (20 MHz clock speed) and 4 Mbytes of RAM. [4] in the

Figure 5.1.

The programs load input parameters off disk and store the output samples on disk. The

time taken from starting the program at the DOS prompt until the DOS prompt reappears

95

after program completion. It must be noted that the XT took about 40 seconds to save the

output file, while the AT and 386 took about 10 seconds.

The XT-compatiable and 8087 is surprisingly fast. The 8-bit bus and slow hard disk slowed

down the hard disk transfer. The transputer is slowed down by the PC-transputer

communication39
.

5.3.7. Conclusion

The transputer proved to be of great assistance when perfonning synthesis runs. Although

the transputer is not in widespread use, it is included in this implementation because of

the speed benefits. Transputers have been used in synthesis before. Purvis, et al. [Purvis

et aI., 1989] use a custom transputer-based system to perform synthesis. Jackson et aI.,

use a transputer for real-time digital recording (see [Jackson, et aI., 1989]) and it proved

very successful.

The transputer is an excellent processor for implementing synthesis techniques. The speed

could be improved by using more than one transputer. Additive synthesis and many other

techniques are suited to parallel processing'"

39 The PC-transputer communication bottleneck is illustrated by another
application. A DIA is connected to a transputer link. The transputer is connected to the
PC. As a test, the transputer sent an integer to the DIA and then to the PC screen. The
output rate of the DIA was of the order of 50 Hz. When the transputer was no longer
required to send the byte to the PC, the DIA went up to approximately 141 kHz. The DIA
system is described by Kesterton in [Kesterton, 1990],

,. Additive synthesis lends itselfto parallelization. The obvious approach is
the farmer-worker configuration. The farmer sends out the parameter data for a harmonic
to a worker processor. Then, the worker sends back calculated harmonic to the farmer.
The farmer sums all the harmonics and multiplies the sum by the overall amplitude
envelope. One hannonic or more hannonics could be calculated on each processor. A
parallel additive synthesis implementation is described in [Kesterton, 1990]'

96

5.4. Additive Synthesis Implementation

Additive synthesis, described in section 3.3., is one of the standard synthesis techniques.

It is also a very simple technique, requiring a summation of sine waves in its most simple

form. However, as the number of harmonics is increased, the time taken to calculate a

complete waveform increases.

This implementation of additive synthesis can be described by the following formula:

y(t)=A(t). L (a.(t)sin(21tf.t+~ .(t») (5·1)

where n is the harmonic,

t is time in seconds,

A(t) is the amplitude envelope in the closed range [0.0, 1.0],

anW is the amplitude envelope for that harmonic in the closed range [0.0, 1.0],

f. is the frequency of the nth harmonic, and

<I>.(t) is the phase envelope ofthe nth harmonic in the closed range [-pi, pi].

The additive synthesis implementation is made up of two programs. The first allows the

user to enter the additive synthesis parameters (ADDPARAM.EXE). Another program

(SADDITlVE.EXE) reads in the parameter file and performs additive synthesis with the

input parameters. The resultant waveform is written as a .ROL file that can be sent to

the sampler using SMPX.EXE.

The implementation assumes that the fundamental harmonic has a frequency of 440 Hz.

The user can enter the frequencies of the other harmonics as a multiple of that

fundamental. For example, the second harmonic may be given a frequency ratio of 1.5.

This means that it will have a true frequency of 660 Hz.

Apart from setting the frequency of the harmonics, the user can set the amplitude and

phase envelopes of each harmonic. The phase envelope allows the user to alter the phase

of the sine wave from +It to -It. There is also an overall amplitude envelope that can be

set

97

This was the first technique to be implemented. Many of the functions and procedures

written for these programs were subsequently used in the implementation of other

techniques.

The execution time of the synthesis program was reasonable". It increased

proportionally to the number of harmonics, as expected. The limit of a maximum of eight

harmonics per sound was set because of the time it takes to calculate a waveform. This

permits relatively complex sounds to be created. The variable phase adds more complexity

to the final waveform .

.. See Appendix G for a comparison of execution times.

98

5.5. Frequency Modulation Implementation

This implementation uses only one carrier and modulator. It is based on the Chowning

FM model rather than the Yamaha model of operators (see section 3.4.). This allows the

effects of changes of parameters of just one FM unit to be studied. This limitation also

simplifies the system. The synthesis is based on the following formula:

y(t)=A(t)sin(21tfl+l(t)sin(21tf~t»

where A(t) is an amplitude envelope,

I(t) is the modulation index,

f, is the carrier frequency in Hz, and

fm is the modulation frequency in Hz.

(5·2)

Chowning FM (see section 3.4., equation (3-3)) uses a fixed modulation index, while this

implementation uses a variable modulation. This introduces more control, as the

modulation index determines the amount that the modulation affects the final output.

The program FMPARAM.EXE allows the user to enter parameters, while SFM.EXE

actually performs the synthesis.

The user enters the carrier and modulation frequency, and the amplitude and modulation

index envelopes.

The amount of computation required for this synthesis technique was small. Consequently,

the computation of a waveform did not take long, even on the PC alone. It takes over 3

minutes to execute SFM.EXE on the PC only. The transputer implementation was very

fast, taking just 17 seconds to execute with the same input file.

The types of sound that can be obtained from this implementation are very simple. It is

not possible to produce sounds with the complexity of the Yamaha DX instruments because

fewer carriers and modulators are used. A varying modulation index allows the user to

produce more triangular waveforms, but still retains a sine-like general shape. The

amplitude envelope drawn when entering parameters is evident in the output waveform.

This can be checked by using the program LOOKEXE in COARSE mode to view the

output file.

99

5.6. Granular Synthesis Implementation

This implementation is based on work by Jones and Parks [Jones and Parks, 1988l. They

give a method for calculating samples for an individual grain. The method produces

sample points for a grain with a Gaussian shape. Grains are grouped together into grain

sets. The number of grains in a grain set is determined by a grain density envelope. The

waveform has an amplitude envelope which controls the overall amplitude.

The program GP ARAM.EXE is used to enter parameters for granular synthesis, and

GRANULAR.EXE performs the synthesis.

The grains in a grain set start and end at the same time. The duration of a grain set is

based on the number of grain sets per waveform. This implementation uses a fixed

number of grains, 512, per waveform, giving a grain duration of about 2.1 ms". Another

important factor was that a limit of 512 grains permits the user to set the number of

grains for EACH grain set using the envelope-drawing function on a VGA screen (see

section 5.2.).

The individual samples that make up a grain set consist of the sum of the sample in each

of the grains at that time (see Figure 5.2.). This is later scaled to fit into the range +/-

32767.

Control is provided at two levels. The first level is the number of grains at any point by

use of grain sets. At the second level, the individual grain itself can be computed using

a random frequency and time width.

" There are 32767 points in the final waveform and 512 grains, so each grain consists
of about 63 points. At a sampling frequency of 30 kHz, this implies a grain duration is
about 2.1 ms.

pJ\Pv1

..... _-.------.-_.~ Time

Start End

"

v v

Individual Grain

I
I

v v v

v v

100

Actual output samples
for that grain set.
This is formed by
summing the
individual grains
together

Time

v

Waveform consists of grain sets strung together

Figure 5.2. The granular synthesis implementation. An individual grain is made
from calculated samples. A grain set is the summation of grains. A
sound or waveform is made from grain sets placed one after another.

101

Individual samples for each grain is computed using the complex Gaussian given in [Jones

and Parks, 1988]:

f. =j(n)=. c,,'c, •• c,.'

with:

where A is the peak amplitude,

9 is the phase at the peak,

to is the starting time value,

't is the sampling frequency,

roo is the centre frequency,

a determines the time width of the Guassian, and

r is the chirp rate .

(5-3)

(5-4)

(5-5)

(5-6)

The samples in the individual grain are calculated using (5-3), with n running from 0 to

the number of samples per grain.

Jones and Parks [Jones and Parks, 1988] show that (5-3) can be computed using the

following:

h =h ."}C,
It. 1 ..

(5-7)

(5-8)

with initial conditions:

102

(5·9)

(5·10)

This implementation uses the real part of (5·8) for each grain. It can be found using (5·4),

(5·5) , (5·6) and the identity in (5·11):

eI·~cos(a) +jsin(a) (5·11)

The grain samples f. are calculated using the following equations:

(5·12)

(5·13)

(5·14)

(5·15)

(5·16)

(5·17)

Reif.)~Re(h •• l)Re(f;)-/m(h •• l)/m(f;) (5·18)

Im(f.)~/m(h •• l)Re(f;)+Re(h •• l)/m(f.) (5·19)

Note that ReO and lmO are the real and imaginary parts of the equation respectively.

103

This is not as complicated to calculate as it may first appear. The real and imaginary

parts of Co, C
"

and C, are computed and stored in variables, for use throughout the

calculations.

The terms and values used in the implementation require some explanation. 1 is fixed at

the sampling rate (1130000). The centre frequency (OJo) appears to be the frequency of the

grain, so its value should strictly be 440 Hz. The width of the Gaussian is a. This should

be less than the duration of the grain, 2.1 ms. The amplitude, A, remains at 1.0.

The second level of control is being able to set the range of values for grain parameters.

The values of OJo, r and a are fixed for each grain. However, they are varied randomly

within a user-specified range for each grain. This introduces some variety between the

grains and, hopefully, contributes to the richness of the sound.

This implementation differs from the work discussed in section 3.6. Fixed grain durations

and start times are used to simplify calculations of individual grain start and end times.

Parameters for grains are produced using random values within a user-defined range,

rather than using the frame method of Xenakis (see section 3.6.).

This implementation differs from all the others in that the PC and transputer version do

NOT produce the same results given the same input parameters. This is because the

random number generator in Turbo C++ and occam2 produce different results.

Consequently, the values of OJo, r and a will not be consistent in the two versions. This

discrepancy caused some confusion during implementation as attempts were made to

correct the transputer version to make it produce the same results as the PC version.

This was one of the most difficult of the synthesis techniques to implement. It was also

difficult to verify the code.

Granular synthesis is not an intuitive technique. Experimenting with the technique does

not immediately provide one with a feel for the effects that the various parameters have

on the output. The execution time is also very long. A small number of grains per grain

set, with a maximum of 100 at the peak, takes about 2 hours to calculate on the PC.

104

5.7. Spiral Synthesis Implementation

The implementation was based entirely on the source code supplied by Peterson [Peterson,

1985]. Spiral synthesis is based on digital filter theory. This implementation uses a single

impulse to generate an output from the filter. There are no amplitude envelopes added to

the waveform.

There are only four input parameters. The first is the divisor for the radian angle of the

carrier. This variable determines the frequency of the carrier. The second is the initial

pole distance from the origin. This parameter determines the filter response. The third

is the amplitude of the modulating sinusoid controls the mix of the modulator. Finally, the

divisor for radian angle of modulation determines the frequency of the modulator.

As there are so few parameters, and no envelopes, the parameters are typed in before the

synthesis calculations are performed. The program SPIRALS.EXE performs the synthesis.

If a digital filter is plotted on a pole-zero diagram, the position of the filter from the origin

determines the behaviour of the filter (see Figure 5.3.). If it lies on a circle of radius 1.0

from the origin, the filter will be stable. If it lies outside the circle, the filter becomes

unstable and the output increases rapidly. If the filter is within the circle, the output

decays.

This phenomena is reproduced in spiral synthesis, and can be seen when experimenting

with the implementation. The initial pole distance from the origin is an important

parameter to the system. A value of 1.0 ensures some waveform is produced. This may

still decay quickly, but it will at least produce output. A value must be less than one but

greater than 0 will produce a waveform that decays rapidly, even within a few samples.

A value of greater than one makes the output explode, going out the range of the C double

(a 64-bit IEEE floating point number).

In spite of the narrow operating range of the parameters, some interesting sounds can be

produced. By looping a short decaying waveform, interesting bell-like sounds can be

produced.

Im(z)

-1

-1

1

1
X

Z-plane

1 Pole inside unit circle, output decays
2 Pole on unit circle, output stable
3 Pole outside unit circle, output explodes

105

Re(z)

Figure 5.3. Possible filter positions on a pole-zero diagram. The position on the z­
plane determines the results of spiral synthesis.

106

6. Conclusion

Experimentation with different synthesis techniques is difficult because of the cost and

availability of the synthesis hardware. Some techniques are not yet available as

commercial implementations. It was felt that examining a possible platform for synthesis

using existing technology could help meet a requirement for readily-available synthesis

tools. An important criteria for this platform was to use readily-available hardware, such

as MIDI samplers, a PC and MIDI card. This makes new techniques more accessible to

the experimenter. This thesis has shown that experimentation with the synthesis of sound

can be performed using suitable software, and a PC and a digital sampler in a MIDI

environment. The PC can perform the synthesis and use MIDI to send the complete sound

to the sampler. The sampler can then be used to hear the sound.

Implementing a synthesis technique in software requires an understanding of the physics

of sound, and aspects from digital signal processing. These topics have been introduced.

The Fourier transform is an important topic when dealing with sound as it forms the basis

for analysis of sound, as well as part of synthesis techniques like additive synthesis and

resynthesis. The experimenter must also be aware of the problems associated with

working with sound in digital form. Aliasing is an important problem that has been

covered.

Various synthesis techniques have been evaluated in terms of generality, efficiency and

control. The techniques covered are additive synthesis, frequency modulation synthesis,

subtractive synthesis, granular synthesis, resynthesis, wavetable synthesis and sampling.

Also mentioned are spiral synthesis, physical modelling, waveshaping and spectral

interpolation. All the techniques mentioned have compromises in one form or another.

There is no best technique, but one technique may be better than others for a particular

type of sound. It is only by experimenting with sound synthesis that the correct technique

for a particular type of sound can be identified. The implementation described in this

thesis permits experimentation with different techniques, namely additive synthesis,

frequency modulation synthesis, spiral synthesis and granular synthesis.

The implementation of synthesis techniques has been made easier by technology such as

the IBM PC, and the technology that has developed utilizing the MIDI interface. The

MIDI protocol forms a vital bridge between the PC and the digital sampler. Not many

107

years ago, most of the technology that was used in the implementation of this thesis did

not exist. The implementations described in the latter half of the thesis will hopefully

provide a suitable starting point for further experimentation for future work on synthesis

on PC-based platforms.

The use of a transputer as a coprocessor was found to speed up the synthesis of sound

considerably. At first, the use of a transputer appeared to deviate from the idea of using

readily-available components for a synthesis platform. However, the rapid proliferation

of transputer-based systems during the duration of this study justified the inclusion of this

technology.

The implementation should serve as an example of how sound synthesis techniques can

be implemented on a PC-based platform. The system could be extended to include other

techniques. The implementation relies on a Roland 8-220 or 8-10 digital sampler. This

restriction provides scope for future work. The MIDI sample dump standard could be used

to allow the sound produced by the PC to be transmitted to other samplers that support

the sample dump standard.

This thesis has attempted to show how PC technology in a MIDI environment can be used

as a platform for experimentation with the synthesis of sound. It has been found that a

thorough understanding ofthe principles and techniques of sound synthesis are necessary

for such experimental work. The PC is a viable platform for synthesis experimentation.

108

7. Bibliography

Aikin, J. (1989), "The tangled thread - sampler features and terminology explained",

Keyboard, March 1989, p29-48.

Analog Devices (1986), "Analog-Digital Conversion Handbook", Ed: Sheingold, D. H.,

Prentice-Hall, USA.

Apple (1985), "Inside Macintosh, Volume II", Addison-Wesley, USA.

Blackham, E. D. (1978), "The Physics of a Piano", In: "The Physics of Music", W. H.

Freeman and Co, San Fransisco, USA.

Bracewell, R. N. (1978), "The fourier transform and its applications", 2nd edition, McGraw­

Hill Kogakusha, Ltd.

Bunnell, Mike and Bunnell, Mitch (1989), "Real-time data acquisition", Dr. Dobb's Journal,

June 1989, p36-44, p86-90.

Burns, A. (1988), "Programming in occam2", Addison-Wesley, UK

Capel, V. (1988), "CD signal processing - part 2" Practical Electronics ,24(8), August 1988,

p35-40.

Charbonneau, G. R., (1980), "Timbre and the perceptual effects of three types of data

reduction.", Computer Music Journal 5(2), plO-19.

Chowning, J. (1985), "The Synthesis of Complex Audio Spectra by means of Frequency

Modulation", In: Strawn, J., Roads, C. (Eds.), "Foundations of Computer Music", MIT

Press, Massachusetts, USA. This paper originally appeared in 1973 in the Journal ofthe

Audio Engineering Society, 21(7), p526-534 under the same title.

Computer Music Journal (1989), "Products of interest", Computer Music Journal, 13(2),

USA.

109

Cooke, N. D., Hayes, W. J. , Kesterton, A. J., de-Heer-Menlah, F. and Clayton, P.G, (1989),

"Creating the link between the PC and the Transputer", Technical Document 89/12, Rhodes

University, Grahamstown, South Mrica.

De La Croix, H. and Tansey, R. G. (1980), "Gardner's Art through the Ages", 7th edition,

Harcourt Brace J ovanovich, Inc, USA, p782-783.

Foley, J. D. and Van Darn, A. (1984), "Fundamentals of interactive computer graphics",

Addison-Wesley, USA.

Foss, R. J . (1986), "A Computer Music System for the Modern Composer",M.Sc Thesis,

UNISA, Pretoria, South Mrica.

Garvin, M. (1987), "Designing a music recorder", Dr. Dobb's Journal, May 1987, p22-48.

Gotcher, P. (1987), "Sampling Spec Wars", Keyboard, December 1987, p128.

Gotcher, P. (1988a), "The ups and downs of pitch-shifting techniques", Keyboard, 14(1),

USA.

Gotcher, P. (1988b), "Direct-to-disk recording", Keyboard, 14(7), p133 and 146.

Greenwald, T. (1989), "Samplers laid bare", Keyboard, 15(3), March 1989, p50-65 and p138-

140.

Halliday, D. and Resnick, R. (1981), "Fundamentals of physics", 2nd ed. Extended version,

John Wiley and Sons Inc.

Hoare, C. A. R. (1985), "Communicating sequential processes", Prentice-Hall International,

UK, Ltd.

Horowitz, P. and Hill, W. (1980), "The Art of Electronics", Cambridge University Press,

p442-443, 446-448.

Hutchins, C. M. (1967), "Founding a family of fiddles", Physics Today, 20(2).

110

IMA (1989), "MIDI 1.0 Detailed Specification Document Version 4.1, January 1989",

International MIDI Association.

Jackson, T. J ., Mapps, D.J ., Ifeachor, E. C. and Donnelly, T. (1989), "A real-time

transputer-based system for a digital recording data channel", Microprocessing and

Microprogramming, 25, p281-286. Jaffe, D. A. (1987a), "Spectrum Analysis Tutorial, Part

1: The discrete Fourier transform", Computer Music Journal, 11(2), Summer, p9-24.

Jaffe, D. A. (1987b), "Spectrum Analysis Tutorial, Part 2: Properties and Applications of

the discrete Fourier transform", Computer Music Journal, 11(3), Fall , pI7-35.

Jaffe, D. A. and Boynton, L. (1989), "An overview of the Sound and Music Kits for the

NeXT computer", Computer Music Journal , 13(1), p48-55.

Jesshope, C. (1989), "Parallel processing, the transputer and the future", Microprocessors

and Microsystems, 13(1), p33-37.

Jones, D. L. and Parks, T. W. (1988), "Generation and combination of grruns for music

synthesis", Computer Music Journal, 12(2), p27·34.

Jungleib, S. (1987), "Standford's Computer Lab", Keyboard, 13(12), p62-64, USA.

Kesterton, A. J.(1988), "The synthesis of waveforms to create musically interesting sounds",

Paper presented at the third M.Sc and Phd conference of Computer Science students, South

Africa.

Kesterton, A. J. (1990), "The INMOS transputer for music applications", Technical

document 90/1, Rhodes University, Grahamstown, South Africa.

Kesterton, A. J . (1991), "Sound Synthesis Experimentation using a Spreadsheet", Technical

document 9111, Rhodes University, Grahamstown, South Africa.

Kleczkowski, P. (1989), "Group Adilitive Synthesis", Computer Music Journal, 13(1).

Lowe, B. and Currie, R. (1989), "Digidesign's sound accelerator: Lessons lived and learned",

Computer Music Journal, 13(I), p36-46.

111

Loy, G. (1985), "Musicians make a standard: the MIDI phenomenon", Computer Music

Journal,9(4), p8-26.

Marans, M. (1989), "The ears", Keyboard, March 1989, p24-27, 137, 140.

Massey, H. (1987), "Analog vs. Digital", Keyboard, 13(12), p123 - 125.

Massey, H. (1988a), "Beginner's guide to FM synthesis", Keyboard, 14(4), p117.

Massey, H. (1988b), "Digital FM", Keyboard, 14(5), p122.

Meyer, C. (1987a), "A Deeper Wave than this", Music Technology, 1(10), p70 - 73, UK

Meyer, C. (1987b), "Every little bit helps", Music Technology, 2(1), p50-53, UK

Meyer, C. (1988), "The art of looping, part two", Music Technology, January 1988, p72-74,

UK

Meyer, C. (1989), "The Sync1avier story", Music Technology, June 1989, p56-59, UK

Meyer, C. and Aspromonte, B. (1987), "The art of looping, part one", Music Technology,

December 1987, p60 . 65, UK

Milano, D. (1987), "Roland S-50 sampler version 2.0", Keyboard, December 1987, pI36-142.

Moog, R. (1988a), "Resynthesis, part 1: Taking sounds apart", Keyboard, 14(5), USA.

Moog, R. (1988b), "Musical applications of resynthesis", Keyboard, 14(6), USA.

Moorer, J . A. (1985), "Signal Processing Aspects of Computer Music: A Survey", In:

Strawn, J. (Ed), "Digital Audio Signal Processing", William Kaufmann Inc, USA.

Moore, F. R. (1985a), "Table lookup noise for sinusoidal digital oscillators", In: Strawn, J.,

Roads, C. (Eds.), "Foundations of Computer Music", MIT Press, Massachusetts, USA.

Moore, F. R. (1985h), "The mathematics of digital signal processing", In: Strawn, J. (Ed),

"Digital Audio Signal Processing", William Kaufmann Inc, USA.

112

Mosich, D., Shammas, N. and Flamig, B. (1988), "Advanced Turbo C programmer's gujde",

John Wiley and Sons, USA

Norton, P. (1985), "The Peter Norton's programmer's gujde to the IBM PC", Microsoft

Press, USA.

Payne, R. G. (1987), "A microcomputer-based analysis/resynthesis scheme for processing

sampled sounds using FM", In: Proceedings of the 1987 International Computer Music

Conference, p282-289, Computer Music Association.

Peterson, T. L. (1976a), "Analysis-synthesis as a tool for creating new families of sound",

Paper presented at the 54th convention of the Audio Engineering Society, Los Angeles, 4-7

May.

Peterson, T. L. (1976b), "Dynamic sound processing", In: Proceedings of the 1976 ACM

Computer Science Conference, Anaheim, California, 10-12 February.

Peterson, T. L. (1985), "Spiral Synthesis", In: Strawn, J. (Ed), "Digital Audio Signal

Processing", William Kaufmann Inc, USA

Purvis, A, Berry, R. and Manning, P.D. (1989), "A multi-transputer based audio computer

with MIDI and analogue interfaces.", Microprocessing and Microprogramming, 25, p271 -

276.

Rigden, J. S. (1977), "Physics and the Sound of Music", John Wiley & Sons Inc, USA

Risset, J.-C., Mathews M.V (1969), "Analysis of Musical Instrument Tones", Physics Today

(22) 2.

Risset, J.-C., Wessel, D. L. (1982), "Exploration of timbre by analysis and synthesis.", In:

Proceedings of the 1982 International Computer Music Conference, Computer Music

Association.

Risset, J. (1985); Digital techniques and sound structure in music; p1l3-140; In: Computer

Music - History and Criticism; Ed Rhodes, C; William Kaufmann, Inc; USA

113

Roads, C. (1985a), "John Chowning on composition", In: Roads, C. (Ed), "Composers and

the Computer", William Kaufmann, Inc, USA.

Roads, C (1985b), "Granular synthesis of sound", In: Strawn, J ., Roads, C. (Eds.),

"Foundations of Computer Music", MIT Press, Massachusetts, USA.

Roads, C (1985c), "A Tutorial on Nonlinear Distortion or Waveshaping", In: Strawn, J.,

Reads, C. (Eds.), "Foundations of Computer Music", MIT Press, Massachusetts, USA.

Reads, C. (1988), "Introduction to Granular Synthesis", Computer Music Journal, 12(2),

pl1-13.

Reelofs, B. (1987), "The transputer: A microprocessor designed for parallel processing",

Micro Cornucopia, #38, Nov-Dec 1987, p6-8.

Reland (1985), "Roland S-550 User Manual", Roland Corporation, Japan

Reland (1986a), "Roland S-220 MIDI Implementation manual", Roland Corporation, Japan.

Reland (1986b), "Roland S-220 User Manual", Roland Corporation, Japan.

Reland (1986c), "Digital Effect processor DEP-5, Owner's manual", Roland, Japan.

Rue, D. and Wilkinson, S. (1989), "The Synclavier story, part 2: Sequencing and notation",

Music Technology, July 1989, p62-66.

Saunders, S. (1985), "Improved FM audio synthesis methods for real-time digital music

generation", In: Roads, C and Strawn, J., "Foundations of Computer Music", Massachusetts

Institute of Technology, USA.

Sasaki, L. H. and Smith, K C. (1980), "A simple data reduction scheme for additive

synthesis", Computer Music Journal 4(1), p22-24.

Scaletti, C. (1989), "The KymaJPlatypus computer music workstation", Computer Music

Journal, 13(2), p23-38.

114

Scaletti, C. A, Johnson, R. E. (1988), "An interactive environment for object-orientated

music composition and sound synthesis", p222-233, In: OOPSLA '88 Proceedings, ACM.

Schindler, K W. (1984), "Dynamic timbre control for real-time digital synthesis", Computer

Music Journal 8(1), p28-42.

Serra, M-H., Rubine, D., Dannenberg, R. (1988), "A comprehensive study of analysis and

synthesis of tones by spectral interpolation", Technical document CMU-CS-88-146,

Carnegie-Mellon, USA

Smith, J. O. (1985), "An Introduction to Digital Filter Theory", In: Strawn, J. (Ed.),

"Digital Audio Signal Processing", William Kaufmann Inc, Los Altos California, USA

Smith, J. O. (1986), "Efficient simulation of reed-bore and bow-string mechanism", In: (Ed.

unknown) "Proceedings of the 1986 International Computer Music Conference", Computer

Music Association.

Smith, S. (1987), "From A to D and back agrun", Electronics Digest, 8(2), UK

Snell, J. (1985), "Design of a digital oscillator that will generate up to 256 low-distortion

sine waves in real-time", In : Strawn, J ., Roads, C. (Eds.), "Foundations of Computer

Music", MIT Press, Massachusetts, USA

Strawn, J. (1980), "Approximation and syntactic analysis of amplitude and frequency

functions for digital sound synthesis. ", Computer Music Journal 4(3), p3-24.

Strawn, J. (1985), "Overview" (of Digital Sound Synthesis Techniques), In: Strawn, J.,

Roads, C. (Eds.), "Foundations of Computer Music", MIT Press, Massachusetts, USA.

Trask, S. (1990), "S770", Music Technology, 5 (7), p54-57.

Truax, B. (1985), "Organizational techniques for the c:m ratios in frequency modulation",

In: Strawn, J ., Roads, C. (Eds.), "Foundations of Computer Music", MIT Press,

Massachusetts, USA

Truax:, B. (1988) , "Real-time granular synthesis with a digital signal processor", Computer

Music Journal, 12(2), p14-26.

115

Ward, P. T. and Mellor S. J. (1988), "Structured development for real-time systems", 3

volumes, Yourdon Press, USA

Walruff, D. (1983), "Digital Music Systems catalog", Digital Music Systems, Inc, Boston,

Mass.

Wilkinson, S. (1989), "The Synclavier story, part 3: Direct to disk and synthesis", Music

Technology, August 1989, p42-46.

Yamaha (1985), "DX 21 User Manual", Nippon Gakki Co, Ltd., Japan.

Yamaha (1986), "The MIDI Book", Nippon Gakki Co, Ltd., Japan

Yamaha (1987), "DX7 II FDID Owner's manual", Nippon Gakki Co, Ltd., Japan.

l16

Appendices

117

Appendix A A Mouse Interface for

Turbo C

A.l. Mouse Basics

One of the requirements for a synthesis system is that it must allow envelope shapes to

be entered. The mouse is an obvious way of doing this. Turbo C v2.0 does not provide

access to the mouse, so procedures that can access and use a mouse had to be written.

These could be linked into any program. The Microsoft mouse is a standard type of mouse

and the code was written with this mouse (or a compatible) in mind. Some of the

procedures are taken from Moish, et. al [Moish, et aI., 1988].

The mouse has various attributes that need to be accessed. These include the x and y

coordinates of the mouse cursor and the status of the mouse buttons. There are also

control attributes, like the relation between physical movement of the mouse and the

movement of the cursor on the screen. These attributes, and other mouse-related items

can be accessed via a DOS interrupt (Ox33). The DOS interrupt is used because it provides

compatibility across different brands of mouse". The mouse has a driver which must be

loaded before it can be used. This driver contains device-specific information which allows

the standard interrupt to be used.

This interrupt works in much the same way as the video BIOS interrupt Ox10 (see [Norton,

1985]). Before the interrupt is called, a service number is placed in the AX register and

the other registers are loaded with the required parameters. The interrupt uses the

service number to decide what operation is to be performed and executes that operation.

Any results are passed back through the registers.

There are actually two interrupt routines. The first is the hardware interrupt routine

which is called whenever the mouse is moved or buttons pressed. The second is a set of

" Mice that are Microsoft-compatible are sometimes not compatible when the mouse
is used in graphics mode. The following mice have been found to cause problems:

GENUS Mouse
LOGITECH Mouse
MAYNARD Mouse

118

functions that can be called via DOS interrupt Ox33 to set parameters or obtain the status

of the mouse.

These interrupt routines are provided by Microsoft for its mouse hardware system. The

interrupt routine can be loaded as a DOS device driver (MOUSE.SYS) and via a program

(MOUSE.COM). The Microsoft system is the industry standard. There are many mouse

systems compatible with this standard.

The hardware interrupt routine is linked to a particular hardware interrupt on the PC.

The actual hardware interrupt is usually selected via DIP switches or jumpers. The

hardware interrupt routine is called and used to move the cursor on the screen (if the

cursor is turned on) and update the mouse status, so that the software interrupt can read

these values. Th ese status values are stored in a table just below the software interrupt

routine. The order of the routines and table (from low memory to high memory) is: table,

software interrupt routine and finally hardware interrupt routine. The mouse software

interrupt functions are called by loading the AX register with the function number, the

other registers with other parameters if required, and calling software interrupt Ox33.

This routine checks the function number then uses the table which contains memory offsets

of the functions.

There are two ways in which the mouse can be used. The first is to use the mouse services

directly to read the cursor position and other status values. The second allows the

programmer to hook some code to the mouse hardware interrupt. This code is called under

certain conditions. The second method has been used to provid a buffered mouse interface

for Turbo C.

A.2. The Standard Mouse Calls Interface

Any of the Ox33 interrupt mouse services can be called directly from Turbo C. To make

this easier for the programmer, a set of procedures are provided in RAT.C to allow access

these services. Each procedure works in graphics or text mode, except where noted.

119

The procedures are:

• int mseJeset (int *button_ptr)

Reset the mouse, set the cursor to the centre of the screen but do not display the

cursor. Return the number of buttons the mouse has.

• int mse_show (int clever)

Make the mouse cursor visible. If clever is set to TRUE", it will check to see if

the cursor is already on. If it is, it will not call the interrupt. If clever is FALSE,

turn on the cursor regardless.

• int mse_hide (int clever)

Hide the mouse cursor. If clever is set to TRUE, it will check to see if the cursor

is already hidden and if so, will not call the interrupt. If clever is FALSE, it will

call the interrupt regardless.

The next two routines deal with the x and y coordinates ofthe mouse cursor. In text mode,

the cursor position is not measured in terms of a 80 by 25 screen, but in graphics

coordinates. For example, on a VGA screen, the x range is 0 to 632 and y range is 0 to

192. In graphics mode, the actual graphics coordinates are used. This can cause some

confusion.

• int mse~etxy (int *x, int *y)

Get the current mouse cursor position.

• int mse~otoxy (int x, int y)

Move the mouse cursor to the given x and y coordinates.

" TRUE is defined #define TRUE 1. FALSE is defined as #define FALSE O.

120

• int mse_hlimit (int min, int max)

Restrict the mouse cursor movement between min and max in the x direction.

• int mse_vlimit (int min, int max)

Restrict the mouse cursor movement between min and max in the y direction.

• int mse_set_mickpixel (int x, int y)

Set the mickey" to pixel ratio.

• int mse_conditional_off (int left, int top, int right, int bottom)

If the mouse cursor falls within the area defined by the parameters, the cursor will

be turned off. This is particularly useful when writing to the screen. If one

overwrites the cursor, it will erase whatever is written on the cursor when the

cursor is moved.

The rest of the routines do not involve the x and y coordinates.

• int mse_bpress (int button)

Check if the button has been pressed, and how many times it has been pressed.

Calling this procedure flushes the count and sets it to O.

• int mse_brelease (int button)

Check if the button is released, and how many times it has been released. Calling

this procedure flushes the count and sets it to 0 ..

• int mse...gcursor (int type)

Set shape of the mouse cursor while in graphics mode. The type can be predefined

constants HAND or TIMER.

45 The "mickey" is the rather amusing name given to the unit of mouse
movement. A mickey represents the smallest amount of motion the system will detect.

121

• int mse_tcursor (int type, int screen_mask, int cursor_mask);

Set the mouse text mode cursor. The screen mask and cursor mask are used to

make up the cursor. They consist of a bit pattern, one bit for each line of the

cursor.

• int mseJead_mcounter (int *xmcount, int *ymcount)

Read the mouse motion counter in the x and y directions. The motion counter

works in units of mickeys.

Attach a user interrupt routine to the hardware interrupt. The user routine will

be called under certain conditions. The conditions are determined by the variable

mask. See section A.3. for more details of the usage of this procedure.

The following routine is used in conjunction with a light pen and is included for the sake

of completeness.

• int mse_Iight_pen (int enabled)

• int mse_set_speed (int speed_default, int speed)

If the mouse is moved above a certain speed threshold, the speed of movement of

the cursor is doubled. The threshold speed is speed_default.

The rest of the routines are not interrupt services, but are composed of some of" the

interrupt services described above.

• int mse_init (int show, int need_mouse)

Reset the mouse. If show is TRUE, make the cursor visible, otherwise leave it

hidden. If need_mouse is true, the program is terminated and returns 1 if no

mouse driver is loaded.

122

• void mse_end (void)

Reset the mouse.

• int mse_ waiCbpress (int button)

Wait in a loop until the button indicated as a parameter is pressed.

• int mse-£et_bevent (void)

Wait in a loop until a button to be pressed, or released.

• int mse_present (void)

Check to see if the mouse is present. The procedure checks a static variable in

RAT.C to see if it is present. It does not actually check the hardware.

• int mse_bpress_info (int button, int 'x, int 'y, int 'status)

Gets the current status of the mouse, the x and y coordinates and button

information. It also flushes the mouse button pressed count.

Checks to see if the mouse driver is loaded. If need_mouse is set to true, then if

the mouse driver is not loaded, the program is terminated returning 1.

A.3. The Buffered Mouse Procedures

The standard mouse procedures obtain the status ofthe mouse at the time they are called.

If the mouse is used for data entry or for driving menu systems, it will be necessary to

buffer mouse movements and button status. This prevents the program missing a mouse

event that is important. A set of procedures to enable this buffering system and access the

buffer is provided in RAT.C and in the assembler program RATLIB.ASM.

123

The buffer stores mouse events. A mouse event is a structure defined as follows:

typede£ struet

unsigned cursor:l;/* Bit a - cursor movement caused i nterrupt */

unsigned left_ pressed: 1 ; 1* Bit 1 - left mouse button pressed */

unsigned left released: 1;/* Bit 2 - left mouse button released */

unsigned right_ pressed: 1; /* Bit 3 - right mouse button pressed */

un signed right_released :l;/ * Blt 4 - right mouse button released */

unsigned :11; /* Bits 5 to 15 UNUSED */

} rose_cond_mask ;

typedef struet

unsigned left 1 ;

unsigned right : 1 ;

unsigned 14 ;

typedef struet

/* Bit 0 - left button status * /

/* Bit 1 - right button status */

/* Blts 2 - 15 unused */

/* condition for interrupt */

mse_button status status: 1* button status */

int Xi

int y;

/* mouse cursor screen x coordinate */
/* mouse cursor screen y coordinate */

To use the buffer, the programmer must have initialized the mouse and then set the

conditions under which mouse events are to be buffered. The conditions are set by calling

the procedure mse_seCuser_intr() with the conditions' parameter. A condition consists of

a unique bit pattern. The following conditions can be used to trigger the buffer routine:

• The (x, y) coordinate is changed.

• The left button is depressed.

• The right button is depressed.

• The left button is released.

• The right button is released.

• Any of the above conditions.

• Never triggered.

The conditions can be combined by OR'ing them together.

124

Once the condition is set up, the buffer will be activated. A call to mse_iseventO will allow

the programmer to check if there are events waiting. A call to mse...geteventO will get the

next event in the buffer. The mouse buffer can be cleared using mse_c1earbufferO.

Internally, the buffer is an array of structures, stored in the assembler code's data

segment. It is a circular FIFO buffer. If the buffer overflows, no more events are stored

until the buffer is cleared (call mse_c1earbuffer()) or the events are taken from the buffer

by mse...geteventO.

The initial version of thi s mouse buffer used a different approach. The mouse buffer had

to be declared explicitly. It was up to the programmer to declare this buffer, and ensure

it was the correct size. The tail of the buffer was updated by the programmer in the

application. If the updating of the tail was not done correctly, the application behaved

unpredictably. The final version of the mouse buffer proved to be more robust and did not

require the programmer to be concerned about buffer sizes or the tail pointer.

The mouse buffer system is used in all the parameter entry programs" to allow

transparent access to the mouse events. The mouse buffer software makes it easier for the

programmer to write software that uses the mouse.

The mouse routines described in this Appendix are beyond what is required just for the

parameter program. The extra routines were added for the sake of completeness.

46 The programs are ADDPARAM.EXE, FMPARAM.EXE and GPARAM.EXE.

125

Appendix B Roland Sample Transfer

B.l. Introduction

Roland MIDI products have a generic method of altering, loading and saving parameters

and settings via MIDI. These settings are not covered by the normal MIDI commands.

This includes transferring patches which, in the case of samplers, consists of the actual

sample itself. This is a large amount of data. Roland use special methods to transfer this

sample data.

The transfer of sample data is described here in two parts. The first describes the device­

independent Roland system exclusive communication. This is further divided into two

sections. The first is normal-mode system exclusive communication, the second is bulk

dump mode communication. Bulk dump communication is more complex and is described

in detail. This mode in itself has two different transfer methods, one way transfers and

handshaking transfers. The second level is sampler-specific information for the Roland 8-

220 rack-mounted digital sampler and its keyboard equivalent, the 8-10.

B.2. Roland System Exclusive Communication

The format of Roland System Exclusive messages (Figure B.l.) appears to be the same

across its entire product line". The format starts with the MIDI system exclusive code,

then the Roland MIDI manufacturer's identifier, the Roland Device identifier, the Roland

Model identifier and then the Roland command identifier. Depending on the command

code, various bytes, including a checksum, may follow this command identifier. The MIDI

command, End of Exclusive terminates the system exclusive message as per the MIDI

system exclusive definition.

"Roland products with the same system exclusive message format include the Roland
S-220, 8-10, 8-50 and S-550 (all digital samplers), the D-110 (a multi-timbral sound unit)
and by implication the D-10, D-20, D-50 and D-550. The results of each system exclusive
command will not be the same for each model, but the command identifier will be the same
for similar actions. A new generation of Roland sampler (the Roland S770) uses the MIDI
Standard Sample Dump Format for sample transfer. It uses system exclusive messages
for parameters not covered by the standard [Trask, 1990].

Roland System Exclusive Messages

~
~

~

MIDI System EIClusive

Roland
Manufacturers ID

Device ID
(VIDI chaDDel - 1)

Vodel ID

Command 10

DATA
(it any)

Checksum
(It required)

WIDI End ot System
Ez:clusive

,

I
,

I
,

I

Figure B.1. Roland system exclusive message format.

B.2.1 Two modes of system exclusive communication.

126

The Roland system exclusive messages are divided into two classes. The first class

(NORMAL mode) is used when the device is in a mode that allows it to be played via

normal MIDI commands such as Note ON. The second class (BULK DUMP mode) is used

exclusively to transfer large amounts of data. In this mode, all other MIDI messages are

ignored.

Normal-mode system exclusive messages are used to convey short messages on the device

to alter or read values like transposing or to get the version of the machine.

127

Bulk dump mode is designed for transferring patches (including samples) via MIDI. This

appears to be intended for transfer between two similar Roland devices,a.

One-way and handshaking communication.

There are two ways that the transfer can be done. The first is called one-way sample

transmission/reception and the second is handshaking sample transmission/reception.

The one·way method sends the data down one MIDI line (source MIDI OUT to destination

MIDI IN). Handshaking method sends data down one MIDI line, and the receiver sends

an acknowledge down a seconli MIDI line when it is ready for the next byte (source MIDI

OUT to destination MIDI IN, and source MIDI IN to destination MIDI OUT).

Roland [Roland, 1986a) stress that one way communication is slower than handshaking

mode. This is because one-way mode requires a spacing of 20 - 30 msec between each

system exclusive message while handshaking allows the source to send the next message

as soon as the acknowledgement is received. The repertoire of commands in handshaking

mode is large in comparison to one-way mode. One-way mode consists merely of DATA

SET (DT1) and REQUEST DATA (RQ1).

The handshaking method of transfer has the following commands. These commands are

placed in a system exclusive message in the position COMMAND ID (mnemonics taken

from Roland documentation [Roland, 1986a)):

W8D Source signals that it wants to send a data set to destination.

RQD Destination requests data set from source.

DAT The source uses this command to signal that this system exclusive message

contains data that is part of a data set

ACK Sent by destination to acknowledge receipt of source system exclusive

message.

EOD Sent by source, this command heralds the end of the particular data set

,aIf a computer equipped with a MIDI card is suitably programmed, it can replace one
of the 8-220's. The computer can then be used to store samples. This is the concept used
in the SMPX sample transfer program for the PC/AT.

128

ERR Sent by destination, an error has occurred in the transmission of data. The

source may resend the last message or terminate the transfer by sending

a RJC. Roland stipulates that on receipt of an ERR, a RJC must be sent

and transfer must be terminated.

RJC Reject and stop the transfer. When received by the source or destination,

the receiver must stop sending messages or stop waiting to receive

messages.

B.3. ROLAND 8-220/8-10 specifics

A Roland S-220 (or S-10) sampler can send or receive samples via its MIDI IN and OUT.

Both these transfers make use of MIDI System Exclusive messages to packet the data.

The Roland S-220 has six distinct modes, NORMAL mode, BULK DUMP mode, LOAD

mode, SAVE mode, REC mode and WAVE MODIFY mode. The mode of interest when

transferring samples is BULK DUMP mode.

B.3.! 8-220 sample format

The S-220 sample consists ofthree parts: Wave Data, Wave Parameters and Performance

Parameters. Each of these "sets" of data is called a DATA SET. This is not Roland's

terminology. The bulk of the data consists of actual digital samples that constitute the

sample, i.e. the Wave Data. The Wave Parameters include loop points, split points, and

other features specific to a particular sample. Performance parameters include vibrato

information and mix levels. When a transfer takes place, the sample, consisting of three

data sets, must be transmitted in a strict order. The Wave Data must be transmitted first,

then Wave Parameter and finally Performance Parameter (three data sets). The full

sample must be transmitted. All the data cannot be transmitted in one system exclusive

message, because the message length must not exceed 256 bytes. Roland claims this

enables MIDI devices that have a "soft thru" to work properly.

129

B.3.2 Two handshaking transfer methods in Bulk Dump Mode.

There are two ways that a transfer can be performed in bulk dump mode. The first is

when the source initiates the transfer. The second is when the destination initiates the

transfer. (See [Roland, 1986a] for a diagrammatic representation).

The first method starts with the source sending a WSD message. The destination sends

back an ACK and waits for the Wave Data DAT messages . The source sends DAT

messages and waits for an ACK after each message. This is repeated until the end of the

Wave Data set is reached and the source sends the EOD message. On receiving the ACK

in response to the EOD message, the source starts the procedure again, this time sending

the Wave Parameters data set. This operation is repeated for Performance Parameters

data set.

The second transfer method is when the destination device sends a RQD. The source sends

the Wave Data DAT and the destination sends the ACK The cycle described for a source

initiated transfer is repeated with the destination sending a RQD instead of source sending

aWSD.

In summary:

The source always sends the DAT and EOD messages.

The destination always sends the ACK

The source must always wait for the ACK before sending the next system

exclusive message.

B.3.3.

130

Format of system exclusive messages particular to the 8-220.

Because of the size of the memory and hence the samples used in the 8-220/8-10, the fields

of the WSD, RQD and DAT messages differ from those of the S-50/8-550.

The bytes of W8D and RQD messages look like this:

BYTE NO. VALUE

o OFOh

041h

2 MsgDep

3 010h

4 MsgDep

5 MsgDep

6 MsgDep

7 MsgDep

8 MsgDep

9 MsgDep

10 MsgDep

l1..n-2 MsgDep

n - 1 MsgDep

n OF7h

EXPLANATION

Midi Syslem Exclusive

Roland Manulacturers ID

Roland Device I D

(MIDI channel - 1)

Roland ModeilD (Same for S-1 0, S-220 and MKS-lOO)

Command ID (WSD or ROD)

Address (Most-Significant Byte)

Address (Mid Byte)

Address (Least-Significant Byte)

Size (Most-Significant Byte)

Size (Mid Byte)

Size (Leasf-Signnicant Byte)

Data

Checl<sum

MIDI End of System Excfusive

where n+1 is the number of bytes in the system exclusive message and

MsgDep means the value depends on the message being sent.

131

The DAT message is similar to the WSD or RQD message. However, the size field is not

included, but is replace with data that makes up the data set. There are more than just

three bytes, the usual length of a data message is found to be 138 bytes. An interesting

check is that the number of bytes that make up the address and data portion should

al ways be an even number. The address part of the DAT message contains the S-220

address of the first piece of sample data immediately after the 3 address bytes.

The actual addresses and sizes in the WSD or RQD are critical. To obtain the correct

addresses, a program was written for the PC that waited for data from the S-220. The

transfer was started from the S-220 front panel. The program then stored all system

exclusive messages from the PC and sent the required ACK's. This was of great assistance

in correcting the Roland manual.

Actual sample transfer

The Roland S-10/S-220 transfers samples in the manner described above. A program,

SMPX.EXE, was written for the PC and MPU-401 card to allow sample data to be stored

on a PC rusk. This was a vital part of the implementation described in sections 5.4.,

additive synthesis; 5.5., FM synthesis; 5.6., spiral synthesis; and 5.7., granular synthesis.

The PC was used to calculate samples, generated by the different synthesis techniques and

then the SMPX program was used to transfer the samples to the PC. See Appendix E for

a description of this program and the problems encountered with sample transfer.

B.4. Criticisms of Roland Sample Transfer Methods

Some ofthe criticisms ofthe sample dump transfer are due to MIDI, see section 4.6. Some

of these also apply to the MIDI sample dump format, see section 4.5.

The MIDI protocol was designed as a system to link different types of electronic music

equipment together. An important part of this protocol is that the connection between

instruments is either a chain (Le. one MIDI controller drives a device, and the device's

MIDI THRU drives another) or a star-type network.

132

When transferring samples via Roland's Handshaking mode, the source and destination

need to be connected back to back (i.e. both MIDI IN's and OUT's are connected). This

does not allow a third MIDI device to be the master controller or sequencer. In the

RHOCMU studio at Rhodes University, a Yamaha DX-7 IID is used as the master

keyboard, and an IBM-AT compatible as the sequencer. To transfer samples from the AT

to the S-220, we have to physically disconnect cables (DX-7 OUT must be removed from

the AT MIDI IN and the S-220 MIDI OUT substituted). Even worse, if the sample transfer

was performed as originally intended, two S-220's would be connected back to back without

any means of triggering the S-220's.

Admittedly, there are ways around this. An electronic MIDI router could be used to

change the connection. Another solution is to use a MIDI Merge unit, which could merge

the two inputs to the MIDI card (the two inputs being MIDI OUT of the Roland S-220 and

the device normally connected to the MIDI card's IN - say a master keyboard). However,

this is a very expensive way around the problem. Another alternative is to use the one­

way mode. This would use the existing MIDI connection (AT MIDI OUT to S-220 MIDI

IN). However, this is slower and less secure than a handshaking system. In providing two

methods of transfer, Roland has provided an elegant tradeoff between speed and security

(handshaking mode) and convenience of transfer (one-way mode).

The other problem is that of speed. The initial motivation for investigating sample

transfer was a need for a setup program that would configure a MIDI studio to a

previously stored configuration". A S-220 sample consists of at least 60 to 70 kbytes of

data (one single structure sample). Assuming no delay in the response of the AT or S-220,

the maximum speed a transfer can be executed is in the region of 16 seconds. The largest

sample will take about 64 seconds. For a S-50 sample, the time would be much longer.

There are three possible solutions, each with their difficulties. Most require hardware

changes or the scrapping of current standards. The first is to stick to the disks that form

the current method of loading samples. An improvement is to automate the loading of

disks. A pack of disks with a disk-changer could be used (as is used on CD players) or

even a robot disk-changer (as with mainframe cartridge changers). The second alternative

is to go to hard disk storage linked to the sampler (this is already an optional feature of

the S-55O and products of various other manufacturers, but not the S-220). There is great

potential for WORM drives and erasable CD drives. The use of battery backed RAM or

" The internal workings of program would be incorporated in the Music
Network project of Rhodes University's Computer Music group.

133

EEPROM50 (and lots of it) is another long term solution, but would require major

hardware redesign and the cost of the IC's would be prohibitive. To keep all the samples

required in the non-volatile storage would be impossible, and the user's needs would soon

outgrow any amount of storage". Lastly, if the MIDI transmission speed is increased,

it would speed up the transfer rate. However, this would mean more hardware changes.

The MIDI Sample Dump Standard [IMA,1989] has similar problems, see section 4.5. These

include the problems of amount of data, speed of transmission, and the closed-loop

(handshaking) and open-loop (one-way) system. This MIDI protocol was designed to

transfer samples between samplers of different makes, and especially from sampler to

computer and back. Data transferred consists of the actual digital sample data, the loop

points and loop type, sample format (8 to 28 bits), sample period, sample length and

sustain points. This uses the closed or open loop system as does Roland. Manufacturers,

in general, have been slow to implement this sample dump standard.

B.5_ Conclusion

Roland use a generic method oftransferring patches between different instruments in their

range. This does not allow different types of instrument to exchange data, but allows

compatible models or two devices of the same model to exchange data. The S-220 sampler

uses two methods to transfer samples. The first is one-way transfer and the second is

handshaking. A computer can be programmed to simulate the source or receiver of the

sample, thus providing bulk storage for samples. Both these transfer methods are slow

and require trade-offs for convenience. There are several solutions to this, some already

exist and others have yet to be implemented.

The sampler and sampling is a vital part of current music studios. The problem of speed

\viII be aggravated as samplers increase in resolution and sampling time.

The same comments apply to sample transfer - the bigger the samples get, the slower the

transfer time and the more frustrated the users get.

50 EEPROM - Electrically Erasable Programmable Read-only Memory. This
type of memory uses an electrical signal to erase the contents. The more conventional
EPROM's use ultra-violet light to erase the contents.

51 Once upon a time, not too long ago, the Apple II's 64K of memory was considered
a lot. The IBM PC's 640K of memory was a major leap forward. Now 640K appears to be
a minimum memory size required to do anything useful.

134

However, current samplers like the Roland 8-10/8-220 and the current methods of transfer

are adequate for the simple playback of samples generated on in software. Attempting to

transfer data files to the sampler highlighted the problems discussed in this section.

135

Appendix C The .ROL file format

The sample transfer program SMPX.EXE, the synthesis programs , and the program

LOOKEXE all use the .ROL file format as a means to read in or store data from the

Roland S-1O/S-220 sampler. This file format is based on the data transferred when

performing handshaking sample dump data in bulk dump mode on the Roland 8-10/8-220.

The file is a C binary file.

The .ROL file consists of a header, the Wave Data, the Wave Parameters and the

Performance Parameters. The header contains information about the sample that follows.

The Wave Data, Wave Parameters and Performance Parameters are slightly condensed

versions of the actual system exclusive messages that are transmitted from the sender to

the receiver.

The header

The header consists of the following items:

<Structure Name><NEWLlNE><Sample name><NEWLlNE><Man ID><Model ID><NEWLlNE>

<Structure Name>

<NEWLINE>

<Sample name>

<Man ID>

is a C string, uppercase characters and "t', only a mruamum of 7

characters and no ASCII NULL character to terminate the string.

is the ASCII NEWLINE character. In C this is written as "\n".

is a C string with a maximum of any 80 characters. There is no

ASCII NULL character terminating the string. At present this

stores the PC file name of the sample, it could be used later for a

short description of the sample.

is the manufacturer's MIDI system exclusive code. This is assigned

to the manufacturer and will not be used by any other

manufacturer. The Roland code is Ox41.

<Model ID>

136

is the Roland system exclusive code for the Roland S-1O/S-220

sampler. It is OxlO.

System exclusive message compression

Any Roland system exclusive message consists of a MIDI Start of Exclusive byte, the

manufacturer's identifier, the MIDI channel- 1, the Model identifier, a Command identifier

byte, possibly followed by other data and terminated by a MIDI End of System Exclusive

byte". Some of these bytes are unnecessary to store. It was decided that the MIDI

channel would most likely be different each time the sample was transmitted, so this need

not be stored. The Manufacturer's ID and Model ID where constants for the entire sample.

These could also be omitted.

So a system exclusive message could be compressed to the following form:

<Start SysEx><Command IO>< ... Rest of message .. . ><End of SysEx>

<Start SysEx>

<Command ID>

<End of SysEx>

is the MIDI System Exclusive message (OxFO).

is the Roland System Exclusive message command code. In the

.ROL format file, only DAT and EOD are used.

is the MIDI End of System Exclusive message (OxF7).

The < ... Rest of Message ... > is the rest of the system exclusive message, with the exception

of the three bytes mentioned above.

52 See Appendix C on Roland System Exclusive messages for the Roland S-
10/S-220.

Appendix D Running

Software

the

D.1. Hardware and Software requirements

137

Synthesis

The synthesis implementation described in chapter 5 requires the following hardware:

• PC/AT or 386 compatible with 640 kbytes of memory. No coprocessor is required,

but is recommended. The executable code supplied is compiled for the 80286

processor, but may be recompiled for the 8088/86. A hard disk is recommended.

• A VGA card and screen for parameter entry and for examining sample files with

the LOOK.EXE program. A colour screen is not required.

• A MICROSOFT mouse or 100% compatible. The MOUSE.SYS or MOUSE.COM

driver must be the Microsoft version. The mouse is only required for the

parameter entry program ADDPARAM.EXE, FMPARAM.EXE and GPARAM.EXE.

• Roland MPU401 MIDI card or 100% compatible.

• Roland S-220 or S-10 Digital Sampler.

• Two MIDI cables to connect the MIDI card to the sampler.

Optional hardware:

• INMOS B008 board for the PC, with one TRAM with T800 and 2 Mbyte of RAM.

A MC2 PC-LINK card and 2 Mbyte Worker card is a suitable alternative. The

transputer base address must be #150.

Software required to run the synthesis system:

A.TPL

ADDPARAM.EXE

Template file for structure A

Additive synthesis parameter entry program

FMPARAM.EXE

GPARAM.EXE

EGAVGA.BGI

SADDITIVE.EXE

ADDITIVE.TB

SFM.EXE

FM.TB

GRANULAR.EXE

GRANULAR.TB

SPIRALS.EXE

SPIRALS.TB

SMPX.EXE

MKTEMPLT.EXE

LOOKEXE

FM synthesis parameter entry program

Granular synthesis parameter entry program

Borland .BGI file for the VGA screen

Additive synthesis program

Transputer code for additive synthesis

FM synthesis program

Transputer code for FM synthesis

Granular synthesis program

Transputer code for granular synthesis

Spiral synthesis program

Transputer code for spiral synthesis

Sample transfer program

Template file maker

Examines .ROL sample files

13B

The software was produced using Borland Turbo C++ v1.0, Turbo Assembler v2.0 and

INMOS D700D TDS2.

D.2. Creating Parameter Files

Parameter files contain the input parameters for the synthesis technique. These are

created using the parameter programs ADDPARAM.EXE, FMPARAM.EXE and

GPARAM.EXE. Parameters for spirals synthesis are entered directly in the synthesis

program.

A VGA screen and Microsoft Mouse is required. The Roland MIDI card and sampler is not

required.

Install the Microsoft mouse driver. Refer to the mouse documentation for more details.

The programs produce parameter files as follows:

PARAM.EXE for additive synthesis

FMPARAM.EXE for FM synthesis

GPARAM.EXE for granular synthesis

139

The program can be run without any parameters. This will give a list of the required

parameters. In general, the program is run with a parameter file name, e.g.:

GPAMM GO001.GRA

It is suggested that suffixes like GRA or FM or ADD to differentiate between different

synthesis techniques.

The parameter program will prompt the user for the required values. Use floating point

numbers when entering any parameters that require numbers. An exception to entering

a floating point number is the harmonic number in ADD PAMM.EXE. This must be

entered as an integer.

When an envelope is required, use the mouse to draw a line in the enclosed area on the

screen. Hold down the left button and move across the screen, or click the left button at

the end point to get a straight line. The PC will always start drawing from the left-hand

side of the screen at the origin, and complete the line to the x-axis on the RHS once the

right-hand button is clicked. Clicking the right-hand button finishes the envelope. For a

zero envelope (e.g., no phase change in additive synthesis) just click the RH button

immediately without drawing.

D.3. Performing Synthesis

Once the parameter file is complete, the synthesis routines can be run. They are:

SADDITIVE.EXE

SFM.EXE

GRANULAR.EXE

SPIRALS.EXE

The first three all take parameter files as part of the command line. SPIRALS does not

require a parameter file.

Typing the program name only at the command line will give a list ofthe options required.

140

The programs all require a name of the output file on the command line, eg ADD001PC.

Here, the ADD could be used to indicate that it is an additive synthesis file, and 001

indicates it is the first file, and PC means it was generated on the PC (NOT the

transputer). The naming convention is only a suggestion and is not required by the

software.

If a transputer is attached to the PC, adding a -t option at the end of the command line

will execute the program on the transputer. This is significantly faster than the PC-only

version.

The command line has the following form for SAD DITIVE.EXE, SFM.EXE and

GRANULAR.EXE:

<program name> <param file name with sufIlX> <output file name, no .ROL SUftlX> -t

eg:

SADDITIVE TEST001.ADD ADD001T8 -t

SPIRALS.EXE does not require a parameter file name, just an output file name and,

optionally, a -t option at the end.

Once the program has started, it will inform the user of its progress. Any errors will be

reported and the program will halt. On completion, the program will give its execution

time in seconds before returning to DOS.

The program will produce a .ROL file. This is the actual sample produced by the synthesis

technique.

D.4. Sending Output to the Sampler

The program SMPX.EXE is used to transmit the file to the Roland S-220/S-10 sampler.

A detail guide on using this program is supplied in Appendix E. The Roland MPU401

card, MIDI cables and Roland S-220 or S-lO is required.

Run SMPX.EXE without parameters and press F1 for help for more info on using SMPX.

141

D.S. Possible Errors and How to Correct Them

It is unlikely that the synthesis programs will not compute the waveform. However, the

following errors could occur:

• PC immediately hangs after starting the parameter or synthesis programs. No

error messages msplayed.

The user may be trying to run on a 8088/86 machine. The code is compiled for at

least 80286 machines, and can only run on this processor or the 80386. The

program has not been tested on the 80486.

• The message "Stack Overflow!" appears after starting to execute the program. It

returns to DOS immediately.

This fault cannot be corrected without access to the source. Change the variable

stklen = XXXXX to a bigger number in the main source file BEFORE the mainO

program. Recompile and try increasing the value until the program runs, this is

a Turbo C error. This error should NOT occur.

• The parameter program will not run. It gives a Borland Graphics error.

Check whether the PC has a VGA card. An EGA will not work. Check that the

program is being run from the directory containing the relevant .EXE file, and that

it also contains the file "EGAVGA.BGI". The parameter programs require the

Borland EGAVGA.BGI file. Place it in the directory with the .EXE files. The

programs look for this file in the directory ".\" - the current mrectory.

• When using the mouse in a parameter program, it will only draw lines in the

upper half of the box. The cursor will not even move to the lower half.

This problem occurs when a non-Microsoft mouse is used. True compatible should

work. Try a Microsoft driver with the troublesome mouse. Certain types of Genius

mice are known to cause this error, as do LOGITECH mice.

142

• The synthesis program has computed a waveform (it says "Finished calculating

XXXXXX synthesis", where XXXXXX is the type of synthesis). The program then

says that it could not write the .ROL file and aborts the program.

Check the command-line parameters used to start the program. The program was

probably run with the .ROL extension on the output file name, e.g.: "SADDITIVE

TESTOO1.ADD ADD001PC.ROL" ««< THIS IS WRONG. Do not add the .ROL

extension to the file name, the program adds it automatically. Check there is

enough disk space for the sample file, about 65 kbytes.

• When using the transputer option, the PC gets as far as clearing the screen and

says BOOTING ROOT TRANSPUTER and hangs.

Is there a transputer card in the PC? Ifso, is the base address #150 (the standard

PC base address for a transputer board). Change the base address of the board.

If the source code is available, go into CLINKIO.C and alter the #define LinkBase

to the base address of the board being used.

Is the transputer a TSOO? It must be a TSOO, not a T414. Are the files

ADDITIVE.TS, GRANULAR.TS, FM.TS and SPIRALS.TS present in the directory

that contain the .EXE files? The .TS files are bootable transputer files and are

required to run the transputer version.

• The transputer is being used. The program is performing synthesis. The program

has written out messages "Sample XXXX, time is Y.Y¥Y seconds, value is ZZZZZ",

then it hangs.

The transputer has stopped due to an arithmetic error. One of the input

parameters has generated a number out of range. Try the parameter file on the

PC version, the PC may actually say OVERFLOW or also hang. Make sure the

correct parameter file for that type of synthesis is being used:

Parameter Program

ADDPARAM

FMPARAM

GPARAM

nJa

Synthesis Program

SADDITIVE

SFM

GRANULAR

SPIRALS

143

Another problem is that when the transputer stops without returning an error

message, the PC cannot detect it and hangs too.

At present, only SPIRALS is expected to hang for these reasons. Make sure that

the values are within the recommended range, e.g. » 1.0 for the parameter

Distance of pole from origin. The output may take a while to go out of range, in

which case the user will see very high sample values being generated, +1- 1.0

E+20B and higher. Make this parameter closer to 1.0 or even less.

144

Appendix E The SMPX User Guide and

Technical Information

E.l. User Guide for SMPX

Corresponds to SMPX v 1. O.

This document dated 10 March 1989.

Updated 8 January 1990.

E .l.l. Hardware and Software Requirements

• IBM PC or compatible with 512 kbytes memory and one 360 K disk. CGA or EGA

graphics adaptor with colour monitor and hard disk recommended.

• DOS 3.0 or greater

• Roland MPU-401 card or compatible

• Roland S-1O, S-220 or MKS-100 sampler

E.1.2. Get Connected

The file SMPX.EXE must be in the current directory or in a directory in the DOS PATH.

Connect the ROLAND 8-10/S-220 MIDI IN to PC MIDI OUT and ROLAND S-1O/S-220

MIDI OUT to PC MIDI IN.

Make sure the Roland S-10/S-220 has SYSTEM EXCLUSIVE ON. This is a setting in the

MIDI option, see Roland manual for details.

Check what MIDI channel the Roland is receiving on. This information will be required

later.

• WARNING: If both the cables are not connected in the correct manner, the program

will not work correctly. It may also hang the computer.

145

• WARNING: Do not use SMPX with any TSR's, it has been tested while running

Borland's SideKick, and this prevents SMPX from working correctly.

E.1.3. Starting SMPX

Type SMPX at the DOS prompt and press the <ENTER> key.

A title page will appear, press any key to continue.

Then, the main screen will appear. The screen is divided into three sections, a MENU line

at the top, a DIRECTORY AREA in the middle and a STATUS LINE at the bottom.

The MENU line has all the available commands, type a letter to select that command.

Usually, a pop-up menu will appear and prompt the user for more information if it is

required.

The DIRECTORY AREA will list all the samples on the current directory.

The STATUS LINE will tell the user what keys to push next and other important

information, like what the program is doing.

To EXIT the program, type X.

The <Fl> key will display a help screen relevant to the option selected. Help is not

available while loading or saving a sample. To get help on a particular menu, type the

menu letter, then press <Fl>.

<ESC> will always erit any menu, EXCEPT during saving or loading, without altering any

values. NEVER use <CTRL-C> or <CTRL-BREAK> to stop any operation. The program

will time-out and return to the menu system or DOS if there are any errors, or problems.

The MIDI channel will be set to a default value. To change the MIDI channel, type M and

type in the MIDI channel number that the sampler is set to.

146

To see what sample files are on another drive or sub-directory, type C and type a new drive

or sub-directory. NOTE that to change the drive, type "A:" or "D:", etc. To change the sub­

directory, type "\<path> \", the last "\" is important.

<Deb or <Delete> will delete the sample currently under the highlighted bar. The user

will be asked to confirm that the sample must be deleted.

E.1.4. Saving and loading samples

Type S to save a sample. A pop-up window will appear asking for the name of the sample.

Type in the name and press <ENTER>. This name must be 8 characters long and be a

valid DOS name. Do not put any suffix on the name. This will be done automatically.

Then, another window with the different structures will appear. Use the arrow keys to

move the cursor to the correct structure and press <ENTER>. The HOME and END keys

will move to the beginning and end of the structure list. Another pop-up window will

appear, giving information on the saving process.

If the MIDI channel has been set correctly, and the MIDI cables are connected properly,

the sample will be saved to the current sub-directory. The MIDI light on the S-1O/S-220

will flash during the transfer. Wait until the transfer is finished before doing anything

else.

[Note, if a directory listing is done using the DOS dir command, it will be called "<the

name you gave ib.ROL". Do not change the ".ROL" part as the SMPX program only lists

files with a .ROL suffix.]

To load a sample, move the cursor around the directory area until it highlights the

required sample. Then type L. A pop-up window will appear, and ask the user to confirm

if this really is the sample required. 'Y', "y" or <ENTER> will confirm, any other key

aborts the operation. The sample will be loaded. As with saving, a pop-up window will

appear and tell the user what is happening.

WARNING: At present (SMPX version 1.0), the sample is loaded into the structure it

was saved from. This WILL overwrite any other structure already present

on the sampler.

147

E.1.5. Saving the Current Settings

It is possible to save the active settings as the default settings for the program. The

defaults saved are the sub-directory name, and the MIDI channel.

Make sure the sub-directory that contains SMPX.EXE is in the DOS PATH. SMPX will

create a defaults file that is used to set MIDI channel and sub-directory.

If the user makes changes to the settings (using the C or M options) and wants to save

them, type D to save these settings.

WARNING: These settings will be stored in SMPX.DEF. Don't delete this file unless

the settings are no longer required.

E.1.6. SMPX - from the DOS command line

SMPX can be run from the command line, type "SMPX Ih<ENTER>" for details.

WARNING: It is better NOT to use the program from the command line at present.

For example, the user cannot send a sample to an alternate structure.

If the command line version is used to save a sample to the PC, the user MUST supply a

structure. If the user wants to load a sample and wants to use a specific MIDI channel,

the structure of the sample must be given before the MIDI channel. It must correspond

to the samples original structure.

The command line version uses the defaults stored in SMPX.DEF on the current directory,

if present, or the program defaults if the MIDI channel or drive and directory with the

sample file name are not supplied. It is best to give the FULL drive, path and file name

(with the .ROL suffix), correct structure and MIDI channel. If problems are experienced,

the menu driven version should be used.

148

E.1.7. Summary

Connect MIDI IN and OUT cables.

Set Roland S·10/S·220 MIDI SYSTEM EXCLUSIVE ON.

Type SMPX to start the program.

<Fl> is always HELP from any part of the program except during transfers

S - saves the sample from S-10/S-220 to PC

L - loads sample from PC to S-10/S-220

C - changes directory and drive

D - save current settings

M - sets the MIDI channel

X - EXITS the program

 or <Delete> - deletes sample currently under the highlight bar

E.2. Technical Information

E.2.1. Introduction

The SMPX program uses a PCIAT equipped with a MIDI card to act as a storage device

for samples from a Roland S-1O/S-220 sampler. The PC acts as a source or destination of

samples. Setting up the S-220 to execute a transfer requires certain specific steps, some

of which must be done physically by the user.

149

E.2.2. Configuring the Sampler

The first step is to make the physical connections and establish settings from the front

panel of the S-220. The PC's MIDI OUT must go to the S-220's MIDI IN, and PC's MIDI

IN to S-220's MIDI OUT. Then the user must work out which MIDI channel the S-220 is

using and set SYSTEM EXCLUSIVE to ON. This requires the following action:

The S-220 must be powered up, and in NORMAL play mode. On the front

panel of the S-220, the user must press the MIDI key. Then, using the

FWD and BWD key, get the message:

MIDI:COMMON

BASIC CH = 1

The channel may not actually be one (1), but set this to the desired

channel. Using the ALPHA dial or ARROW buttons, change the MIDI

channel to the one required. Press the ENTER button to accept this.

Then, press MIDI again and find the section:

MIDI:COMMON

EXCLUSIVE = OFF (or ON)

Turn EXCLUSIVE to ON using the alpha wheel if it is not already on.

Then press the ENTER key.

From this point, the PC can handle all the operations required (bar one - a certain error

condition mention later).

E.2.3. Communication with the Sampler

The PC can now communicate with the sampler. The PC must switch the sampler into the

correct mode and perform the transfer.

150

The first step is to flip the S-220 from Normal-mode to Bulk Dump mode. This is done

with a short DT1 message. Assuming MIDI channel 8 is being used, the actual MIDI

system exclusive message that must be send is:

FOh, 41h, 07h, lOh, 12h, OOh, 10h, 02h, OOh, CHECKSUM, F7h

Checksums are used in all DT1, RQ1, DAT, WSD and RQD messages. They must be

recalculated for each individual system exclusive messages. A checksum is the number

added to the sum of the 7 least significant bits of all bytes in the message after the

command byte and before the checksum byte such that the sum is equal to zero (0). The

checksum only has first 7 bits significant.

CHECKSUM + (sum of 7 L.S.Bits) = 0

For the message above, the checksum would be:

o - (Oh+10h+02h+00) = 0 - 12h = OEh

(8Eh would also be correct, because the first 7 least significant bits are checked, not the

8th bit)

The PC must pause (about 30 msec) before sending the WSD (or RQD) for Wave Data. In

fact, this pause should be repeated after each EOD message and before the next WSD (or

RQD). If the S-220 goes into Bulk dump mode, but ignores the WSD (or RQD), then the

delay should be increased. As an extra safeguard, a short message is written to the screen

after each data set is sent. After the last data set is transferred, the sample automatically

goes back to normal mode.

E.2.4. Problems

The first problem is that the Roland S-220 MIDI Implementation manual [Roland, 1986al

has incorrect addresses and sizes. The following list is the correct version.

151

Structure Address fields (7-bit hex)

Wave Data Wave Parameter Performance

Parameter

A 020000 010000 010800

B 060000 010000 010800

C OAOOOO 010000 010800

D OEOOOO 010000 010800

AB 020000 010000 010800

CD OAOOOO 010000 010800

ABCD 020000 010000 010800

AlB 020000 010000 010800

C/D OAOOOO 010000 010800

AB/CD 020000 010000 010800

AlBIC/D 020000 010000 010800

Note that the ADDRESS field in WSD, RQD and DAT messages come from this table, and

Address_MSB consists of the first 2 digits in each entry above, Address_MID is second two,

Address_LSB is last two. As an example, the address part of the WSD message for Wave

Data for structure C would be OAb,OOh,OOh.

Structure

A

B

C

D

AB

CD

ABCD

NB

cro

ABICD

NBICro

Size fields (7-bit hex)

Wave Data Wave Parameter

040000 000049

040000 000049

040000 000049

040000 000049

080000 000049

080000 000049

100000 000049

080000 000112

080000 000112

D10000 000112

100000 000224

Performance

Parameter

000028

000028

000028

000028

000028

000028

000028

000028

000028

000028

000028

152

Another problem deals with the Roland MPU 401 MIDI card used in the IBM PC. The

card is used in UART mode and it must be initialized in a certain way.

The MPU card must first be RESET (mpu command OxFF), then System Exclusive must

be turned ON (mpu command Ox97). Because the MPU and S-220 are connected MIDI IN's

to OUT's, turn MIDI THRU OFF (mpu command Ox89) and ALL THRU OFF (mpu

command Ox33). Then turn UART mode ON (mpu command Ox3F). These steps are all

very important. If one forgets to switch to UART mode, one's program will work

intermittently as whatever code is executed when an interrupt occurs can do anything! If

one does not turn THRU OFF, the messages the S-220 sends will echo back to the S-220's

MIDI IN. The 8-220 will get very confused. When the sample transfer is complete, wait

a few seconds until the S-220 LCD screen shows it is back in normal play mode.

If one uses the MPU card in Interrupt mode and a MIDI interrupt device driver, this

should prevent errors occurring because an interrupt does not cause arbitrary code to be

executed. This mode may also allow the PC to have Terminate and Stay Resident (TSR)

programs loaded. In UART mode, this is not possible as the TSR interferes with the

sample transfer.

153

A third problem is when the S-220 sends a rue message. It appears to remain in bulk

dump mode and requires one to select a structure by hand (i.e. push a structure button)

to return to normal mode.

154

Appendix F Utilities

This appendix outlines the utilities written during the course of the thesis.

F.1. Look

It is important to be able to look at the raw sample data in graphical form. One can spot

errors in the data more easily if the sample is examined visually. The program

LOOKEXE can be used to examine the sample data in any .ROL format file. This

program also proved useful when comparing sample files. For example, when the

transputer and PC versions of the same synthesis routines were run and it was necessary

to verifY the output of each system was the same.

To run the program, the files LOOKEXE and an appropriate Borland Graphics Interface

file CBGI) for the graphics card are required. The .BGI file must be in the current

directory. The program requires a PC with 640 Kbytes of memory, and a graphics adaptor

(Hercules, CGA, EGA or VGA). The program is started by typing:

LOOK <sample file>.ROL

The .ROL extension MUST be given.

The look program loads a sample file into memory, and then displays it as a graph. It

must first allocate space for the raw data. Then, it starts reading the .ROL file. The

sample structure is obtained from the file header, but the other information in the header

is skipped. The data is read from the file, and the Roland 12-bit packed data is unpacked

into 16-bit integers. Once all the sample data is read, the rest of the file is ignored. The

data can be examined in two ways, fine view or coarse view. The fine view of the data

plots one pixel per sample (see Figure F.l.). A one-second sample takes up 51 screens in

fine view on a VGA screen. Arrow keys can be used to move from screen to screen, The

Home and End keys move to the start and end of the sample respectively. The coarse view

condenses the whole sample onto one screen (see Figure F.2J. The total number of

samples is divided by the width of the screen in pixels, and the result is the number of

samples represented by each pixel. This is called the frame size. Starting from sample 0,

successive groups of frame size samples are examined and the highest value in each group

is plotted on the screen.

155

A screen program This is a
screen. The sound was produced using additive synthesis.

Figure F.2. Screen dump from the program LOOKEXE. This is the coarse view
screen. The display shows a sound produced using additive synthesis.

This utility has proved very useful, both for debugging purposes and for examining real

samples from the sampler (eg. a piano sound).

156

F.2. Template Files

After a waveform has been created on the PC using the synthesis programs, the sample

data must be packed into the .ROL format. A C procedure called out2roiO is used for this

purpose. This packing could be accomplished in various ways. The one way would be to

use an existing file .ROL file and substitute the new samples in place of the old ones. This

would mean that a full sample file would be required for each type of sample structure"',

about 1 Mbyte of files for the 8-220. Instead, a template of the sample file is stored. The

template file is a .ROL file with all sample data removed. A template file retains all the

wave parameters and performance parameters of the .ROL file. This reduces the size of

a .ROL file from about 64 kbytes for a single structure sample to 4756 bytes.

The first version of the out2roiO procedure used a normal .ROL file and substituted data.

The program MKTEMPLT.EXE takes a .ROL file and produces a template file. The

template file name corresponds to the destination S-220 STRUCTURE name ofthe sample

stored in the .ROL file with a .TPL suffix. In place of the sample data, it places a count

of the number of samples in each DAT message. The .ROL file used must have the correct

structure, record key and other parameters for that waveform. These can be altered on the

sampler itself.

The program requires a PC with 640 kbytes of memory. No graphics adaptor is required.

The file MKTEMPLT.EXE is required in the current directory or in the path. To run the

program, type:

MKTEMPLT <sample file name>

No .ROL extension is required.

The Roland S-220 can combine sounds in different configurations. These configurations

are called structures. A single structure about one second of sound at 30 kHz. The 8-220

can load four single structure samples at once. The structures are called A, B, C and D.

There are other structures, see Roland [Roland, 1986b].

'" The Roland S-220 uses different structures of samples, allowing more than one
sample to be loaded at once. See [Roland, 1986b] for more details.

157

At present, all the synthesis routines produce a single structure sample that will be loaded

into structure A The recording key is 440Hz. The MKTEMPLT utility allows the user to

create their own templates if the one used at present (ATPL) is not suitable.

158

Appendix G Execution Times of the

Various Synthesis Techniques

Execution times were measured using C functions to measure the start and end time in

seconds. An average of three runs was taken on input file for the PC and transputer

version. The execution time is measured from the first statement in main O, a call to the

time function , to the last statement in main 0, a call to the time function again.

The PC used was a 20 MHz 386 machine without coprocessor. It contained a fast 20 Mbyte

Seagate hard-disk. This PC also contained the transputer system - an INMOS B004 board

with a 17 MHz T800" and 2 Mbytes of RAM on a single TRAM. The TRAM runs with

no memory wait-states, ie 4 cycle memory accesses. A MC' worker card with the same

configuration as the TRAM was also occasionally used.

Input File Name 386 PC time Output filename TSOO execution tima Output filename

(seconds([seconds(

AD100l .ADD 272.47 AD1001PC.ROL 18.61 AD1001T8.ROL

AD2001.ADD 434.74 AD2001 PC.ROL 22.71 AD2001T8.ROL

AD3001.ADD 601 .58 AD3001 PC.ROL 27.31 AD3001T8.ROL

AD4001.ADD 763.7 AD4001 PC.ROL 31.31 AD4001T8.ROL

AD5001 .ADD 930.0 AD5001 PC.ROL 35.51 AD5001T8.ROL

AOSOO1.ADD 1051.04 AD8001PC.ROL 38.99 AOSOO1T8.ROL

AD7001.ADD 1212.97 AD7001 PC.ROL 43.37 AD7001T8.ROL

AOSOO1 .ADD 1328.52 AD8001 PC.ROL 47.03 ADSOO1T8.ROL

I FMOOOLFM I 189.34 I FMOOOI PC.ROL I 16.72 I FMOOO1T8.ROL

GROO01 .GRA 6581.59 GROOOI PC.ROL 101.87 GROOOI T8.ROL

I SPOOOLSPI I 176.48 I SPOOOI PC.ROL I 28.63 I SPOOO1T8.ROL

.. The 17 MHz T800 used is slower than the 20 MHz transputers now available. The
MC' configuration is faster than the INMOS board because of this.

I

I

159

Appendix H Selected Source Code

This appendix contains selected parts of the source code for the programs mentioned in the

text.

The first section contains the parameter entry programs. The additive synthesis

parameter code is given in full. The FM and granular parameter entry programs have

parts of the code is deleted as it is merely a duplicate or slight variation of code given in

the additive synthesis code.

The software for each synthesis technique is given. Only the actual synthesis code is

given, not the code that reads in parameters, etc. This is followed by the out2rol function

that actually writes the samples in a waveform to a .ROL format file.

Finally, parts of the SMPX program that transmit a .ROL file to the Roland S-220 sampler

is given. This forms a small part of the SMPX program. The full program is a menu­

driven system for storing and sending samples to the Roland S-10/S-220.

The programs LOOKEXE and MKTEMPLT.EXE, mouse software and transputer

communication procedures are not given here. The occam2 code is not given as it was

developed under the TDS folding editor system55
. However, the full source code and

executable versions of ALL software are given on the accompanying disks.

55 Occam2 code developed under TDS makes extensive use of indentation. The ASCII
text version of this code would wrap around, or have to extend over more than one page.
It was for this reason that the source is not given here.

H.I. Parameter Entry

The parameter entry functions all follow the same basic format:

Accept parameters

Write parameters to a file

Note there is no parameter entry program for spiral synthesis.

R.l.l. Additive synthesis parameter entry

/* _.*********************** PARAM.C ***************************************
Allows user to enter parameters for additive synthesis and wri tes these
parameters to a file .

By: A. J . Kesterton
Date started:28/12/89
Update log :

I Date I Comment I
1--
128/12/B9 IStarted log .
1 1

/ * ************************ Include files ********************************** *1

'include <stdio.h>
'include <conio.h>
'include <ctype . h>
.include <dir.h>
.include <allce.h>
'include <string.h>
'include <stdlib.h>
'include <math.h>

.include <graphics.h>

'include <rat.h>
'include <rat l ib.h>
'include <additive.h>

typedef enum (amplitude, phase) env_type;

1* ************************ 'define 's ********************* ************ ** ** */

'define TRUE 1
'define FALSE a

'define ESC 27

Ide fine AE RANGE -
'define PE RANGE

'define TLX ENV
'define TLY -ENV -

'define BRX_ENV
Idefine BRY ENV -

255
AE RANGE

((getmaxx()-MAX_AE)/2)
40

(TLX ENV+MAX AE)
(TLY:ENV+AE_RANGE)

1* The data arrays are initialized to this value so that when any
interpolation is done, the values entered by the mouse will be
distinguishable from the initialized values. */

160

:~t getenvelope (env type type, in t data l), int gmodel;
void fill gaps (int huge *data, in t length, int novalue ,

in t pe_range, env_type t ype);

: ~~ ma i n (int argc, char *argv()l

:' :1t ok,
fDeok ,
createok ,
fin ished; /* Controls main loop */

~~ar fname[MAXPATH) ;
:-ILE · output ;
:'n t attr i b;
st.ruct f fblk fb lk ;

/ * Ou ptut file name a nd path * /
/ * Pointer out pu t file * /
/* F ile attribute * /
/ * File cont r ol block */

:::ta r ch,
o pt ion :

:"n t nharm;

/* Temporary variable fo r charac t er entry * /
/ * Stores selected option as a character * /
/ * Number of ha rmo nics * 1

:n t huge ·store amp [MAX H+IJ ;
:nt huge ·store phase (MAX H+I J ;
: nt huge *temp_ptr;

double temp freq; /* Temporary storage for frequency ra t io *1
double freq-(MAX H+l] ; /* Real f requency of harmonic *1

i:1t digit;

1* NB - you must have arrays running from 0 to MAX AE/PE, ie a size of
MAX AE/PE+i. The last point array (MAX AE/PE] MUST BE 0 for
amplitude envelopes and the y midpoint- for phase envelopes *1

int temp amp (MAX AE+l]; 1* temporary storage for amplitude envelope *1
in t temp=phase (MAX_PE+l J ; 1* t emporary storage for phase envelope *1

int huge *ae ptr;
int huge *pe=ptr;

int ae range=AE RANGE; 1* The range of the amplitude da t a {O to ae range-i)·1
i~t pe range=PE=RANGE; 1* The range of the phase data (0 to pe range- i) *1

: ong i nt np ; 1* Number of points -> duration of sample *1

size t size: 1* Memory allocation s i ze *1

i~t done amp [MAX H+i J ,1*Shows if amplitude for that harmonics has been done *1
done=phase [MAX_H+l] ; I*Shows if a phase has been entered for that harmonic*1

int altered; 1* Set to TRUE if any harmonics are created *1

i~t i , j ; 1* junk loop counter ,,/

int driver DETECT, mode:

clrscr () ;

1* Set up graphics mode *1
ini tgraph (&driver , &mode , "c :\\tc");
r estorecrtmode(); 1* Flip back to text mode, graphics driver still loaded,

use setgraphmode to restore *1

I · Initialization of variables *1
/ '
~ead 0 ;
tail o·
, /
~se init (TRUE , FALSE);
~se=set_user_intr (ANY_MOUSE_EVENT) ;

for (i '" 0 ; i <'" MAX H; i++) freq[i] 0.0:
freq [1] (double) FUNDEMENTAL;

altered FALSE;

f or (1 = 0; i <= MAX_H; i+ +)
(

161

done amp [1]
done-phase [i1

} -

FALSE;
rALSE;

:0 [" (i 0; i <= MAX_ H; i++)

store amp (1] - NULL ;
store=phase [1] = NU LL ;

;' '' Enter number of harmonic s "'I
cic. :: FALSE ;
"" ~il e (! ok)

nharm = MAX H;
printf (" Enter nu mber of harmonics required (l-%dl: nharm);
scanf (" %d " ,&nha rm);
if «nharm > 0) &, (nha r m <- MAX_H))

1
ok = TRUE;
printf (" \0 ");

}
else

1

}

printf (" "'"''''''' Error, number of harmonics out of range\?\n");
ok = FALSE;

/ '" Allocate space in far heap for harmonics " I
/ '" First - overall amplitude envelope */
s:'ze "" (sizeot (ok) ., MAX AE) ;
i = «store amp (O] = (int huge *) farmalloe «unsigned long) size)) -- NULL)

i -

I

printf (" * ERROR - Could not allocate enough space for data * *** *\0 ");
mse end () ;
exit{l) ;

, - Allocate space for amplitude envelopes */

: or (1 - 1; i <= nharm; i++)
1
size'" (sizeof (ok) ,.. MAX AE) ;
if «store amp(i }~(in t huge *)farmalloc «unsigned long) size) -= NULL)

1 -
printf ("**_"'* ERROR - Could not al locate enough space for data * "' ***\n");
mse end () ;
exit(l) ;

}

:c: (1 = 1; 1 <= nharm; i++)

size = (si zeof (ok) * MAX PE);
if «store phase[ij = (int nuge *) farmalloc«unsigned long) size)) =- NULL)

1 -
printf ("* ** ** ERROR - Could not allocate enough space for data *"' ***\n") ;
ms e e nd () ;
exit(l) ;

}

/ - Main l oop , add harmonic envelopes, or quit */

f1 ished = FALSE ;
wh Ie (!finished)

/ * Show options */
clrscr ();

/ * Show which harmonics have been completed */
printf ("Har monic Amplitude Phase Frequency\n") ;
p r intf ("-------- - ----- ------------- ------------- -- --\n");
printf ("Overal l ");
if (done a mp (O])printf{ "OK"); else printf (" ");
printf - (01 N/A N/A\n ") ;

for (i = 1; i <= nharm;
1

i++)

p r intf
I " %d

i f (done amp(i]l
printf -

" , i) ;
printf ("OK") ;

I "
else printf ("
") ;

") ;

162

I

if (done phase[ill printf ("OK"); else printE (" ");
p r intf - (" ") ;
i f (freq [i] != 0 .0) printf (IIUf",freq[l]);
p rintE ("\n");

print f
printE
pri nt f

(" \n\n ");
("Q)uit and
I "

save to file . C) reate o r redo a harmonic\n") ;
Choose an option (Q, Cj: ");

/* Get option *1
ok = FALSE;
while (!ok)

I
if «ch getch{)) == ' \0 ') getch();
else

I
option toupper (ch) ;
ok = TRUE;
printE (" \n ") ;

I

/ * Do option * /
switch (option)

I
c ase ('q') :
c ase ('O') : fi nished = TRUE ;

break;
case (' c') :
case ('C') :/* Get harmonic number - 0 is overall amplitude */

ok = FALS E;
createok = FALSE;
while (! ok)

I
print f

("Whi ch harmon ic (0 for overall amplitude. 1 - %-d, ESC exits) :
nharm) ;

i f «eh - getch(» == '\0')
I
getch () ;
printf (" \ 7\ n");
I

else
I
if (eh "" " ESC)

{

I

o k = TRUE ;
createok - FALSE;

else
I

I

1* Check range of harmonic */
if ((ch >- ' 0 ') && (ch <'" '9'))

I
ok. '"' TRUE ;
createok - TRUE;
digit '" (i nt) (ch - '0');

.I

} 1* while (!ok) *1
printf ("\n");

1* Get frequency, the fundementa l is FIXED at middle C
so that it sounds correct on the sampler */

if ((digit> 1) && (digi t <::: nharm»)
I

1* Ask for frequency * /
ok = FALSE;
while (! ok)

I
printf ("Frequency ratio for harmonic %d (>1.0):

digit);
scanf (''\ If '', &temp freq) ;
if (temp freq > (double) 1.0)

{ -
ok = TRUE;
/* Convert ratio to real frequency *1
freq(diqitJ ::: (double) (freq [1] * temp_ freq);

I

163

if (createok)
I
/* Call procedure to accept envelope */
/* Clear temp arrays */
for (i = 0; i <= MAX AE+l ;1++)

I -
temp_amp [i) = NO_DATA;

I
for (1 = 0; i <= MAX PE+l ; 1++)

I
temp phase[iJ NO_DATA;
I -

if (digit == 0)
I

I

/* Overal l amplitude */
if (getenvelope (amplitude, temp_ amp, mode))

I
/* fil l in incorrect points for temp_amp */

/* Copy to far heap *1
temp pt~ = store amp[O];
for (1=0; i<MAX AE; i++)

I -
*temp ptr = temp_amp(i);
++temp ptr;

I -
temp_ptr = 0 ; / last point */

altered = TRUE ;
done amp[O) = TRUE;

I -

if ((digit> 0) ,& (digit <= nharm))
I

I

if (getenvelope (amplitude, temp_amp, mode])
I
/* fill out temp_amp */

/* Copy to far heap */
temp ptr = store amp[digit);
for (1=0; i<MAX AE; i++)

I -
*temp_ptr = temp_amp[i};
++temp ptr;

I -
temp_ptr = 0; / last point */

altered = TRUE;
done amp [digit) = TRUE;

I -

if {getenvelope (phase, temp phase, mode))
I -
/* convert temp amp */
/* Copy to far heap */
temp ptr = store phase[digit);
for (i=O; i<MAX AE; i++)

I -
*temp_ptr = temp_phase[i];
++temp ptr;

I -
temp_ptr = pe_range/2; / last point */

altered = TRUE;
done phase[digitJ

I -
TRUE;

break;
default: printf ("\7");

break;
/* switch (option) */

/* whi l e (! finished) * /

/* Mouse no longer used, reset it */
mse set user intr (NO MOUSE EVENT);
mse::::end- (); - --

/* If any harmonics have been added, store in output file */
if (altered)

164

i
/* Get name, or use name supplied as a command- l ine parameters *1
if (arge == 2)

(
strcpy (Ename, argv(I]) ;

}
e l se

(

}

pr i ntf (" \nEnter fi l e name for parameters:");
scanf (" %s",iname);

fileak = FALSE;
wh ile (! fileokl

(
ek = FALSE ;
while (! ok)

(
attrib == 0;
if (f i ndfirst (fname.&fblk,attrib) 0)

(
printE
(" \nFi l e %s already exists, OK to overwrite? (YIN): ", fnamel ;
if {(lch = getch(J):= '\0') II «eh!= 'y') && (eh!= 'Y')))

(
if feh == '\0') getch() ;
printf ("\oWill not overwrite file %s\n",fname);
printE ("Enter a different file name for parameters : ") ;
scant ("%s",& fname) ;

}

ok = FALSE ;
}

else
(
printi ("\nOverwriting file . .. \n ");
ok = TRUE ;
}

else
(

)

/* OK, overwrite the file *1
ok = TRUE ;

} 1* while {lokI *1
/* Open the file *1
if «(output = fopen (fname, "wb")) == NULL)

i

}

printf (" Could not open file %s\n", fname) ;
fi leak = FALSE;
strcpy (fname, H"J; 1* Clear fname *1
orintf (" Enter file name for parameters: H) ;
scanf (" %5 ", fname) ;

else
(
fileok TRUE ;

)

1* Write the file *1
fprintf (output, "% s\n" , fname); 1* File name *1

np = (long intI MAX SAMPLES; 1* MAX SAMPLES is in additive.h *1
[printf (output , " %ld\n", np) ; 1* Number of samples - > sound duration *1

1* Now, if some harmonics have been left out, reduce the number of
harmonics to correspond to ones that have been done *1

j = 0 ; 1* temp harmonic count *1
for (i = 1; i <= nharm; i++)

{
if (done_ a mp [ij && done_phase[ij) ++j ;

}

if (j != nharm)
(
print.f ("Not all harmonics where entered correct.ly - truncating\n ");

}

[print.f (output, "%d\n", j) ; I ' Number of harmonics ' I

fprintf (output, "%d\n", ae range) ; I' range of amplitude values 'I

[printf (output, "%d\n" , pe_range); I' range of phase values 'I

I' Ampl i tude envelope 'I

165

)

if (done_amp[O])
I
ae ptr = score_amp[O):
filigaps (ae ptr, MAX AE+l, NO DATA , pe range, amplitude);
for (i = 0 ; I <= MAX AE; i++J

I -
fprintf (output, " 'tid ", '*ae ptr);
++ae ptr; -

) -
iprintf (output,"\n\n");

)
else

I
printf ("No overall amplitude envelope File will not be correct\n");

)

/* Harmonics envelopes -I

for (i = 1; i <= nharm; i++J
I

)

if (done amp[i J && done phase[i lJ
I - -
/* First stare frequency wi
fprintf (output , " %1f\n", freq[iJ) ;

/* Now, the envelope -;
ae ptr = store amp (il ;
fillgaps (ae ptr, MAX AE+l, NO DATA, pe range, amplitude);
for (j = 0 ; f <= MAX AE.; j+ +)

I -

)

fprintf (output, "!tid ", *ae_ ptr);
++ae ptr;

fprintf (output, "\n") i
)

if (done amp[iJ && done phase[i)l
I - -
pe ptr = store phase[i);
fiIlgaps (pe ptr, MAX PE+l, NO DATA, pe_range, phase);
for (j = 0; J <= MAX PE; j++) -

I -
fprintf (output,"\d " .*pe_ ptr);
++pe ptr;

} -
fprintf (output. " \n ") ;

)

if (done amp[iJ && done phase[iJ)
I - -
fprintf (output . "\n\n");
/* Double carriage return for end of harmonic */

)

/* Close the file */
fclose (output);
printf ("\nFile written\n ");

)
else

I
printf ("\nNo changes made. no file written\n");

)

return o·

166

H.1.2. Envelope entry routines

All envelope entry is performed with a variation of this procedure.

/ ~ ******************* * ** ***** getenvelope () *** **************** ** **** * ****
Allows user to enter an envelope in graphics mode . Assumes that the mouse
is l oaded and mouse user interrupt is set , and graphics is loaded, but
has been left in tex t mode using the restorecrt() command.

No d is tinction is made bet ween the values stored for an amplit ude curve
and a phase curve. The additive synthesis routine , add iti ve () . will
interpret the two curves correctly .
************************** ** ****** *** ******* * *** *** ** ***** *************** wi

:~t getenve l ope (env_ type type , int data l) , int gmode)

st r uet linesettingstype linestyle;
:' :1t drawok ;
:nt last x, lasty;
~se_event buffer ;

setg raphmode (gmode);
cleardevice () ;

/ - Display instructions -/
outt. ex t xy (1. 1 ,

"Press left but. ton a nd move mouse t.o draw envelope , right button to eXit ");

:f (type == amplitude)
out textxy (1 , l+texthe ight (It "), "AMPLITUDE ENVELOPE ") ;
else
out textxy (I , lttextheight (" ") , "PHASE ENVELOPE ") ;

/ - Get linewidth *1
getlinesettings (&linestyle) ;

setfillstyle (EMPTY_FILL, BLACK) ;

bae3d (TLX ENV- line style.thickness , TLY ENV-l inestyle . thickness ,
BRX-ENV+linestyle.thickness , BRY_ENV+linestyle.thickness,
O,TRUE) ;

if (type == phase)
I
line(TLX ENV,TLY ENV+((BRY ENV-TLY ENVl/2) ,

BRX~NV , TLY~ENV+{(BRY~ENV-TLY_ENV)/2)) ;
I

I - Reset mouse *1

1* ??? Reset mouse - head
~se clearbuffe r () ;
rnse- show(l);

if (t ype
I
last x
lasty

I
e l se

== amplitude)

TLX ENV;
BR()NV;

TLX ENV;

tail *1

I
last x
l as ty

I
TLY=ENV+((BRY ENV - TLY_ENV) 121 ;

moveto (last x, l asty);

drawok = FALSE ;
wh i le (! drawok)

I
if (mse isevent(»

I
mse get event (&buffer);
i f (buffer . status. eight)

I
drawok = TRUE;

I
else

I

167

•

if {buffer.status . leftl
I
if «buffer.x >- TLX ENV) " (buffer.x <= BRX ENV) "

(buffer.y >- TLY:ENV) && (buffer.y <= BRY:ENV))

mse hide(O);
lineto(buffer.x, buffer . y);
mse show (0);
lastx = buffer.x;
lasty = buffer.y;
data [last x-TLX ENV) - BRY_ENV-buffer . y ;
I -

~5 e hide (1) :

resto recrtmode ();

return TRUE;

void fillgaps (int huge ·da ta , int length . int novalue ,
lnt pe range, env_type type)

int i, start, index;
double x, xl, x2. yl, y2, m, c;

I " No data */
,~ «data == NULL) I I (length <= 0) return;

1* E'irst point must be 0, last "dummy" point must be 0 */
if (type == amplitude)

I
data[O] = 0 ;
data[MAX AEJ - 0;

I -
else

I
data[O) = pe range/2:
data[MAX PE l pe range /2 ;

I -

start,. 0;
index = 1;
while (start < (length - i))

I
wh ile (data(indexl -- novalue)
if «index - start) > 1)

++ index;

I
/*
xl
x2
yl
y2

interpolate between data[startl
(double) start;

and data [i nde x l */

(double) index ;
(double) data[startl:
(double) data[indexl;

m = (y2 - yl) / (x2-xl) ;
c yl - (m*xl);

for (i

I
start+l; i < index; i++)

x (double) i;
data(iJ = (int) (floor(m*x + el);

I

start index;
index - index+l;

I

168

H.1.3. FM parameter entry

/ ~ .* •• ********************* FMPARAM.C *-**************.*********-************
Allows user to enter parameters for FM synthesis and wr ites these
parameters to a file.

By: A. J. Kesterton
Date started : 28/12/89
Update log :

I Date I Comment I
1--
128/12/89 1Started log .
1 1

~include <stdio . h>
iinclude <conio.h>
.include <c~ype.h>
.include <dir.h>
~include <a l lee.h>
'include <string.h>
Sinclude <s tdlib .h>
~include <math.h>

Sinclude <graphics.h>

#include <rat.h>
, include <rat li b.h>
hnclude <fm . h>

typedef enum {amplLtude, phase, modulatlonindex} env type;

0/

/* ************************ 'define's ****************************.******** *1

'define TRUE 1
'define FALSE a

'define ESC 27

'define AE RANGE
wdefine PE-RANGE

'define TLX ENV
'define TLY=ENV

#define BRX ENV
'define BRY-ENV

255
AE_ RANGE

((getmaxx()-MAX AE)/2)
40 -

(TLX ENV+MAX AE)
(TLY=ENV+AE_RANGE)

1* The data arrays are initialized to this value so that when any
interpolation is done, the values entered by the mouse will be
distinguishable from the initialized va lues. *1

'define NO_DATA - 10

1* ************************ local procedures ******* ***** ******************* *1

int getenvelope (env type type . int datal). int gmode);
void fillgaps (int huge *data, int length , int novalue .

int pe_range, env_ type type) ;

1* *** *1

int main (int argc, char *argv (J)

int ok .
fileox. ,
createok,
finished ; 1* Controls main loop *1

char fname[MAXPATH);
FILE *output;
i nt attrib;
struct ffblk fblk;

1* Ouptut file name and path *1
1* Pointer output file *1
1* File attribute *1
1* File cont rol block *1

169

char ch,
option ;

i nt nharm;

/ * Temporary variable for character entry */
/ * Sto r es selected option as a character *1
I ~ Number of ~armonics * 1

i~t huge ·store amp;
i~t huge ~store-modi ;
int huge *temp_ptr ;

double t emp fceq; /* Temporary sto rage for frequency ratio *1

ir.t digit;

/ ~ NB - you must have arrays running from 0 to MAX AE/PE. 1e a size of
MAX AE/PE+l. The last po i nt array[MAX AE/P E} MUST BE a for
ampIitude enve lopes and the y midpoint-for phase envelopes */

i~t t emp amp [MAX AE+2J; /* te~pora ry storage for amplitude envelope *1
lnt temp=modi [MAX=AE+2] ; I T tempo r ary sto rage for phase e nvelope */

int huge *a e p tr ;
int huge *le-ptr;

:nt ae range=AE_RANGE ; /* The range of the amplitude data (0 to ae range-l)*/

long int np ; 1* Number of points - > duration of sample *1

size_t size ; 1* Memory allocat ion size *1

':'r:t 1, j ; 1-.: junk loop counter -.: I

int driver'" DETECT , mode;

double cfreq, mfreq ; /*

clrscr() ;

1-.: Set up g raph ics mode -.: 1
initgraph (&driver, &mode, "~H) ;

restorecrtmode(); 1* Flip back to text mode, graphics dr iver still loaded,
use setgraphmode to r estore *1

1* Ini t ializat ion of variables */

mse i nit (T RUE, FALSE);
mse - set_user_intr (ANY_MOUSE_EVENT) ;

cfreq = 0 . 0 ; mfreq = 0 . 0 ;

store amo.= NU LL ;
sto re: modi = NULL ;

1* Al loca te space in far heap for envelopes *1

/ * First - overall ampl itude envelope */
si ze "" (sizeof (ok) -.: MAX AE);
if «store amp = (int huge *) farma 110c «unsigned long) s i ze)) == NULL)

(-

}

printf ("**-':-':-': ERROR - Could not al l ocate enough space fo r data **-':**\n ");
mse end () ;
exit(l) ;

1-.: Next - space for the modu l ation index envelope *1

size = (sizeof (ok) * MAX AE) ;
if «store modi = (int huge *) farmalloc «unsigned long) size)) =2 NULL)

(-

I

printf ("***** ERROR - Could not allocate enough space for data *****\n");
mse ena();
exit (l) ;

clrscr();

1* Enter carrier and modulation freq -.:1

1* Enter overall amplitude enve lope *1

1* Enter modulation index enve l ope *1

/* Ask for car r ier frequency *1
ole. '" FALSE ;
while (! ok)

(

170

printi (" \nCarrier frequency : ") ;
scant (''%If'',& temp fceq) ;
if (terne f req > (double) 0.0) I ' -

cfreq = temp [req ;
ok := TRUE; -

I

. ~ Ask for modulation frequency *1
.:: k - FALSE;
· nile (! ok)

I
printi (" \nModulation frequency : ");
scant ('' %If '',& temp [req);
if (temp freq > (double) 0 . 0)

I -

I

mfreq = temp freq;
ok = TRUE;

• Clear envelopes wi

:or (1 = 0; i <= MAX_ AE+l; i++)
I
temp amp [i) = NO DATA;
temp- modi fi) = NO DATA;

I - -

~ Overall amplitude *1
~: (getenvelope (amplitude. temp_amp, mode»)

I
1* Copy to far heap *;
temp ptr = store amp ;
for (i~O; i<MAX AE; i++)

I -
*temp_ ptr = temp_amp(i];
++temp pc r;

I -
-temp ptr = 0; /* last point */

I -

/ * Modulation index *1
:: (getenve lope Cmodu lationindex, temp_modi . mode»)

I
/* Copy to far heap wi
temp ptr = store modi;
for (i=O ; i<MAX AE; i++)

I -
*temp ptr = temp_modi(i];
++temp ptr;

I -
temp ptr = 0; 1 last point *1

I -

/ * Mouse no longe r used, reset it */
~se set user intr (NO MOUSE EVENT);
::-.se::::end-O ; - -

/ " Write parameter file *1

j * . •• code deleted *1

171

H.1.1.4. Granular Synthesis Parameter Entry

/ ~ ~*~*.******************** GPARAM.C ***************************** ***** **** *
Allows user to enter parameters for Granular synthesis and writes these
parameters to a file.

By : A. J . Kesterton
Date started :1 1/0S/90
Update log:

I Date I Commen t I

1--
111/0B/90 1Started log .
11 1/0B/90 1Don't use mouse yet
119/DB/901Try using mouse for grain density and amplitUde envelope
116/12/90lAlter to have use amplitude envelope and g rain density
I IRemov e references to grain dura tion - not required

~define TRUE 1
#define FALSE 0

/ * Corr~ent out when not using mouse */
#define USE_MOUSE 1

/ * Other constants *1

#define ESC 27

¥define MAX AE MAX_E

Idefine "E RANGE 255 -'define GO RANGE AE RANGE

Ide fine TLX ENV ((getmaxx () -MAX _"EI/21
'define TLY::) NV 40

'define BRX ENV (TLX ENV+MAX AE)
'define BRY-ENV (TLY=ENV+AE_RANGEI

/ - The data arrays are initialized to this value so that when any
interpolation is done , the values entered by the mouse will be
distinguishable fro m the initialized values . *1

'define NO DATA -10

'include <stdio .h>
Hinclude <conio.h>
' include <ctype.h>
'include <dir .h>
'include <dos.h>
iinclude <alloc .h>
'include <string.h>
'include <stdlib.h>
'include <math.h>

'include <graphics.h>

lifdef USE MOUSE
'include <rat.h>
'include <ratlib . h>

fendif

'include <granular . h>

typedef enum {ampl itude, graindensity} env_type;

1* -**---****-*--*-****** l ocal procedures *******- **-**** ******** ** ******* *1

void fillgaps (int huge *data, i nt length, int novalue, env type type);
int getenvelope (env_type type, int data[], int gmode); -

172

/* Set stacK size
unsigned seklen

'/
10000;

int main (int argc, char *acgv [J)

int ok.
fileok;

char fname[MAXPATH];
FILE "'output;
int atteib;
struct ffbik fblk;

/* Controls main loop */

/* Ouptut file name and path -/
/* Pointer output file *1
j* File attribute *'
/* File control block */

char Chi j* Temporary variable for character entry * /

long int np; / * Number of points -> duration of sample *1

gran params gparams; /* Granular synthesis parameters * 1

double temp_double - 0.0;

int huge ·store amp;
int huge *store-gden ;
int huge -temp_ptr;

int digit;

/* NB - you must have arrays running from 0 to MAX AE, 1e a size of
MAX AE+l. The last point array[MAX AEJ MUST BE-O for
amplitude-type envelopes */ -

int temp amp [MAX AE+2J; j* temporary storage for amplitude envelope */
int temp=gden[MAX=AE+2); /* temporary storage for grain density envelope */

int huge *ae pte;
int huge *gd=ptr;

/ * REMEMBER! The range of the amplitude data (0 to ae_range-l)*/

size_t size ; /* Memory allocation size */

int driver = DETECT, mode;

int L j ; /* junk loop variable * /

c1rscr () ;

/* Set up graphics mode * /
initgraph (&driver, 'mode, " ");
restorecrtmode(); /* Flip back to text mode, graphics driver still loaded,

use setgraphmode to restore */

/* Initialization of variables */

mse init (TRUE , FALSE) ;
mse=set_user_intr (ANY_MOUSE_EVENT);

store amp = NULL;
store:gden = NULL;

/* Allocate space in far heap for envelopes */

/* First - overall amplitude envelope */
size'" (sizeof (ok) * MAX AE) ;
if ((store amp = (int huge *) farmalloc ((unsigned long) size)) z= NULL)

I -

)

printf (" ***** ERROR - Could not allocate enough space for data ** * * * \n");
mse end ();
exit(l);

/1o Next - space for t he modulation index envelope */

size'" (sizeof (ok) * MAX AE) i
if «(store gden = (int huge *j farmalloc ((unsigned long) size)) == NULL)

I -

)

prin tf ("*1o *** ERROR - Could not allocate enough space for data ** ** *\n");
mse end () ;
exit(l);

clrscr ();

173

I x Fi xed paramete~s */
gparams.c_ range - hE_RANGE;
sparams.d_range = GO_RANGE ;
gparams . Ap = 1 . 0;
gparams.si = 1 . 0/)0000 . 0 ;
gparams.phase = 0 .0;
gparams.gduration - 0 . 0 ;

I'll; Amplitude ttl
I'll; Sampling interval */
I'll; Phase shift */
I 'll; Arbitary value - not used 'Il;/

orintf
"("P l ease enter a ll numbers as rea l numbers (ie. with d e cimal point\n");

/ * Ask for max centre frequency *1
o k = FALSE ;
"'hile (! ok)

I
print E (" \ nMax i mum centre frequency (H z) : ");
scanf (''% I f'',& t emp doub l e);
if (temp double> (double) 0 . 0)

I -

)

gparams.max wO - temp_double ;
ok '"" TRUE; -

/ * Ask f o r min centre frequency -j
ok "" FALSE ;
while (! ok)

I
printE (" \nMinimum centre f requency (Hz): It);
scan t (''% I f '', &t emp doub l e);
i f (temp doub l e >- (double) 0 . 0) && (temp_ double < gpa~ams . max_wO))

I -

)

gparams.min wO temp_ do ub l e;
ok =- TRUE ; -

1* Ask for ma x ch i rp rate *1
ok = FA.LSE;
while (!ok)

I
printf C" \ nMax imum chirp rate: ");
scanf (' ' %If ",& temp double) ;
if (temp double> (double) 0.0)

I -

)

gparams.max r = t emp_doub l e;
ok ... TRUE ;

1* Ask for min chirp rate *1
ok = FALSE;
while (!ok)

I
printf ("\nMin i mum chirp rate: ");
scanf ("%If '' ,&temp double);
if {(temp double >- (double) 0.0) && (temp_double < gparams.ma x r))

I -

)

gparams . m~n r - temp_double;
ok '" TRUE;

1* Ask for max time width *1
ok '" FALSE ;
whil e (!ok)

I
pri ntf ("\nMaxi mum time wi dth (milliseconds): ") ;
scanf ("Uf " ,&temp double);
if (temp double> (double) 0.0)

I -

)

gparams.max a = temp_double I 1000.0;
ok .. TRUE; -

1* Ask for min time width *1
ok '" FALSE ;
while (! ok)

I
printf (II\nMinimum time width (milliseconds): ") ;
scanf ("% If '' ,&temp double);
if «temp double >- (double) 0.0) &&

(temp~double < (gparams.max_a *1000 . 0»))

174

)

gparams.min a
ok '" TRUE ; -

Clear envelopes *1

::n (i - 0 ; i <= MAX_AE+l: i++)
I
temp amp [1 J
temp-gden[i)

) -

NO DATA;
= NO::::DATA ;

~ --------------- ----- Draw amplitude envelope --- -------------------- *1
~ Overall amolitude * 1

:: (getenvelope (amplitude, temp amp, ~ode))
!
/* Copy to far heap */
temp ptr = store amp;
for (1=0; i«MAX-AE-l); itT)

I -

)

"'temp ptr = ~emp_amp(i);
++temp_ptr;

temp_ptr = 0; / last point */
++temp_ptr ;
"temp_ptr 0;

, ~ -------------------- Draw grain density ------ - --------------------- *1
:: (getenvelope (graindensity, temp gden . mode))

I -
/* Copy to far heap *1
temp ptr = store gden;
for (1=0; i«MAX-AE-l); iff)

I -
*temp ptr = temp_gden(i);
++temp ptr;

) -
temp_ptr = 0 ; 1 last point *1
++temp ptr;
*temp ptr = O-

J -

/ '" Mouse no longer used. reset it */
~se set user intr (NO MOUSE EVENT) ;
~se::::end- () ; - --

- -------------------- Write PARAMETER file - - -- - -------------------- */

/ ~ ___ code deleted */

175

H.2. Synthesis

The synthesis programs all use the following algorithm:

Read in parameter file

IF transputer THEN

boot transputer

send parameters

f* Transputer performs synthesis *f

get waveform from transputer and place in output array

ELSE

perform synthesis on PC

Store output in .ROL format

The source code in this section is the procedure or procedures that perform the

synthesis on the PC.

H.2.1. Additive Synthesis Procedure

i nt additive (add_params params, int huge w output, double sample_freq)

I
double t, t i nc;
long in t s I ndex;
double h total. su total , total;
int e index, h index;
double xl, yl,-x2, y2;
double hae val. hpe va l , ae_val;
double f req; -
int huge *ptr;

/ * To avoid floating point errors, the fol lowing values must be checked :

number: of harmonics must be > 0
sampl e frequency must be > 0
Amplitude envelope range must be > 0
Phase envelope range must be greater than 0

'/

if (sample f req (::0 (double) 0 . 0)
I -
return E'ALSE;

)
if (params.nh <= 0)

I
return FALSE;

)
if « params.ae range <= 0) II (params.pe_range (= 0»

I -
return FALSE;

)

/ * End of range checks */

ptr '" out put;

176

t = 0.0; lit CUrrent time step wi
t inc = I.D/sample freq ; / * Time interval */

for (s index = 0; s index < params.np; 5 index++)
I -
h total 0 . 0 ; /* This time-step 's sum of harmonics */

lit Work out index (e index) into envelope arrays from sample index'" I
e index = map_ s_to_e- (s_i ndex, params . shift);

lit Work out what xl and x2 are for this sample, this will remain
constant for this time step */

xl (double) ma.p e to 5 (e index, params . shift) ;
x2 = (double) map:e=to=s (e:index+l, params.shift) ;

for (h index = 0; h Index < params.nh; h Index++)
I
lit Interpolate harmon ic ' s amplitude va lue for this time step it/
yl = ae convert (params . hae[h index] [e index), params.ae range);
y2 = ae:convert (params . hae[h:index] [e:index+l J . params.ae_range):

/ - Harmonic's amplitude envelope -I
hae_val = int erpo late (xl, yl , x2, y2 , s index) ;

/ * Interpolate harmonic's phase shift value for this time step *1

/* xl and x2 are the same as for amplitude envelope *1
yl - pe convert (params . hpe(h index l (e index), params.pe range):
y2 = pe=convert (params , hpe{h=indexl [e=index+ll, params.pe_range):

/* Harmonic ' s phase shift */
hpe val = lnterpolate (xl, yl, x2 , y2 , s index) ;

1* Each sine unit has a specific frequency ~I
freq = params , sfreq[h_ index) ;

/* Sine unit's value *1
su total = hae_val * sin ((2.0 PI * freq * t) + hpe_ val);

h total
} -

h total + s u total; 1* Calculate one sine unit *1

yl ae convert (params.ae (e indexl . params . ae range);
y2 ~ ae- convert (params.ae(e index+I J , params.ae range) :

1* Overall amplitude envelope - I
ae_val = interpolate (xl, yl, x2, y2, s index) ;

total = ae_val * h_total :

/* Convert to a 16-bit number *1
total = sample_expand (total, params.nh);

*ptr = (int) (floor(total»;

1* Debug stuff * /
if «(s index % (long int) 1000) -- 0)
print (("Time step %ld , time is %1 f , value is %d\n ", s index , t , "'ptr) ;
1* End of de bug stuff -/

++ptr ;
t = t + t_i nc ;

}

return TRU E;
}

177

H.2.2. FM Synthesis Procedure

:~t fm (frn_pa r ams ~pa rams, int huge *output, double sample f req)

i
double t, t inc , value ;
int huge *ptr;
long int 5 index;
int e index;
double xl. x2. yl , y2;
double ie_va l , ae_val. amplitude ;

if (sample freq < .. 0 . 0)

return FALSE ;
I

;:Jtr .. output ;

t inc = 1.0 I sample freq ;
t = 0 . 0 ;

~or (s_i ndex = 0; s index < params->np; 5 lndex ++)

I

e index = map 5 to e (s index. params- >shift) ;
xl - (double) - map e to s (e lndex, params->shlft);
x2 = (double) map:e:to 5 (e_lndexTl, params->shift);

/* Work out modulation i ndex for this time step */
y l = ae convert (params-> ie(e index] , params->ae range);
y2 = ae:conve rt (params-> le[e:lndex+l l , params ->ae range);

ie_va l = interpol a t e (xl. y l . x2. y2, s_index) i

/* Work out amplitude envelope for this time step * 1
yl - ae convert (params->ae[e index) , params->ae range);
y2 :: ae=conve rt (params - >ae[e=i ndex+lJ, params->ae_range);

ae val :: ~nterpolate (xl, yl. x2, y 2, s_index) ;

value 2 ae val ... sin «2.0 * PI * params->cfreq * t) +
(ie_val * sin (2 . 0 '" PI * params->mfreq * t))) ;

"ptr::< (int) (floor(value'" (double) MAX_INT));

if «s index % (long intI 1000) == 0)
printf("Sample no lId , time is %If seconds, value is %d\n ", s index, t,*ptr) ;

++ptr;
t '" t + t inc;

return TRUE ;
I

178

H.2.3. Granular Synthesis Procedure

Perform granular synthesis . The granular() procedure calculates
the grain sets on the Quter for loop, and the grains that make up
~he grain sets in the inner for loop
~****************************** ** ******* *** ***************************** *1

:..~ :. granular (gran params "JI'params , int huge "'output, double sample frcq)

,:ouble Ap, P, to, si, 10.' 0 , a, r;
double t incr, sample rate ;
::1t. i ;
.:'.:-:t msg;
::1t. huge "'temp;
couble grain duration, start time, end_time ;
:..~ t gd lndex~ start lndex;
.:'.:1t epaint, height;
~nsigned long size;
:" :1t huge "'tptr;
=ouble xl, x2, y l , y2, ae va l ;

sample_rate = 1 . 0/s ample_freq;

~a rams->duration = params->np / sample_ freq; /* How long must sample be *1

.:'o.p = 1.0 ; I '" The amplitude envelope is put in later *1
~ = params->phase ;
::J ... 0 . 0;
s: = params - >si;

g~ai n duration = params->duration I (double) MAX G; 1* Grain length in s *1
gd_inoex = (int) (gra1n_ durat10n I sample rate);-I* No . of samples per grain *1

size = (unsigned long) (sizeof(i)*(gd_index + 2));

, & «temp = (int huge *) farmalloc (size» == NULL)
{

}

printf ("Could not allocate temporary storage\n");
exit (1);

start time = 0.0;
end_time ... 0 . 0;

eooint MAX_G - l;
printf
(" of %4d grain sets\b", epoint) ;

:~r (epoint = 0 ; epoint < MAX_ G; epoint++)
{
start time = end time:
end tIme += grain duration:
start index = (int) (start_ti me I sample rate) :

if (params->gd[epoint] >= 1)

1* Do first calculation and place in output array, do not
divide by 2 *1
IT Work out variable parameters for granular *1
wO = rand value (params->min we, params->max we);
a = rand value (params->min a, params - >max a l ;
r = rand-value (params - >min- r, params->max-r);
1* Do granular synthesis *1- -
grain v2 (Ap, p, to, si , we, a, r ,

- (double) 0.0 , 1* Always start at t=O.O till
t - grain duration *1

(double) grain duration,
(double) sample rate,
(int huge *) &Output (s tart_index]) ;

for (height = 2; height <= params - >gd[epoint]: height ++)

1* Work out variable parameters for granular *1
wO = rand value (params->min wOo params->max wO);
a = rand value (params->min a, params->max al;
r = rand-value (params->min-r. params - >max-r) ;
1* Do granular synthesis * 1- -
grain_v2 lAp, p, to, si, wQ, a, r,

179

(double) 0 . 0 ,/~ Always start at t=O.O *1
(double) grain duration,
(double) sample_rate,
temp) ;

/* Add result to output array *1
for (i = 0; ~ < gd lndex; 1++)

(
output[start index+ iJ += temp[i] ;
/* output[start lndex+l) /= 2.0; */

}

if (params->gd[epoint] > 0)
{

I '
I '
yl
y2

Now put in amplitude envelope */
What are start and end y values wi

~e convert (params->ae(epoint], params->e range) ;
= ae=convert (params->ae(epoint+l), params - >e range);

for (1=0; 1 < gd lndex; 1++)
{
ae val = interpolate (0.0 ,y 1 , (double)gd_index , y2, (double) iJ ;

I'

}

printi ("output:%d,envelope %If\n '' ,
output(start_ index+iJ,ae_val);

output(start index + iJ =
(int) (ae val"((double) output(start index+i]l);

}
/* The output array was cleared when allocated, so no need to zero all

points with grain density of o. * /

printf ("%4d\b\b\b\b", epoint) ;

printf ("\n") ;
return TRUE ;

/* *********************** grain v2()*********** ************ ************** *
Thi s calculates the samples in a grain and places them in the out out
array.

* ******************.** */

void grain_v2 (doubl e Ap, double p, double to, double si,
double wO, double a, double r ,
double n start , double n end, double niner ,
int huge - *output) -

i:1t huge *ptr;

double ReCO, ImCO , ReCl , ImCl , ReC2 , ImC2 ;
double expReCO;
double Ref 0 , lmfO;
double expReCIC2;
double ReHl, ImHI ;
double cO, cOi, cl , c2, c3 , c4;
double ReHn, ImHn , Refn, Imfn ;
double n ;

/* FILE *result;*/

/* A lot of va lues can be precalculated for the grain */
ptr = output ;

ReCO log(Ap) - (a * tO*tO);
ImCO - p - «r/2.0)*tO*tO) - (wO*tO) ;

ReCI
ImCI

Rec2
ImC2

-2.0*a*si*tO;
-si*«r*tO)+wO);

-a*si*si;
-(r/2.0)*si*si ;

expReCO = exp{ReCO);

Ref 0 expReCO * cos (ImCO);
ImfO = e x pReCO * sin (ImCO);

expReCIC2 = exp(ReCI+ReC2);

180

ReHl
I mHl

expReCIC2 * cos (ImCl + ImC2);
expReCIC2 sin (I~Cl + ImC2);

cO = 2.D*ReC2 ;
cOi = 2.0*ImC2;
c l exp(cOl * cos (cOi) ;
c2 sin(cOi) * exp(cO);
c3 exp(cO) * sin(cO i);
c4 exp(cO)*cos(cOi) ;

ReHn
ImHn
Refn
Imfn

ReHI ;
I mHI;
Ref 0;
ImiO ;

1* Point "0"
*ptr = (i nt)
++ptr;

is calculated "'1
(floor (Refn ... (doub l e) MAX I NT));

1* Open fi l e * I
1* result f open("v2 . txt"."w ") ; *1

f or (n = n start + n i ncr ; ., <: (n_end - n i ncr) ; n + = n i ncr)
(
granu l e v2 (cl. c2, c3, c4, &ReHn, &ImHn, &Refn, &Imfn);
1* print/store values of Refn, Imfn *1
1* printf("%lf.%lf\n",Refn,Imfn); "'1
*ptr = (int) (floor (Refn * (double) MAX INT)) ;
++pt r;
1* Store real output only "'1

J

1* fclose (result); *1
J

1* ... ** ... * ... ******** ... *** ... * granule v2() ********** ** ** **** ... ***** ... **** ... ******* *
Calculate a sample in a grain .

* ******* ***************** *********************************** ... ********* *1

(

J

(doub l e cl, double c2 , double
double *ReHn, double *ImHo,
double *Refn , double *Imfo)

double ReHnl, ImHnl, Refnl, I mfnl;

ReHnl
ImHnl

Refnl
I mfnl

*ReHn
*ImHn

*Refn
"'Imfn

(el * *ReHn)
(c3 * *ReHnl

- (c2 * *ImHn);
+ (*ImHn * c4) ;

(ReHnl * *Refn)
(ReHnl * *Imfn) +

(ImHol * *Imfn);
(ImHnl * *Refn) ;

ReHnl ;
ImHnl ;

Refnl ;
Imfnl;

c3 , double c4 ,

1* ************************ rand va lue() ****************** * *************** *
Generate a random value within a given range.

* ** * ****************************** * *1

Hinclude <time.h>
Hinclude <stdlib.h>

double rand value (double min , double max)
(-
int r and val;
double t - rand, range;

if (ma x == min) return (min);
randomize();
rand_val = rand{);
range = max - min;
t rand (« (double) rand vall I «double) RAND MAX)) * range) + min ;
return (t ra nd); -

181

H.2.4. Spiral Synthesis

;" -* ••• * ... *****..,****"',,*** SPlRAL.C *_*** •• ***"''''********* * ********* 1Ir*****
Spira l s ynthesis.

3y: A. J. Kesterton
Date started : 29/01/90
Update log :

I Date I Comment I
1--
129/01 / 90 lStarted l og .
129/01/90 lTook old spira13.c , . h code and brought it up to standard layout

! ~ ***************-******** Include files ********************************** */
=include <math . h>
~:nclude <stdio . h>
=include <soiral . h>
/ - ********~***"'******" ... */

Procedure adapted from one by Peterson in [Strawn, 19851.
part is stored

The variables are as follo ws:

long int ncnt - no. of compl ex samples to compute
double drae - Divisor of radian angle of carrier

No imaginary

double mag - initial distance of pole position from z plane origin
double modscl - constant peak amplitude of modulating sinusoid
double tpdram - Two-pi divisor for radian angle of modulator.
double ~real ptr - the pointer to where real data must be stored
int dump - Prints out the values as they are calculated
~.~ •••• * ••••••••••••••• *.* ••• * •• * ••• * ••• * •••• ***.**.** ••••••••• * ••••• • ·1

int spiral (spiral params param,
double -huge ·real ptr ,

{

int dump) -

double a, b; 1* dynamic tap weights . /
double xr; I· Current real input sample ·1
double yr; I· Current real output sample ·1
double yi; I · Current imaginary output sample· I
couble dr; I· previous (delayed) real output sample • I
double di; 1* previous (delayed) imaginary output sample *1
double angl ; 1* radians per sample of output sinusoid before modulation .1
double ang12 ; /* current radians per sample of output after modulation - sets

carrier frequency ·1

double mg2; 1* current modulated distance of pole position from z plane
origin */

double phz; I· current radian angle of the modulating sinusoid *1
double phzdel; 1* cost ant radian increment to phz. Determines modulating

frequency. * I

double mod; 1* current value of modulating sinusoid ·1

long int i; I· counters *1
long int In ;

In z param .ncnt;

angl PI2/param . drac;

phzdel = PI2 / param.tpdram ;

1* End of input data · 1

phz ." 0 . 0;
dr 0 . 0;
di 0.0 ;
xr - 1.0 ;

i "" 0;

1* initialize delays to zero */
/. initialize input with a unit pulse ·1

182

I

;"'hil e (10--)

1

I

mod = param . modscl • sin (phz) ;
phz +- ph zdel ;
mg2 = para m.mag + mod ;
ang12 = angl + mod ;

a mg2 '" cos (ang12) ; /* set current v a lue */
b := mg2 ... sin (ang12); 1* of tap we i ghts 1f/

yr: .. xc + (a ,. dc) - (b '" dl) ;
yi = (b dr) + (a di) ;

de .. yr ; 1* stoce delay samples '" I
dl .. yi ;

xr 0.0 ; /* input dies after fi rst sample */

"'real ptr yr ;
++reaI_ptr ;

if (dump)
1
if «il < (long intI 1000)

1
printE ("Sample no %ld , value is %If\n", i , yel ;

I
e l se

1
if « (i) % (long intI 1000) ::= 0)

1

I
I

i++ ;

printf (" Sa mp le no Ud , va lue is %If\n ", i , yel ;
I

::-e t u r n TRUE ;

183

H.3. Pack Samples into .ROL Format

/w __ ********** * ************ QUT2ROL.C **** *********************************
When a sound is calculated, it must then be packed into the .ROL format.
This is done by using a template file with all the correct addresses,
etc for the Roland S-220, and combining the data with this template. The
~emplate is produced by running a program called MKTEMPLT on any .ROL file .

The user prov ides the following as input:

A huge pointer to the output data . The data is assume to be signed ints,
for the PC, - 32768 < data < 32768.

A structure containing the number of sample points , the Roland structure
that is required (A, B, C, a , AB, CD or ABeD) and output .ROL file name.

The caller must insure that the number of sample points will fit into
the structure. If there are more points than can be placed in the
Roland structure, the procedure returns FALSE .

NB: The number of points can be <= MAX_SINGLE_ STRUCT, MAX OOUBLE_STRUCT
or MAX_QUAD STRUCT.

3y : A. J . Kesterton
Date started : 17/10/89
Update log :

I Date I Comment I
1--
117/10/B9 1Started log .
120/10/891Works for A, B, e , D, AS, CD - but NOT ABeD because I can ' t
I Iget a . ROL file for that structure (and thus no template).

1* ~*** ****~** **** * * ** * **** Include files ** * ****** * *** * **** **~* ** * ** ****~** * 1
Mi nclude <string.h>
'include <stdio.h>

'include <out2rol . h>

'define TRUE 1
lidefine FALSE 0

'define DEBUG TRUE I~ Prin t s TEXT MODE error messages *1

Bdefine SINGLE 1
jdefine DOUBLE 2
'define QUAD 4

'define ROL SYSEX 10 Ox41
.define ROL- S220 MOL ID OxlO
'define ROL-EOD Ox45-
'define ROL-OAT Ox42
'define ROL=MAX SYSEX_ LENGTH 256

idefine MIDI SYSEX OxFO
'de f ine MIDI=END_OF_ SYSEX OxF7

'define CHKSUM ERROR OxFF

1* *** ** ****** ********** **** Local function prototypes ***** **** ******** **** *1

int decide output type (rols220 params, cha r tplname[J , int *type);
vo i d convpack (unsigned char msg[J , i nt da ta);
i nt c a lc_chksum (unsigned char *bu f fer) ;

int out2rol (int huge *data, rols220 params)
1
int huge *ptr ;
int type;
int msg count;
cha r tplname(80};
F::E *template, *output ;

184

unsigned char ro lid ,
mdlid,
ch,
sysex,
cmd;

char line (81]; 1* For temporary storage *1
unsigned char msg (ROL_MAX SYSEX LENGTH] ; 1* one sysex message *1
int i ;
unsigned char by tel, byte2 ;
long int ptcount ;
int indicato r, finished ;
unsigned char chksum;
unsigned char - msg_ptr;

1* Is st ructure correct for number of sample points *1
if (!decide output type (params, tplname, &type»)

I - -

J

if (DEBUG) printE (" Error deciding output type\n ");
return FALSE;

ptcount - params . np ;

1* Open the template file *1
if (template = fopen (tplname , "rb")) NULL)

I

J

I- Could not open file - =eturn FALSE *1
return FALSE;

1* You are given a 8 byte name string - add the .ROL suffix and then open
t he output file *1

strcat (params.outf ,".ROL");
if (output = fopen (params.outf, "wb")) == NULL)

{

J

1* Could not open file - return FALSE *1
fclose (template) ;
re turn FALSE ;

1* Read template, pack data, write output file *1

1* MAKE UP HEADER *1

1* Structure name as ASCII char is read from template and wr itten to
output immediately *1

if ((fscanf (template, "%s\n", line)) != 1)
{

J

fclose (output);
fclose (template);
return FALSE;

if ((fprintf (output , " %s\n ", line)) EOF)
{

J

fclose (output);
fclose (template);
return FALSE ;

1* File name - read dummy from templ ate, discard and write new name *1
if «(fscanf (template, "%s\n", line)) ! = 1)

{

J

fclose (output);
fclose (template);
return FALSE;

if ({fprintf (output, "%s\n",params.outf)) -- EOF)
{

J

fclose (output);
fclose (template);
retu r n FALSE;

1* Roland S-220 specific constants, the MIDI Roland sysex id and the
Roland Model id - read and check the ones in the template file are
correct and store *1

if ((fscant (template, " %c%c\n " , &rolid. &mdlid)) != 2)
{
fclose (output);
fclose (template);

185

return FALSE;

i! ({rolid != (unsigned char) ROL SYSEX ID) I I
(mdlid != (unsigned char) ROL=S220_MDL_IDl

!

J

fclose (output);
fclose (template);
return FALSE ;

:..: (fprintE (output,"%c%c\n",rolid,mdlid» ,.,," EOF)
i

)

fclose (output);
fclose (template);
ret.urn FALSE;

; - END OF HEADER */

/ ~ START PACKING DATA INTO WAVE DATA PART OF FILE * /

pt.!': data;
c~d = (unsigned char) 0 ;

do
{

/* read start of sysex, cmd */
i f ((fscanf (temp!ate,"%c\c",'sysex,&cmd)) !"" 2)

{

}

fclose (template) ; .
fclose (output);
return FALSE;

if (sysex ! - (unsigned char) MIDI SYSEX)
{

}

fclose (template);
fclose (output);
return FALSE;

if «(fprintf (output,"%c%c ", sysex,cmd» co= EOF)
{

}

fclose (output);
fclose (template);
ret.urn FALSE;

if (cmd == (unsigned char) ROL_DAT)
{
/* Read in address into msg array *1
if ({fscanf (template, " \c\c\c",&msg[0],&msg (1],&msg(2]» != 3)

{

J

fclose (template);
fclo se (output);
return FALSE;

/* read in count of data bytes for that message *1
if «fscanf (template,"\d",&msg_count» l== 1)

{

J

fclose (template);
fclo se (output);
return FALSE;

/* place that number of bytes of data from data array into msg array */

msg_ptr = &msg [3] ;

/* Read msg count BYTES - > msg_count/2 INT's *1
msg_ count =-msg_cou nt 1 2;

for (i = 0; i < msg_count; itt)

1* AND CONVERT TO l2-bit signed number from l6-bits */
if (ptcount > 0)

{

}

convpack (msg ptr, ·ptr);
++ptr ; -
msg ptr = msg ptr + 2:
--ptcount; -

e lse
{

/ * We have run out of data - fill with blanks */
*msg_ptr (unsigned char) 0;

186

)

I

++rnsg_ptr;
":nsg ptr = (unsigned cha rlO;
... ·ms9 p tr ;

I -

/* place MIDI END_OF_SYSEX so checksum can be calculated " I

++m5 g ptr; /* Move past whe re checksum should be " /
-msg_pt r = (unsigned char) MIDI _ END_OF_SYSEX:

/* do checksum and p lace in msg array *1
if ((chksum - calc chksum (m5g)) =: CHKSUM ERROR)
I--

)

if (DEBUG) printE ("Srror calculating checksum\n ") ;
fclo se (output) ;
fclo se (templ ate) ;
retu rn FALSE;

else
(

)

--msg_ptr;
~msg_ptr - chksum;

/* Write the address + data msg + chksum to the output file *1
if «fprintf (output, " %c%c%c ", m.sg[Oj ,m5g [1] ,msg [2J)) "'''' EOF)

I

)

if (DEBUG) printf ("Error writing address\n ");
fclo se (ou tput.) ;
fclo se (t empl ate);
return FALSE ;

i ;: 3 ;
do

I
if «fprintf (output,"%c",msg[il» _. EOF)

{

)

if (DEBUG) printf ("Error wri tiing data or checksum\n " l;
fclose (output);
fclose (template);
return FALSE;

++i ;
)

while «msg[i j ! = (unsigned char) MIDI END OF SYSEX) &&
(i < ROL_MAX_SY SEX_LENGTHl I; - - -

)
else

I

)

if (cmd != (unsigned char) ROL_EODl
I

)

/ ~ ERROR - inco rrect command field * /
if (DEBUG) printf ("Error - incorrect command field\n ") ;
fclose (output);
fclo se (template);
return FALSE ;

/* Read and write the end of sysex byte * /
if ({fscanf (template,"%c",&sysex» != 1)

I

)

if (DEBUG) printf ("Error - reading end of sysex byte\n ");
fclose (template);
fclose (output);
return FALSE;

if (sysex != (unsigned char) MIDI_END_OF_SYSEX)
I

I

fclose (template);
fclose (output);
return FALSE;

if «fprintf (output,"%c", sysex)) EOF)
I

I

fclose (output);
fclose (template);
return FALSE;

.. hile (cmd !'" (unsigned char) ROL_EOD);

187

I

/ ~ Now read and write the wave parameters and performance parameters - a
direct copy of the template, until end of file */

:inished = FALSE;
do

indicator = feoE (template);
:f «(indicator" fscanf (template,"%c",&ch)) ! ... 1)

{

I

if (indicator == EOF) / * we have reached end of file *1
{
finished", TRUE ;

I
else

{
fclose (template);
fclose (output);
return FALSE;

if {(fprintE (outpu t,"'c",ch) "' .. EOF)
{

I

fclose (output) ;
fclose (template);
return FALSE;

while (! fini shed) ;

l Ye Finished *1
fcl ose (output.);
fcl ose (template);
return TRUE ;

/ * •••••••••••••••••••• decide output type() ••••••• __ •• _ ••••••••••••••• _- ••
Decide on the name of the template fil e required .
Ret urn FALSE if the size is incorrect for the structure requested.
W~***~**********w************* *1

in t declde_output type (rols220 params. char tplname[l . int * type)

{
if (params.np <= MAX SINGLE_STRUCT)

{
if «strcmp (params.rs. " A") == 0) II

(strcmp (params.rs. " B") 0) II
(st.rcmp (params .rs. " C") 0) I I
(strcmp (params.rs. " o n) 0))

{
*type = SINGLE ;

I
else

I
else

{

{
return FALSE ; 1* was not correct structure for that. nunber of data

points *1

if (params.np <= MAX_ DOUBLE_STRUCT)
{
if «strcmp (params.rs, nAB") 0) II

(strcmp (params. rs. "COli) == 0))
{
*type "" DOUBLE ;

I
else

{
ret.urn FALSE ; 1* was not correct struct.ure for that nunber of dat.a

points '*1

else
{
if (params.np <= MAX_QUAD_STRUCT)

{
if «strcmp (params.rs, " ABCD ") ="" 0))

(
*type - QUAD ;

)
else

{

188

I

return FALSE; /* was not correct structure for that nunber of data
points *1

else
(
return FALSE:

I

/* Must be correct size - now make up name *1
strcpy (tplname,params . rs);
strcat (tplname," . TPL It

); / * Add the .TP L suffix to strucutce name to
form template file name *1

return TRUE ;
I

void convpack (unsigned char msg[l. int data)
(

I

unsigned char by tel , byte2;

/* Convert data from signed 16 bit to 12 bit 2'5 complement:

aaaa aaabbbbb is the 12 bit number

pack into the form (byte 0) Daaa aaaa (byte 1) Obbb bbOO *1

1* Shift RIGHT to convert to lZ - bit number *1
data - data » 4;
data = data & OxOFFF ; /* Mask out just in case *1
/ * data is now OOOOaaaa aaabbbbb */
by tel - (unsigned char) (data» 5);
by tel - byte! & Ox7F; /* Mask out high bit just in case */
byte2 '" (unsigned char) (data & Ox001F);
/* byte2 is OOOb bbbb */
byte2 = byte2 « 2;
msg[O] - by tel;
msg[lJ = byt e 2;

int calc_chksum (unsigned char *buffer)

(
/* Calculates the checksum of a sys_ex message in buffer */

int index '" 0;
int sum = 0;
int chksum = 0;

while ((buffer [index+1 J !:: (unsigned char) MIDI_END_OF_SYSEX) &&
(index <= ROL_MAX_SYSEX LENGTH))

sum = sum + ((int) (buffer(index))) ;
++index;
I

chksum = ((0 - sum) & Ox007F) ;
/ * Ox7F is 0111 1111 1n binary - keeps 7 LS bits in the byte */
if (index >= ROL MAX SYSEX LENGTH)

(- - -
return CHKSUM ERROR;

I -

return (chxsum);
I

189

190

H.4. 8end a .ROL file to the Roland 8-220/8-10

This section includes portions of the SMPX program relevant to sending sample file to

the Roland S-220 sampler.

! ~ ~ ••• ** ••••••• *.***** smpx i() 10 SMPX L.e _.*.****--**_._.*-**--.*_.*.*-*
~oads a fil e from PC to sampler.

rile is opened and at the start of first sysex msg.

Caller must have initialized MPU.

?rogram by A. Kesterton 10/11/88
.******.*.** •• • **.***.*******.*.********************_.*.**************** * /

~include <stdio .h>
~include <dos . h>
~include <conia.h>

'i i:lcl ude "cueesteue.htl
;include "roland.h"
;i.nclude "debug.h"
#include "ro1220 . h "
Itinclude "mpu.h"
;!include " read send.h "

#include " smpx l.h"

int smpx 1 (cure steuet ·structure, FILE ·stream)

(
if (!init_ ro1220

1* switch into
(
return FALSE ;

}

(structure->man id,structure - >mdl id ,
structure->midI channel))
bulk dump mode */

delay (30); /* milliseconds */

cprintf ("Roland sampler now in BULK DUMP MODE\n");

/ ~ Now start getting data from sampler i n lots of sys ex msgs , in 3
"data sets " (my terminology)

if (!read send (stream, structure, S220_WD»
(-

}

if (DEBUG ROL 1) cput s (" SMPX L() - could nat send Wave Data\n ");
return FALSE; -

cprintE (" Sent Wave Data to sampler\n ") ;

if (! read send (stream, structure , S220_WP»
(-
return FALSE;

}

cprintE ("Sent Wave Pacameters to sampler\n ");

·i.f (!read send (stream, structure, S220_PP»)
(-

return FALSE:;

cprintf ("Sent Performance Parameters to sampler\n");

fclose (stceam); /*" Close sample file */

return TRUE ;
}

*/

J ~ *** ••• ***w**** read send () i n READ SEN.C ******************* ************
Reads data from the- file. fills in gaps and sends to Roland.

If alt struct is true , then we have to adjust various bytes of the msg .
If it ~s Wave data. merely the address .
If it is Wave Parameter , t hen the actual bytes of the msg must change .

Program by A. Kesterton 10/l1/B8
*** *1

: include <stdio.h>
::.:"nclude <conia.h>
::. include <string . h>

::. include "currstruc.h"
::. :'nclude "midi . h "
=include " roland . h"
::. include " ro1220 .h"
:include " mpu . h"
~include "set wrd.h"
: :nclude "debug.h "

#include "read send . h "

:':'.t read_send (FILE ·stream, curr_st ruct *current, int dtype)

:.;nsigned char s msg (ROL MAX SYSEX LENGTH);
:'nt eodflag = FALSE; - - -
~:'lt i, temp_chksum;

/ * Set up the Roland Request data message for this message type and
bank. */

eodflag - FALSE;

(!set wrd (current, s_msg, dtype , ROL_WSD))
I -

I

cputs ("READ SEN() - could not setup ROL_WSD msg\n ") ;
return FALSE;

if f!mpu send sysex (s_msg))
I--

do
I

I

if (DEBUG ROL 1) cputs ("Could not send RQD\n");
return FALSE: -

if (!mpu recv sysex (s_msg))
I
return FALSE:

I

/* if an ROL ACK , don't bother to check! */
switch (extract (s msg))

I -
case (ROL ACK) :/* Good, continue */

- break ;
case (ROL ERR) :/- Error, abort * /

- if (!sendl (ROL RJC,current->midi_channel))
I -
if (DEBUG ROL 1) cpr1ntf
("Could not send RJC after getting ERR\n ");

I
return FALSE ;

case (ROL RJC) : /* Error, abort */
- if (DEBUG ROL 1) cprintf ("Error, RJC received\n");

return FALSE;-
default : /· Unexpected command */

if (DEBUG ROL 1)
cprintf - -
("Unexpected msg from sampl er (%x hex)\n ",
(unsigned char) extract (5 msg));
return FALSE; -

/* Assemble msg */

if (!c sysex (stream, s_msg, current))
I
if (DEBUG ROL 1) cpri ntf ("Error creating msg in cead_send()\n");
return FALSE ; -

191

}

if (extract(s msg) :: ROL_EODl
I

}

/ * set flag, and don't change anything wi
eod fl ag = TRUE;

e lse
I

I

if (current->a l t structl
I -
i f (dtype K= 5220 WD)

I -
/ * Ad j ust address * 1
s msg [5] = (unsigned char)

"1 ((int) s_msg[51) + (current->offset)) ;

else /* very Roland specific c hanges to parameters */
I

}

if (dtype == 5220 WP)
I -

s witch (cu rrent->struct_no)

case (STRUCtURE A):
s msg [SAMPL STRUCTj - DxOD :
s- msg (DEST BANK] - DxOO ;
break: -

case (STRUCTURE B) :
5 msg[SAMPL STRUCTJ = OxDl;
s-msg[DEST BANK] = OxOl ;
break; -

case (STRUCTURE C):
s msg [SAMPL STRUCT J - Dx02;
s- msg[DEST BANKJ = Ox02;
break;

case (STRUCTURE DJ :
5 msg(SAMPL STRUCTJ = Ox03;
s-msg (DEST BANKJ = OxO);
break; -

default : break;
}

1* Remember to change t he CHECKSUM *1
if «temp chksum = calc chksum (s_msg))

I -
CHKSUM_ERROR)

)
el se

return FALSE ;

/* Find the end of the message, and rep l ace checksum */
i ,. 0 ;
while ((int.) s msg 01 != MI DI SYSEX EN D) ++i;
s msg [i- I I = (unsigned char) temp_chksum;

} -

if (!mpu send sysex (s_msg))
I -
if (DEBUG ROL 1)

I --
cprintf ("Could not send msg\n ") ;

}
return FALSE;

}

whi l e (!eadfl ag);

/* rece i ve last ROL ACK */
if (!mpu recv sysex- (s_msg))

I - -
return FALSE:

}

/ * if an ROL ACK, don't bother to check! * /
switch {extract (s msg))

I -
case (ROL ACK) :/* Good r continue */

- break :
case (ROL ERR) : /* Error , abort */

- if (!sendl (ROL RJC,current->midi_channel))
{ -
if (DEBUG ROL 1) corintf
("Could not send RJC after getting ERR\n U);

192

!

return FALSE ;
case (ROL RJC) : / * Error, abort * 1

- if (DEBUG ROL 1) c pr in tf ("Error , RJC received\nn) ;
return FALSE;-

default:!* Unexpected command * /
if (DEBUG ROL 1) cpri ntf (" Unex pected msg from sampler\ nn);
re turn FALSE ; -

/ ~ Finished t h is set */
return TRUE ;

193

	KESTERTON A J MSc-TR91-17a
	KESTERTON TR91-17b

