

The Impact of an In-Depth Code

Comprehension Tool in an Introductory
Programming Module

Ronald George Leppan

Supervisors: Dr Charmain Cilliers
Mrs Marinda Taljaard

Submitted in partial fulfilment of the requirements for the degree of Magister

Scientiae in Computer Science and Information Systems in the Faculty of Science at
the Nelson Mandela Metropolitan University

January 2008

 i

Acknowledgements

I would like to thank my supervisors, Dr. Charmain Cilliers and Mrs Marinda

Taljaard, for their unwavering support, advice, enthusiasm and encouragement for the

duration of this dissertation. Their valuable suggestions for improvements to this

document are strongly appreciated.

Thanks must go to the Department of Computer Science and Information Systems at

the Nelson Mandela Metropolitan University for enabling me to conduct this research.

A word of appreciation must specifically go to the Telkom Centre of Excellence for

providing the necessary technology used in this research.

I would also like to thank the students who participated in the study and Dr Jean

Greyling for allowing me time during his lectures and practical assignments to

conduct the experiments, as well as for his valuable feedback on the practical

exercises.

Thank you to my colleagues in the School of ICT for their interest shown in my

progress and the support given when needed.

A special word of gratitude to my family and friends for their patience, support and

understanding during the many hours it took to complete this dissertation.

This material is based upon work supported by the National Research Foundation

(NRF) under Grant number 2054293. Any opinion, findings and conclusions or

recommendations expressed in this material are those of the authors and therefore the

NRF does not accept any liability in regard thereto.

 ii

Summary

Reading and understanding algorithms is not an easy task and often neglected by

educators in an introductory programming course. One proposed solution to this

problem is the incorporation of a technological support tool to aid program

comprehension in introductory programming.

Many researchers advocate the identification of beacons and the use of chunking as

support for code comprehension. Beacon recognition and chunking can also be used

as support in the teaching model of introductory programming. Educators use a

variety of different support tools to facilitate program comprehension in introductory

programming. Review of a variety of support tools fails to deliver an existing tool to

support a teaching model that incorporates chunking and the identification of beacons.

The experimental support tool in this dissertation (BeReT) is primarily designed to

encourage a student to correctly identify beacons within provided program extracts.

BeReT can also be used to allow students to group together related statements and to

learn about plans implemented in any semantically and syntactically correct algorithm

uploaded by an instructor. While these requirements are evident in the design and

implementation of BeReT, data is required to measure the effect BeReT has on the in-

depth comprehension of introductory programming algorithms.

A between-groups experiment is described which compares the program

comprehension of students that used BeReT to study various introductory algorithms,

with students that relied solely on traditional lecturing materials. The use of an eye

tracker was incorporated into the empirical study to visualise the results of controlled

experiments. The results indicate that a technological support tool like BeReT can

have a significantly positive effect on student comprehension of algorithms

traditionally taught in introductory programming. This research provides educators

with an alternative way for the incorporation of in-depth code comprehension skills in

introductory programming.

Keywords: Program Plans, Program Beacons, Chunking, Code Comprehension,

Introductory Programming, Eye-tracking

iii

Table of Contents

List of Figures..vi

List of Tables ...viii

Chapter 1 Research Context 1

1.1 Introduction..1

1.2 Background..2

1.2.1. Models of code cognition ..3

1.2.2. Beacon recognition and chunking..5

1.3 Relevance of research...7

1.4 Focus of research..8

1.5 Research methodology ...10

1.6 Structure of dissertation..12

Chapter 2 Requirements for In-Depth Comprehension of Introductory Programming
Algorithms 14

2.1 Introduction...14

2.2 Cognitive model of Programmers during Code Comprehension15

2.2.1 Program understanding..15

2.2.2 Elements of the Mental Model...17

2.2.3 Navigating Source Code..25

2.3 Aiding the comprehension of introductory programming algorithms..............................27

2.4 Methods for testing algorithm comprehension ...35

2.4.1 Knowledge..36

2.4.2 Comprehension ...36

2.4.3 Application ...37

2.4.4 Analysis ..37

2.4.5 Synthesis...38

2.4.6 Evaluation...38

2.5 Conclusions...39

Table of Contents

iv

Chapter 3 Educational Technological Support for In-Depth Comprehension of Introductory
Algorithms 42

3.1 Introduction...42

3.2 Requirements for support tools ..42

3.3 Investigation of existing support tools..45

3.3.1. Algorithm Animation Tools..45

3.3.2. Programme Tracing and Debugging Tools..49

3.3.3. Programming Construct Visualisation (PCV)..50

3.3.4. Flowchart Tools ...52

3.4 The Beacon Recognition Tool ...54

3.4.1. Tutorials...54

3.4.2. Exercises..55

3.5 Conclusion ..57

Chapter 4 Investigative Research Methodology 58

4.1 Introduction...58

4.2 Introductory Programming at NMMU ...58

4.3 Investigative Study..60

4.3.1. Consent form ...62

4.3.2. Training manual ...62

4.3.3. Practical Assignments ..62

4.3.4. Class tests ..63

4.3.5. Controlled experiments ..64

4.3.6. Questionnaire ...67

4.4 Method of Data Analysis ...68

4.4.1. Population..68

4.4.2. Formulation of Hypotheses...68

4.4.3. Techniques to analyse data ...70

4.5 Risks to Validity of Investigative Study...74

4.5.1. Sample Size ...74

4.5.2. The Hawthorne Effect ..74

4.5.3. Administering Practical Learning Activities ...75

4.6 Conclusion ..76

Table of Contents

v

Chapter 5 Results of the Investigation 78

5.1 Introduction...78

5.2 Quantitative Results ..80

5.2.1. Results of Class Tests...80

5.2.2. Results of Controlled Experiments ...82

5.3 Qualitative Results ..96

5.3.1. Ease of using BeReT..96

5.3.2. Perceived effectiveness of BeReT as a learning tool ...97

5.3.3. Motivation towards code comprehension activities ...98

5.4 Conclusion ..100

Chapter 6 Conclusions & Recommendations 103

6.1 Introduction...103

6.2 Research achievements..104

6.2.1. Theoretical contributions..104

6.2.2. Practical contributions..107

6.3 Limitations of research ..110

6.4 Future research..111

6.5 Incorporation of BeReT into introductory programming ..113

6.6 Summary...116

References 118

Appendix A – Introduction to BeReT (Student Guide)..A1

Appendix B – Practical Assignments..B1

Appendix C – Class Tests...C1

Appendix D – Controlled Experiments ...D1

Appendix E – BeReT Questionnaire... E1

Appendix F – Human Ethics Application Form .. F1

Appendix G – Controlled Experiment Protocol...G1

Appendix H – Creation of Tutorials and Exercises in BeReT (Lecturer Guide)H1

Appendix I – Eye-tracking images from Controlled Experiments A and B I1

Appendix J – SAICSIT Paper.. J1

vi

List of Figures

Figure 1-1 Example of a beacon ... 6

Figure 1-2 Example of chunking .. 6

Figure 1-3 Overview of research to increase throughput in introductory programming.. 7

Figure 1-4 Phases of this study ... 10

Figure 1-5 Structure of Dissertation ... 12

Figure 2-1 Mayer's model for learning new technical information (adapted from

(Mayer 1981) .. 16

Figure 2-2 Illustration of the Swap plan ... 16

Figure 2-3 Using beacons to discover plans in source code (O’Brien 2003) 18

Figure 2-4 Using chunking to discover plans in source code ... 18

Figure 2-5 Example of the types of beacons in a Bubble Sort algorithm....................... 21

Figure 2-6 Implementation of a Binary Search Algorithm... 22

Figure 2-7 Binary Search Example (Chunking) ... 23

Figure 2-8 Beacons and Chunks (Aschwanden and Crosby 2006)................................. 24

Figure 2-9 Algorithm Animations .. 30

Figure 2-10 Visualisation of a while loop... 31

Figure 2-11 Worked Example (Text Only)... 32

Figure 2-12 Worked Example (with CSD) ... 33

Figure 2-13 Flowchart (Millner 2002).. 33

Figure 2-14 Object Diagrams (Thomas, Ratcliffe et al. 2004) 34

Figure 2-15 Patterns (adapted from De Barros, dos Santos Mota et al. 2005) 34

Figure 2-16 Bloom's taxonomy of educational objectives.. 35

Figure 2-17 The use of beacon recognition and chunking to discover plans.................. 39

Figure 3-1 Screenshot of JHAVé (Naps, Eagan et al. 2001) ... 46

Figure 3-2 A prototype algorithm animation tool based on an extensible framework ... 48

Figure 3-3 jGRASP with associated debugger (Cross, Hendrix et al. 2002) 49

Figure 3-4 Illustrating relationship between arrays and memory 51

Figure 3-5 PROGUIDE flowchart tool (Areias and Mendes 2006) 53

Figure 3-6 BeReT Tutorial Screen (Harris 2005) ... 55

Figure 5-1 The selection sort algorithm shown on screen during eye tracking 85

List of Figures

vii

Figure 5-2 Scanpaths for Question 1: “Which line or lines exchanges (swaps) two

elements in an array?”... 88

Figure 5-3 The insertion sort algorithm shown on screen during eye tracking 90

Figure 5-4 Heat Map Question 1: “Which line or lines calls a function to make space

for a new element in an array?” .. 92

Figure 6-1 BeReT Tutorial.. 106

Figure 6-2 Scanpaths indicating plan discovery in unseen algorithm 109

Figure 6-3 Heat Map indicating beacon recognition in known algorithm.................... 110

viii

List of Tables

Table 1-1 Cognition Models for Code Comprehension.. 3

Table 1-2 Research Questions .. 9

Table 2-1 Requirements to aid the in-depth comprehension of introductory algorithms41

Table 3-1 Requirements to aid the in-depth comprehension of introductory algorithms43

Table 3-2 Support for comprehension requirements in JHAVÉ..................................... 47

Table 3-3 Support for comprehension requirements in prototype animation tool.......... 48

Table 3-4 Support for comprehension requirements in jGRASP 50

Table 3-5 Support for comprehension requirements in program construct visualisation

tools... 52

Table 3-6 Support for comprehension requirements in PROGUIDE 53

Table 3-7 Types of exercises in BeReT.. 56

Table 3-8 Support for comprehension requirements in BeReT...................................... 56

Table 3-9 Comparison of support for algorithm comprehension evident in various

tools... 57

Table 4-1 Academic profile of control and treatment group participants....................... 64

Table 4-2 Classification of questionnaire responses as Positive or Negative................. 73

Table 4-3 Mapping between hypotheses, activities and data collected 77

Table 5-1 Requirements to aid the in-depth comprehension of introductory algorithms78

Table 5-2 Hypotheses and sections where data can be found in support of hypotheses 79

Table 5-3 Results of Class Tests... 80

Table 5-4 Participants studying a new algorithm ... 83

Table 5-5 Techniques used to study an unseen algorithm .. 84

Table 5-6 Summary of average accuracy of responses... 85

Table 5-7 Total performance for Selection Sort algorithm... 87

Table 5-8 Number of correct responses and response time per question (Selection

Sort)... 87

Table 5-9 Experiment A Task 3 Performance .. 89

Table 5-10 Total performance for Insertion Sort algorithm ... 91

Table 5-11 Number of correct responses and response time per question (Insertion

Sort)... 92

Table 5-12 Experiment B Task 3 Performance... 93

List of Tables

ix

Table 5-13 Summary of performance in Experiment C.. 95

Table 5-14 Number of high level, low level and incorrect descriptions......................... 96

Table 5-15 Questions to determine ease of use .. 97

Table 5-16 Questions to determine perceived effectiveness of BeReT as a learning

tool .. 98

Table 5-17 Questions to determine motivation towards code comprehension 99

Table 6-1 Requirements to aid the in-depth comprehension of introductory algorithms105

Table 6-2 Comparison of support for algorithm comprehension evident in various

tools... 107

Table 6-3 Overview of significant results from investigative study............................. 108

Table 6-4 Support for algorithm comprehension evident in BeReT............................. 117

1

Chapter 1 Research Context

1.1 Introduction

The reading and understanding of algorithms is not an easy task (Deimel and Naveda

1990; Jenkins 2002; Warren 2003) and is often neglected by educators in an

introductory module. Studies of the fragile knowledge of students in introductory

programming1 indicate the need for these courses to explicitly include not only code

generation strategies, but also code comprehension strategies when studying

algorithms.

Students are often required to read worked examples of algorithms and use a wide

range of strategies to trace the code for understanding (Lister, Adams et al. 2004;

Fitzgerald, Simon and Thomas 2005). Some strategies prove to be more successful

than others, and students tend to employ a mixture of strategies for different situations

(Chapter 2). At times, good strategies are used poorly by the students. Some of the

strategies reported by Lister, Adams et al. (2004) and Fitzgerald, Simon et al. (2005)

are a direct result of multiple-choice questions, while others are more related to a lack

of code reading and comprehension skills in general. The strategies related to

multiple-choice questions may prove to be useful for passing formal assessments, but

may be insufficient for general program comprehension. Expert programmers also

1 (Deimel and Naveda 1990; McCracken, Almstrum, Diaz et al. 2001; Ala-Mutka 2003; Lister, Adams,
Fitzgerald et al. 2004; Garner, Haden and Robins 2005; Lahtinen, Ala-Mutka and Järvinen 2005)

Chapter 1 – Research Context

2

use a wide variety of program comprehension strategies when maintaining programs

(Von Mayrhauser and Vans 1994).

The aim of this investigation is to determine the effect of adopting a particular

strategy for code comprehension that is based on the techniques used by experts to

read code for in-depth comprehension (Chapter 2). In an attempt to bridge the gap

between novice programmers (referred to in this document as “students”) and expert

programmers, an emphasis is placed on technological tools to aid student competence

in using these strategies to comprehend code.

To focus the study, the rest of this chapter presents the background to the

investigation by defining in-depth code comprehension and by addressing the need for

strategies for reading and understanding algorithms. The importance of plan

discovery when reading algorithms and the manner in which beacon recognition and

chunking can be used as techniques to encourage reading of code with in-depth

comprehension is discussed (Section 1.2). The relevance (Section 1.3) and focus of

the research (Section 1.4), as well as an overview of the methodology (Section 1.5)

used in the study, are also presented. The chapter concludes with an overview of the

structure of the remainder of this dissertation (Section 1.6).

1.2 Background

One of the main purposes for reading an algorithm is to discover the plan(s) employed

by the original programmer (Rist 1986; Garner 2002; Thomas, Ratcliffe and

Thomasson 2004). To read an algorithm with in-depth comprehension, students have

to understand which code fragments are required to perform a higher-level task or

identify the task that a particular code fragment performs (Deimel and Naveda 1990;

Upchurch 1997). Numerous advantages exist for students who have mastered the skill

of code reading and comprehension. Code reading skills help students learn new

programming language constructs and influence their style in future code generation

activities. Code reading skills also aid in program maintenance activities.

Consequently, an effort must be made in an introductory programming module to

cultivate in-depth code reading skills.

Chapter 1 – Research Context

3

One of the key components of an introductory programming module is the tracing,

evaluation and comprehension of various algorithms, for example Binary Search,

Bubble and Insertion Sort (CS&IS 2006a, 2006b). Proper algorithm reading skills are

necessary prior to developing skills of composing algorithms (Kimura 1979; Deimel

and Naveda 1990). A survey done by Lahtinen, Ala-Mutka et al. (2005) showed that

students and teachers rate worked examples as the most helpful learning material to

study programming. Algorithm reading skills are thus of vital importance for

improved programming (Ala-Mutka 2003). In order to develop such reading skills, it

is necessary to investigate models used by experts to comprehend programs.

1.2.1. Models of code cognition

Table 1-1 summarises several cognition models derived from expert programmers that

have been developed over the years2.

Author Components Technique to build mental model
(Letovsky 1986) • Knowledge Base

• External Representations
• Assimilation Process
• Internal Representations

Programmers use annotations to match
goals with implementation

(Shneiderman and
Mayer 1979)

• Internal Semantic
Representation (program goals
and algorithms)

• Long-Term Memory (semantic
and syntactic knowledge)

Programmers use a chunking (Figure
1–2) process to assimilate a program
from short-term memory into an
internal semantic representation of
goals and algorithms to achieve goals

(Brooks 1983) • Problem Domain
• Intermediate Domains
• Program Domain
• External Representation
• Internal Representation

Programmers use hypothesis
generation and search for beacons
(Figure 1–1) in source code to verify
hypotheses

(Soloway and
Ehrlich 1984)

• Knowledge (plans and
conventions)

• Understanding Processes
• Internal & External

Representations

Programmers use a chunking
technique and knowledge of
programming conventions to
decompose goals into plans and plans
into lower-level plans

(Pennington 1987) • Program Model (text structure
and programming plan
knowledge)

• Situation Model (functional and
data flow abstraction)

Programmers build a program model
using beacons to identify chunked
plans in the code and then a situation
model in terms of real-world objects
using hypotheses

Table 1-1 Cognition Models for Code Comprehension

2 (Shneiderman and Mayer 1979; Brooks 1983; Soloway and Ehrlich 1984; Letovsky 1986; Pennington
1987)

Chapter 1 – Research Context

4

Letovsky’s (1986) cognition model consists of a knowledge base, internal and

external representations and an assimilation process to build the mental model

(Letovsky 1986). The model suggests that programmers work from a knowledge base

of expertise, domain goals, system plans and knowledge of programming conventions.

The documentation, code and manuals are all part of the external representations and

need to be assimilated by the programmer. The internal representation (mental

model) consists of the system specifications, and the implementation and annotations

that match specification goals with the implementation. The assimilation process can

be either bottom up (from code to specifications) or top down (from the high-level

system specifications to plans in the code).

Schneiderman and Mayer’s (1979) model consists of a working memory containing

the semantics of the program being studied and a long-term memory, which represents

the knowledge base consisting of semantic and syntactic knowledge (Shneiderman

and Mayer 1979). Syntactic and semantic knowledge from the knowledge base

guides a chunking process to assimilate the program and problem statement via the

working memory to grow the knowledge base further. Chunking refers to the

grouping of related statements into a single functional unit (Section 1.1.2).

Brooks’ (1983) model suggests programmers constantly match elements from the

problem domain with the program domain. The problem domain is the area where the

problem is defined (Pennington 1987). The program domain is the area containing

the programmed solution. Assimilation is driven by the generation of hypotheses

while studying the requirements and other documents from the problem domain, and

the code and user manuals from the program domain. Hypotheses of the program

goals are verified by searching for beacons in the external representations and

matching them with hypotheses and sub goals in the mental model (internal

representation). Beacons are surface features in a program that serve as indicators of

a particular structure or operation (Section 1.1.2).

The cognition model described by Soloway and Ehrlich (1984) consists of knowledge

of programming plans and best programming practices. During code comprehension,

the external sources studied include requirements documents, code, design

documents, user, reference and maintenance manuals and other relevant

Chapter 1 – Research Context

5

documentation. The assimilation process uses the procedure of chunking statements

together that form part of a higher-level plan. The plans in the programmers’ internal

representation match the goals of the system.

Pennington’s (1987) model divides a programmer’s knowledge and attention between

the program domain and the problem domain. When studying a new system, an

internal representation of the program model is constructed first. The mental model

of the program domain is built using beacon recognition and chunking while studying

the external representation of the system (program code and other documentation).

Text structure and syntactic knowledge assist the beacon recognition and chunking

processes. An internal representation of the situation model (problem domain) is built

after the program model. The mental model of the problem domain is built using

beacons and the generation of hypotheses. The use of beacons and hypotheses

generation can be done if the programmer has a general understanding of the problem

domain.

Numerous studies have also shown that expert programmers tend to follow a

combination of these models more closely than novices3. Two common assimilation

techniques emerge from the models scrutinised in Table 1-1, namely that of beacon

recognition and chunking.

1.2.2. Beacon recognition and chunking

Brooks (1983) defines beacons as features in a program that serve as indicators of a

particular structure or operation. Beacons can be fragments of code or

variable/function names that point to the existence of some high-level goal4. Figure

1-1 shows three stereotypical lines of code that can be used to swap the values of two

variables. The cross-switching of the variables is indicative of the fact that the

variables are swapped. The fragment can, therefore, be classified as a beacon that

indicates the possibility of a sorting algorithm. The appearance of these three lines of

assignment statements are so unique that it can also be classified as a beacon that

indicates a higher-level task, for example, Swap(a,b), which appears in the mental

3 (Wiedenbeck and Evans 1986; Wiedenbeck and Scholtz 1989; Fix, Wiedenbeck and Scholtz 1993;
Crosby, Scholtz and Wiedenbeck 2002)
4 (Wiedenbeck and Evans 1986; Pane and Myers 1996; Wiedenbeck, Ramalingam, Sarasamma et al.
1999)

Chapter 1 – Research Context

6

model of the programmer reading the code. Experienced programmers familiar with

this plan of swapping the values of two variables may spot this combination of

statements in an unseen algorithm and hypothesise the goal of the algorithm. Further

investigation by the experienced programmer would reveal more beacon-like

statements to verify or nullify the hypothesis.

Figure 1-1 Example of a beacon

A programmer with less experience will typically resort to a bottom-up approach to

reading the algorithm. In this instance, the programmer might realize that the three

statements in Figure 1-2 can be grouped together and assigned a semantic description

(Swap(a,b)). The semantic description indicates a higher-level goal, namely the

swapping of the values of two variables in this example.

Figure 1-2 Example of chunking

The chunking of the three lines of code into a semantic description can aid the

comprehension process by reducing the cognitive overload. The semantic description

replaces the lower-level detail and can be used to memorise an algorithm. The

combination of the three lines may now become a beacon in future code reading

activities.

From the examples of beacon recognition and chunking, it can be seen that there are

primarily two ways of using beacons and chunking. The bottom-up approach requires

a scanning of the code and assigning meaning to chunks of code using syntactic and

semantic knowledge of the programmer. The top-down approach of code

comprehension starts with the programmer generating hypotheses about the higher-

level functions of the program. The code is scanned for the existence of beacons in

order to confirm these hypotheses; however, it was noted by Wiedenbeck and Evans

temp = a;
a = b;
b = temp;

3

temp = a;
a = b;
b = temp;

Swap(a,b)

Chapter 1 – Research Context

7

(1986) that, unlike expert programmers, novices do not naturally focus on beacons

during code comprehension activities.

1.3 Relevance of research

The primary relevance of this study originates from the ongoing research in the

Department of Computer Science and Information Systems (CS&IS) at the Nelson

Mandela Metropolitan University (NMMU) aimed at increasing the throughput rate of

students in the introductory programming modules5. This research can be divided into

two main categories; namely identifying potentially successful students and

changing/enhancing the methods of presenting the module (Figure 1-3). The

proposed study forms part of this endeavour by modifying the teaching model.

Figure 1-3 Overview of research to increase throughput in introductory programming

A secondary relevance is the lack of empirical data in current research reports to

validate technological support that aid in-depth learning of students in introductory

programming modules. The Department of CS&IS has recently developed such an

experimental tool that aids plan discovery by allowing students to chunk related lines

and coaches students to identify beacons in source code (Harris 2005; Harris and

Cilliers 2006). The tool was developed to aid the introduction of program

5 (Calitz 1997; Greyling and Calitz 2003; Cilliers 2004; Vogts 2006; Yeh, Greyling and Cilliers 2006)

Approaches to raise
throughput rate

Identify potentially successful
candidates

Modify teaching model

Response to individual learning
style

Innovative presentation
techniques

Code generation Code comprehension

Programming
environments

Algorithm
animation

Multimedia
learning
objects

Beacon recognition
and chunking

Technological support
tools

Control
Structure
Diagrams

Programming
notations

Chapter 1 – Research Context

8

comprehension activities in an introductory algorithms module. There is a need to

validate the usefulness of this tool by means of a between groups’ experimental study

that determines its impact on the ability of introductory programming students to

comprehend worked examples after exposure to the tool.

1.4 Focus of research

Figure 1-3 gives an overview of some of the research done in the field of introductory

programming to increase the throughput rate of students in an introductory

programming module. The purple theme indicates research done in the area of the

modification of the teaching model for introductory programming modules, but falling

outside the scope of this study.

As indicated by the green theme of Figure 1-3, this study takes as its departure point

the modification of the teaching model. Emphasis is placed on technological support

tools to aid code comprehension. This study concentrates on a support tool (Beacon

Recognition Tool (BeReT)) to allow students to methodically investigate algorithms

(Harris 2005; Harris and Cilliers 2006). BeReT (Chapter 3) incorporates theories of

program comprehension and provides some level of support while students discover

plans in the source code. By being guided to discover plans in source code, the

student is able to study the algorithms at the in-depth level of learning, instead of

focusing on superficial syntactical issues. Underlying skills presented to the student

are beacon recognition and chunking (Section 1.2.2). Mastering these skills will

allow students to construct novel solutions in future code generation activities and

investigate unseen algorithms with confidence. The experimental design using

BeReT and subsequent studies are restricted to the situation at the Department of

CS&IS at NMMU (Chapter 4).

The primary objective of this project is, therefore, to investigate the impact on in-

depth code comprehension of an experimental technological educational support tool

(BeReT) in an introductory programming module by means of an empirical

investigation. The primary research question is:

What is the effect of a technological learning tool that supports plan

discovery on the in-depth comprehension of introductory programming

algorithms typically studied by novice programmers?

Chapter 1 – Research Context

9

The primary research question suggests a number of preliminary component research

questions (Table 1-2):

Research Question Research Technique Chapter
What are the requirements for in-depth comprehension of Introductory Programming
Algorithms?
1.1. What is in-depth learning within the context
of introductory programming?
1.2. How do experts build internal
representations of source code?

1.3. What techniques exist to aid the
comprehension of introductory algorithms?

1.

1.4. What methods can be used to test algorithm
comprehension?

Literature Review

Chapter 2

How can Educational Technological Support be used to aid in-depth learning of
Introductory Programming Algorithms?
2.1. What are the requirements for technological
support that encourages in-depth learning in novice
programmers?

2.2. What technological support has been
developed/is used to encourage in-depth learning in
novice programmers?

Literature Review

2.

2.3. How does the Beacon Recognition Tool
meet the requirements for such technological
support?

Heuristic Evaluation

Chapter 3

What experimental design is appropriate for the empirical investigation?

3.1. In what learning environment will the study
take place?

Literature Review

3.2. What material, tools and procedures will be
used to collect data? Experimental Design

3.3. How will the data be analyzed?

3.

3.4. What can be done to ensure validity of data
collected?

Literature Review,
Experimental Design

Chapter 4

Did the Educational Technological Support tool encourage in-depth learning of
introductory programming algorithms?

4.1. What are the results of the empirical study?

4.

4.2. What conclusions can be drawn from the
results of the empirical study?

Empirical Evaluation &
Questionnaires
Analysis of Empirical
Data. Questionnaires

Chapter 5

5. How can the results be applied in an introductory programming module?
 5.1. How can the results of the empirical

investigation be applied in the selection of
appropriate technological support to encourage in-
depth learning of introductory programming
algorithms?

Deliberation on findings Chapter 6

Table 1-2 Research Questions

Chapter 1 – Research Context

10

1.5 Research methodology

The primary research question stated in Section 1.4 gives rise to the following

hypotheses:

H0: BeReT does not have a positive effect on the in-depth comprehension of

introductory programming algorithms

H1: BeReT has a positive effect on the in-depth comprehension of introductory

programming algorithms

The research methodology is aimed at finding sufficient evidence to reject the null

hypothesis. A literature review produces a list of requirements for technological

support that encourages in-depth learning of introductory programming algorithms

(Chapter 2). These requirements are used to evaluate existing technological support

tools (CS&IS experimental tool included). This study contributes an investigative

methodology for an empirical investigation in code comprehension, which

incorporates eye-tracker data (Chapter 4). Empirical evidence gathered from class

test and controlled eye-tracking experiments to validate the use of technological

support for in-depth learning, results from the phases of the investigative

methodology. A proposal for the incorporation of technological support tools to aid

in-depth learning of algorithms in an introductory programming module follows as a

direct result of this study.

Figure 1-4 Phases of this study

Literature Review

Tool Selection Algorithm Selection Sampling

Practical Assignments

Class Tests Controlled Experiments

Data Analysis

Interpretation

Chapter 1 – Research Context

11

The main phases of this study are presented in Figure 1-4. This study includes an

extensive literature review of past and current developments in educational

technological support that encourage the development of introductory programming

students at the in-depth level of learning (Chapter 2). The literature review provides

an overview of the cognitive factors influencing students studying introductory

programming. The review of literature also summarises techniques used by experts to

aid algorithm comprehension and investigates techniques used by educators to aid the

comprehension of introductory algorithms. The literature review further focuses on

the relevance of beacon recognition and chunking as techniques to build the mental

model. A study of available support tools follows the literature review and a support

tool (BeReT), designed to incorporate the underlying principles of beacon recognition

and chunking, is introduced. The literature review also guides the selection of

algorithms.

The introductory programming students are randomly sampled into two groups

(control and treatment groups) and data is collected from these groups over a period

of a semester. Practical assignments are used to train the treatment group of students

using the selected support tool. The control group perform the same practical

assignments without the experimental support tool. An empirical study follows in

which class tests and controlled experiments are used to determine the effectiveness

of BeReT in aiding the comprehension of introductory algorithms. The controlled

experiments involve a subset of participants from each group and are performed on an

individual basis in a usability laboratory. Participants in the controlled experiments

are monitored while completing program comprehension exercises and an eye-tracker

is used to record their actions resulting from their cognitive processes during these

code comprehension exercises. The data collected from the class tests and controlled

experiments are analysed and interpreted and conclusions are drawn.

All resources, activities and support tools are tested in a pilot study. Similar to other

studies, data and feedback from the pilot study are used to refine the experimental

design in preparation for the proper investigation (Van Greunen 2002; Pretorius

2005).

Chapter 1 – Research Context

12

1.6 Structure of dissertation

The remaining chapters discuss the effect of a technological support tool on the in-

depth comprehension of introductory algorithms in an introductory programming

module. Figure 1–5 shows an overview of the structure of the dissertation. The first

two chapters provide the theoretical framework supporting the decisions made in the

investigation. Chapter 2 focuses on the requirements for the in-depth learning of an

introductory programming module. Chapter 2 provides an overview of the techniques

used by educators in the module and looks at the cognitive dimensions of introductory

programming students. Chapter 2 focuses on techniques used to reduce the cognitive

overhead when reading worked examples. Bloom’s taxonomy is discussed in Chapter

2 to provide a tool for the assessment of in-depth comprehension in introductory

programming. Chapter 3 provides an overview of technological support tools used to

support in-depth learning of introductory algorithms and uses a list of requirements

derived in Chapter 2 to evaluate current tools used for comprehension in introductory

programming. BeReT is discussed in terms of the requirements.

Figure 1-5 Structure of Dissertation

Chapter 1

Research Context

Chapter 2

Comprehension of
Introductory Algorithms

Chapter 3

Technological Support for
Learning

Chapter 4

Research Methodology

Chapter 5

Research Results

Chapter 6

Conclusions

Chapter 1 – Research Context

13

Chapter 4 presents the methodology used in the empirical investigation, which

includes the use of an eye tracker to determine students’ gaze patterns when

answering code comprehension questions. Chapter 5 presents the results of the

empirical study and draws some conclusions based on the results. Chapter 6

concludes the dissertation by evaluating the final outcomes against the initial

objectives and provides some recommendations for the incorporation of a

technological support tool that aids plan discovery in the introductory programming

curriculum. Limitations of the current study and recommendations for future research

are also given.

14

(Deimel and Naveda 1990; Jenkins 2002; Warren 2003) (Deimel and Naveda 1990; Mc Cracken, Almstrum, Dia z et al. 2001 ; Ala-Mutka 2003; L ister, Adams, Fitzgerald et al. 2004; Garner, Haden and Robins 2005; Lah tinen, A la-Mutka and Järvinen 2005) (Lis ter, Adams et al. 2004 ; Fitzgerald, Simon and Thomas 2005) (Lister, Adams et al. 2004; Fi tzgerald, Simon et al. 2005) (Von Mayrhauser and Vans 1994) (Ris t 1986 ; Garner 2002; Thomas, Ratcliffe and Thomasson 2004) (Deimel and Naveda 1990; Upchurch 1997) (CS&IS 2006) (Lahtinen, Ala-Mutka et al. 2005) (Kimura 1979; Deimel and Naveda 1990) (Letovsky 1986) (Shneiderman and Mayer 1979) (Brooks 1983) (So loway and Ehrlich 1984) (Pennington 1987) (Shneiderman and Mayer 1979; Brooks 1983; So loway and Ehrlich 1984; Letovsky 1986 ; Pennington 1987) (Letovsky 1986) (Shneiderman and Mayer 1979) (Brooks 1983) (Wiedenbeck and Evans 1986 ; Wiedenbeck and Scho ltz 1989 ; Fix, Wiedenbec k and Scholtz 1993; Crosby , Scholtz and
Wiedenbeck 2002) (Wiedenbec k and Evans 1986; Pane and Myers 1996) (Cali tz 1997; Grey ling and Cali tz 2003; Ci lliers 2004; Vog ts 2006; Yeh, Grey ling and Cil liers 2006) (Harris 2005; Harris and Cill iers 2006) (Harris 2005 ; Harris and Cill iers 2006) (Van Greunen 2002 ; Pretorius 2005) (Wiedenbec k a nd Evans 1986; Pane and Myers 1996; Wiedenbeck, Ramalingam, Sarasamma et al. 1999)

Chapter 2 Requirements for In-Depth Comprehension of

Introductory Programming Algorithms

2.1 Introduction

The question has been raised as to whether technological support tools can be

incorporated into introductory programming to aid the comprehension of algorithms

presented in the module (Chapter 1). In order to determine the requirements of

technological support tools in such an environment, it is necessary to first focus on the

needs of the students with regards to the comprehension of introductory algorithms.

This chapter does not only present the requirements to develop students’

comprehension of introductory programming algorithms, it also determines the

criteria necessary to test whether students have achieved an acceptable level of

program comprehension.

In order to compile a comprehensive list of the requirements for the in-depth learning

of algorithms in an introductory programming module, the cognitive model of expert

programmers studying an algorithm is investigated (Section 2.2). This analysis is

used as a model to guide students in algorithm reading skills. The chapter also

provides a synopsis of methods used by educators to aid learning of introductory

programming algorithms (Section 2.3). Beacon recognition and chunking are

presented as methods that educators can use to aid comprehension of introductory

programming algorithms. Bloom’s taxonomy offers a thoroughly tested tool to

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

15

determine the criteria for testing algorithm comprehension. This taxonomy and the

way it is applied to computer science in general and introductory programming in

particular are discussed (Section 2.4).

2.2 Cognitive model of Programmers during Code Comprehension

A programmer’s cognitive model is the internal mental model of the program while

studying the code (Engebretson and Wiedenbeck 2002). Apart from the actual code,

the mental model incorporates other documentation (where available), knowledge of

programming and knowledge of the problem domain modelled by the program.

During code comprehension activities, programmers build their mental model of the

program using various strategies. Experts have demonstrated a tendency to employ a

top-down strategy of code comprehension whereby extensive use is made of

hypothesis verification through the recognition of beacons (Koenemann and

Robertson 1991). Where hypotheses failed or are missing, experts employ a bottom-

up strategy by integrating individual code statements into meaningful frames. This

integration is referred to as chunking. In order to coach students in the use of an

appropriate strategy for code comprehension, it is necessary to first determine the

requirements for understanding a program (Section 2.2.1) and investigate the elements

of programmers’ mental models during code comprehension (Section 2.2.2). The way

a program is navigated during code reading also impacts on their mental model

(Section 2.2.3).

2.2.1 Program understanding

One definition of program understanding is that it is a process of using existing

knowledge to acquire new knowledge (Mayer 1981). Mayer (1981) proposed a

framework of steps to process information for in-depth learning of technical

information (Figure 2-1). The first step in the process is to transfer new information

into the student’s short-term memory (a). This would typically be done when the

student reads a worked example. The new information should be matched with

appropriate existing knowledge in the long-term memory (b). When a suitable match

is made between new information and knowledge from long-term memory, the new

information is stored in long-term memory for future use (c).

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

16

temp = a;
a = b;
b = temp;

3

Figure 2-1 Mayer's model for learning new technical information (adapted from Mayer (1981))

It is necessary for students to build into their long-term memory a knowledge base of

plans that can be used in the construction of larger programs (Garner 2002, 2003).

Students also need to build a collection of beacons to aid future code comprehension

activities. A student reading a worked example who notices the three lines illustrated

in Figure 2-2 for the first time would only recognise that the code extract consists of

three assignment statements. On deeper inspection, the student might realise that

these three assignment statements perform a swapping of the values in variables a and

b. Chunking is used to assimilate the combination of assignment statements into

long-term memory. This new information then becomes a beacon stored in long-term

memory that can be used when studying an unseen algorithm with the same plan.

Figure 2-2 Illustration of the Swap plan

Programmers are called upon to read code for a variety of different reasons. In some

instances, they read it with a maintenance task in mind, to adapt an algorithm, to

optimise it, to correct it or to reuse it (Von Mayrhauser and Vans 1994). In these

cases, partial understanding of certain elements of the code would be sufficient. An

opportunistic reading approach that focuses on the area of the algorithm that needs to

be understood is suited to partial understanding. Hypothesis verification through the

recognition of beacons would be appropriate when employing an opportunistic

reading strategy.

Working
memory

Long-term
memory

New information

Assimilation

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

17

There are also times when it is required to read code for general understanding. This

implies a comprehensive understanding of the entire algorithm. A systematic reading

strategy is typically used for complete understanding (Koenemann and Robertson

1991; Von Mayrhauser and Vans 1994; Chan and Munro 1997). A systematic reading

approach implies a thorough scan of the code with emphasis on how the individual

lines work together to meet the overall goal of the algorithm. Chunking is, therefore,

a suitable technique when employing a systematic reading strategy.

2.2.2 Elements of the Mental Model

While programmers study an algorithm (including associated documentation) they

form a working representation of the code in their working memory. This is referred

to as their mental model. Experienced programmers have built up a sufficient

repertoire of plans in their long-term memory to quickly determine the functionality

of the code they are studying (Wiedenbeck, Ramalingam et al. 1999). Plans can be

assimilated by a technique described as chunking when using a bottom-up strategy of

code comprehension. Programmers studying an algorithm, using a top-down strategy,

generate hypotheses about the existence of certain plans and use beacons to verify

these hypotheses. Knowledge of programming constructs and programming

conventions are required in programmers’ long-term memory to aid plan discovery

when studying an algorithm.

Plans

Plans are useful for understanding program functionality (Rist 1986; Garner 2003).

Soloway and Ehrlich (1984) describe programming as the construction of plans to

solve a specific problem. Wiedenbeck and Evans (1986) argue that during program

comprehension, programmers become aware of these plans by searching for beacons.

Figure 2-3 illustrates the way in which beacon recognition facilitates plan discovery

during a top-down program comprehension strategy.

Programmers scan the code looking for beacons. A discovered beacon hints at a

possible plan in the source code. The presence of the plan is then validated by

searching for additional elements of the plan.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

18

Figure 2-3 Using beacons to discover plans in source code (O’Brien 2003)

Line Code
1. public void CalcAverage()

2. {
3. int count, sum, num;
4. double average;
5. count = 0;
6. sum = 0;
7. readln(num);

8. while (num != 99999)

9. {

10. sum = sum + num;

11. count++;

12. num = readln();

13. }

14. if (count >0)

15. {

16. average = sum/count;

17. writeln(average);

18. }

19. else writeln(“ERR: Divide 0”);

20. }
Legend:

Figure 2-4 Using chunking to discover plans in source code

Accumulate Total plan Error check plan Counter plan

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

19

Figure 2–4 illustrates the way in which chunking facilitates plan discovery during a

bottom-up program comprehension strategy. The example used in Figure 2–4 is an

algorithm calculating the average of a number of inputs. Such an algorithm can be

broken down into the following steps:

1. Calculate a running total of all values entered

2. Count the number of values entered

3. Ensure that legal values were input

4. Keep asking for inputs until a sentinel value is entered

5. Calculate and display the average

Steps 1, 2 and 3 are implemented using three plans, namely the accumulate total plan,

the counter plan and the error check plan. The individual statements implementing

each plan are grouped together into meaningful frames and associated with an

annotation describing the plan. Elements of each plan are spread throughout the code.

A programmer, when trying to understand the code in Figure 2–4, would scan the

code and discover an initialisation of a variable named count (lines 3 and 5). The

discovery prompts an expectation for a plan to increment the variable and upon

further inspection of the code, the line count++ (line 11) confirms the

implementation of the counter plan listed above. The other plans can be discovered

using the same technique. A programmer who wishes to recall the algorithm in

Figure 2–4 can now recall the three plans and rely on his long-term memory to

complete the code for the individual plans.

There are four different ways in which plans can be woven throughout the code,

namely abutment, nesting, merging and tailoring (Soloway 1986). Abutment refers to

two plans that are joined together sequentially. Nesting refers to the situation where

one plan surrounds another plan. The inner plan starts after the outer plan starts and

stops before the outer plan is completed. Plans that are merged are interleaved

throughout the code. Plans that need to be modified to fit in with existing code are

referred to as tailored plans. Plans are, therefore, not only sequential lines of code

grouped together, but non-adjacent lines that could be situated anywhere in the code.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

20

Hypotheses

Hypotheses are inferences that drive the plan discovery of a programmer when

reading a program (Brooks 1983; Letovsky 1986). Letovsky (1986) identifies three

types of hypotheses:

• Why? (…is a specific function used),

• How? (…is a program goal implemented),

• What? (…is this variable/function being studied).

When a programmer is familiar with the problem domain, hypotheses can be created

prior to reading the code. In this case, programmers create a list of program goals that

should be in the code and use How? type hypotheses to guide plan discoveries. These

hypotheses create an expectation in the programmer to discover plans typically used

to solve problems in that particular problem domain. The programmer reads the code

with these hypotheses in mind and tries to find evidence in support of the hypotheses.

This evidence takes the form of beacons in the source code.

When the problem domain is unfamiliar to the programmer, a bottom-up approach

would typically be used to discover the plans. Programmers read the code and use

mostly Why? and What? type of hypotheses to discover plans. Individual statements

will be grouped together and hypotheses are developed to discover the higher-level

function of the group of statements instead of individual lines. Once all hypotheses

are answered, the programmer is able to determine the functionality of the program.

Beacons and Chunking

Beacons are valuable in hypothesis verification when the problem domain is familiar

to the programmer. Chunking is useful to discover plans when the problem domain is

unfamiliar. From Section 1.2.2, it is also clear that beacon recognition and chunking

are two techniques widely used by experts to build their mental model of code being

studied.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

21

Beacons are defined as surface features in a program that verify the existence of some

structure or operation (Wiedenbeck and Evans 1986). A recent study shows that

beacons are extensively used by experienced programmers to facilitate program

comprehension (Crosby, Scholtz et al. 2002). It was also shown that students do not

identify meaningful beacons in code. Beacons are used by programmers to abstract

plans from an algorithm (Figure 2-3). Plans form part of the mental model of a

programmer during code comprehension. Beacon identification is, therefore, a

valuable skill that experts use during program comprehension activities, and it seems

reasonable to make an effort to include beacon identification exercises in an

introductory programming module.

Two classes of beacons have been identified by Crosby, Scholtz et al. (2002), namely

comment beacons and complex beacons (Figure 2-5). Comment beacons refer to

mnemonic devices in the code that indicate program functionality.

Line Code
1. public static void BubbleSort(int[] List, int nrEl)
2. {
3. bool sorted;
4. do
5. {
6. sorted := true;
7. for (int x := 0; x <= nrEl-2; x++)
8. {
9. if (List[x] < List[x+1])
10. {
11. sorted := false;
12. Swap (List, x, x+1);
13. }
14. }
15. }
16. while (!sorted);
17. }
18.
19. private static void Swap(int[] TheList, int a, int b)
20. {
21. int temp := TheList[a];
22. TheList[a] := TheList[b];
23. TheList[b] := temp;
24. }

Complex beacon

Comment beacon

Figure 2-5 Example of the two types of beacons in a Bubble Sort algorithm

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

22

The function name Swap (line 19) and function call to Swap (line 12) are examples

of a comment beacon. Since comment beacons are direct and simple to detect, they

are easy for students to recognise and use. Complex beacons consist of multiple lines

of code that are so unique in structure that they are strong indicators of some higher-

level operation or function. The three lines of code that perform the swap operation

(lines 21 – 23) together are an example of a complex beacon. Complex beacons are

more implicit type beacons and only through programming experience would these

lines of code become a beacon in future code comprehension activities.

Figure 2-6 shows an extract of an implementation of the Binary Search algorithm.

The algorithm is used to find a particular value in a sorted array. The algorithm does

this by eliminating half of the data during each phase. A binary search includes the

following plans:

1. Calculates the midpoint.

2. Compares the search value to the value in the middle of the array to determine

whether the search value falls in the first or last half of the array.

3. Continues searching the relevant section of the array repeatedly.

Line Code
1. function int binarySearch(a, value, first, last)
2. while first ≤ last
3. {
4. mid := floor((first + last)/2)
5. if a[mid] = value
6. return mid
7. else if value < a[mid]
8. last := mid-1
9. else
10. first := mid+1
11. }
12. return not found

Figure 2-6 Implementation of a Binary Search Algorithm

In this example, a is the sorted list, value is the item being searched for, first and

last are the indices of the first and last values of the section of the list being

scanned.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

23

The name of the function binarySearch in line 1 is an example of a comment

beacon. Line 2 on its own is an example of a complex beacon and one that is

typically found in a binary search (Aschwanden and Crosby 2006). Discovery of this

line can prompt an expectation in the program reader that the algorithm might be a

binary search. The combination of six lines from lines 5 to 10 is an example of

another complex beacon that strengthens the expectation of a binary search. The

mnemonic variables mid , first and last are also comment beacons that aid the

discovery of plans in this algorithm.

Chunking is a program comprehension strategy that is useful for building mental

models during program comprehension in unfamiliar problem domains (Burnstein and

Roberson 1997). A chunk has a higher-level meaning and is often associated with a

name (Rajlich and Wilde 2002). Large chunks can consist of nested chunks.

Chunking can be used to acquire semantic knowledge embedded in the code of an

algorithm. Frequently the first step in chunking is to group code on program domain

concepts, for example syntactic nesting levels or functional units (Young 1996). A

programmer would later revise these chunks to form interrelated units that represent

problem domain concepts. A hierarchy of chunks would then be used to build the

mental model of the programmer. Often these chunks become a beacon that can be

used to identify the same plans in other algorithms.

Line Code
1. function int binarySearch(a, value, first, last)
2. while first ≤ last
3. {
4. mid := floor((first + last)/2)
5. if a[mid] = value
6. return mid
7. else if value < a[mid]
8. last := mid-1
9. else
10. first := mid+1
11. }
12. return not found

Figure 2-7 Binary Search Example (Chunking)

Find boundaries
of new search
area

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

24

Figure 2-7 shows an example of an algorithm where multiple related lines of code are

grouped into a named grouping of code associated with a single semantic description.

Lines 7 to 10 are used together to make the search area of the array smaller. These

lines can be grouped together and instead of having to remember the individual lines

of code (which are assumed to be previously learnt material and already in the

programmer’s long-term memory), the collective description (Find boundaries of new

search area) can be assimilated into long-term memory. This program chunk is then

processed instead of individual statements, simplifying the task of the programmer to

recall the overall function of the algorithm.

Chunking can be used to understand control flow and to make a match between the

sub-problems of the problem specification for which the program was designed

(Rajlich and Wilde 2002). Assigning mental or annotated labels to chunks of code

also helps reduce cognitive overload while building a representation of an algorithm

in working memory (Shneiderman 1982).

The main difference between beacons and chunks is that beacons are used during top-

down code comprehension and chunking during bottom-up comprehension

(Aschwanden and Crosby 2006). A chunk of code can only become a beacon to the

programmer if (s)he has had enough exposure to similar algorithms containing the

same stereotypical grouping of lines. Figure 2-8 shows how beacons (B) and chunks

(C) can be used as an index of knowledge when studying source code.

Figure 2-8 Beacons and Chunks (Aschwanden and Crosby 2006)

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

25

Instead of assimilating individual lines of code, a programmer first groups together

statements that perform a single, higher-level operation. The chunk then becomes

knowledge that can be used during future program comprehension activities. Some

chunks that were previously assimilated in long-term memory become beacons that

aid hypotheses verification when faced with unfamiliar source code. In some

instances, a chunk of code can contain beacons that can be used to verify the

hypothesis that the particular grouping of code is a specific implementation of a plan.

Programming Constructs and Conventions

In order to facilitate plan recognition, the program reader must have an understanding

of the programming constructs used in an algorithm and programming conventions

used by expert programmers.

The textual structure of an algorithm is used to organise knowledge of the overall

control flow (Pennington 1987). It includes programming constructs, such as loops,

conditionals, variables and reserved words in the programming language. To

effectively organise knowledge in working memory, it is necessary to have

knowledge of the basic elements of the structure of a programming language readily

available in long-term memory.

Algorithms written according to standard programming conventions help to simplify

the programmer’s understanding of a program. Programming conventions create an

expectation for the programmer. Examples of programming conventions include

coding standards, expected use of certain data structures for certain processes and

using mnemonic naming for variables. Programming conventions aid plan discovery

by structuring the algorithm in a way that is familiar to most expert programmers.

2.2.3 Navigating Source Code

A programmer builds a conceptual model of a program by navigating the text

structure of the source code and by relying on knowledge stored in long-term

memory. This knowledge in long-term memory includes knowledge of the problem

as well as in the program domain (Pennington 1987).

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

26

When reading an unfamiliar program, program knowledge is built up before problem

domain knowledge (Pennington 1987). Domain knowledge links the plans from the

program model to objects in the real world. Terms used to describe this knowledge

come from the problem domain that is modelled in the program. Two strategies to

study unfamiliar code are to use a bottom-up or top-down process of comprehension

(Pennington 1987).

Top-down comprehension requires in-depth knowledge of the problem domain

(Letovsky 1986). This problem domain knowledge is translated into hypotheses that

will be used to determine the unfamiliar program’s functionality. The text structure is

scanned for beacons to accept/reject the hypotheses of the existence of a plan.

Throughout the scanning of the unfamiliar code, the hypotheses change as needed.

Bottom-up comprehension assumes knowledge of the syntactic elements of the textual

structure and at least the ability to extract semantic knowledge from the unfamiliar

algorithm. The programmer reads the algorithm and “chunks” together related

statements that perform a single, higher-level operation. These chunks are stored in

long-term memory, often with a mental annotation to describe the grouping. The

combination of chunks is used to determine the functionality of the program.

The navigation style that a programmer uses to read an algorithm has an impact on

whether the algorithm is studied at the in-depth or the superficial levels. Navigation

of a program is the process used to collect information about the program. Mosemann

and Wiedenbeck (2001) identify three methods of navigation, namely sequential,

control flow and data flow.

In sequential navigation, the mental model is constructed line-by-line, from the start

of the program to the end. This technique is mostly used by novices (Jeffries 1982).

Using this method creates a fragmented image of the program where low-level

knowledge is gained, but where hierarchical structure, dynamic behaviours,

interactions and purpose are lost (Mosemann and Wiedenbeck 2001). This type of

navigation leads to superficial knowledge of the algorithm.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

27

Control flow navigation proceeds through the program in the way that the computer

will execute statements. This type of navigation starts from the first line of the main

program, then moves to the next statement and steps into the relevant function or

procedure that is called from the current point. Upon completion of the function or

procedure, control steps back to the point where it was called. While navigating the

code in this way, a programmer groups related statements into chunks to reduce

cognitive overload and assimilate the abstract chunks to long-term memory. Control

flow navigation encourages in-depth knowledge of the algorithm.

Data flow navigation builds a mental representation of the variables and how they

change throughout the program (Mosemann and Wiedenbeck 2001). Data flow

navigation is useful when a modification is necessary to add a new calculation or

introduce new variables into a program; thus, data flow navigation also provides in-

depth knowledge of the algorithm.

2.3 Aiding the comprehension of introductory programming

algorithms

To improve students’ ability to generate new or similar solutions, they are often

required to understand a worked example of an algorithm (Koenemann and Robertson

1991; Garner 2003). The algorithm would mostly be an unseen one to show how

programming constructs are used to solve a given problem. Students would be

required to study the algorithm using a comprehension strategy suited to the situation.

In some instances, students would need to debug the algorithm and in other situations,

they would be required to read the algorithm for the purpose of understanding how it

solves a particular problem or for recalling it at a later stage.

By presenting students with worked examples, they are exposed to properly designed

sample solutions to a stated problem (Sweller and Cooper 1985; Renkl 1997). This

technique has also been applied to the study of introductory programming (Cook,

Bregar and Foote 1984; Garner 2000, 2003). Small worked examples emphasizing a

few concepts at a time are often used in introductory programming modules. This is

done to support students’ active programming skills (Lahtinen, Ala-Mutka et al.

2005). Students in introductory programming are presented with a formulation of the

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

28

problem, steps for a solution and an example of the final solution in a specific

programming language (Renkl 1997).

The abundance of worked examples in introductory programming textbooks requires

students to develop techniques to read and understand these programs with efficiency

(Deimel and Naveda 1990). A recent multinational survey reported that many

students have difficulty with programming, even after completing an introductory

module (McCracken, Almstrum et al. 2001). Lister, Adams et al. (2004) conducted a

subsequent study to determine if this was due to a lack of problem solving skills, or

because of superficial knowledge. Superficial knowledge refers to the phenomenon

that a student is capable of articulating particular items of knowledge when prompted,

but fails to apply the knowledge in a program generation context. Basic skills that a

student should exhibit include the ability of the student to trace and comprehend

worked examples. The results of the study showed that students have a fragile grasp

of the skills required to solve problems. It seems, therefore, necessary to aid students

in their understanding of worked examples.

Subsequently, techniques are needed to promote the in-depth learning of introductory

algorithms. These techniques should enable a student to extract semantic meaning

from the source code. Over time, their long-term memory should be indexed with a

network of semantic plans (Soloway and Woolf 1980; Curtis 1981).

In an effort to continue developing requirements for the in-depth comprehension of

algorithms in an introductory programming module, valuable insights can be gained

through studying techniques used by educators to aid students in the construction of

their mental model during code comprehension activities. It is the responsibility of

the educator to guide the student in the construction of a functional mental model so

that unfamiliar material can be classified according to the model and correct responses

formulated (Ben-Ari 2001). Introductory programming educators use a variety of

techniques to assist students to comprehend algorithms.

The techniques typically used by educators to help their students study worked

examples of algorithms include the following:

• Reading Tasks (Kimura 1979; Deimel and Naveda 1990)

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

29

• Algorithm Animations (Brown 1988; Naps, Eagan and Norton 2001; Yeh,

Greyling et al. 2006)

• Visualisation of Programming Constructs (Ford 1993; Ala-Mutka 2003; Boyle

2003)

• Control Structure Diagrams (Cross, Hendrix and Barowski 2002; Hendrix and

Cross 2002)

• Flowcharts (Shneiderman 1983; Scanlan 1988; Cilliers, Calitz and Greyling 2005;

Mendes and Marcelino 2006)

• Object Diagrams (Thomas, Ratcliffe et al. 2004)

• Patterns (Clancy and Linn 1999; De Barros, dos Santos Mota, Delgado et al.

2005)

Reading Tasks

One of the earlier techniques for teaching introductory programming involves

exposing students to a large enough number of worked examples to teach

programming fundamentals before engaging them in code generation exercises

(Kimura 1979). It was hypothesized that students are capable of obtaining reading

skills with minimal instructional help. In the study, students were given 50

syntactically and semantically correct example programs (written in FORTRAN) as

reading exercises and instructed to predict the output of each algorithm. Once the

prediction is made, students should run the algorithm and hypothesize the use of

constructs used. The hypotheses were then tested by developing and running other

algorithms. No assistance was given to students with regards to reading skills and the

size of the algorithms was relatively small. Students developed their own techniques

to comprehend the code, with some techniques being more successful than others.

Reading skills should be cultivated by including explicit reading exercises into an

introductory programming module (Deimel and Naveda 1990). Appropriate control

should be taken over the cultivation of reading skills (Carbone and Kaasbøll 1998).

The activities students engage in when reading code is different from the tasks when

writing code. Students should be provided support for both program reading and

program generation.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

30

Algorithm Animations

Animations have been used since the 1980s to interactively visualize algorithms

(Brown 1988). Animations can be useful for tracing the control flow in an algorithm

or for showing the status of data structures during runtime (Naps, Eagan et al. 2001;

Yeh, Greyling et al. 2006). Code is often highlighted and synchronized with

animation actions so that students can relate the code to the animation (Brummund

2001) (Figure 2-9).

Figure 2-9 Algorithm Animations

Animations can also be used to compare the efficiency of two or more algorithms

(Yeh, Greyling et al. 2006). However, the working group on the educational impact

of algorithm visualization reports that this technique will not be effective unless it

engages the students in active learning activities, such as interacting with the

animation or answering comprehension questions while playing the animation (Naps,

Eagan et al. 2001).

Visualisation of Programming Constructs

Dynamic visual learning materials are often used by computer science educators to

aid with the learning of basic algorithmic concepts and structures (Ford 1993; Ala-

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

31

Mutka 2003; Boyle 2003). A while loop, for example, can be illustrated by showing

what happens to a car during execution of the while loop (Figure 2-10).

Figure 2-10 Visualisation of a while loop

Ford (1993) conducted experiments to determine how students visualise programs. In

these experiments, students were required to animate how they visualise constructs,

such as variables, pointers, classes, conditional statements and looping constructs.

This study showed, amongst other things, that there is very little misconception

regarding these programming concepts, yet numerous results have shown that students

find it difficult to apply these concepts to solve a specific problem (McCracken,

Almstrum et al. 2001; Jenkins 2002; Lahtinen, Ala-Mutka et al. 2005).

Control Structure Diagrams

Another type of visualisation technique that aids program comprehension is the use of

control structure diagrams (CSD) (Cross 1998; Cross, Hendrix et al. 2002). In

contrast to the program structure visualisation techniques that replace textual code,

control structure diagrams use graphical constructs to supplement the text.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

32

Figure 2-11 Worked Example (Text Only)

Figure 2-12 Worked Example (with CSD)

(Cross, Hendrix et al. 2002)

Figure 2-11 shows an algorithm that calculates the numbers in a Fibonacci sequence.

As can be seen from Figure 2-12, a CSD uses the same algorithm with visual cues

interspersed within the program text to highlight control structures and control flow.

As an illustration of CSDs, the one in Figure 2-12 uses a diamond to indicate

conditional structures, and a left-sided arrow to show that control gets passed back to

the calling function. It was shown by Hendrix and Cross (2002) that CSDs have a

significant positive outcome on program comprehension. The visual cues in a CSD

attract the eye of a student and help students follow the control flow navigation.

Flowcharts

Using flowcharts is a visualisation technique that uses icons or symbols to graphically

depict algorithms (Figure 2-13). Different shaped symbols convey different semantic

meaning within the context of the algorithm it represents.

Scanlan (1988) showed that the time to learn an algorithm and the number of times it

is required to be viewed reduces significantly when using a flowchart to understand

complex programs as compared to conventional textual notation.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

33

Figure 2-13 Flowchart (Millner 2002)

Using flowcharts in program generation tasks also increase students’ understanding of

the problem (Crews and Ziegler 1998). However, a flowchart, where one box

corresponds to one statement, is not an effective aid during program comprehension

(Shneiderman 1983), since the flowchart becomes lengthier and more complex than

the program itself (Waddel and Cross 1988).

Object Diagrams

It is generally accepted that students perform better on code comprehension questions

when they draw diagrams while tracing the code (Thomas, Ratcliffe et al. 2004).

Using this as a basis, the aforementioned encouraged introductory programming

students to use object diagrams when tracing worked examples (Figure 2-14). Object

diagrams can be used to give a snapshot of objects in a system and how their

relationship changes during runtime (Thomas, Ratcliffe et al. 2004).

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

34

Figure 2-14 Object Diagrams (Thomas, Ratcliffe et al. 2004)

In the study, students were given partially completed object diagrams together with

the code and questions and instructed to complete them and then answer the

questions. The results of the study, however, showed unexpectedly that students

showed resistance to using object diagrams when the scaffold of partially completed

diagrams was taken away.

Patterns

Patterns provide a common vocabulary, documentation and learning support when

developing programs (Clancy and Linn 1999). Components of a pattern include a

name, motivation for use, structure, results and tradeoffs, related implementation

issues, sample code, examples of pattern use and related patterns (Figure 2-15).

Pattern Name Uses/Application Syntax

Loop with
Sentinel

You want to repeat a set of actions
while a condition is true. In general,
the set of actions is related to the
processing of a sequence of
elements or numbers. The amount
of elements is unknown but the end
of the sequence is indicated by a
sentinel value. The elements can be
read or generated.

<INITIALIZATIONS>
<SENTINEL VARIABLE INIT>
while (<SENTINEL VARIABLE
CONDITION>)
{
 <READ/GENERATION OF

A SEQUENCE ELEMENT>
 <PROCESS ELEMENT>
 <UPDATE THE

SENTINEL VARIABLE>
}

Figure 2-15 Patterns (adapted from De Barros, dos Santos Mota et al. 2005)

Various authors have seen potential in patterns to help students organise examples and

code while learning to program (Astrachan, Berry, Cox et al. 1997; Wallingford 1998;

Clancy and Linn 1999). Clancy and Linn (1999) surveyed various studies of pattern

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

35

use in introductory programming modules and reported that the inference of patterns

does not come naturally to students. Instruction that focused solely on patterns did

not have the desired result and expert patterns may be inaccessible to students due to

lack of experience. They also found that abstract understanding and a belief in reuse

is needed to apply patterns appropriately. The terms patterns and plans are often used

interchangeably (Johnson and Soloway 1984). While they have the same goal of

solving recurring problems encountered in different programming tasks, a pattern can

be seen as a more formalised method of recording plans.

2.4 Methods for testing algorithm comprehension

Bloom’s (1956) taxonomy contains a hierarchy of cognitive levels used as a guide to

measure learning objectives in a specific learning area. It has been applied by Buck

and Stucki (2000) to the teaching of software development and by Buckley and Exton

(2003) to the area of system maintenance. A discussion of Bloom’s taxonomy and

how it applies to this study follows. Lessons learnt from this section are applied to the

class tests and controlled experiments discussed in Chapter 4.

Figure 2-16 Bloom's taxonomy of educational objectives

Knowledge \Recall
(Section 2.4.1)

Application
(Section 2.4.3)

Synthesis
(Section 2.4.5)

Comprehension
(Section 2.4.2)

Analysis
(Section 2.4.4)

Evaluation
(Section 2.4.6)

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

36

Six distinct levels can be identified in Bloom’s taxonomy (Figure 2-16), with the

levels increasing in complexity from knowledge at the bottom to evaluation at the top.

Learning outcomes at higher levels in the hierarchy assumes a solid foundation in the

outcomes below and often include elements of all lower levels.

2.4.1 Knowledge

At the knowledge level, students must show the ability to recall learnt information

(Bloom 1956). Even though little understanding of the work learnt is necessary, this

level is vital in the student’s cognitive development (Bloom 1956; Buck and Stucki

2000; Buckley and Exton 2003).

Applying this level to computer science education, Buck and Stucki (2000) suggests

activities such as exposure to standard libraries and syntactic and semantic fluency in

a programming language. Other activities include recalling entire algorithms

(Wiedenbeck, Ramalingam et al. 1999) and identifying functionality of programs

through knowledge of certain statements in the code (O’Brien 2003).

Apart from recalling the entire algorithm, cloze procedures can also be used to test

this level of cognition (Garner 2002). Cloze activities are not unique to programming.

The cloze procedure is a technique widely used in reading exercises and is generally

identified by instructions for students to Fill in the gaps. Students are often required

to choose from a list of possible answers or to determine the missing answer without

assistance of a list.

2.4.2 Comprehension

Comprehension refers to the ability of the student to grasp the semantic meaning of

the material learnt (Bloom 1956).

Buck and Stucki (2000) and Buckley and Exton (2003) mapped the following

computer science activities to the comprehension level of Bloom’s taxonomy:

• Tracing algorithms

• Predicting the results of a program

• Translating the program to a flowchart or another language

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

37

A typical type of question from the comprehension level will include questions to

predict the value of variables at certain points in a program based on the logic of the

algorithm. The algorithm is usually given with an array and a comment in the code

instructing students to show the contents of the array at that point. Another type of

question will involve showing an algorithm to the student with the instruction to

explain, in their own words, what the algorithm does or what specific lines in the

algorithm do.

2.4.3 Application

At the application level, students are required to use existing knowledge in new

situations. Students must exhibit the ability to apply rules, techniques, concepts,

principles, laws and theories to a variety of problem scenarios (Bloom 1956).

Buckley and Exton (2003) suggest that in the context of software maintenance,

programmers who exhibit competency at this level should be able to re-use parts of

the system during maintenance tasks. The use of library components to implement

methods that satisfy a specification can be used to assess competence at the

application level of Bloom’s taxonomy (Buck and Stucki 2000).

2.4.4 Analysis

At the analysis level, students must display the ability to dissect material into

component parts. Students must also be able to identify component parts, analyse

relationships between parts and recognise the organisational structure of a topic

(Bloom 1956).

Applying this level to computer science activities, Buck and Stucki (2000) suggest

comprehending the code with a goal of modifying the functionality of a system,

analysing the performance of algorithms and debugging. In introductory

programming, Buckley and Exton (2003) map questions that assess variables and their

relationships to the analysis level. Conceptual diagrams of software systems also fall

in this level in Bloom’s taxonomy. Questions to assess this level of competence

should include new material to ensure that students do not have an opportunity to

recall analytical comments that discussed the new material. The new material could

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

38

be an unseen algorithm that students see for the first time and questions could include

an analysis of the algorithm to determine the function.

2.4.5 Synthesis

Bloom (1956) defines competence at the synthesis level to be the ability to construct a

new complete structure from different parts. The main emphasis of this level is the

formulation of new patterns or structures through creativity.

Buckley and Exton (2003) suggest extending the functionality of an existing system

as a test to measure competence at this level. Buck and Stucki (2000) map the

following computer science activities to the synthesis level:

• Develop an Application Programming Interface

• Design an Abstract Data Type

• Design fully functional applications (not simple algorithms consisting of a few

lines of code) from requirements.

The synthesis level also emphasizes creativity and the application of known plans to

novel programming solutions.

2.4.6 Evaluation

Bloom (1956) defines the evaluation level as the ability to judge the value of the

learnt material in a particular context. At this level, criteria and standards are used to

form opinions about the material. The evaluation level combines some elements of all

the previous phases in the hierarchy.

In computer science, Buck and Stucki (2000) map the process of judging inputs into

the requirements document during systems analysis to the evaluation level. At this

level, Buckley and Exton (2003) suggest getting participants to evaluate

characteristics of a system and to defend their evaluation by referencing elements of

the code. This type of question is very subjective and therefore, difficult to compare

the responses of one participant with another. An example of questions on this level

would be for a student to evaluate systems, judging possible problem areas and

motivating their answers. Evaluation of input from all sources into the system could

also be used to assess the evaluation level.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

39

2.5 Conclusions

Introductory programming can be seen as having two main activities: code generation

and code comprehension. A programmer with good program comprehension skills

enhances his efficiency when it comes to code generation activities. Students in

introductory programming are often required to read and comprehend algorithms

presented in lecture notes and textbooks, and then apply the knowledge gained to

program generation tasks.

Studies of student performance in introductory programming suggest that it is vital to

provide students with techniques to encourage in-depth learning of introductory

algorithms. Various techniques are used by educators to guide students in the

formulation of an accurate mental model of introductory programs (Section 2.3).

Bloom’s taxonomy provides a means of probing students’ mental models to determine

whether students achieved the required learning objectives. It can be applied to the

study of in-depth code comprehension to determine if the technique advocated in the

teaching model of introductory programming encouraged in-depth learning (Section

2.5).

Figure 2-17 The use of beacon recognition and chunking to discover plans

The recognition and novel use of plans emerged as one of the major elements of the

mental model of a programmer investigating source code, and as an indication of

Discovering Plans

Use top-down strategy

Is problem
domain known?

Use bottom-up strategy

Generate hypotheses

Scan code for beacons Are hypotheses
verified?

Use chunking to
generate hypotheses

Goal of algorithm
determined

Yes No

No

Yes

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

40

knowledge on the in-depth level (Section 2.2). Therefore, the problem of developing

efficient program comprehension skills in students becomes one of aiding students to

discover plans in an algorithm (Figure 2-17).

From the investigation into strategies used by experts to comprehend code, the

recognition of beacons and the chunking of code emerged as widely used techniques.

Beacon recognition is extensively used to verify hypotheses created during a top-

down program comprehension strategy, if the problem domain is familiar to the

programmer. In an unfamiliar problem domain, a bottom-up strategy is employed. In

this strategy, chunking is used to generate hypotheses. Any hypothesis not verified

prompts the programmer to resort to chunking to develop new hypotheses. Once all

hypotheses are verified, all plans are discovered and the goal of the program is

known.

By providing students with an environment that supports beacon recognition and

chunking, a network of plans can be stored in the long-term memory of the student.

Expert programmers frequently use plans to construct programs. The problem for a

student in introductory programming is that they have not built sufficient plans in

long-term memory to effectively use them. As a result, it seems necessary to build the

long-term memory of introductory students with plans. In addition to building their

long-term memory with plans, the techniques used to build these plans must be ones

that students can use to discover plans on their own after initial instruction. These

techniques must also be used by expert programmers in their program comprehension

activities.

The discussion in this chapter culminates in a proposal for an alternative teaching

model based on techniques used by experts to discover plans during code

comprehension activities. Since the discovery of plans relies extensively on the

recognition of program beacons and chunking, these techniques are included in the

teaching model to support in-depth comprehension of introductory algorithms. Table

2-1 lists requirements for a teaching model to aid the in-depth comprehension of

introductory programming algorithms.

Chapter 2 – Requirements for In-Depth Comprehension of Introductory Programming
Algorithms

41

 Requirements to support in-depth comprehension of algorithms Section

R1 Allows student to extract semantic information (plans) from worked example 2.2.2

R2 Promotes the use of chunking to learn an unfamiliar algorithm 2.2.2

R3 Coaches students to spot beacons in different algorithms 2.2.2

R4 Provides students with syntactically and semantically correct worked examples 2.3.1

R5 Engages students in active learning activities 2.3.1

R6 Increases ability to recall the semantics of an algorithm 2.4.1

R7 Enables students to successfully transfer knowledge 2.4.2

Table 2-1 Requirements to aid the in-depth comprehension of introductory algorithms

A technological learning support tool can be included in the teaching model to aid

code comprehension activities in introductory programming. Table 2–1 emphasises

requirements that should be evident in learning support tools that aids introductory

programming students in in-depth program comprehension activities. These

requirements are derived from investigations into expert programmer behaviour when

studying code and educators in introductory programming. This list of requirements

(Table 2–1) forms the basis for the rest of the dissertation. Table 2–1 specifically

serves as a measuring instrument to review existing support tools used by educators in

introductory programming (Chapter 3). Table 2–1 further forms the framework for

the investigative study described in Chapter 4, the results of which are reported on in

Chapter 5. In particular, requirements 6 and 7 (R6, R7) are determined by means of

an empirical investigation which involves class tests and controlled experiments.

42

(Deimel and Naveda 1990; Jenkins 2002 ; Warren 2003) (Deimel and Naveda 1990; McCrac ken, Almstrum, D iaz et al. 2001 ; Ala-Mutka 2003; Lister, A dams, Fi tzgerald et a l. 2004; Garner, Haden and Rob ins 2005 ; Laht inen, Ala-Mutka and Järvinen 2005) (Lis ter, Adams et a l. 2004; Fi tzgerald, Simon and Thomas 2005) (Lis ter, Adams et al . 2004; Fi tzgerald, Simon et a l. 2005) (Von Mayrhauser and Vans 1994) (Ris t 1986; Garner 2002; T homas, Ratcl iffe and Thomasson 2004) (Deimel and Naveda 1990; Upchurch 1997) (CS&IS 2006) (Lahtinen, Ala-Mutka et a l. 2005) (Kimura 1979; Deimel and Naveda 1990) (Letovsky 1986) (Shneiderman and Mayer 1979) (Brooks 1983) (Soloway and Ehrl ich 1984) (Pennington 1987) (Shneiderman and Mayer 1979; Brooks 1983; Soloway and Ehrlich 1984 ; Letovsky 1986; Pennington 1987) (Letovsky 1986) (Shneiderman and Mayer 1979) (Brooks 1983) (Wiedenbeck and Evans 1986; Wiedenbeck and Scholtz 1989; Fix, W iedenbeck and Scholtz 1993; Crosby , Scholtz and
Wiedenbeck 2002) (Wiedenbeck and Evans 1986; Pane and Myers 1996) (Ca litz 1997; Grey ling and Cali tz 2003 ; Vogts 2006; Yeh, Grey ling and Ci lliers 2006) (Harris 2005 ; Harris and Cil liers 2006) (Harris 2005; Harris and Cil liers 2006) (Van Greunen 2002; Pretorius 2005) (Wiedenbec k and E vans 1986; Pane and Myers 1996; Wiedenbec k, Ramalingam, Sarasamma et al. 1999) (Engebretson and W iedenbeck 2002) (Koenemann and Robertson 1991) (Mayer 1981) (Garner 2002; Garner 2003) (Von Mayrhauser and Vans 1994) (Koenemann and Robertson 1991; V on Mayrhauser and Vans 1994 ; Chan and Munro 1997) (Wiedenbeck, Ramalingam et al. 1999) (Rist 1986 ; Garner 2003) (So loway and Ehrlich 1984) (Wiedenbeck and Evans 1986) (O’Brien 2003) (So loway 1986) (Brooks 1983 ; Letovsky 1986) (Wiedenbeck and Evans 1986) (Crosby , Scholtz et al. 2002) (Crosby , Scholtz et al. 2002) (Aschwanden and Crosby 2006) (Burnstein and Roberson 1997) (Raj lich and Wilde 2002) (Young 1996) (Raj lich and Wilde
2002) (Shneiderman 1982) (Aschwanden and Crosby 2006) (Aschwanden and Crosby 2006) (Penning ton 1987) (Letovsky 1986) (Mosemann and Wiedenbeck 2001) (Jeffries 1982) (Mosemann and Wiedenbeck 2001) (Koenemann and Robertson 1991; Garner 2003) (Sweller and Cooper 1985 ; Renkl 1997) (Cook, Bregar and Foo te 1984; Garner 2000; Garner 2003) (Lahtinen, Ala-Mutka et al. 2005) (Renkl 1997) (Deimel and Naveda 1990) (Mc Cracken, Almstrum et a l. 2001) (Lister, Adams et al. 2004) (Soloway and Woolf 1980; Curtis 1981) (Ben-Ari 2001) (Kimura 1979 ; Brown 1988 ; Deimel and Naveda 1990; Ford 1993 ; Naps, Eagan and Norton 2001; A la-Mutka 2003; Boy le 2003; Yeh, Grey ling et al. 2006) (Cross, Hendrix and Barowski 2002 ; Hendrix and Cross 2002) (Shneiderman 1983; Scanlan 1988; Cil liers, Cal itz and Grey ling 2005; Mendes and Marcelino 2006) (Thomas, Ratcl iffe et al. 2004) (Clancy and Linn 1999 ; De Barros, dos San tos Mota, Delgado et al. 2005) (Kimura 1979) (Deimel and Naveda 1990)
(Carbone and Kaasbøll 1998) (Brown 1988) (Naps, Eagan et al. 2001; Yeh, Grey ling et a l. 2006) (Brummund 2001) (Yeh, Grey ling et al. 2006) (Naps, Eagan et al. 2001) (Ford 1993; Ala-Mutka 2003 ; Boy le 2003) (Ford 1993) (McCracken, Almstrum et al. 2001 ; Jenkins 2002; Laht inen, Ala-Mutka et al. 2005) (Cross 1998; Cross, Hendr ix et al. 2002) (Hendrix and Cross 2002) (Scanlan 1988) (Mi llner 2002) (Crews and Z iegler 1998) (Shneiderman 1983) (Waddel and Cross 1988) (Thomas, Ratcl iffe et al. 2004) (Thomas, Ratcliffe et al. 2004) (Clancy and Linn 1999) (De Barros, dos Santos Mota et al. 2005) (Astrachan, Berry , Cox et al. 1997 ; Wallingford 1998 ; Clancy and Linn 1999) (Clancy and Linn 1999) (Johnson and Soloway 1984) (Buc k and Stuc ki 2000) (Buc kley and Exton 2003) (Bloom 1956) (Wiedenbeck, Ramalingam et al. 1999) (O ’Brien 2003) (Garner 2002)

Chapter 3 Educational Technological Support for In-Depth
Comprehension of Introductory Algorithms

3.1 Introduction

The requirements for in-depth code comprehension of introductory algorithms are

derived in Chapter 2. These requirements can be used as the selection criteria for a

technological support tool that can be incorporated into introductory programming.

Chapter 3 expands on the requirements for support tools in introductory programming

modules (Section 3.2) and reviews different types of electronic tools used by

educators to support the in-depth comprehension of introductory algorithms (Section

3.3). The requirements established in Chapter 2 are used as an evaluation instrument

to determine the level of support for these requirements supported by each tool. The

experimental tool investigated in this study and how it meets the requirements

established in Chapter 2 is also discussed (Section 3.4).

3.2 Requirements for support tools

The challenge for educators is to create a learning environment that goes beyond the

simple reading of example code. The learning environment should emphasize

reading, comprehension and modification of working programs (Van Merriënboer

1990). Techniques are required to encourage a methodical investigation of code,

which is more effective than a haphazard approach (Robbilard, Coelho and Murphy

2004).

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

43

One of the major challenges for educators in introductory programming is to provide

interactive tools that favour learning (Giannotti 1987). The majority of commercial

software comprehension tools are aimed at comprehending large-scale software

systems. These comprehension tools, such as CFlow (Poznyakoff 2005), Rigi

(Müller, Tilley, Orgun et al. 1992) and LCLint (Evans, Guttag, Horning et al. 1994)

are not suitable for use by students. Since the algorithms taught at introductory level

are relatively small, large-scale technological support tools fall outside the scope of

this study.

A major contribution of software comprehension tools is to aid the human thinking

process (Walenstein 2002). Chapter 2 investigated some cognitive aspects of

programmers while they are studying an algorithm. It was established that worked

examples are a favoured technique by introductory programming educators to

introduce programming concepts to their students (Section 2.3). A tool to aid

comprehension of these worked examples should, therefore, guide students’ thinking

processes. The tool must further facilitate a student to achieve the goal or action

without the support in the future (Guzdial 1994). For the purpose of the proposed

teaching model, a tool to support comprehension of introductory algorithms needs to

meet at least the following requirements derived from Chapter 2 and summarised in

Table 3.1.

 Requirements to support in-depth comprehension of introductory algorithms

R1 Allows student to extract semantic information (plans) from worked example

R2 Promotes the use of chunking to learn an unfamiliar algorithm

R3 Coaches students to spot beacons in different algorithms

R4 Provides students with syntactically and semantically correct worked examples

R5 Engages student in active learning activities

R6 Increases ability to recall the semantics of an algorithm

R7 Enables students to successfully transfer knowledge

Table 3-1 Requirements to aid the in-depth comprehension of introductory algorithms

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

44

Requirement 1 (R1): Students are required to read a vast amount of worked

examples as part of an introductory programming module. It is important for the

students to extract appropriate semantic information (plans) from these worked

examples (Section 2.2). Plans can then be used across problem domains to develop

novel solutions.

Requirement 2 (R2): The use of chunking has been seen to aid programmers using

the bottom-up approach when studying algorithms in unfamiliar domains (Section

2.2). Grouping together statements and assigning either a mental or written

annotation to related statements also minimises the cognitive load on the programmer.

The chunks become knowledge that can be used across different problem domains.

Requirement 3 (R3): Beacons have been shown to aid programmers when answering

hypotheses as part of a top-down approach to understanding unfamiliar code.

Programmers using the top-down method of code comprehension are usually capable

of generating hypotheses when they are familiar with the problem domain. Beacons

guide the verification process of these hypotheses. Students do not have an adequate

repository of beacons in their long-term memory and need assistance in discovering

them (Section 2.2).

Requirement 4 (R4): The worked examples presented to the student must be of such

a standard that it is possible to determine syntax rules from the code (Section 2.3).

Adhering to standard programming conventions will make it easier to extract semantic

information from the worked example. Special care must be taken to ensure the

presented solution is semantically correct.

Requirement 5 (R5): Students who simply read an algorithm are less successful than

those actively engaged with the code (Section 2.3). Engagement with the algorithm

can take the form of completing missing lines, debugging code and answering

questions about the semantics of the code. When students are allowed to interact with

the algorithm in these ways, it forces them away from using rote-learning techniques.

Requirement 6 (R6): Rote learning an algorithm would result in a student

regurgitating code line by line while disregarding slight changes in the problem

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

45

scenario. Recalling an algorithm and making the necessary changes to suit the

difference in problem scenario is evidence of in-depth learning (Section 2.4) and

provides an indication that the student has grasped the semantics of the code when it

was studied. Chunking is a technique that helps with discovering the semantic plans

in the code.

Requirement 7 (R7): If a student studied an algorithm at the in-depth level, (s)he

would be capable of using that knowledge in future code comprehension activities

(Section 2.4). A repository of plans should be built up in long-term memory while

studying algorithms. This would enable the efficient discovery of plans in similar

algorithms, and re-use of these plans during code generation exercises. A support tool

is also deemed successful in this requirement if students exhibit a tendency to

continue with the techniques learnt using the support tool, even after the tool is not

used anymore.

The requirements summarised in Table 3-1 will be used to guide the investigation into

existing tools used to support in-depth code comprehension.

3.3 Investigation of existing support tools

A study of existing support tools reveals a number of different types of support tools

used by educators in introductory programming1. These tools can be classified as

either code generation tools or code comprehension tools. Since this study focuses on

comprehension of introductory programming algorithms, this section will only discuss

the latter type of tools. The tools of the type that aid comprehension are further

classified as algorithm animation tools (Section 3.3.1), program tracing and

debugging tools (Section 3.3.2), programming construct visualisation tools (Section

3.3.3) (also called multimedia learning objects) and flowchart tools (Section 3.3.4).

3.3.1. Algorithm Animation Tools

Algorithm animation tools to aid comprehension of algorithms have been in use since

the eighties (Brown 1988). Animations are used to demonstrate the behaviour of an

algorithm during runtime (McDonald and Ciesielski 2002). A set of animated images

1 (Naps, Eagan et al. 2001; Cross, Hendrix et al. 2002; Boyle 2003; Naps 2005; Areias and Mendes
2006; Yeh, Greyling et al. 2006)

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

46

are shown to demonstrate important events, for instance when the algorithm updates a

data structure. A study of algorithm animation tools reports that the result of

experiments of their effectiveness in terms of comprehension is not always

significantly favourable (Wilson, Katz, Ingargiola et al. 1995). Another study

indicates that animation tools lose their effectiveness over time, with students

comprehending the algorithm while it is shown, but seemingly forgetting aspects of

the algorithm after the animation has ended (Stasko, Badre and Lewis 1993). It was

also shown that experienced programmers stand to gain more from animations than

students, since animations serve more a role of reinforcing and clarifying the

knowledge of the algorithm after it has already been understood by the programmer.

Textual descriptions of the algorithm would add to the effectiveness of the algorithm

(Stasko, Badre et al. 1993).

Java-Hosted Algorithm Visualization Environment (JHAVÉ) (Figure 3-1) is an

example of an algorithm animation tool used to learn sorting algorithms (Naps, Eagan

et al. 2001; Naps 2005).

Figure 3-1 Screenshot of JHAVé (Naps, Eagan et al 2001)

One of the key findings of a study investigating the effectiveness of this tool is that

students’ comprehension increases with their level of engagement with the code and

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

47

the animations. From the student’s perspective, the JHAVÉ interface provides

explanations of the algorithm in pseudocode in a pane on the right hand side while the

animation is viewed in the left hand pane. Students can use controls to step forward

and back through the algorithm. Occasionally during the animation a dialogue box

appears that forces a student to think about the algorithm by posing a question and

requiring feedback interactively.

JHAVÉ is an algorithm animation tool that helps students to understand the

functionality and mechanics of the algorithm. Support for the requirements to aid in-

depth comprehension of introductory algorithms is summarised in Table 3-2.

Individual plans that are used to construct the algorithm are explained in pseudocode

(R1). No evidence could be found of the use of chunking to learn an unfamiliar

algorithm, nor of recognising beacons in different algorithms (R2, R3). JHAVÉ

provides students access to a syntactically and semantically correct worked example

(R4). JHAVÉ provides a quiz and the ability to step through the algorithm to allow

some level of interaction (R5). No evidence of the students’ ability to transfer

knowledge and recall an algorithm was found in available literature about JHAVÉ

(R6, R7).

 Requirement Supported?

R1 Allows students to extract semantic information (plans) from worked example �

R2 Promotes the use of chunking to learn an unfamiliar algorithm

R3 Coaches students to spot beacons in different algorithms

R4 Provides students with syntactically and semantically correct worked examples �

R5 Engages student in active learning activities �

R6 Increases ability to recall an algorithm

R7 Enables students to successfully transfer knowledge

Legend
� Requirement is supported
No entry Inconclusive evidence in available literature in support of requirement

Table 3-2 Support for comprehension requirements in JHAVÉ

A prototype algorithm animation tool (Figure 3-2) was developed in the Department

of CS&IS at NMMU as a proof of concept for an extensible framework for algorithm

animation systems (Yeh, Greyling et al. 2006). The prototype animation tool allows

students to view and compare the speed of sorting algorithms in real time. Students

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

48

are able to set the speed of the algorithm, supply data and construct animations (R5).

The animation tool can be used to visually explain the plans in the algorithm (R1).

Since the code is not displayed at the same time that the animation is running, support

for R2 – R4 is not evident (Table 3-3). An investigation into the effectiveness of this

tool has not yet been conducted (R6, R7).

Figure 3-2 A prototype algorithm animation tool based on an extensible framework

 Requirement Supported?

R1 Allows students to extract semantic information (plans) from worked example �

R2 Promotes the use of chunking to learn an unfamiliar algorithm X

R3 Coaches students to spot beacons in different algorithms X

R4 Provides students with syntactically and semantically correct worked examples X

R5 Engages student in active learning activities �

R6 Increases ability to recall an algorithm

R7 Enables students to successfully transfer knowledge

Legend
� Requirement is supported
X Requirement is not supported
No entry Inconclusive evidence in available literature in support of requirement

Table 3-3 Support for comprehension requirements in prototype animation tool

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

49

3.3.2. Program Tracing and Debugging Tools

Debugging is a vital component of software development and a key challenge that

should be addressed in an introductory programming module (Mathis 1974).

However, debuggers are often neglected by instructors of introductory programming

or limited to a tool for finding errors in source code (Cross, Hendrix et al. 2002).

Experiences by Cross, Hendrix et al. (2002) suggest that debuggers can be

successfully used in introductory programming modules to improve the effectiveness

of their teaching and the in-depth comprehension of object-oriented algorithms.

The visual debugger used in Cross, Hendrix et al.(2002) is integrated with a Java IDE

and called jGRASP (Figure 3-3).

Figure 3-3 jGRASP with associated debugger (Cross, Hendrix et al. 2002)

This debugger is used to step through a worked example in contact sessions. The

visual debugger explicitly shows how a constructor works and how some methods are

implicitly invoked. jGRASP also shows how objects are created, updated and

deconstructed. Thus, the debugger shows information normally not visible to the

students, thereby aiding their in-depth comprehension processes. Code highlighting

and Control Structure Diagrams are also used to guide students’ attention.

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

50

While jGRASP is useful to show students the effect of the code, is does not explicitly

show how plans are used to solve specifications in the problem domain (R1) (Table

3–4). It also does not promote the use of chunking to learn an unfamiliar algorithm or

how to use beacons to verify hypotheses (R2, R3). It does show syntactically and

semantically correct worked examples and makes it easier for students to navigate the

control flow of the algorithm by using code highlighting and control structure

diagrams (R4). Students use the debugger to fix errors in the code, so interactive

learning is possible (R5). The jGRASP support tool increases students’ ability to

recal an algorithm and enables students to successfully transfer knowledge (Cross,

Hendrix et al. 2002) (R6, R7).

 Requirement Supported?

R1 Allows students to extract semantic information (plans) from worked example

R2 Promotes the use of chunking to learn an unfamiliar algorithm

R3 Coaches students to spot beacons in different algorithms

R4 Provides students with syntactically and semantically correct worked examples �

R5 Engages student in active learning activities �

R6 Increases ability to recall an algorithm �

R7 Enables students to successfully transfer knowledge �

Legend
� Requirement is supported
No entry Inconclusive evidence in available literature in support of requirement

Table 3-4 Support for comprehension requirements in jGRASP

3.3.3. Programming Construct Visualisation (PCV)

Learning objects that use multimedia can be used to cover a wide variety of basic

programming constructs, one at a time (Boyle 2003). An example of a multimedia

learning object can include a tool to understand a basic looping construct (while loop),

or one that illustrates a decision-making construct (if-statement). The main goal of

these objects is to improve students’ in-depth comprehension of various programming

constructs.

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

51

The risk of using a learning object to introduce one construct at a time is that it is

unsuited to in-depth learning (Wiley 2003) and only promotes learning of surface

features. The tool becomes a vehicle to provide decontextualised content in a passive

way. An advantage of this type of tool is that students can work through and

comprehend each construct at their own pace and it helps them form a more concrete

mental representation of each construct.

Figure 3-4 shows a multimedia object that illustrates how the code that defines and

initialises an array is implemented in computer memory. The student controls the

speed of the animation by clicking “Show” to advance to the next step. Student

control is useful to promote engagement and aid cognitive development (Boyle 2003).

Figure 3-4 Illustrating relationship between arrays and memory

The only two requirements that these multimedia learning objects meet are the

provision of active learning activities (R5) and that it helps with transfer of knowledge

(R7) (Table 3-5). Multimedia learning objects allows students to interact with the

object and students gain valuable knowledge of program domain constructs that can

be used in program generation and comprehension activities. From the available

literature, there seems to be no worked examples to provide a context for these

constructs (R4), which makes it impossible to incorporate extraction of plans,

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

52

chunking and beacon recognition (R1, R2, R3). No evidence could be found on their

ability to recall an algorithm (R6).

 Requirement Supported?

R1 Allows students to extract semantic information (plans) from worked example

R2 Promotes the use of chunking to learn an unfamiliar algorithm

R3 Coaches students to spot beacons in different algorithms

R4 Provides students with syntactically and semantically correct worked examples

R5 Engages student in active learning activities �

R6 Increases ability to recall an algorithm

R7 Enables students to successfully transfer knowledge �

Legend
� Requirement is supported
No entry Inconclusive evidence in available literature in support of requirement

Table 3-5 Support for comprehension requirements in program construct visualisation tools

3.3.4. Flowchart Tools

In the early stages of learning how to program, students often find it difficult to create

solutions to problems on their first attempt (Mendes and Marcelino 2006). Flowcharts

are often used to create solutions by dragging and dropping icons that visually

represent programming constructs onto a window (Cilliers 2004; Cilliers, Calitz et al.

2005; Mendes and Marcelino 2006). Flowcharts reduce the level of precision and the

manual typing required in textual programming environments. The flowchart is

usually accompanied by a textual window that shows the underlying code of the

constructed flowchart. Flowcharts convey the semantics of an algorithm. Despite an

earlier study that reported no significant difference in the ability of students to

comprehend code with or without flowcharts (Shneiderman 1983), flowcharts is a

useful technique to generate code, especially for students with a higher risk of failing

introductory programming (Cilliers, Calitz et al. 2005).

Figure 3-5 shows PROGUIDE (Areias and Mendes 2006), a support tool used to

guide students in natural language to generate a solution to a problem by using icons

to create a flowchart of the solution.

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

53

Figure 3-5 PROGUIDE flowchart tool (Areias and Mendes 2006)

Most of the requirements for in-depth comprehension is evident in PROGUIDE

(Table 3–6).

 Requirement Supported?

R1 Allows students to extract semantic information (plans) from worked example �

R2 Promotes the use of chunking to learn an unfamiliar algorithm

R3 Coaches students to spot beacons in different algorithms

R4 Provides students with syntactically and semantically correct worked examples �

R5 Engages student in active learning activities �

R6 Increases ability to recall an algorithm �

R7 Enables students to successfully transfer knowledge �

Legend
� Requirement is supported
No entry Inconclusive evidence in available literature in support of requirement

Table 3-6 Support for comprehension requirements in PROGUIDE

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

54

After a flowchart is created, PROGUIDE translates the solution into pseudocode,

JAVA and C (R4). Natural language prompts guide the student while building the

solution (R5). Educators can create the flowcharts and students can use the icons and

natural language prompts to discover the plans in the algorithm (R1). Students can

make changes to the code by moving icons around. Since the focus is on learning

semantics instead of syntax, students are able to successfully transfer knowledge (R7)

(Areias and Mendes 2006). This also increases their ability to recall an algorithm

(R6). From the available literature, it is not clear whether PROGUIDE promotes the

use of chunking to learn an unfamiliar algorithm or coach a student to spot beacons in

different algorithms (R2, R3).

3.4 The Beacon Recognition Tool

The Beacon Recognition Tool (BeReT) is a tool that helps students recognise and

identify plans in the source code (Harris 2005; Harris and Cilliers 2006). The support

tool provides tutorials for students that present semantic information (plans) from

worked examples (Section 3.4.1). BeReT has exercises that promote the use of

chunking to learn an unfamiliar algorithm and it coaches students to spot beacons in

different algorithms (Section 3.4.2). The worked examples can be loaded

dynamically and are syntactically and semantically correct. Engagement with the

worked examples takes the form of code completion, chunking and the definition of

beacons.

3.4.1. Tutorials

A tutorial is used to guide students to discover plans in the code and understand how

they match the goals of the algorithm (R1). Students often fail to understand what

they see (Mendes and Marcelino 2006). This can be solved by explanatory notes that

accompany the algorithm. The tutorial feature in BeReT includes these descriptions

of the plans implemented in the algorithm (Figure 3-6).

Each tutorial presents students with a syntactically and semantically correct worked

example (R4). The educator can load an algorithm in any programming language.

Since the focus of the tutorial is to help students comprehend the algorithm, chunking

is used to guide students through a bottom-up process of comprehension (R2).

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

55

Figure 3-6 BeReT Tutorial Screen (Harris 2005)

Chunking is achieved by means of highlighting relevant lines of code. The grouped

statements are annotated in a separate frame and a detailed description of the semantic

plan behind the highlighted lines is also given in a separate frame. Lines are

highlighted by clicking on an annotation. Tutorials that focus on beacon recognition

can be created in a similar fashion (R3).

3.4.2. Exercises

Student engagement is a key component of a successful learning tool (Boyle 2003;

Areias and Mendes 2006). The three types of exercises supported by BeReT cater for

student engagement and promote an active learning experience (Harris 2005, Harris

and Cilliers 2006) (R5).

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

56

Students may be required to do any of the following three types of tasks in BeReT,

namely Complete, Match and Define (Harris 2005) (Table 3-7). Exercises can be

used to test the students’ ability to recognise beacons or any general plan used in an

algorithm. One type of exercise is based on the cloze procedure (Section 2.4.1),

where students must complete a plan or beacon with statements removed. The match

type of exercise is used to test students’ ability to recognise the semantics of given

lines of code. The define type of exercise tests students’ ability to group together

related statements into semantic groupings (Harris 2005). These semantic groupings

must then be given a name and description.

Task Given What must be done

Complete Beacon name and description Fill in missing source code that name and
description refers to

Match Beacon name and description Select relevant source code lines that
matches name and description

Define Code only Group statements together and assign a
name and description to indicate plan of
these statements

Table 3-7 Types of exercises in BeReT

BeReT is an experimental support tool whose design and implementation decisions

specifically meet requirements R1 – R5 (Table 3-8). BeReT specifically addresses the

lack of support for requirements R2 and R3 which were found to be lacking in the

reviewed algorithm comprehension support tools (Section 3.3).

 Requirement Supported?
R1 Allows students to extract semantic information (plans) from worked example �
R2 Promotes the use of chunking to learn an unfamiliar algorithm �
R3 Coaches students to spot beacons in different algorithms �
R4 Provides students with syntactically and semantically correct worked examples �
R5 Engages student in active learning activities �
R6 Increases ability to recall an algorithm ?
R7 Enables students to successfully transfer knowledge ?
Legend
� Requirement is supported
? To be determined by means of an empirical investigation (Chapters 4 and 5)

Table 3-8 Support for comprehension requirements in BeReT

Chapter 3 – Educational Technological Support for in-depth comprehension of
introductory algorithms

57

3.5 Conclusion

An investigation into existing support tools used by educators failed to deliver a

support tool that meets all requirements for in-depth code comprehension derived in

Chapter 2.

 Existing Tools

Requirement

JH
A

V
é

P
R

O
T

O
T

Y
P

E
 A

LG
O

R
IT

H
M

A

N
IM

A
T

IO
N

 T
O

O
L

JG
R

A
S

P

P
C

V

P
R

O
G

U
ID

E

B
E

R
E

T

R1 Allow students to extract semantic information (plans) from
worked example

� � � �

R2 Promotes the use of chunking to learn an unfamiliar
algorithm

 X ����

R3 Coaches students to spot beacons in different algorithms X ����

R4 Provide students with syntactically and semantically correct
worked examples

� X � � �

R5 Engage student in active learning activities � � � � � �
R6 Increases ability to recall an algorithm � � ?
R7 Enable students to successfully transfer knowledge � � � ?
Legend
� Requirement is supported
X Requirement is not supported
No entry Inconclusive evidence in available literature in support of requirement
? To be determined by means of an empirical investigation (Chapters 4 and 5)

Table 3-9 Comparison of support for algorithm comprehension evident in various tools

While some tools meet some of the requirements, no tool was found with support for

requirements R2 and R3 specifically (Table 3-9). In response, an experimental

support tool (BeReT) was developed to specifically meet these requirements, amongst

others.

The decisions made in the design and implementation of BeReT takes into

consideration requirements R1 to R5. The lack of empirical evidence that shows

support for requirements R6 (Increases ability to recall an algorithm) and R7 (Enable

students to successfully transfer knowledge) is addressed in a between-groups

experiment (Chapter 4).

58

(Deimel and Naveda 1990; Jenkins 2002 ; Warren 2003) (Deimel and Naveda 1990; McCracken, Almstrum, Dia z et al. 2001; Ala-Mutka 2003 ; Lister, Adams, Fitzgerald et al. 2004; Garner, Haden and Robins 2005 ; Laht inen, Ala-Mutka and Järvinen 2005) (Lis ter, Adams et al. 2004 ; Fitzgerald, Simon and Thomas 2005) (L ister, Adams et al. 2004; Fitzgerald, Simon et al. 2005) (Von Mayrhauser and Vans 1994) (Ris t 1986; Garner 2002; T homas, Ratcliffe and Thomasson 2004) (Deimel and Naveda 1990; Upchurch 1997) (CS&IS 2006b) (Lahtinen, A la-Mutka et al. 2005) (K imura 1979; Deimel and Naveda 1990) (Letovsky 1986) (Shneiderman and Mayer 1979) (Brooks 1983) (Soloway and Ehrlich 1984) (Pennington 1987) (Shneiderman and Mayer 1979; Brooks 1983 ; Soloway and Ehrl ich 1984; Letovsky 1986 ; Penning ton 1987) (Letovsky 1986) (Shneiderman and Mayer 1979) (Brooks 1983) (Wiedenbeck and E vans 1986; W iedenbeck and Scholtz 1989; Fix, Wiedenbec k and Scholtz 1993; Crosby , Scho ltz and
Wiedenbeck 2002) (Wiedenbeck and Evans 1986; Pane and Myers 1996) (Ca litz 1997; Grey ling and Cali tz 2003 ; Vogts 2006; Yeh, Grey ling and Ci lliers 2006) (Harris 2005 ; Harris and Cil liers 2006) (Harris 2005; Harris and Cil liers 2006) (Van Greunen 2002; Pretorius 2005) (Wiedenbec k and E vans 1986; Pane and Myers 1996; Wiedenbec k, Ramalingam, Sarasamma et al. 1999) (Engebretson and W iedenbeck 2002) (Koenemann and Robertson 1991) (Mayer 1981) (Garner 2002; Garner 2003) (Von Mayrhauser and Vans 1994) (Koenemann and Robertson 1991; V on Mayrhauser and Vans 1994 ; Chan and Munro 1997) (Wiedenbeck, Ramalingam et al. 1999) (Rist 1986 ; Garner 2003) (So loway and Ehrlich 1984) (Wiedenbeck and Evans 1986) (O’Brien 2003) (So loway 1986) (Brooks 1983 ; Letovsky 1986) (Wiedenbeck and Evans 1986) (Crosby , Scholtz et al. 2002) (Crosby , Scholtz et al. 2002) (Aschwanden and Crosby 2006) (Burnstein and Roberson 1997) (Raj lich and Wilde 2002) (Young 1996) (Raj lich and Wilde
2002) (Shneiderman 1982) (Aschwanden and Crosby 2006) (Aschwanden and Crosby 2006) (Penning ton 1987) (Letovsky 1986) (Mosemann and Wiedenbeck 2001) (Jeffries 1982) (Mosemann and Wiedenbeck 2001) (Koenemann and Robertson 1991; Garner 2003) (Sweller and Cooper 1985 ; Renkl 1997) (Cook, Bregar and Foo te 1984; Garner 2000; Garner 2003) (Lahtinen, Ala-Mutka et al. 2005) (Renkl 1997) (Deimel and Naveda 1990) (Mc Cracken, Almstrum et a l. 2001) (Lister, Adams et al. 2004) (Soloway and Woolf 1980; Curtis 1981) (Ben-Ari 2001) (Kimura 1979 ; Brown 1988 ; Deimel and Naveda 1990; Ford 1993 ; Naps, Eagan and Norton 2001; A la-Mutka 2003; Boy le 2003; Yeh, Grey ling et al. 2006) (Cross, Hendrix and Barowski 2002 ; Hendrix and Cross 2002) (Shneiderman 1983; Scanlan 1988; Cil liers, Cal itz and Grey ling 2005; Mendes and Marcelino 2006) (Thomas, Ratcl iffe et al. 2004) (Clancy and Linn 1999 ; De Barros, dos San tos Mota, Delgado et al. 2005) (Kimura 1979) (Deimel and Naveda 1990)
(Carbone and Kaasbøll 1998) (Brown 1988) (Naps, Eagan et a l. 2001 ; Yeh, Grey ling et al. 2006) (Brummund 2001) (Yeh, Grey ling et al. 2006) (Naps, Eagan et al. 2001) (Ford 1993; Ala-Mutka 2003; Boy le 2003) (Ford 1993) (Mc Cracken, Almstrum et a l. 2001; Jenkins 2002; Lah tinen, Ala-Mutka et al . 2005) (Cross 1998; Cross, Hendrix et al. 2002) (Hendrix and Cross 2002) (Scanlan 1988) (Mil lner 2002) (Crews and Ziegler 1998) (Shneiderman 1983) (Waddel and Cross 1988) (Thomas, Ratcliffe et al. 2004) (Thomas, Ratcl iffe et al. 2004) (Clancy and Linn 1999) (De Barros, dos Santos Mota et a l. 2005) (Astrachan, Berry , Cox et al. 1997; Wall ingford 1998; Clancy and Linn 1999) (Clancy and Linn 1999) (Johnson and Soloway 1984) (Buc k and Stucki 2000) (Buc kley and Exton 2003) (Bloom 1956) (Wiedenbec k, Ramalingam et al. 1999) (O ’Brien 2003) (Garner 2002) (Van Merriënboer 1990) (Robb ilard, Coelho and Murphy 2004) (Giannotti 1987) (Poznyakoff 2005) (Mül ler, Tilley , Orgun et a l. 1992) (Evans, Guttag,
Horning et al . 1994) (Walenstein 2002) (Guzdial 1994) (Brown 1988) (McDonald and Cies ielski 2002) (Wilson, Katz, Ingargiola et a l. 1995) (Stasko , Badre and Lewis 1993) (Naps, Eagan et al. 2001; Cross, Hendrix et a l. 2002 ; Boy le 2003; Naps 2005; Areias and Mendes 2006 ; Yeh, Grey ling et al. 2006) (Stasko, Badre et al. 1993) (Naps, Eagan et al. 2001; Naps 2005) (Yeh, Grey ling et al. 2006) (Math is 1974) (Cross, Hendrix et al. 2002) (Boy le 2003) (Wiley 2003) (Boy le 2003) (Mendes and Marcelino 2006) (Cil liers 2004; Cil liers, Cal itz et al. 2005; Mendes and Marcelino 2006) (Shneiderman 1983) (Areias and Mendes 2006) (Harris 2005 ; Harris and Cill iers 2006) (Mendes and Marcelino 2006) (Boy le 2003; Areias and Mendes 2006)

Chapter 4 Investigative Research Methodology

4.1 Introduction

Chapter 3 failed to uncover a single support tool for in-depth comprehension that

meets all of the requirements derived in Chapter 2. In response to the lack of such

support tools, BeReT was developed as an appropriate tool that supports most of the

requirements for a tool to aid program comprehension in an introductory

programming module. Chapter 3 also identified a lack of evidence to show that

BeReT increases students’ ability to recall an algorithm (R6) and enables them to

transfer knowledge (R7). This chapter discusses the research methodology used to

find empirical evidence to address these requirements.

The context in which the investigative between-groups study takes place and the tools

used during the study are presented (Section 4.2). The plan for analysing the data is

presented in Section 4.3. The chapter concludes with a discussion of the risks

associated with the investigative study and strategies to address these risks (Section

4.4).

4.2 Introductory Programming at NMMU

A framework for an introductory programming module includes the creation of

learning resources, learning activities and learning supports (Garner 2003). Learning

resources are the material providing the content of the module. Learning activities

Chapter 4 – Investigative Research Methodology

59

consist of tasks students have to perform to guide their learning process. Learning

supports guide and provide feedback tailored for the individual. Analysing the

introductory programming module at NMMU reveals such a framework (CS&IS

2006a, 2006b). Amongst other topics, the second semester of the introductory

programming module presented by the Department of CS&IS at NMMU covers the

tracing, evaluation and implementation of various algorithms. These algorithms

include linear and binary search algorithms, as well as bubble sort and insertion sort

algorithms. Algorithms for the union, intersection and difference between two lists

are also taught.

The learning resources support the presentation of the topics and include the

following:

• Notes provided by the lecturer during lectures. These include comprehension

questions students may complete before attempting the code generation practical

assignments. The comprehension questions are predominantly tracing type

questions, but may include other types of comprehension questions.

• A prescribed textbook.

• Weekly practical assignment sheets. The practical assignments take the form of

code generation tasks only, but students are encouraged to complete code

comprehension activities prior to starting each practical assignment.

Every week a new topic is introduced by way of learning activities. Students

registered for the module have three contact sessions per week. Two types of contact

sessions are evident in the module, namely lectures and practical assignments.

Lectures are divided into two sessions per week, one a double lecture of 70 minutes

and another lecture of 35 minutes in duration. Lectures are facilitated by an educator

not directly involved with the current investigative study. Students receive weekly

notes during the lectures containing a worked example illustrating the topic of that

week. Students attend lectures over a period of 15 weeks during the second semester

of the module.

Chapter 4 – Investigative Research Methodology

60

Practical assignments are included in the module to allow students to solve problems

either novel or similar to the ones discussed in the lecture of the previous week.

Practical assignments traditionally comprise of only code generation tasks and no

code comprehension tasks are included. A practical session is 80 minutes long and

takes place in a computer laboratory. Every student has access to their own PC and

practical tasks are performed using Microsoft Visual Studio as the development

environment and C# as the programming language. Practical assignment sheets are

made available to students and may be done either at home or on the computer

facilities at the university. Students have a week to complete their practical

assignment.

Technological learning support used in the introductory programming module

presented by the Department of CS&IS at NMMU is limited to code generation

activities. Currently, no support for code comprehension is used other than the

discussions during lectures. Algorithm tracing is the main method used to explain the

algorithms.

4.3 Investigative Study

The goal of this research is to measure the effect of a Beacon Recognition Tool on the

in-depth comprehension of introductory programming algorithms. Data to measure

this effect was collected during practical assignments, class tests, controlled

experiments and by means of a questionnaire.

Both quantitative and qualitative data were collected in the study. Controlled

experiments were conducted, involving a subset of the students enrolled for the

introductory algorithm module. The controlled experiments were used to collect data

such as accuracy, students’ ability to complete a partial algorithm and time taken to

complete a code comprehension task. Eye-tracking data was also collected during the

controlled experiments. A questionnaire was also completed by the students to collect

qualitative data about the user satisfaction with BeReT.

Experiments assessing programme comprehension typically use two variables to

measure comprehension, namely, accuracy and response time (Rajlich and Cowan

1997). Class tests are suitable to measure accuracy; however, it is difficult to

Chapter 4 – Investigative Research Methodology

61

accurately collect individual response times in large groups. Controlled experiments

can be used to capture individual student responses and evaluate them for accuracy,

and to record the time it took to answer a question or respond to an instruction.

Eye-tracking experiments have been successfully used in studies of programming

(Crosby and Stelovsky 1990; Crosby, Scholtz et al. 2002). One study determined that

expert programmers tend to focus more on beacon-like statements when trying to

understand a piece of code (Crosby, Scholtz et al. 2002). Another study investigated

the difference of viewing patterns between prose text and algorithms as well as the

difference in code scanning between expert and novice programmers (Aschwanden

and Crosby 2006).

In order to determine whether students built up a collection of beacons or plan

knowledge to answer comprehension questions, their eye movements were recorded

to collect fixations and saccades for this study. Fixations refer to the dwell time on an

area of interest and saccades refer to the rapid movement of the eye between fixations

(Bartels and Marshall 2006). The controlled experiment with the eye tracker involved

showing students an algorithm and asking comprehension questions about the

algorithm while capturing their eye movements. Each algorithm has specific areas of

interest relating to beacons and plans in the code. The participants were given a list of

questions to assess their comprehension of the presented algorithm(s). While

studying the code on the computer screen, the eye tracker recorded their eye

movements and provided data such as the following:

• The time to first fixation (to determine how long it takes them to spot a beacon)

• The length of time and the number of times areas of interest were looked at (to

determine if they are looking at meaningful sections of code when studying an

algorithm).

This investigative study made use of various tools and materials for specific purposes;

namely a consent form, training manual, practical assignments, class tests, controlled

experiments and a questionnaire.

Chapter 4 – Investigative Research Methodology

62

4.3.1. Consent form

Any study that involves human participants has to be approved by the Research Ethics

Committee (Human) of NMMU (RECH). The committee is made up of a group of

independent experts with the responsibility to ensure that the rights of the participants

are protected and that studies are conducted ethically. Therefore, an informed consent

form accompanies the application to RECH (Appendix F) for permission to conduct

this study with the help of the students in introductory programming. With

permission granted by RECH and the consent form approved, the form is completed

by the experimental group prior to the start of the study. Each point in the consent

form is explained in English by the principal investigator of this study and students

are encouraged to ask for clarification of any point not understood. Students initial

each point in the form to show that they agree with the stated conditions.

4.3.2. Training manual

A training manual is made available to the students at the first practical assignment of

the study (Appendix A). The manual makes extensive use of screenshots of BeReT to

show the tutorial screen as well as the three exercise screens. The use of screenshots

is a technique used with success in similar studies requiring training of a technological

support system (Shih and Alessi 1993; Cilliers 2004). The different areas of the

screen are numbered to guide students’ focus of attention in the correct order. In

addition to the training manual, a demonstration of the system is given at the start of

the first practical. The demonstration is done using a data projector and takes the

form of guided instruction. The principal investigator showed tasks from a dummy

tutorial and exercise and students followed each task to familiarize themselves with

the interface of the system. BeReT is developed to make the tutorials and exercises as

intuitive as possible to reduce the training time. Each exercise starts with a splash

screen, with an instruction explaining how that particular type of exercise is

completed. These instructions are repeated in an area of the exercise screen as well.

4.3.3. Practical Assignments

The training aspect of the study was conducted over a three-week period during the

second semester of an introductory programming module. Students in the treatment

group were exposed to BeReT during three practical assignments. Introductory

Chapter 4 – Investigative Research Methodology

63

programming algorithms treated using the experimental support tool include the

bubble sort, binary search and the insertion sort. Both groups attended their usual two

lectures per week and also attended one of three possible practical sessions. For the

practical assignments, the students are split into two groups, the control and treatment

groups.

The practical assignments of the control group consist of pen-and-paper code

comprehension questions and code generation task. The treatment group performed

exactly the same code generation tasks as the control group. During practical

assignments, the treatment group had exposure to the algorithm discussed in class by

means of BeReT. They studied a tutorial of the algorithm first, and then performed

exercises in BeReT. Appendix B shows the notes on which tutorials and exercises are

based. The tutorials presented the code, a list of plans and a description of the plans

behind selected lines in the code. The exercises included tasks to match code to a

beacon and to complete missing beacon lines.

During the practical assignments the treatment and control groups were physically

separated in two different computer laboratories. The physical separation during

practical assignments effectively minimized the risk of distorting the results due to

control group participants also seeing BeReT. Security is also built into BeReT so

that only the treatment group participants have access to the BeReT tutorials.

For both groups, the first practical activity is to read and comprehend an algorithm

presented in a lecture. The only difference is in the delivery method of the

comprehension task. The control group studied the algorithm using a tracing method

and answering code comprehension questions, while the treatment group used the

tutorials and exercises in BeReT. The second practical activity for both groups is a

typical code generation question.

4.3.4. Class tests

During the next available lecture following a particular practical assignment, a follow-

up class test is administered to both the treatment and control groups (Appendix C).

The class tests are used to monitor the effect of BeReT on the treatment groups’

ability to complete, recall and comprehend the algorithms studied in the previous

week. The purpose of the class tests is to test students’ development on the

Chapter 4 – Investigative Research Methodology

64

knowledge and comprehension levels of Bloom’s taxonomy of educational objectives

(Bloom 1956). Evidence of cognitive development in these two levels will show that

BeReT effectively helped students recall and comprehend the algorithms studied (R6,

R7). All class tests are marked by a single individual to ensure consistency in

assessment.

Both groups are encouraged to do their best in the class tests with the reward of using

the class tests marks in their final class mark calculations. Preparation for the class

test is only different in the presentation of code comprehension activities prior to code

generation practical assignments.

4.3.5. Controlled experiments

The controlled experiment took place the week after the last algorithm was studied.

The controlled experiment is designed to test the impact of BeReT with regards to

accuracy and time. The controlled experiments include eye-tracking data of

participants while answering comprehension questions. The same number of

participants from both the treatment and control groups took part in the controlled

experiment (Bartels and Marshall 2006; Bednarik and Tukiainen 2006). This

procedure was necessary to ensure a valid comparison can be made between the two

groups. Participants from both the treatment and control groups were requested to

volunteer for the controlled experiments and a subset of students with a similar

academic profile were selected from each group of volunteers (Greyling and Calitz

2003, Cilliers 2004, Vogts 2006) (Table 4-1).

Treatment Group Control Group

Participant 1st Sem Mark Participant
1st Sem
Mark

T1 88 C1 94
T2 80 C2 86
T3 78 C3 83
T4 77 C4 72
T5 73 C5 70
T6 64 C6 60
T7 52 C7 58

Mean 73.1 74.7
St Dev 11.8 13.5
p-value = 0.8206 (α = 0.05)

Table 4-1 Academic profile of control and treatment group participants

Chapter 4 – Investigative Research Methodology

65

Final marks from the first semester module were used to select and balance the

participants within the experimental groups. The average first semester marks for the

treatment group participants are 73.1% and for the control group 74.7%. From the p-

value (0.8206) of a two-tailed pooled variance t-test, it can be concluded that there is

no significant difference (α = 0.05) in the average first semester mark of the two

groups.

The controlled experiments were conducted in the usability laboratory of the

Department of CS&IS at NMMU. The experiments were directed by the primary

investigator and students participated in each experiment individually.

The results of the controlled experiments provide evidence to determine whether

BeReT enables introductory programming students to discover plans in similar

algorithms and whether it enables them to do so in a timely fashion. Evidence to

show that students exhibit a tendency to continue with the techniques learnt in BeReT

was also collected by means of controlled experiments. Eye-tracking data, namely

fixations and saccades (the path between fixations) of participants while finding

answers in the algorithm after being presented with a question, was also collected.

Experiment A required participants to recognise known plans in a previously unseen

algorithm. Experiment B tested comprehension accuracy and comprehension time for

a known algorithm, while recording eye-movement data. Experiment C tested

participants’ ability to recognise fragments of code and the participants’ ability to

extract semantic meaning from the code.

Experiment A

The goal of experiment A was to measure comprehension and behaviour of

participants when reading a previously unseen algorithm for the first time (Appendix

D). Tasks in this experiment contributed data to determine whether participants have

a repository of plans and beacons in their long-term memory readily available in order

to recognise known plans in an unseen algorithm.

Chapter 4 – Investigative Research Methodology

66

For task one, all participants are given an algorithm that they have not studied before,

but with plans similar to ones they are familiar with. Participants are instructed to

study the algorithm using any method and to make notes while they are learning the

algorithm. They are also instructed to let the investigator know the point at which

they feel they comprehend the algorithm well enough to be tested on it. The standard

quantitative data collected during the first task in the controlled experiments included

correctness of participants’ responses as well as time taken to answer.

For task two, participants are seated in front of a PC with an eye tracker. The

equipment is calibrated to each individual participant’s pupil and participants are

instructed to familiarise themselves with the on screen version of the selection sort

algorithm. Once the participants indicate their readiness, the algorithm is hidden and

questions are asked one by one. In an attempt to restrict eye movements to the screen

only, the questions are asked verbally by the investigator and responses are also given

verbally. Questions in the form of “Which line or lines…” are asked and participants

respond with the line number that answers the question. Using a slideshow to present

the questions eliminates any distractions such as toolbars that can divert a reader’s eye

away from the algorithm. It also makes it easier to clear the screen between

questions.

The controlled experiment protocol (Appendix G) was used to make sure that the test

is conducted in a consistent way for all participants (Pretorius 2005). The Selection

Sort algorithm was selected as the unseen algorithm for Experiment A. The selection

sort algorithm was selected because participants have not yet been exposed to this

particular sorting algorithm, but it contains plans they have seen implemented in other

sorting algorithms studied, namely the bubble sort and insertion sort.

Experiment B

The goal of Experiment B was to measure comprehension and behaviour of

participants when reading a known algorithm previously studied (Appendix D). The

treatment group had the lecture, code generation practical and assistance of BeReT to

study the algorithm as part of their preparation. The control group only had the

lecture, the code generation practical and lecture notes with associated comprehension

Chapter 4 – Investigative Research Methodology

67

questions as part of their preparation. The experiment measured retention of learning

as the main theme and also recorded the time taken to respond to comprehension

questions. Fixations and saccades were also recorded to augment the accuracy and

time variables in order to determine the areas of the code participants look at to

determine answers and for how long the participants look at relevant areas of interest

before answering specified questions.

Experiment C

The main goal of experiment C (Appendix D) was to test the ability of participants to

correctly identify the plan behind the code fragments and the most likely algorithm

the lines belong to. Experiment C also recorded the time taken to respond to the

questions.

Certain lines from known algorithms were shown on flash cards to the participants,

one code fragment at a time (Appendix D). Participants were instructed to determine

what the plan or function of the code fragment is and asked to identify the algorithm

most likely to contain the fragment shown. The time it takes to correctly identify the

algorithm was recorded. The participants’ ability to correctly describe the plan

implemented in each code fragment in their own words was also recorded.

4.3.6. Questionnaire

Qualitative data in the form of a questionnaire was collected on completion of the

final practical assignment (Appendix E). The questionnaire determines, from the

point of view of the participants in the treatment group, the usability of BeReT, the

perceived effectiveness of BeReT as a learning tool, their attitude/motivation towards

code comprehension activities, and the functionality of BeReT.

A number of questions were asked to determine the experience of the treatment group

when using BeReT as an algorithm comprehension tool. Some questions elicit a

response based on a 5-point Likert scale; some questions a response based on a 3-

point Likert scale; some elicit a yes/no response and some questions are open ended.

Chapter 4 – Investigative Research Methodology

68

4.4 Method of Data Analysis

The investigation to find evidence in BeReT in support of the requirements that

determine the students’ knowledge of an algorithm (R6) and the students’ ability to

transfer their knowledge (R7) was primarily a between-groups experiment. The

experiment collected data to compare the accuracy, response time and behaviour of

students in an introductory programming module in the Department of CS&IS at

NMMU (Section 4.4.1). Hypotheses were formulated to address the primary research

question and further refined to guide data collection activities (Section 4.4.2). A plan

to analyse the data collected to validate the hypotheses was also developed (Section

4.4.3).

4.4.1. Population

Students enrolled for the second semester of the introductory programming module at

NMMU were divided into two groups, namely treatment and control groups. The

treatment group followed the same lecture and practical schedule as the control group,

but did alternative comprehension activities in BeReT. Students were randomly

divided into the two groups.

4.4.2. Formulation of Hypotheses

The primary research question as stated in Chapter 1 is given as What is the effect of a

technological learning tool that supports plan discovery on the in-depth

comprehension of introductory programming algorithms typically studied by novice

programmers?

This research question is decomposed into the following hypotheses which will be

evaluated by means of the between-groups experiment described in this chapter:

H0: BeReT does not have a positive effect on the in-depth comprehension of

introductory programming algorithms

H1: BeReT does have a positive effect on the in-depth comprehension of

introductory programming algorithms

Chapter 4 – Investigative Research Methodology

69

Below is a breakdown of the null hypothesis in order to refine the concept of positive

effect in terms of in-depth comprehension.

H0.1: Students using BeReT do not perform better than the control group in terms of

accuracy on code comprehension questions.

H0.2: Students using BeReT find recalling the entire algorithm and adapting to any

changes in problem scenario more difficult than students that used pen-and-

paper exercises.

H0.3: Students using BeReT are less accurate than the control group when

completing a partial algorithm.

H0.4: Students using BeReT are less successful than the control group in the

discovery of known plans in previously unseen algorithms.

H0.5: Students using BeReT take longer than the control group to find plans in a

known and/or previously unseen algorithm.

H0.6: Students using BeReT do not exhibit evidence of using beacon recognition and

chunking when studying a previously unseen algorithm.

Below is a breakdown of the alternative hypothesis, corresponding to the null

hypotheses formulated above.

H1.1: Students using BeReT perform better than the control group in terms of

accuracy on code comprehension questions.

H1.2: Students using BeReT find recalling the entire algorithm and adapting to any

changes in problem scenario easier than students that used pen-and-paper

exercises.

H1.3: Students using BeReT are more accurate than the control group when

completing a partial algorithm.

H1.4: Students using BeReT are more successful than the control group in the

discovery of known plans in previously unseen algorithms.

H1.5: Students using BeReT take less time than the control group to find plans in a

known and/or previously unseen algorithm.

H1.6: Students using BeReT exhibit evidence of using beacon recognition and

chunking when studying a previously unseen algorithm.

Chapter 4 – Investigative Research Methodology

70

4.4.3. Techniques to analyse data

The analysis of the results is needed to validate the suitability of BeReT as support in

the learning environment of an introductory programming module. Before statistical

analysis can take place, the collected data needs to be prepared to ensure valid

comparisons can be made between the two groups.

Participants in both the control and the treatment groups had to attend two lectures per

week for three weeks, complete all practical assignments and write all class tests

during the three weeks when the investigative study took place. The treatment group

participants had to complete the BeReT tutorial and exercises during the practical

assignments, while the control group completed pen-and-paper comprehension

exercises. Any participant missing any of the data collected during this period was

discarded from the comparative analysis. Students registered for the second semester

of introductory programming who did not write and pass the exam during the first

semester of 2006 are also excluded from the study. This was done to ensure that the

same exam paper is used to base the sampling on. Only data from the remaining

participants have been included in the statistical analysis to compare the performance

of the two groups. The data includes results from the class tests and controlled

experiments.

Both qualitative and quantitative data were collected during the investigative study.

Data from class tests, controlled experiments and a questionnaire needs to be analysed

using various techniques to ensure conclusions can be drawn.

The difference in average marks between the control and treatment groups obtained

during class tests are tested by means of a two-tailed pooled variance t-test (Neter,

Wasserman and Whitmore 1993). Since the resulting sample size of both groups is

higher than 30, the assumption of normality holds (Larson 1974).

The controlled experiments results in the following data:

• Classification of different annotation techniques used by participants when

reading an algorithm

• Number of participants classified according to the accuracy of their responses

Chapter 4 – Investigative Research Methodology

71

• Average mark in terms of accuracy of responses

• Average time taken to respond

• Visualizations of fixations and saccades resulting from the use of an eye-tracker

The reading and annotation techniques used by the participant to study the unseen

algorithm are categorised according to an adapted framework for the classification of

annotations made by students while studying an algorithm (developed in Lister,

Adams et al. (2004) and Fitzgerald, Simon et al. (2005)). The classification of

reading techniques are statistically analysed using a Chi-squared test to determine the

homogeneity of proportions.

The accuracy of responses of each participant are first categorised as follows

(McTighe and Seif 2003):

• High Level: The participant correctly identified what the algorithm achieves on a

high level. This equates to in-depth knowledge of the algorithm, since the focus is

on high level semantics rather than on syntax issues. An example response in this

category is: “The algorithm creates an array of sorted elements by swapping the

first value in the unsorted part of the array, with the smallest value in the rest of

the array.”

• Low Level: The participant correctly explained what the algorithm achieves, but

on a low level explaining what each line does. This is similar to superficial

knowledge, since the focus is on low level detail of variable names used and other

syntax issues. An example response in this category is: “The loop starts at index

i = 0 and terminates when i reaches NrEl-1 .”

• Incorrect: The participant has the wrong idea about the purpose of the algorithm.

The proportion of participants from each group is then tested for each category of

response by means of a chi-squared test for homogeneity of proportions. The average

time taken by participants to respond is tested by means of a pooled variance two-

tailed t-test for the difference in the two averages from each group. The time taken to

respond is measured programmatically using the eye-tracking software. A recording

of the eye movements starts as soon as the algorithm is shown on the screen after

each question and terminates the moment the participant starts to answer the question.

The time therefore corresponds with the recording of eye-tracking data.

Chapter 4 – Investigative Research Methodology

72

The average marks obtained by participants in term of accuracy during the controlled

experiments are tested by means of a two-tailed pooled variance t-test (Neter,

Wasserman et al. 1993). The average time taken by participants to respond to

questions during the controlled experiments is also tested by means of a two-tailed

pooled variance t-test.

The raw data resulting from the eye-tracker are converted to scanpaths and heatmaps

using Begaze software, and superimposed on top of a screen shot of the algorithms

studied by the participants. The scanpaths and heatmaps provide visualizations of the

saccades and fixations. Average marks and time taken to answer individual questions

are computed per group and tested by means of a two-tailed pooled variance t-test.

Only scanpaths or heatmaps of results where a statistically significant difference exist

between the two groups are reported on (Pretorius 2005).

A questionnaire is used to collect data about the effect of BeReT on the learning of

introductory programming algorithms. Since only the treatment group is exposed to

the treatment tool, the questionnaire is only completed by this group.

The following rules are applied for the purpose of analysing the results (Table 4-2):

• In the case of a 5-point Likert scale, a response of 4 and 5 is deemed positive and

a response of 1, 2 or 3 is deemed negative. A response of 3 is not deemed neutral,

but negative as is reported in a similar study (Taljaard 2003).

• In the case of a 3-point Likert scale, a response of 3 is deemed positive and a

response of 1 and 2 is deemed negative.

• In some instances of the yes/no responses, no is a positive response and yes a

negative response. In others, yes is deemed positive and no a negative response.

• A Chi-squared test for equality of proportions was used for testing whether the

students indicated a significant positive or negative response.

• A thematic analysis was performed on open-ended questions. A theme is defined

as a statement of meaning that runs through all or most of the pertinent data; or

one that carries heavy emotional or factual impact (Ely, Vinz, Downing et al.

1999).

Chapter 4 – Investigative Research Methodology

73

Nr Question Pos Neg
1 BeReT is easy to use 4-5 1-3
2 Could you complete Tutorials in BeReT without assistance 4-5 1-3

3
If you did not answer “Yes” above, what created the difficulty with
Tutorials?

Open ended

4 Could you complete Exercises in BeReT without assistance 4-5 1-3

5
If you did not answer “Yes” above, what created the difficulty with
Exercises?

Open ended

6
What level of assistance did you need throughout your usage of
BeReT?

4-5 1-3

7a Did you understand the bubble sort algorithm before using BeReT? 4-5 1-3

7b
Did you understand the binary search algorithm before using
BeReT?

4-5 1-3

7c
Did you understand the insertion sort algorithm before using
BeReT?

4-5 1-3

8a Did you understand the bubble sort algorithm after using BeReT? 4-5 1-3
8b Did you understand the binary search algorithm after using BeReT? 4-5 1-3
8c Did you understand the insertion sort algorithm after using BeReT? 4-5 1-3
9 Did BeReT help programming the algorithms easier from scratch? 4-5 1-3

10
To what level do you think BeReT helped you to better understand
what certain lines do in the code?

4-5 1-3

11

To what level do you think BeReT helped you to recognise an
algorithm quicker without knowing the name or function of the
algorithm?

4-5 1-3

12

To what level do you think BeReT helped you to trace (i.e. show
the contents of the variables at certain points) an algorithm more
effectively?

4-5 1-3

13
Assuming BeReT was problem free; would you make use of it to
gain a better understanding of algorithms?

3 1-2

14
Would you make use of BeReT if it immediately marked your
answers and gave you feedback?

3 1-2

15 What other functionality would you like to see included in BeReT? Open ended
16 Did you ever run into any unexpected problems in BeReT? No Yes
17 If so, briefly describe the task (if possible) and BeReT’s reaction. Open ended
18 What in your opinion is an advantage of using BeReT? Open ended
19 What in your opinion is a disadvantage of using BeReT? Open ended

20
Did BeReT encourage you to critically analyse and discuss the code
in the given algorithms?

Yes No

21 Did BeReT encourage you to ask questions about the algorithms? Yes No

22
Would you have spent time studying the algorithms before the
practical assignments without BeReT?

Yes No

Table 4-2 Classification of questionnaire responses as Positive or Negative

A number of risks are evident in the design of the experimental study for the current

investigation. These identified risks and strategies proposed to address them is the

focus of the following section.

Chapter 4 – Investigative Research Methodology

74

4.5 Risks to Validity of Investigative Study

It is important to manage the risks associated with empirical studies to ensure that

accurate conclusions can be made on data collected (Applin 2001). The risks

identified in this study include the sample size (Section 4.5.1), the possibility of the

Hawthorne Effect (Section 4.5.2), and possible problems with administering the

practical learning activities (Section 4.5.3).

4.5.1. Sample Size

During the semester when the study was conducted, a total of 90 students registered

for the introductory programming module. The entire population is necessary in the

study for investigative purposes, to ensure the sample sizes in both groups are large

enough for statistical analysis. It is one of the conditions of the RECH application to

allow participants to voluntarily withdraw from the experiment. Class and practical

attendance in the introductory programming module is also voluntary, which further

reduces the number of possible participants for the study.

In order to minimise the risk of small sample sizes, it was decided to limit the duration

of the investigative study to a period of four weeks instead of the entire semester.

Since the treatment group was expected to learn how to use an experimental tool

whose benefits are unknown, there was a higher probability of losing participants in

this group. Therefore, the treatment participants were financially rewarded for taking

part in the study. The rest of the class formed the participants in the control group.

4.5.2. The Hawthorne Effect

The Hawthorne Effect was first coined by psychologists in the 1930s during a time

management study at the Hawthorne Plant of Western Electric (Parsons 1974). This

study concluded that each intervention applied to the working environment of the

employees had the effect of improving their morale and productivity. It was further

concluded that the experiment and not the treatment was responsible for the change in

attitude and behaviour. Applied to studies of computer-aided learning, two types of

Hawthorne Effects are identified (Draper 1997):

• The effect of using a novel tool in teaching, and

• The effect of the extra attention to the participants in the study.

Chapter 4 – Investigative Research Methodology

75

To test for the existence of the first effect, one can determine the attitude of the

participants towards the tool before the start of the treatment. Any participant with a

negative attitude towards the tool, but a high achievement in comprehension

questions shows that there is no Hawthorne Effect of this type evident in the

investigative study (Draper 1997).

The second type of effect can be reduced by letting both groups know that their

results are valuable to the study (Draper 1997). Both groups wrote the class tests and

selected participants from both groups were recruited for the controlled experiments.

All students were made aware from the start that the results of both groups would be

compared. Students were also informed at the start of the study that class tests would

contribute towards their final module marks. The fact that class test marks would

affect their final mark served as a motivator to the control group to also study the

algorithms and class notes, and to let them know that their results also had an impact.

4.5.3. Administering Practical Learning Activities

Since BeReT is made available on the Department of CS&IS network, there could be

a risk of students from the control group being able to access the tool. However, strict

security is built into the system to only allow specific students access to the system.

BeReT recognises the students’ login username, and only usernames of participants in

the treatment group was added to the table of possible users. There was also a risk of

students becoming aware of fellow students working on a different system during the

practical sessions. To minimise this risk, the treatment group completed their

practical assignments in a separate computer laboratory away from the control group.

Strict record of attendance was taken at the practical sessions to ensure that groups did

not mix.

Students in the treatment group were exposed to the possibility of cognitive overload,

since they needed to learn how to use BeReT in addition to the Integrated

Development Environment (IDE) used during the code generation tasks. To reduce

this risk, students viewed a demonstration of BeReT during the first practical session.

The instructions on how to complete specific exercises are also permanently shown on

the screen so that students do not need to recall the steps required to complete their

tasks.

Chapter 4 – Investigative Research Methodology

76

4.6 Conclusion

The lack of empirical data to validate the incorporation of BeReT into an introductory

programming module in the Department of CS&IS at NMMU prompted this

investigation. Evidence is specifically required to determine if BeReT increases

students’ ability to recall the semantics of an algorithm (R6) and if BeReT enables

students to successfully transfer knowledge (R7). The hypotheses to test for these

requirements are:

H0.1: Students using BeReT do not perform than the control group better in terms of

accuracy on code comprehension questions.

H0.2: Students using BeReT find recalling the entire algorithm and adapting to any

changes in problem scenario more difficult.

H0.3: Students using BeReT are less accurate than the control group when completing

a partial algorithm.

H0.4: Students using BeReT are less successful than the control group in the discovery

of known plans in previously unseen algorithms.

H0.5: Students using BeReT takes longer than the control group to find plans in a

known and/or previously unseen algorithm quicker.

H0.6: Students using BeReT do not exhibit evidence of using beacon recognition and

chunking when studying a previously unseen algorithm.

A number of data collection activities are used to verify hypotheses, which in turn are

used as confirmation of support for the two requirements for which evidence was not

immediately apparent in BeReT.

Students in a second semester introductory programming module in the Department of

CS&IS at NMMU participated in the study over a four-week period. The students

were divided into two groups (treatment and control) and during three of the four

weeks students in the treatment group studied the bubble sort, binary search and

insertion sort algorithms in BeReT. Control group participants studied the same

algorithms and relied on lecture notes and associated pen-and-paper comprehension

questions instead of BeReT tutorials and exercises. Comprehension activities

performed by the control group were predominantly tracing, but some comprehension

questions were also answered by the students in this group. The controlled

Chapter 4 – Investigative Research Methodology

77

experiments were conducted during the fourth and last week of the investigative

study.

Requirement H0.x Data collection activity Data collected
H0.1 Class tests Average mark
H0.2 Class tests Average mark

Increases ability to
recall the semantics of
an algorithm (R6) H0.3 Class tests Average mark

H0.4 Controlled experiments Proportion of correct responses,
Average mark,
 Saccades between Beacons,
Fixation on Beacons

H0.5 Controlled experiments Response time,
Saccades between Beacons,
Fixation on Beacons

Enable students to
successfully transfer
knowledge (R7)

H0.6 Controlled experiments No. of students using chunking or
beacon recognition

Table 4-3 Mapping between hypotheses, activities and data collected

Table 4-3 summarises the activities used to collect data and the metrics that will be

analysed to accept or reject the hypotheses discussed in section 4.4.2. Table 4-3 also

matches the hypotheses with the requirement it supports.

The following chapter presents the results obtained in the empirical investigation

described in this chapter. To ensure the validity of these results special care is taken

in the empirical investigation to minimize the identified risks, namely the sample size

the Hawthorne Effect and possible problems with administering the practical learning

activities (Section 4.5).

78

(Deimel and Naveda 1990; Jenkins 2002 ; Warren 2003) (Deimel and Naveda 1990; McCracken, Almstrum, Dia z et al. 2001; Ala-Mutka 2003 ; Lister, Adams, Fitzgerald et al. 2004; Garner, Haden and Robins 2005 ; Laht inen, Ala-Mutka and Järvinen 2005) (Lis ter, Adams et al. 2004 ; Fitzgerald, Simon and Thomas 2005) (L ister, Adams et al. 2004; Fitzgerald, Simon et al. 2005) (Von Mayrhauser and Vans 1994) (Ris t 1986; Garner 2002; T homas, Ratcliffe and Thomasson 2004) (Deimel and Naveda 1990; Upchurch 1997) (CS&IS 2006b) (Lahtinen, A la-Mutka et al. 2005) (K imura 1979; Deimel and Naveda 1990) (Letovsky 1986) (Shneiderman and Mayer 1979) (Brooks 1983) (Soloway and Ehrlich 1984) (Pennington 1987) (Shneiderman and Mayer 1979; Brooks 1983 ; Soloway and Ehrl ich 1984; Letovsky 1986 ; Penning ton 1987) (Letovsky 1986) (Shneiderman and Mayer 1979) (Brooks 1983) (Wiedenbeck and E vans 1986; W iedenbeck and Scholtz 1989; Fix, Wiedenbec k and Scholtz 1993; Crosby , Scho ltz and
Wiedenbeck 2002) (Wiedenbeck and Evans 1986; Pane and Myers 1996) (Ca litz 1997; Grey ling and Cali tz 2003 ; Vogts 2006; Yeh, Grey ling and Ci lliers 2006) (Harris 2005 ; Harris and Cil liers 2006) (Harris 2005; Harris and Cil liers 2006) (Van Greunen 2002; Pretorius 2005) (Wiedenbec k and E vans 1986; Pane and Myers 1996; Wiedenbec k, Ramalingam, Sarasamma et al. 1999) (Engebretson and W iedenbeck 2002) (Koenemann and Robertson 1991) (Mayer 1981) (Garner 2002; Garner 2003) (Von Mayrhauser and Vans 1994) (Koenemann and Robertson 1991; V on Mayrhauser and Vans 1994 ; Chan and Munro 1997) (Wiedenbeck, Ramalingam et al. 1999) (Rist 1986 ; Garner 2003) (So loway and Ehrlich 1984) (Wiedenbeck and Evans 1986) (O’Brien 2003) (So loway 1986) (Brooks 1983 ; Letovsky 1986) (Wiedenbeck and Evans 1986) (Crosby , Scholtz et al. 2002) (Crosby , Scholtz et al. 2002) (Aschwanden and Crosby 2006) (Burnstein and Roberson 1997) (Raj lich and Wilde 2002) (Young 1996) (Raj lich and Wilde
2002) (Shneiderman 1982) (Aschwanden and Crosby 2006) (Aschwanden and Crosby 2006) (Penning ton 1987) (Letovsky 1986) (Mosemann and Wiedenbeck 2001) (Jeffries 1982) (Mosemann and Wiedenbeck 2001) (Koenemann and Robertson 1991; Garner 2003) (Sweller and Cooper 1985 ; Renkl 1997) (Cook, Bregar and Foo te 1984; Garner 2000; Garner 2003) (Lahtinen, Ala-Mutka et al. 2005) (Renkl 1997) (Deimel and Naveda 1990) (Mc Cracken, Almstrum et a l. 2001) (Lister, Adams et al. 2004) (Soloway and Woolf 1980; Curtis 1981) (Ben-Ari 2001) (Kimura 1979 ; Brown 1988 ; Deimel and Naveda 1990; Ford 1993 ; Naps, Eagan and Norton 2001; A la-Mutka 2003; Boy le 2003; Yeh, Grey ling et al. 2006) (Cross, Hendrix and Barowski 2002 ; Hendrix and Cross 2002) (Shneiderman 1983; Scanlan 1988; Cil liers, Cal itz and Grey ling 2005; Mendes and Marcelino 2006) (Thomas, Ratcl iffe et al. 2004) (Clancy and Linn 1999 ; De Barros, dos San tos Mota, Delgado et al. 2005) (Kimura 1979) (Deimel and Naveda 1990)
(Carbone and Kaasbøll 1998) (Brown 1988) (Naps, Eagan et a l. 2001 ; Yeh, Grey ling et al. 2006) (Brummund 2001) (Yeh, Grey ling et al. 2006) (Naps, Eagan et al. 2001) (Ford 1993; Ala-Mutka 2003; Boy le 2003) (Ford 1993) (Mc Cracken, Almstrum et a l. 2001; Jenkins 2002; Lah tinen, Ala-Mutka et al . 2005) (Cross 1998; Cross, Hendrix et al. 2002) (Hendrix and Cross 2002) (Scanlan 1988) (Mil lner 2002) (Crews and Ziegler 1998) (Shneiderman 1983) (Waddel and Cross 1988) (Thomas, Ratcliffe et al. 2004) (Thomas, Ratcl iffe et al. 2004) (Clancy and Linn 1999) (De Barros, dos Santos Mota et a l. 2005) (Astrachan, Berry , Cox et al. 1997; Wall ingford 1998; Clancy and Linn 1999) (Clancy and Linn 1999) (Johnson and Soloway 1984) (Buc k and Stucki 2000) (Buc kley and Exton 2003) (Bloom 1956) (Wiedenbec k, Ramalingam et al. 1999) (O ’Brien 2003) (Garner 2002) (Van Merriënboer 1990) (Robb ilard, Coelho and Murphy 2004) (Giannotti 1987) (Poznyakoff 2005) (Mül ler, Tilley , Orgun et a l. 1992) (Evans, Guttag,
Horning et a l. 1994) (Walenstein 2002) (Guzd ial 1994) (Brown 1988) (McDonald and Ciesielski 2002) (Wilson, Katz, Ingargiola et al. 1995) (Stasko, Badre and Lewis 1993) (Naps, Eagan et al. 2001; Cross, Hendrix et a l. 2002; Boy le 2003; Naps 2005; Areias and Mendes 2006; Yeh, Grey ling et al. 2006) (Stasko, Badre et al. 1993) (Naps, Eagan et al. 2001 ; Naps 2005) (Yeh, Grey ling et al. 2006) (Mathis 1974) (Cross, Hendrix et al . 2002) (Boy le 2003) (Wiley 2003) (Boy le 2003) (Mendes and Marcelino 2006) (Cil liers 2004 ; Cill iers, Cal itz et al. 2005 ; Mendes and Marcelino 2006) (Shneiderman 1983) (Areias and Mendes 2006) (Harris 2005; Harris and Cil liers 2006) (Mendes and Marcelino 2006) (Boy le 2003 ; Areias and Mendes 2006) (Garner 2003) (CS&IS 2006a, 2006b) (Raj lich and Cowan 1997) (Crosby and Stelovsky 1990 ; Crosby , Scholtz et al. 2002) (Sh ih and Alessi 1993; Cil liers 2004) (Bartels and Marshall 2006; Bednarik and T ukiainen 2006) (Pretorius 2005) (Neter, Wasserman and Whitmore 1993) (Larson
1974) (Lister, Adams et al. 2004) (Fitzgerald, Simon et al. 2005) (McTighe and Seif 2003) (Neter, Wasserman et al. 1993) (Ely , Vinz, Down ing et a l. 1999) (App lin 2001) (Parsons 1974) (Draper 1997)

Chapter 5 Results of the Investigation

5.1 Introduction

Program generation is one of the main focuses of introductory programming modules,

while program comprehension is often neglected (Deimel and Naveda 1990). While

attempts are made to provide students with worked examples, little time is spent on

explicitly teaching strategies to study the code. BeReT is a tool designed to address

this deficiency.

Chapter 2 established requirements for a tool to support the in-depth comprehension

of algorithms typically taught in an introductory algorithms module. The design and

implementation decisions made during the development of BeReT (Chapter 3)

concluded that requirements R1 to R5 are met (Table 5-1).

 Requirements to support in-depth comprehension of algorithms

R1 Allows student to extract semantic information (plans) from worked example

R2 Promotes the use of chunking to learn an unfamiliar algorithm

R3 Coaches students to spot beacons in different algorithms

R4 Provides students with syntactically and semantically correct worked examples

R5 Engages students in active learning activities

R6 Increases ability to recall the semantics of an algorithm

R7 Enables students to successfully transfer knowledge

Table 5-1 Requirements to aid the in-depth comprehension of introductory algorithms

Chapter 5 – Results of Investigation

79

Evidence to support the remaining requirements is determined by a between-groups

experiment (Chapter 4). The methodology described is specifically aimed at

collecting data to determine if requirements R6 (Increases ability to recall the

semantics of an algorithm) and R7 (Enable students to successfully transfer

knowledge) are met. The two main quantitative data collection activities used as

measurement tools are class tests and controlled experiments. A questionnaire is used

to collect qualitative data.

Hypotheses to confirm support for requirements R6 and R7 were also formulated in

Chapter 4 (Table 5-2). The results of the between-groups experiment to reject or

accept the hypotheses are presented.

Hypotheses § Req
H0.1 Students using BeReT do not perform better in terms of

accuracy on code comprehension questions.
H0.2 Students using BeReT find recalling the entire algorithm

and adapting to any changes in problem scenario more
difficult.

H0.3 Students using BeReT are less accurate when completing
a partial algorithm.

5.2.1 R6

H0.4 Students using BeReT are less successful in the
discovery of known plans in previously unseen
algorithms.

H0.5 Students using BeReT takes longer to find plans in a
known and/or previously unseen algorithm quicker.

H0.6 Students using BeReT do not exhibit evidence of using
beacon recognition and chunking when studying a
previously unseen algorithm.

5.2.2 R7

Table 5-2 Hypotheses and sections where data can be found in support of hypotheses

After discarding the data according to the rules (Section 4.4.3), a sample size of 32

participants per group is achieved for class tests (Section 5.2.1). The assumption of

normality, thus, holds for further statistical analysis (Larson 1974).

The remainder of this chapter presents the quantitative data analysis results of the

class tests and controlled experiments (Section 5.2). Results of qualitative data

analysis to complement quantitative findings appear in Section 5.3.

Chapter 5 – Results of Investigation

80

5.2 Quantitative Results

The quantitative results obtained in the empirical study include class test results

(Section 5.2.1) and results from controlled experiments (Section 5.2.2). The

quantitative results obtained from the class tests addresses hypotheses H0.1, H0.2 and

H0.3, while the quantitative results from the controlled experiments address

hypotheses H0.4, H0.5 and H0.6.

5.2.1. Results of Class Tests

The first-year students participating in this research study various algorithms as part

of the requirements of the introductory programming module at NMMU. Class tests

are written the week after initial exposure to the algorithm in lectures and practical

assignments (Section 4.3.2). Three class tests were written to test comprehension of

the bubble sort, binary search and insertion sort algorithms respectively (Section

4.3.3). The class test questions presented to the students appear in Appendix C. The

results of the class test are presented in Table 5-3.

Bubble Sort Binary Search Insertion Sort
Recall Comprehend Recall Comprehend Complete Comprehend

Mean 56% 55% 41% 61% 56% 43%

T
re

at
m

en
t

G
ro

up

(n
=

32
)

St
Dev

23% 19% 27% 31% 17% 20%

Mean 44% 35% 22% 42% 39% 27%

C
on

tr
ol

G

ro
up

(n

 =
 3

2)

St
Dev

29% 45% 22% 20% 20% 30%

p-value 0.0169* 0.0003** 0.0017** 0.0004** 0.0005** 0.0002**

* Significant where p<0.05; ** Significant where p<0.01

Table 5-3 Results of Class Tests

All class test questions (Appendix C) assess students’ cognitive development on the

knowledge and comprehension levels of Bloom’s taxonomy of educational objectives.

Random sampling was applied in the determination of the control and treatment

groups. To test students’ knowledge of each algorithm comprehension questions

(H0.1), and recall (H0.2) or complete (H0.3) questions were asked. Table 5-3 presents

descriptive statistics of the average for each group per question and algorithm. Table

Chapter 5 – Results of Investigation

81

5-3 also includes test statistics used to make a decision on whether to reject or accept

the relevant hypotheses.

Data in support of the hypothesis H0.1 Students using BeReT do not perform better

than the control group in terms of accuracy on code comprehension questions was

collected by means of comprehension type questions in the class tests. This

hypothesis is used to determine the effect of BeReT on students’ cognitive

development on level 2 (Comprehension) of Bloom’s taxonomy.

From the t-test, it can be concluded at the 99% percentile (α = 0.01) that there is a

difference in the average mark of the comprehension questions in class tests for all

three algorithms. Hypothesis H0.1 is, therefore, rejected in the case of class tests. The

implication is that students using BeReT performs significantly better in terms of

accuracy on code comprehension questions.

Data to support the hypothesis H0.2 Students using BeReT find recalling the entire

algorithm and adapting to any changes in problem scenario more difficult was also

collected by means of recall type questions in the class tests. This hypothesis is used

to determine the effect of BeReT on students’ cognitive development on level 1

(Knowledge/Recall) of Bloom’s taxonomy of educational objectives.

Questions instructing students to write an adapted version of the bubble sort and

binary search algorithms form part of the class tests written by both groups. From the

t-test, it can be concluded at the 95% percentile (α = 0.05) that the treatment group

performed better in terms of recalling the bubble sort and binary search algorithm.

The treatment group’s performance in the recall question of the binary search

algorithm showed a significant improvement at the 99% percentile (α = 0.01).

Hypothesis H0.2 is, therefore, rejected in the case of class tests. The implication is that

students using BeReT find it easier to recall an algorithm and are sensitive to changes

in the problem scenario.

Hypothesis H0.3 Students using BeReT are less accurate than the control group when

completing a partial algorithm was tested by means of a complete-type question in

the insertion sort algorithm. This hypothesis is used to determine the effect of BeReT

Chapter 5 – Results of Investigation

82

on students’ cognitive development on level 1 (Knowledge/Recall) of Bloom’s

taxonomy of educational objectives.

From the t-test, it can be concluded at the 99% percentile (α = 0.01) that the treatment

group performed better in terms of completing the insertion sort. Hypothesis H0.3 is,

therefore, rejected in the case of this class test. The implication is that students using

BeReT find it easier to fill in the missing lines of code in an incomplete version of a

known algorithm.

5.2.2. Results of Controlled Experiments

Three experiments were performed a week after the final class test was written. The

three experiments involved an unseen algorithm (Experiment A), an algorithm

previously studied (Experiment B) and fragments of known algorithms (Experiment

C). The number of students recruited for the controlled experiments was 16 (8 per

group), as is reported in similar studies involving the use of an eye-tracker (Bartels

and Marshall 2006; Bednarik, Myller, Sutinen et al. 2006). Only 7 participants per

group provided usable eye-tracking data, since calibration failed on 2 of the

participants (one from each group). IViewX software was used to record eye-tracking

data. In IViewX, fixations were defined as at least 250 ms in duration in a radius of

50 pixels. Participants were placed in a comfortable chair that allowed minimum

movement and seated approximately 60 centimetres from the monitor.

Experiment A – Unseen algorithm

Experiment A (Appendix D) tests the comprehension and interaction of a previously

unseen algorithm (specifically the selection sort algorithm). The chosen algorithm

uses similar plans used by algorithms that participants learnt in the introductory

programming algorithms module. This experiment consisted of three tasks, which

required participants to study an unseen algorithm (Task1), to answer comprehension

questions about the algorithm (Task 2) and to complete an incomplete version of the

unseen algorithm (Task 3).

Chapter 5 – Results of Investigation

83

Task 1 – Study unseen algorithm

Task 1 required participants to explain the purpose of the algorithm in their own

words. This task tests their cognitive development on the comprehension and analysis

level of Bloom’s taxonomy (Buck and Stucki 2000; Buckley and Exton 2003). The

goal of Task 1 in Experiment A is to test the hypothesis H0.6 Students using BeReT do

not exhibit evidence of using beacon recognition and chunking when studying a

previously unseen algorithm.

During this task, the data recorded include the technique(s) participants used when

studying an algorithm, the time it took the participant to study the algorithm (using a

stopwatch) and the accuracy of their description of the purpose of the algorithm

(Appendix D).

The notes that the participants made while studying the algorithm were collected and

scrutinized to discover the techniques used to study the algorithm. An adapted

framework for the categorization of annotations students make while studying an

algorithm (developed in Lister, Adams et al. (2004) and Fitzgerald, Simon et al.

(2005)) was used to determine participants algorithm reading technique. Two main

techniques identified in this study are synchronized tracing and chunking.

Treatment Group Participants Control Group Particip ants
 Technique Time Accuracy Technique Time Accuracy
T1 Trace 00:09:13 High Level C1 Trace 00:10:00 Low Level
T2 Trace 00:04:00 High Level C2 Trace 00:08:15 Incorrect
T3 Trace 00:09:40 High Level C3 Trace 00:05:10 Low Level
T4 Chunking 00:10:00 Incorrect C4 Trace 00:10:00 Incorrect
T5 Trace 00:09:00 Low Level C5 Trace 00:10:00 High Level
T6 Trace 00:03:30 Low Level C6 None 00:03:39 Low Level
T7 Trace 00:03:00 Low Level C7 None 00:10:00 Low Level

Proportion High Level 3 Proportion High Level 1
Expected Frequency 3.5 Expected Frequency 3.5

χ
2 = 1, p-value = 0.317

Table 5-4 Participants studying a new algorithm

Synchronized tracing shows the values of multiple variables as they change. This is

usually done in a table format. Chunking is similar to the description of pattern

Chapter 5 – Results of Investigation

84

recognition in Fitzgerald, Simon et al. (2005) where higher level meaning is sought in

the code. It is identified in the participant notes by the highlighting of code

statements that form a higher level operation and describing each chunk with a

suitable name or phrase. The participants’ responses were analyzed according to the

technique discussed in Section 4.4.3 and the results are presented in Table 5-4.

The time column indicates the duration from the time that participants started reading

the algorithm until the moment they feel confident enough to answer questions on the

algorithm. During this task, time was measured using a stopwatch. The time was

started from the moment participants started reading, until they indicated that they

were ready for the questions. As can be seen from Table 5-4 the predominant

technique used by the participants is tracing. The majority of participants from both

groups explained the purpose of the algorithm correctly, either on high (semantic) or

low (syntactic) level. From Table 5-4 it can be seen that 6 participants from the

treatment group and 3 participants from the control group completed Task 1 of the

experiment involving the unseen algorithm within the time limit. From the p-value

resulting from a Chi-squared test it can be concluded that no significant difference

exists between the proportion of participants that completed the task on time (α =

0.05).

The techniques used by participants when studying an unseen algorithm for the first

time appear in Table 5-5, along with the number of participants making use of the

technique. A Chi-squared test of the equality of proportions shows no significant

preference in the technique used by the participants to study the unseen algorithm (α =

0.05).

Technique Treatment
(n = 7)

Control
(n = 7)

Expected
Frequency

χ
2 p-value

Tracing 6 5 3.5
Chunking 1 0 3.5
None 0 2 3.5

3.09 0.213

Table 5-5 Techniques used to study an unseen algorithm

Table 5-6 summarises the accuracy of responses on high level, low level and

incorrect. A Chi-squared test of the equality of proportions shows no significant

difference in the performance of the participants with regards to the accuracy of their

Chapter 5 – Results of Investigation

85

identification of the purpose of the unseen algorithm in Task 1 of Experiment A (α =

0.05).

Accuracy
Group High Level Low Level Incorrect
Treatment (n=7) 3 3 1
Control (n=7) 1 4 2
Expected
Frequency

3.5 3.5 3.5

χ
2 1 0.14 0.33

p-value 0.317 0.375 0.564

Table 5-6 Summary of average accuracy of responses

For Task 1 of Experiment A, no significant difference exists between the two groups

in terms of the technique used to study the unseen algorithm, the time taken to study

the unseen algorithm, and the accuracy of their description of the goal of the unseen

algorithm. Hypothesis H0.6 Students using BeReT do not exhibit evidence of using

beacon recognition and chunking when studying a previously unseen algorithm can

therefore not be rejected.

Task 2 – Answer comprehension questions

For Task 2, participants were instructed to answer comprehension questions about the

unseen algorithm studied in Task 1. This task tests their cognitive development on the

comprehension level of Bloom’s taxonomy (Buck and Stucki 2000; Buckley and

Exton 2003). The goal of Task 2 in Experiment A is to test two hypotheses, namely

H0.4 Students using BeReT are less successful than the control group in the discovery

of known plans in previously unseen algorithms and H0.5 Students using BeReT take

longer than the control group to find plans in a known and/or previously unseen

algorithm.

Chapter 5 – Results of Investigation

86

Figure 5-1 The selection sort algorithm shown on screen during eye tracking

Data collected during this task include the response to comprehension questions, the

time it takes to find the answer and eye-movement data to indicate participants’ focus

of attention, their navigation and reading style when finding answers. Figure 5-1

illustrates the algorithm that was shown as a slideshow file to the participants.

Treatment Group (n=7) Control Group (n=7)
Participant Time Accuracy Participant Time Accuracy

T1 00:00:14 100% C1 00:00:26 60%
T2 00:00:12 60% C2 00:00:11 20%
T3 00:00:15 100% C3 00:00:11 40%
T4 00:00:05 100% C4 00:00:14 20%
T5 00:00:07 80% C5 00:00:16 40%
T6 00:00:05 40% C6 00:00:11 40%
T7 00:00:09 80% C7 00:00:13 60%

Proportion passed 6 Proportion passed 2
Expected Frequency 3.5 Expected Frequency 3.5
Mean 00:00:09 80% Mean 00:00:15 40%
St Dev 00:00:08 0.41 St Dev 00:00:09 0.50
χ

2 = 2.00
p-value (Proportion of participants that passed) = 0.157

Table 5-7 Total performance for Selection Sort algorithm

Chapter 5 – Results of Investigation

87

Table 5-7 summarises the overall performance for the selection sort algorithm

between the two groups. The average mark seems to indicate that the treatment group

performed better than the control group (80% vs. 40%) on Task 2. A χ2-test on the

proportion of participants who successfully completed Task 2 with a mark of 50% or

higher (6 from the treatment group, 2 from the control group) shows no significant

difference.

A breakdown of the proportion of correct responses and the average times for all five

questions show that only Question 1 demonstrates significantly different results

between the two groups (Table 5-8). Eye-tracking data reveal possible reasons for

this significant difference.

 Number of correct participants Time taken
Question Treatment

(n=7)
Control
(n=7)

Expected
Frequency

χ
2 p-

value
Treatment

(n=7)
Control
(n=7)

p-
value

Question 1 7 1 3.5 4.50 0.034* 00:00:04 00:00:12 0.046*
Question 2 5 3 3.5 0.50 0.480 00:00:15 00:00:21 0.427
Question 3 5 3 3.5 0.50 0.480 00:00:09 00:00:14 0.109
Question 4 7 6 3.5 0.08 0.782 00:00:08 00:00:12 0.250
Question 5 4 1 3.5 1.80 0.180 00:00:12 00:00:23 0.125

* Significant where p<0.05

Table 5-8 Number of correct responses and response time per question (Selection Sort)

Scanpaths from the gaze analysis of Question 1 (“Which line or lines exchanges

(swaps) two elements in an array?”) reveals the paths participants take to find the

answer for this question (Figure 5-2). Scanpaths and heatmaps resulting from all

questions are presented in Appendix I. The different colours represent the saccades

and fixations of the different participants. The circles represent fixations, with the

diameter of the circle an indication of the duration of fixation at particular points. A

larger circle implies a longer the fixation time. The lines between the circles represent

saccades, or eye-movements between the fixation points.

Chapter 5 – Results of Investigation

88

Question 1 Treatment Group Question 1 Control Group

(a) (b)

Figure 5-2 Scanpaths for Question 1: “Which line or lines exchanges (swaps) two elements in an
array?”

From the two images, it is clear that the treatment group follows a more concentrated

path around the area of interest containing the answer to question 1 (namely Lines 15,

16 and 17). Only two treatment group participants deviated significantly from the

area containing the answer.

The control group scanpaths reveal five participants scanning areas far away from the

area of interest. The scanpaths indicate that most of the control group participants did

read the correct code, but decided that another line was the correct answer. These

images seem to suggest that the treatment group participants were more successful in

transferring their knowledge of the “swap” plan from the bubble sort algorithm and

recognising it in the previously unseen selection sort algorithm.

Hypothesis H0.4 Students using BeReT are less successful than the control group in

the discovery of known plans in previously unseen algorithms is, therefore, rejected in

the case of this controlled experiment. The implication is that students using BeReT

found it easier to discover known plans in previously unseen algorithms.

Task 3 – Complete incomplete algorithm and fix errors

Task 3 tests participants’ cognitive development on the knowledge level of Bloom’s

taxonomy. Cloze exercises are used to assess their knowledge of an algorithm

Chapter 5 – Results of Investigation

89

(Section 2.4.1). Small changes are made in the variable names and data types to

determine if participants exhibit signs of rote learning. Errors are also intentionally

made in the presented code and participants are instructed to find the errors.

Table 5-9 summarises the results of task 3. On average the treatment group

participants completed more of the missing lines in the algorithm than the control

group (a 9% difference) (Table 5-9). The treatment group managed to complete Task

3 of Experiment A faster than the control group (4 minutes and 16 seconds vs. 6

minutes 35 seconds).

 % of Lines
Completed

% of Errors
Corrected

Time Taken

Participant Treatment
(n=7)

Control
(n=7)

Treatment
(n=7)

Control
(n=7)

Treatment
(n=7)

Control
(n=7)

1 60% 60% 0% 20% 00:03:00 00:06:00
2 50% 30% 20% 10% 00:03:51 00:11:15
3 100% 100% 20% 20% 00:05:00 00:07:00
4 80% 70% 0% 10% 00:03:00 00:05:24
5 60% 80% 30% 20% 00:04:00 00:03:00
6 60% 30% 0% 10% 00:01:59 00:08:00
7 100% 80% 30% 20% 00:09:00 00:08:23

Mean 73% 64% 14% 16% 00:04:16 00:06:35
St Dev 0.21 0.26 0.14 0.05 00:02:18 00:03:27
Proportion
passed

7 5 0 0

Expected
Frequency

3.5 3.5 3.5 3.5

χ
2 0.33 0.00

p-value 0.564 1.000

Table 5-9 Experiment A Task 3 Performance

From the p-values of a χ2-test on the number of participants who completed more than

50% of the missing lines and corrected more than 50% of the errors, it can be seen

that no significant difference exists between the two groups. Although not significant,

Table 5-9 suggests that there is a slight improvement in the ability of the treatment

group participant to complete this task faster (about 2 minutes on average) than the

control group participants. H0.3 Students using BeReT are less accurate than the

control group when completing a partial algorithm was rejected in the case of the

class test on the known algorithm, but for the previously unseen algorithm in this

controlled experiment hypothesis H0.3 cannot be rejected.

Chapter 5 – Results of Investigation

90

Experiment B – Known algorithm

Experiment B tests comprehension of and interaction with an algorithm studied in the

introductory programming module in the Department of CS&IS at NMMU, namely

the insertion sort algorithm. The treatment group studied the algorithm in BeReT

during one of the weekly practical assignments, while the control group used their

class notes only to study the algorithm. Data gathered from this experiment

determines the effect of BeReT on first year students’ comprehension of the algorithm

insertion sort.

Task 1 – Answer comprehension questions

Task 1 of Experiment B assesses whether participants grasp the semantic meaning of

the material learnt. This tests their cognitive development on the comprehension level

of Bloom’s taxonomy (Buck and Stucki 2000; Buckley and Exton 2003).

Figure 5-3 illustrates the insertion sort algorithm presented as a slideshow to

participants. Participants in both groups were exposed to this version of the algorithm

in their class notes. The function and variables names used in this implementation of

the algorithm were the same as used in the class notes.

Figure 5-3 The insertion sort algorithm shown on screen during eye tracking

Chapter 5 – Results of Investigation

91

Table 5-10 summarises for the two groups the average accuracy and time taken to find

answers relating to the insertion sort algorithm. In terms of accuracy, the treatment

group scored 3% better on average than the control group. The treatment group

participants answered the comprehension questions on average 10 seconds faster than

the control group.

Treatment Group (n=7) Control Group (n=7)
Participant Time Accuracy Participant Time Accuracy

T1 00:00:16 60% C1 00:00:33 80%
T2 00:00:14 80% C2 00:00:25 40%
T3 00:00:25 80% C3 00:00:17 40%
T4 00:00:08 20% C4 00:00:28 40%
T5 00:00:04 80% C5 00:00:14 20%
T6 00:00:10 0% C6 00:00:22 80%
T7 00:00:13 60% C7 00:00:18 60%

Mean 00:00:13 54% Mean 00:00:23 51%
St Dev 00:00:07 0.32 St Dev 00:00:07 0.23
Proportion passed 5 Proportion passed 3
Expected Frequency 3.5 Expected Frequency 3.5
χ

2 = 0.5
p-value (Accuracy) = 0.480

Table 5-10 Total performance for Insertion Sort algorithm

From a χ2-test on the number of participants who passed Task 1 with an average mark

of 50% or higher, it can be concluded no significant difference exist between the two

groups.

Due to the small number of participants, the average time taken to study the known

algorithm can also not be tested for significance, therefore hypothesis H0.5 Students

using BeReT takes longer than the control group to find plans in a known and/or

previously unseen algorithm is, can not be rejected in the case of the controlled

experiment involving the known algorithm (insertion sort). However, there seems to

be an improvement in the time it takes participants from the treatment group in

finding the answer. Reasons for this can be further explored by analyzing individual

questions and the eye-tracking data obtained from this experiment.

Chapter 5 – Results of Investigation

92

 Number of correct participants Time taken
Question Treatment

(n=7)
Control
(n=7)

χ
2 Expected

Frequency
p-

value
Treatment

(n=7)
Control
(n=7)

p-
value

Question 1 5 5 0 3.5 1 00:00:04 00:00:21 0.040*
Question 2 1 3 1 3.5 0.317 00:00:17 00:00:18 0.827
Question 3 5 5 0 3.5 1 00:00:11 00:00:20 0.178
Question 4 5 3 0.5 3.5 0.480 00:00:13 00:00:19 0.254
Question 5 3 2 0.2 3.5 0.655 00:00:19 00:00:34 0.068
* Significant where p<0.05

Table 5-11 Number of correct responses and response time per question (Insertion Sort)

A breakdown of the proportion of correct responses for each question shows no

significant difference between the two groups (Table 5-11). A question-by-question

breakdown of the average time to find answers to comprehension questions shows

significant difference between the two groups in Question 1 only (Table 5-11).

Question 1 Treatment Group Question 1 Control Group

(a) (b)

Figure 5-4 Heat Map Question 1: “Which line or lines calls a function to make space for a new
element in an array?”

Question 1 asked: “Which line/lines calls a function to make space for a new element

in an array?” The correct answer is line 10. The heat map (Figure 5-4) resulting

from Question 1 clearly shows that the treatment group participants focus mostly on

Chapter 5 – Results of Investigation

93

the correct area. The control group on the other hand spends a large amount of time

reading the code in the moveToRight function. These figures seem to indicate that

the control group of participants did not view the function call moveToRight as a

comment beacon that indicates the plan of making space for a new element in an

array. They still had to read the code inside the function to determine what it does.

Task 2 – Complete incomplete algorithm and fix errors

Task 2 assesses participants’ cognitive development on the knowledge level of

Bloom’s taxonomy (Bloom 1956; Buck and Stucki 2000; Buckley and Exton 2003).

Assessment methods take the form of the following:

• Cloze exercises to assess their knowledge of an algorithm previously studied.

• Making small changes in variable names and data types to test for rote learning.

• Manual debugging of the code.

Table 5-12 summarises the results of this task.

 % of Lines
Completed

% of Errors Corrected Time Taken

Participant Treatment
(n=7)

Control
(n=7)

Treatment
(n=7)

Control
(n=7)

Treatment
(n=7)

Control
(n=7)

1 65% 55% 40% 10% 00:07:00 00:08:25
2 65% 30% 40% 10% 00:05:07 00:10:58
3 95% 35% 50% 20% 00:06:58 00:06:00
4 55% 0% 0% 0% 00:04:00 00:08:00
5 70% 50% 20% 10% 00:05:15 00:10:25
6 75% 30% 0% 0% 00:03:30 00:10:14
7 90% 55% 40% 20% 00:10:00 00:10:00

Mean 73.6% 36.4% 27% 10% 00:05:59 00:09:09
St Dev 0.29 0.30 0.21 0.08 00:02:13 00:01:46
Proportion
passed

7 3 1 0

Expected
Frequency

3.5 3.5 3.5 3.5

χ
2 1.60 1

p-value 0.206 0.317

Table 5-12 Experiment B Task 3 Performance

Table 5-12 shows the p-values of a χ2-test on the number of participants who

completed more than 50% of the missing lines and corrected more than 50% of the

Chapter 5 – Results of Investigation

94

errors. It can be seen that no significant difference exists between the two groups

when using 50% as the benchmark. However, it is worth noting that significantly

more treatment group participants obtained a mark of 60% or higher (χ2 = 6, p-value =

0.014, α = 0.05). This again rejects hypothesis H0.3 Students using BeReT are less

accurate than the control group when completing a partial algorithm. Although not

significant, Table 5-12 also shows that the treatment group participants are capable of

completing incomplete algorithms quicker than control group participants in the case

of known algorithms.

Experiment C – Code fragments

Experiment C consists of code fragments of the three algorithms previously studied

by the participants, namely the bubble sort, the insertion sort and the binary search

algorithms. The data recorded for each participant includes the following:

• The participants’ response of the most likely algorithm that uses the code

displayed (between the three algorithms selected for this empirical study).

• The time taken to realise what the most likely algorithm is.

• A semantic description of the plan implemented by the code fragments.

This experiment consequently assesses participants’ ability to quickly recognise

stereotypical lines of code, and their ability to describe the plan behind the code in

their own words. Participants’ cognitive development on both knowledge and

comprehension level of Bloom’s taxonomy are assessed in this experiment (Buck and

Stucki 2000; Buckley and Exton 2003). The results of Experiment C are summarised

in Table 5-13 and Table 5-14, including the average mark obtained during the task of

identifying the algorithms based on the code fragments.

Chapter 5 – Results of Investigation

95

 Identification of algorithm Response Time
Participant Treatment

(n=7)
Control
(n=7)

χ
2 p-

value
Participant Treatment

(n=7)
Control
(n=7)

χ
2 p-

value
1 100% 83% 1 00:00:06 00:00:21
2 100% 100% 2 00:00:07 00:00:22
3 83% 50% 3 00:00:09 00:00:12
4 100% 100% 4 00:00:11 00:00:17
5 100% 67% 5 00:00:08 00:00:20
6 100% 100% 6 00:00:07 00:00:13
7 100% 100% 7 00:00:04 00:00:10

Mean 98% 86% Mean 00:00:07 00:00:16
St Dev 0.06 0.2 St Dev 00:00:02 00:00:05
Proportion
Passed 7 7

Proportion
less than
10 seconds

6 0

Expected
Frequency

3.5 3.5

0 1

Expected
Frequency

3.5 3.5

6 0.014*

Table 5-13 Summary of performance in Experiment C

Program comprehension is a combination of searching and problem solving. Readers

generally take between 2 to 2.5 seconds to inspect an object and the rest of the time to

process the information (Aschwanden and Crosby 2006). According to Aschwanden

and Crosby (2006) it takes about 10 seconds to process the information in a beacon

type statement. This time period is therefore used as a benchmark of the time it

should take participants to identify the appropriate algorithm that the code fragments

belong to. From a χ2-test on the number of participants that identified the algorithm in

less than 10 seconds, it can be stated at the 95% percentile (α = 0.05) that the

proportion of participants from the treatment group that identified the algorithm

within this benchmark time are significantly higher than the control group (Table

5-13). Hypothesis H0.5 Students using BeReT takes longer than the control group to

find plans in a known and/or previously unseen algorithm quicker is, therefore,

rejected in the case of the controlled experiment involving the code fragments.

However, it can be concluded that the improvement in the ability of the treatment

group to correctly identify the algorithm which the fragment belongs to is not

significant.

Table 5-14 lists for each question in Experiment C the proportions of each type of

description given by participants in each group along with the p-values from a χ2-test

for the equality of proportions. In each χ2-test the expected frequency was 50%.

Chapter 5 – Results of Investigation

96

From Table 5-14 in can be concluded at the stated confidence levels that the code

fragments in questions 1, 3 and 5 were better described by the treatment group. In

this case “better” is described as more high level (semantic) descriptions and less low

level or incorrect descriptions (Section 4.4.3).

Table 5-14 Number of high level, low level and incorrect descriptions

5.3 Qualitative Results

On completion of the last practical assignment during the empirical study period, a

questionnaire (Appendix E) was circulated to treatment group participants (n = 32).

The questions in the questionnaire are designed to determine the usability of BeReT

(Section 5.3.1), the perceived effectiveness of BeReT as a learning tool (Section

5.3.2), the students’ motivation towards code comprehension activities (Section

5.3.3), and the functionality of BeReT (Section 5.3.4).

5.3.1. Usability of BeReT

The following questions are posed to determine if BeReT is easy to use or not.

• Q1 determines whether BeReT is easy to use,

• Q2 and Q4 determine whether students can complete Tutorials and Exercises

without human intervention,

Frequency of Participants p-value Description
of plan for:

Type of
description Treatment Control Expected
High Level 3 0
Low Level 4 4 Question 1
Incorrect 0 3

3.5 0.05*

High Level 2 3
Low Level 5 2 Question 2
Incorrect 0 2

3.5 0.175

High Level 5 0
Low Level 2 2 Question 3
Incorrect 0 5

3.5 0.007**

High Level 3 1
Low Level 4 6 Question 4
Incorrect 0 0

3.5 0.237

High Level 2 0
Low Level 5 1 Question 5
Incorrect 0 6

3.5 0.005**

High Level 5 2
Low Level 1 3 Question 6
Incorrect 1 2

3.5 0.270

* Significant where p<0.05, ** Significant where p<0.01

Chapter 5 – Results of Investigation

97

• Q6 determines if students can perform all required steps (apart from Tutorials and

Exercises) in BeReT without human intervention,

• Q16 determines if students experience any unexpected errors in BeReT.

• Q17 is an open-ended question to determine the nature of the errors experienced

in Q16.

Table 5-15 shows the number of positive and negative responses of the 32 treatment

group participants that completed the questionnaire. Expected frequencies are given

in brackets in the p-value column.

Question Positive Negative Expected
Frequency

χ
2 p-value

Q1 31 1 16 28.13 0.000**
Q2 32 0 16 32 0.000**
Q4 32 0 16 32 0.000**
Q6 23 9 16 6.13 0.013*
Q16 6 26 16 12.5 0.000**
Q17 Open Ended

 * Significant where p<0.05, ** Significant where p<0.01

Table 5-15 Questions to determine ease of use

From Table 5-15, it can be concluded at the stated confidence levels that BeReT

tutorials and exercises are easy to use without assistance (Q1, Q2, Q4, and Q6).

Question 16, however, reveals there are some problems that need to be fixed. A

theme-based analysis of the open-ended question following Question 16 identifies a

bug in the Exercise component of BeReT. Example responses for Question 17 are:

 “While attempting an exercise, the system closed after clicking ‘Next Task’.”

 “Sometimes an exercise was unavailable, even though I haven’t completed it yet.”

5.3.2. Perceived effectiveness of BeReT as a learning tool

The following questions are posed to determine how the students perceive their own

progress when using BeReT.

• Q7(a-c) and Q8(a-c) addresses students’ perception of their understanding of the

three algorithms before and after BeReT intervention

• Q9 to Q12 concentrates on the perceived benefit students will get from BeReT

intervention. The perceived benefits include:

Chapter 5 – Results of Investigation

98

o BeReT makes program generation easier (Q9),

o BeReT aids understanding of the plans used in an algorithm (Q10),

o BeReT makes recognition of an unseen algorithm with similar plans easier

(Q11), and

o BeReT makes tracing the algorithm easier (Q12).

Table 5-16 shows the number of positive and negative responses of the 32 treatment

group participants that completed the questionnaire.

Question Positive Negative Expected
Frequency

χ
2 p-value

Q7a 10 22 16 4.5 0.034*
Q7b 8 22 16 8 0.005**
Q7c 4 28 16 18 0.000**
Q8a 30 2 16 24.5 0.000**
Q8b 29 3 16 21.3 0.000**
Q8c 20 12 16 2 0.175
Q9 23 9 16 6.13 0.013*
Q10 25 7 16 10.13 0.001**
Q11 23 9 16 6.13 0.013*
Q12 8 24 16 8 0.005**

 * Significant where p<0.05, ** Significant where p<0.01

Table 5-16 Questions to determine perceived effectiveness of BeReT as a learning tool

From Table 5-16, it can be concluded at the stated confidence levels that students

perceive BeReT to have a generally positive effect on their learning of the algorithms

studied. A consequence of the positive attitude towards the treatment tool is that no

conclusion can be drawn with regards to the impact of the Hawthorne effect of using a

novel tool in teaching (Section 4.5.2). No conclusion can be made with regards to the

effect BeReT had on students’ understanding of the Insertion Sort algorithm (Q8c).

BeReT also had no perceived positive effect on students’ ability to perform a trace on

the algorithms studied (Q12).

5.3.3. Motivation towards code comprehension activities

The following questions were posed to determine how motivated students are to

perform code comprehension activities in addition to code generation activities.

Chapter 5 – Results of Investigation

99

• Q13 and Q14 determine if students would use BeReT in future code

comprehension activities,

• Q20 and Q21 captures the atmosphere in the computer laboratory during practical

assignments,

• Q22 determines the motivation of students to perform program comprehension

tasks before program generation tasks without the use of a tool such as BeReT.

Table 5-17 shows the number of positive and negative responses of the 32 treatment

group participants that completed the questionnaire.

Question Positive Negative Expected

Frequency
χ

2 p-value

Q13 27 5 16 15.13 0.000**
Q14 28 4 16 18 0.000**
Q20 31 1 16 28.13 0.000**
Q21 27 5 16 15.13 0.000**
Q22 16 16 16 0 1

 * Significant where p<0.05, ** Significant where p<0.01

Table 5-17 Questions to determine motivation towards code comprehension

From Table 5-17 it can be concluded at the stated confidence levels that students have

a positive attitude towards using BeReT for code comprehension tasks (Q13 and

Q14). There is also a clear indication that BeReT stimulates critical discussion about

the algorithms amongst students and between the students and the tutor/lecturer (Q20

and Q21) during practical assignments. No conclusion can be made regarding the

motivation of students to perform code comprehension tasks prior to a practical

assignment without BeReT (Q22).

Two open-ended questions (Q18 and Q19) were posed to determine the perceived

advantages and disadvantages of using BeReT. A thematic analysis of the responses

to the open-ended questions of Q18 revealed three advantages, namely BeReT

tutorials enhances comprehension, BeReT exercises train students to think fast and

BeReT allows for self paced studying. Three disadvantages also emerged from the

thematic analysis of Q19, namely BeReT is inaccessible at home, there is restricted

functionality in BeReT, and system errors in BeReT hinder progress.

Chapter 5 – Results of Investigation

100

As can be seen from the list of disadvantages, a theme of restricted functionality in

BeReT emerges as one of the disadvantages. Question 15 is an attempt to address this

disadvantage by allowing the students to suggest functionality they would like to see

included in BeReT. The following are some of the suggestions from the open ended

questions given by students to improve BeReT’s functionality:

“Allow Exercises to be marked for immediate feedback”,

“Include an animation screen to visualise the execution of each plan”,

“Provide a comparison view of different ways of achieving the same plan”,

“Show arrows to link beacon description with corresponding lines of code”,

“Allow stepping through code, showing memory status at various points”,

“Allow selection of lines during Completion Exercises”.

These suggestions form a basis for subsequent revisions of BeReT (Section 6.4).

5.4 Conclusion

Class tests, controlled experiments and a questionnaire were used to collect data to

determine whether BeReT increases the students’ ability to recall the semantics of an

algorithm (R6) and enables students to successfully transfer knowledge (R7).

Three class tests contribute data used to measure the effect BeReT has on the

treatment group. The students’ level of comprehension is tested for the three

algorithms used in the study, namely bubble sort, binary search, and insertion sort.

Recall, complete and comprehension type questions are used to determine the

students’ development on the knowledge level of Bloom’s taxonomy. Results of a

pooled-variance, two-tailed t-test for testing of the difference between average marks

obtained in class tests show statistically significant variations in the averages between

the two groups (Table 5-3). The average marks for comprehension, recall and

complete questions are all in favour of the treatment group. It can, therefore, be

concluded that the following hypotheses are rejected:

H0.1 Students using BeReT do not perform than the control group better

in terms of accuracy on code comprehension questions.

H0.2 Students using BeReT find recalling the entire algorithm and

adapting to any changes in problem scenario more difficult.

H0.3 Students using BeReT are less accurate than the control group when

completing a partial algorithm.

Chapter 5 – Results of Investigation

101

This implies that BeReT does indeed increase the ability of students in introductory

programming to recall the semantics of an algorithm (R6).

Results of a Chi-squared test for testing of the proportion of students who obtained a

pass mark in comprehension questions asked in a controlled experiment (involving

known plans in an unseen algorithm) show no statistical significance (Table 5-7). It

can, therefore, be concluded that H0.4 Students using BeReT are less successful than

the control group in the discovery of known plans in previously unseen algorithms can

not be rejected.

A Chi-squared test for testing the proportion of students who successfully identified

plans within a benchmark of 10 seconds shows that the treatment group identified the

plans significantly quicker than the control group (Table 5-10). It can, therefore, be

concluded that H0.5 Students using BeReT takes longer than the control group to find

plans in a known and/or previously unseen algorithm quicker is rejected. The

rejection of H0.5 implies that BeReT partially increase the ability of students in

introductory programming to transfer knowledge of plans between algorithms (R7).

It is not possible to reject hypothesis H0.6 Students using BeReT do not exhibit

evidence of using beacon recognition and chunking when studying a previously

unseen algorithm. An inspection of the notes made by students when studying an

algorithm for the first time shows tracing to be the favoured technique used by

students.

Chi-squared tests to determine the equality of proportions of positive versus negative

responses were used to verify statistical significance of the data collected by means of

a questionnaire. The Chi-squared test statistics from the questionnaire reveal that

despite one or two system errors identified in BeReT, the students find the system

easy to use. They also perceive BeReT to be an effective learning tool. Results also

indicate an increase in the motivation of students to discuss the algorithm with their

peers and to ask critical questions about the algorithm.

The results of the empirical investigation, therefore, complete the body of evidence to

show that BeReT supports all seven requirements of program comprehension

Chapter 5 – Results of Investigation

102

identified in Chapter 2. It can, therefore, be concluded that incorporating a tool, such

as BeReT, into the introductory programming module can be of benefit to the

students.

The evidence in favour of BeReT shows that a technological support tool based on

beacon recognition and chunking will add benefit if incorporated into the introductory

programming module. The following chapter concludes this dissertation and

contributes a plan for the incorporation of BeReT into the teaching model of

introductory programming in the Department of CS&IS at NMMU.

103

Chapter 6 Conclusions and Recommendations

6.1 Introduction

The difficulties facing students in introductory programming prompted investigations

into modifying the teaching model to improve student performance and pass rates.

The primary goal of this dissertation is to determine the effect of an experimental

technological support tool on the in-depth code comprehension of students in an

introductory programming module. An analysis of various cognition models of expert

programmers during in-depth code comprehension revealed beacon recognition and

chunking as the techniques commonly used to build the mental model of expert

programmers during code comprehension.

An experimental Beacon Recognition Tool (BeReT) was developed to train students

in chunking and the identification of programming beacons in source code. BeReT

was developed to meet the requirements derived in Chapter 2. After BeReT was used

for training, the students were assessed to determine the impact of BeReT on their in-

depth comprehension of introductory programming algorithms.

This chapter concludes the dissertation by examining the research done (Section 6.2)

and proposing a methodology for incorporating BeReT in the teaching model of an

introductory programming module (Section 6.5). The limitations (Section 6.3) and

possibilities for future research are also addressed (Section 6.4).

Chapter 6 – Conclusions and Recommendations

104

6.2 Research achievements

The achievements of this research are apparent as components of both theoretical and

practical contributions.

Theoretical contributions are:

• A derived list of requirements to support in-depth comprehension of introductory

algorithms (Chapter 2), and

• An experimental design which incorporated the use of an eye-tracker to

supplement performance results (Chapter 4).

Practical contributions are:

• An evaluation of existing technological support tools using the derived

requirements to support in-depth comprehension of introductory algorithms

(Chapter 3), and

• Results of the investigation to determine the impact of an in-depth code

comprehension tool (BeReT) in an introductory programming module (Chapter 5).

Each of the above-mentioned contributions adds to the existing body of knowledge on

code comprehension in introductory programming. This research also resulted in a

peer reviewed article presented at the 2007 SAICSIT conference and published in the

conference proceedings (Appendix J).

6.2.1. Theoretical contributions

An investigation into the mental model of expert programmers during code

comprehension established beacon recognition and chunking as techniques used by

expert programmers when trying to comprehend algorithms (Section 2.2). This

analysis of the behaviour of expert programmers as well as an overview of various

techniques used by educators to aid their students in their code comprehension

activities (Section 2.3) resulted in a list of requirements for a tool to support program

comprehension in introductory programming (Table 6-1).

Chapter 2 also acknowledged that any study involving a comparison of the

achievement of students in a module requires a method for assessing their knowledge.

Chapter 6 – Conclusions and Recommendations

105

Bloom’s taxonomy is presented as a comprehensive technique for assessing student’s

knowledge on a variety of levels. This taxonomy is adapted to assessing code

comprehension for the purpose of this study (Section 2.4). The scope of this

investigation is limited to the first two levels of Bloom’s taxonomy, namely

Knowledge (Section 2.4.1) and Comprehension (Section 2.4.2).

The in-depth comprehension requirements derived in Chapter 2 (Table 6-1) were

derived from an investigation of expert program comprehension (R1, R2 and R3),

techniques used by educators to aid program comprehension in introductory

programming (R4 and R5) and educational objectives evident in Bloom’s taxonomy

(R6 and R7).

 Requirements to support in-depth comprehension of algorithms

R1 Allows student to extract semantic information (plans) from worked example

R2 Promotes the use of chunking to learn an unfamiliar algorithm

R3 Coaches students to spot beacons in different algorithms

R4 Provides students with syntactically and semantically correct worked examples

R5 Engages students in active learning activities

R6 Increases ability to recall the semantics of an algorithm

R7 Enables students to successfully transfer knowledge

Table 6-1 Requirements to aid the in-depth comprehension of introductory algorithms

BeReT (Figure 6-1) was designed and implemented to specifically satisfy

requirements R1 – R5 (Section 3.4).

The tutorials in BeReT present students with an algorithm and explain plans used in

the construction of the algorithm (R1). The exercises in BeReT provide the same

algorithm, and students must show their knowledge of the plans implemented in the

code (R1). Chunking (R2) and beacon recognition (R3) are the predominant

techniques to assimilate the plans. Any syntactically and semantically correct

algorithm can be loaded by the lecturer, in any programming language (R4).

Exercises engage students in active learning activities (R5).

Chapter 6 – Conclusions and Recommendations

106

Figure 6-1 BeReT Tutorial

Evidence of the support provided by BeReT to increase students’ ability to recall the

semantics of an algorithm (R6) and the support in BeReT to enable students to

successfully transfer knowledge (R7) is not immediately apparent in BeReT’s design

and implementation. Empirical data is required to provide evidence in support of

these requirements. The empirical study is, therefore, used to provide evidence of

student comprehension of the algorithms studied (R6) and the ability of the students to

transfer the knowledge gained in the tool to future program comprehension activities

(R7).

Chapter 4 focused on the methodology used in the investigative study to collect the

necessary empirical data. The investigative study took place in the context of the

learning environment of the introductory programming module in the Department of

CS&IS at NMMU. Various materials were developed and used during the

investigative study. In order to ensure data is valid and usable for deliberation,

Chapter 4 presented a plan to analyse the data and strategies to address the risks

associated with the study. The methodology incorporated the use of an eye tracker to

collect metrics other than time and accuracy to assess the performance of students

(Section 4.3.5).

Chapter 6 – Conclusions and Recommendations

107

Studies of program comprehension rarely incorporate the use of eye-tracking to

enhance understanding of programmer behaviour (Section 4.3.5). Cognitive

processes during reading tasks are mostly done using techniques such as think-aloud

protocols and observational studies, and student comprehension are mostly assessed

using performance measures such as accuracy and time (Section 4.3.4). In this study,

eye-tracking visualizations such as scanpaths and heat maps suggest further

confirmation of the accuracy and time taken to find answers to comprehension

questions (Section 4.3.5).

6.2.2. Practical contributions

Chapter 3 employed the requirements in Table 6-1 as an evaluation tool to investigate

from available literature a subset of representative categories of tools in order to

determine their level of support for these requirements for in-depth code

comprehension.

Existing Tools

Requirement

JH
A

V
é

P
R

O
T

O
T

Y
P

E
 A

LG
O

R
IT

H
M

A

N
IM

A
T

IO
N

 T
O

O
L

JG
R

A
S

P

P
C

V

P
R

O
G

U
ID

E

B
E

R
E

T

R1 Allow students to extract semantic information (plans) from
worked example

� � � �

R2 Promotes the use of chunking to learn an unfamiliar
algorithm

 X �

R3 Coaches students to spot beacons in different algorithms X �

R4 Provide students with syntactically and semantically correct
worked examples

� X � � �

R5 Engage student in active learning activities � � � � � �
R6 Increases ability to recall an algorithm � � ?
R7 Enable students to successfully transfer knowledge � � � ?
Legend
� Requirement is supported
X Requirement is not supported
No entry Inconclusive evidence in available literature in support of requirement
? Determined by means of an empirical investigation (Chapters 4 and 5)

Table 6-2 Comparison of support for algorithm comprehension evident in various tools

Chapter 6 – Conclusions and Recommendations

108

This comparative study of support tools used by educators identified tools that meet

most requirements (Table 6-2), except for requirements R2 (Promotes the use of

chunking to learn an unfamiliar algorithm) and R3 (Coaches students to spot beacons

in different algorithms) specifically. An experimental support tool (BeReT) was

designed and implemented with specific support for requirements R1 – R5. This

research has therefore shown that the list of requirements can be used as a measuring

instrument to evaluate existing technological support tools that can be used for code

comprehension in introductory programming (Section 3.3). The lack of support for

the requirements (R2 and R3) prompted the design and implementation of BeReT.

An investigative study to find evidence in support for requirements R6 and R7

showed that students who used BeReT to study three algorithms (binary search,

bubble sort and insertion sort) performed significantly better on code comprehension

questions than the students that relied on pen-and-paper exercises (Table 6-3).

Ref
No.

Assessment Performance
Measure

Treatment Control p-value Requirement

1 Average mark Bubble Sort
Recall (n=32)

56% 44% 0.0169* R6

2 Average mark Bubble Sort
Comprehension (n=32)

55% 35% 0.0003** R6

3 Average mark Binary
Search Recall (n=32)

41% 22% 0.0017** R6

4 Average mark Binary
Search Comprehension
(n=32)

61% 42% 0.0004**
R6

5 Average mark Insertion
Sort Complete (n=32)

56% 39% 0.0005** R6

6 Average mark Insertion
Sort Comprehension
(n=32)

43% 27% 0.0002**
R6

7 Known Algorithm Plan
Identification Time (n=7)

6 completed
within 10 sec

0 completed
within 10

sec
0.014*

R6 &
Partially R7

* Significant where p<0.05; ** Significant where p<0.01
Table 6-3 Overview of significant results from investigative study

Students that used BeReT also found recalling and completing algorithms much easier

(Ref No. 1, 3 and 5). The empirical data showed that students that used BeReT find

answers to comprehension questions quicker in known algorithms (Ref No 2, 4 and 6)

(Table 6-3). Students in the treatment group also performed the task of identifying a

known algorithm from beacon like code fragments quicker than the control group

(Ref No. 7).

Chapter 6 – Conclusions and Recommendations

109

Scanpaths and heat maps generated from eye tracking data revealed the students that

studied with the help of BeReT suggest evidence of plan knowledge and beacon

recognition. The eye tracking images showed that these successful students spent

little time reading irrelevant sections of code, and instead focused mostly on known

programming plans used in previously unseen algorithms (Figure 6-2). They were

also able to identify these plans quicker than the students that did not use BeReT

during the training phase (Figure 6-3). Since training only differed in the treatment

group performing code comprehension exercises in BeReT and the control group

performing pen-and-paper based code comprehension exercises, it can be concluded

that BeReT assisted in this improvement in performance.

Question 1 Treatment Group Question 1 Control Group

(a) (b)

Figure 6-2 Scanpaths indicating plan discovery in unseen algorithm

Chapter 6 – Conclusions and Recommendations

110

Question 1 Treatment Group Question 1 Control Group

(a) (b)

Figure 6-3 Heat Map indicating beacon recognition in known algorithm

6.3 Limitations of research

The limitations of this research are related to the limited exposure to the treatment

tool, system errors in BeReT, limited information regarding which lines of code are

regarded by experts as beacons for comprehension, the limitations imposed by eye-

tracking and insufficient data to draw accurate conclusions on one aspect of the

Hawthorne effect.

The training period employed in the current investigation only spanned three weeks.

This limited exposure to BeReT could inhibit the motivation of students from using

chunking and beacon recognition during code comprehension after the treatment

period concluded. Lack of discussion around the topic of code comprehension during

lectures could possibly further exacerbate the problem.

Apart from the limited exposure, the time spent in BeReT was further hampered by

errors in the software. Although BeReT is fully functional according to the initial

requirements, the biggest problem manifested itself when multiple users accessed the

exercises at different times. This problem was discovered only after the treatment

period started and negated the self-paced nature of BeReT. Students had to start each

Chapter 6 – Conclusions and Recommendations

111

exercise together, otherwise the exercise was removed from the list of possible

exercises as soon as someone completed an exercise. The exercises had to be reset

every time somebody accidentally opened and closed an exercise before everyone

started, resulting in a loss of student responses to exercises already completed.

Due to the scope of the current investigation, one of the exercises supported in BeReT

was not used. The lack of following a rigorous approach to determine exactly which

lines of code are deemed beacons in the chosen algorithms meant that the Define a

Beacon exercise was not yet used to its full potential. This exercise possibly has the

potential to train students better in the skill of beacon recognition.

Due to the nature of the experiments involving eye-tracking, only a small subset of

both groups could participate. The small sample sizes (n=7) for the controlled

experiments result in a limit of the application of formal statistical testing for some of

the results obtained during these experiments.

One aspect of the Hawthorne Effect identified as the effect of using a novel tool in

teaching is not effectively measured in the current investigation. The impact of this

effect is unknown. The limitations identified in this section give an indication of

future research directions.

6.4 Future research

Reasons for students not displaying a tendency towards using beacon recognition and

chunking when studying an unseen algorithm can be investigated. Experiments

similar to the current investigation can be performed, but over a longer treatment

period. The training period in the current investigation was only three weeks due to

logistical reasons. A controlled experiment whereby students have to use any

technique they feel comfortable with to study an unseen algorithm containing known

plans revealed only one treatment group participant that used some technique

promoted in BeReT (Section 5.2.2). This reluctance to use chunking and beacon

recognition can possibly be attributed to the short exposure students have had to

BeReT. The lecturer used tracing as the predominant comprehension technique

during lectures. It is, therefore, reasonable to assume that tracing will be the preferred

technique used by students when confronted by an unseen algorithm. This preference

Chapter 6 – Conclusions and Recommendations

112

for the tracing technique can also be credited to the small amount of contact time

students had with BeReT as well as the lack of explicit alternative code

comprehension skills covered in lectures.

The effect of formally including the topic of code comprehension in lectures should,

therefore, also be investigated. Part of these follow-up investigations should include

the exercise type (Define a Beacon) not used in the current study.

To make the best possible use of the Define a Beacon type BeReT exercise, an

investigation into what specifically can be considered as beacons in introductory

programming algorithms should be conducted. It is envisaged that such an

investigation could possibly involve the study of experts in the eye-tracking

laboratory to determine where their focus is during code comprehension activities.

The expert programmers could be given a number of different introductory

programming algorithms to study and a comparison of their answers to

comprehension questions and their visual attention could reveal insights into what can

be considered as beacons.

The study of expert programmers should include additional algorithms not used

during this investigation. The results of the current investigation only concluded on

the effect of BeReT on algorithms typically taught during introductory programming.

The effect of BeReT on algorithms of different sizes and complexity would further

focus the proposal for incorporating BeReT in the teaching model of an introductory

programming module. The effect of BeReT was measured against pen-and-paper-

based comprehension exercises in the current study. A follow-up study can be

conducted that compares BeReT against other forms of interventions, for example,

additional lectures or peer-led learning exercises. The current investigation only

included data with regards to the transfer of plan knowledge to the comprehension of

unseen algorithms with known plans. Data to determine the effect of BeReT on the

transfer of plans to code generation exercises could also follow. Subsequent

investigations could also determine the effect of BeReT on the cognitive development

of the students on the application, analysis, synthesis and evaluation levels of Bloom’s

taxonomy (Section 2.4).

Chapter 6 – Conclusions and Recommendations

113

Further investigations into the effect of BeReT on the comprehension of introductory

programming should include a proper usability study of BeReT. This study can

determine how students of varying experience levels and academic ability interacts

with BeReT. The questionnaire completed by treatment group participants further

identified the following features students want included in BeReT:

• Allow exercises to be marked for immediate feedback,

• Include an animation screen to visualise the execution of each plan,

• Provide a comparison view of different ways of achieving the same plan,

• Show arrows to link beacon description with corresponding lines of code,

• Allow stepping through code, showing memory status at various points,

• Allow selection of lines during completion exercises.

Future revisions of BeReT could also include features not necessarily requested by the

students, but which proved to be successful in existing code comprehension tools.

Incorporating visual cues associated with control structure diagrams would be one

example of a feature that could add value to BeReT (Section 2.3). This could aid

control flow navigation, which in turn has the potential of improving in-depth code

comprehension (Section 2.2.3). Recall that programmers following a top-down model

of code comprehension typically start by generating hypotheses about an algorithm,

and then search for beacons to confirm their hypotheses (Section 2.2.2). Adding

functionality into BeReT to record hypotheses generated by students would provide

additional data that could help with an investigation into the students’ mental model

while reading algorithms. This functionality of storing hypotheses in BeReT can also

guide students when following the top-down model of code comprehension.

A feasibility study is required to determine which of these features are possible to

implement in the current version of BeReT. This study can incorporate the use of the

eye-tracker and other formal usability equipment to determine how students use and

interact with BeReT.

6.5 Incorporation of BeReT into introductory programmin g

The significantly positive effect BeReT has on students’ comprehension of

introductory algorithms (Table 6-3) necessitates a proposal for the incorporation of

Chapter 6 – Conclusions and Recommendations

114

BeReT into the teaching model of introductory programming at NMMU. The

proposal focuses on the selection of algorithms treatable in BeReT.

While program generation is the most appropriate technique for teaching and learning

programming, arguments can be made in support of the benefits of incorporating

explicit program comprehension activities (Chapter 1). Currently, in the introductory

programming module in the Department of CS&IS at NMMU, program

comprehension activities are limited to the instructor tracing algorithms, prior to a

code generation practical assignment (Section 4.2). BeReT is an attempt to

incorporate explicit interactive program comprehension activities into an introductory

programming module.

After initial exposure to an algorithm, students are usually required to read the code

for general understanding. Since this requires a systematic reading approach, it is

proposed that BeReT tutorials and exercises should first focus on how the algorithm

implements various plans (Section 2.2.1). The initial tutorial should include a

formulation of the problem, steps towards a solution for the problem and an example

of the final solution in a relevant programming language (Section 2.3). A guide for

the lecturer explaining how to set up a tutorial in BeReT appears in Appendix H.

Subsequent tutorials and exercises can then focus on beacon recognition in a variety

of similar algorithms (Section 2.2.2).

Based on the theory reported on in this investigative study, the following set of

criteria may be used when selecting algorithms for treatment in BeReT (Chapters 2

and 3):

• The algorithms exhibit a fine balance between simplicity and complexity.

• The algorithms contain constructs mastered by the students.

• The algorithms contain stereotypical plans used in different algorithms.

• The algorithms contain beacon-like statements.

1. The algorithms exhibit a fine balance between simplicity and complexity.

The lecturers involved in all years of programming should investigate which

algorithms students experience the most problems with. For example in this study,

Chapter 6 – Conclusions and Recommendations

115

the insertion sort, in particular, was identified by students to be a difficult one to

comprehend (Section 5.3.2). The ultimate goal of the investigation should be to

derive a list of algorithms (on all year levels of study) suitable for treatment in

BeReT. The simplicity of the selected algorithms in the current investigation is

derived from the fact that they are not full-scale software applications. BeReT would

not be a suitable tool for comprehension of such large-scale applications, since no

functionality for visualisation of control flow or data flow typically found in code

comprehension tools for such large scale applications, exists in BeReT.

2. The algorithms contain constructs mastered by the students.

It is assumed that students using BeReT should have at least mastered the constructs

used in the algorithms presented in BeReT. Should BeReT, for instance, be used to

comprehend worked examples during the initial weeks of the first semester, the

algorithm selected must not contain looping constructs if they have not been covered

yet (Section 2.2.2). Moreover, it must still be investigated whether BeReT has a

significant positive effect if the algorithm selected is small. Adhering to standardized

programming conventions would structure the algorithm in a familiar way for the

students, which would aid plan discovery (Section 2.2.2).

3. The algorithms contain stereotypical plans used in different algorithms.

One of the aims of BeReT is to develop a repository of plans in students’ long-term

memory that they can transfer between different algorithms (Section 2.2). This

knowledge must also be readily available during program generation exercises. It is

obvious that BeReT will only be successful in this goal if suitable plans are

implemented in the selected algorithm. BeReT tutorials should be used to visually

show students how the plans are implemented and BeReT exercises should be used to

assess their knowledge of the plans in each algorithm (Section 3.4).

4. The algorithms contain beacon-like statements.

This criterion assumes knowledge of exactly which statements can be regarded as

lines of code that can be regarded as beacons. The current investigation relied on

experience of educators and the limited literature providing insights into which lines

are considered beacons by experts to apply this criterion (Section 2.2). It is suggested

Chapter 6 – Conclusions and Recommendations

116

that a more rigorous analysis of introductory programming algorithms be conducted to

determine which lines of code can be classified as beacons.

6.6 Summary

A lack of explicit code comprehension activities evident in the introductory

programming module in the Department of CS&IS at NMMU gave rise to an

investigation into changing the teaching model to include a support tool that focuses

on code comprehension. A literature review of code comprehension performed by

expert programmers, techniques used by educators to aid code comprehension and

Bloom’s taxonomy of educational objectives resulted in a list of requirements for a

code comprehension tool. These requirements were used to collect evidence from

available literature for a single technological support tool that supports all the

requirements. The lack of existence of such a support tool resulted in the design and

implementation of an experimental tool that supports all requirements (BeReT). It

was clear from a heuristic evaluation of BeReT that it meets requirement R1 – R5

(Table 6-4), but more investigation was needed to collect evidence in support for two

requirements that are not immediately evident in the design of BeReT (R6 and R7).

An empirical investigation successfully determined a significantly positive effect of

BeReT on the in-depth comprehension of algorithms in an introductory programming

module. The results of the empirical investigation contribute to a body of evidence

that proves the incorporation of BeReT in an introductory programming module is

beneficial in respect of the following:

• BeReT increases the ability of students to recall the semantics of an algorithm,

• BeReT enables students to successfully transfer plan knowledge between

algorithms.

Chapter 6 – Conclusions and Recommendations

117

Requirements to support in-depth comprehension of introductory
algorithms

B
E

R
E

T

S
up

po
rt

in
g

E

vi
de

nc
e

R1 Allows students to extract semantic information (plans) from worked example ����
R2 Promotes the use of chunking to learn an unfamiliar algorithm ����
R3 Coaches students to spot beacons in different algorithms ����
R4 Provides students with syntactically and semantically correct worked examples ����
R5 Engages student in active learning activities ���� S

ec
tio

n
3.

4

R6 Increases ability to recall an algorithm ����

R7 Enables students to successfully transfer knowledge ���� C
h 5

Table 6-4 Support for algorithm comprehension evident in BeReT

This dissertation contributes a proposal for the incorporation of BeReT into the

introductory programming module in the Department of CS&IS at NMMU. The

theoretical and practical contributions of this research offer educators in introductory

programming an alternative way of incorporating program comprehension skills into

their teaching model.

118

References

ALA-MUTKA, K. (2003): Problems in learning and teaching programming.

http://www.cs.tut.fi/~edge/literature_study.pdf, Date Accessed: June 2005
APPLIN, A.G. (2001): Second Language Acquisition and CS1: Is * = = **? ACM

SIGCSE Bulletin 33(1):174 - 178
AREIAS, C.M. and MENDES, A. (2006): ProGuide: A Dialogue-Based Tool To

Support Initial Programming Learning. In Proceedings 3rd E-Learning
Conference – Computer Science Education, Coimbra, Portugal.

ASCHWANDEN, C. and CROSBY, M. (2006): Code Scanning Patterns in Program
Comprehension. In Proceedings of the 39th Hawaii International Conference on
System Sciences, Kauai, Hawaii.

ASTRACHAN, O., BERRY, G., COX, L. and MITCHENER, G. (1997): Design
Patterns: An essential component of CS Curricula. In Proceedings 28th SIGCSE
Technical Symposium on Computer Science Education. 153 - 160

BARTELS, M. and MARSHALL, S.P. (2006): Eye Tracking Insights into Cognitive
Modelling. In Proceedings ETRA 2006, San Diego, California. 141 - 178

BEDNARIK, R., MYLLER, N., SUTINEN, E. and TUKIAINEN, M. (2006): Program
Visualization: Comparing Eye-Tracking Patterns with Comprehension Summaries
and Performance. In Proceedings 18th Workshop of the Psychology of
Programming Interest Group, University of Sussex. 68 - 82, ROMERO, P.,
GOOD, J., CHAPARRO, E.A. and BRYANT, S. (eds).

BEDNARIK, R. and TUKIAINEN, M. (2006): An eye-tracking methodology for
characterizing program comprehension processes. In Proceedings of the 2006
symposium on Eye tracking research & applications, San Diego, California. 125 -
132, ACM Press

BEN-ARI, M. (2001): Constructivism in Computer Science Education. Journal of
Computers and Mathematics in Science Teaching 20(1):45 - 73

BLOOM, B.S. (1956): Taxonomy of Educational Objectives. David McKay Co.
BOYLE, T. (2003): Design principles for authoring dynamic reusable learning objects.

Australian Journal of Educational Technology 19(1):46-58
BROOKS, R. (1983): Towards a theory of the comprehension of computer programs.

International Journal of Man-Machine Studies 18(6):543 - 554
BROWN, M.H. (1988): Exploring algorithms using BALSA-II. IEEE Computer 21(5):14

- 36
BRUMMUND, P. (2001): The Complete Collection of Algorithm Animations.

http://www.cs.hope.edu/alganim/ccaa/ Last updated: 26 June 2001, Date
Accessed: May 2006

BUCK, D. and STUCKI, D.J. (2000): Design early considered harmful: graduated
exposure to complexity and structure based on levels of cognitive development.
SIGCSE Bulletin 32(1):75 - 79

BUCKLEY, J. and EXTON, C. (2003): Blooms' Taxonomy: A Framework for Assessing
Programmers' Knowledge of Software Systems. In Proceedings 11th IEEE
International Workshop on Program Comprehension. 165

References

119

BURNSTEIN, I. and ROBERSON, K. (1997): Automated Chunking to Support Program
Comprehension. In Proceedings 5th International Workshop on Program
Comprehension. 40, IEEE Computer Society

CALITZ, A.P. (1997): The Development and Evaluation of a Strategy for the Selection
of Computer Science Students at the University of Port Elizabeth. Doctoral
Thesis. Department of Computer Science and Information Systems, University of
Port Elizabeth. Port Elizabeth, South Africa.

CARBONE, A. and KAASBØLL, J.J. (1998): A Survey of Methods Used to Evaluate
Computer Science Teaching. In Proceedings Information Technology in
Computer Science Education, Dublin, Ireland. 41 - 45

CHAN, P.S. and MUNRO, M. (1997): PUI: A Tool to Support Program Understanding.
In Proceedings IEEE 5 th International Workshop on Program Comprehension.
192-198

CILLIERS, C.B. (2004): A Comparison of Programming Notations for a Tertiary Level
Introductory Programming Course. Doctoral thesis. Department of Computer
Science and Information Systems, UPE. Port Elizabeth.

CILLIERS, C.B., CALITZ, A.P. and GREYLING, J.H. (2005): The effect of integrating
an iconic programming notation into CS1. In Proceedings of the 10th annual
SIGCSE conference on Innovation and technology in computer science education,
Caparica, Portugal. 108 - 112, ACM Press,
http://doi.acm.org/10.1145/1067445.1067478, Date Accessed: May 2006

CLANCY, M.J. and LINN, M.C. (1999): Patterns and pedagogy. In Proceedings 30th
Technical Symposium on Computer Science Education, New Orleans, Louisiana,
United Stated. 37 - 42

COOK, C., BREGAR, W. and FOOTE, D. (1984): A Preliminary Investigation of the use
of the Cloze Procedure as a Measure of program Understanding. Information
Processing & Management 20(1 - 2):199 - 208

CREWS, T. and ZIEGLER, U. (1998): The Flowchart Interpreter for Introductory
Programming Courses. In Proceedings 1998 Frontiers in Education Conference,
Tempe, Arizona.

CROSBY, M.E., SCHOLTZ, J. and WIEDENBECK, S. (2002): The roles beacons play
in comprehension for novice and expert programmers. In Proceedings of PPIG,
Brunel University, UK. 14:58 - 73, J. KULJIS, L.B.R.S. (ed)

CROSBY, M.E. and STELOVSKY, J. (1990): How do we read algorithms? A case study.
Computer 23(1):24 - 35

CROSS, J.H. (1998): The Control Structure Diagram: An Overview and Initial
Evaluation. Empirical Software Engineering 3(2):131 - 158

CROSS, J.H., HENDRIX, T.D. and BAROWSKI, L.A. (2002): Using the debugger as an
integral part of teaching CS1. In Proceedings 32nd ASEE/IEEE Frontiers in
Education Conference, Boston, Massachusetts.

CS&IS (2006a): WRA101 (Algorithmics 1.1) Module Guide. Port Elizabeth, Department
of Computer Science and Information Systems, NMMU.

CS&IS (2006b): WRA102 (Algorithmics 1.2) Module Guide. Port Elizabeth, Department
of Computer Science and Information Systems, NMMU.

CURTIS, B. (1981): A Review of Human Factors Research on Programming Languages
and Specifications. ACM Press:212 - 218

References

120

DE BARROS, L.N., DOS SANTOS MOTA, A.P., DELGADO, K.V. and
MATSUMOTO, P.M. (2005): A tool for programming learning with pedagogical
patterns. In Proceedings 2005 OOPSLA workshop on Eclipse technology
eXchange, San Diego, California. 125 - 129

DEIMEL, L. and NAVEDA, J. (1990): Reading Computer Programs: Instructor's Guide
and Exercises. Educational Materials CMU/SEI-90-EM-3. Pennsylvania.

DRAPER, S.W. (1997): Integrative evaluation: An emerging role for classroom studies
of CAL. http://www.psy.gla.ac.uk/~steve/IE.html Last updated: 12 July 2006

ELY, M., VINZ, R., DOWNING, M. and ANZUL, M. (1999): On Writing Qualitative
Research: Living by Words. Falmer Press.

ENGEBRETSON, A. and WIEDENBECK, S. (2002): Novice comprehension of
programs using task-specific and non-task-specific constructs. In Proceedings
IEEE 2002 Symposia on Human Centric Computing Languages and
Environments. 11

EVANS, D., GUTTAG, J., HORNING, J. and TAN, Y. (1994): LCLint: a tool for using
specifications to check code. In Proceedings ACM SIGSOFT Foundations of
Software Engineering, New Orleans.

FITZGERALD, S., SIMON, B. and THOMAS, L. (2005): Strategies that students use to
trace code: an analysis based in grounded theory. In Proceedings 2005
international workshop on Computing education research, Seattle, WA, USA. 69
- 80, ACM Press

FIX, V., WIEDENBECK, S. and SCHOLTZ, J. (1993): Mental Representations of
Programs by Novices and Experts. In Proceedings ACM CHI 93 Human Factors
in Computing Systems, Amsterdam, The Netherlands. 74 - 79, ASHLUND, S.,
MULLT, KEVIN, HENDERSON, AUSTIN, HOLLNAGEL, ERIK AND
WHITE, TED (ed)

FORD, L. (1993): Interactive learning and researching with visualizations. Technical
Report 274. University of Exeter. atlas.ex.ac.uk

GARNER, S. (2000): A Code Restructuring Tool to help Scaffold Novice Programmers.
In Proceedings International Conference in Computer Education (ICCE).

GARNER, S. (2002): The learning of plans in programming: A program completion
approach. In Proceedings of the International Conference on Computers in
Education. 2:1053 - 1057

GARNER, S. (2003): Learning Resources and Tools to Aid Novices Learn
Programming. In Proceedings Informing Science & Information Technology
Education Joint Conference (INSITE), Pori, Finland. 213 - 222

GARNER, S., HADEN, P. and ROBINS, A. (2005): My program is correct but it doesn't
run: a preliminary investigation of novice programmers' problems. In Proceedings
of the 7th Australasian conference on Computing education, Newcastle, New
South Wales, Australia. 42:173 - 180

GIANNOTTI, E. (1987): Algorithm animator: a tool for programming learning. SIGCSE
Bulletin 19(1):308-314

GREYLING, J.H. and CALITZ, A.P. (2003): The Implementation of a Computerised
Placement Battery for First Year IT Courses. In Proceedings 3rd International
Conference on Science, Mathematics and Technology Education, East London,
South Africa.

References

121

GUZDIAL, M. (1994): Software-Realized Scaffolding to Facilitate Programming for
Science Learning. Interactive Learning Environments 4(1):1 - 44

HARRIS, N. (2005): Beacon Recognition Tool. Honours Treatise. Computer Science
and Information Systems, University of Port Elizabeth. Port Elizabeth.

HARRIS, N. and CILLIERS, C. (2006): A Program Beacon Recognition Tool. In
Proceedings 7th International Conference on Information Technology Based
Higher Education and Training, 2006. (ITHET '06), Ultimo, New South Wales,
Australia. 216 - 225

HENDRIX, D. and CROSS, J.H. (2002): Effectiveness of Control Structure Diagrams in
Source Code Comprehension Activities. IEEE Transactions on Software
Engineering 28(5):463 - 477

JEFFRIES, R. (1982): A comparison of the debugging behaviour of expert and novice
programmers. In Proceedings American Educationa/Research Association annual
meeting.

JENKINS, T. (2002): On the difficulty of Learning to Program.
http://www.ics.heacademy.ac.uk/Events/conf2002/jenkins.html Last updated:
2002).

JOHNSON, W.L. and SOLOWAY, E. (1984): PROUST: Knowledge-based program
understanding. In Proceedings 7th international conference on Software
Engineering, Orlando, Florida, United States. 369 - 380

KIMURA, T. (1979): Reading before Composition. In Proceedings of the tenth SIGCSE
technical symposium on Computer science education. 11:162 - 166, ACM Press

KOENEMANN, J. and ROBERTSON, S.P. (1991): Expert problem solving strategies
for program comprehension. In Proceedings SIGCHI conference on Human
factors in computing systems: Reaching through technology, New Orleans,
Louisiana. 125 - 130, ACM Press

LAHTINEN, E., ALA-MUTKA, K. and JÄRVINEN, H.-M. (2005): A study of the
difficulties of novice programmers. In Proceedings 10th annual SIGCSE
conference on Innovation and technology in computer science education,
Caparica, Portugal. 14 - 18, ACM Press

LARSON, H.J. (1974): Introduction to Probability Theory and Statistical Inference. 2nd Edn,
Wiley International Edition.

LETOVSKY, S. (1986): Cognitive processes in program comprehension. Empirical
studies of programmers.58 - 79.

LISTER, R., ADAMS, E.S. FITZGERALD, S, FONE, W, HAMER, J, LINDHOLM, M,
MCCARTNEY, R, MOSTRÖM, J.E., SANDERS, K, SEPPÄLÄ, O, SIMON, B,
THOMAS, L (2004): A multi-national study of reading and tracing skills in
novice programmers. SIGCSE BULLETIN 36(4):119 - 150

MATHIS, R.F. (1974): Teaching debugging. SIGCSE Bulletin 6(1):59 - 63
MAYER, R.E. (1981): The Psychology of How Novices Learn Computer Programming.

ACM Computing Surveys 13(1):121 - 141
MCCRACKEN, M., ALMSTRUM, V, DIAZ, D, GUZDIAL, M, HAGAN, D,

KOLIKANT, Y.B., LAXER, C, THOMAS, L, UTTING, I, WILUSZ, T (2001): A
multi-national, multi-institutional study of assessment of programming skills of
first-year CS students. ACM SIGCSE Bulletin 33(4):125 - 180.December 2001.

References

122

MCDONALD, P. and CIESIELSKI, V. (2002): Design and Evaluation of an Algorithm
Animation of State Space Search Methods. Computer Science Education
12(4):301 - 324

MCTIGHE, J. and SEIF, E. (2003): A Summary of Underlying Theory and Research
Base for Understanding by Design. Nebraska Association for Supervision and
Curriculum Development (ASCD) Journal 16

MENDES, A. and MARCELINO, M. (2006): PESEN - A Visual Programming
Environment to Support Initial Programming Learning. In Proceedings
CompSysTech' 2006- International Conference on Computer Systems and
Technologies, Veliko-Turnovo, Bulgaria.

MILLNER, J. (2002): Bitesize Revision.
http://www.bbc.co.uk/schools/gcsebitesize/design/systemscontrol/workingwithsys
temsrev3.shtml Last updated:

MOSEMANN, R. and WIEDENBECK, S. (2001): Navigation and comprehension of
programs by novice programmers. In Proceedings 9th International Workshop on
Program Comprehension, Toronto, Canada. 79 - 88

MÜLLER, H., TILLEY, S., ORGUN, M., CORRIE, B. and MADHAVJI, N. (1992): A
reverse engineering environment based on spatial and visual software
interconnection models. In Proceedings Fifth ACM SIGSOFT Symposium on
Software Development Environments, Tyson's Corner, Virginia. 17:88 - 98, ACM
Software Engineering Notes

NAPS, T., EAGAN, J. and NORTON, L. (2001): JHAVÉ: An Environment to Actively
Engage Students in Web-based Algorithm Visualizations. ACM SIGCSE:109 -
113

NAPS, T.L. (2005): JHAVé Supporting Algorithm Visualization. IEEE Comput. Graph.
Appl. 25(5):49 - 55

NETER, J., WASSERMAN, W. and WHITMORE, G.A. (1993): Applied Statistics. 4th
Edn, Allyn and Bacon.

O’BRIEN, M.P. (2003): Software Comprehension – A Review & Research Direction.
Technical Report UL-CSIS-03-3. University of Limerick. Ireland.

PANE, J.F. and MYERS, B.A. (1996): Usability issues in the design of novice
programming interfaces. Technical Report CMU-HCI-96-101. Human-Computer
Interaction Institute.

PARSONS, H.M. (1974): What happened at Hawthorne. Science 183:922 - 932
PENNINGTON, N. (1987): Comprehension strategies in programming. In Proceedings

Empirical studies of programmers: Second Workshop. 100 - 112, OLSON,
S.A.S. (ed) Ablex Publishing Corp.

POZNYAKOFF, S. (2005): GNU cflow. http://www.gnu.org/software/cflow/ (Last
updated: 2006/11/24).

References

123

PRETORIUS, M.C. (2005): The Added Value of Eye Tracking in the Usability
Evaluation of a Network Management Tool. Masters Dissertation. Department of
Computer Science and Information Systems, Nelson Mandela Metropolitan
University. Port Elizabeth.

RAJLICH, V. and COWAN, G.S. (1997): Towards Standards for Experiments in
Program Comprehension. In Proceedings IEEE International Workshop on
Program Comprehension, Dearborn, MI, USA.

RAJLICH, V. and WILDE, N. (2002): The role of concepts in Program Comprehension.
In Proceedings International Workshop on Program Comprehension. 271 - 278,
IEEE Computer Society Press

RENKL, A. (1997): Learning from worked-out examples: A study on individual
differences. Cognitive Science 21:1 - 29

RIST, R.S. (1986): Plans in programming: definition, demonstration and development.
In Proceedings First Workshop Empirical Studies of Programmers, Norwood,
N.J. 28 - 47, Ablex Publishing

ROBBILARD, M., COELHO, W. and MURPHY, G. (2004): How effective developers
investigate source code: An exploratory study. IEEE Transactions on Software
Engineering 30(12):889 - 903

SCANLAN, D. (1988): Should short, relatively complex algorithms be taught using both
graphical and verbal methods? Six replications. SIGCSE Bulleting 20(1):185 - 189

SHIH, Y.-F. and ALESSI, S.M. (1993): Mental models and transfer of learning in
computer programming. Journal of Computing in Education 26(2):154 - 176

SHNEIDERMAN, B. (1982): Control Flow and Data Structure Documentation: Two
Experiments. Communications of ACM:55 - 63

SHNEIDERMAN, B. (1983): Direct Manipulation: A step beyond Programming
Languages. IEEE Computer 16(8):56 - 69

SHNEIDERMAN, B. and MAYER, R. (1979): Syntactic/Semantic Interaction in
Programmer Behavior: A Model and Experimental Results. International Journal
of Computer and Information Sciences 8(3):219 - 238

SOLOWAY, E. (1986): Learning to program = learning to construct mechanisms and
explanations. Communications ACM 29(9):850 - 858

SOLOWAY, E. and EHRLICH, K. (1984): Empirical Studies of Programming
Knowledge. IEEE Transactions on Software Engineering SE-10(5):595 - 609

SOLOWAY, E. and WOOLF, B. (1980): Problems, plans, and programs. In Proceedings
of the eleventh SIGCSE technical symposium on Computer science education,
Kansas City, Missouri, United States. 16 - 24, ACM Press

STASKO, J., BADRE, A. and LEWIS, C. (1993): Do algorithm animations assist
learning? an empirical study and analysis. In Proceedings INTERACT '93 and
CHI '93 conference on Human factors in computing systems, Amsterdam, The
Netherlands. 61 - 66

SWELLER, J. and COOPER, G.A. (1985): The use of worked examples as a substitute
for problem solving in learning algebra. Cognition and Instruction 2(1):59 - 89

TALJAARD, M (2003): Using E-learning to Support IT Education in a University
Environment: A Case Study Approach. Masters Dissertation. Department of
Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth.

References

124

THOMAS, L.A., RATCLIFFE, M.B. and THOMASSON, B.J. (2004): Scaffolding with
Object Diagrams in first Year Programming Classes: Some Unexpected Results.
In Proceedings 35th Technical Symposium on Computer Science Education,
Norfolk, Virginia, USA. 36

UPCHURCH, R. (1997): Program Comprehension. Computer and Information Science
Department, University of Massachusetts Dartmouth.

VAN GREUNEN, D. (2002): Formal Usability Testing of Interactive Educational
Software: A Case Study Approach. Masters Dissertation thesis. Department of
Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth.

VAN MERRIËNBOER, J.J.G. (1990): Strategies for programming instruction in high
school: Program completion vs. program generation. Journal of Computing
Research 6:265 - 285

VOGTS, D. (2006): A Simplified Programming Language for Novice Programmers.
Doctoral Thesis. Department of Computer Science and Information Systems,
Nelson Mandela Metropolitan University. Port Elizabeth.

VON MAYRHAUSER, A. and VANS, A.M. (1994): Program Understanding: A Survey.
Technical Report CS-94-120. Colorado State University. Fort Collins, Colorado.

WADDEL, K.C. and CROSS, J.H. (1988): Survey of empirical studies of graphical
representations for algorithms. In Proceedings 1988 ACM sixteenth annual
conference on Computer science, Atlanta, Georgia, United States. 696

WALENSTEIN, A. (2002): Cognitive Support in Software Engineering Tools: A
Distributed Cognition Framework. PhD Thesis thesis. School of Computing
Science, Simon Fraser University.

WALLINGFORD, E. (1998): Toward a First Course Based on Object-Oriented Patterns.
In Proceedings 27th SIGCSE Technical Symposium on Computer Science
Education. 27 - 31

WARREN, P.R. (2003): Learning to Program: Spreadsheets, Scripting and HCI. In
Proceedings Southern African Computer Lecturers Association.

WIEDENBECK, S. and EVANS, N.J. (1986): Beacons in Program Comprehension.
SIGCHI Bulletin 18(2):56 - 57

WIEDENBECK, S., RAMALINGAM, V., SARASAMMA, S. and CORRITORE, C.L.
(1999): A comparison of the comprehension of object-oriented and procedural
programs by novice programmers. Interacting with Computers 11:225 - 282

WIEDENBECK, S. and SCHOLTZ, J. (1989): Beacons and Initial Program
Comprehension. SIGCHI Bulletin 21(1):90 - 91

WILEY, D.A. (2003): Learning objects: difficulties and opportunities.
http://wiley.ed.usu.edu/docs/lo_do.pdf Last updated:

WILSON, J., KATZ, I.R., INGARGIOLA, G., AIKEN, R. and HOSKIN, N. (1995):
Students' use of animations for algorithm understanding. In Proceedings Human
factors in computing systems, Denver, Colorado, United States. 238 - 239

YEH, C.L., GREYLING, J.H. and CILLIERS, C.B. (2006): A framework proposal for
algorithm animation systems. In Proceedings 2006 annual research conference of
the South African institute of computer scientists and information technologists,
Somerset West, South Africa. 204:155 - 163, South African Institute for
Computer Scientists and Information Technologists

References

125

YOUNG, P. (1996): Program Comprehension. Centre for Software Maintenance,
University of Durham.

A1

Appendix A: Introduction to BeReT (Student Guide)

BeReT (short for Beacon Recognition Tool) is a programme that helps you recognise
and identify beacons in the source code. It can also be used as a tool to create a
stepwise abstraction of an algorithm in order to simplify studying algorithms. You
may be required to do any of the following three types of tasks in BeReT:
Task Given What must be done
Complete Beacon name and description Fill in missing source code that name and

description refers to
Match Beacon name and description Select relevant source code lines that

matches name and description
Define Code only Group statements together and assign a

name and description to indicate higher
level of operation of these statements

General Layout of BeReT Exercise screens

Before each task begins, an instruction page tells you about the type of task that you
need to perform and lists the steps to complete the tasks. These instructions are
repeated at the top of the exercise screen, but you need not read that again if you are
familiar with the steps to complete each task.

From any exercise screen it is advisable that you follow the following steps in
sequence:
1. Read the description of the algorithm solved by the source code in area #4.
2. Look at the list of beacon names given in area #2.
3. Click on a beacon name to read a description in area #3.
4. Complete the required task in area #4.
5. Work through all the beacon names in area #2 until “Done” appears next to all of

them. Keep an eye on the “Task Time” to complete the task on time.
6. Click “Next Task” when you’ve completed all beacon names.

2

3

1

Source code of algorithm; implemented in some
programming language. The following tasks will be
performed here:
• Complete
• Match
• Define

List of beacon names identified in the source code

Description of beacon selected in area #2

4

Task instructions repeated from previous screen Description of problem solved by
code in area #4

Appendix A: Introduction to BeReT (Student Guide)

A2

Complete missing code

1. Click on a beacon name in area #1.
2. Read the corresponding description in area #2.
3. Click on a line highlighted in yellow (in area #3), and type in the missing line(s)

that matches the selected beacon name and description.
4. Press enter after each line is completed.

Match Code to a Beacon

1. Click on a beacon name in area #1.
2. Read the corresponding description in area #2.
3. Select the line(s) of code described by the name and description in area #3.
4. Right-click on selected line and select “Associate selected lines with selected

beacon” from popup menu.

1

2

3

Appendix A: Introduction to BeReT (Student Guide)

A3

Beacon Definition

1. Read the problem description that is solved by the algorithm
2. Scan the code to understand what each individual statement does (area #2)
3. Select the lines of code you want to group together
4. Right-click one of the selected lines and click “Create New Beacon” on the popup

menu
5. Complete the details by entering a name and description appropriate for the

selected lines of code

1

2

3

2

1

B1

Appendix B: Practical Assignments

The following notes were used to create BeReT Tutorials and Exercises for each
algorithm.

Bubble Sort Algorithm

procedure BubbleSort;
var
 i : integer;
 sorted : boolean;
 TheArray : array[1..7] of integer;
Begin
 repeat
 sorted := true;

 for i := 1 to 6 do
 begin
 if TheArray[i] > TheArray[i+1] then
 begin
 sorted := false;
 Swap(TheArray[i],TheArray[i+1]);
 end ;
 end ;
 until sorted;
End.

procedure Swap(var a, b : integer);
var
 temp : integer;
begin
 temp := a;
 a := b;
 b := temp;
end;

Bubble Sort Plans

Repeat the following until the entire list is in sorted order:
1. Repeat until end of the list is reached.

a. Determine if adjacent values are in sorted order in relation to each other.
b. Swap values if not sorted.

i. Make a copy of one value.
ii. Swap two values.
iii. Reinstate original value.

Appendix B: Practical Assignments

B2

Binary Search Algorithm

procedure BnrySrch(Ar: Tarray; num: integer; var pos:
integer);
var
 First, Mid, Last : integer;
 Cur : integer;
 Found : boolean;
begin
 pos := 0;
 Found := false;
 First := 1;
 Last := 10000;

 while (First <= Last) and not Found do
 begin

 Mid := (First + Last) div 2;
 Cur := Ar[Mid];

 if num = Cur then
 begin
 Pos := Mid;
 Found := true;
 end
 else begin
 if num < Cur then
 begin
 Last := Mid - 1;
 end
 else begin
 First := Mid + 1;
 end ;
 end ;
 end ;
end ;

Binary Search Plans

1. Find middle position in a list.
2. Store the value in the middle position in a temporary variable.
3. Compare the search value with the value in the middle position.

a. If it is the same, the value is found and the position returned.
b. If search value is smaller than value in middle position, set the last index one

less than the middle position.
c. Otherwise, set the first index one higher than the middle position.

4. Repeat while value is not found and the first index is less than or equal to last index.

Appendix B: Practical Assignments

B3

Insertion Sort Algorithm

public static void InsertionSort(int[] List, int nr El)
{
 for (int x = 1; x <= (nrEl - 1); x++)
 insert(List[x], List, x);
}

public static void insert(int NewOne, int[] SortedL ist, int
nrEl)
{
 int pos = findPos(NewOne, SortedList, nrEl);
 moveToRight(pos, SortedList, nrEl);
 SortedList[pos] = NewOne;
}

public static int findPos(int NewOne, int[] SortedL ist, int
nrEl)
{
 int x;
 for (x = 0; x <= nrEl-1; x++)
 {
 if (NewOne <= SortedList[x])
 return x;
 }
 return x;
}

public static void moveToRight(int pos, int[] Sorte dList,
int nrEl)
{
 for (int x = nrEl; x >= (pos + 1); x--)
 {
 SortedList[x] = SortedList[x - 1];
 }
}

Insertion Sort Plans

1. Loop through unsorted list, and build a new sorted list by starting with a list of 1

element and inserting the next value in the unsorted list in its proper place in the
growing sorted list.

2. Find the correct position for an element to be inserted into a sorted list.
3. Starting from end of list, move elements one up until an element smaller than element

to insert is found.
4. Insert element at the correct position in the sorted list.

C1

Appendix C - Class Tests

Question 1: Recall Bubble Sort

Write a Bubble Sort Algorithm that sorts an unsorted array of integers in descending
order. Hand in the answer sheet when you are done.

Question 2: Bubble Sort Comprehension

1. What data structure is used to store the data?
2. Which line compares two adjacent values in an array?
3. What does line 12 do?
4. Under which condition would two adjacent values be swapped?

Appendix C - Class Tests

C2

Question 1: Recall Binary Search

Write a Binary Search Algorithm that searches for an integer in an array of integers
sorted in descending order. The algorithm will receive the array, the number of elements
in the array and the wanted number. It must return the position of the wanted number in
the array, or -1 if the number is not found.

Question 2: Binary Search Comprehension

1. What data structure is used to store data of what type?
2. Under which condition(s) must the search continue?
3. What is updated when the wanted_value is less than the middle value?
4. What is updated when the wanted_value is greater than the middle value?
5. What happens when the first index is greater than the last index? Under what

condition will this happen?
6. What data type should the variable in line 6 be?
7. Which line(s) is/are used to determine where the wanted_value occur in the list?

Appendix C - Class Tests

C3

Question 1: Insertion Sort Completion

Complete the partially complete algorithm. Fix any errors that you can identify.

1. public static void InsertionSort(double[] Prices, int nrEl)
2. {
3. for (int x = 0; x <= (nrEl - 1); x++)
4.
5. }
6. public static void insert(int NewElement, int[] SortedList, int SortednrEl)
7. {
8.
9. moveToRight(the_pos, SortedList, SortednrEl);
10. SortedList[the_pos] = ;
11. }
12. public static int findPos(int NewOne, double[] SortedList, int SortednrEl)
13. {
14. double x;
15. for (x = 0; x <= nrEl-1; x++)
16. {
17.
18.
19. }
20. return x;
21. }
22. public static void moveToRight(int pos, double[] SortedList, int SortednrEl)
23. {
24. for (int x = SortednrEl; x >= (pos + 1); x++)
25. {
26.
27. }
28. }

Question 2: Insertion Sort Comprehension

1. Write down in your own words what the following line(s) of the Insertion Sort

Algorithm do.
a. Line 24 and 26
b. Line 20
c. Line 4
d. Line 15, 17 and 18

2. Which line inserts an element in the appropriate place in an array?
3. Which line(s) creates a space to insert a new element into a suitable position in an

array?
4. Which line(s) loops through the unsorted part of the array?

D1

Appendix D – Controlled Experiments

Controlled Experiment A

Task 1: Paper-based (To determine technique(s) used to study an algorithm)
1. Give a printout of the complete version of the Selection Sort to the participant

(Algorithm A.doc).
2. “Read the algorithm in the handout. You may make notes and use any technique

while determining the purpose of the algorithm.”
3. Take the algorithm and any additional notes made by the participant.
4. “Explain in your own words, what the algorithm does.”
5. Record the response of the participant.
6. Explain the algorithm to the participant.
7. Inform participant that the eye-tracker experiment will start and move over to the

observer side of the room.
Time taken: ___
Task 2: Eye-tracker 1 (To determine reading pattern when studying an
algorithm)
1. Instruct participant to sit comfortably in front of the PC. Calibrate the participant.
2. “I’m going to open the same algorithm on the screen of the computer. Please

read the algorithm on the screen of the computer. Familiarise yourself with the
code and try to determine how the code achieve the goals of the algorithm. Tell
me when you are ready to answer five questions about the algorithm.”

3. Open Selection Sort.pps via VNC Viewer.
4. Create new data file in IViewX. Start a recording. Stop the recording as soon as

the participant indicates he/she is ready. Save data file as 01Study.idf in
participant folder. Show white screen in Selection Sort.pps before asking each
question.

Time taken: ___
Task 3: Eye-tracker 2 (To determine ability to recognise and use beacons)

1. “I will now ask you a set of five questions. Each time I ask a question, please
study the algorithm on screen to find the answer. If you didn’t understand or hear
the question, ask for a clarification. Let me know when you are ready to find the
answer. I will then show the algorithm and you can start scanning the code. As
soon as you have the answer, tell me the corresponding line number.”

2. Perform the following steps for each question:
 - Create new data file in IViewX.
 - Read question. Ask if participant understood question.
 - Show algorithm, start recording and stopwatch.
 - When answer is given, stop recording, stop stopwatch and clear screen.
 - Write down answer. Write down time taken. Save data file as
 select_<question #>.idf in <Participant #>\Exp 1-Selection Sort.
3. Ask the following questions:
Q1. “Which line or lines exchanges (swaps) the current value in the array, with the
smallest value in the unsorted part of the array?”
Correct answer: Lines 15, 16, 17
Participant answer:___
Time taken: ___
Q2. “Which line or lines finds the index of the smallest number in the array?

Appendix D – Controlled Experiments

D2

Correct answer: Lines 10, 12
Participant answer:___
Time taken: ___
Q3. Which line or lines loops through the unsorted part of the array to determine the
smallest value?”
Correct answer: Line 10
Participant answer:___
Time taken: ___
Q4. “Which line or lines determines if the current value is smaller than the current
smallest value?”
Correct answer: Line 12
Participant answer:___
Time taken: ___
Q5. “Which line or lines sets the position of the smallest value in the unsorted part of
the array?”
Correct answer: Line 13
Participant answer:___
Time taken: ___

Task 4: Paper-based (To determine ability to complete and debug code)
1. Hand out an incomplete version of Selection Sort (Incomplete Selection Sort.doc).
2. “Complete the algorithm in the handout. Fix any errors that you can identify.”
3. Start stopwatch.
4. When participant is done, stop stopwatch and collect the answer sheet.
5. Take a 5 minute break before the next experiment.
Time taken: ___

Controlled Experiment B

Task 1: Eye-tracker 1 (To determine retention of learning)
1. “I will now ask you five questions on an algorithm you’ve studied before. Each

time I ask a question, study the algorithm on screen to find the answer. If you
didn’t understand or hear the question, ask for a clarification. Let me know when
you are ready to find the answer. I will show the algorithm and you can start
scanning the code. As soon as you have the answer, tell me the corresponding
line number.”

2. Perform the following steps for each question:
 - Create new data file in IViewX.
 - Read question. Ask if participant understood question.
 - Show algorithm, start recording and stopwatch.
 - When answer is given, stop recording, stop stopwatch and clear screen.
 - Write down answer. Write down time taken. Save data file as
 insert_<question #>.idf in <Participant #>\Exp B-Insertion Sort.
3. Ask the following questions:
Q1. “Which line/lines calls a function to make space for a new element in an array?”
Correct answer: Line 10
Participant answer:___
Time taken: ___
Q2. “Which line or lines calls a function to insert a new element into a sorted array,
keeping it sorted?”
Correct answer: Line 4

Appendix D – Controlled Experiments

D3

Participant answer:___
Time taken: ___
Q3. “Which line or lines will return a position in the array if the new value is higher
than all the values in the sorted list?”
Correct answer: Line 22
Participant answer:___
Time taken: ___
Q4. “Which line or lines will loop through the unsorted part of the array?”
Correct answer: Line 3
Participant answer:___
Time taken: ___
Q5. “Which line or lines will loop through the sorted part of the array and determine
a suitable position to insert a new element?
Correct answer: Lines 17, 19
Participant answer:___
Time taken: ___
Task 2: Paper-based (To determine ability to complete and debug code)
1. Hand out an incomplete version of Insertion Sort (Incomplete Insertion Sort.doc).
2. “Complete the algorithm in the handout. Fix any errors that you can identify.”
3. Start stopwatch.
4. When participant is done, stop stopwatch and collect the answer sheet.
5. Take a 5 minute break before the next experiment.
Time taken: ___

Controlled Experiment C

“I am going to show you 6 code fragments, one at a time. Study them, then describe
in your own words what each code fragment does and identify the one algorithm from
the list most likely to contain each fragment.

Code Fragment 1

for (x = 0; x <= nrEl-1; x++)
{

if (NewOne <= SortedList[x])
return x;

}
return x;
Function: Returning a position of a certain value in an array. If the value is less than
the first value in an array, the loop will terminate. If the value is greater than all
values in the array, it will return the position after the last value in the array.
The likely
algorithm:
Time taken: ___

Code Fragment 2

mid_index = (first_index + last_index) / 2;
Function: We are calculating the middle position in an array.

Bubble Sort Binary Search Insertion Sort Don’t know

Appendix D – Controlled Experiments

D4

The likely
algorithm:
Time taken: ___
Code Fragment 3

if (TheList[m] > TheList[m+1])
{
 sorted = false;
 int temp = TheList[m];
 TheList[m] = TheList[m+1];
 TheList[m+1] = temp;
}
Function: Two adjacent values will be swapped if they are in descending order in
relation to each other. The list should be sorted in ascending order.
The likely
algorithm:
Time taken: ___

Code Fragment 4

//insert() is a function that insert a new value into a sorted array, while keeping the
array sorted
for (int x = 1; x <= (nrEl - 1); x++)

insert(List[x], List, x);
Function: Scrolling through the unsorted part of an array and inserting the first
element of the unsorted list in its correct position.
The likely
algorithm:
Time taken: ___

Code Fragment 5

cur_value = List[mid_index);
if (wanted < cur_value)

last_index = (mid_index - 1);
Function: Updating the last position of an array to work in the first half when the
value being searched for is less than the value in the middle position of the array.
The likely
algorithm:
Time taken: ___

Code Fragment 6

for (int x = nrEl; x >= (pos + 1); x--){

SortedList[x] = SortedList[x - 1];
Function: Moving elements in an array one position to the right.
The likely
algorithm:
Time taken: ___

Bubble Sort Binary Search Insertion Sort Don’t know

Bubble Sort Binary Search Insertion Sort Don’t know

Bubble Sort Binary Search Insertion Sort Don’t know

Bubble Sort Binary Search Insertion Sort Don’t know

Bubble Sort Binary Search Insertion Sort Don’t know

E1

Appendix E – BeReT Questionnaire

Surname, Init Student Nr

1. BeReT is easy to use
Strongly
disagree

Disagree Undecided Agree Strongly
agree

2. Could you complete Tutorials in BeReT without assistance
Can’t
remember

No Hardly Almost Yes

3. If you did not answer “Yes” above, what created the difficulty with Tutorials?

__

__

4. Could you complete Exercises in BeReT without assistance
Can’t
remember

No Hardly Almost Yes

5. If you did not answer “Yes” above, what created the difficulty with Exercises?

__

__

6. What level of assistance did you need throughout your usage of BeReT?
Very low Low Average High Very high

7. Did you understand the following algorithms before using BeReT?
Bubble Sort Not at all Very little Some of it Well Very well Can’t remember
Binary Search Not at all Very little Some of it Well Very well Can’t remember
Insertion Sort Not at all Very little Some of it Well Very well Can’t remember

8. Did you understand the following algorithms after using BeReT?
Bubble Sort Not at all Very little Some of it Well Very well Can’t remember
Binary Search Not at all Very little Some of it Well Very well Can’t remember
Insertion Sort Not at all Very little Some of it Well Very well Can’t remember

9. Did BeReT help programming the algorithms easier from scratch?
Made it more
difficult

Made no
difference

Made some
difference

Made it easier Made it a lot
easier

10. To what level do you think BeReT helped you to better understand what certain

lines do in the code?
Very low Low Average High Very high

Appendix E – BeReT Questionnaire

E2

11. To what level do you think BeReT helped you to recognise an algorithm quicker
without knowing the name or function of the algorithm?

Very low Low Average High Very high

12. To what level do you think BeReT helped you to trace (i.e. show the contents of

the variables at certain points) an algorithm more effectively?
Very low Low Average High Very high

13. Assuming BeReT was problem free; would you make

use of it to gain a better understanding of algorithms?

14. Would you make use of BeReT if it immediately

marked your answers and gave you feedback?

15. What other functionality would you like to see included in BeReT?

__

__

16. Did you ever run into any unexpected problems in BeReT?

17. If so, briefly describe the task (if possible) and BeReT’s reaction.

__

__

18. What in your opinion is an advantage of using BeReT?

__

__

19. What in your opinion is a disadvantage of using BeReT?

__

__

20. Did BeReT encourage you to critically analyse and discuss the code

in the given algorithms?

21. Did BeReT encourage you to ask questions about the algorithms?

22. Would you have spent time studying the algorithms before the

practical assignments without BeReT?

Never Sometimes Always

Never Sometimes Always

Yes No

Yes No

Yes No

Yes No

D/496/05
ETHICS APPLICATION FORM

F1

Appendix F – Human Ethics Application Form

NELSON MANDELA METROPOLITAN UNIVERSITY

APPLICATION FOR APPROVAL FROM NMMU APPLICATION FOR APPROVAL FROM NMMU APPLICATION FOR APPROVAL FROM NMMU APPLICATION FOR APPROVAL FROM NMMU RESEARCHRESEARCHRESEARCHRESEARCH ETHICS COMMITTEE ETHICS COMMITTEE ETHICS COMMITTEE ETHICS COMMITTEE (HUMAN) (HUMAN) (HUMAN) (HUMAN)
(ETHICAL STANDARDS: RESEARCH PROTOCOL)

1. Any project, in which humans are the subjects of research, requires completion of this form and submission for

approval to the ETHICS COMMITTEE.
2. The faculty through the Faculty Research Committee and Head of Department should approve research

proposals before submission to the Ethics Committee.
3. Each faculty should have the primary responsibility for ensuring that human subjects used in social research in

their faculties are protected adequately by the application of the appropriate code applicable to the relevant
profession.

4. The application form, after being completed in typescript , to be handed in at the Department of Research
Management.

FOR OFFICE USE ONLY REF NO:

DEPARTMENT

DATE RECEIVED

DATE SUBMITTED TO
THE RESEARCH
ETHICS COMMITTEE
(HUMAN)

 DATE APPROVED BY
THE RESEARCH
ETHICS COMMITTEE
(HUMAN)

AUTHORIZED
Chairperson of the
Research Ethics
Committee (Human)

1. GENERAL PARTICULARSGENERAL PARTICULARSGENERAL PARTICULARSGENERAL PARTICULARS

a) Name of principal investigator/researcher:

Mr Ronald George Leppan

b) Gender of principal investigator/researcher:

Male

c) Contact number of principal investigator/researcher:

504 2763

d) Type of research:

STAFF STUDENT
Multinational
[MN]

 National
[N]

 Local Research
[LR]

 Multinational
[MN]

 National
[N]

 Local Research
[LR]

Undergraduate
[U]

 Honours
[H]

 Master’s
[M]

X Undergraduate
[U]

 Honours
[H[

 Master’s
[M]

Doctoral
[D]

 Other
[O]

 Doctoral
[D]

 Other
[O]

e) If medical research :
 Therapeutic Research [TR] Non-therapeutic Research [NTR]

f) Funding
 External Grant [E] X NMMU Research Grant [RG]

Appendix F – Human Ethics Application Form
D/496/05

ETHICS APPLICATION FORM

F2

 Privately Funded [P] Not specifically funded [N]
 If external funding, state source of funds:

NRF Development Grant

 Are there any restrictions or conditions attached to publication and/or presentation of the study results?

None

 Does the contract specifically recognise the independence of the researchers involved?

Yes

 (Note that any such restrictions or conditions contained in funding contracts must be made available to the
 Committee)
g) Summary of research

 (i) What is the purpose of the research?

This study aims at finding a strategy (or strategie s) for code comprehension that is based on

techniques used by experts to trace code. In an at tempt to bridge the gap between novice and expert

programmers, an emphasis is placed on technological tools to scaffold learner competence in using

these strategies to comprehend code.

 (iii) Briefly state the methodology and the procedure in which subjects will be asked to participate (attach
 protocol)

The effect of the technological support tools are t o be determined by means of controlled experiments

to test student comprehension of known and unseen a lgorithms. Formal assessment in the form of

standardized tests and exams are also conducted and the results of comprehension type questions

extracted from these assessments. The effect of th e support tools on program comprehension will

also be determined by means of an eye tracker exper iment to gain a deeper understanding of the

cognitive processes of introductory programming stu dents during code comprehension exercises.

The data collected by the controlled experiment, th e standardized assessment and the practical

assignments will be interpreted and conclusions wil l be drawn from the analysis. Any data collected

from the participants during the controlled experim ent, the standardized assessment and the practical

assignments will be seen as strictly confidential a nd no names will be associated with the data.

Students in introductory programming (WRA102) will be randomly divided into two groups, a control

group and a treatment group. Both groups will atte nd the same lecture in the same venue at the same

time. During practical assignment periods, they wil l be split into two groups in different computer

labs. The control group will perform their practic al assignments as in the past. The treatment group

will be exposed to the experimental tool during thr ee practical assignments. Exposure to the

technological tool will thus be minimal (3 contact sessions out of a total of 28) with as little disru ption

of their normal practical activities as possible. The workload of the two groups will be balanced, wi th

no group expected to do more work than the other.

h) Name of the investigator/researcher (whether student or staff member) mostly involved in this project:

Ronald George Leppan
i) Name(s) of co-investigator/assistant researchers:

Affiliation

Appendix F – Human Ethics Application Form
D/496/05

ETHICS APPLICATION FORM

F3

j) Name(s) of supervisor/co-supervisor or promoter/co-promoter:

Dr Charmain Cilliers

Ms Marinda Taljaard

Affiliation

Senior Lecturer – CS & IS Department
(Supervisor)
Lecturer – CS & IS Department
(Co-supervisor)

2. INFORMATION TO PARTICIPANTINFORMATION TO PARTICIPANTINFORMATION TO PARTICIPANTINFORMATION TO PARTICIPANT
a) What information will be offered to the participant before he/she consents to participate? (Append both the
 written and any oral information given)

Informed Consent Form

b) Who will provide this information? (Give name(s) and state whether such a person is the principle investigator/
 researcher, student, research assistant etc.)

Ronald George Leppan – Principle investigator

c) Will the information provided be complete and accurate?

X YES NO

 If NO, describe the nature and extent of the deception involved and explain the rationale for the necessity of this
 deception. (If necessary, attach separate schedule)

3. TARGET PARTICIPANT GROUPTARGET PARTICIPANT GROUPTARGET PARTICIPANT GROUPTARGET PARTICIPANT GROUP
 Answer

YES or NO
If necessary, explain in space provided or
attach appendix

a) Are particular characteristics of any kind
 required in the target group? (e.g. age,
 cultural derivation, background, physical
 characteristics, disease status etc.)

NO Specify the characteristics:

b) Are participants drawn from NMMU
 students?

YES

c) Are participants drawn from specific
 groups of NMMU students?

YES Identify the group:

First–year Introductory Programming
students

d) Are participants drawn from a school
 population?

NO Identify: (State whether pre-primary, primary,
secondary, etc.)

e) Are participants drawn from an institutional
 population? (e.g. hospital, prison, mental
 institution)

NO Identify:

f) Will any records be consulted for
 information?

NO Specify source of records:

g) Will each individual participant know his/her
 records are being consulted?

N/A State how these records will be obtained:

h) Are all participants over 21 years of age? NO If NO, state justification for inclusion of minors in
study:

Participants register for first year
programming typically a year after finishing
Grade 12.

Appendix F – Human Ethics Application Form
D/496/05

ETHICS APPLICATION FORM

F4

State the minimum and maximum number of
participants involved
(Minimum number should reflect the number of
participants necessary to make the study statistically
viable)

Minimum

60

Maximum

120

4. RISKS AND BENEFITS OF PROJECTRISKS AND BENEFITS OF PROJECTRISKS AND BENEFITS OF PROJECTRISKS AND BENEFITS OF PROJECT
 Answer

YES or NO
If necessary, explain in space provided or
attach appendix

a) Is there any risk of harm, embarrassment
 or offence, however slight or temporary, to
 third parties or to the community at large?

NO If YES, specify:

b) Are all risks reversible? N/A If NO, specify:

c) Are remedial measures available? N/A

d) Are alternative procedures available? N/A

e) Has the person administering the project
 previous experience with the particular risk
 factors involved?

NO Supervisor and co-supervisor have
experience with the risk factors involved in
the study

f) Are any benefits expected to accrue to the
 participant personally? (e.g. improved health,
 mental state, financial etc.)

N/A If YES, specify:
Identifying the benefits, if any, forms part of
the intended study

g) Will you be using equipment of any sort? YES If YES, specify:
Personal Computers
Eye tracking equipment

h) Will any article of property, personal or
 cultural be collected in the course of the
 project?

NO If YES, specify:

5. CONSENT OF PARTICIPANTSCONSENT OF PARTICIPANTSCONSENT OF PARTICIPANTSCONSENT OF PARTICIPANTS
 Answer

YES or
NO

If necessary, explain in space provided or
attach appendix

a) Is consent to be given in writing? YES If YES, attach consent form.
If NO, state reasons why written consent is not
appropriate in this study:

b) Are any participant(s) subject to legal
 restrictions preventing them from giving
 effective informed consent?

NO If YES, justify:

c) Do any participant(s) operate in an
 institutional environment, which may cast
 doubt on the voluntary aspect of consent?

NO If YES, state what special precautions will be
taken to obtain a legally effective informed
consent:

d) Will participants receive remuneration for
 their participation?

NO If YES, state on what basis the remuneration is
calculated:

e) Do you require consent of an institutional NO If YES, specify:

Appendix F – Human Ethics Application Form
D/496/05

ETHICS APPLICATION FORM

F5

 authority for this project?

6. PRIVACY, ANONYMITY AND CONFIDENTIALITY OF DATAPRIVACY, ANONYMITY AND CONFIDENTIALITY OF DATAPRIVACY, ANONYMITY AND CONFIDENTIALITY OF DATAPRIVACY, ANONYMITY AND CONFIDENTIALITY OF DATA
 Answer

YES or
NO

If necessary, explain in space provided or
attach appendix

a) Will the participant be identified by name in
 your research?

NO

b) Are provisions made to protect subject’s
 rights to privacy and anonymity and to
 preserve confidentiality with respect to data?

YES Specify: No names will be attached to any
data, and for the most part data will be
gathered and analysed per group rather than
per individual.

c) Will mechanical methods of observation be
 used? (e.g. one-way mirrors, recordings,
 videos etc.)

YES A subgroup (16 participants) of the population
will voluntarily participate in a special
assessment. In this assessment, unobtrusive
remote eye tracking equipment will be used in
a usability lab with two rooms separated by a
one-way mirror. Video and audio recording
will also take place.

d) Will participant’s consent to such mechanical
 methods of observation be obtained?

YES

e) Will data collected be stored in any way? YES If YES:

(i) By whom? Dept. of CS & IS, NMMU

(ii) How many copies? Two, one for
analysis and one for backup.

(iii) For how long? For the duration of the
study. (Expected completion time: December
2006)

(iv) For what reasons? Statistical Analysis

(v) How will participant’s anonymity be
 protected? No names will be attached
to the data

f) Will stored data be made available for re-
 use?

NO If YES, how will participant’s consent be obtained
for such re-usage?

g) Will any part of the project be conducted on
 private property (including shopping
 centres)?

NO If YES, specify and state how consent of property
owner is to be obtained:

h) Are there any contractual secrecy or
 confidentiality constraints on this data?

NO If YES, specify:

7. FEEDBACKFEEDBACKFEEDBACKFEEDBACK
 Answer

YES or
NO

If necessary, explain in space provided or
attach appendix

a) Will feedback be given to participants? NO If YES, describe whether this is to be given:

(i) to each individual immediately
 after participation

(ii) to each participant after the

Appendix F – Human Ethics Application Form
D/496/05

ETHICS APPLICATION FORM

F6

 entire project is completed

(iii) to all participants in a group
 setting

(iv) other

Specify whether feedback will be written, oral or
by other means (attach your information)

b) If you are working in a school or other
 institutional setting, will you be providing
 teachers, school authorities or equivalent a
 copy of your results?

N/A If YES, specify:

8. STATEMENT ON CONFLICT OF INTERESTSTATEMENT ON CONFLICT OF INTERESTSTATEMENT ON CONFLICT OF INTERESTSTATEMENT ON CONFLICT OF INTEREST

The researcher is expected to declare to the Committee the presence of any potential or existing conflict of interest that
may potentially pose a threat to the scientific integrity and ethical conduct of any research. The Committee will decide
whether such conflicts are sufficient as to warrant consideration of their impact on the ethical conduct of the study.

Disclosure of conflict of interest does not imply that a study will be deemed unethical, as the mere existence of a conflict of
interest does not mean that a study cannot be conducted ethically. However, failure to declare to the Committee a conflict
of interest known to the researcher at the outset of the study will be deemed to be unethical conduct.

Researchers are therefore expected to sign either of the two declarations below.

a) As the principal researcher in this study MR RONALD GEORGE LEPPAN ……………………………….…(name)
 I hereby declare that I am not aware of any potential conflict of interest that may influence my ethical conduct
 of this study.

 Signature:…………………………….……….…………. Date:………………………………..……………..

b) As the principal researcher in this study……………………………………………………………………………(name)
 I hereby declare that I am aware of the following potential conflicts of interest which should be considered by the
 Committee:

 Signature:………………………………..…….…………. Date:………………………..………………………

9. ETHICAL AND LEGAL ASPECTSETHICAL AND LEGAL ASPECTSETHICAL AND LEGAL ASPECTSETHICAL AND LEGAL ASPECTS

The Declaration of Helsinki version 2000 to be included in the references.

10. DECLARATIONDECLARATIONDECLARATIONDECLARATION

If any changes are made to the above arrangements or procedures, I will bring these to the attention of the Chairperson of
the Research Ethics Committee (Human).

SIGNATURE OF PRINCIPAL INVESTIGATOR/RESEARCHER

DATE

SIGNATURE OF SUPERVISOR

DATE

SIGNATURE OF HEAD OF DEPARTMENT

DATE
Noted application

SIGNATURE OF CHAIRPERSON: FACULTY RESEARCH COMMITTEE

DATE

G1

Appendix G: Controlled Experiment Protocol

Before the test:

Participant room check list:
 Check that the room is neat and presentable.
 Switch on the test pc.
 Switch on the eye tracker.
 Check eye tracker, video and audio cabling.
 Test the Win cal software / check calibration points.
 Test the microphone.

Observer room check list:
 Check that the room is neat and presentable.
 Switch on the IView-X PC.
 Switch on the equipment:

• Audio amplifier; Audio mixer; Video mixer;
• TV monitor; Camera boards.

 Check video feeds for the IView-X PC and the TV monitor.
 Adjust the cameras as needed.
 Test the microphone.
 Setup the IView-X PC for the test.

When the participant arrives:

Check list:
 Welcome the test participant.
 Brief the participant.

• Introduce the observers.
• Show and explain the equipment to the participant.
• Explain the task process to the participant.
• Ask to give verbal comments after task completions (recordings).

 The participant conducts a training task.
 Subject calibration.
 Conduct the test.

• Record video and audio.
• Record eye tracking data.
• Log participant activities.
• Save the data files after the test.

 Debrief the participant.
 Thank the participant.

Appendix G: Controlled Experiment Protocol

G2

After the test:

Check list:
 Collect the test paperwork.
 Put all the forms in a folder for the specific test participant.
 Backup the saved data.
 Have a brief session with the test team to collect their thoughts of the test.
 Clear the participant room from any documentation left behind.
 Setup the logging software for the next participant.

End of the day:

Check list:
 Have a brief review with the test team to summarise the day’s events.
 Write the saved data to CD as an additional backup.
 Turn off the equipment.
 Turn off the PCs.
 Check that the room is neat and presentable.
 Switch the lights off.
 Lock the usability laboratory.

H1

Appendix H: Creation of Tutorials and Exercises in BeReT
(Lecturer Guide)

Tutorials in BeReT consist of four main areas: program description, explanation of
example, program code and navigation information. Lecturers have control over what
appears in the program description, explanation of example and program code pages. In
the current investigation, the “program description” pane is used to describe the algorithm
presented in the “program code” pane. It usually contains a bulleted list of the plans used
in the algorithm. The “explanation of example” pane is used to provide an example of
the parameters passed to the algorithm and the final result upon completion of the
algorithm. Using an example of what happens to the input provided to an algorithm and
viewing the output is a subset of the tracing technique used in contact sessions. The
BeReT “explanation of example” pane is set up in this way in order to provide some level
of familiarity for the student, since tracing is the predominant technique used to explain
algorithms in lectures.

Appendix H: Creation of Tutorials and Exercises in BeReT (Lecturer Guide)

H2

The “program code” pane contains the algorithm that the lecturer uploaded. The
algorithm can be in any language the lecturer prefers. The “navigation information” pane
contains buttons to navigate between examples; it shows the number of the current
example and allows users to switch between the two tutorial modes. In “context view”,
learners see the beacon names in the context of the code. Pointing to these lines brings
up a tooltip with the description of the semantic plan behind that line and clicking on it,
displays the inner workings of the code that accomplishes the plan. The association view
provides the same information as the context view. Lecturers have no control over what
happens in the “navigation information” pane. It is suggested that students first use the
association view to learn about the plans implemented in the code. The context view can
be used by students to test their knowledge of the actual code and description of the plan
linked to the annotation. To test their understanding of various plans, they first view a
pseudo-code type annotation of the plan in context and then recall from memory what the
statement looks like that implements the plan by clicking on the annotation. Students can
also test their knowledge of a high-level semantic description by looking at either the
annotation or the implementation of the plan and then pointing to the line to view the
tooltip with the description.

The type of tutorial created depends on what the lecturer wants to use the tutorial for. If
the students must learn about all the plans that are implemented in the algorithm, the
tutorial should include descriptions and annotations for each plan. If the lecturer wants to
focus on only beacon-like statements, descriptions and annotations for only these
statements should be included in the tutorial.

It is suggested that students start with a tutorial before attempting an exercise. Students
may be required to do any of the following three types of exercises in BeReT: Complete,
Match and Define. These three types of tasks are summarised in Table 1.

Task Given What must be done
Complete Beacon name and description Fill in missing source code that name and

description refers to
Match Beacon name and description Select relevant source code lines that

matches name and description
Define Code only Group statements together and assign a

name and description to indicate plan of
these statements

Table 1 Types of exercises in BeReT

I1

Appendix I – Eye-tracking images from Controlled
Experiments A and B

Experiment A

Q1. “Which line or lines exchanges (swaps) the current value in the array, with the
smallest value in the unsorted part of the array?”
Correct answer: Lines 15, 16, 17

Question 1 Treatment Scanpaths Question 1 Control Scanpaths

Question 1 Treatment Heat Maps Question 1 Control Heat Maps

Appendix I – Eye-tracking images from Controlled Experiments A and B

I2

Q2. “Which line or lines finds the index of the smallest number in the array?
Correct answer: Lines 10, 12

Question 2 Treatment Scanpaths Question 2 Control Scanpaths

Question 2 Treatment Heat Maps Question 2 Control Heat Maps

Appendix I – Eye-tracking images from Controlled Experiments A and B

I3

Q3. Which line or lines loops through the unsorted part of the array to determine the
smallest value?”
Correct answer: Line 10

Question 3 Treatment Scanpaths Question 3 Control Scanpaths

Question 3 Treatment Heat Maps Question 3 Control Heat Maps

Appendix I – Eye-tracking images from Controlled Experiments A and B

I4

Q4. “Which line or lines determines if the current value is smaller than the current
smallest value?”
Correct answer: Line 12

Question 4 Treatment Scanpaths Question 4 Control Scanpaths

Question 4 Treatment Heat Maps Question 4 Control Heat Maps

Appendix I – Eye-tracking images from Controlled Experiments A and B

I5

Q5. “Which line or lines sets the position of the smallest value in the unsorted part of the
array?”
Correct answer: Line 13

Question 5 Treatment Scanpaths Question 5 Control Scanpaths

Question 5 Treatment Heat Maps Question 5 Control Heat Maps

Appendix I – Eye-tracking images from Controlled Experiments A and B

I6

Experiment B
Q1. “Which line/lines calls a function to make space for a new element in an array?”
Correct answer: Line 10

Question 1 Treatment Scanpaths Question 1 Control Scanpaths

Question 1 Treatment Heat Maps Question 1 Control Heat Maps

Appendix I – Eye-tracking images from Controlled Experiments A and B

I7

Q2. “Which line or lines calls a function to insert a new element into a sorted array,
keeping it sorted?”
Correct answer: Line 4

Question 2 Treatment Scanpaths Question 2 Control Scanpaths

Question 2 Treatment Heat Maps Question 2 Control Heat Maps

Appendix I – Eye-tracking images from Controlled Experiments A and B

I8

Q3. “Which line or lines will return a position in the array if the new value is higher than
all the values in the sorted list?”
Correct answer: Line 22

Question 3 Treatment Scanpaths Question 3 Control Scanpaths

Question 3 Treatment Heat Maps Question 3 Control Heat Maps

Appendix I – Eye-tracking images from Controlled Experiments A and B

I9

Q4. “Which line or lines will loop through the unsorted part of the array?”
Correct answer: Line 3

Question 4 Treatment Scanpaths Question 4 Control Scanpaths

Question 4 Treatment Heat Maps Question 4 Control Heat Maps

Appendix I – Eye-tracking images from Controlled Experiments A and B

I10

Q5. “Which line or lines will loop through the sorted part of the array and determine a
suitable position to insert a new element?
Correct answer: Lines 17, 19

Question 5 Treatment Scanpaths Question 5 Control Scanpaths

Question 5 Treatment Heat Maps Question 5 Control Heat Maps

J1

Appendix J: SAICSIT Paper

Supporting CS1 with a Program Beacon Recognition To ol
Ronald Leppan

Department of CS&IS, NMMU
PO Box 1600, NMMU, 6031

(+2741) 504 9109

Ronald.Leppan@nmmu.ac.za

Charmain Cilliers
Department of CS&IS, NMMU
PO Box 1600, NMMU, 6031

(+2741) 504 2235

Charmain.Cilliers@nmmu.ac.za

Marinda Taljaard
Department of CS&IS, NMMU
PO Box 1600, NMMU, 6031

(+2741) 504 2668

Marinda.Taljaard@nmmu.ac.za

ABSTRACT
Reading and understanding algorithms is not an easy task and
often neglected by educators in an introductory programming
course. One proposed solution to this problem is the
incorporation of a technological support tool to aid program
comprehension in CS1. One such support tool (BeReT) is
primarily designed to encourage a student to correctly identify
beacons within provided program extracts. A between-groups
experiment is described which compares the program
comprehension of students that used BeReT to study various
introductory algorithms, with students that relied solely on
traditional lecturing materials. The use of an eye tracker was
incorporated into the empirical study to provide additional data
to measure the effect of BeReT. The results indicate that a
technological support tool like BeReT can have a positive effect
on student comprehension of introductory algorithms
traditionally taught in CS1.

Categories and Subject Descriptors
K.3. [Computers and Education]

General Terms
Algorithms, Measurement, Performance, Experimentation,
Verification

Keywords
Program Plans, Program Beacons, Program Comprehension,
Introductory Programming, CS1

1. INTRODUCTION
Students in CS1 often find it difficult to cope with programming
[15, 24]. The lack of support provided by educators in
specifically program comprehension further compounds the
problem [8]. Studies of the fragile knowledge of students in
introductory programming [11, 21, 26, 33] indicate the need for
these courses to explicitly include not only code generation
strategies, but also code comprehension strategies when
studying algorithms. Introductory programming courses focus
mainly on program generation and techniques to improve
students’ ability to write programs. Little effort is put into
explicitly improving their ability to read programs [8]. Program
generation can be described as the construction of plans to solve
a specific problem [28]. During program comprehension, the
focus is on the discovery of these plans implemented in the
program [11, 19, 28].

Educators in introductory programming use several techniques
to support their students to comprehend algorithms. Some
techniques, like animations, flowcharting, control structure
diagrams and the visualisation of programming constructs and
data structures, are often used for the comprehension of a
specific algorithm only. The development of program reading
skills is therefore not a primary outcome of these techniques [3,
5, 34]. Giving students a collection of algorithms as reading
exercises leads to a number of different reading skills [17], but
some students need more guidance to be successful [20].
Educators often investigate expert programmers in order to
guide students to become experts themselves. Since expert
programmers spend a large portion of their time on maintenance,
program reading skills are of vital importance to them. Valuable
insights can be gained by investigating expert programmers and
the techniques they use to study unfamiliar programs.

This paper highlights two techniques used by expert
programmers to read unfamiliar programs (Section 2). An
experimental technological support tool that incorporates these
two techniques is also described (Section 3). The main focus of
the paper however is on an empirical investigation that
determines the effectiveness of using this technological tool on
the comprehension of introductory programming algorithms
(Sections 4 and 5). This paper therefore contributes evidence to
educators that the use of a support tool such as the one described
in Section 3 can be used to improve program comprehension in
CS1.

2. RELATED WORK
Program plans are one of the elements of the mental model of an
expert programmer investigating source code [9, 10, 25, 28].
The problem of fostering efficient program comprehension skills
in students thus becomes one of aiding them to identify plans in
an algorithm. Expert programmers frequently use clichéd plans
to construct programs [9]. The difficulty for a student in
introductory programming is that they haven’t built sufficient
plans in long term memory to effectively use them. As a result it
seems necessary to build the long term memory of introductory
students with plans. In addition to building their long term
memory with plans, the techniques used to build these plans
must be ones that students can use to discover plans on their
own after initial instruction.

Beacons play a prominent role in the recognition of plans if the
programmer has knowledge of the problem domain. Beacons

Appendix J: SAICSIT Paper

J2

public void CalcAverage()

{

 int count, sum, num;

 double average;

 count = 0;

sum = 0;

 readln(num);

 while (num != 99999)

 {

 sum = sum + num;

 count++;

 num = readline();

 }

 if (count >0)

 {

 average = sum/count;

 writeln(average);

 }

 else writeln(“ERR: Divide 0”);

}

can be defined as surface features in a program that verifies the
existence of some structure or operation [31, 32]. A recent
study shows that beacons are extensively used by experienced
programmers to facilitate program comprehension [6]. It was
also shown that novices do not identify meaningful beacons in
code. As illustrated in Figure 1 two types of beacons exist,
comment and complex [6]. Comment beacons refer to lines in
the algorithm that use a naming convention that describes the
functionality of the code. Complex beacons refer to a line or
multiple lines in the code that contains a key to the functionality
of the algorithm. In the example used in Figure 1 the use of the
function name “Swap” is an example of a comment beacon.
The actual code that performs the swapping of two variables is
an example of a complex beacon. Complex beacons are often
unique in structure and used so frequently in specific contexts
that expert programmers use them to validate the existence of a
program plan. A programmer that performs a surface scan of the
code of the bubble sort algorithm could discover any one of the
two types of beacons. This discovery would prompt the
programmer to hypothesize the existence of a plan to perform
some sorting operation. The programmer would then search for
more beacons to support this hypothesis [24].

Expert programmers investigating source code in unfamiliar
domains frequently revert to a technique that can be described as
the “chunking” of individual code fragments into related groups.

Often these “chunks” can be associated with an intended plan in
the algorithm (Figure 2). For instance, a function that is used to
calculate the average of a sum of numbers provided by the user
could make use of three plans, a “Counter” plan, an
“Accumulate Total” plan and an “Error Check” plan. The
“Counter” plan is used to keep track of the number of values
provided by the user; the “Accumulate Total” plan adds up the
values and the “Error Check” plan ensures that values are
provided by the user before calculating the average. Chunking
is required to maximize the capacity of the short-term memory
during the activity of program reading and to add new chunks
into long-term memory. Instead of trying to memorize
individual statements making up the entire algorithm,
programmers can group related statements together into the
three plans. The three plans can then be learnt as logical units.
If the chunks are unique in structure or if they include
mnemonic hints about program functionality, they become
beacons for future algorithm reading activities.

Figure 2 Use of chunking to discover plans in a program

Experts use two strategies to study unfamiliar code; a top-down
or bottom-up process of comprehension [30]. Top-down
comprehension requires knowledge of the problem domain [4,
27]. This problem domain knowledge is translated into
hypotheses that will be used to determine the functionality of the
unfamiliar program. The text structure is scanned for beacons to
accept/reject the hypotheses. Throughout the scanning of the
unfamiliar code, the hypotheses change as needed. Bottom-up
comprehension assumes knowledge of the syntactic elements of

public static void BubbleSort(int[]
List, int nrEl)

{

 bool sorted;

 do

 {

 sorted = true;

 for (int x = 0; x <= nrEl-2; x++)

 {

 if (List[x] < List[x+1])

 {

 sorted = false;

 Swap (List, x, x+1);

 }

 }

 }

 while (!sorted);

}

private static void Swap(int[] TheList,
int m, int n)

{

 int temp = TheList[a];

 TheList[a] = TheList[b];

 TheList[b] = temp;

}

Figure 1 Examples of the two types of beacons

Complex beacon

Comment beacon

Counter plan

Accumulate Total plan

Error check plan

Appendix J: SAICSIT Paper

J3

the text structure and at least the ability to extract semantic
knowledge from the unfamiliar algorithm [25]. The programmer
reads the algorithm and “chunks” together related statements
that performs a single higher level operation. These chunks are
stored in long term memory, often with a mental annotation to
describe the grouping. The combination of chunks is used to
determine the functionality of the program.

Since beacon recognition and chunking are two techniques used
by expert programmers in familiar comprehension processes
(top-down and bottom-up), they are therefore regarded in this
paper as suitable techniques to aid the comprehension of
introductory algorithms. By providing students with an
environment that supports beacon recognition and chunking, a
network of plans can be stored in long term memory of the
student. This could prove invaluable in future program reading
activities. Requirements need to be in place to aid the process of
selecting or creating a suitable environment that supports beacon
recognition and chunking.

Combining the results of a study of program comprehension
activities of expert programmers, and techniques used by
educators in CS1 to aid comprehension of introductory
algorithms, produced the requirements summarised in Table 1
[18].

Table 1 Requirements to aid the comprehension of
introductory algorithms

 Requirements

1.
Allow student to extract semantic information (plans)
from worked example.

2.
Promotes the use of chunking to learn an unfamiliar
algorithm.

3. Coaches students to spot beacons in different algorithms.

4.
Provide students with syntactically and semantically
correct algorithms.

5. Engage students in active learning activities.

6. Increases ability to recall the semantics of an algorithm.

7. Enable students to successfully transfer knowledge.

The goal of requirement 1 is to provide an environment that
focuses on program comprehension of algorithms, instead of
program generation. The two techniques of beacon recognition
and chunking that are extensively used by expert programmers
during program comprehension must be advocated in this
environment (requirements 2 and 3). Students must see the
process of chunking and the benefit it holds when studying an
unfamiliar algorithm. The goal behind requirement 2 is to
motivate students to use chunking in future program
comprehension activities. The environment must highlight
beacons (especially complex beacons) in the algorithm and
explain the plan behind the beacons. The goal of requirement 3
is to build a collection of beacons students can use in future
program comprehension activities. Requirement 4 ensures that
proper programming standards are maintained in the algorithm

to be studied. This requirement ensures that students are able to
determine syntax rules from the algorithm. Requirement 4 also
promotes the use of standard programming conventions to make
it easier for students to study the code. Requirement 5 is
necessary to force students away from passive and rote learning.
Interaction is necessary to actively engage students with the
algorithm. Requirement 6 necessitates students to display
comprehension of the algorithm studied. After exposing
students to algorithms in this environment, they must be able to
transfer the knowledge gained to future program comprehension
and program generation activities (Requirement 7). The transfer
of knowledge refers to both using the techniques of chunking
and beacon recognition in program comprehension as well as the
ability to recognise similar plans in unseen algorithms.

An investigation into program comprehension support tools
used by educators identified tools that met most requirements in
Table 1, except for requirements 2 and 3 specifically [13, 18].
An experimental support tool was developed to meet
requirements 1 – 5 [12, 13] (Section 3). An empirical study was
undertaken, which incorporated the collection of eye tracking
data, to determine if the experimental tool meets requirements 6
and 7. The empirical study was therefore used to provide
evidence of student comprehension of the algorithms studied
and the ability of the students to transfer the knowledge gained
in the tool to future program comprehension activities.

Eye tracking provides more insight about what a programmer is
focusing on during their comprehension process [1, 2, 7]. The
focus of a programmer’s attention can provide supportive
evidence of the cognitive processes when reading an algorithm
[23]. Eye movement is described as saccades and fixations [16].
A saccade is a rapid movement of the eye when focus shifts
between areas. A fixation refers to the eye resting on a specific
area after a saccade. An eye tracker follows the eye around
during its saccades and tracks the location of the fixation points.
Especially gaze fixation and fixation duration can be used when
testing cognitive progresses [14].

During a fixation a person extracts visual information that needs
to be processed [22]. The fixation duration on a specific line of
code is an indication of how long it takes a programmer to
process that line [29]. The amount of time it takes programmers
to focus on an area relevant to the program comprehension task
is a demonstration of their understanding of the code. A long
time spent reading irrelevant sections of code can be an
indication that the programmer first has to scan the code to
identify candidate lines relevant to the task they have to perform
on the code [29]. Fixation duration on specific lines and time to
first fixation on an area of interest can therefore be used to
assess students’ understanding of an algorithm.

3. A BEACON RECOGNITION TOOL
In 2005 an experimental tool, a Beacon Recognition Tool
(BeReT) [12, 13] was created to support plan discovery in
introductory algorithms. The primary purpose of the tool is to
encourage a novice programmer to correctly identify beacons
within syntactically and semantically correct algorithms. BeReT

Appendix J: SAICSIT Paper

J4

is an attempt to aid novice programmers while learning
introductory algorithms so that they develop techniques they can
use in future program comprehension activities. Support in the
form of beacon recognition and chunking is provided in BeReT.
The two main functional components in BeReT are tutorials
used for training, and exercises used for reinforcement and
assessment.

Figure 3 Example of a Tutorial in BeReT [12]

BeReT was specifically designed to meet requirements 1 to 5
listed in Table 1. Lecturers can create a tutorial in BeReT which
includes a specific algorithm and highlights plans associated
with this algorithm (Requirement 1). The tutorial screen (Figure
3) is divided into four sections. The “Program Description” area
is used to provide an overview of the function of the algorithm.
The “Explanation of Example” area is used to list the plans
associated with the algorithm. A system feedback area (top right
hand corner) shows the progress and number of tutorials
available to the students as well as navigation buttons. The bulk
of the screen consists of the algorithm loaded by the lecturer.
Tutorials make use of chunking to map higher level semantic
plans in the algorithm to grouped lines of code (Requirement 2).
Tutorials can also be created to focus specifically on those lines
of code that can be seen as beacons in the code (Requirement 3).
When setting up the tutorials and exercises in BeReT, the
lecturer must ensure that standard programming conventions are
used and that the algorithms used in the tutorials and exercises
are syntactically and semantically correct (Requirement 4).
Algorithms loaded in BeReT can be written in any programming
language, since BeReT makes use of a database to store the
code. The advantage of using a database is that BeReT can
therefore support any future change in programming language in
CS1. Algorithms loaded in BeReT can be as simple and
complex as the lecturer requires. Three types of exercises
provide interaction in BeReT; “complete”, “match” and “define”
type exercises (Requirement 5). In a “complete” type exercise
students are given a beacon name and description, and they must
fill in the missing lines of code described by the name and

description. In “match” type exercise students are also given a
beacon name and description and they are required to select
relevant source code lines that match name and description. In
“define” type exercises students are given the code only and are
instructed to identify lines of code that seem good candidates to
classify as beacons. To accomplish this, students group
statements together and assign a name and description to
indicate the semantic plan of these statements.

4. EMPIRICAL STUDY
An empirical study was conducted during a three week period in
the second semester of 2006 to determine to what extent BeReT
meets requirements 6 and 7 listed in Table 1 [18]. In order to
meet these two requirements, BeReT must:

• Increase their ability to recall the semantics of an
algorithm.

• Enable students to successfully transfer knowledge.

Participants in the study were CS1 students in the Department of
Computer Science and Information Systems (CS&IS) at the
Nelson Mandela Metropolitan University (NMMU) (Section
4.1). The two requirements were broken into research questions
to guide the empirical study (Section 4.2). The empirical study
followed acknowledged procedures to collect evidence in
support of requirements 6 and 7 (Section 4.3).

4.1 Participant Population and Sample Size
A total of 64 first year students participated in a between-groups
study. Participants were divided into two groups, with 32
students in a control and 32 students in a treatment group. The
main difference between the two groups is that the treatment
group made use of class notes and had exposure to the
algorithms in BeReT, while the control group only relied on the
class notes, which included program comprehension questions.
Both groups had the same number of program generation
problems. The data collected in the empirical study is thus an
accurate reflection of the impact made by BeReT on students in
an introductory programming course in the Department of
CS&IS at NMMU in respect of requirements 6 and 7 in Table 1.

4.2 Research Questions
To test for requirement 6 there is a need to test for
comprehension of the semantics of the algorithms studied.
Evidence of rote learning would indicate learning on a
superficial level. Rote learning an algorithm would result in a
student regurgitating code line by line while disregarding
changes in the problem scenario. Recalling an algorithm and
making the necessary changes to suit the difference in problem
scenario is evidence of that the student has grasped the
semantics of the algorithm when it was studied. The research
questions that were used to guide the empirical study to find
support for requirement 6 are:

RQ6.1: Do students that used BeReT perform better in terms
of accuracy on code comprehension questions?

RQ6.2: Are students that used BeReT more successful in
recalling the entire algorithm and adapting to any
changes in problem scenario?

Appendix J: SAICSIT Paper

J5

RQ6.3: Are students that used BeReT more accurate when
completing a partial algorithm?

BeReT would be deemed successful with respect to requirement
7 if students display evidence of using existing plan knowledge
in future code comprehension activities of previously unseen
algorithms. It was therefore necessary to determine if BeReT
managed to build a repository of plans in the long-term memory
of students in the treatment group. A bank of plans at students’
disposal would enable them to discover plans in similar
algorithms and re-use these plans during code generation
exercises. BeReT will also be deemed successful in this
requirement if students exhibit a tendency to continue with the
techniques of beacon recognition and chunking when studying a
previously unseen algorithm. The following research questions
were used to guide the empirical study to determine the level of
support for requirement 7:

RQ7.1: Are students that used BeReT more successful in the
discovery of known plans in previously unseen
algorithms?

RQ7.2: Do students that used BeReT find plans in a known
and/or previously unseen algorithm quicker?

RQ7.3: Do students that used BeReT exhibit evidence of
using beacon recognition and chunking when studying
a previously unseen algorithm?

4.3 Procedure of empirical study
During the empirical study, students from the treatment and
control group attended the same lectures. The concepts beacons
and chunking were not explicitly discussed in lectures. For
practical assignments they were split into their respective groups
in different laboratories. Strict attendance monitoring was
applied to ensure that the groups did not mix. By separating
students during practical assignments it was ensured that only
the treatment group had exposure to BeReT. The separation
effectively minimized the risk of distorting the results due to
control group participants also seeing BeReT. Security is also
built into BeReT so that only the treatment group participants
have access to the BeReT tutorials. Tutorials were constructed
from the class notes, which the control group participants also
received during lectures. Exercises were constructed by
adapting comprehension questions that formed part of the class
notes. For the purpose of this empirical study, exercises in
BeReT could only be done during the practical assignment.
Once an exercise was completed, it was not available anymore.
The practical assignments of the control group consisted of only
code generation tasks, as has been the practice in previous years.
However, the students in the control group were also
encouraged to study the algorithms as discussed in class prior to
attempting the practical. This required control group students to
study the class notes and attempt to answer the comprehension
questions. Student assistants and the lecturer were available for
consultation should the control group students have any
difficulty studying the class notes.

The treatment group performed exactly the same code
generation tasks as the control group. Treatment group students

had access to an adapted version of the class notes and the
associated comprehension questions in BeReT. They studied a
tutorial of the algorithm first, and then performed exercises in
BeReT. The tutorials presented the code, a list of plans and a
description of the plans behind selected lines in the code. When
students clicked on a plan, specific lines of code that matched
the description were highlighted in the algorithm. The exercises
included tasks to match code to a plan and to complete missing
lines. Three algorithms, namely the bubble sort, insertion sort
and binary search were used in the study. One algorithm was
covered per week.

During the subsequent lecture following any practical
assignment, follow-up class tests were administered to monitor
both groups’ ability to recall, complete and comprehend the
algorithm studied in the previous week. The recall and complete
questions were structured in such a way so as to determine
whether students used rote learning to study each algorithm, or
whether they were sensitive to any changes in context. The
comprehension questions determined students’ ability to extract
proper plans from each algorithm. The purpose of the class tests
was to answer primarily the research questions RQ6.1, RQ6.2
and RQ6.3. Both groups participated in the class tests and data
was used to indicate trends in the performance of the two
groups. All class tests were marked by the same assessor to
ensure consistency in final results was achieved.

Two controlled experiments were conducted a week after the
final class test was written. A representative sample from each
group participated in the controlled experiments. The
experiments were performed in a controlled environment under
strict conditions using an eye tracker in both experiments to
collect additional data:

• Experiment A involved an unseen algorithm (Selection
Sort).

• Experiment B involved a known algorithm (Insertion Sort).

The purpose of the controlled experiments was to answer
primarily the research questions RQ7.1, RQ7.2 and RQ7.3.
When using fixation duration to compare two students reading
the same algorithm, the longer fixation would indicate that a
student takes longer to determine the plan behind that line of
code. When answering comprehension questions about an
algorithm, a student that spends a long time reading irrelevant
lines of code is an indication that the student still has to read the
algorithm to determine the plans behind the lines. A student that
has built up a hierarchy of plans would discover the plan quicker
in a known and/or previously unseen algorithm.

Eye-tracking data was collected during the controlled
experiment using a remote eye-tracking device. IViewX
software was used to calibrate the student and record fixations
and saccades while finding answers to comprehension questions
from an algorithm displayed on screen. BeGaze was used for a
fixation analysis of all participants in the study. Scanpaths and
heat maps were produced in BeGaze and are presented in the
next section.

Appendix J: SAICSIT Paper

J6

5. RESULTS OF STUDY
Three class tests were administered over the period of the
empirical study. Each class test evaluated the ability of students
to recall, comprehend and complete the algorithm studied the
week before. Results for the class tests for each algorithm used
in this study are presented in Table 2.

In the case of all three class tests, the results for the recall and
comprehension questions between the control and treatment
groups show a clear improvement in the observed means for all
questions. The improvement in performance therefore provided
evidence of positive responses to RQ6.1, RQ6.2 and RQ6.3.
The improved performance therefore suggests evidence in
support of requirement 6.

Table 2 Average marks obtained in Class Tests

Bubble Sort Binary Search Insertion Sort

Recall Comprehend Recall Comprehend Complete Comprehend

Mean 56% 41% 61% 56% 43% 55%

T
re

at
m

en
t

(n
 =

 3
2

)

St Dev 23% 27% 31% 17% 20% 19%

Mean 44% 22% 42% 39% 27% 35%

C
o

n
tr

ol

(n
 =

 3
2

)

St Dev 29% 22% 20% 20% 30% 45%

Experiment A of the controlled experiments tests comprehension
and interaction of a previously unseen algorithm (the selection
sort algorithm). The chosen algorithm uses similar plans used by
algorithms that participants learnt in the introductory
programming algorithms course. For the first task of this
experiment participants had to study the selection sort algorithm
for a maximum of 10 minutes using any technique they feel
comfortable with. Students made notes while studying the
algorithm, and notes were analyzed to determine the techniques
used by them when studying an unseen algorithm. It is interesting
to note however that all the students, regardless of the group used
some sort of tracing technique to determine the function of the
algorithm. This is an indication that students that used BeReT
failed to exhibit evidence of using chunking or beacon recognition
when studying a previously unseen algorithm. There is therefore
no evidence in support of RQ7.3 in this regard. It seems therefore
that the three weeks of exposure to BeReT was not enough to
promote the use of chunking and beacon recognition when
reading a previously unseen algorithm.

Immediately after studying the unseen algorithm, participants had
to explain in their own words what the algorithm does. Table 3
summarizes the number of participants from each group that either
gave high-level (semantic) explanations, explanations on syntactic
level or incorrectly identified the goal of the selection sort
algorithm after studying it for the first time. The table shows no
clear trend in favour of any group. However, it is promising to
see slightly more treatment group participants giving high-level
semantic explanations instead of low level syntactic explanations
of the algorithm.

Table 3 Number of participants identifying the goal of the
selection sort algorithm

 Treatment
(n = 7)

Control
(n = 7)

High level explanations 3 1

Low level explanations 3 4

Incorrect explanations 1 2

For the second task of controlled experiment A, participants had
to sit in front of a PC connected to a remote eye tracker. Students
were first given an opportunity to scan the algorithm on screen
again, this time with the instruction to become comfortable
reading from the screen and to also try to recognise plans used in
algorithms studied before. As soon as the students indicated they
were ready to proceed, they had to answer a series of five
comprehension questions about specific lines or groups of lines in
the program displayed on-screen. Participants only had to
verbally provide the line number(s) that contained the answer. As
soon as an answer was given, the code was hidden from view.
The code was shown again after the next question was asked.
Responses and time taken were recorded by the observer. Eye
tracking data was recorded only from the time the code was
shown to the time an answer was given.

A summary of the proportion of correct responses for all five
questions in controlled experiment A appears in Table 4. The
average time it took each group to answer appears in Table 5.

Appendix J: SAICSIT Paper

J7

Table 4 Proportion of correct responses per question
(Experiment A)

 Q1 Q2 Q3 Q4 Q5
Treatment
(n = 7)

100%
(n = 7)

71%
(n = 5)

71%
(n = 5)

100%
(n = 7)

57%
(n = 4)

Control
(n = 7)

14%
(n = 1)

43%
(n = 3)

43%
(n = 3)

86%
(n = 6)

14%
(n = 1)

Table 5 Time (in seconds) per question (Experiment A)

 Mean Min Max Median

Q1 4 3 6 4

Q2 15 6 36 11

Q3 9 4 16 7

Q4 8 2 17 7 T
re

at
m

en
t

Q5 12 3 34 4

Q1 12 4 25 8

Q2 12 3 33 10

Q3 14 8 26 12

Q4 12 3 26 13 C
o

n
tr

o
l

Q5 23 7 41 22

A breakdown of accuracy and times for all five questions showed
that only one question demonstrated a clear difference in results
between the two groups. It is worth looking at the eye-tracking
data to find reasons for this difference. Scanpaths from the gaze
analysis of the question to determine the line or lines that swaps
two elements in an array revealed the paths participants took to
find the answer for this question. The scanpaths resulting from
the eye tracking data for the participants in the treatment group
appear in Figure 4 and the scanpaths of the control group
participants appear in Figure 5. From the two images it is clear
that the treatment group follows a more concentrated path around
the area of interest containing the answer to this question (Lines
15 – 17). Only two participants deviated significantly from the
area containing the answer. The control group scanpaths reveal
five participants scanning areas far away from the area of interest.
It can be seen in Table 4 that all treatment group participants gave
the correct answer, while only one of the control group
participants answered correctly.

The scanpaths indicate that most of the control group participants
did read the correct code, but decided that another line was the
correct answer. This is an indication that the treatment group
participants were more successful in transferring their knowledge
of the “swap” plan from the bubble sort algorithm and recognise it
in the previously unseen selection sort algorithm. This shows that
in at least one question there is evidence to support RQ7.1.

Figure 4 Treatment group scanpaths

Figure 5 Control group scanpaths

Appendix J: SAICSIT Paper

J8

Controlled experiment B featured one of the algorithms
previously studied in class (the insertion sort algorithm). The
process followed for the first task of this experiment is the same as
for the second task of experiment A. Students first scanned the
algorithm on the computer screen, and then answered a series of
five questions. Apart from recording the accuracy and response
time, eye-tracking data was also collected in this experiment.
Table 6 summarizes the proportion of correct answers for the five
questions in experiment B, and Table 7 the average time taken
before giving the answer. Both tables show trends in favour of
the treatment group, which suggests some support for RQ7.1 and
RQ7.2.

Table 6 Proportion of correct responses per question
(Experiment B)

 Q1 Q2 Q3 Q4 Q5

Treatment 100% 14% 71% 71% 43%

Control 100% 43% 71% 43% 29%

It can be seen from Table 7 that one question (Q1) in particular
showed a clear difference in response times between the groups.
Table 6 shows 100% accuracy for both groups for Q1. This
question relates to the plan to make space for a new element in an
array. Since the question was constructed in such a way to elicit
the function call that invokes the plan, the correct answer can be
found in line 10 of Figure 6 and Figure 7.

Table 7 Time (in seconds) per question (Experiment B)

 Mean Min Max Median

Q1 4 1 8 4

Q2 17 3 35 10

Q3 11 4 28 8

Q4 13 2 20 12 T
re

at
m

e
n

t

Q5 19 6 43 11

Q1 21 3 55 20

Q2 18 5 37 18

Q3 20 3 34 21

Q4 19 7 40 14 C
o

n
tr

ol

Q5 34 11 56 33

The heat map in Figure 6 that resulted from this question clearly
shows that the treatment group participants focus mostly on the
function calls. The control group on the other hand spends a large
amount of time reading the code in the “moveToRight”
function as well (Figure 7). These figures seem to indicate that
the control group of students did not view the function call
“moveToRight” as a comment beacon that indicates the plan
of making space for a new element in an array. They still had to
read the code inside the function to figure out what it does.

Figure 6 Treatment group heatmap

Figure 7 Control group heatmap

Appendix J: SAICSIT Paper

J9

6. CONCLUSIONS
To improve the comprehension of introductory algorithms taught
in CS1, a list of requirements for program comprehension was
used as basis for the development of an experimental tool
(BeReT). These requirements are:

• Allow student to extract semantic information (plans) from
worked example.

• Promotes the use of chunking to learn an unfamiliar
algorithm.

• Coaches students to spot beacons in different algorithms.
• Provide students with syntactically and semantically correct

algorithms.
• Engage students in active learning activities.

An empirical study was conducted to determine whether the
following requirements were met in BeReT:

• Increases ability to recall the semantics of an algorithm.
• Enable students to successfully transfer knowledge.

Research questions were used to guide the empirical investigation
to collect evidence in support of these two requirements. Data
collected by means of class tests and controlled experiments were
specifically used to find answers to these research questions. The
result of the data collected in the class tests indicates an
improvement in performance of students using BeReT during the
treatment period. BeReT therefore completely satisfies the
requirement that it should increase the ability of a student to recall
semantics of an algorithm. The controlled experiments provided
only partial evidence in support of requirement 7, being students’
ability to transfer knowledge. Treatment group participants
displayed the existence of some plan and beacon knowledge
readily available, but no participant in this group exhibited
evidence of using chunking or beacon recognition when studying
the unfamiliar code for the first time. These results contribute
evidence that a program comprehension tool such as BeReT can
support CS1 students in their program comprehension activities.

7. RECOMMENDATIONS AND FUTURE
WORK
Despite one of the requirements being satisfied only partially
there is sufficient evidence in favour of BeReT to continue further
investigation into incorporating it as a support tool in a CS1
course to improve students’ comprehension of introductory
algorithms. A rigorous hypothesis testing methodology should
follow to determine if the results show significant statistical
support in favour of BeReT users. Further controlled experiments
are required with bigger sample sizes to confirm results for
requirement 7.

During the treatment period only two of the three possible
exercises were used in BeReT. A follow-up study is required
which uses the “Create a beacon” type exercise to determine if
this will have an effect on students’ motivation to use beacon
recognition and chunking in future program comprehension
activities. Future work thus also includes a more rigorous
analysis of the introductory programming algorithms to determine

which lines of code can be classified as beacons. This can be
done by using similar methods used by Aschwanden [1] and
Uwano [29].

The alternative tutoring approach used by the control group in this
experiment can be described as pen and paper exercises. Future
experiments can be conducted to compare the effect of BeReT
against other approaches.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Research Foundation (NRF) under Grant number 2054293. Any
opinion, findings and conclusions or recommendations expressed
in this material are those of the authors and therefore the NRF
does not accept any liability in regard thereto.

9. REFERENCES
[1] Aschwanden, C. and Crosby, M., Code Scanning

Patterns in Program Comprehension. in Proceedings of
the 39th Hawaii International Conference on System
Sciences, (Kauai, Hawaii, 2006).

[2] Bednarik, R. and Tukiainen, M., An eye-tracking
methodology for characterizing program comprehension
processes. in Proceedings of the 2006 symposium on
Eye tracking research & applications, (San Diego,
California, 2006), ACM Press, 125 - 132.

[3] Bradley, C. and Boyle, T. Students' use of learning
objects. Interactive Multimedia Electronic Journal of
Computer-Enhanced Learning, 6 (2). 2004.

[4] Brooks, R. Towards a theory of the comprehension of
computer programs. International Journal of Man-
Machine Studies, 18 (6). 1983. 543 - 554.

[5] Cilliers, C.B., Calitz, A.P. and Greyling, J.H., The effect
of integrating an iconic programming notation into CS1.
in Proceedings of the 10th annual SIGCSE conference
on Innovation and technology in computer science
education, (Caparica, Portugal, 2005), ACM Press, 108
- 112.

[6] Crosby, M.E., Scholtz, J. and Wiedenbeck, S., The roles
beacons play in comprehension for novice and expert
programmers. in Proceedings of PPIG, (Brunel
University, UK, 2002), 58 - 73.

[7] Crosby, M.E. and Stelovsky, J. How Do We Read
Algorithms? A Case Study. IEEE Computer, 23 (1).
1990. 24 - 35.

[8] Deimel, L. and Naveda, J. Reading Computer Programs:
Instructor's Guide and Exercises Educational Materials
CMU/SEI-90-EM-3, Pennsylvania, 1990.

[9] Garner, S., The learning of plans in programming: A
program completion approach. in Proceedings of the
International Conference on Computers in Education,
(2002), 1053 - 1057.

[10] Garner, S., Learning Resources and Tools to Aid
Novices Learn Programming. in Informing Science &
Information Technology Education Joint Conference
(INSITE), (Pori, Finland, 2003), 213 - 222.

[11] Garner, S., Haden, P. and Robins, A., My program is
correct but it doesn't run: a preliminary investigation of
novice programmers' problems. in Proceedings of the
7th Australasian conference on Computing education,

Appendix J: SAICSIT Paper

J10

(Newcastle, New South Wales, Australia, 2005),
Australian Computer Society, Inc., 173 - 180.

[12] Harris, N. Beacon Recognition Tool Honours Treatise,
University of Port Elizabeth, Port Elizabeth, 2005

[13] Harris, N. and Cilliers, C., A Program Beacon
Recognition Tool. in 7th International Conference on
Information Technology Based Higher Education and
Training, 2006. (ITHET '06), (Ultimo, New South
Wales, Australia, 2006), 216 - 225.

[14] Hornhof, A.J. and Halverson, T. Cleaning up systematic
error in eye tracking data by using required fixation
locations. Behavior Research Methods, Instruments,
and Computers, 34 (4). 2002. 596 - 604.

[15] Jenkins, T. On the difficulty of Learning to Program
Available at
http://www.ics.heacademy.ac.uk/Events/conf2002/jenki
ns.html, 2002. (Last accessed - 2005)

[16] Karn, K.S. and Jacob, R.J.K., Eye tracking in human-
computer interaction and usability research: Ready to
deliver the promises. in The mind's eye, cognitive and
Applied Aspects of Eye movement Research, (Oxford,
2003), Elsevier Science.

[17] Kimura, T., Reading before Composition. in
Proceedings of the tenth SIGCSE technical symposium
on Computer science education, (1979), ACM Press,
162 - 166.

[18] Leppan, R.G. The impact of a plan discovery tool on in-
depth introductory algorithm comprehension
Unpublished Masters Dissertation, NMMU, Port
Elizabeth, 2007

[19] Letovsky, S. and Soloway, E. Delocalized plans and
program comprehension. IEEE Software, 19 (3). 1986.
41 - 48.

[20] Linn, M.C. and Clancy, M.J. The Case for Case Studies
of Programming Problems. Communications of ACM,
35 (3). 1992. 121 - 132.

[21] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W.,
Hamer, J., Lindholm, M., McCartney, R., Moström,
J.E., Sanders, K., Seppälä, O., Simon, B. and Thomas,
L. A multi-national study of reading and tracing skills in
novice programmers. SIGCSE BULLETIN, 36 (4). 2004.
119 - 150.

[22] Liversedge, S.P. and Findlay, J.M. Saccadic eye
movements and cognition. Trends in Cognitive
Sciences, 4 (4). 2000. 6 - 14.

[23] Nevalainen, S. and Sajaniemi, J., Comparison of Three
Eye Tracking Devices in Psychology of Programming

Research. in Proceedings of the 16th Annual Workshop
of the Psychology of Programming Interest Group,
(Carlow, Ireland, 2004), 151-158.

[24] O’Brien, M.P. Software Comprehension – A Review &
Research Direction Technical Report UL-CSIS-03-3
2003.

[25] Pennington, N. Comprehension strategies in
programming. in Empirical studies of programmers:
Second Workshop, Ablex Publishing Corp., 1987, 100 -
113.

[26] Sajaniemi, J. and Hu, C., Teaching Programming:
Going beyond “Objects First”. in Proceeding of 18th
Workshop of the Psychology of Programming Interest
Group, (University of Sussex, 2006), 255 - 265.

[27] Soloway, E., Adelson, B. and Ehrlich, K. Knowledge
and Processes in the Comprehension of Computer
Programs. A. Lawrence Erlbaum Associates, Hillsdale,
N.J., 1988.

[28] Soloway, E.M. and Woolf, B., Problems, plans, and
programs. in Proceedings of the eleventh SIGCSE
technical symposium on Computer science education,
(Kansas City, Missouri, United States, 1980), ACM
Press, 16 - 24.

[29] Uwano, H., Nakamura, M., Monden, A. and
Matsumoto, K.-i., Analyzing Individual Performance of
Source Code Review Using Reviewers’ Eye Movement.
in Proceedings of the 2006 Symposium on Eye tracking
research and applications, (San Diego, California,
2006), ACM Press, 133 - 140.

[30] Von Mayrhauser, A. and Vans, A.M. Program
Understanding: A Survey Technical Report CS-94-120
1994.

[31] Wiedenbeck, S. and Evans, N.J. Beacons in Program
Comprehension. SIGCHI Bulletin, 18 (2). 1986. 56 - 57.

[32] Wiedenbeck, S. and Scholtz, J. Beacons and Initial
Program Comprehension. SIGCHI Bulletin, 21 (1).
1989. 90 - 91.

[33] Winslow, L.E. Programming Pedagogy -- A
Psychological Overview. SIGCSE BULLETIN, 28 (3).
1996. 17-22.

[34] Yeh, C.L., Greyling, J.H. and Cilliers, C.B., A
framework proposal for algorithm animation systems. in
Proceedings of the 2006 annual research conference of
the South African institute of computer scientists and
information technologists, (Somerset West, South
Africa, 2006), South African Institute for Computer
Scientists and Information Technologists, 155 - 163.

