» ‘ Nelson Mandela
4 £Z) Metropolitan
W University

for tomorrow

The Impact of an In-Depth Code
Comprehension Tool in an Introductory
Programming Module

Ronald George Leppan

Supervisors: Dr Charmain Cilliers
Mrs Marinda Taljaard

Submitted in partial fulfilment of the requiremeifds the degree of Magister
Scientiae in Computer Science and Information Systi& the Faculty of Science at
the Nelson Mandela Metropolitan University

January 2008

Acknowledgements

| would like to thank my supervisors, Dr. Charmdilliers and Mrs Marinda
Taljaard, for their unwavering support, advice heisiasm and encouragement for the
duration of this dissertation. Their valuable segjgns for improvements to this

document are strongly appreciated.

Thanks must go to the Department of Computer Sei@mdl Information Systems at
the Nelson Mandela Metropolitan University for elradp me to conduct this research.
A word of appreciation must specifically go to thelkom Centre of Excellence for

providing the necessary technology used in thisaet.

| would also like to thank the students who paptited in the study and Dr Jean
Greyling for allowing me time during his lecturesdapractical assignments to
conduct the experiments, as well as for his vakidieledback on the practical

exercises.

Thank you to my colleagues in the School of ICT floeir interest shown in my

progress and the support given when needed.

A special word of gratitude to my family and frientbr their patience, support and

understanding during the many hours it took to deteghis dissertation.

This material is based upon work supported by tlatiddal Research Foundation
(NRF) under Grant number 2054293. Any opiniondifigs and conclusions or
recommendations expressed in this material areetbbthe authors and therefore the

NRF does not accept any liability in regard thereto

Summary

Reading and understanding algorithms is not an é&asly and often neglected by
educators in an introductory programming coursene @roposed solution to this
problem is the incorporation of a technological Eup tool to aid program

comprehension in introductory programming.

Many researchers advocate the identification otbea and the use of chunking as
support for code comprehension. Beacon recognémmhchunking can also be used
as support in the teaching model of introductorgggamming. Educators use a
variety of different support tools to facilitateggram comprehension in introductory
programming. Review of a variety of support tofliss to deliver an existing tool to

support a teaching model that incorporates chun&imjthe identification of beacons.

The experimental support tool in this dissertatiBeReT) is primarily designed to
encourage a student to correctly identify beacoiinvprovided program extracts.
BeReT can also be used to allow students to groggther related statements and to
learn about plans implemented in any semanticaltlysyntactically correct algorithm
uploaded by an instructor. While these requiresye@mé evident in the design and
implementation of BeReT, data is required to meathe effect BeReT has on the in-

depth comprehension of introductory programming@algms.

A between-groups experiment is described which @mB® the program
comprehension of students that used BeReT to stadgus introductory algorithms,
with students that relied solely on traditionaltiechg materials. The use of an eye
tracker was incorporated into the empirical stunlyisualise the results of controlled
experiments. The results indicate that a techncdbgupport tool like BeReT can
have a significantly positive effect on student poemension of algorithms
traditionally taught in introductory programminglhis research provides educators
with an alternative way for the incorporation ofdapth code comprehension skills in

introductory programming.

Keywords: Program Plans, Program Beacons, Chunking, Codep@atransion,

Introductory Programming, Eye-tracking

Table of Contents

IS Ao B o [0 PP Vi
LISt Of TADIES ... e e viii
| Chapter 1 Research Context 1
IO R [(o 11 ox 1T PP PPRPPI 1
2 - (o (o | 11 o 2
1.2.1. Models of cOde COGNItIONiiiiiiiceemcc e e e 3
1.2.2. Beacon recognition and ChUNKINGccuccerieeiiiiiieiee e eenen s 5
1.3 Relevance Of r@SEAICN..........u i e e 7
1.4 FOCUS Of FESEAICN.o ettt 8
1.5 Research methodologycooiiiiiiiiiiii e enees 10
1.6 Structure of diSSErtatioN............uuuuuiiiiii e 12

Chapter 2 Requirements for In-Depth Comprehension bintroductory Programming

Algorithms 14
P22 A 1o Yo [Tox 1 o o TR PTPRRRI 14
2.2 Cognitive model of Programmers during Code Q@im@nsioncccevveeeeevieinnnnnnn. 15
2.2.1 Program understanding..........c.couuieieeiiiiiieeceieee e e 15
2.2.2 Elements of the Mental Model.............oooiiiii e 17
2.2.3 Navigating SOUICE COUE...........ueet et eeeee et eeeeeet e e e e aetn e e s eneneeenennns 25
2.3 Aiding the comprehension of introductory pragnaing algorithms...............cceeeeeees 27
2.4 Methods for testing algorithm comprehension............ccccooeeeeviiiii i, 35
b B g (011 =T o TSP 36
A S @0 a1 o] (=1 0 T=T][] o I 36
A IR AN o] o] [ToF i] o 1P 37
N g = Y= P 37
2.4.5 SYNENESIS. .. iiiiii it 38
2.4.6 EVAIUALIONcoiiiiiiiiiii it et e ettt e e e et s 38
P2 T @0 [od 113 o o = S 39

Chapter 3 Educational Technological Support for InDepth Comprehension of Introductory|

Algorithms 42
700 R [o110 T BT i o o DO OO TPTPTTPR 42
3.2 Requirements for SUPPOIt tOOIS e e e eeeetieseee et e e e et e e e e ereee e e e eeenes 42
3.3 Investigation of existing SUPPOIT t0O0IS. . cummumeerrrniirriiiiii e 45
3.3.1. Algorithm Animation TOOIS..........coiieemm e ee et eee e e e e e e eeean e eees 45
3.3.2. Programme Tracing and Debugging TOOIS.mm «ccevveiiieiiiiiiiieeeeiiiiineeeeennn. . 49
3.3.3. Programming Construct Visualisation (PCV).........ccooviiiiiiiiiiiiiiiieeeeeeienn, 50
IR I M (011 o o = U A e o R 52
3.4 The Beacon Recognition TOOIoiiiicceeemi e e e e e e 54
O I U (o] =1L PP 54
B O (=] (o] [== SRR 55
3 T @ o [od 113 (o o USRS 57
| Chapter 4 Investigative Research Methodology 58
o R 1011 o o (U T3 4o) o PR 58
4.2 Introductory Programming at NMMUcoeiiiiiiiiiiiiiin e eeena e 58
O B [g NV =TSy T F= 111V I] (0 (o | 60
T Tt I O o ¢ 7= o | (0] 1 ¢ 1 IO TSP 62
4.3.2. TraiNing MAaNUALc.couuuiiiiiiet e e e et e e e e et e e e eeati e e e e ssaeeeessranaeeeenes 62
4.3.3. Practical ASSIGNIMENTSiiiiiiemcmmmr e et e ee e e e e e e e e e e e et eeeea e eeeenaes 62
T B O = 1= (] £ USRS 63
4.3.5. Controlled eXPeriMENTSiiiiii e e e ee e e e e e rean e eeeene 64
4.3.6. QUESHIONNAIIEuiiit e ee ettt e e e e e et e e e e e e e e eat e eeaanes 67
4.4 Method Of Data ANAIYSISuciiiieeiee e e e e e et e e e e as e e e s e e e s e e e e eeenneeaees 68
ot I = o 11 = 11 o o 68
4.4.2. Formulation of HYPOthESES........ciiiieeccei e 68
4.4.3. Techniques t0 analySe data..........ccecceeerieeririiiieeieii e e e e eree e e e 70
4.5 Risks to Validity of Investigative StUAY ..cueevvvveiiiiiiiiiineeeie e 74
T S Y= 10] o] [T 4 TP 74
4.5.2. The Hawthorne EffeCtoouiiiiiiioeeieiii e 74
4.5.3. Administering Practical Learning ACtiVItieS..........cccooviiviiiiiiiiiiiiii e 75
T O] oo 11 [o PRSP 76

| Chapter 5 Results of the Investigation 78

Lo 00 [o1 1o T [T oo PSR 78
5.2 QUANttatiVe RESUIESceeeieie e e 80
5.2.1. RESUILS Of Class TSIS....uuuuuuiiiiiiie e ee e 80
5.2.2. Results of Controlled EXPErIMENLS ... ceeereereeiiiieereiiineeeeeeinseeeseneeneens 82
5.3 QUAlTALIVE RESUILSouiiiie et e r s 96
5.3.1. Ease of USINg BERET ... e 96
5.3.2. Perceived effectiveness of BeReT as a legioilccoooeevvieiieininnnn. 97
5.3.3. Motivation towards code comprehension ati¥i..............ccceveevveriiiieereennnnnnn. Q8.
L ©7o] o [od [V 13 (o] ISP SSPUPPPPPPPPPRIN 100
Chapter 6 Conclusions & Recommendations 103
S A 1o Yo [o £ o o USRS 103
6.2 Research achieVemMENtS..........ouiiiieieeeeee e 104
6.2.1. Theoretical contribUtioNS........ ..o e 104
6.2.2. Practical CONtDULIONSeutiimmn e eee et e e e e e e e e e et e e e e e eeeeeeeens 107
6.3 Limitations Of re@SEAICHoiiii it ettt 110
6.4 FULUIE rESEAICI.....cociiiii i e e e 111
6.5 Incorporation of BeReT into introductory pragir@ingc.eevveeveerenieeeennnneenn 113
I ST ¥] 0] 4= T PPN 116
References 118
Appendix A — Introduction to BeReT (Student GUIde).........ccocevveiiiiiiiiiiiiiie e cee e, Al
Appendix B — Practical ASSIGNMENTSuuuceeii e eerea e e e eeaaaas Bl
APPENUIX C — ClaSS TOSES...iiuuuuiieteeree s s e s e e e ee et e e e e eeta e eeeeae e e s ens s eeeaeneeeeeanenas C1
Appendix D — Controlled EXPerimMeENtScoveeeeereeereiiiiiieeeeiiinseeseeiiinseeeseresaessnnnneeenns D1
Appendix E — BERET QUESLIONNAIIEo eeeeeeeriinieereeiianseeseasieeeeesiieesaesnnneeeeenes El
Appendix F — Human Ethics Application FOMM ... eeeenieeiiiiiiie e e e e F1
Appendix G — Controlled Experiment ProtoCol....cccc...cooiuiiiiiiiiiiiii e e e, G1
Appendix H — Creation of Tutorials and Exercise8@ReT (Lecturer Guide)cccceeeveees H1
Appendix | — Eye-tracking images from Controlledogriments Aand B............cccoeevevveennnnnn. 11
FaY o] o1 oo [R S [@3] N I == o= PP J1

List of Figures

Figure 1-1 Example of @ DEACONiiiiiiiiee e 6
Figure 1-2 Example of ChUNKINGoooiiiii e 6
Figure 1-3 Overview of research to increase thrpugim introductory programming.. 7
Figure 1-4 Phases Of thisS StUAYiicceceeeiiiii e 10
Figure 1-5 Structure of DISSertationccccceeeiiiiii e e 12

Figure 2-1 Mayer's model for learning new technioc&drmation (adapted from

(MAYET LO8L) ...ttt e e+ttt ettt a e e e e e e e e e e e e eeeenaeaeeaeeeeeeesnsrnnnnns 16
Figure 2-2 lllustration of the Swap plancccceevvveeeeeeiiiiiiii e, 16
Figure 2-3 Using beacons to discover plans in sococle (O’'Brien 2003) 18
Figure 2-4 Using chunking to discover plans in sewodeccoevveviiviiiiiiinnnnnn. 18
Figure 2-5 Example of the types of beacons in abBuBort algorithm...................... 21
Figure 2-6 Implementation of a Binary Search Algom..................coovvvvvvccceeneen. 22
Figure 2-7 Binary Search Example (Chunking) .ccecccceoeeoieeeeiiiiiiiie e 23
Figure 2-8 Beacons and Chunks (Aschwanden and C&8X5)...............eevveeiiiienennn. 24
Figure 2-9 Algorithm ANIMALtIONSoooii e 30
Figure 2-10 Visualisation of a While l00P.....ceeeeiiiiiiiieiiicicce e, 31
Figure 2-11 Worked Example (Text ONly).......ceeriiiiiiieiie e 32
Figure 2-12 Worked Example (With CSD)ccooiieiiiiiiiiiiiiiiii e 33
Figure 2-13 Flowchart (Millner 2002)coarieiiiiiiieiiiiiiee e eeee e 33
Figure 2-14 Object Diagrams (Thomas, Ratcldtel. 2004)..........c.cccceeeeeiiiivieeeeeninnns 34
Figure 2-15 Patterns (adapted from De Barros, @o$oS Moteet al. 2005) 34
Figure 2-16 Bloom's taxonomy of educational objaEgi............cccoeevviiiiiiiiiiiiiiiiiiiiinee 35
Figure 2-17 The use of beacon recognition and dngrtlo discover plans.................. 39
Figure 3-1 Screenshot of JHAVé (Naps, Eagiaal. 2001)ccovvvviviciiiiiiiieeeeeenn, 46
Figure 3-2 A prototype algorithm animation tool éd®n an extensible framework ... 48
Figure 3-3 JGRASP with associated debugger (Crhdesdrixet al.2002) 49
Figure 3-4 lllustrating relationship between arraggl memorycccevvvivviiinnnnnnn. 51
Figure 3-5 PROGUIDE flowchart tool (Areias and MeB®R006)cccevveevevrnnnns 53
Figure 3-6 BeReT Tutorial Screen (Harris 2005).ccc...oovveveiiiviiiiiiiiiieeeeeeeeeeeeeeene, 55
Figure 5-1 The selection sort algorithm shown aeae during eye tracking.............. 85

Vi

Figure 5-2 Scanpaths for Question 1: “Which lindimes exchanges (swaps) two
ElEMENLS IN AN AITAY 27 ... e eeeeeeeeeeeee s e s e e e e e e e e e e e e e e eeeeeaseesessnnnnnsnnnnnn e eeeas 88
Figure 5-3 The insertion sort algorithm shown oreen during eye tracking 90
Figure 5-4 Heat Map Question 1: “Which line or Brealls a function to make space

for a Nnew element iN @N ArTAY?”cowwmmmreeeeeeerrnnnnnnaaaseeeeeeaeaseereseesrmnnnneessnnnne 92
Figure 6-1 BERET TULONIAL.........cccceiiiiit e oottt e e e e e an e e e ae e e e e e e 106
Figure 6-2 Scanpaths indicating plan discoverynsaen algorithm 109
Figure 6-3 Heat Map indicating beacon recognitioknown algorithm................... 110

Vii

List of Tables

Table 1-1 Cognition Models for Code Comprehension............ccccceeeeeeiiieeeeeeeeeeieeeninnns 3
Table 1-2 Research QUESLIONSoouuviiiiiei e ee e e e e e 9
Table 2-1 Requirements to aid the in-depth compr&ibe of introductory algorithms41
Table 3-1 Requirements to aid the in-depth compr&ibe of introductory algorithms43

Table 3-2 Support for comprehension requiremeniHIAVE.............c.cccoceevirenenee. a7
Table 3-3 Support for comprehension requiremenpsototype animation tool.......... 48
Table 3-4 Support for comprehension requiremenfSIRASPoovvviiiiiiinnenn. 50
Table 3-5 Support for comprehension requiremengsagram construct visualisation

L(0 0] PSP PPPPPPPPPRRPPPRR 52
Table 3-6 Support for comprehension requiremenBROGUIDEccccccceennn. 53
Table 3-7 Types of exercises in BERETeeeiii e 56
Table 3-8 Support for comprehension requiremenBeiReTccceeevvvvvvveeiiinnnnns 56

Table 3-9 Comparison of support for algorithm coem@nsion evident in various

100] £ PP R R U UUPPPPPPUTTPTUPURR 57

Table 4-1 Academic profile of control and treatmegrdup participants....................... 64
Table 4-2 Classification of questionnaire respomseBositive or Negative................. 73
Table 4-3 Mapping between hypotheses, activitiesdata collected 77

Table 5-1 Requirements to aid the in-depth comprsibe of introductory algorithms78
Table 5-2 Hypotheses and sections where data ctoubd in support of hypotheses 79

Table 5-3 ReSUILS Of ClasS TESIS........... e eeeeeeeeeseeeeesiiiibbbreeeeeeeee e e e e aaees 80
Table 5-4 Participants studying a new algorithm............ccccovviiiiiiiiiiin e 33
Table 5-5 Techniques used to study an unseen Blgori..........ccooovviiiiiiiiiiiiiciiieeeeenn. 84
Table 5-6 Summary of average accuracy Of reSPONSES..........coovvvvvevevrviirnnnninnnnns 58
Table 5-7 Total performance for Selection Sort &thm..............cccoovvvvvieiiiiiiiiinnn. 7.8

Table 5-8 Number of correct responses and respgonegoer question (Selection

1Yo] 1) PSRRI 87
Table 5-9 Experiment A Task 3 Performance ... 39
Table 5-10 Total performance for Insertion Sorbablpmcooovvvvviiiciiiiieneenn. 91

Table 5-11 Number of correct responses and respgoneger question (Insertion

Table 5-12 Experiment B Task 3 Performance. . .oooccveeiiiiieeiiiiiiiineeeeiinnn. 93

viii

Table 5-13 Summary of performance in Experiment.C...............vviiiiiiiiiiiieeeeeeenn, 95
Table 5-14 Number of high level, low level and irreat descriptions............cccccceennn.. 96
Table 5-15 Questions to determine ease Of USE........ccoeviieiiiiiiiiiiiieciie e 97
Table 5-16 Questions to determine perceived effec@ss of BeReT as a learning

Table 5-17 Questions to determine motivation towaiade comprehension............... 99
Table 6-1 Requirements to aid the in-depth comprsibe of introductory algorithms105
Table 6-2 Comparison of support for algorithm coem@nsion evident in various

L0 T SRS 107
Table 6-3 Overview of significant results from istigative study...............cccceeeennn. 108
Table 6-4 Support for algorithm comprehension evidie BeReT.............ccccceeeeees 117

Chapter 1 Research Context

1.1 Introduction

The reading and understanding of algorithms isamogasy task (Deimel and Naveda
1990; Jenkins 2002; Warren 2003) and is often wmégle by educators in an
introductory module. Studies of the fragile knogige of students in introductory
programming indicate the need for these courses to expligiitjude not only code
generation strategies, but also code comprehensioategies when studying

algorithms.

Students are often required to read worked exanmgfledgorithms and use a wide
range of strategies to trace the code for undetstgr(Lister, Adamset al. 2004;
Fitzgerald, Simon and Thomas 2005fome strategies prove to be more successful
than others, and students tend to employ a mixtustérategies for different situations
(Chapter 2). At times, good strategies are usentlypby the students. Some of the
strategies reported by Lister, Adamisal. (2004) and Fitzgerald, Simaat al. (2005)

are a direct result of multiple-choice questionkil@vothers are more related to a lack
of code reading and comprehension skills in generdhe strategies related to
multiple-choice questions may prove to be usefulpfassing formal assessments, but

may be insufficient for general program comprehamsi Expert programmers also

! (Deimel and Naveda 1990; McCracken, Aimstrum, @aal.2001; Ala-Mutka 2003; Lister, Adams,
Fitzgeraldet al.2004; Garner, Haden and Robins 2005; Lahtinen;Miiéka and Jarvinen 2005)

use a wide variety of program comprehension stieéeghen maintaining programs
(Von Mayrhauser and Vans 1994).

The aim of this investigation is to determine théea of adopting a particular

strategy for code comprehension that is based enetthniques used by experts to
read code for in-depth comprehension (Chapteri@)an attempt to bridge the gap
between novice programmers (referred to in thisudwnt as “students”) and expert
programmers, an emphasis is placed on technologiokld to aid student competence

in using these strategies to comprehend code.

To focus the study, the rest of this chapter prisséhe background to the
investigation by defining in-depth code comprehensind by addressing the need for
strategies for reading and understanding algorithmBhe importance of plan
discovery when reading algorithms and the mannevhith beacon recognition and
chunking can be used as techniques to encouragingeaf code with in-depth
comprehension is discussed (Section 1.2). Theaete (Section 1.3) and focus of
the research (Section 1.4), as well as an overaiethe methodology (Section 1.5)
used in the study, are also presented. The chaptetudes with an overview of the

structure of the remainder of this dissertatiorc{®a 1.6).

1.2 Background

One of the main purposes for reading an algorithito discover the plan(s) employed
by the original programmer (Rist 1986; Garner 200Zijomas, Ratcliffe and
Thomasson 2004). To read an algorithm with inddegmmprehension, students have
to understand which code fragments are requirepetiorm a higher-level task or
identify the task that a particular code fragmestfgrms (Deimel and Naveda 1990;
Upchurch 1997). Numerous advantages exist forestisdvho have mastered the skill
of code reading and comprehension. Code readiilig $lelp students learn new
programming language constructs and influence stgle in future code generation
activities. Code reading skills also aid in praogramaintenance activities.
Consequently, an effort must be made in an intrtmtycprogramming module to

cultivate in-depth code reading skills.

One of the key components of an introductory prnogneng module is the tracing,

evaluation and comprehension of various algorithfos,example Binary Search,
Bubble and Insertion Sort (CS&IS 2006a, 2006b)oper algorithm reading skills are
necessary prior to developing skills of compositlgpathms (Kimura 1979; Deimel
and Naveda 1990). A survey done by Lahtinen, Alatkd et al. (2005) showed that

students and teachers rate worked examples asdbkehelpful learning material to

study programming.

Algorithm reading skills areughof vital importance for

improved programming (Ala-Mutka 2003). In orderd@velop such reading skills, it

IS necessary to investigate models used by exjgecemprehend programs.

1.2.1. Models of code cognition

Table 1-1 summarises several cognition models dérirom expert programmers that

have been developed over the yéars

Author

Components

Technique to build mental model

(Letovsky 1986)

Knowledge Base
External Representations
Assimilation Process
Internal Representations

Programmers use annotations to ma
goals with implementation

tch

(Shneiderman and
Mayer 1979)

Internal Semantic
Representation (program goal
and algorithms)

Long-Term Memory (semantig
and syntactic knowledge)

Programmers use a chunking (Figur
51-2) process to assimilate a progran
from short-term memory into an
internal semantic representation of
goals and algorithms to achieve goa

[12)

=]

S

(Brooks 1983)

Problem Domain
Intermediate Domains
Program Domain
External Representation
Internal Representation

Programmers use hypothesis
generation and search for beacons
(Figure 1-1) in source code to verify
hypotheses

(Soloway and
Ehrlich 1984)

Knowledge (plans and
conventions)
Understanding Processes
Internal & External
Representations

Programmers use a chunking
technique and knowledge of
programming conventions to
decompose goals into plans and pla
into lower-level plans

(Pennington 1987)

Program Model (text structure
and programming plan
knowledge)

Situation Model (functional an

Programmers build a program mode
using beacons to identify chunked

jymodel in terms of real-world objects
using hypotheses

plans in the code and then a situation

data flow abstraction)

Table 1-1 Cognition Models for Code Comprehension

2 (Shneiderman and Mayer 1979; Brooks 1983; SolaavalyEhrlich 1984; Letovsky 1986; Pennington

1987)

Letovsky's (1986) cognition model consists of a \kierlge base, internal and
external representations and an assimilation psot¢esbuild the mental model
(Letovsky 1986). The model suggests that programemverk from a knowledge base
of expertise, domain goals, system plans and krayel®f programming conventions.
The documentation, code and manuals are all pateoéxternal representations and
need to be assimilated by the programmer. Thernakerepresentation (mental
model) consists of the system specifications, &edimplementation and annotations
that match specification goals with the implemeaatat The assimilation process can
be either bottom up (from code to specificationsYap down (from the high-level

system specifications to plans in the code).

Schneiderman and Mayer’'s (1979) model consists wbiking memory containing
the semantics of the program being studied andgterm memory, which represents
the knowledge base consisting of semantic and syntknowledge (Shneiderman
and Mayer 1979). Syntactic and semantic knowlefiigem the knowledge base
guides a chunking process to assimilate the progmadhproblem statement via the
working memory to grow the knowledge base furthe€hunking refers to the

grouping of related statements into a single fumai unit (Section 1.1.2).

Brooks’ (1983) model suggests programmers congtandtch elements from the
problem domain with the program domain. The pnobtomain is the area where the
problem is defined (Pennington 1987). The progdomain is the area containing
the programmed solution. Assimilation is driven g generation of hypotheses
while studying the requirements and other documfnota the problem domain, and
the code and user manuals from the program domHiypotheses of the program
goals are verified by searching for beacons in éwéernal representations and
matching them with hypotheses and sub goals in rtiental model (internal

representation). Beacons are surface featurepiogram that serve as indicators of

a particular structure or operation (Section 1.1.2)

The cognition model described by Soloway and Ehr{ic984) consists of knowledge
of programming plans and best programming practiésring code comprehension,
the external sources studied include requirementsurdents, code, design

documents, user, reference and maintenance manaats other relevant

documentation. The assimilation process uses rieedure of chunking statements
together that form part of a higher-level plan.eTians in the programmers’ internal

representation match the goals of the system.

Pennington’s (1987) model divides a programmerawedge and attention between
the program domain and the problem domain. Whadysig a new system, an
internal representation of the program model isstoigted first. The mental model
of the program domain is built using beacon recogmiand chunking while studying
the external representation of the system (progtade and other documentation).
Text structure and syntactic knowledge assist #chn recognition and chunking
processes. An internal representation of the tstinanodel (problem domain) is built
after the program model. The mental model of theblem domain is built using
beacons and the generation of hypotheses. Theouse®acons and hypotheses
generation can be done if the programmer has ageamederstanding of the problem

domain.

Numerous studies have also shown that expert progeas tend to follow a
combination of these models more closely than resticTwo common assimilation
techniques emerge from the models scrutinised bleTa-1, namely that of beacon

recognition and chunking.

1.2.2. Beacon recognition and chunking

Brooks (1983) defines beacons as features in agmoghat serve as indicators of a
particular structure or operation. Beacons can flegments of code or
variable/function names that point to the existenteome high-level gohl Figure
1-1 shows three stereotypical lines of code thathmused to swap the values of two
variables. The cross-switching of the variablegndicative of the fact that the
variables are swapped. The fragment can, thereb@reclassified as a beacon that
indicates the possibility of a sorting algorithiihe appearance of these three lines of
assignment statements are so unique that it canba&sclassified as a beacon that

indicates a higher-level task, for exampByap(a,b) which appears in the mental

% (Wiedenbeck and Evans 1986; Wiedenbeck and Sch®&8; Fix, Wiedenbeck and Scholtz 1993;
Crosby, Scholtz and Wiedenbeck 2002)

* (Wiedenbeck and Evans 1986; Pane and Myers 198&jahbeck, Ramalingam, Sarasanenal.
1999)

model of the programmer reading the code. Expee@rmprogrammers familiar with
this plan of swapping the values of two variableaynspot this combination of
statements in an unseen algorithm and hypothdsesgdal of the algorithm. Further
investigation by the experienced programmer woudyeal more beacon-like

statements to verify or nullify the hypothesis.

temp = a;
a=Db;
b = temp;

Figure 1-1 Example of a beacon

A programmer with less experience will typicallysoet to a bottom-up approach to
reading the algorithm. In this instance, the paogmer might realize that the three
statements in Figure 1-2 can be grouped togetheassigned a semantic description
(Swap(a,b). The semantic description indicates a higheelleyoal, namely the
swapping of the values of two variables in thisregke.

a=b;

temp = &; } Swap(a,b)
b =temp;

Figure 1-2 Example of chunking
The chunking of the three lines of code into a gsdmadescription can aid the

comprehension process by reducing the cognitivelaa®. The semantic description
replaces the lower-level detail and can be usedhémorise an algorithm. The
combination of the three lines may now become adiean future code reading

activities.

From the examples of beacon recognition and chgnkircan be seen that there are
primarily two ways of using beacons and chunkiii@pe bottom-up approach requires
a scanning of the code and assigning meaning tokshof code using syntactic and
semantic knowledge of the programmer. The top-doapproach of code

comprehension starts with the programmer generdtypptheses about the higher-
level functions of the program. The code is scdrioe the existence of beacons in

order to confirm these hypotheses; however, it m@ed by Wiedenbeck and Evans

(1986) that, unlike expert programmers, novicesndb naturally focus on beacons

during code comprehension activities.

1.3 Relevance of research

The primary relevance of this study originates frtime ongoing research in the
Department of Computer Science and Information éyst (CS&IS) at the Nelson
Mandela Metropolitan University (NMMU) aimed at ne@sing the throughput rate of
students in the introductory programming moduléEhis research can be divided into
two main categories; namely identifying potentialguccessful students and
changing/enhancing the methods of presenting thelutao(Figure 1-3). The

proposed study forms part of this endeavour by fgiodj the teaching model.

Approaches to raise
throughput rate

[Identify potentially successfuﬂ [Modify teaching model]

candidates

Response to individual learnirjg Innovative presentation Technological support
style techniques tools

|
[Code generation]J [Code comprehension]

| | |
Programming Programming Algorithm Multimedia (" Control Beacon recognition
environments notations animation learning Structure and chunking

objects Diagrams

Figure 1-3 Overview of research to increase througiut in introductory programming

A secondary relevance is the lack of empirical dat@urrent research reports to
validate technological support that aid in-depthrheng of students in introductory
programming modules. The Department of CS&IS lememtly developed such an
experimental tool that aids plan discovery by allaystudents to chunk related lines
and coaches students to identify beacons in soemde (Harris 2005; Harris and

Cilliers 2006). The tool was developed to aid tiiroduction of program

® (Calitz 1997; Greyling and Calitz 2003; Cillier8®: Vogts 2006 Yeh, Greyling and Cilliers 2006)

comprehension activities in an introductory aldoris module. There is a need to
validate the usefulness of this tool by means loétaveen groups’ experimental study
that determines its impact on the ability of inotbry programming students to
comprehend worked examples after exposure to tile to

1.4 Focus of research

Figure 1-3 gives an overview of some of the rededane in the field of introductory
programming to increase the throughput rate of esited in an introductory
programming module. The purple theme indicatesareh done in the area of the
modification of the teaching model for introduct@mpgramming modules, but falling

outside the scope of this study.

As indicated by the green theme of Figure 1-3, shigly takes as its departure point
the modification of the teaching model. Emphasiplaced on technological support
tools to aid code comprehension. This study camagss on a support tool (Beacon
Recognition Tool (BeReT)) to allow students to noglibally investigate algorithms
(Harris 2005; Harris and Cilliers 2006). BeReT &pter 3) incorporates theories of
program comprehension and provides some level mh@t while students discover
plans in the source code. By being guided to dscelans in source code, the
student is able to study the algorithms at thedptld level of learning, instead of
focusing on superficial syntactical issues. Unged skills presented to the student
are beacon recognition and chunking (Section 1.2.®Rastering these skills will
allow students to construct novel solutions in fateode generation activities and
investigate unseen algorithms with confidence. Hx@erimental design using
BeReT and subsequent studies are restricted tcithation at the Department of
CS&IS at NMMU (Chapter 4).

The primary objective of this project is, therefote investigate the impact on in-
depth code comprehension of an experimental teogiwal educational support tool
(BeReT) in an introductory programming module by amse of an empirical
investigation. The primary research question is:
What is the effect of a technological learning tdbht supports plan
discovery on the in-depth comprehension of intréahyc programming

algorithms typically studied by novice programmers?

The primary research question suggests a numbarebiinary component research

questions (Table 1-2):

Research Question \

Research Technique

| Chapter

1. | What are the requirements for in-depth comprehensio of Introductory Programming
Algorithms?
1.1. What is in-depth learning within the context
of introductory programming?
1.2. How do experts build internal
representations of source code? Literature Review
1.3. What techniques exist to aid the Chapter 2
comprehension of introductory algorithms?
1.4. What methods can be used to test algorithm
comprehension?
2. | How can Educational Technological Support be usedot aid in-depth learning of
Introductory Programming Algorithms?
2.1. What are the requirements for technological
support that encourages in-depth learning in novjce
programmers? . .
: Literature Review
2.2. What technological support has been
developed/is used to encourage in-depth learning in Chapter 3
novice programmers?
2.3. How does the Beacon Recognition Tool
meet the requirements for such technological Heuristic Evaluation
support?
3. | What experimental design is appropriate for the empical investigation?
3.1. In what learning environment will the study, . .
Literature Review
take place?
3.2. What material, tools and procedures will beEX erimental Desian
used to collect data? P 9 Chapter 4
3.3. How will the data be analyzed? _ .
Literature Review
3.4. What can be done to ensure validity of dat&xperimental Design
collected? a‘
4. | Did the Educational Technological Support tool enaarage in-depth learning of
introductory programming algorithms?
4.1. What are the results of the empirical studyEmpirical Evaluation &
4.2. What conclusions can be drawn from the | Questionnaires Chapter 5
results of the empirical study? Analysis of Empirical
Data. Questionnaires
5. | How can the results be applied in an introductory pogramming module?
5.1. How can the results of the empirical
investigation be applied in the selection of
appropriate technological support to encourage inDeliberation on findings| Chapter 6

depth learning of introductory programming
algorithms?

A4

Table 1-2 Research Questions

1.5 Research methodology

The primary research question stated in Sectiondlvés rise to the following

hypotheses:

Ho: BeReT does not have a positive effect on théepth comprehension of
introductory programming algorithms

Hy: BeReT has a positive effect on the in-depth cehmgrsion of introductory

programming algorithms

The research methodology is aimed at finding skeffic evidence to reject the null
hypothesis. A literature review produces a listrequirements for technological
support that encourages in-depth learning of intctay programming algorithms

(Chapter 2). These requirements are used to deadixasting technological support
tools (CS&IS experimental tool included). This dstucontributes an investigative
methodology for an empirical investigation in cod®mmprehension, which

incorporates eye-tracker data (Chapter 4). Engligwidence gathered from class
test and controlled eye-tracking experiments tdde#t the use of technological
support for in-depth learning, results from the g@® of the investigative

methodology. A proposal for the incorporation e¢hnological support tools to aid
in-depth learning of algorithms in an introduct@mpgramming module follows as a

direct result of this study.

Literature Review

v
Tool Selection Sampling Algorithm Selection

v
Practical Assignments

A 4

Class Tests Controlled Experiments

Data Analysis

v
Interpretation

Figure 1-4 Phases of this study

10

The main phases of this study are presented inr€igied. This study includes an
extensive literature review of past and current ettgwments in educational
technological support that encourage the developmmemtroductory programming
students at the in-depth level of learning (Chag@)er The literature review provides
an overview of the cognitive factors influencingudgnts studying introductory
programming. The review of literature also sums®sitechniques used by experts to
aid algorithm comprehension and investigates teglas used by educators to aid the
comprehension of introductory algorithms. Theré#tare review further focuses on
the relevance of beacon recognition and chunkinteésniques to build the mental
model. A study of available support tools follothe literature review and a support
tool (BeReT), designed to incorporate the undegyirinciples of beacon recognition
and chunking, is introduced. The literature revialso guides the selection of

algorithms.

The introductory programming students are randosd#ynpled into two groups
(control and treatment groups) and data is colleftem these groups over a period
of a semester. Practical assignments are usedimotihe treatment group of students
using the selected support tool. The control grgepform the same practical
assignments without the experimental support todh empirical study follows in
which class tests and controlled experiments aeel s determine the effectiveness
of BeReT in aiding the comprehension of introdugtalgorithms. The controlled
experiments involve a subset of participants fr@aohegroup and are performed on an
individual basis in a usability laboratory. Pagants in the controlled experiments
are monitored while completing program comprehansixercises and an eye-tracker
is used to record their actions resulting from rttegignitive processes during these
code comprehension exercises. The data collenbed the class tests and controlled

experiments are analysed and interpreted and cginonkiare drawn.

All resources, activities and support tools areéesn a pilot study. Similar to other
studies, data and feedback from the pilot studyused to refine the experimental
design in preparation for the proper investigatiMan Greunen 2002; Pretorius
2005)

11

1.6 Structure of dissertation

The remaining chapters discuss the effect of antdolyical support tool on the in-
depth comprehension of introductory algorithms m iatroductory programming
module. Figure 1-5 shows an overview of the stmacof the dissertation. The first
two chapters provide the theoretical framework supg the decisions made in the
investigation. Chapter 2 focuses on the requirésnfan the in-depth learning of an
introductory programming module. Chapter 2 prosida overview of the techniques
used by educators in the module and looks at tgrittee dimensions of introductory
programming students. Chapter 2 focuses on teabsigsed to reduce the cognitive
overhead when reading worked examples. Bloom'srtamy is discussed in Chapter
2 to provide a tool for the assessment of in-degmprehension in introductory
programming. Chapter 3 provides an overview ofit@togical support tools used to
support in-depth learning of introductory algorithmnd uses a list of requirements
derived in Chapter 2 to evaluate current tools dsedomprehension in introductory

programming. BeReT is discussed in terms of theirements.

Chapter 1
Research Context

Chapter 2 Chapter 3
Comprehension of Technological Support fol
Introductory Algorithms Learning
Chapter 4

Research Methodolog

Chapter 5
Research Results

\ 4

Chapter 6
Conclusions

Figure 1-5 Structure of Dissertation

12

Chapter 4 presents the methodology used in the ri@pinvestigation, which
includes the use of an eye tracker to determinelesiis’ gaze patterns when
answering code comprehension questions. Chapteregsents the results of the
empirical study and draws some conclusions basedhenresults. Chapter 6
concludes the dissertation by evaluating the finatcomes against the initial
objectives and provides some recommendations fa ittcorporation of a
technological support tool that aids plan discouveryhe introductory programming
curriculum. Limitations of the current study armtommendations for future research

are also given.

13

Chapter 2 Requirements for In-Depth Comprehension of

Introductory Programming Algorithms

2.1 Introduction

The question has been raised as to whether teafioalosupport tools can be
incorporated into introductory programming to an@ tcomprehension of algorithms
presented in the module (Chapter 1). In order dterthine the requirements of
technological support tools in such an environmi¢ing, necessary to first focus on the
needs of the students with regards to the compsaterof introductory algorithms.
This chapter does not only present the requiremdntsdevelop students’
comprehension of introductory programming algorighnit also determines the
criteria necessary to test whether students hawneesed an acceptable level of

program comprehension.

In order to compile a comprehensive list of theuregments for the in-depth learning
of algorithms in an introductory programming modulee cognitive model of expert
programmers studying an algorithm is investigat®dc{ion 2.2). This analysis is
used as a model to guide students in algorithmimgaskills. The chapter also
provides a synopsis of methods used by educatoesdtdearning of introductory
programming algorithms (Section 2.3). Beacon radam and chunking are
presented as methods that educators can use twomidrehension of introductory

programming algorithms. Bloom’s taxonomy offerstreoroughly tested tool to

14

determine the criteria for testing algorithm contyesion. This taxonomy and the
way it is applied to computer science in general amroductory programming in

particular are discussed (Section 2.4).

2.2 Cognitive model of Programmers during Code Comprehasion

A programmer’s cognitive model is the internal namhodel of the program while
studying the code (Engebretson and Wiedenbeck 208gart from the actual code,
the mental model incorporates other documentatndrele available), knowledge of
programming and knowledge of the problem domainetied by the program.

During code comprehension activities, programmeiiglliheir mental model of the
program using various strategies. Experts haveodstrated a tendency to employ a
top-down strategy of code comprehension wherebyensxie use is made of
hypothesis verification through the recognition bgacons (Koenemann and
Robertson 1991). Where hypotheses failed or assing, experts employ a bottom-
up strategy by integrating individual code statetsento meaningful frames. This
integration is referred to as chunking. In ordercbach students in the use of an
appropriate strategy for code comprehension, ieasessary to first determine the
requirements for understanding a program (SectidriPand investigate the elements
of programmers’ mental models during code comprgioanSection 2.2.2). The way
a program is navigated during code reading alscaatgpon their mental model
(Section 2.2.3).

2.2.1 Program understanding

One definition of program understanding is thatsita process of using existing
knowledge to acquire new knowledge (Mayer 1981).ayét (1981) proposed a
framework of steps to process information for impitie learning of technical

information (Figure 2-1). The first step in theopess is to transfer new information
into the student’s short-term memory).(This would typically be done when the
student reads a worked example. The new informasioould be matched with
appropriate existing knowledge in the long-term magmb). When a suitable match
is made between new information and knowledge flong-term memory, the new

information is stored in long-term memory for fugurse ¢).

15

a 1
Working
) .
New information ————| memory

A
b (1 Assimilation
A 4
Long-term
memory

Figure 2-1 Mayer's model for learning new technicalnformation (adapted from Mayer (1981))

It is necessary for students to build into theirggerm memory a knowledge base of
plans that can be used in the construction of tapgegrams (Garner 2002, 2003).

Students also need to build a collection of beat¢oresd future code comprehension
activities. A student reading a worked example whtices the three lines illustrated

in Figure 2-2 for the first time would only recogaithat the code extract consists of
three assignment statements. On deeper inspethienstudent might realise that

these three assignment statements perform a svgpppthe values in variablesand

b. Chunking is used to assimilate the combinatibrassignment statements into

long-term memory. This new information then becsradeacon stored in long-term

memory that can be used when studying an unseerithlg with the same plan.

temp = a;
a=b;
b =temp;

Figure 2-2 lllustration of the Swap plan

Programmers are called upon to read code for &tyaof different reasons. In some
instances, they read it with a maintenance tashkiiimd, to adapt an algorithm, to
optimise it, to correct it or to reuse it (Von Mhguser and Vans 1994). In these
cases, partial understanding of certain elementheotode would be sufficient. An
opportunistic reading approach that focuses oratba of the algorithm that needs to
be understood is suited to partial understandidgpothesis verification through the
recognition of beacons would be appropriate wherpleying an opportunistic

reading strategy.

16

There are also times when it is required to reatedor general understanding. This
implies a comprehensive understanding of the eatgerithm. A systematic reading
strategy is typically used for complete understagd{Koenemann and Robertson
1991, Von Mayrhauser and Vans 1994; Chan and ML887). A systematic reading
approach implies a thorough scan of the code witblasis on how the individual
lines work together to meet the overall goal of dhgorithm. Chunking is, therefore,

a suitable technique when employing a systematiding strategy.

2.2.2 Elements of the Mental Model

While programmers study an algorithm (includingoassted documentation) they
form a working representation of the code in thearking memory. This is referred
to as their mental model. Experienced programnmarge built up a sufficient
repertoire of plans in their long-term memory taclily determine the functionality
of the code they are studying (Wiedenbeck, Ramafmgt al. 1999). Plans can be
assimilated by a technique described as chunkirgnwising a bottom-up strategy of
code comprehension. Programmers studying an #igorusing a top-down strategy,
generate hypotheses about the existence of celans and use beacons to verify
these hypotheses. Knowledge of programming caottstriand programming
conventions are required in programmers’ long-tenemory to aid plan discovery

when studying an algorithm.

Plans

Plans are useful for understanding program funatign(Rist 1986; Garner 2003).
Soloway and Ehrlich (1984) describe programmingheas construction of plans to
solve a specific problem. Wiedenbeck and Evan8g)l@rgue that during program
comprehension, programmers become aware of thass pl searching for beacons.
Figure 2-3 illustrates the way in which beacon gettion facilitates plan discovery

during a top-down program comprehension strategy.
Programmers scan the code looking for beacons. iséodered beacon hints at a

possible plan in the source code. The presencieofplan is then validated by

searching for additional elements of the plan.

17

Time Programmer Source Code

TO Scans Code

l -

Plan

T1 Discovers a —

Elemeants

Beacon in code
T2 Prompts plan *

expectation *

T3 Usss beaceon to
validats fefr""

axistance of
plan using
ancillary
avidence

T4 Knowledge of

Presence of

Goal

Figure 2-3 Using beacons to discover plans in sowecode (O'Brien 2003)

Line Code
1. public void CalcAverage()
2. {
3. int count, sum, num;
4. double average;
5. count = 0;,
6. sum = 0; o
7. readin(num); |
8. while (num != 99999) |
9. {
10. sum = sum + num; |
11. icount ++; 1
12. hum = readin(); |
13. }
14. [if (count >0)
15. {
16. average = sum/count;
17. writeln(average);
18. }
19. [else writeIn("ERR: Divide 07,
20. }
Legend:
L _: Accumulate Total plan || Error check plan ||

Figure 2-4 Using chunking to discover plans in soee code

18

Figure 2—4 illustrates the way in which chunkingilitates plan discovery during a
bottom-up program comprehension strategy. The plamsed in Figure 2—4 is an
algorithm calculating the average of a number puts. Such an algorithm can be
broken down into the following steps:

1. Calculate a running total of all values entered

Count the number of values entered

Ensure that legal values were input

Keep asking for inputs until a sentinel value iseesed

o bk~ 0N

Calculate and display the average

Steps 1, 2 and 3 are implemented using three phansely theaccumulate total plan
the counter planand theerror check plan The individual statements implementing
each plan are grouped together into meaningful dsarand associated with an
annotation describing the plan. Elements of ed@h @re spread throughout the code.
A programmer, when trying to understand the cod&igure 2—4, would scan the
code and discover an initialisation of a variabdenedcount (lines 3 and 5). The
discovery prompts an expectation for a plan todnwnt the variable and upon
further inspection of the code, the lineount++ (line 11) confirms the
implementation of the counter plan listed abovéie Bther plans can be discovered
using the same technique. A programmer who wigbemecall the algorithm in
Figure 2—4 can now recall the three plans and oglyhis long-term memory to
complete the code for the individual plans.

There are four different ways in which plans canwms/en throughout the code,
namely abutment, nesting, merging and tailorindd®ay 1986). Abutment refers to
two plans that are joined together sequentiallyestivig refers to the situation where
one plan surrounds another plan. The inner planssafter the outer plan starts and
stops before the outer plan is completed. Plaas éine merged are interleaved
throughout the code. Plans that need to be madibefit in with existing code are
referred to as tailored plans. Plans are, thegefoot only sequential lines of code
grouped together, but non-adjacent lines that cbaldituated anywhere in the code.

19

Hypotheses

Hypotheses are inferences that drive the plan de&sgoof a programmer when
reading a program (Brooks 1983; Letovsky 1986)toisky (1986) identifies three
types of hypotheses:

* Why?(...is a specific function used),

* How?(...is a program goal implemented),

« What?(...is this variable/function being studied).

When a programmer is familiar with the problem domaypotheses can be created
prior to reading the code. In this case, programsreeate a list of program goals that
should be in the code and udew?type hypotheses to guide plan discoveries. These
hypotheses create an expectation in the progranongiscover plans typically used

to solve problems in that particular problem domaline programmer reads the code
with these hypotheses in mind and tries to findience in support of the hypotheses.

This evidence takes the form of beacons in thecgocwde.

When the problem domain is unfamiliar to the progreer, a bottom-up approach
would typically be used to discover the plans. geammers read the code and use
mostly Why?andWhat?type of hypotheses to discover plans. Indivicstatements
will be grouped together and hypotheses are degdldp discover the higher-level
function of the group of statements instead ofvrtlial lines. Once all hypotheses

are answered, the programmer is able to deterrhenunctionality of the program.

Beacons and Chunking

Beacons are valuable in hypothesis verification mwitinee problem domain is familiar

to the programmer. Chunking is useful to discquans when the problem domain is
unfamiliar. From Section 1.2.2, it is also cldaattbeacon recognition and chunking
are two techniques widely used by experts to bihiédr mental model of code being
studied.

20

Beacons are defined as surface features in a pnotiyat verify the existence of some
structure or operation (Wiedenbeck and Evans 1988)recent study shows that
beacons are extensively used by experienced progessnto facilitate program
comprehension (Crosby, Scho#r al. 2002). It was also shown that students do not
identify meaningful beacons in code. Beacons ae#l by programmers to abstract
plans from an algorithm (Figure 2-3). Plans forartpof the mental model of a
programmer during code comprehension. Beacon ifoenion is, therefore, a
valuable skill that experts use during program cahension activities, and it seems
reasonable to make an effort to include beacon tiftkiion exercises in an

introductory programming module.

Two classes of beacons have been identified byb@r&choltzet al. (2002), namely
comment beacons and complex beacons (Figure 2&gmment beacons refer to

mnemonic devices in the code that indicate prodtarationality.

Line Code

1. public static void BubbleSort(int[] List, int nrEl)
2. {

3. bool sorted;

4. do

5. {

6. sorted := true;

7. for (int x := 0; x <= nrEl-2; x++)

8.

9. if (List[x] < List[x+1])

10.

11. sorted := false;

12. (List, |, x+1);

13.

14. Comment beacoil

15. } X

16. while (!sorted);

17. }

18.

19. private static void Swap(intl] TheIist, int a, int b)
20. {

21. imt temp := TheList[a];

22. 1heList[a] := ThelList[b]; \

23. } heList[b] := temp; Complex beacon
24,

Figure 2-5 Example of the two types of beacons inBubble Sort algorithm

21

The function namé&wap (line 19) and function call t8wap (line 12) are examples

of a comment beacon. Since comment beacons aret dind simple to detect, they
are easy for students to recognise and use. Carbpkecons consist of multiple lines
of code that are so unique in structure that threystrong indicators of some higher-
level operation or function. The three lines ofledhat perform the swap operation
(lines 21 — 23) together are an example of a comipéacon. Complex beacons are
more implicit type beacons and only through prograng experience would these

lines of code become a beacon in future code cdmepsgon activities.

Figure 2-6 shows an extract of an implementatiorthef Binary Search algorithm.

The algorithm is used to find a particular valuaisorted array. The algorithm does

this by eliminating half of the data during eactagd. A binary search includes the

following plans:

1. Calculates the midpoint.

2. Compares the search value to the value in the midtlthe array to determine
whether the search value falls in the first or et of the array.

3. Continues searching the relevant section of theyaepeatedly.

Line Code

1. function int binarySearch(a, value, first, last)
2. while first < last

3. {

4, mid := floor((first + last)/2)

5. if a[mid] = value

6. return mid

7. elseif value < a[mid]
8. last := mid-1

9. else

10. first := mid+1

11. }

12. return not found

Figure 2-6 Implementation of a Binary Search Algorihm

In this examplea is the sorted lisiyalue is the item being searched feirst and

last are the indices of the first and last values @& #ection of the list being

scanned.

22

The name of the functiohinarySearch in line 1 is an example of a comment
beacon. Line 2 on its own is an example of a cemgleacon and one that is
typically found in a binary search (Aschwanden @mndsby 2006). Discovery of this
line can prompt an expectation in the program re#us# the algorithm might be a
binary search. The combination of six lines frame$ 5 to 10 is an example of
another complex beacon that strengthens the exjwectaf a binary search. The
mnemonic variablemid , first andlast are also comment beacons that aid the

discovery of plans in this algorithm.

Chunking is a program comprehension strategy thaiseful for building mental
models during program comprehension in unfamilrabfem domains (Burnstein and
Roberson 1997). A chunk has a higher-level meaamdyis often associated with a
name (Rajlich and Wilde 2002). Large chunks cansst of nested chunks.
Chunking can be used to acquire semantic knowlesgieedded in the code of an
algorithm. Frequently the first step in chunkisga group code on program domain
concepts, for example syntactic nesting levelsuoctional units (Young 1996). A
programmer would later revise these chunks to firterrelated units that represent
problem domain concepts. A hierarchy of chunks wahlen be used to build the
mental model of the programmer. Often these chinek®me a beacon that can be

used to identify the same plans in other algorithms

Line Code

1. function int binarySearch(a, value, first, last)

2. while first < last

3. {

4, mid := floor((first + last)/2)

5. if a[mid] = value

6. return mid

7. elseif value < a[mid]) :
8. lagt -= mid-1 Find boundaries
0. else of new search
10. firgt := mid+1 area

11. }

12. return not found

Figure 2-7 Binary Search Example (Chunking)

23

Figure 2-7 shows an example of an algorithm wheuttipte related lines of code are
grouped into a named grouping of code associatddavsingle semantic description.
Lines 7 to 10 are used together to make the seassh of the array smaller. These
lines can be grouped together and instead of hawimgmember the individual lines
of code (which are assumed to be previously leamaterial and already in the
programmer’s long-term memory), the collective diggion (Find boundaries of new
search areacan be assimilated into long-term memory. Thiggpam chunk is then
processed instead of individual statements, siyptifthe task of the programmer to

recall the overall function of the algorithm.

Chunking can be used to understand control flow tanchake a match between the
sub-problems of the problem specification for whitte program was designed
(Rajlich and Wilde 2002). Assigning mental or atated labels to chunks of code
also helps reduce cognitive overload while buildingepresentation of an algorithm

in working memory (Shneiderman 1982).

The main difference between beacons and chunksistacons are used during top-
down code comprehension and chunking during botipm-comprehension
(Aschwanden and Crosby 2006). A chunk of codeardy become a beacon to the
programmer if (s)he has had enough exposure tdasimigorithms containing the
same stereotypical grouping of lines. Figure Zx8ws how beacons (B) and chunks

(C) can be used as an index of knowledge when stgdpurce code.

Source Code Knowledge

Figure 2-8 Beacons and Chunks (Aschwanden and Crogl2006)

24

Instead of assimilating individual lines of codepmgrammer first groups together
statements that perform a single, higher-level ap@n. The chunk then becomes
knowledge that can be used during future programprehension activities. Some
chunks that were previously assimilated in longatenemory become beacons that
aid hypotheses verification when faced with unféamilsource code. In some
instances, a chunk of code can contain beaconscdratbe used to verify the

hypothesis that the particular grouping of coda $pecific implementation of a plan.

Programming Constructs and Conventions

In order to facilitate plan recognition, the pragreeader must have an understanding
of the programming constructs used in an algoridmd programming conventions

used by expert programmers.

The textual structure of an algorithm is used tgaaise knowledge of the overall
control flow (Pennington 1987)It includes programming constructs, such as Ipops
conditionals, variables and reserved words in thegqamming language. To
effectively organise knowledge in working memory, i$ necessary to have
knowledge of the basic elements of the structura pfogramming language readily

available in long-term memory.

Algorithms written according to standard programgnaonventions help to simplify
the programmer’s understanding of a program. Rragring conventions create an
expectation for the programmer. Examples of pnogneng conventions include
coding standards, expected use of certain datatgtas for certain processes and
using mnemonic naming for variables. Programmimigventions aid plan discovery

by structuring the algorithm in a way that is faalo most expert programmers.

2.2.3 Navigating Source Code

A programmer builds a conceptual model of a progtaynnavigating the text
structure of the source code and by relying on Kedge stored in long-term
memory. This knowledge in long-term memory inclid@owledge of the problem

as well as in the program domain (Pennington 1987).

25

When reading an unfamiliar program, program knogtets built up before problem
domain knowledge (Pennington 1987). Domain knoggelinks the plans from the
program model to objects in the real world. Tewmed to describe this knowledge
come from the problem domain that is modelled | phogram. Two strategies to
study unfamiliar code are to use a bottom-up ordown process of comprehension
(Pennington 1987).

Top-down comprehension requires in-depth knowledfethe problem domain
(Letovsky 1986). This problem domain knowledgérasslated into hypotheses that
will be used to determine the unfamiliar prografoiisctionality. The text structure is
scanned for beacons to accept/reject the hypotheseéke existence of a plan.
Throughout the scanning of the unfamiliar code tyygotheses change as needed.

Bottom-up comprehension assumes knowledge of thiaslyc elements of the textual
structure and at least the ability to extract sémamowledge from the unfamiliar
algorithm. The programmer reads the algorithm &rcitunks” together related
statements that perform a single, higher-level ajpmm. These chunks are stored in
long-term memory, often with a mental annotationd&scribe the grouping. The

combination of chunks is used to determine thetfanality of the program.

The navigation style that a programmer uses to emdlgorithm has an impact on
whether the algorithm is studied at the in-depthher superficial levels. Navigation
of a program is the process used to collect inftionaabout the program. Mosemann
and Wiedenbeck (2001) identify three methods ofigation, namely sequential,

control flow and data flow.

In sequential navigation, the mental model is aoresed line-by-line, from the start
of the program to the end. This technique is ngassled by novices (Jeffries 1982).
Using this method creates a fragmented image ofpitogram where low-level

knowledge is gained, but where hierarchical stma;tudynamic behaviours,

interactions and purpose are lost (Mosemann andi&lleeck 2001). This type of
navigation leads to superficial knowledge of thgoathm.

26

Control flow navigation proceeds through the pragra the way that the computer
will execute statements. This type of navigatitarts from the first line of the main
program, then moves to the next statement and stépshe relevant function or
procedure that is called from the current pointpok) completion of the function or
procedure, control steps back to the point whewag called. While navigating the
code in this way, a programmer groups related rsiatés into chunks to reduce
cognitive overload and assimilate the abstract kbua long-term memory. Control
flow navigation encourages in-depth knowledge efdtgorithm.

Data flow navigation builds a mental representatdrihe variables and how they
change throughout the program (Mosemann and Wied&nB001). Data flow
navigation is useful when a modification is necesgta add a new calculation or
introduce new variables into a program; thus, dlata navigation also provides in-

depth knowledge of the algorithm.

2.3 Aiding the comprehension of introductory programming

algorithms

To improve students’ ability to generate new or iEimsolutions, they are often

required to understand a worked example of an @hgorKoenemann and Robertson
1991; Garner 2003). The algorithm would mostlydmeunseen one to show how
programming constructs are used to solve a givabl@m. Students would be

required to study the algorithm using a comprelmnstrategy suited to the situation.
In some instances, students would need to debugdbethm and in other situations,
they would be required to read the algorithm fe plurpose of understanding how it

solves a particular problem or for recalling ibdater stage.

By presenting students with worked examples, thheyeaposed to properly designed
sample solutions to a stated problem (Sweller andp€r 1985; Renkl 1997). This
technique has also been applied to the study obdottory programming (Cook,

Bregar and Foote 1984; Garner 2000, 2003). Smaked examples emphasizing a
few concepts at a time are often used in introdygboogramming modules. This is
done to support students’ active programming sKillahtinen, Ala-Mutkaet al.

2005). Students in introductory programming aespnted with a formulation of the

27

problem, steps for a solution and an example offiha solution in a specific

programming language (Renkl 1997).

The abundance of worked examples in introductoog@mming textbooks requires
students to develop techniques to read and undergt@se programs with efficiency
(Deimel and Naveda 1990). A recent multinationaivey reported that many
students have difficulty with programming, eveneaftompleting an introductory
module (McCracken, Almstruret al. 2001). Lister, Adamst al.(2004) conducted a
subsequent study to determine if this was due lexlka of problem solving skills, or
because of superficial knowledge. Superficial kisalge refers to the phenomenon
that a student is capable of articulating particutams of knowledge when prompted,
but fails to apply the knowledge in a program gatien context. Basic skills that a
student should exhibit include the ability of theident to trace and comprehend
worked examples. The results of the study showatidtudents have a fragile grasp
of the skills required to solve problems. It seetherefore, necessary to aid students
in their understanding of worked examples.

Subsequently, techniques are needed to promote-thepth learning of introductory
algorithms. These techniques should enable a istudeextract semantic meaning
from the source code. Over time, their long-teremuory should be indexed with a

network of semantic plans (Soloway and Woolf 1980rtis 1981)

In an effort to continue developing requirementstfee in-depth comprehension of
algorithms in an introductory programming modulaluable insights can be gained
through studying techniques used by educatorsdataidents in the construction of
their mental model during code comprehension dws/i It is the responsibility of
the educator to guide the student in the constmatf a functional mental model so
that unfamiliar material can be classified accogdimthe model and correct responses
formulated (Ben-Ari 2001). Introductory programmieducators use a variety of

techniques to assist students to comprehend digusit

The techniques typically used by educators to hbgr students study worked
examples of algorithms include the following:
* Reading Tasks (Kimura 1979; Deimel and Naveda 1990)

28

e Algorithm Animations (Brown 1988; Naps, Eagan andrtdn 2001; Yeh,
Greylinget al.2006)

* Visualisation of Programming Constructs (Ford 1988-Mutka 2003; Boyle
2003)

e Control Structure Diagrams (Cross, Hendrix and Baio 2002; Hendrix and
Cross 2002)

* Flowcharts (Shneiderman 1983; Scanlan 1988; Gilli€alitz and Greyling 2005;
Mendes and Marcelino 2006)

* Object Diagrams (Thomas, Ratcliié¢ al 2004)

e Patterns (Clancy and Linn 1999; De Barros, dos ddaMota, Delgadcet al.
2005)

Reading Tasks

One of the earlier techniques for teaching intrediyc programming involves

exposing students to a large enough number of workgamples to teach

programming fundamentals before engaging them idecgeneration exercises
(Kimura 1979). It was hypothesized that studemés capable of obtaining reading
skills with minimal instructional help. In the sy students were given 50
syntactically and semantically correct example paotgs (written in FORTRAN) as

reading exercises and instructed to predict th@uudf each algorithm. Once the
prediction is made, students should run the algaribnd hypothesize the use of
constructs used. The hypotheses were then tegtel@\eloping and running other
algorithms. No assistance was given to studertts iegards to reading skills and the
size of the algorithms was relatively small. Studedeveloped their own techniques

to comprehend the code, with some techniques lmeorg successful than others.

Reading skills should be cultivated by includingokoit reading exercises into an
introductory programming module (Deimel and Navd8&0). Appropriate control
should be taken over the cultivation of readindlsKiCarbone and Kaagtl 1998).

The activities students engage in when reading odédferent from the tasks when
writing code. Students should be provided suppartboth program reading and

program generation.

29

Algorithm Animations

Animations have been used since the 1980s to oiteedy visualize algorithms
(Brown 1988). Animations can be useful for tracthg control flow in an algorithm
or for showing the status of data structures durungime (Naps, Eagaet al. 2001;
Yeh, Greyling et al. 2006). Code is often highlighted and synchronizeith
animation actions so that students can relate dlde ¢o the animation (Brummund
2001) (Figure 2-9).

Backgiound Foreground Soited Inspection Highlight # of Blocks Arrangement Speed =1
Black jl Blug j‘ Red jl Green jl Telow j |2EI | Random jl 1
for(counter = 1; counter < [size-1); counter++] {
low = counter-1;
forfcounter? = counter; counter? < size; counter2++] {
iflrurnanaycounter2] < numanayon]] {
lows = counter2;
i
}
temp = numarray[counter-1];
numarap[counter-1] = numarrap{law];
numarray(law] = temp:

Sart Contral Stop Caontrol # of Comparisang # of Swaps Algorithm
Fesume [Ston [[I [[selection sort

Figure 2-9 Algorithm Animations

Animations can also be used to compare the effigieof two or more algorithms
(Yeh, Greylinget al. 2006). However, the working group on the educetiompact
of algorithm visualization reports that this teajure will not be effective unless it
engages the students in active learning activitegh as interacting with the
animation or answering comprehension questionsewgidying the animation (Naps,
Eagaret al. 2001).

Visualisation of Programming Constructs
Dynamic visual learning materials are often usedcbmputer science educators to

aid with the learning of basic algorithmic conceptsl structures (Ford 1993; Ala-

30

Mutka 2003; Boyle 2003). A while loop, for examptan be illustrated by showing
what happens to a car during execution of the wbde (Figure 2-10).

23 http:ihwww. londonmet.ac. uk - While Ioops - Microsoft Internet Explor... g|§|g|

WHILE LOOP CAR ANIMATION

~
The first line in the while

laop containg a test: Is
position_of car less than
< 2007

If this is true, the body of
the while loop is
executed.

E . mar): Work out what you think
) will happen.

Then run the code to see
what happens.

Run code O ¥,

:]

WHILE LOOPS Zof7 Next(®)

%) Back
;éj Daone

O Inkernet

Figure 2-10 Visualisation of a while loop

Ford (1993) conducted experiments to determine $towlents visualise programs. In
these experiments, students were required to aeiimaw they visualise constructs,
such as variables, pointers, classes, conditioaéreents and looping constructs.
This study showed, amongst other things, that thereery little misconception
regarding these programming concepts, yet numessugts have shown that students
find it difficult to apply these concepts to soleespecific problem (McCracken,
Almstrumet al.2001; Jenkins 2002; Lahtinen, Ala-Mut&gal.2005).

Control Structure Diagrams
Another type of visualisation technique that aidsgpam comprehension is the use of
control structure diagrams (CSD) (Cross 1998; Créssndrix et al. 2002). In

contrast to the program structure visualisatiorhhégues that replace textual code,

control structure diagrams use graphical constriacssipplement the text.

31

public static int fibonacci {(int n) {
int i, last, nextTolast; ipubl'_c gtatic int fibonacci (int nj
int answer = 0;]]
—e int 1, last, nextTolLast;
\ . . —e= int answer = 0;
]_f [:"."I.==] []-'_==_:|F {
answer = 1; —<>-|:i_f {(n==0) || (n==1)) |
I answer - 1;
alse | }
last = 1; nextTeLast = 1; else |
far (i=2; i<=n; i+4) last = 1; nextTolaskt = 1;
[for (i=2; ie=n; i++)
answer = last + nextTolast; {
nextTaLast = last: answer = last + nextTolLast;
1-:-‘- A ’ nextToLast = last;
ast = answer;) last = answer;
! '
| -}
return answer; 44— return answer;
] L}
Figure 2-11 Worked Example (Text Only) Figure 2-12 Worked Example (with CSD)

(Cross, Hendrix et al. 2002)

Figure 2-11 shows an algorithm that calculatesniin@bers in a Fibonacci sequence.
As can be seen from Figure 2-12, a CSD uses the sdgorithm with visual cues

interspersed within the program text to highligbttrol structures and control flow.

As an illustration of CSDs, the one in Figure 2-12s a diamond to indicate
conditional structures, and a left-sided arrowhovs that control gets passed back to
the calling function. It was shown by Hendrix a@dbss (2002) that CSDs have a
significant positive outcome on program comprehamsi The visual cues in a CSD

attract the eye of a student and help studentsvwathe control flow navigation.
Flowcharts

Using flowcharts is a visualisation technique thsgs icons or symbols to graphically
depict algorithms (Figure 2-13). Different shapgthbols convey different semantic
meaning within the context of the algorithm it repents.

Scanlan (1988) showed that the time to learn aorigihgn and the number of times it

Is required to be viewed reduces significantly wiismg a flowchart to understand

complex programs as compared to conventional terttation.

32

All flowcharts begin with the
m START :ymbol. Thiz shape iz
called a terminator.
IMPUTS, such as materials or
components, can be drawn as
shown or in line with the Fow,

e.q. Printed Circuit Board [PCE)

PROCESS PROCESSES, such as activities
or tasks, are sometimes uzed to
link to a subroutine (anaother
flowehart) with mare detailed
steps, e.q. drill Printed Circuit

EBoard(FCE)
r\.ll:)‘"L
The DECISION sumbol checks a

condition befare carrying on, e.g.
iz the drilling accurate?

M OUTPUTS, e.q. Printed Circuit

Board(PCE) with holes drilled.

All Howcharts end with the EMD
syrmbal. Thiz shape iz called a

terminator.

Figure 2-13 Flowchart (Millner 2002)

Using flowcharts in program generation tasks af®odase students’ understanding of
the problem (Crews and Ziegler 1998). However,laavdhart, where one box
corresponds to one statement, is not an effecitvel@ing program comprehension
(Shneiderman 1983), since the flowchart becomegthér and more complex than
the program itself (Waddel and Cross 1988).

Object Diagrams

It is generally accepted that students performebett code comprehension questions
when they draw diagrams while tracing the code (i&s Ratcliffeet al. 2004).
Using this as a basis, the aforementioned encodrageoductory programming
students to use object diagrams when tracing woekadhples (Figure 2-14). Object
diagrams can be used to give a snapshot of objects system and how their

relationship changes during runtime (Thomas, Régadt al. 2004).

33

person?

personl

Person personl = new Person(Fred”,
“Aberystwyth ™)

Person person? = new Person(“Bill”,
“Borth™);

person? = personl;

personl.setAddress (“Llamilar™);

Fred Bill

Aberysmvyth Borth

What is person2’s address?

Figure 2-14 Object Diagrams (Thomas, Ratcliffeet al.2004)

In the study, students were given partially congalebbject diagrams together with
the code and questions and instructed to completen tand then answer the
questions. The results of the study, however, sldownexpectedly that students
showed resistance to using object diagrams whesda#old of partially completed
diagrams was taken away.

Patterns

Patterns provide a common vocabulary, documentaiwh learning support when
developing programs (Clancy and Linn 1999). Conemds of a pattern include a
name, motivation for use, structure, results armdidoffs, related implementation

iIssues, sample code, examples of pattern use Etedgatterns (Figure 2-15).

Pattern Name -~ Uses/Application Syntax

You want to repeat a set of actiondNITIALIZATIONS>

while a condition is true. In genera;vf]i\m'(\'<ESLE\,@$,\'I'§E'-\'/EA'F'{\'|E;LE
the set of actions is related to theonpiTiONS)

< processing of a sequence qf

Loop with

. elements or numbers. The amount <READ/GENERATION OF
Sentinel

of elements is unknown but the erjd ﬁgg‘gggg%ﬁg&iwﬁ\m
of the sequence is indicated by |a zUPDATE THE >
sentinel value. The elements can pe geNTINEL VARIABLE>

_read or generated. 1

Figure 2-15 Patterns (adapted from De Barros, dosghitos Mota et al. 2005)

Various authors have seen potential in patterielo students organise examples and
code while learning to program (Astrachan, Berrgx €t al. 1997; Wallingford 1998;
Clancy and Linn 1999). Clancy and Linn (1999) syed various studies of pattern

34

use in introductory programming modules and repbtit@t the inference of patterns
does not come naturally to students. Instructiat focused solely on patterns did
not have the desired result and expert patternslbreagaccessible to students due to
lack of experience. They also found that abstwaderstanding and a belief in reuse
is needed to apply patterns appropriately. Thedgvatterns and plans are often used
interchangeably (Johnson and Soloway 1984). Wihiéyy have the same goal of
solving recurring problems encountered in diffengr@gramming tasks, a pattern can

be seen as a more formalised method of recordangspl

2.4 Methods for testing algorithm comprehension

Bloom’s (1956) taxonomy contains a hierarchy ofrdtige levels used as a guide to
measure learning objectives in a specific lear@ren. It has been applied by Buck
and Stucki (2000) to the teaching of software dgwelent and by Buckley and Exton
(2003) to the area of system maintenance. A d&onsof Bloom’s taxonomy and

how it applies to this study follows. Lessons fgdrom this section are applied to the

class tests and controlled experiments discuss€tapter 4.

Evaluation

Synthesis
(Section 2.4.5)

Analysis
(Section 2.4.4)

Application
(Section 2.4.3)

Comprehension
(Section 2.4.2)

Knowledge \Recall
(Section 2.4.1)

Figure 2-16 Bloom's taxonomy of educational objectes

35

Six distinct levels can be identified in Bloom’sxtmomy (Figure 2-16), with the
levels increasing in complexity from knowledgels bottom to evaluation at the top.
Learning outcomes at higher levels in the hieramégumes a solid foundation in the

outcomes below and often include elements of aleldevels.

2.4.1 Knowledge

At the knowledge level, students must show theitghib recall learnt information
(Bloom 1956). Even though little understandinglaf work learnt is necessary, this
level is vital in the student’s cognitive developth¢Bloom 1956; Buck and Stucki
2000; Buckley and Exton 2003).

Applying this level to computer science educatiBock and Stucki (2000) suggests
activities such as exposure to standard libramessyntactic and semantic fluency in
a programming language. Other activities incluégealing entire algorithms

(Wiedenbeck, Ramalingarat al. 1999) and identifying functionality of programs

through knowledge of certain statements in the ¢@iBrien 2003).

Apart from recalling the entire algorithm, clozeopedures can also be used to test
this level of cognition (Garner 2002). Cloze adtes are not unigque to programming.
The cloze procedure is a technique widely usec@ding exercises and is generally
identified by instructions for students Edl in the gaps Students are often required
to choose from a list of possible answers or temeine the missing answer without

assistance of a list.

2.4.2 Comprehension

Comprehension refers to the ability of the studengrasp the semantic meaning of
the material learnt (Bloom 1956).

Buck and Stucki (2000) and Buckley and Exton (206&pped the following
computer science activities to the comprehensioel lef Bloom’s taxonomy:

» Tracing algorithms

» Predicting the results of a program

* Translating the program to a flowchart or anotlamglage

36

A typical type of question from the comprehensiemel will include questions to
predict the value of variables at certain pointgiprogram based on the logic of the
algorithm. The algorithm is usually given with array and a comment in the code
instructing students to show the contents of tmayaat that point. Another type of
question will involve showing an algorithm to theudent with the instruction to
explain, in their own words, what the algorithm slag what specific lines in the

algorithm do.

2.4.3 Application

At the application level, students are requiredut®e existing knowledge in new
situations. Students must exhibit the ability faplg rules, techniques, concepts,

principles, laws and theories to a variety of peoblscenarios (Bloom 1956).

Buckley and Exton (2003) suggest that in the cdnt#xsoftware maintenance,
programmers who exhibit competency at this levelusdh be able to re-use parts of
the system during maintenance tasks. The use i@ryilcomponents to implement
methods that satisfy a specification can be useddsess competence at the

application level of Bloom'’s taxonomy (Buck and &u2000).

2.4.4 Analysis

At the analysis level, students must display thditgbto dissect material into
component parts. Students must also be able tdifigleomponent parts, analyse
relationships between parts and recognise the ma@sonal structure of a topic
(Bloom 1956).

Applying this level to computer science activiti@jck and Stucki (2000) suggest
comprehending the code with a goal of modifying thactionality of a system,
analysing the performance of algorithms and demgygi In introductory
programming, Buckley and Exton (2003) map questibasassess variables and their
relationships to the analysis level. Conceptuagdims of software systems also fall
in this level in Bloom’s taxonomy. Questions tesess this level of competence
should include new material to ensure that studdot:mot have an opportunity to

recall analytical comments that discussed the nesenal. The new material could

37

be an unseen algorithm that students see for fi$tetine and questions could include

an analysis of the algorithm to determine the fiomct

2.4.5 Synthesis

Bloom (1956) defines competence at the synthege te be the ability to construct a
new complete structure from different parts. Tha&memphasis of this level is the

formulation of new patterns or structures througgatvity.

Buckley and Exton (2003) suggest extending thetfanality of an existing system
as a test to measure competence at this level.k Bad Stucki (2000) map the
following computer science activities to the sysibdevel:

» Develop an Application Programming Interface

« Design an Abstract Data Type

* Design fully functional applications (not simplegatithms consisting of a few

lines of code) from requirements.

The synthesis level also emphasizes creativitythadapplication of known plans to

novel programming solutions.

2.4.6 Evaluation

Bloom (1956) defines the evaluation level as thiditaldo judge the value of the
learnt material in a particular context. At thevél, criteria and standards are used to
form opinions about the material. The evaluat®mrel combines some elements of all

the previous phases in the hierarchy.

In computer science, Buck and Stucki (2000) mapptioeess of judging inputs into
the requirements document during systems analgsike evaluation level. At this

level, Buckley and Exton (2003) suggest getting tip@ants to evaluate

characteristics of a system and to defend theiluatian by referencing elements of
the code. This type of question is very subjectind therefore, difficult to compare
the responses of one participant with another.eAample of questions on this level
would be for a student to evaluate systems, judgiogsible problem areas and
motivating their answers. Evaluation of input frathsources into the system could

also be used to assess the evaluation level.

38

2.5 Conclusions

Introductory programming can be seen as havingram activities: code generation
and code comprehension. A programmer with goodjrara comprehension skills
enhances his efficiency when it comes to code @doar activities. Students in
introductory programming are often required to read comprehend algorithms
presented in lecture notes and textbooks, and dpghy the knowledge gained to

program generation tasks.

Studies of student performance in introductory parogming suggest that it is vital to
provide students with techniques to encourage pikddearning of introductory

algorithms. Various techniques are used by edusaim guide students in the
formulation of an accurate mental model of intrddug programs (Section 2.3).
Bloom’s taxonomy provides a means of probing sttglanental models to determine
whether students achieved the required learningctibgs. It can be applied to the
study of in-depth code comprehension to deternfitieei technique advocated in the
teaching model of introductory programming encoadhgn-depth learning (Section
2.5).

Discovering Plans

Is problem

. No
Yes domain known?

Use bottom-up strategy

* A

Use top-down strategy

v
Generate hypotheses Use chunking to
generate hypotheses
v

Scan code for beacon

Are hypotheses
verified?

No

Goal of algorithm
Yes determined

Figure 2-17 The use of beacon recognition and chuimlg to discover plans

The recognition and novel use of plans emergedhasod the major elements of the

mental model of a programmer investigating sourcdec and as an indication of

39

knowledge on the in-depth level (Section 2.2). réfae, the problem of developing
efficient program comprehension skills in studdmsomes one of aiding students to

discover plans in an algorithm (Figure 2-17).

From the investigation into strategies used by #gp& comprehend code, the
recognition of beacons and the chunking of codergetkas widely used techniques.
Beacon recognition is extensively used to verifypdtheses created during a top-
down program comprehension strategy, if the probtsmain is familiar to the

programmer. In an unfamiliar problem domain, admotup strategy is employed. In
this strategy, chunking is used to generate hypethe Any hypothesis not verified
prompts the programmer to resort to chunking toettgy new hypotheses. Once all
hypotheses are verified, all plans are discovened the goal of the program is

known.

By providing students with an environment that sapg beacon recognition and
chunking, a network of plans can be stored in dmgdterm memory of the student.
Expert programmers frequently use plans to conispragrams. The problem for a
student in introductory programming is that theywéaot built sufficient plans in
long-term memory to effectively use them. As ailiest seems necessary to build the
long-term memory of introductory students with @anin addition to building their
long-term memory with plans, the techniques usebuitdl these plans must be ones
that students can use to discover plans on their after initial instruction. These
technigues must also be used by expert programiméngir program comprehension

activities.

The discussion in this chapter culminates in a psap for an alternative teaching
model based on techniques used by experts to discplans during code
comprehension activities. Since the discovery laihg relies extensively on the
recognition of program beacons and chunking, theskniques are included in the
teaching model to support in-depth comprehensiantadductory algorithms. Table
2-1 lists requirements for a teaching model to thie in-depth comprehension of

introductory programming algorithms.

40

Requirements to support in-depth comprehension ddlgorithms Section

R1 Allows student to extract semantic information (gafrom worked example | 2.2.2
R2| Promotes the use of chunking to learn an unfamaligorithm 2.2.2
R3] Coaches students to spot beacons in differentitigos 2.2.2
R4 Provides students with syntactically and semanyicarrect worked examples 2.3.1
R5| Engages students in active learning activities 2.3.1
R6| Increases ability to recall the semantics of aorigm 24.1
R7| Enables students to successfully transfer knowledge 2.4.2

Table 2-1 Requirements to aid the in-depth comprehssion of introductory algorithms

A technological learning support tool can be ineddn the teaching model to aid
code comprehension activities in introductory pamgming. Table 2—1 emphasises
requirements that should be evident in learningpsttptools that aids introductory
programming students in in-depth program comprabansctivities. These
requirements are derived from investigations ingpegt programmer behaviour when
studying code and educators in introductory prognamy. This list of requirements
(Table 2-1) forms the basis for the rest of theselimtion. Table 2—1 specifically
serves as a measuring instrument to review existipgort tools used by educators in
introductory programming (Chapter 3). Table 2—ftHfer forms the framework for
the investigative study described in Chapter 4 réselts of which are reported on in
Chapter 5. In particular, requirements 6 andR@, (R7 are determined by means of

an empirical investigation which involves clasggemnd controlled experiments.

41

Chapter 3 Educational Technological Support for In-Depth
Comprehension of Introductory Algorithms

3.1 Introduction

The requirements for in-depth code comprehensiomtbductory algorithms are
derived in Chapter 2. These requirements can bd as the selection criteria for a
technological support tool that can be incorporated introductory programming.
Chapter 3 expands on the requirements for suppold tn introductory programming
modules (Section 3.2) and reviews different typéselectronic tools used by
educators to support the in-depth comprehensiantaiductory algorithms (Section
3.3). The requirements established in Chapteedised as an evaluation instrument
to determine the level of support for these regqueéets supported by each tool. The
experimental tool investigated in this study andvhid meets the requirements
established in Chapter 2 is also discussed (Se8tin

3.2 Requirements for support tools

The challenge for educators is to create a learamgronment that goes beyond the
simple reading of example code. The learning emvirent should emphasize
reading, comprehension and modification of workprgpgrams (Van Merriénboer

1990). Techniques are required to encourage aadietd investigation of code,

which is more effective than a haphazard appro&udblfilard, Coelho and Murphy

2004).

42

One of the major challenges for educators in intobory programming is to provide
interactive tools that favour learning (Giannot®8Y). The majority of commercial
software comprehension tools are aimed at compdehgnlarge-scale software
systems. These comprehension tools, such as CHRmaznyakoff 2005), Rigi
(Muller, Tilley, Orgunet al. 1992) and LCLint (Evans, Guttag, Hornieg al. 1994)
are not suitable for use by students. Since theridhms taught at introductory level
are relatively small, large-scale technologicalparp tools fall outside the scope of
this study.

A major contribution of software comprehension o to aid the human thinking
process (Walenstein 2002). Chapter 2 investigateche cognitive aspects of
programmers while they are studying an algorithihwas established that worked
examples are a favoured technique by introductarygramming educators to
introduce programming concepts to their studenwsct{Sn 2.3). A tool to aid
comprehension of these worked examples shouldeftirer; guide students’ thinking
processes. The tool must further facilitate a ettido achieve the goal or action
without the support in the future (Guzdial 19940r the purpose of the proposed
teaching model, a tool to support comprehensiomtodductory algorithms needs to
meet at least the following requirements deriveanfrtChapter 2 and summarised in
Table 3.1.

Requirements to support in-depth comprehension ahtroductory algorithms

R1| Allows student to extract semantic information (@afrom worked example

R2| Promotes the use of chunking to learn an unfamaligorithm

R3| Coaches students to spot beacons in differentitigus

R4 | Provides students with syntactically and semanyicalrrect worked examples

R5| Engages student in active learning activities

R6| Increases ability to recall the semantics of aorlgm

R7| Enables students to successfully transfer knowledge

Table 3-1 Requirements to aid the in-depth comprehwsion of introductory algorithms

43

Requirement 1 (R1). Students are required to read a vast amount okeslor

examples as part of an introductory programming utead It is important for the
students to extract appropriate semantic informatjplans) from these worked
examples (Section 2.2). Plans can then be usedsaproblem domains to develop

novel solutions.

Requirement 2 (R2). The use of chunking has been seen to aid progeasaosing

the bottom-up approach when studying algorithmsunfamiliar domains (Section
2.2). Grouping together statements and assignititerea mental or written
annotation to related statements also minimisesdhaitive load on the programmer.

The chunks become knowledge that can be used atiffesent problem domains.

Requirement 3(R3): Beacons have been shown to aid programmers wismesing

hypotheses as part of a top-down approach to utadeling unfamiliar code.
Programmers using the top-down method of code celngmsion are usually capable
of generating hypotheses when they are familiah Wit problem domain. Beacons
guide the verification process of these hypothestsidents do not have an adequate
repository of beacons in their long-term memory aedd assistance in discovering
them (Section 2.2).

Requirement 4(R4). The worked examples presented to the student beust such

a standard that it is possible to determine synt#es from the code (Section 2.3).
Adhering to standard programming conventions wakenit easier to extract semantic
information from the worked example. Special carest be taken to ensure the

presented solution is semantically correct.

Requirement 5(R5): Students who simply read an algorithm are lessessful than

those actively engaged with the code (Section 2B3)gagement with the algorithm
can take the form of completing missing lines, dgjmg code and answering
questions about the semantics of the code. Whelests are allowed to interact with

the algorithm in these ways, it forces them awaynflusing rote-learning techniques.

Requirement 6 (R6). Rote learning an algorithm would result in a stud

regurgitating code line by line while disregardislight changes in the problem

44

scenario. Recalling an algorithm and making theessary changes to suit the
difference in problem scenario is evidence of ipttelearning (Section 2.4) and
provides an indication that the student has graspedemantics of the code when it
was studied. Chunking is a technique that helpghk discovering the semantic plans

in the code.

Requirement 7 (R7). If a student studied an algorithm at the in-deletrel, (s)he

would be capable of using that knowledge in futcoele comprehension activities
(Section 2.4). A repository of plans should beltbwp in long-term memory while
studying algorithms. This would enable the efiitieliscovery of plans in similar
algorithms, and re-use of these plans during cedemtion exercises. A support tool
iIs also deemed successful in this requirement utlesits exhibit a tendency to
continue with the techniques learnt using the supjoml, even after the tool is not

used anymore.

The requirements summarised in Table 3-1 will bedus guide the investigation into

existing tools used to support in-depth code cotmamsion.

3.3 Investigation of existing support tools

A study of existing support tools reveals a nundfedifferent types of support tools
used by educators in introductory programming hese tools can be classified as
either code generation tools or code comprehensms. Since this study focuses on
comprehension of introductory programming algorghihis section will only discuss
the latter type of tools. The tools of the typattlaid comprehension are further
classified as algorithm animation tools (Sectior8.B), program tracing and
debugging tools (Section 3.3.2), programming cacstrisualisation tools (Section

3.3.3) (also called multimedia learning objects) awchart tools (Section 3.3.4).

3.3.1.Algorithm Animation Tools

Algorithm animation tools to aid comprehension lgiogithms have been in use since
the eighties (Brown 1988). Animations are useddmonstrate the behaviour of an

algorithm during runtime (McDonald and Ciesielski02). A set of animated images

! (Naps, Eagaet al.2001; Cross, Hendrigt al. 2002; Boyle 2003; Naps 2005; Areias and Mendes
2006; Yeh, Greylinget al.2006)

45

Chapter 3 — Educational Technological Supportredepth comprehension of
introductory algorithms

are shown to demonstrate important events, foamnt& when the algorithm updates a
data structure. A study of algorithm animation I$ooeports that the result of
experiments of their effectiveness in terms of cmhpnsion is not always
significantly favourable (Wilson, Katz, Ingargiolet al. 1995). Another study
indicates that animation tools lose their effeaiegs over time, with students
comprehending the algorithm while it is shown, baemingly forgetting aspects of
the algorithm after the animation has ended (StaBkdre and Lewis 1993). It was
also shown that experienced programmers standitongare from animations than
students, since animations serve more a role offaing and clarifying the
knowledge of the algorithm after it has alreadyrbaaderstood by the programmer.
Textual descriptions of the algorithm would addhe effectiveness of the algorithm
(Stasko, Badret al. 1993).

Java-Hosted Algorithm Visualization Environment ANE) (Figure 3-1) is an
example of an algorithm animation tool used tordesorting algorithms (Naps, Eagan
et al.2001; Naps 2005).

¥ JHAVE 2.0 < - =%
e Options e Ty
Visualizer | [

‘Wich node will be closed next? |—
| [

| Dijkstra’s Algorithm

Check Answer
| tere's pseudo code describing Dijkstra's algorithm
J* initialization */
| PriorityQueus openlist = { startVertsx }
opentist = (C, D, E,F, H} | array cost - { Big, Big, Big, ... }

| array pred = { Mo, Mo, Ko, ... }
| cost[startVertex] = 0;

®
7 | while { logenlist.empty())

A
g 7\ closingVertex = vertex in openlist with winin
Big | Mo / i resove closingVertex from openlist;
cle , for each non-closed vertex with an edge from cl
° | — if (eostlvertes]
E S > cost[closingvertes] + adoewWeight)
\ \ {
F A ' \ cost[vertex]
oD ./ \ \ e
G 1 \ L\ : + edgeleight:
i \ pred[vertes] = closingVertex;
H @ /| put vertex inte ogenlist;
—3 b -y }
ajm|afa] @ . . 3

Retrieving algorithm information.

Figure 3-1 Screenshot of JHAVé (Naps, Eagaat al 2001)

One of the key findings of a study investigating #ffectiveness of this tool is that

students’ comprehension increases with their le¢e@ngagement with the code and

46

the animations. From the student’'s perspective, IHAVE interface provides

explanations of the algorithm in pseudocode inreepan the right hand side while the
animation is viewed in the left hand pane. Stusleain use controls to step forward
and back through the algorithm. Occasionally dytime animation a dialogue box
appears that forces a student to think about therithm by posing a question and

requiring feedback interactively.

JHAVE is an algorithm animation tool that helps detots to understand the
functionality and mechanics of the algorithm. Sampor the requirements to aid in-
depth comprehension of introductory algorithms ismmarised in Table 3-2.
Individual plans that are used to construct thertigm are explained in pseudocode
(R1). No evidence could be found of the use of chupkm learn an unfamiliar
algorithm, nor of recognising beacons in differafgorithms (R2, R3) JHAVE
provides students access to a syntactically andusgrally correct worked example
(R4). JHAVE provides a quiz and the ability to stepotlgh the algorithm to allow
some level of interactiorfR5). No evidence of the students’ ability to transfer
knowledge and recall an algorithm was found in labée literature about JHAVE
(R6, R7)

Requirement

Supported?

R1

Allows students to extract semantic informatiora(d) from worked example

v

R2

Promotes the use of chunking to learn an unfamaligorithm

R3

Coaches students to spot beacons in differentidigos

R4

Provides students with syntactically and semanticarrect worked examples

R5

Engages student in active learning activities

R6

Increases ability to recall an algorithm

R7

Enables students to successfully transfer knowledge

Legend

v

Requirement is supported

No entry Inconclusive evidence in available litara in support of requirement

Table 3-2 Support for comprehension requirements iHAVE

A prototype algorithm animation tool (Figure 3-2asvdeveloped in the Department
of CS&IS at NMMU as a proof of concept for an exdite framework for algorithm
animation systems (Yeh, Greylirg al. 2006). The prototype animation tool allows

students to view and compare the speed of sortguitnms in real time. Students

47

are able to set the speed of the algorithm, sugalst and construct animatio(i®5).

The animation tool can be used to visually expthim plans in the algorithr{R1).

Since the code is not displayed at the same tiatetile animation is running, support

for R2 — R4is not evident (Table 3-3). An investigation inb@ effectiveness of this

tool has not yet been conduci{@b, R7)

e
Nlln"l\lll ||| ““ il
il L ms
| ———

|||]I| I e
» |inj | R
) |

[-1|L.us'-1| -

Pmua:&zﬂ o

A

Irie | Crpaiaior |
|‘ ‘||“||| |‘|‘
“ |I|I!

Figure 3-2 A prototype algorithm animation tool bagd on an extensible framework

Requirement

Supported?

R1

Allows students to extract semantic informatiorad) from worked example

v

R2

Promotes the use of chunking to learn an unfamaligorithm

X

R3

Coaches students to spot beacons in differentidigts

X

R4

Provides students with syntactically and semanyicarrect worked examples

R5

Engages student in active learning activities

R6

Increases ability to recall an algorithm

R7

Enables students to successfully transfer knowledge

Legend

v
X

Requirement is supported
Requirement is not supported

No entry Inconclusive evidence in available litara in support of requirement

Table 3-3 Support for comprehension requirements ifprototype animation tool

48

3.3.2.Program Tracing and Debugging Tools

Debugging is a vital component of software develeptrand a key challenge that
should be addressed in an introductory programmmmgdule (Mathis 1974).
However, debuggers are often neglected by instrsicbintroductory programming
or limited to a tool for finding errors in sourcede (Cross, Hendriet al. 2002).
Experiences by Cross, Hendrigt al. (2002) suggest that debuggers can be
successfully used in introductory programming medub improve the effectiveness
of their teaching and the in-depth comprehensioobggct-oriented algorithms.

The visual debugger used in Cross, Hendtial.2002) is integrated with a Java IDE
and called JGRASP (Figure 3-3).

[@ iGRASP Project: PersonalLibraryProject C-\cross\jGRASP_Handbookiexam... [l E3

file Project Messages Settings Window Tools UML Help

AN PT ‘. : [&] PersonalLibraryjava C: WSP | o [E

_ weass JFle Edt Mol p0 iave CicrossiGRASP_Handbookeex.. o & [|

R Fle Edit View Templates Compiler Run CPG Help Ll
| "BODway ame

Sl class Book
[

= private String author = mew String('awv
= private String title = new String("ti
= protected imt pages = 0;

e [l this id = 290 Book ||
@ [Arauments |
© [l theauthor "Heming| |
o [l theTitie "Green Hil| § @ L
b thePages =234 i |

[JLocals

I title = theTitle;
pages = thePages;
}

public String toString ()

return (" \nAuthor: ' + author + — |

0P Line:t3 ColA Code:207 Top:t

P Messages | Run 10

Listening for transport dr_shmem at address: javadebuy

-——7]GRASP: comnected to debugger.
Clear | |w» |

[Hein | |[«[7 2=

[»]

Figure 3-3 JGRASP with associated debugger (Crosbklendrix et al.2002)

This debugger is used to step through a worked pbaim contact sessions. The
visual debugger explicitly shows how a construgtorks and how some methods are
implicitly invoked. JGRASP also shows how objedse created, updated and
deconstructed. Thus, the debugger shows informatmrmally not visible to the

students, thereby aiding their in-depth comprelmngrocesses. Code highlighting

and Control Structure Diagrams are also used tegstudents’ attention.

49

While]JGRASP is useful to show students the eftddhe code, is does not explicitly
show how plans are used to solve specificatiorthenproblem domaii(R1) (Table
3-4). It also does not promote the use of chuntarigarn an unfamiliar algorithm or
how to use beacons to verify hypotheg@2, R3) It does show syntactically and
semantically correct worked examples and makeasite for students to navigate the
control flow of the algorithm by using code highiiqng and control structure
diagrams(R4). Students use the debugger to fix errors in thdecso interactive
learning is possibl€R5). The JGRASP support tool increases students’italtib
recal an algorithm and enables students to suedlssfansfer knowledge (Cross,
Hendrixet al. 2002)(R6, R7)

Requirement Supported?

R1| Allows students to extract semantic informatiora() from worked example

R2| Promotes the use of chunking to learn an unfamaligorithm

R3| Coaches students to spot beacons in differentidigos

R4 | Provides students with syntactically and semanyicarrect worked examples 4

R5| Engages student in active learning activities

R6| Increases ability to recall an algorithm v
R7| Enables students to successfully transfer knowledge v
Legend

v Requirement is supported

No entry Inconclusive evidence in available litara in support of requirement

Table 3-4 Support for comprehension requirements ifGRASP

3.3.3.Programming Construct Visualisation (PCV)

Learning objects that use multimedia can be usecbt@r a wide variety of basic
programming constructs, one at a time (Boyle 2008h example of a multimedia
learning object can include a tool to understabdsic looping construct (while loop),
or one that illustrates a decision-making const(destatement). The main goal of
these objects is to improve students’ in-depth aemgnsion of various programming

constructs.

50

The risk of using a learning object to introduces @onstruct at a time is that it is
unsuited to in-depth learning (Wiley 2003) and oplpmotes learning of surface
features. The tool becomes a vehicle to provid®uekextualised content in a passive
way. An advantage of this type of tool is thatdstots can work through and
comprehend each construct at their own pace amelps them form a more concrete

mental representation of each construct.

Figure 3-4 shows a multimedia object that illugtsahow the code that defines and
initialises an array is implemented in computer ragm The student controls the
speed of the animation by clicking “Show” to advarto the next step. Student

control is useful to promote engagement and aiditiog development (Boyle 2003).

'3 Arrayz - Microsoft Internet Explorer

~
int [] weeklvyTemps; The cells in an array

) are numbered

wew int[7]; consecutively from 0

< to 8.

For exampte
veeklyTenps[3] 0s

the fourth cell in the

= array weeklyTemps
weeklyTemps [0] i show O
125\ 44 ?“ NeTh 3\ 59\
A
\ '\' \' \ \ NN
2'\186\
o
3;\ \\12 i
computer memaory
(#) Back ARRAYS 40f7 Next (%)

Figure 3-4 lllustrating relationship between arraysand memory

The only two requirements that these multimedianieg objects meet are the
provision of active learning activiti¢R5) and that it helps with transfer of knowledge
(R7) (Table 3-5). Multimedia learning objects allowsidents to interact with the
object and students gain valuable knowledge of paragdomain constructs that can
be used in program generation and comprehensiovit@st From the available
literature, there seems to be no worked exampleprdwide a context for these

constructs(R4), which makes it impossible to incorporate exti@ctiof plans,

51

chunking and beacon recognitiiR1l, R2, R3).No evidence could be found on their

ability to recall an algorithniR6).

Requirement Supported?

R1| Allows students to extract semantic informatiora(id) from worked example

R2| Promotes the use of chunking to learn an unfamaligorithm

R3| Coaches students to spot beacons in differentitigos

R4 | Provides students with syntactically and semanyicairrect worked examples

R5| Engages student in active learning activities v

R6| Increases ability to recall an algorithm

R7| Enables students to successfully transfer knowledge v
Legend

4 Requirement is supported

No entry Inconclusive evidence in available litera in support of requirement

Table 3-5 Support for comprehension requirements irprogram construct visualisation tools

3.3.4.Flowchart Tools

In the early stages of learning how to programgetis often find it difficult to create
solutions to problems on their first attempt (Mended Marcelino 2006). Flowcharts
are often used to create solutions by dragging @mgbping icons that visually
represent programming constructs onto a windowié@sl 2004; Cilliers, Calitzt al.

2005; Mendes and Marcelino 2006). Flowcharts redbe level of precision and the
manual typing required in textual programming eomments. The flowchart is
usually accompanied by a textual window that sholes underlying code of the
constructed flowchart. Flowcharts convey the samamf an algorithm. Despite an
earlier study that reported no significant diffezenin the ability of students to
comprehend code with or without flowcharts (Shneiten 1983), flowcharts is a
useful technique to generate code, especiallyttatemts with a higher risk of failing

introductory programming (Cilliers, Caliet al. 2005).
Figure 3-5 shows PROGUIDE (Areias and Mendes 20863upport tool used to

guide students in natural language to generatéuicgoto a problem by using icons

to create a flowchart of the solution.

52

| PR

Fisbaosn Eiler Gmaibie Facls Chige b malos Siss Snals

= 9 ad @9

RNk X |

PRODLE =&

VARLAVEDS

Figure 3-5 PROGUIDE flowchart tool (Areias and Mencdes 2006)

Most of the requirements for in-depth comprehens®revident in PROGUIDE

(Table 3-6).

Requirement Supported?
R1| Allows students to extract semantic informatiorayd) from worked example v
R2| Promotes the use of chunking to learn an unfamaligorithm
R3| Coaches students to spot beacons in differentitigos
R4 | Provides students with syntactically and semanyicarrect worked examples v
R5| Engages student in active learning activities v
R6| Increases ability to recall an algorithm v
R7| Enables students to successfully transfer knowledge v
Legend
v Requirement is supported
No entry Inconclusive evidence in available litara in support of requirement

Table 3-6 Support for comprehension requirements ilPROGUIDE

53

After a flowchart is created, PROGUIDE translatee solution into pseudocode,
JAVA and C(R4). Natural language prompts guide the student whuikding the
solution(R5). Educators can create the flowcharts and studamsise the icons and
natural language prompts to discover the planfeénaigorithm(R1). Students can
make changes to the code by moving icons arounidceShe focus is on learning
semantics instead of syntax, students are ablectessfully transfer knowleddR7)
(Areias and Mendes 2006). This also increases #Himlity to recall an algorithm
(R6). From the available literature, it is not cledrather PROGUIDE promotes the
use of chunking to learn an unfamiliar algorithnmcoach a student to spot beacons in
different algorithmgR2, R3)

3.4 The Beacon Recognition Tool

The Beacon Recognition Tool (BeReT) is a tool that helps students recogaise
identify plans in the source code (Harris 2005;rl8aand Cilliers 2006). The support
tool provides tutorials for students that presesrnantic information (plans) from
worked examples (Section 3.4.1). BeReT has ex=cdbat promote the use of
chunking to learn an unfamiliar algorithm and iaches students to spot beacons in
different algorithms (Section 3.4.2). The workedamples can be loaded
dynamically and are syntactically and semanticallyrect. Engagement with the
worked examples takes the form of code completbanking and the definition of

beacons.

3.4.1. Tutorials

A tutorial is used to guide students to discovanplin the code and understand how
they match the goals of the algoritiiR1). Students often fail to understand what
they see (Mendes and Marcelino 2006). This casobeed by explanatory notes that

accompany the algorithm. The tutorial feature @RBT includes these descriptions
of the plans implemented in the algorithm (Figw&)3

Each tutorial presents students with a syntacyicatid semantically correct worked
example(R4). The educator can load an algorithm in any prognang language.
Since the focus of the tutorial is to help studeasprehend the algorithm, chunking

is used to guide students through a bottom-up psooecomprehensiqiR2).

54

Chapter 3 — Educational Technological Supportredepth comprehension of
introductory algorithms

) EX

- O

¢ BeReT - [Example 1]
BS Fle Administration Help

Program Description

This sorts using
Bubble Sort

Explanation of Example

This is the bubble sort Example Number

algorithm_ It uses swap
alot. 10of1

= |

&1 View Program Output Association View

Program Code

| Bubblesortarray. java |
|

4K swap(index, index-17; i
46 i)

47 numsorted++:

43 h

43 h

50

£1 private void swap(int indexA, int indexBE)
52 i

£3 [Swap] (Line 1 of 3)

c4 numbers[indexA] = numbers[indexB];
tg [Swap] (Line 3 of 3)

£E ¥

5

58 T

[

| 58

| W

semame; ChRoMoTeRm (Super User)

Figure 3-6 BeReT Tutorial Screen (Harris 2005)

Chunking is achieved by means of highlighting rel@viines of code. The grouped
statements are annotated in a separate frame detdiled description of the semantic
plan behind the highlighted lines is also givenanseparate frame. Lines are
highlighted by clicking on an annotation. Tutosidhat focus on beacon recognition
can be created in a similar fashi@tB).

3.4.2. Exercises

Student engagement is a key component of a suatdsafning tool (Boyle 2003;
Areias and Mendes 2006). The three types of eses@upported by BeReT cater for
student engagement and promote an active learxipgrience (Harris 2005, Harris
and Cilliers 2006JR5).

55

Students may be required to do any of the followtiimge types of tasks in BeReT,
namely Complete, Match and Define (Harris 2005)b{€a3-7). Exercises can be

used to test the students’ ability to recognisecbea or any general plan used in an
algorithm. One type of exercise is based on tlezeclprocedure (Section 2.4.1),
where students must complete a plan or beaconstatements removed. The match
type of exercise is used to test students’ abibtyecognise the semantics of given
lines of code. The define type of exercise testslents’ ability to group together

related statements into semantic groupings (H20G35). These semantic groupings

must then be given a name and description.

Task Given What must be done

Complete | Beacon name and description Fill in mgssiource code that name and
description refers to

Match Beacon name and description Select relevants code lines that
matches name and description

Define Code only Group statements together andjassi
name and description to indicate plan of
these statements

Table 3-7 Types of exercises in BeReT

BeReT is an experimental support tool whose deaigh implementation decisions
specifically meet requiremeni&l — R5(Table 3-8). BeReT specifically addresses the
lack of support for requiremen®2 and R3 which were found to be lacking in the
reviewed algorithm comprehension support tools tiSed.3).

Requirement Supported?

R1 | Allows students to extract semantic informatiora(d) from worked example v
R2 | Promotes the use of chunking to learn an unfamaligorithm v
R3 | Coaches students to spot beacons in differentitigos v
R4 | Provides students with syntactically and semanyicarrect worked examples v
R5 | Engages student in active learning activities v
R6 | Increases ability to recall an algorithm ?
R7 | Enables students to successfully transfer knowledge ?
Legend

4 Requirement is supported

?

To be determined by means of an empirical inyatson (Chapters 4 and 5)

Table 3-8 Support for comprehension requirements ilBBeReT

56

3.5 Conclusion

An investigation into existing support tools useg dducators failed to deliver a
support tool that meets all requirements for intdegpde comprehension derived in
Chapter 2.

Existing Tools
=
T
E
@
85 o a)
> 2z 2|3 1L
< O Ol o
T W= oo W
Sl K S ¥| o
52 >
Z
|_
O <
Requirement &
R1 Allow students to extract semantic information (@pfrom v v s v
worked example
Promotes the use of chunking to learn an unfamiliar
R2 : X v
algorithm
R3 | Coaches students to spot beacons in different algtims X v
R4 Provide students with syntactically and semantyoadirrect vix!lv v v
worked examples
R5 | Engage student in active learning activities VIV I VIV IVv]IY
R6 | Increases ability to recall an algorithm v Vi ?
R7 | Enable students to successfully transfer knowledge vV iV |v]?
Legend
v Requirement is supported
X Requirement is not supported
No entry Inconclusive evidence in available litara in support of requirement
? To be determined by means of an empirical inyatson (Chapters 4 and 5)

Table 3-9 Comparison of support for algorithm compehension evident in various tools

While some tools meet some of the requirementdpabwas found with support for
requirementsR2 and R3 specifically (Table 3-9). In response, an experital
support tool (BeReT) was developed to specificalBet these requirements, amongst
others.

The decisions made in the design and implementatbnBeReT takes into
consideration requiremenf®1 to R5. The lack of empirical evidence that shows
support for requiremen®R6 (Increases ability to recall an algorithm) d@Rd (Enable
students to successfully transfer knowledge) isresf®d in a between-groups
experiment (Chapter 4).

57

Chapter 4 Investigative Research Methodology

4.1 Introduction

Chapter 3 failed to uncover a single support taol ih-depth comprehension that
meets all of the requirements derived in Chapteldr2response to the lack of such
support tools, BeReT was developed as an apprepnat that supports most of the
requirements for a tool to aid program comprehensia an introductory

programming module. Chapter 3 also identified &k laf evidence to show that
BeReT increases students’ ability to recall an rdlgm (R6) and enables them to
transfer knowledg€R7). This chapter discusses the research methodalseg to

find empirical evidence to address these requirésnen

The context in which the investigative between-gstudy takes place and the tools
used during the study are presented (Section 4lBg plan for analysing the data is
presented in Section 4.3. The chapter concludeél widiscussion of the risks
associated with the investigative study and strasetp address these risks (Section
4.4).

4.2 Introductory Programming at NMMU

A framework for an introductory programming moduleludes the creation of
learning resources, learning activities and leayrsapports (Garner 2003). Learning

resources are the material providing the conterthefmodule. Learning activities

58

consist of tasks students have to perform to gthe& learning process. Learning
supports guide and provide feedback tailored fa imdividual. Analysing the
introductory programming module at NMMU reveals Isue framework (CS&IS
2006a, 2006b). Amongst other topics, the secomdestr of the introductory
programming module presented by the DepartmentS&IS at NMMU covers the
tracing, evaluation and implementation of variougodathms. These algorithms
include linear and binary search algorithms, ad albubble sort and insertion sort
algorithms. Algorithms for the union, intersectiand difference between two lists

are also taught.

The learning resources support the presentatiorthef topics and include the

following:

* Notes provided by the lecturer during lectures. eséhinclude comprehension
questions students may complete before attemptiegdde generation practical
assignments. The comprehension questions are rphedotly tracing type
questions, but may include other types of comprsioequestions.

* A prescribed textbook.

* Weekly practical assignment sheets. The pracéisasignments take the form of
code generation tasks only, but students are eagedr to complete code

comprehension activities prior to starting eactcfical assignment.

Every week a new topic is introduced by way of héag activities. Students
registered for the module have three contact sesgier week. Two types of contact

sessions are evident in the module, namely lecamdgractical assignments.

Lectures are divided into two sessions per week, aouble lecture of 70 minutes
and another lecture of 35 minutes in duration. tlwess are facilitated by an educator
not directly involved with the current investigagiwstudy. Students receive weekly
notes during the lectures containing a worked exanjustrating the topic of that
week. Students attend lectures over a period afdéks during the second semester

of the module.

59

Practical assignments are included in the modubdltov students to solve problems
either novel or similar to the ones discussed m lgcture of the previous week.
Practical assignments traditionally comprise ofyoobde generation tasks and no
code comprehension tasks are included. A practess$ion is 80 minutes long and
takes place in a computer laboratory. Every stutes access to their own PC and
practical tasks are performed using Microsoft Vis8audio as the development
environment and C# as the programming languagectiPal assignment sheets are
made available to students and may be done eithome or on the computer
facilities at the university. Students have a wedekcomplete their practical

assignment.

Technological learning support used in the intradyc programming module

presented by the Department of CS&IS at NMMU isitieth to code generation

activities. Currently, no support for code commes$ion is used other than the
discussions during lectures. Algorithm tracinghie main method used to explain the
algorithms.

4.3 Investigative Study

The goal of this research is to measure the effieatBeacon Recognition Tool on the
in-depth comprehension of introductory programmahgorithms. Data to measure
this effect was collected during practical assigntse class tests, controlled

experiments and by means of a questionnaire.

Both quantitative and qualitative data were cod#dctn the study. Controlled

experiments were conducted, involving a subsethef $tudents enrolled for the
introductory algorithm module. The controlled expents were used to collect data
such as accuracy, students’ ability to completarig) algorithm and time taken to

complete a code comprehension task. Eye-traclkata\das also collected during the
controlled experiments. A questionnaire was atsapeted by the students to collect
gualitative data about the user satisfaction wiiRBT.

Experiments assessing programme comprehensionaliypiase two variables to
measure comprehension, namely, accuracy and respgons (Rajlich and Cowan

1997). Class tests are suitable to measure agguhmwvever, it is difficult to

60

accurately collect individual response times imgéagroups. Controlled experiments
can be used to capture individual student respoasésevaluate them for accuracy,

and to record the time it took to answer a questiorespond to an instruction.

Eye-tracking experiments have been successfully usestudies of programming

(Crosby and Stelovsky 1990; Crosby, Scheltal.2002). One study determined that
expert programmers tend to focus more on beacendilktements when trying to
understand a piece of code (Crosby, Schatltal. 2002). Another study investigated
the difference of viewing patterns between pros¢ amd algorithms as well as the
difference in code scanning between expert andceoprogrammers (Aschwanden
and Crosby 2006).

In order to determine whether students built upoflection of beacons or plan
knowledge to answer comprehension questions, #yg@rmovements were recorded
to collect fixations and saccades for this stuBixations refer to the dwell time on an
area of interest and saccades refer to the rapiement of the eye between fixations
(Bartels and Marshall 2006). The controlled expent with the eye tracker involved
showing students an algorithm and asking compretenguestions about the
algorithm while capturing their eye movements. lealgorithm has specific areas of
interest relating to beacons and plans in the cdde participants were given a list of
questions to assess their comprehension of theemexts algorithm(s). While
studying the code on the computer screen, the egekdr recorded their eye
movements and provided data such as the following:
* The time to first fixation (to determine how lorigakes them to spot a beacon)
* The length of time and the number of times areamtefest were looked at (to
determine if they are looking at meaningful sediar code when studying an

algorithm).
This investigative study made use of various taold materials for specific purposes;

namely a consent form, training manual, practissignments, class tests, controlled

experiments and a questionnaire.

61

4.3.1. Consent form

Any study that involves human participants hasda@pproved by the Research Ethics
Committee (Human) of NMMU (RECH). The committeenide up of a group of
independent experts with the responsibility to emshat the rights of the participants
are protected and that studies are conducted Byhideherefore, an informed consent
form accompanies the application to RECH (AppertgiXor permission to conduct
this study with the help of the students in intraduy programming. With
permission granted by RECH and the consent formmoaeq, the form is completed
by the experimental group prior to the start of shedy. Each point in the consent
form is explained in English by the principal intigator of this study and students
are encouraged to ask for clarification of any poiot understood. Students initial
each point in the form to show that they agree withstated conditions.

4.3.2. Training manual

A training manual is made available to the studantbe first practical assignment of
the study (Appendix A). The manual makes extensseof screenshots of BeReT to
show the tutorial screen as well as the three eseescreens. The use of screenshots
Is a technique used with success in similar stughigsiring training of a technological
support system (Shih and Alessi 1993; Cilliers 2004 he different areas of the
screen are numbered to guide students’ focus ehtadh in the correct order. In
addition to the training manual, a demonstratiomhef system is given at the start of
the first practical. The demonstration is donengsa data projector and takes the
form of guided instruction. The principal investigr showed tasks from a dummy
tutorial and exercise and students followed eask ta familiarize themselves with
the interface of the system. BeReT is developaddke the tutorials and exercises as
intuitive as possible to reduce the training timeach exercise starts with a splash
screen, with an instruction explaining how that tipatar type of exercise is

completed. These instructions are repeated imend the exercise screen as well.

4.3.3. Practical Assignments

The training aspect of the study was conducted avitrree-week period during the
second semester of an introductory programming meod&tudents in the treatment

group were exposed to BeReT during three practssignments. Introductory

62

programming algorithms treated using the experialestipport tool include the

bubble sort, binary search and the insertion sBdth groups attended their usual two
lectures per week and also attended one of thregile practical sessions. For the
practical assignments, the students are splittiatogroups, the control and treatment

groups.

The practical assignments of the control group isbnef pen-and-paper code
comprehension guestions and code generation tékk. treatment group performed
exactly the same code generation tasks as theotagtoup. During practical

assignments, the treatment group had exposurestalgjorithm discussed in class by
means of BeReT. They studied a tutorial of themtigm first, and then performed

exercises in BeReT. Appendix B shows the noteslunh tutorials and exercises are
based. The tutorials presented the code, a liptavfs and a description of the plans
behind selected lines in the code. The exerciselsided tasks to match code to a

beacon and to complete missing beacon lines.

During the practical assignments the treatment @rdrol groups were physically
separated in two different computer laboratorieBhe physical separation during
practical assignments effectively minimized thek rid distorting the results due to
control group participants also seeing BeReT. Bgcis also built into BeReT so
that only the treatment group participants havessto the BeReT tutorials.

For both groups, the first practical activity isread and comprehend an algorithm
presented in a lecture. The only difference isthe delivery method of the
comprehension task. The control group studiedatgerithm using a tracing method
and answering code comprehension questions, wihdetreatment group used the
tutorials and exercises in BeReT. The second ipeddctivity for both groups is a

typical code generation question.

4.3.4. Class tests

During the next available lecture following a pautar practical assignment, a follow-
up class test is administered to both the treatrapdtcontrol groups (Appendix C).
The class tests are used to monitor the effecta@Rel on the treatment groups’
ability to complete, recall and comprehend the @llgms studied in the previous
week. The purpose of the class tests is to teslests’ development on the

63

knowledge and comprehension levels of Bloom’s maxoy of educational objectives
(Bloom 1956). Evidence of cognitive developmenthase two levels will show that
BeReT effectively helped students recall and coimgmd the algorithms studi€R6,

R7). All class tests are marked by a single individita ensure consistency in

assessment.

Both groups are encouraged to do their best ircldss tests with the reward of using
the class tests marks in their final class markuations. Preparation for the class
test is only different in the presentation of cadenprehension activities prior to code

generation practical assignments.

4.3.5. Controlled experiments

The controlled experiment took place the week &ferlast algorithm was studied.
The controlled experiment is designed to test thpaict of BeReT with regards to
accuracy and time. The controlled experiments uthel eye-tracking data of
participants while answering comprehension questionThe same number of
participants from both the treatment and contralugs took part in the controlled
experiment (Bartels and Marshall 2006; Bednarik andiainen 2006). This
procedure was necessary to ensure a valid compaceso be made between the two
groups. Participants from both the treatment amatrol groups were requested to
volunteer for the controlled experiments and a sulef students with a similar
academic profile were selected from each groupatdinteers (Greyling and Calitz
2003, Cilliers 2004, Vogts 2006) (Table 4-1).

Treatment Group Control Group
1% Sem
Participant | 1 Sem Mark | Participant | Mark
T1 88 Cl 94
T2 80 C2 86
T3 78 C3 83
T4 77 C4 72
T5 73 C5 70
T6 64 C6 60
T7 52 C7 58
Mean 73.1 74.7
St Dev 11.8 13.5
p-value = 0.8206 ¢ = 0.05)

Table 4-1 Academic profile of control and treatmentgroup participants

64

Final marks from the first semester module weredute select and balance the
participants within the experimental groups. Thierage first semester marks for the
treatment group participants are 73.1% and forctmrol group 74.7%. From the p-
value (0.8206) of a two-tailed pooled variancest;té can be concluded that there is
no significant differencea(= 0.05) in the average first semester mark of tithe

groups.

The controlled experiments were conducted in thabilisy laboratory of the
Department of CS&IS at NMMU. The experiments wdrected by the primary

investigator and students participated in each raxygat individually.

The results of the controlled experiments providédence to determine whether
BeReT enables introductory programming studentsdiszover plans in similar
algorithms and whether it enables them to do sa timely fashion. Evidence to
show that students exhibit a tendency to continitle the techniques learnt in BeReT
was also collected by means of controlled expertmerkye-tracking data, namely
fixations and saccades (the path between fixati@isparticipants while finding

answers in the algorithm after being presented siglunestion, was also collected.

Experiment A required participants to recognisevim@lans in a previously unseen
algorithm. Experiment B tested comprehension aaguand comprehension time for
a known algorithm, while recording eye-movementadatExperiment C tested
participants’ ability to recognise fragments of ecand the participants’ ability to

extract semantic meaning from the code.

Experiment A

The goal of experiment A was to measure comprebensind behaviour of
participants when reading a previously unseen dhgorfor the first time (Appendix
D). Tasks in this experiment contributed datadtetmine whether participants have
a repository of plans and beacons in their longxteremory readily available in order

to recognise known plans in an unseen algorithm.

65

For task one, all participants are given an algarithat they have not studied before,
but with plans similar to ones they are familiathwi Participants are instructed to
study the algorithm using any method and to makeswhile they are learning the
algorithm. They are also instructed to let theestigator know the point at which
they feel they comprehend the algorithm well enotaghe tested on it. The standard
quantitative data collected during the first taskhie controlled experiments included

correctness of participants’ responses as welhastaken to answer.

For task two, participants are seated in front dP@ with an eye tracker. The

equipment is calibrated to each individual paracips pupil and participants are

instructed to familiarise themselves with the oreso version of the selection sort
algorithm. Once the participants indicate theadieess, the algorithm is hidden and
questions are asked one by one. In an attempstdat eye movements to the screen
only, the questions are asked verbally by the itgatr and responses are also given
verbally. Questions in the form of “Which line lames...” are asked and participants
respond with the line number that answers the guedt/sing a slideshow to present
the questions eliminates any distractions suclalbars that can divert a reader’s eye
away from the algorithm. It also makes it easierctear the screen between

guestions.

The controlled experiment protocol (Appendix G) waed to make sure that the test
is conducted in a consistent way for all particiggafPretorius 2005). The Selection
Sort algorithm was selected as the unseen algofibnfaxperiment A. The selection

sort algorithm was selected because participants hat yet been exposed to this
particular sorting algorithm, but it contains plahsy have seen implemented in other

sorting algorithms studied, namely the bubble and insertion sort.

Experiment B

The goal of Experiment B was to measure comprebensind behaviour of
participants when reading a known algorithm presipstudied (Appendix D). The
treatment group had the lecture, code generatiactipal and assistance of BeReT to
study the algorithm as part of their preparatiohhe control group only had the

lecture, the code generation practical and leatotes with associated comprehension

66

questions as part of their preparation. The erpant measured retention of learning
as the main theme and also recorded the time takemaspond to comprehension
guestions. Fixations and saccades were also matdodaugment the accuracy and
time variables in order to determine the areashef ¢ode participants look at to
determine answers and for how long the participbotk at relevant areas of interest

before answering specified questions.

Experiment C

The main goal of experiment C (Appendix D) wasest the ability of participants to
correctly identify the plan behind the code fragtsesind the most likely algorithm
the lines belong to. Experiment C also recordesl tttme taken to respond to the

questions.

Certain lines from known algorithms were shown @sh cards to the participants,
one code fragment at a time (Appendix D). Paréiotp were instructed to determine
what the plan or function of the code fragmentrid asked to identify the algorithm
most likely to contain the fragment shown. Thediihtakes to correctly identify the
algorithm was recorded. The participants’ ability correctly describe the plan
implemented in each code fragment in their own wavds also recorded.

4.3.6. Questionnaire

Qualitative data in the form of a questionnaire walected on completion of the
final practical assignment (Appendix E). The qimstaire determines, from the
point of view of the participants in the treatmegmnoup, the usability of BeReT, the
perceived effectiveness of BeReT as a learning thelr attitude/motivation towards

code comprehension activities, and the functioyalitBeReT.

A number of questions were asked to determinexpereence of the treatment group
when using BeReT as an algorithm comprehension té&bdme questions elicit a
response based on a 5-point Likert scale; sometignesa response based on a 3-

point Likert scale; some elicit a yes/no responms some questions are open ended.

67

4.4 Method of Data Analysis

The investigation to find evidence in BeReT in suppof the requirements that
determine the students’ knowledge of an algori(f®fi) and the students’ ability to
transfer their knowledg€R7) was primarily a between-groups experiment. The
experiment collected data to compare the accurasponse time and behaviour of
students in an introductory programming module he Department of CS&IS at
NMMU (Section 4.4.1). Hypotheses were formulate@ddress the primary research
question and further refined to guide data colecactivities (Section 4.4.2). A plan
to analyse the data collected to validate the Hgmes was also developed (Section
4.4.3).

4.4.1. Population

Students enrolled for the second semester of thedinctory programming module at
NMMU were divided into two groups, namely treatmemid control groups. The
treatment group followed the same lecture and walctchedule as the control group,
but did alternative comprehension activities in B&R Students were randomly

divided into the two groups.

4.4.2. Formulation of Hypotheses

The primary research question as stated in Chapgegiven asVhat is the effect of a
technological learning tool that supports plan disery on the in-depth
comprehension of introductory programming algorithigpically studied by novice

programmers?

This research question is decomposed into theviollp hypotheses which will be

evaluated by means of the between-groups experidesatibed in this chapter:

Ho: BeReT does not have a positive effect on thdepth comprehension of
introductory programming algorithms
Hy: BeReT does have a positive effect on the in-deggiimprehension of

introductory programming algorithms

68

Below is a breakdown of the null hypothesis in oriderefine the concept of positive

effect in terms of in-depth comprehension.

Ho.1:

Ho.2:

Ho.3:

Ho.4:

Ho.s:

Ho.6:

Students using BeReT do not perform better tharcontrol group in terms of
accuracy on code comprehension questions.

Students using BeReT find recalling the entlgpathm and adapting to any
changes in problem scenario more difficult thandstuts that used pen-and-
paper exercises.

Students using BeReT are less accurate than cthrdrol group when
completing a partial algorithm.

Students using BeReT are less successful thancamtrol group in the
discovery of known plans in previously unseen atigars.

Students using BeReT take longer than the cbgnaup to find plans in a
known and/or previously unseen algorithm.

Students using BeReT do not exhibit evidencsiafy beacon recognition and

chunking when studying a previously unseen algarith

Below is a breakdown of the alternative hypothesisiresponding to the null

hypotheses formulated above.

Hy1

Hy2

Hie

Students using BeReT perform better than thdraoigroup in terms of

accuracy on code comprehension questions.

Students using BeReT find recalling the entigpathm and adapting to any
changes in problem scenario easier than studerds tised pen-and-paper
exercises.

Students using BeReT are more accurate than cth@rol group when

completing a partial algorithm.

Students using BeReT are more successful thancdimtrol group in the

discovery of known plans in previously unseen atlgors.

Students using BeReT take less time than theat@roup to find plans in a

known and/or previously unseen algorithm.

Students using BeReT exhibit evidence of uskgcdn recognition and

chunking when studying a previously unseen algarith

69

4.4.3. Techniques to analyse data

The analysis of the results is needed to validagestiitability of BeReT as support in
the learning environment of an introductory prognaimg module. Before statistical
analysis can take place, the collected data needsetprepared to ensure valid

comparisons can be made between the two groups.

Participants in both the control and the treatngeotips had to attend two lectures per
week for three weeks, complete all practical assgms and write all class tests
during the three weeks when the investigative stodi place. The treatment group
participants had to complete the BeReT tutorial erdrcises during the practical
assignments, while the control group completed geshpaper comprehension
exercises. Any participant missing any of the dadbected during this period was
discarded from the comparative analysis. Studemistered for the second semester
of introductory programming who did not write andsp the exam during the first
semester of 2006 are also excluded from the stddhs was done to ensure that the
same exam paper is used to base the sampling oy data from the remaining
participants have been included in the statistcallysis to compare the performance
of the two groups. The data includes results fithva class tests and controlled

experiments.

Both qualitative and quantitative data were co#dctiuring the investigative study.
Data from class tests, controlled experiments agaestionnaire needs to be analysed

using various techniques to ensure conclusiondeatrawn.

The difference in average marks between the coatndl treatment groups obtained
during class tests are tested by means of a twedtgiooled variance t-test (Neter,
Wasserman and Whitmore 1993). Since the resusiamgple size of both groups is
higher than 30, the assumption of normality holdsqon1974).

The controlled experiments results in the followdaa:
» Classification of different annotation techniquesed by participants when
reading an algorithm

* Number of participants classified according todleuracy of their responses

70

* Average mark in terms of accuracy of responses
* Average time taken to respond

» Visualizations of fixations and saccades resultiogn the use of an eye-tracker

The reading and annotation techniques used by dncipant to study the unseen
algorithm are categorised according to an adaptddwork for the classification of
annotations made by students while studying anriggo (developed in Lister,
Adams et al. (2004) and Fitzgerald, Simoet al. (2005)). The classification of
reading techniques are statistically analysed uai@dni-squared test to determine the

homogeneity of proportions.

The accuracy of responses of each participant as¢ ¢ategorised as follows

(McTighe and Seif 2003):

* High Level: The participant correctly identified what the aigfum achieves on a
high level. This equates to in-depth knowledgéhefalgorithm, since the focus is
on high level semantics rather than on syntax &séen example response in this
category is: “The algorithm creates an array ofesbelements by swapping the
first value in the unsorted part of the array, vilte smallest value in the rest of
the array.”

* Low Level: The participant correctly explained what the altjon achieves, but
on a low level explaining what each line does. sTisi similar to superficial
knowledge, since the focus is on low level dethiariable names used and other
syntax issues. An example response in this cagagofThe loop starts at index
i=0 and terminates whanreacheNrEl-1 .”

* Incorrect: The participant has the wrong idea about the parpbshe algorithm.

The proportion of participants from each grouphen tested for each category of

response by means of a chi-squared test for honetigent proportions. The average

time taken by participants to respond is testednieyans of a pooled variance two-
tailed t-test for the difference in the two aveimffem each group. The time taken to
respond is measured programmatically using thetreypking software. A recording

of the eye movements starts as soon as the algorghshown on the screen after
each question and terminates the moment the eitstarts to answer the question.

The time therefore corresponds with the recordingye-tracking data.

71

The average marks obtained by participants in t&@raccuracy during the controlled
experiments are tested by means of a two-tailededowariance t-test (Neter,
Wassermaret al. 1993). The average time taken by participantgepond to

guestions during the controlled experiments is &sted by means of a two-tailed

pooled variance t-test.

The raw data resulting from the eye-tracker arevedrd to scanpaths and heatmaps
using Begaze software, and superimposed on topsefeen shot of the algorithms
studied by the participants. The scanpaths antiages provide visualizations of the
saccades and fixations. Average marks and timentakanswer individual questions
are computed per group and tested by means of dailed pooled variance t-test.
Only scanpaths or heatmaps of results where atstatly significant difference exist

between the two groups are reported on (Pretof08)2

A questionnaire is used to collect data about ffeceof BeReT on the learning of
introductory programming algorithms. Since onlg theatment group is exposed to

the treatment tool, the questionnaire is only catgal by this group.

The following rules are applied for the purposenélysing the results (Table 4-2):

* In the case of a 5-point Likert scale, a resporiseand 5 is deemed positive and
a response of 1, 2 or 3 is deemed negative. Aoresspof 3 is not deemed neutral,
but negative as is reported in a similar studyjéead 2003).

* In the case of a 3-point Likert scale, a resporfs@ i3 deemed positive and a
response of 1 and 2 is deemed negative.

* In some instances of the yes/no responses, ngp@sidive response and yes a
negative response. In others, yes is deemed\positid no a negative response.

* A Chi-squared test for equality of proportions weed for testing whether the
students indicated a significant positive or nagatesponse.

* A thematic analysis was performed on open-endedtimuns. A theme is defined
as a statement of meaning that runs through athast of the pertinent data; or
one that carries heavy emotional or factual imgéty, Vinz, Downinget al.
1999).

72

Nr | Question Pos | Neg

BeReT is easy to use 4-5 1-3

2 | Could you complet&utorials in BeReT without assistance 4-5 | 1-3

If you did not answer “Yes” above, what createddfféculty with | Open ended
3| Tutorials?

4 | Could you complet&xercisesin BeReT without assistance 45 |13

If you did not answer “Yes” above, what createddiculty with | Open ended
5 | Exercise®

What level of assistance did you need throughout ysage of 4-5 1-3
6 | BeReT?

7a | Did you understand the bubble sort algorithm betmiag BeReT?| 4-5 | 1-3

Did you understand the binary search algorithm teefrsing 4-5 1-3
7b | BeReT?

Did you understand the insertion sort algorithnobefusing 4-5 1-3
7c| BeReT?

8a | Did you understand the bubble sort algorithm afseng BeReT? | 4-5 1-3

8b | Did you understand the binary search algorithnr afééng BeReT?| 4-5 | 1-3

8c | Did you understand the insertion sort algorithneafising BeReT?| 4-5 1-3

9 | Did BeReT help programming the algorithms eas@mfscratch? | 4-5 1-3

To what level do you think BeReT helped you to éretinderstand | 4-5 1-3
10| what certain lines do in the code?

To what level do you think BeReT helped you to ggise an 4-5 1-3
algorithm quicker without knowing the name or fuantof the
11| algorithm?

To what level do you think BeReT helped you togréice. show | 4-5 1-3
the contents of the variables at certain pointdlgarithm more
12 | effectively?

Assuming BeReT was problem free; would you makeofisieto 3 1-2
13| gain a better understanding of algorithms?
Would you make use of BeReT if it immediately makk@ur 3 1-2

14 | answers and gave you feedback?

15 | What other functionality would you like to see inded in BeReT?| Open ended

16 | Did you ever run into any unexpected problems iR&E? No \ Yes

17 | If so, briefly describe the task (if possible) @&ReT’s reaction. | Open ended
18 | What in your opinion is an advantage of using BeReT Open ended
19 | What in your opinion is a disadvantage of using 8ER Open ended

Did BeReT encourage you to critically analyse aisduts the code Yes | No
20 | in the given algorithms?

21| Did BeReT encourage you to ask questions aboultweithms? | Yes | No

Would you have spent time studying the algorithe®ie the Yes | No
22 | practical assignments without BeReT?

Table 4-2 Classification of questionnaire responsess Positive or Negative

A number of risks are evident in the design of éxperimental study for the current
investigation. These identified risks and strategoroposed to address them is the

focus of the following section.

73

4.5 Risks to Validity of Investigative Study

It is important to manage the risks associated witipirical studies to ensure that
accurate conclusions can be made on data collg&pgdlin 2001). The risks
identified in this study include the sample sized{®n 4.5.1), the possibility of the
Hawthorne Effect (Section 4.5.2), and possible f@mwis with administering the

practical learning activities (Section 4.5.3).

4.5.1. Sample Size

During the semester when the study was conducteatabof 90 students registered
for the introductory programming module. The enfpopulation is necessary in the
study for investigative purposes, to ensure thepsarsizes in both groups are large
enough for statistical analysis. It is one of toaditions of the RECH application to
allow participants to voluntarily withdraw from trexperiment. Class and practical
attendance in the introductory programming modslalso voluntary, which further

reduces the number of possible participants fosthdy.

In order to minimise the risk of small sample sjaewas decided to limit the duration
of the investigative study to a period of four weekstead of the entire semester.
Since the treatment group was expected to learn toouse an experimental tool
whose benefits are unknown, there was a higherapilbity of losing participants in
this group. Therefore, the treatment participavese financially rewarded for taking
part in the study. The rest of the class formedgérticipants in the control group.

4.5.2. The Hawthorne Effect

The Hawthorne Effect was first coined by psych@tsgyin the 1930s during a time
management study at the Hawthorne Plant of We&kactric (Parsons 1974). This
study concluded that each intervention appliedh® working environment of the

employees had the effect of improving their mo@del productivity. It was further

concluded that the experiment and not the treatnvastresponsible for the change in
attitude and behaviour. Applied to studies of catepaided learning, two types of
Hawthorne Effects are identified (Draper 1997):

* The effect of using a novel tool in teaching, and

» The effect of the extra attention to the particigan the study.

74

To test for the existence of the first effect, aa determine the attitude of the
participants towards the tool before the starheftreatment. Any participant with a
negative attitude towards the tool, but a high eafinent in comprehension
qguestions shows that there is no Hawthorne Effdécths type evident in the

investigative study (Draper 1997).

The second type of effect can be reduced by lettioth groups know that their

results are valuable to the study (Draper 199 8thB§roups wrote the class tests and
selected participants from both groups were reeduior the controlled experiments.

All students were made aware from the start thatrésults of both groups would be
compared. Students were also informed at the aftdine study that class tests would
contribute towards their final module marks. Tlaetfthat class test marks would
affect their final mark served as a motivator te ttontrol group to also study the

algorithms and class notes, and to let them knattieir results also had an impact.

4.5.3. Administering Practical Learning Activities

Since BeReT is made available on the Departme@iS#1S network, there could be
a risk of students from the control group beingdblaccess the tool. However, strict
security is built into the system to only allow sjfie students access to the system.
BeReT recognises the students’ login usernamegalydusernames of participants in
the treatment group was added to the table of plesssers. There was also a risk of
students becoming aware of fellow students working different system during the
practical sessions. To minimise this risk, theatimeent group completed their
practical assignments in a separate computer ladygraway from the control group.
Strict record of attendance was taken at the malctessions to ensure that groups did

not mix.

Students in the treatment group were exposed tpdhsibility of cognitive overload,
since they needed to learn how to use BeReT intiaddito the Integrated
Development Environment (IDE) used during the cgdeeration tasks. To reduce
this risk, students viewed a demonstration of BeRefing the first practical session.
The instructions on how to complete specific exs@siare also permanently shown on
the screen so that students do not need to réwaliteps required to complete their

tasks.

75

4.6 Conclusion

The lack of empirical data to validate the incogimm of BeReT into an introductory
programming module in the Department of CS&IS at MW prompted this
investigation. Evidence is specifically requireal determine if BeReT increases
students’ ability to recall the semantics of anoathm (R6) and if BeReT enables
students to successfully transfer knowledB8&). The hypotheses to test for these
requirements are:

Ho.1: Students using BeReT do not perform than the @logtoup better in terms of
accuracy on code comprehension questions.

Ho2 Students using BeReT find recalling the entireomligm and adapting to any
changes in problem scenario more difficult.

Hos Students using BeReT are less accurate than thteotgroup when completing
a partial algorithm.

Ho.4 Students using BeReT are less successful tharothl group in the discovery
of known plans in previously unseen algorithms.

Hos Students using BeReT takes longer than the cogtmlp to find plans in a
known and/or previously unseen algorithm quicker.

Hoe Students using BeReT do not exhibit evidenceind liacon recognition and

chunking when studying a previously unseen algarith

A number of data collection activities are usededfy hypotheses, which in turn are
used as confirmation of support for the two requeats for which evidence was not

immediately apparent in BeReT.

Students in a second semester introductory progragimodule in the Department of
CS&IS at NMMU participated in the study over a foweek period. The students
were divided into two groups (treatment and coitesid during three of the four
weeks students in the treatment group studied th¥blb sort, binary search and
insertion sort algorithms in BeReT. Control groparticipants studied the same
algorithms and relied on lecture notes and asstipen-and-paper comprehension
questions instead of BeReT tutorials and exerciseSomprehension activities
performed by the control group were predominantiging, but some comprehension
questions were also answered by the students ® dhoup. The controlled

76

experiments were conducted during the fourth arstl Weeek of the investigative

study.
Requirement Hox | Data collection activity | Data collected
Increases abilityto | Ho; | Class tests Average mark
recall the semantics ofHp, | Class tests Average mark
an algorithm(R6) Hos | Class tests Average mark
Enable students toHy4 | Controlled experiments Proportion of correct resss,
successfully transfer Average mark,
knowledge(R7) Saccades between Beacons,
Fixation on Beacons
Hos | Controlled experiments Response time,
Saccades between Beacons,
Fixation on Beacons
Hos | Controlled experiments No. of students using cimmkr

beacon recognition

Table 4-3 Mapping between hypotheses, activities drlata collected

Table 4-3 summarises the activities used to colleath and the metrics that will be

analysed to accept or reject the hypotheses disdusssection 4.4.2. Table 4-3 also

matches the hypotheses with the requirement it@igp

The following chapter presents the results obtaimedhe empirical investigation

described in this chapter. To ensure the validitthese results special care is taken

in the empirical investigation to minimize the idiéied risks, namely the sample size

the Hawthorne Effect and possible problems with iatstering the practical learning

activities (Section 4.5).

77

Chapter 5 Results of the Investigation

5.1 Introduction

Program generation is one of the main focusestaddactory programming modules,
while program comprehension is often neglected rfi@kiand Naveda 1990). While
attempts are made to provide students with workeseles, little time is spent on
explicitly teaching strategies to study the coddeReT is a tool designed to address

this deficiency.

Chapter 2 established requirements for a tool ppasr the in-depth comprehension
of algorithms typically taught in an introductorlgarithms module. The design and
implementation decisions made during the developna@@nBeReT (Chapter 3)
concluded that requiremerf&l to R5 are met (Table 5-1).

Requirements to support in-depth comprehension cadlgorithms

R1| Allows student to extract semantic information (@gafrom worked example

R2 Promotes the use of chunking to learn an unfarmaligorithm

R3| Coaches students to spot beacons in differentidigts

R4 Provides students with syntactically and semanyicalrrect worked example

[72)

R5 Engages students in active learning activities

R6| Increases ability to recall the semantics of anrigm

R7| Enables students to successfully transfer knowledge

Table 5-1 Requirements to aid the in-depth comprehwsion of introductory algorithms

78

Evidence to support the remaining requirementseterdhined by a between-groups
experiment (Chapter 4). The methodology descriedspecifically aimed at
collecting data to determine if requiremerR$ (Increases ability to recall the
semantics of an algorithm) anB7 (Enable students to successfully transfer
knowledge) are met. The two main quantitative dadkection activities used as
measurement tools are class tests and controljgeriexents. A questionnaire is used

to collect qualitative data.

Hypotheses to confirm support for requiremeR&andR7 were also formulated in
Chapter 4 (Table 5-2). The results of the betwgrenips experiment to reject or

accept the hypotheses are presented.

Hypotheses 8 Req

Ho.1 Students using BeReT do not perform better in $eoif
accuracy on code comprehension questions.

Ho.» Students using BeReT find recalling the entirematgm
and adapting to any changes in problem scenari@ pm2.1| R6
difficult.

Ho.3 Students using BeReT are less accurate when congple
a partial algorithm.

Ho.4 Students using BeReT are less successful in| the
discovery of known plans in previously unseen
algorithms.

Hos Students using BeReT takes longer to find plana i% 22| R7
known and/or previously unseen algorithm quicker. | =

Ho.e Students using BeReT do not exhibit evidence aigu
beacon recognition and chunking when studying a
previously unseen algorithm.

[2)

Table 5-2 Hypotheses and sections where data canfoeind in support of hypotheses

After discarding the data according to the rulesc{®n 4.4.3), a sample size of 32
participants per group is achieved for class tSextion 5.2.1). The assumption of
normality, thus, holds for further statistical aysa$ (arson1974).

The remainder of this chapter presents the quénétalata analysis results of the

class tests and controlled experiments (Sectio). 5Results of qualitative data

analysis to complement quantitative findings appe&ection 5.3.

79

5.2 Quantitative Results

The quantitative results obtained in the empirisiidy include class test results

(Section 5.2.1) and results from controlled expents (Section 5.2.2).
guantitative results obtained from the class tadtiresses hypotheses, Ho» and

The

Hos while the quantitative results from the contrdllexperiments address

hypothesesly 4, Ho.s andHg .

5.2.1. Results of Class Tests

The first-year students participating in this reskastudy various algorithms as part
of the requirements of the introductory programmimgdule at NMMU. Class tests
are written the week after initial exposure to #tgorithm in lectures and practical
assignments (Section 4.3.2). Three class tests wetten to test comprehension of
the bubble sort, binary search and insertion slgorahms respectively (Section

4.3.3). The class test questions presented tettltents appear in Appendix C. The

results of the class test are presented in TaBle 5-

Bubble Sort Binary Search Insertion Sort

Recall | Comprehend Recall Comprehend| Completg Comphend
g o~ | Mean 56% 55% 41% 61% 56% 43%
EZD
8oL | St
= 23% 19% 27% 31% 17% 20%
= Dev
IS %§ Mean 44% 35% 22% 42% 39% 27%
€0
S0 < g;v 29% 45% 22% 20% 20% 30%
p-value 0.0169* 0.0003** 0.0017** 0.0004** 0.0005** 0.0002*

* Significant where p<0.05; ** Significant whepx0.01

Table 5-3 Results of Class Tests

All class test questions (Appendix C) assess stadengnitive development on the

knowledge and comprehension levels of Bloom’s taxay of educational objectives.

Random sampling was applied in the determinatiorthef control and treatment

groups.

To test students’ knowledge of each dlgoricomprehension questions

(Ho.1), and recall flp.2) or complete Kly.3) questions were asked. Table 5-3 presents

descriptive statistics of the average for each gnoer question and algorithm. Table

80

5-3 also includes test statistics used to makecaide on whether to reject or accept

the relevant hypotheses.

Data in support of the hypothedi 1 Students using BeReT do not perform better
than the control group in terms of accuracy on cadenprehension questiongas
collected by means of comprehension type questianshe class tests. This
hypothesis is used to determine the effect of BeRw®il students’ cognitive

development on level 2 (Comprehension) of Bloorai®homy.

From the t-test, it can be concluded at the 99%equeile ¢ = 0.01) that there is a
difference in the average mark of the comprehengisestions in class tests for all
three algorithms. Hypothesti ; is, therefore, rejected in the case of class.tebe
implication is that students using BeReT perfornggificantly better in terms of

accuracy on code comprehension questions.

Data to support the hypothedty , Students using BeReT find recalling the entire
algorithm and adapting to any changes in problerenseio more difficultwas also
collected by means of recall type questions indhass tests. This hypothesis is used
to determine the effect of BeReT on students’ dogmidevelopment on level 1

(Knowledge/Recall) of Bloom’s taxonomy of educaabaobjectives.

Questions instructing students to write an adaptdion of the bubble sort and
binary search algorithms form part of the classstesitten by both groups. From the
t-test, it can be concluded at the 95% percentile 0.05) that the treatment group
performed better in terms of recalling the bublibet &nd binary search algorithm.
The treatment group’s performance in the recallstjae of the binary search
algorithm showed a significant improvement at tH@#o9percentile ¢ = 0.01).
HypothesisHy ; is, therefore, rejected in the case of class.teBte implication is that
students using BeReT find it easier to recall gor@thm and are sensitive to changes

in the problem scenario.

HypothesisHp 3 Students using BeReT are less accurate than thieot@roup when
completing a partial algorithnwas tested by means of a complete-type question in

the insertion sort algorithm. This hypothesisssdito determine the effect of BeReT

81

on students’ cognitive development on level 1 (Klemige/Recall) of Bloom’s

taxonomy of educational objectives.

From the t-test, it can be concluded at the 99%epdile ¢ = 0.01) that the treatment
group performed better in terms of completing tgertion sort. Hypothesldo ; is,

therefore, rejected in the case of this class t€he implication is that students using
BeReT find it easier to fill in the missing line@de in an incomplete version of a

known algorithm.

5.2.2. Results of Controlled Experiments

Three experiments were performed a week afterittad ¢lass test was written. The
three experiments involved an unseen algorithm €Erpent A), an algorithm
previously studied (Experiment B) and fragmentskmdwn algorithms (Experiment
C). The number of students recruited for the ailietd experiments was 16 (8 per
group), as is reported in similar studies involvihg use of an eye-tracker (Bartels
and Marshall 2006; Bednarik, Myller, Sutineh al. 2006). Only 7 participants per
group provided usable eye-tracking data, sincebidlon failed on 2 of the
participants (one from each group). IViewX softevaras used to record eye-tracking
data. In IViewX, fixations were defined as at 250 ms in duration in a radius of
50 pixels. Participants were placed in a comfdetathair that allowed minimum

movement and seated approximately 60 centimetoes ihe monitor.

Experiment A — Unseen algorithm

Experiment A (Appendix D) tests the comprehensiod mteraction of a previously
unseen algorithm (specifically the selection ségpathm). The chosen algorithm
uses similar plans used by algorithms that paditip learnt in the introductory
programming algorithms module. This experimentsisted of three tasks, which
required participants to study an unseen algorifhaskl), to answer comprehension
guestions about the algorithm (Task 2) and to cetephn incomplete version of the

unseen algorithm (Task 3).

82

Task 1 — Study unseen algorithm

Task 1 required participants to explain the purpotehe algorithm in their own
words. This task tests their cognitive developnmenthe comprehension and analysis
level of Bloom’s taxonomy (Buck and Stucki 2000;dRley and Exton 2003). The
goal of Task 1 in Experiment A is to test the hygstisHy ¢ Students using BeReT do
not exhibit evidence of using beacon recognition @hunking when studying a

previously unseen algorithm

During this task, the data recorded include thénepe(s) participants used when
studying an algorithm, the time it took the pagamt to study the algorithm (using a
stopwatch) and the accuracy of their descriptionth&f purpose of the algorithm
(Appendix D).

The notes that the participants made while studtmegalgorithm were collected and
scrutinized to discover the techniques used toystheé algorithm. An adapted
framework for the categorization of annotationsdstits make while studying an
algorithm (developed in Lister, Adanet al. (2004) and Fitzgerald, Simoet al.

(2005)) was used to determine participants algaritkading technique. Two main

techniques identified in this study are synchroaizacing and chunking.

Treatment Group Participants Control Group Particip ants

Technique| Time Accuracy Technique Time Accuracy
T1 | Trace 00:09:13 High Level | C1 | Trace 00:10:00] Low Level
T2 | Trace 00:04:00 High Level | C2 | Trace 00:08:15| Incorrect
T3 | Trace 00:09:40 High Level | C3 | Trace 00:05:10] Low Level
T4 | Chunking | 00:10:00 Incorrect C4 | Trace 00:10:00 Incorrect
T5 | Trace 00:09:00 Low Level | C5 | Trace 00:10:00] High Level
T6 | Trace 00:03:30 Low Level | C6 | None 00:03:39| Low Level
T7 | Trace 00:03:00 Low Level | C7 | None 00:10:00| Low Level

Proportion High Level 3 Proportion High Level 1
Expected Frequency 3.5 Expected Frequency 3.5
¥° = 1, p-value = 0.317

Table 5-4 Participants studying a new algorithm

Synchronized tracing shows the values of multi@eables as they change. This is

usually done in a table format.

83

Chunking is simiia the description of pattern

recognition in Fitzgerald, Simoet al. (2005) where higher level meaning is sought in
the code. It is identified in the participant reotby the highlighting of code
statements that form a higher level operation aedcibing each chunk with a
suitable name or phrase. The participants’ reg®msere analyzed according to the

technique discussed in Section 4.4.3 and the seardtpresented in Table 5-4.

The time column indicates the duration from theetitnat participants started reading
the algorithm until the moment they feel confidenbugh to answer questions on the
algorithm. During this task, time was measuredhgisa stopwatch. The time was
started from the moment participants started repdimtil they indicated that they

were ready for the questions. As can be seen ffaile 5-4 the predominant
technigue used by the participants is tracing. Magority of participants from both
groups explained the purpose of the algorithm ctigreeither on high (semantic) or
low (syntactic) level. From Table 5-4 it can bersdbat 6 participants from the
treatment group and 3 participants from the corgroup completed Task 1 of the
experiment involving the unseen algorithm withie tme limit. From the p-value
resulting from a Chi-squared test it can be coreduthat no significant difference
exists between the proportion of participants tt@npleted the task on time &

0.05).

The techniques used by participants when studymgreseen algorithm for the first
time appear in Table 5-5, along with the numbepaiticipants making use of the
technique. A Chi-squared test of the equality mipprtions shows no significant
preference in the technique used by the particgpnstudy the unseen algorithm=
0.05).

Technique | Treatment | Control Expected X p-value
(n=7) (n=7) Frequency

Tracing 6 5 3.5

Chunking 1 0 3.5 3.09 0.213

None 0 2 3.5

Table 5-5 Techniques used to study an unseen algirin

Table 5-6 summarises the accuracy of responsesigin lavel, low level and
incorrect. A Chi-squared test of the equality obgortions shows no significant

difference in the performance of the participanithwegards to the accuracy of their

84

identification of the purpose of the unseen algonitin Task 1 of Experiment Au(=

Accuracy
Group High Level Low Level | Incorrect
Treatment (n=7) 3 3 1
Control (n=7) 1 4 2
Expected 3.5 3.5 3.5
Frequency
v 1 0.14 0.33
p-value 0.317 0.375 0.564

Table 5-6 Summary of average accuracy of responses

For Task 1 of Experiment A, no significant diffecenexists between the two groups
in terms of the technique used to study the unségorithm, the time taken to study
the unseen algorithm, and the accuracy of theicrgesn of the goal of the unseen
algorithm. Hypothesi#ly s Students using BeReT do not exhibit evidence afjusi
beacon recognition and chunking when studying aviptesly unseen algorithroan

therefore not be rejected.

Task 2 — Answer comprehension guestions

For Task 2, participants were instructed to ansseenprehension questions about the
unseen algorithm studied in Task 1. This taskstdwir cognitive development on the
comprehension level of Bloom’s taxonomy (Buck artdc& 2000; Buckley and
Exton 2003). The goal of Task 2 in Experiment Aadest two hypotheses, namely
Ho.4 Students using BeReT are less successful thatottieol group in the discovery
of known plans in previously unseen algorithamsl Hp 5 Students using BeReT take
longer than the control group to find plans in aolum and/or previously unseen
algorithm.

85

(1. public void SelectionSort(int[] List, int nrEl)

2. //Precondition: 1List is an unsorted array of
integers with "nrEl"” number of elements.

3. //Postcondition: List is sorted in ascending
order.

4. {

5. int i, j, min, temp;

6.

7. for(i = 0; 1 <= nrEl-1; i++)

8. {

9. min = i;

10. for(j = i+l; j <= nrEl-1; j++)

11. {

12. if(List[j] < List[min])

13. min = j;

14 . }

15. temp = List[i];

16. List[i] = List[min];

17. List[min] = temp;

18. }

19. 1}

Figure 5-1 The selection sort algorithm shown on seen during eye tracking

Data collected during this task include the respamscomprehension questions, the
time it takes to find the answer and eye-movemaitd tb indicate participants’ focus

of attention, their navigation and reading styleewHinding answers.

illustrates the algorithm that was shown as a shdw file to the participants.

Treatment Group (n=7) Control Group (n=7)
Participant | Time Accuracy | Participant| Time | Accuracy
T1 00:00:14 100% Cl 00:00:26] 60%
T2 00:00:12 60% C2 00:00:11] 20%
T3 00:00:15 100% C3 00:00:11| 40%
T4 00:00:05 100% C4 00:00:14| 20%
T5 00:00:07 80% C5 00:00:16] 40%
T6 00:00:05 40% C6 00:00:11| 40%
T7 00:00:09 80% C7 00:00:13] 60%
Proportion passed 6 Proportion passed 2
Expected Frequency 3.5 Expected Frequency 3.5
Mean 00:00:09 80% Mean 00:00:15] 40%
St Dev 00:00:08 0.41 St Dev 00:00:09, 0.50
y* = 2.00

p-value (Proportion of

participants that passe@)x57

Table 5-7 Total performance for Selection Sort algithm

86

Figure 5-1

Table 5-7 summarises the overall performance fa s$kelection sort algorithm
between the two groups. The average mark seemditate that the treatment group
performed better than the control group (80% v86}6n Task 2. A-test on the

proportion of participants who successfully comgdeTask 2 with a mark of 50% or
higher (6 from the treatment group, 2 from the oangroup) shows no significant

difference.

A breakdown of the proportion of correct resporeed the average times for all five
questions show that only Question 1 demonstratgsifisantly different results
between the two groups (Table 5-8). Eye-trackiatadeveal possible reasons for

this significant difference.

Number of correct participants Time taken

Question Treatment| Control | Expected | y° p- | Treatment | Control p-

(n=7) (n=7) | Frequency value (n=7) (n=7) | value
Question 1 7 1 3.5 4.500.034*| 00:00:04 | 00:00:12 0.046*
Question 2 5 3 3.5 0.500.480 | 00:00:15| 00:00:210.427
Question 3 5 3 3.5 0.500.480 | 00:00:09| 00:00:140.109
Question 4 7 6 3.5 0.080.782 | 00:00:08| 00:00:120.250
Question 5 4 1 3.5 1.800.180 | 00:00:12| 00:00:230.125

* Significant where p<0.05

Table 5-8 Number of correct responses and responime per question (Selection Sort)

Scanpaths from the gaze analysis of Question 1 i€kvhine or lines exchanges
(swaps) two elements in an array?”) reveals théspparticipants take to find the
answer for this question (Figure 5-2). Scanpatid laeatmaps resulting from all
questions are presented in Appendix I. The diffemlours represent the saccades
and fixations of the different participants. Thecles represent fixations, with the
diameter of the circle an indication of the durataf fixation at particular points. A
larger circle implies a longer the fixation tim&he lines between the circles represent

saccades, or eye-movements between the fixationigoi

87

Question 1 Treatment Group Question 1 Control Group

0 B public void SelectionSort(int[] List, int nrEl) T public void SelectionSort(int[] List, int nrEl)
25 //Precondition: List is an unsorted array of 2% //Precondition: List is an unsorted array of
ith "nrEl” number of elements.

integers with "nrEl” number of elements.

List is sorted in ascending 3 //Pos s sorted in ascending

7
i il Gt 2 45
19: } -
(@) (b)
Figure 5-2 Scanpaths for Question 1: “Which line ollines exchanges (swaps) two elements in an
array?”

From the two images, it is clear that the treatnggatip follows a more concentrated
path around the area of interest containing thevant question 1 (namely Lines 15,
16 and 17). Only two treatment group participastsiated significantly from the

area containing the answer.

The control group scanpaths reveal five participagctinning areas far away from the
area of interest. The scanpaths indicate that ofdkie control group participants did
read the correct code, but decided that anotherwias the correct answer. These
Images seem to suggest that the treatment grotigipants were more successful in
transferring their knowledge of the “swap” planrrahe bubble sort algorithm and

recognising it in the previously unseen selectiom algorithm.

HypothesisHp 4 Students using BeReT are less successful thamottiteokcgroup in
the discovery of known plans in previously unsdgarahmsis, therefore, rejected in
the case of this controlled experiment. The ingtlan is that students using BeReT

found it easier to discover known plans in previpusmseen algorithms.

Task 3 — Complete incomplete algorithm and fix ero

Task 3 tests participants’ cognitive developmenttan knowledge level of Bloom’s

taxonomy. Cloze exercises are used to assess khewledge of an algorithm

88

(Section 2.4.1).

Small changes are made in th@blarnames and data types to

determine if participants exhibit signs of roterteag. Errors are also intentionally

made in the presented code and participants arecatesd to find the errors.

Table 5-9 summarises the results of task 3.

Orragee the treatment group

participants completed more of the missing lineghi@ algorithm than the control

group (a 9% difference) (Table 5-9). The treatnwroup managed to complete Task

3 of Experiment A faster than the control groupngthutes and 16 seconds vs. 6

minutes 35 seconds).

% of Lines % of Errors Time Taken
Completed Corrected
Participant | Treatment | Control | Treatment | Control | Treatment | Control
(n=7) (n=7) (n=7) (n=7) (n=7) (n=7)
1 60% 60% 0% 20% 00:03:00 00:06:00
2 50% 30% 20% 10% 00:03:51 00:11:15
3 100% 100% 20% 20% 00:05:00 00:07:00
4 80% 70% 0% 10% 00:03:00 00:05:24
5 60% 80% 30% 20% 00:04:00 00:03:00
6 60% 30% 0% 10% 00:01:59 00:08:00
7 100% 80% 30% 20% 00:09:00 00:08:23
Mean 73% 64% 14% 16% 00:04:16 00:06:85
St Dev 0.21 0.26 0.14 0.05 00:02:18 00:03:R7
Proportion v 5 0 0
passed
Expected 3.5 3.5 35 3.5
Frequency
v 0.33 0.00
p-value 0.564 1.000

Table 5-9 Experiment A Task 3 Performance

From the p-values of g-test on the number of participants who completedenthan

50% of the missing lines and corrected more tha&¥ o the errors, it can be seen

that no significant difference exists between the groups. Although not significant,

Table 5-9 suggests that there is a slight improvernrethe ability of the treatment

group participant to complete this task faster (sl minutes on average) than the

control group participants.Hp 3 Students using BeReT are less accurate than the

control group when completing a partial algorithwas rejected in the case of the

class test on the known algorithm, but for the fesly unseen algorithm in this

controlled experiment hypothedil 3 cannot be rejected.

89

Experiment B — Known algorithm

Experiment B tests comprehension of and interactith an algorithm studied in the
introductory programming module in the DepartmehC8&IS at NMMU, namely

the insertion sort algorithm. The treatment gratpdied the algorithm in BeReT
during one of the weekly practical assignments,lavthie control group used their
class notes only to study the algorithm. Data gaith from this experiment
determines the effect of BeReT on first year sttgleromprehension of the algorithm

insertion sort.

Task 1 — Answer comprehension guestions

Task 1 of Experiment B assesses whether partigpguaisp the semantic meaning of
the material learnt. This tests their cognitivealepment on the comprehension level
of Bloom’s taxonomy (Buck and Stucki 2000; Buckbeyd Exton 2003).

Figure 5-3 illustrates the insertion sort algorithnesented as a slideshow to
participants. Participants in both groups wereosey to this version of the algorithm
in their class notes. The function and variabl@s@s used in this implementation of

the algorithm were the same as used in the class.no

1. public static wvoid InsertionSort(int[] List, int nrEl)

2. {

3. for {int x = 1; x <= (nrEl - 1); x+t+)

4. insert(List[x], List, x):;

5. }

G.

7. public static wvoid insert(int HewOne, int[] SortedList, int
Sorted nrEl)

8. { N

O, int pos = findPos(HewOne, SortedList, Sorted nrEl) ;

10. moveToRight (pos, SortedList, Sorted nrEl):; -

11. SortedList [pos] = HewOne:; -

12, }

14, public static int findPos(int HewOne, int[] SortedList, int
Sorted_anl)

15. {

16. int x;

17. for {x = 0; x <= Sorted nrEl-1; xt+)
18. { -

19, if (HewOne <= SortedList [x]}
20. return x;

21. }

22. return x;

23. }

25. public static wvoid moveToRight{int pos, int[] SortedList, int
Sorted_anl)

2a. {

27. for (int x = Sorted nrEl; x >= (pos + 1); x--)
28, { -

20, Sortedlist [x] = SortedList[x - 1];

30. }

31. }

Figure 5-3 The insertion sort algorithm shown on seen during eye tracking

90

Table 5-10 summarises for the two groups the aeeaaguracy and time taken to find
answers relating to the insertion sort algorithin.terms of accuracy, the treatment
group scored 3% better on average than the cogtap. The treatment group
participants answered the comprehension questiorerage 10 seconds faster than

the control group.

Treatment Group (n=7) Control Group (n=7)
Participant | Time Accuracy | Participant | Time | Accuracy
T1 00:00:16 60% Cl 00:00:33] 80%
T2 00:00:14 80% C2 00:00:25| 40%
T3 00:00:25 80% C3 00:00:17| 40%
T4 00:00:08 20% C4 00:00:28] 40%
T5 00:00:04 80% C5 00:00:14| 20%
T6 00:00:10 0% C6 00:00:22| 80%
T7 00:00:13 60% C7 00:00:18] 60%
Mean 00:00:13 54% Mean 00:00:23| 51%
St Dev 00:00:07 0.32 St Dev 00:00:07| 0.23
Proportion passed 5 Proportion passed 3
Expected Frequency 3.5 Expected Frequency 3.5

=05
p-value (Accuracy) = 0.480

Table 5-10 Total performance for Insertion Sort algrithm

From ay*test on the number of participants who passed Taskh an average mark
of 50% or higher, it can be concluded no signiftadifference exist between the two

groups.

Due to the small number of participants, the average taken to study the known
algorithm can also not be tested for significartberefore hypothesibly s Students
using BeReT takes longer than the control grougirtd plans in a known and/or
previously unseen algorithng, can not be rejected in the case of the coetioll
experiment involving the known algorithm (insertisart). However, there seems to
be an improvement in the time it takes participainten the treatment group in
finding the answer. Reasons for this can be furéxplored by analyzing individual

questions and the eye-tracking data obtained flosnetxperiment.

91

Number of correct participants Time taken

Question | Treatment| Control | ¥* | Expected | p- | Treatment | Control p-

(n=7) (n=7) Frequency | value (n=7) (n=7) | value
Question 1 5 5 0 3.5 1 00:00:04| 00:00:2D.040*
Question 2 1 3 1 3.5 0.317 00:00:17 | 00:00:18 0.827
Question 3 5 5 0 3.5 1 00:00:11| 00:00:200.178
Question 4 5 3 0.5 3.5 0.480, 00:00:13 | 00:00:19 0.254
Question 5 3 2 0.2 3.5 0.655| 00:00:19 | 00:00:34 0.068

* Significant where p<0.05

Table 5-11 Number of correct responses and responsme per question (Insertion Sort)

A breakdown of the proportion of correct respong@seach question shows no

significant difference between the two groups (€abi11). A question-by-question

breakdown of the average time to find answers tmprehension questions shows

significant difference between the two groups ire§lion 1 only (Table 5-11).

Question 1 Treatment Group

Question 1 Control Group

1. public static void InsertionSort(int[] List, int nrEl) e puhllc t #d !nsert:u)nSort(lnt: [] TList, int nrip
2. { 2.
58 for (int x"B% f <= (nrEl "din i) * = 58 for (111’;%“md - 1) ; x++)
4. insert(List([x], List, x); . 1ﬂexﬁiLLs§;£ ,II.:.;%, x):m .
50N KR ﬂ"% a%._ e i o
6. 9 oo .5'_:._' __-_'_ a, = & = L
" . Y . . . 0 ¥ . . o [

7. pub. static void insert(int NewOne, int[] SortedList, int g llevﬁne, int [] SortedList, int

Sorted nrEl) "s (.18

L an .
]
ndPo: IﬁﬁOne’, Sortediisf, Sorted nrEl); qrte’nrl"l) i
kpo dlbist® Ooxfpa@rEl) ; 1)
s ne ; a B
. . e ;
. " - 1 = . s

14. pmiglic statlc int findP ewOneml‘u.nm] SortedlList, int 14. puhlnc%tmc J.nt-f:ﬂ:%!ixﬁ NewOne, int[] SortedList, int

So;ted_’ﬂ!)l) o L] _ Sorted anl) . B
AR . . 15. { H
16. int x; L 16. _u% x; Lol
17 M for (x = 0; x <=sSorted nrEl-1; x++) 17. for (x = H' x <—us&'ted nrEl-1; x++)
18 ' 18. ("e
19. -"f (NewOne <= SortedList [x]) 19. if (NewOne <= Sortedli:t [x1)
20. return x; 20. return x;
21. } * & 21. } - .
22, return x; 22, return x;
23.) 23. } -ﬂ
24. o o
25. public static vo:.li'hnve’l‘oklght(lnt pos, int[] SortedList, int l ?atlc'dcb Fughtwnt pos :.nt]' Sor@edl)!sf.lnt

Sorted anl) S nrE -
26. { . a . 126 -
27 for (?nt x = Szx.;tad_nrﬂl; x >= (pos + 1); x--) =g7 ‘ it x 3 ﬂ(ph 1“ x--)
28. (" ‘ e
29. -Sﬁit‘mﬂ:.i-gt[x] = SortedList[x - 1];: %29 © e 1st[x]w-= eedh'ﬁ[x =41
30. } & 30.
31.) o fome 31.)

(a) (b)

Figure 5-4 Heat Map Question 1: “Which line or lines calls a function to make space for a new
element in an array?”

Question 1 askedWhich line/lines calls a function to make space donew element

in an array?” The correct answer is line 10. The heat mapuf€icp-4) resulting

from Question 1 clearly shows that the treatmentgrparticipants focus mostly on

92

the correct area. The control group on the otlaedhspends a large amount of time
reading the code in thmoveToRight function. These figures seem to indicate that
the control group of participants did not view fia@ction callmoveToRight as a
comment beacon that indicates the plan of makiragesgor a new element in an

array. They still had to read the code insideftimetion to determine what it does.

Task 2 — Complete incomplete algorithm and fix ero

Task 2 assesses participants’ cognitive developnoanthe knowledge level of
Bloom’s taxonomy (Bloom 1956; Buck and Stucki 208ickley and Exton 2003).
Assessment methods take the form of the following:

» Cloze exercises to assess their knowledge of amitidgh previously studied.

* Making small changes in variable names and datestyptest for rote learning.

e Manual debugging of the code.

Table 5-12 summarises the results of this task.

% of Lines % of Errors Corrected Time Taken
Completed
Participant | Treatment | Control | Treatment | Control | Treatment | Control
(n=7) (n=7) (n=7) (n=7) (n=7) (n=7)
1 65% 55% 40% 10% 00:07:00 00:08:25
2 65% 30% 40% 10% 00:05:07 00:10:p8
3 95% 35% 50% 20% 00:06:58 00:06:00
4 55% 0% 0% 0% 00:04:000 00:08:00
5 70% 50% 20% 10% 00:05:15 00:10:p5
6 75% 30% 0% 0% 00:03:30 00:10:14
7 90% 55% 40% 20% 00:10:00 00:10:p0
Mean 73.6% 36.4% 27% 10% 00:05:59 00:09]09
St Dev 0.29 0.30 0.21 0.08 00:02:13 00:0146
Proportion 7 3 1 0
passed
Expected 35 3.5 3.5 35
Frequency
y 1.60 1
p-value 0.206 0.317

Table 5-12 Experiment B Task 3 Performance

Table 5-12 shows the p-values ofyatest on the number of participants who

completed more than 50% of the missing lines andected more than 50% of the

93

errors. It can be seen that no significant diffieee exists between the two groups
when using 50% as the benchmark. However, it igtlwooting that significantly
more treatment group participants obtained a maB0% or higherf* = 6, p-value =
0.014,0 = 0.05). This again rejects hypothebigs; Students using BeReT are less
accurate than the control group when completingaatipl algorithm. Although not
significant, Table 5-12 also shows that the treatngeoup participants are capable of
completing incomplete algorithms quicker than coinggroup participants in the case

of known algorithms.

Experiment C — Code fragments

Experiment C consists of code fragments of theetlagorithms previously studied

by the participants, namely the bubble sort, treerition sort and the binary search

algorithms. The data recorded for each participasitdes the following:

» The participants’ response of the most likely alpon that uses the code
displayed (between the three algorithms selectethie empirical study).

* The time taken to realise what the most likely athm is.

* A semantic description of the plan implementedHh®/d¢ode fragments.

This experiment consequently assesses participaftity to quickly recognise
stereotypical lines of code, and their ability tesdribe the plan behind the code in
their own words. Participants’ cognitive develominen both knowledge and
comprehension level of Bloom’s taxonomy are asskssthis experiment (Buck and
Stucki 2000; Buckley and Exton 2003). The resoftExperiment C are summarised
in Table 5-13 and Table 5-14, including the avenagek obtained during the task of
identifying the algorithms based on the code fragime

94

Identification of algorithm Response Time
Participant | Treatment | Control | y°| p- | Participant | Treatment | Control | »° p-
(n=7) (n=7) value (n=7) (n=7) value
1 100% 83% 1 00:00:06 | 00:00:21
2 100% 100% 2 00:00:07 | 00:00:22
3 83% 50% 3 00:00:09 | 00:00:12
4 100% 100% 4 00:00:11 | 00:00:17
5 100% 67% 5 00:00:08 | 00:00:20
6 100% 100% 6 00:00:07 | 00:00:13
7 100% 100% 0 1 7 00:00:04 00:00:1(? 6 | 0.014*
Mean 98% 86% Mean 00:00:07 | 00:00:16
St Dev 0.06 0.2 St Dev 00:00:02 | 00:00:05
Proportion Proportion
Passed 7 7 less than 6 0
10 seconds
Expected 35 35 Expected 35 35
Frequency Frequency

Table 5-13 Summary of performance in Experiment C

Program comprehension is a combination of searchmyproblem solving. Readers
generally take between 2 to 2.5 seconds to ingpeobject and the rest of the time to
process the information (Aschwanden and Crosby R0@@&cording to Aschwanden
and Crosby (2006) it takes about 10 seconds toepsothe information in a beacon
type statement. This time period is therefore useda benchmark of the time it
should take participants to identify the approgrialgorithm that the code fragments
belong to. From @’-test on the number of participants that identifieel algorithm in
less than 10 seconds, it can be stated at the S&%ergile ¢ = 0.05) that the
proportion of participants from the treatment groimat identified the algorithm
within this benchmark time are significantly highdwan the control group (Table
5-13). Hypothesi$ly s Students using BeReT takes longer than the cogtonip to
find plans in a known and/or previously unseen athm quicker is, therefore,
rejected in the case of the controlled experimewblving the code fragments.
However, it can be concluded that the improvemanthe ability of the treatment
group to correctly identify the algorithm which thHeagment belongs to is not
significant.

Table 5-14 lists for each question in Experimenth€ proportions of each type of
description given by participants in each groumglwith the p-values from)@?-test

for the equality of proportions. In eagfitest the expected frequency was 50%.

95

From Table 5-14 in can be concluded at the statedidence levels that the code
fragments in questions 1, 3 and 5 were better destiby the treatment group. In
this case “better” is described as more high I¢seiantic) descriptions and less low
level or incorrect descriptions (Section 4.4.3).

Description | Type of Frequency of Participants p-value

of plan for: | description | Treatment | Control | Expected
High Level 3 0

Question 1 | Low Level 4 4 3.5 0.05*
Incorrect 0 3
High Level 2 3

Question 2 | Low Level 5 2 3.5 0.175
Incorrect 0 2
High Level 5 0

Question 3 | Low Level 2 2 35 0.007**
Incorrect 0 5
High Level 3 1

Question 4 | Low Level 4 6 35 0.237
Incorrect 0 0
High Level 2 0

Question 5 | Low Level 5 1 3.5 0.005**
Incorrect 0 6
High Level 5 2

Question 6 | Low Level 1 3 3.5 0.270
Incorrect 1 2

* Significant where p<0.05, ** Significant whepzx0.01

Table 5-14 Number of high level, low level and ingeect descriptions

5.3 Qualitative Results

On completion of the last practical assignment muthe empirical study period, a
questionnaire (Appendix E) was circulated to tresattrgroup participantan(= 32).
The questions in the questionnaire are designetttermine the usability of BeReT
(Section 5.3.1), the perceived effectiveness of é3eRs a learning tool (Section
5.3.2), the students’ motivation towards code cahension activities (Section
5.3.3), and the functionality of BeReT (Section.$)3

5.3.1. Usability of BeReT

The following questions are posed to determinesiRBT is easy to use or not.
* Q1 determines whether BeReT is easy to use,
* Q2 and Q4 determine whether students can completeridls and Exercises

without human intervention,

96

* Q6 determines if students can perform all requstegs (apart from Tutorials and
Exercises) in BeReT without human intervention,

* Q16 determines if students experience any unexgecters in BeReT.

* Q17 is an open-ended question to determine theenafuhe errors experienced
in Q16.

Table 5-15 shows the number of positive and negatgponses of the 32 treatment

group participants that completed the questionnaigpected frequencies are given

in brackets in the p-value column.

Question | Positive | Negative| Expected | »* | p-value

Frequency
Q1 31 1 16 28.130.000**
Q2 32 0 16 32| 0.000*f
Q4 32 0 16 32 | 0.000*F
Q6 23 9 16 6.13 0.013%
Q16 6 26 16 12.5 0.000%
Q17 Open Ended

* Significant where p<0.05, ** Significant whepx0.01

Table 5-15 Questions to determine ease of use

From Table 5-15, it can be concluded at the statmufidence levels that BeReT

tutorials and exercises are easy to use withougtasse (Q1, Q2, Q4, and Q6).

Question 16, however, reveals there are some pngbtbat need to be fixed. A
theme-based analysis of the open-ended questitowiof Question 16 identifies a
bug in the Exercise component of BeReT. Exampparses for Question 17 are:

“While attempting an exercise, the system cladeat clicking ‘Next Task’.

“Sometimes an exercise was unavailable, even thdbgven’'t completed it yet.”

5.3.2. Perceived effectiveness of BeReT as a learning tool

The following questions are posed to determine ti@students perceive their own

progress when using BeReT.

* Q7(a-c) and Q8(a-c) addresses students’ perceptitheir understanding of the
three algorithms before and after BeReT interventio

* Q9 to Q12 concentrates on the perceived benetiests will get from BeReT

intervention. The perceived benefits include:

97

o BeReT makes program generation easier (Q9),

o BeReT aids understanding of the plans used ingorigim (Q10),

o BeReT makes recognition of an unseen algorithm siithlar plans easier
(Q11), and

o BeReT makes tracing the algorithm easier (Q12).

Table 5-16 shows the number of positive and negatgponses of the 32 treatment
group participants that completed the questionnaire

Question Positive| Negative Expected X p-value
Frequency

Q7a 10 22 16 4.5 0.034*
Q7b 8 22 16 8 0.005**
Q7c 4 28 16 18 0.000**
Q8a 30 2 16 24.5 0.000**
Q8b 29 3 16 21.3 0.000**
Q8c 20 12 16 2 0.175
Q9 23 9 16 6.13 0.013*
Q10 25 7 16 10.13 0.001**
Q11 23 9 16 6.13 0.013*
Q12 8 24 16 8 0.005**

* Significant where p<0.05, ** Significant whepx0.01

Table 5-16 Questions to determine perceived effeetiness of BeReT as a learning tool

From Table 5-16, it can be concluded at the statedidence levels that students
perceive BeReT to have a generally positive effectheir learning of the algorithms
studied. A consequence of the positive attitugeatds the treatment tool is that no
conclusion can be drawn with regards to the impatte Hawthorne effect of using a
novel tool in teaching (Section 4.5.2). No conuscan be made with regards to the
effect BeReT had on students’ understanding ofirtsertion Sort algorithm (Q8c).
BeReT also had no perceived positive effect onesttg] ability to perform a trace on
the algorithms studied (Q12).

5.3.3. Motivation towards code comprehension activities

The following questions were posed to determine howtivated students are to
perform code comprehension activities in additmidde generation activities.

98

e Q13 and Q14 determine if students would use BeReT future code
comprehension activities,

« Q20 and Q21 captures the atmosphere in the comials@ratory during practical
assignments,

« Q22 determines the motivation of students to perf@rogram comprehension

tasks before program generation tasks without sieeofi a tool such as BeReT.

Table 5-17 shows the number of positive and negatgponses of the 32 treatment

group participants that completed the questionnaire

Question Positive| Negative Expected v p-value
Frequency

Q13 27 5 16 15.13 0.000**

Q14 28 4 16 18 0.000**

Q20 31 1 16 28.13 0.000**

Q21 27 5 16 15.13 0.000**

Q22 16 16 16 0 1

* Significant where p<0.05, ** Significant whepx0.01

Table 5-17 Questions to determine motivation towarslcode comprehension

From Table 5-17 it can be concluded at the stavefidence levels that students have
a positive attitude towards using BeReT for codenmehension tasks (Q13 and
Q14). There is also a clear indication that BeRe&mulates critical discussion about
the algorithms amongst students and between tlerstsiand the tutor/lecturer (Q20
and Q21) during practical assignments. No conciusian be made regarding the
motivation of students to perform code comprehengesks prior to a practical

assignment without BeReT (Q22).

Two open-ended questions (Q18 and Q19) were pasetbtermine the perceived
advantages and disadvantages of using BeReT. rAatieanalysis of the responses
to the open-ended questions of Q18 revealed thdeantages, namely BeReT
tutorials enhances comprehension, BeReT exeraiags dtudents to think fast and
BeReT allows for self paced studying. Three disativges also emerged from the
thematic analysis of Q19, namely BeReT is inacbéssit home, there is restricted

functionality in BeReT, and system errors in BeRéider progress.

99

As can be seen from the list of disadvantageseméhof restricted functionality in
BeReT emerges as one of the disadvantages. Quéstis an attempt to address this
disadvantage by allowing the students to suggestdtifonality they would like to see
included in BeReT. The following are some of thggestions from the open ended
questions given by students to improve BeReT stianality:
“Allow Exercises to be marked for immediate feedbac
“Include an animation screen to visualise the exicuof each plan”,
“Provide a comparison view of different ways of @stng the same plan”,
“Show arrows to link beacon description with copesding lines of code”,
“Allow stepping through code, showing memory staigarious points”,
“Allow selection of lines during Completion Exeress.
These suggestions form a basis for subsequentaesisf BeReT (Section 6.4).

5.4 Conclusion

Class tests, controlled experiments and a questimnmvere used to collect data to
determine whether BeReT increases the studentityalbi recall the semantics of an
algorithm(R6) and enables students to successfully transfer lauge(R7).

Three class tests contribute data used to meakeresftect BeReT has on the
treatment group. The students’ level of compreilmenss tested for the three
algorithms used in the study, namely bubble sartary search, and insertion sort.
Recall, complete and comprehension type questiorsuaed to determine the
students’ development on the knowledge level ofoBits taxonomy. Results of a
pooled-variance, two-tailed t-test for testing loé difference between average marks
obtained in class tests show statistically sigaificvariations in the averages between
the two groups (Table 5-3). The average markscfamprehension, recall and
complete questions are all in favour of the treangroup. It can, therefore, be
concluded that the following hypotheses are regecte
Ho.1 Students using BeReT do not perform than the @logtoup better
in terms of accuracy on code comprehension question
Ho. Students using BeReT find recalling the entireodigm and
adapting to any changes in problem scenario moffecdlt.
Ho.3 Students using BeReT are less accurate than titeotgroup when
completing a partial algorithm.

100

This implies that BeReT does indeed increase tligyabf students in introductory

programming to recall the semantics of an algori{R®).

Results of a Chi-squared test for testing of thapprtion of students who obtained a
pass mark in comprehension questions asked in @otled experiment (involving
known plans in an unseen algorithm) show no skegissignificance (Table 5-7). It
can, therefore, be concluded th#f, Students using BeReT are less successful than
the control group in the discovery of known plamgiieviously unseen algorithman

not be rejected.

A Chi-squared test for testing the proportion afdeints who successfully identified
plans within a benchmark of 10 seconds shows Heatreatment group identified the
plans significantly quicker than the control gro@able 5-10). It can, therefore, be
concluded thaHp s Students using BeReT takes longer than the cogitooip to find
plans in a known and/or previously unseen algoritgmcker is rejected. The
rejection of Hps implies that BeReT partially increase the abildly students in

introductory programming to transfer knowledge lains between algorithn{R7).

It is not possible to reject hypothedty s Students using BeReT do not exhibit
evidence of using beacon recognition and chunkitgnwvstudying a previously
unseen algorithm An inspection of the notes made by students wdtadying an
algorithm for the first time shows tracing to beetfavoured technique used by

students.

Chi-squared tests to determine the equality of @rtigns of positive versus negative
responses were used to verify statistical signifteaof the data collected by means of
a questionnaire. The Chi-squared test statistims fthe questionnaire reveal that
despite one or two system errors identified in BER&e students find the system
easy to use. They also perceive BeReT to be actefe learning tool. Results also
indicate an increase in the motivation of studeatdiscuss the algorithm with their

peers and to ask critical questions about the ilfgor

The results of the empirical investigation, therefa@womplete the body of evidence to

show that BeReT supports all seven requirementsprofram comprehension

101

identified in Chapter 2. It can, therefore, beaaded that incorporating a tool, such
as BeReT, into the introductory programming modaée be of benefit to the

students.

The evidence in favour of BeReT shows that a teldgical support tool based on
beacon recognition and chunking will add benefihdorporated into the introductory
programming module. The following chapter conchidihis dissertation and
contributes a plan for the incorporation of BeReWoithe teaching model of

introductory programming in the Department of CS&ISNMMU.

102

Chapter 6 Conclusions and Recommendations

6.1 Introduction

The difficulties facing students in introductoryogramming prompted investigations
into modifying the teaching model to improve studparformance and pass rates.
The primary goal of this dissertation is to deterenthe effect of an experimental
technological support tool on the in-depth code p@hension of students in an
introductory programming module. An analysis ofie®as cognition models of expert
programmers during in-depth code comprehensionategebeacon recognition and
chunking as the techniques commonly used to bui&l mental model of expert

programmers during code comprehension.

An experimental Beacon Recognition Tool (BeReT) waseloped to train students
in chunking and the identification of programmingalbons in source code. BeReT
was developed to meet the requirements derivechapter 2. After BeReT was used
for training, the students were assessed to deterthe impact of BeReT on their in-

depth comprehension of introductory programming@aigms.

This chapter concludes the dissertation by examitiie research done (Section 6.2)
and proposing a methodology for incorporating BeRethe teaching model of an
introductory programming module (Section 6.5). Tingitations (Section 6.3) and

possibilities for future research are also addiegSection 6.4).

103

6.2 Research achievements

The achievements of this research are apparerdnaganents of both theoretical and

practical contributions.

Theoretical contributions are:

* A derived list of requirements to support in-deptmprehension of introductory
algorithms (Chapter 2), and

 An experimental design which incorporated the udean eye-tracker to

supplement performance results (Chapter 4).

Practical contributions are:

« An evaluation of existing technological support I$oousing the derived
requirements to support in-depth comprehension ntfoductory algorithms
(Chapter 3), and

* Results of the investigation to determine the impat an in-depth code

comprehension tool (BeReT) in an introductory pamgming module (Chapter 5).

Each of the above-mentioned contributions addeeaekisting body of knowledge on
code comprehension in introductory programming.is Thesearch also resulted in a
peer reviewed article presented at the 2007 SAI@BHference and published in the

conference proceedings (Appendix J).

6.2.1. Theoretical contributions

An investigation into the mental model of expertognammers during code
comprehension established beacon recognition andkahg as techniques used by
expert programmers when trying to comprehend dlyos (Section 2.2). This
analysis of the behaviour of expert programmersvalé as an overview of various
techniques used by educators to aid their studentheir code comprehension
activities (Section 2.3) resulted in a list of regments for a tool to support program

comprehension in introductory programming (TablE) 6-

Chapter 2 also acknowledged that any study invglvan comparison of the

achievement of students in a module requires aoddthr assessing their knowledge.

104

Bloom’s taxonomy is presented as a comprehensohnigue for assessing student’s
knowledge on a variety of levels. This taxonomyaapted to assessing code
comprehension for the purpose of this study (Secf2od). The scope of this

investigation is limited to the first two levels d@loom’s taxonomy, namely

Knowledge (Section 2.4.1) and Comprehension (Se&id.2).

The in-depth comprehension requirements derive€hapter 2 (Table 6-1) were
derived from an investigation of expert program poehension(R1, R2and R3),
techniques used by educators to aid program coraps&m in introductory
programming(R4 and R5) and educational objectives evident in Bloom’s texaoy
(R6andR7).

Requirements to support in-depth comprehension adlgorithms

R1| Allows student to extract semantic information (@afrom worked example

R2| Promotes the use of chunking to learn an unfamaligorithm

R3| Coaches students to spot beacons in differentidigos

R4 | Provides students with syntactically and semanyicalrrect worked examples

R5| Engages students in active learning activities

R6| Increases ability to recall the semantics of aortigm

R7| Enables students to successfully transfer knowledge

Table 6-1 Requirements to aid the in-depth comprehssion of introductory algorithms

BeReT (Figure 6-1) was designed and implemented specifically satisfy
requirementf1l — R5(Section 3.4).

The tutorials in BeReT present students with aorélygn and explain plans used in
the construction of the algorithifiRl). The exercises in BeReT provide the same
algorithm, and students must show their knowledgthe® plans implemented in the
code (R1). Chunking (R2) and beacon recognitiofR3) are the predominant
techniques to assimilate the plans. Any syntdtyicand semantically correct
algorithm can be loaded by the lecturer, in anygmmming languaggR4).

Exercises engage students in active learning &e8YR5).

105

" BeReT - [Example 1] E]@E]
g X

Bl File Administration Help -

Program Description | Explanation of Example

This sorts using This is the bubble sart Example Number
Bubble Sort algorithm._ It uses swap
alot. 10of1
& k3
& View Program Output | Assaciation View
Program Code

| Bubblesortarray. java |

45 swap(index, index-1); A,

46 ‘)

47 numsorted++:

48 T

43 ¥

g0

£1 private void swap(int indexA, int indexB)

52 {

o= [swap] (Line 1 of 3)

54 numbers[indexA] = numbers[indexE];

55 [swap] (Line 2 of 32)

56 ¥

57 i

58 T el

< | 3|

Usemame; ChRoMNoTeRm (Super User)

Figure 6-1 BeReT Tutorial

Evidence of the support provided by BeReT to ineeestudents’ ability to recall the
semantics of an algorithrfR6) and the support in BeReT to enable students to
successfully transfer knowledgR7) is not immediately apparent in BeReT’s design
and implementation. Empirical data is requiredptovide evidence in support of
these requirements. The empirical study is, tloeeefused to provide evidence of
student comprehension of the algorithms stu¢f®) and the ability of the students to
transfer the knowledge gained in the tool to futpregram comprehension activities
(R7).

Chapter 4 focused on the methodology used in thestigative study to collect the
necessary empirical data. The investigative stk place in the context of the
learning environment of the introductory programgnimodule in the Department of
CS&IS at NMMU. Various materials were developedd ansed during the
investigative study. In order to ensure data iBdvand usable for deliberation,
Chapter 4 presented a plan to analyse the datsstaaidgies to address the risks
associated with the study. The methodology inc@tea the use of an eye tracker to
collect metrics other than time and accuracy tessshe performance of students
(Section 4.3.5).

106

Studies of program comprehension rarely incorpothte use of eye-tracking to
enhance understanding of programmer behaviour i(®ect.3.5). Cognitive
processes during reading tasks are mostly dong tsamniques such as think-aloud
protocols and observational studies, and studemipoehension are mostly assessed
using performance measures such as accuracy aed3iection 4.3.4). In this study,
eye-tracking visualizations such as scanpaths aedt Imaps suggest further
confirmation of the accuracy and time taken to fimaswers to comprehension
guestions (Section 4.3.5).

6.2.2. Practical contributions

Chapter 3 employed the requirements in Table 6-dnasvaluation tool to investigate
from available literature a subset of represengatiategories of tools in order to
determine their level of support for these requeata for in-depth code

comprehension.

Existing Tools
=
T
E
@
85 o a)
> 2z 2|3 1L
< Ol ¥ Ol o
T W= oo W
S e K S ¥| o
52 >
Z
|_
O <
) @
Requirement 0
R1 Allow students to extract semantic information (@pfrom v v s v
worked example
Promotes the use of chunking to learn an unfamiliar
R2 : X v
algorithm
R3 | Coaches students to spot beacons in differentidigos X v
R4 Provide students with syntactically and semantyoadirrect vixlv s v
worked examples
R5 | Engage student in active learning activities VI iV VIV IVv]IVY
R6 | Increases ability to recall an algorithm v Vi ?
R7 | Enable students to successfully transfer knowledge VI v |v]?
Legend
v Requirement is supported
X Requirement is not supported
No entry Inconclusive evidence in available litara in support of requirement

?

Determined by means of an empirical investigaidhapters 4 and 5)
Table 6-2 Comparison of support for algorithm compehension evident in various tools

107

This comparative study of support tools used bycatius identified tools that meet
most requirements (Table 6-2), except for requirgsi®2 (Promotes the use of
chunking to learn an unfamiliar algorithm) aR8 (Coaches students to spot beacons
in different algorithms) specifically. An experimtal support tool (BeReT) was
designed and implemented with specific supportrémuirementsR1 — R5 This
research has therefore shown that the list of reqénts can be used as a measuring
instrument to evaluate existing technological suppmls that can be used for code
comprehension in introductory programming (Sec®a8). The lack of support for
the requirement$R2 and R3) prompted the design and implementation of BeReT.
An investigative study to find evidence in suppéot requirementsR6 and R7
showed that students who used BeReT to study thlgarithms (binary search,
bubble sort and insertion sort) performed signiftbabetter on code comprehension
questions than the students that relied on pernpapé+ exercises (Table 6-3).

Ref | Assessment Performance| Treatment Control p-value | Requirement
No. | Measure
1 éztce;z?lgg:rggrk Bubble Sort 56% 44% 0.0169* R6
2 | Average mark Bubble Sort 0 0 o R6
ComprehensiomE32) o5% 35% 0.0003
® | Seareh Rocalle3) 41% 2% | oooury
4 | Average mark Binary R6
Search Comprehension 61% 42% 0.0004**
(n=32)
5 | Average mark Insertion 0 0 o R6
Sort Completern=32) 56% 39% 0.0005
6 | Average mark Insertion R6
Sort Comprehension 43% 27% 0.0002*%
(n=32)
7 | Known Algorithm Plan 0 completed R6 &
Identification Time (=7) V?/it‘;ﬁ;”f(')e;ee‘i within 10 | 0.014* | Partially R7
sec

* Significant where p<0.05; ** Significant whepx0.01
Table 6-3 Overview of significant results from invetigative study

Students that used BeReT also found recalling antpteting algorithms much easier
(Ref No. 1, 3 and 5). The empirical data showed situdents that used BeReT find
answers to comprehension questions quicker in kredgaorithms (Ref No 2, 4 and 6)

(Table 6-3). Students in the treatment group pEdormed the task of identifying a
known algorithm from beacon like code fragmentsckei than the control group

(Ref No. 7).

108

Scanpaths and heat maps generated from eye trag&iagevealed the students that
studied with the help of BeReT suggest evidenceplah knowledge and beacon
recognition. The eye tracking images showed thasd¢ successful students spent
little time reading irrelevant sections of codeganstead focused mostly on known
programming plans used in previously unseen algost (Figure 6-2). They were
also able to identify these plans quicker than shalents that did not use BeReT
during the training phase (Figure 6-3). Sincenirgy only differed in the treatment
group performing code comprehension exercises iReBeand the control group
performing pen-and-paper based code comprehengenciges, it can be concluded

that BeReT assisted in this improvement in perforrea

Question 1 Treatment Group Question 1 Control Group
1. public void SelectionSort(int[] List, int nrEl) 1. public void SelectionSort(int[] List, int nrEl)
25 //Precondition: List is an unsorted array of 2. //Precondition: List is an unsorted array of

integers with "nrEl” number of elements. integ th "nrEl” number of elements.

List is sorted in ascending s sorted in ascending

11\:,,,

() (b)

Figure 6-2 Scanpaths indicating plan discovery inmseen algorithm

109

Question 1 Treatment Group

Question 1 Control Group

1. public static void InsertionSort(int[] List, int nrEl) 1 B puhllcwﬁd lnsertlonSort(lnt [] TList, int nrip
2. { 2.
&
3. for (int x"f’li ¥ <= (nrEL "dt) ;li-xH) ' 3. for (inf” x -‘nrd - 1) ; x++)
4. insert(List([x], List, x); L B 1ﬂe:ﬁiLLs’% ,l I.:.;%, x):& .
50 5, r 'i-fﬂh- :
6. i oo . - -'|| - a. L]
7. publig static void insert(int NewOne, int[] SortedList, int - L £ g Tgg ded ‘E mnevﬁne int [] SortedList, int
Sorted nrEl) LI a * «'.
8. 3 . W. . fcl o 4
L Yl 1 s o EwOne', Sortediisyg, Sorted nrEl); ’ w143 aportedlist, qrte (nrEl) ;
J—" -=§-- &dﬁstf Do: d_ﬁrEl),' - —tT Bee v 1 Sori:&d ng
L] . = s
1 g &) i L
s = - =
ad. .t - 8 T .-.-ﬂ..&'_ . o
14. pmiglic statlc int findP ewOneml‘u.nm] SortedlList, int 14. publnc%tmc .x.nt-f:ﬂ: !ﬁxﬁ: NewOne, int[] SortedList, int
Sopted Z#E1) P = -4 Sorted nrEl) . e
15. { .] 15. { "
16. int x; L 16. _u% x; Lol
17. M for (x = 0; x <=sSorted nrEl-1; x++) 17. for (x = H‘ x <—u8cﬂ'ted nrEl-1; x++)
18. o 18. { "o
19. af (NewOne <= SortedList [x]) 19. if (NewOne <= Snrted].i:t [x1)
20. - return x; 20. return x;
21 } % ﬁ: 21. } . .
22. return x; 22. return x;
23.) 23) -n LT : a%g
24. - o
25. public static void:nnve’l‘okight(int pos, int[] SortedList, int | ?atlc'dcb Fughthnt posp in€]' Sorgedl,)!sf.lnt
Surted_anl) - an -
26. { u a . 26 c g - =
23 for (?nt x = Szx.;tad_nrfll,' x >= (pos + 1); x--) 'g’l ‘ Ql‘qg ; ﬂ(E'h ‘-"m x-=)
28. (g 5 ﬂd'.“
29. Sﬁit‘euﬂ.igt[x] = SortedList[x - 1]; i e 1st[x]w-= eedh'ﬁ [x - 11;
30. } - .
31.) A 31)
(a) (b)

Figure 6-3 Heat Map indicating beacon recognitionn known algorithm

6.3 Limitations of research

The limitations of this research are related to lthreted exposure to the treatment

tool, system errors in BeReT, limited informatia@garding which lines of code are

regarded by experts as beacons for comprehensierintitations imposed by eye-

tracking and insufficient data to draw accurate cbasions on one aspect of the

Hawthorne effect.

The training period employed in the current invgetion only spanned three weeks.

This limited exposure to BeReT could inhibit thetmation of students from using

chunking and beacon recognition during code congrsion after the treatment

period concluded. Lack of discussion around tipéctof code comprehension during

lectures could possibly further exacerbate thelprob

Apart from the limited exposure, the time spenBeReT was further hampered by

errors in the software. Although BeReT is fullynétional according to the initial

requirements, the biggest problem manifested itgsb#n multiple users accessed the

exercises at different times. This problem wasalisred only after the treatment

period started and negated the self-paced natuBeReT. Students had to start each

110

exercise together, otherwise the exercise was rechdkom the list of possible
exercises as soon as someone completed an exefdigeexercises had to be reset
every time somebody accidentally opened and cl@e@xercise before everyone
started, resulting in a loss of student resporsegércises already completed.

Due to the scope of the current investigation, @inthie exercises supported in BeReT
was not used. The lack of following a rigorous rapgh to determine exactly which
lines of code are deemed beacons in the chosenthige meant that thBefine a
Beaconexercise was not yet used to its full potenti@his exercise possibly has the

potential to train students better in the skilbekcon recognition.

Due to the nature of the experiments involving trgeking, only a small subset of
both groups could participate. The small sampiessif=7) for the controlled
experiments result in a limit of the applicationfafmal statistical testing for some of

the results obtained during these experiments.

One aspect of the Hawthorne Effect identified as dffect of using a novel tool in
teaching is not effectively measured in the curiamestigation. The impact of this
effect is unknown. The limitations identified ihi¢ section give an indication of

future research directions.

6.4 Future research

Reasons for students not displaying a tendencyrtismasing beacon recognition and
chunking when studying an unseen algorithm can ryestigated. Experiments

similar to the current investigation can be perfednbut over a longer treatment
period. The training period in the current invgation was only three weeks due to
logistical reasons. A controlled experiment whgredtudents have to use any
technique they feel comfortable with to study asaen algorithm containing known

plans revealed only one treatment group participdwat used some technique
promoted in BeReT (Section 5.2.2). This reluctateaise chunking and beacon
recognition can possibly be attributed to the sleposure students have had to
BeReT. The lecturer used tracing as the predorhioamprehension technique

during lectures. It is, therefore, reasonablesguae that tracing will be the preferred
technique used by students when confronted by aaaeimalgorithm. This preference

111

for the tracing technique can also be creditedhto dmall amount of contact time
students had with BeReT as well as the lack of iexplalternative code

comprehension skills covered in lectures.

The effect of formally including the topic of codemprehension in lectures should,
therefore, also be investigated. Part of thedevielip investigations should include

the exercise typeDefine a Beacomnot used in the current study.

To make the best possible use of tefine a Beacortype BeReT exercise, an
investigation into what specifically can be constik as beacons in introductory
programming algorithms should be conducted. Itersvisaged that such an
investigation could possibly involve the study oxperts in the eye-tracking
laboratory to determine where their focus is duraogle comprehension activities.
The expert programmers could be given a number ifferent introductory

programming algorithms to study and a comparison théir answers to

comprehension questions and their visual attertbard reveal insights into what can

be considered as beacons.

The study of expert programmers should include taddil algorithms not used
during this investigation. The results of the euatrinvestigation only concluded on
the effect of BeReT on algorithms typically taughiring introductory programming.
The effect of BeReT on algorithms of different siznd complexity would further
focus the proposal for incorporating BeReT in thaching model of an introductory
programming module. The effect of BeReT was meabs@gainst pen-and-paper-
based comprehension exercises in the current stullyfollow-up study can be
conducted that compares BeReT against other fofmisterventions, for example,
additional lectures or peer-led learning exerciséhe current investigation only
included data with regards to the transfer of (laawledge to the comprehension of
unseen algorithms with known plans. Data to detegnthe effect of BeReT on the
transfer of plans to code generation exercisesdc@$o follow. Subsequent
investigations could also determine the effect eRBT on the cognitive development
of the students on the application, analysis, sgithand evaluation levels of Bloom’s

taxonomy (Section 2.4).

112

Further investigations into the effect of BeReTthe comprehension of introductory
programming should include a proper usability studyBeReT. This study can
determine how students of varying experience leaald academic ability interacts
with BeReT. The questionnaire completed by treatnggoup participants further
identified the following features students wantunied in BeReT:

» Allow exercises to be marked for immediate feedback

* Include an animation screen to visualise the exacutf each plan,

* Provide a comparison view of different ways of asimg the same plan,

* Show arrows to link beacon description with cormsping lines of code,

* Allow stepping through code, showing memory statisgarious points,

» Allow selection of lines during completion exer@se

Future revisions of BeReT could also include feadurot necessarily requested by the
students, but which proved to be successful intiegiscode comprehension tools.
Incorporating visual cues associated with conttolcsure diagrams would be one
example of a feature that could add value to BeR&&action 2.3). This could aid
control flow navigation, which in turn has the paial of improving in-depth code
comprehension (Section 2.2.3). Recall that prognars following a top-down model
of code comprehension typically start by generatiggotheses about an algorithm,
and then search for beacons to confirm their hygs®bk (Section 2.2.2). Adding
functionality into BeReT to record hypotheses gatezt by students would provide
additional data that could help with an investigatinto the students’ mental model
while reading algorithms. This functionality obahg hypotheses in BeReT can also

guide students when following the top-down modet@mde comprehension.

A feasibility study is required to determine whiohthese features are possible to
implement in the current version of BeReT. Thigdgtcan incorporate the use of the
eye-tracker and other formal usability equipmentétermine how students use and

interact with BeReT.

6.5 Incorporation of BeReT into introductory programmin g

The significantly positive effect BeReT has on stud’ comprehension of

introductory algorithms (Table 6-3) necessitatgsr@osal for the incorporation of

113

BeReT into the teaching model of introductory pesgming at NMMU. The

proposal focuses on the selection of algorithmetatde in BeReT.

While program generation is the most appropriatbrigjue for teaching and learning
programming, arguments can be made in support efbdnefits of incorporating
explicit program comprehension activities (Chagdier Currently, in the introductory
programming module in the Department of CS&IS at MW program

comprehension activities are limited to the indtbudracing algorithms, prior to a
code generation practical assignment (Section 4.BeReT is an attempt to
incorporate explicit interactive program comprehe@msctivities into an introductory

programming module.

After initial exposure to an algorithm, students asually required to read the code
for general understanding. Since this requireystematic reading approach, it is
proposed that BeReT tutorials and exercises shirstdfocus on how the algorithm

implements various plans (Section 2.2.1). Theiahitutorial should include a

formulation of the problem, steps towards a sofufar the problem and an example
of the final solution in a relevant programmingdaage (Section 2.3). A guide for
the lecturer explaining how to set up a tutorialBeReT appears in Appendix H.
Subsequent tutorials and exercises can then fatuseacon recognition in a variety

of similar algorithms (Section 2.2.2).

Based on the theory reported on in this investigastudy, the following set of
criteria may be used when selecting algorithmstfeatment in BeReT (Chapters 2
and 3):

* The algorithms exhibit a fine balance between sicitgland complexity.

* The algorithms contain constructs mastered bytidests.

» The algorithms contain stereotypical plans usdtdiffierent algorithms.

* The algorithms contain beacon-like statements.
1. The algorithms exhibit a fine balance between simpity and complexity.

The lecturers involved in all years of programmisfould investigate which

algorithms students experience the most problentis. wiror example in this study,

114

the insertion sort, in particular, was identifieg students to be a difficult one to
comprehend (Section 5.3.2). The ultimate goalhef investigation should be to
derive a list of algorithms (on all year levels stiidy) suitable for treatment in
BeReT. The simplicity of the selected algorithmsthhe current investigation is
derived from the fact that they are not full-scaddtware applications. BeReT would
not be a suitable tool for comprehension of suchelscale applications, since no
functionality for visualisation of control flow odata flow typically found in code

comprehension tools for such large scale applinafiexists in BeReT.

2. The algorithms contain constructs mastered by thetsdents.

It is assumed that students using BeReT should ableast mastered the constructs
used in the algorithms presented in BeReT. ShBeldeT, for instance, be used to
comprehend worked examples during the initial weekghe first semester, the
algorithm selected must not contain looping corts$rif they have not been covered
yet (Section 2.2.2). Moreover, it must still bevestigated whether BeReT has a
significant positive effect if the algorithm seledtis small. Adhering to standardized
programming conventions would structure the algamitin a familiar way for the

students, which would aid plan discovery (Sectich2).

3. The algorithms contain stereotypical plans used idifferent algorithms.

One of the aims of BeReT is to develop a repositdrglans in students’ long-term
memory that they can transfer between differenpritigms (Section 2.2). This
knowledge must also be readily available duringgpaimn generation exercises. It is
obvious that BeReT will only be successful in tlyeal if suitable plans are
implemented in the selected algorithm. BeReT takorshould be used to visually
show students how the plans are implemented andéBeRercises should be used to

assess their knowledge of the plans in each algor{Section 3.4).

4. The algorithms contain beacon-like statements.

This criterion assumes knowledge of exactly whithtesnents can be regarded as
lines of code that can be regarded as beacons. cUinent investigation relied on
experience of educators and the limited literapneviding insights into which lines

are considered beacons by experts to apply theriom (Section 2.2). It is suggested

115

that a more rigorous analysis of introductory pamgming algorithms be conducted to

determine which lines of code can be classifiedezgons.

6.6 Summary

A lack of explicit code comprehension activitiesidant in the introductory
programming module in the Department of CS&IS at MM gave rise to an
investigation into changing the teaching modelnidude a support tool that focuses
on code comprehension. A literature review of codmprehension performed by
expert programmers, techniques used by educatoasdtcode comprehension and
Bloom’s taxonomy of educational objectives resuliied list of requirements for a
code comprehension tool. These requirements wsed to collect evidence from
available literature for a single technological pom tool that supports all the
requirements. The lack of existence of such a @ugpol resulted in the design and
implementation of an experimental tool that suppa@it requirements (BeReT). It
was clear from a heuristic evaluation of BeReT thaheets requiremerRl — R5
(Table 6-4), but more investigation was neededottect evidence in support for two
requirements that are not immediately evident endsign of BeRe[R6 andR7).

An empirical investigation successfully determireeaignificantly positive effect of
BeReT on the in-depth comprehension of algorithman introductory programming
module. The results of the empirical investigateamtribute to a body of evidence
that proves the incorporation of BeReT in an ini@dry programming module is
beneficial in respect of the following:

* BeReT increases the ability of students to reballsemantics of an algorithm,

e BeReT enables students to successfully transfen plaowledge between

algorithms.

116

Requirements to support in-depth comprehension ohitroductory
algorithms

BERET
Supporting
Evidence

R1 | Allows students to extract semantic informatiora(ys) from worked exampleg v/ <
R2 | Promotes the use of chunking to learn an unfamaligorithm v ‘2
R3 | Coaches students to spot beacons in differentitigus v 2
R4 | Provides students with syntactically and semanicairrect worked examples v/ o
R5 | Engages student in active learning activities v @
R6 | Increases ability to recall an algorithm v | = o
R7 | Enables students to successfully transfer knowledge v °

Table 6-4 Support for algorithm comprehension evidet in BeReT

This dissertation contributes a proposal for theorporation of BeReT into the
introductory programming module in the DepartmehtC&&IS at NMMU. The

theoretical and practical contributions of thise@€h offer educators in introductory
programming an alternative way of incorporatinggeean comprehension skills into

their teaching model.

117

References

ALA-MUTKA, K. (2003): Problems in learning and té¢ang programming.
http://www.cs.tut.fi/~edge/literature_study.p@fate Accessed: June 2005

APPLIN, A.G. (2001): Second Language Acquisition &51: Is * = = *?2ACM
SIGCSE Bulletir33(1):174 - 178

AREIAS, C.M. and MENDES, A. (2006): ProGuide: Adlngue-Based Tool To
Support Initial Programming Learning. Broceedings 3rd E-Learning
Conference — Computer Science Educat@oimbra, Portugal.

ASCHWANDEN, C. and CROSBY, M. (2006): Code Scagrftatterns in Program
Comprehension. IRroceedings of the 39th Hawaii International Coefaze on
System Sciencgsauai, Hawalii.

ASTRACHAN, O., BERRY, G., COX, L. and MITCHENER, @L997): Design
Patterns: An essential component of CS Currical&rbceedings 28th SIGCSE
Technical Symposium on Computer Science Educdttsh- 160

BARTELS, M. and MARSHALL, S.P. (2006): Eye Tracgiimsights into Cognitive
Modelling. InProceedings ETRA 2006an Diego, California. 141 - 178

BEDNARIK, R., MYLLER, N., SUTINEN, E. and TUKIAINENM. (2006): Program
Visualization: Comparing Eye-Tracking Patterns withmprehension Summaries
and Performance. IRroceedings 18th Workshop of the Psychology of
Programming Interest GroypJniversity of Sussex. 68 - 82, ROMERO, P.,
GOOD, J., CHAPARRO, E.A. and BRYANT, S. (eds).

BEDNARIK, R. and TUKIAINEN, M. (2006): An eye-tr&;ng methodology for
characterizing program comprehension processéxoceedings of the 2006
symposium on Eye tracking research & applicatjden Diego, California. 125 -
132, ACM Press

BEN-ARI, M. (2001): Constructivism in Computer Suie EducationJournal of
Computers and Mathematics in Science Teachfd):45 - 73

BLOOM, B.S. (1956)Taxonomy of Educational Objective®avid McKay Co.

BOYLE, T. (2003): Design principles for authoringndmic reusable learning objects.
Australian Journal of Educational Technolo§y$(1):46-58

BROOKS, R. (1983): Towards a theory of the compnsi@ of computer programs.
International Journal of Man-Machine Studi&8(6):543 - 554

BROWN, M.H. (1988): Exploring algorithms using BAASI. IEEE Compute1(5):14
- 36

BRUMMUND, P. (2001): The Complete Collection of Algthm Animations.
http://www.cs.hope.edu/alganim/ccdast updated: 26 June 2001, Date
Accessed: May 2006

BUCK, D. and STUCKI, D.J. (2000): Design early colesed harmful: graduated
exposure to complexity and structure based ondesetognitive development.
SIGCSE Bulletir82(1):75 - 79

BUCKLEY, J. and EXTON, C. (2003): Blooms' TaxonamyFramework for Assessing
Programmers' Knowledge of Software System®rceedings 11th IEEE
International Workshop on Program Comprehensibéb

118

BURNSTEIN, I. and ROBERSON, K. (1997): Automatedu@king to Support Program
Comprehension. IRroceedings 5th International Workshop on Program
Comprehensiard0, IEEE Computer Society

CALITZ, A.P. (1997): The Development and Evaluatafra Strategy for the Selection
of Computer Science Students at the Universityast Blizabeth. Doctoral
Thesis. Department of Computer Science and Infoom&ystems, University of
Port Elizabeth. Port Elizabeth, South Africa.

CARBONE, A. and KAASEJLL, J.J. (1998): A Survey of Methods Used to Evaluate
Computer Science Teaching.Pnoceedings Information Technology in
Computer Science Educatiddublin, Ireland. 41 - 45

CHAN, P.S. and MUNRO, M. (1997): PUI: A Tool togort Program Understanding.
In Proceedings IEEE 5 th International Workshop ondg?amn Comprehension
192-198

CILLIERS, C.B. (2004): A Comparison of ProgrammiXgtations for a Tertiary Level
Introductory Programming Course. Doctoral the®epartment of Computer
Science and Information Systems, UPE. Port Elittabe

CILLIERS, C.B., CALITZ, A.P. and GREYLING, J.H. (B8): The effect of integrating
an iconic programming notation into CS1 Rroceedings of the 10th annual
SIGCSE conference on Innovation and technologpmnpeiter science education
Caparica, Portugal. 108 - 112, ACM Press,
http://doi.acm.org/10.1145/1067445.10674D&te Accessed: May 2006

CLANCY, M.J. and LINN, M.C. (1999): Patterns aneldagogy. IrProceedings 30th
Technical Symposium on Computer Science Educdtiew Orleans, Louisiana,
United Stated. 37 - 42

COOK, C., BREGAR, W. and FOOTE, D. (1984): A Prehary Investigation of the use
of the Cloze Procedure as a Measure of program fdtadeling Information
Processing & ManagemeB0(1 - 2):199 - 208

CREWS, T. and ZIEGLER, U. (1998): The Flowchatempreter for Introductory
Programming Courses. Proceedings 1998 Frontiers in Education Conference
Tempe, Arizona.

CROSBY, M.E., SCHOLTZ, J. and WIEDENBECK, S. (2002he roles beacons play
in comprehension for novice and expert programnmeBroceedings of PPIG
Brunel University, UK14:58 - 73, 3. kuLJis,L.B.R.S. (ed)

CROSBY, M.E. and STELOVSKY, J. (1990): How do wadelgorithms? A case study.
Computer23(1):24 - 35

CROSS, J.H. (1998): The Control Structure DiagramOverview and Initial
Evaluation.Empirical Software Engineering(2):131 - 158

CROSS, J.H., HENDRIX, T.D. and BAROWSKI, L.A. (2002Jsing the debugger as an
integral part of teaching CS1. Rroceedings 32nd ASEE/IEEE Frontiers in
Education Conferengdoston, Massachusetts.

CS&IS (2006a): WRA101 (Algorithmics 1.1) Module @si Port Elizabeth, Department
of Computer Science and Information Systems, NMMU.

CS&IS (2006b): WRA102 (Algorithmics 1.2) Module @ei Port Elizabeth, Department
of Computer Science and Information Systems, NMMU.

CURTIS, B. (1981): A Review of Human Factors Reskam Programming Languages
and Specifications. ACM Press:212 - 218

119

DE BARROS, L.N., DOS SANTOS MOTA, A.P., DELGADO, X.and
MATSUMOTO, P.M. (2005): A tool for programming leang with pedagogical
patterns. IfProceedings 2005 OOPSLA workshop on Eclipse teoggol
eXchangeSan Diego, California. 125 - 129

DEIMEL, L. and NAVEDA, J. (1990): Reading Compufograms: Instructor's Guide
and Exercise€ducational Materials CMU/SEI-90-EM-®ennsylvania.

DRAPER, S.W. (1997): Integrative evaluation: An egieg role for classroom studies
of CAL. http://www.psy.gla.ac.uk/~steve/IE.htinhst updated: 12 July 2006

ELY, M., VINZ, R., DOWNING, M. and ANZUL, M. (1999)0On Writing Qualitative
Research: Living by WordsFalmer Press.

ENGEBRETSON, A. and WIEDENBECK, S. (2002): Novammprehension of
programs using task-specific and non-task-specditstructs. IProceedings
IEEE 2002 Symposia on Human Centric Computing Laggs and
Environments11

EVANS, D., GUTTAG, J., HORNING, J. and TAN, Y. (18P LCLint: a tool for using
specifications to check code. Rroceedings ACM SIGSOFT Foundations of
Software EngineeringNew Orleans.

FITZGERALD, S., SIMON, B. and THOMAS, L. (2005):tr&tegies that students use to
trace code: an analysis based in grounded theoBroceedings 2005
international workshop on Computing education resbaSeattle, WA, USA. 69
- 80, ACM Press

FIX, V., WIEDENBECK, S. and SCHOLTZ, J. (1993): Nal Representations of
Programs by Novices and ExpertsPiroceedings ACM CHI 93 Human Factors
in Computing SystemAmsterdam, The Netherlands. 74 - 79, ASHLUND, S.
MULLT, KEVIN, HENDERSON, AUSTIN, HOLLNAGEL, ERIK AND
WHITE, TED (ed)

FORD, L. (1993): Interactive learning and researghwith visualizations. Technical
Report 274. University of Exeter. atlas.ex.ac.uk

GARNER, S. (2000): A Code Restructuring Tool téphecaffold Novice Programmers.
In Proceedings International Conference in Computendadion (ICCE)

GARNER, S. (2002): The learning of plans in prognaing: A program completion
approach. IiProceedings of the International Conference on Qatens in
Education 2:1053 - 1057

GARNER, S. (2003): Learning Resources and TookiddNovices Learn
Programming. IrProceedings Informing Science & Information Tecbgyl
Education Joint Conference (INSITB)ori, Finland. 213 - 222

GARNER, S., HADEN, P. and ROBINS, A. (2005): Mygram is correct but it doesn't
run: a preliminary investigation of novice prograemsi problems. IiProceedings
of the 7th Australasian conference on Computingation Newcastle, New
South Wales, Australi@2:173 - 180

GIANNOTTI, E. (1987): Algorithm animator: a toolf@rogramming learningsIGCSE
Bulletin 19(1):308-314

GREYLING, J.H. and CALITZ, A.P. (2003): The Implemtation of a Computerised
Placement Battery for First Year IT CoursesPhoceedings "8 International
Conference on Science, Mathematics and Technoldggafion East London,
South Africa.

120

GUZDIAL, M. (1994): Software-Realized Scaffolding Facilitate Programming for
Science Learningnteractive Learning Environmen#g1):1 - 44

HARRIS, N. (2005): Beacon Recognition Tool. Honotireatise. Computer Science
and Information Systems, University of Port ElizibePort Elizabeth.

HARRIS, N. and CILLIERS, C. (2006): A Program Beadecognition Tool. In
Proceedings 7th International Conference on InfalioraTechnology Based
Higher Education and Training, 2006. (ITHET '0&)timo, New South Wales,
Australia. 216 - 225

HENDRIX, D. and CROSS, J.H. (2002): Effectivenet€ontrol Structure Diagrams in
Source Code Comprehension ActivitidSEE Transactions on Software
Engineering28(5):463 - 477

JEFFRIES, R. (1982): A comparison of the debuggselgaviour of expert and novice
programmers. lfProceedings American Educationa/Research Assooiatimual
meeting

JENKINS, T. (2002): On the difficulty of Learning Program.
http://www.ics.heacademy.ac.uk/Events/conf2002/mktmlLast updated:
2002).

JOHNSON, W.L. and SOLOWAY, E. (1984): PROUST: Krledge-based program
understanding. IRroceedings 7th international conference on Soféwar
Engineering Orlando, Florida, United States. 369 - 380

KIMURA, T. (1979): Reading before Composition.Anoceedings of the tenth SIGCSE
technical symposium on Computer science educatibh62 - 166, ACM Press

KOENEMANN, J. and ROBERTSON, S.P. (1991): Expedipem solving strategies
for program comprehension. Rroceedings SIGCHI conference on Human
factors in computing systems: Reaching throughrtelciyy, New Orleans,
Louisiana. 125 - 130, ACM Press

LAHTINEN, E., ALA-MUTKA, K. and JARVINEN, H.-M. (2@5): A study of the
difficulties of novice programmers. Proceedings 10th annual SIGCSE
conference on Innovation and technology in compstegnce educatign
Caparica, Portugal. 14 - 18, ACM Press

LARSON, H.J. (1974)introduction to Probability Theory and Statistidaference 2nd Edn,
Wiley International Edition

LETOVSKY, S. (1986): Cognitive processes in prog@mprehensiorEmpirical
studies of programmefs8 - 79.

LISTER, R., ADAMS, E.S. FITZGERALD, S, FONE, W, HABR, J, LINDHOLM, M,
MCCARTNEY, R, MOSTROM, J.E., SANDERS, K, SEPPALA, SIMON, B,
THOMAS, L (2004): A multi-national study of readimand tracing skills in
novice programmers. SIGCSE BULLETIN 36(4):119 - 150

MATHIS, R.F. (1974): Teaching debuggir§fGCSE Bulletirg(1):59 - 63

MAYER, R.E. (1981): The Psychology of How Novicesdrn Computer Programming.
ACM Computing Surveyis3(1):121 - 141

MCCRACKEN, M., ALMSTRUM, V, DIAZ, D, GUZDIAL, M, HAGAN, D,
KOLIKANT, Y.B., LAXER, C, THOMAS, L, UTTING, I, WILUSZ, T (2001): A
multi-national, multi-institutional study of assessnt of programming skills of
first-year CS students. ACM SIGCSE Bulletin 33(2p% 180.December 2001.

121

MCDONALD, P. and CIESIELSKI, V. (2002): Design akgtaluation of an Algorithm
Animation of State Space Search Methdgismputer Science Education
12(4):301 - 324

MCTIGHE, J. and SEIF, E. (2003): A Summary of Urigeg Theory and Research
Base for Understanding by Desidiebraska Association for Supervision and
Curriculum Development (ASCD) Jourrid

MENDES, A. and MARCELINO, M. (2006): PESEN - A Vial Programming
Environment to Support Initial Programming LearniingProceedings
CompSysTech' 2006- International Conference on @tenisystems and
TechnologiesVeliko-Turnovo, Bulgaria.

MILLNER, J. (2002): Bitesize Revision.
http://www.bbc.co.uk/schools/gcsebitesize/desigtaynscontrol/workingwithsys
temsrev3.shtmlast updated:

MOSEMANN, R. and WIEDENBECK, S. (2001): Navigatiand comprehension of
programs by novice programmers.Aroceedings 9th International Workshop on
Program Comprehensioi oronto, Canada. 79 - 88

MULLER, H., TILLEY, S., ORGUN, M., CORRIE, B. and ADHAVJI, N. (1992): A
reverse engineering environment based on spativisnal software
interconnection models. roceedings Fifth ACM SIGSOFT Symposium on
Software Development Environmenigson's Corner, Virginial7:88 - 98, ACM
Software Engineering Notes

NAPS, T., EAGAN, J. and NORTON, L. (2001): JHAVEn&nvironment to Actively
Engage Students in Web-based Algorithm VisualizetidACM SIGCSELQ9 -
113

NAPS, T.L. (2005): JHAVé Supporting Algorithm Vidiration. IEEE Comput. Graph.
Appl.25(5):49 - 55

NETER, J., WASSERMAN, W. and WHITMORE, G.A. (1998)pplied Statistics4th
Edn, Allyn and Bacon.

O’BRIEN, M.P. (2003): Software Comprehension — AsfRer & Research Direction.
Technical Report UL-CSIS-03-3. University of Lingdk. Ireland.

PANE, J.F. and MYERS, B.A. (1996): Usability issureshe design of novice
programming interfaces. Technical Report CMU-HG11®1. Human-Computer
Interaction Institute.

PARSONS, H.M. (1974): What happened at HawthoBogencel 83922 - 932

PENNINGTON, N. (1987): Comprehension strategiegrogramming. IrProceedings
Empirical studies of programmers: Second Worksi®g - 112, OLSON,
S.A.S. (ed) Ablex Publishing Corp.

POZNYAKOFF, S. (2005): GNU cflowhttp://www.gnu.org/software/cflow(Last
updated: 2006/11/24).

122

PRETORIUS, M.C. (2005): The Added Value of Eye kiag in the Usability
Evaluation of a Network Management Tool. MasterssBrtation. Department of
Computer Science and Information Systems, Nelsonddla Metropolitan
University. Port Elizabeth.

RAJLICH, V. and COWAN, G.S. (1997): Towards Stami$afor Experiments in
Program Comprehension. Rroceedings IEEE International Workshop on
Program Comprehensigibearborn, Ml, USA.

RAJLICH, V. and WILDE, N. (2002): The role of caqts in Program Comprehension.
In Proceedings International Workshop on Program Caghpnsion271 - 278,
IEEE Computer Society Press

RENKL, A. (1997): Learning from worked-out examplésstudy on individual
differencesCognitive Scienc2ll - 29

RIST, R.S. (1986): Plans in programming: defimtidemonstration and development.
In Proceedings First Workshop Empirical Studies ofgPaonmers Norwood,
N.J. 28 - 47, Ablex Publishing

ROBBILARD, M., COELHO, W. and MURPHY, G. (2004): Moeffective developers
investigate source code: An exploratory stUBEE Transactions on Software
Engineering30(12):889 - 903

SCANLAN, D. (1988): Should short, relatively complalgorithms be taught using both
graphical and verbal methods? Six replicati@&CSE Bulletin@0(1):185 - 189

SHIH, Y.-F. and ALESSI, S.M. (1993): Mental modelwd transfer of learning in
computer programmingournal of Computing in Educatid?6(2):154 - 176

SHNEIDERMAN, B. (1982): Control Flow and Data Sttuie Documentation: Two
ExperimentsCommunications of ACig85 - 63

SHNEIDERMAN, B. (1983): Direct Manipulation: A stdgeyond Programming
LanguageslEEE Computed 6(8):56 - 69

SHNEIDERMAN, B. and MAYER, R. (1979): Syntactic/Santic Interaction in
Programmer Behavior: A Model and Experimental Rsslriternational Journal
of Computer and Information Scien&8):219 - 238

SOLOWAY, E. (1986): Learning to program = learntagconstruct mechanisms and
explanationsCommunications ACM9(9):850 - 858

SOLOWAY, E. and EHRLICH, K. (1984): Empirical Stedi of Programming
Knowledge lEEE Transactions on Software Engineer®ig-105):595 - 609

SOLOWAY, E. and WOOLF, B. (1980): Problems, plaasg programs. IRroceedings
of the eleventh SIGCSE technical symposium on Ceemgeience education
Kansas City, Missouri, United States. 16 - 24, AGMss

STASKO, J., BADRE, A. and LEWIS, C. (1993): Doalghm animations assist
learning? an empirical study and analysisPtaceedings INTERACT '93 and
CHI '93 conference on Human factors in computirggesys Amsterdam, The
Netherlands. 61 - 66

SWELLER, J. and COOPER, G.A. (1985): The use oke&drexamples as a substitute
for problem solving in learning algebi@ognition and Instructior2(1):59 - 89

TALJAARD, M (2003): Using E-learning to Support Bducation in a University
Environment: A Case Study Approach. Masters Diatiert. Department of
Computer Science and Information Systems, UniweddiPort Elizabeth. Port
Elizabeth.

123

THOMAS, L.A., RATCLIFFE, M.B. and THOMASSON, B.J2Q04): Scaffolding with
Object Diagrams in first Year Programming Clas§&ssne Unexpected Results.
In Proceedings 35th Technical Symposium on Computen&tcEducation
Norfolk, Virginia, USA.36

UPCHURCH, R. (1997): Program Comprehension. Comautd Information Science
Department, University of Massachusetts Dartmouth.

VAN GREUNEN, D. (2002): Formal Usability Testing biteractive Educational
Software: A Case Study Approach. Masters Dissertdtiesis. Department of
Computer Science and Information Systems, UniweddiPort Elizabeth. Port
Elizabeth.

VAN MERRIENBOER, J.J.G. (1990): Strategies for pagming instruction in high
school: Program completion vs. program generatfloarnal of Computing
Researcl6:265 - 285

VOGTS, D. (2006): A Simplified Programming LangudgeNovice Programmers.
Doctoral Thesis. Department of Computer Sciencklaformation Systems,
Nelson Mandela Metropolitan University. Port Ebegh.

VON MAYRHAUSER, A. and VANS, A.M. (1994): Programnderstanding: A Survey.
Technical Report CS-94-120. Colorado State Unityerg-ort Collins, Colorado.

WADDEL, K.C. and CROSS, J.H. (1988): Survey of émopl studies of graphical
representations for algorithms. Rmoceedings 1988 ACM sixteenth annual
conference on Computer scienédlanta, Georgia, United States. 696

WALENSTEIN, A. (2002): Cognitive Support in SoftveaEngineering Tools: A
Distributed Cognition Framework. PhD Thesis theSshool of Computing
Science, Simon Fraser University.

WALLINGFORD, E. (1998): Toward a First Course Basm Object-Oriented Patterns.
In Proceedings 27th SIGCSE Technical Symposium on @em@cience
Education 27 - 31

WARREN, P.R. (2003): Learning to Program: Spreads$) Scripting and HCI. In
Proceedings Southern African Computer Lectureroéiation

WIEDENBECK, S. and EVANS, N.J. (1986): Beacons ingfam Comprehension.
SIGCHI Bulletin18(2):56 - 57

WIEDENBECK, S., RAMALINGAM, V., SARASAMMA, S. and ORRITORE, C.L.
(1999): A comparison of the comprehension of obgented and procedural
programs by novice programmehsteracting with Computer$1:225 - 282

WIEDENBECK, S. and SCHOLTZ, J. (1989): Beacons kniishl Program
ComprehensiorSIGCHI Bulletin21(1):90 - 91

WILEY, D.A. (2003): Learning objects: difficultiemnd opportunities.
http://wiley.ed.usu.edu/docs/lo_do.{dddst updated:

WILSON, J., KATZ, I.R., INGARGIOLA, G., AIKEN, R.ad HOSKIN, N. (1995):
Students' use of animations for algorithm undeditamn InProceedings Human
factors in computing systep@enver, Colorado, United States. 238 - 239

YEH, C.L., GREYLING, J.H. and CILLIERS, C.B. (2006 framework proposal for
algorithm animation systems. Rroceedings 2006 annual research conference of
the South African institute of computer scientstd information technologists
Somerset West, South Africa04:155 - 163, South African Institute for
Computer Scientists and Information Technologists

124

YOUNG, P. (1996): Program Comprehension. Cemr&bftware Maintenance,
University of Durham.

125

Appendix A: Introduction to BeReT (Student Guide)

BeReT (short foBeaconRecognitionTool) is a programme that helps you recognise
and identify beacons in the source code.
stepwise abstraction of an algorithm in order rog@ify studying algorithms. You

It cap Bk used as a tool to create a

At

may be required to do any of the following thregety of tasks in BeReT:

Task Given What must be done

Complete | Beacon name and description Fill in mggsiource code that name and
description refers to

Match Beacon name and description ~ Select relevantce code lines tha
matches name and description

Define Code only Group statements together andyass

name and description to indicate higt

ner

level of operation of these statements

General Layout of BeReT Exercise screens

Before each task begins, an instruction page yellsabout the type of task that you

need to perform and lists the steps to completetdbks.

These instructions are

repeated at the top of the exercise screen, bunged not read that again if you are
familiar with the steps to complete each task.

From any exercise screen it is advisable that yalow the following steps in

sequence:

ogkrwbR

Read the description of the algorithm solved bydiierce code in area #4.
Look at the list of beacon names given in area #2.

Click on a beacon name to read a description ia #8e

Complete the required task in area #4.
Work through all the beacon names in area #2 (iDthe” appears next to all of

them. Keep an eye on the “Task Time” to compleéetask on time.

o

Click “Next Task” when you've completed all beaameimes.

Description of problem solved b
code in area ¢

Task instructions repeated from previous screen

8Ll Fils_administration
Program Description

The program reads
in data from the user

and data ff; text
file, col

marks

the nal

person

higher m

Type Defirition

consisting of a name,
student number, age
and mark.

®\

Beacon Description Jj !

Task Insi

| & requires you to type code that has been omitted
e omitted lines are highlighted in yellow.

ps to follow:
1. Click on a beacon in the list.

2 Read the beacon description

3. Type in the missing code in the yellow lines

tructions

Task 10of 2

LRI the "Nexdt Task bitton when woi have comnleted the cade for all the beacons

Proaram Code

List of beacon names identified in the source code

<<<<< INSERT CODE HERE 33353
<<<<< INSERT CODE HERE >35>
<<<<< INSERT CODE HERE »ammn

| « Define

performed here:

e Complete
e Match

Source code of algorithm; implemented in some
programming language. The following tasks will be

(+)

Description of beacon selected in area #2

Al

Complete missing code

1. Click on a beacon name in area #1.

2. Read the corresponding description in area #2.

3. Click on a line highlighted in yellow (in area #3)nd type in the missing line(s)
that matches the selected beacon name and desaripti

4. Press enter after each line is completed.

= BeReT - [Complete Type Definition]
8 File Administration

Program Description Task Instructions Task Time

The program reads [This task requires you to type code that has been omitted o 9:30
in data from the user These omitted lines are highlighted in yellow. B
and data from a test Next Task (5]
file, compares the Steps to follow:

marks and displays 1. Click on & beacon in the list.
the name of the 2. Read the beacon description
person with the 2. Type in the missing code in the yellow lines Task 10of2

higher marl.
|Click the "Nest Task! bitfon wihen woll have comnleted the code for Al the beacons »
Beacons Program Code
Type Definition

1 program F2qi;
H
3 {§APPTYPE CONSOLE}
a

5 uses
& Sysutilsy

(1)

Beacon Description
Defines a type called
TStudent as a record
consisting of a name,

studen er. age
and

Match Code to a Beacon

30
= function GetDatafronFile : TStudent:

Click on a beacon name in area #1.
Read the corresponding description in area #2.
Select the line(s) of code described by the narmdedascription in area #3.

Right-click on selected line and select “Associst¢ected lines with selected
beacon” from popup menu.

PwonNpE

A2

Appendix A: Introduction to BeReT (Student Guide)

8 Fie Adinistration

Program Description Task Instructions

This program [This task recuires you to match appropriate lines of code to a beacon
prompts the user for

an integer and Steps to follow:

Task Time

outputs whether the 1. Click on a beacon i the list M
integer s a prime: 2 Read the beacon description
number or not 3 Select the line(s) of code that the beacon describes

4. Right-click on the lines and select the Associate Selected lines Task10f3

with Selected Beacon option.

1 Wiew Program Output

Beacons

sk If Factor heckPrime.pas |
Get User Input i program primechecker;
Initialize For-Loop
is Prirme Function Hy
Output Result

Program Code

z
3 uses math;

4
s function isPrime(nurber : integer) i boolean
&

7 var
1 i integer;
E

10 begin

bi

12

EES for i i=2 to number-1 do

14 begin

15 if (number mod i = 0) then

16 result = false

17 else

result = true;

Beacon Description
This line of code tests
ifthe current loop
control variable is a
factor of the integer.

£ num : integer;

writeln("enter a number);
25 readingnum) ;

20 writeln(num,* is prime i ', isPrime(num));
e readin:

Beacon Definition

. Read the problem description that is solved byatgerithm
. Scan the code to understand what each individat#rsent does (area #2)

1

2

3. Select the lines of code you want to group together

4. Right-click one of the selected lines and click é&re New Beacon” on the popup
menu

5. Complete the details by entering a name and desgri@ppropriate for the
selected lines of code

Program Description Task Instructions Task Time

This sorts using

Bubble Sort 340

Define beacons for the following: .
Mext Task

* Define swap beacon
* Define output beacon
Some other beacon for sorting

Task 1 of4

T Wiew Program Qutput

Beacons Program Code

Bubblesortarray. java |

{ Beacon Details

For(int i = 0; 1 <= 9; i++)

1 MName
stem.out.printin(numbers [*

sy p C [}Swap

T

¥ Description

private void sortarray() This beacon indicates the

{ swapping of two numbers in an
int numSorted = 0; array
int index;
while(numsorted < 10)
{

for(index = 13 index < 10 - n
{
ifCnumbers [index] < n
swap (4 ndex, Tnd
]
Beacon Description o (Tt

[Mo Beacon Selected] 1

private woid swapint indexa, int indexg)

A3

Appendix B: Practical Assignments

The following notes were used to create BeReT Talorand Exercises for each
algorithm.

Bubble Sort Algorithm

procedure BubbleSort;
var

i : integer,;

sorted : boolean;

TheArray : array[1..7] of integer;
Begin

e S

for i:=1 to 6 do
begin
it TheArray[i] > TheArray[i+1] ~ then
begin
sorted :=f
Swap(TheArray[i], TheArray[i+1]);
end;
end;

End.

procedure Swap(var a, b :integer);

var

temp : integer;
begin

temp = a;

a:=b;

b := temp;
end,;

Bubble Sort Plans

1. Repeat until end of the list is reached.

b. Swap values if not sorted.
i. Make a copy of one value.
ii. Swap two values.
iii. Reinstate original value.

Bl

Binary Search Algorithm

procedure BnrySrch(Ar: Tarray; num: integer; var pos:
integer);
var
First, Mid, Last : integer;
Cur : integer;
Found : boolean;
begin
pos :=0;
Found := false;
First .= 1,
Last := 10000;

begin

Mid := (First + Last) div 2;
Cur := Ar[Mid];

if num=Cur then
begin
Pos := Mid;
Found := true;
end
else begin

else begin
First := Mid + 1;
end;

end;
end;
end;

Binary Search Plans

1. Find middle position in a list.
2. Store the value in the middle position in a temppxariable.
3. Compare the search value with the value in the laigdsition.
a. Ifitis the same, the value is found and the pasiteturned.

B2

Appendix B: Practical Assignments

Insertion Sort Algorithm

public static void InsertionSort(intﬁ List, int nr El)

{
for (int x = 1; X <= (nrEl - 1); x++)
insert(List[x], List, x);

}

public static void insert(int NewOne, int[] SortedL ist, int
nrEl)

{

int p
moveToRight(pos, SortedList, nrEl);
Sort

public static void moveToRight(int pos, int[] Sorte dList,
int nrEl)
{

for (int x = nrEl; x >= (pos + 1); x--)

SortedList[x] = SortedList[x - 1];

}
}

Insertion Sort Plans

1. Loop through unsorted list, and build a new soligdoy starting with a list of 1
element and inserting the next value in the unddisgin its proper place in the
growing sorted list.

t.

3. Starting from end of list, move elements one upl antelement smaller than element

to insert is found.

B3

Appendix C - Class Tests

Question 1: Recall Bubble Sort

Write a Bubble Sort Algorithm that sorts an unsoréeray of integers idescending
order. Hand in the answer sheet when you are done.

Question 2: Bubble Sort Comprehension

What data structure is used to store the data?

Which line compares two adjacent values in an &rray
What does line 12 do?

Under which condition would two adjacent valuesixapped?

N S

C1

Question 1: Recall Binary Search

Write a Binary Search Algorithm that searches forirdeger in anarray of integers
sorted indescendingorder. The algorithm will receive the array, thember of elements
in the array and the wanted number. It must retio@position of the wanted number in
the array, orl if the number is not found.

Question 2: Binary Search Comprehension

1. What data structure is used to store data of wipat

2. Under which condition(s) must the search continue?

3. What is updated when theanted_values less than the middle value?

4. What is updated when thveanted_valués greater than the middle value?

5. What happens when the first index is greater then last index? Under what
condition will this happen?

6. What data type should the variable in line 6 be?

7. Which line(s) is/are used to determine wherewtheted_valueccur in the list?

Cc2

Question 1: Insertion Sort Completion

Complete the partially complete algorithm. Fix amors that you can identify.

1. public static void InsertionSort(double[] Prices, nrEl)

2. {

3. for (int x = 0; x <= (nrEl - 1); x++)

4,

5. }

6. public static void insert(int NewElement, int[] SedList, int SortednrEl)
7. {

8.

9. moveToRight(the _pos, SortedList, SortedhrEl

10. SortedList[the_pos] =;

11. |}

12. | public static int findPos(int NewOne, double[] &uilList, int SortednrEl)
13. | {

14. double x;

15. for (x = 0; x <= nrEl-1; x++)

16. {

17.

18.

19. }

20. return Xx;

21. |}

22. | public static void moveToRight(int pos, doublefir&dList, int SortednrEl)
23. | {

24, for (int x = SortednrEl; x >= (pos + 1);)+

25. {

26.

27. }

28. |}

Question 2: Insertion Sort Comprehension

1. Write down in your own words what the following ¢ifs) of the Insertion Sort
Algorithm do.

a. Line 24 and 26

b. Line 20

c. Line4

d. Line 15, 17 and 18
Which line inserts an element in the appropriage@lin an array?
Which line(s) creates a space to insert a new eleimé a suitable position in an
array?
4. Which line(s) loops through the unsorted part efaray?

wn

C3

Appendix D — Controlled Experiments

Controlled Experiment A

Task 1: Paper-based (To determine technique(s) usea study an algorithm)
1.

2.

No Ok

Time taken:

Task 2: Eye-tracker 1 (To determine reading patterrwhen studying an
algorithm)

1.
2.

how

Time taken:

1.

3.
Q1. “Which line or lines exchanges (swaps) the entrvalue in the array, with the
smallest value in the unsorted part of the array?”
Correct answer: Lines 15, 16, 17

Participant answer:
Time taken:

Q2. “Which line or lines finds the index of the sl@st number in the array?

—+

Give a printout of the complete version of the Sgbm Sort to the participar
(Algorithm A.doc).
“Read the algorithm in the handout. You may madies and use any technigue
while determining the purpose of the algorithm.”

Take the algorithm and any additional notes madtnéyarticipant.
“Explain in your own words what the algorithm does.”

Record the response of the participant.

Explain the algorithm to the participant.

Inform participant that the eye-tracker experimeiit start and move over to the
observer side of the room.

:—F

Instruct participant to sit comfortably in front ttfe PC. Calibrate the participan
“I'm going to open the same algorithm on the scredrthe computer. Please
read the algorithm on the screen of the computeamiliarise yourself with the
code and try to determine how the code achievgtiads of the algorithm. Te
me when you are ready to answer five questionstaheuwalgorithm.”

Open Selection Sort.pps via VNC Viewer.

Create new data file in IViewX. Start a recordingtop the recording as soon|as
the participant indicates he/she is ready. Saua file as 01Study.idf in
participant folder. Show white screen in Select®ort.pps before asking each
guestion.

174

Task 3: Eye-tracker 2 (To determine ability to recgnise and use beacons)
“I will now ask you a set of five questions. Edohe | ask a question, please
study the algorithm on screen to find the answeyou didn’t understand or hear
the question, ask for a clarification. Let me knaiven you are ready to find the
answer. | will then show the algorithm and you séart scanning the code. As
soon as you have the answer, tell me the correspgnitie number.”
Perform the following steps for each question:

- Create new data file in IViewX.

- Read question. Ask if participant understoodjion.

- Show algorithm, start recording and stopwatch.

- When answer is given, stop recording, stop s&iplvand clear scree

- Write down answer. Write down time taken. Sdata file as

select_<question #>.idf in <Participant #>\ExBdlection Sort.

Ask the following questions:

—

D1

Correct answer: Lines 10, 12
Participant answer:
Time taken:
Q3. Which line or lines loops through the unsonpedt of the array to determine the
smallest value?”
Correct answer: Line 10
Participant answer:
Time taken:
Q4. “Which line or lines determines if the currarglue is smaller than the current
smallest value?”
Correct answer: Line 12
Participant answer:
Time taken:
Q5. “Which line or lines sets the position of tmeadlest value in the unsorted part |of
the array?”
Correct answer: Line 13
Participant answer:
Time taken:

Task 4: Paper-based (To determine ability to compte and debug code)
1. Hand out an incomplete version of Selection Sort@inplete Selection Sort.doa).
2. “Complete the algorithm in the handout. Fix anyaes that you can identify.”
3. Start stopwatch.
4. When participant is done, stop stopwatch and dolfecanswer sheet.
5
T

. Take a 5 minute break before the next experiment.
ime taken:

Controlled Experiment B

Task 1: Eye-tracker 1 (To determine retention of larning)
1. “I will now ask you five questions on an algorithyau've studied before. Earh
time | ask a question, study the algorithm on streefind the answer. If you
didn’t understand or hear the question, ask folaitication. Let me know when
you are ready to find the answer. | will show #igorithm and you can start
scanning the code. As soon as you have the anselleme the corresponding
line number.”
2. Perform the following steps for each question:
- Create new data file in IViewX.
- Read question. Ask if participant understoodjion.
- Show algorithm, start recording and stopwatch.
- When answer is given, stop recording, stop saiplvand clear screen.
- Write down answer. Write down time taken. Sdata file as
insert_<question #>.idf in <Participant #>\Exgri8ertion Sort.
3. Ask the following questions:
Q1. “Which line/lines calls a function to make spdor a new element in an array?
Correct answer: Line 10
Participant answer:
Time taken:
Q2. “Which line or lines calls a function to insexthnew element into a sorted array,
keeping it sorted?”
Correct answer: Line 4

D2

Participant answer:
Time taken:

Q3. “Which line or lines will return a position ithe array if the new value is higher
than all the values in the sorted list?”
Correct answer: Line 22

Participant answer:
Time taken:

Q4. “Which line or lines will loop through the ursed part of the array?”
Correct answer: Line 3

Participant answer:
Time taken:

Q5. “Which line or lines will loop through the sed part of the array and determine
a suitable position to insert a new element?
Correct answer: Lines 17, 19

Participant answer:
Time taken:

Task 2: Paper-based (To determine ability to compte and debug code)

1. Hand out an incomplete version of Insertion Sartdmplete Insertion Sort.doc)
2. “Complete the algorithm in the handout. Fix anyaes that you can identify.”
3. Start stopwatch.

4. When participant is done, stop stopwatch and colfecanswer sheet.

5. Take a 5 minute break before the next experiment.

Time taken:

Controlled Experiment C

“l am going to show you 6 code fragments, one tn@. Study them, then describe
in your own words what each code fragment doesi@ertify the one algorithm from
the list most likely to contain each fragment.

Code Fragment 1

for (x = 0; x <= nrEl-1; x++)

{
if (NewOne <= SortedList[x])
return x;
}
return x;

Function: Returning a position of a certain value in an arrliythe value is less than
the first value in an array, the loop will termieatlf the value is greater than all
values in the array, it will return the positioteafthe last value in the array.

The likely | Bubble Sort | Binary Search | Insertion Sort | Don’t know |
algorithm:

Time taken:

Code Fragment 2

mid_index = (first_index + last_index) / 2;
Function: We are calculating the middle position in an array.

D3

The likely | Bubble Sort | Binary Search | Insertion Sort | Don't know|
algorithm:

Time taken:

Code Fragment 3

if (TheList[m] > TheList[m+1])

{
sorted = false;
int temp = TheList[m];
ThelList[m] = TheListim+1];
TheListm+1] = temp;

}

Function: Two adjacent values will be swapped if they ardescending order in
relation to each other. The list should be soineascending order.

The likely | Bubble Sort | Binary Search | Insertion Sortf Don’t know
algorithm:

Time taken:

Code Fragment 4

/linsert() is a function that insert a new valu®ia sorted array, while keeping the
array sorted
for (int x = 1; x <= (nrEl - 1); x++)

insert(List[x], List, x);
Function: Scrolling through the unsorted part of an array iasdrting the first
element of the unsorted list in its correct positio
The likely | Bubble Sort | Binary Search | Insertion Sort | Don’t know |
algorithm:
Time taken:

Code Fragment 5

cur_value = List[mid_index);
if (wanted < cur_value)

last_index = (mid_index - 1);
Function: Updating the last position of an array to workhe first half when the
value being searched for is less than the valtieermiddle position of the array.
The likely | Bubble Sort | Binary Search | Insertion Sort | Don't know|
algorithm:
Time taken:

Code Fragment 6

for (int x = nrEl; x >= (pos + 1); x--)}{
SortedList[x] = SortedList[x - 1];
Function: Moving elements in an array one position to théatrig
The likely | Bubble Sort | Binary Search | Insertion Sort | Don't know |
algorithm:
Time taken:

D4

Appendix E — BeReT Questionnaire

Surname, Init Student Nr

1. BeReT is easy to use

Strongly Disagree Undecided Agree Strongly
disagree agree

2. Could you complet@utorials in BeReT without assistance

Can’t No Hardly Almost Yes
remember

3. If you did not answer “Yes” above, what createddifculty with Tutorials?

4. Could you complet&xercisesin BeReT without assistance

Can't
remember

No

Hardly

Almost

Yes

5. If you did not answer “Yes” above, what createddfigculty with Exercise®

6. What level of assistance did

you need throughout ysage of BeReT?

| Very low

| Low

Average

| High

| Very high |

7. Did you understand the following algorithisfore using BeReT?

Bubble Sort
Binary Search
Insertion Sort

Bubble Sort
Binary Search
Insertion Sort

Made it more

Not at all Very little Some of it | Well | Very welll Can’t remembel

Notatall Very litleSome ofit| Well | Very well| Can’'t remembet

Not at all Very little Some of it | Well | Very well| Can’t remember
8. Did you understand the following algorithmafier using BeReT?

Not at all| Very little Some of it | Well | Very well| Can’t remembe

Not at all Very littleSome of it | Well | Very welll Can’t remembe

Not at alll Very little Some of it | Well | Very well Can’t remembe
9. Did BeReT help programming the algorithms easi@mfscratch?

Made no Made some Made it easier| Made it a lot

difference difference easier

difficult

10.To what level do you think BeReT helped you to déretinderstand what certain
lines do in the code?

| Very low

| Low

| Average

| High

| Very high |

El

11.To what level do you think BeReT helped you to gguase an algorithm quicker
without knowing the name or function of the algomit?
| Very low | Low | Average | High | Very high |

12.To what level do you think BeReT helped you todréce. show the contents of
the variables at certain points) an algorithm neffectively?
| Very low | Low | Average | High | Very high |

13.Assuming BeReT was problem free; would you make _
use of it to gain a better understanding of algant? | Never | Sometimes| Always

14.Would you make use of BeReT if it immediatel)f Never | Sometimes| Alwayd
marked your answers and gave you feedback?

15.What other functionality would you like to see indéd in BeReT?

16.Did you ever run into any unexpected problems iRBE?

17.1f so, briefly describe the task (if possible) &eReT’s reaction.

18.What in your opinion is an advantage of using BeReT

19.What in your opinion is a disadvantage of using B8R

20.Did BeReT encourage you to critically analyse aisduks the cod g Yes | No |
in the given algorithms?

21.Did BeReT encourage you to ask questions aboultmeithms?

22.Would you have spent time studying the algorith@f®ke the
practical assignments without BeReT?

E2

D/496/05
ETHICS APPLICATION FORM

Appendix F — Human Ethics Application Form

‘ Nelson Mandela
& &2) Metropolitan
4 University

for tomorrow

NELSON MANDELA METROPOLITAN UNIVERSITY

APPLICATION FOR APPROVAL FROM NMMU RESEARCH ETHICS COMMITTEE (HUMAN)
(ETHICAL STANDARDS: RESEARCH PROTOCOL)

1. Any project, in which humans are the subjects of research, requires completion of this form and submission for
approval to the ETHICS COMMITTEE.

2. The faculty through the Faculty Research Committee and Head of Department should approve research
proposals before submission to the Ethics Committee.

3. Each faculty should have the primary responsibility for ensuring that human subjects used in social research in
their faculties are protected adequately by the application of the appropriate code applicable to the relevant
profession.

4, The application form, after being completed in typescript , to be handed in at the Department of Research
Management.

FOR OFFICE USE ONLY REF NO:

DEPARTMENT DATE RECEIVED

DATE SUBMITTED TO
THE RESEARCH
ETHICS COMMITTEE

DATE APPROVED BY
THE RESEARCH
ETHICS COMMITTEE

(HUMAN) (HUMAN)
AUTHORIZED
Chairperson of the
Research Ethics
Committee (Human)
1. GENERAL PARTICULARS
a) Name of principal investigator/researcher:
Mr Ronald George Leppan
b) Gender of principal investigator/researcher:
Male
C) Contact number of principal investigator/researcher:
504 2763
d) Type of research:

STAFF STUDENT
Multinational National Local Research Multinational National Local Research
[MN] [N] [LR] [MN] [N] [LR]
Undergraduate Honours Master's Undergraduate Honours Master's
[V] [H] M] [V] [H[M]
Doctoral Other Doctoral Other

[D] [O]

T

f) Funding

External Grant [E]

X | NMMU Research Grant [RG]

F1

D/496/05
ETHICS APPLICATION FORM

Privately Funded [P] | Not specifically funded [N]

If external funding, state source of funds:
NRF Development Grant

Are there any restrictions or conditions attached to publication and/or presentation of the study results?

None
Does the contract specifically recognise the independence of the researchers involved?
Yes
(Note that any such restrictions or conditions contained in funding contracts must be made available to the
Committee)
s)] Summary of research
0] What is the purpose of the research?

This study aims at finding a strategy (or strategie s) for code comprehension that is based on
techniques used by experts to trace code. Inanat tempt to bridge the gap between novice and expert
programmers, an emphasis is placed on technological tools to scaffold learner competence in using

these strategies to comprehend code.

(i) Briefly state the methodology and the procedure in which subjects will be asked to participate (attach
protocol)

The effect of the technological support tools are t 0 be determined by means of controlled experiments

to test student comprehension of known and unseen a Igorithms. Formal assessment in the form of
standardized tests and exams are also conducted and the results of comprehension type questions
extracted from these assessments. The effect of th e support tools on program comprehension will

also be determined by means of an eye tracker exper iment to gain a deeper understanding of the
cognitive processes of introductory programming stu dents during code comprehension exercises.
The data collected by the controlled experiment, th e standardized assessment and the practical
assignments will be interpreted and conclusions wil | be drawn from the analysis. Any data collected
from the participants during the controlled experim ent, the standardized assessment and the practical

assignments will be seen as strictly confidential a nd no names will be associated with the data.

Students in introductory programming (WRA102) will be randomly divided into two groups, a control
group and a treatment group. Both groups will atte nd the same lecture in the same venue at the same
time. During practical assignment periods, they wil | be split into two groups in different computer
labs. The control group will perform their practic al assignments as in the past. The treatment group
will be exposed to the experimental tool during thr ee practical assignments. Exposure to the
technological tool will thus be minimal (3 contact sessions out of a total of 28) with as little disru ption
of their normal practical activities as possible. The workload of the two groups will be balanced, wi th

no group expected to do more work than the other.

h) Name of the investigator/researcher (whether student or staff member) mostly involved in this project:

Ronald George Leppan

i) Name(s) of co-investigator/assistant researchers: Affiliation

F2

D/496/05
ETHICS APPLICATION FORM

)] Name(s) of supervisor/co-supervisor or promoter/co-promoter: Affiliation

Dr Charmain Cilliers Senior Lecturer — CS & IS Department
(Supervisor)

Ms Marinda Taljaard Lecturer — CS & IS Department
(Co-supervisor)

2. INFORMATION TO PARTICIPANT

a) What information will be offered to the participant before he/she consents to participate? (Append both the
written and any oral information given)

Informed Consent Form

b) Who will provide this information? (Give name(s) and state whether such a person is the principle investigator/
researcher, student, research assistant etc.)

Ronald George Leppan — Principle investigator

C) Will the information provided be complete and accurate?

ves [no

If NO, describe the nature and extent of the deception involved and explain the rationale for the necessity of this
deception. (If necessary, attach separate schedule)

3. TARGET PARTICIPANT GROUP

Answer If necessary, explain in space provided or
YES or NO | attach appendix
a) Are particular characteristics of any kind NO Specify the characteristics:
required in the target group? (e.g. age,
cultural derivation, background, physical
characteristics, disease status etc.)
b) Are participants drawn from NMMU YES
students?
C) Are participants drawn from specific YES Identify the group:

groups of NMMU students?
First—year Introductory Programming

students
d) Are participants drawn from a school NO Identify: (State whether pre-primary, primary,
population? secondary, etc.)
e) Are participants drawn from an institutional NO Identify:
population? (e.g. hospital, prison, mental
institution)
f) Will any records be consulted for NO Specify source of records:
information?
s)] Will each individual participant know his/her N/A State how these records will be obtained:
records are being consulted?
h) Are all participants over 21 years of age? NO If NO, state justification for inclusion of minors in
study:

Participants register for first year
programming typically a year after finishing
Grade 12.

F3

D/496/05
ETHICS APPLICATION FORM

State the minimum and maximum number of

participants involved

(Minimum number should reflect the number of Minimum 60 Maximum 120

participants necessary to make the study statistically

viable)

4, RISKS AND BENEFITS OF PROJECT

Answer If necessary, explain in space provided or
YES or NO | attach appendix

a) Is there any risk of harm, embarrassment NO If YES, specify:
or offence, however slight or temporary, to
third parties or to the community at large?

b) Are all risks reversible? N/A If NO, specify:

C) Are remedial measures available? N/A

d) Are alternative procedures available? N/A

e) Has the person administering the project NO Supervisor and co-supervisor have
previous experience with the particular risk experience with the risk factors involved in
factors involved? the study

f) Are any benefits expected to accrue to the N/A If YES, specify:
participant personally? (e.g. improved health, Identifying the benefits, if any, forms part of
mental state, financial etc.) the intended study

9) Will you be using equipment of any sort? YES If YES, specify:

Personal Computers
Eye tracking equipment

h) Will any article of property, personal or NO If YES, specify:
cultural be collected in the course of the
project?

5. CONSENT OF PARTICIPANTS

Answer If necessary, explain in space provided or
YES or attach appendix
NO

a) Is consent to be given in writing? YES If YES, attach consent form.

If NO, state reasons why written consent is not
appropriate in this study:

b) Are any participant(s) subject to legal NO If YES, justify:
restrictions preventing them from giving
effective informed consent?

C) Do any participant(s) operate in an NO If YES, state what special precautions will be
institutional environment, which may cast taken to obtain a legally effective informed
doubt on the voluntary aspect of consent? consent:

d) Will participants receive remuneration for NO If YES, state on what basis the remuneration is
their participation? calculated:

e) Do you require consent of an institutional NO If YES, specify:

F4

D/496/05
ETHICS APPLICATION FORM

authority for this project?

6. PRIVACY, ANONYMITY AND CONFIDENTIALITY OF DATA
Answer If necessary, explain in space provided or
YES or attach appendix
NO

a) Will the participant be identified by name in NO
your research?

b) Are provisions made to protect subject’s YES Specify: No names will be attached to any
rights to privacy and anonymity and to data, and for the most part data will be
preserve confidentiality with respect to data? gathered and analysed per group rather than

per individual.

C) Will mechanical methods of observation be YES A subgroup (16 participants) of the population
used? (e.g. one-way mirrors, recordings, will voluntarily participate in a special
videos etc.) assessment. In this assessment, unobtrusive

remote eye tracking equipment will be used in
a usability lab with two rooms separated by a
one-way mirror. Video and audio recording
will also take place.

d) Will participant’s consent to such mechanical YES
methods of observation be obtained?

e) Will data collected be stored in any way? YES If YES:

0] By whom? Dept. of CS & IS, NMMU

(ii) How many copies? Two, one for

analysis and one for backup.

(i) For how long? For the duration of the

study. (Expected completion time: December

2006)

(iv) For what reasons? Statistical Analysis

(v) How will participant’s anonymity be
protected? No names will be attached

to the data

f) Will stored data be made available for re- NO If YES, how will participant’s consent be obtained
use? for such re-usage?

s)] Will any part of the project be conducted on NO If YES, specify and state how consent of property
private property (including shopping owner is to be obtained:
centres)?

h) Are there any contractual secrecy or NO If YES, specify:
confidentiality constraints on this data?

7. FEEDBACK

Answer If necessary, explain in space provided or
YES or attach appendix
NO
a) Will feedback be given to participants? NO If YES, describe whether this is to be given:
0] to each individual immediately
after participation |:|
(i) to each participant after the

F5

D/496/05
ETHICS APPLICATION FORM

entire project is completed
(iii) to all participants in a group

setting |:|
(iv) other

]

Specify whether feedback will be written, oral or
by other means (attach your information)

b) If you are working in a school or other N/A If YES, specify:
institutional setting, will you be providing
teachers, school authorities or equivalent a
copy of your results?

8. STATEMENT ON CONFLICT OF INTEREST

The researcher is expected to declare to the Committee the presence of any potential or existing conflict of interest that
may potentially pose a threat to the scientific integrity and ethical conduct of any research. The Committee will decide
whether such conflicts are sufficient as to warrant consideration of their impact on the ethical conduct of the study.

Disclosure of conflict of interest does not imply that a study will be deemed unethical, as the mere existence of a conflict of
interest does not mean that a study cannot be conducted ethically. However, failure to declare to the Committee a conflict
of interest known to the researcher at the outset of the study will be deemed to be unethical conduct.

Researchers are therefore expected to sign either of the two declarations below.

a) As the principal researcher in this study MR RONALD GEORGE LEPPAN ..o, (name)
| hereby declare that | am not aware of any potential conflict of interest that may influence my ethical conduct
of this study.

9. ETHICAL AND LEGAL ASPECTS

The Declaration of Helsinki version 2000 to be included in the references.

10. DECLARATION

If any changes are made to the above arrangements or procedures, | will bring these to the attention of the Chairperson of
the Research Ethics Committee (Human).

SIGNATURE OF PRINCIPAL INVESTIGATOR/RESEARCHER DATE
SIGNATURE OF SUPERVISOR DATE
SIGNATURE OF HEAD OF DEPARTMENT DATE

Noted application

SIGNATURE OF CHAIRPERSON: FACULTY RESEARCH COMMITTEE DATE

F6

Appendix G: Controlled Experiment Protocol

Before the test:

Participant room check list:

Check that the room is neat and presentable.

Switch on the test pc.

Switch on the eye tracker.

Check eye tracker, video and audio cabling.

Test the Win cal software / check calibration p&in

Test the microphone.

Observer room check list:

Check that the room is neat and presentable.

Switch on the IView-X PC.

Switch on the equipment:
* Audio amplifier; Audio mixer; Video mixer;
* TV monitor; Camera boards.

Check video feeds for the IView-X PC and the TVmnitor.

Adjust the cameras as needed.

Test the microphone.

Setup the IView-X PC for the test.

When the participant arrives:

Check list:

Welcome the test participant.

Brief the participant.
e Introduce the observers.
* Show and explain the equipment to the participant.
» Explain the task process to the participant.
» Ask to give verbal comments after task completi@asordings).

The participant conducts a training task.

Subject calibration.

Conduct the test.
* Record video and audio.
* Record eye tracking data.
* Log participant activities.
* Save the data files after the test.

Debrief the participant.

Thank the participant.

Gl

After the test:

Check list:

Collect the test paperwork.

Put all the forms in a folder for the specificttparticipant.

Backup the saved data.

Have a brief session with the test team to cotlesir thoughts of the test.

Clear the participant room from any documental&fhbehind.

Setup the logging software for the next partictpan

End of the day:

Check list:

Have a brief review with the test team to sumnesifie day’s events.

Write the saved data to CD as an additional backup

Turn off the equipment.

Turn off the PCs.

Check that the room is neat and presentable.

Switch the lights off.

Lock the usability laboratory.

G2

Appendix H: Creation of Tutorials and Exercises inBeReT
(Lecturer Guide)

" BeReT - [Example 1]
ol File Administration Help
Program Description

This sorts using
Bubble Sort

alot.

=1 View Program Output

Explanation of Example

This is the bubble sort
algorithm_ It uses swap

EX

10f1

Example Number

2

|

Association View

45
46
47
43
43
50
51
52
53
54
5%
5E
57
58 I

I

numsorted++:

¥

private void swap(int indexA,

i

[5wap]

(Line 1 of 3)

Program Code

| Bubblesortarray.java |

swap{index, index-17;

int indexB)

numbers[indexA] = numbers[indexB];

[5wap]

(Line 2 of 3)

llsemame; ChRoMoTeRm {Super User}

Tutorials in BeReT consist of four main areas: paoy description, explanation of
example, program code and navigation informatidecturers have control over what
appears in the program description, explanatioexaimple and program code pages. In
the current investigation, the “program descriptipane is used to describe the algorithm
presented in the “program code” pane. It usuallytains a bulleted list of the plans used
in the algorithm. The “explanation of example” pas used to provide an example of
the parameters passed to the algorithm and thé fesault upon completion of the
algorithm. Using an example of what happens tarpat provided to an algorithm and
viewing the output is a subset of the tracing tégim used in contact sessions. The
BeReT “explanation of example” pane is set up is Way in order to provide some level
of familiarity for the student, since tracing itpredominant technique used to explain
algorithms in lectures.

H1

The “program code” pane contains the algorithm ttiet lecturer uploaded. The
algorithm can be in any language the lecturer psef&@he “navigation information” pane
contains buttons to navigate between exampleshatvs the number of the current
example and allows users to switch between thettarial modes. In “context view”,
learners see the beacon names in the context aotte Pointing to these lines brings
up a tooltip with the description of the semant@npbehind that line and clicking on it,
displays the inner workings of the code that acd@hes the plan. The association view
provides the same information as the context viéecturers have no control over what
happens in the “navigation information” pane. sltsuggested that students first use the
association view to learn about the plans impleetnt the code. The context view can
be used by students to test their knowledge ohtteal code and description of the plan
linked to the annotation. To test their undersiagaf various plans, they first view a
pseudo-code type annotation of the plan in cordgagtthen recall from memory what the
statement looks like that implements the plan Igkilg on the annotation. Students can
also test their knowledge of a high-level semadgscription by looking at either the
annotation or the implementation of the plan arehtpointing to the line to view the
tooltip with the description.

The type of tutorial created depends on what theiter wants to use the tutorial for. If
the students must learn about all the plans thmatiraplemented in the algorithm, the
tutorial should include descriptions and annotatifar each plan. If the lecturer wants to
focus on only beacon-like statements, descriptiand annotations for only these
statements should be included in the tutorial.

It is suggested that students start with a tutdmedbre attempting an exercise. Students
may be required to do any of the following threpety of exercises in BeReT: Complete,
Match and Define. These three types of taskswarersarised in Table 1.

Task Given What must be done

Complete | Beacon name and description Fill in mggsiource code that name and
description refers to

Match Beacon name and description Select relevants code lines that
matches name and description
Define Code only Group statements together angassi

name and description to indicate plan of
these statements

Table 1 Types of exercises in BeReT

H2

Appendix | — Eye-tracking images from Controlled

Experiments A and B

Experiment A

Q1. “Which line or lines exchanges (swaps) the entrvalue in the array, with th

smallest value in the unsorted part of the array?”

Correct answer: Lines 15, 16, 17

Question 1 Treatment Scanpaths

Question 1 Controlcanpaths

s public void SelectionSort(int[] List, int nrEl)
2. //Precondition: List is an unsorted array of

integers with "nrEl” number of elements.

List is sorted in ascending

H VO ® 9 o U0 »

public void SelectionSort(int[] List, int nrEl)

//Precondition: List is an unsorted array of
integers with "nrEl” number of elements.
//Posé?%‘fidijtion: Lis(gr)is sorted in ascending
otde:.‘m\““f\ i

Question 1 Treatment Heat Maps

Question 1 Control Hat Maps

a5z public void SelectionSort(int[] List, int nrEl)
25 //Precondition: List is an unsorted array of

integers with "nrEl” number of elements.

A //Postcondition: List is sorted in ascending

order.
4. {
5% int i, j, min, temp;
6.
1 for(i = 0; i <= nrEl-1; i++)
8. {
) min = i;
10. ".‘ for(j = i+l; j <= nrEl-1; Jj++)

-
11. { .« "
- -

12. #(List[j?- < List[min])
13. min = j;

s - w a“u
T .) =~ s

LT | .
15. temp = Lis}[i]:] hl,.“. " q
= s g

5. List[i] = List[min]; * %%
17« "®a List[min] = temp; -
18. }
1900F

12 public void SelectionSort(int[] List, int nrEl)
22 //Precondition: List is an unsorted array of

integers with "nrEl” number of elements.
3. //Postcondition: List is sorted in ascending

order.
4. {
S. int i, j, min, temp;
6.
7. for(i = 0; i <= nrEl-1; i++)
8. {
95 min @ i;
10. for(j @ i+l; j <= nrEl-1; 3+4)
11. { %

F 2 T |
12 1f(nq\(‘ 1% Lik%dmin])
13. s ‘ SR
-) L] - :
4. } P I
- .

15. te .#n 1].,
16. = FisglLil” ‘:ﬁﬂin]:
lﬂﬂn. Li?t[mw =atemp;
18. }
19. }

Q2. “Which line or lines finds the index of the dlest number in the array?

Correct answer: Lines 10, 12

Question 2 Treatment Scanpaths

Question 2 Controlcanpaths

a5l public void SelectionSort(int[] List, int nrEl)
2 //Precondition: List is an unsorted array of

integers with "nrEl” number of elements.

a0 //Posiuondition: List is sorted in ascending
order.

4. {

5. WY

6.

.

8. 2

9

) /'99

4.9 A v,
bt
3

Y ZSeD 01 Nakl
L)

public void SelectionSort(int[] List, int nrEl)
//Precondition: List is an unsorted array of

integers with "n ' number of elements.

//Postconditio Z%/}

st is sorted in ascending

order.

T O
ﬁ}jﬂ‘lvfu:;}gm)

15. temp = Lastii];

16. List[i] = List[min]; . ist[min]
17 List[min] = temp; 17° List[min] = temp;
18. } 18. }

19N 19.)

Question 2 Treatment Heat Maps Question 2 Control Hat Maps
a5z public void SelectionSort(int[] List, int nrEl) T public void SelectionSort(int[] List, int nrEl)
25 //Precondition: List is an unsorted array of 23 //Precondition: List is an unsorted array of

integers with "nrEl” number of elements. integers with "nrEl” number of elements.
3. //Postcondition: List is sorted in ascending a5 //Postcondition: List is sorted in ascending
order. order.
4. { 4. {
e int i, "’:min., sTemp ; 5 int i, j, min, temp;
6. * 6. 1. .
. o8 "
1k for(i = 0; i <= nrEl-1; i++) i for(iz= 0 i%= ﬁEﬂl—l: i++)
8. o1 . 8. { H
9. -‘\pin =4 9. ﬁﬂ:_n o
10. for(ja=wi+l; j <= nrEl-1; 3+ & - _J%;.’-P"pﬂ"f_?‘mﬁ-l: 344)
i, (?’ o T I
125 if (List[j] < List([min]) . i A gt [min])
13. min = j; St & 0 « "1;.-
14.) b, %
155 temp = List[i]; 15 t“r;= List[i];
16. List[i] = List[min]; 16. List[i] = List[min];
172 List[min] = temp; 178 List[min] = temp;
18. } 18. }
19. } LN 5}

Appendix | — Eye-tracking images from Controlledpgxments A and B

Q3. Which line or lines loops through the unsorpadt of the array to determine th

smallest value?”
Correct answer: Line 10

Question 3 Treatment Scanpaths

Question 3 Controlcanpaths

t(int[] List, int nrEl)

1 public void SelectionSo
2

//Precondition: 5 an unsorted array of

integers with "nrEl” number of elements.

//Postcondition:

List is sorted in ascending

175 List[min] = temp;

L)

12 public void SelectionSort(int[] List, int nrEl)

3 unsorted array of

elements.

Question 3 Treatment Heat Maps

Question 3 Control Hat Maps

a5z public void SelectionSort(int[] List, int nrEl)
2’ //Precondition: List is an unsorted array of

integers with "nrEl” number of elements.

3. //Postcondition: List is sorted in ascending
order.

4 {

S int i, j, min, temp;

6 L] Lot

7 for(i = 0; i <= nrEl-1; i+

8 fost

9 % " SRraming.i; .

e B LR
10 ‘-'l- g..mfo,'da?.:fln, j ® mEl ln..’qH)

1., (O WX "o
12. " " if(List[3] 7 List[minfy ‘
13. min = j;

14. }

155 temp = List[i];

16. List[i] = List[min];

175 List[min] = temp;

18. }

SO}

12 public void SelectionSort(int[] List, int nrEl)
2. //Precondition: List is an unsorted array of

integers with "nrEl” number of elements.

3. //Postcondition: List is sorted in ascending
order.

4. {

5= int i, j, min, temp;

6.

U for(f=0; 1t <2le1-1; i+

8. { it

9:u' "I’:&g'i.’ :l&h. g

1 . £ =2 i+1; u 1T 3++)

ST S il

1% . <t s';;h;* 185t [min])

13% : - ::n-j"

e S Al

5. . tenp:s Tast[i];

16. List[i] = List[min];

5 I Jis List[min] = temp;

18. }

e)

e

Q4. “Which line or lines determines if the currevalue is smaller than the curre

smallest value?”
Correct answer: Line 12

Question 4 Treatment Scanpaths

Question 4 Controlcanpaths

public void SelectionSort(int[] List, int nrEl)
//Precondition: List is an unsorted array of

integers with "nrEl” number of elements.

//Postcondition:

List is sorted in ascending

public void SelectionSort(int[] List, int nrEl)

//Precondition: List is an unsorted array of
P

int qﬁ{;h;:\i h "nr

//Pos

nber of elements.

is sorted in ascending

Question 4 Treatment Heat Maps

Question 4 Control Hat Maps

© ® 9 o U &

11%
12.
13.
14.
15.
16.
a by Jis
18.
L9

public void SelectionSort(int[] List, int nrEl)
//Precondition: List is an unsorted array of
integers with "nrEl” number of elements.
//Postcondition: List is sorted in ascending
order.

{

int i, j, min, temp;

for(i = 0; i <= nrEl-1; i++)

{

s pin = i;
.;'r(j = i+l; j <=_P'xal-1: j-t”

{ 5 .-ﬁﬁ_ an, e
if'u."jﬁ(.g_ % Ss£'Thin])

min = j;

}

temp = List[i];

List[i] = List[min];

List[min] = temp;

W W 9 o U &

117
12.
13.
14.
15.
16.
417
18.
L9

public void SelectionSort(int[] List, int nrEl)
//Precondition: List is an unsorted array of
integers with "nrEl” number of elements.
//Postcondition: List is sorted in ascending
order.
{
int i,=8, min, temp;
.
for(i = @lpieg= nrEl-1; i++)
(" =
i LI] L] -
- b!'.!rq,'!é"jw)
- .-

}
temp*l TR t (4] ;

= gend
List[if = List[min];

=
List[min] &= “temp;

Appendix | — Eye-tracking images from Controlledpgxments A and B

Q5. “Which line or lines sets the position of tmeadlest value in the unsorted part of t

array?”
Correct answer: Line 13

he

Question 5 Treatment Scanpaths

Question 5 Controlcanpaths

a5l public void SelectionSort(int[] List, int nrEl)

2. //Precondition: List is an sorted array of

integers with "nrEl” number of /2lements.

3. //Postcondition: List is s¢rted in ascending
4.

5 7 n,

6. % 7 %

Y 0 A4

8. /f‘% '

eyl

I N7

M/Z%
2,

mm?é%

—

Ty
k)
iy L %%?@) g

18. }
L)

£

12 public void SelectionSort(int[] List, int nrEl)

2, //Precondition: List is an unsorted array of

iumber of elements.

is sorted in ascending

/,A -

Aot

Question 5 Treatment Heat Maps

Question 5 Control Hat Maps

a5z public void SelectionSort(int[] List, int nrEl)
2’ //Precondition: List is an unsorted array of

integers with "nrEl” number of elements.

3. //Postcondition: List is sorted in ascending
order.

4. {

5= int i, j, min, temp;

6.

¥ for(i = 0; i <= nrEl-1; i++)

8. {

9 min = i;

10. for(j = i+l; j <= nrEl-1; j++)

alal {

12, if (LTst[§] < List[min])

137 min =o;"

14. }F - == bl

155 temp = List[i];

16. List[i] = List[min];

17 List[min] = temp;

18. }

19. }

12 public void SelectionSort(int[] List, int nrEl)
2. //Precondition: List is an unsorted array of

integers with "nrEl” number of elements.

3. //Postcondition: List is sorted in ascending
order.

4. {

5% int i, j, min, temp;

6.

02 for(i = 0; i <= nrEl-1; i++)

8. {

9. min = i?l.

10. for(j # 1; j <= nrEl;l; j++)

11. { - an

12" ; i)

13; iy v -

14. } o L

157 tenp_.: !ﬁil ;

16. Listi e ltksﬁnin] ;

17. Lisﬁmin] = temp;

18. }

e)

Appendix | — Eye-tracking images from Controlledpgxments A and B

Experiment B

Q1. “Which line/lines calls a function to make spdor a new element in an array?”
Correct answer: Line 10

Question 1 Treatment Scanpaths Question 1 Controlcanpaths

. public static void imsertionSort(inti) List, int nrEl)
B |

7T

2

3. for (int x = 1; x <= (nrEl - 1) x+r)
4. inser«(List[x], List, x);
5

6

7

'i‘]_?é ygx?'f%iﬂ‘m -

A cdList [gos] — Mewone ;

Question 1 Treatment Heat Maps Question 1 Control Hat Maps

1. public static void InsertionSort(int[] List, int nrEl) . public gt c#d InsertionSort(int[] List, int nrjl)

o : e A -

3. for (int x"ti'; * <= (nrEl 1) @x++) " 3. for (inffx -‘nz'lff - 1); x++)

54:) insert(List[x], List, x); " a. iﬂeﬁ:iﬁ _,-;.i;cd_x)ﬂ . .

6. . ofEa s e é’ - _.I

7. publig static void insert(int Newone, int[] SortedList, int e i) ipgNewgne, int[] SortedList, int
sortéd nrEl) s] an®fFa 2

8. (. e, - f oo H

o an = ﬁn@io me®, Sortedilisg, Sorted nrEl); Bl engue , ,SortedList qx‘te,nrtl)'
o . : ¥ - L o !

;f}.. o, poly afbist? eoiéa_l.xm); SRt 8ot sorted miel);

i] _ s1 prtes: bl ; %

129 } ., - a s .« e - S n @ Sk, = 29

14, . " o C . 3. " S -‘_'-?5#- . o

14. pwlic Static int findP ewolle} sinwf] SortedList, int 14. publicipeamicinemeit Tt Newone, int[] SortedList, int
Sopted 3eEl) ae = L Sorfed nrEl))

15. L] { H

16. int x; " X i x; 2, Mt

17. % for (x = 0; x <=sSorted nrEl-1; x++) for (x = D" x <=osdlifted nrEl-1; x++)

18. ("% i g

19. if (Newone <= SortedList [x]) if (Newone <= SortedList [x])

20. .ﬁ return E return x;

21.)) i .

22. return x; refurn x x

23.) . o e .

24. - Ms - 4.8 - Bf [rres

25. public static void%oveToRight(int pos, int[] SortedList, int 'Eu!eq; e “ght'@nttpug int r'ﬁfr!f:ﬁa.f‘m
Sorted nrEl) = nrE .28 & .

26. (. r < = : =

27. e YaEres sgrted nrEl; x >= (pos + 1); x--) int AR Y e ® sk PLN PR T S,

28. 2a

b

29. _s@_z'crfdm}t[xl = Sortedrist[x - 1]; LR LU ek x - 11;

30.) ") .

31.) FTI -]

Appendix | — Eye-tracking images from Controlledpgxments A and B

Q2. “Which line or lines calls a function to inseatnew element into a sorted arrgy,
keeping it sorted?”
Correct answer: Line 4

Question 2 Treatment Scanpaths Question 2 Controlcanpaths

RGN ;
e A [

7
oy
Y

7
AN
,/ga.lg%‘. Gael
A‘?;’gﬁv,“"'%é?

o)

2
7 @ @3 _/' S

e

7 < -1//

St St]

r ross,
14 ;s)u.b 5 73{{4‘#///’ int \ewoné ,
ort > 4‘.',,

15. { q
16.
7 ed nrEl-1; x++)
18. -
19. edu-t[vd)
20. :
21
22.
23.
24.
25 (int pos, int[] SortedList, int
26.
28 for<(int x = Sorted nrEl; x >= (pos + 1); x--,
28. {
29. SortedList[x] = SortedList[x - 1];
30. }
31.)

Question 2 Treatment Heat Maps

1. public .t.uuﬁm xa.x‘n-tmi _ﬂ't DrEL)
2., (sl = = %ﬂ [B !1 FRETY P
34" for® (A3 1. (ngEls Ty ; x+t) % 3 - 1); x+4)
> - s 7. -
1. . x S e n e L 21 d .
s .

5.) ady, 2 s =) . - P
6. o g " e . mf "'&
be public stapic velginiidetel k0 S is¢raint 7. 500 5 Bl nMu s ecthioe Yoy

“sortdfs nsy e Lo ~ X - el
8. e ?‘_ W, .2 8 F W -
0. & Sty Sorted_nrslﬂ "B 5 - N o ist, Sorted nrEl);
1082 =" o offt &, nrEl) ; A 5 gaList | sBrupd nrel) ;

v et s : : 2 ;

198} o ki P ' 1278 L WG o oy,

: LS - e O - 13. = LI re
14. publig static ant €indPos(jnt NewOne, int [] SortedL}t,:int 14. publig ¥ati's int findPos (inTaNewone, int[] SortedList, int

Sortefl nrEl) @ W a® & o8 Surt&“l) - e

L M — . =, e

15. = O js. o= ,.i‘. L] .
16. int x; '5.4 16. o i'nr._'f;_‘
17. for (x = Dlag <= sorted nrEl-1; x++) & R £8r (x"® 0; x <= =pedy: -1; x++)
18. f “a . seA ity . L) e .::?'*‘ »
19. if (Newone <3 sgrtedList [x]) 19. fom if (NewOgp BuSqrtedList [x])
20. return x; . 20. return x; e
212 } - 21.)
22. return x; - 22. § = retwrn x;
23.) 23.).
24. L 24. . i -~
25. public static void moveToRight(int pos, int[] SortedList, int 25. public stati'd void moveTOlqght(int pos, int[] SortedList, int

Sorted nrEl) Sorted nrEldg
26. { T " 26. { -
28 for (int x = Sorted nrEl; x >= (pos + 1); x--) 27 4 for (int x z, Sorted nrEl; x >= (pos + 1); x--)
28. { (.
29. SortedList[x] = SortedList[x - 1]; K] 29. SortedList[x] = SortedList[x - 1];
30. } 30. } e "a =
31. } £ ﬁ 31.)} il

Appendix | — Eye-tracking images from Controlledpgxments A and B

Q3. “Which line or lines will return a position ithe array if the new value is higher th

all the values in the sorted list?”
Correct answer: Line 22

an

Question 3 Treatment Scanpaths

Question 3 Controlcanpaths

public static void InsertionsSort(int[] List, int nrEl)

PpXx <= (nrEl - 1); x++)
List, x);

i gt e ﬂ%@@a\g
¢ @%@%/%w ~

=
8

'{ —~
(S A
A)
G

A
oz

::;.',.m.-e-.i : é%;ﬁ. =

=

25" puhlfc static void dbveToRight(ih{¥pof, int[] Sortedrist, int
Sorted nrEl) [s

26. { » =

27. for (int x = s&¥ed nzEls xP= (pos + 1); x--)

28. { - -

29. Wriegpast - sSFearist(x - 11;

30. }

31.)

2

ﬁ'&,},) 2™ ey -3 le'é':‘gn om0

26. (
28
28. {
29.
30. }
31.)
1. public static void InsertionSort(int[] List, int nrEl) 1. public static void InsertionSort(int[] List, int nrEl)
2. { 2. { .
3. for (int"% = 1; x <= (nrEl - 1); x++) 3. " for (iafex = 1; x <= @TEL - 1); x++)
e
a. insert (E8%t [x], List, x); 4. insert (List [x] n*j" x) ;
5.) = 5. e P e
6. 6. .
7. public static void insert(int NewOne, int[] SortedList, int 7. lic static void insert(int NewOne, int[] SortedList, int
Sorted nrEl) *S-oz‘ted_'nrlli -
8. (5. LY .
EN int pos = findPos(NewOne, SortedList, Sorted nrEl); 0. int pose=s findppatnpbne, Sortedrist, Soxted nrEl);
10. move] oRi (pos, SortedList, Sorted nrEl); 10. moveToRight (pes, stmtdList, _n-El)'..
Kk, SortedLis¥ [pos] = NewOne; o, 11. sSpriedlist [pos] & Newone ;
12. } [] = 12. - s
13. - ~ * e 13. " g .
14. public static int ﬁ.lnd?nn;il-e Newone, int[] SortedList, inf 14. pubBié "efftd’e i5tDEinaphes Wnt Newo*, Br1ahofourist, int
Sorted nrEl) L] . = Sorted nrElfks =
15. (NS0 & - 1 15. { -y
F i iy T '.‘-ﬂ'd'. - b T
17. - ity a et R - ‘nx‘M; x+4)
L] a .
18. ° = o = U - igf :‘?_ .
19. l 'R ..h" e e Bt e bia x1)
20. % ovg 9 . a® e .
21" S COLI | .
. '

- . l
. %
q.pubu&.'- it '{",d moveToRight(int pos, int(] Sort‘dlist, int
e
- A .

fox:t e
26. ¢ . ge =L st
s i fofiincx s weEl; X l= (pos + 1); x--)
ﬁ‘f"i"' (& L o I T .
SortedList[x - 1]; =

Appendix | — Eye-tracking images from Controlledpgxments A and B

Q4. “Which line or lines will loop through the unsed part of the array?”
Correct answer: Line 3

Question 4 Treatment Scanpaths Question 4 Controlcanpaths

-~ o u.u:.', int nrEl)

'Y o
T B

|

N

Question 4 Treatment Heat Maps Question 4 Control Hat Maps

E. Cpubfitgistatic void Inser®¥onSort (int List, int nrEl) 1. pl:b}.!u lt&tic‘ void InsertionSort ';] List, int nrEl)
i o % ot 2. { L P - aze]
.é@‘l ?21) 3™ . Fox [@me £ el - 1)';I xﬂ)
fr. s hea 8" S0 " 15 B e & e 2 "
5.9 = @ Cgo— @ L TR 5 A g ¢)ﬁ
o s 'i--_ . BB WP 6. ST 50 «op SR
7. o public "Sta gl insext (ip ﬂint[’:uu'sm, int % public static’ss ge ('ﬁ'o-puona, int[] SortedList, int
® "Sorted nrel) e & E-q- s " Sorte firEl) s my 2
8. { . u a2 4 8" (B " Lo* .
o. int posPés Singgos (e oxtdifist aborted nrel) ; o. inth onglewol\d 7 4sor tedList s Sorted nrEl);
10. mve‘l‘okightgol,. soPegaligt, Soxked nrel) ; 10. mo: 5‘1 ¥ ,nm.ga.uq,.c, sofffed plEel) ;
11. Sorggdlist)T Hewolt®; 1o sortqelss ifes] RN : o
125} . g 3 12. } . - L
13. " . &= “b 13. " & .
14. public sgatic int findPos(in HMn&i*flL [l SortedList, int 14. pub, 1 '.&Ec “%m‘i:nfj] Pofhavise, idfa
- iorted_nr 1) v . il L S g i e B 40 .
16. inf™; “s & o s 3e.
17. ofor (x = 0/ maig= Sfrted nrEI-1p xt++) ﬂ_h - £ 8 E1-1; x++)
18. ‘1 =P . 18" i nﬂ‘q"ﬁ_
19. xfﬂne«tmxﬁoru_au": [ESPIE '8 o= e 19. L, iaﬁ Fome i st (x)), -
20. . W Bl SR 20. et 7 g -
21.) pap o ' "-. ., PR s - . P [T | -
22. return x; %8, "= . 225 8e, "*retwn §; = .
23.) g . e H N PELIE BT -
24. o] g 24. AiE .
25. pubjic static void mbpdToRight(int fps, int[] Sertedlist, int 25. p ic vuﬂf_ﬂo ght (int pos, int[] SortedList, int
Sorted nrEl) = o e 8 aS0E :]’ Fras = -
26. { % ﬂi = 28" ¢ . ponn’, i 1 "
278 ?F for ﬁ-" &i&d!ir{l; x MPD’ 4";l); x--) = 'A"l.‘-= 13&'&*&#}‘%’“‘.& ># (pos + 1); x--)
PR T P) 1% e .
28. L. & L /. E:Mn - [28.% cof AFIS) WL
29. . o Sorteds P x ¥, = 202 % 5 & sortbdpistlx] = sortedlist[x - 1];
- i SR T
31.) o e L) 31.) - " A

Appendix | — Eye-tracking images from Controlledpgxments A and B

Q5. “Which line or lines will loop through the sed part of the array and determing
suitable position to insert a new element?
Correct answer: Lines 17, 19

Question 5 Treatment Scanpaths Question 5 Controlcanpaths

public static voi i Sort(int [] List, int nrEl)

o e WN
H
o
H
N

Ix 2% Kl - 1) x+)
t, x);

R

1. public .tﬂc [F List, int nrEl)

2. (o V .

3. PR IRl t e - 1) x++) 3 i 3 -n;

a. .l %y Listo g ; . SLlist, x);

5. . = -, 5 080 g =

alen g .

5. . o L T & ‘ Fev wrtiyy, ~ L Tp

7. = £ , int[] SortedList, int - : lsﬂona int [] SortedList, int
- $

8. v Wap o :_-ﬁ. 5

o e, SortedList, Sorted nrEl); U Y %nx‘iﬁzimorted nrEl) ;
ist, sorted nx'El) . 2] 1:tﬁ s&fted nrEl)

Fe+ 5. be - Ilewneﬂ
14. panlipg static .an-unc llcvqw o []‘ﬂ;st int
sorted anl) '#‘k ru-i.- nfa o -
15 { - r 'ﬂ.b o ‘ .q e,
-
1; .;i, "‘%"!%““1 1w
51’ Moy

- : fpfy ud - -
£ Pl rid g, _"‘
Jt“‘n o i g g Ve .,
- L]

23]#-

bs public static v!dﬁvs’!‘&(,ght(xnt pol] B, G
Sottad nrel!

zs '.‘.
l' 2:.4”‘“ %ozuqrﬂn x >=% ‘ff,]
!9! N ;arte is s’k—.c-gp-t’: F.-l. | ﬁ

31 } -'I

110

Appendix J: SAICSIT Paper

Supporting CS1 with a Program Beacon Recognition To

Charmain Cilliers
Department of CS&IS, NMMU
PO Box 1600, NMMU, 6031
(+2741) 504 2235

Charmain.Cilliers@nmmu.ac.za

Ronald Leppan
Department of CS&IS, NMMU
PO Box 1600, NMMU, 6031
(+2741) 504 9109

Ronald.Leppan@nmmu.ac.za

ol

Marinda Taljaard
Department of CS&IS, NMMU
PO Box 1600, NMMU, 6031
(+2741) 504 2668

Marinda.Taljaard@nmmu.ac.za

ABSTRACT

Reading and understanding algorithms is not an &y and
often neglected by educators in an introductoryg@mming
course. One proposed solution to this problem he t
incorporation of a technological support tool ta grogram
comprehension in CS1. One such support tool (B§ReT
primarily designed to encourage a student to ctiyrédentify
beacons within provided program extracts. A betwg®ups
experiment is described which compares the program
comprehension of students that used BeReT to stadpus
introductory algorithms, with students that reliedlely on
traditional lecturing materials. The use of an &geEker was
incorporated into the empirical study to provideliidnal data

to measure the effect of BeReT. The results indithat a
technological support tool like BeReT can have sitpe effect

on student comprehension of introductory algorithms
traditionally taught in CS1.

Categories and Subject Descriptors
K.3. [Computers and Educatior

General Terms
Algorithms, Measurement,
Verification

Performance, Experimemati

Keywords
Program Plans, Program Beacons, Program Compreimensi
Introductory Programming, CS1

1. INTRODUCTION

Students in CS1 often find it difficult to cope Wwiprogramming
[15, 24]. The lack of support provided by educsiton

specifically program comprehension further compaurttie
problem [8]. Studies of the fragile knowledge @didents in
introductory programming [11, 21, 26, 33] indic#ite need for
these courses to explicitly include not only codeneration
strategies, but also code comprehension strategiben

studying algorithms. Introductory programming g focus
mainly on program generation and techniques to ower
students’ ability to write programs. Little effoi$ put into
explicitly improving their ability to read prograni8]. Program
generation can be described as the constructipfant to solve
a specific problem [28]. During program comprehensthe
focus is on the discovery of these plans implenritethe
program [11, 19, 28].

J1

Educators in introductory programming use severehniques
to support their students to comprehend algorithn8ome
techniques, like animations, flowcharting, contrstructure
diagrams and the visualisation of programming coiess and
data structures, are often used for the compretvensf a
specific algorithm only. The development of progreeading
skills is therefore not a primary outcome of thesghniques [3,
5, 34]. Giving students a collection of algorith@s reading
exercises leads to a number of different readinlis R 7], but
some students need more guidance to be succell [
Educators often investigate expert programmers rithero to
guide students to become experts themselves. Sirpert
programmers spend a large portion of their timenaimtenance,
program reading skills are of vital importanceherh. Valuable
insights can be gained by investigating expert gnogners and
the techniques they use to study unfamiliar program

This paper highlights two techniques used by expert
programmers to read unfamiliar programs (Section Zn
experimental technological support tool that incogtes these
two techniques is also described (Section 3). Mhm focus of
the paper however is on an empirical investigatibrat
determines the effectiveness of using this tectgicé tool on
the comprehension of introductory programming atpors
(Sections 4 and 5). This paper therefore contebetiidence to
educators that the use of a support tool sucheasrih described
in Section 3 can be used to improve program congm&hn in
Cs1.

2. RELATED WORK

Program plans are one of the elements of the memadel of an
expert programmer investigating source code [9, 2H), 28].
The problem of fostering efficient program compiresien skills
in students thus becomes one of aiding them tatifgigsians in
an algorithm. Expert programmers frequently usehéd plans
to construct programs [9]. The difficulty for audent in
introductory programming is that they haven’t buslifficient
plans in long term memory to effectively use thehs. a result it
seems necessary to build the long term memorytoddoctory
students with plans. In addition to building théng term
memory with plans, the techniques used to buildséhplans
must be ones that students can use to discoves plartheir
own after initial instruction.

Beacons play a prominent role in the recognitioplahs if the
programmer has knowledge of the problem domainacBes

can be defined as surface features in a progranvéndies the
existence of some structure or operation [31, 32].recent
study shows that beacons are extensively used pgriexced
programmers to facilitate program comprehension [B] was

also shown that novices do not identify meaningfe&cons in
code. As illustrated in Figure 1 two types of hwax exist,
comment and complex [6]. Comment beacons reféiné&s in

the algorithm that use a naming convention thatriless the
functionality of the code. Complex beacons retematline or
multiple lines in the code that contains a keyh® functionality
of the algorithm. In the example used in Figurthd use of the
function name“Swap”
The actual code that performs the swapping of tewdgables is
an example of a complex beacon. Complex beacansften
unique in structure and used so frequently in $jgecontexts
that expert programmers use them to validate tistemce of a
program plan. A programmer that performs a surf@ea of the
code of the bubble sort algorithm could discovey ane of the
two types of beacons. This discovery would prortipe

programmer to hypothesize the existence of a plaperform
some sorting operation. The programmer would search for
more beacons to support this hypothesis [24].

public static void

List, int nrEl)
{
bool sorted;
do
{
sorted = true;
for (int x = 0; X <= nrEl-2; x++)

BubbleSort(int][]

{
if (List[x] < List[x+1])
{
sorted = false;
SwaI (List, Kk, x+1);
}
} \‘I Commeni beacor
}
while (!sorted);
}
private static void Swap(int[] TheList,
int m, int n)
{ Complex beacol

/7

ht temp = TheList[a];
helList[a] = TheList[b];
helList[b] = temp;

Figure 1 Examples of the two types of beacons

Expert programmers investigating source code inamiifar
domains frequently revert to a technique that cadéscribed as
the “chunking” of individual code fragments intdated groups.

is an example of a comment beacon.

J2

Often these “chunks” can be associated with amded plan in
the algorithm (Figure 2). For instance, a functibat is used to
calculate the average of a sum of numbers provigethe user
could make use of three plans, a “Counter” plan,

“Accumulate Total” plan and an “Error Check” planThe

“Counter” plan is used to keep track of the numbkwalues

provided by the user; the “Accumulate Total” plaida up the
values and the “Error Check” plan ensures that emlare
provided by the user before calculating the averaglunking

is required to maximize the capacity of the shertt memory
during the activity of program reading and to adavrchunks
into long-term memory. Instead of trying to meraeri
individual statements making up the entire algonith
programmers can group related statements togettter the

three plans. The three plans can then be learugasal units.

If the chunks are unique in structure or if theyclime

mnemonic hints about program functionality, theycdrae

beacons for future algorithm reading activities.

public void CalcAverage()
{

int count, sum, num;
double average;

Accumulate Total plan

readln(num);

fwhile (num = 99999) |
{

sum =sum + num; |

Foror =l
[hum = readline(); |

}
ﬁf (count >0)
{

| " Error check plan

average = sum/count;
writeln(average);
}
|else writeIn(“*ERR: Divide 0); I

Figure 2 Use of chunking to discover plans in a pgram

Experts use two strategies to study unfamiliar cad®p-down
or bottom-up process of comprehension [30]. Tomwuo
comprehension requires knowledge of the problemaitorf4,
27]. This problem domain knowledge is translatedo i
hypotheses that will be used to determine the fanatity of the
unfamiliar program. The text structure is scanfugdeacons to
accept/reject the hypotheses. Throughout the sogrof the
unfamiliar code, the hypotheses change as neeBettom-up
comprehension assumes knowledge of the syntaetimegits of

the text structure and at least the ability to aottrsemantic
knowledge from the unfamiliar algorithm [25]. Theogrammer
reads the algorithm and “chunks” together relatedements
that performs a single higher level operation. sehehunks are
stored in long term memory, often with a mental aation to

describe the grouping. The combination of chursksiged to
determine the functionality of the program.

Since beacon recognition and chunking are two tectes used
by expert programmers in familiar comprehensioncesses
(top-down and bottom-up), they are therefore regghroh this

paper as suitable techniques to aid the compretrensf

introductory algorithms. By providing students lwitan

environment that supports beacon recognition anthkihg, a

network of plans can be stored in long term memuirythe

student. This could prove invaluable in futuregreon reading
activities. Requirements need to be in placeddls process of
selecting or creating a suitable environment thppsrts beacon
recognition and chunking.

Combining the results of a study of program comension
activities of expert programmers, and techniquesdudy
educators in CS1 to aid comprehension of introdycto
algorithms, produced the requirements summarise@alvie 1
[18].

Table 1 Requirements to aid the comprehension of
introductory algorithms

Requirements

Allow student to extract semantic information (an

1.
from worked example.
2 Promotes the use of chunking to learn an unfamiliar
" | algorithm.
3. | Coaches students to spot beacons in differentitigus.
4 Provide students with syntactically and semantjcall
" | correct algorithms.
5. | Engage students in active learning activities.

6. | Increases ability to recall the semantics of aorgm.

7. | Enable students to successfully transfer knowledge.

The goal of requirement 1 is to provide an envirenmthat
focuses on program comprehension of algorithmgeaus of
program generation. The two techniques of beaeoagnition
and chunking that are extensively used by expegnrammers
during program comprehension must be advocatedhis t
environment (requirements 2 and 3). Students reast the
process of chunking and the benefit it holds whielysng an
unfamiliar algorithm. The goal behind requireméntis to

motivate students to use chunking in future program

comprehension activities. The environment must Iabh
beacons (especially complex beacons) in the alguriand
explain the plan behind the beacons. The goat@direment 3
is to build a collection of beacons students cam imsfuture
program comprehension activities. Requirement gues that
proper programming standards are maintained iratherithm

to be studied. This requirement ensures that stadee able to
determine syntax rules from the algorithm. Requéet 4 also
promotes the use of standard programming convesitmmake
it easier for students to study the code. Requerdgnd is

necessary to force students away from passive@edeaarning.
Interaction is necessary to actively engage stsderith the

algorithm. Requirement 6 necessitates studentgligplay

comprehension of the algorithm studied. After esipg

students to algorithms in this environment, theysnhe able to
transfer the knowledge gained to future programpretmension
and program generation activities (RequirementThe transfer
of knowledge refers to both using the techniqueshafnking

and beacon recognition in program comprehensiavetisas the
ability to recognise similar plans in unseen althonis.

An investigation into program comprehension suppoxls
used by educators identified tools that met magtirements in
Table 1, except for requirements 2 and 3 spedyidai3, 18].

An experimental support tool was developed to meet

requirements 1 — 5 [12, 13] (Section 3). An engpirstudy was
undertaken, which incorporated the collection oé esacking

data, to determine if the experimental tool meetgiirements 6
and 7. The empirical study was therefore used ravige

evidence of student comprehension of the algoritistslied

and the ability of the students to transfer thevkedge gained
in the tool to future program comprehension adésit

Eye tracking provides more insight about what sgpammer is
focusing on during their comprehension proces2[1/]. The

focus of a programmer’s attention can provide sujpp®

evidence of the cognitive processes when readinglgorithm

[23]. Eye movement is described as saccades satibfis [16].

A saccade is a rapid movement of the eye when fsbifts

between areas. A fixation refers to the eye rgstim a specific
area after a saccade. An eye tracker follows e around
during its saccades and tracks the location ofixia¢ion points.

Especially gaze fixation and fixation duration deused when
testing cognitive progresses [14].

During a fixation a person extracts visual inforimatthat needs
to be processed [22]. The fixation duration ompectic line of

code is an indication of how long it takes a progreer to

process that line [29]. The amount of time it tapeogrammers
to focus on an area relevant to the program conemibn task
is a demonstration of their understanding of thdeco A long

time spent reading irrelevant sections of code ba&nan

indication that the programmer first has to scae dode to
identify candidate lines relevant to the task thaye to perform
on the code [29]. Fixation duration on specifiek and time to
first fixation on an area of interest can therefbee used to
assess students’ understanding of an algorithm.

3. ABEACON RECOGNITION TOOL

In 2005 an experimental tool, Beacon Recognition Tool
(BeReT) [12, 13] was created to support plan disopvin
introductory algorithms. The primary purpose o tool is to
encourage a novice programmer to correctly idertidacons
within syntactically and semantically correct aigoms. BeReT

is an attempt to aid novice programmers while lie@rn
introductory algorithms so that they develop teghes they can
use in future program comprehension activitiesppgdut in the
form of beacon recognition and chunking is provide@eReT.

The two main functional components in BeReT arertals

used for training, and exercises used for reinform@ and
assessment.

ReT - [Example 1]

le Administration Help
Program Description

This sorts using
Bubble Sort

Explanation of Example

This is the bubble sort
algorithm_ It uses swap
alot.

Example Number
10f1

ra]
b bed

1 View Program Output Association View

Program Code

BubbleSortarray. java |

45 swap (index, index-1): ol

46 1 |

47 numsorted++:

45 1

43 T

50

51 private void swap(int indexA, int indexe)

52 {

53 [swap] (Line 1 of 3)

54 numbers[indexa] = numbers[indexB];

55 [swap] (Line 3 of 3)

56 ¥

57

58 1 »
< H |

Usemame: ChRoMoTeRm (Super User}

Figure 3 Example of a Tutorial in BeReT [12]

BeReT was specifically designed to meet requiresménto 5
listed in Table 1. Lecturers can create a tutani@eReT which
includes a specific algorithm and highlights pleassociated
with this algorithm (Requirement 1). The tutosateen (Figure
3) is divided into four sections. The “Program Bxgstion” area
is used to provide an overview of the function e talgorithm.
The “Explanation of Example” area is used to lisé tplans
associated with the algorithm. A system feedbaek &op right
hand corner) shows the progress and number of idlgor
available to the students as well as navigatiotobst The bulk
of the screen consists of the algorithm loaded Hey lecturer.
Tutorials make use of chunking to map higher lesaantic
plans in the algorithm to grouped lines of codeqiieement 2).
Tutorials can also be created to focus specifiaatiythose lines
of code that can be seen as beacons in the codei(Bment 3).
When setting up the tutorials and exercises in BeRbe
lecturer must ensure that standard programmingesttions are
used and that the algorithms used in the tutodats exercises
are syntactically and semantically correct (Requéet 4).
Algorithms loaded in BeReT can be written in anggrsamming
language, since BeReT makes use of a databaser® the
code. The advantage of using a database is tHReBean
therefore support any future change in programrtanguage in
CS1. Algorithms loaded in BeReT can be as simpld a
complex as the lecturer requires. Three types xa@froises
provide interaction in BeReT; “complete”, “matchid“define”
type exercises (Requirement 5). In a “completgetgxercise
students are given a beacon name and descriptidrthay must
fill in the missing lines of code described by thame and

J4

description. In “match” type exercise students @s® given a
beacon name and description and they are requiresklect
relevant source code lines that match name andiggéso. In

“define” type exercises students are given the codg and are
instructed to identify lines of code that seem goaddidates to
classify as beacons. To accomplish this, studemtaup

statements together and assign a name and deworifi

indicate the semantic plan of these statements.

4. EMPIRICAL STUDY

An empirical study was conducted during a threekwssgiod in
the second semester of 2006 to determine to whaheBeReT
meets requirements 6 and 7 listed in Table 1 [118].order to
meet these two requirements, BeReT must:

¢ Increase their ability to recall the semanticsrof a
algorithm.
¢ Enable students to successfully transfer knowledge.

Participants in the study were CS1 students irDiggartment of
Computer Science and Information Systems (CS&IS}that
Nelson Mandela Metropolitan University (NMMU) (Sieat

4.1). The two requirements were broken into retequestions
to guide the empirical study (Section 4.2). Thepkital study
followed acknowledged procedures to collect eviderin

support of requirements 6 and 7 (Section 4.3).

4.1 Participant Population and Sample Size

A total of 64 first year students participated ihetween-groups
study. Participants were divided into two groupsth 32
students in a control and 32 students in a treatgreup. The
main difference between the two groups is that tteatment
group made use of class notes and had exposuréheto t
algorithms in BeReT, while the control group ondyied on the
class notes, which included program comprehensi@stepns.
Both groups had the same number of program geoerati
problems. The data collected in the empirical wtisdthus an
accurate reflection of the impact made by BeReFBtodents in
an introductory programming course in the Departmeh
CS&IS at NMMU in respect of requirements 6 and Table 1.

4.2 Research Questions

To test for requirement 6 there is a need to test f
comprehension of the semantics of the algorithmsalied.
Evidence of rote learning would indicate learning @
superficial level. Rote learning an algorithm wbuésult in a
student regurgitating code line by line while digamling
changes in the problem scenario. Recalling anristgo and
making the necessary changes to suit the differenpeoblem
scenario is evidence of that the student has gdagpe
semantics of the algorithm when it was studied.e Tésearch
questions that were used to guide the empiricalysto find
support for requirement 6 are:

RQ6.1: Do students that used BeReT perform better ingerm
of accuracy on code comprehension questions?

Are students that used BeReT more successful in
recalling the entire algorithm and adapting to any
changes in problem scenario?

RQ6.2:

RQ6.3: Are students that used BeReT more accurate when

completing a partial algorithm?

BeReT would be deemed successful with respectooinement

7 if students display evidence of using existingnpknowledge
in future code comprehension activities of previpusnseen
algorithms. It was therefore necessary to detenifirBeReT

managed to build a repository of plans in the lterga memory
of students in the treatment group. A bank of planstudents’
disposal would enable them to discover plans inilaim
algorithms and re-use these plans during code gtoer
exercises. BeReT will also be deemed successfuthis

requirement if students exhibit a tendency to cardiwith the
techniques of beacon recognition and chunking vetedying a
previously unseen algorithm. The following resbageiestions
were used to guide the empirical study to deterrttiedevel of
support for requirement 7:

RQ7.1: Are students that used BeReT more successflilen t
discovery of known plans in previously unseen
algorithms?

RQ7.2: Do students that used BeReT find plans in a known

and/or previously unseen algorithm quicker?

RQ7.3: Do students that used BeReT exhibit evidence of
using beacon recognition and chunking when studying

a previously unseen algorithm?

4.3 Procedure of empirical study

During the empirical study, students from the treait and
control group attended the same lectures. Theepiabeacons
and chunking were not explicitly discussed in legsu For
practical assignments they were split into thespestive groups
in different laboratories. Strict attendance moriitgy was
applied to ensure that the groups did not mix. sBparating
students during practical assignments it was edstirat only
the treatment group had exposure to BeReT. Tharagépn
effectively minimized the risk of distorting thestdts due to
control group participants also seeing BeReT. BHgcis also
built into BeReT so that only the treatment growgptigipants
have access to the BeReT tutorials. Tutorials werstructed
from the class notes, which the control group pgrdints also
received during lectures. Exercises were congtdicby
adapting comprehension questions that formed gateoclass
notes. For the purpose of this empirical studyereiges in
BeReT could only be done during the practical asaint.
Once an exercise was completed, it was not availabymore.
The practical assignments of the control group isted of only
code generation tasks, as has been the practarevious years.
However, the students in the control group wereo als
encouraged to study the algorithms as discusselhss prior to
attempting the practical. This required contraugp students to
study the class notes and attempt to answer th@rmetransion
questions. Student assistants and the lecturer awezilable for
consultation should the control group students havey
difficulty studying the class notes.

The treatment group performed exactly the same code

generation tasks as the control group. Treatmentpgstudents

J5

had access to an adapted version of the class notbshe
associated comprehension questions in BeReT. Stugjed a
tutorial of the algorithm first, and then performegercises in
BeReT. The tutorials presented the code, a ligilafis and a
description of the plans behind selected linehédode. When
students clicked on a plan, specific lines of ctit# matched
the description were highlighted in the algorithithe exercises
included tasks to match code to a plan and to cet@phissing
lines. Three algorithms, namely the bubble sogeition sort
and binary search were used in the study. Oneitiigowas
covered per week.

During the subsequent lecture following any pratdtic
assignment, follow-up class tests were administéoechonitor
both groups’ ability to recall, complete and contyned the
algorithm studied in the previous week. The reaall complete
questions were structured in such a way so as terrdme
whether students used rote learning to study elghitam, or
whether they were sensitive to any changes in gont&he
comprehension questions determined students’ yabdliextract
proper plans from each algorithm. The purposéefdass tests
was to answer primarily the research questions RQ®Q6.2
and RQ6.3. Both groups participated in the claststand data
was used to indicate trends in the performancehef tivo
groups. All class tests were marked by the sarsesasr to
ensure consistency in final results was achieved.

Two controlled experiments were conducted a weedr dhe
final class test was written. A representative @anfrom each
group participated in the controlled experiments.The
experiments were performed in a controlled envirentrunder
strict conditions using an eye tracker in both eixpents to
collect additional data:

 Experiment A involved an unseen algorithm (Selectio
Sort).

* Experiment B involved a known algorithm (Inserti®art).

The purpose of the controlled experiments was tewan
primarily the research questions RQ7.1, RQ7.2 a@i7.B.
When using fixation duration to compare two studamiading
the same algorithm, the longer fixation would irade that a
student takes longer to determine the plan behiad line of
code. When answering comprehension questions about
algorithm, a student that spends a long time repdielevant
lines of code is an indication that the studefitiséis to read the
algorithm to determine the plans behind the linestudent that
has built up a hierarchy of plans would discover pkan quicker
in a known and/or previously unseen algorithm.

Eye-tracking data was collected during the corgbll
experiment using a remote eye-tracking device. ewWX
software was used to calibrate the student andrdefeations
and saccades while finding answers to comprehergiestions
from an algorithm displayed on screen. BeGaze wsasl for a
fixation analysis of all participants in the stud$canpaths and
heat maps were produced in BeGaze and are presentbe
next section.

5. RESULTS OF STUDY

Three class tests were administered over the pesfothe
empirical study. Each class test evaluated thigyabf students
to recall, comprehend and complete the algorithadist the
week before. Results for the class tests for edgbrithm used
in this study are presented in Table 2.

In the case of all three class tests, the resaitshie recall and
comprehension questions between the control aratnient
groups show a clear improvement in the observechenée all
questions. The improvement in performance theeegfoovided
evidence of positive responses to RQ6.1, RQ6.2 RQ6.3.
The improved performance therefore suggests evélenc
support of requirement 6.

Table 2 Average marks obtained in Class Tests

Bubble Sort Binary Search Insertion Sort
Recall Comprehend Recal Comprehend Complete Cdmpce

E’({r Mean 56% 41% 61% 56% 43% 55%

™
‘g‘ I
= <| StDev 23% 27% 31% 17% 20% 19%
° § Mean 44% 22% 42% 39% 27% 35%
= I
o
O £| stDev 29% 22% 20% 20% 30% 45%

Experiment A of the controlled experiments testsygrehension
and interaction of a previously unseen algorithtre (selection
sort algorithm). The chosen algorithm uses sinplans used by
algorithms that participants learnt in the introug
programming algorithms course. For the first task this
experiment participants had to study the selecsiott algorithm
for a maximum of 10 minutes using any techniquey tfeel
comfortable with. Students made notes while stglythe
algorithm, and notes were analyzed to determineteébbniques
used by them when studying an unseen algorithns interesting
to note however that all the students, regardlé#iseogroup used
some sort of tracing technique to determine thetfan of the
algorithm. This is an indication that studentsttheed BeReT
failed to exhibit evidence of using chunking or ¢@arecognition
when studying a previously unseen algorithm. Theherefore
no evidence in support of RQ7.3 in this regardsetms therefore
that the three weeks of exposure to BeReT was notgh to
promote the use of chunking and beacon recognitidren
reading a previously unseen algorithm.

Immediately after studying the unseen algorithmtigipants had

to explain in their own words what the algorithmedo Table 3
summarizes the number of participants from eachmtbat either
gave high-level (semantic) explanations, explamation syntactic
level or incorrectly identified the goal of the esiion sort

algorithm after studying it for the first time. &hable shows no
clear trend in favour of any group. However, itpi®mising to

see slightly more treatment group participants rgjvhigh-level

semantic explanations instead of low level syntaekiplanations
of the algorithm.

J6

Table 3 Number of participants identifying the goalof the
selection sort algorithm

Treatment | Control
n=7) (n=7)
High level explanations 3 1
Low level explanations 3 4
Incorrect explanations 1 2

For the second task of controlled experiment Atigipents had
to sit in front of a PC connected to a remote egeker. Students
were first given an opportunity to scan the aldonton screen
again, this time with the instruction to become tmmable
reading from the screen and to also try to recegplans used in
algorithms studied before. As soon as the studedisated they
were ready to proceed, they had to answer a seffiefive
comprehension questions about specific lines angg®f lines in
the program displayed on-screen. Participants dmyg to
verbally provide the line number(s) that contaitieel answer. As
soon as an answer was given, the code was hiddem iew.
The code was shown again after the next question ag&ed.
Responses and time taken were recorded by thevwelbseEye
tracking data was recorded only from the time tloglec was
shown to the time an answer was given.

A summary of the proportion of correct responses & five
questions in controlled experiment A appears inl@ab The
average time it took each group to answer appadratle 5.

Table 4 Proportion of correct responses per questin

(Experiment A)
Q1 Q2 Q3 Q4 Q5
Treatment | 100% 71% 71% 100% 57%
(n=7) (n=7)| n=5)| (n=5) | (n=7)| (n=4)
Control 14% 43% 43% 86% 14%
(n=7) m=1)] n=3) | (n=3) | (n=6)| (n=1)

Table 5 Time (in seconds) per question (Experimer)

=~}

integers with "nrEl” number of elements.

Mean | Min Max Median
Q1 4 3 6 4
E Q2 15 6 36 11
g Q3 9 4 16
= Q4 8 2 17
Q5 12 3 34
Q1 12 4 25
S Q2 12 3 33 10
% Q3 14 8 26 12
©l o4 | 12 3 26 13
Q5 23 7 41 22
§ B public void SelectionSort(int[] List, int nrw
D //Precondition: List is an unsorted array of

List is sorted in ascending

A breakdown ofccuracy andtimes for all five questions showed
that only one question demonstrated a clear diffexan results
between the two groups. It is worth looking at gye-tracking
data to find reasons for this difference. Scanpétbm the gaze
analysis of the question to determine the lineired that swaps
two elements in an array revealed the paths ppatits took to
find the answer for this question. The scanpaéissiting from
the eye tracking data for the participants in tteatment group
appear in Figure 4 and the scanpaths of the corgroup
participants appear in Figure 5. From the two iesag is clear
that the treatment group follows a more concerdratth around
the area of interest containing the answer to dhisstion (Lines
15 — 17). Only two participants deviated signifittg from the
area containing the answer. The control group [=its reveal
five participants scanning areas far away fromatea of interest.
It can be seen in Table 4 that all treatment greanpicipants gave
the correct answer, while only one of the controbup
participants answered correctly.

The scanpaths indicate that most of the contralgnarticipants
did read the correct code, but decided that andtherwas the
correct answer. This is an indication that theattrent group
participants were more successful in transferrir@grtknowledge
of the “swap” plan from the bubble sort algorithndaecognise it
in the previously unseen selection sort algorithfhis shows that
in at least one question there is evidence to suf@7.1.

T public void SelectionSort(int[] List, int n:El)

2. //Precondition: List is an unsorted array of

th "nrEl” number of elements.

i .i.s sorted in ascending

Figure 4 Treatment group scanpaths

J7

Figure 5 Control group scanpaths

Controlled experiment B featured one of the al@ong
previously studied in class (the insertion sortodthm). The
process followed for the first task of this expegithis the same as
for the second task of experiment A. Students ficmnned the
algorithm on the computer screen, and then answerseties of
five questions. Apart from recording the accuraog response
time, eye-tracking data was also collected in txperiment.
Table 6 summarizes the proportion of correct ansvi@rthe five
questions in experiment B, and Table 7 the avetege taken
before giving the answer. Both tables show treind&vour of
the treatment group, which suggests some suppoR@y.1 and
RQ7.2.

Table 6 Proportion of correct responses per questin
(Experiment B)
Q1 Q2 Q3 Q4 | Q5
100% 14% 71% 71% | 43%
100% 43% 71% 43% | 29%

Treatment
Control

It can be seen from Table 7 that one question (@Darticular
showed a clear difference in respotisees between the groups.
Table 6 shows 100%ccuracy for both groups for Q1. This
question relates to the plan to make space fomaahement in an
array. Since the question was constructed in sualy to elicit
the function call that invokes the plan, the cari@tswer can be
found in line 10 of Figure 6 and Figure 7.

Table 7 Time (in seconds) per question (Experimerg)

Mean | Min Max Median

- Q1 4 1 8 4
g | Q2 17 3 35 10
% 03 11 4 28 8
E | o4 13 2 20 12

Q5 19 6 43 11

01 21 3 55 20
5 Q2 18 5 37 18
€] o3 | 20 3 34 21
©1 o4 | 19 7 40 14

Q5 34 11 56 33

The heat map in Figure 6 that resulted from thisstjon clearly
shows that the treatment group participants focostiy on the
function calls. The control group on the otherdhapends a large
amount of time reading the code in tHmoveToRight”
function as well (Figure 7). These figures seenintticate that
the control group of students did not view the fiorc call
“moveToRight” as a comment beacon that indicates the plan
of making space for a new element in an array. y&tid had to
read the code inside the function to figure outtwhdoes.

1. public static void lnsertionSort(.l.nb [] List, int nrEl) 1. public gt \#:ﬂ InsertionSort(int [] List, int nxip
2. { - = = 2.mf 'Hr. i L] o
3. for (int x.&. X <= (nrE1l = 1) My++) * 3 for (inrx -‘nrd - 1);: x++)
4. insert(List[x], List, x); " "'I. iﬂexﬂ'ﬂ.xs'z;{ - Lx;tﬁ x):m -
5. } 5.1 :L% . a 0
6. . @ .‘.f. _ﬁ_'_ LI .'I
7. publs static void insert(int NewOne, int[] SortedList, int lp‘uﬁ- PRy ?J-i -'.E llevgne, int [] SortedList, int
sorted nrEl) "o g, } " b -1
L8 0, . e, . facy, o
CL) := - int, Best i 0 lEw!:)ne’, SortediLisy, Sorted nrEl); pr ortedlistngqrte,nrlﬂlj
-;f'i. " motipifelino albist? Doxfipd @rel) ; i 3 2 t, Sorted
1 "b. (e O M de s) ne ; - - e AR Bo ¥ 2155 5
AT A i S LM - #dy TR
ad. — s 13. o = 5
14. pwiglic stat:l.c _l.nt findp ewOne'r]unM] SortedList, int 14. publnc tq,u: 1nt‘f1'n§a!§xﬂ NewOne, int[] SortedList, int
So;‘ted_aﬂﬂl) e L _ Sorted | nrEl) -]
15. { . - 15. ¢ H
16. int x; " 16. i x: -
17. % for (x = 0; x <=sSorted nrEl-1; x++) 177 for (x = B x <=esdifted nrE1-1; x++)
18. (" 18. { "o
19. :'.f {(NewOne <= SortedList [x]) 19. if (NewOne <= Sorted:l’..ist x1)
20. return x: 20. return x;
21. } * E 21. 3} - -
22. return x; 22 x'e-turn x
23.) 23.) -n L atgy
24. 24
25. public static vo;d'!nove‘roklgh:(;nt pos, int[] SortedList, int !-Bﬂm E}tlc‘ﬂh ﬂghc:‘nt posp inElT Sor@ L'J#-int
Sorted anl) P S -
26. { B & .-26 { P
237 for (*int x = Szx.;ted_nrﬂl; x >= .(pos + 1); x--)] t 'S Q{'ﬁa ﬂ(ph !m x==)
28. { B 3 mﬂ
29. s#_iciudr.igt[x] = SortedList[x - 1]; 5 e 1st[xru-= Emu.lﬁ [l &
30.)n. i 30
31. } ' 31.)

Figure 6 Treatment group heatmap

J8

Figure 7 Control group heatmap

6. CONCLUSIONS

To improve the comprehension of introductory algons taught
in CS1, a list of requirements for program compnsien was
used as basis for the development of an experiingotd
(BeReT). These requirements are:

¢ Allow student to extract semantic information (gafrom
worked example.

¢ Promotes the use of chunking to learn an unfamiliar
algorithm.

¢« Coaches students to spot beacons in differentitigus.

« Provide students with syntactically and semantjazdirrect
algorithms.

« Engage students in active learning activities.

An empirical study was conducted to determine wéetthe
following requirements were met in BeReT:

e Increases ability to recall the semantics of aoritigm.
¢ Enable students to successfully transfer knowledge.

Research questions were used to guide the empimigadtigation

to collect evidence in support of these two requests. Data
collected by means of class tests and controll@érxents were
specifically used to find answers to these resequelstions. The
result of the data collected in the class testsicaids an
improvement in performance of students using BetaTng the

treatment period. BeReT therefore completely Basisthe

requirement that it should increase the abilita student to recall
semantics of an algorithm. The controlled expenitsgrovided
only partial evidence in support of requiremenb&ing students’
ability to transfer knowledge. Treatment group tiggrants

displayed the existence of some plan and beacomwlkdge

readily available, but no participant in this grogxhibited

evidence of using chunking or beacon recognitioemwkstudying
the unfamiliar code for the first time. These tesweontribute
evidence that a program comprehension tool sudBef&eT can
support CS1 students in their program compreheresitnities.

7. RECOMMENDATIONS AND FUTURE
WORK

Despite one of the requirements being satisfied/ quartially
there is sufficient evidence in favour of BeReTctmtinue further
investigation into incorporating it as a supporbltin a CS1
course to improve students’ comprehension of intobary
algorithms. A rigorous hypothesis testing methodgl should
follow to determine if the results show significastatistical
support in favour of BeReT users. Further corembkxperiments
are required with bigger sample sizes to confirmults for
requirement 7.

During the treatment period only two of the threesgble
exercises were used in BeReT. A follow-up studyeiguired
which uses the “Create a beacon” type exerciseeterhine if
this will have an effect on students’ motivation uee beacon
recognition and chunking in future program compnreien
activities. Future work thus also includes a moigorous
analysis of the introductory programming algorithtmsletermine

J9

which lines of code can be classified as beacofBis can be
done by using similar methods used by Aschwandénafid
Uwano [29].

The alternative tutoring approach used by the cbgtoup in this
experiment can be described as pen and paper se®rcFuture
experiments can be conducted to compare the effeBeReT
against other approaches.

8. ACKNOWLEDGMENTS

This material is based upon work supported by tteioxal

Research Foundation (NRF) under Grant number 20542y

opinion, findings and conclusions or recommendatierpressed
in this material are those of the authors and fbezethe NRF
does not accept any liability in regard thereto.

9. REFERENCES

[1] Aschwanden, C. and Crosby, M., Code Scanning
Patterns in Program ComprehensionPinceedings of
the 39th Hawaii International Conference on System
Sciences(Kauai, Hawaii, 2006).

[2] Bednarik, R. and Tukiainen, M., An eye-tracking
methodology for characterizing program comprehensio
processes. iRroceedings of the 2006 symposium on
Eye tracking research & applicationéSan Diego,
California, 2006), ACM Press, 125 - 132.

[3] Bradley, C. and Boyle, T. Students' use of leanin
objects Interactive Multimedia Electronic Journal of
Computer-Enhanced Learnin§ (2). 2004.

[4] Brooks, R. Towards a theory of the comprehensfon o
computer programsnternational Journal of Man-
Machine Studiesl8 (6). 1983. 543 - 554.

[5] Cilliers, C.B., Calitz, A.P. and Greyling, J.Hh& effect
of integrating an iconic programming notation i@81.
in Proceedings of the 10th annual SIGCSE conference
on Innovation and technology in computer science
education (Caparica, Portugal, 2005), ACM Press, 108
-112.

[6] Crosby, M.E., Scholtz, J. and Wiedenbeck, S., iohes
beacons play in comprehension for novice and expert
programmers. ifProceedings of PPIGEBrunel
University, UK, 2002), 58 - 73.

[7] Crosby, M.E. and Stelovsky, J. How Do We Read
Algorithms? A Case StudyEEE Computer23 (1).
1990. 24 - 35.

[8] Deimel, L. and Naveda, J. Reading Computer Program

Instructor's Guide and Exerciseducational Materials
CMU/SEI-90-EM-3 Pennsylvania, 1990.

[9] Garner, S., The learning of plans in programmig:
program completion approach.Pmoceedings of the
International Conference on Computers in Education
(2002), 1053 - 1057.

[10] Garner, S., Learning Resources and Tools to Aid
Novices Learn Programming. informing Science &
Information Technology Education Joint Conference
(INSITE) (Pori, Finland, 2003), 213 - 222.

[11] Garner, S., Haden, P. and Robins, A., My progsmm i
correct but it doesn't run: a preliminary investiga of
novice programmers' problems.RPnoceedings of the
7th Australasian conference on Computing education

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(Newcastle, New South Wales, Australia, 2005),
Australian Computer Society, Inc., 173 - 180.

Harris, N.Beacon Recognition Toblonours Treatise,
University of Port Elizabeth, Port Elizabeth, 2005
Harris, N. and Cilliers, C., A Program Beacon
Recognition Tool. irVth International Conference on
Information Technology Based Higher Education and
Training, 2006. (ITHET '06)YUltimo, New South
Wales, Australia, 2006), 216 - 225.

Hornhof, A.J. and Halverson, T. Cleaning up systin
error in eye tracking data by using required fizati
locations.Behavior Research Methods, Instruments,
and Computers34 (4). 2002. 596 - 604.

Jenkins, TOn the difficulty of Learning to Program
Available at
http://www.ics.heacademy.ac.uk/Events/conf2002jenk
ns.htm| 2002. (Last accessed - 2005)

Karn, K.S. and Jacob, R.J.K., Eye tracking in hoima
computer interaction and usability research: Ready
deliver the promises. iihe mind's eye, cognitive and
Applied Aspects of Eye movement Resed€akford,
2003), Elsevier Science.

Kimura, T., Reading before Composition. in
Proceedings of the tenth SIGCSE technical symposium
on Computer science educatjdt®979), ACM Press,
162 - 166.

Leppan, R.GThe impact of a plan discovery tool on in-
depth introductory algorithm comprehension
Unpublished Masters Dissertation, NMMU, Port
Elizabeth, 2007

Letovsky, S. and Soloway, E. Delocalized plans and
program comprehensiolEEE Softwarel9 (3). 1986.
41 - 48.

Linn, M.C. and Clancy, M.J. The Case for Case ®tid
of Programming Problem&ommunications of ACM
35(3). 1992. 121 - 132.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W.,
Hamer, J., Lindholm, M., McCartney, R., Mostrom,
J.E., Sanders, K., Seppéala, O., Simon, B. and Thpma
L. A multi-national study of reading and tracingliskin
novice programmerSIGCSE BULLETIN36 (4). 2004.
119 - 150.

Liversedge, S.P. and Findlay, J.M. Saccadic eye
movements and cognitiofrends in Cognitive
Sciences4 (4). 2000. 6 - 14.

Nevalainen, S. and Sajaniemi, J., Comparison oé§h
Eye Tracking Devices in Psychology of Programming

J10

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Research. ifProceedings of the 16th Annual Workshop
of the Psychology of Programming Interest Grpup
(Carlow, Ireland, 2004), 151-158.

O’Brien, M.P.Software Comprehension — A Review &
Research DirectioTechnical Report UL-CSIS-03-3
2003.

Pennington, N. Comprehension strategies in
programming. irEmpirical studies of programmers:
Second Worksho@\blex Publishing Corp., 1987, 100 -
113.

Sajaniemi, J. and Hu, C., Teaching Programming:
Going beyond “Objects First”. iRroceeding of 18th
Workshop of the Psychology of Programming Interest
Group, (University of Sussex, 2006), 255 - 265.
Soloway, E., Adelson, B. and Ehrlich, Knowledge
and Processes in the Comprehension of Computer
Programs A. Lawrence Erlbaum Associates, Hillsdale,
N.J., 1988.

Soloway, E.M. and Woolf, B., Problems, plans, and
programs. irProceedings of the eleventh SIGCSE
technical symposium on Computer science education
(Kansas City, Missouri, United States, 1980), ACM
Press, 16 - 24.

Uwano, H., Nakamura, M., Monden, A. and
Matsumoto, K.-i., Analyzing Individual Performancg
Source Code Review Using Reviewers’ Eye Movement.
in Proceedings of the 2006 Symposium on Eye tracking
research and applicationgSan Diego, California,
2006), ACM Press, 133 - 140.

Von Mayrhauser, A. and Vans, A.lrogram
Understanding: A Survelechnical Report CS-94-120
1994,

Wiedenbeck, S. and Evans, N.J. Beacons in Program
ComprehensiorSIGCHI Bulletin 18 (2). 1986. 56 - 57.
Wiedenbeck, S. and Scholtz, J. Beacons and Initial
Program Comprehensio8IGCHI Bulletin 21 (1).

1989. 90 - 91.

Winslow, L.E. Programming Pedagogy -- A
Psychological OverviewSIGCSE BULLETIN28 (3).
1996. 17-22.

Yeh, C.L., Greyling, J.H. and Cilliers, C.B., A
framework proposal for algorithm animation systeims.
Proceedings of the 2006 annual research conferefce
the South African institute of computer scientistd
information technologist{Somerset West, South
Africa, 2006), South African Institute for Computer
Scientists and Information Technologists, 155 -.163

