

A Comparison of Programming

Notations for a Tertiary Level

Introductory Programming Course

Charmain Barbara Cilliers

Submitted in fulfilment of the requirements for the degree of

Philosophiae Doctor in the Faculty of Science at the

University of Port Elizabeth

September 2004

Promoter: Prof A. P. Calitz

Co-promoter: Prof J. H. Greyling

Department of Computer Science and Information Systems

Trust in the Lord with all your heart. Never rely on what you think you know.

Remember the Lord in everything you do and He will show you the right way.

Proverbs 3: 5 – 6

i

Acknowledgements

The completion of this thesis would not have been possible without the invaluable
support, assistance and guidance of a number of individuals over the past few years.

Professors André Calitz and Jéan Greyling, my promoters in the Department of
Computer Science and Information Systems (CS/IS) at the University of Port
Elizabeth (UPE), whose continued guidance and encouragement is much appreciated.
Their experience as well as their never-ending interest and enthusiasm in the research
were integral to its completion.

David Brown, Justin Thomas and Allan Yeh, exceptional Honours students in the
Department of CS/IS at UPE, for developing the B# programming notation and
development environment included as the core instrument in the empirical study
conducted.

Mr Danie Venter, lecturer in the Department of Mathematical Statistics at UPE, for
expert advice and confirmation of the appropriateness of the quantitative statistical
analysis techniques applied.

James Smith and Greg Saunders from the Computer Centre at UPE for assistance in
the extraction of historical student mark data.

Each and every one of my colleagues in the Department of CS/IS at UPE, especially
Dieter Vogts, MC du Plessis and Marinda Taljaard, introductory programming course
lecturers for their continued encouragement and acceptance of the conducting of the
experiment with their students; as well as Lynette Barnard and Janine Nel for
assistance in lecturing load during these past few months.

The 2003 introductory programming students for being such willing and co-operative
participants in the investigative study.

The National Research Foundation (NRF) and UPE for financial assistance.

My parents for standing in for mom’s taxi and as supporters of my sons’ in their
respective sports team matches these past 2 years.

My husband, Pieter, for support, understanding and encouragement as well as
handling family catering arrangements so as to prevent another burnt meal; and to my
young sons, Jacques and Pierre, for letting Mom get on with her “thing”.

This material is based upon work supported by the National Research Foundation
(NRF) under Grant number 2054293. Any opinion, findings and conclusions or
recommendations expressed in this material are those of the author and therefore the
NRF does not accept any liability in regard thereto.

ii

Summary

Increasing pressure from national government to improve throughput at South African

tertiary education institutions presents challenges to educators of introductory

programming courses. In response, educators must adopt effective methods and

strategies that encourage novice programmers to be successful in such courses. An

approach that seeks to increase and maintain satisfactory throughput is the

modification of the teaching model in these courses by adjusting presentation

techniques.

This thesis investigates the effect of integrating an experimental iconic programming

notation and associated development environment with existing conventional textual

technological support in the teaching model of a tertiary level introductory

programming course. The investigation compares the performance achievement of

novice programmers using only conventional textual technological support with that

of novice programmers using the integrated iconic and conventional textual

technological support.

In preparation for the investigation, interpretation of existing knowledge on the

behaviour of novice programmers while learning to program results in a novel

framework of eight novice programmer requirements for technological support in an

introductory programming course. This framework is applied in the examination of

existing categories of technological support as well as in the design of new

technological support for novice programmers learning to program. It thus provides

information for the selection of existing and the design of new introductory

programming technological support.

The findings of the investigation suggest strong evidence that performance

achievement of novice programmers in a tertiary level introductory programming

course improves significantly with the inclusion of iconic technological support in the

teaching model. The benefits are particularly evident in the portion of the novice

programmer population who have been identified as being at risk of being successful

in the course. Novice programmers identified as being at risk perform substantially

SUMMARY

 iii

better when using iconic technological support concurrently with conventional textual

technological support than their equals who use only the latter form. Considerably

more at risk novice programmers using the integrated form of technological support

are in fact successful in the introductory programming course when compared with

their counterparts who use conventional textual technological support only.

The contributions of this thesis address deficiencies existing in current documented

research. These contributions are primarily apparent in a number of distinct areas,

namely:

• formalisation of a novel framework of novice programmer requirements for

technological support in an introductory programming course;

• application of the framework as a formal evaluation technique;

• application of the framework in the design of a visual iconic programming

notation and development environment;

• enhancement of existing empirical evidence and experimental research

methodology typically applied to studies in programming; as well as

• a proposal for a modified introductory programming course teaching model.

The thesis has effectively applied substantial existing research on the cognitive model

of the novice programmer as well as that on experimental technological support. The

increase of throughput to a recommended rate of 75% in the tertiary level introductory

programming course at the University of Port Elizabeth is attributed solely to the

incorporation of iconic technological support in the teaching model of the course.

Keywords: Novice Programmer, Introductory Programming, Iconic Programming,

Visual Programming, Programming Notation, Technological Support

iv

Table of Contents

List of Figures x

List of Tables xii

List of Definitions xv

C h a p t e r 1 Research Context 1

1.1 Introduction 1

1.2 Background and Prior Research 4

1.3 Relevance of the Investigation 7

 1.3.1 Limited Improvement in Throughput upon Implementation of
Selection and Placement Model

9

 1.3.2 Difficulty of Programming Task for Novice Programmers 10

 1.3.3 Concluding Remarks on Relevant Factors 18

1.4 Focus of the Investigation 20

 1.4.1 Goal and Objectives 22

 1.4.2 Technological Support and Subjects of Comparative Study 23

 1.4.3 Scope 24

 1.4.4 Feasibility 26

 1.4.5 Research Questions 26

1.5 Structure of Thesis 28

C h a p t e r 2 Cognitive Model of the Novice Programmer 30

2.1 Introduction 30

2.2 Novice Programmers and Learning to Program 32

 2.2.1 Problem Domain 34

 2.2.2 Program Domain 36

2.3 Novice Programmer Motivation 50

2.4 Conclusion 52

TABLE OF CONTENTS

v

C h a p t e r 3 Technological Support for Novice Programmers

in the Program Domain
55

3.1 Introduction 55

3.2 Program Domain for Novice Programmers 58

 3.2.1 Programming Notation 59

 3.2.2 Programming Development Environment 61

3.3 Conventional Interactive Development Environments and Textual
Programming Notations

63

3.4 Educational Programming Development Environments and
Programming Notations

66

 3.4.1 Problem Analysis Supporting Development Environments 68

 3.4.2 Mini-languages and Micro-worlds 71

 3.4.3 Pseudo-programming 75

 3.4.4 Worked Examples and Code Restructuring 77

 3.4.5 Scripting Languages 79

 3.4.6 Visual Programming Notations and Development
Environments

81

3.5 Conclusion 96

C h a p t e r 4 Predictive Models and Selection 99

4.1 Introduction 99

4.2 Predictors for Success in an Introductory Programming Course 101

 4.2.1 International Research 102

 4.2.2 National Research 109

4.3 Computerised Selection in Introductory Programming Courses 112

4.4 Conclusion 115

TABLE OF CONTENTS

vi

C h a p t e r 5 Design and Implementation of an Iconic

Programming Notation and Development
Environment

117

5.1 Introduction 117

5.2 Introductory Programming Technological Support at UPE 119

 5.2.1 Delphi™ Enterprise: A Textual Programming Notation and
Development Environment

120

 5.2.2 B#: A Visual Iconic Programming Notation and Development
Environment

122

5.3 Development of B# 124

 5.3.1 Scope of B# 124

 5.3.2 Functionality of B# 125

 5.3.3 Design of B# Icons 132

 5.3.4 Program Solution Representation 134

 5.3.5 Screen Layout 136

 5.3.6 Icon Dialogue Design 144

5.4 Conclusion 148

C h a p t e r 6 Investigative Research Methodology 152

6.1 Introduction 152

6.2 Investigative Study Learning Environment 155

 6.2.1 Introductory Programming Course Structure at UPE 156

 6.2.2 Instruments and Materials 160

 6.2.3 Procedure for Data Collection 173

6.3 Method of Data Analysis 177

 6.3.1 Formulation of Hypotheses 177

 6.3.2 Participant Population and Sample Size 181

 6.3.3 Data Analysis Techniques 184

6.4 Risks to Investigative Study 190

 6.4.1 Sample Size 190

 6.4.2 Bias in Performance Achievement Measures 191

 6.4.3 Administering Practical Learning Activities 192

 6.4.4 Formal Assessment of Practical Performance in Laboratory
Sessions

195

TABLE OF CONTENTS

vii

6.5 Conclusion 196

C h a p t e r 7 Results of Investigation 200

7.1 Introduction 200

7.2 Selection of Participants 202

 7.2.1 Sample Size 202

 7.2.2 Demographic Profile 206

 7.2.3 Academic Profile 208

7.3 Quantitative Analysis 209

 7.3.1 Testing for Differences between Pairs of Means 212

 7.3.2 Testing for Homogeneity of Proportions 219

7.4 Qualitative Analysis 226

 7.4.1 Thematic Analysis of Weekly Practical Learning Activity 227

 7.4.2 Thematic Analysis of General Evaluation of Programming
Notation and Development Environment

231

 7.4.3 Thematic Analysis of Personal Interviews 239

7.5 Supplementary Analysis 241

7.6 Conclusion 243

C h a p t e r 8 Interpretation of Results 248

8.1 Introduction 248

8.2 Evidence of Novice Programmer Requirements Support in B# Design
and Implementation

251

 8.2.1 Requirement R1: Elimination of finer implementation details at
superficial level of learning

252

 8.2.2 Requirement R2: Increased level of program solution
comprehension at the in-depth level of learning

252

 8.2.3 Requirement R4: Designed specifically for use by novice
programmers

253

 8.2.4 Requirement R5: Provision of visual techniques to aid
comprehension process at the in-depth level of learning

253

 8.2.5 Requirement R6: Reduced mapping between the problem and
program domains

255

 8.2.6 Requirement R7: Increased focus on problem-solving 255

TABLE OF CONTENTS

viii

8.3 Evidence of Novice Programmer Requirements Support in Empirical

Study
256

 8.3.1 Limitations of the Experimental Design 256

 8.3.2 Requirement R3: Increase in level of motivation 259

 8.3.3 Requirement R8: Increase in performance achievement 263

8.4 Theoretical Implications 267

 8.4.1 Design, Implementation and Utilisation of a Visual Iconic
Programming Notation and Development Environment

267

 8.4.2 Enhancement of Existing Empirical Methodology 270

8.5 Instructional Implications 272

8.6 Conclusion 273

C h a p t e r 9 Conclusion of Investigation 276

9.1 Introduction 276

9.2 Evaluation of Research Objectives 278

9.3 Contribution of Thesis 284

 9.3.1 Framework of Novice Programmer Requirements for
Technological Support in the Learning Environment of an
Introductory Programming Course

285

 9.3.2 Categorisation and Evaluation of Existing Technological
Support in the Learning Environment of an Introductory
Programming Course

286

 9.3.3 Design, Implementation and Utilisation of a Visual Iconic
Programming Notation and Development Environment

288

 9.3.4 Enhancement of Existing Investigative Research Methodology
and Results

288

9.4 Implications of Findings 289

9.5 Limitations of Research 292

9.6 Recommendations for Further Research 294

9.7 Summary 297

References 299

TABLE OF CONTENTS

ix

A p p e n d i x A Commercial Programming Development

Environment
A-1

A p p e n d i x B B# Programming Development Environment B-1

A p p e n d i x C Learning Material C-1

A p p e n d i x D Investigative Assessment Material D-1

A p p e n d i x E B# Questionnaires E-1

A p p e n d i x F Survey Results of B# Questionnaires F-1

A p p e n d i x G Ethics Committee Application G-1

A p p e n d i x H Hypotheses H-1

A p p e n d i x I Demographic Questionnaire Analysis I-1

A p p e n d i x J Practical Learning Activity Survey Analysis J-1

A p p e n d i x K Programming Development Environment Survey
Analysis

K-1

A p p e n d i x L Quantitative Analysis L-1

A p p e n d i x M B# Software CD

x

List of Figures

1.1 Registrations and successful completion tendency 5

1.2 Scope of the investigation 25

1.3 Thesis Outline 29

2.1 Textual programming notation fragments: Syntax 38

2.2 Textual programming notation fragments: Semantics 42

2.3 Textual programming notation fragments: Structure 43

2.4 Meaningful learning process 46

2.5 Textual programming notation fragments: Style 49

3.1 Borland© Delphi™ Enterprise version 6 Programming Environment 64

3.2 Related work in Educational Programming Development
Environments and Programming Notations 67

3.3 ProPl coached program planning development environment (Lane &
VanLehn 2004b) 70

3.4 Karel’s world 73

3.5 Alice micro-world 74

3.6 Example of CORT program solution 78

3.7 Prograph for Windows version 1.2 dataflow programming notation
interface (Pictorius 1998) 84

3.8 Example of a DataVis CASE statement 86

3.9 Example of a flowchart that calculates and displays the area of a circle 87

3.10 FLINT flowchart simulator 89

3.11 Visual Logic 90

3.12 BACCII++© version 1.50 Iconic Programming Environment (Calloni
1998) 92

5.1 Borland© Delphi™ Enterprise version 6 Textual Programming
Notation and Development Environment 121

5.2 Flowchart program solution in B# 135

5.3 Generic screen layout 137

5.4 B# Ver. 1.0 screen layout 138

5.5 B# ver. 2.0 screen layout 140

5.6 B# ver. 3.0 screen layout 141

5.7 B# ver. 3.0 showing docked trace control pane 143

 LIST OF FIGURES

xi

5.8 B# ver. 2.0 counting loop programming construct icon dialogue 145

5.9 B# ver. 1.0 counting loop programming construct icon dialogue 145

6.1 Attrition Proportions in an Introductory Programming Course 158

6.2 Administering of Material 174

6.3 Refinement of Hypotheses 180

7.1 Classification of Attrition of Participants in Revised Strata 205

7.2 Distribution of Preferred Development Environment 228

9.1 Mental Model of Novice Programmer while Learning to Program 280

9.2 Incorporation of B# into the learning activities of an Introductory
Programming Course 291

9.3 Current Related Research at UPE 295

xii

List of Tables

1.1 Research questions and methods used to answer each 27

2.1 Framework of novice programmer requirements for technological
support in the learning environment of an introductory programming
course

53

3.1 Framework of novice programmer requirements for technological
support in the learning environment of an introductory programming
course

57

3.2 Support for Novice Programmer Requirements by Problem Analysis
Supporting Development Environments 71

3.3 Support for Novice Programmer Requirements by Mini-languages and
Micro-worlds 75

3.4 Support for Novice Programmer Requirements by Pseudo-
programming 77

3.5 Support for Novice Programmer Requirements by Worked Examples
and Code Restructuring 79

3.6 Support for Novice Programmer Requirements by Scripting
Languages 81

3.7 Support for Novice Programmer Requirements by Visual
Programming Notations 95

3.8 Support for Novice Programmer Requirements by Conventional
Textual Programming Notations 96

5.1 Programming constructs supported by B# (Brown 2001a, b; Thomas
2002a, b) 128

5.2 Metaphorical images of programming icons in B# ver. 1.0 132

5.3 Metaphorical images of programming icons in B# ver. 2.0 133

5.4 Support for Novice Programmer Requirements by B# 150

6.1 Materials used in Investigative Study 163

6.2 Problems and Associated Goals of First Pen-and-paper Test 168

6.3 Problems and Associated Goals of Second Pen-and-paper Test 169

6.4 Problems and Associated Goals of First Practical Test (Treatment
group) 171

6.5 Problems and Associated Goals of Second Practical Test (Treatment
group) 172

6.6 Strata in Empirical Study 183

 LIST OF TABLES

xiii

6.7 Mapping of Test Statistics and Data Analysis Techniques to Data
Collected 198

7.1 Support for Novice Programmer Requirements by B# 201

7.2 Sample Derivation 203

7.3 Adjusted Sample Derivation 204

7.4 Demographic Profile of Participants and Results of Test for Equality
of Proportions (p < 0.01) 206

7.5 Academic Profile of Participants and Result of Test for Equality of
Proportions (p < 0.01) 208

7.6 Descriptive Statistics categorised by Instructor and Experimental
group and Results of Independent Sample T-test 208

7.7 Coding of Independent Variables 210

7.8 Descriptive Statistics for Full Treatment and Control Groups 211

7.9 Correlation between Predicted and Observed Final Marks 211

7.10 T-test Computed Values for Predicted and Observed Final Marks 213

7.11 T-test Computed Values for Independent Variables: Full Complement
of Participants 214

7.12 T-test Computed Values for Independent Variables: High Risk
Stratum 217

7.13 T-test Computed Values for Independent Variables: Medium Risk
Stratum 218

7.14 T-test Computed Values for Independent Variables: Low Risk Stratum 218

7.15 χ2-test Computed Values for Predicted and Observed Throughput 220

7.16 χ2-test Computed Values : Full Complement of Participants 222

7.17 χ2-test Computed Values : High Risk Stratum 224

7.18 χ2-test Computed Values : Medium Risk Stratum 225

7.19 χ2-test Computed Values : Low Risk Stratum 226

7.20 Thematic Analysis : Practical Learning Activities 229

7.21 Programming Notation and Development Environment Survey
Questions 232

7.22 Thematic Analysis : Question 1 233

7.23 Thematic Analysis : Question 2 234

7.24 Thematic Analysis : Question 3 235

7.25 Thematic Analysis : Questions 4 and 6 236

7.26 Thematic Analysis : Questions 5 and 7 238

7.27 Participant Practical Learning Activity Atmosphere Survey 241

 LIST OF TABLES

xiv

7.28 χ2-test Computed Values : Participant Practical Learning Activity
Atmosphere Survey 241

7.29 Tutor Practical Learning Activity Atmosphere Survey 242

7.30 χ2-test Computed Values : Tutor Practical Learning Activity
Atmosphere Survey 242

7.31 Frequency of significant variables per strata and experimental group 244

7.32 Significant Variables : High Risk Stratum 245

8.1 Support for Novice Programmer Requirements by B# 249

8.2 Support for Novice Programmer Requirements by B# 275

9.1 Evaluation of Programming Notations and Associated Development
Environments 281

9.2 Categories of Technological Support 287

xv

List of Definitions

6.1 Membership of Participants in Strata 183

6.2 Sample size 184

1

Chapter 1

Research Context

1.1 Introduction

Transformations in the South African political and educational scenario over the past

few years have resulted in increasing pressure from national government to improve

student throughput rates at tertiary institutions (Department of Education 2001), the

University of Port Elizabeth (UPE) being one example of such an institution. At

UPE, specifically, the minimum pass rate for a course in an academic Department in

the Faculty of Science as well as other faculties is recommended to be 75% (UPE

2002; Wesson 2002). The problem of sustaining recommended satisfactory

throughput rates in tertiary level courses is compounded by the fact that currently

increasingly more under-prepared students are entering South African tertiary

education institutions (Warren 2001; Monare 2004).

The higher incidence of under-prepared students in South African tertiary education

institutions has a particular significance for introductory programming courses which

rely heavily on the use of technological tools as components of the teaching model1.

As a direct consequence of the resulting diversity of the introductory programming

course student population, an important factor that cannot be ignored is the general

lack of exposure and access to technology, specifically computers, in some groups of

the student population (Loxton 1997). While some introductory programming

1 Includes learning resources, learning activities and learning supports.

CHAPTER 1 : RESEARCH CONTEXT

2

students have had limited or no prior exposure to computers, others have Computer

Studies as a secondary education subject credit.

Recent research in the Department of Computer Science and Information Systems

(CS/IS) at UPE shows that certain student groups originate from environments where

there is limited or no exposure to electrical equipment such as video recorders or

microwave ovens (Streicher 2003). The higher incidence of technologically under-

prepared students in introductory programming courses consequently impacts on the

group profile of the students and overall throughput rate of these courses.

Maintaining satisfactory group and individual performance rates in introductory

programming courses is not constrained to South African tertiary education

institutions. The sustaining of acceptable levels of performance remains an issue that

is constantly being addressed by tertiary education institutions worldwide (Lister &

Leaney 2003). Acknowledged as being of great importance in efforts to elevate the

throughput rate in an introductory programming course at tertiary level are effective

methods and strategies that assist novice programmers to overcome difficulties

associated with computer programming (Carbone et al. 2001).

Typical difficulties (Section 1.3.2) experienced by novice programmers in

introductory programming courses include deficiencies in problem-solving strategies

(AC Nielsen Research Services 2000), misconceptions related to programming

language constructs (Studer et al. 1995; Proulx et al. 1996; Deek 1999; McCracken et

al. 2001), the use of traditional textual programming notations and their associated

environments (Satratzemi et al. 2001) and individual form of motivation (Jenkins

2001a; Chamillard et al. 2002; Jenkins 2002). Attempts to address these difficulties

have resulted in increased demands on lecturing and computing resources. As a

consequence of the resulting situation as well as high failure and attrition rates among

students, there exists an urgent need for sound academic methods to raise the

successful completion percentage of candidates of already over-subscribed

introductory programming courses without reducing the quality of the course (UCAS

2000; Boyle et al. 2002).

CHAPTER 1 : RESEARCH CONTEXT

3

The approaches to this problem involve either the identification of potentially

successful introductory programming candidates or the modification of the

introductory programming course teaching model (Wilson & Braun 1985; Austin

1987). The former approach involves the discovery of factors that could predict

success in CS/IS and thereby provide a mechanism for the selection of introductory

programming course candidates from applicants most likely to succeed. This type of

approach has prompted numerous international research projects over the past two

decades (Fowler & Glorfield 1981; Butcher & Muth 1985; Koubek et al. 1985; Sauter

1986; Carbone et al. 2001). As a result of the findings, related research concerned

specifically with the satisfactory progress of students in introductory computer

programming courses has been ongoing for many years internationally (Calloni &

Bagert 1997; Astrachan 1998; Byrne & Lyons 2001; Carter & Jenkins 2001; Wilson

& Shrock 2001; Chamillard et al. 2002) and nationally (Mostert 2002; Misthry et al.

2003; Naudé & Hörne 2003).

Specifically at UPE, the selection of first year CS/IS students has been an ongoing

research project since 1982 (Calitz 1984; Calitz et al. 1992; Calitz 1997). The main

emphasis of these earlier research projects was on the identification of matriculation

results and the use of psychometric variables on predicting success in CS/IS (Calitz

1997). Since the completion of Calitz’s research, changes in the South African

political and educational scenario necessitated the need for further research.

Subsequent research conducted by Greyling (2000) formed an integral part of the

work done by the UPE Admissions and Placement Team (Foxcroft 1997), whose

primary task was to implement and monitor a series of computerised tertiary selection

and placement assessments. The recommendations led to the implementation of a

selection and placement model in the Department of CS/IS at UPE in 2001.

The second type of approach that seeks to increase the throughput rate of introductory

programming students involves the modification of course presentation techniques to

support high risk students, being those students who have been identified as being of

low-ability in an introductory programming course. This type of approach is the

primary factor that prompted the current study. Consequently, the goal of the current

investigation is to establish and assess the effects of an iconic programming notation

in the role of a development environment for an introductory programming course.

CHAPTER 1 : RESEARCH CONTEXT

4

This chapter provides an outline of the international and national context that

prompted the current investigation (Section 1.2). It highlights UPE’s context and

prior research with respect to the first of the strategies identified as being an approach

to the problem of increasing the throughput rate of introductory programming

students. An overview on the issues that contribute to the overall relevance of the

current research follows (Section 1.3).

The first issue identified is the comprehensive study and limited success observed in

the implementation of an acknowledged selection and placement model for novice

programmers in a tertiary level introductory programming course at UPE (Section

1.3.1). The second issue involves the identification of factors that contribute to the

acknowledgement that the task of programming is a difficult skill for novice

programmers (Section 1.3.2).

Based on the issues raised, a number of research questions are identified for

investigation (Section 1.4) with the core focus of the investigation being the

determination and measurement of the impact of a locally developed iconic

programming notation and development environment, B#2 (Brown 2001a, b; Thomas

2002a, b; Yeh 2003a, b), on novice programmers in an introductory programming

course at tertiary level.

1.2 Background and Prior Research

Since the early 1980’s both international and national higher education institutions

have experienced a phenomenal increase in their enrolment for CS/IS programmes

(Konvalina et al. 1983; Butcher et al. 1985; UCAS 2000). A similar pattern (Figure

1.1) is evident in the UPE first year CS/IS enrolment for the introductory

programming course (UPE 2003a). At UPE, the relationship of the enrolment figures

in the introductory programming course in the previous two decades shows an

increase from an average of 188 students in the 1980’s to an average of 278 students

in the 1990’s, an increase of 48%.

2 Name selected by initial developer (Brown 2001a). The name has no relationship with any existing

programming notation or development environment. No connotation with any existing programming
notation or development environment is intended.

CHAPTER 1 : RESEARCH CONTEXT

5

Students have been motivated and encouraged to enrol for CS/IS courses with the

inception of personal computers and the introduction of end-user software like word

processing and spreadsheet packages (Downes 2002; Jenkins 2002). High-paying

computer-related careers and a world wide shortage of Information Technology (IT)

professionals at the time (Downes 2002) provided further motivation3. The explosion

of the World Wide Web (WWW) and the Internet during the 1990’s was also a

stimulus for increased interest in CS/IS, relating in a further growth in enrolments at

departments of CS/IS (Denning 1996). These factors, together with changing

requirements in degree programmes and implementation of placement strategies at

UPE resulted in an average of 352 students enrolling in the introductory programming

course at UPE in the current decade up to the end of 2002 (UPE 2003a), being an

increase of 27% on the average of the previous decade.

0

50

100

150

200

250

300

350

400

450

500

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

Year

N
um

be
r o

f F
irs

t A
tte

m
pt

s

Registrations Passes

First Attempt Registrations Trend First Attempt Throughput Trend

Figure 1.1: Registrations and successful completion tendency

Despite the continuous development of new technologies, a large percentage of

introductory programming students over the past few decades have consistently found

the challenge of computer programming more difficult than initially anticipated

(Konvalina et al. 1983; Calitz 1997; Lister 2000; Carbone et al. 2001; Boyle et al.

2002; Thomas et al. 2002; Garner 2003). Figure 1.1 illustrates the successful

3 The shortage of IT professionals is currently not as critical as in the recent past.

CHAPTER 1 : RESEARCH CONTEXT

6

throughput trend in relation to that of number of initial first attempt registrations in an

introductory programming course at UPE. It is evident that the distance between the

number of initial registrations and the number of successful students in the

introductory programming course at UPE has been growing steadily over the past two

decades. Specifically, the pass rate of first year CS/IS enrolments for the introductory

programming course steadily decreased from an average of 68% in the 1980’s, to an

average of 61% in the 1990’s and an average of 49% in the current decade up to the

end of 2002 (UPE 2003a).

In attempts to address the constantly declining pass rate of first year CS/IS students in

the UPE introductory programming course over the past two decades, validated

selection and placement strategies were implemented since the 1980’s (Calitz 1984;

Calitz et al. 1992; Calitz 1997; Greyling 2000; Greyling et al. 2002; Greyling &

Calitz 2003). Even with the implementation of these strategies, numerous students

who indicate a potential to be successful are in fact unsuccessful in the introductory

programming course. This is evident from the fact that only 59% of the first year

students predicted to be successful in the introductory programming course at UPE in

2002 were in fact successful on their first attempt (UPE 2003a). An enhanced

strategy for improving the learning process of introductory programming students that

has been confirmed in practice (CC 2001) is thus encouraged.

The goal of this investigation is to persist with research aimed at increasing the

throughput rate of introductory programming students at UPE, particularly with

respect to the modification of the introductory programming course teaching model.

In particular, this investigation will determine the impact of a specialised

technological tool used in an introductory programming course teaching model. The

subjects of the study are novice programmers who have been identified as being

potentially successful in an introductory programming course at tertiary level

(Greyling 2000; Greyling et al. 2002; Greyling et al. 2003). Specifically, it will be

investigated whether novice programmers at a tertiary level can benefit individually

and as a group from exposure to an iconic programming notation in a development

environment for an introductory programming course.

CHAPTER 1 : RESEARCH CONTEXT

7

The current investigation follows on similar quantitative international research on the

use of iconic programming notations that has been conducted during the mid to late

1990’s (Calloni & Bagert 1994; Calloni et al. 1997)4. National research related to the

study is restricted to the identification of potentially successful students (Mostert

2002; Nash 2003; Naudé et al. 2003), and specifically to the selection and placement

of CS/IS students at UPE that has been conducted since the early 1980’s (Calitz 1984;

Calitz et al. 1992; Calitz 1997; Greyling 2000; Greyling et al. 2002; Greyling et al.

2003).

Since the completion of Greyling’s initial research in 2000, research findings

(Greyling et al. 2002; Greyling et al. 2003) on the implementation of a selection and

placement model at tertiary level have prompted further research in the area of

introductory programming courses at tertiary level. The specific issues that prompted

the current research form the focus of the following section.

1.3 Relevance of the Investigation

Approaches to the problem of increasing the throughput in introductory programming

courses involve either the identification of potentially successful introductory

programming candidates or the modification of the introductory programming course

teaching model (Wilson et al. 1985; Austin 1987). The former approach has been

exhaustively researched and implemented over the past two decades in the

Department of CS/IS at UPE5.

Consequently, the main factor (Section 1.3.1) prompting the current investigation is

that a limited improvement in the throughput of first year introductory programming

students has been observed (Greyling et al. 2002; Greyling et al. 2003) at UPE upon

the implementation of an approved selection and placement model since 2001

(Greyling 2000).

4 No further documentary evidence of follow-up studies since 1997 has been located. In fact, it has

been discovered that the author of the research, Ben A. Calloni, has diversified and is currently
employed at a different institution to that where the empirical studies were originally conducted
(Calloni 2002).

5 (Calitz 1984; Calitz et al. 1992; Calitz 1997; Greyling 2000; Greyling et al. 2002; Greyling et al.
2003)

CHAPTER 1 : RESEARCH CONTEXT

8

The other factor (Section 1.3.2) that has a bearing on the research is the observation

that programming is especially difficult for novice programmers (Whitley 1997;

Warren 2000; Lischner 2001). When programmers implement a solution, two areas

of operation are prevalent, namely the problem and program domains (Mattson

undated-a). The problem domain is that area where the problem is stated and defined.

The program domain is that area containing the programmed solution. Novice

programmers experience that a large amount of effort is required in converting a

mental interpretation of the problem domain into a corresponding program solution

representation in the program domain (Smith et al. 2000).

Novice programmers are furthermore faced with mastering the challenges of

superficial and in-depth learning in the program domain (Mayer 1981; Perkins &

Salomon 1988; Carter et al. 2001; Jenkins 2002). Superficial learning skills in

programming include that of memorising the syntactical issues of a particular

programming notation. In-depth learning skills necessitate the comprehension of

programming constructs required for the future composition of novel program

solutions. Novice programmers enrolled for introductory programming courses have

to contend with deficiencies in their problem-solving strategies, misconceptions about

programming notation constructs, the use of conventional textual programming

notation development environments traditionally utilised for the teaching and learning

of programming as well as individual type of motivation (Section 1.3.2).

The aforementioned factors have prompted exploration at UPE of the second

approach to increase throughput, namely the modification of the teaching model for

an introductory programming course. One approach to the modification of the

teaching model for an introductory programming course is the variation of

presentation techniques of learning resources by means of technological support. One

such type of technological support is a class of programming notations known as

visual programming notations, of which iconic programming notations and their

associated development environments, the type of tool used in the current

investigation, is a category. The selection of the type of technological tool used in

this study is prompted by the features of the identified category (Chapter 3) as well as

evidence of positive results of similar quantitative international research using

CHAPTER 1 : RESEARCH CONTEXT

9

BACCII©6, an iconic programming notation, which occurred in the mid to late 1990’s

(Calloni et al. 1994, 1997).

The following two sections in turn emphasise each of the two abovementioned issues

that stress the relevance of the current investigation. Thereafter, a section

consolidates, reviews and highlights the identified significant aspects.

1.3.1 Limited Improvement in Throughput upon Implementation of Selection and
Placement Model

The implementation of a selection and placement model at UPE resulted in a limited

improvement in the performance of introductory programming students. Greyling et

al.’s (2002; 2003) observations after the 2001 implementation of a computerised

selection and placement model for CS/IS students at UPE recorded an increase in

group performance of introductory programming students. Results showed an

increase of 17% from that of the previous year in the pass rate of introductory

programming students.

An individual average performance achievement increase of 8% – 19% on the

predicted marks for students was also observed for those students streamed into an

alternative slower paced introductory programming course. Despite these positive

observations, the pass rate for the introductory programming course at UPE remained

below the recommended throughput rate of 75% (UPE 2003a).

The burden is on the educators of tertiary level courses with relatively low pass rates,

specifically introductory programming courses, to provide instruments that will

improve the situation without the lowering of standards. Further research in the area

of group and individual performance with respect to the teaching model applied in an

introductory programming course has thus been provoked. The research must take

into account the specific issues that novice programmers have to contend with when

learning to program. These issues are elaborated on in the following section.

6 Pronounced ba-chee.

CHAPTER 1 : RESEARCH CONTEXT

10

1.3.2 Difficulty of Programming Task for Novice Programmers

Any academically competent student is thought to be able to program due to the

universality of computing in education and the advent of user-friendly interfaces,

(Byrne et al. 2001). However, tertiary level students who are proficient in other

tertiary level courses may fail to achieve success in programming (Bonar & Soloway

1983; Proulx 2000; Byrne et al. 2001; McCracken et al. 2001). Tertiary educators

who hope to teach programming effectively need to understand precisely what makes

learning to program difficult for so many students (Jenkins 2002) and adjust their

teaching techniques to support these students when required (Byrne et al. 2001;

Thomas et al. 2002).

Computer programming is not an easy task (Bonar et al. 1983; Warren 2000) and has

been defined as a difficult form of problem-solving (Whitley 1997). By their nature,

problem-solving intensive courses require the ability to take a vague problem

description that is stated in the problem domain and construct a well designed solution

(Lister et al. 2003) in the program domain. Problem-solving intensive courses

consequently require a considerable amount of effort in several skills. In the case of

programming, these skills include the simultaneous mastering of various

programming language constructs at both the superficial and in-depth levels of

learning (Studer et al. 1995; Proulx et al. 1996; Carter et al. 2001; Jenkins 2002). The

programming notation constructs are specifically syntax, semantics, structure and

style. The mastering thereof is required for the solving of problems using a particular

programming notation within a given programming development environment.

There is a need for an introductory programming teaching model that incorporates

tools to simplify programming language syntax, semantics, structure and style. Any

tool used in this teaching model should also serve to minimise the errors produced by

novice programmers as a result of erroneous interpretation of programming language

constructs.

Programming represents a formal task of precision (Koelma et al. 1992; Lischner

2001; Pane et al. 2001). Consequently, novice programmers in introductory

programming courses can only achieve success by applying a very high level of

CHAPTER 1 : RESEARCH CONTEXT

11

precision to their tasks (Jenkins 2002). This level of precision may represent a much

higher level than that required of most other tertiary level courses (Jenkins 2002).

Teaching model support in achieving and maintaining this level of precision with

respect to the application of problem-solving strategies, comprehension of

programming constructs and use of conventional development environments can

impact on the motivation of the novice programmer, and ultimately on performance

achievement. Each of these aspects is overviewed in the following four subsections.

Deficiencies in Problem-Solving Strategies

In most efforts to teach programming, the focus tends to be on the cultivation of

programming skills (Perkins et al. 1988; Lister 2000) and algorithmic problem-

solving (Thomas et al. 2002). This approach is the one currently in practice in the

Department of CS/IS at UPE, specifically using a semiotic teaching sequence,

requiring that syntactical knowledge (superficial learning level) of a specific

programming construct be mastered prior to the teaching of the semantics and

pragmatics of the same programming construct (in-depth learning level) (Kaasbøll

1998). The result of this approach is often the over simplification of the programming

process with too little emphasis on the problem-solving steps of analysis, design and

testing (CC 2001). Novice programmers often then experience a restricted sense of

discipline in the programming process (CC 2001), and find it difficult to adapt to

different kinds of problems and problem-solving contexts (AC Nielsen Research

Services 2000).

Supplemental to the teaching approach, educators should strive to improve the novice

programmers’ performance by teaching them strategies for putting pieces of program

code together, thereby reinforcing in-depth learning (Spohrer & Soloway 1986). This

process supports the problem-solving process by encouraging the identification and

mapping of known solutions to novel problems. Further, introductory programming

course educators should promote a primary educational objective while teaching an

introductory programming course, namely that novice programmers should learn to

perform structural decomposition in their approach to solving problems (Cockburn &

Churcher 1997).

CHAPTER 1 : RESEARCH CONTEXT

12

During problem-solving, the difference in the way programmers comprehend a

problem and the way the solution must be expressed in a specific programming

notation makes it difficult for novices to learn how to program. A large part of any

programming task is to transform a mental plan for solving a problem into the

program solution representation for the particular programming notation being used.

Ideally, the effort involved in the conversion of the plans to the program solution

representation should be minimal (Pane et al. 2001), but in reality for novice

programmers it is vast (Smith et al. 2000).

Any small cognitive transformation required, especially by a novice programmer,

detracts effort from the intended task, namely implementing a solution to a given

problem. Many novice programmers program experimentally by randomly including

programming constructs to determine whether the solution will work (Buck & Stucki

2001). They thus tackle their assignments head-on with ad-hoc development

strategies despite training and guidance to the contrary (Cockburn et al. 1997).

There are two ways in which to assist a novice programmer reduce the effort involved

in the conversion of programming plans to implemented solutions, namely move the

novice programmer nearer to the program domain or move the program domain

nearer to the novice programmer (Smith et al. 2000). Traditional lectures in

introductory programming courses attempt the former method by providing formal

instruction of the program domain. The latter method could be realised by addressing

the programming notation together with its associated development environment.

These topics form the core of the discussions of the following two subsections.

Comprehension of Programming Notation Constructs

Introductory programming course educators agree that the main purpose of an

introductory programming course is to teach novice programmers to program while

using a specific programming notation as an implementation tool (Lockard 1986;

Kushan 1994; Studer et al. 1995; Proulx et al. 1996; Dingle & Zander 2001;

McCracken et al. 2001; Jenkins 2002). It is thus not the intention of such educators to

teach a particular programming notation. Novice programmers should merely be

taught the mechanics of the programming notation so that they will be able to create

CHAPTER 1 : RESEARCH CONTEXT

13

and manipulate the data types and control flow mechanisms, amongst other

programming concepts, in order to solve the program domain requirements of their

problem domain solution (Cockburn et al. 1997).

Novice programmers can thus be expected to practice the use of the programming

notation by undertaking practical assignments. However, when learning to program,

novice programmers are faced with misconceptions about the syntax, semantics and

pragmatics of programming notation constructs (Studer et al. 1995; Proulx et al.

1996; Deek 1999; McCracken et al. 2001; Satratzemi et al. 2001).

A large share of the literature on computer science education has been dedicated to

debates on the most appropriate programming notation and associated development

environment as well as the programming paradigm to use in order to teach novice

programmers (McIver 2000; Pane et al. 2001; Warren 2001; De Raadt et al. 2002;

Howell 2003). Under discussion is the trade-off between choosing a programming

notation for its educational suitability versus the extent and acceptance of its use in

industry. Potential employers of IT graduates have a clear expectation of expertise

following an introductory programming course, hence the demand from industry to

use a programming notation and development environment with a significant market

share (Dingle et al. 2001).

When making a choice of programming notation for use by novice programmers,

consideration must be given to how easily the novices will learn the chosen notation,

the existence of any notation features that might interfere with the understanding of

the fundamental programming concepts, as well as any notation features that ease the

transformation of the novice programmer to one who is competent (Dingle et al.

2001). Further, it is maintained that the programming notation choice for an

introductory programming course can influence learning in subsequent computer

programming courses (Applin 2001).

Teaching a particular programming notation should not replace teaching the core

concepts of programming (Lockard 1986; Kushan 1994; Studer et al. 1995; Proulx et

al. 1996; Dingle et al. 2001; Jenkins 2002). Many current programming notations

were not designed for teaching (Ziegler & Crews 1999; McIver 2001; Jenkins 2002).

CHAPTER 1 : RESEARCH CONTEXT

14

The predominantly conventional commercial textual programming notations do not

accurately reflect the cognitive strategies used by novice programmers (Bonar et al.

1983). They require the programmer to make large transformations from the intended

tasks to implementation in the textual program solution representation (Pane et al.

2001). The goal of an appropriate programming notation should be to apply cognitive

directness, thereby minimising the mental transformations that a programmer must

make and so ensure that the conceptual distance between the novice’s mental plan of a

solution and one compatible with the computer is as small as possible.

In a recent study of Pane et al. (2001) investigating the notation and structure of non-

programmers’ solutions to programming problems, many places were identified as

exhibiting unnecessary large gaps which are imposed by the features and requirements

of current programming notations. This study concluded that textual programming

notations do not support the goal of applying cognitive directness. The effect is that

when novice programmers are confused, they attempt to transfer their knowledge of

natural language notation to the programming task at hand (Bonar et al. 1983; Pane et

al. 2001).

In natural language solutions, there exists a large amount of imprecision and under-

specification, which is contradictory with the formality evident in the task of

programming (Koelma et al. 1992; Lischner 2001; Pane et al. 2001). It is therefore

important to find ways to help novices make their specifications more complete so

that they may become effective programmers (Pane et al. 2001). Correct solutions in

natural language tend to appear in a different style to those required by conventional

textual programming notations. The conclusion is that programming notations that

are usually designed for use by professional programmers are thus clearly not suitable

for novice programmers in that they pose an extra burden on the novices (Ziegler et

al. 1999; Satratzemi et al. 2001; Warren 2001; Jenkins 2002).

Programming may consequently seem more difficult than it actually is because it

requires solutions to be expressed in ways that are not familiar or natural for novice

programmers, who are more comfortable with concrete than abstract thinking (Pane et

al. 2001). There is consequently a need for novice programmers to learn how to

design, develop, verify and debug a program when given certain programming

CHAPTER 1 : RESEARCH CONTEXT

15

notations and development environments as technological support in a learning

environment (Satratzemi et al. 2001).

Concerns exist as to the cost/benefit ratios when using technological support in

learning environments, specifically regarding the maintenance of the balance between

learning about the learning support software and learning about the course content by

means of the supporting software (Rader et al. 1998). It has been observed, therefore,

that implementation issues in traditional textual programming notation development

environments can distract novice programmers so that they do not comprehend the

programming abstractions required for the correct implementation of program

solutions (Reek 1995; Lidtke & Zhou 1998; Ziegler et al. 1999; Proulx 2000; Warren

2000, 2001).

Use of a Traditional Programming Development Environment

The most common technological learning environment used by novice programmers

in introductory programming courses is a commercial textual programming notation

and its associated development environment (De Raadt et al. 2002; Reid 2002). Even

though these conventional textual programming environments exhibit the

characteristic of concurrently displaying many programming constructs on the screen,

they tend to under-determine the novice programmer by providing no constraints on

the textual symbols that can be entered (LaLiberte 1994). The result is a large amount

of effort being required to accurately transform the mental model of the desired

program solution with that of the supported programming notation (Wright &

Cockburn 2000). The novice programmer is forced to provide precisely correct

syntax before receiving any response to the solution plan and implementation thereof

(Crews & Ziegler 1998). This situation results in an overload at the superficial level

of learning, indirectly impacting on the effectiveness of the in-depth learning.

Further, the lack of sufficient visual feedback in the use of such technological support

makes the comprehension of programming notation semantics more difficult for a

novice programmer (Satratzemi et al. 2001). This situation results in limited support

at the in-depth level of learning.

CHAPTER 1 : RESEARCH CONTEXT

16

Research has also indicated that traditional programming development environments

do not meet their goals as technological support for novice programmers and are not

suited to the types of problems experienced by novice programmers. These

challenges are specifically deficiencies in problem-solving strategies (AC Nielsen

Research Services 2000) and misconceptions related to programming notation

constructs, both having been discussed in detail earlier in this section (Studer et al.

1995; Proulx et al. 1996; Deek 1999; McCracken et al. 2001).

Features of conventional textual programming development environments include

complex hierarchical menu structures and intricate user interfaces. These properties

are often experienced by novice programmers as distractions from the task of

programming (Reek 1995; Lidtke et al. 1998; Ziegler et al. 1999; Proulx 2000;

Warren 2000, 2001). Consequently, the difficulties experienced by novice

programmers when using conventional programming development environments can

impact on the level of motivation, which is the issue under discussion in the following

subsection.

Form of Motivation

In addition to the previously discussed points of deficiencies in problem-solving

strategies, comprehension of programming constructs and use of conventional

development environments, the individual performance of novice programmers in

introductory programming courses can also be attributed to personal motivation.

Consequently, a major challenge for educators of introductory programming courses

is finding ways to motivate CS/IS students to excel and to help them enjoy the course.

As the student enrolment in an introductory programming course becomes more

diverse, so too does students’ motivation for taking the course. Anecdotal evidence

from several international tertiary institutions is that students are becoming more

tactical, are extrinsically motivated and, consequently will only engage in those

learning activities which they see as contributing to an eventual highly paid job

(Jenkins 2001a).

CHAPTER 1 : RESEARCH CONTEXT

17

Increasing literature exists on innovative techniques that would enhance introductory

programming courses and improve student motivation. Much of this literature

discusses innovative ideas including the use of visual props (Astrachan 1998), theatre

and singing (Siegel 1999). Even though there is evidence from novice programmer

feedback that they enjoy the innovative modes of delivery of the introductory

programming course material, it has not been shown that these methods of teaching

have any real impact on the learning process required by novice programmers when

learning to program (Jenkins 2002).

Students should be motivated to expect to succeed in their studies (Jenkins 2001a),

and they should value the eventual outcome, examples being individual success in the

course with respect to performance level, final programme qualification or the

possession of a qualification that guarantees employability. If students are not able to

appreciate these expectations of success and outcome value, they will become

discouraged and consequently will not learn. Thus, educators need to address the

issue of motivation in order to promote a better, more effective learning environment.

The motivation problem appears to be exacerbated in courses containing both

computer science majors and non-majors (Chamillard et al. 2002). The introductory

programming course in the Department of CS/IS at UPE is such a combined course.

In the academic year (2003) during which the investigation is administered, the

combined introductory programming course recorded an initial intake of 39% (n =

153) CS/IS majors and 61% (n = 239) non-majors (UPE 2003a).

Knowledge of factors influencing performance such as the source of motivation,

could be useful in supporting students who enter combined introductory programming

courses with an alleged weakness with respect to successful performance (Byrne et al.

2001). Researched information in this area could be useful in amending teaching

techniques of introductory programming course educators so that they reflect the

disparities in performance and motivation present in any particular group of students.

Any methods used to provide the motivation necessary to increase performance and

foster enjoyment in an introductory programming course must be selected and

implemented with much thought so that novice programmers at the start of their

CHAPTER 1 : RESEARCH CONTEXT

18

formal programming education still learn the foundational programming constructs

required (Chamillard et al. 2002).

1.3.3 Concluding Remarks on Relevant Factors

The approach of teaching core programming concepts instead of a particular

programming notation and associated development environment has been discussed in

the previous section to address novice programmer deficiencies with respect to

problem-solving strategies, misconceptions related to programming notation

constructs and the use of traditional development environments. This approach has

been implemented so widely over the past 2 decades7 that it can be assumed that it has

been evaluated as successful. However, from a recent multi-national multi-

institutional report, it is evident that many novice programmers do not know how to

program at the successful conclusion of their introductory programming courses

(McCracken et al. 2001). This observation supports a conclusion that the educational

approach described may no longer be as successful as previously established (Jenkins

2001a).

A recent report on the programming notations and development environments used by

37 Australian universities in introductory programming courses concluded that there

is clearly a lack of technological support that is designed specifically for novice

programmers, is freely available, easy to use, does not obscure the details of the

programming process, and in which educators can be confident in teaching (De Raadt

et al. 2002).

In related work that compares textual and graphical notations in programming

notations, it has been shown that graphical notations are not necessarily an ultimate

solution (Green et al. 1991; Moher et al. 1993). This observation is made despite

claims of graphical notations providing an outline of the program structure, supplying

more information and being easier to read. It follows that the crucial issues about any

programming notation and in the case of this research, specifically a graphical

programming notation, are to what degree does the programming notation make

7 (Lockard 1986; Kushan 1994; Studer et al. 1995; Proulx et al. 1996; Dingle et al. 2001; Jenkins

2001a; McCracken et al. 2001; Jenkins 2002)

CHAPTER 1 : RESEARCH CONTEXT

19

certain types of information available to the novice programmer, and does the novice

programmer have sufficient experience with the type of programming notation being

presented (Ramalingam & Wiedenbeck 1997). Unfortunately there is currently both

insufficient research and empirical evidence, both internationally and nationally, to

justify the use of non-conventional programming technological support, specifically

non-textual programming notations like iconic programming notations and their

associated development environments in the education and training of novice

programmers (Whitley 1997).

It can be concluded from the discussions in Sections 1.3.1 and 1.3.2 that the following

problems contribute to the relevance of the present research in introductory

programming courses for novice programmers at tertiary level:

• continued unsatisfactory pass rates, despite the implementation of remedial

strategies of selection and placement of students;

• deficiencies in novice programmer problem-solving strategies;

• amount of conversion required by novice programmers between plan and

implementation of solution;

• high level of precision required in the syntax, semantics, structure and style of

textual programming notations used in learning environments;

• lack of visual feedback in introductory programming development

environments used for teaching and learning; and

• increased enrolment for CS/IS introductory programming courses and the

impact of the diverse student population on the motivation of students to be

successful in these courses.

From the same discussion, it is furthermore apparent that in order to address the above

mentioned problems, there is a requirement for appropriate technological support in

terms of a programming notation that:

• enhances understanding of introductory programming for a recognised

teaching model; and

CHAPTER 1 : RESEARCH CONTEXT

20

• is specifically designed for novice programmers and motivates and encourages

the novice to be successful in using it.

The identified problems and solution summarised above serve to provide a focus for

the current investigation, the details of which are elaborated on in the following

section.

1.4 Focus of the Investigation

The current investigation focuses on an implementation of the second type of

approach that has been proposed as a solution to increase the successful throughput of

students in introductory programming courses at tertiary level. This approach is

namely the modification of the teaching model (Wilson et al. 1985; Austin 1987).

This investigation is a natural extension of the comprehensive studies already

conducted at UPE with respect to the first of the approaches, namely the

identification, selection and placement of potentially successful students (Calitz 1984;

Calitz et al. 1992; Calitz 1997; Greyling 2000; Greyling et al. 2002; Greyling et al.

2003). It is also an extension of related international studies in programming with

respect to the second type of approach (Calloni et al. 1994, 1997; Ramalingam et al.

1997; Crews 2001).

During the 1990’s, quantitative international research in the use of an iconic

programming notation in an introductory programming course at tertiary level was

conducted (Calloni et al. 1994, 1997). The study by Calloni et al. indicated a

significant improvement in the results obtained by novice programmers in an

introductory programming course using BACCII©, an iconic programming notation

and development environment. It seems apt to perform a similar study on South

African CS/IS students and thereby determine the suitability of an iconic

programming notation as an alternative form of technological support for novice

programmers in an introductory programming course at tertiary level within the South

African context.

CHAPTER 1 : RESEARCH CONTEXT

21

Furthermore, as a result of the continued increase in enrolment figures in CS/IS

introductory programming courses, the continually growing diversity in first year

introductory programming student populations (as discussed in Section 1.3) is of

relevance when the issue of a technological support in the learning environment is

considered. A cognitive model that provides insight into the process followed by

novice programmers while learning to program (Mattson undated-a), can be used to

compare different programming notations and their associated development

environments more effectively.

Preferably, the programming notation used to educate and train novice programmers

in an introductory programming course should be chosen for teaching and learning

suitability and not because it is accepted and endorsed by industry (Jenkins 2002).

The courses in which these notations are used should be designed to be flexible so as

to allow different students to learn in different ways. This is supported by the results

of a study that examined the correlations between preferred learning style of novice

programmers and performance on both the exam and practical aspects of an

introductory programming course (Thomas et al. 2002). The study observed that

novice programmers with specific preferred learning characteristics8 may be

disadvantaged by certain traditional methods of teaching. These findings add to the

present research’s focus on the preferred teaching and learning programming notation

in a development environment by also focussing on the issue of the use of a

commercial textual programming notation and associated development environment

as the accepted and prescribed technological support.

The focus of the investigation is highlighted in terms of the study’s primary objectives

(Section 1.4.1). One of the main objectives is the conducting of a comparative study

using different categories of technological support as learning environment

instruments for subjects in an introductory programming course (Section 1.4.2). The

scope (Section 1.4.3) and feasibility (Section 1.4.4) of the research are presented,

together with the specific research questions that are to be addressed by the current

investigation (Section 1.4.5).

8 Namely active (learning by trying), sensing (concrete learning), and visual (learning with diagrams)

(Thomas et al. 2002; Soloman & Felder undated).

CHAPTER 1 : RESEARCH CONTEXT

22

1.4.1 Goal and Objectives

This thesis investigates and addresses the challenges of existing misconceptions about

the syntax, semantics and pragmatics of programming notation constructs that are

evident in novice programmers when using programming notations within the context

of an introductory programming course teaching model. The thesis specifically

reports on a quantitative and qualitative behavioural study of novice programmers in

an introductory programming course. The behavioural study determines whether

novice programmer performance achievement with respect to the comprehension and

composition of program solutions is independent of the programming notation used as

technological support in the learning environment for an introductory programming

course at tertiary level.

The investigation encompasses a comprehensive study of the cognitive model of

novice programmers while learning to program. The acknowledgement of such a

cognitive model can assist in the design of programming notations and development

environments that more closely match the way programmers, specifically novice

programmers, think. Consequently, a framework of novice programmer requirements

is proposed as the result of a comprehensive literature study of the cognitive model of

such programmers.

The framework of novice programmer requirements is applied as the criteria against

which programming notations related to that forming part of the current study are

measured in support of suitability for novice programmers. Various distinct

categories of experimental technological support for novice programmers are

identified from existing research and evaluated according to these criteria.

Furthermore, the framework of novice programmer requirements has a direct

influence on the design and implementation of the locally developed visual iconic

programming notation and development environment, B#. The role of B# in the

current study is that of the treatment technological support in a between-groups

empirical analysis.

The empirical analysis component of this investigation is conducted by qualitatively

and quantitatively comparing two different programming notations and their

CHAPTER 1 : RESEARCH CONTEXT

23

associated development environments used as technological support in an

introductory programming course learning environment in the Department of CS/IS at

UPE during 2003. The present research is primarily concerned with the comparison

of performance achievements observed for each of the identified technological

supports. This research is partly in response to the observation of a continued

unsatisfactory trend in the pass rate of introductory programming courses at tertiary

level in South Africa (Naudé et al. 2003; UPE 2003a).

A further issue that impacts on introductory programming course throughput is the

influence of a student’s motivation when using specific technological support in the

learning environment of an introductory programming course. If a student’s preferred

learning style matches that presented by a particular programming notation, the level

of personal motivation might be more positive, thereby resulting in increased

performance achievement and ultimately increased throughput (Thomas et al. 2002).

Although focussing on a visual iconic programming notation as the preferred

technological learning environment in a CS/IS introductory programming course, this

thesis also reports on whether a visual iconic programming notation is beneficial as a

technological learning environment that is supplemental to that of a conventional

textual programming notation. The analysis of the study is done in terms of

maximising throughput as well as individual average performance achievement.

1.4.2 Technological Support and Subjects of Comparative Study

The subjects for the research are first year introductory programming students in the

Department of CS/IS at UPE. In the introductory programming course at UPE,

students are traditionally taught the basic concepts of programming in a procedural, or

imperative, fashion, using a conventional textual programming notation (PASCAL)

and associated commercial development environment, Delphi™ Enterprise, as the

technological support (CS&IS 2003).

The programming notations considered in the investigation are the aforementioned

textual programming notation and development environment (discussed further in

CHAPTER 1 : RESEARCH CONTEXT

24

Section 5.4.1) and, B#, a visual iconic programming notation developed in the

Department of CS/IS at UPE (discussed further in Section 5.4.2).

1.4.3 Scope

The hierarchical placement of the current investigation is shown in Figure 1.2 by

means of an orange colour scheme. The focus of the investigation is on the impact of

using B# as technological support in the teaching model of an introductory

programming course in an attempt to increase the throughput rate.

The other components in the diagram illustrated in Figure 1.2 are research related to

the approach of the modification of the teaching model. The components appearing in

green and purple shading indicate alternative techniques for addressing the same

problem addressed by the focus of the current investigation. Some of these alternative

techniques (shown by means of a green colour scheme), amongst others, are the

themes of related recent and current research at UPE but fall outside the scope of the

current investigation (Christians 2003; Gamieldien 2003; Van Tonder 2003; De Jager

2004; Henning 2004; Leppan 2004; Mamtani 2004; Naudé 2004; Vogts 2004; Yeh

2004).

The theme indicated by yellow shading is that of the first approach identified as being

an approach that increases the throughput rate in introductory programming courses.

This approach that identifies potentially successful students in an introductory

programming course has in the past been comprehensively researched in the

Department of CS/IS at UPE (Calitz 1984; Calitz et al. 1992; Calitz 1997; Greyling

2000; Greyling et al. 2002; Greyling et al. 2003). The selection model based on the

findings of this research has been applied at UPE since 2001 and consequently has a

bearing on the profile of the subjects selected as participants in the current

comparative study.

Figure 1.2 emphasises that one way in which to modify the teaching model for an

introductory programming course is by means of the inclusion of technological

support within the teaching model. Many types of experimental technological support

in terms of programming notations and development environments have been used to

CHAPTER 1 : RESEARCH CONTEXT

25

Approaches to raise throughput rate

Identify potentially
successful students

Modify teaching
model

Technological
support tool

Visual programming
notations

Iconic programming
notations

Innovative presentation
techniques

Response to
individual learning

Worked Examples
and Code

Restructuring

Pseudo
Programming

Flowchart
Simulators

Dataflow
Programming

Languages

Mini-
languages and
Micro-worlds

B#BACCII©

Programming
Notations

Algorithm
Visualisation

Programming
Environments

support students of introductory programming courses internationally9 and nationally

(Warren 2000, 2001, 2003), yet the evidence is that not one has thus far gained

widespread acceptance for various reasons elaborated on in this thesis (Chapter 3).

Figure 1.2: Scope of the investigation

9 (Bonar & Liffick 1990; Lyons et al. 1993; Calloni et al. 1994; Calloni & Bagert 1995; Studer et al.

1995; Liffick & Aiken 1996; Calloni et al. 1997; Cockburn et al. 1997; Crews et al. 1998; Blackwell
& Green 1999a; Good 1999; Cooper et al. 2000; Garner 2000; Stajano 2000; Blackwell 2001;
Dagiano et al. 2001; Materson & Meyer 2001; McIver 2001; Navarro-Prieto & Cañas 2001; Baas
2002; Chamillard et al. 2002; De Raadt et al. 2002; Fergusson 2002; Gibbs 2002; McIver 2002;
Quinn 2002; Burrell 2003; Donaldson 2003; Carlisle et al. 2004; Hickey 2004; Mahmoud et al.
2004; Zelle undated)

CHAPTER 1 : RESEARCH CONTEXT

26

1.4.4 Feasibility

The validity of B# with respect to goodness of fit to the envisaged study was initially

determined by means of a pilot study that was conducted on students in the

introductory programming course in the Department of CS/IS at UPE during 2002.

This pilot study used B# version 1 (Brown 2001a, b).

The results of the pilot study suggested evidence of improved academic performance

achievement for students who used B# as technological support (Cilliers & Vogts

2002; Cilliers et al. 2003). The findings of the pilot study also suggested

programming notation and development environment enhancements that were

incorporated into version 2 of B#, which was in development concurrent with the

conducting of the pilot study.

The enhanced version of B#, version 2 (Thomas 2002a, b), is used as the experimental

programming notation and development environment in the comparative study

reported on in this thesis.

1.4.5 Research Questions

The investigation attempts to answer the specific research questions posed in Table

1.1. Various methods are used to determine the answers to the research questions

posed. The different methods used are indicated in Table 1.1. Where appropriate, a

literature review forms the basis for the research.

An acknowledged experimental design used in studies in programming is adopted,

modified and applied in the design of the experiment, collection of data and analysis

of the results. The chapter(s) that address each of the identified research questions

is(are) also listed in Table 1.1. The significance and relationship of the chapters to the

overall investigation is discussed in the following section.

CHAPTER 1 : RESEARCH CONTEXT

27

Research Question Research method Chapter
1. What is the mental model of novice

programmers when learning to program? Literature review 2

2. What are the criteria for selecting an
appropriate programming notation and
associated development environment for
novice programmers?

Analysis of literature
review 2

3. What categories of programming
notations and associated development
environments are used in introductory
programming courses at tertiary level?

Literature review 3

4. What categories of programming
notations and associated development
environments satisfy the selection criteria
for an appropriate programming notation
and development environment for novice
programmers?

Critical analysis of
literature review 3

5. What is the contribution of previous
research at UPE to the current
investigation?

Literature review 4

6. What technological support is developed
for use in the current investigation?

Design and implementation
of experimental

programming notation and
development environment

(B#)

5

7. Why were the specified tools chosen as
instruments in the current investigation?

Critical analysis of
literature review 5

8. What process is followed in the empirical
analysis relevant to the current
investigation?

Literature review

Experimental design
6

9. How well do novice programmers
perform depending on the technological
learning environment exposed to?

Empirical evaluation

Deliberation on findings
7 and 8

10. What is the impact of a visual iconic
programming notation on novice
programmer performance and motivation
in an introductory programming course at
tertiary level?

Comparative study of
textual and iconic

programming notations
and associated

development environments

Deliberation on findings

7 and 8

11. How should a visual iconic programming
notation be used in an introductory
programming course at tertiary level?

Evaluation 9

Table 1.1: Research questions and methods used to answer each

CHAPTER 1 : RESEARCH CONTEXT

28

1.5 Structure of Thesis

The thesis will specifically address the level of the impact of B#, a visual iconic

programming notation (Brown 2001a, b; Thomas 2002a, b; Yeh 2003a, b), on novice

programmers in a tertiary level introductory programming course. The organisation

of the thesis (based on that documented in Mouton 2001) is illustrated in Figure 1.3

and elaborated on in the following paragraphs.

Chapters 2 and 3 provide an overview of the main underlying theoretical components

of the thesis. Chapter 2 defines a framework for novice programmer requirements

which is evident in the behaviour of novice programmers when learning to program in

both the problem and program domains. The discussion of the latter domain is

detailed in terms of the superficial and in-depth levels of learning. Based on the

identified requirements of a novice programmer, Chapter 2 concludes with a list of

criteria against which programming notations and associated environments are

measured in Chapter 3.

An overview of both conventional textual and alternative programming notations and

their associated development environments for teaching introductory programming is

presented in Chapter 3. This overview incorporates a categorisation and evaluation of

technological support most commonly used as the educational and experimental

learning environments in introductory programming courses at tertiary level. These

programming notations and development environments are identified as being related

to those involved in the comparative study on which this thesis focuses.

Chapter 4 summarises related work that has been used to date by the Department of

CS/IS at UPE in the selection and placement of introductory programming students.

The subjects of the current investigation have been exposed to this procedure of pre-

selection prior to being participants in the empirical study. Chapter 5 describes the

design as well as the implementation of the B# programming notation and

development environment. The discussion highlights support for the framework of

novice programmer requirements derived in Chapter 2.

CHAPTER 1 : RESEARCH CONTEXT

29

Chapter 1
Relevance and

aims of the
research

Chapter 2
Novice

programmer
requirements

Chapter 7

Results of
investigation

Chapter 8

Discussion of
results

Chapter 9

Conclusions and
future research

Chapter 4
Predictive models,

selection and
placement

Chapter 6

Empirical study
methodology

Chapter 5

Development of
B#

Chapter 3
Programming
notations and
development
environments

The methodology that is applied in the empirical component of the investigation is

presented in Chapter 6, with the results of the empirical study being offered in

Chapter 7. A detailed discussion of the composite findings on the literature and

empirical investigation follows in Chapter 8. A concluding discussion in Chapter 9

focuses on the evaluation of the initial objectives of the investigation, the contribution

of this thesis to existing research, limitations that were identified during the

investigation, as well as recommendations for future and further research.

All appendices integral to the investigation reported on in this thesis appear in a

separate publication due to the volume thereof.

Figure 1.3: Thesis Outline

 30

Chapter 2
Cognitive Model of the Novice Programmer

2.1 Introduction

In Chapter 1, it was emphasised that the current investigation focuses on the use of a

programming notation and its associated development environment as an appropriate

technological tool in the teaching model of an introductory programming course. In

order to validate the choice of a suitable programming notation and development

environment, there is a requirement for the comprehension of the manner in which

novice programmers learn to program. The focus of this chapter, therefore, is to

determine and describe the way that novice programmers function when solving a

problem using programming techniques while learning to program.

In the implementation of a solution to a problem, programmers typically operate in

two areas, namely the problem and program domains (Mattson undated-a). The

problem domain is the statement of the problem and the program domain the solution

itself in the form of a representation in a particular programming notation. The

successful act of programming is thus the accurate transformation of an appropriate

mental representation of the problem domain to a corresponding solution in the

program domain (Cockburn et al. 1997; Pane et al. 2001; Mattson undated-a). The

large amount of conversion required by novice programmers between the mental

representation of the problem domain and the implementation of a solution in the

program domain is highlighted in Chapter 1 (Section 1.3.2). This is a deficiency that

contributes to the lack of success for novice programmers in introductory

programming courses.

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 31

In the program domain, novice programmers function on two further sub-levels when

learning to implement solutions, namely the superficial and in-depth levels (Mayer

1981; Perkins et al. 1988; Carter et al. 2001; Jenkins 2002). During superficial

learning, novice programmers typically apply rote-learning techniques in attempts to

master programming concepts. In contrast, the exercise of in-depth learning of

programming concepts requires a novice programmer to comprehend the effect of the

programming concepts within the context of a program solution, irrespective of

whether the solution is provided or requiring composition. The in-depth level of

learning is typically that level of learning that is primarily required as an outcome of

an introductory programming course.

Prior to in-depth knowledge for any particular programming construct being achieved,

the novice programmer masters knowledge of that construct at a superficial level.

Introductory programming courses enforce the practice that superficial and in-depth

knowledge of multiple programming concepts is mastered concurrently. The

superficial knowledge for a specific programming construct precedes that of the in-

depth knowledge for the same construct, but possibly occurs at the same time as the

in-depth knowledge of some other programming construct. Any hindrance at the

superficial learning level thus impacts on the progress of the in-depth learning of the

novice programmer.

One deficiency identified at the superficial learning level is the high level of precision

required in the syntax of textual programming notations typically used as learning

environments in introductory programming courses (Section 1.3.2). The previous

chapter highlights the following additional deficiencies that also contribute to the lack

of success for novice programmers in introductory programming courses, these

deficiencies being at the in-depth learning level:

• deficiencies in novice programmer problem-solving strategies;

• a high level of accuracy required in the semantics, structure and style of

textual programming notations used as learning environments in introductory

programming courses; and

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 32

• the need for appropriate technological support in terms of a programming notation

that is specifically designed for novice programmers and motivates as well as

encourages the novice to be successful in using it.

Recognising the concerns highlighted as deficiencies in the process of learning to

program, this chapter describes the manner in which novice programmers, specifically

students at tertiary level, experience the process of learning to program within the

problem and program domains, and in the latter domain, at both the superficial and in-

depth learning levels. A novice programmer’s level of success achieved while

learning to program impacts on the type and level of individual motivation present in

introductory programming courses, and ultimately on performance achievement

measurements. An overview of the types of motivation observed in novice

programmers when learning to program appears in Section 2.3.

The current chapter concludes with a set of measurement criteria deduced from the

described cognitive model of the novice programmer. The list of criteria serves as the

requirements of a novice programmer for a programming notation and development

environment that forms the technological support in an introductory programming

course teaching model (Table 2.1 in Section 2.4). The criteria are further

recommended as the instrument against which various categories of technological

educational programming notations and development environments are measured in

Chapter 3. The list of criteria also forms a share of the basis of the discussion on the

development of the investigative instrument in the current study (Chapter 5). The

discussion of the methodology appropriate to the current investigation (Chapter 6)

includes the criteria as being the dimensions against which performance achievement

of novice programmers in the form of first year introductory programming students is

quantitatively and qualitatively measured in the current empirical study.

2.2 Novice Programmers and Learning to Program

Programming is defined as a process of transforming a mental plan of the problem

domain that is in familiar terms into one that is more compatible with the computer,

namely the program domain (Pane et al. 2001; Mattson undated-a). The problem

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 33

domain is the definition of the problem and is generally represented in an abstract

form. The program domain is the representation corresponding to the solution of the

presented problem in some programming notation. Novice programmers are those

computer users who typically have little or no experience in the program domain

(Mayer 1981; Sutherland 1995).

The theory of learning to program emphasises the interaction between the novice

programmer’s conceptual model of the problem domain together with the

programming notation and associated development environment in the program

domain, where a conceptual model is defined as the understanding of the scenario

described (Shih & Alessi 1993). It is generally accepted that programmers construct

complex hierarchical conceptual models of the problem domain that represent similar

structures in the program domain (Toombs 1987). The construction of conceptual

models of the problem domain is categorised as intrinsic cognitive load (Garner

2001).

The intrinsic cognitive load evident in novice programmers is high (in terms of large

amount of effort required), and is, unfortunately, not directly subject to modification

by the use of technological support in the teaching model of an introductory

programming course. In contrast, extraneous cognitive load is subject to modification

in the teaching model of an introductory programming course. Extraneous cognitive

load comprises of the interaction with the programming notations and associated

development environments forming the instructional format used in the teaching and

learning process in the program domain. Extraneous cognitive load should thus be

lowered in order to minimise the total cognitive load of a novice programmer learning

to program (Garner 2001).

The extraneous cognitive load can be reduced for a novice programmer by a

programming notation and development environment being sensitive to the way in

which a novice programmer functions in the program domain, defined previously. A

novice programmer functions on two levels of learning when implementing solutions

in the program domain, namely at the superficial and in-depth levels of learning

(Mayer 1981; Perkins et al. 1988; Carter et al. 2001; Jenkins 2002). Superficial

learning is characterised by novice programmers memorising programming concepts

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 34

for automatic future use. The other level of learning, in-depth learning, requires

comprehension of the effects of programming concepts so that they can be applied in

the future implementation of solutions. In-depth learning is often the source of

confusion for novice programmers (Shneiderman 1983).

An overview of the problem domain of novice programmers focussing on the format

of the conceptual model constructed by a novice programmer in the problem domain

is provided (Section 2.2.1). The limitations evident in the conversion by novice

programmers of the conceptual model in the problem domain to a solution in the

program domain are identified. A detailed discussion of the program domain of

novice programmers (Section 2.2.2) focuses on novice programmer experiences of the

superficial and in-depth levels of learning.

2.2.1 Problem Domain

The problem domain conceptual model for any problem typically consists of dataflow

and task knowledge (Ramalingam et al. 1997). Dataflow knowledge is concerned

with the transformations which data items undergo, consequently being fundamental

to the goals of the tasks of a corresponding program domain representation (Shih et al.

1993; Wiedenbeck et al. 1999). Even though all programmers experience intrinsic

cognitive overload, it remains particularly difficult for novice programmers since they

have not yet developed strategies to reduce and effectively manage the intrinsic

cognitive load. Consequently, novice programmers may not detect losses of

information from working memory, thereby neglecting small but important portions

of the problem domain (Spohrer et al. 1986). An appropriate and precise conceptual

model representing the novice programmer’s conceptual understanding of a specified

problem is therefore necessary before an accurate conversion to the program domain

can be made.

Performance in the problem domain can also be affected by the way in which a

problem is presented and phrased (Whitley 1997). Novice programmers frequently do

not translate a given problem into a conceptual model that is independent of the

original external representation, namely the presented problem. The external

representation of a problem can therefore restrict the internal conceptual model

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 35

representation. Furthermore, novice programmers will not necessarily use efficient

conceptual models to represent problems (Petre & Blackwell 1999). The type of

conceptual model typically used by novice programmers in programming exercises is

indicative of the level of confidence experienced by the novice when learning to

program.

The types of conceptual models have been observed to prominently feature the use of

diagrams as notation and structure in the interpretation of programming problems by

non-programmers (Pane et al. 2001). The visual imagery typically appeared early

during the problem-solving process. In related studies of the conceptual models used

for learning control constructs in programming problems, it was also evident that

figures featured prominently during the initial analysis of a problem (Green 1997;

Ginat 2001). Visual conceptual models as opposed to verbal conceptual models were

the preferred medium by subjects in another related study (Shih et al. 1993).

The results of the aforementioned studies and others (Dillon et al. 1994; Astrachan

1998) support early evidence (Mayer et al. 1986) that success in learning to program

is related to the problem representation skill of diagramming. It can thus be

concluded that the conceptual models of programmers within the problem domain

tend to feature visual imagery as opposed to textual imagery. The acknowledgement

of this factor is applicable in the selection of an appropriate technological support in

the learning environment of an introductory programming course (Chapter 5).

Appropriate training and support in the learning environment of introductory

programming courses can assist novice programmers in the construction of effective

conceptual models which provide appropriate representations of the states and

relationships of data elements within the problem domain (Ben-Ari 1998, 2001;

Dagdilelis et al. 2002). Using these conceptual models, the misconceptions of novice

programmers are reduced and the novices thus perform tasks more like expert

programmers, especially in the conversion process from the problem domain to that of

the program domain (Shih et al. 1993).

In a review of studies of novice programmers using textual programming notations,

one of the most prominent problems was identified as the limitation on the closeness

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 36

of the mapping of the problem domain to the program domain and the use of

unfamiliar terminology (Pane & Myers 2000). The finding was also evident in an

earlier related study conducted by Perkins et al. (1988) where it was found that the

formal context of the program domain might have hindered the transfer of problem-

solving skills (problem domain) to be practiced in programming a solution to a

problem (program domain).

The observations just presented support the fact that novice programmers are perhaps

able to determine what needs to be done when solving a problem, but often are

confused only about how to convert and convey that requirement in a specific

programming notation in the program domain (Bonar et al. 1983). Attempts to

compensate for this limitation include the situation where introductory programming

educators design learning activities that explicitly encourage and support the correct

and appropriate conversion from problem domain to program domain (Shih et al.

1993).

In order to perform the conversion from problem domain to program domain

successfully, a novice programmer must concurrently master the skills of syntax,

semantics, structure and style of the specific programming notation being used for

accurate implementation in the program domain (Studer et al. 1995; Proulx et al.

1996; Carter et al. 2001; Jenkins 2002). The majority of these skills, which form a

substantial part of the discussion in the following section, are furthermore required to

be mastered at a high level of accuracy (Lischner 2001; Pane et al. 2001; Jenkins

2002).

2.2.2 Program Domain

Learning to program using a specific programming notation is one of the first and

most fundamental ways to learn about the functionality of computers, thus computer

programming has been the major focus of most computer introductory courses

(Urban-Lurain & Weinshank 2000). Program solution generation in a programming

notation has consequently become one of the primary skills desired as an outcome of

an introductory programming course. Therefore, the specific practice of program

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 37

solution generation is recommended in order to cultivate programmers skilled in the

writing of computer program solutions (Shih et al. 1993).

The writing of computer program solutions can be viewed as a type of symbolic

encoding (Toombs 1987) and is a formal task requiring a high level of accuracy

(Lischner 2001; Pane et al. 2001; Jenkins 2002). Programming is learnt by a novice

programmer in two ways, namely at the superficial level and the in-depth level

(Mayer 1981; Perkins et al. 1988; Carter et al. 2001; Jenkins 2002). The superficial

level which typically precedes the in-depth level, incorporates techniques of

memorisation in the representation of problems in the program domain. In contrast,

the in-depth level requires the comprehension of programming constructs used in the

program domain, with a view to the composition of novel solutions to programming

problems.

One of the objectives of an introductory programming course is to produce

programmers who will be able to create original solutions to problems (Mayer 1981;

Shih et al. 1993). Consequently, novice programmers are expected not to merely be

proficient in a specific programming notation at the superficial level, but to exhibit

expertise at the in-depth level of the program domain (Lockard 1986; Kushan 1994;

Studer et al. 1995; Proulx et al. 1996; Dingle et al. 2001; McCracken et al. 2001;

Jenkins 2002). This section thus focuses on the characteristics of the superficial and

in-depth levels of learning, these being the components of the program domain.

Superficial Level of Learning

The superficial level of learning in the program domain is characterised by attention

to finer detail and typically occurs at a low level of abstraction (Ramalingam et al.

1997; Wiedenbeck et al. 1999). Mastering of the superficial level is evident in the

accurate and correct application of the lexical and syntactical rules of a particular

programming notation. Both the lexical and syntactical rules of a particular

programming notation can be accurately memorised with minimum effort by novice

programmers for application in solutions to programming problems.

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 38

In order to master the lexical and syntactical rules of a programming notation, the

novice programmer must be sufficiently knowledgeable in the use of the individual

programming notation operations and their associated grammatical restrictions to

produce program solutions that are of the correct format for the programming notation

being used. This involves the correct combination of program statements using the

available programming notation operations in the correct sequence (Howe 2003). The

rigidity of the requirements for evidence of successful superficial learning in the

program domain does, however, possess the potential to hinder the overall progress of

learning to program for novice programmers, especially during the composition of

novel solutions to problems.

Conventional textual programming notations traditionally used in introductory

programming courses require absolute accuracy in the representation of the format of

a program solution in the program domain. The precision of the programming

notation’s lexical and syntactical constraints must be in place before any evaluation of

the actual program tasks corresponding to the conceptual model of the problem

domain can take place. The ultimate task of having a functioning program at the in-

depth level is thus delayed until such time as the program satisfies all of the lexical

and syntactical constraints of the programming notation being used at the superficial

level. The following discussion illustrates the potential for a delay in the process of

learning to program with respect to the level of accuracy required in the syntax of a

textual programming notation.

Figure 2.1: Textual programming notation fragments: Syntax

if (num > 10) then
 write(‘More than 10’)
else
 write(‘Not more than 10’);
writeln;

if (num > 10) then
 write(‘More than 10’);
else
 write(‘Not more than 10’);
writeln;

Syntactically
correct

fragment

Syntactically
incorrect
fragment

Offending statement
separator

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 39

Figure 2.1 illustrates two textual programming notation program solution fragments.

They are a correct syntax (top) and incorrect syntax (bottom) for a conditional

statement in the commercial textual programming development environment Delphi™

Enterprise using the PASCAL textual programming notation. Even though the

fragments are visually very similar, the subtle incorrect placement of the statement

separator, the semicolon (;), in the bottom fragment results in a syntactical error

being detected by the textual programming notation compiler. In fact, the compiler

highlights the line containing the else statement and displays a message similar to

';' not allowed before 'ELSE'. There is, in fact, no ; before the else

statement. The offending ; occurs in the previous line which is not directly

highlighted as containing an error. The novice programmer is thus alerted to the

incorrect line of the program solution.

The potential thus exists that a novice programmer will not speedily detect the

offending semi-colon, especially within a larger and more complex program solution

fragment, thereby delaying the progress of constructing a functioning solution

representation in the program domain.

The potential consequences of the aforementioned scenario are aggravated by the fact

that supporting texts for introductory programming courses typically focus on the

instruction of the syntax of textual programming notation constructs (Hennefeld &

Burchard 1998; Williams & Walmsley 1999; Kerman 2002). The novice programmer

is encouraged to view the result of the programming process as being the textual

program solution itself. Attention to detail at the superficial level is perceived by

novice programmers as the focus of the problem-solving process (Soloway 1986;

Hilburn 1993; Wiedenbeck et al. 1999).

Novice programmers may consequently quickly acquire an understanding of the

lexical and syntactical constraints of a programming notation, yet this narrow focus of

exclusive memorisation can result in a novice programmer missing the broad function

of the solution representation in the program domain (McIver 2000). The effect is

that the program logic content that is learned at the superficial level can rarely be

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 40

effectively transferred because of a lack of conceptual understanding of the

underlying tasks of the program solution (Jonassen 2000).

Using the superficial learning approach exclusively, novice programmers are

consequently not able to relate the programming constructs in a program domain

representation to an understanding of how the desired results were produced (Mayer

1981; Liffick et al. 1996). A comprehension of the higher level effects of

programming constructs within a solution representation in the program domain

empowers a novice programmer to construct novel solutions to similar problems

(Spohrer et al. 1986; Ginat 2001; Mattson undated-a). Such comprehension and

transfer is evidence of in-depth learning in the program domain, which is the focus of

the next subsection.

In-depth Level of Learning

In the process of learning to program, the novice programmers’ comprehension of the

effects and implementation of individual programming constructs is the abstract

understanding that complements the superficial level of learning in the program

domain. The successful transference and application of the comprehension of

programming constructs to new but similar problems is evidence of achievement in

the in-depth learning level of the program domain (Mayer 1981; Shih et al. 1993;

Wiedenbeck et al. 1999).

An effect of a low level of conceptual understanding in novice programmers is that

they neglect to successfully transfer existing programming knowledge and

consequently approach each problem as if it was unique (Urban-Lurain et al. 2000).

Novice programmers thus require strategies to enable them to view a current problem

in terms of previously encountered problems, so that known solution strategies can be

transferred to the current problem (Soloway 1986; Perkins et al. 1988; Jonassen

2000). The application of this in-depth learning in the program domain is a reflective

process, in contrast to the reflexive process of the application of superficial learning,

and is evidence of successful problem-solving in the program domain.

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 41

During the development of in-depth learning, novice programmers are required to

comprehend existing solutions in a particular programming notation. The

comprehension process typically occurs in two successive phases (Navarro-Prieto &

Cañas 1999). During the first phase the novice programmer develops an

understanding of the control flow of the solution in terms of the structure of the

solution and outcomes of individual programming constructs making up the solution.

The second phase is a determination of the transformation procedures and tasks

applicable to data elements of the problem, known as dataflow comprehension. The

latter phase is classified as comprehension at a higher level of abstraction and is thus

experienced as being the more difficult of the two phases.

Each of the control and dataflow comprehension phases is discussed in turn. If the

necessary support in the learning environment that encourages successful in-depth

learning is lacking, novice programmers might develop a conceptual understanding of

the control and dataflow of solutions which is ineffective and flawed (Ben-Ari 2001),

ultimately resulting in misconceptions. This trait has been identified as one of the

greatest obstacles novice programmers face in learning to program (Shih et al. 1993;

George 2000). For this reason, the subsection concludes with a description of the

requirements for educational support of in-depth learning in the program domain.

Control Flow Comprehension

Comprehension of the control flow of a program solution results in a knowledge

structure representation of how the program functions (Navarro-Prieto et al. 1999)

and is usually as a result of reading an existing programming notation solution with

evidence of pre-existing superficial learning (Ramalingam et al. 1997). Typical

examples of control flow concepts are looping and branching programming

constructs, as well as the ordering of individual programming constructs in relation to

one another, also referred to as program structure.

Novice programmers who master the comprehension of the control flow of existing

solutions in a particular programming notation in the program domain are able to

provide evidence of understanding the outcome of each individual program statement

in the solution (Mayer 1981). They have thus successfully learnt both the syntactical

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 42

and semantical constraints of the programming notation, as well as appropriate

program structure (Shih et al. 1993; Deek 1999; Howe 2003).

Figure 2.2 and Figure 2.3 illustrate effects of applied misconceptions related to

control flow comprehension. Figure 2.2 shows two sample PASCAL textual

programming notation program solution fragments, each being syntactically correct.

The program solution fragments are attempts to solve the problem to display an

appropriate message depending upon the value of the variable mark. The upper

program solution fragment illustrates the use of PASCAL textual programming

notation programming constructs in a correct semantic interpretation. The lower

program solution fragment will not work correctly should the variable mark take on a

value less than 50. Due to an erroneous interpretation of the semantics of the

PASCAL textual programming notation conditional statement in the lower program

solution fragment a logical error is introduced into the program solution.

if (mark < 50) then
 writeln(‘Fail’)
else
 if (mark < 75) then
 writeln(‘Pass’)
 else
 writeln(‘Distinction’);

if (mark < 75) then
 writeln(‘Pass’)
else
 if (mark < 50) then
 writeln(‘Fail’)
 else
 writeln(‘Distinction’);

Figure 2.2: Textual programming notation fragments: Semantics

Similarly, in order to master the structure of a programming notation, the novice

programmer is required to comprehend the restrictions placed on the order of

programming notation statements in relation to one another. Students often do not see

a textual program solution as a sequence of steps that must be executed one at a time

(Crews et al. 1998). They tend to view program solutions as a collection of

This statement
will never be

executed

Semantically and
syntactically correct

fragment

Semantically
incorrect;

syntactically correct
fragment

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 43

statements that execute when necessary, and thus do not pay attention to the correct

and exact placement of statements within a program.

Figure 2.3 illustrates the effect of structure comprehension by means of two sample

PASCAL textual programming notation program solution fragments, each of which

exhibits syntactically correct textual programming notation statements. The program

solution fragments are attempts to solve the same problem described for Figure 2.2

but also require that a value for the variable mark be entered.

writeln(‘Enter mark in the range 0–100 ‘);
readln(mark);
if (mark < 50) then
 writeln(‘Fail’)
else
 if (mark < 75) then
 writeln(‘Pass’)
 else
 writeln(‘Distinction’);

if (mark < 50) then
 writeln(‘Fail’)
else
 if (mark < 75) then
 writeln(‘Pass’)
 else
 writeln(‘Distinction’);

writeln(‘Enter mark in the range 0–100 ‘);
readln(mark);

Figure 2.3: Textual programming notation fragments: Structure

The upper program solution fragment exhibits the correct PASCAL programming

notation programming structure, namely that the value for the variable mark be

obtained prior to any computation on the variable. The lower program solution

fragment also requires that a value for the variable mark be obtained, but the ordering

of the program statements is incorrect. The lower program solution fragment will

perform computation on the variable mark but the result will be unpredictable since

the obtained value for the variable mark will have no bearing on the computation.

Semantically,
syntactically

and
structurally

correct
fragment

Semantically
and

syntactically
correct; yet
structurally
incorrect
fragment

Incorrect ordering
of program

statement “chunks”

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 44

Again, a logical error has been introduced due to erroneous programming notation

structure interpretation.

In dealing with the types of misconceptions previously illustrated, the novice

programmer must first successfully comprehend how a program solution in a

particular programming notation functions. Thereafter comprehension of the solution

at a higher level of abstraction can take place, namely at the level of comprehending

what the program solution does. This comprehension takes place during the dataflow

comprehension phase, which is the focus of the following subsection.

Dataflow Comprehension

Dataflow comprehension of an existing program solution consists of a top level

understanding of the main tasks of the program and the knowledge that is required to

understand exactly what the program does (Navarro-Prieto et al. 1999). Research has

established that the better comprehenders of program solutions are distinguished from

the poorer by their higher level of dataflow comprehension (Fix et al. 1993).

Novice programmers who have mastered the difficult cognitive skill of dataflow

comprehension are able to illustrate their knowledge by means of the recognition of

solution patterns (also termed beacons) when converting problem domain conceptual

models to solutions in the program domain (Perkins et al. 1988; Whitley 1997;

Jenkins 2002; Mattson undated-a). The mastery of dataflow comprehension thus

supports mental simulations of program solutions used to propose and test

assumptions about possible solutions to a problem in the program domain (Shih et al.

1993; Mattson undated-a).

A further effect of mastering dataflow comprehension skills is the use of

programming construct “chunking”, where a single dataflow item may, in effect, be a

collection of related sequential programming constructs that perform a single top level

task and that have been individually previously comprehended during the control flow

phase (Curtis 1981; Soloway et al. 1982; Sutherland 1995; McIver 2000; Urban-

Lurain et al. 2000). Examples of chunked dataflow items are the average, sum and

maximum subrountines.

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 45

Chunking encourages a higher level of abstraction and comprehension of solution

schemes in procedural form that is programming notation independent (Liffick et al.

1996). The comprehension of the higher schematic level characterised by the

chunking of program solutions is known as germane cognitive load (Garner 2001).

An increase in the use of germane cognitive load by a novice programmer results in a

reduced demand on intrinsic cognitive resources. An advantage of chunking is

therefore that fewer finer programming details are required to be recalled when

comprehending and transferring knowledge of a program solution and thus the total

cognitive load on the novice programmer is reduced.

Research literature discusses methods that encourage successful in-depth learning

through the control and dataflow comprehension phases (Curtis 1981; Mayer 1981;

Astrachan 1998; Applin 2001). The requirements for effective in-depth learning are

summarised in the following subsection.

Requirements for In-depth Learning Support in a Learning Environment

Successful in-depth learning within the program domain is an example of meaningful

learning. Meaningful learning in the program domain is the process by which the

novice programmer connects new concepts, or old concepts in a new context, with

programming knowledge that already exists in memory (Mayer 1981). This process

of gaining programming knowledge is a series of refinements and reorganisations of

the understanding to make it fit the existing knowledge structure (Applin 2001). The

general framework of the process of meaningful learning is illustrated in Figure 2.4

and is known as assimilation theory, being the presentation of a model prior to

learning (Curtis 1981; Mayer 1981).

The purpose of the presented model is to enhance learning because it provides a

meaningful context prior to the actual learning process (Mayer 1981; Astrachan

1998). Related to the current investigation is research that discusses the psychology

of how novice programmers learn to program. In this research that has been widely

cited over the past two decades10, Mayer (1981) describes that the human cognitive

10 Refer to (see Curtis 1981; Mayer et al. 1986; Deek 1999; George 2000; Pane et al. 2000; Applin

2001; McCracken et al. 2001 amongst others) amongst others.

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 46

system consists of short-term and long-term memory, where the former is a temporary

and limited capacity store for holding and manipulating information, and the latter a

permanent, organised and unlimited store of existing knowledge. It is against this

background that the process of assimilating programming knowledge by a novice

programmer is described.

Figure 2.4: Meaningful learning process

New programming knowledge is processed sequentially as follows (Figure 2.4

adapted from (Mayer 1981)):

1) On reception of the programming knowledge, it is required that the novice

programmer pay sufficient attention to the information so that it reaches short-

term memory.

2) Appropriate prerequisite concepts (declarative knowledge) in long-term

memory are identified for use in incorporating the new information (Shih et al.

1993; West & Ross 2002). These prerequisite concepts are ideas that are used

as anchors for the new information and have typically been derived from

previous meaningful learning exercises involving the comprehension of

existing programming solutions (Mattson undated-a).

3) The prerequisite knowledge is used so that the new programming concept can

be connected with it and stored in long-term memory for future use. This is

typically the transformation of declarative to procedural knowledge (Shih et

al. 1993).

Short-term
Memory

Long-term
Memory

Stimulus Response
1)

3) 2)

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 47

Meaningful learning cannot occur if any of the three steps are not processed properly.

Each new piece of programming knowledge will need to be memorised as an

independent concept to be committed to memory (Mayer 1981). The risk of this is

that the new piece of programming information may not be learnt in the manner

expected, if at all (Lischner 2001).

Novice programmers need to be supported in the learning environment so that they

become skilled in identifying problem prototypes during the assimilation of

programming knowledge at the in-depth learning level in the program domain

(Dagdilelis et al. 2002). The prototype identification skill is necessary for novice

programmers to produce solutions to problems by packaging operator sequences into

integrated methods (Shih et al. 1993). This strategy is identified in the previous

subsection as the “chunking” process. Consequently, novice programmers need

guidance in developing the skills necessary to better organise information into

meaningful groupings.

Meaningful learning of programming concepts is complemented with the use of

images (Mayer 1981). Images assist novice programmers to conceptualise the issues

relevant to the conversion from problem to program domain in a more useful and

consistent way (Kaasbøll 1998). Early research has established that when images are

embedded within a technical text, novice programmers tend to perform best on

recalling these familiar images and tend to recognise the information adjacent to the

image in the text (Mayer 1981). Cockburn et al. (1997) support this finding and

maintain that novice programmer awareness of program structure can be enhanced

through mechanisms that include graphical visualisations as images of program

solution content.

There is also argument that students in technological courses, which include

introductory programming courses, are considered to be visual learners (Felder 1993;

Fowler et al. 2000; Cardellini 2002; Thomas et al. 2002). Visual information is

defined to include pictures, diagrams, charts, plots and/or animations (Felder 2002).

If this is the case, and since it has been found that some novice programmers do

indeed learn new material visually rather then verbally, comprehending and

developing graphical solutions in the program domain may assist novice programmers

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 48

to more easily assimilate programming knowledge (Chamillard et al. 2002). The use

of other visual techniques that aid the in-depth comprehension of program solutions in

the program domain is also recommended, one of these techniques being that of

programming style.

Mastering the skill of the style of a programming notation, also referred to as

secondary notation requires that a novice programmer make use of layout techniques

in order to visually aid the comprehension of textual program solution representation

(Green & Petre 1993; Whitley 1997; Blackwell & Green 2000). These techniques

include the indentation or staggering of program notation statements to indicate

several levels of control flow nesting (Kernighan & Plauger 1974) and use of white

space within a program.

The program solutions written for and by novice programmers must be readable and

simple since they are meant to be read and understood by novice programmers

(Kernighan et al. 1974). It is therefore essential in the teaching of introductory

programming courses to make the purpose of a program solution unmistakable

(Kernighan et al. 1974). Secondary notation is thus encouraged to make this purpose

obvious in the programming notation programming construct detail which will assist

in the comprehension of the purpose of the program as a whole. This argument is

supported by early research that established that programmers recall more accurately

those program solutions that provide evidence of good programming style (Soloway

et al. 1982).

The lack of correct programming style found in program solutions in the program

domain permits novice programmers to build their own sometimes quite flawed model

of the control and dataflow of a program solution (Applin 2001). Initial novice

programmer programming examples and assignments are often in this badly

structured form, an example of which is illustrated in Figure 2.5.

Figure 2.5 illustrates two versions of the correct textual programming notation

fragment described for Figure 2.3. The upper fragment in Figure 2.5 does not use

secondary notation techniques whereas the lower fragment does. The lack of the

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 49

appropriate use of secondary notation in the upper fragment makes the visual

comprehension of the simple fragment more complex than that of the lower fragment.

writeln(‘Enter a mark in the range 0 – 100 ‘);readln(mark);
if (mark < 50) then writeln(‘Fail’) else if (mark < 75) then
writeln(‘Pass’) else writeln(‘Distinction’);

writeln(‘Enter a mark in the range 0 – 100 ‘);
readln(mark);
if (mark < 50) then
 writeln(‘Fail’)
else
 if (mark < 75) then
 writeln(‘Pass’)
 else
 writeln(‘Distinction’);

Figure 2.5: Textual programming notation fragments: Style

A further advantage of good programming style as an aid to novice programmers is

that fewer errors will be introduced by them when making changes to a program

solution in the program domain. Despite this, programming style is rarely taught in

introductory programming courses, either directly or by implication.

The traditional introductory programming education model requires novice

programmers to first learn how to perform structural decomposition in their approach

to solving problems (Lockard 1986; Kushan 1994; Studer et al. 1995; Proulx et al.

1996; Dingle et al. 2001; McCracken et al. 2001; Jenkins 2002). Thereafter, they

would be taught the mechanics of the programming notation at the superficial learning

level so that they would be able to create and manipulate the data types and control

flow mechanisms, amongst other programming concepts, in order to solve the

program domain requirements of their problem solution (Cockburn et al. 1997).

Many novice programmers find the material unexciting because it remains a difficult

task for educators to find interesting problems for the novice programmers to solve

with the limited set of skills available (Reek 1995; Thomas et al. 2002).

Despite this situation, novice programmers should be motivated to expect to succeed

in their studies (Jenkins 2001a; Jenkins undated). If they are not motivated to

Poor
programming

style

Encouraged
programming

style

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 50

succeed, they will become discouraged and consequently will not learn (Jenkins

2001a). The types and levels of motivation evident in novice programmers enrolled

in introductory programming courses is the focus of the following section.

2.3 Novice Programmer Motivation

Individual performance of novice programmers in introductory programming courses

can also be attributed to personal motivation. A major challenge for educators of

introductory programming courses is to find ways to motivate CS/IS students to

perform satisfactorily as individuals as well as a group, and to help them enjoy the

course.

The traditional teaching method in introductory programming courses is by means of

deduction, namely where students are introduced to fundamentals at the superficial

level of learning and then proceed with the applications at the in-depth level of

learning using conventional textual programming notations and development

environments (Felder 2002). This learning environment is often responsible for

discouraging many students who have the initial intention and the ability to be

successful in programming fields to switch to non-programming fields due to

cognitive overload.

It has further been suggested that students whose learning styles are compatible with

the teaching style of a course educator tend to retain information longer, apply it more

effectively and have more positive post-course attitudes toward the course than do

their counterparts who experience learning/teaching style mismatches (Felder 1993).

The expectations of introductory programming students with respect to learning

resources thus impacts on the type and level of motivation.

The previous argument is supported in part by a recent South African study that

examined the effects of a changing society and technology on the way that learners

interact with information in an educational environment (Miller 2003). The study

revealed that learners today require material in visual format, find or create their own

learning content, need fast access to learning material and require learning material

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 51

with a long-term career value. It is apparent that these learners were motivated by the

technology used in information transfer, are active learners, externally motivated and

regard learning as a social activity.

Novice programmers should be motivated to expect to succeed in their studies, and

they should value the eventual outcome, for example individual success in the course

with respect to performance level, final programme qualification or the possession of

a qualification that guarantees employability (Jenkins 2001a; Salcedo 2003; Jenkins

undated). If novice programmers are not able to appreciate these expectations of

success and outcome value, they will become discouraged and consequently will not

learn (Jenkins 2001a). Furthermore the motivation dilemma has been observed to be

exacerbated in courses containing a diverse population of both computer science

majors and non-majors (Chamillard et al. 2002). The introductory programming

course in the Department of CS/IS at UPE, the context in which the current study

takes place, is such a combined course and currently has an intake of 39% (n = 144)

CS/IS majors and 61% (n = 225) non-majors (UPE 2003a).

Motivation amongst novice programmers has been classified as being intrinsic or

extrinsic (Jenkins 2002). Novice programmers who are intrinsically motivated have

been found to be genuinely interested in the introductory programming course.

Extrinsically motivated novice programmers are motivated by the fact that the

introductory programming course is a step towards a lucrative career (Wilson et al.

1985; Boyle et al. 2002; Jenkins 2002; Jenkins undated).

Novice programmers who struggle in the introductory programming course have been

more often observed to have a primarily extrinsic motivation (Jenkins undated). One

possible way in which to encourage positive motivation amongst novice programmers

in introductory programming courses is to provide technological support in terms of a

programming notation and development environment that motivates as well as

encourages the novice programmers to be successful in using it to compose accurate

program solutions.

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 52

2.4 Conclusion

Success in the transference of programming skills requires a novice programmer to be

skilled in the comprehension of existing program solutions at the superficial learning

level and especially the in-depth learning level. From the simple textual programming

notation program solution fragments illustrated in Figures 2.1 – 2.3 and Figure 2.5, it

is obvious that the level of precision required at both levels by novice programmers in

order to produce correctly functioning solutions in a conventional textual

programming notation is high. Technological support in an introductory

programming learning environment should aim to reduce the volume of finer details

that a novice programmer has to recall. The impact of this support is a reduction in

total cognitive load in the novice programmer while learning to program, especially at

the extraneous level.

The aforementioned observation is supported by the fact that novice programmers

should begin programming at a level where concepts are what really matters rather

than on a lower level where programming notation technicalities become the main

issue. Superficial level implementation issues can distract the novice programmer so

that the abstractions at the in-depth learning level are not fully comprehended.

Novice programmers should be encouraged in the long-term assimilation of

programming knowledge with the use of concrete models that enhance the process of

learning to program within technological support in the learning environment in order

to ensure that the process of in-depth learning is promoted. Due to novice

programmers having been identified as visual learners, the concrete models within the

technological support in the learning environment should take the form of imagery.

As a consequence of the discussion in this chapter, 8 requirements are identified as the

program domain requirements for technological support in an introductory

programming course learning environment. The identified requirements (R1 – R8)

appear in Table 2.1.

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 53

The framework in Table 2.1 emphasises the need for a programming notation and

development environment as technological support in the learning environment of an

introductory programming course to

• minimise the restrictions placed on novice programmers by a programming

notation and associated development environment (R4);

• minimise the mundane program solution implementation details at the

superficial level of learning (R1);

• develop comprehension of the use of programming constructs at the in-depth

level of learning (R2, R5, R6, R7, R8); and

• encourage a positive attitude while learning to program (R3).

Requirements for Novice Programmer Technological Support Section

R1: Elimination of finer implementation details typically found
at the superficial learning level of the program domain

2.2.1
2.2.2

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain 2.2.2

R3: Increase in level of motivation when using the programming
notation 2.3

R4: Designed specifically for use by novice programmers 2.2.1

R5: Provision of visual techniques to aid comprehension process
at the in-depth learning level of the program domain 2.2.1

R6: Support for reduced mapping between the problem and
program domains 2.2.1

R7: Increased focus on problem-solving 2.2.2

R8: Increase in novice programmer performance achievement
measured in terms of higher level of accuracy in program
solutions in program domain

2.2.2

Table 2.1: Framework of novice programmer requirements for technological support

in the learning environment of an introductory programming course

CHAPTER 2 : COGNITIVE MODEL OF THE NOVICE PROGRAMMER

 54

The framework of requirements in Table 2.1 is used as the criteria measures in the

assessment of different categories of existing introductory programming notations and

development environments in Chapter 3. The listed requirements further serve as a

partial foundation for the development of the experimental technological support

instrument used in the current investigation (Chapter 5) and the description of the

methodology applied to the current empirical study (Chapter 6).

55

Chapter 3
Technological Support for Novice Programmers in
the Program Domain

3.1 Introduction

Novice programmers, when learning to program, are simultaneously faced with the

challenges of learning programming concepts and applying them successfully in the

program domain. The issues related to the behaviour of novice programmers in their

experience of and approach to these challenges are emphasised in Chapters 1 and 2.

Technological support components in the program domain are a programming notation

and a development environment (Blackwell et al. 2000). The usability of the

technological support provided in the program domain is consequently dependent upon

both the notation and the development environment (Blackwell et al. 2000; Dagiano et al.

2001; McIver 2001). Having to concurrently learn and master the different but related

spheres in the program domain often results in cognitive overload for the novice

programmer (Garner 2001; DuHadway et al. 2002; Garner 2002). One way in which to

ease the cognitive load is by making the appropriate selection of programming notation,

thereby easing the extraneous cognitive load.

A consideration in the selection of a programming notation for use by novice

programmers in the program domain is how easily the novices will learn the chosen

notation. Other factors that are just as important are the existence of any notation

features that might interfere with the understanding of the elementary programming

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

56

concepts, as well as any that ease the transformation of the novice programmer to one

who is competent (Dingle et al. 2001).

The following deficiencies in the textual programming notations and their associated

development environments traditionally used as technological support in the program

domain for novice programmers in introductory programming courses have been

identified in Chapter 1 (Section 1.3.2):

• high level of precision required in the syntax, semantics, structure and style of

textual programming notations used in learning environments;

• lack of appropriate technological support in terms of a programming notation and

associated environment that enhances understanding of introductory programming

for a recognised educational model;

• lack of appropriate technological support in terms of a programming notation that

is specifically designed for novice programmers and motivates and encourages the

novice to be successful in using it;

• lack of visual feedback in introductory programming notations and associated

environments that are used for teaching and learning; and

• amount of conversion required by novice programmers between plan and

implementation of solution.

Since all program domains comprise of a programming notation and development

environment, this chapter provides an overview of the general features of a program

domain for novice programmers. The discussion (Section 3.2) highlights the

requirements for a programming notation and associated development environment

aimed specifically at novice programmers in the learning environment of introductory

programming courses. The discussion focuses on the mapping of the aforementioned

requirements in terms of the measurement criteria (R1 – R8) derived in Chapter 2 and

duplicated in Table 3.1.

Developments in modern programming development environments and notations that

support the teaching and learning of programming by novice programmers address the

way in which programming can be taught effectively. These environments and notations

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

57

form the technological supports which are required to teach and learn programming

(Deek 1999). It is further accepted that all of the programming notations and associated

development environments presented to novice programmers in introductory

programming courses should encourage good program solution design principles (Proulx

et al. 1996).

Requirements for Novice Programmer Technological Support

R1: Elimination of finer implementation details typically found at the superficial
learning level of the program domain

R2: Increased level of program solution comprehension at the in-depth learning level
of the program domain

R3: Increase in level of motivation when using the programming notation

R4: Designed specifically for use by novice programmers

R5: Provision of visual techniques to aid comprehension process at the in-depth
learning level of the program domain

R6: Support for reduced mapping between the problem and program domains

R7: Increased focus on problem-solving

R8: Increase in novice programmer performance achievement measured in terms of
higher level of accuracy in program solutions in program domain

Table 3.1: Framework of novice programmer requirements for technological support in

the learning environment of an introductory programming course

The programming notation most often used in introductory programming courses is a

conventional textual programming notation (Crews et al. 1998; De Raadt et al. 2002;

Reid 2002). Consequently, a discussion of the use of a textual programming notation and

associated commercial development environment in an introductory programming course

appears in Section 3.3.

A contentious issue surrounding the selection of technological support in a novice

programmer program domain is whether to use a textual or a visual programming

notation (Pane et al. 2000). The use of graphical symbols is considered to be valuable in

the instruction of novice programmers (Blackwell 2001). Further, support for teaching

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

58

and learning in terms of specialised programming notations has become a popular

international11 and national12 research area over the past decade.

This chapter therefore provides an overview of experimental educational programming

notations and associated development environments used in the learning environments of

international and national introductory programming courses (Section 3.4). The category

of visual programming notations, especially iconic programming notations with

characteristics that have influenced the development of B# (Chapter 5), is the primary

focus of this section. The success of each of the programming notations and associated

development environments presented in this chapter is individually measured in terms of

the criteria (R1 – R8) listed in Table 3.1.

3.2 Program Domain for Novice Programmers

As previously stated, technological support in the program domain consists of both a

programming notation and programming development environment (Blackwell et al.

2000). The success of technological support in the learning environment of introductory

programming courses is thus dependent upon the choice of each of these components of

the program domain.

This section focuses on the general requirements for a novice programmer in terms of

technological support for each of the programming notation and programming

development environment. The measurement criteria applied in the discussion are those

derived from Chapter 2 and listed in Table 3.1.

11 (Bonar et al. 1990; Lyons et al. 1993; Calloni et al. 1994, 1995; Studer et al. 1995; Liffick et al. 1996;

Calloni et al. 1997; Cockburn et al. 1997; Crews et al. 1998; Blackwell et al. 1999a; Good 1999;
Cooper et al. 2000; Garner 2000; Stajano 2000; Blackwell 2001; Dagiano et al. 2001; Materson et al.
2001; Navarro-Prieto et al. 2001; Baas 2002; Chamillard et al. 2002; De Raadt et al. 2002; Fergusson
2002; Gibbs 2002; McIver 2002; Quinn 2002; Burrell 2003; Donaldson 2003; Carlisle et al. 2004;
Hickey 2004; Mahmoud et al. 2004; Zelle undated)

12 (Warren 2000; Brown 2001a, b; Warren 2001; Cilliers et al. 2002; Thomas 2002a, b; Christians 2003;
Cilliers et al. 2003; Gamieldien 2003; Warren 2003; Yeh 2003a, b; De Jager 2004; Henning 2004;
Mamtani 2004; Naudé 2004; Vogts 2004)

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

59

3.2.1 Programming Notation

The choice of programming notation is often justified in terms of the way that it supports

mental representations of program solutions (Petre et al. 1999). The impact of this is that

the level of performance of problem-solving depends upon whether the structure of a

problem is matched by the composition of a programming notation used to implement the

solution to the problem in the program domain (Whitley 1997). A close match between

the structure of a problem and the composition of the program solution in terms of the

given programming notation is an illustration of satisfactory support for the novice

programmer requirement to maintain a reduced mapping between the problem and

program domains (requirement R6 in Table 3.1).

The observation of the impact of the closeness of the mapping between the problem

structure and program solution in a particular programming notation has led to a match-

mismatch hypothesis (Gilmore & Green 1984). This theory states that every

programming notation emphasises some kinds of information, while hiding others. The

match-mismatch hypothesis implies that the benefits of a programming notation are

relative to the particular program solution being developed (Blackwell 1996; Whitley

1997; Ko 2003b). In other words, extracting information about a program solution in a

program domain is correspondingly easy when the information matches the programming

notation and hard when there is a mismatch.

The choice of programming notation used in the development of program solutions by

novice programmers can influence the level of success of the program solutions (Kutar et

al. 2000). The reason for this is that programming notations differ in how well they

support the extraction of various kinds of information (Ramalingam et al. 1997).

The match-mismatch hypothesis further suggests that in terms of comprehension of

program solutions in the program domain, there is unlikely to be any universally superior

programming notation. Any particular programming notation may aid comprehension of

certain types of information by highlighting that information in some way in the program

solution (Ramalingam et al. 1997; Wiedenbeck et al. 1999).

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

60

The visibility and parsability (role expressiveness) of these types of meaningful

programming notation structures in the program solution depends on the programming

notation itself as well as on the level of expertise of the programmer (Green 1989).

The feature of role expressiveness is an illustration of support for the following novice

programmer requirements:

• increased level of program solution comprehension at the in-depth learning level

of the program domain (requirement R2 in Table 3.1); and

• provision of visual techniques to aid comprehension process at the in-depth

learning level of the program domain (requirement R5 in Table 3.1).

Any programming notation provides or fails to provide perceptual prompts which

highlight important characteristics of a program solution (Green 1989). This perceptual

form of program solution composition, which is often superfluous, can be effective in the

process of successful program solution development. However, the ability to make use

of this kind of prompt in a program solution depends on the programmer’s experience

with programming concepts and the actual programming notation itself (Davies 1990).

Research13 in the area of programming notation has been in the form of attempts to

improve the programming process by minimising the complexity of programming

notation syntax and increasing the design activities. The minimalism approach to

programming notation syntax is an attempt to address the novice programmer

requirement to eliminate finer implementation details typically found at the superficial

learning level of the program domain (requirement R1 in Table 3.1). Increasing the

design activities in the program domain addresses the novice programmer requirement to

increase the focus on problem-solving (requirement R7 in Table 3.1).

Flexibility in a programming notation is a characteristic noted as being a desirable

program domain feature (Dingle et al. 2001). Flexibility, however, may favour the

experienced programmer, but may hinder, confuse and distract the novice programmer.

This feature is in contradiction with the novice programmer requirement to eliminate

13 (Calloni et al. 1994, 1995, 1997; Crews et al. 1998; Garner 2000; Crews 2001; Crews & Butterfield

2002; Garner 2002; Crews 2003; Garner 2003)

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

61

finer implementation details typically found at the superficial learning level of the

program domain (requirement R1 in Table 3.1). A novice programmer requires a secure

comprehension of the underlying structure of the programming notation before

attempting to comprehend any type of variation (Dingle et al. 2001).

The selected novice programmer programming notation should also encourage germane

cognitive load (Garner 2001). This is the ability to “chunk” programming constructs.

The development of this cognitive skill encourages novice programmers to think and

create the necessary schemata for programming knowledge assimilation in long-term

memory. In this way, the novice programmer requirement to eliminate finer

implementation details typically found at the superficial learning level of the program

domain (requirement R1 in Table 3.1) is enforced. Support for “chunking” also serves to

reduce the total cognitive load of the novice programmer.

A distinction is made between programming notations which are fundamentally sensory

and those which are fundamentally conventional (Ware 1993). Sensory notations are

defined as being well matched to the early stages of neural processing of sensory

information and tend to be stable across individuals and cultures. Conventional

programming notations are defined as being influenced by the society in which they are

used. Their success regarding use thus depends on the particular cultural environment of

an individual. An example of a sensory programming notation is one that makes use of

visual representations within its programming constructs, whereas a conventional

programming notation is typically of a textual nature.

The programming notation is not the sole component of the program domain that

influences the level of success in program solution development. The other component

of the program domain that has an influence is that of the development environment

(Blackwell et al. 2000).

3.2.2 Programming Development Environment

An integrated development environment (IDE) has the ability to be a support for novice

programmers learning to program and yet most have been designed for professional

programmers (Ziegler et al. 1999; Satratzemi et al. 2001; Warren 2001; Jenkins 2002;

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

62

Garner 2003). One consequence is that these environments tend to have a very steep

learning curve, thereby contributing to the extraneous cognitive load (Garner 2001) of the

novice programmer, and increasing their already high total cognitive load (Garner 2003).

Consequently, these types of IDEs do not support the novice programmer requirement

that a development environment be designed specifically for use by novice programmers

(requirement R4 in Table 3.1).

IDEs as program domain support in introductory programming courses have also

exhibited a steady increase in level of difficulty (Proulx 2000; Warren 2001). One of the

results of this is that modern texts (Hennefeld et al. 1998; Williams et al. 1999; Kerman

2002) that support the introductory programming learning process have suffered a loss in

algorithmic complexity, and consequently in-depth level of learning in the program

domain, when compared with older learning resources (McGettrick & Smith 1983). This

situation is due to the fact that considerable more of the volume of the learning resources

is dedicated to the mastering of the interface of the IDEs. A further consequence is that

specifically with regards to introductory programming courses in tertiary education

institutions, program domain support for teaching (Section 3.4) has become a popular

research area in the past decade14.

Further, the IDE of any introductory programming learning environment should support

three primary learning activities in the comprehension and composition of program

solutions, namely the writing, reading and watching of program solutions (Wright et al.

2000). These activities offer natural scaffolding that promotes learning and can

encourage transfer effects that ease the shift from elementary to advanced problem-

solving and programming concepts. A novice programmer’s program domain should

provide an interactive platform so that when a novice programmer writes a program

solution, the program solution’s behaviour is a dynamic image (the watchable form) of

the program solution (the readable form) that the novice programmer has expressed (the

written form). An IDE exhibiting these features supports the following novice

programmer requirements:

14 (Calloni et al. 1994; Hansen et al. 1994; Calloni et al. 1997; Crews et al. 1998; Kaasbøll 1998;

Christensen et al. 2000; Garner 2000; Stajano 2000; Warren 2000; Crews 2001; Warren 2001; Baas
2002; Gibbs 2002; McIver 2002; Wright & Cockburn 2002; Burrell 2003; Donaldson 2003; Garner
2003; Ko 2003b; Carlisle et al. 2004; Hickey 2004; Mahmoud et al. 2004; Zelle undated)

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

63

• elimination of finer implementation details typically found at the superficial

learning level of the program domain (requirement R1 in Table 3.1); and

• provision of visual techniques to aid comprehension process at the in-depth

learning level of the program domain (requirement R5 in Table 3.1).

The technological support most often used in the learning environments of introductory

programming courses is that of a conventional IDE and a textual programming notation

(Crews et al. 1998; De Raadt et al. 2002; Reid 2002). The focus of the next section is on

the use of this type of technological support in the program domain of a novice

programmer.

3.3 Conventional Interactive Development Environments and Textual
Programming Notations

Traditional programming environments typically support textual programming notations.

Examples of these types of environments are the Delphi™ Enterprise and Visual Studio

commercial development environments that respectively support the textual

programming notations PASCAL and C. These types of programming development

environments consist of tools aimed at program solution construction, compilation,

testing and debugging, with any number of other options included. Examples of these

options are pre-coded function libraries, tracers, debuggers and graphical user interface

tools. This is the kind of integrated development environment provided to most novice

programmers in introductory programming courses at tertiary education institutions

(Crews et al. 1998; De Raadt et al. 2002; Reid 2002).

The aforementioned type of programming development environment and notation

(namely textual) is the category of prescribed programming notation and development

environment for novice programmers in the introductory programming course at UPE

(CS&IS 2003). An example of the interface provided by UPE’s conventional

commercial programming development environment, namely Delphi™ Enterprise is

illustrated in Figure 3.1 (Borland 2003).

Conventional programming development environments like the one illustrated in Figure

3.1 have the density advantage of text, implying that many programming notational

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

64

primitives can be displayed on the screen at the same time (LaLiberte 1994). These types

of environments thus have the ability to concurrently display a multitude of programming

constructs.

Figure 3.1: Borland© Delphi™ Enterprise version 6 Programming Environment

Despite this advantage, conventional IDEs tend to under-determine the novice

programmer by providing no constraints on the textual notational symbols that can be

entered. The result is a larger effort in the conversion of the mental model of the desired

program solution to one in the required programming notation (Wright et al. 2000). The

novice programmer is forced to provide precisely correct textual notational syntax before

receiving any response to the solution plan and implementation thereof (Crews et al.

1998). The implication of the aforementioned observations is that the following novice

programmer requirements are not supported by conventional programming development

environments like Delphi™ Enterprise:

• elimination of finer implementation details typically found at the superficial

learning level of the program domain (requirement R1 in Table 3.1); and

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

65

• support for reduced mapping between the problem and program domains

(requirement R6 in Table 3.1).

Research has also indicated that conventional programming development environments

do not meet their goals as support tools for novice programmers and are not suited to the

types of problems experienced by novice programmers (Deek 1999). This observation

provides evidence to conclude that another of the novice programmer requirements listed

in Table 3.1 is not supported, namely that conventional programming development

environments are not designed specifically for use by novice programmers (requirement

R4).

One way in which modern IDEs are considered inappropriate as supporting tools for

learning programming is with respect to functional weaknesses (Deek 1999). Functional

weaknesses are characterised as the

• lack of the facilities necessary to aid a novice programmer in the formulation of

a problem, as well as the planning and design of an appropriate program

solution; and

• overemphasis on the programming notation being used as a result of the

separation of the composition of a program solution from that of developing the

program solution.

The functional weaknesses identified above illustrate that the novice programmer

requirements of R1 (elimination of finer implementation details) and R7 (increased focus

on problem-solving) listed in Table 3.1 are not supported by conventional commercial

IDEs promoting the use of textual programming notations. The result is that the novice

programmer experiences that a larger effort is required to master the superficial level of

learning in the program domain, with little technological support to encourage the

mastering of in-depth learning.

Further, another manner in which modern IDEs provide inadequate support for novice

programmers is the typical way in which errors within a program solution are

highlighted. This observation is supported by the fact that system-generated messages

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

66

are often typically correct but difficult for a novice programmer to understand (Dagdilelis

et al. 2002).

The aforementioned observation is further evidence of a lack of support for the following

novice programmer requirements:

• designed specifically for use by novice programmers (requirement R4 in Table

3.1); and

• increased level of program solution comprehension at the in-depth learning level

of the program domain (requirement R2 in Table 3.1).

In response to the resulting situation of using conventional textual programming

notations and development environments, the area of alternative programming notations

and development environments for novice programmers has become a popular research

focus in both the international and national sectors. The next section therefore provides

an overview of the educational programming development environments and

programming notations used as experimental technological support in the learning

environment of an introductory programming course.

3.4 Educational Programming Development Environments and
Programming Notations

Separating the programming concepts from programming notation implementation details

has been proposed as an effective way of teaching and learning introductory

programming concepts (Lidtke et al. 1998). The motivation behind this recommendation

is that novice programmers will not experience the usual confusion of trying to decide if

the errors identified are due to syntax, semantics, failure to understand the basic

computing concepts or the existence of faulty logic in the program solution. The

learnability of a programming notation can also be significantly improved by integrating

into the programming development environment learning supports that allow novice

programmers to be educated about the syntax, semantics and applications of the notation

(Dagiano et al. 2001).

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

67

Approaches to raise throughput rate

Identify potentially
successful students

Modify teaching
model

Technological
support tool

Visual programming
notations

Iconic programming
notations

Innovative presentation
techniques

Response to individual
learning style

Worked Examples
and Code

Restructuring

Pseudo-
programming

Flowchart
Simulators

Dataflow
Programming

Languages

Mini-
languages and
Micro-worlds

B#BACCII©

Problem
Analysis

Supporting
Environments

Scripting Languages

Coached
Program
Planning

Interrogative
Programming Karel the Robot

Alice 3D

Python

GRAIL

CORT MULSPRENJeroo
SOLVEIT

Literate
Programming

Prograph

SCIL-VP

LabVIEW
FLINT

Visual LogicDataVis

Programming
Notations

Algorithm Visualisation
Programming
Environments

JavaScript

RAPTOR

Figure 3.2: Related work in Educational Programming Development Environments and Programming Notations

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

68

A number of different types of approaches for programming development environments

and notations that support teaching and learning in introductory programming courses

have been proposed as being alternative to traditional commercial programming

development environments and textual programming notations. The taxonomy of these

approaches in relation to the current investigation is illustrated in Figure 3.2. The path

shown in orange is the focus of the current research in the context of the taxonomy of

educational programming notations and development environments. The lowest level

nodes that are shaded by means of a texture are specific examples of each type of

approach.

The categories of programming notations and development environments related to that

of the current investigation (Figure 3.2) are namely problem analysis supporting

development environments15, mini-languages and micro-worlds16, pseudo-

programming17, development environments that support worked examples and code

restructuring18, scripting languages19 as well as visual programming notations and

development environments, incorporating, amongst other categories20, flowchart

simulators21 and iconic programming notations22. An overview of each of these

categories is presented in this section. The review of each of these categories includes a

measurement of the support provided in terms of the framework of novice programmer

requirements derived in Chapter 2 and listed in Table 3.1.

3.4.1 Problem Analysis Supporting Development Environments

A problem analysis supporting development environment is one that integrates a

problem-solving methodology with the program solution development tasks (Kimmel et

al. 1999). This type of technological support provides mechanisms for the formulation of

the problem, the planning and design of the program solution, as well as the monitoring

15 (Deek 1999; Kimmel et al. 1999; Lane 2002; Quinn 2002; Lane 2003; Lane & VanLehn 2003; Lane

2004; Lane & VanLehn 2004a)
16 (Wright et al. 2000; Crews 2001; Burrell 2003; Ko 2003b)
17 (Cockburn et al. 1997; Lidtke et al. 1998; Crews 2001; Wright et al. 2002)
18 (Garner 2000)
19 (Stajano 2000; Warren 2000, 2001; Baas 2002; Gibbs 2002; Donaldson 2003; Warren 2003; Hickey

2004; Mahmoud et al. 2004; Zelle undated)
20(Lyons et al. 1993; Hansen et al. 1994; LaLiberte 1994; Blackwell & Green 1999b; Navarro-Prieto et al.

1999)
21(Crews et al. 1998; Crews 2001; Carlisle et al. 2004)
22(Calloni et al. 1994, 1997; Calloni 1998)

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

69

and evaluation of the program solution’s progress. Further, the environment aims to

encourage novice programmers to comprehend the problem and to consider possible

program solutions prior to the implementation thereof. Examples of problem analysis

supporting development environments are the Specification Oriented Language in Visual

Environment for Instruction Translation (SOLVEIT) (Deek 1999) and enquiring

programming development environments (Lane 2002; Quinn 2002; Lane 2003; Lane et

al. 2003; Lane 2004; Lane et al. 2004a).

SOLVEIT is a prototype learning development environment that adapts and enhances the

general problem-solving process to the area of programming (Kimmel et al. 1999; Garner

2003). This particular environment, which was specifically designed to be used by

novice programmers while solving programming problems, has been developed to

support the problem-solving and program development process (Deek 1999). The main

goals of the techniques used in this tool are to assist and encourage the novice

programmer’s development of problem-solving and related cognitive skills, encourage

novice programmers’ positive awareness, manner and motivation towards the learning of

problem-solving and programming, and increase the transfer and retention of these skills.

In the evaluation of this tool, the assumption was that novice programmers using

SOLVEIT would exhibit improved performance on problem-solving and program

development tasks when compared with the performance of novice programmers not

using the tool (Deek 1999; Deek & McHugh 2002). The experimental group’s scores

provided evidence of statistically significant improvements both with respect to problem-

solving and program development skills (Deek et al. 2002), with significantly positive

results for qualitative research issues related to the novice programmers’ awareness,

manner and motivation during the program development process (Deek 1999).

The second type of problem analysis supporting development environment, enquiring

programming development environments are characterised by two types of environments,

namely interrogative programming (Quinn 2002) and coached program planning (Lane

2002, 2003; Lane et al. 2003; Lane 2004; Lane et al. 2004a).

Interrogative programming is a method used to determine the novice programmer’s

program solution intent by means of related closed-ended questions (Quinn 2002). A

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

70

current prototype of this type of novice programmer learning environment requires that

the novice programmer solve all problems in a depth-first manner.

Figure 3.3: ProPl coached program planning development environment

(Lane & VanLehn 2004b)

A similar environment used in the teaching of programming principles to novice

programmers is a dialogue-based style of tutoring, known as coached program planning

(Lane 2002, 2003; Lane et al. 2003; Lane 2004; Lane et al. 2004a). The goal of this type

of environment is to assist a novice programmer with the comprehension of a problem

and the construction of the first step of the program solution design in the form of a

natural-language style pseudo-code. A current prototype for the environment Program

Planner (ProPl23) provides a dialogue window that facilitates natural language

communication between a novice programmer and the coached program planning

development environment (Figure 3.3). Draggable tiles containing pseudo-code text

representing steps in the solution appear in the pseudo-code editor. It was observed that

novice programmers exposed to coached program planning adopted more desirable

programming behaviours, specifically regarding that of secondary notation at the in-depth

level of learning in the program domain (Lane et al. 2003).

23 Pronounced pro-PELL.

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

71

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found
at the superficial learning level of the program domain

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

R3: Increase in level of motivation when using the programming
notation

R4: Designed specifically for use by novice programmers
R5: Provision of visual techniques to aid comprehension process

at the in-depth learning level of the program domain

R6: Support for reduced mapping between the problem and
program domains

R7: Increased focus on problem-solving
R8: Increase in novice programmer performance achievement

measured in terms of higher level of accuracy in program
solutions in program domain

Table 3.2: Support for Novice Programmer Requirements by Problem Analysis

Supporting Development Environments

Table 3.2 illustrates the support provided by problem analysis supporting development

environments for the framework of novice programmer requirements derived in Chapter

2. Inconclusive evidence in the available literature on these kinds of development

environments is the reason for a lack of confirmation in respect of whether the novice

programmer requirements R1 and R5 are indeed supported or not (Table 3.2).

3.4.2 Mini-languages and Micro-worlds

A mini-language is a programming development environment containing a small set of

programming commands (Crews 2001). This kind of environment is designed to be more

instinctive to novice programmers, thus allowing them to unreservedly explore the

problem-solving context without being hampered by mundane notational syntax

construction. One of the advantages of using a mini-language to teach novice

programmers how to program is that interesting and significant program solutions can be

implemented by the novice programmer very quickly (Shannon 2003). A recent

example of a mini-languages is GRAIL (McIver & Conway 1999; McIver 2001).

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

72

The GRAIL programming development environment was designed to be simple,

predictable and familiar to the novice programmer (McIver et al. 1999; McIver 2001).

The programming notation of the control flow mini-language is small and makes use of

familiar operations, based primarily on the novice programmers’ prior mathematical

experience. GRAIL is intended to assist novice programmers in acquiring introductory

programming concepts with minimum syntax knowledge and is meant for teaching

programming in the short term. Preliminary findings of a study using GRAIL suggest

that there is an increase in the level of motivation amongst novice programmers learning

to program.

A micro-world is a programming environment that simulates a real or imaginary world

that has been selected, simplified and perfected to allow concepts and relationships

between concepts to be easily observed and discovered by the novice programmer

(Burrell 2003). This type of programming development environment attempts to remove

irrelevant detail and areas of little direct interest thus intentionally being diminished so as

to focus attention on the more important higher-level programming concepts and skills.

Examples of micro-worlds are Karel the Robot (Burrell 2003), Jeroo (Sanders & Dorn

2003a, b) and Alice (Cooper et al. 2000; Ko 2003b).

A number of micro-worlds, for example Karel the Robot (Burrell 2003) and Jeroo

(Sanders et al. 2003a, b), provide a dual view of textual program solution representations

implemented by the novice programmer as well as visual synthesis in response to the

programming instructions occurring in the program solution code (Buck et al. 2001).

These visual features aid in the comprehension at the in-depth level of learning in the

program domain. Figure 3.4 is an illustration of the interface provided by the

programming development environment of Karel the Robot.

Jeroo is an integrated programming development environment and micro-world that is

designed specifically for novice programmers (Sanders et al. 2003a). Jeroo has been

successfully used for the first 30% of an introductory programming course at Northwest

Missouri State University. The transition from Jeroo to the prescribed Java textual

programming notation was perceived as being seamless. This can be attributed to one of

the specified design goals of Jeroo, namely that the programming notation of Jeroo be

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

73

close to that of Java and C++. A further observation of novice programmers is that their

average confidence level increased significantly after using Jeroo.

Figure 3.4: Karel's world

A further example of a micro-world, Alice (Cooper et al. 2000; Ko 2003b), described as a

three-dimensional (3-D) interactive graphics programming development environment

(Cooper et al. 2000), is a scripting and prototyping environment that prevents all syntax

and data type errors by providing a drag-and-drop controlled editing environment (Ko

2003a). The interface provided by the programming development environment of Alice

is illustrated in Figure 3.5. The interface shows (1) an object list, (2) a 3-D world view,

(3) an event list, (4) details about the selected object, and (5) the methods being edited

(Ko 2003a).

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

74

Figure 3.5: Alice micro-world

In a recent study using Alice to teach introductory programming concepts instead of Java,

at-risk students’ average grade was raised from 1.3 to 2.8 on a 4.0 scale (Cooper et al.

2003). The same study observed that the attrition rate of at-risk students was decreased

from 90% to 10%. It has been observed, however, that in order to use Alice effectively,

novice programmers are required to have an understanding of the co-ordinate system and

the spatial relationship of 3-D objects to one another. Further, the error messages

produced by Alice are at times obscure.

Table 3.3 illustrates the support provided by mini-languages and micro-worlds as

technological support in the program domain for novice programmers, according to the

requirements derived in Chapter 2. A review of the available literature provides

insufficient evidence to deduce whether these kinds of programming development

environments support novice programmer requirements R6 and R7 or not (Table 3.3).

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

75

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found
at the superficial learning level of the program domain

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

R3: Increase in level of motivation when using the programming
notation

R4: Designed specifically for use by novice programmers
R5: Provision of visual techniques to aid comprehension process

at the in-depth learning level of the program domain
R6: Support for reduced mapping between the problem and

program domains
R7: Increased focus on problem-solving
R8: Increase in novice programmer performance achievement

measured in terms of higher level of accuracy in program
solutions in program domain

Table 3.3: Support for Novice Programmer Requirements by Mini-languages

and Micro-worlds

3.4.3 Pseudo-programming

Pseudo-programming is a procedural programming notation and development

environment that supports less rigid syntactical rules than conventional textual

programming notations (Crews 2001). The use of such a programming notation to

describe data structure and algorithms in an introductory programming course permits the

concentration on issues relevant to abstraction and not implementation (Lidtke et al.

1998). An example of a pseudo-programming notation and development environment is

the MUltiple Language Simulation PRogramming ENvironment (MULSPREN).

MULSPREN provides multiple representations of a program solution, with one

representation being an English-like language and the other a conventional textual

programming notation similar to Java (Wright et al. 2002). Novice programmers are able

to work with either representation of the program solution. Modifications in the one

representation are replicated immediately in the other.

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

76

The aim of MULSPREN is that multiple representations of a program solution together

with program solution visualisation support will assist in the transfer of programming

concepts between the familiar domain, namely the English-like programming notation,

and the unfamiliar domain of conventional textual programming notations (Wright et al.

2002). Consequently, MULSPREN is designed to minimise the mapping between a

novice programmer’s mental model of a program solution and the implementation thereof

in the program domain. MULSPREN also animates both programming notation

representations concurrently, thereby reducing the mapping between the novice

programmer’s mental model of the behaviour of a program solution and actual behaviour

by inspection, thus further supporting the transfer of programming concepts.

A sub-category of pseudo-programming is that of literate programming. Literate

programming permits programmers to design, document and construct program solutions

in the order that best supports the programmers’ mental models (Cockburn et al. 1997).

In this way the structure of the program solution is not restricted by the requirements of

the programming notation’s compiler or interpreter. Consequently, the major aim of the

technique of literate programming is to ensure that program solutions are more

comprehensible to programmers.

The technique of literate programming has been designed in such a way that novice

programmers will benefit (Cockburn et al. 1997). Specific benefits for novice

programmers include that the correspondence between program solution representation

and documentation will be encouraged and promoted. Further, due to the minimal

syntactic requirements of the programming notation, the possibility of syntactic errors in

the specification of the program solution will be minimised by the development

environment providing syntactic correctness within its interface. The novice programmer

is provided with facilities to expand and contract “chunks” of a program solution and

they are thus able to control the amount of programming abstraction and detail displayed.

Table 3.4 illustrates the support provided by pseudo-programming as technological

support in the program domain for novice programmers, according to the requirements

derived in Chapter 2. A review of the available literature provides insufficient evidence

to deduce whether this approach as a development environment supports novice

programmer requirements R3, R7 and R8 or not (Table 3.4).

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

77

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found
at the superficial learning level of the program domain

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

R3: Increase in level of motivation when using the programming
notation

R4: Designed specifically for use by novice programmers
R5: Provision of visual techniques to aid comprehension process

at the in-depth learning level of the program domain
R6: Support for reduced mapping between the problem and

program domains
R7: Increased focus on problem-solving
R8: Increase in novice programmer performance achievement

measured in terms of higher level of accuracy in program
solutions in program domain

Table 3.4: Support for Novice Programmer Requirements by Pseudo-programming

3.4.4 Worked Examples and Code Restructuring

A further technique used in the teaching and learning of programming is the use of

worked examples (Garner 2000). This technique involves the exposure to novice

programmers of correct program solutions in the form of a conventional textual

programming notation. Novice programmers are required to familiarise themselves, with

educator interference where necessary, with the algorithms within the worked examples.

The aim of the technique is to provide novice programmers with the skills to make

modifications to and restructure the code of other similar program solutions. This

reading technique of learning programming thus aims to emphasise the reading,

comprehension and modifications of non-trivial, well-designed program solutions.

Technological support that implements this category of teaching and learning technique

is the COde Restructuring Tool (CORT) (Garner 2000). CORT permits the novice

programmer to interactively complete partial program solutions using a set of provided

program solution instructions. The benefit of this method is that the novice programmer

is prevented from introducing syntax errors into the program solution and will thus

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

78

always be exposed to syntactically correct programming instructions and program

solutions. An example of the interface supported by CORT appears in Figure 3.6.

Figure 3.6: Example of CORT program solution

The main aim of CORT is to reduce the extraneous cognitive load of the novice

programmer by providing a scaffolding learning environment in an introductory

programming course (Garner 2000, 2002; Garner undated). In order for a novice

programmer to select the correct program solution instructions from the provided list for

inclusion in the presented program solution, the novice programmer is required to

successfully comprehend the adjacent partial program solution.

Experimental results provide evidence that the method is less time-consuming than

conventional methods where novice programmers are required to practice the

implementation of program solutions to problems in a conventional textual programming

notation (Garner 2000). Further, novice programmers using CORT made fewer errors in

subsequently solving similar problems than those novice programmers exposed to a

conventional practice-based method. There was, however, no significant difference

between the two groups when solving novel problems.

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

79

It was however noted that the presentation of worked examples in a specific

programming notation to novice programmers is insufficient as the novice programmers

may not abstract the correct in-depth knowledge from them (Garner 2000).

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found
at the superficial learning level of the program domain

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

R3: Increase in level of motivation when using the programming
notation

R4: Designed specifically for use by novice programmers
R5: Provision of visual techniques to aid comprehension process

at the in-depth learning level of the program domain
R6: Support for reduced mapping between the problem and

program domains
R7: Increased focus on problem-solving
R8: Increase in novice programmer performance achievement

measured in terms of higher level of accuracy in program
solutions in program domain

Table 3.5: Support for Novice Programmer Requirements by Worked Examples

and Code Restructuring

Table 3.5 illustrates the support provided by worked examples and code restructuring as

technological support in the program domain for novice programmers, according to the

requirements derived in Chapter 2. A review of the available literature only provides

evidence to deduce that this approach as a development environment supports novice

programmer requirements R1, R4 and R8 (Table 3.5).

3.4.5 Scripting Languages

The use of scripting languages is another alternative programming notation proposed for

use in an introductory programming course24. Examples of scripting languages that have

24 (Stajano 2000; Warren 2000, 2001; Baas 2002; Gibbs 2002; Donaldson 2003; Warren 2003; Hickey

2004; Mahmoud et al. 2004; Zelle undated)

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

80

been documented as being used in introductory programming courses are JavaScript

(Warren 2000; Mahmoud et al. 2004), VBScript (Gibbs 2002), Ruby (Baas 2002) and

Python (Stajano 2000; Donaldson 2003; Zelle undated).

Python (also portrayed as a mini-language by Shannon (2003)) is described as having a

simple syntax and uncomplicated program structure that encourages the use of secondary

notation. This feature enhances support for the in-depth level of learning in the program

domain. Anecdotal evidence from instructors using Python as a programming

development environment for novice programmers is that there has been a positive

increase in the level of motivation of the novice programmers and a decrease in the

novice programmers’ level of frustration.

The use of scripting languages like Python eliminates the rigidity of data typing usually

required by conventional textual programming notations. Further, all examination of the

syntax is performed incrementally at the time of program solution execution.

The aforementioned feature of an interpreted development environment provides an

environment that is appropriate for novice programmers to use (Stajano 2000). The

novice programmer can thus concentrate on algorithmic problem-solving issues instead

of implementation details (Stajano 2000; Warren 2000, 2001; Baas 2002; Donaldson

2003; Hickey 2004; Zelle undated). The result is that the comprehension of program

solutions at a higher-level is encouraged (Gibbs 2002).

Furthermore, anecdotal evidence suggests that novice programmers are more motivated

to be successful when using a scripting language (Mahmoud et al. 2004). Scripting

languages, however, still require the novice programmer to learn a form of programming

notation and basic programming techniques (Quinn 2002).

Table 3.6 illustrates the support provided by scripting languages as technological support

in the program domain for novice programmers, according to the requirements derived in

Chapter 2. A review of the available literature on the use of scripting languages in

introductory programming courses provides evidence to deduce that this approach as a

development environment supports novice programmer requirements R1, R2, R3, R4 and

R7 (Table 3.6).

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

81

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found
at the superficial learning level of the program domain

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

R3: Increase in level of motivation when using the programming
notation

R4: Designed specifically for use by novice programmers
R5: Provision of visual techniques to aid comprehension process

at the in-depth learning level of the program domain
R6: Support for reduced mapping between the problem and

program domains
R7: Increased focus on problem-solving
R8: Increase in novice programmer performance achievement

measured in terms of higher level of accuracy in program
solutions in program domain

Table 3.6: Support for Novice Programmer Requirements by Scripting Languages

3.4.6 Visual Programming Notations and Development Environments

Visual programming notations are collectively defined as sensory programming notations

in contrast with conventional textual programming notations (Ware 1993). A visual

programming notation facilitates programming by means of the interactive manipulation

of visual expressions such as graphics or icons within some specific graphical

programming notation in order to construct a program solution (LaLiberte 1994). This

kind of programming notation facilitates the solving of a problem in the problem domain,

as well as the representation of the solution in the program domain (Green & Blackwell

1996; Blackwell et al. 1999a). The use of sophisticated interface technology assists with

the representation of visual program solutions in the program domain (Koelma et al.

1992; Lord 1994; Chang 1995; Blackwell 1996; Freeman et al. 1996).

Visual representations of program solutions are considered valuable because they are

more intuitive when requiring comprehension by novice programmers (Navarro-Prieto et

al. 1999; Crews 2001; Quinn 2002; Cranor & Apte undated). These types of program

solution representations are also considered to contain more information than

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

82

corresponding textual programming notation representations (Shu 1988). An example of

this type of implied semantic information is that relationships between programming

concepts are more explicitly represented without the need for labelling and more easily

recognised when appearing in a graphical programming notation than in one that is

textual based (Larkin & Simon 1987; Burnett et al. 1995; Schiffer & Fršhlich 1995).

A visual programming notation typically provides for the implementation of a restricted

set of primitive programming concepts to focus the attention of the novice programmer

(Meyer & Masterson 2000). The graphical notation of a visual program solution,

however, should not be a sequence of textual programming notation instructions with

arrows indicating control flow. The programming notation should rather use its graphical

characteristics to support the comprehension of the program solution.

Visual programming notations are described as providing usability advantages for novice

programmers because they are easier to learn than textual programming notations

(Koelma et al. 1992; Lord 1994; Blackwell et al. 1999a). This advantage is observed

despite the fact that visual programming notations sometimes specify the behaviour of a

program solution to an identical level of detail as that specified by an equivalent textual

notation program solution (Blackwell et al. 2001).

The images generally used in visual programming notations assist the novice programmer

to transfer programming knowledge thereby making it simpler for the prediction of the

behaviours of program solutions (Blackwell et al. 1999a). Consequently, novice

programmers are provided with a framework in which to understand the effects of

programming instructions and are thus encouraged to construct appropriate mental

models in the program domain (Koelma et al. 1992; Chang 1995; Blackwell et al. 1999a;

Navarro-Prieto et al. 1999).

Visual programming notations are classified according to the type and degree of visual

expression used, with icon-based programming notations being one of these categories

(LaLiberte 1994). Visual expressions may also be used in programming development

environments as graphical interfaces for conventional textual programming notations.

Visual programming notations have also been defined as multi-dimensional programming

notations, incorporating specifically the dimension of time within a program solution

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

83

structure (Chang et al. 1999). This section’s discussion will however be restricted to the

characterisation of a visual programming notation as programming with the use of

graphics or icons within a specific paradigm (dataflow or control flow) using a particular

type of visual presentation (diagrams or icons) (Burnett & Baker 1994).

This section therefore restricts the discussion to a subset of the categories of visual

programming notations and development environments, this subset being directly

relevant to the experimental programming notation and development environment used in

the current investigation. The specific categories of visual programming notations and

development environments focussed on are namely dataflow programming notations,

flowchart simulators and iconic programming notations. The section concludes with

a discussion on the level of support provided by the visual programming notations

discussed for the novice programmer requirements derived in Chapter 2.

Dataflow Programming Notations

Dataflow visual programming notations are one of the most popular paradigms for visual

programming notations (Ghittori et al. 1998). They are distinguished from other types of

visual programming notations in that they consist of visual icons depicting functionality.

The connections between the icons depict input to and output from each function

(LaLiberte 1994). A programming instruction in a dataflow visual program solution

executes as soon as all the inputs required are available, at which time the outputs are

produced. In this way the execution order is controlled by the flow of data between

connected programming constructs (Jamal & Ronpage 1996).

Examples of dataflow visual programming notations that are usable by novice

programmers (Schmucker 1996) are LabVIEW (Hansen et al. 1994; Whitley 1997),

Prograph (Hansen et al. 1994; Meyer et al. 2000) and SCIL-VP (Koelma et al. 1992). A

general scientific dataflow visual programming notation designed for use by non-

programmers, specifically scientists, is Data Visualization (DataVis) (Hils 1999). Both

LabVIEW and Prograph are commercially available dataflow visual programming

notations (Blackwell et al. 2001).

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

84

The dataflow visual programming notation Prograph is classified as a visual object-

oriented dataflow notation (Hansen et al. 1994; De Roure et al. 1998) that is a visual

form equivalent to that of the LISP textual programming notation (Meyer et al. 2000).

All programming constructs are created and manipulated through direct manipulation of

the icons on the screen. An example of a Prograph program solution that calculates the

factorial of a user entered value is shown in Figure 3.7. An evaluation of the

programming constructs implemented by Prograph determined that the programming

constructs are confusing, which could lead to the misinterpretation of a program solution,

especially by novice programmers (Meyer et al. 2000).

Figure 3.7: Prograph for Windows version 1.2 dataflow programming

notation interface (Pictorius 1998)

A further example of a dataflow programming notation, LabVIEW was written

specifically for end-user programming, where the end-users are scientists and engineers

(Whitley 1997). In a documented appraisal on this programming environment, the

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

85

strongest effect observed was the difficulty of the visual programming notation. It was

found that novice programmers were distinguished from their expert counterparts in the

lack of ability to read and use the secondary notation evident in LabVIEW (Whitley

1997; Whitley & Blackwell 2001). Further, it was observed that programming with

LabVIEW requires much the same level of precision as that required by conventional

textual programming notations (Lavonen et al. 2003).

SCIL-VP (Koelma et al. 1992) is a multi-layer dataflow programming language

environment that provides support for both the novice and experienced programmer. A

feature of SCIL-VP is that it combines the dataflow programming notation with the

textual programming notation C so that the more experienced programmer is provided

with support to address implementations that would not normally be possible using only

the dataflow programming notation.

DataVis (Hils 1999) is a dataflow visual programming notation that has been designed to

be used by scientists for the visualisation of scientific data. DataVis makes use of a

“plumbing” metaphor in the implementation of a program solution and has been

described as being easy for non-programmers to learn. DataVis provides a library of

predefined visual programs that can be associated with icons representing data values. It

is thus not necessary for a scientist using DataVis to program since the only tasks that

require completion are the association of data icons with predefined program icons.

Figure 3.8 illustrates an example of a DataVis CASE statement (adapted from Hils 1999).

Inputs to the CASE statement originate from the Selector, Number1 and Number2

data icons. The outcome of the computation is processed in any of the various frames of

the CASE statement and is output to the Result data icon.

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

86

Figure 3.8: Example of a DataVis CASE statement

Each frame in the CASE statement (the particular one in Figure 3.8 comprises of three) is

numbered at the top right hand side for ease of identification. The value in the

Selector data icon connected to the ? icon at the top left of each frame determines

which of the frames is executed. Specifically, if the value of the Selector data icon is

1 or 4, the Result data icon would contain the sum of the values in data icons

Number1 and Number2 (output from process in frame 1). If the value of the

Selector data icon is 2, the Result data icon would contain the difference of the

values in data icons Number1 and Number2 (output from process in frame 2). If the

value of the Selector data icon is 3, 5 or 6, the Result data icon would contain the

quotient of the values in data icons Number1 and Number2 (output from process in

frame 3).

Selector

Number1

Number2
+

? 11, 4

Selector

Number1

Number2
-

? 22

Selector

Number1

Number2
/

? 33, 5, 6

Result

Result

Result

Frame
identifier

Data
icons

Frame

Operational
procedure

Case value(s)

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

87

A type of visual programming notation that supports the control flow programming

paradigm is that of flowchart simulators. This type of visual programming notation and

programming development environment is the focus of the next section.

Flowchart Simulators

An early example of a visual programming notation is the technique of flowcharts

(Waddel & Cross 1988; Meyer et al. 2000). A flowchart is a graphical notation (Meyer

et al. 2000) of icons that illustrates the flow of control through a process (Crews 2001).

Flowcharts thus assist in the illustration of algorithms (Cranor et al. undated). An

example of an elementary flowchart that illustrates the algorithm to determine and

display the area of a circle appears in Figure 3.9.

Start

Enter the
radius (r)

PI is the value
3.14

Set area to PI x r x r

Display
area

Stop
Is

radius
> 0?

Display message

No

Yes

Figure 3.9: Example of a flowchart that calculates and displays the area of a circle

A flowchart thus facilitates a conceptual representation of the sequence of significant

programming constructs such as input, output, assignments, conditions and looping

structures in relation to one another. Consequently, flowcharts support higher level

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

88

learning activities in the program domain (Crews 2001). Flowcharts assist novice

programmers in following a program’s decision structure (Curtis 1981).

It has been observed that flowcharts, when compared with structured textual

programming notation program solution, are useful conceptual tools for assisting novice

programmers to better understand abstract problems specifically with respect to solution

accuracy and time to completion when generating program solutions (Crews et al. 2002).

It was also observed that significant benefits existed with respect to novice programmer

confidence and incidence of errors in program solutions. Examples of technological tools

that support the flowchart technique are flowchart simulators, namely the Structured

Flow Chart Editor (SFC) (Watts 2003), FLowchart INTerpreter (FLINT) (Crews et al.

1998) and the Rapid Algorithmic Prototyping Tool for Ordered Reasoning (RAPTOR)

(Carlisle et al. 2004).

A novice programmer develops a flowchart representation of a program solution using

SFC (Watts 2003). An equivalent textual programming notation representation (in C or

PASCAL-like programming notation) of the program solution is concurrently displayed.

In order to complete the program solution, the novice programmer is required to copy and

paste the textual programming notation representation into a text editor and make

modifications in the latter environment.

FLINT is a visual instructional programming development environment that makes use of

minimal programming notation top-down design flowcharts as visual representations of

program solutions (Ziegler et al. 1999). FLINT facilitates the removal of attention from

the syntactic details of a programming notation by providing novice programmers with an

iconic interface for developing flowcharts (Crews et al. 1998; Garner 2003).

Programmers create flowcharts by dragging-and-dropping the flowcharting icons onto a

design panel. Timely and helpful feedback is presented to support the learning process

by means of automated feedback of the graphical program solution entered. An example

of a program solution in the FLINT visual programming development environment

appears in Figure 3.10.

The FLINT development environment was specifically designed to provide programmer

interaction with solution design activities without the need to interact with a traditional

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

89

textual programming notation. FLINT is thus designed for novice programmers and is

intended to be easy to use (Crews 2001). The environment is an attempt to address the

problems associated with programming notation syntax, problem-solving and support for

program solution execution in a unified manner (Crews et al. 1998).

Figure 3.10: FLINT flowchart simulator

The main strength of FLINT is in the role of a support tool for novice programmers

within a laboratory learning environment (Ziegler et al. 1999). An evaluation of the use

of FLINT with novice programmers suggests that instructional benefits exist for novice

programmers who use the interactive flowcharts provided by FLINT to emphasise logic

and design early in an introductory programming course (Crews 2001; Crews et al.

2002). There is, however, an argument that FLINT does not have the capability to

support a complete range of programming constructs (Garner 2003).

A general argument that is also applicable to FLINT is that flowcharts that are too large

to be displayed wholly on a screen offer poor visibility and lead to discontinuities of

focus of attention. This is apparent as the novice programmer scrolls the view window to

a different part of the flowchart, thereby becoming distracted from the problem-solving

process (Blackwell et al. 1999b). Flowcharts themselves, however, have been questioned

as being an effective means of aiding program solution comprehension (Waddel et al.

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

90

1988; Warren 2003). They are prone to allow too many structural deviations (Meyer et

al. 2000) and could thus become just as unstructured as equivalent textual programming

notation program solutions (Curtis 1981).

The initial argument against the use of flowcharts had little to do with the flowchart

design technique itself and was more concerned with the tediousness involved with

maintaining modifications to them manually (Curtis 1981). FLINT, as a flowchart

simulator tool, is an attempt to address this issue.

The most recent successor to FLINT, Visual Logic (Crews 2003), continues the support

for the development of structured flowcharts to represent program solutions. Testing and

debugging of program solutions is supported through a built-in flowchart interpreter,

using a graphical trace to step through the flowchart one programming construct at a

time. The system supports the exporting of flowcharts to a number of traditional textual-

based programming notations. An example of the interface presented by Visual Logic

appears in Figure 3.11.

Figure 3.11: Visual Logic

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

91

As with FLINT and its successor, Visual Logic, RAPTOR permits novice programmers

to compose and execute program solutions within the same development environment

(Carlisle et al. 2004). Although both environments support a similar visual programming

notation, the difference between the two development environments is that RAPTOR

allows novice programmers to compose program solutions incrementally whereas FLINT

and Visual Logic enforce composition on program solutions in a top-down fashion.

RAPTOR ensures that it is not possible to compose a syntactically incorrect flowchart.

In an experiment comparing the performance achievement of novice programmers using

RAPTOR with others using a conventional textual programming notation, it was

observed that the former group of novice programmers outperformed the latter group25.

Iconic Programming Notations

Iconic programming notations are visual notations where each visual sentence is a spatial

arrangement of icons (Chang et al. undated). The notation is based upon a vocabulary of

icons where each icon has a specific meaning. Further semantics are conveyed via the

spatial arrangement of the icons.

Iconic programming notations attempt to simplify the programming process by reducing

the level of precision and manual typing usually required in equivalent textual

programming notations to successfully design and implement program solutions in the

program domain (Calloni 1998). This type of notation is potentially more intuitive and

comprehensible to programmers than conventional textual programming notations

because computing concepts are presented in a graphical fashion (Tanimoto & Glinert

1986). Examples of iconic programming notations used by novice programmers in an

introductory programming course are the Ben A. Calloni Coding Iconic Interface

(BACCII©) (Calloni et al. 1994, 1995, 1997; Calloni 1998) and the SImple VIsual

Language (SIVIL) (Materson et al. 2001). Two other examples of iconic programming

notations that are not discussed further in this section, Youngster (Studer et al. 1995) and

Empirica Control (EC) (Lavonen et al. 2003), have also been successfully used in the

teaching of programming.

25 The detailed findings of the experiment are revisited in Chapter 8 of this thesis.

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

92

Programming constructs in BACCII© are represented by means of graphical images. The

creation of program solutions is completed by a series of point, click, drag-and-drop

actions by the novice programmer (Calloni 1998). The novice programmer is assisted by

intuitive screens to construct a syntactically correct flowchart representing the solution to

a given problem. A textual programming notation program solution corresponding to the

syntactically correct flowchart may be generated upon completion of the construction of

the said flowchart (Calloni et al. 1995). Figure 3.12 depicts a program solution in the

BACCII++© version 1.50 iconic programming notation.

Figure 3.12: BACCII++© version 1.50 Iconic Programming Environment (Calloni 1998)

Empirical testing has shown a significant improvement in the results obtained by novice

programmers in an introductory programming course using the BACCII© iconic

programming notation (Calloni et al. 1994, 1995, 1997). A conclusion made by the

investigators was that the novice programmers benefited from being exposed to the

syntactically correct textual programming notation program solutions generated by

BACCII©. This conclusion was due to the fact that the group of novice programmers

using only BACCII© outperformed the group using only the PASCAL textual

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

93

programming notation with respect to PASCAL textual programming notation specific

examinations26.

A negative aspect of BACCII© is the requirement for novice programmers to

simultaneously function in two independent programming development environments

when converting an iconic program solution to an equivalent textual programming

notation program solution. Novice programmers are required to generate equivalent

syntactically correct textual programming notation program solutions from a previously

implemented iconic program solution from within BACCII©. The textual programming

notation program solution must then be compiled, tested and debugged in an independent

conventional textual programming development environment (Calloni et al. 1994, 1997;

Crews 2001). The result of this feature is that all error messages and debugging

requirements are communicated to the novice programmer using the syntax of the

conventional textual programming notation rather than the familiar iconic program

solution representation (Crews 2001).

Another iconic programming notation, SIVIL, makes use of labelled icons to teach

introductory programming concepts (Materson et al. 2001). A visual program solution in

SIVIL consists of boxes and arrows to support the control flow paradigm. SIVIL has

been proposed as an educational support tool to supplement a traditional textual

programming notation.

Based on the preceding discussions on visual programming notations, the following

section elaborates on the support provided by such a programming notation in response to

the novice programmer requirements derived in Chapter 2.

Visual Programming Notation Support for Novice Programmer Requirements

In a comparison of visual programming notations, it was observed that some forms of

visual program solutions are not easy to read (Hansen et al. 1994). The problem is

attributed to a lack of standardisation on computational icons and their associated

meanings. It was also shown that the use of well selected icons can aid in the

26 The detailed findings are revisited in Chapter 8 of this thesis.

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

94

comprehension of a program solution while the use of badly selected icons can lead to

confusion (Tanimoto et al. 1986; Koelma et al. 1992; Chang et al. 1999). Novice

programmers using visual programming notations have, however, illustrated different

experiences when using alternative visual programming paradigms.

A study that compares novice programmer comprehension of visual program solutions in

one of two paradigms, namely the control flow and dataflow paradigms, suggests that

specific properties of visual programming notations result in differences in program

solution comprehension (Good & Brna 1999; Good 1999; Oberlander et al. 1999). The

control flow paradigm appeared to be associated with faster program task performance,

with the dataflow paradigm being associated with the abstract functional descriptions of

program solutions. The study by Good et al. (1999) produced evidence that novice

programmers were more inclined towards the control flow programming paradigm.

Regardless of the programming paradigm supported, visual programming notations suffer

from shortcomings. One major disadvantage of any visual programming notation is that

there exists a limitation on the number of visual programming constructs being displayed

concurrently on the screen during the development of a program solution (Koelma et al.

1992; LaLiberte 1994; Whitley 1997). This limit is somewhat lower than the restriction

existing in a conventional textual programming notation (LaLiberte 1994; Whitley 1997).

The impact of this restriction is that visual programming notations could be viewed as

impractical if the programming development environment does not allow the viewing of

sufficient programming constructs on the screen at the same time (Whitley 1997).

Combining the visual programming notation with a textual programming notation in a

single program solution has been an attempt to address this limitation (Koelma et al.

1992). A further disadvantage of visual programming notations is that they tend to be

less obviously related to natural language (Blackwell 1996).

Despite disadvantages, there exists an argument that a programming notation that uses

two-dimensional diagrams and icons is often more easily understood by novice

programmers than a conventional textual programming notation (Koelma et al. 1992;

Cranor et al. undated). There is also evidence that imagery positively influences the

mental representations of programmers when comprehending program solutions

(Navarro-Prieto et al. 1999, 2001). Based on the positive effects of imagery in program

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

95

solutions, it has been recommended that by adopting a model-based approach using, for

example, a flowchart simulator, to teach introductory programming concepts to novice

programmers will enhance their ability to think and reason formally, develop program

solutions rigorously and conceptually program better (Roussev 2003).

Visual programming notations, however, are still dependent upon some form of syntax

(Schiffer et al. 1995). Consequently, translating a large collection of textual

programming constructs into a large collection of visual programming constructs merely

replaces textual complexity with visual complexity (Freeman et al. 1996; Shannon 2003).

In related research, Pandey & Burnett (1993) have concluded that composing a program

solution in a visual programming notation is at least as easy as composing one in a

conventional textual programming notation.

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found
at the superficial learning level of the program domain

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

R3: Increase in level of motivation when using the programming
notation

R4: Designed specifically for use by novice programmers
R5: Provision of visual techniques to aid comprehension process

at the in-depth learning level of the program domain
R6: Support for reduced mapping between the problem and

program domains
R7: Increased focus on problem-solving
R8: Increase in novice programmer performance achievement

measured in terms of higher level of accuracy in program
solutions in program domain

Table 3.7: Support for Novice Programmer Requirements by

Visual Programming Notations

In the context of the preceding discussion on various visual programming notations and

their associated programming development environments, Table 3.7 summarises the

support provided by visual programming notations as technological support in the

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

96

program domain for novice programmers, according to the requirements derived in

Chapter 2.

A review of the literature available on the use of visual programming notations in

introductory programming courses provides evidence to deduce that the visual

programming notation category in the role of programming notation and development

environment supports all of the novice programmer requirements except for requirement

R3 (Table 3.7).

3.5 Conclusion

Programming tools are important, if not crucial to the programming activity. It is clear

from a review of the literature that there exists much dissatisfaction with the manner in

which conventional textual programming notations and their associated development

environments fail to provide the necessary support for novice programmers (Section 3.3).

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found
at the superficial learning level of the program domain

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

R3: Increase in level of motivation when using the programming
notation

R4: Designed specifically for use by novice programmers
R5: Provision of visual techniques to aid comprehension process

at the in-depth learning level of the program domain
R6: Support for reduced mapping between the problem and

program domains
R7: Increased focus on problem-solving
R8: Increase in novice programmer performance achievement

measured in terms of higher level of accuracy in program
solutions in program domain

Table 3.8: Support for Novice Programmer Requirements by

Conventional Textual Programming Notations

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

97

An extensive review of available literature emphasises that conventional textual

programming notations fail to support many of the novice programmer requirements

(Table 3.8). At the same time, the literature review is unsuccessful to provide evidence

of support for any of the novice programmer requirements in the framework derived in

Chapter 2. Despite the evidence of discontent, this type of programming notation and

development environment remains the most widely used in the learning environment of

introductory programming courses.

The amount of dissatisfaction in the use of conventional textual programming notations

and their associated development environments is also evident from the many types of

alternative programming notations and development environments that have been

explored internationally as technological support in the learning environments for novice

programmers. There is, however, no evidence of a single type of alternative experimental

programming notation and associated development environment being widely accepted

for use.

Despite much active research in the area of novice programmer programming notations

and development environments over the past decade, it is clear that there remains a

requirement for a programming notation to fully support the mental model of the novice

programmer, the requirements for which are derived in Chapter 2 (Table 2.1 duplicated

as Table 3.1). A novice programmer programming notation should match the task of the

novice programmer. This task primarily involves the comprehension and composition of

small program solutions. In aiding the novice programmer in this task, the necessary

skills for the programming of more complex program solutions are developed.

The programming notation and development environment should strive to be simple by

providing support for only the most basic programming concepts and avoid the tendency

of complexity found in so many modern textual programming notations and associated

development environments. Such a programming notation should be sensitive to the

current domain knowledge of the novice programmer and make use of this knowledge as

a foundation for creating new programming knowledge, specifically encouraging the skill

of “chunking” programming constructs. Finer and mundane implementation details

should be separated from the programming concepts and concealed until the novice

programmer has developed the necessary skills to manage them with more ease. In so

CHAPTER 3 : TECHNOLOGICAL SUPPORT FOR NOVICE PROGRAMMERS IN THE PROGRAM DOMAIN

98

doing, the programming notation should provide a scaffolding learning environment that

allows the novice programmer to gradually educate themselves about the syntax,

semantics and applications of the programming notation via the supports provided.

The novice programmer programming notation must encourage the secure

comprehension of programming concepts. This can be ensured by means of a rigid

programming notation that is easy to read as well as providing facilities for the novice

programmer to create a program solution, watch the result of the program solution being

executed and read the programming statements that caused the production of the results,

all within the same integrated development environment. Studies have shown that

flowcharting techniques, being programming notation independent, support higher level

learning activities in the program domain and provide instructional benefits by assisting

in the comprehension of the decision structure of program solutions.

There is also evidence that novice programmers are suited to a control flow sensory

notation, of which a visual programming notation is an example. This observation is

strengthened by the fact that an extensive literature review of alternative educational

programming notations revealed that the category of visual programming notations is

most responsive to the novice programmer requirements derived in Chapter 2 (Table 3.7).

The design and implementation of B# has been influenced by the discussion contained in

this chapter. B# is an experimental visual iconic programming notation for novice

programmers that is integrated with that of a textual programming notation. The details

regarding the design and implementation of B# for use in the current investigation is

discussed in Chapter 5.

In preparation for the discussion on the methodology (Chapter 6) applied during the

current investigation using the experimental instrument described in Chapter 5, Chapter 4

summarises related research on the selection and placement of introductory programming

students. The focus of Chapter 4 is on the results of research used to date by the

Department of CS/IS at UPE, since the subjects of this empirical investigation have been

exposed to this procedure of pre-selection.

99

Chapter 4

Predictive Models and Selection

4.1 Introduction

Chapter 1 highlights the strategies that improve and maintain satisfactory throughput

in introductory programming courses (Figure 1.2). These strategies are not restricted

to the approach of the current investigation that modifies the course presentation

technique to cater for those candidates who are not successful. The other approach

involves the selection of introductory programming course candidates from those

applicants most likely to succeed (Wilson et al. 1985; Austin 1987). This latter

approach forms part of the ongoing research at UPE to investigate strategies that

elevate the successful completion percentage of candidates of already over-subscribed

introductory programming courses without reducing the quality of the course (UCAS

2000; Boyle et al. 2002). This chapter consequently focuses on the latter approach.

Poor achievement in introductory programming courses has in the past been related

mainly to a combination of low programming ability and negative attitudes towards

computers. International and national research27 in the area of effective predictive

models and the selection of introductory programming course students prompted the

implementation and assessment of a computerised selection method in the Department

of CS/IS at UPE since 2001 (Greyling et al. 2002; Greyling et al. 2003). Despite the

27 (Calitz 1984; Mayer et al. 1986; Evans & Simkin 1989; Calitz et al. 1992; Calitz 1997; Greyling

2000)

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

100

continued research, the situation of poor achievement persists (Greyling et al. 2002;

UPE 2002; Greyling et al. 2003; Naudé et al. 2003; UPE 2003a).

There are many reasons for the importance of being able to predict an individual’s

potential for mastering computer concepts in the tertiary education environment, with

specific reasons (Evans et al. 1989) being the:

• ability to classify enrolment applicants;

• identification of CS/IS programming majors;

• identification of productive programmers;

• improvement of introductory programming course learning activities;

• determination of the continued validity of documented predictors of computer

competency; and the

• exploration of the relationship between programming abilities and other

cognitive reasoning processes.

The main aim of selection for tertiary education programmes is typically to identify

students who will succeed in a specific academic programme, since no tertiary

education institution can afford to spend large sums of money on large numbers of

high risk students (Huysamen 1997). Further, allowing inadequately prepared

students accessibility to higher education results in a negative impact on the quality of

learning and teaching, as well as on the success rate (Harman 1994).

Any selection process must be shown to be valid in terms of its fairness, effectiveness

and efficiency (Zaaiman et al. 1998). An effective selection mechanism will select a

high percentage of successful students and reject as few as possible of the students

who could have been successful if they had been selected. Such mechanisms usually

are of the form of an aptitude test administered to prospective students. Many of

these tests have a mathematical focus, since there is a belief that the concepts which a

student has to comprehend in order to master mathematics problems are similar to

those for programming, and consequently mathematics aptitude is thus often a pre-

requisite for acceptance into an introductory programming course (Byrne et al. 2001).

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

101

Early studies (Fowler et al. 1981; Konvalina et al. 1983; Butcher et al. 1985) in the

prediction of success in introductory programming courses focussed on establishing

associations between academic performance and success in programming in order to

define instruments to be used in the selection of students. This chapter overviews

these documented studies (Section 4.2), at both the international and national levels.

The focus is, however, on research conducted subsequent to that reviewed in

Greyling’s (2000) study.

The chapter includes a discussion on selection techniques, specifically computerised

selection techniques, used to classify applicants for introductory programming courses

(Section 4.3). This section concentrates on the implementation and assessment of the

computerised selection technique applied in the Department of CS/IS at UPE since

2001 (Greyling 2000; Greyling et al. 2002; Greyling et al. 2003).

The limitation of the research and how it necessitated the current investigation is

highlighted. The selection technique applied at UPE is especially relevant to the

current study since subjects of the current investigation have been exposed to the strict

application of the selection technique prior to the current study, and are thus

controlled by the selection process.

4.2 Predictors for Success in an Introductory Programming
Course

Research on predictors for success in introductory programming courses has

predominantly concentrated on programming aptitude and other cognitive skills.

Computer aptitude tests, specifically, have been used in industry since the 1960’s for

the selection of productive programmers. These aptitude tests were used with varied

success in predicting achievement in programming courses (Mazlack 1980; Goldstein

1987).

Research was prompted during the 1980s into the identification of variables that could

be used as predictors of success in computer programming. As a result of this

research, the skills cited for success in learning to program are problem-solving,

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

102

language ability and mathematical ability. Supplemental characteristics cited are that

of gender, learning style, motivation and prior computing experience.

An overview of the documented international research projects that have been

conducted on this topic is presented (Section 4.2.1). A discussion on the comparative

national research follows (Section 4.2.2). Although reviewing a large volume of

documented research projects relevant to predictors of success in computer

programming, the focus is on related research that has been conducted since the most

recent research undertaken in the Department of CS/IS at UPE (Greyling 2000).

4.2.1 International Research

International research projects that investigated predictive models and the selection of

introductory programming students were initiated during the 1960’s by studies of the

application and assessment of computer aptitude tests. Investigations that followed

these initial studies concentrated on the identification of variables that were related to

programmer performance. One of the first variables identified in the late 1960’s as

being relevant was that of mathematical ability.

Research on the identification of variables that bore a significant relationship to

programmer performance continued, with a number of non-academic variables being

identified. The variables identified as being relevant to programmer performance

include language ability and problem-solving ability, gender, learning style,

personal motivation as well as prior computing experience. Research related to

each of these variables is overviewed in the following 6 subsections.

Computer Aptitude Tests

The research projects conducted mainly during the 1960s that are related to the use of

specific programmer aptitude tests for the selection of prospective programmers are

cited in Koubek et al (1985). Although these aptitude tests were often used for

predicting success in programming courses, they were originally designed for the

purpose of selecting and appointing the better trained programmers.

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

103

The most accepted of these tests, the IBM Programmer Aptitude Test (PAT) was

devised from a form originally developed by Hughes and McNamara in 1955. The

test assessed reasoning ability (Mazlack 1980), and by 1962 it was the most popular

tool used by business and industry for indicating programming skills (Koubek et al.

1985). Varied success was however observed in studies assessing the level at which

this programmer aptitude battery could predict success in a programming course

(Mazlack 1980; Goldstein 1987).

An aptitude test that is often used as the primary recruiting measure for tertiary

education students in the United States of America (USA) is the Standard Aptitude

Test (SAT). SAT is an aptitude test that focuses on measuring verbal and

mathematical abilities independent of specific courses or high school curricula

(Atkinson 2001). Recently a need has been identified for a standardised tertiary

education entrance test that is a curriculum based achievement test instead of an

aptitude test like SAT, so that an applicant can be assessed in full complexity and not

only on grades and test scores. The motivation for this requirement is that

achievement tests are perceived as being fairer to students because these types of tests

measure accomplishment rather than imprecise concepts of aptitude.

Mathematical Ability

Towards the end of the 1960s, one of the major skills identified as being indicative of

success in programming was identified as being that of mathematical ability (Bauer et

al. 1968). This finding was reinforced by several other studies that followed during

the 1970s cited by Stephens et al. (1981) as well as studies in the 1980s28 and more

recently29.

Despite these findings, related research in the United Kingdom found that there was

no evidence that a prior mathematical qualification influenced the achievement in an

ultimate programming qualification (Boyle et al. 2002). The observation by Boyle et

28 (Konvalina et al. 1983; Campbell & McCabe 1984; Danial 1985; Koubek et al. 1985; Darius 1987;

Loftin 1987)
29 (Byrne et al. 2001; Wilson et al. 2001; Jenkins 2002)

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

104

al. is confirmed by a more recent study into the predictors of success for an object-

oriented introductory programming course (Ventura 2003).

Language Ability and Problem-solving Ability

A further variable identified as being a contributor to achievement in computer

programming is that of language ability. Documented studies have respectively

linked an individual’s command of home language with the ability to program (Sauter

1986), and the ability to speak a second language as a predictor of success in

computer programming (Evans et al. 1989).

Related studies in the identification of predictors for performance achievement in

programming courses have also identified the skill of problem-solving as being

relevant. This skill was found to consist of a number of specific competencies, these

competencies being the ability to:

• reason abstractly (Mayer et al. 1986; Chen & Vecchio 1992; Chmura 1998;

Boyle et al. 2002);

• follow a sequence of instructions (Mayer et al. 1986; Chen et al. 1992;

Chmura 1998);

• deduce a suitable result from serially presented information (Mayer et al.

1986; Chen et al. 1992);

• memorise and recall many details (Chmura 1998);

• visualise information (Mayer et al. 1986; Chmura 1998); and

• articulate thoughts (Mayer et al. 1986; Chmura 1998).

An early study concluded that the three competencies of articulation of thoughts, the

ability to deduce a suitable result from serially presented information and the ability to

follow a sequence of instructions were the better predictors of success in computer

programming (Mayer et al. 1986).

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

105

Gender Differentiation

The following explanations for observed gender performance differences are provided

from the many international studies30 reporting on gender differentiation as being

important in the performance achievement in programming:

• males, when compared with females, possess a stronger sense of self-efficacy

when working with computers (Howell 1993);

• there is a higher probability for males to have self-initiated prior experience

with computers (Howell 1993; Rowell et al. 2003);

• the existing male domination makes females feel uncomfortable in lecture

learning activities (Howell 1993);

• males tend to register in greater proportions for curricula in which lower

average percentage marks are recorded (Rowell et al. 2003);

• male students’ personalities were more closely matched to the area of

computer programming than the female students (Haliburton 1998); and

• structured programming techniques conflict with females’ naturally creative

and communicative personalities (Howell 1993).

Contradictory research has however been cited by Chen et al. (1992) and more

recently by Ventura (2003). Chen et al. determined that either there was either no

gender difference in attitudes towards computer systems, or females tend to have

relatively adverse attitudes. Ventura confirmed that no gender bias existed when

predicting success for an object-oriented introductory programming course.

A related Australian study reports a finding of a higher participation of Asian females

in information technology (IT) education than other Western female students (Nielsen

et al. 1997). This observation seems to indicate that there exists a relationship

between a student’s cultural environment and the way in which IT education is

perceived.

30 (Howell 1993; Haliburton 1998; McKenna 2000; Carter et al. 2001; Quaiser-Pohl & Lehmann 2002;

Rowell et al. 2003)

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

106

Learning Style

Learning style can be classified according to four adaptive learning modes, namely

concrete experience, reflective observation, abstract conceptualisation and active

experimentation (Byrne et al. 2001). It is suggested that different learning styles are

suited to specific learning environments, depending on whether a subject is

conceptual or practical oriented. The tasks of learning to program incorporate these

categories of environments, depending on whether a novice programmer is trying to

solve a problem, apply skills or understand and identify the relationship between

concepts. Consequently different learning styles are evident during the general

programming process.

An Australian study found that science (including introductory programming)

students experiment more actively when learning to program (Shute 1991). Another

study determined that the traditional style of lecturing and conventional textual

programming notations used in an introductory programming course was probably

favouring novice programmers with certain kinds of learning style preference

(Thomas et al. 2002). The study also determined that novice programmers who could

be categorised as having active, sensing or visual learning styles would be

disadvantaged by these traditional course presentation methods.

The emergence of learning style as a statistically significant explanatory variable in

the success in an introductory programming course was also observed in a study by

Evans et al (1989). The conclusion of the study was, however, that the task of finding

effective predictors of computer proficiency remained incomplete.

In a subsequent study on learning style, no significant conclusion could be drawn

(Byrne et al. 2001). The investigators however observed a higher proportion of a

convergent learning style among students as well as a higher incidence of success

amongst students exhibiting this type of learning style within the overall group.

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

107

Personal Motivation

Personal motivation has also been identified as a predictor of success in an

introductory programming course in various studies (Goold & Rimmer 2000; Jenkins

2001a; Wilson et al. 2001; Chamillard et al. 2002; Rountree et al. 2002). One of

these studies concluded that the strongest single indicator of success in an

introductory programming course was a positive attitude towards the introductory

programming course (Rountree et al. 2002). An earlier study (Wilson et al. 2001)

determined that of the 12 variables investigated as being predictive of success in an

introductory programming course, the two positive predictive variables in order of

importance were motivation and mathematical ability.

In attempting to determine the motivation of a novice programmer in an introductory

programming course, it is possible to observe the novice’s behaviour and from that

deduce their probable motivation, but it is never possible to be certain (Jenkins

2001a). Three categories of motivation have been described (Entwisle 1998), the

categories being extrinsic, intrinsic and achievement types of motivation.

Extrinsically motivated students possess an aspiration to complete the introductory

programming course in order to achieve some expected reward. Such a student will

probably not do much for which there is no summative evaluation recognition. The

primary motivator for a student falling into this category of motivation is the career

and associated rewards that will follow from successful completion of the course

(Jenkins 2001a).

Intrinsically motivated students are motivated by a curiosity in the course. Such

students could be expected to research the course topics since they tend to perform

more on their own initiative. The primary motivator for an intrinsically motivated

student is a profound interest in programming itself (Jenkins 2001a). In some cases,

students are intrinsically motivated in order to please some third party whose opinion

is valued or for fear of failure. This type of motivation has also been referred to as

social motivation (Biggs 1999).

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

108

Students who are motivated by achievement tend to be in competition with their peers

and will implement strategies that will ensure their best performance in the form of

the highest recognition, usually in the form of marks. The primary motivator for an

achievement motivated student is to perform well for personal satisfaction (Jenkins

2001a).

Various methods have been applied to increase the motivation of novice programmers

in an introductory programming course (Astrachan 1998; Chamillard et al. 2002).

Anecdotal evidence supports the benefits of integrating the documented strategies, for

example the use of graphics in an introductory programming course (Chamillard et al.

2002).

Prior Computing Experience

Some of the studies on the relationship between prior computing experience and

success in an introductory programming course report that a prior programming

course is indeed a predictor for success in an introductory programming course

(Newman et al. 1999; Hagan & Markham 2000; Morrison & Newman 2001; Wilson

et al. 2001; Boyle et al. 2002; Rountree et al. 2002). One specific study determined

that novice programmers who had taken at least one prior programming course had a

successful outcome rate of 70% compared with a rate of 52% for those who had no

prior programming course (Newman et al. 1999). A more recent study reported

similar conclusions yet indicated that experience in a prior programming course was

not a guarantee for success in an introductory programming course (Rountree et al.

2002).

A study by Morrison et al. (2001) determined that the strongest relationship between

prior programming experience and success in an introductory programming course

was when the prior programming course was offered at tertiary level when compared

to junior college and secondary school level. An earlier study also determined that the

more programming languages a novice programmer has experience with, the better

the performance in a tertiary level introductory programming course (Hagan et al.

2000).

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

109

The finding that prior computing experience is a predictor for success in an

introductory programming course is contradicted by a recent study conducted by

Ventura (Ventura 2003). In his study, Ventura determined that prior computing

experience is not a predictor for success in an object-oriented introductory

programming course.

4.2.2 National Research

National research in the prediction of success, specifically with respect to introductory

programming courses, is limited in volume. Reports related to the prediction of

success, but not necessarily in the area of introductory programming courses, and also

not originating from UPE, include those relevant to gender differentiation (Huysamen

& Roozendaal 1999), personal motivation (Glenn 2000), relationship of English

matriculation marks with performance achievement of information system majors

(Nash 2003), determination of factors that distinguish achievers from at risk students

(Eiselen & Geyser 2003) and predictors of first-year student success (Lourens & Smit

2003).

A review of the non-local national research undertaken specifically in the

determination of predictors of success in introductory programming courses

specifically is presented in this subsection. Only the studies by Huysamen et al.

(1999) and Glenn (Glenn 2000) are relevant to this discussion. The details of the

research on the prediction of success in an introductory programming course

undertaken in the Department of CS/IS at UPE prior to Greyling’s (2000)

implementation of a computerised selection method is then discussed.

Non-local Research

A study by Huysamen et al. (1999) in the role of gender differential performance at

tertiary level concluded that males at a South African tertiary education institution

tend to register in greater proportions for curricula in which lower mean percentage

marks are recorded. The observations in this study correspond with the findings in a

similar but more recent international study conducted by Rowell et al. (2003) (Section

4.2.1). Huysamen et al. determined that females tended to score higher when

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

110

compared to males and deduced that the choice of curriculum impacted this

performance.

In a study related, an observation made by Glenn (2000) is that personal motivation

plays a role as a predictor of success in an introductory programming course. The

specific observation made is that South African programming students are

extrinsically motivated in that many of them expect universities and technikons to be

a speedy opportunity to a growing number of stimulating and lucrative computer

related careers.

A large share of the remaining national research on the prediction of success in an

introductory programming course is restricted to studies undertaken in the Department

of CS/IS at UPE over the past two decades (Calitz 1984; Calitz et al. 1992; Calitz

1997; Greyling 2000; Greyling et al. 2002; Greyling et al. 2003). The focus of the

following section is thus on previous research conducted in the Department of CS/IS

at UPE prior to the most recent research on the compilation, validation and

implementation of a suitable computerised selection battery. The most recent

research (prior to the current investigation) undertaken in the Department of CS/IS at

UPE is reviewed in Section 4.3.

Research at UPE

The Department of CS/IS at UPE has been conducting ongoing research into the

factors that predict success in introductory programming courses since 1982. Initial

research highlighted deficiencies in various computer aptitude test batteries with

respect to success in introductory programming courses (Calitz 1984). Consequently,

in 1992, research was conducted in the use of matriculation marks and the Swedish

point system to predict success in an introductory programming course (Calitz et al.

1992).

The independent variables used in the aforementioned research were the Languages

(namely English and Afrikaans First and Second Language), Mathematics, Science,

Accountancy, Biology, an average mark of the latter three and an average mark of the

remaining matriculation subjects. It was observed that 34% of the variance in

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

111

introductory programming course performance could be attributed to the performance

in First Language, Mathematics and the combined average of Science, Accountancy

and Biology. The model proposed by this study was implemented at UPE in 1993

(De Kock 1993).

A subsequent study by Calitz (1997) provided evidence that increased the predictive

variance to 62%. This study included both biographical and psychometric variables.

The biographical variables included in the study were age, gender, race, home

language, curriculum registered for and type of registration, namely whether part-time

or full-time. The psychometric variables included in the study were obtained from

the following psychological tests and questionnaires: the Self-Directed Search (SDS)

(Holland 1985), the Career Decision Scale (CDS) (Osipow 1986), the Career

Development Questionnaire (Langley 1992a), the Value Scale (Langley et al. 1992),

the Survey of Study Habits and Attitudes (SSHA) (Du Toit 1983) and the Life

Inventory (Langley 1992b).

Other than the observed increase in predictive variance (62%) , the most significant

conclusions of Calitz’ (1997) study were the following:

• Even though both the biographical variables of gender and race featured in the

predication formulae, it was decided not to make use of these variables for

selection purposes.

• The matriculation subjects of English, Mathematics and the combined average

of Science, Accountancy and Biology were prominent as variables in the

regression formulae. An important skill identified was that of English

proficiency. This conclusion differed from the conclusion in the earlier study

that First Language, being either English or Afrikaans was identified as a

factor for prediction (Calitz et al. 1992).

• The inclusion of the Social personality type on the SDS psychometric test

indicated that social skills, such as communication skills and working with

people, have become important qualities of successful CS/IS students.

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

112

Subsequent research in the Department of CS/IS at UPE concentrated on the

compilation, validation and implementation of an effective and appropriate

computerised selection battery for introductory programming students (Greyling

2000; Greyling et al. 2002; Greyling et al. 2003). The focus of the following section

is an overview of the progress of this research.

4.3 Computerised Selection in Introductory Programming Courses

In a study conducted by Greyling (2000) in the Department of CS/IS at UPE, the

skills measured in the selection battery were mathematical and language ability,

spatial and planning ability as well as computer proficiency. A number of different

computerised instruments were used in the investigation, namely the ACCUPLACER

Computerised Placement Tests (ACC 1997), Computerised Logo System (Hunt

1998), Computerised Mazes System (Roos 1998) and Interactive Learner (Streicher

1998).

Greyling’s investigation (2000) concluded that three of the ACCUPLACER

Computerised Placement Tests produced the most significant results for an

introductory programming course and accounted for 63% of the variance in

performance. These tests were namely the reading comprehension, arithmetic and

elementary algebra tests.

Analyses conducted on the matriculation subject variables of Mathematics, English

Language and the combined average of Science, Accountancy and Biology confirmed

the finding of Calitz in an earlier study (1997). Greyling’s study (2000) also found

that, despite the confirmation that black matriculation results were not good predictors

of success in CS/IS introductory programming courses, the matriculation results

complemented the results derived from the computerised selection battery.

Consequently, research results showed that matriculation results used in conjunction

with placement tests continue to play a role in selection and admission strategies at

tertiary education institutions.

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

113

Obvious advantages were observed from both the administrative and student

viewpoints, namely immediate scoring of tests for the former and, for the latter, a

more positive attitude than that experienced in traditional pen-and-paper tests. The

latter observation is supported by a more recent South African study that examined

the effects of a changing society and technology on the way that learners interact with

information in an educational environment (Miller 2003). From this more recent

study it is evident that learners are motivated by the technology used in information

transfer.

Greyling’s study (2000) determined that the ability to measure the elapsed time and

computer proficiency contributed significantly to the predictive validity of the

selection battery for a CS/IS introductory programming course. Greyling concluded

further that the combination of the selection battery and matriculation subjects

accounted for 62% of the variance in performance in an introductory programming

course, a slight decrease (1%) on the variance observed when using the selection

battery alone.

Greyling’s streaming model was implemented at UPE as from the beginning of 2001

based on the selection results. The model concentrated on the placement of students

within alternative introductory programming courses, namely the customary

introductory programming course and an extended introductory programming course

(Greyling et al. 2002; Greyling et al. 2003). The extended introductory programming

course covers the same material as the customary course but over a longer period of

time.

The implication of different learning programmes for different groups of students as

categorised by the computerised selection battery is that support mechanisms need to

be in place in each of these different programmes. This is in agreement with the

strategy adopted by the UPE Placement Task Team (Foxcroft et al. 1999).

The greatest risk to the implementation of alternative learning programmes for

different groups of students was identified as being the fact that streaming could

generate some opposition from students as well as parents. The expected opposition

was due to the fact that it would in effect mean for some students that their degree

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

114

programme would be extended by a further year (Greyling et al. 2003). Due to the

endeavour on the part of the Department of CS/IS at UPE to communicate the

justification of the streaming process, most parents were positive and in fact thankful

that such a support mechanism was in place.

The implementation of Greyling’s streaming model in 2001 provided an opportunity

for further validation of the model. It was observed that the regression formula was

successful in predicting the students’ final results (Greyling et al. 2003). This was

apparent in the finding that the actual average mark (69%) differed only slightly from

the predicted average mark (66.7%) for a customary introductory programming

course.

Furthermore, the pass rate for first time students in the introductory programming

course increased to 77% (Greyling et al. 2003). A pass rate of 68% was evident in the

extended introductory programming course and the actual average mark (59.8%)

exceeded the predicted average mark (49.5%) by 10.3%. The results observed in the

extended introductory programming course were encouraging as the students enrolled

in the extended introductory programming course were predicted as possible failures

by Greyling’s streaming model.

The following limitations in Greyling’s investigation were however identified:

• limited success in implementation (Greyling et al. 2002; Greyling et al. 2003),

especially with respect to the performance rates with the inclusion of repeating

students within the student body enrolled for the introductory programming

courses; and

• the need for educational support mechanisms in each of the alternative

introductory programming courses.

Although the pass rates of the streamed students increased from previously recorded

pass rates, the limited success in the implementation of Greyling’s streaming model

was evident in that the actual pass rate of the extended introductory programming

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

115

course (68%) was considerably lower when compared with internal and external

expectations of 75% (Department of Education 2001; UPE 2002).

Further, the presentation of alternative introductory programming courses by the

Department of CS/IS at UPE initiated the requirement for appropriate technological

support in the respective learning environments. Adherence to this requirement is in

accordance with the strategy adopted by the UPE Placement Task Team (Foxcroft et

al. 1999).

The need to further improve and maintain satisfactory individual and group

performance rates (Greyling et al. 2002; UPE 2002; Greyling et al. 2003; Naudé et al.

2003) amongst novice programmers in an introductory programming course as well as

the need for educational support mechanisms in introductory programming courses

(Greyling et al. 2002) was instrumental in initiating the current investigation into the

comparison of programming notations and associated development environments for

an introductory programming course at tertiary level.

4.4 Conclusion

Limitations on resources, specifically financial, hardware and human, necessitate the

implementation of strategies that effectively maximise the throughput rate of

introductory programming course students. One category of strategy is the selection

of students with the highest potential to succeed in an introductory programming

course. The second type of strategy is to modify course presentation techniques. The

latter type of strategy is the category into which the current investigation is classified.

Predicting the achievement potential of a novice programmer in an introductory

programming course is essential to ensure a satisfactory level in both individual and

group performance rates, as well as improve the personal motivation of introductory

programming course students. This chapter provided an overview of the international

and comparative national research in the selection of candidates for introductory

programming courses.

CHAPTER 4 : PREDICTIVE MODELS AND SELECTION

116

Based on the results of research into the predictors of success in computer

programming, the Department of CS/IS at UPE initially implemented a strategy of

advisory selection in 1993. Subsequent research in the Department of CS/IS at UPE

resulted in the implementation of an effective and efficient computerised selection and

placement model at UPE in 2001.

The streaming model implemented at UPE provided the opportunity for students to

register and complete degree programmes according to the level of their potential to

succeed. Consequently, alternatively paced introductory programming courses were

designed and presented and students were placed into the alternative introductory

programming course streams based on their performance in a computerised placement

test battery. The subjects of the current investigation, namely 2003 customary

introductory programming course students in the Department of CS/IS at UPE, were

subjected to the rigid implementation of this computerised selection and placement

process.

Despite external and internal pressure to increase and maintain satisfactory group

performance rates of students in introductory programming courses, CS/IS

departments at tertiary educational institutions should strive to maintain the quality of

their introductory programming course while adhering to the external and internal

expectations. One strategy to ensure the maintenance of the quality of the

introductory programming course is with the provision of educational technological

support for novice programmers. This is the second type of strategy proposed as a

solution to maximise throughput in an introductory programming course.

Chapter 5 discusses the design and implementation of the experimental technological

support used in the current investigation. The chapter focuses on the design and

implementation of B#, an educational technological support tool that assists in the

modification of the introductory programming course presentation techniques.

 117

Chapter 5
Design and Implementation of an Iconic Programming
Notation and Development Environment

5.1 Introduction

Programming tools are essential to the process of learning to program. The need for such

technological support that reduces the extraneous cognitive load on a novice programmer

and is included in the teaching and learning environment of an introductory programming

course is investigated in Chapters 2 and 3. A number of educational programming

notations and development environments have been proposed in response to this need.

A survey into the level of support for the framework of novice programmer requirements

derived in Chapter 2 (Table 2.1) provided by each of a number of different categories of

educational programming notations and development environments is presented in Chapter

3. The literature reviewed provides evidence that there is dispute as to how well current

programming tools support the programming task for novice programmers, especially in

the areas of error prevention and program comprehension.

The review of the literature reveals that there exists much dissatisfaction in the manner in

which widely used conventional textual programming notations and their associated

development environments provide support for novice programmers (Section 3.3). Even

though the use of imagery in a programming notation and development environment is

recommended based on studies of the cognitive model of the novice programmer, the

literature review reveals that no single type of alternative experimental programming

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 118

notation and associated development environment has been widely accepted for use in

introductory programming courses. There consequently remains a requirement for a

programming notation and associated development environment to sufficiently support the

mental model of the novice programmer in an introductory programming course.

One factor prompting the current investigation is that strategies are required to promote the

successful completion percentage of candidates of already over-subscribed introductory

programming courses without reducing the quality of the course (UCAS 2000; Boyle et al.

2002). These strategies involve either the selection of introductory programming course

candidates from applicants most likely to succeed or adjusting course presentation

techniques to cater for those candidates who are not successful (Wilson et al. 1985; Austin

1987). The recent research undertaken, especially at UPE, in response to the former type

of strategy is discussed at length in the previous chapter. The latter strategy is the strategy

which uses educational technological support, much like that of B#, on whose design and

implementation this chapter focuses.

This chapter describes the alternative approaches used as the technological support in the

learning environment for an introductory programming course at UPE, which is the context

for the current investigation (Section 5.2). For the purposes of completeness, a brief

overview (Section 5.2.1) of the conventional textual programming notation and associated

development environment, Delphi™ Enterprise, currently used as the prescribed

technological support in UPE’s introductory programming course is included.

The focal point of the chapter is, however, on the design and implementation of B#, a

locally developed experimental iconic programming notation and educational support tool

for novice programmers in an introductory programming course (Section 5.3). The chapter

concludes with an assessment of B# in terms of the programming notation and

development environment requirements for novice programmers in the learning

environment of an introductory programming course (Table 5.4). This evaluation

corresponds with those presented in Chapter 3 for the categories of educational

technological support reviewed.

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 119

5.2 Introductory Programming Technological Support at UPE

Technological support forms an integral part of the learning environment for any

introductory programming course. Such a successful learning environment for an

introductory programming course is described as one that satisfies the following constraints

(Brusilovsky et al. 1994):

• The initial stages of learning to program are supported by a small, simple subset of

a programming notation. As new features of the programming notation are learnt,

they can be built onto the existing foundation.

• The visual appearance of a program solution structure makes it possible for the

novice programmer to comprehend the semantics of the programming constructs

introduced and also serves to shield them from misunderstandings.

Technological support in the learning environment of an introductory programming course

in the form of visually based programming notations has become possible due to the rapid

development in high speed, high resolution, large random access memory (RAM), low cost

computers (Calloni et al. 1995). As a consequence of this observation together with the

need for a successful learning environment for an introductory programming course, the

selection of an experimental programming notation and associated development

environment is influenced by a review of existing research (Chapter 3). The experimental

technological support identified as being appropriate in the learning environment of an

introductory programming course for the purposes of this investigation is classified in the

category of visual programming notations (Section 3.4.6).

Visual programming notations and development environments generally minimise the

mundane tasks of programming. Forms of this minimalism are ensuring that parentheses

match or that lines in a program solution are terminated by a semicolon (Blackwell 1996).

Visual programming notations have in the past been described as being potentially more

intuitive and comprehensible to novice programmers than conventional textual

programming notations because programming constructs are presented in a graphical form

(Tanimoto et al. 1986).

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 120

The current investigation into programming notations and associated development

environments in an introductory programming course focuses on the comparison of a

traditional commercial textual programming notation and associated development

environment with an iconic programming notation and its associated development

environment. Delphi™ Enterprise (Borland 2003), a conventional commercial textual

programming notation and development environment is one of the instruments of

technological support considered in the delivery of the practical experience necessary for

novice programmers in an introductory programming course at UPE (Section 5.2.1). The

alternative form of technological support is that of B#, a locally developed visual iconic

programming notation and development environment (Section 5.2.2).

5.2.1 Delphi™ Enterprise: A Textual Programming Notation and Development
Environment

Delphi™ Enterprise is the programming notation and development environment currently

prescribed for the introductory programming course presented by the Department of CS/IS

at UPE (CS&IS 2003). The environment is based on the PASCAL programming notation

which was originally developed by Niklaus Wirth specifically as an introductory

programming teaching tool (Wirth 1971).

Delphi™ Enterprise is based on a simple textual programming notation with a limited

grammar. One of the programming notation’s features is that it is easy to learn due to

strong data typing and a clear distinction between functions and procedures. An example

of the interface provided by Delphi™ Enterprise is illustrated in Figure 5.1. Only those

features of the development environment that are emphasised on Figure 5.1 are necessary

and used by novice programmers in the introductory programming course at UPE. All

other features presented by the programming development environment are superfluous.

Despite the good intentions of the programming notation, the Delphi™ Enterprise

programming development environment is an example of an environment to which blame

has been partly attributed for the fact that introductory programming courses are perceived

as being difficult (Hilburn 1993; Calloni et al. 1997; Warren 2000). One reason cited is

that commercial textual programming notations and their associated development

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 121

environments (Section 3.3) like Delphi™ Enterprise tend to have been designed for

experienced users who are developing large program solutions (Ziegler et al. 1999).

Debugging tools in Delphi™ Enterprise require the use of break points, which are markers

placed by the programmer at specific points within a program solution. On execution of

the specified sections of the program solution, the tracer is activated. Recognising

appropriate programming statements at which to place break points requires the

programmer to have a good comprehension of the program solution, the nature of the error

present and the possible locations of the error. Furthermore, features such as the watchlist,

which permits the values of variables to be displayed as the program solution is executed,

are complex to initiate and use, and are often even avoided by more advanced

programmers.

Figure 5.1: Borland© Delphi™ Enterprise version 6 Textual Programming Notation

 and Development Environment

In response to the challenge of increasing throughput in introductory programming courses,

the Department of CS/IS at UPE identified the need for the development of an

Options to create
a new, open an

existing and save
a program
solution Program

solution
editing pane Option to compile

and execute a
program solution

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 122

experimental iconic programming notation, B# (Brown 2001a; Thomas 2002b; Cilliers et

al. 2003; Yeh 2003b). B# was deliberately designed to be a short term visual iconic

programming notation providing initial technological support in the learning environment

of an introductory programming course. A brief overview of B# is presented in the

following section with the progress of the design and implementation of this programming

notation and development environment being described in Section 5.3.

5.2.2 B#: A Visual Iconic Programming Notation and Development Environment

Based on an intensive literature survey of educational programming notations and

development environments (Chapter 3), it was determined that the category of visual

programming notations was most responsive to the requirements of a novice programmer

(Table 2.1 derived in Chapter 2). Further, it appears as if related international research

with respect to the use of an iconic programming notation (BACCII©) in an introductory

programming course has been terminated31 after initial empirical studies (Calloni et al.

1994, 1995, 1997). These two observations influenced the choice of category of

programming notation on which B# was originally modelled. B# consequently supports a

visual programming notation, specifically one that is iconic.

A number of issues need to be considered when designing a visual programming notation

and development environment for novice programmers, these issues being summarised

below (Chattratichart & Kuljis 2002):

• Different programming notations highlight certain information types while hiding

others (Green & Petre 1996).

• In order to reduce the extraneous cognitive load on a novice programmer, there

must be a close mapping between the mental representation and the external

representation of a program solution (Garner 2001). The closeness of the mapping

is determined by a correspondence between the graphical representation and

programming task, or a correspondence between programming constructs and the

31 As noted earlier in Chapter 1, no further documentary evidence of follow-up studies since 1997 has been

located (Calloni et al. 1994, 1995, 1997). The author of the research, Ben A. Calloni, is currently
employed at an institution different to that where the empirical studies were originally conducted (Calloni
2002).

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 123

programmer’s preferred strategy. An important element in the improvement of

programming education is the support for mental model-building with efficient

educational support tools (Astrachan 1998).

• Novice programmers are affected by paradigm difference. Research32 has indicated

that novice programmers prefer the control flow paradigm.

• Different representations of the same program solution may require different

cognitive effort.

• Graphical representation traversal direction, namely the direction of easiest

traversal, for example horizontal or vertical traversal, may affect the cognitive

demand on the novice programmers’ comprehension of a presented program

solution.

• The comprehension of programming constructs can be enhanced by the appropriate

design of the visualisation capabilities of the educational programming notation and

development environment (Wright et al. 2000).

Iconic programming notations traditionally attempt to simplify the programming task by

reducing the level of precision and manual typing usually required in conventional textual

programming notations (Calloni 1998). The associated development environments also

attempt to increase the speed at which problem-solving and implementation of program

solutions occur.

Many issues were considered during the design and implementation of the experimental

iconic programming notation and development environment, B# that was developed in the

Department of CS/IS at UPE over a period of 3 years (Brown 2001a, b; Thomas 2002a, b;

Cilliers et al. 2003; Yeh 2003a, b; Cilliers et al. 2004b). All successive versions of B#

were required to be implemented using only the Delphi™ Enterprise programming notation

and development environment. The specific design and implementation issues considered

are elaborated on in the following section.

32(Adelson 1984; Corritore & Wiedenbeck 1991; Good et al. 1999; Good 1999; Oberlander, Brna et al. 1999;

Oberlander, Cox et al. 1999; Chattratichart & Kuljis 2000; Chattratichart et al. 2002)

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 124

5.3 Development of B#

In defining the scope and functionality of the B# visual iconic programming notation and

development environment, decisions had to be made concerning the programming

structures and generated textual programming notations that were to be supported.

Furthermore the task model had to be implemented in such a way that B# could be used as

an effective teaching tool which implements a strategy that emphasises the reading of good

examples of program solutions (Fincher 1999; Kolling & Rosenberg 2001).

Iconic programming notations are defined as visual programming notations where each

visual sentence in a program solution is a spatial arrangement of icons with each icon

having a distinct meaning (Chang et al. undated). Consequently, various interface issues

that were considered in the design of B# included the choice of icons to represent the

different programming structures, the program solution representation, design of

different icon dialogues as well as the screen design.

This section focuses on each of the 6 aforementioned issues considered to be pertinent to

the development of B#. The description of each issue is in the format of a report on the

design and implementation decisions made during the development of B#. Where

appropriate, decisions are supported by citations to related work that influenced the design

decision. Deliberation on the design and implementation decisions made appears in

Chapter 8.

5.3.1 Scope of B#

The main aim of B# (Brown 2001a, b) is for the provision of a programming notation and

development environment for novice programmers that minimises the extraneous cognitive

load (Pane et al. 2001). Consequently, B# hides low level programming details and

encourages the development of problem-solving and programming development skills

(McIver 2000; Sanders et al. 2003a, b). At the same time novice programmers are exposed

to automatically generated and syntactically correct textual programming notation program

solutions in an integrated development environment.

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 125

The programming notation of B# is required to particularly provide support for a small

number of powerful, non-overlapping programming constructs. B#, as a first programming

notation, is thus limited to support only the foundation programming constructs of

sequence, selection, iteration and variables (Mayer 1981; Shu 1985; Blackwell et al. 2000;

McIver 2000; Howell 2003; Warren 2003). The effect of this design decision is that many

powerful programming constructs are excluded from the B# programming notation in order

that the programming notation remain as simple as possible. In this way, it is intended that

B# support a programming notation that is easy to learn.

A further exclusion from B# is the representation of primitive arithmetic operations such as

addition and subtraction as independent programming constructs. This design decision not

only reduces the level of complexity, but also simplifies the functionality of the

programming notation.

The intention is not to classify B# as a programming development environment that solely

simplifies the generation of textual programming notation program solutions. B# is

designed to provide an iconic programming notation in support of a textual programming

notation within an integrated development environment that allows novice programmers to

easily write, read and watch the effect of program solutions. Furthermore, B# is

deliberately designed to be a short term programming notation and development

environment to be used in the context of the initial stages of an introductory programming

course.

5.3.2 Functionality of B#

Throughout the development of the consecutive versions of B#, the developers of the

development environment were constantly aware that novice programmers would be the

main users of the programming notation and development environment. A great deal of

consideration was consequently given to the design and implementation of the development

environment interface as well as the functionality (Cilliers et al. 2003, 2004a, b).

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 126

The functionality of B# incorporates provision for support in each of the following areas:

• composition of program solutions;

• introductory programming constructs;

• integration with equivalent textual programming notation program solutions; and

• appropriate visual feedback on program solution execution.

This section discusses each of the above mentioned areas of functionality, concluding with

a presentation of the general task model for composing a program solution in B#.

Program Solution Composition

Novice programmers using the B# programming notation and development environment

use a drag-and-drop technique to compose the program solution to a programming problem

in the form of a flowchart of icons, with each icon representing a specific and unique

programming construct (Section 5.3.4). The program solution representation is thus in the

form of a flowchart, with the flowchart being the program solution to which icons can be

appended in any order (Blackwell et al. 2001; Mattson undated-b). The flowchart was

selected as the visual representation of a program solution in B# since it provided a natural

progression from the prescribed methodology used to illustrate problem-solving in the

initial stages of the introductory programming course at UPE (Wright et al. 2000).

Variables and constants can be declared as and when needed by programming constructs

during flowchart creation in B# (Blackwell et al. 2000). A novice programmer using B# is

thus not restricted to the order in which subtasks of the programming task is done.

It has been observed in a recent study conducted by Wright (2002) that multiple

representations of a program solution combined with good program solution visualisation

support assists novice programmers in building a good mental model of conventional

textual programming constructs during the task of programming. In B# the novice

programmer would thus be concurrently visually exposed to the equivalent and correct

textual programming notation of program solutions generated by the development

environment (Mayer 1981; Blackwell et al. 2000).

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 127

It has further been observed in various related studies (Mayer 1981; Astrachan 1998;

Howell 2003) that when well-defined images are contained in a technical textual notation,

novice programmers tend to perform best on recollecting these familiar images and tend to

recognise the information in the textual notation associated with the images. The

association of generated textual notation program solution extracts with corresponding B#

iconic programming notation programming construct images would be required to be

supported by B#. B# was, however, required to be robust enough to be used for program

solution development without a novice programmer requiring to learn or know the syntax

of the textual programming notations supported (Calloni et al. 1994).

The textual programming notation program solution generated by B# is required to always

exhibit properties of good programming practice and secondary notation33 to encourage the

transfer of textual programming notation knowledge (Cant et al. 1995; Hendrix et al. 1998;

Blackwell et al. 2000; Lister 2000; Applin 2001). The requirement for programming

knowledge transfer necessitated sensitivity to the equilibrium between shielding novice

programmers from all forms of notational syntax and permitting them to learn from their

errors.

B# was expected to immediately detect syntactical errors as data is progressively entered

by the novice programmer. As a result, the implementation of its own compiler module

was essential. Considerable effort was required to be put into the design and development

of this module, with a view to make it easily extendible for future programming constructs.

Programming Construct Support

The B# development environment had to ultimately provide for general programming

constructs, particularly those required during the initial phase of an introductory

programming course at UPE. Time constraints on the development of the first version of

the system, however, necessitated a restriction on the number of programming constructs

33Extra information present in a program solution representation other than formal programming notation

syntax. Examples are indentation, colour highlighting and grouping of related constructs. These
techniques’ main function are to convey meaning to the human reader, thereby enhancing comprehension
of a program solution (Green & Petre 1996).

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 128

initially supported (Brown 2001a, b). The programming constructs supported by B# ver.

1.0 appear in the upper blue portion of the list in Table 5.1.

Programming constructs supported by B# ver. 1.0 (Brown 2001a, b)

• Constants and variables of type integer, float, char, string and boolean;
• Assignment programming construct;
• Simple conditional programming constructs, restricted to the use of a single

branching construct, equivalent to the IF programming construct;
• Complex conditional programming constructs, restricted to the use of a multiple

branching construct using multiple nested single branching constructs, equivalent
to nested IF programming constructs;

• Iteration or looping programming constructs, restricted to the use of a counting
looping construct, equivalent to the FOR programming construct;

• Keyboard input; and
• Screen output.

Additional programming constructs supported by B# ver. 2.0 (Thomas 2002a, b)

• Simple conditional programming constructs including the use of a single multiple
branching construct, equivalent to the CASE programming construct;

• Looping programming constructs including the use of sentinel looping constructs,
equivalent to the WHILE and REPEAT programming constructs;

• Procedures; and
• Functions.

Table 5.1: Programming constructs supported by B# (Brown 2001a, b; Thomas 2002a, b)

In its support of the iteration programming construct, B# was required to facilitate both

horizontally parallel and temporally dependent forms of iteration. Horizontally parallel

iteration is where the outcome of one cycle of an iteration has no affect on the outcome of a

subsequent cycle, whereas temporally dependent iteration implies a sequential dependence

between consecutive cycles (Mosconi & Porta 2000).

The B# development environment had to be developed and continuously adapted in such a

way that future additions of programming constructs could be supported without major

difficulties. This requirement was necessary because of the limitations placed on the

development of the initial version of B# and the need to use B# in an introductory

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 129

programming course requiring future additional programming constructs. The result was

that specific consideration was required in the design of a generic internal and external data

model that would facilitate this requirement. The successful inclusion of the additional

programming constructs listed in the lower green section of Table 5.1 into B# ver. 2.0 by

an independent developer determined that the generic data model designed in B# ver 1.0

was effective (Thomas 2002a, b).

Textual Programming Notation Support

The initial B# development environment was required to concurrently produce

syntactically correct textual programming notation program solutions in either C++,

PASCAL or JAVA forms during flowchart program solution composition. At any time

during program solution composition the programmer could select that the textual program

solution representation be in an alternative textual form. It would not, however, be possible

to view all three textual programming notation forms concurrently. As the flowchart of

icons is built, the corresponding textual programming notation is generated simultaneously

and is able to be viewed by the programmer.

During the development of B# ver. 2.0, the addition of the procedure and function

programming constructs (Blackwell et al. 2000) necessitated the decision to facilitate the

generation of three textual programming notations to be revisited. The reason for this is

that the textual programming notations of C++ and JAVA implement both procedures and

functions in a similar fashion, with procedures being a special type of a function.

PASCAL, however, implements procedures and functions as distinct programming

constructs. With Delphi™ Enterprise being the prescribed textual programming notation

and development environment in the introductory programming course used in the current

investigation, a decision was made to restrict the generation of equivalent textual program

solution representation to a single programming notation, namely PASCAL.

Visual Feedback on Program Solution Execution

Novice programmers often do not comprehend that a program is a sequence of steps that

are executed consecutively (Crews et al. 1998). Programs tend to be viewed by novice

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 130

programmers as a collection of programming statements that are executed when necessary.

Novice programmers thus neglect to pay attention to the accurate placement of

programming constructs within a program solution. Consequently, many misconceptions

and logical errors are overlooked due to a lack of sufficient and relevant program solution

execution feedback.

In order to encourage the transfer of knowledge from introductory to intermediary

programming concepts, B# was designed to support two types of mechanisms that allow

novice programmers to manipulate the visualised behaviour of program solutions. One

such mechanism that is supported is the feature that allows a novice programmer to view

the final outcome, in terms of output produced, of a program solution. The second

mechanism supported is the feature that allows the sequential nature of the program

solution to become visible as a B# flowchart program solution is executed step-by-step

(Wright et al. 2000).

The latter mechanism formed the basis for modifications and enhancements to the second

version of B# which resulted in B# ver 3.0 in 2003 (Yeh 2003a, b). B# ver. 3.0 facilitates a

view on variable values which permits a novice programmer to follow the effects of each

program construct on the variables. This form of controlled simulation familiarises the

novice programmer with program solution tracing and encourages the development of

debugging skills to complement their programming skills.

Programming Task Model

Program solutions created in B# are saved in one of two formats, namely the generated

textual programming notation representation which is then available for use in a

conventional textual programming development environment, or in a format specific to B#.

B# facilitates the opening of existing program solutions saved in only the customised B#

format.

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 131

The general task model for developing any flowchart program solution in B# can thus be

summarised as follows:

1. Create a new or open an existing flowchart program solution.

In B# ver. 1.0, this included the selection of one of the three textual programming

notations supported, namely C++, PASCAL or JAVA. This step is eliminated in B#

ver. 2.0 for reasons already elaborated on previously.

2. Construct or modify the flowchart representation of the program solution by

continuously applying the steps 2.1 – 2.3.

2.1. Select an icon representing a required programming construct.

2.2. Attach the icon to the flowchart program solution by dragging it to the

correct position.

As the icon is attached a dialogue box is opened to permit the specification of

properties for the particular programming construct.

2.3. Move icons around on the flowchart program solution by dragging and

dropping, or delete an icon from the flowchart program solution.

The technique implemented simplifies the modification process by

successfully moving or deleting any nested icons as a single unit together with

the parent icon (Blackwell et al. 2000).

2.4. Throughout this process (repetitive application of steps 2.1 – 2.3 above) the

corresponding textual programming notation representation of the

flowchart program solution can be viewed.

Changes to the flowchart program solution are immediately reflected in the

equivalent textual program solution representation.

3. Execute and debug the flowchart program solution.

The flowchart program solution can be executed at any time, allowing the

debugging of a program solution. The tracer facility may be invoked by the novice

programmer for assistance in the process. B# displays both the final result of the

program solution execution as well as the effect of the execution on the declared

variables. The tracing facility progresses in a step-wise fashion and is controlled by

the novice programmer.

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 132

4. Save the flowchart program solution.

The B# flowchart program solution can be saved for future access from within the

B# development environment. The textual programming notation program solution

may also be exported in a standard textual programming notation form for future

access from within a conventional textual programming development environment.

5.3.3 Design of B# Icons

As mentioned previously, the flowchart representing a program solution contains

programming constructs, metaphorically represented by icons and interconnected with

lines. Each icon represents a specific and unique programming construct. The purpose of

each icon is therefore to indicate the presence of a particular programming construct within

a program solution (Dale 1998; Blackwell et al. 2000).

Programming Construct Icon Programming Construct Icon

Assignment

 Input

Simple conditional construct (IF)

Output

Counter iteration loop (FOR)

Table 5.2: Metaphorical images of programming icons in B# ver. 1.0

Application of an icon design methodology (Chang et al. undated) for the design of B#’s

icons resulted in the foundation programming constructs of sequence, selection and

iteration to be represented by icons (Mayer 1981; Shu 1985; Blackwell et al. 2000; McIver

2000; Howell 2003; Warren 2003). An icon image which attempted to instantly induce the

correct meaning of the construct, was associated with each of the identified foundation

programming constructs (Blackwell 2001). Table 5.2 shows the icons associated with the

programming constructs supported by B# ver. 1.0 (Brown 2001a, b).

The level of intuitiveness attributed to a B# icon is dependent upon how close the mapping

between the icon image presented and the programming construct represented. If the

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 133

mappings are not optimal, novice programmers require more time to comprehend and

assimilate the knowledge content of the underlying programming constructs (Ben-Ari

2001). In acknowledgement of the possibility that the B# mappings might not be ideal, an

informal survey (Appendix E) of the closeness of mapping between the icon metaphors

used in B# ver. 1.0 and their associated programming constructs was conducted.

An evaluation of the icons used in the initial version was conducted during the

development of B# ver. 2.0 in 2002 by means of a survey amongst CS/IS major students of

a second year computer programming course in the Department of CS/IS at UPE (Thomas

2002b). Participants in the survey were firstly presented with a two-column table (Section

E.2), one column containing the icon images and the other the programming construct

supported by B#. The participants were required to associate with an image the

programming construct which in their mind was immediately induced by the metaphorical

image.

Programming Construct Icon Programming Construct Icon

Assignment

Input

Simple conditional
construct (IF) Output

Multiple conditional
construct (CASE)

Conditional iteration loop
(REPEAT_UNTIL)

Counter iteration loop
(FOR)

Operation to return to
calling function (RETURN)
(appears within a user-
defined function)

Conditional iteration loop
(WHILE) Procedure call

Table 5.3: Metaphorical images of programming icons in B# ver. 2.0

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 134

Upon collecting the survey forms, the administrator of the survey then informed the

participants of the correct associations. An hour later the same participants were required

to complete the second part of the survey using the form replicated in Section E.3. This

questionnaire determined the level of recollection of the programming constructs for each

of the B# programming construct icons.

One of the findings of the first section of the survey was that some of the participants did

not immediately correctly match the associated programming constructs with some of the

icons (Thomas 2002b). The responses of the second part of the survey did however show

that participants retained knowledge of the associations between icons and programming

constructs, once correctly advised. As a result of this study, some of the icons were

redesigned resulting in B# ver. 2.0 supporting the programming constructs and icons shown

in Table 5.3.

Further semantics associated with each B# programming construct are conveyed by the

spatial arrangement of the icons within the flowchart program solution representation.

5.3.4 Program Solution Representation

Iconic programming notations, like all visual programming notations, still require some

kind of syntax to represent the semantics of a program solution (Schiffer et al. 1995). One

reason for using a flowchart as the development representation notation for B# is that

flowcharts involve minimal syntax, where the syntax is visual rather than textual. Another

reason is that flowchart program solutions are easier and more intuitive for novice

programmers to comprehend than structured textual program solutions (Scanlan 1989;

Crews 2001; McKinney 2003).

In the Department of CS/IS at UPE, novice programmers initially practice problem-solving

using traditional flowcharting techniques in the introductory programming course. Novice

programmers at UPE are thus familiar with the methodology. B#’s program solution

representation in the form of a flowchart takes advantage of this prior experience of the

novice programmers (Chang et al. 1999). Further, the curriculum of the introductory

programming course presented by the Department of CS/IS at UPE uses the procedural

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 135

paradigm, corresponding to the preferred novice programmer paradigm of control flow

(Good et al. 1999; Good 1999; Oberlander, Cox et al. 1999) which is visually supported by

the flowcharting methodology implemented by B#.

Figure 5.2: Flowchart program solution in B#

Figure 5.2 illustrates a typical example of a flowchart program solution composed in B#.

The B# flowchart program solution is a top-down single-sequence box-and-line

construction typical of visual programming notations (Green & Petre 1996). It consists of

icons, each representing a distinct foundation introductory programming construct

(Chattratichart et al. 2002). The icons are connected by non-crossing lines to indicate the

sequential nature of the programming constructs in relation to one another (Lyons et al.

1993; Green & Blackwell 1996; Chattratichart et al. 2000, 2002; Lyons undated).

Visual secondary notation in a B# flowchart program solution is supported by the vertical

and horizontal arrangement of icons in relation to one another (Figure 5.2). Vertical

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 136

arrangement of icons is primarily an indication of order of sequence, or control flow, from

top to bottom. Horizontal arrangement of icons is an indication of mutually exclusive

selection.

Manipulation of the icons in the flowchart is the only means by which a novice

programmer can specify a program solution using the B# development environment. The

flowchart program solution is, however, complimented by an equivalent textual

programming notation program solution in order to encourage the transfer of textual

notation programming knowledge ultimately required for the introductory programming

course at UPE. The positioning of the display of these alternative program solution

representations was one issue considered as being important during the design of the B#

development environment screen layout.

5.3.5 Screen Layout

The B# screen design process involved developing an interface that could be used

effectively by novice programmers. Of special significance was the requirement that a

minimal number of windows should be required to be manipulated by a novice programmer

at any one time (Green & Blackwell 1996). Figure 5.3 depicts the generic layout of the

main screen.

The menu bar contains standard Win32 application options. The tool bar contains specific

options from the menu bar that are used regularly by a novice programmer. Examples of

such options are saving and executing B# program solutions. The icon palette contains the

metaphorical icon images that are associated with the programming constructs supported

by B#.

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 137

Figure 5.3: Generic screen layout

The B# programming development environment makes use of a multiple document

interface (MDI) allowing it to contain multiple flowcharts in its client area (Thomas

2002b). Context-sensitive views are implemented to make it easier for the novice

programmer to know which choices are available and consequently be shielded from the

occurrence of unnecessary errors (Pane et al. 2002). The main screen of B# has two states,

namely a starting and working state.

In the starting state, the icon palette is not visible. The reason for this is to guide the novice

programmer to open a new or existing B# program solution. Once a B# program solution

has been created or opened, a state transition to the working state takes place. In the

working state at least one flowchart program solution is open in the client area and the icon

palette becomes visible.

The evolution of the screen design across the 3 subsequent versions of B# appears in

Figures 5.4 – 5.6.

Menu bar

Toolbar

Icon
Palette Client Area

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 138

B# ver 1.0

Figure 5.4 shows an example of the screen presented to a novice programmer in the

working state while the novice programmer is in the process of developing a program

solution in B# ver. 1.0. The client area is divided into four sections: the flowchart editing

pane, listing of declared constants and listing of declared variables, as well as the textual

programming notation representation corresponding to the flowchart program solution.

Figure 5.4: B# Ver. 1.0 screen layout

The icon palette facilitates the addition of an icon to the flowchart program solution by the

novice programmer simply dragging it from the palette into the correct position in the

flowchart. The flowchart is completely interactive, continuously allowing for the addition,

moving, deleting and editing of icons. Variables and constants can also be added, edited

and deleted on the right hand side of the client area. The textual program solution area at

the bottom left hand side of the client area displays the automatically generated equivalent

textual program solution representation.

Constants and
variables

declarations

Icon
palette

Flowchart
editing pane

Menu
bar Toolbar

Generated textual
program solution

Client area

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 139

In B# ver. 1.0, the textual program solution would be displayed in the preferred textual

programming notation, namely one of C++, JAVA or PASCAL. The textual program

solution is immediately modified whenever any change is made to either the flowchart

program solution or the variables and constants ensuring that both program solution

representations are mutually consistent (Cockburn et al. 1997; Blackwell et al. 2000).

B# ver 2.0

Informal usability testing of B# ver. 1.0 using the questionnaire in Appendix E revealed

that improvements were required in the screen layout (Thomas 2002b). The detailed

analysis of the results of this survey appears in Appendix F.

The juxtaposibility property (Blackwell et al. 2000) was not sufficiently well supported by

B# ver. 1.0 since the textual program solution representation pane appeared below that of

the flowchart editing pane, and was also much smaller. This resulted in extra effort by the

novice programmer to locate textual program solution extracts corresponding to a particular

icon in the flowchart program solution. The consequence of these observations was a

reimplementation of the screen layout in B# ver. 2.0. The resulting screen design is

illustrated in Figure 5.5.

In the revised screen design (Figure 5.5), the equivalent program solution representations

are located horizontally adjacent to one another. In this way, B# visually enhances the

correspondence between icon and textual programming notation representations for

programming constructs. The generic screen layout was also modified to contain an

additional partition, the routine bar. This bar allows the novice programmer to switch

between user-defined procedures and/or functions that have already been declared for a

particular B# program solution.

The left hand side of the client area in Figure 5.5 presents the B# program solution being

composed. Constants, variables and, in the case of procedures and/or functions, parameter

declarations, as well as the flowchart of icons are displayed in this section. The union of

the various declarations resulted from a requirement to optimise screen space usage. This

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 140

design decision upholds the natural flow of a routine in an equivalent textual programming

notation program solution where the declarations appear at the top of the program solution.

Figure 5.5: B# ver. 2.0 screen layout

In support of the B# feature for facilitating user-defined routines, the contents of the

flowchart editing pane in Figure 5.5 determines the section of the corresponding textual

programming notation program solution displayed. If the flowchart editing pane represents

the main section (driver) of the program solution, the entire equivalent textual program

solution is displayed. In the case of the flowchart editing pane representing a user-defined

function or procedure, only the textual program solution extract relevant to the particular

sub-routine is displayed. In all cases, minor effort is required on the part of the novice

programmer to search for the textual program solution extract corresponding to the

displayed flowchart extract (Blackwell et al. 2000).

B# ver 3.0

To further minimise the effort required to search for corresponding textual program

solution extract for a flowchart icon, B# ver. 3.0 includes a code-highlighting feature. On a

Icon palette

Constants, local
variables and parameters

declarations

Flowchart
editing pane

Generated
textual

program

Routine bar Client area

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 141

novice programmer selecting an icon in the flowchart program solution, B# highlights the

associated generated textual program solution extract thereby visually focussing the

attention of the novice programmer to the equivalent program solution extract.

The third version of B# also provides two ways in which a B# program solution can be

executed and tested (Yeh 2003b). The first is to execute a program solution through an

external compiler with only the final results of the execution, if any, being displayed. This

method was also supported by both previous versions of B#. The second method is to

execute a program solution within the B# programming environment allowing the novice

programmer to control and follow the progress of the execution on both the flowchart and

generated textual program solution extract, one programming construct at a time.

Figure 5.6: B# ver. 3.0 screen layout

Tracer toolbar

Flowchart
editing pane

Generated
textual program

solution

Trace control
pane

Client
area

Constants and variables
declarations and values

during tracing

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 142

Real-time visual feedback on the progression of the programming logic, the listing of

variables and their current values as well as the displaying of any results from the program

solution is supported. The need for the behaviour of program solutions to be visualised in

B# ver. 3.0 required that both the flowchart and the generated textual program solution

extract be animated simultaneously (Yeh 2003a, b). This would serve to reduce the

mapping between the novice programmer’s mental model of the behaviour of the program

solution and the actual behaviour evident by observation (Wright et al. 2002), and assist

further in supporting retention and transfer of programming knowledge, thereby

encouraging in-depth learning. Figure 5.6 illustrates the screen layout implemented in B#

ver. 3.0.

The screen design of B# ver. 3.0 retains the juxtaposibility property. The code-highlighting

is implemented using the colour blue to animate both the flowchart and textual program

solutions simultaneously as the novice programmer manipulates the animation, or trace, of

the program solution using the controls in the trace control pane (see blue conditional icon

in flowchart editing pane and associated blue text in textual program solution extract in

Figure 5.6).

Since graphical versions of program solutions tend to make use of more screen space than

their textual counterparts (Blackwell et al. 1999b), the layout of the client area was adapted

to maximise screen space usage. The variables/constants declarations table pane was

repositioned to be above the generated textual program solution representation.

The trace control pane is designed to be visible at all times during the tracing process. B#

supports two ways in which the trace control pane can be used. The first is by means of a

floating window, allowing the novice programmer to move the trace control pane around

freely (illustrated in Figure 5.6). The trace control pane consequently remains on top of the

other visual components of B# until the tracing process has been completed.

The second method permits the novice programmer to stabilise the positioning of the trace

control pane by docking it to the bottom of the flowchart editing pane. Figure 5.7

illustrates a B# program with the trace control pane docked. The latter method reduces the

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 143

flowchart display area but ensures that the trace control pane does not obscure any of the

other visual components.

Figure 5.7: B# ver. 3.0 showing docked trace control pane

Both methods of using the trace control pane provide the novice programmer with the same

manipulation operations for tracing a B# program solution. These manipulation operations

are namely to

• proceed to the next step/programming construct in the program solution;

• stop the trace; or

• toggle between docking and free floating the trace control pane.

The declarations table (Figure 5.7) is comparable with the watchlist feature of Delphi™

Enterprise but has been designed to be more accessible for novice programmers. During

Declarations table

Client area

Modified value marker

Docked trace
control pane

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 144

the trace of a B# program solution, all the variables and constants declared for the program

solution are listed in the declarations table. At the stage where a variable’s value is

changed as a result of a programming construct effect, a marker (green tick) appears

alongside the variable name to visually focus the attention of the novice programmer to the

changed value.

An additional feature of B# ver. 3.0 is one that encourages novice programmers to always

initialise variables. This feature is implemented by the automatic initialisation of all

variables to randomised values upon declaration. During the debugging of program

solutions, novice programmers are consequently faced with unpredictable program solution

output until variable initialisation is included in the program solution.

As previously described, all B# program solutions are in the form of a flowchart of icons.

On the addition of an icon to the flowchart, a customised icon dialogue guides the novice

programmer in the specification of the properties required for the particular programming

construct metaphorically represented by the icon.

5.3.6 Icon Dialogue Design

An icon dialogue was designed for each programming construct icon, giving a total of nine

icon dialogues being implemented in B# ver. 2.0. An example of an icon dialogue, namely

the counting iteration programming construct dialogue (corresponding to the PASCAL

textual programming notation FOR statement), is shown in Figure 5.8.

An icon dialogue allows for the associated programming construct’s essential data to be

viewed and maintained by the novice programmer, in effect eliminating the need for the

memorisation of these details by the novice programmer. For example, the icon dialogue

illustrated in Figure 5.8 requires the novice programmer to enter a looping variable, starting

and ending values. These data items are essential to the counting loop programming

construct and considered the properties of the counting loop programming construct. A

screen shot of each of the remaining B# icon dialogues appears in Appendix B, together

with other selected screenshots from the B# programming development environment.

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 145

Figure 5.8: B# ver. 2.0 counting loop programming construct icon dialogue

Figure 5.9: B# ver. 1.0 counting loop programming construct icon dialogue

Menu bar

Properties
panel

Errors
panel

Data specific
to particular

programming
construct

Generated textual
program solution

extract corresponding
to programming

construct

Menu bar Properties panel

Textual programming
notation panel

Errors panel

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 146

Each icon dialogue has a similar design. The icon dialogues implemented in B# ver. 1.0

each consisted of four panels. An example of such an icon dialogue, the counting loop

programming construct icon dialogue, is illustrated in Figure 5.9.

The top panel consisted of a menu bar containing shortcuts to previously declared variables

and constants, as well as available primitive programming operators. The panel just below

the menu bar, the properties panel, allowed the novice programmer to enter/edit

information concerning the specific programming construct. The next panel was a textual

programming notation panel displaying the generated textual program solution extract

corresponding to the combination of the current icon with its essential data item properties.

The lower panel was an errors panel that displayed meaningful error messages related to all

errors detected by the compiler with respect to the data entered in the icon dialogue. All

entered data was thus required to be error free before the dialogue could be successfully

closed (Blackwell et al. 2000). In this way B# ensured that the program solution remained

free from syntactical errors at all times, and could thus be executed at any time.

Informal usability evaluation of the B# ver. 1.0 icon dialogues design (Thomas 2002b)

determined that novice programmers did not pay much attention to the generated textual

program solution extract presented in the third panel (Figure 5.9) and consequently might

fail to retain sufficient textual programming notation knowledge for transfer to a

conventional textual programming notation development environment. This observation

resulted in the generic design shown in Figure 5.8 being implemented in B# ver. 2.0, where

the novice programmer is encouraged to enter the programming construct’s essential data

in-line, that is, within the context of a conventional PASCAL textual programming notation

statement.

Because of the positioning of the button in the icon dialogues in B# ver. 1.0, a

novice programmer could very easily avoid looking at the textual source code. B# ver.

2.0’s icon dialogue design (Figure 5.8) catered for a repositioned button that encouraged a

novice programmer to view both the textual program solution extract and error messages

before attempting to close the dialogue. A further implication of this design decision is that

the icon dialogues are presented in a less cluttered and simpler form having only three

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 147

panels, namely the menu bar, the properties panel incorporating the textual program

solution extract, and the errors panel.

Much deliberation was required when interpreting issues that arose during the design of the

icon dialogues. Noting the requirement that an iconic programming notation for novice

programmers should support simple input and output (McIver 2000) as well as provide

enhanced error diagnosis, which is a vital facet of learning to program, a good deal of

consideration was paid to the compiler error messages presented by B#. The motivation for

the consideration is the fact that error messages are the main form of interaction between

the novice programmer and the programming development environment (McIver 2000).

A related issue was the amount of assistance the icon dialogue should provide to the novice

programmer when entering icon data. Design methodology for iconic programming

notations recommends that the development environment should minimise unproductive

errors (Cockburn et al. 1997; McIver 2000). Unproductive errors are those errors at the

superficial level of learning which hinder and discourage the novice programmer, without

providing learning opportunities. Examples of this type of error are trivial syntactical

errors like a missing semi-colon, or mismatched braces, which do not have the same

educational value as, for example, semantic or incorrect programming construct placement

errors. Unproductive errors may hinder in-depth learning as they divert novice

programmers from the essentials of programming and problem-solving.

During the process of the completion of icon dialogues in B#, one method that was

considered was that essential data be automatically filtered by B# and provided to the

novice programmer by means of a drop down list. Figure 5.8 is used in the illustration of

such a scenario.

On a loop variable being required for the counting loop programming structure in Figure

5.8, B# could provide a filtered drop down list that displays only those variables of the

correct data type for the current usage, in this case, for example, only variables of type

integer. This would be in agreement with the concept of having minimal syntactical

involvement on the part of the novice programmer during the development of a program

solution. The novice programmer unfortunately will not benefit from any learning

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 148

experience using this mode of input. It was, thus, argued by the developers that novice

programmers needed to also be introduced to some of the syntactical issues related to

programming with a conventional textual programming notation.

Novice programmers had to be sufficiently equipped for a potentially seamless future

transfer to a conventional textual programming notation and its associated development

environment. Consequently a design decision was that novice programmers would be

encouraged to enter data into the text boxes instead of always selecting from filtered drop

down lists, even though the selection and drop down list feature would be supported.

However, any drop down lists presented to the novice programmer would contain the full

set of available and relevant data, with potential distracters included. This intentional

feature provides a development environment that allows the natural scaffolding of learning

in a novice programmer to develop (Wright et al. 2000). Novice programmers are

therefore permitted to make mistakes such as specifying a variable that is not of a valid

data type.

B#, however, immediately detects such errors and the novice programmer is alerted to a

mistake through descriptive error messages in the errors panel. In this way, novice

programmers are encouraged to learn from their errors (De Koning et al. 2000).

5.4 Conclusion

The goal of B# is not to eliminate textual programming notations but rather to complement

such a notation in an integrated visual development environment, and thereby enhance the

learning experience of the novice programmer. B# supports a small, simple subset of

programming constructs. Furthermore, the visual appearance of the program solution

structure simplifies the comprehension of the semantics of the supported programming

constructs.

The visual iconic programming notation supported by the B# programming development

environment lessens the extraneous cognitive load of the novice programmer by reducing

the cognitive effort and conceptual mapping required between the problem and program

domain representations of a program solution. B# supports this through the visual support

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 149

of both the flowchart and equivalent textual programming notation program solutions.

Further, the B# iconic programming notation and development environment exhibits a

strong mapping with the procedural paradigm tasks required by the curriculum of the

introductory programming course at UPE.

Because B# satisfies the constraints of a successful visual programming notation (Section

5.2), B# can be classified as such a visual programming notation that is intended for use by

novice programmers. The use of a flowchart representation in which to specify a program

solution is an educational and significant visual representation. The textual programming

notation program solutions generated by B# are examples of well-written textual program

solutions. The reading of these program solutions by the novice programmer will

encourage the writing of well-written textual program solutions. Further, the presentation

of the textual programming notation program solution in the familiar context of a flowchart

program solution will encourage the retention of the associated textual programming

construct concepts.

B# supports an iconic programming notation that is limited, easy but meaningful enough to

visually represent the structure of program solutions and their associated executions. B#’s

iconic programming notation highlights the control flow characteristic of a program

solution, this paradigm being that preferred by novice programmers. The top-down, left-

right traversal direction of solutions created in B# is natural to novice programmers since it

mimics an accepted practice of reading natural language text. Consequently the

comprehension of the programming constructs is enhanced by the appropriate design of the

visual capabilities of the B# programming development environment.

Program solution composition is generally using the mouse in the dragging, dropping and

moving of icons representing programming constructs, as well as in the selection of icon

dialogue properties. A scaffold learning approach is supported where novice programmers,

as they develop and become more familiar with the programming process, can use the

keyboard to type in the properties required by the icon dialogues.

Feedback in B# is immediate, automatic, accurate and requires no additional resources. A

major strength of the B# programming development environment is the hiding from the

novice programmer of mundane syntactical issues usually associated with conventional

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 150

textual programming notations. B# addresses the problem of how to represent a program

solution and its execution in an integrated way showing not only the final results of a

program solution, but also providing visual support concurrently indicating the sequence of

execution in both the flowchart and equivalent textual programming notation program

solutions.

A disadvantage of the visual characteristic of B# is that a flowchart program solution uses

more screen space than an equivalent textual programming notation program solution. An

implication of this is that a novice programmer might be forced to scroll through the

flowchart editing pane during the composition of a flowchart, this action placing extra load

on the working memory of the novice programmer. Depending on the extent of the

scrolling action required, the extra load on working memory could result in the decay of

programming information currently being manipulated in working memory.

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found at
the superficial learning level of the program domain

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

R3: Increase in level of motivation when using the programming
notation

To be determined
by the current

study

R4: Designed specifically for use by novice programmers
R5: Provision of visual techniques to aid comprehension process

at the in-depth learning level of the program domain
R6: Support for reduced mapping between the problem and

program domains
R7: Increased focus on problem-solving
R8: Increase in novice programmer performance achievement

measured in terms of higher level of accuracy in program
solutions in program domain

To be determined
by the current

study

Table 5.4: Support for Novice Programmer Requirements by B#

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF AN ICONIC PROGRAMMING NOTATION
AND DEVELOPMENT ENVIRONMENT

 151

The novelty of B# lies in the fact that the programming development environment presents

multiple representations of the same program solution in an integrated environment in an

attempt to support and enhance the learning experience of the novice programmer.

In line with the analysis of programming notations and development environments

presented in Chapter 3, Table 5.4 summarises the support provided by B# for the

framework of novice programmer requirements derived in Chapter 2 (Table 2.1). Support

for the novice programmer requirements R3 and R8 (Table 5.4) remain undetermined.

Chapter 6 discusses the methodology used during the process of the current investigation

that determines the value to novice programmers with respect to these two requirements

(R3 and R8 in Table 5.4) in an introductory programming course using B# as the

supporting programming development environment.

152

Chapter 6

Investigative Research Methodology

6.1 Introduction

The Department of CS/IS at UPE has in the past contributed useful and successful

research in response to the challenge of increasing throughput in introductory

programming courses. Despite these innovative methods (Chapter 4) implemented at

UPE since the 1980’s to select and place students into alternative streams of

introductory programming courses according to their measured potential, poor

achievement in both individual and group performances in the introductory

programming course, although improved, continues to persist.

The persistence of unsatisfactory individual and group performance rates in the

introductory programming courses was consequently one of the motivating factors for

the current investigation. The methodology for this investigation into the manner in

which a particular programming notation and development environment supports the

requirements of a novice programmer (Chapter 2) is described in this chapter.

The most recent strategy of selection and placement implemented in the Department

of CS/IS at UPE has been active since 2001 (Chapter 4). An implication of the

placement strategy currently in place in the Department of CS/IS at UPE is that

separate support mechanisms are required in each of the alternative streams of the

introductory programming course (Foxcroft et al. 1999). This finding is supported by

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

153

the recommendation that a strategy to raise the successful completion proportion of

students in already oversubscribed introductory programming courses without

reducing the quality of the course is that of adjusting the techniques used in the

presentation of the course material specifically to cater for those students who are not

successful (Wilson et al. 1985; Austin 1987).

The lack of widespread acceptance of any specific type of support tool in the

introductory programming course (Chapter 3) was thus a secondary factor in the

initiation of the current investigation. B#, a visual iconic programming notation and

development environment, the design and implementation of which was described in

Chapter 5, is proposed in the current investigation as one such support tool and

instrument in the investigative methodology on which this chapter focuses.

Any technological educational tool that is used as a support tool for novice

programmers in an introductory programming course needs to be quantitatively and

qualitatively assessed with respect to the level of support in the areas of novice

programmer deficiency as identified in Chapter 2. The previous chapter determined

that in terms of its design, B# satisfies all of the novice programmer requirements

except for the following (Table 5.4):

• increase in level of motivation when using the programming notation

(requirement R3); and

• increase in novice programmer performance achievement measured in terms

of higher level of accuracy in program solutions in program domain

(requirement R8).

In order to provide a comprehensive study, this chapter focuses on the research

methodology adopted in order to effectively measure the effect of B# with respect to

the abovementioned novice programmer requirements R3 and R8 (Table 5.4).

A review of the literature suggests that it is widely believed that visual programming

notations, the category of programming notations into which B# is classified, offer

benefits over textual programming notations (Shu 1988; Schiffer et al. 1995; Quinn

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

154

2002; Cranor et al. undated). Confirmation of the benefits of using B# in the learning

environment of an introductory programming course is thus required. This

confirmation is especially required with respect to the recommended throughput rate

of 75%.

The literature review focussing on programming notations and development

environments used in the teaching and learning of programming by novice

programmers (Chapter 3) suggests that the assessment of technological support like

B# is in terms of benefits to a novice programmer. These benefits are identified as the

ease and retention of learning so that the increase in individual performance

achievement of a novice programmer in an introductory programming course is

evident (Calloni et al. 1997; Ramalingam et al. 1997; Crews 2001; McIver 2001;

Carlisle et al. 2004).

The resultant small number of comparative studies in programming that determine

these benefits can be attributed to the following restrictions (McIver 2001):

• lack of formal evaluation strategies;

• large amount of evidence gathered from studies in programming has a

tendency to be anecdotal in nature;

• evaluation process for technological support generally requires years of

practice using it in the intended environment; and

• in a tertiary educational context, the requirements of introductory courses and

curricula make it difficult to compare different forms of technological support

in the same course. Comparative studies using different courses, and even the

same course in subsequent years, could result in observations that are obscured

due to the sufficiently different curricula, contexts and experimental groups.

The methodology described in this chapter is thus especially relevant due to the

existence of limited documented empirical research in studies on programming

(Calloni et al. 1997; Ramalingam et al. 1997; Crews 2001; McIver 2001; Carlisle et

al. 2004).

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

155

In preparation for the empirical investigation (Chapters 7 and 8), this chapter

discusses the introductory programming course’s learning environment in the

Department of CS/IS at UPE, being the context in which the investigation is

conducted (Section 6.2). The methods of data analysis adopted for the purposes of

this investigation are described (Section 6.3), including the formulation of hypotheses

that are later scrutinised (Chapter 7) and reported on (Chapter 8). This chapter

concludes with the observation that every experimental proposal has risks associated

with it (Applin 2001). The risks to the design of the current empirical investigation

are identified (Section 6.4) and strategies proposed to address each of them.

Based directly on the experimental research methodology described in this chapter,

Chapter 7 presents an empirical analysis of the results obtained when using a visual

iconic programming notation and development environment within the teaching

model of an introductory programming course at tertiary level.

6.2 Investigative Study Learning Environment

Evidence of success in the introductory programming course presented by the

Department of CS/IS at UPE is a measure of the students’ ability to design, code and

test a program solution for any variety of introductory problems. This section focuses

on the learning environment in which the current study that determines the level of

success for introductory programming students using B# as a technological support

tool takes place.

In particular, the section commences with a description of the structure of the

introductory programming course in the Department of CS/IS at UPE (Section 6.2.1).

A discussion of the different materials and instruments used in the investigation

follows (Section 6.2.2). The section concludes with an overview of the procedure

followed during the course of the current study (Section 6.2.3).

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

156

6.2.1 Introductory Programming Course Structure at UPE

A learning framework for an introductory programming course typically consists of

learning resources, learning activities and learning supports (Garner 2003).

Learning resources consist of the material that provide the content for the course and

aid the student in the construction of the mental model with respect to the presented

knowledge. Learning activities are the tasks which students are expected to

participate in to assist them in the learning process. Learning supports guide the

students and provide feedback in a fashion that is responsive and sensitive to

individual students. Such a learning framework to support the goal that all students

should be able to program on completion of the course (Lister et al. 2003) is evident

in the introductory programming course at UPE.

Learning Resources

Learning resources for the introductory programming course at UPE include notes

provided during lecture learning activities, a prescribed introductory programming

textbook and weekly practical task sheets to be completed using the prescribed

programming notation and development environment. The practical task sheets

attempt to place the algorithms required to be solved within some context.

Consequently, story problems have evolved, as is the case at other institutions

(Jonassen 2000).

The provided learning resources support the curriculum of the introductory

programming course presented by the Department of CS/IS at UPE. The curriculum

covers the programming constructs of basic data types, variables, assignments,

arithmetic operations, comparison, branching, looping and subroutines, specifically

functions and procedures (UPE 2003b). Each programming construct is successively

introduced by means of the learning activities of the introductory programming

course.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

157

Learning Activities

Two introductory programming educators not directly involved with the current

investigation are responsible for facilitating the learning activities of independent

groups of students. The duration of the introductory programming course in the

Department of CS/IS at UPE is 15 weeks, with the weekly learning activities being

distributed as follows:

• 105 minutes of lectures, divided into two sessions, one of 70 minutes duration

and the other of 35 minutes duration; and

• 80 minutes of practical exposure in laboratories using the prescribed

programming notation and development environment.

Students are also expected to make use of at least a further 2 hours per week for self-

study and preparation for practical learning activities.

Similar to other institutions (Shannon 2003), UPE unfortunately does not have

sufficient resources to offer separate introductory courses for CS/IS majors and non-

CS/IS majors. Consequently, both CS/IS majors, making up approximately 35% of

the student population in 2003 in the introductory programming course, and non-

CS/IS majors share lectures and practical implementation sessions using generic

learning resources34. Further, as is the case at other institutions (Jenkins 2001b), the

introductory programming course at UPE is perceived as being difficult and this

attitude is frequently communicated to new students.

Evidence of the level of difficulty in the course (UPE 2003a) is that the attrition rate

in the introductory programming course at UPE of 273 historically first year students

during 2002 was observed to be 52% (n = 143). This proportion of unsuccessful

students is comprised of (Figure 6.1):

34This situation changed in the year after that in which the investigation was administered. Due to

changes in degree programme requirements at UPE, non-CS/IS majors are no longer required to
enrol for the introductory programming course as from 2004 (UPE 2004).

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

158

• voluntary course cancellations (2% of attrition total; 1% of total registrations;

n = 3);

• voluntary changing to the alternate slower paced stream introductory

programming course (13% of attrition total; 7% of total registrations; n = 19);

• insufficient evidence of performance progress to take the final examination

based on a weighted average of continuous assessment results (38% of

attrition total; 20% of total registrations; n = 55); and

• failure in the final examination upon completion of the course (47% of

attrition total; 24% of total registrations; n = 66).

Alternate
Stream

13%

Failures
47%

Unsatisfactory
Performance

38%
Cancellations

2%

Figure 6.1: Attrition Proportions in an Introductory Programming Course

During weekly lecture learning activities, the introductory programming educator

introduces a new programming construct to the students (for example, conditional

programming construct), illustrating it by means of relevant examples. During the

weekly practical learning activity, the students are expected to solve problems that are

either novel or similar to those demonstrated during the previous week’s lecture

learning activities using the appropriate learning resources. The application of the

learning activities corresponds to that described in the learning framework (Garner

2003).

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

159

Learning Supports

Non-technological tools used during the first 2 weeks of the introductory

programming course at UPE are flowcharts and pseudo-code. Thereafter, all program

solutions are coded using the prescribed programming notation and, during practical

learning activities, its associated development environment. The prescribed

programming notation and associated development environment used in the current

investigation are respectively Pascal and Borland© Delphi™ Enterprise version 6

(Section 5.2.1).

There is, however, a current lack of learning supports of the type defined as being a

requirement of a learning framework (Garner 2003), especially with respect to

technological support. This limitation in the learning framework is addressed by

means of the current investigation.

Since the final outcome of the introductory programming course is evidence of

academic learning, upon completion of the introductory programming course at UPE,

students receive course grades on the basis of the following weights:

• 60% from a single syntax specific pen-and-paper examination; and

• 40% accumulated from continuous assessment conducted for the duration of

the course.

The continuous assessment portion is comprised of the following:

• 15% from two practical syntax specific tests conducted in the laboratories;

• 21% from two syntax specific pen-and-paper tests; and

• 4% from the assessment of a maximum of 5 of a possible 14 programming

assignments.

A weighted average of at least 50% is considered evidence of successful completion

of the introductory programming course at UPE. The materials used to determine the

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

160

grades awarded, together with other instruments used in the investigation, are the

focus of the next section.

6.2.2 Instruments and Materials

The current experimental investigation makes use of a number of different types of

materials and instruments, each for a specific task. This section provides a

background on the programming notations and development environments used as the

instruments in this study. Thereafter, an overview of the information sharing,

information gathering and assessment materials relevant to the study is presented.

Development Environment Instruments

The instruments in the comparative study are the two identified programming

notations and associated development environments, namely the prescribed

commercial textual programming notation and development environment Delphi™

Enterprise (Section 5.3.1) and B# (Section 5.3.2), an experimental visual iconic

programming notation and development environment. Selected screenshots of the

interface presented by each of these instruments appear in Appendices A and B.

The subjects of the current study are divided into two groups of students, a control

and treatment group, each with a similar participant profile and identical sample size

(Section 6.3.2). The control group in the current empirical investigation uses only

Borland© Delphi™ Enterprise version 6. B# is used by the treatment group

concurrently with Borland© Delphi™ Enterprise version 6. The reason for this

arrangement is so as not to disadvantage the treatment group since all students in the

UPE introductory programming course are required to write the same final

examination and exhibit the same level of proficiency in the prescribed commercial

programming notation and development environment upon completion of the course.

Delphi™ Enterprise is developed and maintained external to the Department of CS/IS

at UPE by Borland in the United States (Borland 2003). B# was developed and

maintained over a period of three years as an essential part of the current study. This

section consequently provides a brief background on the development process of B#

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

161

by a research team in the Department of CS/IS at UPE. The specific issues regarding

decisions on the design and implementation of the programming notation and

development environment are detailed in Chapter 5.

The experimental iconic programming notation and development environment B# was

developed in the Department of CS/IS at UPE as an integral part of the current

investigation. During the period 2001 – 2003, the task of implementing the 3

subsequent versions of B# was assigned to honours students as official postgraduate

projects (Brown 2001a, b; Thomas 2002a, b; Yeh 2003a, b)35. A research task team

consisting of the author and the two promoters was formed to support, advise and

assist in the development of these development environments. Both promoters were

involved in extensive previous related research in predictors of success in computer

science (Calitz 1984; Calitz et al. 1992; Calitz 1997; Calitz et al. 1997) and the

selection and placement of introductory programming course students (Greyling 2000;

Greyling et al. 2002; Greyling et al. 2003) respectively.

The task team had weekly meetings during which the development process and

progress of B# was discussed. For the purposes of the current study, an early decision

was made that it was imperative that a reliable and functioning program notation and

development environment be provided at the conclusion of each academic year. This

was necessary to ensure that accurate production testing to assess the goodness of fit

of B# to the current research be possible. The cost of this decision was that the initial

version of the programming notation and development environment (Brown 2001a, b)

provided minimal functionality and, despite promising results (Cilliers et al. 2002;

Cilliers et al. 2003), was thus insufficient for extensive empirical testing as required

by the current research. The advantage of this decision was, however, that the initial

version of B# was designed and implemented in such a way that it could be modified

to incorporate the functionality required by subsequent versions of the programming

notation and development environment with a minimum amount of rewriting of the

existing source code.

35 Each of these postgraduate students was the recipient of an award and/or commendation from 2

internal and an external examiner in their relevant study year as a result of their B# implementation.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

162

After considering different implementation languages such as Visual Basic, C++

MFC and Java, a decision was made with the first version of B# to use Borland©

Delphi™ version 5 (Borland 2000) as the implementation tool. Even though there

existed limited Delphi™ expertise within the department, the fact that the

implementation tool provided the facility for efficient executables, a fast compiler,

easy component development and the existence of a visual component library were

some of the reasons for this decision. The implication of this decision was that

subsequent versions of B# were also required to be implemented using Borland©

Delphi™ to prevent the rendering of all existing source code useless.

Due to the timing of the completed versions of B#, the second version was the

instrument used in the current empirical investigation. Concerns related to the design

and implementation decisions made for each of the three versions of B# is detailed in

Section 5.3.2.

In order to effectively assess the use of each of the aforementioned programming

notation and development environment tools as instruments in the context of the

current research, a number of materials are required as components of the current

investigation. The identification, format and use of each of the relevant materials are

the focus of the following section.

Investigative Study Materials

A number of information sharing, information gathering and assessment materials are

required in the context of the current research so as to effectively measure the impact

of the investigative instruments on introductory programming course students. A list

of the materials relevant to the study together with each one’s designated task and

target participant group appears in Table 6.1. The material used in the study is

primarily comprised of demographic, training as well as formative, qualitative and

quantitative assessment material.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

163

Demographic Material

The biographical data (M1) and participative consent (M2) surveys are administered

once prior to the commencement of the experiment (Table 6.1). The biographical data

survey is required to determine the characteristics and demographic profile of the

participant groups (Streicher 2003). The consent survey is required to ensure that the

policy of UPE’s Ethical Committee is upheld and is in agreement with recommended

experimental research methodology (Berenson & Levine 1999). Examples of these

surveys appear in Appendix D.

 Material Use Group
M1 Biographical data form

M2 Consent form Demographic Control and
Treatment

M3 B# Training Manual
(nine weekly documents) Training

M4
Development environment
practical task evaluation forms
(eight weekly documents)

 Treatment

only

M5

General development
environment evaluation
questionnaire
(single document)

Qualitative
assessment

M6 Pen-and-paper tests
(two documents)

M7 Practical tests
(two documents) Quantitative

assessment Control and
Treatment

M8 Practical sheets
(nine weekly documents) Formative assessment

M9 Pen-and-paper examination
(single documents)

Quantitative
assessment

M10

Tutor and student attitude to
practical learning activity
evaluation form
(single document)

Qualitative assessment

Table 6.1: Materials used in Investigative Study

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

164

Formative Assessment Material

A total of nine weeks of the introductory programming course at UPE is committed to

the administering of the experiment. In each of these weeks, participants in both the

control and treatment groups receive an identical weekly take-home practical sheet

(M8) consisting of a set of between 3 and 5 tasks that are to be practiced using the

programming development environment(s) appropriate to the group (Table 6.1). The

formative practical tasks are provided as learning exercises for a more effective

learning experience (Roumani 2002) than traditional lecture learning activities. The

tasks in each practical sheet are consequently selected and presented in such a way as

to provide the opportunity of practice of the programming concepts introduced in the

previous week’s lecture learning activity. The required deliverable for all tasks is a

program solution written in the procedural, or imperative, programming paradigm in a

format compatible with that developed using the Delphi™ Enterprise supported

textual programming notation. A maximum timeframe of a week is set for the

completion of a single week’s practical tasks.

Story problems are used to place the required practical task in some kind of context,

this technique being typical of introductory programming courses (Jonassen 2000).

The result is that the values required to solve the task are embedded within a short

narrative or scenario. Participants are consequently required to make a choice of the

most suitable programming method for solving the problem, extract the values from

the narrative and use them when solving the task problem.

Each individual task in a practical sheet has been designed to incorporate as many of

the previous week’s programming concepts as possible. In this way, regardless of the

speed at which an individual participant progresses in the practical learning activity,

the objective is that each participant will have the opportunity of practicing the

required programming concepts at least once per weekly practical sheet, assuming the

completion of at least a single task (program solution) per practical sheet. The

computation of a maximum, minimum and average of multiple integer values is

indicative of the level of sophistication of program solutions expected as deliverables

from weekly practical tasks.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

165

Training Material

In the case of the treatment group, a relevant section of the B# training manual (M3)

accompanies the weekly practical sheet (Table 6.1). This is required so that the

participants in the treatment group have the necessary programming notation and

development environment manipulation skills when using B# to solve their practical

tasks. To encourage an accurate mental model of the B# programming notation and

development environment, screen shots are used extensively in the training manual

with text being minimised, this technique having been successfully used in a similar

programming study (Shih et al. 1993). The practical sheets designed for the treatment

group consistently require that the first task be completed using B#, the second using

Delphi™ Enterprise, and subsequent tasks in a programming notation and

development environment of the individual participant’s choice. The practical sheets

and accompanying B# training manual designed for the treatment group appear in

Appendix C.

Qualitative Assessment Material

At the start of each practical learning activity, all participants of the treatment group

are requested to complete a qualitative survey consisting of a development

environment practical task evaluation form (M4 in Table 6.1). The purpose of this

survey is to determine the preferred programming notation and development

environment for particular practical tasks of the previous week’s practical learning

activity, together with reasons for the participant’s preference. The development

environment practical task evaluation forms appear in Appendix D.

Five weeks into the experiment, a tutor and student practical learning activity

attitude questionnaire (M10) is administered to the tutors and participants of both

the control and treatment groups (Table 6.1). The goal of this survey is to determine

the general attitude and motivation of the tutors and participants to the practical

learning activity, which is dependent upon the programming notation and associated

development environments in use as instruments in the particular practical session.

The tutor and student practical learning activity attitude questionnaires appear in

Appendix D.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

166

Approximately 6 weeks into the experiment, a general development environment

evaluation questionnaire (M5) is administered to the participants of both the control

and treatment groups (Table 6.1). The purpose of this questionnaire is to determine

the general attitude and motivation of the participants to the programming notation

and development environment(s) being used. The general development environment

evaluation questionnaire appears in Appendix D.

The format of the questionnaire is one of 7 open-ended questions. Participants are

required to provide answers to the questions in the context of the programming

notation and development environments that they are currently using in the

introductory programming course. To encourage as comprehensive responses as

possible, the answer sheets circulated to participants have large spaces for written

responses. No questions appear on the answer sheets. The questionnaire is

administered by the author during a combined meeting session of participants in both

the treatment and control groups. Each question is consecutively displayed on an

overhead display and the participants are given approximately 3 – 5 minutes to

respond to each question. Only once there is an indication on the part of the

participants that they are ready for the next question, is it displayed for their written

response. The administering of the questions continues in this format until the entire

questionnaire has been covered.

The approach of administering this survey in response to preliminary observations

that further qualitative data is required to explain the initial observations is in

accordance with recommended qualitative research methodology (Ely et al. 1995).

This survey is administered in response to the observation that further qualitative data

is required as a result of the quantitative data collection and analysis of the

development environment practical task evaluation forms and early programming

performance achievement measures.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

167

Quantitative Assessment Material

Programming achievement measures in studies on programming typically include the

measurement of (Irons 1981):

• programming skill and knowledge acquisition;

• comprehension of a given problem;

• composition of a program solution;

• debugging to locate errors in a program solution; and

• the modification of a program solution.

Consequently, programming achievement measures which are used in many computer

programming achievement investigations have been identified as the tasks of reading

program solutions, writing program solutions and program solution writing laboratory

exercises (Austin 1987). Accordingly, quantitative assessment in the current

investigation is performed by means of the summative assessment materials of syntax-

and problem-solving based pen-and-paper (M6 in Table 6.1) and practical

laboratory tests (M7 in Table 6.1) as well as a pen-and-paper examination (M8 in

Table 6.1).

All participants in the current study are expected to be proficient in both the PASCAL

programming notation and Delphi™ Enterprise development environment upon

successful completion of the introductory programming course and are expected to be

successful in the final Departmental examination. In anticipation of a valid statistical

comparison component in the study, the contents of these assessment materials are,

wherever possible, identical across the control and treatment groups. Samples of the

assessment materials appear in Appendix D.

The pen-and-paper tests as well as the pen-and-paper examination contain no B#

programming notation or development environment specific questions and are thus

restricted in content to PASCAL programming notation specific questions. Practical

tests containing identical practical tasks are customised to suite each experimental

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

168

group’s requirements with respect to programming notation and development

environment.

A total of two pen-and-paper tests take place, one at the start of the experiment and

the second 7 weeks into the experiment. The specific contents and aim of each

problem in the first of the pen-and-paper tests is given in Table 6.2. Table 6.2

highlights that the goal of the first pen-and-paper test is solely to establish the

problem-solving expertise of the participants using one of the non-technological tools

(flowcharts and pseudo-code) covered in the introductory programming course. No

programming notation syntax related tasks are assessed.

Question
(Section
D.1.1)

Problem Goal Expected
Response

Proportion
of Test

Question 1

Develop solutions to
problems using
flowcharts and/or
pseudo-code

Solution
composition

Flowchart/
pseudo-code
solution

40%

Question 2

Isolate and identify
inputs, outputs and
process for a given
solution in the form
of a flowchart/
pseudo-code

Solution
comprehension

Identificatio
n and
description
of inputs,
outputs and
process

20%

Question 3 Modify existing
solution

• Solution
comprehension

• Solution
composition

Adapted
solution in
form of a
flowchart/
pseudo-code

40%

Table 6.2: Problems and Associated Goals of First Pen-and-paper Test

The successful comprehension of a program solution in the pen-and-paper test

requires a participant’s ability to read the program solution and demonstrate an

understanding of what the program solution does in terms of the specified use of

programming constructs present in the solution (Bloom et al. 1956; Lister et al. 2003).

The successful composition of a program solution requires a participant’s ability to

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

169

demonstrate correct application of concepts in an appropriate program solution for

which no format is explicitly specified (Bloom et al. 1956).

The specific contents and aim of each problem in the second pen-and-paper test is

given in Table 6.3. Table 6.3 shows that the goal of the second pen-and-paper test is

to determine the problem-solving expertise of the participants within the context of

programming notation syntax-based tasks. The same abilities of program solution

comprehension and composition, now applicable to the PASCAL textual

programming notation, are required to be exhibited by participants to whom the

second pen-and-paper test is administered. The second pen-and-paper test specifically

determines whether participants have the ability to determine the effects of PASCAL

programming statements as well as assemble PASCAL programming notation

primitives in such a way that a required result is achieved (Rader et al. 1998).

Question
(Section
D.1.2)

Problem Goal Expected
Response

Proportion
of Test

Section A Multiple choice
questions

Textual
programming
notation
comprehension

Results of tracing,
debugging and
analysis of
program solution
extracts

48%

Section B
Create program
solution
extracts

Program solution
composition using
textual
programming
notation

PASCAL textual
programming
notation program
solutions

52%

Table 6.3: Problems and Associated Goals of Second Pen-and-paper Test

The final pen-and-paper examination mirrors the structure of the second pen-and-

paper test. The only difference between the assessments is in the proportions

dedicated to program solution comprehension (47%) and composition (53%) in the

examination. The goals of all of the pen-and-paper assessments are in accordance

with those documented in a similar programming investigation (Kaasbøll 1998).

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

170

Objective testing forms a large part of both the second pen-and-paper test and the

final examination. This type of testing takes the form of multiple choice questions

(Table 6.3) in each of the specified assessment materials. The goal of the multiple

choice questions is to establish participant knowledge about textual programming

notation syntax and program solution behaviour and thus assesses a participant’s

comprehension of given program solution segments (McCracken et al. 2001). In the

remaining portion of the assessment material shown in Table 6.3, participants are

required to create program solution segments as evidence of ability to generate

working solutions to given problems.

Two performance-based assessment (McCracken et al. 2001) programming exercise

(practical) tests are administered to the participants of both the control and treatment

groups. These tests are administered in a fashion similar to that described by Daly et

al. (2004).

In both tests participants are required to individually generate working and tested

program solutions to given problems in a programming notation and development

environment within the time allotted. The short assignments occur during fixed-

length laboratory sessions under controlled conditions to reduce the opportunity for

plagiarism.

The first practical test determines the problem-solving expertise of each participant

with respect to the composition of correct syntax-based program solutions to tasks in

the programming development environment(s) allotted to the group. The specific

contents and aim of each problem in the practical test customised for participants of

the treatment group is given in Table 6.4. The difficulty level of the tasks is

introductory. Algorithms indicative of the level of complexity of program solutions

expected include a count or list of factors of an entered integer. Control group

participants are required to complete all program solutions for problems in the test

using Delphi™ Enterprise and its supported textual programming notation.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

171

Question
(Section
D.2.1)

Problem Goal Expected
Response

Proportion
of Test

Task 1
Syntax-based
program
composition

• Problem-solving
• * Program

composition
achievement using
B#

Correct B#
program
solution

40%

Task 2
Syntax-based
program
composition

• Problem-solving
• Program

composition
achievement using
textual
programming
notation supported
by Delphi™
Enterprise

Correct
PASCAL
program
solution

60%

* Control group participants are required to show evidence of achievement in this problem using the
PASCAL textual programming notation supported by Delphi™ Enterprise.

Table 6.4: Problems and Associated Goals of First Practical Test (Treatment group)

The second practical test involves tasks of introductory to intermediate level of

difficulty in an introductory programming course. Algorithms indicative of the level

of complexity of program solutions expected include using a number of subroutines to

implement simple algorithms such as a computation of a maximum, minimum or

average of an entered list of numerical values.

One of the tasks in the second practical test is dedicated to determining the

achievement of participants with respect to textual programming constructs syntax

and semantics in the context of the PASCAL textual programming notation. The

other tasks determine the syntax-based problem-solving expertise of each participant

with respect to the specific programming development environments of the associated

group. One of the latter tasks permits participants in the treatment group to

individually select a programming notation and associated development environment

in which to solve the problem, thereby indicating their preference of programming

notation and development environment. The specific contents and aim of each

problem in the test for participants in the treatment group is given in Table 6.5.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

172

Question
(Section
D.2.2)

Problem Goal Expected
Response

Proportion
of Test

Question 1

Locate and
eliminate textual
programming
notation
syntactical errors

• Program solution
comprehension

• Textual
programming
notation skills

• Achievement
using Delphi™
Enterprise

Correct
PASCAL
program
solution

14%

Question 2 Syntax-based
problem-solving

* Program solution
composition
achievement using
B#

Correct B#
program
solution

14%

Question 3 Syntax-based
problem-solving

* Program solution
composition
achievement using
preferred
programming
notation and
development
environment

Correct
program
solution
(either
PASCAL
or B#)

36%

Question 4 Syntax-based
problem-solving

Program solution
composition
achievement using
PASCAL textual
programming
notation and
Delphi™ Enterprise

Correct
PASCAL
program
solution

36%

* Control group participants are required to show evidence of achievement in this problem using the
PASCAL textual programming notation supported by Delphi™ Enterprise.

Table 6.5: Problems and Associated Goals of Second Practical Test

(Treatment group)

In all of the assessments requiring the creation of program solution extracts to

problems, the assessment of the program solution representation includes the

assessment of data structure decision and correct programming technique, as well as

the presentation of the program solution extract in an appropriate form, as is the case

in a similar documented study on programming (McCracken et al. 2001).

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

173

An overview of the process followed in applying each of the materials and

instruments described in this section, and in collecting and analysing the relevant data

in the current investigation is the focus of the section that follows.

6.2.3 Procedure for Data Collection

The data for the current experimental study consists of pre-treatment measures that

allow for the statistical comparison of non-random groups as well as intermediary and

post-treatment measures. The intermediary and post-treatment quantitative measures

are comprised of performance achievement measurements determined in terms of the

accuracy achieved in completing tasks. The qualitative measures comprise of the

level of participant attitude and motivation towards the programming notations and

development environments being compared.

Data for the study is collected at 9 distinct stages of the 15-week introductory

programming course (Figure 6.2), with the methods of collection being the analysis of

participants’ submitted practical tasks, questionnaires, pen-and-paper and practical

tests as well as a single final pen-and-paper examination.

The experimental study requires the initial assignment of participants to treatment and

control groups. Consequently, this process necessitates an initial rigid balancing of

the number of potential participants in each of the strata (Section 6.3) within each

experimental group in anticipation of valid statistical comparison. Thereafter, the

investigation requires the creation and administering of a number of materials aimed

at the participants in both the control and treatment groups. The identification and

objective of each of these materials is detailed in the previous section (Section 6.2.2).

The sequence of the administering of each of the materials detailed in Section 6.3 at

various stages within the treatment period in the 15 week introductory programming

course is illustrated by columns C and D in Figure 6.2. The area framed in dark blue

indicates the portion of the introductory programming course during which the

treatment occurs.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

174

A B C D

Week
Introductory
Programming

Concept

Repetitive Material
(Table 6.1)

Single Material
(Table 6.1)

1 Problem-solving Demographic Material
administered (M1)

2 Problem-solving

3 Problem-solving Consent Form
administered (M2)

4 Variables, data types,
Input/Output

5
Conditional
programming
constructs

Problem-solving
theoretical assessment

(M6)

6 Looping programming
constructs

Tutor and student
attitude to practical

learning activity
evaluation form (M10)

7 Looping programming
constructs

Introductory level
practical assessment

(M7)

8 Looping programming
constructs

9 Structured
programming

10 Subroutines Syntax-based pen-and-
paper assessment (M6)

11 Subroutines
General development

environment evaluation
(M5)

12 Subroutines

Administering of
practical sheets (M8)

Distribution of B#
training manual (M3)

Development
environment practical
task evaluation (M4)

13 Error-proofing and
debugging

Intermediary level
practical assessment

(M7)
14 String manipulation
15 Processing text files

 Final Examination (M9)

Figure 6.2: Administering of Material

All demographic questionnaires are administered and captured for the purposes of

experimental group profile analysis on commencement of the introductory

programming course. Non-technological tools (flowcharts and pseudo-code) form the

initial learning support (weeks 1 – 3), with the actual treatment period (indicated by

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

175

blue shading in Figure 6.2) commencing in week 4 and continuing until week 12.

Participants in both experimental groups sign consent forms to give their permission

to participate in the study and for the confidential distribution for the purposes of

research of any data collected during the course of the investigation. During the

treatment period, participants in the treatment and control groups receive identical

course content during traditional lecture learning activities. At no time during lecture

learning activities is there any explanation of or reference to the B# iconic

programming notation or development environment.

Further, both experimental groups receive identical practical tasks covering the

programming concepts listed in column B of Figure 6.2. The programming tasks are

required to be completed on a weekly basis and collaborative work is encouraged. In

the design of the practical tasks, it is ensured that the tasks are simple problems which

require fairly short program solutions, but which at the same time encourage the use

of various programming constructs. The only way to guarantee that participants will

attempt any practical task is to make its marks contribute towards the final grade in

the course (McCracken et al. 2001). Each participant is thus randomly selected on a

maximum of 5 occasions during the introductory programming course to demonstrate

completed practical tasks to the course instructor. The assessment of these

demonstrations contributes to the final course grade (Section 6.2.1).

The treatment group practical sheets are customised to include relevant sections of the

B# training manual, this being the only way in which information specific to B# is

shared with the participants (Appendix C). Similar to the study by Calloni et al.

(1994), treatment group participants are required to use both B# and Delphi™

Enterprise for programming assignments, and submit both formats of files for

assessment purposes when required. Treatment group participants are also required to

complete weekly development environment practical task qualitative evaluation

forms. By experimental design, treatment group participants consequently use B# in

parallel with Delphi™ Enterprise for a period of 9 weeks, being 67% of the total

introductory programming course duration.

The quantitative assessment instruments (Appendix D) required for the collection of

participant performance achievement data are indicated in column D of Figure 6.2 in

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

176

reverse shading. It is ensured that the assessment tasks mirror the level of complexity

evident in the collaborative practical tasks already completed by the participants, as is

the case in a similar programming study (Chamillard & Braun 2000). The

performance achievement level for each of the assessments is measured in terms of

the accuracy level achieved in completing the given tasks (Blackwell 2001) and

focuses on evidence of problem-solving and programming notation skills.

Participants are required to solve problems within allotted time periods and are not

permitted to make use of any other instructional aids, nor require responses to

questions related to the program domain (Chamillard et al. 2000).

Problems in the assessment materials, where appropriate, are predominantly presented

in the form of the PASCAL textual programming notation and Delphi™ Enterprise

development environment representation since all participants, regardless of treatment

applied, are expected to develop proficiency with the PASCAL programming notation

and Delphi™ Enterprise development environment upon introductory course

completion.

The grades awarded in the assessments are continuous variables representing a

number between 0 and 100. Each of the participant assessment submissions is graded

by the author and moderated by the course instructors in order to eliminate any

differences in the application of the grading criteria, being primarily the examination

of program solution and problem-solving approach. A high score in an assessment is

an indication of a participant’s high level of achievement in the relevant assessment

material.

The performance and qualitative data is available on all of the participants who have

correctly identified themselves on submitted tasks and questionnaires and who are still

registered for the introductory programming course after completion of the final

assessment, the pen-and-paper examination. The data available is analysed using

quantitative and qualitative techniques, which are described in detail in the following

section.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

177

6.3 Method of Data Analysis

The current study is primarily a quantitative and qualitative behavioural study of

novice programmers in an introductory programming course. The goal of the study is

to determine whether novice programmer performance is independent of the

programming notation used as the technological delivery method in the teaching and

learning environment for an introductory programming course at tertiary level. The

independent variables identified form a subset of those of performance time, error

rate, retention time, accuracy and subjective preference acknowledged in a previous

study on programming (Maryland 2001).

The statistical analysis methodology applied in the current empirical analysis of

quantitative data is adopted from the hypothesis testing methodology described in

Berenson et al. (1999). The statistical analysis methodology firstly requires the

formulation of hypotheses to be scrutinised, as well as the specification of the level of

significance (α) against which the statistical measurements are to be compared. This

section thus formulates the hypotheses to be tested (Section 6.3.1).

Allocation of students to the various learning activities in the introductory

programming course is assumed to be random since the students pre-register for

lecture and practical learning activities without the knowledge that a controlled

experiment is planned. The participant population of the controlled experiment as

well as the mechanisms implemented to select a sample for each of the control and

treatment groups essential for the current investigation is described (Section 6.2.2).

This section also includes a discussion of the data analysis techniques applicable to

the current investigative study (Section 6.3.3).

6.3.1 Formulation of Hypotheses

In the formulation of particular hypotheses to be quantitatively and qualitatively

analysed, the treatment group refers to historically first year introductory

programming course subjects whose programming assignments are concerned with

the use of a visual iconic programming notation and development environment, B#,

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

178

concurrently with a traditional commercial textual programming notation and

development environment, Delphi™ Enterprise. The control group refers to

historically first year introductory programming course subjects who write programs

from first principles for each task using only a traditional commercial textual

programming notation and development environment, Delphi™ Enterprise.

In particular, the following hypothesis (Berenson et al. 1999) is thus formulated for

examination and tested for significance at the 95% percentile (α = 0.05):

H0: Academic performance in an introductory programming course
is independent of programming notation and development
environment.

H1: Academic performance in an introductory programming course

is dependent on programming notation and development
environment.

The independent variables in the current study are achievement measures for all of the

tasks in two pen-and-paper tests, two practical tests, a single pen-and-paper

examination, as well as weighted class and final grades for each participant in the

study, giving a total of 28 independent variables. Consequently, the null hypothesis

(H0) above is refined to produce the following sub-hypotheses:

H0.1: The average mark achieved in an introductory programming
course is independent of programming notation and
development environment.

H1.1: The average mark achieved in an introductory programming

course is dependent on programming notation and
development environment.

and

H0.2: The observed throughput in an introductory programming
course is independent of programming notation and
development environment.

H1.2: The observed throughput in an introductory programming

course is dependent on programming notation and
development environment.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

179

Further refinement of the null hypotheses (H0.1 and H0.2) above produces the

hypotheses shown in Figure 6.3 which individually scrutinise the equivalence of

participant achievement in the areas of solution comprehension, solution composition

in the comparable programming notation and development environments as well as

PASCAL textual programming notation retention. For the purposes of simplicity,

only the refined null hypotheses are shown in Figure 6.3.

For completeness, the full complement of both null and alternative hypotheses

relevant to the current statistical analysis appears in Appendix H. The 14 leaf null

hypotheses shaded in orange in Figure 6.3 are the hypotheses that are scrutinised in

the current research. These are the hypotheses identified as H0.1.1, H0.1.2.1, H0.1.2.2,

H0.1.2.3, H0.1.2.4, H0.1.3, H0.1.4, H0.2.1, H0.2.2.1, H0.2.2.2, H0.2.2.3, H0.2.2.4, H0.2.3 and H0.2.4.

The next phase of the hypothesis testing methodology requires that the sample on

which the analysis is to be performed be defined. The following section describes the

derivation of the sample appropriate to the current research.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

180

Figure 6.3: Refinement of Hypotheses

H0: Academic performance in an introductory programming course is independent of
programming notation and development environment.

H0.1.1: The average mark
achieved in pen-and-
paper assessments of
solution comprehension
and composition is
similar.

H0.1.2: The average mark
achieved in practical
assessments is similar.

H0.1.3: The average class
mark is similar.

H0.1.4: The average final
mark is similar.

H0.1.2.1: The average mark is
similar for the same problem
across programming
notations and development
environments.

H0.1.2.2: The average mark is
similar for the same problem
using Delphi™ Enterprise.

H0.1.2.3: The average mark is
similar when solving for
syntactical errors using
Delphi™ Enterprise.

H0.1.2.4: The average mark is similar for
the same problem for individual choice
of programming notation and
development environment.

H0.2.1: The throughput in
pen-and-paper
assessments of solution
comprehension and
composition is similar.

H0.2.2: The throughput in
practical assessments is
similar.

H0.2.3: The class mark
throughput is similar.

H0.2.4: The final mark
throughput is similar.

H0.2.2.1: The throughput is
similar for the same problem
across programming
notations and development
environments.

H0.2.2.2: The throughput is
similar for the same problem
using Delphi™ Enterprise.

H0.2.2.3: The throughput is
similar when solving for
syntactical errors using
Delphi™ Enterprise.

H0.2.2.4: The throughput is similar for
the same problem for individual choice
of programming notation and
development environment.

H0.1: The average mark achieved in an introductory programming
course is independent of programming notation and
development environment.

H0.2: The observed throughput in an introductory programming course
is independent of programming notation and development
environment.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

181

6.3.2 Participant Population and Sample Size

In an accurate experimental design, attention is required to be paid to the manner in

which participants for the study are selected (Whitley 1997). The design of the

current study requires the ability to identify the participants from within the student

body registered for the introductory programming course for the 2003 academic year,

the participation for which UPE’s Ethic’s Committee gave approval in the previous

academic year (Appendix G).

The students that are considered as potential participants are historically first year

students, this deliberation being in line with that of prior similar research at UPE

(Calitz 1997; Greyling 2000). Consequently, no repeating registrations or

registrations after the first year of registration at UPE are included as participants.

Repeating students as well as those students who are not historically first year

students, even though first time registrations for the introductory programming

course, cannot be compared with students entering the university for the first time.

This is due to the existence of a certain amount of bias due to exposure to a tertiary

level learning environment in the former category of students.

Similar prior studies in programming have indicated that introductory course

programmers can be identified as a heterogeneous population (Whitley 1997). The

experience level can vary from first exposure with computers to highly competent.

This fact can create difficulties when effects of independent variables are hidden by

the variances within the participant population. A further factor influencing the

identification of potential participants in the study is that if students are requested to

volunteer for a programming exercise, anyone who perceives themselves as being

poor in programming is unlikely to choose to participate (McCracken et al. 2001).

Consequently, a particular method is applied in the design of the experiment forming

the focus of the current investigation, specifically in connection with the identification

of the participants.

In the current study, the participants are preferably required to be randomly assigned

to treatment and control groups resulting in a between-groups experimental design

(Whitley 1997). In an educational environment like UPE, the random assignment of

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

182

participants to groups is impractical since UPE is a campus where students, in many

cases, and especially in the Department of CS/IS, decide their own course timetable

for learning activities.

Consequently, for the purposes of the current investigation, allowance is made for the

use of control and treatment groups being acknowledged as independent course

sections, as is reported in a similar study (Applin 2001). All historically first year

registered students for the introductory course are obligated to take part in the study in

either the control or treatment populations. While neither the participants nor the

treatment is randomly assigned, each of the control and treatment groups is stratified

sample based (Berenson et al. 1999).

The preference for a stratified sample based analysis is based on the fact that this type

of sample provides an efficient way of ensuring a representation of students across the

entire population. In turn, this ensures greater precision in the estimates of the

underlying population parameters and also ensures homogeneity of students within

each stratum. The stratified samples for the current study are based on discrete pre-

test measures within the independent course sections, namely the control and

treatment groups.

The discrete pre-test measures are the results, or predicted marks, obtained upon the

participants undertaking UPE’s placement test, the background and implementation of

which was discussed in Chapter 4 (Section 4.3). The pre-test applied to the

participants in the study measures a related aspect of the learning material for an

introductory programming course but not knowledge of the material itself. The pre-

test is considered valid and reliable in that the test itself has been researched and

studied over a period of time and statistical measures are available for it (Greyling

2000; Greyling et al. 2002; Greyling et al. 2003).

The participants of each of the control and treatment groups are grouped according to

strata based on the discrete pre-test measure of predicted mark for the introductory

programming course at UPE, the characterization of the strata being described in

Definition 6.1. A historically first year student registered for the introductory

programming course in either of the control or treatment populations is a participant

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

183

of a particular stratum if the student’s predicted mark falls within the range specified

for the relevant stratum. Each stratum is uniquely identifiable within the control and

treatment populations. Each participant is similarly uniquely identifiable within the

entire introductory programming course population.

Participant j ∈ Stratumi
m ⇔

pre-test measure(Participant j) ∈ [36+5i … 40+5i] ∧

experimental group(Participant j) = m,

where i = 1, 2, …, 12 and m ∈ {treatment group, control group}

Definition 6.1: Membership of Participants in Strata

Due to a minimum pre-test measure of 40% (predicted mark) being applied in the

selection and placement model at UPE for the introductory programming course

(Greyling et al. 2003), the current empirical analysis consequently comprises of a

total of 12 strata per experimental group. These stratum identifiers together with

appropriate discrete pre-test measure ranges are listed in Table 6.6.

Stratum Identifier
(m ∈ {treatment group, control group}) Predicted mark range

Stratum1
m 41, 42, …, 45

Stratum2
m 46, 47, …, 50

Stratum3
m 51, 52, …, 55

Stratum4
m 56, 57, …, 60

Stratum5
m 61, 62, …, 65

Stratum6
m 66, 67, …, 70

Stratum7
m 71, 72, …, 75

Stratum8
m 76, 77, …, 80

Stratum9
m 81, 82, …, 85

Stratum10
m 86, 87, …, 90

Stratum11
m 91, 92, …, 95

Stratum12
m 96, 97, …, 100

Table 6.6: Strata in Empirical Study

The sample size (n) of the participants in each of the treatment and control groups in

the current investigation is equal in value and given by Definition 6.2. To maintain a

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

184

balance between the sample sizes in the strata of the control and treatment groups, the

size of the sample for stratum i for each group is restricted to be the minimum of the

population sizes of stratum i in each of the experimental groups. Each stratum i in

each of the treatment and control groups consists of nStratumi participants randomly

selected from the stratum population of students in each group who complete the

introductory programming course and as a consequence also have complete sets of the

required assessment performance achievement measures. The total number of

participants in the current study is thus 2n.

 12
n = ∑ nStratumi, where nStratumi = minimum(count(Stratumi

treatment group),
 i=1 count(Stratumi

control group))

Definition 6.2: Sample Size

The participants in the current investigation receive no reward other than the grades

for the introductory programming course that they in any case would be entitled to in

the absence of the current research.

Once the performance achievement measures and qualitative data for the participants

in the sample have been collected, various techniques are applied in order to express a

decision in terms of the focus of the study. The following section consequently

focuses on the data analysis techniques applicable to the current research.

6.3.3 Data Analysis Techniques

Prior to the application of any data analysis technique to the collected data, all data is

required to be thoroughly prepared for examination. The procedure of data

preparation consists of the coding, transcribing and cleansing of the data as well as

with the process of discarding of any outliers.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

185

The following are the rules adopted for the current study regarding the possible

discarding of data collected for the participants in each of the treatment and control

groups of the current investigation:

• Discard all quantitative data for a participant in the treatment group who elects

to withdraw from the study. In such an event, conduct a face-to-face interview

with the participant in order to determine the reasons for withdrawing from the

study for the purposes of collecting qualitative data as to the participant’s

attitude and motivation towards the programming notations and development

environments being used.

• Discard all quantitative data for a participant who does not have a complete set

of data. This includes all participants who

o are successful in a Departmental competency test to assess the level of

prior learning and are thus not required to register for the introductory

programming course in 2003;

o elect to change registration to that of the slower paced alternative

introductory programming course; or

o cancel registration for the introductory programming course.

• Discard all quantitative data for a participant who has been awarded any kind

of supplementary assessment in the introductory programming course,

irrespective of whether the assessments are for acceptable leave of absence or

for re-assessment purposes. The reason for this decision is that due to the

timing of the supplementary assessment, the assessment material has the

potential to differ from the original assessment materials in content. Further,

the participants exposed to supplementary assessment have the advantage of

being given a second chance. Consequently, the data cannot be used in

statistical comparison without the existence of a possibility of skewing the

statistical analysis.

• Assume that

n1 = count(Stratumi
treatment group) and

n2 = count(Stratumi
control group), where i = 1, 2, …, 12

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

186

If n1 > n2, discard all quantitative data for (n1-n2) randomly selected

participants from the treatment group, otherwise if n2 > n1, discard all

quantitative data for (n2-n1) randomly selected participants from the control

group.

The Department of CS/IS at UPE implements a policy whereby all students in the

introductory programming course who fail to obtain a minimum class mark of 40%,

made up of a weighted average of the practical tasks assessments, two practical and

two pen-and-paper tests, are not permitted to write the final examination. Due to the

fact that these students have in fact completed yet are not successful in the

introductory programming course, EXCEL’s (Microsoft Corporation 2002)

FORECAST function is used to predict both the examination and final grades for the

relevant participants for inclusion in the data collection process.

Analysis of all the resulting data collected for the current study concurrently takes

place in two ways, namely using quantitative and qualitative approaches. The

following two subsections discuss the techniques relevant to each of these approaches.

Quantitative Statistical Techniques and Test Statistics

Two types of test statistics are applicable to the quantitative analysis of academic

performance in the current study. These tests statistics are a computed mean being the

average mark achieved by participants in the study and a computed proportion being

the pass rate (or observed throughput) achieved by participants in the study. The

following statistical techniques are thus appropriate to the current study (Berenson et

al. 1999):

• Pooled-variance two-tailed t-test for the testing of the difference in the two

average marks computed for each of the control and treatment groups; and

• χ2-test for homogeneity of proportions using a contingency table for testing the

equality of the pass rates computed for each of the control and treatment

groups.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

187

The first of the statistical techniques, which is a common method used in

programming studies for the comparison of two means (Chamillard et al. 2000),

assumes that the samples are drawn from underlying normal populations with equal

variances. In the case of the total sample size (Definition 6.2) being less than the

recognised large sample size36, it is required that the assumption of normality be

assessed.

In order to assess the reasonableness of the assumption of normality and the equality

of the variances in the treatment and control groups, STATISTICA (StatSoft Inc.

2001), a data analysis software package, is used for exploratory data analysis. In

particular STATISTICA is used to compute the standard descriptive statistics for the

performance achievement measures used to compute the average mark for the

comparison of the two means.

Visual confirmation for the fit of a theoretical distribution to the observed data is done

by examining the probability-probability plot (P-P plot). In a P-P plot, the observed

cumulative distribution function is plotted against the theoretical cumulative

distribution function. If the theoretical cumulative distribution approximates the

observed distribution well, then all points in the plot should fall onto the diagonal line.

If deemed necessary, the P-P plot facility of STATISTICA is used to visually confirm

whether the two groups in the study are drawn from underlying normal populations

with equal variances. Thereafter, the pooled-variance two-tailed t-test for testing the

difference between two means is applied to test the leaf hypotheses appearing on the

left hand side of Figure 6.3 (H0.1.1, H0.1.2.1, H0.1.2.2, H0.1.2.3, H0.1.2.4, H0.1.3, H0.1.4), namely

those hypotheses that have been refined from hypothesis H0.1.

The χ2-test for homogeneity of proportions uses a 2×2 cross-classification table

resulting from a survey of the pass rates of participants in the control and treatment

groups. Using this statistical technique, the equivalence of the pass rates at 1 degree

of freedom at the 95% percentile (α = 0.05; critical value of χ2-statistic = 3.841) is

tested. The χ2-test for homogeneity of proportions is applied to test the leaf

36 Law of Large Numbers and the Central Limit Theorem (Larson 1974).

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

188

hypotheses appearing on the right hand side of Figure 6.3 (H0.2.1, H0.2.2.1, H0.2.2.2,

H0.2.2.3, H0.2.2.4, H0.2.3, H0.2.4), namely those hypotheses that have been refined from

hypothesis H0.2. STATISTICA is the data analysis tool used in the computations

required for both the t- and χ2-tests.

Besides these quantitative statistical techniques and test statistics, qualitative data

analysis is also relevant to the current investigation. The analysis technique

applicable to this approach in the investigation is the focus of the following

subsection.

Qualitative Techniques

Qualitative analysis of data typically occurs concurrently with the qualitative data

collection process (Ely et al. 1995) resulting from oral and written interviews,

surveys, essays and observations (Merriam 1998). Qualitative analysis of data is

useful for analysing data in order to determine tendencies and trends (Dee Medley

2001), specifically for the discovering of hypotheses in the form of models that

describe the findings (Merriam 1998). Techniques of qualitative analysis thus provide

a facility to discover patterns within the context of an environment under

investigation. The analysis process therefore involves the establishment of an initial

set of categories that arise from and give significance to the specific data collected.

As the data is collected, it is coded and structured into categories or bins (Ely et al.

1999). This process, the outcome of which is textual data, serves to organise the

qualitative data into some meaningful context. The qualitative data contributions for

the current investigation originate predominantly from the participants in the

treatment group since these participants are in the unique position of being able to

judge the two programming notations and development environments being

compared. The participants in the treatment group are thus the most likely to

contribute to the understanding of concerns raised in the current study (Merriam

1998).

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

189

During the data collection and analysis, it may become apparent that further data be

required to be collected to confirm or explain observations. This fact further

emphasises the need to perform the qualitative data collection and analysis in parallel.

The majority of the qualitative data collection for the current investigation is done by

means of pen-and-paper based surveys. This method is preferred due to the need for a

large volume of data to be collected and analysed within the shortest possible time.

Further, this technique allows for a larger sample of participants to be effectively

processed. In appropriate situations during the current investigation, data collection is

done by means of one-on-one interviews to complement the qualitative research

process.

The final analysis of qualitative data involves the search for and determination of

themes from the identified categories. A theme is defined (Ely et al. 1995; Ely et al.

1999) as a statement of meaning that

• runs through all or most of the pertinent data; or

• one that carries heavy emotional or factual impact.

Themes can be identified as the explicit or implied attitudes towards an observed

behaviour. Thematic analysis is consequently used to present the findings assembled

from the various qualitative surveys administered in the current research. The

thematic analysis is complemented by frequency counts in order to compare the

quantitative loadings in the identified categories and themes. A further need for the

inclusion of frequency counts is that of the presentation of a quantitative category

profile for each of the treatment and control groups. Where appropriate in the current

investigation, further quantitative statistical analysis in the form of rankings and

standard descriptive statistics complements the presentation of the frequency counts.

During the design of the experimental study for the current investigation, a number of

risks are evident. The discussion of the identified risks and strategies proposed to

address each of them is the focus of the following section.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

190

6.4 Risks to Investigative Study

Every experimental proposal has risks associated with it (Applin 2001).

Consequently, cognisance of risks relevant to the current empirical investigation is

made in this section. The risks identified are associated with sample size, elimination

of bias in performance achievement measures, method employed in the administering

of practical learning activities and the formal assessment of practical performance

within the context of laboratory sessions.

6.4.1 Sample Size

A major concern in the current investigation is that of sample size due to a predicted

small maximum population size of between 200 – 250 students in the introductory

programming course and historically high withdrawal of participants not only

voluntarily from the experiment but also from the course as a whole (Figure 6.1).

Strategies to address this possibility incorporate:

• the inclusion of continuous qualitative data collection and analysis in the

current research; and

• a process of participant allocation that initially maximises and equalises the

population sizes of the strata from which the samples are drawn for each of

the treatment and control groups.

The first strategy of qualitative analysis has been discussed in detail in Section 6.3.3.

The second strategy entails the initial allocation of introductory programming course

students to control and treatment groups at commencement of the treatment period

ensuring that each group’s population is similar in volume, with approximately 50%

of the introductory programming course student population being allocated to each

group. In this way, an assumption is made of the equal probability of attrition from

either group. It is further noted in an earlier related programming study (Applin 2001)

that tight experimental controls can warrant valid statistical analysis with samples as

small as 15 per group. With this minimum sample size in mind, the definition of the

strata (Definition 6.1) is customised during the data analysis process as required.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

191

Another risk identified is the fact that the assessment of performance achievement of

sample participants in the introductory programming assessment materials might be

subject to bias. This risk is addressed in the following section.

6.4.2 Bias in Performance Achievement Measures

A potential exists for bias in performance achievement measures to be evident on the

part of the assessors who draft the assessments as well as the assessors who measure

the performance achievement. Two strategies are proposed to address this particular

area of risk.

Firstly, all measuring of performance achievement for participants in the study is

conducted by the author, being the primary investigator in the current research. In

this way a consistent approach to the assessment process is ensured and the risk of

inconsistent interpretation of assessment criteria is minimised, if not eliminated

entirely.

Secondly, all material in the introductory programming course is subject to a stringent

moderation process. All training and assessment material drafted by the introductory

programming course instructors is moderated by both the author and a departmental

academic external to the introductory programming course, namely one of the

promoters of the report of the investigation. Both of these individuals have in the

recent past themselves been introductory programming course instructors in the

Department of CS/IS at UPE for at least 4 years each. Similarly, all material drafted

by the author for use in the gathering of data for the investigation, is subject to

moderation by the introductory programming course instructors as well as the

previously identified promoter. Further, all measures of performance achievement are

subject to moderation from the introductory programming course instructors as well

the investigation promoter mentioned earlier.

A further potential for evidence of bias in performance achievement measures exists

on the part of the participants in the treatment group. Ethics dictates that the

treatment group participants are exposed to both the B# as well as the Delphi™

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

192

Enterprise programming notation and development environments. The basis for this

decision is to prevent unfair discrimination against a certain population of students in

the current study. The decision is also due to the requirements of the introductory

programming course outcome that all students who successfully complete the

introductory programming course at UPE should exhibit evidence of proficiency in

both the PASCAL programming notation and the Delphi™ Enterprise programming

development environment. The potential for the emergence of a less positive attitude

and motivation on the part of the treatment group participants is thus closely

monitored by means of the qualitative study described in the previous section.

Performance achievement measures are an assessment of the existence of introductory

programming skills. Consequently, practical learning activities are required for the

development of skills in the programming notations and development environments

used as the instruments in the current study. The use of this type of learning activity

has its own associated risks, each of which are reviewed in the section that follows.

6.4.3 Administering Practical Learning Activities

In the application of practical learning activities, algorithms are placed in some kind

of context by means of story problems (Jonassen 2000). The practical tasks thus are

in the form of values required to solve an algorithm embedded within a brief narrative

or scenario. Consequently, participants in the current study are required to extract the

values from the narrative and use them in the most appropriate programming

constructs to solve the problem. The process described is a more complex cognitive

process than merely reading and comprehending a given procedural algorithm.

Risks with the approach described above are that the scenario contexts for the

practical problems, due to their introductory level and small program solution

requirements, are often superficial and uninteresting to students. The result is that

when students attempt to transfer practiced narrative problem skills to other problems,

the focus is on surface features often resulting in the recollection of familiar solutions

from sometimes unrelated previously solved problems (Jonassen 2000). Students

often do not successfully comprehend the underlying principles and abstract concepts

and are thus not able to transfer the ability to solve one kind of problem to problems

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

193

with the same structure but different features. In addressing this risk, collaboration of

participants during practical learning activities is encouraged. Further, senior students

in the role of trained introductory programming course tutors are available for

consultation in both the program and problem domains in the approximate proportion

of 1:13 (tutor:students) during practical learning activities.

Practical learning activities are highly vulnerable to plagiarism. There is a forced

acceptance of the existence of the characteristic on the part of the instructors as a

direct by-product of collaborative learning. However, random assessment of student

practical tasks by the introductory programming course instructors is an attempt to

discourage the practice and plays a part in reducing the practice but provides no

evidence that it is eliminated.

A further concern related to practical learning activities is that insufficient time is

available in a single practical learning activity for the completion of practical tasks by

some portions of the introductory programming course student population. The

situation specifically disadvantages those students not able to spend adequate time on

the tasks due to limited hardware accessibility or other degree programme

commitments. In order to address this concern, a maximum timeframe of a week is

provided for the completion of any particular week’s practical tasks for the purposes

of the current research.

Participants in the treatment group are exposed to a further risk of knowledge

overload. In addition to performing all the tasks required for the purposes of the

introductory programming course, the treatment group participants are also expected

to master the skills of an additional programming notation and development

environment, namely B#. The only learning support available in this regard is in the

form of paper resources which takes the form of pictorial instructions that illustrate

how to use the environment to create sample B# program solutions. These learning

resources complement the weekly practical sheets and thus consist of 9 weekly

handouts of 75 pages in total (an average of 8 pages per handout with the largest

being 27 pages and the smallest being 3 pages in length).

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

194

In order to become proficient in B#, treatment group participants are expected to

study this learning resource over and above any other introductory programming

course commitments. No additional time is provided for this task. It is obvious to

deduce, then, that treatment group participants might be disadvantaged in the course

of the current investigation with respect to time available for completing required

tasks and are thus vulnerable to poor achievement performance. In an attempt to

address and control this risk, B# is designed to be as intuitive as possible, specifically

exhibiting consistency with respect to the implementation of programming constructs

(Chapter 5).

Treatment group participants are also required to complete programming notation and

development environment evaluation surveys throughout the treatment period. A risk

exists that since the treatment group are consequently at all times aware of being

involved in an experiment, such awareness is sufficient to bias the results of the

investigative study (Applin 2001). In an attempt to address this risk, the maximum

volume of qualitative data is required to be collected from the practical development

environment surveys and analysed on a weekly basis, thereby making provision for an

instantaneous reactive qualitative response to any observed trend.

Furthermore, the longer a treatment period of an experiment persists, the more likely

the treatment and control groups are to notice each other resulting in a possible

distortion in the results of the study. The actual treatment period of 9 weeks makes

the current study vulnerable to this risk. In order to reduce the effects of this risk,

participants in the control and treatment groups are allocated to distinct practical

learning activity sessions. Consequently, no practical learning activity session

contains participants from both groups. Further, participants are discouraged from

attending practical learning activities dedicated to the group that is alternative to their

own by means of a rigorous roll call approach.

Formal assessment of programming notation and development environment skills is

administered by means of practical tests which take place within stringently

monitored laboratory conditions. This category of assessment is also prone to risks,

which are the focus of the next section.

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

195

6.4.4 Formal Assessment of Practical Performance in Laboratory Sessions

Any assessment of academic ability is likely to be considerably more cognitively

demanding and participants taking tests in laboratory sessions may specifically be

affected by computer anxiety (McDonald 2002). Consequently, a concern with the

practical assessment of programming skills in the relevant programming notations and

development environments is that practical tests could be perceived as being unfair to

those students who experience test anxiety when performing under time pressure

(McCracken et al. 2001). Experiences of anxiety tend to reduce the capacity of

working memory, which has the potential to negatively impact on the achievement

performance measures of the participants in the study, and ultimately on the statistical

equivalence of the measures.

In an attempt to reduce the impact of this risk to the experiment, two independent

practical tests are administered. The final performance achievement of participants

relies thus on a weighted average of the independent practical tests. Further, the

problems posed in the practical tests are similar in structure to those for which

program solutions are required during practical learning activities.

Limited hardware resources in the Department of CS/IS at UPE necessitate the

existence of multiple successive practical test sessions per practical test assessment

activity. In order to eliminate the occurrence of plagiarised program solutions during

single sessions, multiple question papers per individual practical test session are

implemented. Consequently, performance achievement measures used in the

comparative analysis do not necessarily have the exact same question paper as their

source. It remains a difficult process to measure the equivalence of different practical

tasks across question papers.

In order to reduce the impact of different question papers on the comparative analysis,

a moderation process similar to that described earlier (Section 6.4.2) is in place to

judge equivalence of tasks across differing question papers as accurately as possible

within the existing physical constraints. To complement this process in the interests

of a more accurate comparative analysis, selected questions are combined in such a

way that the practical test questions themselves are discreetly duplicated across the

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

196

treatment and control groups without the occurrence of the duplication of an entire

question paper.

6.5 Conclusion

Studies in programming similar to the process described in this chapter which have

investigated visual programming notations have compared them to textual

programming notations with mixed results37. The lack of confirmatory analysis can

be attributed to a number of problems generally experienced with such comparative

studies (Section 6.1). The methodology of the current investigation addresses these

problems with the application of a formal evaluation strategy of hypothesis testing.

Furthermore, anecdotal evidence gathered is applied to a strategy of thematic analysis.

The context in which the current investigation takes place is within the same course

during the same year and using the same curriculum. This is necessary to prevent any

obscuring of results observed.

The lack of existing confirmatory analysis in related studies requires that the current

investigation examines the hypothesis that novice programmer academic performance

is independent of the programming notation and development environment used as a

technological delivery method in the learning environment for an introductory

programming course at tertiary level. This investigation is the culmination of a long

process of research in the Department of CS/IS at UPE.

The hypothesis testing method adopted in the current investigation compares the

academic performance achievement differences between two experimental groups of

participants, the control and treatment groups. The investigation is for statistically

significant variation in performance that is expected to result from the use of

comparable programming notations and development environments assigned to each

group. The longitudinal study described in this chapter makes use of two

programming instruments. These instruments are Delphi™ Enterprise, a traditional

commercial textual programming notation and B#, an experimental iconic

programming notation. Each instrument has an associated development environment.

37(Green et al. 1991; Koelma et al. 1992; Moher et al. 1993; Lord 1994; Schiffer et al. 1995; Whitley

1997; Blackwell et al. 1999a; Deek et al. 2002; Cooper et al. 2003; Sanders et al. 2003a)

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

197

An observed statistically significant variation in measured academic performance in

the favour of the experimental iconic programming notation and its associated

development environment would support the finding that programming in the form of

B# flowchart program solutions influences the learning of programming.

Performance achievement of participants in the study is assessed in terms of averages

of individual performance achievement measures and proportional rate of success per

group. In anticipation of a valid statistical comparison, quantitative data relevant to

the measures of novice programmer performance are collected by means of a number

of assessment materials, which are administered during a treatment period covering

67% of the duration of the introductory programming course at UPE during 2003.

Other material administered includes a demographic and various qualitative surveys,

as well as a consent form since ethics dictates that all human subjects be informed that

an experiment is being conducted and that the participants in the study permit the use

of the data collected during the experiment period. Analysis of the qualitative data

collected produces a better understanding of the larger picture in the environment

under investigation. This analysis technique is suited to research projects involving

smaller groups of participants, which is the predicted case of the current investigation.

The described nature of the introductory programming course environment at UPE

results in the observation of a number of potential risks to the current investigative

study, the greatest of these being a potentially seriously limiting sample size as well as

the application of multiple programming notations and development environments

concurrently for ethical reasons. A high tendency towards a large attrition rate in the

introductory programming course at UPE is a potential contribution to a reduced

sample size which could negatively impact the envisaged quantitative data analysis.

Ethics dictates the necessity of the treatment group to make use of both instruments in

order to prevent any unfair discrimination against them in terms of the curriculum

requirements of the introductory programming course at UPE. The resulting situation

possesses a potential to impact on the attitude and motivation of participants in the

treatment group, thereby skewing performance measurements.

In an attempt to respond to any potentially less positive findings, a qualitative study is

administered concurrently with the comprehensive quantitative study. The primary

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

198

purpose of the qualitative study is to determine the attitude and motivation of

participants in the treatment group.

The sound academic methodology reported on in this chapter motivates the necessity

for a stratified based sample of participants. The preference for this type of sample is

in order to ensure a representation of students across the entire introductory

programming course population in the Department of CS/IS at UPE. The empirical

investigation methodology also identifies a number of analysis techniques for use in

addition to that of initial descriptive statistics.

 Material Test Statistic Data Analysis Technique

M4

Development environment
practical task evaluation
forms
(eight weekly documents)

None Thematic analysis

M5

General development
environment evaluation
questionnaire
(single document)

None Thematic analysis

M6 Pen-and-paper tests
(two documents)

Mean

Proportion

Pooled-variance two-tailed t-
test

χ2-test for homogeneity of
proportions

M7 Practical tests
(two documents)

Mean

Proportion

Pooled-variance two-tailed t-
test

χ2-test for homogeneity of
proportions

M9 Pen-and-paper examination
(single documents)

Mean

Proportion

Pooled-variance two-tailed t-
test

χ2-test for homogeneity of
proportions

M10

Tutor and student attitude to
practical learning activity
evaluation form
(single document)

None Thematic analysis

Table 6.7: Mapping of Test Statistics and Data Analysis Techniques to Data Collected

The main analysis techniques decided upon are the pooled-variance two-tailed t-test,

χ2-test for homogeneity of proportions and thematic analysis. Each of these

techniques has been selected in terms of their analysis suitability to the different kinds

CHAPTER 6 : INVESTIGATIVE RESEARCH METHODOLOGY

199

of data being collected. A mapping of the relevant test statistics and data analysis

techniques to the material collected during the current empirical investigation is

shown in Table 6.7. The biographical form (M1) is used to characterise the

participants in the study. The consent form (M2), B# training manual (M3) and

practical sheets (M8) are primarily information sharing materials. All of these

materials are thus not subject to any of the selected data analysis techniques.

The results of the application of all the different data analysis methods described in

this chapter are presented in the next chapter (Chapter 7), with a discussion of the

results appearing in Chapter 8.

200

Chapter 7

Results of Investigation

7.1 Introduction

Novice programmer requirements for technological support in the learning

environment of an introductory programming course have been derived from an

extensive literature study and are presented in Chapter 2 (Table 2.1). Evidence in

available literature suggests that there remains a need for technological support in the

learning environment of an introductory programming course that satisfies these

identified requirements (Chapter 3). In response to this challenge, B#, an iconic

programming notation and development environment was recently developed in the

Department of CS/IS at UPE (Chapter 5).

A subsequent conclusion of Chapter 5 is that B# satisfies the majority of the novice

programmer requirements in terms of its design and implementation (Table 5.4

duplicated in Table 7.1). The methodology for determining B#’s support for the

remaining novice programmer requirements (R3 and R8 in Table 7.1) is presented in

Chapter 6.

CHAPTER 7: RESULTS OF INVESTIGATION

201

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found at
the superficial learning level of the program domain

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

R3: Increase in level of motivation when using the programming
notation

To be determined
by the current

study

R4: Designed specifically for use by novice programmers
R5: Provision of visual techniques to aid comprehension process

at the in-depth learning level of the program domain
R6: Support for reduced mapping between the problem and

program domains
R7: Increased focus on problem-solving
R8: Increase in novice programmer performance achievement

measured in terms of higher level of accuracy in program
solutions in program domain

To be determined
by the current

study

Table 7.1: Support for Novice Programmer Requirements by B#

In light of the preceding discussion, the following hypothesis (duplicated from

Sections 6.3.1 and 6.3.2) has been formulated in Chapter 6 for examination and

testing for significance at the 95% percentile (α = 0.05) in order to determine B#’s

support for novice programmer requirement R8 while controlling for predicted mark

by means of a stratified sample based analysis:

H0: Academic performance in an introductory programming course
is independent of programming notation and development
environment.

H1: Academic performance in an introductory programming course

is dependent on programming notation and development
environment.

The focus of this chapter is on the data collection process and computation of sample

values of test statistics according to the methodology described in Chapter 6 to

provide data for deliberation (Chapter 8) on the formulated hypothesis. The chapter

reports on the observed results of an empirical study conducted during 2003 on novice

CHAPTER 7: RESULTS OF INVESTIGATION

202

programmers in an introductory programming course in the Department of CS/IS at

UPE.

An observed statistically significant variation in measured performance in the favour

of B# would support the finding that the use of the B# iconic programming notation

and development environment is beneficial to novice programmers in terms of

academic performance achievement.

The chapter discusses the process followed in categorising participants into

appropriate stratified samples (Section 7.2) according to predicted mark (Chapter 4),

acknowledging that the total sample size for the study is an identified risk (Section

6.4.1). The results of the quantitative (Section 7.3) and qualitative (Section 7.4)

analysis techniques applied to the selected sample of participants and described in the

previous chapter are presented. Further analysis of surveys administered (Section 7.5)

are presented to supplement the quantitative and qualitative analysis. The primary

purpose of this chapter is thus to perform a comparative analysis and make statistical

decisions.

7.2 Selection of Participants

The selection of participants in the current investigation is at risk of large scale

attrition, as has also been the case in the past (Figure 6.1). As a result, the defined

strata (Definitions 6.1 and 6.2) are modified in order to maximise the total sample size

of participants allocated to each of the control and treatment groups (Section 7.2.1).

Furthermore, due to the nature of the focus of the current investigation being on the

determination of motivation and academic performance, any potential bias due to

demographic (Section 7.2.2) and course instructor (Section 7.2.3) influence needs to

be determined.

7.2.1 Sample Size

Table 7.2 shows the initial population size (N) and potential sample size (n) for each

of the strata in the treatment and control groups, taking the attrition (D) in the

CHAPTER 7: RESULTS OF INVESTIGATION

203

introductory programming course during 2003 into consideration. The treatment

group constitutes 46% (n = 96) of the total population of potential participants in the

study. The cells that are shaded green indicate the actual sample size for each stratum

according to Definition 6.2. The column under which the green shaded cells fall

(treatment or control group) indicates the experimental group that influenced the

decision of sample size per stratum. The final sample size per stratum in each

experimental group is taken to be the minimum of the sample sizes of the treatment

and control groups for that particular stratum (Definition 6.2). The total sample size

for each of the treatment and control experimental groups is 58 participants, giving a

total of 116 participants in the study.

 Treatment Group Control Group Sample Size
SId P N D n N D n Treatment Control
S1 41 – 45 7 3 4 6 2 4 4 4
S2 46 – 50 10 2 8 11 2 9 8 8
S3 51 – 55 13 7 6 20 6 14 6 6
S4 56 – 60 19 4 15 24 6 18 15 15
S5 61 – 65 19 8 11 36 8 28 11 11
S6 66 – 70 24 10 14 15 3 12 12 12
S7 71 – 75 4 2 2 3 0 3 2 2
S8 76 – 80 0 0 0 0 0 0 0 0
S9 81 – 85 0 0 0 0 0 0 0 0
S10 86 – 90 0 0 0 0 0 0 0 0
S11 91 – 95 0 0 0 0 0 0 0 0
S12 96 – 100 0 0 0 0 0 0 0 0

 Total 96 36 60 115 27 88 58 58
Proportion of N 100% 37% 63% 100% 23% 77% 60% 50%

Key to abbreviations
SId Stratum identifier (Definition 6.1)
P Discrete range of predicted marks N Population size
D Discarded samples size n Potential sample size

Table 7.2: Sample Derivation

The high frequency of nil values in strata S8 – S12 is directly due to the placement

model currently in place in the Department of CS/IS at UPE (Section 4.3). The final

mark predicted for any participant in 2003 did not exceed that of 72%.

Due to the resulting post-attrition small sample sizes per individual stratum (Table

7.2), the strata are combined to form three discrete logical strata, each with a more

practical sample size (Applin 2001). A similar approach of 3 discrete logical groups

CHAPTER 7: RESULTS OF INVESTIGATION

204

is adopted in previous related research conducted by the Department of CS/IS at UPE

(Calitz 1997; Greyling 2000).

The identifiers designated to each of these logical strata are namely high risk stratum,

medium risk stratum and low risk stratum. The mapping of these logical strata to the

strata defined by Definition 6.1 and shown in Table 7.2 is given in Table 7.3. Using

this technique of merging of strata to counteract the risk of inconsequential sample

sizes (Section 6.4.1), the sample size of each of the treatment and control groups is

maximised to 59 participants, resulting in a total of 118 participants in the study

(comprising of 62% of treatment population and 51% of control population).

 Treatment Group Control Group Sample Size

LSId SId P N D n N D n Treat-
ment

Con-
trol

High
risk

S1
S2

41–50 17 5 12 17 4 13 12 12

Medium
risk

S3
S4
S5

51–65 51 19 32 80 20 60 32 32

Low
risk

S6
S7
S8
S9
S10
S11
S12

66–100 28 12 16 18 3 15 15 15

 Total 96 36 60 115 27 88 59 59
 Proportion of N 100% 37% 63% 100% 23% 77% 62% 51%

Key to abbreviations
LSId Logical stratum identifier SId Stratum identifier (Definition 6.1)
P Discrete range of predicted marks N Population size
D Discarded samples size n Potential sample size

Table 7.3: Adjusted Sample Derivation

Data for participants are discarded if they fall into any of 5 categories judged to be

relevant to the current investigation (Section 6.3.3). These categories are namely

recognition of prior learning, cancellation of registration, changing registration to a

slower paced introductory programming course, leave of absence and voluntary

withdrawal from the investigation.

CHAPTER 7: RESULTS OF INVESTIGATION

205

Decomposition into these categories of attrition (D) of the population participants for

each of the treatment and control groups is illustrated by Figure 7.1. Attrition due to

voluntary withdrawal from the study (Wtreatment) is only applicable to participants in

the treatment group since the control group is exposed to only the prescribed

technological support for UPE’s introductory programming course. Participants in the

control group are thus not eligible for voluntary withdrawal from the investigative

study.

Key to abbreviations (m ∈ {treatment, control})
Pm Recognition of prior learning Cm Voluntary cancellations
Am Alternative course stream Lm Leave of absence
Wm Voluntary withdrawals

Figure 7.1: Classification of Attrition of Participants in Revised Strata

It is clear from Figure 7.1 that the bulk of participant attrition in both the treatment

and control groups is due to two of the five categories. These two categories are the

voluntary cancellation of registration for the introductory programming course

(Ctreatment and Ccontrol) and the voluntary changing of registration to the alternative

slower paced introductory programming course offered by the Department of CS/IS at

UPE (Atreatment and Acontrol). It is also clear from Figure 7.1 that the bulk of participant

attrition is from the medium risk stratum.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Attrition Category

N
um

be
r o

f P
ar

tic
ip

an
ts

Low Risk
Medium Risk
High Risk

Ptreatment Pcontrol Ctreatment Ccontrol Atreatment Acontrol Ltreatment Lcontrol Wtreatment

CHAPTER 7: RESULTS OF INVESTIGATION

206

7.2.2 Demographic Profile

All of the 118 participants identified to take part in the investigation in either of the

treatment or control groups consented to take part in the empirical study. Analysis of

the demographic material administered (M1 in Table 6.1) resulted in the biographical

profile of the sample participants per experimental group as shown in Table 7.4.

Treatment

Group
(n = 59)

Control
Group
(n = 59)

χ2-test
statistic p-value

Male 56% (n = 33) 62% (n = 37)
Gender

Female 44% (n = 26) 38% (n = 22)
0.56 0.454

English 44% (n = 26) 56% (n = 33) 1.66 0.198
Afrikaans 25% (n = 15) 20% (n = 12) 0.43 0.511
isiXhosa 22% (n = 13) 16% (n = 10) 0.49 0.486

Home Language

Other 9% (n = 5) 8% (n = 4) 0.12 0.729
VCR 57% (n = 34) 42% (n = 25) 2.75 0.098
ATM 61% (n = 36) 51% (n = 30) 1.24 0.266
Tape recorder 56% (n = 33) 51% (n = 30) 0.31 0.580
CD player 85% (n = 50) 92% (n = 54) 1.30 0.255
TV Games 24% (n = 14) 27% (n = 16) 0.18 0.672
Cellular phone 83% (n = 49) 94% (n = 55) 2.92 0.088

Contact with
other technology

DSTV 62% (n = 37) 42% (n = 25) 4.89 0.027
General use 95% (n = 56) 85% (n = 50) 3.34 0.068
Typing 90% (n = 53) 81% (n = 48) 1.72 0.190
Use of mouse 97% (n = 57) 100% (n = 59) 2.03 0.154 Computer skills
Windows
objects 93% (n = 55) 95% (n = 56) 0.15 0.697

Prior computer experience 70% (n = 41) 71% (n = 42) 0.04 0.840

Table 7.4: Demographic Profile of Participants and
Results of Tests for Equality of Proportions (p < 0.01)

Research has indicated that the demographic variables listed in Table 7.4 are

indicative of success in an introductory programming course38. In order to establish

whether these variables might significantly obscure the motivational and academic

performance results observed in the current investigation, an evaluation of the

demographic profile of each experimental group is required.

38 (Sauter 1986; Evans et al. 1989; Howell 1993; Haliburton 1998; Newman et al. 1999; Hagan et al.

2000; Morrison et al. 2001; Wilson et al. 2001; Boyle et al. 2002; Rountree et al. 2002; Rowell et al.
2003; Streicher 2003)

CHAPTER 7: RESULTS OF INVESTIGATION

207

Application of the χ2-test for the homogeneity of proportions at the 99% percentile

(p < 0.01) indicates that the number of participants in each of the treatment and

control groups is similar for each of the demographic items appearing in Table 7.4.

The three most prominent language groups are those of English, Afrikaans and

isiXhosa. These three are also nationally recognised as the most prominent language

groups in the geographical region in which UPE is physically located.

Evidence of participant contact with other technology indicates that popular

technology amongst the participants in both experimental groups is that of CD players

and cellular phones. The majority of both the treatment (70%) and control (71%)

group participants indicated that they, at the time of the commencement of the

investigative study, worked on a computer at least once a week (prior computer

experience).

Furthermore, at least 81% of all participants in both experimental groups assessed

their individual ability of working with a variety of computer skills as being

reasonable to excellent. The skills surveyed were general use of a computer, typing

skills, the use of a mouse as well as the use of standard Windows objects such as

buttons, check boxes and radio buttons. The detailed analysis of this demographic

aspect appears together with the detailed analysis of the other aspects of the

demographic questionnaire in Appendix I.

A negligible amount of the entire complement of treatment and control group

participants (Table 7.4) revealed an attitude of experiencing difficulty with using a

computer (2%; n = 1 in both cases). Computer facilities were available at least once a

week for use by the majority of the treatment (81%) and control (86%) group

participants. Both the treatment and control group participants indicated a preference

for using email and internet facilities above software packages like word processing

and spreadsheet packages. None of the treatment group indicated a significant

preference for composing program solutions, whereas 4% of the control group

indicated that they created program solutions on a regular basis. These variations in

proportions are not evaluated as being significant (p < 0.01).

CHAPTER 7: RESULTS OF INVESTIGATION

208

The statistical evaluation techniques applied to the identified demographic variables

confirm that there are no significant differences (p < 0.01) that can be attributed to

any of these demographic variables.

7.2.3 Academic Profile

Participants from both experimental groups are distributed between two distinct

lecture learning activities, with each lecture learning activity being facilitated by a

distinct course instructor. The proportion of each experimental group’s participants

under the facilitation of the distinct instructors is given in Table 7.5. Application of

the χ2-test for the homogeneity of proportions at the 99% percentile (p < 0.01)

indicates that the number of participants in each of the treatment and control groups is

similar for each of the distinct instructors.

Treatment

Group
(n = 59)

Control
Group
(n = 59)

χ2-test
statistic p-value

Instructor1 68% (n = 40) 71% (n = 42)Course
Facilitation Instructor2 32% (n = 19) 29% (n = 17) 0.16 0.689

Table 7.5: Academic Profile of Participants and
Result of Test for Equality of Proportions (p < 0.01)

 Treatment Group Control Group
 Instructor1 Instructor2 p-value Instructor1 Instructor2 p-value

N 40 19 42 17
Mean mark 58% 61% 0.492 57% 49% 0.159

Minimum
mark 31% 29% 26% 23%

Maximum
mark 87% 89% 89% 78%

Standard
deviation 13% 18% 20% 16%

Table 7.6: Descriptive Statistics categorised by Instructor and Experimental group
and Results of Independent Sample T-test

Descriptive statistics for the final marks obtained by the participants in each of the

experimental groups and categorised for each distinct course instructor appear in

Table 7.6. Independent sample t-tests (Table 7.6) verify that there are no significant

differences (p < 0.01) in the final marks obtained that could be attributed to instructor

influence.

CHAPTER 7: RESULTS OF INVESTIGATION

209

7.3 Quantitative Analysis

Due to this elimination of bias due to demographic (Table 7.4) and course instructor

influence (Tables 7.5 and 7.6), the participants of each experimental group (control

and treatment), regardless of demographic profile and allocated course instructor, is

analysed as a single group in the investigative study. This section presents the

comparative quantitative analysis of performance achievement measures observed for

all of the tasks in the quantitative assessment materials (Table 6.1) administered to

each participant in the treatment and control groups.

A total of 28 independent variables are selected from the quantitative analysis

materials administered to the participants and identified as being relevant for

quantitative analysis in the current investigation (Section 6.2.2). Table 7.7 codes each

and associates with each of these variables a category of analysis in anticipation of the

deliberation to follow in Chapter 8. The timing in relation to the treatment period of

each performance achievement measure is also provided in Table 7.7. The

assessment materials from which the variables are derived appear in Appendix D.

Table 7.7 classifies each of the independent variables into composition and/or

comprehension analysis categories. The composition category refers to tasks that

assess a participant’s ability to compose novel program solutions in a given

programming notation. The comprehension category refers to tasks that assess a

participant’s ability to comprehend program solutions in a given programming

notation. These two analysis categories are used in the interpretation (Chapter 8) of

the results presented in this chapter. Independent variables that do not fall into any of

these analysis categories are those that are the weighted averages of each of the

assessment materials (suffixed with Tot) as well as the Class and Final marks. The

Class and Final mark variables also do not have a timing associated with them due to

the fact that they are weighted averages computed in terms of the other independent

variables (Section 6.2.1).

CHAPTER 7: RESULTS OF INVESTIGATION

210

Variable
(Appendix D)

Material
(Section

6.2.2)
Analysis Category Timing

(Table 6.2)

Th1Q1 Question 1 Composition
Th1Q2 Question 2 Comprehension

Th1Q3 Question 3 Comprehension and
Composition

Th1Tot Weighted average of Th1Q1,
Th1Q2, Th1Q3

Problem-
solving pen-
and-paper
assessment

(M6) Problem-solving total

2 weeks
into

treatment

Pr1Q1 Question 1 Composition using B#
programming notation

Pr1Q2 Question 2
Composition using
textual programming
notation

Pr1Tot Weighted average of Pr1Q1,
Pr1Q2

Introductory
level

practical
assessment

(M7) Introductory practical
assessment total

4 weeks
into

treatment

Th2MC Multiple choice questions Comprehension
Th2Q1 Question 1 Composition
Th2Q2 Question 2 Composition

Th2Cmp Weighted average of Th2Q1,
Th2Q2

Pen-and-paper
composition total

Th2Tot Weighted average of Th2MC,
Th2Q1, Th2Q2

Syntax-based
pen-and-

paper
assessment

(M6)
Pen-and-paper total

7 weeks
into

treatment

Pr2Q1 Question 1
Comprehension using
textual programming
notation syntax

Pr2Q2 Question 2 Composition using B#
programming notation

Pr2Q3 Question 3
Composition using
individual choice of
programming notation

Pr2Q4 Question 4
Composition using
textual programming
notation

Pr2Tot Weighted average of Pr2Q1,
Pr2Q2, Pr2Q3, Pr2Q4

Intermediary
level

practical
assessment

(M7)

Intermediary practical
total

1 week
after

completion
of

treatment

Class Class mark (Section 6.2.1)
ExMC Multiple choice questions Comprehension
ExQ1 Question 1 Composition
ExQ2 Question 2 Composition
ExQ3 Question 3 Comprehension
ExQ4 Question 4 Composition
ExQ5 Question 5 Composition

ExCmpr Weighted average of ExMC,
ExQ3

Examination
comprehension total

ExCmp Weighted average of ExQ1,
ExQ2, ExQ4, ExQ5

Examination
composition total

ExTot
Weighted average of ExMC,
ExQ1, ExQ2, ExQ3, ExQ4,
ExQ5

Final pen-
and-paper

examination
(M9)

Examination total

> 3 weeks
after

completion
of

treatment

Final Final mark (Section 6.2.1)

Table 7.7: Coding of Independent Variables

CHAPTER 7: RESULTS OF INVESTIGATION

211

Descriptive statistics for the performance achievement variables measured for the full

complement of each of the experimental groups appear in Table 7.8. For the purposes

of completeness, Table 7.8 also includes the descriptive statistics for the expected

final mark as predicted by the placement model currently implemented at UPE

(Section 4.3).

 Mean Minimum Maximum Standard
Deviation

Variable
(ntreatment =

ncontrol = 59)

Treat-
ment Control Treat-

ment Control Treat-
ment Control Treat-

ment Control

Th1Q1 48% 47% 5% 10% 95% 100% 19% 20%
Th1Q2 81% 79% 40% 40% 100% 100% 13% 15%
Th1Q3 73% 74% 25% 45% 100% 100% 19% 17%
Th1Tot 65% 64% 42% 36% 93% 93% 12% 13%
Pr1Q1 50% 54% 0% 0% 100% 100% 35% 38%
Pr1Q2 48% 41% 0% 0% 100% 100% 35% 35%
Pr1Tot 48% 46% 0% 0% 100% 100% 31% 32%
Th2MC 61% 60% 25% 25% 83% 88% 15% 16%
Th2Q1 55% 49% 14% 0% 93% 93% 21% 25%
Th2Q2 25% 30% 0% 0% 100% 92% 29% 28%
Th2Cmp 41% 40% 8% 0% 93% 91% 19% 25%
Th2Tot 50% 50% 20% 16% 84% 83% 15% 18%
Pr2Q1 50% 53% 0% 0% 100% 100% 25% 28%
Pr2Q2 64% 59% 0% 0% 100% 100% 34% 36%
Pr2Q3 60% 49% 4% 0% 100% 100% 26% 33%
Pr2Q4 60% 49% 0% 0% 100% 100% 28% 36%
Pr2Tot 59% 51% 1% 0% 90% 99% 23% 30%
Class 58% 55% 22% 19% 86% 87% 15% 20%
ExMC 73% 66% 36% 42% 97% 97% 16% 17%
ExQ1 25% 25% 0% 0% 83% 100% 18% 21%
ExQ2 79% 71% 33% 0% 100% 100% 17% 25%
ExQ3 37% 32% 0% 0% 100% 100% 33% 32%
ExQ4 55% 49% 0% 0% 100% 100% 34% 41%
ExQ5 50% 51% 0% 0% 100% 100% 27% 29%
ExCmpr 66% 60% 32% 34% 95% 95% 16% 18%
ExCmp 51% 49% 15% 13% 94% 99% 20% 24%
ExTot 60% 55% 29% 26% 95% 91% 16% 19%
Final 59% 55% 29% 23% 89% 89% 15% 19%
Predicted 59% 59% 41% 42% 72% 72% 8% 8%

Table 7.8: Descriptive Statistics for Full Treatment and Control Groups

 Treatment Group Control Group
Full complement 0.46 ** (n = 60) 0.57 ** (n = 88)
** significant where p < 0.01

Table 7.9: Correlation between Predicted and Observed Final Marks

CHAPTER 7: RESULTS OF INVESTIGATION

212

In Table 7.9, the correlations between the observed final marks and the final marks as

predicted by the placement model currently implemented in the Department of CS/IS

at UPE (Section 4.3) are shown for each experimental group. The correlations of both

experimental groups for the full complement of participants are significant (p < 0.01).

Consequently, the results confirm previous studies (Greyling et al. 2002; Greyling et

al. 2003) that there exists a strong association between the predicted and observed

final marks for participants in each of the experimental groups.

The test statistics identified in Chapter 6 as being applicable to the quantitative

analysis of academic performance in the current investigation are a computed mean

(observed average mark) and a computed proportion (observed throughput) (Section

6.3.3). The identified statistical techniques appropriate to the current study are:

• a pooled-variance two-tailed t-test for the testing of the difference in the two

average marks computed for each of the treatment and control groups while

controlling for predicted mark by means of a stratified sample based analysis

(Section 7.3.1); and

• a χ2-test for homogeneity of proportions using a contingency table for testing

the equality of the throughput computed for each of the treatment and

control groups while controlling for predicted mark by means of a stratified

sample based analysis (Section 7.3.2).

The results presented in this section have been computed using the STATISTICA

(StatSoft Inc. 2001) data analysis tool.

7.3.1 Testing for Differences between Pairs of Means

The pooled-variance two-tailed t-test is used to examine and test for significance at

the 95% percentile (α = 0.05) the following hypothesis (duplicated from Section

6.3.1) while controlling for predicted mark by means of a stratified sample based

analysis:

CHAPTER 7: RESULTS OF INVESTIGATION

213

H0.1: The average mark achieved in an introductory programming
course is independent of programming notation and
development environment.

H1.1: The average mark achieved in an introductory programming

course is dependent on programming notation and
development environment.

Since the sample size of each experimental group exceeds n = 30 (Larson 1974)39, the

assumption of normality holds for each of the treatment (n = 59) and control (n = 59)

groups, and the pooled-variance two-tailed t-test is therefore applicable (Section

6.3.3). No further analysis to determine the existence of normality is thus required.

 Treatment Group
 Predicted Mean Observed Mean p-value

Full Complement
(n = 60) 59% 60% 0.763

High Risk Stratum
(n = 12) 47% 51% 0.267

Medium Risk Stratum
(n = 32) 59% 57% 0.544

Low Risk Stratum
(n = 16) 68% 71% 0.375

 Control Group
 Predicted Mean Observed Mean p-value

Full Complement
(n = 88) 59% 55% 0.031*

High Risk Stratum
(n = 13) 47% 38% 0.008**

Medium Risk Stratum
(n = 60) 59% 54% 0.024*

Low Risk Stratum
(n = 15) 68% 70% 0.727

* significant where p < 0.05
** significant where p < 0.01

Table 7.10: T-test Computed Values for Predicted and Observed Final Marks

Table 7.10 presents for the full complement of participants as well as for each stratum

for each of the experimental groups the computed t-test values to determine the

existence of any significant variation between the observed and predicted average

final marks. The predicted average final marks are identical for each stratum across

39 Law of Large Numbers and Central Limit Theorem.

CHAPTER 7: RESULTS OF INVESTIGATION

214

the two experimental groups. For the treatment group, no significant variation

between the predicted and observed average final marks is evident (p < 0.05). This

situation is, however, not replicated for the control group.

A statistically significant variation in predicted and observed average final marks is

observed in the control group (Table 7.10). For the high risk (predicted 47%;

observed 38%) and medium risk (predicted 59%; observed 54%) strata, as well as the

full complement (predicted 59%; observed 55%) of control group participants, the

observed average final mark is significantly less (p < 0.05) than the average final

mark predicted by the placement model.

Each of the following subsections respectively examine and elaborate on the results of

the pooled-variance two-tailed t-test on the observed differences between the means

for the treatment and control groups. The discussion focuses on the full complement

as well as each of the high, medium and low risk strata of each of the treatment and

control experimental groups.

Full Complement

Table 7.11 presents only the independent variables that exhibit significant differences

(p < 0.05) for the full complement of participants for each of the experimental groups.

The comprehensive results of the pooled-variance two-tailed test for all 28

independent variables for the full complement of the experimental groups appear in

Appendix L.

Variable
(ntreatment = ncontrol = 59)

Treatment Group
Mean

Control Group
Mean p-value

Pr2Q3 60% 49% 0.041*
ExMC 73% 66% 0.028*
ExQ2 79% 71% 0.046*

ExCmpr 66% 60% 0.044*
* significant where p < 0.05

Table 7.11: T-test Computed Values for Independent Variables:
Full Complement of Participants

CHAPTER 7: RESULTS OF INVESTIGATION

215

The results of the pooled-variance two-tailed t-test on the full complement of the

treatment and control samples verify that there are significant differences (p < 0.05) in

4 of the 28 variables (Appendix L). The first of these variables (Pr2Q3) forms part of

the introductory level practical assessment. This question required the treatment

group participants to implement the required program solution in a programming

notation and development environment of their choosing, namely either B# or

Delphi™ Enterprise. Only 4 of the 59 participants elected to implement the program

solution using B#. The reasons for this are deliberated in Chapter 8 (Section 8.3) with

respect to the supplementary qualitative analysis (Section 7.4).

The second variable (ExMC) forms part of the final pen-and-paper examination. This

section of the examination assesses the level of comprehension of simple small

PASCAL textual programming notation program solution extracts. The third variable

(ExQ2), also part of the final pen-and-paper examination, required the participants to

create a program solution using the PASCAL textual programming notation supported

by Delphi™ Enterprise. The fourth variable (ExCmpr) is a combination of the

performance achievement measures ExMC and ExQ3 (Table 7.7). This variable, also

part of the final pen-and-paper examination, assesses the level of comprehension of a

more advanced PASCAL textual programming notation program solution extract.

Based on the computed t-test statistics in Table 7.11, it can be concluded that with

respect to the full complement of participants in the treatment and control groups,

hypothesis H0.1 (Section 6.3.1) cannot be rejected except in the cases of the 4

variables noted above.

In the case of variable Pr2Q3, hypothesis H0.1.2.4 (Figure 6.3) is rejected. At the 95%

level of confidence, the average mark achieved for a program solution based on

individual choice of programming notation and development environment is thus

dependent on the programming notation and development environment forming part

of the learning environment. It is apparent from the sample measurements that there

exists a significant difference (p < 0.05) in observed means for this variable (treatment

group 60%; control group 49%).

CHAPTER 7: RESULTS OF INVESTIGATION

216

Based on the observed means, in the cases of the variables ExMC (treatment group

73%; control group 66%), ExQ2 (treatment group 79%; control group 71%) and

ExCmpr (treatment group 66%; control group 60%) hypothesis H0.1.1 (Figure 6.3) is

similarly rejected. It is therefore concluded at the 95% level of significance that the

average mark achieved in an introductory programming course for these 3 variables is

dependent on programming notation and development environment.

High Risk Stratum

Table 7.12 presents only the independent variables that exhibit significant differences

(p < 0.05) for the high risk stratum of participants for each of the experimental

groups. The comprehensive results of the pooled-variance two-tailed test for all 28

independent variables for the high risk strata of the experimental groups appear in

Appendix L.

The results of the pooled-variance two-tailed t-test on the high risk stratum treatment

and control samples verify that there are significant differences (p < 0.05) in 9 of the

28 variables (Appendix L). Of these 9 variables, 6 show stronger significance at the

99% level of significance (p < 0.01), indicated by ** in Table 7.11.

Table 7.12 also lists a brief description of each variable’s aim within the scope of the

administered assessment materials (Section 6.2.2) as well as specifies the hypotheses

which are rejected as a result of the observed significance.

Based on the computed t-test statistics, it can be concluded that with respect to the

high risk stratum sample of participants in the treatment and control groups,

hypothesis H0.1 cannot be rejected except in the cases of the 9 variables appearing in

Table 7.12. It is therefore concluded that there exists a significant variation (p < 0.05)

in the observed values for these 9 variables and that the average mark achieved in an

introductory programming course for these variables is dependent on programming

notation and development environment.

CHAPTER 7: RESULTS OF INVESTIGATION

217

Variable
(ntreatment
= ncontrol

= 12)

Aim

Treat-
ment

Group
Mean

Control
Group
Mean

p-value
Hypothesis

Rejected
(Figure 6.3)

Pr2Q1
Assess comprehension of
PASCAL syntax in Delphi™
Enterprise

54% 30% 0.015* H0.1.2.3

Pr2Q3

Assess composition of program
solution using programming
notation and programming
development environment of
choice (either B# or Delphi™
Enterprise)

60% 20% 0.001** H0.1.2.4

Pr2Q4
Assess composition of program
solution using PASCAL syntax
in Delphi™ Enterprise

56% 16% 0.002** H0.1.2.2

Pr2Tot
Average measure of
performance achievement in
practical assessment.

57% 22% 0.001** H0.1.2

Class

Average measure of
performance achievement in
respect of weighted averages of
pen-and-paper and practical
assessments (Section 6.2.1).

52% 36% 0.005** H0.1.3

ExQ2
Assess composition of program
solution using PASCAL
programming notation

71% 53% 0.034* H0.1.1

ExQ3
Assess comprehension of
program solution in PASCAL
programming notation

29% 8% 0.006** H0.1.1

ExQ4
Assess composition of program
solution using PASCAL
programming notation

44% 13% 0.006** H0.1.1

Final

Average measure of
performance achievement in
respect of weighted averages of
class mark and final exam mark
(Section 6.2.1).

51% 39% 0.017* H0.1.4

* significant where p < 0.05
** significant where p < 0.01

Table 7.12: T-test Computed Values for Independent Variables: High Risk Stratum

Medium Risk Stratum

Table 7.13 presents only the independent variables that exhibit significant differences

(p < 0.05) for the medium risk stratum of participants for each of the experimental

groups. The comprehensive results of the pooled-variance two-tailed test for all 28

independent variables for the medium risk strata of the experimental groups appear in

Appendix L.

CHAPTER 7: RESULTS OF INVESTIGATION

218

Variable
(ntreatment = ncontrol = 32)

Treatment Group
Mean

Control Group
Mean p-value

ExMC 73% 64% 0.036*
* significant where p < 0.05

Table 7.13: T-test Computed Values for Independent Variables: Medium Risk Stratum

The results of the pooled-variance two-tailed t-test on the medium risk stratum

treatment and control samples verify that there is a significant difference (p < 0.05) in

only 1 of the 28 variables. This variable (ExMC) forms part of the final pen-and-

paper examination. This section of the examination assesses the level of

comprehension of simple small PASCAL textual programming notation program

solution extracts.

Based on the computed t-test statistic in Table 7.13, it can be concluded that with

respect to the medium risk stratum sample of participants in the treatment and control

groups, hypothesis H0.1 cannot be rejected except in the case of this single identified

variable.

In the case of the variable ExMC, hypothesis H0.1.1 is rejected. It is therefore

concluded at the 95% level of significance that the average mark achieved by medium

risk stratum participants in an introductory programming course for this variable is

dependent on programming notation and development environment.

Low Risk Stratum

Table 7.14 presents only the independent variable that exhibits a significant difference

(p < 0.05) for the low risk stratum of participants for each of the experimental groups.

The comprehensive results of the pooled-variance two-tailed test for all 28

independent variables for the low risk strata of the experimental groups appear in

Appendix L.

Variable
(ntreatment = ncontrol = 15)

Treatment Group
Mean

Control Group
Mean p-value

Pr2Q1 50% 71% 0.034*
* significant where p < 0.05

Table 7.14: T-test Computed Values for Independent Variables: Low Risk Stratum

CHAPTER 7: RESULTS OF INVESTIGATION

219

The results of the pooled-variance two-tailed t-test on the low risk stratum treatment

and control samples verify that there is a significant difference (p < 0.05) in only 1 of

the 28 variables. This variable (Pr2Q1) forms part of the intermediary level practical

assessment. This question of the assessment determines the skill level with respect to

the detection and correction of PASCAL programming notation syntax errors using

Delphi™ Enterprise as the development environment.

Based on the computed t-test statistic in Table 7.14, it can be concluded that with

respect to the low risk stratum sample of participants in the treatment and control

groups, hypothesis H0.1 cannot be rejected except in the case of this single identified

variable.

In the case of the variable Pr2Q1, hypothesis H0.1.2.3 is rejected. It is therefore

concluded at the 95% level of significance that the average mark achieved by low risk

stratum participants in an introductory programming course for this variable is

dependent on programming notation and development environment.

This section examined hypothesis H0.1 and its associated sub-hypotheses (Figure 6.3)

and determined that the influence of B# is predominantly significant in the high risk

stratum of participants in the current investigation with respect to average marks

achieved. The following section examines and tests hypothesis H0.2 in order to

measure the variance in observed throughput for the treatment and control groups for

each of the 28 independent variables identified as being relevant to the current

investigation.

7.3.2 Testing for Homogeneity of Proportions

The χ2-test for homogeneity of proportions uses a 2×2 cross-classification table

resulting from a survey of the observed throughput of participants in the treatment and

control groups to examine and test for significance at the 95% percentile (α = 0.05)

the following hypothesis (duplicated from Section 6.3.1):

CHAPTER 7: RESULTS OF INVESTIGATION

220

H0.2: The observed throughput in an introductory programming
course is independent of programming notation and
development environment.

H1.2: The observed throughput in an introductory programming

course is dependent on programming notation and
development environment.

Table 7.15 compares the measured predicted and observed throughput for each of the

experimental groups. Throughput is that proportion of participants who achieved an

average final mark of at least 50%. By implication of the predicted mark ranges (all

at least 50%), the expected throughput rate for each of the medium and low risk strata

in each of the experimental groups is 100%.

 Treatment Group
 Predicted

Throughput
Observed

Throughput
χ2-test

statistic p-value

Full Complement
(n = 60) 88% 75% 3.56 0.059

High Risk Stratum
(n = 12) 42% 67% 1.51 0.219

Medium Risk Stratum
(n = 32) 100% 66% 13.28 0.001**

Low Risk Stratum
(n = 16) 100% 100% 0.00 1.000

 Control Group
 Predicted

Throughput
Observed

Throughput
χ2-test

statistic p-value

Full Complement
(n = 88) 91% 68% 21.14 0.000**

High Risk Stratum
(n = 13) 38% 23% 0.72 0.395

Medium Risk Stratum
(n = 60) 100% 62% 28.45 0.000**

Low Risk Stratum
(n = 15) 100% 93% 1.03 0.309

** significant where p < 0.01

Table 7.15: χ2-test Computed Values for Predicted and Observed Throughput

The observed throughput for the full complement of each experimental group is less

than that expected with the control group’s observed throughput being significantly

less (p < 0.01). In the medium risk stratum of both experimental groups, a greater

CHAPTER 7: RESULTS OF INVESTIGATION

221

proportion of the treatment group participants passed (66% versus 62%), even though

both observed values were significantly below that expected (p < 0.01).

Each of the following sub-sections respectively examine and elaborate on the results

of the χ2-test for homogeneity of proportions on the full complement as well as each

of the high, medium and low risk strata of each of the treatment and control

experimental groups.

Full Complement

Table 7.16 presents only the independent variables that exhibit significant differences

in proportions (p < 0.05) for the full complement of participants for each of the

experimental groups. The comprehensive results of the χ2-test for homogeneity of

proportions for all 28 independent variables for the full complement of the

experimental groups appear in Appendix L.

The results of the χ2-test for homogeneity of proportions on the full treatment and

control samples verify that there are significant differences in proportions (p < 0.05)

in 6 of the 28 independent variables (Appendix L). Of these 6 variables, the variables

ExQ2 and ExCmpr (indicated by **) show stronger significance at the 99% level of

significance (p < 0.01).

Table 7.16 lists the independent variables that show evidence of significance in the

full sample (treatment and control groups). A brief description of each variable’s aim

within the scope of the administered assessment materials (Section 6.2.2) is also listed

in Table 7.16. Table 7.16 also specifies the hypotheses which are rejected as a result

of the observed significance.

Based on the computed χ2-test statistics, it can be concluded that with respect to the

full sample of participants in the treatment and control groups, hypothesis H0.2 cannot

be rejected except in the cases of the 6 variables appearing in Table 7.16. In the cases

of these variables it is therefore concluded at the 95% level of significance that the

throughput achieved by the full complement of participants in the experimental

CHAPTER 7: RESULTS OF INVESTIGATION

222

groups in an introductory programming course is dependent on programming notation

and development environment.

Throughput Rate

Variable Aim Treatment
Group
(n = 60)

Control
Group
(n = 88)

χ2-test
statistic p-value

Hypothesis
Rejected

(Table 6.3)

Pr2Q3

Assess composition
of program solution
using programming
notation and
programming
development
environment of
choice (either B# or
Delphi™ Enterprise)

68%
(n = 41)

49%
(n = 43) 5.510 0.019* H0.2.2.4

Pr2Q4

Assess composition
of program solution
using PASCAL
syntax in Delphi™
Enterprise

67%
(n = 40)

50%
(n = 44) 4.038 0.045* H0.2.2.2

Pr2Tot

Average measure of
performance
achievement in
practical assessment.

72%
(n = 43)

55%
(n = 48) 4.420 0.036* H0.2.2

ExMC

Assess
comprehension of
small PASCAL
program solution
extracts

92%
(n = 55)

80%
(n = 70) 3.990 0.046* H0.2.1

ExQ2

Assess composition
of program solution
using PASCAL
programming
notation

97%
(n = 58)

72%
(n = 63) 15.040 0.000** H0.2.1

ExCmpr

Assess
comprehension of
PASCAL program
solution extracts. the
variables ExMC and
ExQ3.

83%
(n = 50)

61%
(n = 54) 8.240 0.004** H0.2.1

* significant where p < 0.05
** significant where p < 0.01

Table 7.16: χ2-test Computed Values : Full Complement of Participants

CHAPTER 7: RESULTS OF INVESTIGATION

223

High Risk Stratum

Table 7.17 presents only the independent variables that exhibit significant differences

in proportions (p < 0.05) for the high risk stratum of participants for each of the

experimental groups. The comprehensive results of the χ2-test for homogeneity of

proportions for all 28 independent variables for the high risk strata of the experimental

groups appear in Appendix L.

The results of the χ2-test for homogeneity of proportions on the high risk stratum

samples verify that there are significant differences (p < 0.05) in 7 of the 28 variables

(Appendix L). Of these 7 variables, 5 variables (indicated by **) show stronger

significance at the 99% level of significance (p < 0.01).

Table 7.17 lists the variables that show evidence of significance in the high risk

stratum sample, together with a brief description of each variable’s aim within the

scope of the administered assessment materials (Section 6.2.2). Table 7.17 also

specifies the hypotheses which are rejected as a result of the observed significance.

Based on the computed χ2-test statistics, it can be concluded that with respect to the

full sample of participants in the treatment and control groups, hypothesis H0.2 cannot

be rejected except in the cases of the 7 variables appearing in Table 7.17. In the cases

of these variables it is therefore concluded at the 95% level of significance that the

throughput achieved by the high risk stratum of participants in the experimental

groups in an introductory programming course is dependent on programming notation

and development environment.

CHAPTER 7: RESULTS OF INVESTIGATION

224

Throughput Rate

Variable Aim Treatment
Group
(n = 12)

Control
Group
(n = 13)

χ2-test
statistic p-value

Hypothesis
Rejected

(Table 6.3)

Pr2Q3

Assess composition
of program solution
using programming
notation and
programming
development
environment of
choice (either B# or
Delphi™ Enterprise)

75%
(n = 9)

15%
(n = 2) 9.000 0.003** H0.2.2.4

Pr2Q4

Assess composition
of program solution
using PASCAL
syntax in Delphi™
Enterprise

67%
(n = 8)

8%
(n = 1) 9.420 0.002** H0.2.2.2

Pr2Tot

Average measure of
performance
achievement in
practical assessment.

75%
(n = 9)

15%
(n = 2) 9.000 0.003** H0.2.2

Class

Average measure of
performance
achievement in
respect of weighted
averages of pen-and-
paper and practical
assessments (Section
6.2.1).

75%
(n = 9)

8%
(n = 1) 11.779 0.003** H0.2.3

ExQ2

Assess composition
of program solution
using PASCAL
programming
notation

92%
(n = 11)

38%
(n = 5) 7.667 0.006** H0.2.1

ExQ5

Assess composition
of program solution
using PASCAL
programming
notation

42%
(n = 5)

8%
(n = 1) 3.949 0.047* H0.2.1

Final

Average measure of
performance
achievement in
respect of weighted
averages of class
mark and final exam
mark (Section 6.2.1).

67%
(n = 8)

23%
(n = 3) 4.810 0.028* H0.2.4

* significant where p < 0.05
** significant where p < 0.01

Table 7.17: χ2-test Computed Values : High Risk Stratum

CHAPTER 7: RESULTS OF INVESTIGATION

225

Medium Risk Stratum

Table 7.18 presents only the independent variable that exhibits a significant difference

in proportion (p < 0.05) for the medium risk stratum of participants for each of the

experimental groups. The comprehensive results of the χ2-test for homogeneity of

proportions for all 28 independent variables for the medium risk strata of the

experimental groups appear in Appendix L.

Number of Passes

Variable Treatment
Group
(n = 32)

Control
Group
(n = 60)

χ2-test
statistic p-value

ExQ2 97%
(n = 31)

75%
(n = 45) 6.951 0.008**

** significant where p < 0.01

Table 7.18: χ2-test Computed Values : Medium Risk Stratum

The results of the χ2-test for homogeneity of proportions on the medium risk stratum

samples verify that there are significant differences (p < 0.05) in only 1 of the 28

variables (Appendix L). This variable (indicated by **) shows stronger significance

at the 99% level of significance (p < 0.01). The variable ExQ2 forms part of the pen-

and-paper final examination and assesses the composition of PASCAL programming

notation program solution extracts.

Based on the computed χ2-test statistic, it can be concluded that with respect to the

medium risk stratum sample of participants in the treatment and control groups,

hypothesis H0.2 cannot be rejected except in the case of the identified variable. In the

case of this variable, hypothesis H0.2.1 is rejected. It is therefore concluded at the 95%

level of significance that the throughput for this variables is dependent on

programming notation and development environment.

Low Risk Stratum

Table 7.19 presents only the independent variable that exhibits a significant difference

in proportion (p < 0.05) for the low risk stratum of participants for each of the

experimental groups. The comprehensive results of the χ2-test for homogeneity of

CHAPTER 7: RESULTS OF INVESTIGATION

226

proportions for all 28 independent variables for the low risk strata of the experimental

groups appear in Appendix L.

Number of Passes

Variable Treatment
Group
(n = 15)

Control
Group
(n = 16)

χ2-test
statistic p-value

Th2Q2 31%
(n = 5)

73%
(n = 11) 5.490 0.019*

* significant where p < 0.05

Table 7.19: χ2-test Computed Values : Low Risk Stratum

The results of the χ2-test for homogeneity of proportions on the low risk stratum

samples verify that there is a significant difference (p < 0.05) in only 1 of the 28

variables (Appendix L). The variable (Th2Q2) forms part of the syntax based pen-

and-paper assessment. The variable assesses the composition of PASCAL

programming notation program solution extracts.

Based on the computed χ2-test statistics in Table 7.19, it can be concluded that with

respect to the low risk stratum sample of participants in the treatment and control

groups, hypothesis H0.2 cannot be rejected except in the case of the identified variable.

In the case of this variable, hypothesis H0.2.1 is rejected. It is therefore concluded at

the 95% level of significance that the throughput for this variable is dependent on

programming notation and development environment.

Besides the results of quantitative statistical techniques and test statistics presented in

this section, qualitative data analysis is also relevant to the current study. The results

of the analysis technique applicable to the qualitative analysis approach are presented

in the following section.

7.4 Qualitative Analysis

The qualitative analysis of data relevant to the current investigation that determines

the impact of a visual iconic programming notation and associated development

environment occurred concurrently with the qualitative data collection process. The

CHAPTER 7: RESULTS OF INVESTIGATION

227

data collection process consisted primarily of surveys and supplementary personal

interviews between participants and the author.

The qualitative analysis occurs in three distinct and independent areas, namely to

determine:

• treatment group participant attitude to weekly practical learning activities

(Section 7.4.1);

• treatment and control participant attitude to the programming notation(s) and

development environment(s) used (Section 7.4.2); and

• motivation for withdrawal from the investigation collected by means of the

conducting of supplemental interviews with treatment group participants who

voluntary withdrew from the study (Section 7.4.3).

The results of this section have been analysed using the technique of thematic

analysis. EXCEL (Microsoft Corporation 2002) is the data analysis tool used to assist

in the process.

7.4.1. Thematic Analysis of Weekly Practical Learning Activity

Qualitative data was collected on a weekly basis by means of practical learning

activity reflection surveys administered to participants in the treatment group only

(Appendix J). This data collection process took place during the majority of the 9

weekly practical learning activities that formed part of the treatment period (Figure

6.2).

The primary purpose of each survey was to determine the treatment group participant

attitude towards the programming notations and development environments being

used during practical learning activities. The surveys were administered on a weekly

basis in order to determine any trend or change in attitude as the treatment period

progressed.

CHAPTER 7: RESULTS OF INVESTIGATION

228

Each survey requested the participant to provide the name of the development

environment used to implement the program solution for the practical learning activity

of the previous week for which (s)he had free choice (Appendix C). The participant

was then requested to provide reasons for making the particular choice of

development environment.

Figure 7.2 illustrates a comparison of preferred development environment categorised

by programming development environment for each practical learning activity survey

conducted. Between 54 and 83 of the population of 96 potential participants in the

treatment group contributed to each of the weekly surveys.

Figure 7.2: Distribution of Preferred Development Environment

Each week, a number of the participants indicated that they were unable to complete

the surveyed practical task (label None in Figure 7.2). It is evident from Figure 7.2

that initially a greater number of participants preferred to implement program

solutions using B# (weeks 4 and 5). The reasons for the change in preference to

Delphi™ Enterprise are evident in the following thematic analysis of the reasons for

choosing the conventional PASCAL textual programming notation and associated

development environment over B#.

0%
10%
20%

30%
40%
50%
60%

70%
80%

B# Delphi None

Programming Development Environment

%
 P

ar
tic

ip
an

ts
 Week 4

Week 5

Week 7

Week 8

Week 9 (Task 3)

Week 9 (Task 4)

Week 9 (Task 5)

Week 10

CHAPTER 7: RESULTS OF INVESTIGATION

229

 Theme: Usability Theme: Motivation

Preferred
Instrument

(Section
6.2.2)

Sub-theme:

Easy to use

Sub-theme:

 Enhances
comprehension

Sub-theme:

 Extrinsic
motivation

Sub-theme:

Inaccessibility
Delphi™
Enterprise
(n = 23)

(35%; n = 8)

(30%; n = 7) Week 4

B#
(n = 39)

(85%; n = 33)

(26%; n = 10)

Delphi™
Enterprise
(n = 25)

(40%; n = 10)

(64%; n = 16)Week 5

B#
(n = 30)

(87%; n = 26)

(17%; n = 5)

Delphi™
Enterprise
(n = 38)

(47%; n = 18)

(55%; n = 21)Week 7

B#
(n = 23)

(74%; n = 17)

(17%; n = 4)

Delphi™
Enterprise
(n = 35)

(31%; n = 11)

(31%; n = 11)

Week 8
B#

(n = 13)

(54%; n = 7)

(23%; n = 3)

Delphi™
Enterprise
(n = 39)

(26%; n = 10)

(38%; n = 15)Week 9

(Task 3) B#
(n = 9)

(100%; n = 9)

Delphi™
Enterprise
(n = 37)

(27%; n = 10)

(41%; n = 15)Week 9

(Task 4) B#
(n = 12)

(92%; n = 11)

Delphi™
Enterprise
(n = 36)

(28%; n = 10)

(44%; n = 16)Week 9

(Task 5) B#
(n = 6)

(100%; n = 6)

(17%; n = 1)

Delphi™
Enterprise
(n = 51)

(41%; n = 21)

(31%; n = 16)

Week 10
B#

(n = 13)

(92%; n = 12)

(15%; n = 2)

Table 7.20: Thematic Analysis : Practical Learning Activities

CHAPTER 7: RESULTS OF INVESTIGATION

230

A total of 26 categories of responses were derived from the data collected from 8

surveys of the preferred programming notation and development environment used

during practical learning activities (Appendix J). These categories were refined to 7

sub-themes, one of which was designated as being a sub-theme to collect unexpected

responses. The other 6 sub-themes were further refined to 2 themes, namely

motivation and usability.

A summary of the thematic analysis of the data collected as a result of the surveys is

presented in Table 7.20. This summary shows only the most prominent themes and

sub-themes (denoted by a) that emerged for each of preferred programming

notation and development environments as the treatment period progressed. A

detailed analysis for each theme, sub-theme and category appears in Appendix J.

It should be noted that any particular participant, by means of a single survey

response, could contribute to the frequency count of multiple sub-themes and themes.

Multiple responses to the same sub-theme by a single participant in any particular

survey are, however, considered as a single distinct response to the relevant sub-

theme in the frequency counts shown in Table 7.20. The timing of the surveys

indicated by week identifiers in Table 7.20 corresponds to the description of the

procedure used to collect the data for the current investigation (Section 6.2.3 and

Table 6.2).

The most prominent theme emerging from participants who preferred to compose

program solutions using Delphi™ Enterprise was that of motivation, being

specifically extrinsic motivation (in 4 of the 8 surveys) and inaccessibility of the B#

programming notation and development environment (in 6 of the 8 surveys). As from

the third survey (week 7), responses included the fact that creating program solutions

in Delphi™ Enterprise was easier (in 6 of the 8 surveys), providing support for the

usability theme.

The “extrinsic motivation” sub-theme included responses related to the fact that the

PASCAL textual programming notation supported by Delphi™ Enterprise was used

in lecture learning activities and that this was the programming notation that would

CHAPTER 7: RESULTS OF INVESTIGATION

231

form the major portion of the final examination for the introductory programming

course.

The sub-theme of “inaccessibility” was due to the fact that many participants

preferred to complete their practical tasks off-campus and they were not in possession

of a personal copy of B#, whereas they had a personal copy of Delphi™ Enterprise at

their disposal.

As the treatment period progressed, a greater proportion of the participants elected to

create program solutions using Delphi™ Enterprise (Figure 7.2 and column Preferred

Instrument in Table 7.20). The theme of “usability” reasons cited for this included

that the development environment was easy to use since it was not as rigid as B#.

Delphi™ Enterprise grew in popularity towards the end of the treatment period at the

stage when the creation of user defined functions and procedures were being

practiced. The reason cited was that B# was cumbersome in this regard.

B# was consistently cited as being easy to use (in all 8 surveys) and described as a

development environment that assisted in the comprehension of programming

constructs (in 6 of the 8 surveys), highlighting a theme of usability.

In order to determine the attitude of all participants in both the treatment and control

groups towards the presented programming notations and development environments,

data was collected from a further survey and qualitatively analysed. The thematic

analysis of this independent survey is presented in the next section.

7.4.2. Thematic Analysis of General Evaluation of Programming Notation and
Development Environment

A single survey to evaluate the attitude of participants to each of the programming

notations and development environments was administered to participants in both

experimental groups (Appendix K). This data collection process took place once

during a lecture learning activity approximately 6 weeks into the treatment period

(Figure 6.2). The pen-and-paper based survey was administered by the author in a

fashion that encouraged the participants to respond as comprehensively as possible.

CHAPTER 7: RESULTS OF INVESTIGATION

232

The survey consisted of 7 distinct questions (Table 7.21), with 3 of them being

administered to participants of the treatment group only.

Survey Question Experimental group
Q1: If you had the option to do the entire course, lectures and exams

included, using only one of B# or Delphi, which would you
choose? Give reasons for your answer.

Treatment and
Control

Q2: How did you experience solving practicals in B#? Treatment

Q3: How did you experience solving practicals in Delphi? Treatment and
Control

Q4: What did you specifically like and dislike about solving
practicals in B#? Treatment

Q5: What did you specifically like and dislike about solving
practicals in Delphi?

Treatment and
Control

Q6: In what ways do you feel that using B# benefited and/or
hindered you while doing your practicals? Treatment

Q7: In what ways do you feel that using Delphi benefited and/or
hindered you while doing your practicals?

Treatment and
Control

Table 7.21: Programming Notation and Development Environment Survey Questions

A total of 77 treatment group and 116 control group participants participated in the

survey. The purpose of each question in the survey and the thematic analysis of the

responses recorded are presented in this section.

Question 1

The purpose of the first question of the survey is to determine whether the participants

of an experimental group had a preference for any particular programming notation

and associated development environment. Of the 77 treatment group participants, 28

(36%) indicated that B# was their preferred environment. The remaining treatment

group participants preferred Delphi™ Enterprise (n = 49).

A total of 27 categories of responses were derived as being reasons for the preference

of a particular programming notation and development environment (Appendix K).

These categories were refined to 9 sub-themes, one of which was designated as being

a sub-theme to collect unexpected responses. The other 8 sub-themes were further

refined to 2 themes, namely motivation and usability.

CHAPTER 7: RESULTS OF INVESTIGATION

233

A summary of the thematic analysis of the responses collected from treatment group

participants (n = 77) for Question 1 (Table 7.21) appears in Table 7.22. This

summary shows only the most prominent theme and sub-themes that emerge from the

analysis of the responses collected for this question. A detailed analysis for these and

the other theme, sub-themes and categories appears in Appendix K.

 Theme: Usability

Preferred
Instrument

(Section 6.2.2)

Sub-theme:

Easy to use

Sub-theme:

 Enhances
comprehension

Sub-theme:

Restricted
functionality of B#

Delphi™ Enterprise
(n = 49)

(49%; n = 24)

(43%; n = 21)
B#

(n = 28)

(79%; n = 22)

(64%; n = 18)

Table 7.22: Thematic Analysis : Question 1

The most prominent theme emerging from treatment group participants who selected

Delphi™ Enterprise was that of usability, being specifically ease of use and

restricted functionality of B#. A major reason for treatment group participants

preferring Delphi™ Enterprise to B# is due to the restricted functionality of B#,

especially with respect to the manner in which sub-routine implementation is

supported (Table 7.22). The most prominent theme emerging from treatment group

participants who selected B# was also that of usability, being specifically ease of use

and that B# enhances comprehension of programming concepts.

Of the 116 control group participants surveyed, a small proportion (5%; n = 6)

indicated the B# is their preferred programming notation and development

environment. Furthermore, 37% (n = 43) of the responses indicated that the

respondent has at least discussed B# with a third party, with some of the responses

indicating definite independent experimentation with B# (Appendix K).

Question 2

The second question of the survey attempted to discover the manner in which

treatment group participants experienced using B#. A total of 45 categories of

CHAPTER 7: RESULTS OF INVESTIGATION

234

responses were derived (Appendix K). These categories were refined to 8 sub-

themes, one of which was designated as being a sub-theme to collect unexpected

responses. The other 7 sub-themes were further refined to 2 themes, namely

motivation and usability.

A summary of the thematic analysis of the responses collected from treatment group

participants (n = 77) for Question 2 (Table 7.21) appears in Table 7.23. This

summary shows only the most prominent themes and sub-themes that emerge from

the analysis of the responses collected for this question. The summary is analysed in

terms of the preferred programming notation and development environment as

indicated by the data collected in Question 1. A detailed analysis for these themes,

sub-themes and categories appears in Appendix K.

 Theme: Usability Theme: Motivation

Preferred
Instrument

(Section 6.2.2)

Sub-theme:

Easy to use

Sub-theme:

Restricted
functionality of B#

Sub-theme:

 Intrinsic motivation
Delphi™ Enterprise

(n = 49)

(53%; n = 26)

(55%; n = 27)
B#

(n = 28)

(64%; n = 18)
(43%; n = 12)

Table 7.23: Thematic Analysis : Question 2

The most prominent theme emerging from treatment group participants who selected

Delphi™ Enterprise was that of usability, being again specifically ease of use and

restricted functionality of B# (Table 7.23). Two prominent themes emerge from

treatment group participants who selected B#. These are usability (specifically ease

of use) and motivation (intrinsic). These respondents enjoyed using B# and found

that their programs worked more often resulting in a sense of achievement.

Question 3

The third question of the survey attempted to discover the manner in which all

participants experienced using Delphi™ Enterprise. A total of 44 categories of

responses were derived (Appendix K). These categories were refined to 7 sub-

CHAPTER 7: RESULTS OF INVESTIGATION

235

themes, one of which was designated as being a sub-theme to collect unexpected

responses. The other 6 sub-themes were further refined to 2 themes, namely

motivation and usability.

A summary of the thematic analysis of the responses collected from treatment group

(n = 77) and control group (n = 116) participants for Question 3 (Table 7.21) appears

in Table 7.24. This summary shows only the most prominent themes and sub-themes

that emerge from the analysis of the responses collected for this question. The

summary for treatment group participants is analysed in terms of the preferred

programming notation and development environment as indicated by the data

collected in Question 1. A detailed analysis for these themes, sub-themes and

categories appears in Appendix K.

 Theme: Usability Theme: Motivation

Preferred
Instrument

(Section 6.2.2)

Sub-theme:

Easy to use

Sub-theme:

Difficult to
use

Sub-theme:

Not visual

Sub-theme:

 Intrinsic motivation

Delphi™
Enterprise
(n = 49)

(35%; n = 17)

(45%; n = 22)

T
re

at
m

en
t

B#
(n = 28)

(68%; n = 19)

(29%; n = 8)

C
on

tr
ol

Delphi™
Enterprise
(n = 116)

(45%; n = 52)

(34%; n = 39)

Table 7.24: Thematic Analysis : Question 3

The most prominent themes emerging from treatment group participants (Table 7.24),

regardless of the preferred programming notation and development environment, were

that of usability (Delphi™ Enterprise is difficult to use, but is intrinsically

motivating). A single prominent theme emerges from control group participants.

This theme is usability (specifically ease of use and the fact that Delphi™ Enterprise

is textual and not visual).

CHAPTER 7: RESULTS OF INVESTIGATION

236

Questions 4 and 6

Questions 4 and 6 determine specific favouritisms and aversions (Question 4), as well

as benefits and hindrances (Question 6) to treatment group participants when using

B#. A total of 27 categories of responses were derived for Question 4 and 18

categories of responses for Question 6 (Appendix K). These categories were refined

to 11 sub-themes, one of which was designated as being a sub-theme to collect

unexpected responses. The remaining 10 sub-themes were further refined to 2

themes, namely motivation and usability.

 Question 4
 Positive responses Negative responses
 Theme: Usability Theme: Usability

Preferred
Instrument

(Section
6.2.2)

Sub-theme:

Easy to use

Sub-theme:

Enhances
comprehen-

sion

Sub-theme:

Reduced
level of detail

Sub-theme:

Restricted
functionality

of B#

Sub-theme:

Difficult to
implement
subroutines

Delphi™
Enterprise
(n = 49)

(24%; n = 12)

(47%; n = 23)

(51%; n = 25)

(10%; n = 5)

B#
(n = 28)

(43%; n = 12)

(36%; n = 10)

(43%; n = 12)

(25%; n = 7)

 Question 6
 Positive responses Negative responses
 Theme: Usability Theme: Motivation

Preferred
Instrument

(Section 6.2.2)

Sub-theme:

Easy to use

Sub-theme:

Enhances
comprehension

Sub-theme:

Extrinsic motivation
Delphi™
Enterprise
(n = 49)

(6%; n = 3)

(35%; n = 17)

(20%; n = 10)

B#
(n = 28)

(7%; n = 2)

(50%; n = 14)

(21%; n = 6)

Table 7.25: Thematic Analysis : Questions 4 and 6

A summary of the thematic analysis of the responses collected from treatment group

participants (n = 77) for Questions 4 and 6 (Table 7.21) appears in Table 7.25. This

summary shows only the most prominent themes and sub-themes, categorised as

positive (favouritisms/benefits) and negative (aversions/hindrances) responses for

CHAPTER 7: RESULTS OF INVESTIGATION

237

each question, that emerge from the analysis of the responses collected for this

question. The summary for treatment group participants is further analysed in terms

of the preferred programming notation and development environment as indicated by

the data collected in Question 1. A detailed analysis for these themes, sub-themes and

categories appears in Appendix K.

Treatment group participants who preferred Delphi™ Enterprise liked the fact that B#

was easy to use and assisted with the comprehension of programming concepts

(Table 7.25). Treatment group participants who preferred B# liked the fact that B#

reduced the level of detail required to be entered and that it assisted with the

comprehension of programming concepts. All treatment group participants disliked

B# for reasons of restricted functionality and difficult implementation of

subroutines. Furthermore, all treatment group participants felt that they benefited

from B# in that it was easy to use and assisted with the comprehension of

programming concepts. The major hindrance to treatment group participants is

identified as extrinsic motivation, being specifically that B# as a programming

notation and development environment is not examinable and is also not industry

related.

Questions 5 and 7

Questions 5 and 7 determine specific favouritisms and aversions (Question 5), as well

as benefits and hindrances (Question 7) to all participants when using Delphi™

Enterprise. A total of 32 categories of responses were derived for Question 5 and 26

categories of responses for Question 7 (Appendix K). These categories were refined

to 9 sub-themes, one of which was designated as being a sub-theme to collect

unexpected responses. The remaining 8 sub-themes were further refined to 2 themes,

namely motivation and usability.

A summary of the thematic analysis of the responses collected from treatment group

participants (n = 77) for Questions 4 and 6 (Table 7.21) appears in Table 7.26. This

summary shows only the most prominent themes and sub-themes, categorised as

positive (favouritisms/benefits) and negative (aversions/hindrances) responses for

each question, that emerge from the analysis of the responses collected for this

CHAPTER 7: RESULTS OF INVESTIGATION

238

question. The summary for treatment group participants is further analysed in terms

of the preferred programming notation and development environment as indicated by

the data collected in Question 1. A detailed analysis for these themes, sub-themes and

categories appears in Appendix K.

 Question 5
 Positive responses Negative responses
 Theme: Usability Theme: Usability

Preferred
Instrument

(Section
6.2.2)

Sub-theme:

Easy to use

Sub-theme:

Enhances
comprehen-

sion

Sub-theme:

Full
functionality

Sub-theme:

Difficult to use

Sub-theme:

Did not assist
with

comprehen-
sion

Delphi™
Enterprise
(n = 49)

 (24%; n = 12)

 (22%; n = 11)

 (37%; n = 18)

T
re

at
m

en
t

B#
(n = 28)

 (29%; n = 8)

(21%; n = 6)

 (54%; n = 15)

C
on

tr
ol

Delphi™
Enterprise
(n = 116)

 (28%; n = 33)

 (28%; n = 33)

 Question 7
 Positive responses Negative responses

 Theme: Usability Theme:
Motivation

Theme:
Usability

Theme:
Motivation

Preferred
Instrument

(Section
6.2.2)

Sub-theme:

Easy to use

Sub-theme:

Enhances
comprehen-

sion

Sub-theme:

Full
functionality

Sub-theme:

Extrinsic
motivation

Sub-theme:

Difficult to
use

Sub-theme:

Extrinsic
motivation

Delphi™
Enterprise
(n = 49)

 (12%; n = 6)

 (12%; n = 6)

 (20%; n = 10)

T
re

at
m

en
t

B#
(n = 28)

 (14%; n = 4)

 (21%; n = 6)

C
on

tr
ol

Delphi™
Enterprise
(n = 116)

 (16%; n = 19)

 (6%; n = 7)

Table 7.26: Thematic Analysis : Questions 5 and 7

Treatment group participants who preferred Delphi™ Enterprise liked the fact that

Delphi™ Enterprise was easy to use and assisted with the comprehension of

programming concepts (Table 7.26). Treatment group participants who preferred B#

liked the fact that Delphi™ Enterprise assisted with the comprehension of

CHAPTER 7: RESULTS OF INVESTIGATION

239

programming concepts and that it provided full functionality for programming

concepts. Control group participants liked the fact that Delphi™ Enterprise assisted

with the comprehension of programming concepts, yet at the same time responded

that Delphi™ Enterprise did not assist in this regard. All treatment group participants

disliked Delphi™ Enterprise because they found it difficult to use.

Treatment group participants who preferred B# (Table 7.26) felt that they benefited

from the full functionality of Delphi™ Enterprise, but were hindered by the fact that

it was the examinable programming notation and development environment (extrinsic

motivation). Treatment group participants who preferred Delphi™ Enterprise (Table

7.26) felt that they benefited from the fact that Delphi™ Enterprise was easy to use,

assisted in the comprehension of programming concepts and was examinable

(extrinsic motivation). Control group participants (Table 7.26) likewise felt that

Delphi™ Enterprise was assisted in the comprehension of programming concepts,

but at the same time felt that it was difficult to use.

On a subject voluntarily withdrawing as a participant of the treatment group, a

personal interview was conducted by the author to determine the motivations for

withdrawal. The patterns discovered as a result of these interviews are presented in

the following section.

7.4.3. Thematic Analysis of Personal Interviews

The proportion of the 96 participants in the treatment group who requested to

withdraw from the current investigation is computed to be approximately 11% (n =

11). Voluntary withdrawal was experienced as being sporadic, but tended to escalate

towards the end of the treatment period with the occurrence of impending final

assessments.

Thematic analysis of the personal interviews conducted during the early stages of the

treatment period determined that the participants who requested to withdraw from the

current study considered themselves to be experienced in the creation of program

solutions using a textual programming notation and associated development

environment.

CHAPTER 7: RESULTS OF INVESTIGATION

240

Typical responses elicited during the early interviews were:

“I did Delphi at school”

“I have taught myself how to program using …..(any of a number

of textual programming notations)”

Some participants did respond during these early interviews that they might have

found B# valuable if used during the early stages of the process of them learning to

program.

Thematic analysis of the personal interviews conducted during the later stages of the

treatment period determined that the participants who requested to withdraw from the

current study were experiencing stress associated with workload not necessarily

directly related to that of the introductory programming course.

Typical responses elicited during these interviews were:

“I don’t need to answer any B# question in the tests and exam”

“Working in two packages is a waste of time”

“I won’t be able to use B# when I get a job so I don’t need to

learn it now”

Another theme that emerged was that Delphi™ Enterprise was considered to be a

more stimulating development environment. A typical response that supported this

theme was:

“I enjoy using Delphi more because it challenges me”

In addition to the personal interviews, data for supplementary analysis relevant to the

current investigation was collected by means of a survey to determine the experience

of participants and tutors in terms of atmosphere in a particular practical learning

activity. The results of the analysis of these surveys are presented in the following

section.

CHAPTER 7: RESULTS OF INVESTIGATION

241

7.5 Supplementary Analysis

The survey (Appendix J) to determine participant and tutor experience of the

atmosphere in a practical learning activity was administered in week 8 (5th week of

the treatment) of the introductory programming course (Figure 6.2). Participants in

both the treatment and control groups were requested to respond, as well as tutors

facilitating the practical learning activities for each of the experimental groups. Table

7.27 categorises the positive and negative response values per survey item in the

survey administered to participants in both the treatment and control groups.

Survey Item
Positive
response

values

Negative
response

values
SI1: I enjoyed this practical learning activity

session 4, 5 1, 2

SI2: I feel that I have learnt something during this
practical learning activity session 4, 5 1, 2

SI3: I feel that I have achieved something this
practical learning activity session 4, 5 1, 2

Table 7.27:Participant Practical Learning Activity Atmosphere Survey

Results of a χ2-test for homogeneity of proportions for the experimental groups are

presented in Table 7.28. The results verify that there are no significant differences (p

< 0.05) in the way that treatment group and control group participants perceive the

atmosphere in a practical learning activity session.

Proportion of Positive Responses Survey
Item Treatment Group

(n = 60)
Control Group

(n = 88)

χ2-test
statistic p-value

SI1 33% 40% 1.060 0.304
SI2 62% 62% 0.000 1.000
SI3 57% 50% 0.980 0.321

Table 7.28: χ2-test Computed Values : Participant Practical Learning Activity
Atmosphere Survey

Table 7.29 categorises the positive and negative response values per survey item in

the survey administered to tutors of both the treatment and control groups. Results of

a χ2-test for homogeneity of proportions for the tutors of the experimental groups are

presented in Table 7.30. The results verify that there are significant differences (p <

CHAPTER 7: RESULTS OF INVESTIGATION

242

0.05) in the way that treatment group and control group tutors perceive the

atmosphere in a practical learning activity session.

Survey Item
Positive
response

values

Negative
response

values
TI1: Most of my assistance seemed to be on the

programming environment and not on
programming problems

1, 2 4, 5

TI2: I felt constructive when I assisted the students 4, 5 1, 2
TI3: The general atmosphere in the laboratory was

calm 4, 5 1, 2

TI4: I enjoyed assisting during this practical
session 4, 5 1, 2

TI5: I feel that the students managed the practical
and were productive 4, 5 1, 2

Table 7.29:Tutor Practical Learning Activity Atmosphere Survey

Proportion of Positive Responses Survey
Item Treatment Group Control Group

χ2-test
statistic p-value

TI1 67% 45% 9.820 0.002 **
TI2 78% 82% 0.500 0.480
TI3 67% 64% 0.200 0.655
TI4 89% 91% 0.220 0.637
TI5 44% 27% 6.310 0.012 *

* significant where p < 0.05
** significant where p < 0.01

Table 7.30: χ2-test Computed Values : Tutor Practical Learning Activity
Atmosphere Survey

Tutors in the control group experienced that much of their time while facilitating the

practical learning activity was consumed in solving problems related to Delphi™

Enterprise in the program domain rather than in the problem domain. A significantly

larger proportion of the treatment group tutors responded that they experienced that

the students being facilitated managed the practical tasks set and that the students

were productive. These students used B# concurrently with Delphi™ Enterprise

during practical learning activities.

CHAPTER 7: RESULTS OF INVESTIGATION

243

7.6 Conclusion

In acknowledgement of the risk associated with small sample sizes, the strata as

defined in Chapter 6 (Definitions 6.1 and 6.2) are consolidated and modified to

incorporate only three discrete logical strata, namely a high risk, medium risk and low

risk strata (Table 7.3). High risk participants are those who have been predicted as

being low-ability achievers (or at risk of being successful) in terms of academic

performance in an introductory programming course at UPE.

All subsequent quantitative analysis was applied to the treatment and control groups

as full complements as well as to each of the comparative identified logical strata

within each experimental group. A total of 4 statistical tests are thus performed per

statistical testing technique. Qualitative analysis was applied to the treatment and

control groups as independent samples.

A total of 118 introductory programming students participated for the entire duration

of the study associated with the quantitative analysis of data, 59 in the treatment group

and 59 in the control group. For each experimental group, 12 were identified as being

high risk (with a predicted final mark of 41% – 50%), 32 medium risk (with a

predicted final mark of 51% – 65%) and 15 low risk (with a predicted final mark of >

65%). A similar demographic and academic profile existed amongst participants in

each of the treatment and control groups (Tables 7.4, 7.5 and 7.6).

The elimination of bias in respect of course instructor and demographical profile

between the treatment and control experimental groups (Tables 7.4, 7.5 and 7.6)

serves to reinforce the foundation of academic performance achievement and

motivational profile on which the current study focuses.

The computed correlation between the predicted final marks and the observed final

marks for both the treatment and control groups (Table 7.9) confirms the existence of

a strong association as previously determined in related work (Section 4.3). No

significant variation from the predicted average final mark was observed for

participants in the treatment group. It was however observed that participants in the

CHAPTER 7: RESULTS OF INVESTIGATION

244

control group performed significantly worse than expected in all strata, including the

full complement of participants but excluding the low risk stratum (Table 7.10).

A significant variation between the predicted and observed throughput was evident in

the treatment group for only the medium risk stratum (Table 7.15). Similar

significance was observed for both the full complement and medium risk stratum in

the control group. The treatment group participants recorded a throughput of 75%,

achieving the recommended target.

 Full
Complement High Risk Medium

Risk Low Risk Distinct
variables

Treatment
group

14%
(n = 4)

32%
(n = 9)

4%
(n = 1)

0%
(n = 0)

39%
(n = 11) t-test Control

group
0%

(n = 0)
0%

(n = 0)
0%

(n = 0)
4%

(n = 1)
4%

(n = 1)
Treatment
group

21%
(n = 6)

25%
(n = 7)

4%
(n = 1)

0%
(n = 0)

36%
(n = 10) χ2-test Control

group
0%

(n = 0)
0%

(n = 0)
0%

(n = 0)
4%

(n = 1)
4%

(n = 1)
Treatment
group

21%
(n = 6)

36%
(n = 10)

7%
(n = 2)

0%
(n = 0)

46%
(n = 13) Distinct

variables Control
group

0%
(n = 0)

0%
(n = 0)

0%
(n = 0)

7%
(n = 2)

7%
(n = 2)

Table 7.31: Frequency of significant variables per strata and experimental group

A total of 28 independent variables were identified as being relevant to the

quantitative data analysis process of the current investigation (Table 7.7). Each

variable was categorised according to an in-depth level of learning characteristic

(Chapter 2), namely comprehension and/or composition of program solutions.

Statistically significant variations in measurements in the favour of the treatment

group were observed in a total of 13 of these variables (Table 7.31). The most

prominent incidences of observed statistically significant variations were evident in

the high risk stratum participants.

In the high-risk stratum, 36% (n = 10) of the independent variables were observed to

exhibit statistically significant variations (Table 7.12 and Table 7.17). Incidences of

observed statistically significant variations were also evident in the other strata as well

as on the experimental groups as full complements, but to a lesser degree.

CHAPTER 7: RESULTS OF INVESTIGATION

245

The observed statistically significant variations in the high risk strata were evident in

both the pooled-variance two-tailed t-test for the testing of the differences between

average marks obtained, as well as the χ2-test for testing the equality of observed

throughput.

High Risk Stratum : Predicted Mark Range 41% - 50%
t-test measures χ 2-test measures

Variable Analysis
Category

B#
Mean

(n = 59)

DE
Mean

(n = 59)
p-value

B#
Through-

put
(n = 12)

DE
Through-

put
(n = 13)

p-value

Pr2Q1

Comprehension
using textual
programming
notation syntax

54% 30% 0.015 *

Pr2Q3

Composition
using
individual
choice of
programming
notation

60% 20% 0.001 ** 75%
(n = 9)

15%
(n = 2) 0.003 **

Pr2Q4

Composition
using textual
programming
notation

56% 16% 0.002 ** 67%
(n = 8)

8%
(n = 1) 0.002 **

Pr2Tot Intermediary
practical total 57% 22% 0.001 ** 75%

(n = 9)
15%

(n = 2) 0.003 **

Class Class mark
(Section 6.2.1) 52% 36% 0.005 ** 75%

(n = 9)
8%

(n = 1) 0.001 **

ExQ2 Composition 71% 53% 0.034 * 92%
(n = 11)

38%
(n = 5) 0.006 **

ExQ3 Comprehension 29% 8% 0.006 **
ExQ4 Composition 44% 13% 0.006 **

ExQ5 Composition 42%
(n = 5)

8%
(n = 1) 0.047 *

Final Final mark
(Section 6.2.1) 51% 39% 0.017 * 67%

(n = 8)
23%

(n = 3) 0.028 *

* significant where p < 0.05 Key to abbreviation
** significant where p < 0.01 DE Delphi™ Enterprise

Table 7.32: Significant Variables : High Risk Stratum

As a result of the computed t-test statistics, it can be concluded that in the case of the

identified independent variables for the high risk strata of participants (Table 7.32),

hypothesis H0.1 (Section 6.3.1 and Figure 6.3) is rejected. The implication is that for

these variables, the average mark achieved by the participants is found to be

dependent on programming notation and development environment. The average

CHAPTER 7: RESULTS OF INVESTIGATION

246

marks measured in these variables for high risk participants in the treatment group

significantly exceeded the average marks measured for high risk participants in the

control group (p < 0.05).

Results of the computed χ2-test statistics lead to the conclusion that in the case of the

identified independent variables (Table 7.32), hypothesis H0.2 (Section 6.3.1 and

Figure 6.3) is rejected. The implication is that the observed throughput is found to be

dependent on programming notation and development environment. The observed

throughput in these variables for high risk participants in the treatment group

significantly exceeded the observed throughput for high risk participants in the control

group (p < 0.05).

In terms of the results summarised in Table 7.32, the hypothesis H0 (Section 6.3.1 and

Figure 6.3) is thus rejected for the variables Pr2Q3, Pr2Q4, Pr2Tot, Class, ExQ2

and Final. For these variables, the empirical study has shown that academic

performance for high risk students in an introductory programming course is

dependent on programming notation and development environment. The academic

performance measured in these variables for high risk participants in the treatment

group significantly exceeded the academic performance measured for high risk

participants in the control group (p < 0.05).

Qualitative analysis deduced that the most prominent themes emerging from

participants who preferred to create program solutions using B# were that B# is easy

to use and assists in the comprehension of programming constructs (Table 7.20). The

themes emerging most prominently amongst participants who preferred to use

Delphi™ Enterprise in the creation of program solutions related to the perceived

inaccessibility of B# and extrinsic motivation. Participants often motivated their

preference for Delphi™ Enterprise in terms of its support for the PASCAL textual

programming notation that is examinable and is referred to regularly in the lecture

learning activities of the introductory programming course at UPE. The same

tendency was apparent in the thematic analysis of a survey to determine treatment and

control group participant attitude to each of the programming notations and

development environments (Tables 7.22 – 7.26).

CHAPTER 7: RESULTS OF INVESTIGATION

247

Supplementary qualitative analysis of a survey administered to practical learning

activity tutors concludes that much of the tutors’ time during control group practical

learning activity sessions is dedicated to answering questions related to the Delphi™

Enterprise development environment (Table 7.30). The tutors also felt that B#

students managed the practical tasks and were productive. This opinion differed

significantly from that expressed by tutors of the control group practical learning

activities.

The observed statistically significant variations in measured performance in favour of

B#, as well as the emerging themes resulting from thematic analysis of surveys

administered, support the finding that the use of the B# iconic programming notation

and development environment is beneficial to novice programmers, especially those

who have been identified as being low-ability achievers in terms of academic

performance.

248

Chapter 8

Interpretation of Results

8.1 Introduction

Previous studies in the use of flowcharts and iconic programming notations in an

introductory programming course have demonstrated benefits to novice programmers

in terms of increased accuracy in the composition of program solutions (Pandey et al.

1993; Calloni et al. 1997; Crews 2001; McIver 2001; Carlisle et al. 2004). The

volume of available literature on different categories of experimental programming

notations and development environments40, however, suggests that no single category

of experimental programming notation has been widely adopted for use as

technological support in the learning environment of an introductory programming

course. The categories of experimental programming notations and development

environments reviewed in Chapter 3 also do not comprehensively satisfy the

framework of novice programmer requirements for such technological support as

determined from the literature study documented in Chapter 2.

40 (Bonar et al. 1990; Lyons et al. 1993; Calloni et al. 1994, 1995; Studer et al. 1995; Liffick et al.

1996; Calloni et al. 1997; Cockburn et al. 1997; Crews et al. 1998; Blackwell et al. 1999a; Good
1999; Cooper et al. 2000; Garner 2000; Blackwell 2001; Dagiano et al. 2001; Materson et al. 2001;
Navarro-Prieto et al. 2001; Chamillard et al. 2002; De Raadt et al. 2002; Fergusson 2002; Quinn
2002; Burrell 2003)

CHAPTER 8 : INTERPRETATION OF RESULTS

249

Furthermore, documented evidence of scientific experimental verification in the use

of experimental programming notations and development environments in an

introductory programming course is lacking. Consequently, B#, a visual iconic

programming notation incorporating a flowchart program solution representation for

program solution composition, has been developed.

Evidence of B# support for the framework of novice programmer requirements for

technological support in the learning environment of an introductory programming

course is apparent for 6 of the 8 requirements (Chapter 5). The specific requirements

met by the design and implementation of B# are sumarised in Table 8.1 (duplicated

from Table 5.4). The methodology for determining B#’s support for the remaining 2

requirements (R3 and R8) is presented in Chapter 6.

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found at
the superficial learning level of the program domain

(Section 8.2.1)

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

(Section 8.2.2)

R3: Increase in level of motivation when using the programming
notation

To be determined
by the current

study
(Section 8.3.2)

R4: Designed specifically for use by novice programmers
(Section 8.2.3)

R5: Provision of visual techniques to aid comprehension process
at the in-depth learning level of the program domain

(Section 8.2.4)

R6: Support for reduced mapping between the problem and
program domains

(Section 8.2.5)

R7: Increased focus on problem-solving
(Section 8.2.6)

R8: Increase in novice programmer performance achievement
measured in terms of higher level of accuracy in program
solutions in program domain

To be determined
by the current

study
(Section 8.3.3)

Table 8.1: Support for Novice Programmer Requirements by B#

CHAPTER 8 : INTERPRETATION OF RESULTS

250

Chapter 7 presents a quantitative comparative analysis of measures and qualitative

thematic analysis in order to make statistical decisions with regard to the hypotheses

formulated in Chapter 6. These hypotheses relate to the determining of whether

observed performance achievements and motivation for participants in the study are

independent of programming notation and development environment.

The results reported on in Chapter 7 identify 13 of the 28 variables (Table 7.31) as

showing statistically significant variations in measured performance (p < 0.05). The

preliminary findings are that the observed statistically significant variations in

measured performance in favour of B#, as well as the emerging themes resulting from

thematic analysis of surveys conducted, support the finding that the use of the B#

visual iconic programming notation and development environment is beneficial to a

specific class of novice programmers (Table 7.32). This class of novice programmers

are those who have been identified by means of a validated computerised selection

battery as being low-ability achievers in terms of academic performance in an

introductory programming course (Greyling 2000; Greyling et al. 2002; Greyling et

al. 2003).

Comprehensive support by B# for all of the novice programmer requirements

identified in Chapter 2 would be indicative of B# being classified as a successful

technological learning environment in an introductory programming course. The

focus of this chapter is consequently on the comprehension and evaluation of the

design and implementation decisions made during the development of B# (Chapter 5)

as well as the application of the investigative methodology (Chapters 6 and 7) in

terms of the focus of the current investigation. The following objectives of this study

are addressed by this chapter (Table 1.1):

• to argue the suitability of B# as a programming notation and development

environment for novice programmers;

• to deliberate on the performance achievement level of novice programmers

depending on the technological learning environment exposed to; and

CHAPTER 8 : INTERPRETATION OF RESULTS

251

• to determine the impact of a specific category of programming notation and

development environment (iconic versus textual) on novice programmer

motivation in an introductory programming course at tertiary level.

The chapter argues that B# supports all of the novice programmer requirements as

determined in Chapter 2. Support for novice programmer requirements at the design

and implementation level is argued from the findings presented in Chapter 5 (Section

8.2). The results presented in Chapter 7 form the basis for the argument in support of

the novice programmer requirements with regard to the level of motivation and

academic performance achievement (Section 8.3). The implications of the findings

presented suggest significant theoretical (Section 8.4) and instructional benefits

(Section 8.5) for novice programmers.

8.2 Evidence of Novice Programmer Requirements Support in B#
Design and Implementation

The total cognitive load on a novice programmer in an introductory programming

course can be minimised by addressing the extraneous cognitive load (Garner 2001).

Extraneous cognitive load is reduced by a programming notation and development

environment being sensitive to the manner in which novice programmers function in

the program domain. In response to this challenge, B# was developed not to replace

conventional textual programming notations, but to complement them in an integrated

visual development environment in an attempt to enhance the learning experience in

an introductory programming course.

The development of the B# visual iconic programming notation and development

environment is influenced by the novice programmer requirements identified from an

extensive review of available literature and presented in Chapter 2. This section

argues support for each of the novice programmer requirements R1, R2 and R4 – R7

(Table 8.1) in terms of the discussion on the design and implementation of B#

appearing in Chapter 5.

CHAPTER 8 : INTERPRETATION OF RESULTS

252

8.2.1 Requirement R1: Elimination of finer implementation details at superficial
level of learning

The reduction of the level of detail at the superficial level of learning (R1 in Table

8.1) is supported by a programming notation supporting a small set of foundation

constructs. B# provides support for the sequence, selection, iteration and variable

programming constructs (Section 5.3.1), as recommended in available literature41.

Furthermore, program solutions in B# are composed using a flowchart representation,

which typically support minimal syntax (Crews 2001; McKinney 2003). The

flowchart representation of B# comprises of connected icons, each one associated

with a distinct programming construct (Section 5.3.4). The icon dialogue feature of

B# provides for the implementation of error free programming constructs (Section

5.3.6). In this way, support is provided for a minimum number of unproductive errors

(Cockburn et al. 1997; McIver 2000). Elimination of the finer implementation details

is further enhanced by B# with a feature that associates multiple statements of a

conventional textual programming notation with a single icon in the corresponding

flowchart program solution representation.

8.2.2 Requirement R2: Increased level of program solution comprehension at the in-
depth level of learning

Technological support in the program domain that shows the program solution and

execution thereof in an integrated fashion enhances the level of program solution

comprehension at the in-depth level of learning (Wright et al. 2000). B# supports this

requirement by means of its tracing facility (Section 5.3.5).

Further support for increased comprehension of program solutions is with the

application of secondary notation to encourage the transfer of programming

knowledge42. B# integrates multiple concurrent representations of a program

solution, one in the form of an iconic flowchart and the other in the form of an

equivalent textual programming notation, applying appropriate techniques of

secondary notation in both forms of the program solution (Section 5.3.5).

41 (Mayer 1981; Shu 1985; Brusilovsky et al. 1994; Calloni 1998; Blackwell et al. 2000; McIver 2000;

Howell 2003; Warren 2003)
42 (Cant et al. 1995; Hendrix et al. 1998; Blackwell et al. 2000; Lister 2000; Applin 2001)

CHAPTER 8 : INTERPRETATION OF RESULTS

253

8.2.3 Requirement R4: Designed specifically for use by novice programmers

Related studies in programming have determined that the control flow paradigm is the

preferred programming paradigm of novice programmers43. This programming

paradigm is naturally supported by the flowchart representation of a program solution

in B# (Section 5.3.4).

Furthermore, B# is used in a learning environment that applies flowcharts in the

solving of problems prior to the learning of programming constructs. Novice

programmers are thus familiar with the flowcharting technique. This is in accordance

with the findings of related studies in programming that have determined that prior

experience impacts on the level of success of technological support in an introductory

programming course (Chang et al. 1999; Wright et al. 2000). Other studies have

determined that the use of unfamiliar terminology is one of the major impediments in

an introductory programming course (Perkins et al. 1988; Pane et al. 2000). In

response to these findings, B# uses the familiar flowcharting terminology in the

composition of program solutions (Section 5.3.4).

Related studies in programming also recommend the technique of scaffold learning to

be supported by technological support for novice programmers in an introductory

programming course (De Koning et al. 2000; Wright et al. 2000). B# supports this

recommendation with the implementation of menu picking as well as the typing in of

data in icon dialogues (Section 5.3.6).

8.2.4 Requirement R5: Provision of visual techniques to aid comprehension process
at the in-depth level of learning

Students of introductory programming courses have been categorised as being visual

learners (Felder 1993; Chamillard et al. 2002; Felder 2002). This categorisation is

confirmed by the observation that visual images feature prominently in novice

programmer solutions to programming problems44. In accordance with these findings,

43 (Adelson 1984; Corritore et al. 1991; Good et al. 1999; Good 1999; Oberlander, Brna et al. 1999;

Oberlander, Cox et al. 1999; Chattratichart et al. 2000, 2002)
44 (Mayer 1981; Mayer et al. 1986; Shih et al. 1993; Dillon et al. 1994; Cockburn et al. 1997; Green

1997; Astrachan 1998; Ginat 2001; Pane et al. 2001)

CHAPTER 8 : INTERPRETATION OF RESULTS

254

the primary visual feature of B# is that of the representation of program solutions by

means of a flowchart of iconic images (Section 5.3.4).

The purpose of each icon is to indicate the presence of a particular programming

construct within a program solution (Dale 1998; Blackwell et al. 2000; Blackwell et

al. 2001; Chang et al. undated). Special attention was paid during the design and

implementation of B# to the selection of an appropriate and meaningful icon

representation for each distinct programming construct (Section 5.3.3).

Other visual techniques recommended in technological support in the learning

environment of an introductory programming course include:

• multiple representations of program solutions (Cockburn et al. 1997;

Blackwell et al. 2000; Wright et al. 2000, 2002);

• the exposure to high-quality examples of program solutions (Fincher 1999;

Kolling et al. 2001);

• implementation of secondary notation to enhance the purpose of program

solutions (Kernighan et al. 1974; Soloway et al. 1982);

• association of textual programming notation extract with appropriate iconic

image (Mayer 1981; Astrachan 1998; Howell 2003); and

• to restrict the choices available in the development environment (Pane et al.

2002).

B# supports the juxtaposibility feature by presenting alongside one another multiple

mutually consistent versions of the same program solution, one in a visual iconic

form and the other in the form of a conventional textual programming notation

(Section 5.3.5). The latter form of program solution is always an example that

illustrates good textual programming notation practice in terms of syntax,

semantics, structure and style. The use of secondary notation is incorporated to

enhance the readability of the textual programming notation program solution.

Code-highlighting is used in B# to associate textual programming notation

extracts with the equivalent icon in the flowchart program solution (Section 5.3.5).

CHAPTER 8 : INTERPRETATION OF RESULTS

255

This encourages the “chunking” and recognition of the associated textual

programming notation extract for the transfer of textual programming notation

programming knowledge. Furthermore, the B# programming development

environment makes use of context-sensitive views to guide the novice programmer

to make accurate and appropriate choices while functioning in the program

domain (Section 5.3.5). The appropriate design and implementation of B#’s visual

capabilities therefore aid the comprehension of program solutions at the in-depth level

of learning.

8.2.5 Requirement R6: Reduced mapping between the problem and program
domains

Reduction of the cognitive load resulting from the association of the mental model of

a solution in the problem domain to one in the program domain is recommended by

support for the visualisation of the actual program solution behaviour (Wright et al.

2002). B# supports this requirement with the multiple representations of a program

solution (iconic and textual programming notations) as well as by means of the tracing

facility (Section 5.3.5).

Furthermore, the programming paradigm supported by B#’s programming notation,

namely that of control flow, matches the procedural programming paradigm required

by the curriculum of the introductory programming course offered by UPE. In this

way, the mental model of solutions to problems presented in the introductory

programming course is closely mapped to the representation of program solutions in

B#.

8.2.6 Requirement R7: Increased focus on problem-solving

Technological support in the learning environment of an introductory programming

course is required to focus on problem-solving (Calloni et al. 1994; Calloni 1998;

McIver 2000; Wright et al. 2002; Sanders et al. 2003a, b). B# supports this

requirement with the elimination of mundane syntactical issues typically required by

textual programming notations (Section 5.3.6).

CHAPTER 8 : INTERPRETATION OF RESULTS

256

Further support evident in B# is the animation of program solutions by means of the

tracing feature (Section 5.3.5). In this way, the solution to a problem is illustrated in

terms of its behaviour, thereby focussing on the problem-solving aspects of learning

to program.

8.3 Evidence of Novice Programmer Requirements Support in
Empirical Study

Expectations of improved student throughput in an introductory programming course

necessitate the modification of the introductory programming course teaching model.

The inclusion of B# as technological support in the learning environment of such a

course is an attempt to improve not only the throughput, but also the average

individual performance achievement of students in the course.

This section discusses the limitations of the experimental design presented in this

thesis (Section 8.3.1). In light of the acknowledged limitations, support for the

remaining novice programmer requirements (R3 and R8 in Table 8.1) relating to

motivation and performance is evaluated and argued in terms of the observed results

reported on in Chapter 7. This argument is presented in Sections 8.3.2 and 8.3.3.

8.3.1 Limitations of the Experimental Design

A number of risks associated with the design of the current investigation are identified

in Chapter 6 (Section 6.4). Strategies to address each of these risks are proposed.

Despite the implementation of the proposed strategies during the conducting of the

experiment, several limitations of the experimental design should be borne in mind

when reading and interpreting the results presented in Chapter 7. These limitations

are specifically:

• treatment group participants were required to master two programming

notations and development environments due to ethical reasons;

• lack of formal teaching of B#;

• requirement that all participants write identical theoretical tests and final

examination, and therefore B# would not be examinable. All participants

CHAPTER 8 : INTERPRETATION OF RESULTS

257

were made aware of this arrangement at commencement of the treatment

period;

• training manual for B# in form of hard copy only;

• lack of scientific criteria for the measurement of equivalence between

programming problems in practical repeated measures assessments;

• impact of stress in students when participating in time-dependent

assessments;

• comparative quantitative measurement of only program solution accuracy;

and

• focus of current investigative study on academic performance achievement

and motivation only.

The primary limitation in the design of the experiment is that treatment group

participants were expected to master an additional programming notation and

development environment, B#, without the benefit of formal assistance. Participants

in both experimental groups were expected to master the Delphi™ Enterprise

development environment and the PASCAL textual programming notation supported

by it.

The B# programming notation, unlike the PASCAL textual programming notation,

was not required to be examined in any pen-and-paper based assessments. Since the

primary motivation in any examinable course is the extrinsic reward of marks, it is

acceptable to expect that participants in the treatment group may have been negatively

motivated by this fact (VanLengen & Maddux 1990). Participants in the treatment

group regularly commented about the difficulty of having to learn two development

environments concurrently, especially with one of them being short term and non-

examinable (Section 7.4).

Further, assistance for learning B# was provided by means of paper documentation

since the version of B# used in the empirical investigation had no on-line help facility

(Cilliers et al. 2004a). This situation caused treatment group participants to obviously

spend more time becoming accustomed to B#. It is difficult to estimate how much

this difficulty may have impacted the results, but it is certain that it would have

CHAPTER 8 : INTERPRETATION OF RESULTS

258

disadvantaged the treatment group. Without this complication, the performance

achievement measures of the treatment group may have been even better than that

observed and reported on in Chapter 7.

One of the performance achievement measures taken into consideration was that of

practical assessments. There currently exists a lack of rigid criteria for comparability

between programming problems. Because the current experiment used a repeated

measures design due to hardware limitations, different problem sets were used for

some of the same performance achievement assessments (Section 6.4.4). While all of

the problems were brief and simple program solutions which assessed similar

programming constructs, no criterion of comparability exists for use to argue about

their equivalence for experimental purposes. There is also no criterion against which

the level of difficulty of the problems can be measured for the purposes of

equivalence for experimental use. The current investigative study, however, makes

use of moderators experienced in the practices of UPE’s introductory programming

course to certify the equivalence of problems (Section 6.4.4).

Each assessment measured the performance of participants at a particular instant in

the introductory programming course. All of the assessments from which data was

collected for quantitative analysis, had the restriction of time placed upon them. The

pressure of completing an assessment within such a pre-specified period of time is a

source of stress for many students (Chamillard et al. 2000). It is difficult to identify

as well as estimate the extent and impact on the observed results of such stress.

In addition to the measuring of performance achievement in terms of accuracy as

performed in the current study, the measurement of speed of completion is also

relevant to studies in programming (Blackwell et al. 1999a). It should be noted that

the current investigation provides no technique to accurately monitor the time taken to

complete assessments and thus no conclusions can be made in this regard.

Related studies in programming have indicated that demographic issues such as home

language, gender and prior computing experience impact on the level of success in an

CHAPTER 8 : INTERPRETATION OF RESULTS

259

introductory programming course45 (Section 4.2.1). Any observed measurements are

not expected to be partial to the influence from the acknowledged demographic issues

due to the observed similar demographic profiles in each of the treatment and control

experimental groups (Table 7.4). The focus of the current study remains on

motivational (Section 8.3.2) and academic performance (Section 8.3.3) issues only.

8.3.2 Requirement R3: Increase in level of motivation

As the student population in an introductory programming course becomes more

diverse, so do the individual student motivations for taking the course. Anecdotal

evidence is that students participate in learning activities in a strategic manner

(Jenkins 2001a). This section focuses on the level of motivation observed in the

experimental group participants during the course of the current investigation. The

outcome of the qualitative data collection and analysis conducted as a component of

the current investigation (Section 7.4) is indicative of the level of motivation of

novice programmers using the B# programming notation and associated development

environment (R3 in Table 8.1).

Treatment group participants were required on a weekly basis to solve a mandatory

portion of the practical learning activity tasks using B#, and another mandatory

portion using Delphi™ Enterprise (Section 6.2.2). The final portion of each week’s

practical learning activity tasks was required to be solved in the programming

notation and development environment of each individual treatment group

participant’s choice. Qualitative analysis of the data collected as a result of weekly

surveys of treatment group participants on individual choice of programming notation

and associated development environment indicates that B# is perceived as (Table

7.20):

• being easy to use; and

• a tool that enhances the comprehension of programming concepts.

45 (Sauter 1986; Howell 1993; Haliburton 1998; Newman et al. 1999; Hagan et al. 2000; McKenna

2000; Carter et al. 2001; Morrison et al. 2001; Boyle et al. 2002; Quaiser-Pohl et al. 2002; Rountree
et al. 2002; Rowell et al. 2003)

CHAPTER 8 : INTERPRETATION OF RESULTS

260

These perceptions in favour of B# are, however, contradicted by the concurrent

observation that Delphi™ Enterprise is ultimately the programming notation and

development environment of choice amongst the treatment group participants. An

early observation in the study was that B# was the programming notation and

development environment of choice amongst treatment group participants (Section

7.4.1). This fact is indicative of the participants initially being more comfortable with

using B#, but becoming increasingly more comfortable with using Delphi™

Enterprise (Figure 7.2) as the treatment period progressed.

The observation of the increase in level of comfort with using Delphi™ Enterprise, as

well as the significant variation in performance achievement measures observed

amongst the treatment group participants, confirms a finding in a related study that

determined that a student’s comfort level was the best indicator of success in an

introductory programming course (Wilson et al. 2001). Treatment group participants

indicated an ever increasing level of comfort in using Delphi™ Enterprise during the

treatment period incorporating obligatory exposure of B# on a regular basis (Figure

7.2).

The observation of increasing level of comfort amongst treatment group participants

in using Delphi™ Enterprise is confirmed by the fact that only 4 of the 59 treatment

group participants (7%) selected B# as their preferred programming notation and

development environment in a specific formal assessment task (Section 7.3.1). The

remaining treatment group and entire complement of control group participants

attempted to solve equivalent versions of the assessment task using Delphi™

Enterprise. Despite the fact that so few treatment group participants elected to solve

the assessment task using B#, the observed measurements for the particular

assessment task (Pr2Q3 in Table 7.11) clearly show that a significantly superior level

of performance achievement (p < 0.05) was evident amongst treatment group

participants (mean 60%; n = 59) when compared with the performance achievement

measurements for control group participants (mean 49%; n = 59).

The previously mentioned observation of increased performance achievement

suggests evidence that the treatment administered positively affected the performance

achievement measured. This substantial increase in performance achievement for

CHAPTER 8 : INTERPRETATION OF RESULTS

261

treatment group participants using Delphi™ Enterprise to solve an assessment task

can thus only be attributed to continued mandatory exposure to B#.

Primary reasons for treatment group participants selecting Delphi™ Enterprise over

B# were analysed to be (Table 7.20):

• the perception that B# is not easily accessible by means of personal copies;

and

• the fact that B# (as a programming notation) is not examinable whereas the

PASCAL textual programming notation supported by Delphi™ Enterprise is.

Both of the above are themes of extrinsic motivation (Section 7.4.1), and have no

direct bearing on a participant’s experience with B#’s programming notation and

associated development environment. In fact, interpretation of the themes, even

though directly related to not selecting B# as the preferred programming notation and

development environment, can also be interpreted as being non-negative motivation

towards the use of B#.

The first of the above mentioned themes is in fact untrue since for the entire duration

of the treatment period (9 weeks), each treatment group participant was afforded the

opportunity of collecting a personal copy of B# from the author at a cost equivalent to

the cost of the CD on which the software was located. Only 15 of the 59 participants

(25%) in the treatment group made use of this opportunity. This theme could

therefore also be interpreted as implying that should the B# software have required

less effort to obtain, it might have been the programming notation and development

environment of choice by treatment group participants.

The second of the above mentioned themes confirms findings by VanLengen et al.

(1990) and Jenkins (2001a) who independently determined that the level of

motivation of students is related to the extrinsic compensation of marks awarded.

Another interpretation of this theme could therefore be that should B# have been

examinable, it might have been the programming notation and development

environment of choice by treatment group participants. The latter of the above

CHAPTER 8 : INTERPRETATION OF RESULTS

262

mentioned themes was also regularly quoted as a reason for treatment group

participants voluntarily withdrawing from the current investigation (Section 7.4.3).

Participants who had completed a prior programming course found less value in B#,

confirming the findings of Sanders et al. (2003a; 2003b) in a related study. Even so,

treatment group participants voluntarily withdrawing from the investigative study

rated B# a useful programming notation and development environment for novice

programmers (Section 7.4.3).

In a wider survey of participant attitude to the programming notations and

development environments used, more treatment group participants preferred

Delphi™ Enterprise to B# (Section 7.4.2). Despite this observation, these participants

rated B# as being easy to use. The limiting factor was identified as being the

restricted functionality of B#. All treatment group participants, regardless of their

preferred programming notation and development environment, rated Delphi™

Enterprise as being difficult to use. The control group participants, however, rated

Delphi™ Enterprise as being easy to use. This difference can possibly be attributed to

the fact that the control group used only Delphi™ Enterprise in their learning

activities.

The contents and frequency of regular learning activities of the treatment and control

groups were identical. The B# visual iconic programming notation was never

specifically discussed with participants in the treatment group. These participants

were independently required to gain some level of comprehension about the workings

of the B# development environment from the hard copy manuals provided on a

weekly basis as well as the system itself without the benefit of an instructor’s

explanation. Almost certainly, formal demonstrations of the B# programming

notation and development environment would have facilitated a greater understanding

of the system and impacted on the level of motivation observed.

Despite the observation that participant attitude towards B# was not entirely positive,

no conclusive evidence in this regard can be presented. There does, however, exist

quantitative evidence that suggests a positive attitude towards B#.

CHAPTER 8 : INTERPRETATION OF RESULTS

263

8.3.3 Requirement R8: Increase in performance achievement

One of the novice programmer requirements for technological support in the learning

environment of an introductory programming course is that such support should

encourage an increase in novice programmer performance achievement (R8 in Table

8.1). Related studies in programming that measure performance achievement using

alternative technological support in an introductory programming course suggest

evidence of a measured increase in performance achievement (Calloni et al. 1997;

Ramalingam et al. 1997; Crews 2001; McIver 2001; Carlisle et al. 2004). Level of

performance achievement is commonly measured in terms of the accuracy of program

solutions developed.

In one of these studies, the comprehension of program solutions in the procedural

(control flow) and object-oriented (dataflow) programming paradigms is compared.

In this study Ramalingam et al. (1997) compared performance achievement by

measuring the number of errors observed in program solution comprehension. Novice

programmers demonstrated superior comprehension in control flow program solutions

(fewer errors observed).

A comparison in terms of frequency and type of errors observed in the imperative

paradigm using a mini-language (GRAIL) and LOGO was conducted by McIver

(2001). A significant variation in observed rates was evident for errors related to each

of the superficial and in-depth levels of learning (p < 0.01; n = 13 in each

experimental group). McIver concluded that participants using the GRAIL mini-

language benefited in terms of observed error rate (mean of 13.62 versus 31.08 for

syntax errors; mean of 9.54 versus 17.77 for logical errors).

In a related study, Crews (2001) compared the accuracy of program solutions

developed by novice programmers using a visual flowcharting programming notation

with that of program solutions developed using a conventional textual programming

notation. The study concluded that the benefit in terms of accuracy in the flowchart

program solution representation was more evident in advanced program solutions

(p < 0.05). Crews’ study also observed a significant variation in the means in the

favour of the flowcharting programming notation with respect to the comprehension

CHAPTER 8 : INTERPRETATION OF RESULTS

264

(p < 0.05) and composition (p < 0.05) of program solutions in terms of 90% (n = 9) of

the identified programming concept criteria deemed relevant to the study. The criteria

involved the novice programmer correctly identifying and using programming

concepts relevant to the particular program solutions. Typical programming concept

criteria used in Crews’ study were the reading of input, writing of output and

computation of an average. This evidence of increased academic performance

achievement with a visual programming notation confirms the findings of an earlier

related study.

The earlier study by Calloni et al. (1997) reported evidence of a higher assessment

score (4% – 8%) for introductory programming students using only a visual iconic

programming notation, BACCII© when compared with introductory programming

students using only a conventional textual programming notation. BACCII©

generates conventional textual programming notation program solutions from an

iconic programming notation program solution.

Significant variation (p < 0.05) was observed in average scores achieved in the

common written examination (mean of 78% BACCII© group; 69% conventional

textual programming notation group) and final course grade (mean of 78% BACCII©

group; 73% conventional textual programming notation group). Further analysis of

the written examination by the researchers revealed that the students who had been

using BACCII© showed a higher comprehension of conventional textual

programming notation syntax despite not having composed program solutions in the

textual programming notation directly.

Verification of the findings of these and other (Pandey et al. 1993; Carlisle et al.

2004) previous studies in programming is dependent upon the results presented in

Chapter 7. The outcome of the quantitative data collection and analysis conducted as

a component of the current investigation (Section 7.3) is therefore indicative of the

performance achievement level of novice programmers using the B# programming

notation and associated development environment as an instructional tool in an

introductory programming course.

CHAPTER 8 : INTERPRETATION OF RESULTS

265

Assessments providing the data for the quantitative analysis generally contained

problems for program solutions embedded within descriptive scenarios (Appendix D).

A related study by McCracken et al. (2001) determined that the most difficult part of

such assessments may be for the students to abstract the problem to be solved from

the given description. No evidence of such a similar situation within the current

investigative study was observed or specifically evaluated. Consequently, the

comprehension and evaluation of the performance achievement level is done in terms

of two measures, namely by means of observed average marks and observed

throughput.

Participants in all strata of the treatment group performed as expected, recording final

mark averages similar to those predicted (Table 7.10). The average predicted final

marks were identical for all strata across the experimental groups. Despite this fact,

participants in all strata of the control group excepting the low risk stratum, performed

substantially worse than expected (p < 0.05). Furthermore, the expected number of

participants was successful in the 2003 introductory programming course in all strata

of the treatment group excepting the medium risk stratum (Table 7.15). A total of

75% of the treatment group and 68% of the control group participants were successful

in the course. The treatment group achieved the recommended throughput target of

75% (Department of Education 2001; UPE 2002; Wesson 2002). The expected

throughput was similar for each stratum across the experimental groups. A substantial

number of participants in the full complement and medium risk stratum of the control

group, however, were not successful in the course (p < 0.05).

The measurements in observed average marks between the experimental groups

(Section 7.3.1) lead to interpretations similar to those presented in related studies

(Calloni et al. 1997; Ramalingam et al. 1997; McIver 2001). The lower standard

deviation (Table 7.8) observed in the current investigation for the final mark of

treatment group participants (15%; n = 59) when compared with that of control group

participants (19%; n = 59) suggests evidence of more uniform learning occurring in

the treatment group. Confirmation of this finding is evident in that the identical trend

is reproduced in all variables identified as showing significant variations in recorded

measurements (Tables 7.8, 7.11, 7.12, 7.13 and 7.14).

CHAPTER 8 : INTERPRETATION OF RESULTS

266

Significant advantage with respect to average marks obtained while using B# as

technological support is observed in the full complement of treatment group

participants with respect to program solution comprehension and composition in the

PASCAL textual programming notation and associated Delphi™ Enterprise

development environment (Tables 7.7 and 7.11). This finding is particularly evident

amongst the group of students who have been identified as being of low-ability (high

risk stratum) in the introductory programming course (Table 7.12).

Similarly, significant advantage with respect to throughput while using B# as

technological support is observed in the full complement of treatment group

participants with respect to program solution comprehension and composition in the

PASCAL textual programming notation and associated Delphi™ Enterprise

development environment (Tables 7.7 and 7.16). This finding is again particularly

evident amongst the group of students who have been identified as being of low-

ability in the introductory programming course (Table 7.17). Sections 7.3 and 7.4

thus provide evidence of successful in-depth learning as well as increased throughput

being achieved by treatment group participants who have comprehended and

composed program solutions in the form of flowchart representations.

The results of the current experiment using flowchart representation for program

solutions supports Crew’s (2001) hypothesis and confirms his findings that

introductory programming students are more successful at processing algorithm-based

problems represented as flowcharts rather than as a sequence of textual programming

notation instructions. The current empirical investigation confirms that significant

benefits exist in terms of program solution accuracy when comprehending and

composing program solutions in the form of a flowchart.

Further, all measured significance in performance achievement in the favour of B#

occurs after the conclusion of the treatment period (Tables 6.2, 7.7, 7.11, 7.12, 7.13,

7.16, 7.17 and 7.18). This observation suggests evidence of program solution

comprehension and composition in B# impacting programming concept knowledge

retention and transfer to comparable problems in a conventional textual

programming notation.

CHAPTER 8 : INTERPRETATION OF RESULTS

267

The full complement of treatment group participants provided measurements of

performance achievement and throughput in components of the final pen-and-paper

examination (Appendix D) that were significantly superior (p < 0.05) to those

measured for control group participants (Tables 7.11 and 7.16). This examination

occurred at least 5 weeks after termination of the treatment period. This trend was

also replicated in both the high and medium risk strata (Tables 7.12, 7.13, 7.17 and

7.18). In the high risk stratum (Tables 7.12 and 7.17), the intermediary level practical

assessment, occurring 1 week after treatment termination, also provided evidence of

significant differences in average marks achieved and throughput observed (p < 0.05).

8.4 Theoretical Implications

As a result of the evaluation of the findings of the investigative study, a number of

theoretical implications of the current empirical investigation are evident. These

theoretical implications are specifically:

• design, implementation and utilisation of a visual iconic programming

notation and associated development environment (Section 8.4.2) that satisfies

the framework of novice programmer requirements derived in Chapter 2; and

• enhancement of existing experimental methodology in the use of programming

notations and development environments in the learning environment of an

introductory programming course (Section 8.4.2).

This section elaborates on each of the above theoretical implications.

8.4.1 Design, Implementation and Utilisation of a Visual Iconic Programming
Notation and Development Environment

Technological support in the learning environment of an introductory programming

course is crucial to the process of novice programmers learning to program. The

literature review documented in Chapter 2 emphasises that novice programmers

require technological support that encourages the development of skills in program

solution comprehension at both the superficial and in-depth levels of learning, but

especially at the latter level. Many different types of educational programming

CHAPTER 8 : INTERPRETATION OF RESULTS

268

notations and development environments have been proposed in response to this

need46.

Despite the fact that the use of imagery in a programming notation and development

environment is recommended based on studies of the cognitive model of the novice

programmer (Chapter 2), an extensive literature review reveals that no single type of

programming notation and associated development environment has been widely

accepted for use in introductory programming courses as an alternative to that of a

conventional textual programming notation and its associated development

environment (Chapter 3). There consequently remains a requirement for a

programming notation and associated development environment to sufficiently

support the mental model of the novice programmer in an introductory programming

course.

In response to the challenge, B#, a visual iconic programming notation and

development environment, has been proposed in this thesis as the program domain in

the learning environment of an introductory programming course. The design and

implementation decisions for B# are documented in Chapter 5 with direct reference to

support for 6 of the 8 novice programmer requirements derived in Chapter 2 (R1, R2,

R4 – R7 in Table 8.1).

The results presented in Section 7.3 and the associated deliberation on these results

(Section 8.3) indicate that B# as a visual iconic programming notation, together with

its associated development environment, encourages the learning of programming

concepts at the in-depth level. The positive effect of the longer-term assimilation of

programming concept knowledge at the in-depth level of learning is apparent in that

significant differences are observed in the first week after termination of the

treatment. This effect remains significantly visible up to 6 weeks after the conclusion

of the treatment, especially for those students who have been identified as low-ability

achievers.

46 (Bonar et al. 1990; Lyons et al. 1993; Calloni et al. 1994, 1995; Studer et al. 1995; Liffick et al.

1996; Calloni et al. 1997; Cockburn et al. 1997; Crews et al. 1998; Blackwell et al. 1999a; Good
1999; Cooper et al. 2000; Garner 2000; Blackwell 2001; Dagiano et al. 2001; Materson et al. 2001;
Navarro-Prieto et al. 2001; Chamillard et al. 2002; De Raadt et al. 2002; Fergusson 2002; Quinn
2002; Burrell 2003)

CHAPTER 8 : INTERPRETATION OF RESULTS

269

Furthermore, the treatment group participants were subject to extra cognitive load.

This is due to the treatment group being laboured with an additional programming

notation, development environment and relevant training manuals. Despite the

resulting additional cognitive load, the improved results suggest evidence of B# in

fact reducing the total cognitive load of novice programmers by addressing the

extraneous load using a visual iconic programming notation. This observation is

again especially evident in the measurements recorded for students who have been

identified as being of low-ability in an introductory programming course. The

suggestion that introductory programming students are visual learners (Chapter 2)

who benefit from imagery imbedded within program solutions is thus confirmed by

the current empirical analysis of the impact of a visual iconic programming notation.

Using a process of thematic analysis of responses to surveys conducted, an increase in

the level of motivation is evident when using a visual iconic programming notation

and associated development environment (R3 in Table 8.1). The increase is evident

from the perception that such a programming notation is easy to use as well as

encourages the comprehension of programming concepts. Evidence suggests that the

extrinsic motivation of marks awarded in assessments requiring program solutions

only in the form of a conventional textual programming notation negatively impacts

on the attitude towards the use of the visual iconic programming notation within an

introductory programming course. Despite this observation, confirmation for the

increased level of motivation when using a visual iconic programming notation is

argued by deduction on the qualitative analysis of surveys conducted.

The integrated use of a visual iconic programming notation and associated

development environment benefits students who have been identified as being of low-

ability, as well as those who have been identified as being of medium risk, but to a

lesser extent. The benefits are specifically that these students record a better

performance achievement measure and substantially more of them pass the

introductory programming course when compared with the observed throughput of

the participants using only a conventional textual programming notation.

CHAPTER 8 : INTERPRETATION OF RESULTS

270

The theoretical implications of the design and implementation of B# as well as the

current empirical investigation into the use of B# as technological support in the

learning environment of an introductory programming course are therefore:

• a visual iconic programming notation and development environment that

integrates a flowchart representation for the composition of program solutions

with a conventional textual programming notation supports the mental model

of low-ability novice programmers while learning to program;

• the incorporation of a visual iconic programming notation and development

environment into an introductory programming course encourages a

significant increase in individual academic performance achievement,

especially of low-ability novice programmers; and

• the incorporation of a visual iconic programming notation and development

environment into an introductory programming course encourages a

significant increase in throughput, especially of low-ability novice

programmers.

The evidence presented permits researchers in programming to focus on visual iconic

programming notations and their associated development environments as appropriate

technological support in the learning environment of an introductory programming

course.

Despite these obvious theoretical implications, the investigative research methodology

applied in the current empirical investigation augments the methodologies used in

related studies in programming.

8.4.2 Enhancement of Existing Empirical Methodology

It is common in studies on programming to compare single attributes, for example, a

single programming construct, rather than an entire programming notation and

development environment (Budd & Pandey 1995; Allen et al. 1996). This approach

neglects to verify the appropriateness of the programming notation and development

environment to the task of learning to program.

CHAPTER 8 : INTERPRETATION OF RESULTS

271

Furthermore, evidence of a measured increase in academic performance achievement

is suggested in related comparative studies of learning to program (Calloni et al.

1997; Ramalingam et al. 1997; Crews 2001). These studies, while successfully

comparing the observed average marks, neglect to compare the observed throughput

of each of the control and treatment groups. Furthermore, the studies disregard the

fact that certain sections of the participant population might benefit from the treatment

more/less than other sections.

The investigative research methodology presented in the current study successfully

addresses these deficiencies. A stratified sample-based between-groups statistical

analysis is applied to the participants of both a control and treatment group. The

specific statistical techniques applied are the measurement of the variance between the

observed means as well as the equivalence of observed throughput for corresponding

strata in each of the experimental groups.

The theoretical implications of the application of this investigative research

methodology are therefore:

• inclusion of a further relevant aspect for comparative purposes, namely

observed throughput; and

• isolation of distinct sections of the participant population in which the benefit

of the treatment is more/less evident.

The investigative methodology presented permits researchers in programming to

similarly increase the scope of their investigations with the incorporation of an

additional relevant aspect for the purpose of a more comprehensive comparative

study. Furthermore, the application of a validated computerised selection and

placement battery for introductory programming students (Greyling et al. 2002;

Greyling et al. 2003) enables the identification and isolation of a variety of distinct

sections of the participant population (strata) upon which the comparative study can

be conducted.

CHAPTER 8 : INTERPRETATION OF RESULTS

272

8.5 Instructional Implications

The composition of program solutions using a textual programming notation is

suggested as the most appropriate technique for learning to program (Shih et al.

1993). The current empirical investigation suggests that the exclusive use of such a

textual programming notation in the comprehension and composition of program

solutions in the program domain makes learning to program difficult. Support for a

textual programming notation by means of continued integrated exposure over a

period of time to a visual iconic programming notation like B# encourages more

accurate program solutions to be composed as well as the retention and transfer of

programming concepts to comparable problems in the textual programming notation.

The manner in which B# connects imagery to the correct corresponding textual

programming notation program solution extracts benefits introductory programming

students. The visible exposure to accurate textual programming notation program

solutions results in the future comprehension and composition of more accurate

textual programming notation program solutions in the program domain.

Furthermore, the B# visual iconic programming notation and associated development

environment supports the conceptual teaching of programming constructs as the

method for learning to program. This support is provided by a reduction on the

incidence of primitive programming constructs typically learnt at the superficial level

of learning.

Despite the dangers associated with learning an additional programming notation and

associated development environment, evidence suggests that the inclusion of a visual

iconic programming notation in the teaching model of an introductory programming

course benefits novice programmers, especially those who have been identified as

being of low-ability. A major distinct advantage is the positive impact such a

programming notation and associated development environment has on the existing

challenge of increasing and maintaining satisfactory throughput in an introductory

programming course at tertiary level.

CHAPTER 8 : INTERPRETATION OF RESULTS

273

8.6 Conclusion

Despite the existence of limitations in the experimental design acknowledged as being

potentially discriminating to treatment group participants, the concrete model

provided by B# tends to improve the performance achievement of low-ability (high

risk strata) participants. This concrete model, however, has a much smaller effect for

higher-ability (medium and low risk strata) participants.

The participants who received the program solution representations of B# first for any

programming concept during practical learning activities were presumably able to use

the flowchart model presented while encoding the concepts provided by the

corresponding PASCAL textual programming notation. Interpretation of the

empirical analysis suggests evidence of high-ability students in an introductory

programming course already possessing their own useful concrete models for learning

to program, and consequently benefiting on a lesser scale from the use of B#.

In the comparative analysis of the predicted and observed average final marks, each

stratum in the treatment group performed at least as well as the corresponding stratum

in the control group. Most of the treatment group strata measurements, however,

exceeded those predicted. This finding is imitated in the comparative analysis of the

predicted and observed throughputs.

The overall improved results for participants in the treatment group can only be

attributed to the treatment, namely the use of B# as support during practical learning

activities over a period of 9 weeks (65% of the course duration). During the practical

learning activities, the treatment participants learnt to compose accurate textual

programming notation program solutions. These program solutions exhibited

accuracy in terms of structure, syntax and semantics due to the consistent and

continued exposure of well-written textual programming notation program solutions

during the treatment period.

Analysis of the measurements obtained from the evaluation materials provide

evidence to conclude that B# is beneficial to introductory programming students

CHAPTER 8 : INTERPRETATION OF RESULTS

274

despite the fact that it might not be the programming notation and development

environment of choice. The results of the current study suggest evidence of the

following significant benefits in the favour of the visual iconic programming notation

and development environment, B#:

• easy to use;

• enhances the comprehension of programming concepts;

• assists in the development of a higher comfort level in a corresponding textual

programming notation visually supported by B#;

• useful tool for novice programmers;

• encourages more uniform learning;

• uses flowchart representations to encourage successful in-depth learning for

the comprehension and composition of program solutions;

• encourages the retention and transfer of programming knowledge;

• reduces the total cognitive load on introductory programming students by

means of a reduction in extraneous load in terms of the use of an appropriate

programming notation and associated development environment;

• uses imagery, confirming evidence that introductory programming students

are visual learners; and

• functions well as instructional support for a conventional textual

programming notation.

The deductive argument presented in this chapter suggests evidence that the use of B#

increases the level of motivation in novice programmers. It cannot, however, be

conclusively deduced that B# would be the programming notation and development

environment of choice in the absence of the observed extrinsic motivation in the

favour of the prescribed textual programming notation and development environment.

Empirical evidence implies that novice programmer performance achievement

measured in terms of higher level of accuracy in program solutions composed in the

program domain is improved with the use of B#, specifically for low-ability students.

Consequently, B# is observed to provide comprehensive support (summarised in

Table 8.2) for all 8 of the novice programmer requirements identified in Chapter 2 as

CHAPTER 8 : INTERPRETATION OF RESULTS

275

being required to be features of technological support in the learning environment of

an introductory programming course at tertiary level. B#, a visual iconic

programming notation is therfore classified as a successful technological learning

environment in an introductory programming course.

Requirements for Novice Programmer Technological Support Supported

R1: Elimination of finer implementation details typically found at
the superficial learning level of the program domain

(Section 8.2.1)

R2: Increased level of program solution comprehension at the in-
depth learning level of the program domain

(Section 8.2.2)

R3: Increase in level of motivation when using the programming
notation

(Section 8.3.2)

R4: Designed specifically for use by novice programmers
(Section 8.2.3)

R5: Provision of visual techniques to aid comprehension process
at the in-depth learning level of the program domain

(Section 8.2.4)

R6: Support for reduced mapping between the problem and
program domains

(Section 8.2.5)

R7: Increased focus on problem-solving
(Section 8.2.6)

R8: Increase in novice programmer performance achievement
measured in terms of higher level of accuracy in program
solutions in program domain

Low-ability

students
predominantly
(Section 8.3.3)

Table 8.2: Support for Novice Programmer Requirements by B#

The findings offered in this chapter provide researchers of studies in introductory

programming a focus in terms of appropriate technological support in the learning

environment of an introductory programming course. This is supplemented with

evidence of a more comprehensive comparative methodology for the empirical

analysis of observed measurements in such studies.

276

Chapter 9

Conclusion of Investigation

9.1 Introduction

The implementation of effective methods and strategies that encourage novice

programmers to be successful in an introductory programming course results from

increasing pressure from national government to improve student throughput at South

African tertiary education institutions. Internationally recognised approaches to the

problem of unsatisfactory throughput involve either the identification of potentially

successful introductory programming candidates or the modification of the

introductory programming course teaching model.

The former approach has been comprehensively researched at UPE since 1982. This

research resulted in the successful implementation of a validated computerised

selection and placement model in the Department of CS/IS at UPE in 2001. The latter

approach seeks to increase and maintain satisfactory throughput of introductory

programming students by adapting the course presentation techniques. Any

modifications in presentation techniques are primarily to support students who have

been identified as being of low-ability in an introductory programming course. In

response to the challenge posed by the second type of approach, the goal of this

investigation is to establish and assess the impact of a visual iconic programming

CHAPTER 9 : CONCLUSION OF INVESTIGATION

277

notation in the role of a development environment for an introductory programming

course.

In order to validate the selection of a suitable programming notation for novice

programmers to be used in the empirical study, the interpretation of a comprehensive

literature study results in the following:

• a framework of novice programmer requirements (Chapter 2). This

framework emphasises the requirements for programming notations and

development environments that support the behaviour of novice

programmers when learning to program (Table 2.1 duplicated as the criteria

column in Table 9.1).

• the identification and classification of 6 different categories of experimental

technological support used in the learning environment of introductory

programming courses (Chapter 3). These technological supports are

proposed as alternatives to those that support conventional textual

programming notations.

• evaluation of the identified categories of introductory programming

technological support against the criteria contained in the framework of

novice programmer requirements (Chapter 3). It is observed that the

category of visual programming notations is the most responsive to the

identified novice programmer requirements (Table 3.7 duplicated as column

G in Table 9.1).

• design and implementation of a visual iconic programming notation and

development environment, B# (Chapter 5).

A subsequent conclusion is that B#, in terms of design and implementation, supports

all of the identified novice programmer requirements except for 2 requirements (R3

and R8 in Table 9.1), whose support is validated by the empirical analysis section of

this thesis. The methodology for the empirical analysis is described (Chapter 6)

against the background of the pre-selective technique applied to participants in the

study by means of the placement model currently in use at UPE (Chapter 4). The

empirical analysis utilises the statistical testing techniques of measuring the

CHAPTER 9 : CONCLUSION OF INVESTIGATION

278

differences between observed average marks and observed throughput. These

techniques are applied in a between-groups quantitative comparative analysis between

two stratified sample-based groups of participants, namely a treatment and control

group. Qualitative analysis using the technique of thematic analysis supplements the

aforementioned quantitative analysis.

The results of the quantitative and qualitative empirical analysis (Chapter 7) and

associated deliberations (Chapter 8) suggest evidence that B# satisfies the entire set of

identified novice programmer requirements (Table 9.1). The level of support

provided by B# is especially significant for students who have been identified as

being of low-ability in an introductory programming course. Modification of the

presentation techniques of an introductory programming course with the inclusion of

B# as technological support in the learning environment suggests strong evidence of

increased throughput. The observed improved throughput attributed solely to the

treatment achieves the target of 75% recommended by national government.

This chapter evaluates the objectives as determined in Chapter 1 for the current

investigation (Section 9.2). Flowing out of this discussion, the contribution of this

thesis to existing research within the context of the use of technological support in the

learning environment of an introductory programming course is argued (Section 9.3).

The findings of the current investigation suggest a number of instructional

implications (Section 9.4), as well as a number of limitations of the research. The

main limitations are presented (Section 9.5) together with suggestions for future

research (Section 9.6).

9.2 Evaluation of Research Objectives

The objectives of this study presented as research questions in Chapter 1 are

summarised as follows (derived from Table 1.1):

• establishment of the mental model of novice programmers when learning to

program;

CHAPTER 9 : CONCLUSION OF INVESTIGATION

279

• specification of criteria for the selection of an appropriate programming

notation and associated development environment for novice programmers;

• identification and categorisation of programming notations and associated

development environments used in introductory programming courses at

tertiary level;

• evaluation of experimental programming notations and associated

development environments according to the selection criteria;

• overview of the contribution of previous research at UPE to the current

investigation;

• discussion of the development of the visual iconic programming notation and

associated development environment used as the experimental instrument in

the study; and

• investigation of the impact of a visual iconic programming notation on

performance achievement and motivation of introductory programming

students by means of appropriate quantitative and qualitative analysis

techniques.

The successful act of programming is the accurate transformation of an appropriate

mental representation of a problem statement in the problem domain to a

corresponding solution in the form of a particular programming notation in the

program domain (Figure 9.1). Novice programmers typically experience a large

amount of effort being required during this conversion process.

The large amount of conversion required results in a high cognitive load being placed

on the novice programmer. The only way in which the cognitive load while learning

to program can be minimised is by means of the reduction of extraneous cognitive

load. Extraneous cognitive load is dependent upon the selection of an appropriate

programming notation and associated development environment to be used in the

program domain. Conventional textual programming notations negatively affect the

extraneous cognitive load of novice programmers by means of the high level of

precision required in the syntax of such programming notations. The syntax of each

programming construct supported by such programming notations needs to be

effectively mastered at the superficial level of learning prior to the occurrence of in-

CHAPTER 9 : CONCLUSION OF INVESTIGATION

280

depth learning of the programming concept, the latter type of learning being the

preferred outcome of an introductory programming course.

Figure 9.1: Mental Model of Novice Programmer while Learning to Program

Evidence of the successful assimilation of programming knowledge is the existence of

the in-depth level of learning phases of control flow and dataflow comprehension.

The mastering of control flow comprehension permits the novice programmer to

derive knowledge of how a program solution functions. Mastering of dataflow

comprehension permits the novice programmer to recognise program solution

patterns.

The mastering of both of these phases is essential for a novice programmer to

successfully transfer knowledge of programming concepts in the composition of novel

program solutions for new but similar problems. There is thus a need for appropriate

technological support in the learning environment of an introductory course that

encourages the mental model of a novice programmer as described and depicted in

Figure 9.1.

Problem Domain
statement of problem

Program Domain
representation in programming notation

extraneous cognitive load

superficial in-depth

control

flow

dataflow

CHAPTER 9 : CONCLUSION OF INVESTIGATION

281

Criteria A B C D E F G B#
R1: Elimination of finer

implementation details typically
found at the superficial learning
level of the program domain

R2: Increased level of program

solution comprehension at the in-
depth learning level of the
program domain

R3: Increase in level of motivation

when using the programming
notation

R4: Designed specifically for use by
novice programmers

R5: Provision of visual techniques to
aid comprehension process at the
in-depth learning level of the
program domain

R6: Support for reduced mapping

between the problem and program
domains

R7: Increased focus on problem-
solving

R8: Increase in novice programmer
performance achievement
measured in terms of higher level
of accuracy in program solutions
in program domain

Legend
A Conventional IDEs and Textual Programming Notations
B Problem Analysis Supporting Development Environments
C Mini-languages and Micro-worlds
D Pseudo-programming
E Worked Examples and Code Restructuring
F Scripting Languages
G Visual Programming Notations and Development Environments

 Not supported

 Supported

Table 9.1: Evaluation of Programming Notations and Associated Development Environments

Technological support in the learning environment of an introductory programming

course should strive to support the 8 criteria derived in Chapter 2 from the analysis of

CHAPTER 9 : CONCLUSION OF INVESTIGATION

282

the mental model of a novice programmer while learning to program and listed in

Table 9.1. Verification of the use of the criteria is presented in terms of the evaluation

of different categories of alternative technological support used in the learning

environment of an introductory programming course.

Six distinct categories of alternative technological support used in introductory

courses are identified and defined in Chapter 3. These categories appear in the legend

of Table 9.1 (B – G). In the evaluation of these categories of technological support

proposed as alternatives to conventional textual programming notations and their

associated environments, it is at times difficult to separate the effects of the

programming notation from the effects of the development environment due to the

strong cohesion between the two components. Chapter 3, however, succeeds in

highlighting the deficiencies associated with conventional textual programming

notations and their development environments that novice programmers experience

while learning to program (summarised in column A of Table 9.1).

Each alternative category of technological support is assessed in Chapter 3 with

respect to support for the requirements of a novice programmer while learning to

program (summarised in columns B – G in Table 9.1). Table 9.1 therefore illustrates

the relative suitability of each category to the framework of novice programmer

requirements.

In some cases, there is insufficient evidence to conclusively determine the level of

support for a particular requirement (indicated by white shading in Table 9.1). The

evaluation process, however, suggests evidence that the category of visual

programming notations is the most responsive to the requirements of a novice

programmer. The design and implementation of B# (Chapter 5), a visual iconic

programming notation and programming development environment, is influenced by

this finding.

CHAPTER 9 : CONCLUSION OF INVESTIGATION

283

Prior to the use of B# in the empirical study, previous related research conducted by

the Department of CS/IS at UPE (Chapter 4) is acknowledged as being relevant to the

current investigation for the following reasons:

• the research forms part of the ongoing research at UPE to investigate strategies

that improve and maintain satisfactory throughput in introductory

programming courses;

• the research involves the identification of potentially successful introductory

programming candidates and is thus an implementation of the first type of

approach acknowledged as being instrumental in increasing and maintaining

satisfactory throughput in introductory programming courses;

• participants in the current investigation have been pre-selected into the

introductory programming course by means of a validated computerised

placement model implemented as a direct result of the above mentioned

research; and

• the computerised placement model is used to determine the stratum into which

a participant in the investigative study is classified.

The need for the implementation of the second type of approach that increases and

maintains satisfactory throughput in an introductory programming course is prompted

by the limited success of the implementation of the model recommended by the

previous research conducted at UPE. The second type of approach necessitates the

modification of the course presentation techniques for an introductory programming

course. The current investigation consequently explores the use of B# as an example

of a visual iconic programming notation and development environment as

technological support in the learning environment of such a course (Chapter 6).

Argument is presented on the correlation between novice programmer requirements

for technological support and issues relevant to the design and implementation of B#

(Chapter 5). The empirical analysis of the effect of B# on novice programmers

determines that the visual iconic programming notation and its associated

development environment positively impacts on both the academic performance

achievement and motivation of students (Chapters 7 and 8). The positive affect of B#

CHAPTER 9 : CONCLUSION OF INVESTIGATION

284

is most evident in students who are identified as being of low-ability in the course

(predicted mark of 41% – 50%).

The significant improvement in both observed average marks achieved as well as

observed throughput can be attributed solely to the inclusion of B# as technological

support in the learning environment of the introductory programming course at UPE.

B# is thus evaluated as supporting all eight of the requirements of a novice

programmer (Table 9.1).

9.3 Contribution of Thesis

There exists insufficient research and empirical evidence (Chapter 6), both nationally

and internationally, to justify the use of non-conventional programming notations and

development environments to improve throughput in an introductory programming

course. This deficiency in documented research is especially evident in respect of

non-textual programming notations like visual iconic programming notations.

Documented research (Chapter 8) on the use of experimental technological support

provides observations that have a tendency to be anecdotal in nature. There is

consequently a lack of sufficient application of formal evaluation techniques in the

assessment of the use of experimental technological support. Furthermore,

experimental technological support is not widely used in introductory programming

courses since it remains an expensive, time consuming and non-profitable exercise to

fully develop such support successfully.

The present research forms an integral part of ongoing attempts at UPE to improve

and sustain satisfactory throughput in an introductory programming course. The

contributions of this thesis are chiefly apparent in the following areas:

• determination of a framework of novice programmer requirements for

technological support in the learning environment of an introductory

programming course (Section 9.3.1);

CHAPTER 9 : CONCLUSION OF INVESTIGATION

285

• categorisation and assessment of existing introductory programming

experimental programming notations and development environments (Section

9.3.2);

• design and implementation of a visual iconic programming notation and

associated development environment that satisfies the framework of novice

programmer requirements (Section 9.3.3); and

• enhancement of research methodology and results in existing evidence of

empirical studies in the use of programming notations and development

environments in the learning environment of an introductory programming

course (Section 9.3.4).

Each of the above mentioned contributions address the deficiencies presently existing

in current documented research.

9.3.1 Framework of Novice Programmer Requirements for Technological Support
in the Learning Environment of an Introductory Programming Course

The literature review presented in Chapter 2 fails to directly produce an

acknowledged framework of novice programmer requirements for technological

support in the learning environment of an introductory programming course, yet it

emphasises that novice programmers require technological support that encourages

the development of skills in program solution comprehension at both the superficial

and in-depth levels of learning, but especially at the latter level. As a result of the

extensive literature study, a number of common characteristics have been identified,

consolidated and proposed as novice programmer requirements for technological

support in the learning environment of an introductory programming course (Table

9.1).

The proposed set of 8 novice programmer requirements is recommended to be

satisfied in the program domain. In satisfying these requirements, a programming

notation and development environment reduces the extraneous cognitive load, and

thereby the total cognitive load, of novice programmers when learning to program

(Figure 9.1). The requirements are also proposed as the assessment criteria against

which programming notations and development environments can be evaluated in

CHAPTER 9 : CONCLUSION OF INVESTIGATION

286

order to permit instructors of introductory programming courses to make a more

informed choice on the programming notation and associated development

environment used as technological support in the learning environment of an

introductory programming course.

9.3.2 Categorisation and Evaluation of Existing Technological Support in the
Learning Environment of an Introductory Programming Course

A large number of experimental programming notations and development

environments have been recommended over the past decade as technological support

alternative to that of conventional textual programming notations and their associated

development environments47. This situation suggests evidence of dissatisfaction with

the latter category of technological support, namely textual programming notations

and their associated development environments.

The quantity of experimental technological support is furthermore indicative of no

single alternative category receiving widespread acceptance. An extensive literature

survey failed to produce an acknowledged standard for assessment criteria against

which technological support in the learning environment of an introductory course can

be evaluated.

The categorisation of the existing experimental programming notations and their

associated development environments in terms of commonality of features is required

prior to the validation of the proposed framework of novice programmer requirements

derived in Chapter 2 as assessment criteria for technological support in the learning

environment of an introductory programming course. A total of 7 distinct categories

are identified and proposed (Table 9.2).

No single category of experimental programming notation and development

environment reviewed in Chapter 3 was evaluated as comprehensively satisfying the

47 (Bonar et al. 1990; Lyons et al. 1993; Calloni et al. 1994, 1995; Studer et al. 1995; Liffick et al.

1996; Calloni et al. 1997; Cockburn et al. 1997; Crews et al. 1998; Blackwell et al. 1999a; Good
1999; Cooper et al. 2000; Garner 2000; Stajano 2000; Blackwell 2001; Dagiano et al. 2001;
Materson et al. 2001; Navarro-Prieto et al. 2001; Baas 2002; Chamillard et al. 2002; De Raadt et al.
2002; Fergusson 2002; Gibbs 2002; Quinn 2002; Burrell 2003; Donaldson 2003; Lane 2003; Lane et
al. 2003; Watts 2003; Carlisle et al. 2004; Lane 2004; Lane et al. 2004a, b; Mahmoud et al. 2004;
Zelle undated)

CHAPTER 9 : CONCLUSION OF INVESTIGATION

287

framework for novice programmer requirements for technological support in the

learning environment of an introductory programming course (summarised in

columns B – G in Table 9.1). This result is partly due to the lack of sufficient

documentary evidence.

Category Description Examples (Chapter 3)

Conventional textual
programming notation

Integrated development
environment that supports
textual programming
notation

Delphi™ Enterprise;
Visual Studio

Problem Analysis Supporting
Development Environments

A problem-solving
methodology integrated with
the program solution
development tasks

SOLVEIT;
Interrogative programming;
Coached program planning

Mini-languages and Micro-
worlds

Fewer programming
commands.
Simulates a real or imaginary
world

GRAIL; Karel the Robot;
Jeroo; Alice

Pseudo-programming Less rigid syntactical rules MULSPREN;
Literate programming

Worked Examples and Code
Restructuring

Exposure of correct program
solutions in the form of a
conventional textual
programming notation

CORT

Scripting Languages

Eliminates the rigidity of
data typing usually required
by conventional textual
programming notations

Python; JavaScript;
VBScript

Visual Programming
Notations and Development
Environments

Programming by means of
the interactive manipulation
of visual expressions such as
graphics or icons

LabVIEW; Prograph;
SCIL-VP; DataVis;
FLINT; Visual Logic;
RAPTOR; SFC
BACCII©; SIVIL;
Youngster; EC

Table 9.2: Categories of Technological Support

The illustration of the application of the framework for novice programmer

requirements to assess existing technological support in the learning environment of

an introductory programming course serves as an example of a technique to evaluate

the appropriateness of any given programming notation and development

environment.

CHAPTER 9 : CONCLUSION OF INVESTIGATION

288

9.3.3 Design, Implementation and Utilisation of a Visual Iconic Programming
Notation and Development Environment

The findings of the current research suggest evidence that a visual iconic

programming notation and development environment exhibiting the properties of B#

promote the following benefits:

• reduces the extraneous cognitive load of novice programmers; and

• encourages the assimilation of programming concept knowledge at the in-

depth level of learning in a textual programming notation by

o using flowchart representations for the composition of program

solutions; and

o visually supporting an integrated, accurate and equivalent textual

programming notation representation of a flowchart program solution.

This thesis presents strong evidence of the benefits of using a visual programming

notation which facilitates learning and does not encumber the novice programmer in

terms of extraneous cognitive load. The evidence presented provides instructors of

introductory programming courses with confirmation that a visual programming

notation is an appropriate technological support in the learning environment of an

introductory programming course.

9.3.4 Enhancement of Existing Investigative Research Methodology and Results

The empirical analysis of the current investigation confirms and strengthens the

empirical evidence in the existing research (Calloni et al. 1997; Ramalingam et al.

1997; Crews 2001; Carlisle et al. 2004). These studies suggest evidence that visual

programming notations enhance the individual performance achievements of students,

increasing the average marks achieved. By using a stratified sample-based analysis

strategy to isolate and highlight the sections of the novice programmer population that

experience substantial benefit from the use of B#, the current investigation enhances

the success of the aforementioned related studies in programming. The current

investigation thus adopts, modifies and confirms the success of an approach of using a

CHAPTER 9 : CONCLUSION OF INVESTIGATION

289

visual programming notation in the learning environment of an introductory

programming course.

Furthermore, the current investigation presents findings that not only demonstrate

improved average marks, but also improved throughput and motivation of novice

programmers, especially for those who have been identified as being of low-ability in

an introductory programming course.

9.4 Implications of Findings

It is unacceptable that large amounts of money be spent on students of low-ability

who are at risk of not being successful in introductory programming courses. Any

effort to reduce the volume of students who fail such courses will not only benefit the

students, but also the tertiary education institution. One such effort is the

modification of the presentation techniques of an introductory programming course.

Technological support is integral to the learning environment of an introductory

programming course. The choice of such support has obvious implications, as

reported on in this thesis. If a programming notation and associated development

environment is required in the longer term but is difficult for students to use and

understand, attempts should be made to ease the difficulties. Students of the

introductory programming course at UPE are expected to acquire the programming

skills associated with a conventional textual programming notation. The difficulties

associated with this expectation are reduced with the integration of B# into the

learning environment.

The issues relevant to the modification of the introductory programming course

presentation techniques with the incorporation of B# as technological support for a

required textual programming notation as reported on in this thesis include the

following:

• the use of multiple programming notations and associated development

environments;

CHAPTER 9 : CONCLUSION OF INVESTIGATION

290

• the lack of interactive training in the use of the B# programming notation and

development environment; as well as

• the existence of the extrinsic motivation of marks awarded.

Incorporating a supplemental programming notation and development environment

such as B# into the learning environment of an introductory programming course has

the potential to overload the students. In order to reduce this risk, rigid management

of appropriate tasks administered during practical learning activities is required. This

management would incorporate the inclusion of practical learning activity tasks that

encourage the transfer of programming concept knowledge from program solutions

composed in B# to new but similar problems requiring the composition of program

solutions in a conventional textual programming notation. The volume of practical

learning activity tasks presented would also have to be monitored closely in order to

optimise the use of the allocated time for the introductory programming course.

A related issue is the fact that the current version of B#, although designed to present

an intuitive interface, is greatly in need of an interactive interface for the purposes of

training students in its use. This interface would replace the current hard copy

training manual (Appendix C), be included with the development environment and

would consequently be more directly accessible to the students.

Instructors of introductory programming courses appreciate the instructional benefits

provided by technological support such as B#. Students, however, do not appreciate

these benefits. One reason for this observation is due to the lack of the extrinsic

motivation of marks. In order to encourage students of an introductory programming

course to use B#, a certain amount of suitable examinable content directly applicable

to B# should be identified and examined. An example of such content is requiring

students to accurately match textual programming notation program solution extracts

to appropriate B# icons.

Further, the use of B# should be mandatory for students who have been identified as

being of low-ability in the course, that is, those who achieve a predicted mark in the

range 41% – 50% in the implemented computerised placement model prior to entry

CHAPTER 9 : CONCLUSION OF INVESTIGATION

291

into the course. In this way, the section of the student population who have been

observed as being advantaged by using B# would be encouraged and rewarded for

benefiting instructionally from B#.

Week Introductory Programming Concept
1 Problem-solving
2 Problem-solving
3 Problem-solving
4 Variables, data types, Input/Output
5 Conditional programming constructs
6 Looping programming constructs
7 Looping programming constructs
8 Looping programming constructs

9 Structured programming
10 Subroutines
11 Subroutines
12 Subroutines
13 Error-proofing and debugging
14 String manipulation
15 Processing text files

Figure 9.2: Incorporation of B# into the learning activities of an
Introductory Programming Course

Due to identified deficiencies (Section 7.4.1) of the manner in which the current

version of B# implements subroutines (Thomas 2002a), the proposed incorporation of

B# into the introductory programming course curriculum in the Department of CS/IS

at UPE would initially incorporate support for only the following programming

concepts (Figure 9.2):

• variables;

• data types;

• input and output;

• single and multiple branching conditional programming constructs; as well as

• counting, pre- and post-test sentinel looping programming constructs.

The area in Figure 9.2 that is framed in dark blue indicates the portion of the

introductory programming course during which B# is used in practical learning

CHAPTER 9 : CONCLUSION OF INVESTIGATION

292

activities. B# would therefore still be short-term technological support and would

cater for 33% of the total introductory course duration.

The discussion on the implications of the findings has highlighted challenges

concerning the modification of an introductory programming course teaching model

with the inclusion of B#. If these challenges are not successfully addressed, the

benefits of B# as technological support will not be realised. In addition to the

challenges presented, certain limitations of the current investigation must also be

highlighted.

9.5 Limitations of Research

Limitations of this research are mainly related to ethics, limited sample sizes, extrinsic

reward of marks and restricted functionality of B#. The following limitations are

identified:

• for academic ethical reasons, B# could not be used exclusively as the

technological support in the learning environment of the introductory

programming course. Both students and subsequent UPE programming

courses require the programming skills of a conventional textual programming

notation and associated development environment. Therefore, it could not be

determined, for example, whether exclusive use of B# could account for a

more significant variance in academic performance achievement;

• the introductory programming course at UPE consists of a restricted

population size (N = 211 in 2003) from which suitable participants could be

selected. The population size is reduced even further by a high attrition rate,

resulting in a population of 148 students who were administered all materials

required for the investigation. The stratified sample-based between-groups

analysis technique applied in the study restricted the sample size even further

(n = 59 in each group). Practical issues surrounding the isolation of

participants in each of the experimental groups to independent practical

learning activities also impacted on the final sample size.

CHAPTER 9 : CONCLUSION OF INVESTIGATION

293

• B# was never the topic of any formal instruction and the programming

notation is not examinable in the introductory programming course. A B#

model was given prior to the application of programming concepts but never

prior to the teaching of the concepts in a lecture learning activity (Appendix

C). Further, students are more co-operative when being challenged, and thus a

more significant impact could have materialised in the event of the students

being formally examined and rewarded for B# programming notation tasks.

Furthermore, the current investigation used a repeated measures design for

practical assessments administered. Due to a lack of criteria for the arguing of

the equivalence of these tasks for experimental purposes, moderation by

course instructors was implemented.

• version of B# used in the empirical study implemented subroutines (functions

and procedures) in a way that was frustrating to the treatment group

participants in the investigation. Despite this fact, strong evidence of

improved performance resulted.

• version of B# used in the empirical study had no visual presentation of

program solution execution to directly encourage exploratory learning and

problem-solving. The version exhibiting this functionality was in

development at the time that the study was being conducted. No conclusion in

regard to the impact of this feature can thus be made.

• current empirical study measured only the accuracy of program solutions.

Related studies in programming measure timing as well as the total number of

errors recorded during the development of any particular program solution.

No mechanism was in place at the time of the current investigation to measure

the time taken to complete program solutions by participants in each of the

experimental groups, or to record the total number of errors made during the

composition of program solutions. No conclusion could thus be made in this

regard.

• results of the current investigation suggest evidence of the transfer and

retention of knowledge of programming concepts over a period of time. No

mechanism exists for the measurement of this factor, and thus no conclusion

can be made in this regard.

CHAPTER 9 : CONCLUSION OF INVESTIGATION

294

While the present study finds distinctive differences in the performance levels of

students identified as being at risk in the introductory programming course, its

limitations leave many questions which provide directions for future research.

9.6 Recommendations for Further Research

In recommending directions for future research, the development of a simplified

development environment and interactive dynamic graphical algorithm animation

environment as well as the need for further controlled studies in programming are

highlighted. Figure 9.3 illustrates the context of the current investigation reported on

by this thesis (in orange) in relation to existing research (in grey) and provoked

current research at UPE (in green).

There is a need for controlled studies that separate the effects of visual programming

notation primitives from the interactive aspects of the development environment.

Such studies would be valuable in determining whether the visual aspects of a

programming notation add any benefits that an interactive textual programming

notation cannot. Research (Programming Environments in Figure 9.3) that

determines whether a simplified development environment that supports a reduced set

of interactive features in order to reduce gratuitous complexity has recently been

provoked at UPE as a result of the findings of this thesis (De Jager 2004; Vogts 2004).

Related research into the effects of a dynamic interactive graphical algorithm

animation system has also recently been provoked (Yeh 2004). This system permits a

student to interactively define data structures, data contents as well as algorithms to

the animator system. The effects of the execution process are visualised in a

comparative exploratory learning manner in order for the student to make informed

decisions as to algorithm efficiency under a variety of conditions (Algorithm

Visualisation in Figure 9.3).

Looping programming constructs are an acknowledged area of difficulty for many

novice programmers. Research that is related to the current study (Generic

programming notation in Figure 9.3) and involves the development of a programming

CHAPTER 9 : CONCLUSION OF INVESTIGATION

295

notation that, amongst other programming constructs, encompasses all three types of

looping mechanisms (counter controlled, pre- and post-test) into a single simple

looping mechanism has also been provoked (Naudé 2004).

Figure 9.3: Current Related Research at UPE

The current research reported on in this thesis has also promoted research into the

development of a system (Mamtani 2004) to be used in a future controlled study that

evaluates whether novice programmers prefer visual iconic programming notation

Approaches to raise throughput rate

Identify potentially
successful students

Modify teaching
model

Technological
support tool

Visual programming
notations

Iconic programming
notations

Innovative presentation
techniques

Response to individual
learning style

Program Solution
Extract

Reorganisation

Pseudo
Programming

Comprehension
of notations

Dataflow
Programming

Languages

Generic
programming

notation

B#

Programming
Notations

Algorithm
Visualisation

Programming
Environments

CHAPTER 9 : CONCLUSION OF INVESTIGATION

296

program solutions to the equivalent textual programming notation program solutions

in terms of accuracy of comprehension (Comprehension of notations in Figure 9.3).

Another system under development (Henning 2004) will provide the means to

interactively train and assess introductory programming students in the completion of

textual programming notation program solutions, and thereby enhance their

comprehension skills at the in-depth level of learning (Program Solution Extract

Reorganisation in Figure 9.3).

Visual feedback of the execution of program solutions is expected to enhance the

understanding of the semantics of program solutions. There is a need for a further

controlled study to determine the effect of B#’s tracing facility on introductory

programming students using the current version of B# (Yeh 2003a, b). Further, the

current study reported on in this thesis has compared B# with a textual programming

notation that exhibited the same programming paradigm as that of B#. Comparative

studies between comprehension of program solutions in B# and programming

notations that exhibit differing paradigms, for example, an object-oriented paradigm,

are required to be conducted.

The findings of the current investigation also prompted investigation into evaluation

techniques that will assess B#’s suitability for use in the particular context of an

introductory programming course. The technique of the cognitive dimensions of

notations framework (Green & Blackwell 1998; Blackwell et al. 1999b; Green 2000)

is used to determine whether the intended activities of the novice programmer are

adequately supported by the structure of B# (Cilliers et al. 2004a). The main

deficiency highlighted by this assessment is that there is a requirement for B# to

support interactive learning support by means of an interactive tutorial component.

The integration of this component into B# would allow novice programmers to

educate themselves about the syntax, semantics and applications of B# and thereby

significantly improve the learnability of B#. A controlled study to confirm this

observation is required.

Furthermore, there is a need to determine the locus of effect of B#. This controlled

study would involve determining the effects of B# when used prior to and after the

learning of a conventional textual programming notation. A more conclusive

CHAPTER 9 : CONCLUSION OF INVESTIGATION

297

scientific measuring instrument is also required to assess the level of motivation of

participants using B#.

A related study would involve using eye-tracking devices to determine how often, if

at all, students refer to the automatically generated textual programming notation

program solution. This study would also involve determining whether programming

concepts are successfully transferred when using B# prior to using an industry

accepted programming notation and development environment.

The qualitative analysis technique applied (Chapter 7) indicates an emerging theme

that B# is characterised as being easy to use. A study which examines the following

hypothesis is therefore encouraged:

H0: It is easy to use B# when learning to program.

H1: It is not easy to use B# when learning to program.

It would also be interesting to compare the observed subsequent programming course

marks for participants in the treatment and control groups of the study reported on in

this thesis. While such data would not represent a valid longitudinal empirical study,

the historical study might indicate a trend for the long term impact on subsequent

programming courses of the use of B# in the introductory programming course.

9.7 Summary

The artefacts resulting from this research are:

• a framework for novice programmer requirements for technological support in

the learning environment of an introductory programming course (Chapter 2;

duplicated in Table 9.1);

• categorisation of experimental programming notations and development

environments used as technological support in the learning environment of an

introductory programming course (Chapter 3; legend of Table 9.1);

CHAPTER 9 : CONCLUSION OF INVESTIGATION

298

• evaluation of categories of technological support in the learning environment

of an introductory programming course in terms of the provided framework

(Chapter 3; summarised in Table 9.1);

• a visual iconic programming notation and development environment that

supports a framework for novice programmer requirements (Chapter 5);

• investigative methodology for an investigative study in programming (Chapter

6);

• empirical evidence in support of a visual iconic programming notation and

development environment (Chapters 7 and 8); and

• proposal for the incorporation of B# into the learning environment of an

introductory programming course (Section 9.4).

The framework of novice programmer requirements is used to examine existing

technological support as well as support the design of new technological support used

by novice programmers while learning to program. It thus provides information for

the selection of existing as well as the design of new technological support.

Research that further develops the framework for novice programmer requirements,

validates and verifies the application of the framework to technological support in the

learning environment of an introductory programming course or adapts and improves

on the presented investigative methodology to related studies is provoked.

This thesis has treated programming notations and development environments in the

learning environment of an introductory programming course as technological support

that sustains the mental model of a novice programmer. The thesis has effectively

applied substantial existing research on the cognitive model of the novice programmer

as well as that on experimental technological support to the comparison of the effect

of technological support in the teaching model of a tertiary level introductory

programming course. The increase of throughput to a recommended rate of 75% in

the tertiary level introductory programming course at UPE is attributed solely to the

incorporation of iconic technological support in the teaching model of the course.

 299

References
AC Nielsen Research Services (2000): Employer Satisfaction with Graduate Skills.

ACC (1997): ACCUPLACER Program Overview: Coordinator's Guide.

Adelson, B. (1984): When novices surpass experts: The difficulty of a task may

increase with expertise. Journal of Experimental Psychology: Learning,
Memory and Cognition, 10:483 - 495.

Allen, R.K., Grant, D.D. and Smith, R. (1996): Using Ada as the first Programming

language: A Retrospective. In Proceedings of Software Engineering:
Education & Practice.

Applin, A. G. (2001): Second Language Acquisition and CS1: Is * = = ** ? ACM

SIGCSE Bulletin, 33(1):174 - 178.

Astrachan, O. (1998): Concrete Teaching: Hooks and Props as Instructional

Technology. ACM SIGCSE Bulletin, 30(3):21 - 24.

Atkinson, R. C. (2001): Achievement versus Aptitude in College Admissions, in

Issues in Science and Technology Online, Winter. Available at
http://www.nap.edu/issues/18.2/atkinson.html. [Accessed on 19 September
2002].

Austin, H. S. (1987): Predictors of Pascal Programming Achievement for Community

College Students. ACM SIGCSE Bulletin, 19(1):161 - 164.

Baas, B. (2002): Ruby in the CS Curriculum. Journal of Computing in Small

Colleges.

Bauer, R., Mehrens, W. A. and Visionhaler, J. R. (1968): Predicting Performance in a

Computer Programming Course. In Proceedings of American Educational
Research Association Annual Meeting, Chicago.

Ben-Ari, M. (1998): Constructivism in Computer Science Education. ACM SIGCSE

Bulletin, 30(1):257 - 261.

Ben-Ari, M. (2001): Constructivism in Computer Science Education. Journal of

Computers and Mathematics in Science Teaching, 20(1):45 - 73.

Berenson, M. L. and Levine, D. M. (1999): Basic Business Statistics: Concepts and

Applications. 7th Edn, Prentice-Hall International, Inc. ISBN 0-13-081254-4.

Biggs, J. (1999): Teaching for Quality Learning at University. Society for Research

into Higher Education/Oxford University Press.

Blackwell, A. F. (2001): Pictorial Representation and Metaphor in Visual Language

Design. Journal of Visual Languages and Computing, 12:223 - 262.

REFERENCES

 300

Blackwell, A. F., Whitley, K. N., Good, J. and Petre, M. (2001): Cognitive Factors in
Programming with Diagrams. Artificial Intelligence Review(Thinking with
Diagrams). Available at http://cl.cam.ac.uk/users/afb21/publications/aire.pdf.

Blackwell, A.F. (1996): Metacognitive Theories of Visual Programming: What do we

think we are doing? In Proceedings of IEEE Symposium on Visual
Languages:240 - 246. Available at
http://cui.unige.ch/eao/www/Visual/local/Blackwell96.html.

Blackwell, A.F. and Green, T.R.G. (1999a): Does Metaphor Increase Visual

Language Usability? In Proceedings of IEEE Symposium on Visual
Languages:246 - 253. Available at
http://www.cl.cam.ac.uk/~afb21/publications.html.

Blackwell, A.F. and Green, T.R.G. (1999b): Investment of Attention as an Analytic

Approach to Cognitive Dimensions. In T. Green, R. Abdullah and P. Brna
(Eds.) Proceedings of 11th Annual Workshop of the Psychology of
Programming Interest Group:24 - 35. Available at
http://www.cl.cam.ac.uk/users/afb21/publications/PPIG99.html.

Blackwell, A.F. and Green, T.R.G. (2000): A Cognitive Dimensions questionnaire

optimised for users. In A.F. Blackwell and E. Bilotta (Eds.) Proceedings of
12th Annual Workshop of the Psychology of Programming Interest Group:137
- 154. Available at http://www.ppig.org/papers/12th-blackwell.pdf.

Bloom, B.S., Englehatt, M.D., Furst, E.J., Hill, W.H. and Kathwohl, D.R. (1956):

Taxonomy of Educational Objectives: Handbook I: Cognitive Domain.
Longmans, Green and Company.

Bonar, J. and Liffick, B.W. (1990): A visual programming language for novices. In

Principles of Visual Programming Systems. S.K. Chang (Ed.), Prentice-Hall.

Bonar, J. and Soloway, E. (1983): Uncovering Principles of Novice Programming. In

Proceedings of 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages:10 - 13.

Borland (2000): Delphi Enterprise Ver. 5.

Borland (2003): Delphi Enterprise Ver. 6.

Boyle, R., Carter, J. and Clark, M. (2002): What Makes Them Succeed? Entry,

progression and graduation in Computer Science. Journal of Further and
Higher Education, 26(1):3 - 18.

Brown, D. (2001a): B#: A visual programming tool. Honours treatise. Department of

Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth, South Africa.

Brown, D. (2001b): B#: A Visual Programming Tool Ver. 1.0.

REFERENCES

 301

Brusilovsky, P., Kouchnirenko, A., Miller, P. and Tomek, I. (1994): Teaching
programming to novices: a review of approaches and tools. In Proceedings of
ED-MEDIA 94-World Conference on Educational Multimedia and
Hypermedia, Vancouver, British Columbia, Canada.

Buck, D. and Stucki, D. J. (2001): JKarelRobot: A Case Study in Supporting Levels

of Cognitive Development in the Computer Science Curriculum. ACM
SIGCSE Bulletin, 33(1):16 - 20.

Budd, T.A. and Pandey, R. K. (1995): Never Mind the Paradigm, What About

Multiparadigm Languages? ACM SIGCSE Bulletin, 27(2):25 - 30.

Burnett, M. M., Baker, M., Bohus, C., Carlson, P., Yang, S. and Van Zee, P. (1995):

Scaling up visual programming languages. IEEE Computer.

Burnett, M. M. and Baker, M. J. (1994): A Classification System for Visual

Programming Languages. Technical Report 93-60-14. Department of
Computer Science, Oregon State University, Corvallis.

Burrell, C. (2003): Observing Novice Programmer Skill Development: A Micro-

world that supports Object-oriented Programming and Usage Data
Visualisation. In Proceedings of 3rd International Conference on Science,
Mathematics and Technology Education, East London, South Africa.

Butcher, D. F. and Muth, W. A. (1985): Predicting performance in an introductory

computer science course. Communications of the ACM, 28(3):263 - 268.

Byrne, P. and Lyons, G. (2001): The effect of student attributes on success in

programming. ACM SIGCSE Bulletin, 33(3):49 - 52.

Calitz, A. P. (1984): Evaluation of the Aptitudes of Prospective Computer Science

Students with a view to the development of a Computer Aided Testing
Program. Masters Dissertation. Department of Computer Science and
Information Systems, University of Port Elizabeth. Port Elizabeth, South
Africa.

Calitz, A. P. (1997): The Development and Evaluation of a Strategy for the Selection

of Computer Science Students at the University of Port Elizabeth. Doctoral
Thesis. Department of Computer Science and Information Systems, University
of Port Elizabeth. Port Elizabeth, South Africa.

Calitz, A. P., de Kock, G. de V. and Venter, D. J. L. (1992): Selection Criteria for

First Year Computer Science Students. South African Computer Journal, 8:4 -
11.

Calitz, A. P., Watson, M. B. and de Kock, G. de V. (1997): Identification and

Selection of Successful Future IT Personnel in a Changing Technological and
Business Environment. In Proceedings of SIGCPR, San Fransisco, USA.

Calloni, B. A. (1998): BACCII++ Ver. 1.50.

REFERENCES

 302

Calloni, B. A. (2002): Biography. Available at http://www.stc-
online.org/stc2002proceedings/spkr965.cfm or
http://comstar.csusa.net/~baccii/biography.html. [Accessed on 17 June 2004].

Calloni, B. A. and Bagert, D. J. (1994): Iconic Programming in BACCII© vs Textual

Programming: Which is a Better Learning Environment? ACM SIGCSE
Bulletin, 26(1):188 - 192.

Calloni, B. A. and Bagert, D. J. (1995): Iconic Programming for Teaching the First

Year Programming Sequence [online]. Available at
http://fie.engrng.pitt.edu/fie95/2a5/2a53/2a53.htm. [Accessed on 26
September 2002].

Calloni, B. A. and Bagert, D. J. (1997): Iconic Programming proves Effective for

Teaching First Year Programming Sequence. ACM SIGCSE Bulletin,
28(1):262 - 266.

Campbell, P. F. and McCabe, G. P. (1984): Predicting the success of freshmen in a

computer science major. Communications of the ACM, 27(11):1108 - 1113.

Cant, S. N., Jeffery, D. R. and Henderson-Sellers, B. (1995): A Conceptual Model of

Cognitive Complexity of Elements of the Programming Process. Information
and Software Technology, 37(7):351 - 362.

Carbone, A., Hurst, J., Mitchell, I. and Gunctone, D. (2001): Characteristics of

Programming Exercises that lead to Poor Learning Tendencies: Part II. ACM
SIGCSE Bulletin, 33(3):93 - 96.

Cardellini, L. (2002): An Interview with Richard M. Felder. Journal of Science

Education, 3(2):62 - 65.

Carlisle, M.C., Wilson, T.A., Humphries, J.W. and Hadfield, S.M (2004): RAPTOR:

Introducing Programming to Non-Majors with Flowcharts. In Proceedings of
ACM SIGCSE 35th Technical Symposium on Computer Science Education.
Available at http://www.usafa.af.mil/dfcs/bios/mcc_html/raptor_paper.doc.

Carter, J. and Jenkins, T. (2001): Gender differences in programming? ACM SIGCSE

Bulletin, 33(3):173.

CC (2001): Computing Curriculum 2001. Available at

http://www.acm.org/sigs/sigcse/education/cc2001/cc2001.pdf.

Chamillard, A. T. and Braun, K. A. (2000): Evaluating Programming Ability in an

Introductory Computer Science Course. ACM SIGCSE Bulletin, 32(1):212 -
216.

Chamillard, A.T., Moore, J. A. and Gibson, D. S. (2002): Using Graphics in an

Introductory Computer Science Course. Journal of Computer Science
Education Online. Available at
http://www.iste.org/sigcs/community/jcseonline/2002/2/chamillard.html.

REFERENCES

 303

Chang, B.-W. (1995): Getting Close to Objects. In Visual Object-Oriented
Programming Concepts and Environments:186. M.M. Burnett, A. Goldberg
and T. Lewis (Eds.).

Chang, S. K., Burnett, M. M., Levialdi, S., Marriott, K., Pfeiffer, J. J. and Tanimoto,

S. L. (1999): The Future of Visual Languages. In Proceedings of IEEE
Symposium on Visual Languages:58 - 61.

Chang, S. K., Polese, G., Orefice, S. and Tucci, M. (1994): A Methodology and

Interactive Environment for Iconic Language Design. International Journal of
Human-Computer Studies, 41(5):683 - 716.

Chattratichart, J. and Kuljis, J. (2000): An Assessment of Visual Representations for

the 'Flow of Control'. In A.F. Blackwell and E. Billotta (Eds.) Proceedings of
12th Workshop of the Psychology of Programming Interest Group:45 - 60.
Available at http://www.ppig.org/papers/12th-chattratichart.pdf.

Chattratichart, J. and Kuljis, J. (2002): Exploring the Effect of Control-Flow and

Traversal Direction on VPL Usability for Novices. Journal of Visual
Languages and Computing, 13:471 - 500.

Chen, H. and Vecchio, R. P. (1992): Nested IF-THEN-ELSE constructs in end-user

computing: Personality and aptitude as predictors of programming ability.
International Journal of Man-Machine Studies, 36:843 - 859.

Chmura, G. A. (1998): What abilities are necessary for success in Computer Science?

ACM SIGCSE Bulletin, 30(4):55a - 58a.

Christensen, K., Davis, D. and Rundus, D. (2000): A "Boot Camp" for Preparing

Freshman Students for Success in a First Course in Computing. In
Proceedings of ASEE Southeastern Section Conference.

Christians, D. N. (2003): A Simple IDE for Delphi. Honours treatise. Department of

Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth, South Africa.

Cilliers, C. B., Calitz, A. P. and Greyling, J. H. (2003): The Development and

Evaluation of Introductory Programming Tools. In Proceedings of 3rd
International Conference on Science Mathematics and Technology Education,
East London, South Africa.

Cilliers, C. B., Calitz, A. P. and Greyling, J. H. (2004a): The Application of the

Cognitive Dimensions Framework for Notations as an Instrument for the
Usability Analysis of an Introductory Programming Tool. Submitted for
publication in a special edition of Alternation Journal on e-Learning.

Cilliers, C. B., Calitz, A. P. and Greyling, J. H. (2004b): B# : A Programming Tool

for Novice Programmers. Scientific Address at Joint IFIP TC.13 and CHI-SA
Workshop, University of Port Elizabeth, Port Elizabeth, South Africa.
Available at http://www.chi-sa.co.za.

REFERENCES

 304

Cilliers, C. B. and Vogts, D. (2002): Initial Experiences of Delivery Methods in a
First Year Programming Course. In Proceedings of Southern African
Computer Lecturers Association (SACLA) Annual Conference.

Cockburn, A. and Churcher, N. (1997): Towards Literate Tools for Novice

Programmers. In Proceedings of Australasian Computer Science Education
Conference, Melbourne, Australia:107 - 116. ACM Press. Available at
http://www.cosc.canterbury.ac.nz/~andy/papers/acse97LitProg.pdf.

Cooper, S., Dann, W. and Pausch, R. (2000): Alice: A 3-D Tool for Introductory

Programming Concepts. Journal of Computing in Small Colleges, 15(5):108 -
117.

Cooper, S., Dann, W. and Pausch, R. (2003): Teaching Objects-First in Introductory

Computer Science. In Proceedings of ACM SIGCSE.

Corritore, C.L. and Wiedenbeck, S. (1991): What do novices learn during program

comprehension? International Journal of Human-Computer Interaction,
3(2):199 - 222.

Cranor, L. and Apte, A. (undated): Programs worth 1000 words: Visual Languages

bring programming to the masses [online]. Available at
http://info.acm.org/crossroads/xrds1-2/visual.html. [Accessed on 26 August
2002].

Crews, T. (2001): Using a Flowchart Simulator in a Introductory Programming

Course [online]. Available at
http://www.cstc.org/data/resources/213/Visual.pdf. [Accessed on 12 March
2003].

Crews, T. (2003): Visual Logic [online]. Available at

http://cis1.wku.edu/flint/VisualLogicFall03Demo.zip. [Accessed on 16
August 2003].

Crews, T. and Butterfield, J. (2002): Using Technology to Bring Abstract Concepts

into Focus: A Programming Case Study. Journal of Computing in Higher
Education, 13(2):25 - 50.

Crews, T. and Ziegler, U. (1998): The Flowchart Interpreter for Introductory

Programming Courses. In Proceedings of 28th Annual Frontiers in Education
Conference, 1:307 - 312. Available at
http://fie.engrng.pitt.edu/fie98/papers/1107.pdf.

CS&IS (2003): WRA101 (Algorithmics 1.1) Module Guide. Department of Computer

Science and Information Systems, University of Port Elizabeth. Port Elizabeth,
South Africa.

Curtis, B. (1981): A Review of Human Factors Research on Programming Languages

and Specifications. ACM Press:212 - 218.

REFERENCES

 305

Dagdilelis, V., Satratzemi, M. and Evangelidis, G. (2002): What they really do?
Attempting (once again) to model novice programmers' behavior. ACM
SIGCSE Bulletin, 34(3):244.

Dagiano, C., Kahn, K., Cypher, A. and Smith, D. C. (2001): Integrating Learning

Supports into the Design of Visual Programming Systems. Journal of Visual
Languages and Computing, 12:501 - 524.

Dale, N. (1998): Two Threads from the Empirical Studies of Programmers. ACM

SIGCSE Bulletin, 30(4):16a - 17a.

Daly, C. and Waldron, J. (2004): Assessing the assessment of programming ability. In

Proceedings of 35th SIGCSE Technical Symposium on Computer Science
Education:210 - 213.

Danial, S. E. (1985): Relationships between mathematical ability, attentional and

interpersonal style and achievement in a problem-solving oriented computer
programming course. Doctoral thesis. University of Pittsburgh.

Darius, R. (1987): A validity estimate of a computer aptitude test as it differentiates

while controlling for age, sex and ACT scores. Doctoral thesis. University of
Akron.

Davies, S. P. (1990): The nature and development of programming plans.

International Journal of Man-Machine Studies, 32:461 - 481.

De Jager, S. (2004): SimplifIDE. Honours treatise. Department of Computer Science

and Information Systems, University of Port Elizabeth. Port Elizabeth, South
Africa.

de Kock, G. de V. (1993): Implementation of selection model for First Year

Programming Students. Internal departmental correspondence. Department of
Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth, South Africa.

De Koning, K., Bredeweg, B., Breuker, J. and Wielinga, B. (2000): Model-based

reasoning about learner behaviour. Artificial Intelligence, 117:173 - 229.

De Raadt, M., Watson, R. and Toleman, M. (2002): Language Trends in Introductory

Programming Courses. In Proceedings of Informing Science + Information
Technology Education Joint Conference (InSITE):329 - 337.

De Roure, D., Maclean, S. D. and Glaser, H. (1998): An Extensible Interpreter for

Experimentation with the Semantics of Prograph. In Proceedings of IEEE
Symposium on Visual Languages:76 - 77.

Dee Medley, M. (2001): Using qualitative research software for CS education

research. ACM SIGCSE Bulletin, 33(3):141 - 144.

REFERENCES

 306

Deek, F P (1999): A Framework for an Automated Problem Solving and Program
Development Environment. Transactions of the Society for Design and
Process Science, 3(3):1 - 13.

Deek, F. P. and McHugh, J. A. (2002): An Empirical Evaluation of Specification

Oriented Language in Visual Environment for Instruction Translation
(SOLVEIT): A Problem-Solving and Program Development Environment.
Journal of Interactive Learning Research, 13(4):339 - 373. Available at
http://www.aace.org/dl/files/JILR/JILR134339.pdf.

Denning, P. J. (1996): The University's Next Challenges. Communications of the

ACM, 39(5):27 - 31.

Department of Education (2001): National Plan for Higher Education. South African

Department of Education. Available at
http://education.pwv.gov.za/DoE_Sites/Higher_Education/HE_Plan/section_2.
htm.

Dillon, L. K., Kutty, G., Melliar-Smith, P. M., Moser, L. E. and Ramakrishna, Y. S.

(1994): Visual specifications for temporal reasoning. Journal of Visual
Languages and Computing, 5(1).

Dingle, A. and Zander, C. (2001): Assessing the ripple effect of CS1 language choice.

Journal of Computing in Small Colleges, 16(2):85 - 93.

Donaldson, T. (2003): Python as a First Programming Language for Everyone. In

Proceedings of World Conference for Computer Education. Available at
http://www.cs.ubc.ca/wccce/Program03/papers/Toby.html.

Downes, S. (2002): Into the New Millenium: Why do Students Decide to study IT? In

Proceedings of Informing Science + Information Technology Education Joint
Conference (InSITE):371 - 372.

Du Toit, L. (1983): Manual for the Survey of Study Habits and Attitudes. Pretoria,

South Africa.

DuHadway, L. P., Clyde, S. W., Recker, M. M. and Cooley, D. H. (2002): A Concept-

first approach for an Introductory Computer Science Course. Journal of
Computing in Small Colleges, 18(2):6 - 16.

Eiselen, R. and Geyser, H. (2003): Factors distinguishing between Achievers and At

Risk Students: a qualitative and quantitative synthesis. South African Journal
of Higher Education, 17(2):118 - 130.

Ely, M., Anzul, M., Friedman, T., Garner, D. and MacCormack Steinmetz, A. (1995):

Doing Qualitative Research: Circles Within Circles. Falmer Press.

Ely, M., Vinz, R., Downing, M. and Anzul, M. (1999): On Writing Qualitative

Research: Living by Words. Falmer Press.

REFERENCES

 307

Entwisle, N. (1998): Motivation and Approaches to Learning: Motivating and
Conceptions of Teaching. In Motivating Students. S. Brown (Ed.), Kogan
Page.

Evans, G. E. and Simkin, M. G. (1989): What Best Predicts Computer Proficiency?

Communications of the ACM, 32(11):1322 - 1327.

Felder, R.M. (1993): Reaching the Second Tier: Learning and Teaching Styles in

College Science Education. Journal of College Science Teaching, 23(5):286 -
290. Available at http://www.ncsu.edu/felder-public/Papers/Secondtier.html.

Felder, R.M. (2002): Author's Preface to "Learning and Teaching Styles in

Engineering Education" [online]. Available at http://www.ncsu.edu/felder-
public/Papers/. [Accessed on 8 December 2003].

Fergusson, K. (2002): Anti Compiler: An Educational Tool in First Year

Programming. Honours Proposal. Computer Science and Software
Engineering, Monash University. Clayton, Australia.

Fincher, S. (1999): What are We Doing When We Teach Programming? In

Proceedings of Frontiers in Education:12a4-1 to 12a4-5. IEEE Press.

Fix, V., Wiedenbeck, S. and Scholtz, J. (1993): Mental Representations of programs

by Novices and Experts. In Proceedings of Conference on Human Factors in
Computing Systems:74 - 79.

Fowler, G. C. and Glorfield, L. W. (1981): Predicting aptitude in introductory

computing: A classification model. Association for Educational Data Systems
Journal, 14(2):96 - 109.

Fowler, L., Allen, M., Armarego, J. and Mackenzie, J. (2000): Learning Styles and

CASE tools in Software Engineering. In A. Herrmann and M.M. Kulski (Eds.)
Proceedings of 9th Annual Teaching Learning Forum. Available at
http://ccea.curtin.edu.au/tlf/tlf2000/fowler.html.

Foxcroft, C. D. (1997): Establishment of Task Team to investigate Admission Criteria

and the Development of an Admissions Test/Entrance Exam. Internal memo,
University of Port Elizabeth. Port Elizabeth, South Africa.

Foxcroft, C., Koch, E. and Watson, A. (1999): A developmental focus to student

access at UPE: Process and preliminary insights. In Proceedings of Selection
and Admissions Seminar, Port Elizabeth, South Africa.

Freeman, E., Jagannathan, S. and Gelernter, D. (1996): In Search of a Simple Visual

Vocabulary [online]. Available at
http://www.computer.org/conferences/vl95/html-
papers/freeman2/VL.html#MAPprogram. [Accessed on 12 August 2002].

REFERENCES

 308

Gamieldien, M. R. (2003): Activity Logger. Honours treatise. Department of
Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth, South Africa.

Garner, S. (2000): A Code Restructuring Tool to help Scaffold Novice Programmers.

In Proceedings of International Conference in Computer Education (ICCE).

Garner, S. (2001): Cognitive Load Reduction in Problem Solving Domains. In

Proceedings of International Conference in Computer Education (ICCE).

Garner, S. (2002): COLORS for Programming: A System to Support the Learning

Environment. In Proceedings of Informing Science and Information
Technology Education Joint Conference (InSITE):533 - 542. Available at
http://ecommerce.lebow.drexel.edu/eli/2002Proceedings/papers/Garne069CO
LOR.pdf.

Garner, S. (2003): Learning Resources and Tools to Aid Novices Learn Programming.

In Proceedings of Informing Science + Information Technology Education
Joint Conference (InSITE):213 - 222.

George, C. E. (2000): Experiences with Novices: The Importance of Graphical

Representations in Supporting Mental Models. In A.F. Blackwell and E.
Billotta (Eds.) Proceedings of 12th Workshop of the Psychology of
Programming Interest Group:33 - 44. Available at
http://www.ppig.org/papers/12th-george.pdf.

Ghittori, E., Mosconi, M. and Porta, M. (1998): Designing and Testing new

Programming Constructs in a Data Flow VL [online]. Available at
http://iride.unipv.it/research/papers/98r-dataflow/usabilit.htm. [Accessed on 8
August 2002].

Gibbs, D.C. (2002): A Case Study: An Interactive Introductory Programming

Environment using VBScript. In Proceedings of World Conference on
Educational Multimedia, Hypermedia and Telecommunications (ED-MEDIA).
Available at
http://www.uwsp.edu/cis/dgibbs/Conference/EDMEDIA2002/fullpaper.doc.

Gilmore, D. J. and Green, T. R. G. (1984): Comprehension and recall of miniature

programs. International Journal of Man-Machine Studies, 21:31 - 48.

Ginat, D. (2001): Metacognitive awareness utilized for learning control elements in

algorithmic problem solving. ACM SIGCSE Bulletin, 33(3):81 - 84.

Glenn, I. (2000): The Learning Curve, in The Money Standard (Standard Bank

Publication, South Africa):42 - 45.

Goldstein, G. (1987): The Computer Programmer Aptitude Battery as a Predictor of

Achievement in FORTRAN Computer Programming Courses at the Two-year
Community College Level. Doctoral thesis. New York University.

REFERENCES

 309

Good, J. A. (1999): VPLs and Novice Program Comprehension: How do Different
Languages Compare? In Proceedings of IEEE Symposium on Visual
Languages.

Good, J. and Brna, P. (1999): Getting a GRiP on the Comprehension of Data-Flow

Visual Programming Languages. In T. Green, R. Abdullah and P. Brna (Eds.)
Proceedings of 11th Annual Workshop of the Psychology of Programming
Interest Group. Available at http://www.ppig.org/papers/11th-good.pdf.

Goold, A. and Rimmer, R. (2000): Factors Affecting Performance in First-year

Computing. ACM SIGCSE Bulletin, 32(2):39 - 43.

Green, T. R. G. (1989): The cognitive dimensions of notations. In People and

Computers V:443 - 460. A. Sutcliffe and L. Macaulay (Eds.) Cambridge,
Cambridge University Press.

Green, T. R. G. (2000): Instructions and Descriptions: some cognitive aspects of

programming and similar activities. In V. Di Gesù, S. Levialdi and L.
Tarantino (Eds.) Proceedings of Working Conference on Advanced Visual
Interfaces, New York:21 - 28. ACM Press. Available at
http://www.ndirect.co.uk/~thomas.green/workStuff/Papers/AVI2000.pdf.

Green, T. R. G. and Blackwell, A. F. (1998): Cognitive Dimensions of Information

Artefacts: a tutorial. Available at
http://www.ndirect.co.uk/~thomas.green/workStuff/Papers/.

Green, T.R.G. (1997): Cognitive Approaches to Software Comprehension: Results,

Gaps and Limitations [online]. Available at
http://www.ndirect.co.uk/~thomas,green/workStuff/Papers/LimerickTalk1997/
LimerickTalk.html. [Accessed on 28 August 2002].

Green, T.R.G. and Blackwell, A. F. (1996): Thinking about Visual Programs [online].

Available at
http://cui.unige.ch/eao/www/Visual/local/GreenBlackwell96.html. [Accessed
on 14 August 2002].

Green, T.R.G. and Petre, M. (1993): Learning to Read Graphics: Some evidence that

"seeing" an Information Display is an Acquired Skill. Journal of Visual
Languages and Computing, 4:55 - 70.

Green, T.R.G. and Petre, M. (1996): Usability Analysis of Visual Programming

Environments: A 'Cognitive Dimensions' Framework. Journal of Visual
Languages and Computing, 7:131 - 174. Available at
http://www.idealibrary.com/links/doi/10.1006/jvlc.1996.0009.

Green, T.R.G., Petre, M. and Bellamy, R.K.E. (1991): Comprehensibility of Visual

and textual programs: A Test of Superlativism against the 'Match-Mismatch'
Conjecture. In Proceedings of 4th Workshop of Empirical Studies of
Programmers:121 - 146.

REFERENCES

 310

Greyling, J. H. (2000): The Compilation and Validation of a Computerised Selection
Battery for Computer Science and Information Systems Students. Doctoral
Thesis. Department of Computer Science and Information Systems, University
of Port Elizabeth. Port Elizabeth, South Africa.

Greyling, J. H. and Calitz, A P (2003): The Implementation of a Computerised

Placement Battery for First Year IT Courses. In Proceedings of 3rd
International Conference on Science, Mathematics and Technology
Education, East London, South Africa.

Greyling, J. H., Calitz, A. P. and Watson, M. (2002): The Implementation of a

Streaming Model in First Year IT Courses. In Proceedings of Southern
African Computer Lecturers Association (SACLA) Annual Conference.

Hagan, D. and Markham, S. (2000): Does It Help to Have Some Programming

Experience Before Beginning a Computing Degree Program? ACM SIGCSE
Bulletin, 32(3):25 - 28.

Haliburton, W. (1998): Gender Differences in Personality Components of Computer

Science Students: A Test of Holland's Congruence Hypothesis. ACM SIGCSE
Bulletin, 30(1):77 - 81.

Hansen, W.J., Bell, B., MacKaskle, G.A., Smedley, G., Kimura, D. and Poswig, J.

(1994): The 1994 Visual Languages Comparison [online]. Available at
http://www-cgi.cs.cmu.edu/~wjh/papers/bakeoff.html. [Accessed on 26
August 2002].

Harman, G. (1994): Student selection and admission to higher education: policies and

practices in the Asian region. International Journal of Higher Education,
27(3):313 - 339.

Hendrix, T. D., Cross, J. H., Barowski, L. A. and Mathias, K. S. (1998): Visual

Support for Incremental Abstraction and Refinement in Ada 95. In
Proceedings of SIGAda '98, Washington, D.C.

Hennefeld, J. and Burchard, C. (1998): Using C++: An Introduction to Programming.

PWS Publishing Company.

Henning, J. (2004): A Visual Code Reorganisation Tool. Honours treatise. Department

of Computer Science and Information Systems, University of Port Elizabeth.
Port Elizabeth, South Africa.

Hickey, T. J. (2004): Scheme-based Web Programming as a basis for a CS0

Curriculum. In Proceedings of 35th SIGCSE Technical Symposium on
Computer Science Education. Available at
http://www.cs.brandeis.edu/~tim/Papers/sigces-cs0.pdf.

Hilburn, T. B. (1993): A Top-Down Approach to Teaching an Introductory Computer

Science Course. ACM SIGCSE Bulletin, 25(1):58 - 62.

REFERENCES

 311

Hils, D. D. (1999): DataVis: A Visual Programming Language for Scientific
Visualization. In Proceedings of 19th Annual Conference on Computer
Science:439 - 448.

Holland, J. L. (1985): Making vocational choices: A theory of vocational personalities

and work environments. 2nd Edn, Prentice Hall, Englewood Cliffs, New
Jersey.

Howe, D. (2003): Free On-line Dictionary of Computing (FOLDOC) [online].

Available at http://wombat.doc.ic.ac.uk/foldoc/. [Accessed on 1 October
2003].

Howell, K. (1993): The Experience of Women in Undergraduate Computer Science:

What does the Research Say? ACM SIGCSE Bulletin, 25(2):1 - 7.

Howell, K. (2003): First Computer Languages. Journal of Computing in Small

Colleges, 18(4):317 - 331.

Hunt, A. (1998): An investigation into the Computerisation of the pen and paper

version of the Logo Test. Honours Treatise. Department of Computer Science
and Information Systems, University of Port Elizabeth. Port Elizabeth, South
Africa.

Huysamen, G. K. (1997): Potential ramifications of admissions testing at South

African institutions of higher education. South African Journal of Higher
Education, 11(2):65 - 71.

Huysamen, G. K. and Roozendaal, L. A. (1999): Curricular choice and the differential

prediction of the tertiary-academic performance of men and women. South
African Journal of Psychology, 29(2):87 - 93.

Irons, D. M. (1981): Cognitive Correlates of Programming Tasks in Novice

Programmers. ACM Press:219 - 222.

Jamal, R. and Ronpage, T. (1996): Rapid Prototyping Using Graphical Programming

Techniques for Real World Applications [online]. Available at
http://conference.kek.jp/PCaPAC99/cdrom/pcapac96/3POSTER/B/B01.doc.
[Accessed on 13 February 2003].

Jenkins, T. (2001a): The motivation of students of programming. ACM SIGCSE

Bulletin, 33(3):53 - 56.

Jenkins, T. (2001b): Teaching Programming - A Journey from Teacher to Motivator.

In Proceedings of 2nd Annual LTSN-ICS Conference. Available at
http://www.ics.ltsn.ac.uk/pub/conf2001/papers/Jenkins%20paper.pdf.

Jenkins, T. (2002): On the Difficulty of Learning to Program [online]. Available at

http://www.ics.ltsn.ac.uk/pub/conf2002/jenkins.html or
http://www.psy.gla.ac.uk/~steve/localed/jenkins.html. [Accessed on 13
February 2003].

REFERENCES

 312

Jenkins, T. (undated): Motivation = Value x Expectancy. ACM Press:174.

Jonassen, D. H. (2000): Toward a Meta-Theory of Problem Solving [online].

Available at http://tiger.coe.missouri.edu/~jonassen/Design%20Theory.pdf.
[Accessed on 13 February 2003].

Kaasbøll, J.J (1998): Exploring didactic models for programming [online]. Available

at http://www.ifi.uio.no/~jensj/NIK98.pdf. [Accessed on 10 February 2003].

Kerman, M.C. (2002): Programming and Probem Solving with Delphi™. Addison

Wesley Longman. ISBN 0-201-70844-2.

Kernighan, B.W. and Plauger, P.J. (1974): Programming Style. In Proceedings of 4th

SIGCSE Technical Symposium on Computer Science Education:90 - 96.

Kimmel, H., Deek, F.P. and O'Shea, M. (1999): Teaching, Learning, and Technology:

Is there a parallel? [online]. Available at
http://www.csun.edu/cod/conf/1999/session0232.htm. [Accessed on 10
February 2003].

Ko, A.J. (2003a): Preserving Non-Programmers' Motivation with Error-Prevention

and Debugging Support Tools [online]. Available at http://www-
2.cs.cmu.edu/~ajko/HCC2003TravelGrant.pdf. [Accessed on 26 August
2003].

Ko, A.J. (2003b): Project Marmalade [online]. Available at http://www-

2.cs.cmu.edu/~NatProg/marmalade.html. [Accessed on 26 August 2003].

Koelma, D., Van Balen, R. and Smeulders, A. (1992): SCIL-VP: a multi-purpose

visual programming environment. ACM SIGAPP:1199 - 1198.

Kolling, M. and Rosenberg, J. (2001): Guidelines for Teaching Object Orientation

with Java. ACM SIGCSE Bulletin, 33(3):33 - 36.

Konvalina, J., Stephens, L. and Wileman, S. (1983): Identifying Factors Influencing

Computer Science Aptitude and Achievement. Association for Educational
Data Systems Journal, 16:106 - 112.

Koubek, R. J., LeBold, W. K. and Salvendy, G. (1985): Predicting performance in

computer programming courses. Behaviour and Information Technology,
4(2):113 - 129.

Kushan, B (1994): Preparing Programming Teachers. ACM SIGCSE Bulletin.

Kutar, M., Britton, C. and Wilson, J. (2000): Cognitive Dimensions: An experience

report. In A.F. Blackwell and E. Bilotta (Eds.) Proceedings of 12th Annual
Workshop of the Psychology of Programming Interest Group:81 - 98.
Available at http://www.ppig.org/papers/12th-kutar.pdf.

REFERENCES

 313

LaLiberte, D. (1994): Visual Languages [online]. Available at
http://www.hypernews.org/~liberte/computing/visual.html. [Accessed on 8
August 2002].

Lane, H. C. (2002): Eliciting Pseudocode in Novice Program Design. In Proceedings

of 33rd ACM Technical Symposium on Computer Science Education. Available
at http://www.cs.pitt.edu/~hcl/pubs/sigcsedc02.html.

Lane, H. C. (2003): Development of an Intelligent Tutoring System for Novice

Program Design. In Proceedings of 34th ACM Technical Symposium on
Computer Science Education. Available at
http://www.cs.pitt.edu/~hcl/pubs/sigcsedc03.html.

Lane, H. C. (2004): A Preventive Tutoring System for Beginning Programming. In

Proceedings of 35th ACM Technical Symposium on Computer Science
Education. Available at http://www.cs.pitt.edu/~hcl/pubs/sigcsedc04.html.

Lane, H. C. and VanLehn, K. (2003): Coached Program Planning: Dialogue-Based

Support for Novice Program Design. In Proceedings of 34th SIGCSE
Technical Symposium on Computer Science Education:148 - 152. Available at
http://www.cs.pitt.edu/~hcl/pubs/cpp-sigcse03.pdf.

Lane, H. C. and VanLehn, K. (2004a): A Dialogue-Based Tutoring System for

Beginning Programming. In Proceedings of 17th International FLAIRS
Conference. Available at
http://www.cs.pitt.edu/%7Ehcl/pubs/FLAIRS04LaneH.pdf.

Lane, H. C. and VanLehn, K. (2004b): ProPl : A Dialogue-based Intelligent Tutoring

System.

Langley, R. (1992a): Manual : The Career Development Questionnaire. Pretoria,

South Africa.

Langley, R. (1992b): Manual: The Life Roles Inventory. Pretoria, South Africa.

Langley, R., Du Toit, R. and Herbst, D. L. (1992): Manual for the Value Scale.

Pretoria, South Africa.

Larkin, J. H. and Simon, H. A. (1987): Why a diagram is (sometimes) worth ten

thousand words. Cognitive Science, 11:65 - 99.

Larson, H. J. (1974): Introduction to Probability Theory and Statistical Inference. 2nd

Edn, Wiley International Edition. ISBN 0-471-51791-7.

Lavonen, J. M., Meisalo, V. P., Lattu, M. and Sutinen, E. (2003): Concretising the

programming task: a case study in a secondary school. Journal of Computers
and Education, 40:115 - 135.

REFERENCES

 314

Leppan, R. (2004): A Comparison of Student Learning Style Usage Patterns in a
4MATted Online Tutorial. Unpublished Masters dissertation. Department of
Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth, South Africa.

Lidtke, D. K. and Zhou, H. H. (1998): A Top-Down Collaborative Teaching

Approach to Introductory Courses in Computer Sciences. ACM SIGCSE
Bulletin, 30(3):291.

Liffick, B.W. and Aiken, R. (1996): A novice programmer's support environment.

ACM SIGCSE Bulletin, 28(SI):49 - 51.

Lischner, R. (2001): Explorations: Structured Labs for First-Time Programmers. ACM

SIGCSE Bulletin, 33(1):154 - 158.

Lister, R. (2000): On Blooming First Year Programming, and its Blooming

Assessment. In Proceedings of Australasian Conference on Computing
Education:158 - 162.

Lister, R. and Leaney, J. (2003): Introductory Programming, Criterion-Referencing,

and Bloom. In Proceedings of 34th SIGCSE Technical Symposium on
Computer Science Education:143 - 147.

Lockard, J. (1986): Computer programming in Schools: What Should Be Taught.

Computers in the Schools.

Loftin, R. D. (1987): The evaluation of selected variables as predictors of

achievement in computer programming. Doctoral thesis. Northwestern State
University of Louisiana.

Lord, H. D. (1994): Visual programming for visual applications: a new look for

computing, in Object Magazine, 4.

Lourens, A. and Smit, I.P.J. (2003): Retention: predicting first-year success. South

African Journal of Higher Education, 17(2):169 - 176.

Loxton, L. (1997): Training vital to keeping up in the IT, in Weekly Mail and

Guardian of 25 July 1997.

Lyons, P. (undated): Visual Programming Languages Research Papers [online].

Available at http://www-
ist.massey.ac.nz/~plyons/711_html/VPL%20papers.html. [Accessed on 8
August 2002].

Lyons, P., Simmons, C. and Apperley, M. (1993): HyperPascal: A Visual Language

to Model Idea Space. In Proceedings of 13th New Zealand Computer Society
Conference:492 - 508.

REFERENCES

 315

Mahmoud, Q., Dobosiewicz, W. and Swayne, D. (2004): Redesigning introductory
computer programming with HTML, JavaScript, and Java. In Proceedings of
35th SIGCSE Technical Symposium on Computer Science Education:120 -124.

Mamtani, B. (2004): Web-based Presentation System for Programming Logic

Information Flow. Honours treatise. Department of Computer Science and
Information Systems, University of Port Elizabeth. Port Elizabeth, South
Africa.

Maryland (2001): The "Degree Navigator" Nightmare: Taming an Overly Graphical

User Interface (Student HCI Online Research Experiments) [online].
Available at http://www.otal.umd.edu/SHORE2001/degreeNav/page1.html.
[Accessed on 16 August 2002].

Materson, T. F. and Meyer, R. M. (2001): SIVIL: A True Visual Programming

Language for Students. Journal of Computing in Small Colleges, 16(4):74 -
86.

Mattson, T. (undated-a): A Cognitive Model for Programming [online]. Available at

http://www.cise.ufl.edu/research/ParallelPatterns/PatternLanguage/Backgroun
d/Psychology/CognitiveModel.htm. [Accessed on 12 August 2002].

Mattson, T. (undated-b): Design Rules from the Psychology of Programming [online].

Available at
http://www.cise.ufl.edu/research/ParallelPatterns/PatternLanguage/Backgroun
d/Psychology/DesignRules.htm. [Accessed on 12 August 2002].

Mayer, R. E (1981): The Psychology of How Novices Learn Computer Programming.

ACM Computing Surveys, 13(1):121 - 141.

Mayer, R. E, Dyck, J. L. and Vilberg, W. (1986): Learning to Program and Learning

to Think: What's the Connection? Communications of the ACM, 29(7):605 -
610.

Mazlack, L. J. (1980): Identifying Potential to Acquire Programming Skill.

Communications of the ACM, 23(1):14 - 17.

McCracken, M., et al. (2001): A multi-national, multi-institutional study of

assessment of programming skills of first-year CS students. ACM SIGCSE
Bulletin, 33(4):125 - 140.

McDonald, A. S. (2002): The impact of individual differences on the equivalence of

computer-based and paper-and-pencil educational assessments. Computers
and Education, 39:299 - 312.

McGettrick, A.D. and Smith, P. D. (1983): Graded Problems in Computer Science.

Addison-Wesley Publishers Limited. ISBN 0-201-13787-9.

REFERENCES

 316

McIver, L. (2000): The Effect of Programming Language on Error Rates of Novice
Programmers. In A.F. Blackwell and E. Bilotta (Eds.) Proceedings of 12th
Workshop of the Psychology of Programming Interest Group:181 - 192.

McIver, L. (2001): Syntactic and Semantic Issues in Introductory Programming

Education. Doctoral Thesis. School of Computer Science and Software
Engineering, Monash University. Australia.

McIver, L. (2002): Evaluating Languages and Environments for Novice Programmers.

In J. Kuljis, L. Baldwin and R. Scoble (Eds.) Proceedings of 14th Workshop of
the Psychology of Programming Interest Group. Available at
http:www.ppig/org/papers/14th-mciver.pdf.

McIver, L. and Conway, D. (1999): GRAIL: A Zeroth Programming Language. In

Proceedings of 7th International Conference on Computers in Education, 2:43
- 50.

McKenna, P. (2000): Transparent and opaque boxes: do women and men have

different computer programming psychologies and styles? Computers and
Education, 35:37 - 49.

McKinney, A. L. (2003): A Recent Radical Graphical Approach to Programming.

Journal of Computing in Small Colleges, 18(6):28 - 35.

Merriam, S. (1998): Qualitative Research and Case Study Applications. Jossey-Bass

Publishers.

Meyer, R. M. and Masterson, T (2000): Towards a Better Visual Programming

Language: Critiquing Prograph's Control structures. Journal of Circuits,
Systems and Computers, 15(5):183 - 196.

Microsoft Corporation (2002): Microsoft Excel Ver. (10.4302.4219) SP-2.

Miller, P. A. (2003): How South African further education and training learners

acquire, recall, process and present information in a digitally enabled
environment. Doctoral Thesis. Department of Curriculum Studies, Faculty of
Education, University of Pretoria. Pretoria, South Africa.

Misthry, N., Mkhize, P. and Harypursat, R. (2003): The Role of Information

Technology and its Impact on Tertiary Education. In Proceedings of
Conference on Information Technology in Tertiary Education. Available at
http://citte.nu.ac.za/papers/id5.pdf.

Moher, T.G., Mak, D.C., Blumenthal, B. and Leventhal, L.M. (1993): Comparing the

comprehensibility of textual and graphical programs: The case of petri nets. In
Proceedings of 5th Workshop of Empirical Studies of Programmers:137 - 161.

Monare, M. (2004): Now matric exams face official probe, in Sunday Times of 4

January 2004.

REFERENCES

 317

Morrison, M. and Newman, T. S. (2001): A Study of the Impact of Student
Background and Preparedness on Outcomes in CS 1. ACM SIGCSE Bulletin,
33(1):179 - 183.

Mosconi, M. and Porta, M. (2000): Iteration constructs in data-flow visual

programming languages. Journal of Computer Languages, 26:67 - 104.

Mostert, J. W. (2002): Pre registration assessment. In Proceedings of 2nd Pan

Commonwealth Forum, Durban, South Africa. Available at
http://www.col.org/pcf2/papers%5Cmostert.pdf.

Mouton, J. (2001): How to succeed in your Master's & Doctoral Studies: A South

African Guide and Resource Book. Pretoria, South Africa, Van Schaik
Publishers.

Nash, J. (2003): The association of matriculation English scores with the performance

of Information Systems majors at the University of Cape Town. Masters
dissertation. Department of Information Systems, University of Cape Town,
South Africa.

Naudé, E. and Hörne, T. (2003): Investigating Suggestions for Increasing the

Throughput of IS Students. In Proceedings of Informing Science +
Information Technology Education Joint Conference (InSITE):923 - 929.

Naudé, K A (2004): Designing Programming Languages for Novice Programmers.

Unpublished Masters dissertation. Department of Computer Science and
Information Systems, University of Port Elizabeth. Port Elizabeth, South
Africa.

Navarro-Prieto, R. and Cañas, J. J. (1999): Mental Representation and Imagery in

Program Comprehension [online]. Available at
http://www.cs.vu.nl/~eace/ECCE9/papers/navarro.pdf. [Accessed on 2
September 2002].

Navarro-Prieto, R. and Cañas, J. J. (2001): Are visual programming languages better?

The role of imagery in program comprehension. International Journal of
Human-Computer Studies, 54:799 - 829.

Newman, T. S., Weisskopf, M. and Morrison, M. (1999): CS 090: The Case for a

Developmental Course in Computer Science. Journal of Teaching and
Learning, 4(1):15 - 35.

Nielsen, S. H., Von Hellens, L. A., Greenhill, A. and Pringle, R. (1997): Collectivism

and Connectivity: Culture and Gender in Information Technology Education.
In Proceedings of ACM SIGCPR Conference:9 - 13.

Oberlander, J., Brna, P., Cox, R. and Good, J. (1999): The GRIP Project, or … The

Match-Mismatch Conjecture and Learning to Use Data-Flow Visual
Programming Languages [online]. Available at
http:///www.cbl.leeds.ac.uk/~paul/grip.html. [Accessed on 12 August 2002].

REFERENCES

 318

Oberlander, J., Cox, R. and Good, J. (1999): HCRC Project: The match-mismatch
conjecture and learning to use data-flow visual programming languages
[online]. Available at http://www.hcrc.ed.ac.uk/site/grip.html. [Accessed on
20 August 2002].

Osipow, S. H. (1986): Career Decision Scale: Manual. Odessa, Florida.

Pandey, R. K. and Burnett, M. M. (1993): Is it easier to write matrix manipulation

programs visually or textually? An Empirical Study. In Proceedings of IEEE
Symposium on Visual Languages:344 - 351. IEEE Computer Society Press.
Available at http://www.ppig.org/papers/a2.html.

Pane, J. F. and Myers, B. A. (2000): The influence of the Psychology of Programming

on a Language Design: Project Status Report. In A.F. Blackwell and E.
Billotta (Eds.) Proceedings of 12th Workshop of the Psychology of
Programming Interest Group:193 - 208.

Pane, J.F., Myers, B. A. and Miller, L. B. (2002): Using HCI Techniques to Design a

More Usable Programming System. In Proceedings of IEEE Symposia on
Human Centric Computing Languages and Environments.

Pane, J.F., Ratanamahatana, C. A. and Myers, B. A. (2001): Studying the language

and structure in non-programmers' solutions to programming problems.
International Journal of Human-Computer Studies, 54:237 - 264. Available at
http://www.cs.cmu.edu/~pane/IJHCS.html.

Perkins, D. N. and Salomon, G. (1988): Teaching for Transfer [online]. Available at

http://www.lookstein.org/integration/teaching_for_transfer.htm. [Accessed on
13 February 2003].

Petre, M. and Blackwell, A.F. (1999): Mental Imagery in Program Design and Visual

Programming. International Journal of Human-Computer Studies, 51(1):7 -
30. Available at
http://www.cl.cam.ac.uk/users/afb21/publications/IJHCS.html.

Pictorius (1998): Pictorius Prograph for Windows Ver. 1.2.

Proulx, V. K. (2000): Programing Patterns and Design Patterns in the Introductory

Computer Science Course. ACM SIGCSE Bulletin, 32(1):80 - 84.

Proulx, V. K., Rasala, R. and Fell, H. (1996): Foundations of Computer Science:

What are they and how do we teach them? ACM SIGCSE Bulletin, 28(S1):42 -
48.

Quaiser-Pohl, C. and Lehmann, W. (2002): Girls' spatial abilities: Charting the

contributions of experiences and attitudes in different academic groups. British
Journal of Educational Psychology, 72:245 - 260.

REFERENCES

 319

Quinn, A. (2002): An Interrogative Approach to Novice Programming. In
Proceedings of IEEE Symposia on Human Centric Computing Languages and
Environments.

Rader, C., Cherry, G., Brand, C., Repenning, A. and Lewis, C. (1998): Designing

Mixed Textual and Iconic Programming Languages for Novice Users. In
Proceedings of IEEE Symposium on Visual Languages:187 - 194.

Ramalingam, V. and Wiedenbeck, S. (1997): An empirical study of novice program

comprehension in the imperative and object-oriented styles. In Proceedings of
7th Workshop on Empirical Studies of Programmers:124 - 139.

Reek, M. M (1995): A Top-Down approach to Teaching Programming. ACM SIGCSE

Bulletin, 27(1):6 - 9.

Reid, R.J. (2002): First Course (CS1) Language List, 23rd Edition [online]. Available

at http://www.cs.wvu.edu/~vanscoy/REID23.HTM. [Accessed on 6
September 2004].

Roos, J.D. (1998): Computerised Mazes Test. Honours Treatise. Department of

Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth, South Africa.

Roumani, H. (2002): Design Guidelines for the Lab Component of Objects-First CS1.

In Proceedings of SIGCSE:222 - 226.

Rountree, N., Rountree, J. and Robins, A. (2002): Predictors of Success and Failure in

a CS1 Course. ACM SIGCSE Bulletin, 34(4):121 - 124.

Roussev, B. (2003): Teaching Introduction to Programming as Part of the IS

Component of the Business Curriculum. In Proceedings of Informing Science
+ Information Technology Education Joint Conference (InSITE):1353 - 1360.

Rowell, G.H., Perhac, D.G., Hankins, J. A., Parker, B.C., Pettey, C.C. and Iriarte-

Gross, J.M. (2003): Computer-related gender differences. In Proceedings of
34th SIGCSE Technical Symposium on Computer Science Education:54 - 58.

Salcedo, M. (2003): Faculty and the 21st Century Student in USA Higher Education.

ACM SIGCSE Bulletin, 35(2):83 - 87.

Sanders, D. and Dorn, B. (2003a): Classroom Experience with Jeroo. Journal of

Computing in Small Colleges, 18(4):308 - 316.

Sanders, D. and Dorn, B. (2003b): Jeroo: A Tool for Introducing Object-Oriented

Programming. In Proceedings of 34th SIGCSE Technical Symposium on
Computer Science Education:201 - 204.

Satratzemi, M., Dagdilelis, V. and Evagelidis, G. (2001): A system for program

visualization and problem-solving path assessment of novice programmers.
ACM SIGCSE Bulletin, 33(3):137 - 140.

REFERENCES

 320

Sauter, V. L. (1986): Predicting computer programming skill. Computers and
Education, 10(2):299 - 302.

Scanlan, D. (1989): Structured Flowcharts Outperform Pseudocode: An Experimental

Comparison. IEEE Software, 6(5):28 - 36.

Schiffer, S. and Fršhlich, J. H. (1995): Visual Programming and Software Engineering

with Vista. In Visual Object-oriented Programming Concepts and
Environments:201. M.M. Burnett, A. Goldberg and T. Lewis (Eds.), Manning.

Schmucker, K. J. (1996): Rapid Prototyping using Visual programming Tools. In

Proceedings of CHI 96:359 - 360.

Shannon, C. (2003): Another Breadth-first approach to CS 1 using Python. In

Proceedings of 34th SIGCSE Technical Symposium on Computer Science
Education:248 - 251.

Shih, Y-F. and Alessi, S.M. (1993): Mental models and transfer of learning in

computer programming. Journal of Research on Computing in Education,
26(2):154 - 176.

Shneiderman, B. (1983): Direct Manipulation: A step beyond Programming

languages. IEEE Computer, 16(8):56 - 69.

Shu, N. C. (1985): Visual Programming Languages: A Perspective and Dimensional

Analysis. In Proceedings of International Symposium on New Directions in
Computing:326 - 334.

Shu, N. C. (1988): A visual programming environment for automatic programming.

In Proceedings of 21st Hawaii International Conference on System
Sciences:662.

Shute, V. (1991): Who is likely to acquire programming skills? Journal of

Educational Computing Research, 7:1 - 24.

Siegel, E. V. (1999): Why Do Fools Fall Into Infinite Loops: Singing To Your

Computer Science Class. ACM SIGCSE Bulletin, 31(3):167 - 170.

Smith, D. C., Cypher, A. and Tesler, L. (2000): Novice programming comes of age.

Communications of the ACM, 43(3):75 - 81.

Soloman, B. A. and Felder, R.M. (undated): Index of Learning Styles (ILS) [online].

Available at http://www.ncsu.edu/felder-public/ILSpage.html. [Accessed on 5
November 2003].

Soloway, E. (1986): Learning to program = learning to construct mechanisms and

explanations. Communications of the ACM, 29(9):850 - 858.

REFERENCES

 321

Soloway, E., Ehrlich, K. and Bonar, J. (1982): Tapping into Tacit Programming
Knowledge. In Proceedings of SIGCHI Conference on Human Factors in
Computing Systems:52 - 57.

Spohrer, J. C. and Soloway, E. (1986): Novice mistakes: are the folk wisdoms

correct? Communications of the ACM, 29(7):624 - 632.

Stajano, F. (2000): Python in Education: Raising a Generation of Native Speakers. In

Proceedings of 8th International Python Conference. Available at
http://www.python.org/workshops/2000-
01/proceedings/papers/stajano/stajano.pdf.

StatSoft Inc. (2001): STATISTICA (data analysis software system) Ver. 6.

Stephens, L.J., Wileman, A. and Konvalina, J. (1981): Group Differences in

Computer Science Aptitude. Association for Educational Data Systems
Journal:84 - 95.

Streicher, M. (1998): Interactive Learner Ver. 1.0.

Streicher, M. (2003): The Significance of User Modelling in Designing Distributed

Multimedia-based Computerised Tests. Unpublished Masters dissertation.
Department of Computer Science and Information Systems, University of Port
Elizabeth. Port Elizabeth, South Africa.

Studer, S. D., Taylor, J. and Macie, K. (1995): Youngster: A Simplified Introduction

to Computing: Removing the Details so that a Child may program. ACM
SIGCSE Bulletin, 27(1):102 - 105.

Sutherland, L. (1995): Facilitating the Development of Problem Solving Expertise:

The Impact of the Question Analysis Strategy [online]. Available at
http://www.aare.edu.au/95pap/suthl95.184. [Accessed on 1 October 2003].

Tanimoto, S. T. and Glinert, E. P. (1986): Designing Iconic Programming Systems:

Representation and Learnability. In Proceedings of IEEE Workshop on Visual
Languages:54 - 60.

Thomas, J. (2002a): B#: A Visual Programming Tool Ver. 2.0.

Thomas, J. (2002b): B#: Version 2. Honours treatise. Department of Computer

Science and Information Systems, University of Port Elizabeth. Port Elizabeth,
South Africa.

Thomas, L., Ratcliffe, M., Woodbury, J. and Jarman, E (2002): Learning Styles and

Performance in the Introductory Programming Sequence. ACM SIGCSE
Bulletin, 34(1):33 - 37.

Toombs, K M (1987): An Investigation into the Effect of Computer Symbolic Modes

on Learning Processes. Doctoral Thesis. University of South Africa, South
Africa.

REFERENCES

 322

UCAS (2000): Universities and Colleges Admissions Service for the UK. Technical
Report. [online]. Available at http://www.ucas.ac.uk/ or
http://www.ucas.ac.uk/figures/index.html. [Accessed on 12 August 2003].

UPE (2002): Faculty of Science Pass Rate Report. Internal memo. University of Port

Elizabeth. Port Elizabeth, South Africa.

UPE (2003a): Academic Records. University of Port Elizabeth. Port Elizabeth, South

Africa.

UPE (2003b): Syllabi for Departments in Faculty of Science. University of Port

Elizabeth. Port Elizabeth, South Africa.

UPE (2004): Amendment to Faculty of Commerce Rules. University of Port

Elizabeth. Port Elizabeth, South Africa.

Urban-Lurain, M. and Weinshank, D. J. (2000): Is There A Role for Programming in

Non-Major Computer Science Courses? [online]. Available at
http://aral.cse.msu.edu/Publications/FIE2000/fie2000.htm. [Accessed on 18
July 2002].

Van Tonder, M. (2003): A Java Development Tool. Honours treatise. Department of

Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth, South Africa.

VanLengen, C. A. and Maddux, C. D. (1990): Does Instruction in Computer

Programming Improve Problem Solving Ability? Journal of Information
Systems Education, 2(2). Available at http://www.gise.org/JISE/Vol1-
5/DOESINST.htm.

Ventura, P.R. (2003): On the Origins of Programmers: Identifying Predictors of

Success for an Objects First CS1. Doctoral thesis. Department of Computer
Science and Engineering, Graduate School of the State University of New
York at Buffalo.

Vogts, D. (2004): A Simplified Programming Language for Novice Programmers.

Unpublished Doctoral thesis. Department of Computer Science and
Information Systems, University of Port Elizabeth. Port Elizabeth, South
Africa.

Waddel, K. C. and Cross, J. H. (1988): Survey of Empirical Studies of Graphical

Representations for Algorithms. In Proceedings of ACM 16th Annual
Conference on Computer Science:696.

Ware, C. (1993): The Foundations of Experimental Semiotics: A Theory of Sensory

and Conventional Representation. Journal of Visual Languages and
Computing, 4:91 - 100.

REFERENCES

 323

Warren, P R (2000): Using JavaScript to Teach an Introduction to Programming
[online]. Available at
http://saturn.cs.unp.ac.za/~peterw/JavaScript/calculator.html. [Accessed on 5
June 2003].

Warren, P R (2001): Teaching programming using scripting languages. Journal of

Computing in Small Colleges, 17(2):205 - 216.

Warren, P R (2003): Learning to Program: Spreadsheets, Scripting and HCI. In

Proceedings of Southern African Computer Lecturers Association (SACLA)
Annual Conference.

Watts, T. (2003): A Structured Flow Chart Editor Version 3. In Proceedings of ACM

SIGCSE Faculty Poster. Available at
http://www.cs.sonoma.edu/~tiawatts/SFC/.

Wesson, J.L. (2002): Pass Rates. Internal departmental correspondence. University

of Port Elizabeth. Port Elizabeth, South Africa.

West, M. and Ross, S. (2002): Retaining females in Computer Science: A new look at

a persistent problem. Journal of Computing in Small Colleges, 17(5):1 - 7.

Whitley, K. N. and Blackwell, A. F. (2001): Visual Programming in the Wild: A

Survey of LabVIEW Programmers. Journal of Visual Languages and
Computing, 12(4):435 - 472.

Whitley, K.N. (1997): Visual Programming Languages and the Empirical Evidence

For and Against. Journal of Visual Languages and Computing, 8(1):9 - 142.
Available at http://www.cs.dal.ca/~pcox/CSCI6304/references/whitley.pdf.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S. and Corritore, C. L. (1999): A

comparison of the comprehension of object-oriented and procedural programs
by novice programmers. Interacting with Computers, 11:255 - 282.

Williams, S. and Walmsley, S. (1999): Discover Delphi: Programming Principles

Explained. Addison-Wesley.

Wilson, B. C. and Shrock, S. (2001): Contributing to Success in an Introductory

Computer Science Course: A Study of Twelve Factors. ACM SIGCSE
Bulletin, 33(1):184 - 188.

Wilson, J. D. and Braun, G. F. (1985): Psychological Differences in University

Computer Student populations. ACM SIGCSE Bulletin, 17(1):166 - 177.

Wirth, N. (1971): The Programming Language Pascal. Acta Informatica, 1:35 - 63.

REFERENCES

 324

Wright, T. and Cockburn, A. (2000): Writing, Reading, Watching: A Task-Based
Analysis and Review of Learners' Programming Environments. In
Proceedings of International Workshop on Advanced Learning Technologies.
IEEE Computer Society Press. Available at
http://www.cosc.canterbury.ac.nz/~andy/papers/iwalt.pdf.

Wright, T. and Cockburn, A. (2002): Mulspren: a MUltiple Language Simulation

PRogramming ENvironment. In Proceedings of IEEE Symposia on Human
Centric Computing Languages and Environments.

Yeh, C. L. (2003a): B#: A Visual Programming and Tracing Tool Ver. 3.0.

Yeh, C. L. (2003b): Tracing programs in B#. Honours treatise. Department of

Computer Science and Information Systems, University of Port Elizabeth. Port
Elizabeth, South Africa.

Yeh, C. L. (2004): A Framework for Algorithm Animation in Introductory

Programming Courses: A Case Study in Sorting Algorithms. Unpublished
Masters dissertation. Department of Computer Science and Information
Systems, University of Port Elizabeth. Port Elizabeth, South Africa.

Zaaiman, H., Van der Flier, H. and Thijs, G. D. (1998): Selecting South African

higher education students: critical issues and proposed solutions. South
African Journal of Higher Education, 12(3):96 - 101.

Zelle, J. M. (undated): Python as a First Language [online]. Available at

http://mcsp.wartburg.edu/zelle/python/python-first.html. [Accessed on 6
September 2004].

Ziegler, U. and Crews, T. (1999): An Integrated Program development Tool for

Teaching and Learning How to Program. ACM SIGCSE Bulletin, 31(1):276 -
280.

 A-1

Appendix A

Commercial Programming Development
Environment

Figure A.1: Borland® Delphi™ Enterprise version 6 Textual Programming Environment

(Borland 2003)

B-1

Appendix B

B# Programming Development Environment

B.1 Screen Layout

Figure B.1: B# ver. 1.0 programming environment (Brown 2001b)

APPENDIX B: B# PROGRAMMING DEVELOPMENT ENVIRONMENT

B-2

Figure B.2: B# ver. 2.0 programming environment (Thomas 2002a)

Figure B.3: B# ver. 3.0 programming environment (Yeh 2003a)

APPENDIX B: B# PROGRAMMING DEVELOPMENT ENVIRONMENT

B-3

B.2 B# ver. 2.0 Icon Dialogues

Figure B.4: Data input programming construct icon dialogue

Figure B.5: Data output programming construct icon dialogue

APPENDIX B: B# PROGRAMMING DEVELOPMENT ENVIRONMENT

B-4

Figure B.6: Assignment programming construct icon dialogue

Figure B.7: Single branch conditional programming construct icon dialogue

APPENDIX B: B# PROGRAMMING DEVELOPMENT ENVIRONMENT

B-5

Figure B.8: Multiple branches conditional programming construct icon dialogue

APPENDIX B: B# PROGRAMMING DEVELOPMENT ENVIRONMENT

B-6

Figure B.9: Counter controlled iteration programming construct icon dialogue

Figure B.10: Post-test sentinel controlled iteration programming construct icon dialogue

APPENDIX B: B# PROGRAMMING DEVELOPMENT ENVIRONMENT

B-7

Figure B.11: Pre-test sentinel controlled iteration programming construct icon dialogue

Figure B.12: Procedure declaration programming construct icon dialogue

APPENDIX B: B# PROGRAMMING DEVELOPMENT ENVIRONMENT

B-8

Figure B.13: Return icon dialogue

Figure B.14: Procedure call wizard icon dialogue

C-1

Appendix C

Learning Material

The material (M3 and M8) appearing in this appendix was distributed amongst only
the subjects under treatment. The material was divided up into 9 weekly sections, a
practical per week, with each section covering only those programming constructs
that were taught during traditional lectures in the relevant week. A section of the
material was consequently distributed on a weekly basis, with the entire duration of
the treatment being a period of 9 weeks. The material appearing in this appendix was
required to be studied by each subject in the treatment group on their own cognisance.

All page references within a section are relative to the first page of the section.

Subjects who were not under treatment were required to implement the same
practicals using only the Delphi™ Enterprise textual programming environment.
They were also expected to familiarise themselves with the textual programming
environment without instructor interference.

APPENDIX C: LEARNING MATERIAL

 C-2

WRA101 : Practical 3
Week 4 : 4 - 6 March 2003

Sections Covered
Variables and Data Types (pp 76 – 85)
Precedence Rules, Typecasting, Scope, Interactive Input and Output (pp 91 – 104)

Objectives
• Introduction to B# (an iconic programming environment)

• Opening and running an existing solution
• Creating, saving and running a new solution

• Introduction to Delphi (a textual programming environment)
• Opening and running an existing solution
• Creating, saving and running a new solution using the solution generated by

B#

Practical Preparation
• Using any of the problem solving methodologies studied (flowchart or

pseudocode), plan the solutions to each of the problems in Tasks 3, 4 and 5
before attending your practical session.

• Copy the file F:\Courses\WRA101\Practical 3\Tue\CircleArea.bpf
under the folder for your usercode in the C:\Temp directory.

Compulsory Practical Tasks

Task 1 : Step-by-step introduction to B#

Consider the following problem.

Determine and display the area of a circle if the radius entered is
positive (>0), otherwise display an appropriate message.

A flowchart corresponding to the solution for the above problem is:

APPENDIX C: LEARNING MATERIAL

 C-3

Start

Enter the
radius (r)

PI is the value
3.14

Set area to PI x r x r

Display
area

Stop
Is

radius
> 0?

Display message

No

Yes

The pseudocode corresponding to the problem is:

Constants
PI = 3.14

Inputs Outputs
radius Area of circle or message

Algorithm
1. Get the radius (r).
2. If r > 0, then proceed to step 3; otherwise proceed to step

5.
3. Calculate the area (area = PI x r x r).
4. Display the area and stop processing.
5. Display an appropriate error message.

The following illustrates how the software package B# is used to run a solution to the
above problem. Follow each of the steps closely. Ensure that you understand what
you are doing every step of the way since you will need to imitate these steps in all of
your subsequent practical sessions.

Activate the B# program from your desktop by double-clicking on the B# icon.

The following window is displayed.

APPENDIX C: LEARNING MATERIAL

 C-4

How to open an existing B# program

Click on the icon (open existing project) and locate and open the file
CircleArea.bpf under your usercode in the C:\Temp directory (which you should
have copied across from the network drive in preparation for your practical). The
following window should then be displayed.

Create a new project
Open an existing project

Save a project

Run a project

Click here to
maximize the
window

APPENDIX C: LEARNING MATERIAL

 C-5

Note the position and contents of the following panes on your screen.

• The top left hand pane lists all of the constants and variables that have been
declared.

• The icon panel at the bottom far left hand side shows all of the programming
constructs that are supported by B#. An icon represents each programming
construct. During this practical session you will make use of only the top

three, namely keyboard input (), screen output () and assignment

().
• The bottom left hand pane is the edit window for the flowchart. This is the

pane into which you drag and drop the icons for programming constructs,
thereby creating a solution to a given problem.

• The correct source code generated by B# as you create a flowchart is
displayed in the right hand pane. B# does not permit you to make any
changes here, but get into the habit of always noting what B# places here
when you do make a change to your flowchart program.

How to run a B# program

Click on the icon found along the top of the main window of B# (see page 2).
The following DOS window appears:

Source code
generated
by B#

Variable and
constant
declarations

Icon panel

Edit window for
iconic
program/flowchart

APPENDIX C: LEARNING MATERIAL

 C-6

Enter the value –5 as the radius of the circle and press the enter key (we would
expect an appropriate error message to be displayed since –5 <= 0). The following
results:

Close the DOS window by clicking here.

Run the program again, this time entering 7 as the radius of the circle. The following
results:

Run the project with the following values for the radius. In the column Area, write
down the value displayed by the program.

Radius Area
14.343
2.175

How to create and save a new B# program

You must first choose to create a new project (a project is the name given to the file

that contains the solution to the problem). To do this, click on the icon in the top

APPENDIX C: LEARNING MATERIAL

 C-7

left hand corner of the window (see page 2). The Program Settings dialogue box
then appears in the middle of the window.

Here you are provided with the opportunity to give your B# project a name. Give
your project the name Velocity by overwriting the name myProgram. Click the OK
button. The following window is displayed.

To save the program, click on the icon found along the top of the main window
of B# (see page 2). This is the first time that the project is being saved, and you will
be required to specify the folder in which the program must be saved as well as give
the program a name. Store this program with the name Velocity under your
usercode in the C:\Temp folder.

You will be adding a drawing that resembles a flowchart to the bottom left hand pane,
and will also be able to add, edit and delete constants and variables in the top left
hand pane. The right hand pane shows the correct Pascal code (which Delphi uses)

Name of
this
program

APPENDIX C: LEARNING MATERIAL

 C-8

that is automatically generated as you create your B# flowchart. You are encouraged
to always be aware of this developing code as you implement your solution in B#.

The in the bottom left hand pane indicates the start (top) and stop (bottom)
points of the solution. Anything that forms part of the solution is dragged-and-
dropped onto the line between these points.

Consider the following problem.

Compute and display a vehicle’s average velocity using the formula shown below
(distance (in km) - and time (in hours) are user inputs that are each always assumed
to be >0). Make valid assumptions about the data types of variables used:

 Average velocity = distance ÷ time

A flowchart corresponding to the solution for the above problem is:

Enter
distance

Start

Enter
time

Set average velocity to
distance time

Display
average
velocity

Stop

÷

APPENDIX C: LEARNING MATERIAL

 C-9

The corresponding pseudo-code is:

Constants

Inputs Outputs
Distance (in km) Average velocity
Time (in hours)

Algorithm
1. Get the distance travelled by the vehicle.
2. Get the time taken to travel the distance.
3. Calculate the average velocity
 (average velocity becomes distance ÷ time)
4. Display the velocity and stop processing.

The following guides you in developing the B# solution to this problem.

Declaring a variable

Note: Constants are treated the same way as variables regarding
declaration and usage.

At the top of the constant and variable declaration pane (see screen shot on page 3

for assistance), click on the icon to declare a new variable ().

The Declaration dialogue box is displayed.
Select the Variable radio button; give the variable the name distance (type it in) and
highlight the data type Real so that the dialogue box looks like the following:

Click on the OK button.

The following window is now displayed.

APPENDIX C: LEARNING MATERIAL

 C-10

Note how the contents of the Local Constants / Variables and Source Code panes
have changed when compared to the screen shot on page 5.

Reading input from the user

To implement the in the flowchart, which is a prompt to the
user to enter a value and reading input from the user, namely the distance travelled
by the vehicle, do the following:

Click on the keyboard input icon found on the icon panel and, holding the left

button of the mouse in, drag the icon onto the positioning it on the line between
the start and stop points, and let the mouse button go. Note the developing diagram
in the flowchart pane in the background window:

APPENDIX C: LEARNING MATERIAL

 C-11

The Input Statement Settings dialogue is displayed. Complete it exactly as shown
below by adding the indicated text and variable name in the appropriate places:

Click on the OK button.

The following window is displayed.

Note the changes in the contents of the Flowchart and Source Code panes.

Type this text in exactly as
shown – including single
quotation marks. This will
be displayed to the user to
request him/her to enter the
distance travelled by the
vehicle

You can either type in the
name of the variable here (if
you can remember it), or
make a selection from a list
of declared variables using
this option

Any errors that you make
will be listed here (for
example, typing in an
incorrect variable name).
Read the error message(s)
carefully and make the
necessary changes

APPENDIX C: LEARNING MATERIAL

 C-12

The next part of the solution requires another input value from the user. What follows
is an illustration of the same process as above, but in a slightly different order. Once
you have mastered the process, B# permits you to perform the process in your
preferred manner.

To implement the in the flowchart, which is a prompt to the user
to enter a value and reading input from the user, namely the time taken by the
vehicle to travel the specified distance, do the following:

Click on the keyboard input icon found on the icon panel and drag and drop

the icon onto the positioning it on the line between the existing
keyboard input icon and stop point. As you do this, again note the developing
diagram in the flowchart pane in the background window:

The Input Statement Settings dialogue is displayed.

On the Input Statement Settings dialogue, select the Variables option.

Type this text in exactly as
shown – including the
single quotation marks.
This will be displayed to the
user to request him/her to
enter the time taken for the
vehicle to travel the
distance

Here

APPENDIX C: LEARNING MATERIAL

 C-13

Select New Variable from the drop-down menu, and declare a real variable
with the name time as follows:

Click on the OK button.

In the Store Value field on the displayed Input Statement Settings dialogue (like
the screen shot on page 10), either select the variable time from the list of declared
variables, or type in the word time, and click on the OK button.

The following window is displayed. Note the contents of the Local
Variables/Constants, Flowchart and Source Code panes.

APPENDIX C: LEARNING MATERIAL

 C-14

Assigning the result of a calculation to a variable

To implement the in the flowchart, which is an
assignment of the result of the average velocity calculation to a variable, the
declaration of a real variable called ans (which will record the result of the
calculation) is required. This can be done in a way similar to any of two ways
illustrated above (see page 7 or once the assignment icon has been added to the
flowchart, which will be the way illustrated below).

Drag and drop the assignment icon () onto the positioning it
on the line between the lower-most keyboard input icon and stop point. As you do
this, again note the developing diagram in the flowchart pane in the background
window:

Here

APPENDIX C: LEARNING MATERIAL

 C-15

The Assignment Statement Settings dialogue is displayed.

In order to declare the new variable ans, which will record the value of the average
velocity calculation, on the Assignment Statement Settings dialogue, select the
Variables option.

Select New Variable from the drop-down menu, and declare a real variable
with the name ans similar to the way that the variable time was declared on page
11 (top screen shot).

On the Assignment Statement Settings dialogue box, do the following in the
correct order:

You may either type in the
assignment statement in
this field, or allow B# to do
it for you. What follows
illustrates how B# can make
it easy for you.

• Select the Variables option,
and select the variable ans

• Select the Operators option

and select := Assignment

• Select the Variables option,

and select the variable
distance

• Select the Operators option,

then the Mathematical option,
and then select / Divide

• Select the Variables option,

and select the variable time

APPENDIX C: LEARNING MATERIAL

 C-16

The Assignment Statement Settings should now look exactly like the following:

Click on the OK button.

The following window is displayed. Note the contents of the Local
Variables/Constants, Flowchart and Source Code panes.

APPENDIX C: LEARNING MATERIAL

 C-17

Screen Output

To implement the in the flowchart, which is the output of the
contents of a variable on the screen, the following steps are required:

Drag and drop the screen output icon () onto the
positioning it on the line between the assignment icon and stop point. As you do this,
again note the developing diagram in the flowchart pane in the background window:

The Output Statement Settings dialogue is displayed.

Here

• Type in this text exactly as
shown – include the single
quotation mark and comma

• Select the Variables option,

and select the variable ans

• Check this box

APPENDIX C: LEARNING MATERIAL

 C-18

The Output Statement Settings dialogue box should now look exactly like the
following:

Click on the OK button.

The following window is displayed.

Note the contents of the Flowchart and Source Code panes.

To save the program, click on the icon found along the top of the main window
of B# (see page 2).

Note: Checking
this box results
in a writeln
statement, and
not a write
statement

APPENDIX C: LEARNING MATERIAL

 C-19

How to test a B# program

Run the Velocity program – if you have forgotten how to run a B# program, refer to
page 4.

Test your solution with a distance of 1045.67km and time of 8.75 hours. Write the
answer exactly as displayed in the DOS window in the place below.

How to export the source code of a B# program for use in Delphi™ Enterprise

Because you will be expected to also program solutions using the Delphi™
Enterprise programming environment, you can make use of B#’s facility to export
correct code (since B#’s code is ALWAYS correct) for use in Delphi. You may then
load the correct code into Delphi and make any necessary changes to create a new
program. This will hopefully result in you producing correct programs more often at
a greater speed than if you were not using B#.

Click on the File option along the main menu of B#.

Then select the option Export Code. You will be required to specify the folder in
which the program must be saved as well as give the program a name (see example
below). Store this program as the name Velocity under your usercode in the
C:\Temp folder.

APPENDIX C: LEARNING MATERIAL

 C-20

How to exit from B#

In order to exit from B#, you may either close B#’s window, or click on the File
option along the main menu of B#, and select the Exit option.

Task 2 : Step-by-step introduction to Delphi™ Enterprise

Consider the following problem.

At the beginning of a journey the reading on a car’s odometer is S kilometers
and the tank is full. After the journey the reading is F kilometers and it takes L
litres to fill the tank.

Write a program that obtains values for S, F and L from the user and
computes and displays the rate of fuel consumption as kilometers per litre.

Glossary of terms:

Odometer : an instrument that measures the total number of kilometers

travelled.

Consumption : usage

A flowchart corresponding to the solution for the above problem is:

Enter
starting km

reading

Start

Enter litres
required to

fill tank

Set fuel consumption to
(ending - starting) litres

Display fuel
consumption

Stop

Enter
ending km

reading

÷

APPENDIX C: LEARNING MATERIAL

 C-21

The corresponding pseudo-code is:

Constants

Inputs Outputs
Starting km reading (S) Fuel consumption (consumption)
Ending km reading (F)
Litres to fill tank (L)

Algorithm
1. Get the initial odometer reading (S) of the vehicle.
2. Get the final odometer reading (F) of the vehicle.
3. Get the amount of litres (L) required to fill the tank.
4. Calculate the fuel consumption
 (consumption becomes (F – S) ÷ L)
5. Display the consumption and stop processing.

The following guides you in developing the Delphi solution to this problem, which
looks similar to the velocity problem developed in B# - check this by comparing the
above flowchart and/or pseudo-code with those on pages 6 and/or 7 (note that there
is just an extra input variable and the calculation differs slightly – the process remains
similar).

Activate the Delphi™ Enterprise program from your desktop by double-clicking on the
Delphi icon. (You might be prompted by the system to register for Delphi. At this
prompt, select that you will do it at a later time, click on the Next button, and then the
Exit button).

The following window is displayed. The most important concepts have been
highlighted.

Creating a new program
and opening an existing
program Saving a program

Running a program

APPENDIX C: LEARNING MATERIAL

 C-22

How to open an existing Delphi program

On Delphi’s main menu, select the option File, then Open and locate the file that
you earlier exported from B#, namely Velocity.dpr under your usercode in the
C:\Temp folder. The following window should then be displayed.

(If ever the Object Inspector window is displayed, usually in this area, please close
it to avoid any confusion).

How to run a Delphi program

Click on the icon found along the top of the main window of Delphi (see page
19). The following DOS window appears (just like when running a program in B#):

Enter a distance of 1045.67km and time of 8.75 hours. Compare the answer
displayed with your answer recorded on page 17 – they should be identical.
Close the DOS window.

This is where the
textual source
code for a program
appears. You will
be able to add or
edit programming
constructs here.

Click here to
maximize
the source
code pane.

APPENDIX C: LEARNING MATERIAL

 C-23

How to save an existing Delphi program under another name (make a copy of
a program)

On Delphi’s main menu, select the option File, then Save As and give the file the
name consumption.dpr, saving it under your usercode in the C:\Temp folder.
The following window should then be displayed.

How to adapt the code in a Delphi program

In order to adapt the source code to cater for the fuel consumption problem, make
the necessary changes exactly as illustrated on the following page.

Note the change in
program name after the
successful save

APPENDIX C: LEARNING MATERIAL

 C-24

S : real;
F : real;
L : real;

write('Enter the initial reading ');
readln(S);
write('Enter the final reading ');
readln(F);
write('Enter the number of litres ');
readln(L);

(F – S) / L

'The fuel consumption is '

{Student No:
Name:
Lecturer:
Prac 3 Task 2 }

Always
remember to

put your
personal details

at the top of
every Delphi

program.

APPENDIX C: LEARNING MATERIAL

C-25

How to save a program in Delphi

Click on the icon found along the top of the main window of Delphi (see page
19). If it is the first time that the project is being saved, you will be required to specify
the folder in which the program must be saved as well as give the program a name.

How to test a Delphi program

Run the Consumption program – if you have forgotten how to run a Delphi program,
refer to page 20.

Test your solution with the following values:

Initial reading 40341
Final reading 40723
Litres 63

Write the answer exactly as displayed in the DOS window in the place below.

How to print the source code of a Delphi program

On Delphi’s main menu, select the option File, then Print, and click the OK
button.

How to exit from Delphi

On Delphi’s main menu, select the option File, then Exit, or close Delphi’s
window.

Task 3 : B# solution

a) In B#, develop a program that computes and displays the result of the equation

given below (p and q are both real numbers and are user inputs). Note: The
solution can always assume that q is never 7.

5(2+p)
 7-q

b) Test your solution with the following values:

p 5.3726
q 12.30619

Write the result of the equation exactly as displayed in the DOS window in
the place below.

APPENDIX C: LEARNING MATERIAL

C-26

Task 4 : Delphi solution

a) In Delphi, develop a program that computes and displays the result of the

equation given below (y is a real number and a user input). Note: The solution
can always assume that y is never -6.

5y2-8y+3
 12+2y

b) Test your solution with the following value for y, namely 7.40325.

Write the result of the equation exactly as displayed in the DOS window in
the place below.

Task 5 : Using either B# or Delphi (your personal choice)

a) A pre-school wishes to go on an outing to Bayworld. Parents will be requested to

provide transport for 4 children per vehicle. Given the number of children in the
pre-school as input, compute and display the number of vehicles that will each
have 4 children. Also compute and display the number of children that will be
travelling in a vehicle that does not have 4 children in it. For example, if there are
75 children at the pre-school, there will be 18 vehicles with 4 children, and the
remaining 3 children will be alone in a vehicle. Hint: Constants are treated in
much the same way as variables regarding declaration and usage in B#.

b) Test your solution for the following number of children requiring transport to

Bayworld. Write the answers exactly as displayed in the DOS window in the
appropriate places below.

No. children going No. vehicles with 4 children No. children remaining

124

2

17

c) Make a printout of the source code for this program.

APPENDIX C: LEARNING MATERIAL

C-27

Optional Practical Tasks

Task 6

The speed of light, c, is approximately 3 x 108 meters per second. Develop a
B#/Delphi project that prompts the user to input a time in seconds and then displays
the distance that light travels during that time period.

Task 7

Develop B#/Delphi projects to solve Tasks 1 and 2 of Practical 1.

Other useful things that you can do in B#

Debugging a B# Project

B# detects any errors that you make as you adapt the iconic program. B# will only
allow you to continue once you have corrected the error that you have made. In
order to determine what the error is that you have made, carefully read the list of
errors displayed by B#. You may at any time remove icons from the B# iconic
program and then reinsert them somewhere else between the start and stop points.

Printing the source code of a B# Project

B# does not provide a facility for you to print the correct source code generated from
the corresponding flowchart. You may, however, export the source code for printing
from within Delphi.

Changing an existing B# project

Click on the icon found along the top of the main window of B# (page 2).
Locate and open the required project. Make your changes to the iconic program
according to your amended plan (flowchart or pseudocode).

Entering Pascal syntax directly into an iconic program

In places like the fields shown on the dialogue boxes on pages 9 & 10 (Store
Value), 13 (Assignment), and 15 (Output), the correct Pascal syntax may be
directly entered without you having to select the appropriate variables and operators.

APPENDIX C: LEARNING MATERIAL

C-28

Increasing the display area of a B# pane

This pane border can
be moved to the
left/right in order to
increase/decrease the
area displaying the
source code.

This pane border can be
moved up/down in order
to increase/decrease the
areas displaying the
variables and flowchart.

APPENDIX C: LEARNING MATERIAL

C-29

WRA101 : Practical 4
Week 5 : 11 - 13 March 2003

Sections Covered
IF, nested IF and CASE statements (pp 128 – 140)

Objectives
• To understand the use of the IF and IF…ELSE statement.
• To understand simple and complex logical expressions.

Practical Preparation
• Using either a flowchart or pseudocode, plan the solution for each of the

compulsory practical tasks.

YOU WILL NOT RECEIVE ASSISTANCE DURING THE PRACTICAL SESSION IF
YOU DO NOT HAVE YOUR PREPARATION WITH YOU. YOU WILL BE
REQUIRED TO PRESENT IT TO THE STUDENT ASSISTANT BEFORE
RECEIVING ASSISTANCE.

Compulsory Practical Tasks

Task 1 : Using B# to solve a problem

In B#, write a program that accepts a student’s mark (as an integer which is
assumed to be a maximum of 75) and displays the mark in percentage form. The
program must also display whether the student has passed or not. The pass mark is
50%.

Write down the output of your program (exactly as it appears on the screen) for the
following input values (marks):

Mark (out of 75) Program output:
65

35

Task 2 : Using Delphi to solve a problem

A Delphi program is required to determine whether a student may continue with
WRA102 or not. The program requires two marks, one for WRA101 and one for
WRU101, each out of a maximum of 100. If both of these marks are at least 50, the
student may continue with WRA102, otherwise he/she may not. Hint: Adapt the
solution for Task 1.

APPENDIX C: LEARNING MATERIAL

C-30

Write down the output of your program (exactly as it appears on the screen) for the
following input values:

WRA101 Mark WRU101 Mark Program output:

55 76

40 55

47 48

Task 3 : How to create and save a new Delphi program

Consider the following problem.

Write a program that accepts values for x and y and, only where y
is non-zero, determines the answer to the equation

(y + x2)
y

The program must display an appropriate error message if y is 0.

On Delphi’s main menu, select the option File, then New and Other. The following
should be displayed.

The following window is displayed.

Click on
Console Application and
then on the OK button.

APPENDIX C: LEARNING MATERIAL

C-31

To save the program, on Delphi’s main menu, select the option File, then Save As
and give the file a name, saving it under your usercode in the C:\Temp folder. The
following window should then be displayed.

Click here to
maximize
the source
code pane.

Note the change in
program name here
after the successful
save

Use your skills obtained
in last weeks’ practical
to replace this line with
the necessary code to
solve the given problem

APPENDIX C: LEARNING MATERIAL

C-32

Write down the output of your program (exactly as it appears on the screen) for the
following input values:

x Y Program output:

2.157 0

6.9017 3.0345

Task 4

The Department of Computer Science and Information Systems sells
diskettes to students. The cost of each diskette depends on the number of
diskettes purchased.

No. of diskettes purchased Cost per diskette
1 R5.67
2 R4.98
3 R4.54

Otherwise R4.23

Write a B# program that accepts the number of diskettes purchased by a
student and displays the total cost of the diskettes.

Write down the output of your program (exactly as it appears on the screen)
for the following input values:

Diskettes bought Program output:

2

8

Task 5

Write a Delphi program that reads in the lengths of 3 lines that form the sides
of a triangle, and classifies the triangle according to the following:

• equilateral (“gelyksydig”) – all sides are equal in length
• isosceles (“gelykbenig”) – two of the sides are the same length
• scalene (“ongelyksydig”) – no equal sides

(Hint: Refer to http://www.math.com/school/subject3/lessons/S3U2L2GL.html if
you wish to be reminded what each of these triangles look like)

Appropriate messages should be displayed.

APPENDIX C: LEARNING MATERIAL

C-33

Task 6

Using either B# or Delphi, write a program which reads in the co-ordinates (x,y) for
the top left hand corner of a square, the co-ordinates for another point (a, b) and the
length of the side of the square (d).

The program must determine whether or not the point (a,b) is inside the square or
not. An appropriate message must be displayed.

Optional Practical Tasks

Task 7

Write a program which asks the user for a student’s mark (as an integer), and then
displays one of the following three messages according to the mark he has obtained:

 0 – 49 : Fail 50 – 74 : Pass 75 – 100 : Pass with distinction

An appropriate error message should be displayed for any other value entered.

Task 8

Write a program that accepts two integers and displays the larger of the two. If they
are the same, an appropriate message must be displayed.

Task 9

Write a program that accepts a student’s symbol, and then displays an
equivalent mark for that symbol, according to the following table:

A 90
B 70
C 60
D 50
E 40

If the user enters any invalid symbol, an appropriate message must be displayed.

(x,y)

(a,b)

d

APPENDIX C: LEARNING MATERIAL

C-34

Task 10

Write a program that accepts a temperature, and then displays a message according
to the following table:

0 – 10
0
C Very Cold

11 – 16
0
C Cold

17 – 28
0
C Warm

29 – 45
0
C Very Hot

APPENDIX C: LEARNING MATERIAL

C-35

The IF and CASE programming constructs in B#

IF programming construct

The IF programming construct is represented by the condition () icon found on
B#’s icon panel. Once this icon has been dragged and dropped onto the flowchart,
you will be prompted to complete the Condition Statement Settings dialogue:

Once the flowchart has been updated to show the IF programming construct, it will
resemble the following:

Complete the condition by
making your choice from
the listed variables,
constants, and relational
and logical operators.
When in doubt as to
precedence or operations,
make use of (and).

You may also type the
condition in directly. B#
will check that it is correct.
In the case of any errors,
messages to this affect will
appear here.

The condition may be
simple or complex.

Do not concern yourself
with the statements to be
contained in the TRUE and
FALSE branches of the
condition at this stage.

Drag and drop any programming
construct here for it to be
performed whenever the condition
of the IF statement evaluates to
TRUE.

Drag and drop any programming
construct here for it to be
performed whenever the condition
of the IF statement evaluates to
FALSE.

APPENDIX C: LEARNING MATERIAL

C-36

CASE programming construct

The CASE programming construct is represented by the case statement ()
icon found on B#’s icon panel. Once this icon has been dragged and dropped onto
the flowchart, you will be prompted to complete the Case Statement Settings
dialogue:

Once the flowchart has been updated to show the CASE programming construct, it
will resemble the following:

Specify how many cases
are to be catered for
(excluding the default
case).

If the default case is
required, check this box.

Specify the variable on
which the CASE statement
is to operate by making a
selection from a list of
variables or by typing the
name of the variable here.

Specify the value of each
case here, for as many
times as required.

Do not concern yourself
with the statements to be
contained in each branch of
the CASE statement at this
stage.

Drag and drop programming
constructs at the appropriate
case branches.

APPENDIX C: LEARNING MATERIAL

C-37

WRA101 : Practical 5
Week 6 : 18 - 20 March 2003

Sections Covered
FOR loops (pp 150 – 153)

Objectives
• To understand the use of the FOR statement.

Practical Preparation
• Using either a flowchart or pseudocode, plan the solution for each of the

compulsory practical tasks.

YOU WILL NOT RECEIVE ASSISTANCE DURING THE PRACTICAL SESSION IF
YOU DO NOT HAVE YOUR PREPARATION WITH YOU. YOU WILL BE
REQUIRED TO PRESENT IT TO THE STUDENT ASSISTANT BEFORE
RECEIVING ASSISTANCE.

Compulsory Practical Tasks

Task 1 : Using B# to solve a problem

In B#, write a program that asks the user for 10 integers, one at a time. After all of
the numbers have been entered, the sum and average of the numbers must be
output on the screen.

Task 2 : Using Delphi to solve a problem

Write a Delphi program that asks the user for 10 integers, one at a time. After all of
the numbers have been entered, display the quantity of 1s, 2s, 3s, …, 5s that were
entered, as well as the quantity of the numbers that were not in the range 1..5.

For example, if the user entered the numbers 1, 4, 5, 10, 3, -5, 100, 3, 9, 10 the
program would display:

Quantity of 1s: 1
Quantity of 2s: 0
Quantity of 3s: 2
Quantity of 4s: 1
Quantity of 5s: 1
Quantity of other numbers: 5

Task 3

Write a NEW Delphi program that does the following:

Ask the user for a number and determine and display whether the
number is a prime number or not.

APPENDIX C: LEARNING MATERIAL

C-38

Task 4

Using either B# or Delphi, write a program that does the following:

Ask the user for the values of a, b and c for a polynomial equation in the form

f(x) = ax2 + bx + c

The user is then asked for a starting x-value (x1) and an ending x-value (x2)
and displays the values for f(x) for all the x-values in the range x1..x2 at
intervals of 1. Assume that integer values for a, b, c, x1 and x2 are used.

For example, if the user gives the values a=1, b=-2, c=0 (thus f(x) = x2 –2x) and
x1=-1, x2=3 (thus display the value for f(x) for –1, 0, 1, 2, 3), the program will
output:

f(-1) = 3
f(0) = 0
f(1) = -1
f(2) = 0
f(3) = 3

Optional Practical Tasks

Task 5

Write a program that does the following:

Ask the user the number of students registered for WRA101. For each
student in WRA101, the final mark (assumed to always be in the range
0..100), must be entered. Once all of the marks have been entered, the
program must determine and display the average mark, as well as the
quantity of students who passed, failed and obtained distinctions. A student
obtains a distinction if his/her mark is at least 75. A student fails if his/her
mark is less than 50 otherwise he/she passes.

Task 6

Write a program that does the following:

Ask the user for a positive integer and then display all of its factors. An
appropriate message should be displayed if the user enters a non-positive
number.

For example, if the user enters 12, the program would display:

The factors of 12 are: 1 2 3 4 6 12

APPENDIX C: LEARNING MATERIAL

C-39

The FOR programming construct in B#

FOR programming construct

The FOR programming construct is represented by the for loop () icon found on
B#’s icon panel. Once this icon has been dragged and dropped onto the flowchart,
you will be prompted to complete the For Loop Statement Settings dialogue:

Once the flowchart has been updated to show the FOR loop programming construct,
it will resemble the following:

Enter the name of the loop
control variable here, either
directly or by making a
selection from a list of
variables.

Enter the initial value of the
loop control variable here
(this may also be selected
from a list of variables, if
appropriate).

Enter the final value of the
loop control variable here
(this may also be selected
from a list of variables, if
appropriate).

If the loop control variable
is to be decremented with
each iteration of the loop,
check this box.

Do not concern yourself
with the statements to be
contained in body of the
FOR loop at this stage.

Drag and drop any programming
construct here for it to be
performed at part of the FOR loop
body.

APPENDIX C: LEARNING MATERIAL

C-40

WRA101 : Practical 6
Week 7 : 25 - 27 March 2003

Sections Covered
WHILE and REPEAT loops (pp 155 – 161)

Objectives
• To understand the use of the WHILE statement.
• To understand the use of the REPEAT statement.

Practical Preparation
• Using either a flowchart or pseudocode, plan the solution for each of the

compulsory practical tasks.

YOU WILL NOT RECEIVE ASSISTANCE DURING THE PRACTICAL SESSION IF
YOU DO NOT HAVE YOUR PREPARATION WITH YOU. YOU WILL BE
REQUIRED TO PRESENT IT TO THE STUDENT ASSISTANT BEFORE
RECEIVING ASSISTANCE.

Remember to make backup copies on your personal diskette
of all your .dpr and .bpf files only before you leave the
laboratory. Make a copy of these files on your Homes folder
as well.

The WHILE programming construct in B#

The WHILE programming construct is represented by the while loop () icon
found on B#’s icon panel. Once this icon has been dragged and dropped onto the
flowchart, you will be prompted to complete the While Loop Statement Settings
dialogue:

Enter the condition
applicable to the loop
control variable here, either
directly or by making a
selection from a list of
variables and operators.
Hint: When in doubt about
the condition, always use
NOT(stopping condition).

Do not concern yourself
with the statements to be
contained in the body of the
WHILE loop at this stage.

APPENDIX C: LEARNING MATERIAL

C-41

Once the flowchart has been updated to show the WHILE loop programming
construct, it will resemble the following:

The REPEAT programming construct in B#

The REPEAT programming construct is represented by the repeat-until loop ()
icon found on B#’s icon panel. Once this icon has been dragged and dropped onto
the flowchart, you will be prompted to complete the Repeat-Until Loop Statement
Settings dialogue:

Once the flowchart has been updated to show the REPEAT loop programming
construct, it will resemble the following:

Drag and drop any programming
construct here for it to be
performed at part of the WHILE
loop body.

Enter the condition
applicable to the loop
control variable here, either
directly or by making a
selection from a list of
variables and operators.
Hint: When in doubt about
the condition, always use
(stopping condition).

Do not concern yourself
with the statements to be
contained in the body of the
REPEAT loop at this stage.

APPENDIX C: LEARNING MATERIAL

C-42

Compulsory Practical Tasks

Task 1 : Using B# to solve a problem

In B#, write a program that continuously asks the user for positive integers until a
non-positive integer (0 included) is entered. After all of the positive integers have
been entered, the sum, maximum, minimum and average of the integers must be
output on the screen.

Task 2 : Using Delphi to solve a problem

Write a Delphi program that continuously asks the user for characters until a # is
entered. After all of the characters have been entered, the program must display the
quantity of spaces () and vowels (a’s, e’s, i's, o’s and u’s as a whole), as well as
the quantity of the other characters that were entered (excluding the final #).

For example, if the user entered the characters A, e, F, g, a, , !, z, 5, f, #, the
program would display:

Quantity of spaces: 1
Quantity of vowels: 3
Quantity of other characters: 6

Task 3 : Using B# to solve a problem

In B#, write a program that continuously asks the user for an integer (say n) until n is
in the range 1 – 100. The program must then display the first n multiples of 3 in
descending order (from largest to smallest).

Task 4 : Using Delphi to solve a problem

Write a Delphi program that continuously asks the user for an integer (say n) until n
is in the range 1 – 10, and a character until either a #, * or % is entered. The
program must then display a sequence of n occurrences (each separated by a
space) of the specific character (#, * or %) entered.

For example, if the user entered the integer 7 and the character #, the program would
display:

Drag and drop any programming
construct here for it to be
performed at part of the REPEAT
loop body.

APPENDIX C: LEARNING MATERIAL

C-43

Task 5

Using either B# or Delphi, write a program that does the following:

Ask the user for a positive value representing the population (in terms of
millions of individuals) of South Africa in 2003, for example 1.8. If the growth
of the population per annum is estimated at 16.37%, determine and display
the first year when the population will exceed 4.3 million individuals.

Optional Practical Tasks

Task 6

Write a program that continuously asks the user to enter a positive integer until an
integer in the range 1 – 2500 is entered. The program must then determine and
display the first positive integer that results in a sum of cubes exceeding the user-
entered integer. The sum of the cubes exceeding the user-entered integer must also
be displayed.

For example, if the user enters 17, the program will display that the sum of the cubes
is 36 (13+23+33), and that the integer 3 was the first positive integer to result in a sum
of cubes exceeding 17.

Task 7

Write a program that will evaluate the function y = 4x2 – 16x + 15, with x going from 1
to 2 in steps of 0.1. For each x displayed, display the value of y and a message
(POSITIVE if y is positive, otherwise NOT POSITIVE, if y is not).

APPENDIX C: LEARNING MATERIAL

C-44

WRA101 : Practical 7
Week 8 : 8 - 10 April 2003

Sections Covered
for, while, repeat (pp 150 - 159)

Objectives
• Tracing a nested loop.
• To practice the use of the FOR, WHILE and REPEAT loops.
• To practice the use of nested loops.
• To practice the elimination of syntactical errors.

Practical Preparation
• Using either a flowchart or pseudocode, plan the solution for each of the

compulsory practical tasks.

YOU WILL NOT RECEIVE ASSISTANCE DURING THE PRACTICAL SESSION IF
YOU DO NOT HAVE YOUR PREPARATION WITH YOU. YOU WILL BE
REQUIRED TO PRESENT IT TO THE STUDENT ASSISTANT BEFORE
RECEIVING ASSISTANCE.

• Show the output for the following program.

Program Preparation;
(*APPTYPE CONSOLE*)
var
 a,
 b : integer;
Begin
 for a := 4 downto 1 do
 begin
 for b:=1 to a*2 do
 write(‘#’);
 writeln;
 end;
 readln;
End.

Remember to make backup copies on your personal diskette
of all your .dpr and .bpf files only before you leave the
laboratory. Make a copy of these files on your Homes folder
as well.

APPENDIX C: LEARNING MATERIAL

C-45

Compulsory Practical Tasks

Task 1 : Using B# to solve a problem

In B#, write a program that asks the user for 10 integers in the range 0 to 100, one at
a time. The user must continuously be prompted for an integer until it is in the
correct range before processing it further. After all 10 of the integers in the range 0
to 100 have been entered, the sum, maximum, minimum and average of the integers
must be output on the screen.

Task 2 : Using Delphi to solve a problem

Write a Delphi program that continuously asks the user for an integer n until an
integer greater then zero is entered. The program must then determine and display
the first n prime numbers. You are required to use a while loop in order to
determine whether a specific integer is a prime number or not. The list of prime
numbers may NOT be typed in as part of the program – the program must determine
them!

Task 3

Make a copy of the file

 F:\Courses\WRA101\Practical 7\Prac7Task3.dpr

to the directory where you compile your programs, namely your directory on
C:\Temp, or your home directory. In Delphi, remove all the syntax errors from the
file Prac7Task3.dpr so that it compiles without any errors.

Task 4

Using either B# or Delphi, write a program that does the following:

A menu-driven program displays a number of choices to the user, from which they
choose one. For example, the following could be displayed:

MENU:
Find the factors of a number
Determine if a number is prime
Display a times table
Exit
Your choice (enter the appropriate number):

Depending on the choice made, different actions are performed. This continues until
the user chooses the Exit (choice 4) option.

NOTE: The program must cater for the case of the first choice being entered being
the Exit choice.

APPENDIX C: LEARNING MATERIAL

C-46

The basic algorithm is one of the following (both will function equally well):

Using a WHILE loop

do any initialisation necessary
display the menu and ask the user for a choice
 until a valid one is entered (1, 2 3 or 4)
while the choice is not the exit option
 depending on the choice, do something
 display the menu and ask the user for a choice
 until a valid one is entered (1, 2 3 or 4)
end of while
do any finalizations necessary

Using a REPEAT loop

do any initialisation necessary
repeat
 display the menu and ask the user for a choice
 until a valid one is entered (1, 2 3 or 4)
 depending on the choice, do something
until exit option is chosen (i.e. option 4)
do any finalizations necessary

Make your choice of basic algorithm from the two given above, and write a menu-
driven program that displays the menu shown above and allows the user a number of
different choices.

• Choice 1 must continuously request the user for an integer until a number
greater than zero is entered. All of this number’s factors should then be
displayed.

• Choice 2 must continuously request the user for an integer until a number
greater than zero is entered. The program must then display whether or not
this integer is prime.

• Choice 3 must continuously request the user for an integer n until a number in
the range 2 to 10 is entered. The n-times table must then be displayed (from
1xn to 12xn).

Hint: You might find it easier if you set up the menu loop first without writing the code
for the various operations. Instead, simply have writeln statements to indicate
when something would have happened (e.g. instead of finding the factors of a
number, simply display that that is what would have happened). That way you can
test the menu and see if everything is working correctly. Once it is, then you can add
the code for the operations.

Optional Practical Tasks

Task 5

Write a program (using nested loops) to display the pattern below.

1
12
123
1234

APPENDIX C: LEARNING MATERIAL

C-47

Change the program you have written to first ask the user how many rows the pattern
should have. The program must then display a similar pattern with the specified
number of rows.

Task 6

Write a program that does the following until the user chooses to stop processing the
students in a class:

• For each student in a class, determine the total of 3 marks, each out of
10. Any mark for a student must be continuously entered until such time
as it falls within the range 0 – 10.

• Display the percentage obtained by each student (total mark out of a
maximum of 30).

• Determine and display the average percentage obtained for the class.

Task 7

Write a program that makes use of nested loops to display the following pattern in
terms of the single characters X and O:

XOXOXO
OXOXOX
XOXOXO
OXOXOX

APPENDIX C: LEARNING MATERIAL

C-48

WRA101 : Practical 8
Week 9 : 15 - 17 April 2003

Sections Covered
Introduction to Structured Programming (pp 192)
Mathematical Functions (pp 85 – top 86)
The Inc procedure

Objectives
• To understand the modular structure of programs
• To practice the use of pre-defined mathematical functions
• To practice the use of the pre-defined Inc procedure

Practical Preparation
• Using either a flowchart or pseudocode, plan the solution for each of the

compulsory practical tasks.
• Prior to your practical session, carefully read through the section (bottom page

1 – top page 5) that describes how to use predefined functions and procedures in
B#

YOU WILL NOT RECEIVE ASSISTANCE DURING THE PRACTICAL SESSION IF
YOU DO NOT HAVE YOUR PREPARATION WITH YOU. YOU WILL BE
REQUIRED TO PRESENT IT TO THE STUDENT ASSISTANT BEFORE
RECEIVING ASSISTANCE.

Remember to make backup copies on your personal diskette
of all your .dpr and .bpf files only before you leave the
laboratory. Make a copy of these files on your Homes folder
as well.

Some useful facilities supported by B#

You can delete a programming construct (and all of its nested icons) from the
flowchart in one of 2 ways:
• Click on the icon that you wish to delete, and then on the (Delete

currently selected icon) icon on the menu palette at the top of the B#
window, OR

• Right click on the icon that you wish to delete, and select the Delete option

You can move a programming construct (and all of its nested icons) around in the
flowchart in a single operation:
• Click on the icon that you wish to move, and holding the left mouse button in,

move the icon to its new position. Release the mouse button – the entire
programming constructs with all nested constructs will be relocated.

APPENDIX C: LEARNING MATERIAL

C-49

Using functions in B#

B# supports the use of predefined functions (like abs, ceil, floor, power, etc)

when using the assignment () or screen output () constructs.

Once the assignment construct has been dragged and dropped onto the flowchart,
you will be prompted to complete the Assignment Statement Settings dialogue:

Once the screen output construct has been dragged and dropped onto the flowchart,
you will be prompted to complete the Output Statement Settings dialogue:

Select the
appropriate function
from the list
displayed when
activating this
option. Both
predefined (that is,
provided by B#) and
user-defined
functions will be
listed.

Select the
appropriate function
from the list
displayed when
activating this
option. Both
predefined (that is,
provided by B#) and
user-defined
functions will be
listed.

APPENDIX C: LEARNING MATERIAL

C-50

Once the appropriate function has been selected in either of the above two cases,
the Function Addition Wizard will display the header of the function and prompt you
to enter the arguments for the function. The following is the prompt for an
argument for the abs function.

The predefined functions ceil, floor, frac, int, round, sqr, sqrt and trunc
display similar dialogues.

The following dialogue is displayed for the max function.

Note: Arguments
may be literal
values, constants
or variables.

The data type(s) of
the argument(s)
must match the data
type(s) of the
parameter(s) given
in the function
header above.

Note: Two
arguments are
required for this
function. A single
argument (matching
the ordered
parameters in the
function header)
must be placed in
each independent
field.

APPENDIX C: LEARNING MATERIAL

C-51

The predefined functions min and power display similar dialogues.

The assignment and screen output constructs are then completed as usual.

Using procedures in B#

The procedure call programming construct is represented by the procedure call

() icon found on B#’s icon panel. B# supports the use of predefined
procedures (like inc) when using this construct.

Once this icon has been dragged and dropped onto the flowchart, you will be
prompted to complete the Procedure Call Settings dialogue:

Invoking the procedure call wizard results in the Procedure Call Wizard dialogue
being displayed:

Click here to
view and
select from a
list of
predefined
procedures.

Complete the
procedure
call by filling
in the
argument(s)
here (if you
know what
the
arguments
should be).

Otherwise
invoke the
procedure
call wizard for
assistance.

APPENDIX C: LEARNING MATERIAL

C-52

Once the flowchart has been updated to show the procedure call programming
construct, it will resemble the following:

Compulsory Practical Tasks

Task 1 : Using B# to solve a problem

The speed of light, c, is approximately 3 × 108 metres per second. In B#,
write a program that continuously prompts the user to enter a time in
minutes (which must always be positive) and then displays the distance
(in kilometers) that light travels during that time period. The program stops
processing when the user requests it to (for example, by entering a Q for
quit). The number of times that the user enters valid input must be
accumulated (using a predefined procedure) and displayed. You can
assume that the program will display the distance light travels at least
once.

Task 2 : Using Delphi to solve a problem

Write a Delphi program that asks the user to enter an integer. If the
integer is positive, the square root of the integer is displayed to show 2
decimal places. Should a negative integer be entered, the square root of
the absolute value of the entered integer is displayed to show 2 decimal
places. The program stops processing when the user enters a zero. The
number of times that the user enters valid integers must be accumulated
(using a predefined procedure) and displayed. Your program should cater
for the scenario where the first integer entered by the user may be a zero.

Complete the
procedure
call in a
fashion
similar to that
used when
completing a
function call
(illustrated in
the previous
section).

APPENDIX C: LEARNING MATERIAL

C-53

Task 3

Using either B# or Delphi, write a program that does the following:

The quadratic formula can solve for the roots of a quadratic equation of the
form ax2 + bx + c = 0. The quadratic formula is shown below:

 x = −b ± √b2 – 4ac
 2a

Write a program that allows the user to input the values for a, b and c, and
then displays the two roots of x. Appropriate error messages should be
displayed whenever the roots cannot be determined.

Task 4

Using either B# or Delphi, write a program that does the following:

Write a program that uses the max and min mathematical functions to
determine and display the maximum and minimum of a sequence of 10
integers entered by the user.

Task 5

Using either B# or Delphi, write a program that allows two players to play a game of
high-low as follows:

The first player (P1) enters an integer between 0 and 100 (both 0 and 100
excluded). The second player (P2) then tries to guess the first player’s integer. If
P1’s integer is lower than that of P2, the message “Try a lower integer” is
displayed to P2, and P2 enters another integer. If P1’s integer is higher than that
of P2, the message “Try a higher integer” is displayed to P2 and P2
enters another integer. The game only ends when P2 correctly guesses P1’s
integer. The program must keep track of the number of guesses made by P2
(using a predefined procedure) and display this information before it terminates.

Optional Practical Tasks

Task 6

Write a program Quiz that allows a user to enter any three integer values x, y and z,
each in the range 1 – 10. The program must then allow the user to guess the
answer to the expression (x+5)z/y. The program displays the expression to the user
and gives the user 3 chances to guess the answer. If the guesses are incorrect on
all 3 attempts, the user may decide to continue or not. If the user decides to
continue, the user may have another 3 guesses. The program stops processing
whenever the user guesses the answer correctly, or the user chooses to stop
guessing. At this time the program must display how many guesses in total the user
made use of up to that point.

APPENDIX C: LEARNING MATERIAL

C-54

Task 7

Write a program that converts a user-entered binary number consisting of exactly 8
digits (entered digit-by-digit) to its decimal equivalent, and displays the decimal
equivalent. Your program should ensure that only valid binary digits are entered.

For example, the binary number 00110101 will be entered and the decimal
equivalent 53 will be displayed.

APPENDIX C: LEARNING MATERIAL

C-55

WRA101 : Practical 9
Week 10 : 22 - 24 April 2003

Sections Covered
User defined functions and procedures (pp 194 – 202)

Objectives
• To understand the modular structure of programs
• To practice the use of user-defined functions and procedures
• To practice the writing of simple functions and procedures

Practical Preparation
• Using either a flowchart or pseudocode, plan the solution for each of the

compulsory practical tasks.
• Prior to your practical session, carefully read through the section (pages 2 –

10) that describes how to use predefined functions and procedures in B#. This is
the last of B#’s skills that you need to master.

• Make use of the function/procedure forms for deciding on the use of functions or
procedures and their parameters

YOU WILL NOT RECEIVE ASSISTANCE DURING THE PRACTICAL SESSION IF
YOU DO NOT HAVE YOUR PREPARATION WITH YOU. YOU WILL BE
REQUIRED TO PRESENT IT TO THE STUDENT ASSISTANT BEFORE
RECEIVING ASSISTANCE.

Remember to make backup copies on your personal diskette
of all your .dpr and .bpf files only before you leave the
laboratory. Make a copy of these files on your Homes folder
as well.

APPENDIX C: LEARNING MATERIAL

C-56

Creating a function in B#

B# supports the development and use of user-defined functions. These functions

can then be used when using the assignment () or screen output ()
constructs (as illustrated with the use of predefined mathematical functions in last
week’s practical).

As an example, consider that a function, sum, is required that
accepts two real numbers and calculates and returns the sum of
these numbers.

Click on the New Routine icon () found in the menu of B#. You will be required
to complete the Function/Procedure Settings dialogue:

The completed Function/Procedure Settings dialogue for the sum function will be
as follows:

Enter the name of
the function here

Specify that this is a
function by selecting
the Function radio
button

Select the
appropriate data
type for the function

APPENDIX C: LEARNING MATERIAL

C-57

The following is now displayed:

To complete the header of the function, the parameters for the function sum need to
be declared.

In the Local Variables \ Constants \ Parameters pane,

select the new variable/constant/parameter option ().

In the case of
the function tab
being selected,
the source
code for the
function
appears here

In the case of
the function
tab being
selected, the
function’s
flowchart
appears here

Click on this tab to view
and make changes to
the Main section of the
program.

Click on this tab to view
and make changes to the
sum function. Note the

 to indicate that this
is a function.

In the case of
the function
tab being
selected, the
function’s
header,
variables and
constants
appear here

 This icon
will be dealt
with later

APPENDIX C: LEARNING MATERIAL

C-58

Compete the Declaration dialogue for a parameter, ensuring that the parameter
radio button is selected.

After declaration of sum’s first parameter num1 (data type real), the following is
displayed:

Select the Parameter
radio button.

Give the parameter
a name.

Select an appropriate data
type for the parameter.

Note appearance of
parameter

APPENDIX C: LEARNING MATERIAL

C-59

After declaration of sum’s second parameter num2 (data type real), the following is
displayed:

The flowchart for the function is created using the skills that you have already
acquired in all previous practicals – variables and programming constructs are used
and declared as required. Any of the programming constructs learnt about may be
used in the function’s flowchart.

In the case of the sum function, the two parameters must be added together. Once
this construct has been added to sum’s flowchart, the following will be displayed:

APPENDIX C: LEARNING MATERIAL

C-60

The construct that must always appear as the final construct in a function is the

return statement (). Once this has been added to the function’s flowchart, the
following is displayed:

In order to view the main section of the program (with all of the source code for the
program), click on the Main tab at the top left hand side of the screen. The following
will then be displayed:

Assignment statement to
determine the sum of the
two parameters

Use this option here to
select the correct terms
for the expression.

Declaration of
variables/constants
local to the function

APPENDIX C: LEARNING MATERIAL

C-61

The function sum is now available when using the assignment () or screen

output () constructs – this function will be listed under the Functions available
for use, together with the list of predefined mathematical functions.

Note the inclusion of the
function’s source code

The main section of the
program’s flowchart must be
constructed here.

APPENDIX C: LEARNING MATERIAL

C-62

Creating a procedure in B#

B# supports the development and use of user-defined procedures. These

procedures can then be used when using the procedure call () construct (as
illustrated with the use of the predefined procedure in last week’s practical).

As an example, consider that a procedure, total, is required that
accepts one real number, asks the user for another and calculates
and displays the sum of these numbers.

Click on the New Routine icon () found in the menu of B#. You will be required
to complete the Function/Procedure Settings dialogue in much the same way as
for a function:

Enter the name of
the procedure here

Specify that this is a
procedure by
selecting the
Procedure radio
button

No data type is
required for a
procedure
declaration

APPENDIX C: LEARNING MATERIAL

C-63

The completed Function/Procedure Settings dialogue for the total function will
be as follows:

The following is now displayed:

To complete the header of the procedure, any parameters for the procedure total
need to be declared. This is done in exactly the same way as for a function (see
page 3 (bottom) and 4).

In the case of
the procedure
tab being
selected, the
source code for
the procedure
appears here

In the case of
the procedure
tab being
selected, the
procedure’s
flowchart
appears here

In the case of
the procedure
tab being
selected, the
procedure’s
header,
variables and
constants
appear here

Click on this tab to view
and make changes to the
total procedure. Note

the to indicate that
this is a procedure.

APPENDIX C: LEARNING MATERIAL

C-64

After declaration of total’s parameter num1 (data type real), the following is
displayed:

The flowchart for the procedure is created using the skills that you have already
acquired in all previous practicals – variables and programming constructs are used
and declared as required. Any of the programming constructs learnt about may be
used in the procedure’s flowchart.

In the case of the total procedure, the user is required to enter another real
number that is added to the parameter to produce a result that is displayed. Once
these constructs has been added to total’s flowchart, the following will be
displayed:

Note appearance of
parameter

A procedure does
not have a return
statement

APPENDIX C: LEARNING MATERIAL

C-65

In order to view the main section of the program (with all of the source code for the
program), click on the Main tab at the top left hand side of the screen. The following
will then be displayed:

Assignment statement to
determine the sum of the
parameter and local
variable.

Use these options here to
select the correct terms
for the expression.

Declaration of
variables/constants
local to the procedure

Note the inclusion of the
procedure’s source code

The main section of the
program’s flowchart must be
constructed here.

APPENDIX C: LEARNING MATERIAL

C-66

The procedure total is now available when using the procedure call ()
construct – this procedure will be listed under the Procedure Names available for
use, together with the list of predefined procedures.

Deleting a procedure/function in B#

In order to delete a function or procedure from a B# program, click on the tab for the
relevant function/procedure and then select the Delete active routine menu icon.

Compulsory Practical Tasks

Task 1 : Using B# to solve a problem

In B#, write a function called isPrime that accepts a positive integer and returns
true if the number is prime, otherwise returns false.

Write a B# program that continuously requests a user for an integer until a non-zero
positive integer is entered and then uses the isPrime function and displays whether
the number entered is prime or not.

Task 2 : Using Delphi to solve a problem

In Delphi write a function called f that accepts any integer, x, and returns the value
of x2-4x+10.

Write a Delphi program that displays a table of x values from –5 to +5 and the
corresponding value of f(x). The table must look something like:

 X f(x)
 -5 55
 -4 42
 -3 31
 : :

APPENDIX C: LEARNING MATERIAL

C-67

Task 3 : Using B# to solve a problem

In B#, write procedure called displayFactors that accepts a positive integer and
displays all the factors of the integer.

Write a B# program that continuously requests a user for an integer until a non-zero
positive integer is entered and then displays its factors using the displayFactors
procedure.

Task 4 : Using Delphi to solve a problem

In Delphi, write procedure called isVowel that accepts a character and displays
whether or not it is a vowel (Hint: The vowels in the alphabet are a, e, i, o and u).

Write a Delphi program that continuously requests a user for a character until the
user enters an X. For each character entered, using the procedure isVowel, the
program must display whether the character is a vowel or not.

Task 5

Using either B# or Delphi, write a program that does the following:

Write a function called determinant that accepts real numbers a, b and c that
are co-efficients for a polynomial equation ax2+bx+c and returns the determinant
of the equation. In other words, it returns
b2-4ac.

Write a program that asks the user for the values of a, b and c that are co-efficients
for a polynomial equation ax2+bx+c and, using the function determinant,
displays the roots of the polynomial equation. The roots are determined as follows:

• If the determinant is negative, then there are no real roots
• If a is 0, then there are no real roots
• If the determinant is zero, then there is one root with the value

of –b/2a
• If the determinant is positive, then there are two roots, with

values of –b+√determinant/2a and –b-√determinant/2a

Optional Practical Tasks

Task 6

Write a program that asks the user for a positive integer number, n, and uses the
isPrime function written earlier to determine and display the first n prime numbers.

APPENDIX C: LEARNING MATERIAL

C-68

WRA101 : Practical 10
Week 11 : 29 April - 1 May 2003

Sections Covered
User defined functions and procedures (pp 194 – 202)

Objectives
• To understand the modular structure of programs
• To practice the use of user-defined functions and procedures
• To practice the writing of functions and procedures

Practical Preparation
• Using either a flowchart or pseudocode, plan the solution for each of the

compulsory practical tasks.
• Make use of the function/procedure forms for deciding on the use of functions or

procedures and their parameters

YOU WILL NOT RECEIVE ASSISTANCE DURING THE PRACTICAL SESSION IF
YOU DO NOT HAVE YOUR PREPARATION WITH YOU. YOU WILL BE
REQUIRED TO PRESENT IT TO THE STUDENT ASSISTANT BEFORE
RECEIVING ASSISTANCE.

Remember to make backup copies on your personal diskette
of all your .dpr and .bpf files only before you leave the
laboratory. Make a copy of these files on your Homes folder
as well.

APPENDIX C: LEARNING MATERIAL

C-69

Something to remember when defining your own
functions and procedures in B#

The current version of B# does not support the changing of data type of a function
nor the reordering of user defined function/procedure declarations within a program –
these will be supported in the new version due at the end of 2003. B# also currently
does not support reference parameters.

Consider the following example of source code generated by B#. If you wish to
change the data type of function sum to real, you would have to delete function real
and re-enter it. The reordering of functions/procedures in B# is explained below.

The rule of thumb is then: first declare the functions/procedures that will call others
(eg function sum above), but leave the calling statements out. Then enter the
functions/procedures to be called (eg function getValue above), and then go back
and edit the functions/procedures doing the calling (eg function sum above).

The following statements
are required here to gather
the data for the function
sum:

num1:=getValue;
num2:=getValue;

Adding these statements
would result in errors due to
rules governing the scope
of variables.

The only way to fix this in
B# is
• leave function sum as it

is
• delete function

getValue
• add function getValue

again (B# will then place
it above function sum)

• make the necessary
changes to function sum
to incorporate the
required function calls

APPENDIX C: LEARNING MATERIAL

C-70

Compulsory Practical Tasks

Task 1 : Using B# to solve a problem

In B#, write a simple calculator program that continuously displays the following
menu to the user until the user chooses to terminate processing:

 Calculator Menu

Addition
Subtraction
Multiplication
Division
Exponential
Stop processing

The following functions/procedures must be written and used by the program:

Function/Procedure name Pre-condition Post-condition

getChoice None

Continuously requests the
user for a menu selection until
a valid choice is made (i.e. 1,
2, 3, 4, 5 or 6). This valid
choice is then returned.

getNumber None
Requests the user to enter a
real number and returns this
value

Add Accepts two real
numbers

Returns the sum of the two
real numbers

Subtract

Accepts two real
numbers, the
first of which is
smaller than or
equal to the
second

Subtracts the first number
from the second and returns
the result of this operation

Multiply Accepts two real
numbers

Returns the product of the two
real numbers

Divide

Accepts two real
numbers, the
second of which
is non-zero.

Returns the quotient (result of
first divided by second)

APPENDIX C: LEARNING MATERIAL

C-71

The program processes each choice as follows:

Option Description
Addition The user is required to enter two numbers that

are added together and the sum is displayed.

Subtraction
The user is required to enter two numbers, the
smaller of which is subtracted from the larger,
and the result of the operation is displayed.

Multiplication
The user is required to enter two numbers that
are multiplied together and the product is
displayed.

Division

The user is required to enter two numbers. If the
second is non-zero, the result of the first divided
by the second is displayed; otherwise an
appropriate message is displayed.

Exponential
The user is required to enter two numbers. The
result of the first number raised to the power of
the second is displayed.

Task 2 : Using Delphi to solve a problem

You have been asked by a friend of yours, who owns a small cafeteria, to write a
simple menu-driven computer program to help keep track of sales at a till. When the
program runs, it must display a menu that looks something like:

 MAIN MENU:

1. New sale
2. New purchase
3. Display sub-total
4. Tender amount
5. Display daily information
6. Exit

• When the program starts, it must initialize the daily sales to zero, (every time
a sale is made, the daily sales is increased)

• When a new customer arrives at the till, option 1 is selected to start a new
sale. The sub-total for that customer’s purchases is initialized to zero.

• For each type of item the customer wishes to purchase, the cashier will select
option 2. It will ask for the quantity and unit cost of the items bought.
Quantity and unit cost must both be positive. Once these values have been
obtained, a cost is calculated as quantity x unit cost and added to the sub-
total. The daily sales value is also updated by this cost.

• To view the current sub-total for a customer, the cashier can select option 3,
which simply displays the sub-total on the screen.

• Once all the items have been rung up and the customer wishes to pay, the
cashier chooses option 4. The amount tendered is asked (it must be positive)
and subtracted from the sub-total. If the sub-total is now negative, then the
customer is owed change. The change is displayed on the screen and the
sub-total is set to zero. If the sub-total is still positive, then the customer did
not tender enough money.

• If a display of the total daily sales total is required, then option 5 can be
selected and the total will be displayed on the screen.

• Option 6 exits the program.

APPENDIX C: LEARNING MATERIAL

C-72

Copy the file F:\Courses\WRA101\Practical 10\Prac10Task2.dpr to
your usercode on either the Homes or C:\Temp folder. This file contains only the
code for the main body of the program and must NOT be changed. Only other
functions and/or procedures may be added.

In Delphi, modify this program to include the individual functions and/or
procedures to implement options 1 – 5 as described above. The program must
also include the mainMenu procedure that continuously does the following until
the user requests to terminate the process:

• Display the menu
• Allow the user to make a valid choice (i.e 1 – 6)
• Perform the correct action depending on the choice made. Each of these

actions was described above.

Task 3

The square root of a number n can be approximated by repeated calculation of the
formula:

NextGuess = (LastGuess + n ÷ LastGuess) ÷ 2

The initial guess will be set to n and the next guess repeatedly calculated until the
next guess and the last guess differ by a very small amount (in this case, use 0.001).

Write a Delphi procedure/function called squareRoot that implements the
approximation method above. (Hint: You will need to store both nextGuess and
lastGuess. Before each recalculation of nextGuess, the value that was in
nextGuess must be assigned to lastGuess since the previous next guess is the
current last guess.)

Write a Delphi program that will compare your squareRoot function/procedure with
the built-in sqrt function. Test for all the values of n in the range 1..20, displaying
the values returned by squareRoot and sqrt, as well as the difference between
the values returned (a positive amount). An example of what the output should look
like is given below:

 n sqrt(n) squareRoot(n) difference
--
 1 1.00000 1.00000 0.0000000000
 2 1.41421 1.41421 0.0000000000
 3 1.73205 1.73205 0.0000000024
 4 2.00000 2.00000 0.0000000929
 5 2.23607 2.23607 0.0000000000
 6 2.44949 2.44949 0.0000000000
 7 2.64575 2.64575 0.0000000000
 : : : :

APPENDIX C: LEARNING MATERIAL

C-73

Optional Practical Tasks

Task 4

Write a Delphi procedure/function that will accept a real number representing an
amount of money (e.g. 112.75 represents R112.75) and returns the minimum
number of R200, R100, R50, R20, R10, R2, R1, 50c, 20c, 10c, 5c, 2c, 1c notes and
coins needed to cover that amount. For example, for R112.75, the minimum number
of notes and coins needed is 1xR100, 1xR10, 1xR2, 1x50c, 1x20c and 1x5c.

Write a Delphi program to test your procedure/function above by repeatedly asking
the user of an amount of money and displaying the notes and coins needed (only
those with non-zero amounts) until the user enters a non-positive amount of money.

Task 5

Suppose that the athletic department at UPE wants a program for its secretarial staff
that can be used to determine the academic eligibility of its athletes for the next
academic year. This eligibility check is made at the end of each of the first three
years of the student’s academic career. Eligibility is determined by two criteria: the
number of hours that the student has successfully completed and the student’s
annual average (AVG). To maintain eligibility, a student must have completed at least
25 hours with a minimum AVG of 60% by the end of the first year. At the end of the
second year, 50 hours must have been completed and a minimum AVG of 65% and
at the end of the third year, 85 hours and a minimum of 70% AVG.

For each student, the program must ask for the various hours and AVG marks and
display a report if the student meets the criteria at each year. If a student has not
completed a year, then the hours and AVG must be entered as 0.

The program must allow for multiple students to be tested for eligibility and at the end
must display the number of eligible students at each year level and the percentage
they make up of all the students entered.

Implement a Delphi program, using procedures and functions to suit the above case
study.

APPENDIX C: LEARNING MATERIAL

C-74

WRA101 : Practical 11
Week 12 : 6 - 8 May 2003

Sections Covered
User defined functions and procedures (pp 194 – 202)
Value and reference parameters

Objectives
• To understand the modular structure of programs
• To practice the use of user-defined functions and procedures
• To practice the writing of functions and procedures with value and reference

parameters

Practical Preparation
• Using either a flowchart or pseudocode, plan the solution for each of the

compulsory practical tasks.
• Make use of the function/procedure forms for deciding on the use of functions or

procedures and their parameters

YOU WILL NOT RECEIVE ASSISTANCE DURING THE PRACTICAL SESSION IF
YOU DO NOT HAVE YOUR PREPARATION WITH YOU. YOU WILL BE
REQUIRED TO PRESENT IT TO THE STUDENT ASSISTANT BEFORE
RECEIVING ASSISTANCE.

Remember to make backup copies on your personal diskette
of all your .dpr and .bpf files only before you leave the
laboratory. Make a copy of these files on your Homes folder
as well.

 Compulsory Practical Tasks

Task 1 : Using Delphi to solve a problem

You are required to write a Delphi program that determines if a first year Computer
Science and Information Systems student may continue with second semester
modules.

a) Write a function/procedure GetOneStudent that asks a student for both of

his/her WRA101 and WRU101 marks (each as a real number). The
function/procedure must return both of these marks. The function/procedure
must ensure that each of the marks is in the range 0 to 100.

b) Write a function/procedure CanContinue that takes as input two marks, one for

WRA101 and one for WRU101. Each of these marks is in the range 0 to 100.

APPENDIX C: LEARNING MATERIAL

C-75

The function/procedure must return the value true if both of these marks are at
least 50, otherwise the function/procedure must return the value false.

c) Write a function/procedure DisplayDecision that takes as input two marks,

one for WRA101 and one for WRU101. Each of these marks is in the range 0 to
100. If the student can continue with the second semester modules (use
CanContinue above), an appropriate message and the average mark for the
two modules is displayed, otherwise the student is informed that he may not
continue.

d) Now, write the main program that continuously does the following for any number

of students until the lecturer requests to terminate the process:
• Ask for the WRA101 and WRU101 marks and display a message to

indicate whether the student can continue with second semester modules
or not.

Task 2 : Using B# to solve a problem (using only value parameters)

You are required to write a B# program that determines in what year a country’s total
population exceeded a specified value.

a) Write a B# function/procedure PopulationTotal that accepts 2 positive

values, namely the current population (in millions, eg a value of 1.5 means 1.5
million people) and the growth rate (eg 0.14 means 14%). The
function/procedure determines and returns the total population based on the
current population and growth rate. For example, if the current population for a
country is 1.165 million people, and the annual population growth rate is 10%,
then the total population is 1.2815 million people after 1 year.

b) Write a B# function/procedure Over180Million that accepts a positive value

representing the population (in millions). The function/procedure determines
whether the population is over 180 million people, and returns a value of true if
this is so, otherwise returns a value of false.

c) Write a B# program that requests the user for a year (always at least 2000), the

population of Brazil in that year (in terms of millions of people) and the annual
population growth rate (always as a real number in the range 0 – 1), and then
uses the two functions/procedures written above to determine and display the
year in which Brazil’s population first exceeded/exceeds 180 million people. The
program must also display Brazil’s total population in this year.

d) In 2001 the population of Brazil was 97.6 million people and the rate in which the

population grows is 18.4% per year. Use your B# program to answer the
following two questions:

i) Using this test data, what is the year displayed by the program written in

c)?
ii) What is the total population displayed by the program written in c)?

APPENDIX C: LEARNING MATERIAL

C-76

Optional Practical Tasks

Task 3

You are required to write a Delphi program that will calculate and display the total
balance on your bank accounts and the name of the account with the highest
balance.

a) Write a function/procedure GetAccountInfo that asks a user for an account’s

identifying name (as a single character) and the balance on that account. The
function/procedure must return these values.

b) Write a function/ procedure ProcessAccount that takes as input the following:

• The account name and value of its balance for the account that has the
maximum balance of all the accounts processed so far

• The total balance of all the accounts processed so far
• The account name and value of its balance for the account that is currently

being processed

The function/procedure must update the account name and value of its balance
so that they reflect the account that has the maximum balance of all the accounts
processed so far, as well as the total balance of all the accounts processed so
far.

c) Now, write a main program that will allow the user to process as many accounts

as he/she wishes (he/she does not necessarily know beforehand how many
accounts he/she wishes to process). Once the details for all the accounts have
been entered, the program must display the total balance on the accounts and
the name of the account with the highest balance.

D-1

Appendix D

Investigation Assessment Material

The assessment material presented to all participants in the investigation consisted of
theoretical and practical assessments.

Theoretical assessments required the subjects to answer programming related
questions using pen and paper. There were three of these assessments; one occurring
2 weeks into the treatment period, the second occurring 7 weeks into the treatment
period and the final administered 5 weeks after the completion of the treatment.

Practical assessments required the subjects to answer programming related questions
in a controlled laboratory environment using the programming languages identified
for use in the investigation. There were two of these assessments,; the first occurring
4 weeks after commencement of the treatment period and the second a week after
completion of the treatment period.

This appendix includes the mapping of each question/task contents to the relevant
independent variable used in the quantitative analysis.

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-2

D.1 Pen-and-Paper Assessment Materials (Material M6)

D.1.1 Problem-solving Theoretical Assessment

Question Independent Variable
Question 1 Th1Q1
Question 2 Th1Q2
Question 3 Th1Q3

 QUESTION 1: FLOWCHART & PSEUDO-CODE (20)
 xy (x to the power y) is defined for any integers as:

xy = x * x * x * … * x (y times)

x-y = 1 / xy

x0 = 1

1.1 Draw a flowchart that computes xy for any integer inputs x and y. (8)
1.2 Give the pseudo-code for computing xy for any integer inputs x

and y
(8)

1.3 Test the solution for the following values of x and y
 a) x = 3 and y = 2

b) x = 4 and y = -2
(2)
(2)

 QUESTION 2: FLOWCHART → PSEUDO-CODE (10)
 Consider the following flowchart

2.1 What are the inputs and outputs of this

program?
2.2 Write the pseudo-code for that flowchart
2.3 Explain what the program does with the

following inputs:
 a) 2

b) -5
c) 8

(2)
(5)
(3)

start

stop

ask for number

number ≥ 0?

number ÷ 4
has a remainder?

output number

Y
Y

N

N

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-3

 QUESTION 3: PSEUDO-CODE → FLOWCHART (20)

3.1 A number m is a factor of another number n, if n÷m has no
remainder. E.g. 1,2,3,6 are all factors of 6 (each one divides
completely into 6).

Write the pseudo-code that will ask the user for a number and
will then display all the factors of the number to the user.

(6)

3.2 A number m is a prime number if it has only two factors, namely
1 and m (the number itself).

E.g. the factors of 8 are 1,2,4,8. Therefore 8 is not prime.
e.g. the factors of 7 are 1,7. Therefore 7 is prime.

Examine the pseudo-code below:

 Inputs : N

Outputs: prime or not prime

Process:
1. ask for N
2. count = 1, #factors = 0
3. if (N mod count) = 0 then

3.1. #factors = #factors + 1
4. count = count +1
5. if count <= N

5.1. then goto 3
6. if #factors > 2

then
6.1. display prime
else
6.2. display not prime

3.2.1

Does this algorithm actually compute whether a number is
prime?

 Explain by using N = 13. If it does not compute whether the
number is prime, what must be changed to correct it?

(3)

3.2.2 Draw the flowchart of the algorithm above. (11)

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-4

D.1.2 Syntax-based Pen-and-Paper Assessment

Question Independent Variable
Section A Th2MC
Section B: Question 1 Th2Q1
Section B: Question 2 Th2Q2

Section A: 24 marks
1 How many of the following are valid variable names in Object

Pascal?

isFactor, factorial, root 1, beginCount, end, _fx,
1stAnswer, #Students, population2003

1

 a) 3
b) 4

c) 5
d) 6

2 What will be displayed by the following program extract?

var
 value:integer;
begin
 value:=3;
 write(value);
 writeln(’value’);
 writeln(value, value);
end.

1

 a) 3value
33

b) 3
value
3
3

c) value3
valuevalue

d) 3 value
value value

3 What will be displayed by the following program extract?

var
 answer:boolean;
begin
 answer:=10>5;
 writeln(’The value of answer is ’, answer);
end.

1

 a) The value of answer is answer
b) The value of answer is 10>5
c) The value of answer is true
d) The program will not compile

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-5

4 What will be displayed by the following program extract?

var
 x, y, z:integer;
Begin
 x:=20;
 y:=2*x - 10;
 z:=x*x – 10*y + 7;
 x:=10;
 writeln(z);
End.

1

 a) 7
b) 107

c) -193
d) 93

5 What will be displayed by the following program extract? 1
 var
 x, y, z:integer;
Begin
 x:=7;
 y:=9;
 z:=x+3 * y-10;
 writeln(z);
End.

 a) 80
b) -10

c) 4
d) 24

6 What will be displayed by the following program extract?
var
 x, y:integer;
Begin
 x:=22;
 y:=7;
 writeln(x div y,’,’,x mod y);
End.

1

 a) 3,1
b) 1,3

c) 3.0,0.142857
d) 0.142857,3.0

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-6

Consider the following scenario when answering questions 7 and 8.
When buying media from the department, the cost per item depends
on what was bought, as well as how many of that item are bought at
one time:

Code Type Quantity Cost per item
D Disk 1 R3.00
D Disk 2-4 R2.75
D Disk more than 4 R2.50
C CD 1 R6.00
C CD 2-4 R5.50
C CD more than 4 R5.00

A program is required that asks the user for the type of media bought
(e.g. D for disk or C for CD) and the number bought. The cost is then
calculated and this amount is displayed to the user.

7 What variable(s) is/are required as input to the solution to the
problem?

1

 a) Cost
b) NumDisks, NumCDs, Cost
c) MediaCode, Quantity
d) C, D, Quantity

8 What variable(s) is/are required as output from the solution to the
problem?

1

 a) Cost
b) NumDisks, NumCDs, Cost
c) MediaCode, Quantity
d) C, D, Quantity

9 What will be displayed by the following program extract?

var
 a, b:integer;
begin
 a:=25;
 b:=a div 7 – 2 - 3;
 writeln(b);
end.

1

 a) 12
b) 2

c) -1
d) -2

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-7

10 What will be displayed by the following program extract?

var
 number:integer;
begin
 number:=10;
 if number>10
 then
 writeln(’ABC’)
 else
 writeln(’DEF’);
end.

1

 a) ABC
b) DEF

c) ABC
DEF

d) Nothing will be displayed

11 What will be displayed by the following program extract if the user
enters a ’A’?

var
 c:char;
begin
 write(’Enter a character :’);
 readln(c);

 case c of
 ’a’, ’e’, ’i’, ’o’, ’u’: writeln(’vowel’);
 ’b’.. ’d’,
 ’f’.. ’h’,
 ’j’.. ’n’,
 ’p’.. ’t’,
 ’v’.. ’z’ : writeln(’consonant’);
 ’ ’ : writeln(’space’)
 else writeln(’non-letter’);
 end;
end.

1

 a) vowel
b) consonant

c) space
d) non-letter

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-8

12 What will be displayed by the following program extract if the user

enters a 6?

var
 x:integer;
begin
 write(’Enter a number :’);
 readln(x);
 if x=2 then
 write(’2’);
 if x=4 then
 write(’4’);
 if x=6 then
 write(’6’)
 else
 write(’???’);
end.

1

 a) ???
b) 2

c) 4???
d) 24???

13 Which condition(s) would be tested by the following program extract if
x had a value of 6?
if x>4 //line 1
then write(’A’)
else
 if x>=2 //line 2
 then
 write(’B’)
 else
 write(’C’);

2

 a) line 1 and line 2
b) line 1 only

c) line 2 only
d) impossible to say

14 Which condition(s) would be tested in the following program extract if
x were assigned the value 2?

if x>7 //line 1
 then write(’A’);
if x>=25 //line 2
 then write(’B’);
if x<5 //line 3
 then write(’C’);

2

 a) line 1 only
b) line 1, line 2 and line 3

c) line 1 and line 2 only
d) line 1, line 3 and line 4

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-9

15 What will be displayed by the following program extract?

for j := 1 to 4 do
begin
 for k := 1 to j do
 begin
 write(k);
 end;
 writeln;
end;

2

 a) 4444
 333
 22
 1

b) 1
 22
 333
 4444

c) 1
 12
 123
 1234

d) 1234
 123
 12
 1

16 Given the function definition below:
function fancy(x:real; y:integer):boolean;

Which of the calls to function fancy are valid in the following
program extract?

var
 x, y:integer;
 a :boolean;
begin
 x:=3; y:=5;
 y:=fancy(10,5); //line 1
 writeln(fancy(x,y)); //line 2

 if fancy(x/y,y) //line 3
 then writeln(’very fancy!!’);

 a:=fancy(cos(2.36),trunc(sin(15.7)); //line 4
end.

3

 a) Line 1, 2, 3 and 4
b) Line 2,3 and 4

c) Line 2 and line 4 only
d) Line 1, 3 and 4

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-10

17 What is displayed by the following program extract?

function DoIt(x, y:integer):integer;
var
 a:integer;
begin
 a:=x+y;
 y:=5;
 result:=a;
end;

var
 a, b, x, y:integer;
begin
 a:=5;
 x:=7;
 y:=3;
 b:=15;
 b:=DoIt(y, x);
 writeln(a, ’,’, b);
end.

3

 a) 5,5
b) 5,15

c) 10,10
d) 5,10

Section B: 26 marks
1.1 Write a function that accepts two integer values, x and y, and

calculates the highest common factor between x and y.

E.g.
The factors of 18 are 1,2,3,6,9,18
The factors of 24 are 1,2,3,4,6,8,12,24
Common factors between 18 and 24 are 1,2,3,6
The highest common factor between 18 and 24 is 6

9

1.2 Using the function written in (1.1), write a program that asks for two
positive integers, x and y and displays each of them as the product of
the highest common factor and another number. You must not rewrite
the function written in (1.1), only use it!

E.g. if x=18 and y=24, then the program displays

18 = 6 x 3
24 = 6 x 4

5

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-11

2 The game of cattle (a variation of master mind) is played as follows:

A random 4 digit number (H) is generated and the user attempts to
guess it as follows:

 for every digit in the user’s guess which is in H and in the
correct position, the user scores 1 bull

 for every digit in the user’s guess which is in H but not in the
correct position, the user scores 1 cow

The user keeps guessing until he/she guesses H correctly.

For example:

H Guess Bulls Cows Comment
1234 6284 2 0 2 & 4 in correct positions (1 bull

each)
1234 2453 0 3 2,4,3 in H, but wrong position (1

cow each)
1234 1122 1 3 1st 1 in correct position (1 bull)

2nd 1, 2, 2 in H, but wrong position
(3 cows)

1234 4231 2 2 2,3 in correct position (2 bulls)
1,4 in H, but wrong position (2
cows)

1234 1111 1 3 1st 1 in correct position (1 bull)
other 1’s in H, but wrong position (3
cows)

Assume that the following functions have been written for you:
function getDigit(number, which: integer) :integer;
//PRE-CONDITIONS:
// number is between 0000 and 9999
// which is between 1 and 4
//POST-CONDITIONS:
// getDigit returns one of the digits in number
// specified by which. If which=1 then the
// leftmost digit in number is returned, if
// which=2 then the 2nd leftmost digit in number is
// returned, etc.
// e.g. getDigit(1024,3) returns 2

function getH :integer;
//POST-CONDITIONS:
// returns a random number between 0000 and 9999

function getCows(number, H:integer) : integer;
//PRE-CONDITIONS:
// number and H are in the range 0000..9999
//POST-CONDITIONS:
// returns the number of cows scored

2.1 Write a procedure or function that accepts H and the user’s guess and
returns the number of bulls scored.

7

2.2 Write the main program that allows the computer to play cattle with a user
as described above. (You must not rewrite any functions or procedures.
Only write the code for the main section of the program!)

5

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-12

D.2 Practical Assessment Materials (Material M7)

D.2.1 Introductory Level Practical Assessment

Question in each paper Independent Variable
Task 1 Pr1Q1
Task 2 Pr1Q2

To discourage and eliminate potential plagiarism, each subject was randomly assigned
one of each of the following question papers. A total time of 20 minutes was allotted
in which the two tasks were to be completed.

PAPER 1

Task 1 : 8 marks

In B#, write a program that requests the user for the total number of cyclists in a
race. For each cyclist, the time taken (in hours, for example, 4.7 hours) to complete
the race is entered. The program must then display the average time taken by a
cyclist to complete the race.

Task 2 : 12 marks

In Delphi, write a program that requests the user for an integer. For an integer
entered that is not in the range 1 – 500, an appropriate error message should be
displayed; otherwise the program must display a count all the factors of the entered
integer.

For example, if the user enters 10, the program displays

 10 has 4 factors

PAPER 2

Task 1 : 8 marks

Write a program that requests the user for the total number of students in a class.
For each student, the mark obtained in a test (for example, 55) is entered. The
program must then display the maximum mark obtained in the test.

Task 2 : 12 marks

Write a program that requests the user for an integer (say n). For an integer entered
that is not in the range 1 – 500, an appropriate error message should be displayed;
otherwise the program must display all the positive integers in the range 1 – n with
each factor of n being replaced by a *.

For example, if the user enters 10, the program displays
 * * 3 4 * 6 7 8 9 *

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-13

PAPER 3

Task 1 : 8 marks

Write a program that requests the user for the total number of passengers on
an aeroplane. For each passenger, the mass of the luggage (in kilograms, for
example, 12) is entered. The program must then display the mass of the
lightest luggage (that is, the minimum mass).

Task 2 : 12 marks

Write a program that requests the user for an integer (say n). For an integer
entered that is not in the range 1 – 500, an appropriate error message should
be displayed; otherwise the program must display all the positive integers in
the range 1 – n in reverse order with each non-factor of n being replaced by a
*.

For example, if the user enters 10, the program displays

 10 * * * * 5 * * 2 1

PAPER 4

Task 1 : 8 marks

Write a program that requests the user for the total number of printers in the
computer laboratories. For each printer, the total number of pages printed is
entered. The program must then display the average number of pages
printed by a printer.

Task 2 : 12 marks

Write a program that requests the user for an integer (say n). For an integer
entered that is not in the range 1 – 50, an appropriate error message should
be displayed; otherwise the program must display a count of the first n
multiples of 13 that are also multiples of 3.

For example, if the user enters 7, the program displays

 No of multiples of 13 that are also multiples of 3 : 2

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-14

PAPER 5

Task 1 : 8 marks

In B#, write a program that requests the user for the total number of modules
offered at UPE. For each module, the number of students registered is
entered. The program must then display the number of students registered
for the module with the most number of students registered.

Task 2 : 12 marks

In Delphi, write a program that requests the user for an integer. For any
positive integer (zero excluded), the program must display all of its factors;
otherwise an appropriate error message must be displayed.

For example, if the user enters 20, the program displays

 1 2 4 5 10 20

PAPER 6

Task 1 : 8 marks

Write a program that requests the user for the total number of modules offered
at UPE. For each module, the number of students registered is entered. The
program must then display the number of students registered for the module
with the most number of students registered.

Task 2 : 12 marks

Write a program that requests the user for an integer. For any positive integer
(zero excluded), the program must display all of its factors; otherwise an
appropriate error message must be displayed.

For example, if the user enters 20, the program displays

 1 2 4 5 10 20

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-15

PAPER 7

Task 1 : 8 marks

Write a program that requests the user for the total number of cyclists in a
race. For each cyclist, the time taken (in hours, for example, 4.7 hours) to
complete the race is entered. The program must then display the average
time taken by a cyclist to complete the race.

Task 2 : 12 marks

Write a program that requests the user for an integer. For an integer entered
that is not in the range 1 – 500, an appropriate error message should be
displayed; otherwise the program must display a count all the factors of the
entered integer.

For example, if the user enters 10, the program displays

 10 has 4 factors

PAPER 8

Task 1 : 8 marks

Write a program that requests the user for the total number of passengers on
an aeroplane. For each passenger, the mass of the luggage (in kilograms, for
example, 12) is entered. The program must then display the average mass of
the luggage on the aeroplane.

Task 2 : 12 marks

Write a program that requests the user for an integer (say n). For an integer
entered that is in the range 1 – 50, the program must display all the integers in
the range 1 – n in reverse order with each multiple of 5 being replaced by a *;
otherwise an appropriate error message should be displayed.

For example, if the user enters 12, the program displays

 12 11 * 9 8 7 6 * 4 3 2 1

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-16

D.2.2 Intermediary Level Practical Assessment

Question Independent Variable
Question 1 Pr2Q1
Question 2 Pr2Q2
Question 3 Pr2Q3
Question 4 Pr2Q4

Question 1 : 10 marks (15 minutes)

Copy the file F:\Courses\WRA101\Prac Test\StudentQ1.dpr to your
directory on C:\Temp. Should you require any assistance in copying this file,
you will be penalised by 5 marks.

Remove all the syntax errors from the file StudentQ1.dpr so that it compiles
without any errors and works correctly. (10)

Question 2 : 10 marks (15 minutes)

Copy the file F:\Courses\WRA101\Prac Test\StudentQ2.dpr to your
directory on C:\Temp. Should you require any assistance in copying this file,
you will be penalised by 5 marks.

Consider the following function:

function Is1FactorOf2(number1, number2 : integer) : boolean;
begin
 result := (number2 mod number1 = 0);
end;

This function returns True if the first parameter passed (number1) is a factor of the second
parameter (number2), and False if number1 is not a factor of number2. Thus:
 Is1FactorOf2(4, 20) will return True, but
 Is1FactorOf2(3, 17) will return False.

Making use of the skeleton program provided; write a program that requests a
number from the user, and then displays all the factors of the number, as well as a
count of the factors. Make use of the function given above.

 (10)

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-17

Question 3 : 25 marks (45 minutes)

2.1 Write the following procedure:

procedure DisplayInts(a, b : integer);
{ Preconditions: a and b are integers with a <= b.
Post Conditions: All the integers between a and b
(including a and b) are displayed on one line and the cursor
is moved to the next line. E.g. the procedure call
DisplayInts(4, 9) will display 456789 on the screen.}

(6)

2.2 Making use of the procedure written above, write a program that continuously
prompts the user for a number (n) until the user enters an number in the range 0
≤ n ≤ 9. Depending on the user’s input, a triangle is then displayed on the
screen. E.g. if the user inputs 7, the following triangle should be displayed:

01234567
0123456
012345
01234
0123
012
01
0

If the user inputs 3, the following triangle should be displayed:

0123
012
01
0

After a triangle is displayed, the user should be asked the following question:
Would you like to continue? (y/n)
The entire process should be repeated until the user enters ‘N’ or ‘n’ as a
response to the above question.

 (19)
[25]

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-18

Question 4 : 25 marks (45 minutes)

Copy the file F:\Courses\WRA101\Prac Test\StudentQ4.dpr to your
directory on C:\Temp. Should you require any assistance in copying this file,
you will be penalised by 5 marks. Read the entire question before writing any
code.

StudentQ4.dpr contains the partial implementation of the following menu driven
program:

The current student is: , 0
The current practical average mark is: 0.00
The current test average mark is: 0.00

MENU:
1. Enter New Student
2. Enter Practical Marks
3. Enter Test Marks
4. Display Class Mark and Outcome
5. Exit

Please enter a selection.

If option 1 is selected, the user will be prompted for the Name and Student Number of a
student. When the menu is displayed again, the details at the top will be updated (e.g.
The current student is: Bob Smart, 203837282).

If option 2 is selected, the user will be prompted for the number of practicals completed
by the student. The user will then be prompted for the mark (out of 100) the student
received for each practical. When the menu is displayed again, the details at the top will
be updated (e.g. The current practical average mark is: 83.65).

If option 3 is selected, the user will be prompted for the marks of two tests (out of 100).
When the menu is displayed again, the details at the top will be updated (e.g. The
current test average mark is: 79.5).

If option 4 is selected, the class mark of the student will be displayed (assume that the
practical mark counts 40% and the test mark counts 60% of the class mark) as well as
whether the student may write the exam or not (e.g. Bob Smart, 203837282 has a
class mark of 81.23 and may write the exam). A student needs a class
mark of at least 40% to be allowed to write the exam.

The menu part of the program and the function GetTestAverage has already been
written. You have to implement the functions/procedures below (see StudentQ4.dpr
for their use). You should only add code to the specified area of StudentQ4.dpr.

GetStudent Prompts the user and returns the name and student

number of a student.
(4)

GetPracAverage Prompts the user for the number of practicals and the
mark of each practical, and returns the average.

(10)

DisplayClassMark Displays the name, student number and class mark of
the current student and whether the student may write
the exam.

(11)

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-19

D.3 Final Examination (Material M9)

Question Independent Variable
Section A ExMC
Section B: Question 1 ExQ1
Section B: Question 2 ExQ2
Section B: Question 3 ExQ3
Section B: Question 4 ExQ4
Section B: Question 5 ExQ5

Section A : 36 marks

1. What will be displayed by the following program extract?

var
 c,d :integer;
Begin
 c:=4*4;
 d:=3;
 c:=6;
 writeln(c,d);
End.

(1)

 a) 163

b) 316

c) 63

d) 36

2. What will be displayed by the following program extract, if the user
enters a 7 when asked?

var
 c :integer;
 d :char;

begin
 write(‘Please enter a number’);
 readln(c);

 if (c=d) then
 writeln(‘Yippee’);
 else
 writeln(‘NO’);
end.

(1)

 a) Yippee

b) NO

c) Program will not compile

d) Yippee
NO

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-20

3. Consider the following function prototype.

function IsPositive(x:integer):bool;
 //Postcondition: returns true if x > 0, otherwise it returns false

Which of the following is an invalid call to the function defined
above?

(1)

 a) if IsPositive(7) then
 writeln(‘Its Positive’);

b) if (IsPositive(x)>0) then

 writeln(‘Its Positive’);

c) if (IsPositive(x)=true) then

 writeln(‘Thats right’);

d) if IsPositive(x) = IsPositive(y) then

 write(‘Same sign’)

4. What will be displayed by the following program
extract?

var
 x :integer;

begin
 x:=32;
 while (x>=8)
 begin
 write(x,’ ‘);
 x:=x div 2;
 end;
end;

(1)

 a) 32 16 8

b) 16 8

c) 32 16 8 4

d) 16 8 4

5. Which of the following is the most appropriate definition for a
function or procedure that accepts the length, width and height of a
cube and returns the surface and volume of the cube?

(1)

 a) function cube(length, width, height : integer; var
surface, volume:real):real;

 b) procedure cube(length, width, height : integer; var
surface, volume:real);

 c) function cube(length, width, height : integer; var
surface :real): real;

 d) procedure cube(length, width, height : integer;
surface, volume : real);

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-21

6. What will be displayed by the following program
extract?

var
 i :integer;

begin
 for i:=8 downto 3 do
 write(i,’ ‘);
end.

(1)

 a) 8 7 6 5 4 3

b) 7 6 5 4 3

c) 3 4 5 6 7 8

d) 7 6 5 4

7. What will be displayed by the following program extract?

var
 a,b :integer;
begin
 a:=4;
 b:=0;
 writeln(a mod b);
end.

(1)

 a) 0

b) 4

c) Impossible to predict

d) Error: division by 0

8. What will be displayed by the following program extract?

function h(x, y:integer):integer;
var
 count:integer;
begin
 result:=1;

 for count:=1 to x do
 if (x mod count=0) and (y mod count=0)
 then
 result:=count;
end;

Begin
 writeln(h(6,21));
 readln;
End.

(1)

 a) 1
b) 2
c) 3
d) 4

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-22

9. What will be displayed by the following program extract?

var
 i,j :integer;
begin
 i:=4;
 for j:=1 to i do
 inc(i)
 write(i)
end.

(2)

 a) 1234
b) 123

c) Impossible to say
d) The loop will go into an

infinite loop

10. Under what condition will the loop in the following program extract
stop?

var
 a :integer;
begin
 repeat
 readln(a);
 until (a <> 7);
 write(a);
end.

(2)

 a) When the user enters
any positive integer

b) When the users enters

any integer except a 7

c) The loop will never stop

d) When the user enters a

7

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-23

11. Consider the following program extract.

var
 input :integer;
begin
 if (input > 12) then
 write(‘monkey’);
 else
 if (input =< 4) then
 write(‘cheese’);
 else
 write(‘ice cream’);
end.

for what values of input would Ice Cream be displayed?

(2)

 a) Whenever input is greater than 12 and less than or equal
to 4

b) Whenever input is less than or equal to 4

c) Whenever input is greater than 4 and less than or equal to

12

d) Whenever input is less than or equal to 12

12. What will be displayed by the following program extract?

var
 total,j :integer;
begin
 total:=0;
 j:=1;
 repeat
 total:=total + j;
 inc(j);
 until (total>17);
 writeln(total);
end.

(2)

 a) 7

b) 8

c) 28

d) 21

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-24

13. What will be displayed by the following program extract:

procedure modify(t1:integer; var t2:real;var t3:integer);
var
 m:integer;
begin
 m:=t1;
 t1:=t3;
 t2:=m*0.5;
 t3:=9;
end;
var
 time1,time3:integer;
 time2:real;
begin
 time1:=3;
 time2:=6.0;
 time3:=12;
 modify(time1,time2,time3);
 writeln(time1,’ ‘,time2:0:2,’ ‘,time3);

 end.

(3)

 a) 12 1.50 12

b) 3 6.00 12

c) 3 6.00 9

d) 3 1.50 9

14. Consider the following program extract:

if a>=12 then
 case a of
 1..5:writeln('top 5');
 6..10:writeln('middle 5');
 11..20:writeln('bottom 5');
 else
 writeln('not ranked');
 end;

For what values of a will top 5 be displayed?

(3)

 a) whenever a is less than 5 and greater than 1

b) whenever a is less than or equal to 5 and greater than or

equal to 1

c) top 5 will never be displayed

d) whenever a is less than 1 or greater than 5

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-25

15. What would be displayed by the following program extract?

var
 a:array[1..5] of integer;
 b:integer;
begin
 for b:=1 to 5 do
 a[b]:=sqr(b)-6;
 b:=5;
 while a[b]>0 do
 begin
 write(a[b],' ');
 dec(b);
 end;
 readln;
end.

(3)

 a) 19 10 3 -2

b) 19 10 3

c) 6 5 4 3

d) 6 5 4

16. Given a function with the following definition:

function f(x:integer; y:real):boolean;

Which of the following lines are invalid ways of calling it?

Var
 a,b:integer;
 x,y:real;
 t:boolean;
Begin
 if f(a,x) then writeln(a); //line 1
 a:=f(b,y); //line 2
 f(y,x); //line 3
 x:=f(10,y); //line 4
 t:=f(a,x); //line 5
 writeln(f(a,10.2)); //line 6
End.

(3)

 a) All of them

b) Lines 3, 4 and 6

c) Lines 1, 2, 4 and 6

d) Lines 2, 3 and 4

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-26

17. What will be displayed by the following program extract?

var
 i,j:integer;
begin
 for i:=0 to 3 do
 begin
 for j:=5-i downto i do
 write(i);
 writeln;
 end;

 end.

(4)

 a) 543210
4321
32

b) 000000
11111
2222
333
44
5

c) 000000
1111
22

d) 012345
1234
23

18. What would be displayed by the following program extract?

Var
 a:array[1..3] of string;
 i,j:integer;
Begin
 a[1]:=’the’;
 a[2]:=’fat’;
 a[3]:=’cat’;

 for i:=1 to 3 do
 for j:=1 to 3 do
 write(a[j][i]);

 readln;
End.

(4)

 a) the fat cat

b) thefatcat

c) tfchaaett

d) The program will not compile

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-27

Section B : 36 marks

1 Write a function called getDigit that accepts two integers, n and
index, which are both greater than zero and returns the indexth digit
from the right in n.

For example, if n = 5246, then the digit at index 1 is 6, the digit at
index 2 is 4, the digit at index 3 is 2, etc.

Index 6 5 4 3 2 1
n 0 0 5 2 4 6

Hint:

getDigit(5246, 1) = (5246 div 1) mod 10 = 6
getDigit(5246, 2) = (5246 div 10) mod 10 = 4
getDigit(5246, 3) = (5246 div 100) mod 10 = 2
getDigit(5246, 4) = (5426 div 1000) mod 10 = 5
getDigit(5246, 5) = (5426 div 10000) mod 10 = 0
etc.

(6)

2 Write a function\procedure that prompts the user for 10 integers and
then returns the sum and average of those numbers to the main
program.

(6)

3. Given below is an implementation of a procedure, including its pre-
and post-conditions. It contains a number of logical errors, i.e. the
code will compile, but will not work as expected.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

procedure CalcMinMax(n:integer; min, max:integer);
//PRE-CONDITIONS:
// n>=0
//POST-CONDITIONS:
// asks for n numbers, returning the minimum and
maximum
// value entered
var
 count, number : integer;
begin
 count:=1;
 repeat
 write('number ', count, '='); readln(number);
 if count=1
 then
 begin
 min:=number;
 max:=number;
 end;
 if number<min then min:=number;
 if number>max then max:=number;
 until count=n;
end;

APPENDIX D: INVESTIGATIVE ASSESSMENT MATERIALS

D-28

3.1 Name the logical errors you find in the code. (Use the line

numbers on the left to help show where the error occurs, or what
causes an error)

(4)

3.2 Give a corrected version of the code. You do not need to include
the pre- and post-conditions in your answer.

(4)

4. Write a program the will prompt the user for 10 real numbers and

will then display the numbers in reverse order.

(5)

5. Assume you have a text file named “Data.txt” that contains
comma-delimited lines each containing a student’s name and four
test marks, e.g.

Bob Smith,87,75,92,89

Write a program that will open the text file and display for each line
the student’s name and average, e.g.

Bob Smith has an average of 85.75

Note: It is not specified how many students the text file will
contain.

(15)

E-1

Appendix E

B# Questionnaires

E.1 B# ver. 1.0 Informal Usability Survey Questionnaire

1 B# is easy to use.

 Strongly
disagree Disagree Undecided Agree Strongly

agree

2 Could you complete your practicals in B# without assistance?

 Can’t
remember No Hardly Almost Yes

3 Answer if you did not say yes above, what held you back?

4 What level of assistance did you need throughout your usage of B#?

 Very low Low Average High Very high

5 How often did you look at the code associated with your program?

 Seldom Below average Often Above average Always

6 What would you say your experience level with Delphi (the language) was before
using B#?

 None Very low Low High Very high

7 What would you say your experience level with Delphi (the language) is after using B#
and lectures?

 None Very low Low High Very high

8 Do you think B# and its flowchart method helped you in solving algorithmic
problems? To what level: 1=(very low) to 5=(very high)

 Very low Low Average High Very high

9 Assuming B# was problem free and complete (more functionality). Do you think you
will make use B# to solve future algorithmic problems?

 Yes No

10 Did you ever run into a problem in B# which you thought was not due to your doing?

 Yes No

11 If so, briefly describe the task (if possible) and B#’s reaction.

12 What would you like to see changed in B#?

 APPENDIX E: B# QUESTIONNAIRES

E-2

E.2 B# ver. 1.0 Icon Evaluation Survey Form: First impressions

Link an icon (left) with a concept (right) by drawing a line.

Icons Programming Concept

 Assignment

 Condition

 For Loop

 Return

 Repeat-Until Loop

 Input

 While Loop

 Output

 Case Statement

 Procedure call
1. Tick the icons that were the easiest to identify.
2. Cross the icons that were the most difficult to identify.
3. Draw any suggestion of an icon next to the original one.

E.3 B# Ver. 1.0 Icon Evaluation Survey: Recollection

Icons Programming Concept?

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

F-1

Appendix F

Survey Results of B# Questionnaires

F.1 B# Ver. 1.0 Informal Usability Survey Results

Qualitative analysis of items 3, 11 and 12 in the questionnaire in Section E.1 assisted in
identifying problems that required attention to better satisfy the novice programmer user
and thereby increase the system’s usability.

Quantitative analysis of items 1, 2 and 4 through to 10 were used to measure the
success and shortcomings of the B# ver. 1.0.

The quantitative analysis of the responses to the questionnaire is graphically presented
in Figure F.1. The responses to each question posed in the questionnaire was linked
to the scale [0, 1, 2, 3, 4], with 0 corresponding to the leftmost rating and 4 to the
rightmost rating for each item.

0

0.5

1

1.5

2

2.5

3

3.5

4

Rating

1 2 4 5 6 7 8

Question Number

Figure F.1: Quantitative analysis of informal usability survey of B# ver. 1.0 (Thomas 2002b)

 APPENDIX F: SURVEY RESULTS OF B# QUESTIONNAIRES

F-2

Qualitative analysis of the survey responses revealed that novice programmers
required a great deal assistance while completing practical tasks in B# ver. 1.0.

F.2 B# Icon Evaluation Results

0

20

40

60

80

100

120

Identification
Percentage

if case input output assign. repeat pro.
Call

for while return

Icon Names

2nd Pass
1st Pass

Figure F.2: Quantitative analysis of icon evaluation results (Thomas 2002b)

Figure F.2 shows the increase in correct association of icons with programming
concepts by survey participants in red. The icons identified as being most problematic
are the single and multiple branching conditional, and the assignment programming
constructs.

G-1

Appendix G

Ethics Committee Application

Proposal for Experimental Study using First Year Introductory
Programming Students as Test Subjects

Study Proposal

At the commencement of the first semester of 2003, divide first year introductory programming
students (module codes WRA1011 and WRA1311) into three (3) stratified samples according to
success risk level in an introductory programming module, degree programme and computer
literacy classification. Each sample will consist of at least 80 first year students.

For the period February – May 2003 for WRA101 participants, and February – October 2003
for WRA131 participants, expose each group of students to one of the following alternative
practical delivery methods on a weekly basis as part of their required module commitments:

• Commercial programming environment, namely Delphi™ Enterprise (which is the
current prescribed programming environment);

• Experimental simplified programming environment, namely D-Lite; and
• Hybrid model comprising of an experimental iconic programming environment, namely

B#, and an experimental simplified programming environment, namely D-Lite.

By means of regular academic assessments during the period of the study, determine which of
the three alternative delivery methods is the most suitable delivery method to teach an
introductory programming module, and in so doing increase the pass rate in the module.

Study Investigators

Ms C B Cilliers (senior lecturer and PhD candidate)
Prof A P Calitz (PhD promoter)
Prof M B Watson (PhD promoter)
Dr J H Greyling (co-investigator)
All WRA101 and WRA131 lecturers, namely Mr D Vogts, Mr M C du Plessis (monitors)

Motivation

Summary of main points have been detailed below for brief perusal:
• Primary goal of introductory programming module is to teach problem-solving using a

programming language, and not teach the programming language itself
• Unsatisfactory individual and group performance rates are apparent in introductory

programming modules
• First year students find it difficult to memorise and understand syntax and semantic

constraints of a programming language

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-2

• Commercial programming environments are designed for experienced programmers, tend
to have complex interfaces and do not successfully support novice programmers

• Details in commercial programming environment tend to distract the novice programmer
• A large proportion of the Algorithmics 1.1 annual intake are service module students who

could benefit from being shielded from the effect of complex commercial programming
environments

• A single successful study in a similar research area has been reported on internationally. No
empirical data exists for a South African study.

• Locally developed experimental programming environments addressing the issues
highlighted above have been successfully developed in the Department over the past 2
years.

• Study forms part of an ongoing registered Departmental research project
• Academic staff of the Department supports the conducting of the study
• Participants will be closely monitored on a weekly basis
• No extra time or effort will be expected from participants in the study

The primary purpose of this study is therefore to provide empirical evidence to support the
hypotheses found in literature that novice programmers benefit from the use of simplified
programming environments and/or iconic programming tools. Empirical evidence could also
assist in the planning of the content of a problem-solving service module.

Tertiary institutions are continuously addressing the issue of satisfactory group and individual
performance rates in introductory programming modules, where the primary goal is to use a
programming language to implement solutions to problems rather than to teach a programming
language [Kus1994, Loc1986].

All first year programming students at UPE are, since 2001, required to be streamed into one
(or none) of the introductory programming modules (WRA101 or WRA131) presented by the
Department of Computer Science and Information Systems [Gre2000]. Streaming is based on
results obtained in the University’s prescribed and mandatory placement test. Repeating
students are, since 2002, streamed according to past performance in their attempts at these
modules2. The main reasons for these measures are the Department’s limited technological
resources and continuous attempts to increase the pass rate in the introductory programming
modules while at all times maintaining the expected level of instruction.

Despite these innovative attempts to assist individual students and improve the overall
throughput in the introductory programming modules, numerous students who possess a
potential to be successful are in fact unsuccessful in the introductory programming module.
The pass rate for WRA101 and WRA131 (Algorithmics 1.1) has for the last few years been
recorded at values far beneath the expected rate. In 2002, the pass rate for WRA101 was 38%
(including those who had either cancelled the module or been refused admission to write the
examination in June 2002). Historical first years, namely those students registering for the
first time in 2002, recorded a final pass rate of 58%, with repeating students recording a pass
rate of 23%.

One reason for this could be that one of the more difficult aspects for any first year student
when learning to program is the memorising and understanding of the syntactic and semantic
constraints of a specific programming language [Stu1995]. Another reason could be that the
interactive development environment of commercially available programming languages (for
example Visual C++ and Borland® Delphi™ Enterprise) adds unnecessary complexity to
practical implementation sessions in an introductory programming module since they have
been designed for more experienced users [Zie1999]. During practical implementation
sessions, introductory programming students now have to contend with the issues of the

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-3

scenario of the problem to be solved, the syntax of the language being used as well as the
environment in which the actual programming takes place.

It has been recommended that first time students should commence programming at a level
where the technicalities of the programming language being used are not more important than
the concepts being taught [Pro1996]. When introducing students to initial program design and
development, an environment that is conducive to the requirements of teaching and learning
how to program is required. This type of environment tends to differ from commercially
available programming environments that have been designed for experienced users who are
developing large programs [Zie1999].

Research has indicated that commercial programming environments, which are those
environments that are traditionally used in the practical instruction of programming constructs
to novice programmers, do not meet their goals as support tools for novice programmers and are
not suited to the types of problems experienced by novice programmers [Dee1999].

Furthermore, of the first years registered for WRA101 in 2002, 52% were non-professional
programming majors, that is, for these students, WRA101 is a necessary and required service
module. Debates are continuously entered into regarding whether the ability to code solutions
for problems in a given programming language is a necessary requirement for a service
problem-solving module.

International research results have shown a significant improvement in the results obtained by
students in an introductory programming module using BACCII©, an iconic programming
tool [Cal1994, Cal1997]. There is also a belief among some researchers that students should
master a few broad concepts at a time, leaving the remaining tasks to be implemented by the
components provided [Pro1996]. Further, some researchers have experienced that low-level
implementation issues distract the students so that they do not understand the abstraction of
the problem-solving process [Ree1995]. Some researchers also feel that it is important for
first time students to be exposed to high quality code that solve real problems. In this way
students are encouraged to imitate correct code [Pro1996].

For all of these reasons, an experimental iconic programming tool called B#, with a limited
scope of programming functionality was developed by postgraduate students in the
Department during 2001 and 2002 [Bro2001, Tho2002]. An experimental simplified
programming environment, D-Lite, providing all of the functionality of the equivalent
commercial programming environment was also developed in 2001. During 2002, field-
testing to assess the usability of the two experimental programming environments was
successfully conducted. A positive attitude on the part of students assessing the experimental
software was also observed.

There is, however, insufficient methodological research and little empirical evidence, both
internationally and especially within the Southern African context, to justify the use of
simplified programming environments and/or iconic programming tools in the training of
novice programmers, and as a problem-solving tool for non-professional programming
majors.

The primary purpose of this study is therefore to provide empirical evidence to support the
hypotheses found in literature that novice programmers benefit from the use of simplified
programming environments and/or iconic programming tools. Empirical evidence could also
assist in the planning of the content of a problem-solving service module.

This study proposal, which is an integral part of a Departmental registered research project
and forms the core for a registered PhD, was discussed on 18 October 2002 with the majority

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-4

of the members of the academic staff of the Department of Computer Science and Information
Systems. The Department supports the conducting of this study for the period February –
October 2003.

Due to the fact that each participant in the study will be monitored weekly by at least one
investigator as a part of his/her regular module commitments, should any irregularity of any
nature be observed that is judged to be detrimental to any individual participant or group of
participants, the primary investigators will have no hesitation in terminating the study
immediately. All participants in all groups will then revert to using the prescribed
commercial programming environment, namely Delphi™ Enterprise.

No participant will be expected to invest any extra time or effort on this study over that time
and effort which is considered as part of the normal workload for the credit bearing
commitments for the introductory programming (Algorithmics 1.1) modules. The
experimental programming environments will serve as alternatives for the prescribed
commercial programming environment.

1. WRA101 and WRA131 are equivalent introductory programming modules. WRA101 is
presented in the first semester of the academic year, and WRA131 is a slower paced module
presented over the entire academic year.

2. Details on the regulations regarding the streaming of students are available in the Rules and
Regulations handout for the Faculty of Science.

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-5

APPLICATION TO UPE HUMAN ETHICS COMMITTEE

Title of proposed project: An Investigation into Alternative Delivery Methods in an Introductory Programming
Module
Details of the investigator(s)
Name(s) Ms C B Cilliers Prof A P Calitz Prof M B Watson Dr J H Greyling

Qualification(s) MSc PhD DPhil, NHED PhD

Position(s) Senior Lecturer Professor Professor Senior Lecturer

Departmental addresses Computer Science and Information
Systems

Psychology Computer
Science and
Information
Systems

Functions in the proposed research Principal
investigator

Promoter Promoter Co-investigator

Name of principal investigator Ms C B Cilliers

Experience of principal investigator
in the field of research concerned

Ms Cilliers has 14+ years experience as an academic in the Department, 5 of
which are as an introductory programming module lecturer. She has a clear
understanding of the education goals of an introductory programming module,
specifically with respect to the intended learning outcomes, and she has
experience of what is required as prior learning for follow up modules. She has
been actively involved in the development of the experimental programming
environments and the assessment of these environments. She has undertaken
an intensive literature survey to support the study.

Place where research is to be undertaken:
Computer laboratories in the Department of Computer Science and Information Systems, UPE during scheduled
introductory programming module practical sessions
Objective of the research (ie the hypothesis which is to be tested)
A delivery method comprising of an iconic programming environment together with a simplified programming
language editing environment is the most suitable to teach an introductory programming module, and serves
to increase the pass rate in the module.

Scientific background (If similar work has been done previously, state why it needs to be repeated. If it has not
been done before, has the problem been worked out as fully as possible using animals or other alternative research
methods?)

There is insufficient methodological research and little empirical evidence, both internationally and especially within the
Southern African context, to justify the use of simplified programming environments and/or iconic programming tools in
the training of novice programmers, and as a problem-solving tool for non-professional programming majors.

For further details on the scientific background, please refer to the Motivation section in the attached study proposal.

Design of the study (Give an outline of the proposed project, including procedures to be used, the measurements
to be made and how the results will be analysed. State the likely duration of the project)
Participants will be selected during the first week of February 2003 according to their computer literacy proficiency,
success risk level and degree programme into 3 stratified samples per introductory programming module, thus a total
of 6 samples. The computer literacy proficiency will be assessed by means of a Background Questionnaire (see
attached example). The success risk level per participant is the score obtained in the prescribed and mandatory
placement test administered by the University on application as a student. The degree programme will be determined
upon successful registration.
For the period February – May 2003 for WRA101 participants, and February – October 2003 for WRA131
participants, expose each group of students to one of the following alternative practical delivery methods on a
weekly basis as part of their required module commitments:
Commercial programming environment, namely Delphi™ Enterprise (which is the current prescribed
programming environment);

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-6

Experimental simplified programming environment, namely D-Lite; and
Hybrid model comprising of an experimental iconic programming environment, namely B#, and an
experimental simplified programming environment, namely D-Lite.
A number of academic assessments, which form part of the normal module commitment, will be administered.
Participants will be assessed twice in a practical environment by means of the delivery method to which they
have been exposed. Each participant will be assessed twice in a theoretical environment. The results of these
assessments will be for credit bearing purposes. All assessments will be identical across the stratified
groups.
All academic results will be statistically analysed per stratified sample to determine whether the hybrid model
indeed increases the pass rate and increases an individual participant’s performance. Statistical analysis will
also be performed on the results of assessments for non-professional IT majors, and a proposal as to the
preferred delivery method for a service introductory programming module will be drawn up.
The control group will consist of participants who are using the prescribed commercial programming
environment as the delivery method.
On completion of the study, participants will be required to complete a feedback questionnaire, the contents of
which still need to be finalized.

Type of subjects (Give details of method of recruitment for each category [patients, controls, healthy volunteers]).
Specify whether subjects are in a dependent relationship with the investigators, eg students or whether specially
vulnerable eg children, mentally handicapped).
Participants will be selected during the first week of February 2003 according to their computer literacy proficiency,
success risk level and degree programme into 3 stratified samples per introductory programming module, thus a total
of 6 samples. These measurement tools have been detailed in the previous section (Design of the study).
Participants (students) are in a dependent relationship with the Department, but not directly with the investigators since
the principal investigator is currently on sabbatical and will only return to academic duty in July 2003.

Substances to be given (Eg drugs, special diets, isotopes, vaccines, etc. State route, dose, frequency,
precautions)
NONE

Samples to be obtained (Eg blood, urine, cerebrospinal fluid, biopsy specimens, etc. Give method and frequency
of sampling, amount of each sample)
NONE

Other procedures (Give details eg of X-rays, endoscopy, anaesthesia)
NONE

Potential risks and inconvenience to the subjects (Estimated probability (if possible) and precautions to be
taken to minimise risks and inconvenience)
A possibility exists where the participant might not feel comfortable with the experimental delivery method assigned to
him/her. He/she might therefore feel at risk of failing the module. In this case, the participant may at any time revert to
the prescribed commercial programming environment.
Due to the fact that each participant in the study will be monitored weekly (as a part of the normal module commitment)
by at least one investigator, should any irregularity of any nature be observed that is judged to be detrimental to any
individual participant or group of participants, the primary investigators will have no hesitation in terminating the study
immediately. All participants in all groups will then revert to using the prescribed commercial programming
environment.

Each experimental delivery method will encourage a participant to code programs in a fashion that would normally be
expected of introductory programming students, and therefore, should a participant revert back to the prescribed
commercial environment, no inconvenience should be experienced. The only inconvenience would be adapting to the
programming environment interface. Allowance for adaptation time during practical sessions will be made for should
the need arise.

At various times during the development of the experimental delivery methods in 2001/2, field-testing to assess the
usability of the two experimental programming environments (and not of the performance of the users of the software)
was successfully conducted. The investigators also observed a positive and enthusiastic attitude on the part of
students assessing the experimental software. Because of this observation, the estimated probability of risk and

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-7

inconvenience to the participants is low.

One possible risk is that participants in the control group, that is those using the prescribed commercial programming
environment, might perceive the experimental programming environments as being “simpler” (which they are intended
to be in order to test the hypothesis) and may wish to be included as participants using the experimental programming
environments. Due to the rigid sampling procedure that will be applied, no participants will be permitted to change to
an experimental programming environment from the commercial programming environment, nor will they be permitted
to change between experimental programming environments once the sampling has been done. For this reason, all
participants in the study will be required to complete an informed consent form so that they are aware of and
acknowledge their rights.

Benefits of research to research subject and/or community
The empirical data resulting from this study will benefit the presentation of an introductory programming module at all
levels, namely the performance of an individual student, UPE’s Department of Computer Science and Information
Systems by increasing the group pass rates in these modules, as well as other tertiary institutions nationally and
internationally. Educational benefits of the study on alternative delivery methods can be incorporated for use at
secondary schools in South Africa offering programming subjects.
Two research papers reporting on the development of the experimental delivery methods have already resulted – one
of the papers was presented at a conference in June 2002, and the second will be presented at an international
conference in January 2003.
Research reports on this study will be submitted to acknowledged international journals as well as recognized
international conferences.

Manner in which the subject’s consent will be obtained (if written, include a copy)
See attached informed consent forms, one for each stratified group of participants.

State whether the subject’s personal doctor is to be informed of recruitment of the subject before the study
begins, and whether the subject’s consent to such information being passed on is a condition of participation

NO

Regulatory status under the relevant legislation of any drug or appliance to be used or tested

NONE

Investigators’ interests (Profit, personal or departmental, financial or otherwise, relating to the study)
Results of this study will form an integral portion of both a currently registered PhD and a Departmental registered
research project. The output from the study can assist the Department in determining an appropriate model for a
delivery method for introductory programming modules that are for information technology majors and non-majors
(namely service modules).

RNcwadi/dg/Genforms
31 May 2001

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-8

Background Questionnaire

Questionnaire No.: Date:

Name and Surname:

Select Gender:
__ Female
__ Male

Indicate your Home Language:
Eng / Afr / isiXhosa / seSotho
Other:

Contact Telephone No.:

Student No.:

PART 1: Previous Experience
Please circle the number which is most appropriate.
1=never, 2=rarely, 3=once to three times per month, 4=once a week, 5=daily.
1. How long have you worked on a computer? Never Daily
 1 2 3 4 5

PART 2: Self-assessment of ability

Please circle the numbers which most appropriately reflect your impressions.
1=poor, 2=not so good, 3=reasonable, 4=good, 5=excellent, NA=not applicable

2.1 How would you rate your ability to use a computer Poor Excellent
 in general? 1 2 3 4 5 NA
2.2 How would you rate your ability to use the
 typing and the cursor sections of the keyboard?

Poor Excellent

 1 2 3 4 5 NA
2.3 How would you rate your ability to use the
 mouse?

Poor Excellent

 1 2 3 4 5 NA
2.4 How would you rate your ability to use
 Windows objects such as buttons, checkboxes
 and radio buttons?

Poor Excellent

 1 2 3 4 5 NA
PART 3: Attitude
1=difficult, 2=not too difficult, 3=fairly easy, 4=easy, 5= very easy, NA=not applicable

1.1 How do you find working on a computer in
 general?

Difficult Very easy

 1 2 3 4 5 NA
1.2 How do you find it working with the
 keyboard?

Difficult Very easy

 1 2 3 4 5 NA

3.3 How do you find it working with the mouse? Difficult Very easy
 1 2 3 4 5 NA
3.4 How do you find reading and understanding Difficult Very easy
 information on the computer screen? 1 2 3 4 5 NA
PART 4: Previous Experience
1=never, 2=about once a month, 3=several times a month, 4=once a week, 5=daily, NA=not applicable
4.1 How often is there a computer available for
 you to use?

Never Daily

 1 2 3 4 5 NA
4.2 How often do you play games on a computer? Never Daily
 1 2 3 4 5 NA
4.3 How often do you use a Word Processing Never Daily
 package? 1 2 3 4 5 NA
4.4 How often do you use a Spreadsheet package? Never Daily

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-9

 1 2 3 4 5 NA
4.5 How often do you use the Internet? Never Daily
 1 2 3 4 5 NA
4.6 How often do you use Email facilities? Never Daily
 1 2 3 4 5 NA
4.7 How often do you write computer programs? Never Daily
 1 2 3 4 5 NA
PART 5: Contact with other Technology
1=never, 2=about once a month, 3=several times a month, 4=once a week, 5=daily, NA=not applicable

5.1 How often to you program a Video Cassette Never Daily
 Recorder (VCR)? 1 2 3 4 5 NA
5.2 How often to you use an Automatic Banking Never Daily
 Teller Machine (ATM)? 1 2 3 4 5 NA
5.3 How often do you use a Tape Recorder? Never Daily
 1 2 3 4 5 NA
5.4 How often do you use a CD Player? Never Daily
 1 2 3 4 5 NA
4.2 How often do you play TV games (not

Computer games)?
Never Daily

 1 2 3 4 5 NA
5.6 How often do you use a cellular (cell) phone? Never Daily
 1 2 3 4 5 NA
5.7 How often do you select programs on Digital Never Daily
 Satellite Television (DSTV)? 1 2 3 4 5 NA

Thank you for your time and effort.

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-10

Informed Consent Form

You have been selected as a research participant for the evaluation of the

B#

experimental delivery method in the Algorithmics 1.1 module. This evaluation is
being conducted by Ms Charmain Cilliers (csacbc@upe.ac.za, 5042235), Prof
André Calitz (csaapc@upe.ac.za) and Dr Jean Greyling (csajhg@upe.ac.za). We
will be happy to answer any questions you may have about the evaluation.

During the entire semester, you will be required to perform various practical tasks
with this experimental software on a weekly basis. These tasks will form part of the
required commitment for the Algorithmics 1.1 module. You will not be required to
invest any additional time or effort in the experimental delivery method other than that
time and effort that would normally be required from you as an acknowledged portion
of the Algorithmics 1.1 module commitment.

You will be assessed on your performance in the experimental delivery method and
these assessments will count towards both your class and final mark for Algorithmics
1.1. All assessments will be identical to those administered to students using the
prescribed commercial programming environment, namely Delphi™ Enterprise. The
results of your assessments will be used for statistical analysis to determine whether
a specific delivery method benefits individual and/or group performance in
Algorithmics 1.1.

Your name will not be associated with any data that are collected during this
research study. There are no known risks associated with this evaluation. At the
end of the research study period, you will be requested to complete a feedback
questionnaire, containing questions relevant to this evaluation.

Your rights as a participant are as follows:

You have the right to withdraw from using the experimental delivery method B# and
D-Lite at any time for any reason. In this case, you will then for the remainder of the
duration of the registered module have to complete all practical tasks for Algorithmics
1.1 in the prescribed commercial programming environment, namely Delphi™
Enterprise. You will also then be assessed in all further practical assessments in the
commercial programming environment.

You will not be permitted to complete your practical tasks for Algorithmics 1.1 credit
bearing purposes in any other programming environment other than B# and D-Lite
combination, or Delphi™ Enterprise (see point above).

We greatly appreciate your time and effort for participating in this evaluation. Your
signature below indicates that you have read this consent form in its entirety and that
you voluntarily agree to participate.

Name: ___

Signature: __

 APPENDIX G: ETHICS COMMITTEE APPLICATION

G-11

Telephone no.: _______________________ Date: ____________________
Informed Consent Form

You have been selected as a research participant for the evaluation of the

Commercial programming environment Delphi™ Enterprise

as the delivery method in the Algorithmics 1.1 module. This evaluation is being
conducted by Ms Charmain Cilliers (csacbc@upe.ac.za, 5042235), Prof André
Calitz (csaapc@upe.ac.za) and Dr Jean Greyling (csajhg@upe.ac.za). We will be
happy to answer any questions you may have about the evaluation.

During the entire semester, you will be required to perform various practical tasks
with this software on a weekly basis. These tasks will form part of the required
commitment for the Algorithmics 1.1 module. You will not be required to invest any
additional time or effort in the delivery method other than that time and effort that
would normally be required from you as an acknowledged portion of the Algorithmics
1.1 module commitment.

You will be assessed on your performance in the delivery method and these
assessments will count towards both your class and final mark for Algorithmics 1.1.
All assessments will be identical to those administered to students using the
experimental programming environments. The results of your assessments will be
used for statistical analysis to determine whether a specific delivery method benefits
individual and/or group performance in Algorithmics 1.1.

Your name will not be associated with any data that are collected during this
research study. There are no known risks associated with this evaluation. At the
end of the research study period, you will be requested to complete a feedback
questionnaire, containing questions relevant to this evaluation.

Your rights as a participant are as follows:

You will not be permitted to complete your practical tasks for Algorithmics 1.1 credit
bearing purposes in any other programming environment other than Delphi™
Enterprise, which is the prescribed programming environment.

We greatly appreciate your time and effort for participating in this evaluation. Your
signature below indicates that you have read this consent form in its entirety and that
you voluntarily agree to participate.

Name: ___

Signature: __

Telephone no.: _______________________ Date: ____________________

APPENDIX G: ETHICS COMMITTEE APPLICATION

 G-5

APPLICATION TO UPE HUMAN ETHICS COMMITTEE

Title of proposed project: An Investigation into Alternative Delivery Methods in an Introductory Programming
Module

Details of the investigator(s)

Name(s) Ms C B Cilliers Prof A P Calitz Prof M B Watson Dr J H Greyling

Qualification(s) MSc PhD DPhil, NHED PhD

Position(s) Senior Lecturer Professor Professor Senior Lecturer

Departmental addresses Computer Science and Information
Systems

Psychology Computer
Science and
Information
Systems

Functions in the proposed research Principal
investigator

Promoter Promoter Co-investigator

Name of principal investigator Ms C B Cilliers

Experience of principal investigator
in the field of research concerned

Ms Cilliers has 14+ years experience as an academic in the Department, 5 of
which are as an introductory programming module lecturer. She has a clear
understanding of the education goals of an introductory programming module,
specifically with respect to the intended learning outcomes, and she has
experience of what is required as prior learning for follow up modules. She has
been actively involved in the development of the experimental programming
environments and the assessment of these environments. She has undertaken
an intensive literature survey to support the study.

Place where research is to be undertaken:

Computer laboratories in the Department of Computer Science and Information Systems, UPE during scheduled
introductory programming module practical sessions

Objective of the research (ie the hypothesis which is to be tested)

A delivery method comprising of an iconic programming environment together with a simplified programming language
editing environment is the most suitable to teach an introductory programming module, and serves to increase the
pass rate in the module.

Scientific background (If similar work has been done previously, state why it needs to be repeated. If it has not
been done before, has the problem been worked out as fully as possible using animals or other alternative research
methods?)

There is insufficient methodological research and little empirical evidence, both internationally and especially within the
Southern African context, to justify the use of simplified programming environments and/or iconic programming tools in
the training of novice programmers, and as a problem-solving tool for non-professional programming majors.

For further details on the scientific background, please refer to the Motivation section in the attached study proposal.

Design of the study (Give an outline of the proposed project, including procedures to be used, the measurements
to be made and how the results will be analysed. State the likely duration of the project)

Participants will be selected during the first week of February 2003 according to their computer literacy proficiency,

APPENDIX G: ETHICS COMMITTEE APPLICATION

 G-6

success risk level and degree programme into 3 stratified samples per introductory programming module, thus a total
of 6 samples. The computer literacy proficiency will be assessed by means of a Background Questionnaire (see
attached example). The success risk level per participant is the score obtained in the prescribed and mandatory
placement test administered by the University on application as a student. The degree programme will be determined
upon successful registration.

For the period February – May 2003 for WRA101 participants, and February – October 2003 for WRA131 participants,
expose each group of students to one of the following alternative practical delivery methods on a weekly basis as part
of their required module commitments:

• Commercial programming environment, namely Delphi™ Enterprise (which is the current prescribed
programming environment);

• Experimental simplified programming environment, namely D-Lite; and

• Hybrid model comprising of an experimental iconic programming environment, namely B#, and an
experimental simplified programming environment, namely D-Lite.

A number of academic assessments, which form part of the normal module commitment, will be administered.
Participants will be assessed twice in a practical environment by means of the delivery method to which they have
been exposed. Each participant will be assessed twice in a theoretical environment. The results of these
assessments will be for credit bearing purposes. All assessments will be identical across the stratified groups.

All academic results will be statistically analysed per stratified sample to determine whether the hybrid model indeed
increases the pass rate and increases an individual participant’s performance. Statistical analysis will also be
performed on the results of assessments for non-professional IT majors, and a proposal as to the preferred delivery
method for a service introductory programming module will be drawn up.

The control group will consist of participants who are using the prescribed commercial programming environment as
the delivery method.

On completion of the study, participants will be required to complete a feedback questionnaire, the contents of which
still need to be finalized.

Type of subjects (Give details of method of recruitment for each category [patients, controls, healthy volunteers]).
Specify whether subjects are in a dependent relationship with the investigators, eg students or whether specially
vulnerable eg children, mentally handicapped).

Participants will be selected during the first week of February 2003 according to their computer literacy proficiency,
success risk level and degree programme into 3 stratified samples per introductory programming module, thus a total
of 6 samples. These measurement tools have been detailed in the previous section (Design of the study).

Participants (students) are in a dependent relationship with the Department, but not directly with the investigators since
the principal investigator is currently on sabbatical and will only return to academic duty in July 2003.

Substances to be given (Eg drugs, special diets, isotopes, vaccines, etc. State route, dose, frequency,
precautions)

NONE

Samples to be obtained (Eg blood, urine, cerebrospinal fluid, biopsy specimens, etc. Give method and frequency
of sampling, amount of each sample)

NONE

APPENDIX G: ETHICS COMMITTEE APPLICATION

 G-7

Other procedures (Give details eg of X-rays, endoscopy, anaesthesia)

NONE

Potential risks and inconvenience to the subjects (Estimated probability (if possible) and precautions to be
taken to minimise risks and inconvenience)

A possibility exists where the participant might not feel comfortable with the experimental delivery method assigned to
him/her. He/she might therefore feel at risk of failing the module. In this case, the participant may at any time revert to
the prescribed commercial programming environment.
Due to the fact that each participant in the study will be monitored weekly (as a part of the normal module commitment)
by at least one investigator, should any irregularity of any nature be observed that is judged to be detrimental to any
individual participant or group of participants, the primary investigators will have no hesitation in terminating the study
immediately. All participants in all groups will then revert to using the prescribed commercial programming
environment.

Each experimental delivery method will encourage a participant to code programs in a fashion that would normally be
expected of introductory programming students, and therefore, should a participant revert back to the prescribed
commercial environment, no inconvenience should be experienced. The only inconvenience would be adapting to the
programming environment interface. Allowance for adaptation time during practical sessions will be made for should
the need arise.

At various times during the development of the experimental delivery methods in 2001/2, field-testing to assess the
usability of the two experimental programming environments (and not of the performance of the users of the software)
was successfully conducted. The investigators also observed a positive and enthusiastic attitude on the part of
students assessing the experimental software. Because of this observation, the estimated probability of risk and
inconvenience to the participants is low.

One possible risk is that participants in the control group, that is those using the prescribed commercial programming
environment, might perceive the experimental programming environments as being “simpler” (which they are intended
to be in order to test the hypothesis) and may wish to be included as participants using the experimental programming
environments. Due to the rigid sampling procedure that will be applied, no participants will be permitted to change to
an experimental programming environment from the commercial programming environment, nor will they be permitted
to change between experimental programming environments once the sampling has been done. For this reason, all
participants in the study will be required to complete an informed consent form so that they are aware of and
acknowledge their rights.

Benefits of research to research subject and/or community

The empirical data resulting from this study will benefit the presentation of an introductory programming module at all
levels, namely the performance of an individual student, UPE’s Department of Computer Science and Information
Systems by increasing the group pass rates in these modules, as well as other tertiary institutions nationally and
internationally. Educational benefits of the study on alternative delivery methods can be incorporated for use at
secondary schools in South Africa offering programming subjects.

Two research papers reporting on the development of the experimental delivery methods have already resulted – one
of the papers was presented at a conference in June 2002, and the second will be presented at an international
conference in January 2003.

Research reports on this study will be submitted to acknowledged international journals as well as recognized
international conferences.

Manner in which the subject’s consent will be obtained (if written, include a copy)

See attached informed consent forms, one for each stratified group of participants.

APPENDIX G: ETHICS COMMITTEE APPLICATION

 G-8

State whether the subject’s personal doctor is to be informed of recruitment of the subject before the
study begins, and whether the subject’s consent to such information being passed on is a condition
of participation

NO

Regulatory status under the relevant legislation of any drug or appliance to be used or tested

NONE

Investigators’ interests (Profit, personal or departmental, financial or otherwise, relating to the study)

Results of this study will form an integral portion of both a currently registered PhD and a Departmental registered
research project. The output from the study can assist the Department in determining an appropriate model for a
delivery method for introductory programming modules that are for information technology majors and non-majors
(namely service modules).

RNcwadi/dg/Genforms
31 May 2001

APPENDIX G: ETHICS COMMITTEE APPLICATION

 G-9

Background Questionnaire

Questionnaire No.: Date:

Name and Surname:

Select Gender:
__ Female
__ Male

Indicate your Home Language:
Eng / Afr / isiXhosa / seSotho
Other:

Contact Telephone No.:

Student No.:

PART 1: Previous Experience
Please circle the number which is most appropriate.
1=never, 2=rarely, 3=once to three times per month, 4=once a week, 5=daily.
1. How long have you worked on a computer? Never Daily
 1 2 3 4 5
PART 2: Self-assessment of ability
Please circle the numbers which most appropriately reflect your impressions.
1=poor, 2=not so good, 3=reasonable, 4=good, 5=excellent, NA=not applicable

2.1 How would you rate your ability to use a computer Poor Excellent
 in general? 1 2 3 4 5 NA
2.2 How would you rate your ability to use the
 typing and the cursor sections of the keyboard?

Poor Excellent

 1 2 3 4 5 NA
2.3 How would you rate your ability to use the
 mouse?

Poor Excellent

 1 2 3 4 5 NA
2.4 How would you rate your ability to use
 Windows objects such as buttons, checkboxes
 and radio buttons?

Poor Excellent

 1 2 3 4 5 NA
PART 3: Attitude
1=difficult, 2=not too difficult, 3=fairly easy, 4=easy, 5= very easy, NA=not applicable

1.1 How do you find working on a computer in
 general?

Difficult Very easy

 1 2 3 4 5 NA
1.2 How do you find it working with the
 keyboard?

Difficult Very easy

 1 2 3 4 5 NA

3.3 How do you find it working with the mouse? Difficult Very easy
 1 2 3 4 5 NA
3.4 How do you find reading and understanding Difficult Very easy
 information on the computer screen? 1 2 3 4 5 NA
PART 4: Previous Experience
1=never, 2=about once a month, 3=several times a month, 4=once a week, 5=daily, NA=not applicable
4.1 How often is there a computer available for
 you to use?

Never Daily

 1 2 3 4 5 NA
4.2 How often do you play games on a computer? Never Daily
 1 2 3 4 5 NA
4.3 How often do you use a Word Processing Never Daily
 package? 1 2 3 4 5 NA
4.4 How often do you use a Spreadsheet package? Never Daily
 1 2 3 4 5 NA

APPENDIX G: ETHICS COMMITTEE APPLICATION

 G-10

4.5 How often do you use the Internet? Never Daily
 1 2 3 4 5 NA
4.6 How often do you use Email facilities? Never Daily
 1 2 3 4 5 NA
4.7 How often do you write computer programs? Never Daily
 1 2 3 4 5 NA
PART 5: Contact with other Technology
1=never, 2=about once a month, 3=several times a month, 4=once a week, 5=daily, NA=not applicable

5.1 How often to you program a Video Cassette Never Daily
 Recorder (VCR)? 1 2 3 4 5 NA
5.2 How often to you use an Automatic Banking Never Daily
 Teller Machine (ATM)? 1 2 3 4 5 NA
5.3 How often do you use a Tape Recorder? Never Daily
 1 2 3 4 5 NA
5.4 How often do you use a CD Player? Never Daily
 1 2 3 4 5 NA
4.2 How often do you play TV games (not

Computer games)?
Never Daily

 1 2 3 4 5 NA
5.6 How often do you use a cellular (cell) phone? Never Daily
 1 2 3 4 5 NA
5.7 How often do you select programs on Digital Never Daily
 Satellite Television (DSTV)? 1 2 3 4 5 NA

Thank you for your time and effort.

APPENDIX G: ETHICS COMMITTEE APPLICATION

 G-11

Informed Consent Form

You have been selected as a research participant for the evaluation of the

B#

experimental delivery method in the Algorithmics 1.1 module. This evaluation is
being conducted by Ms Charmain Cilliers (csacbc@upe.ac.za, 5042235), Prof
André Calitz (csaapc@upe.ac.za) and Dr Jean Greyling (csajhg@upe.ac.za). We
will be happy to answer any questions you may have about the evaluation.

During the entire semester, you will be required to perform various practical tasks
with this experimental software on a weekly basis. These tasks will form part of the
required commitment for the Algorithmics 1.1 module. You will not be required to
invest any additional time or effort in the experimental delivery method other than that
time and effort that would normally be required from you as an acknowledged portion
of the Algorithmics 1.1 module commitment.

You will be assessed on your performance in the experimental delivery method and
these assessments will count towards both your class and final mark for Algorithmics
1.1. All assessments will be identical to those administered to students using the
prescribed commercial programming environment, namely Delphi™ Enterprise. The
results of your assessments will be used for statistical analysis to determine whether
a specific delivery method benefits individual and/or group performance in
Algorithmics 1.1.

Your name will not be associated with any data that are collected during this
research study. There are no known risks associated with this evaluation. At the
end of the research study period, you will be requested to complete a feedback
questionnaire, containing questions relevant to this evaluation.

Your rights as a participant are as follows:

You have the right to withdraw from using the experimental delivery method B# and
D-Lite at any time for any reason. In this case, you will then for the remainder of the
duration of the registered module have to complete all practical tasks for Algorithmics
1.1 in the prescribed commercial programming environment, namely Delphi™
Enterprise. You will also then be assessed in all further practical assessments in the
commercial programming environment.

You will not be permitted to complete your practical tasks for Algorithmics 1.1 credit
bearing purposes in any other programming environment other than B# and D-Lite
combination, or Delphi™ Enterprise (see point above).

We greatly appreciate your time and effort for participating in this evaluation. Your
signature below indicates that you have read this consent form in its entirety and that
you voluntarily agree to participate.

Name: ___

Signature: __

Telephone no.: _______________________ Date: ____________________

APPENDIX G: ETHICS COMMITTEE APPLICATION

 G-12

Informed Consent Form

You have been selected as a research participant for the evaluation of the

Commercial programming environment Delphi™ Enterprise

as the delivery method in the Algorithmics 1.1 module. This evaluation is being
conducted by Ms Charmain Cilliers (csacbc@upe.ac.za, 5042235), Prof André
Calitz (csaapc@upe.ac.za) and Dr Jean Greyling (csajhg@upe.ac.za). We will be
happy to answer any questions you may have about the evaluation.

During the entire semester, you will be required to perform various practical tasks
with this software on a weekly basis. These tasks will form part of the required
commitment for the Algorithmics 1.1 module. You will not be required to invest any
additional time or effort in the delivery method other than that time and effort that
would normally be required from you as an acknowledged portion of the Algorithmics
1.1 module commitment.

You will be assessed on your performance in the delivery method and these
assessments will count towards both your class and final mark for Algorithmics 1.1.
All assessments will be identical to those administered to students using the
experimental programming environments. The results of your assessments will be
used for statistical analysis to determine whether a specific delivery method benefits
individual and/or group performance in Algorithmics 1.1.

Your name will not be associated with any data that are collected during this
research study. There are no known risks associated with this evaluation. At the
end of the research study period, you will be requested to complete a feedback
questionnaire, containing questions relevant to this evaluation.

Your rights as a participant are as follows:

You will not be permitted to complete your practical tasks for Algorithmics 1.1 credit
bearing purposes in any other programming environment other than Delphi™
Enterprise, which is the prescribed programming environment.

We greatly appreciate your time and effort for participating in this evaluation. Your
signature below indicates that you have read this consent form in its entirety and that
you voluntarily agree to participate.

Name: ___

Signature: __

Telephone no.: _______________________ Date: ____________________

H-1

Appendix H
Hypotheses

H.1 Investigation Hypothesis

H0: Academic performance in an introductory programming course
is independent of programming notation and development
environment.

H1: Academic performance in an introductory programming course

is dependent on programming notation and development
environment.

H.2 Refinement of H0

H0.1: The average mark achieved in an introductory programming

course is independent of programming notation and
development environment.

H1.1: The average mark achieved in an introductory programming

course is dependent on programming notation and
development environment.

and

H0.2: The observed throughput in an introductory programming
course is independent of programming notation and
development environment.

H1.2: The observed throughput in an introductory programming

course is dependent on programming notation and
development environment.

 APPENDIX H: HYPOTHESES

H-2

H.3 Refinement of H0.1

H0.1.1: The average mark achieved in pen-and-paper assessments of

program solution comprehension and composition is
independent of programming notation and development
environment.

H1.1.1: The average mark achieved in pen-and-paper assessments of

program solution comprehension and composition is dependent
on programming notation and development environment.

and

H0.1.2: The average mark achieved in practical assessments of
program solution comprehension and composition is
independent of programming notation and development
environment.

H1.1.2: The average mark achieved in practical assessments of

program solution comprehension and composition is dependent
on programming notation and development environment.

and

H0.1.3: The average class mark achieved is independent of
programming notation and development environment.

H1.1.3: The average class mark achieved is dependent on

programming notation and development environment.

and

H0.1.4: The average final mark achieved is independent of
programming notation and development environment.

H1.1.4: The average final mark achieved is dependent on programming

notation and development environment.

 APPENDIX H: HYPOTHESES

H-3

H.4 Refinement of H0.1.2

H0.1.2.1: The average mark achieved for the same problem is

independent of programming notation and development
environment.

H1.1.2.1: The average mark achieved for the same problem is dependent

on programming notation and development environment.

and

H0.1.2.2: The average mark achieved for the same problem solved in
Delphi™ Enterprise is independent of programming notation
and development environment.

H1.1.2.2: The average mark achieved for the same problem solved in

Delphi™ Enterprise is dependent on programming notation
and development environment.

and

H0.1.2.3: The average mark achieved for the solving of syntactical errors
using Delphi™ Enterprise is independent of programming
notation and development environment.

H1.1.2.3: The average mark achieved for the solving of syntactical errors

using Delphi™ Enterprise is dependent on programming
notation and development environment.

and

H0.1.2.4: The average mark achieved for the same problem using
individual choice of development environment is independent
of programming notation and development environment.

H1.1.2.4: The average mark achieved for the same problem using

individual choice of development environment is dependent on
programming notation and development environment.

 APPENDIX H: HYPOTHESES

H-4

H.5 Refinement of H0.2

H0.2.1: The observed throughput in pen-and-paper assessments of

program solution comprehension and composition is
independent of programming notation and development
environment.

H1.2.1: The observed throughput achieved in pen-and-paper

assessments of program solution comprehension and
composition is dependent on programming notation and
development environment.

and

H0.2.2: The observed throughput in practical assessments of program
solution comprehension and composition is independent of
programming notation and development environment.

H1.2.2: The observed throughput in practical assessments of program

solution comprehension and composition is dependent on
programming notation and development environment.

and

H0.2.3: The observed throughput for the class mark is independent of
programming notation and development environment.

H1.2.3: The observed throughput for the class mark is dependent on

programming notation and development environment.

and

H0.2.4: The observed throughput for the final mark is independent of
programming notation and development environment.

H1.2.4: The observed throughput for the final mark is dependent on

programming notation and development environment.

 APPENDIX H: HYPOTHESES

H-5

H.6 Refinement of H0.2.2

H0.2.2.1: The observed throughput for the same problem is independent

of programming notation and development environment.

H1.2.2.1: The observed throughput for the same problem is dependent on

programming notation and development environment.

and

H0.2.2.2: The observed throughput for the same problem solved in
Delphi™ Enterprise is independent of programming notation
and development environment.

H12.2.2: The observed throughput for the same problem solved in

Delphi™ Enterprise is dependent on programming notation
and development environment.

and

H0.2.2.3: The observed throughput for the solving of syntactical errors
using Delphi™ Enterprise is independent of programming
notation and development environment.

H1.2.2.3: The observed throughput for the solving of syntactical errors

using Delphi™ Enterprise is dependent on programming
notation and development environment.

and

H0.2.2.4: The observed throughput for the same problem using
individual choice of development environment is independent
of programming notation and development environment.

H1.2.2.4: The observed throughput for the same problem using

individual choice of development environment is dependent on
programming notation and development environment.

I-1

Appendix I
Demographic Questionnaire Analysis

I.1 Background Questionnaire

Questionnaire No.: Date:

Name and Surname:

Select Gender:
__ Female
__ Male

Indicate your Home Language:
Eng / Afr / isiXhosa / seSotho
Other:

Contact Telephone No.:

Student No.:

PART 1: Previous Experience
Please circle the number which is most appropriate.
1=never, 2=rarely, 3=once to three times per month, 4=once a week, 5=daily.
1. How long have you worked on a computer? Never Daily
 1 2 3 4 5

PART 2: Self-assessment of ability

Please circle the numbers which most appropriately reflect your impressions.
1=poor, 2=not so good, 3=reasonable, 4=good, 5=excellent, NA=not applicable

2.1 How would you rate your ability to use a computer Poor Excellent
 in general? 1 2 3 4 5 NA
2.2 How would you rate your ability to use the
 typing and the cursor sections of the keyboard?

Poor Excellent

 1 2 3 4 5 NA
2.3 How would you rate your ability to use the
 mouse?

Poor Excellent

 1 2 3 4 5 NA
2.4 How would you rate your ability to use
 Windows objects such as buttons, checkboxes
 and radio buttons?

Poor Excellent

 1 2 3 4 5 NA
PART 3: Attitude
1=difficult, 2=not too difficult, 3=fairly easy, 4=easy, 5= very easy, NA=not applicable

1.1 How do you find working on a computer in
 general?

Difficult Very easy

 1 2 3 4 5 NA
1.2 How do you find it working with the
 keyboard?

Difficult Very easy

 1 2 3 4 5 NA

3.3 How do you find it working with the mouse? Difficult Very easy
 1 2 3 4 5 NA
3.4 How do you find reading and understanding Difficult Very easy
 information on the computer screen? 1 2 3 4 5 NA
PART 4: Previous Experience
1=never, 2=about once a month, 3=several times a month, 4=once a week, 5=daily, NA=not applicable

APPENDIX I: DEMOGRAPHIC QUESTIONNAIRE ANALYSIS

I-2

4.1 How often is there a computer available for
 you to use?

Never Daily

 1 2 3 4 5 NA
4.2 How often do you play games on a computer? Never Daily
 1 2 3 4 5 NA
4.3 How often do you use a Word Processing Never Daily
 package? 1 2 3 4 5 NA
4.4 How often do you use a Spreadsheet package? Never Daily
 1 2 3 4 5 NA
4.5 How often do you use the Internet? Never Daily
 1 2 3 4 5 NA
4.6 How often do you use Email facilities? Never Daily
 1 2 3 4 5 NA
4.7 How often do you write computer programs? Never Daily
 1 2 3 4 5 NA
PART 5: Contact with other Technology
1=never, 2=about once a month, 3=several times a month, 4=once a week, 5=daily, NA=not applicable

5.1 How often to you program a Video Cassette Never Daily
 Recorder (VCR)? 1 2 3 4 5 NA
5.2 How often to you use an Automatic Banking Never Daily
 Teller Machine (ATM)? 1 2 3 4 5 NA
5.3 How often do you use a Tape Recorder? Never Daily
 1 2 3 4 5 NA
5.4 How often do you use a CD Player? Never Daily
 1 2 3 4 5 NA
4.2 How often do you play TV games (not

Computer games)?
Never Daily

 1 2 3 4 5 NA
5.6 How often do you use a cellular (cell) phone? Never Daily
 1 2 3 4 5 NA
5.7 How often do you select programs on Digital Never Daily
 Satellite Television (DSTV)? 1 2 3 4 5 NA

APPENDIX I: DEMOGRAPHIC QUESTIONNAIRE ANALYSIS

I-3

I.2 Survey Item Coding

I.2.1 Part 1 : Previous Experience

Survey Item
Positive
response

values

Negative
response

values
1: How long have you worked on a computer? 4, 5 1, 2, 3

I.2.2 Part 2 : Self Assessment of Ability

Survey Item
Positive
response

values

Negative
response

values
2.1: How would you rate your ability to use a

computer in general? 3, 4, 5 1, 2

2.2: How would you rate your ability to use the
typing and the cursor sections of the
keyboard?

3, 4, 5 1, 2

2.3: How would you rate your ability to use the
mouse? 3, 4, 5 1, 2

2.4: How would you rate your ability to use
Windows objects such as buttons,
checkboxes and radio buttons?

3, 4, 5 1, 2

I.2.3 Part 3 : Attitude

Survey Item
Positive
response

values

Negative
response

values
3.1: How do you find working on a computer in
general? 2, 3, 4, 5 1

3.2: How do you find it working with the
keyboard? 2, 3, 4, 5 1

3.3: How do you find it working with the mouse? 2, 3, 4, 5 1
3.4: How do you find reading and understanding
information on the computer screen? 2, 3, 4, 5 1

APPENDIX I: DEMOGRAPHIC QUESTIONNAIRE ANALYSIS

I-4

I.2.4 Part 4 : Previous Experience

Survey Item
Positive
response

values

Negative
response

values
4.1: How often is there a computer available for

you to use? 4, 5 1, 2, 3

4.2: How often do you play games on a computer? 4, 5 1, 2, 3
4.3: How often do you use a Word Processing

package? 4, 5 1, 2, 3

4.4: How often do you use a Spreadsheet package? 4, 5 1, 2, 3
4.5: How often do you use the Internet? 4, 5 1, 2, 3
4.6: How often do you use Email facilities? 4, 5 1, 2, 3
4.7: How often do you write computer programs? 4, 5 1, 2, 3

I.2.5 Part 5 : Contact with Other Technology

Survey Item
Positive
response

values

Negative
response

values
5.1: How often to you program a Video Cassette

Recorder (VCR)? 4, 5 1, 2, 3

5.2: How often to you use an Automatic Banking
Teller Machine (ATM)? 4, 5 1, 2, 3

5.3: How often do you use a Tape Recorder? 4, 5 1, 2, 3
5.4: How often do you use a CD Player? 4, 5 1, 2, 3
5.5: How often do you play TV games (not

Computer games)? 4, 5 1, 2, 3

5.6: How often do you use a cellular (cell) phone? 4, 5 1, 2, 3
5.7: How often do you select programs on Digital

Satellite Television (DSTV)? 4, 5 1, 2, 3

I.3 Observed values

I.3.1 Part 1 : Previous Experience

Proportion of Positive Responses Survey
Item Treatment Group

(n = 59)
Control Group

(n = 59)

χ2-test
statistic p-value

1 70% (n = 41) 71% (n = 42) 0.04 0.840

APPENDIX I: DEMOGRAPHIC QUESTIONNAIRE ANALYSIS

I-5

I.3.2 Part 2 : Self Assessment of Ability

Proportion of Positive Responses Survey
Item Treatment Group

(n = 59)
Control Group

(n = 59)

χ2-test
statistic p-value

2.1 95% (n = 56) 85% (n = 50) 3.34 0.068
2.2 90% (n = 53) 81% (n = 48) 1.72 0.190
2.3 97% (n = 57) 100% (n = 59) 2.03 0.154
2.4 93% (n = 55) 95% (n = 56) 0.15 0.697

I.3.3 Part 3 : Attitude

Proportion of Positive Responses Survey
Item Treatment Group

(n = 59)
Control Group

(n = 59)

χ2-test
statistic p-value

3.1 98% (n = 58) 98% (n = 58) 0.00 1.000
3.2 100% (n = 59) 100% (n = 59) 0.00 1.000
3.3 100% (n = 59) 100% (n = 59) 0.00 1.000
3.4 98% (n = 58) 100% (n = 59) 1.01 0.315

I.3.4 Part 4 : Previous Experience

Proportion of Positive Responses Survey
Item Treatment Group

(n = 59)
Control Group

(n = 59)

χ2-test
statistic p-value

4.1 81% (n = 48) 86% (n = 51) 0.56 0.452
4.2 35% (n = 21) 63% (n = 37) 8.68 0.003 **
4.3 31% (n = 18) 35% (n = 21) 0.34 0.557
4.4 26% (n = 15) 24% (n = 14) 0.05 0.831
4.5 50% (n = 29) 45% (n = 27) 0.14 0.712
4.6 43% (n = 25) 34% (n = 20) 0.90 0.343
4.7 0% (n = 0) 4% (n = 2) 2.03 0.154

** significant at p < 0.01

I.3.5 Part 5 : Contact with Other Technology

Proportion of Positive Responses Survey
Item Treatment Group

(n = 59)
Control Group

(n = 59)

χ2-test
statistic p-value

5.1 57% (n = 34) 42% (n = 25) 2.75 0.098
5.2 61% (n = 36) 51% (n = 30) 1.24 0.266
5.3 56% (n = 33) 51% (n = 30) 0.31 0.580
5.4 85% (n = 50) 92% (n = 54) 1.30 0.255
5.5 24% (n = 14) 27% (n = 16) 0.18 0.672
5.6 83% (n = 49) 94% (n = 55) 2.92 0.088
5.7 62% (n = 37) 42% (n = 25) 4.89 0.027

J-1

Appendix J
Practical Learning Activity Survey Analysis

J.1 Survey Forms

WRA101 : Practical 3 Reflections
Week 4 : 4 - 6 March 2003

Please enter your student number below – this will only be used in the
comparison of today’s reflections with future reflections for research purposes.

Task 5 (Children visiting Bayworld) Reflections

Choice of Environment (please tick the package which you used to develop the
final solution to this task)

 B# Delphi Didn’t do Task 5

Please state all your reasons for choosing the above mentioned environment – if you
didn’t do Task 5, please state your reasons for this:

If you at any stage attempted the solution in the alternative environment, please state
your reasons for rather choosing the environment ticked above:

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-2

WRA101 : Practical 4 Reflections
Week 5 : 11 - 13 March 2003

Please enter your student number below – this will only be used in the
comparison of today’s reflections with future reflections for research purposes.

Task 6 (Determine whether a point falls in a given square) Reflections

Choice of Environment (please tick the package which you used to develop the
final solution to this task)

 B# Delphi Didn’t do Task 5

Please state all your reasons for choosing the above mentioned environment – if you
didn’t do Task 6, please state your reasons for this:

If you at any stage attempted the solution in the alternative environment, please state
your reasons for rather choosing the environment ticked above:

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-3

WRA101 : Practical 6 Reflections
Week 7 : 25 - 27 March 2003

Please enter your student number below – this will only be used in the
comparison of today’s reflections with future reflections for research purposes.

Task 5 (Determine population of South Africa) Reflections

Choice of Environment (please tick the package which you used to develop the
final solution to this task)

 B# Delphi Didn’t do Task 5

Please state all your reasons for choosing the above mentioned environment – if you
didn’t do Task 5, please state your reasons for this:

If you at any stage attempted the solution in the alternative environment, please state
your reasons for rather choosing the environment ticked above:

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-4

WRA101 : Practical 7 Reflections
Week 8 : 8 - 10 April 2003

Please enter your student number below – this will only be used in the
comparison of today’s reflections with future reflections for research purposes.

Task 4 (Menu driven program) Reflections

Choice of Environment (please tick the package which you used to develop the
final solution to this task)

 B# Delphi Didn’t do Task 4

Please state all your reasons for choosing the above mentioned environment – if you
didn’t do Task 4, please state your reasons for this:

If you at any stage attempted the solution in the alternative environment, please state
your reasons for rather choosing the environment ticked above:

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-5

WRA101 : Practical 8 Reflections
Week 9 : 15 - 17 April 2003

Please enter your student number below – this will only be used in the comparison of today’s reflections with future reflections for
research purposes.

Task Reflections

Please tick the package
which you used to develop
the final solution to each task

Task B# Delphi Didn’t do

Please state all your reasons for
choosing the ticked environment – if you
didn’t do the task, please state your
reasons for this:

If you at any stage attempted the solution in
the alternative environment, please state
your reasons for rather choosing the
environment ticked:

3 (Quadratic formula)

4 (Maximum and
minimum)

5 (High-low game)

APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-6

WRA101 : Practical 9 Reflections
Week 10 : 22 - 24 April 2003

Please enter your student number below – this will only be used in the
comparison of today’s reflections with future reflections for research purposes.

Task 5 (Determinant function) Reflections

Choice of Environment (please tick the package which you used to develop the
final solution to this task)

 B# Delphi Didn’t do Task 5

Please state all your reasons for choosing the above mentioned environment – if you
didn’t do Task 5, please state your reasons for this:

If you at any stage attempted the solution in the alternative environment, please state
your reasons for rather choosing the environment ticked above:

APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-7

J.2 Survey Analysis

J.2.1 Week 4

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi B#
Examples of Actual Responses

Experienced in Delphi 3 0 I understand Delphi a bit more and it’s faster
Delphi is examinable 4 0 I am going to be examined in Delphi
Could just copy and adapt a previous
program 1 0 I was too lazy to close everything and open another again

Extrinsic
Motivation

Total Sub-theme 8 0

Did not have B# at home 7 0 Did the task at home and I only have Delphi there. I find
B# to be quite helpful as well. Inaccessibility

Total Sub-theme 7 0
Delphi is challenging 2 0 B# feels like cheating and I need practice in Delphi
Just wanted to use B# 2 3 I felt like it at the moment Intrinsic

Motivation
Total Sub-theme 4 3

Motivation

Total Theme 19 3
B# complicated 1 0 B# is too complicated
Got stuck with Delphi 0 1 Its easier to make mistakes like typing errors in Delphi Difficult to use

Total Sub-theme 1 1
B# user friendly 0 4 It was much easier to see what I was doing in B#
B# prevents errors 0 4 Quicker and less likely to make a mistake with
Easier than alternative 2 28 B# is more visual, easier to use!
Less syntactical issues 0 6 Less chance of inputting incorrect information
Quicker 2 4 I found it much quicker and easier to use

Easy to use

Total Sub-theme 4 46
Visual 0 6 Easier because of iconic format
More understandable 3 1 Easy 2 understand
Related to flowcharting 0 5 I am able to visualise the flowchart
Showed correct code 0 1 You don’t have to write the code yourself

Enhances
comprehension

Total Sub-theme 3 13

Usability

Total Theme 8 60

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-8

J.2.2 Week 5

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi B#
Examples of Actual Responses

Experienced in Delphi 4 0 Have become accustomed to Delphi code

Delphi is examinable 6 0 Writing the code in Delphi yourself is more beneficial as you’ll
have to write all future programmes in Delphi anyway

Extrinsic
Motivation

Total Sub-theme 10 0
Did not have B# at home 16 0 I don’t have B# a home yet Inaccessibility Total Sub-theme 16 0
Delphi is challenging 2 0 Prefer writing code from start
Just wanted to use B# 2 0 Dislike typing; like working with mouse Intrinsic Motivation

Total Sub-theme 4 0

Motivation

Total Theme 30 0
B# complicated 1 0 Wasn’t sure how the B# program did if and else statements
B# time consuming 1 0 B# takes to long and sometimes doesn’t run

Total Sub-theme 1 0
B# prevents errors 0 4 It corrects you and help you to re-check your programm
Easier than alternative 6 23 B# responds the first time round when I create a program
Less syntactical issues 0 1 Not as many things to remember
Quicker 3 7 Its easier and less time consuming

Difficult to use

Total Sub-theme 9 35
Visual 0 3 Better setted out than Delphi

More understandable 3 3 I wasn’t sure of how to write the program so B# helped to
develop it

Related to flowcharting 0 1 I find B# easier than Delphi bcoz flowcharts are easily
understandable

Enhances
comprehension

Total Sub-theme 3 7

Usability

Total Theme 43 42

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-9

J.2.3 Week 7

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi B#
Examples of Actual Responses

Experienced in Delphi 2 0 We are using Delphi in lectures so I am finding it easier

Delphi is examinable 7 0 Wanted to get more experience in Delphi. Did not want
B# assistance

Extrinsic
Motivation

Total Sub-theme 9 0
Did not have B# at home 21 3 Don’t have B# at home Inaccessibility Total Sub-theme 21 3

Delphi is challenging 1 1 Delphi is easier to use as it flows instead of having to
stop every five seconds to add a chart

Just wanted to use the environment 2 0 I prefer working with Delphi
Intrinsic
Motivation

Total Sub-theme 3 1

Motivation

Total Theme 33 4
B# complicated 1 0 Much easier to visualise the output from Delphi code Difficult to use Total Sub-theme 1 0
B# user friendly 0 1 B# is much less complicated. I definitely prefer using B#
B# prevents errors 0 1 The chance of making mistakes is reduced
Easier than alternative 15 18 Easier to understand the progam

Quicker 3 7 It is not as complicated as Delphi. It is also quicker to do
than working with Delphi

Total Sub-theme 18 27
More understandable 3 5 Easier to understand
Related to flowcharting 0 1 It is easier to understand the flowchart

Easy to use

Total Sub-theme 3 6

Usability

Total Theme 24 31

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-10

J.2.4 Week 8

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi B#
Examples of Actual Responses

Experienced in Delphi 1 0 Taught Delphi in class
Delphi is examinable 10 0 Because it is the program we write exams on Extrinsic

Motivation
Total Sub-theme 11 0

Did not have B# at home 9 1 I have Delphi at home which is more convenient Inaccessibility Total Sub-theme 9 1
Just wanted to use the environment 3 0 I prefer using Delphi Intrinsic

Motivation Total Sub-theme 3 0

Motivation

Total Theme 20 1
B# complicated 0 1
B# time consuming 0 1 B# to tedious and more difficult to interpret Difficult to use

Total Sub-theme 0 2
B# user friendly 1 1 It is more user friendly and less difficult
B# prevents errors 0 1 Case statement easier in B#
Easier than alternative 10 5 It was much easier and less complicated using Delphi
Quicker 0 1 Time got a bit short so I had to take the fastest option

Easy to use

Total Sub-theme 11 8

More understandable 2 3 Task 4 was very long and complicated and B# seemed to
make it easier to understand Enhances

comprehension Total Sub-theme 2 3

Usability

Total Theme 13 13

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-11

J.2.5 Week 9 (Task 3)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi B#
Examples of Actual Responses

Experienced in Delphi 1 0 More comfortable working in Delphi
Delphi is examinable 2 0 Delphi is what I am examined on Extrinsic

Motivation
Total Sub-theme 3 0

Did not have B# at home 15 0 I don’t have the B# disk at home Inaccessibility Total Sub-theme 15 0
Just wanted to use the environment 3 0 Choose to alternate Intrinsic

Motivation Total Sub-theme 3 0

Motivation

Total Theme 21 0
B# complicated 3 0 I was confused with B#
B# time consuming 2 0 Delphi a lot quicker to use Difficult to use

Total Sub-theme 5 0
User friendly 1 0 User friendly
Easier than alternative 9 10 Much easier for me Easy to use

Total Sub-theme 10 10
More understandable 2 0 Delphi got a bit tricky so I went to B# to get a few tips Enhances

comprehension Total Sub-theme 2 0

Usability

Total Theme 17 10

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-12

J.2.6 Week 9 (Task 4)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi B#
Examples of Actual Responses

Experienced in Delphi 1 0 More comfortable working in Delphi
Delphi is examinable 2 0 Delphi is what I am examined on Extrinsic

Motivation
Total Sub-theme 3 0

Did not have B# at home 15 0 Don’t have B# Inaccessibility Total Sub-theme 15 0
Just wanted to use the environment 2 1 Less frustrating than B# Intrinsic

Motivation Total Sub-theme 2 1

Motivation

Total Theme 20 1
B# complicated 1 0
B# didn’t work 1 0 B# is difficult to use and does not always work

B# time consuming 2 0 B# to tedious Difficult to use

Total Sub-theme 4 0
Easier than alternative 9 11 Much easier for me
Quicker 1 0 Delphi a lot quicker to use Easy to use

Total Sub-theme 10 11
More understandable 3 0 Did it in B# and exported code to Delphi Enhances

comprehension Total Sub-theme 3 0

Usability

Total Theme 17 11

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-13

J.2.7 Week 9 (Task 5)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi B#
Examples of Actual Responses

Experienced in Delphi 1 0 More comfortable working in Delphi
Delphi is examinable 2 0 Delphi is what I am examined on Extrinsic

Motivation
Total Sub-theme 3 0

Did not have B# at home 16 0 I did it at home where I have use of Delphi Inaccessibility Total Sub-theme 16 0
Just wanted to use the environment 2 0 Just did Delphi for a change Intrinsic

Motivation Total Sub-theme 2 0

Motivation

Total Theme 19 0
B# complicated 1 0 B# is difficult to use
B# time consuming 2 0 Delphi a lot quicker to use Difficult to use

Total Sub-theme 3 0
B# user friendly 1 0 B# is a lovely program for people starting programming!
Easier than alternative 8 6 Easier
Quicker 1 0 Delphi a lot quicker to use Easy to use

Total Sub-theme 10 6
Visual 0 1 Simpler to see program in picture format
More understandable 2 0 Its better Enhances

comprehension
Total Sub-theme 2 1

Usability

Total Theme 15 7

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-14

J.2.8 Week 10

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi B#
Examples of Actual Responses

Experienced in Delphi 2 0 At first I always used B#, but now I’ve gotten quite
comfortable with Delphi

Delphi is examinable 14 0 Need practice for exams
Extrinsic
Motivation

Total Sub-theme 16 0
Did not have B# at home 6 0 No B# at home Inaccessibility Total Sub-theme 6 0
Withdrew from investigation 1 0 I dropped B#
Just wanted to use the environment 2 0 Prefer to do in Delphi Intrinsic

Motivation
Total Sub-theme 3 0

Motivation

Total Theme 25 0
B# complicated 6 0 Functions and procedures – B# confusing

B# time consuming 1 0
B# is a bit slower than Delphi. What I mean is that it
takes longer to write a program in B# than it does in
Delphi

Difficult to use

Total Sub-theme 7 0

B# user friendly 2 2 I used B# as it is much more user-friendly and copied the
code over to Delphi

Easier than alternative 16 9 It’s easier for me to work in Delphi
Less syntactical issues 0 1 Was much clearer

Flexible 1 0
Allows me to apply new function and ways of developing
a program and also ways of displaying information.
Own corrections also easy to implement

Quicker 5 4 It was quicker and easier

Easy to use

Total Sub-theme 24 16
Visual 0 1 Sets out the different “ifs” clearly
More understandable 1 0 Easier to correct a mistake
Related to flowcharting 0 1 It is easier with pictures (flowchart)
Showed correct code 0 1 The program sets it out for you

Enhances
comprehension

Total Sub-theme 1 3

Usability

Total Theme 32 19

 APPENDIX J: PRACTICAL LEARNING ACTIVITY SURVEY ANALYSIS

J-15

K-1

Appendix K
Programming Development Environment
Survey Analysis

K.1 Survey Questions

1. If you had the option to do the entire course, lectures and exams included, using

only one of B# or Delphi, which would you choose? Give reasons for your

answer.

2. How did you experience solving practicals in B#?

3. How did you experience solving practicals in Delphi?

4. What did you specifically like and dislike about solving practicals in B#?

5. What did you specifically like and dislike about solving practicals in Delphi?

6. In what ways do you feel that using B# benefited and/or hindered you while doing

your practicals?

7. In what ways do you feel that using Delphi benefited and/or hindered you while

doing your practicals?

APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-2

K.2 Survey Analysis

K.2.1 Treatment Group: Question 1

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Delphi challenging 3 0 Prefer a challenge
Delphi used in industry 2 0 It gets use in practice more often
Don’t like B# 1 0 I don’ like B#
Experienced in Delphi 2 0 Get taught in Delphi, all the notes are in Delphi
Prefer to concentrate on a single
environment 2 1 It is easier to concentrate on one program

Extrinsic
Motivation

Total Sub-theme 10 1
Did not have B# at home 1 1 I don’t have B# at home Inaccessibility Total Sub-theme 1 1
B# tedious 3 0 B# too tedious
Preferred environment is fun 1 1 Delhi is much more fun to work with
Preferred environment is quicker 4 4 Quicker to do program

Intrinsic
Motivation

Total Sub-theme 8 5

Motivation

Total Theme 19 7

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-3

 Preferred Environment

Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Delphi indicates mistakes clearly 4 0 Delphi shows where the mistakes are Enhanced
feedback Total Sub-theme 4 0

B# good starting environment 6 0 B# would have been wonderful to have when starting
programming

B# is user friendly 0 3 Provides more help and is user friendly
Preferred environment is easier 15 22 Easier to see what you are doing
Easier to edit a Delphi program 5 0 Easier to edit if you made errors

Easy to use

Total Sub-theme 26 25
B# requires less textual programming 0 3 Does not require typing a lot of text
Less to remember in B# 0 1 Less terms to remember Reduces detail

Total Sub-theme 0 4

B# code not sufficiently functional 13 1 I don’t like the fact that you have to delete
procedures/functions in they are in the wrong place

B# code not directly accessible 2 0 Maybe if you could get into the code of B# also
Delphi functionality works 1 0 All functions work in Delphi
Delphi less rigid 5 0 B# makes me feel restricted
Low level visibility in Delphi 1 0 Able to see exactly what is happening
Tutor assistance lacking for B# 2 0 Tutors couldn’t help properly

Restricted
functionality

Total Sub-theme 24 1
B# assists with planning solution 5 4 Making students used to flowcharts
B# ensures correctness step-by-step 0 3 Difficult to make errors when using B#

B# is visual program 0 7 Having a visually based program helps me to see what is
happening

B# provides correct code 0 2 You get to see the code on the side
Preferred environment more
understandable 3 7 B# is much more clear

Enhances
comprehension

Total Sub-theme 8 23

Usability

Total Theme 62 53

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-4

K.2.2 Control Group: Question 1

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 110)

B#
(n = 6)

Examples of Actual Responses

Do not know B# Total Sub-theme 73 0 I don’t know what B# is B# unknown
Total Theme 73 0

B# confusing/difficult Total Sub-theme 3 0 Because less confusing
No direct access to code Total Sub-theme 4 1 In B# you can’t change code
Time consuming Total Sub-theme 3 0 Delphi consumes less time
Restrictive Total Sub-theme 3 1 B# does not have all capabilities of Delphi
Industry related Total Sub-theme 7 0 More popular program
Heard about B# Total Sub-theme 14 2 I don’t know in detail what B# is about

B# known

Total Theme 34 4

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-5

K.2.3 Treatment Group: Question 2

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

B# an unnecessary environment for the
course 0 2 Don’t need B# for the future

B# less fun 3 0 I did not enjoy B#
B# stressful 0 1 B# difficult and confusing
B# waste of time 2 0 Waste of time; could spend more time on Delphi
B# only at UPE 1 0 B# works only at UPE

B# not examinable 1 4 It was nice at first until we were told that we use Delphi for
exams

Didn’t attempt B# 0 1 Dropped B#
More assistance required in B# 3 1 I needed frequent help
Delphi experience 1 0 Programmed in Delphi before

Extrinsic
Motivation

Total Sub-theme 11 9
B# tedious 4 1 Way too inconvenient
Too long in B# 2 0 It took too long Time consuming

Total Sub-theme 6 1
B# challenging 1 1 Enjoyed the challenge
B# enjoyable 1 7 Found B# enjoyable
B# fun 1 0 Fun to use B#
Better than Delphi 0 1 Preferred B#
Don’t like flowcharts 1 0 Don’t like flowcharts
Feels like cheating 0 1 I felt that it made me lazy
Greater chance of program running in B#
than Delphi 0 2 My programs worked in B#

Less creative than Delphi 1 0 I liked that I could use my own method in Delphi
Less of a sense of achievement in B# 0 1 I felt better when my programs ran in Delphi
More of a sense of achievement in B# 0 1 I enjoyed that my programs worked in B#
Prefer to solve directly in code 1 0 Prefer correcting code directly

Intrinsic Motivation

Total Sub-theme 6 14

Motivation

Total Theme 23 24

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-6

 Preferred Environment

Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Graphical approach stimulating 1 0 Enjoyed the graphical approach Visual
Total Sub-theme 1 0

B# good starting environment 13 3 OK in beginning
B# is user friendly 0 1 Find B# user-friendly
B# restricted number of errors made 1 1 B# prevented me putting in ; at the wrong place
B# easier than Delphi 11 13 Easier to write programs in B#
B# for novice programmers 1 0 Good for beginning programming
Grasp programming concepts in B# 1 0 Enables me to grasp the concepts of programming
Quicker and more efficient than Delphi 2 2 Quicker to get a program written and working in B#

Easy to use

Total Sub-theme 29 20
B# difficult to use when solving problems 2 0 I found it difficult to solve problems using B#
B# forces unnecessary implementation 1 0 Sometimes B# lets me do unnecessary things
B# gave technical problems 4 0 Ran old programs
B# has limited functionality 1 0 Cannot round or use decimals
B# is complicated in advanced features 15 2 Towards procedures/functions it became too complicated
B# is frustrating 5 0 It was a little frustrating to use B#
B# is tough 1 0 I found it tough
Did not retain knowledge of code 1 0 I did not remember the code from B#
Hated completing dialogue boxes in B# 1 0 I hated B#’s dialogue boxes
No copy-and-paste facility in B# 1 0 Cannot duplicate things in B#
Wanted to change code directly in B# 1 0 It is better to write code

Restricted
functionality

Total Sub-theme 33 2
Code provided by B# assisted with Delphi
code 1 0 I learnt from B#’s code

Exported B# code for use in Delphi 1 1 I exported programs from B# to Delphi
Preferred environment more understandable 0 4 It was more understandable

Enhances
comprehension

Total Sub-theme 2 5

Usability

Total Theme 64 27

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-7

K.2.4 Treatment Group: Question 3

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Different to other languages 1 0 B# is not like other languages
Experienced in Delphi 1 0 I know Delphi better
Mirrored lectures 0 2 Same as lectures
More comfortable with Delphi 1 0 I am confident using Delphi
Preparation for exam 0 1 Delphi helps me practice for the exam
Tutors more knowledgeable in
Delphi 1 0 The tutors knew more about Delphi than B#

Extrinsic
Motivation

Total Sub-theme 4 3
Permits creativity 5 1 I could use my own way
Boring 0 1 I was bored
Do not like programming 1 1 I hate programming
Enjoyable 13 2 I enjoyed using Delphi
Faster 1 0 It was faster
Fun 3 0 It was fun in Delphi
Not fun 0 1 I did not enjoy using Delphi
Tedious 2 2 Time consuming

Intrinsic
Motivation

Total Sub-theme 25 8

Motivation

Total Theme 29 11

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-8

 Preferred Environment

Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Lots of typing 1 1 Needed a lot of typing
Remember tiny things/detail 1 4 Too many begins/ends/semi-colons Lots of detail

Total Sub-theme 2 5
B# assisted 1 1 B# helped in making it easier
Better than B# 1 1 Using Delphi was at least better
Delphi easier 9 1 Easier for me in Delphi
Easy to fix errors in code directly 2 0 Easier to correct errors in Delphi
User friendly 1 0 It is user-friendly

Easy to use

Total Sub-theme 14 3
Challenging 5 2 I found it challenging
Difficult 2 5 It was difficult
Don’t know how to correct errors in Delphi 1 0 Still don’t know how to fix errors in Delphi
Error messages not understood 0 2 The errors written down there would be a whole lot of jargon
Frustrating 0 3 Frustrating when my programs did not run
Had to think more 1 0 Ad to concentrate more
Hardly ever got a program to work 1 1 Harder to grasp programming concepts
Improved with time 3 1 Got easier as time went on
Initially had to refer to B# to get Delphi code
right 0 1 B# helped me learn some things

Moderately difficult 2 1 Found it a bit difficult
More difficult than B# 1 2 B# is easier
More difficult than B# initially 1 2 Got better
No guidance as to correct program 1 1 Needed assistance
Struggled to rectify errors 0 1 Could not fix errors

Difficult

Total Sub-theme 18 22
B# protects from mistakes 1 0 B# helps you make less errors
Delphi shows location of mistakes 10 0 See exactly where errors are
Used Help facility 1 0 There is a Help system

Enhances
comprehension

Total Sub-theme 12 0

Usability

Total Theme 46 30

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-9

K.2.5 Control Group: Question 3

Theme Sub-theme Category Frequency
(n = 116) Examples of Actual Responses

Hated it 1 Hated using Delphi
Motivating 18 Found it enjoyable Intrinsic

Motivation Total Sub-theme 19 Motivation

Total Theme 19
Difficult to use 38 Difficult to use Difficult Total Sub-theme 38
Detail 2 Has to remember where to put semi-colons and stuff Lots of detail Total Sub-theme 2
Easy 29 Easy to use
Progressively easier 20 Got better Ease of use

Total Sub-theme 49

Usability

Total Theme 89

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-10

K.2.6 Treatment Group: Question 4 (Dislikes of B#)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

No formal instruction 1 3 Not the same as lectures
Not for exams 3 0 Not examinable Extrinsic

Motivation
Total Sub-theme 4 3

Could not use at home 1 1 Did not have at home Inaccessibility Total Sub-theme 1 1
Long to solve 5 0 Tedious to solve more difficult programs Time Consuming Total Sub-theme 5 0

Motivation

Total Theme 10 4
Confusing 3 6 Confusing to use
Difficult to edit 2 1 Cannot edit code directly Difficult

Total Sub-theme 5 7
Bugs 0 1 Sometimes didn’t work properly
Cannot access generated code 4 0 Cannot fix errors in code
Confined space 1 0 Had to work in confined space
Functions 5 3 Functions/procedures difficult to use
Interpretive error checking 4 4 Caught errors immediately but didn’t let me carry on
Restricted 12 4 Cannot use my own way
Variables 1 0 Cannot round or use decimals

Restricted
functionality

Total Sub-theme 27 12

Usability

Total Theme 32 19

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-11

K.2.7 Treatment Group: Question 4 (Likes of B#)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Icons 6 5 Liked the pictures
Visual good 2 2 Flowcharts look pretty Visual

Total Sub-theme 8 7
Elimination of detail 7 10 Puts in semi-colons Less detail Total Sub-theme 7 10
Programs work 3 1 Programs run
Drag and drop 2 1 Just had to drag-and-drop and organise your program
Easy 6 5 Solving problems is easier
Faster 4 1 Solving problems is quicker

Ease of use

Total Sub-theme 15 8
Detected errors immediately 3 2 Detected on spot errors
Exporting of generated code 0 2 I could export my program to Delphi
Flowcharts 10 4 Liked the fact that I used flowcharts
Generated code 5 6 Gives me Delphi code
Problem solving enhanced 5 3 Better to work with components of flowchart
Teaches 3 2 Teaches me to program

Enhances
comprehension

Total Sub-theme 26 19

Usability

Total Theme 56 44

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-12

K.2.8 Treatment Group: Question 5 (Dislikes of Delphi)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

No reason 0 1 I hate programming Intrinsic
Motivation Total Sub-theme 0 1

Time consuming 3 3 Too long to solve programs Time consuming Total Sub-theme 3 3
Motivation

Total Theme 3 4
Detail 9 8 Too many begins and ends
Difficult 2 5 Difficult to use
Errors not helpful 8 4 I disliked the list of errors that I encountered Ease of use

Total Sub-theme 19 17
Textual nature 0 1 Prefer visual Visual Total Sub-theme 0 1

Usability

Total Theme 19 18

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-13

K.2.9 Treatment Group: Question 5 (Likes of Delphi)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Familiar with Delphi 2 0 I know Delphi better
Matches lectures 4 3 My lecturer taught in Delphi Extrinsic

Motivation
Total Sub-theme 6 3 Motivation

Total Theme 6 3
Help system 1 0 I used the Help of Delphi
Shows where errors are 10 8 Shows me where my mistakes are Enhances

comprehension
Total Sub-theme 11 8

B# didn’t work 1 0 B# didn’t work on my computer at home
Code accessed directly 1 0 Could fix errors in code
Functions easier than in B# 0 1 Implementing functions in Delphi better
Not restrictive on format of program 7 5 Liked that I could use my own method
Standard interface in environment 1 0 Has some common features like copy, paste, etc

Restricted
functionality of
B#

Total Sub-theme 10 6
Easy to edit 12 1 Easy and quick to edit program Ease of use Total Sub-theme 12 1

Usability

Total Theme 33 15

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-14

K.2.10 Control Group: Question 5 (Dislikes of Delphi)

Theme Sub-theme Category Frequency
(n = 116) Examples of Actual Responses

Demotivating 9 I found Delphi demotivating
Time consuming 8 Too long to solve problems
Pace too fast 2 Lectures too fast to get to know Delphi properly

Extrinsic
Motivation

Total Sub-theme 19
Motivation

Total Theme 19
Errors confusing 10 Error messages not clear
Lack of feedback 13 Did not know what was wrong with my programs
Difficult 11 Difficult to use

Enhances
comprehension

Total Sub-theme 34
Detail 9 Too many things to remember
Textual 1 Too much typing Lots of detail

Total Sub-theme 10

Usability

Total Theme 44

K.2.11 Control Group: Question 5 (Likes of Delphi)

Theme Sub-theme Category Frequency
(n = 116) Examples of Actual Responses

Matches lectures 2 Lectures in Delphi
Programs run 7 Programs run in Delphi Extrinsic

Motivation
Total Sub-theme 9 Motivation

Total Theme 9
Shows errors 24 List where errors are
Testing program 2 Can test my program in Delphi
Easy to learn 6 Found it easy to learn
B# too rigid 1 Less rigid

Enhances
comprehension

Total Sub-theme 33
Easy to read 1 Easy to read program in Delphi
Easy to edit 2 Easy to fix program Ease of use

Total Sub-theme 3

Usability

Total Theme 36

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-15

K.2.12 Treatment Group: Question 6 (Benefits of B#)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Confidence booster 0 1 Without B#, I would have never been able to use Delphi
Faster 3 1 Faster to get program working Intrinsic

Motivation
Total Sub-theme 3 2 Motivation

Total Theme 3 2
Easier 3 2 Easy to use Ease of use Total Sub-theme 3 2
Export facility 0 2 I could export ;programs to Delphi
Generated code 2 2 I could see Delphi code
Reduced detail 3 0 Unnecessary for me to write certain things
Transfer to Delphi assisted 12 11 I learnt some things from B# that I did not know
Visual 2 1 I like flowcharts

Enhances
comprehension

Total Sub-theme 19 16

Usability

Total Theme 22 18

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-16

K.2.13 Treatment Group: Question 6 (Hindrances of B#)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Extra environment 5 3 B# was extra
Not matching lectures 4 4 Did not match the lectures
Unfamiliar 1 0 I do not know B#

Extrinsic
Motivation

Total Sub-theme 10 7
Not at home 2 0 Do not have B# at home Inaccessibility Total Sub-theme 2 0
Encouraged laziness 1 4 I feel like it makes me lazy
Time consuming 7 0 Took up too much time Intrinsic

motivation
Total Sub-theme 8 4

Motivation

Total Theme 20 11
Difficult 0 1 Difficult to use fro fuctions/procedures Ease of use Total Sub-theme 0 1

Functions 2 0 Confusing when you have to delete a function just
because it is in the wrong place

Large flowcharts 1 0 Confined space for complex and large flowcharts
Restrictive format 1 0 B# gave me little choice

Restricted
functionality

Total Sub-theme 4 0

Usability

Total Theme 4 1

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-17

K.2.14 Treatment Group: Question 7 (Benefits of Delphi)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Matched lectures 10 2 Like lectures Extrinsic
Motivation Total Sub-theme 10 2

Comfortable/confident with Delphi 6 1 I feel more comfortable with Delphi Intrinsic
Motivation Total Sub-theme 6 1

Have Delphi at home 1 0 No B# at home Inaccessibility of
B# Total Sub-theme 1 0

Motivation

Total Theme 17 3
Easier 4 2 Easy to write programs
Quicker 2 0 Write programs fast Ease of use

Total Sub-theme 6 2
From first principles 2 1 Better to practice writing code from the beginning
Error messages 4 1 Shows where errors are Enhances

comprehension
Total Sub-theme 6 2

More flexible 1 1 More capabilities than B#
Textual code 3 2 Programs written in code
Access code directly 1 1 Can access code directly

Restricted
functionality of
B#

Total Sub-theme 5 4

Usability

Total Theme 17 8

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-18

K.2.15 Treatment Group: Question 7 (Hindrances of Delphi)

 Preferred Environment
Response Frequency

Theme Sub-theme Category Delphi
(n = 49)

B#
(n = 28)

Examples of Actual Responses

Time consuming 1 6 It is time consuming Extrinsic
Motivation Total Sub-theme 1 6

No reason 0 1 Don’t like Delphi Intrinsic
Motivation Total Sub-theme 0 1

Total Theme 1 7
More intensive concentration 0 1 Need to concentrate
Detail 2 3 Too many things to remember
Difficult 1 1 I can’t get through the errors Ease of use

Total Sub-theme 3 5

Motivation

Total Theme 3 5

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-19

K.2.16 Control Group: Question 7 (Benefits of Delphi)

Theme Sub-theme Category Frequency
(n = 116) Examples of Actual Responses

Analysis skills 14 Helps with my analysis and programming skills
See errors 5 Can see where my errors are Enhances

comprehension
Total Sub-theme 19 Usability

Total Theme 19
Matched lectures 4 Like the lectures Extrinsic

Motivation Total Sub-theme 4
Motivating 4 Enjoyed it
Quick 1 Quick to write programs Intrinsic

Motivation
Total Sub-theme 5

Motivation

Total Theme 9

K.2.17 Control Group: Question 7 (Hindrances of Delphi)

Theme Sub-theme Category Frequency
(n = 116) Examples of Actual Responses

Time consuming 8 Takes a long time Time consuming Total Sub-theme 8
Demotivating 1 Didn’t enjoy it Intrinsic

Motivation Total Sub-theme 1
Motivation

Total Theme 9
Difficult 7 Difficult to use Ease of use Total Sub-theme 7

Detail 4 Had to remember to put the semi-colons in the correct
places Lots of detail

Total Sub-theme 4
Errors confusing 4 The error messages didn’t help me
Lack of feedback 2 Couldn’t get programs to run Enhances

comprehension Total Sub-theme 6

Usability

Total Theme 17

 APPENDIX K : PROGRAMMING DEVELOPMENT ENVIRONMENT SURVEY ANALYSIS

K-20

L-1

Appendix L
Quantitative Analysis

L.1 Testing for Differences between Pairs of Means

Variable
(ntreatment = ncontrol = 59) Treatment Mean Control Mean p-value

Th1Q1 48% 47% 0.772
Th1Q2 81% 79% 0.499
Th1Q3 73% 74% 0.772
Th1Tot 65% 64% 0.862
Pr1Q1 50% 54% 0.564
Pr1Q2 48% 41% 0.319
Pr1Tot 48% 46% 0.685
Th2MC 61% 60% 0.823
Th2Q1 55% 49% 0.203
Th2Q2 25% 30% 0.316

Th2Cmp 41% 40% 0.894
Th2Tot 50% 50% 0.856
Pr2Q1 50% 53% 0.555
Pr2Q2 64% 59% 0.477
Pr2Q3 60% 49% 0.041 *
Pr2Q4 60% 49% 0.059
Pr2Tot 59% 51% 0.098
Class 58% 55% 0.332

ExMC 73% 66% 0.028 *
ExQ1 25% 25% 0.966
ExQ2 79% 71% 0.046 *
ExQ3 37% 32% 0.421
ExQ4 55% 49% 0.326
ExQ5 50% 51% 0.835

ExCmpr 66% 60% 0.044 *
ExCmp 51% 49% 0.626
ExTot 60% 55% 0.161
Final 59% 55% 0.192

* significant where p < 0.05

Table L.1: T-test Computed Values for Independent Variables: Full Complement of
Participants

 APPENDIX L: QUANTITATIVE ANALYSIS

L-2

High Risk Stratum : Predicted Mark Range 41% - 50%

Variable
(ntreatment = ncontrol = 12) Treatment Mean Control Mean p-value

Th1Q1 40% 30% 0.100
Th1Q2 79% 75% 0.513
Th1Q3 68% 64% 0.636
Th1Tot 59% 53% 0.133
Pr1Q1 24% 36% 0.379
Pr1Q2 19% 21% 0.830
Pr1Tot 21% 27% 0.498
Th2MC 55% 48% 0.326
Th2Q1 45% 35% 0.140
Th2Q2 18% 11% 0.353

Th2Cmp 33% 24% 0.135
Th2Tot 43% 36% 0.161
Pr2Q1 54% 30% 0.015 *
Pr2Q2 57% 32% 0.063
Pr2Q3 60% 20% 0.001 **
Pr2Q4 56% 16% 0.002 **
Pr2Tot 57% 22% 0.001 **
Class 52% 36% 0.005 **

ExMC 61% 57% 0.526
ExQ1 20% 14% 0.087
ExQ2 71% 53% 0.034 *
ExQ3 29% 8% 0.006 **
ExQ4 44% 13% 0.006 **
ExQ5 42% 33% 0.375

ExCmpr 55% 48% 0.221
ExCmp 44% 30% 0.059
ExTot 50% 40% 0.091
Final 51% 39% 0.017 *

* significant where p < 0.05
** significant where p < 0.01

Table L.2: T-test Computed Values for Independent Variables: High Risk Stratum

 APPENDIX L: QUANTITATIVE ANALYSIS

L-3

Medium Risk Stratum : Predicted Mark Range 51% - 65%

Variable
(ntreatment = ncontrol = 32) Treatment Mean Control Mean p-value

Th1Q1 46% 48% 0.579
Th1Q2 83% 81% 0.754
Th1Q3 74% 75% 0.809
Th1Tot 64% 65% 0.660
Pr1Q1 49% 51% 0.848
Pr1Q2 51% 37% 0.108
Pr1Tot 50% 42% 0.301
Th2MC 59% 59% 0.894
Th2Q1 52% 47% 0.411
Th2Q2 24% 29% 0.489

Th2Cmp 39% 39% 0.945
Th2Tot 49% 48% 0.926
Pr2Q1 48% 53% 0.466
Pr2Q2 58% 59% 0.910
Pr2Q3 53% 47% 0.458
Pr2Q4 54% 49% 0.437
Pr2Tot 53% 50% 0.614
Class 55% 54% 0.808

ExMC 73% 64% 0.036 *
ExQ1 21% 21% 0.826
ExQ2 77% 71% 0.250
ExQ3 34% 32% 0.843
ExQ4 48% 51% 0.680
ExQ5 50% 51% 0.878

ExCmpr 66% 58% 0.088
ExCmp 49% 49% 0.977
ExTot 59% 54% 0.318
Final 57% 54% 0.446

* significant where p < 0.05

Table L.3: T-test Computed Values for Independent Variables: Medium Risk Stratum

 APPENDIX L: QUANTITATIVE ANALYSIS

L-4

Low Risk Stratum : Predicted Mark Range 66% - 100%

Variable
(ntreatment = ncontrol = 15) Treatment Mean Control Mean p-value

Th1Q1 61% 59% 0.790
Th1Q2 80% 79% 0.802
Th1Q3 75% 79% 0.508
Th1Tot 70% 71% 0.893
Pr1Q1 71% 74% 0.840
Pr1Q2 63% 66% 0.824
Pr1Tot 66% 69% 0.807
Th2MC 69% 72% 0.320
Th2Q1 68% 65% 0.713
Th2Q2 33% 49% 0.186

Th2Cmp 52% 57% 0.479
Th2Tot 60% 64% 0.342
Pr2Q1 50% 71% 0.034 *
Pr2Q2 83% 83% 1.000
Pr2Q3 77% 75% 0.831
Pr2Q4 74% 75% 0.956
Pr2Tot 73% 76% 0.747
Class 69% 71% 0.637

ExMC 82% 77% 0.284
ExQ1 35% 42% 0.510
ExQ2 89% 84% 0.534
ExQ3 48% 50% 0.881
ExQ4 81% 71% 0.433
ExQ5 56% 65% 0.430

ExCmpr 76% 72% 0.441
ExCmp 62% 65% 0.714
ExTot 70% 69% 0.828
Final 70% 70% 0.968

* significant where p < 0.05

Table L.4: T-test Computed Values for Independent Variables: Low Risk Stratum

 APPENDIX L: QUANTITATIVE ANALYSIS

L-5

L.2 Testing for Homogeneity of Proportions

Number of Passes Variable
(ntreatment = 60
ncontrol = 88)

Treatment
Group

Control
Group

χ2-test
statistic p-value

Th1Q1 27 36 0.244 0.621
Th1Q2 59 86 0.066 0.797
Th1Q3 52 78 0.130 0.719
Th1Tot 56 79 0.565 0.453
Pr1Q1 35 58 0.877 0.349
Pr1Q2 29 39 0.232 0.630
Pr1Tot 33 46 0.107 0.744
Th2MC 47 68 0.023 0.879
Th2Q1 39 52 0.526 0.468
Th2Q2 13 24 0.598 0.439

Th2Cmp 20 28 0.040 0.847
Th2Tot 35 44 1.000 0.318
Pr2Q1 39 55 0.096 0.756
Pr2Q2 44 56 1.531 0.216
Pr2Q3 41 43 5.510 0.019 *
Pr2Q4 40 44 4.038 0.045 *
Pr2Tot 43 48 4.420 0.036 *
Class 44 55 1.890 0.169
ExMC 55 70 3.99 0.046 *
ExQ1 8 13 0.061 0.805
ExQ2 58 63 15.040 0.000 **
ExQ3 26 29 1.646 0.200
ExQ4 29 42 0.005 0.942
ExQ5 30 42 0.074 0.786

ExCmpr 50 54 8.240 0.004 **
ExCmp 31 46 0.010 0.942
ExTot 40 54 0.430 0.511
Final 45 54 3.000 0.084

* significant where p < 0.05
** significant where p < 0.01

Table L.5: χ2-test Computed Values: Full Complement of Participants

 APPENDIX L: QUANTITATIVE ANALYSIS

L-6

High Risk Stratum : Predicted Mark Range 41% - 50%
Number of Passes Variable

(ntreatment = 12
ncontrol = 13)

Treatment
Group

Control
Group

χ2-test
statistic p-value

Th1Q1 4 2 1.102 0.294
Th1Q2 12 12 0.962 0.327
Th1Q3 11 10 1.009 0.315
Th1Tot 11 10 1.009 0.315
Pr1Q1 4 5 0.071 0.790
Pr1Q2 2 2 0.008 0.930
Pr1Tot 2 2 0.008 0.930
Th2MC 7 7 0.051 0.821
Th2Q1 6 4 0.962 0.327
Th2Q2 1 0 1.128 0.288

Th2Cmp 2 1 0.476 0.490
Th2Tot 4 2 1.102 0.294
Pr2Q1 7 4 1.924 0.165
Pr2Q2 8 4 3.222 0.073
Pr2Q3 9 2 9.000 0.003 **
Pr2Q4 8 1 9.420 0.002 **
Pr2Tot 9 2 9.000 0.009 **
Class 9 1 11.779 0.003 **
ExMC 9 7 1.212 0.271
ExQ1 0 0 0.000 1.000
ExQ2 11 5 7.667 0.006 **
ExQ3 3 1 1.391 0.238
ExQ4 3 1 1.391 0.238
ExQ5 5 1 3.949 0.047 *

ExCmpr 8 4 3.220 0.073
ExCmp 5 2 2.140 0.144
ExTot 5 3 0.991 0.320
Final 8 3 4.810 0.028 *

* significant where p < 0.05
** significant where p < 0.01

Table L.6: χ2-test Computed Values: High Risk Stratum

 APPENDIX L: QUANTITATIVE ANALYSIS

L-7

Medium Risk Stratum : Predicted Mark Range 51% - 65%
Number of Passes Variable

(ntreatment = 32
ncontrol = 60)

Treatment
Group

Control
Group

χ2-test
statistic p-value

Th1Q1 11 25 0.466 0.495
Th1Q2 31 59 0.209 0.648
Th1Q3 27 54 0.627 0.428
Th1Tot 30 54 0.370 0.543
Pr1Q1 18 41 1.325 0.250
Pr1Q2 15 27 0.030 0.864
Pr1Tot 17 31 0.018 0.894
Th2MC 24 47 0.132 0.717
Th2Q1 20 36 0.055 0.815
Th2Q2 7 13 0.001 0.982

Th2Cmp 8 17 0.120 0.732
Th2Tot 18 30 0.330 0.568
Pr2Q1 21 38 0.048 0.827
Pr2Q2 21 39 0.004 0.952
Pr2Q3 18 28 0.767 0.381
Pr2Q4 17 32 0.000 0.985
Pr2Tot 19 33 0.160 0.687
Class 20 41 0.320 0.573
ExMC 30 48 3.06 0.080
ExQ1 2 5 0.129 0.720
ExQ2 31 45 6.951 0.008 **
ExQ3 12 19 0.318 0.573
ExQ4 13 31 1.020 0.313
ExQ5 14 30 0.327 0.568

ExCmpr 26 37 3.710 0.054
ExCmp 14 33 1.057 0.304
ExTot 20 37 0.010 0.938
Final 21 37 0.140 0.708

* significant where p < 0.05
** significant where p < 0.01

Table L.7: χ2-test Computed Values: Medium Risk Stratum

 APPENDIX L: QUANTITATIVE ANALYSIS

L-8

Low Risk Stratum : Predicted Mark Range 66% - 100%
Number of Passes Variable

(ntreatment = 16
ncontrol = 15)

Treatment
Group

Control
Group

χ2-test
statistic p-value

Th1Q1 12 9 0.797 0.372
Th1Q2 16 15 0.000 1.000
Th1Q3 14 14 0.301 0.583
Th1Tot 15 15 0.969 0.325
Pr1Q1 13 12 0.008 0.930
Pr1Q2 12 10 0.261 0.610
Pr1Tot 14 13 0.005 0.945
Th2MC 16 14 1.102 0.294
Th2Q1 13 12 0.008 0.930
Th2Q2 5 11 5.490 0.019 *

Th2Cmp 10 10 0.059 0.809
Th2Tot 13 12 0.008 0.930
Pr2Q1 11 13 1.422 0.233
Pr2Q2 15 13 0.444 0.505
Pr2Q3 14 13 0.005 0.945
Pr2Q4 15 11 2.386 0.123
Pr2Tot 15 13 0.444 0.505
Class 15 13 0.444 0.505
ExMC 16 15 0.000 1.000
ExQ1 6 8 0.784 0.376
ExQ2 16 13 2.280 0.131
ExQ3 11 9 0.259 0.611
ExQ4 13 10 0.860 0.354
ExQ5 11 11 0.079 0.779

ExCmpr 16 13 2.280 0.131
ExCmp 12 11 0.011 0.916
ExTot 15 14 0.000 0.962
Final 16 14 1.102 0.294

* significant where p < 0.05

Table L.8: χ2-test Computed Values: Low Risk Stratum

