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Abstract 
 
 
Polarization mode dispersion (PMD) causes significant impairment in high bit-rate optical 

telecommunications systems. Knowledge of a fibre’s PMD mean value, and the relevant 

confidence interval, is essential for determining a fibre’s maximum allowable bit-rate. 

Various methods of confidence interval construction for time series data were tested in this 

dissertation using simulation. These included the autocovariance-matrix methods as 

suggested by Box and Jenkins, as well as the more practical and simpler batch means 

methods. Some of these methods were shown to be significantly better than the standard 

method of calculating confidence intervals for non time series data. The best of the tested 

methods were used on actual PMD data. The effect of using polarization scramblers was 

also tested. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords 
 
 

Polarization mode dispersion 

Confidence interval construction methods 

Batch means 

 
 
 
 
 
 
 
 



 

ii 

 
Acknowledgements 
 
 
I would like to express my gratitude to the following: 

 

• My mother, father and grandmother for their support. Without you, I would not have 

completed this dissertation. 

 

• My supervisor, Mr David Friskin. Thank you for your great guidance, encouragement 

and patience. 

 

• My co-supervisor, Prof Andrew Leitch, and the NMMU Physics department.  

 

• Lawrence Viljoen and Timothy Gibbon for their help in providing me with the data 

used. 

 

• This project was financially supported by the NRF, Aberdare Fibre Optic Cables, 

Corning Optical Fiber, Telkom (Pty) Ltd and THRIP, through the Telkom CoE at the 

NMMU.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

iii 

 
DECLARATION BY STUDENT 

 
 
 
 
 
FULL NAME:       Warrick Erlank 
 
 
STUDENT NUMBER:   201318989 
 
 
QUALIFICATION:       Masters in Mathematical Statistics 
 
 
 
 
 
 
 
DECLARATION:  
 
In accordance with Rule G4.6.3, I hereby declare that the above-mentioned 

dissertation is my own work and that it has not previously been submitted for 

assessment to another University or for another qualification. 

 
 
 
 
 
 
 
 
SIGNATURE:  ………………………………………….. 
 
 
DATE:   ………………………………………….. 

 

 

 

 

 



 

 

Table of Contents 
 

 

 

1 Introduction.......................................................................................1 

2 Polarization Mode Dispersion ...........................................................4 

2.1 Introduction ..................................................................................................4 

2.2 PMD coefficient ............................................................................................5 

2.3 Birefringence ................................................................................................7 

2.4 Mode Coupling .............................................................................................8 

2.5 DGD & PMD Distribution ............................................................................10 

2.6 Time and Wavelength Ensembles..............................................................11 

2.7 Polarization Scramblers .............................................................................12 

3 Statistical Concepts ........................................................................13 

3.1 Basic Definitions.........................................................................................13 

3.1.1 Stationarity ..........................................................................................13 

3.1.2 Autocovariance ...................................................................................14 

3.1.3 Correlation...........................................................................................15 

3.1.4 Autocorrelation ....................................................................................15 

3.2 ARMA Models ............................................................................................16 

3.2.1 AR Models...........................................................................................17 

3.2.2 MA Models ..........................................................................................17 

3.2.3 ARMA Models .....................................................................................18 

3.3 Confidence Interval Construction Methods.................................................18 

3.3.1 Autocovariance Methods.....................................................................18 

3.3.1.1 Autocovariance Matrix Method ....................................................... 18 

3.3.1.2 Autocovariance Quarter Matrix Method .......................................... 20 

3.3.1.3 Autocorrelation-length Matrix Method............................................. 21 

3.3.2 Batch Means Methods ........................................................................22 

3.3.2.1 Batch Means – 10 batches (batch size = 50).................................. 23 

3.3.2.2 Batch Means – 50 batches (batch size = 10).................................. 24 

3.3.2.3 Batch Means – Autocorrelation-length batch size........................... 24 

3.4 Test for Stationarity ....................................................................................25 



 

 

4 Results ...........................................................................................26 

4.1 Overview ....................................................................................................26 

4.2 Simulation Example....................................................................................26 

4.2.1 Autocovariance Methods.....................................................................27 

4.2.1.1 Autocovariance Matrix Method ....................................................... 29 

4.2.1.2 Autocovariance Quarter Matrix Method .......................................... 30 

4.2.1.3 Autocorrelation-length Matrix Method............................................. 31 

4.2.2 Batch Means Methods ........................................................................32 

4.2.2.1 Batch Means (10 batches) Method................................................. 33 

4.2.2.2 Batch Means (50 batches) Method................................................. 33 

4.2.2.3 Batch Means (Autocorrelation-length batch size) Method .............. 34 

4.3 Model Results ............................................................................................35 

4.3.1 AR(1) Model ........................................................................................36 

4.3.2 AR(2) Model ........................................................................................37 

4.3.3 MA(1) Model........................................................................................39 

4.3.4 MA(2) Model........................................................................................40 

4.3.5 ARMA(1,1) Model................................................................................42 

4.3.6 Normal(5, 0.1) Model ..........................................................................44 

4.3.7 Model Results Summary .....................................................................45 

4.4 Standard Error Histograms.........................................................................47 

4.4.1 True standard errors ...........................................................................47 

4.4.2 MA(2) Histograms ...............................................................................49 

4.5 Actual PMD data ........................................................................................56 

4.5.1 Hopetown to Britstown ........................................................................56 

4.5.2 Britstown to Victoria West ...................................................................60 

4.6 Effects of Polarization Scramblers..............................................................64 

5 Conclusion......................................................................................67 

6 References.....................................................................................68 

7 Appendix ........................................................................................70 

 

 

 



 

 

Table of Figures 
 

Figure 2.1 – 3D pulse traveling down a fibre ............................................................................4 

Figure 2.2 - Birefringence caused by manufacturing process ...................................................7 

Figure 2.3 - Physical model of mode coupling ..........................................................................8 

Figure 2.4 - Mode coupling and pulse spread...........................................................................9 

Figure 2.5 - Maxwellian distribution example..........................................................................10 

Figure 3.1 – Batch Means method example ...........................................................................22 

Figure 4.1 - AR(1) 95% interval simulation results..................................................................36 

Figure 4.2 - AR(1) 50% interval simulation results..................................................................37 

Figure 4.3 - AR(2) 95% interval simulation results..................................................................38 

Figure 4.4 - AR(2) 50% interval simulation results..................................................................38 

Figure 4.5 - MA(1) 95% interval simulation results .................................................................39 

Figure 4.6 - MA(1) 50% interval simulation results .................................................................40 

Figure 4.7 - MA(2) 95% interval simulation results .................................................................41 

Figure 4.8 - MA(2) 50% interval simulation results .................................................................41 

Figure 4.9 - ARMA(1,1) 95% interval simulation results..........................................................42 

Figure 4.10 - ARMA(1,1) 50% interval simulation results........................................................43 

Figure 4.11 - N(5, 0.1) 95% interval simulation results ...........................................................44 

Figure 4.12 - N(5, 0.1) 50% interval simulation results ...........................................................45 

Figure 4.13 - MA(2) SEs - Standard Method ..........................................................................49 

Figure 4.14 - MA(2) SEs – Autocovariance Matrix Method .....................................................50 

Figure 4.15 - MA(2) SEs – Autocovariance Quarter Matrix Method ........................................51 

Figure 4.16 - MA(2) SEs – Autocorrelation-length Matrix Method...........................................52 

Figure 4.17 - MA(2) SEs – Batch Means (10 batches) Method...............................................53 

Figure 4.18 - MA(2) SEs – Batch Means (50 batches) Method...............................................54 

Figure 4.19 - MA(2) SEs – Batch Means (Autocorrelation-length) Method .............................55 

Figure 4.20 - PMD plot: Hopetown to Britstown......................................................................56 

Figure 4.21 - Autocorrelation plot: Hopetown to Britstown ......................................................57 

Figure 4.22 - 95% interval - Standard method: Hopetown to Britstown...................................58 

Figure 4.23 - 95% interval - Batch Means (10) method: Hopetown to Britstown .....................59 

Figure 4.24 - 95% interval - Autocorrelation-length Matrix method: Hopetown to Britstown ....59 

Figure 4.25 - PMD plot: Britstown to Victoria West .................................................................60 

Figure 4.26 - Autocorrelation plot: Britstown to Victoria West .................................................61 

Figure 4.27 - 95% interval - Standard method: Britstown to Vic West.....................................62 

Figure 4.28 - 95% interval - Batch Means (10) method: Britstown to Vic West .......................63 



 

 

Figure 4.29 - 95% interval - Autocorrelation-length Matrix method: Britstown to Vic West ......63 

Figure 4.30 - Unscrambled data .............................................................................................64 

Figure 4.31 - Scrambled data.................................................................................................65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

1 Introduction 
 

Since its invention in the early 1970’s, fibre optics has become a data communications 

technology that has revolutionized data transfer. The applications of the technology are 

widespread, ranging from global networks to local telephone exchanges to subscribers' 

homes to desktop computers. Fibre is an integral part of modern day communication 

infrastructure and can be found along roads, in buildings, hospitals and machinery.  

 

Fibre optics, similar to copper wire, is used for moving information from one place to 

another. The medium of transmission, however, is light as opposed to electricity, and that 

light is carried within an optical fibre via the process of total internal reflection.  Some of the 

many advantages of fibre over copper include: 

 

• Higher data transmission rates 

• Cheaper and lighter cables 

• Safety in factories due to lack of sparks 

• Data security 

 

With the advent of the internet, the need for fibre optics has become especially important. 

The current boom in fibre optics companies is a direct result of the high bandwidth required 

by internet data, especially graphical data. One of the fastest growing fibre optic markets is 

transmitting information for so-called intelligent transportation systems: “smart” highways 

and streets with traffic lights that respond to changing traffic patterns, automated toll booths, 

and changeable message signs that give motorists information about delays and 

emergencies [1]. 

 

Recently fibre optic technology has moved relatively easily from speeds of 90 Mbit/s (Mega-

bits per second) to faster and faster speeds and eventually to 2.5 Gbit/s (Giga-bits per 

second). Then a noticeable problem became apparent in the 10 Gbit/s systems and 

threatened to cause major disturbances at 40 Gbit/s networking as well as on multi-channel 

cable television (CATV) transmission systems [2]. For the first time the companies which 

produced or used fibre optics were faced with a major network killer. This problem, which 

was only discovered as recently as the early 1990’s, is called polarization mode dispersion, 

or PMD.  
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The physics and causes behind PMD will be described in Chapter 2. In short, when light 

travels down a fibre, it has two modes or planes, one fast and one slow. PMD is the time 

delay between these two modes. The greater this delay, the more bit errors will be caused, 

as the receivers have difficulty in distinguishing unique data bits.  

 

As the demand for higher data transmission increases, telecoms companies are forced to 

install new optical fibre or upgrade old fibres which have already been deployed. In order to 

determine if an old fibre has the capacity to tolerate higher transmission rates, engineers 

can sample the fibre’s PMD values. If the fibre’s mean PMD is below different threshold 

levels, with a specific confidence level, its data transmission rate can be increased safely, 

without loss of data packets. If the mean PMD on these fibres is too high however, then the 

fibres have to be replaced. 

 

This concept of determining a fibre’s mean PMD, with a specific confidence level, is the core 

concept of this project. Because PMD data are serially-correlated (each sample reading is 

not independent of the preceding readings), conventional methods of calculating these 

confidence limits do not perform well. Various methods of calculating confidence intervals 

for time series data like this have been suggested.  

 

The first question which will be investigated is which of these methods performs the best in 

theory, using simulation. It will then be established whether or not PMD data are stationary – 

i.e. whether or not the data stay “constant” and do not change drastically over time. If PMD 

data are in fact stationary, then it will be possible to apply some of the methods tested 

during the simulation to actual PMD data to obtain accurate confidence intervals. These 

results will then be compared to the conventional methods of confidence interval 

construction. 

 

A device, called a PMD scrambler, can be applied to a fibre to make the individual data 

points less serially correlated, i.e. more independent from one another. If the data are made 

to be independent, then the above time series methods of interval construction will not be 

necessary when determining mean PMD levels and the standard methods of confidence 

interval construction may be used. The final part of the results section will deal with this 

possibility. 

 

To summarise, the three research questions which will be investigated are: 

1. Simulate time series data to determine the best of several methods of confidence 

interval construction for the mean of time series data. 
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2. Test to see whether actual PMD data are stationary. 

3. Test to see whether using a PMD scrambler on a fibre makes the data independent. 

 

Chapter 2 contains the detailed physics behind PMD. Chapter 3 is a background of all the 

statistical concepts used in the project, including a review of different interval construction 

methods which have been tried on time series data. The major questions and results of the 

project are explored in chapter 4, and chapter 5 will be the conclusion with main findings.  
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2 Polarization Mode Dispersion 
 

2.1 Introduction 

 

In fibre optics, light travels down a fibre in two polarization modes, which are perpendicular 

to one another. In an ideal optical fibre, the core has a perfectly circular cross-section. In this 

case, the light would travel down the two orthogonal axes at exactly the same velocity, 

resulting in zero PMD. In a realistic fibre, however, there are random imperfections that 

break the circular symmetry, causing the light traveling along one polarization axis to move 

slower or faster than the light polarized along the other axis [3]. 

 

As a result, the two perpendicular pulses arrive at the end of the fibre at different times. 

Detectors capture the combined signal, which appears as a spread pulse. In a digital 

system, as the pulse spreads and overlaps (because of PMD) it becomes increasingly 

difficult to differentiate between 1’s and 0’s, which may result in bit errors [4].  

 

Figure 2.1 [5] shows how an input pulse consists of two perpendicular axes; a slow 

polarization mode and a fast polarization mode. It also shows how the pulse will appear to 

expand. 

 

 

 

Figure 2.1 – 3D pulse traveling down a fibre 
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As can be seen in Figure 2.1, as the pulse moves down the fibre (direction is from left to 

right) PMD begins to affect the pulse and the polarized energy is separated by some time 

interval. This time interval is known as the differential group delay (DGD). A DGD value is 

measured and stored for every frequency over a wide range of bandwidth - in the 

experiments and calculations in subsequent chapters, a range of 100 nanometres of 

bandwidth is typically used. The average of these DGD values is then calculated and this 

value is referred to as the PMD, which is measured in picoseconds or ps (10-12 seconds). 

Specialists differ on its definition, but PMD is defined either as the mean DGD or its root-

mean-square value [6].  For all calculations of PMD in this project, the mean DGD definition 

will be used. 

 

If the bit errors are too numerous, then the transmitted information will be too corrupt to 

recover and the transmission link should be considered out of service. The quantity of bit 

errors encountered at the receiver is directly influenced by the amount of PMD in the fibre. 

Because of this, PMD limits transmission rates as well as the lengths of deployed fibre.  

 

 

2.2 PMD coefficient 

 

Because longer fibres will tend to exhibit larger PMD values, the PMD coefficient is defined 

as PMD per km . This is then used as a standard measure so different fibre lengths are 

comparable. The maximum allowable length, maxL , for a given total average PMD coefficient, 

can be calculated from the following expression, assuming the PMD coefficient is less than 

or equal to 10% of the bit-rate, BR:  

 

2max
)(

10000

BRPMD
L

•
=  

 

where the PMD coefficient is measured in units of kmps /  and the bit-rate is in Gbit/s [7]. 

Table 2.1 contains a comparison of the different maximum allowable lengths of fibre for 

different PMD coefficient values: 
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PMD coefficient 40 Gbit/s 10 Gbit/s 2.5 Gbit/s 

3.0 < 1km 11 km 180 km 

1.0 6 km 100 km 1 600 km 

0.5 25 km 400 km 6 400 km 

0.1 625 km 10 000 km 160 000 km 

Table 2.1 - Transmission length as a function of PMD and transmission bit-rate. 

 

It is clear in Table 2.1, that the allowable length of fibre is very sensitive to different PMD 

coefficient values. As the PMD coefficient is calculated from the PMD itself, it is critical that 

researchers and manufacturers can estimate a particular fibre’s mean PMD value, as well as 

a chosen confidence interval around that mean. 

 

Many fibres installed before the mid 1990’s, including some fibres which will be looked at, 

have PMD coefficients of about 1-2ps per km . In South Africa where most fibres transmit 

data at 2.5 Gbit/s, these length issues are not yet a problem, but if telecommunication 

companies would like to upgrade their networks to 10 Gbit/s or faster in the future, then they 

will need to be very confident about the mean PMD values for each fibre. 

 

The PMD coefficient can also be used to determine allowable bit-rates. Suppose one has a 

fibre lying between Cape Town and Port Elizabeth (approximately 750 km) which has a 

PMD coefficient between 1-2 ps, then allowable PMD bit-rates can be calculated as: 

 

)()( kmtcoefficienPMDPMD ×=  

           )750()/(21( kmkmps ×−=  

                      ps5527 −=  

 

For a 10 Gbit/s signal, the bits have a 100ps duration, therefore a PMD value of this size 

can be expected to result in a bit-error rate that is severe enough to cause service problems. 

A typical PMD limit for 10 Gbit/s signals is 10ps or 10% of the bit duration mentioned above. 

Similarly, a 40 Gbit/s link would only tolerate a 2.5ps PMD [8]. 

 

Two factors influencing PMD are fibre birefringence and mode coupling. 

 

 



 

7 

2.3 Birefringence 

 

Birefringence is the phenomenon whereby light travels down the two perpendicular axes in a 

fibre at different speeds. There are many ways in which a fibre can become birefringent. 

Birefringence can arise due to internal stresses during the manufacturing process or through 

external stresses during cabling and installation, which can lead to a non-circular core. Even 

if the fibre is manufactured with an ideal circular core, birefringence can result during 

deployment or operation. Any non-uniform loading of the fibre cross-section, or bends or 

twists that are introduced to the fibre by sub-optimal cabling or installation will result in an 

asymmetric external stress being placed on the fibre [9]. Figure 2.2 shows different sources 

of birefringence: a) internal sources such as core asymmetry and built in stress, b) external 

sources such as bend twists and external stress applied to the fibre. 

 

 

Figure 2.2 - Birefringence caused by manufacturing process 

 

The core imperfections, and their effect on the PMD, remain constant over time. However, 

the mechanical stress on the fibre resulting from movement or environmental issues can 

vary, resulting in a dynamic aspect to PMD. This mechanical stress can be caused by a 

number of sources.  

 

One of the major causes is temperature, i.e. the day-night or seasonal heating and cooling 

of the fibre. Viljoen et al showed that “while the environmental temperature is changing the 

PMD also changes, while for constant temperature stages, the PMD is more constant. This 

can be attributed to the thermal expansion/contraction of the fibre.” [10]. Although much fibre 
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is installed under ground and very often within conduits, it still experiences temperature 

variations and the corresponding physical stress.  

 

A second source of mechanical stress can result from vibrations. Much fibre is installed 

alongside railway tracks because of the ease of installation. The vibrations from passing 

trains, however, can apply stress to the fibre. When fibre is not buried next to railways or 

highways, it is usually installed aerially, in which case the swaying of the fibre from the wind 

will affect the PMD. 

 

 

2.4 Mode Coupling 

 

Birefringence varies along a fibre’s length due to its different sections experiencing different 

levels of birefringence in terms of the reasons given in section 2.3. The relative orientation of 

the slow and fast axes of the fibre also varies along different sections of a fibre’s length. 

Because of these reasons, a fibre’s PMD can not be approximated to the PMD of one 

section of the fibre. In order to understand the nature of PMD, one should represent a fibre 

as a series of concatenated birefringent sections of fibre separated by mode coupling sites. 

Mode coupling sites are locations where the birefringent axes of one section are rotated with 

respect to the other. Figure 2.3 shows a) an example of a concatenated series of 

birefringent fibres, while b) shows the energy interchanges which occur between each set of 

birefringent sections. 

 

 

 

Figure 2.3 - Physical model of mode coupling 
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Each fibre section is randomly rotated relative to each other due to the manufacturing 

process or environmental effects. At each mode coupling site the relative alignment of axes 

of the birefringent sections can drift with respect to each other over time depending on 

external factors (e.g. temperature changes or external vibrations of the fibre) [9]. The mode 

coupling sites are also randomly distributed along each fibre [10].  

 

As a result of mode coupling, the PMD of one section of a fibre may add or subtract from the 

PMD of the following section. The fast and the slow axes of the fibre segments along the 

path are aligned with each other differently for each wavelength. When the alignment is 

higher, the segments tend to add together, causing the DGD at each wavelength to 

increase. When the axes are not aligned the DGD decreases – the pulse travelling along the 

fast axis will, in this case, slow down at the mode coupling site and the pulse travelling along 

the slow axis will speed up, thus reducing the pulse gap between the fast and slow axes. 

The DGD grows roughly proportionally to the square root of the length of the fibre [11]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 - Mode coupling and pulse spread 

 

Figure 2.4 shows that as a single pulse (left of diagram) travels along the fibre length it will 

expand and contract between segments, depending on axis alignment, until it reaches the 

end of the fibre where it will appear to be “stretched out” (right of diagram). Mode coupling 

has been shown to decrease the mean PMD of an optical fibre [12] but increase the 

variability of the PMD [13]. 
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2.5 DGD & PMD Distribution 

 

If one were to measure the instantaneous value of DGD at the output of a fibre repetitively, 

the observed DGD would be a random value [9]. The DGD of an optical fibre usually varies 

with wavelength.  It is generally accepted in the literature that at a given wavelength, the 

distribution of DGD values can be approximated by a Maxwellian probability density. Figure 

2.5 contains an example of a histogram of repetitive DGD measurements as well as the 

curve corresponding to the Maxwellian distribution given by the formula above the curve, 

where x is the DGD and y is the average DGD or PMD.  

 

 

Figure 2.5 - Maxwellian distribution example 

 

In Figure 2.5, The X-axis represents the instantaneous measured value of DGD and the Y-

axis shows the frequency of the measured value.  

 

The above probability distribution can be used to calculate the probability of a fibre 

experiencing a DGD value higher than a specific level, also known as an outage probability. 

The probability α  to obtain a DGD higher than a level called DGDmax for a given wavelength 

is equal to: 

dx
y
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The fact that knowledge of the PMD value of a fibre is required in order to calculate 

probabilities of the DGD exceeding specific levels shows how important PMD estimation is. 

PMD for each fibre is distributed normally [14], a property used in section 3.3.1. The 

histogram of PMD values can be plotted during data collection and used as a visual 

estimate in order to decide whether enough data has been collected. 

 

2.6 Time and Wavelength Ensembles 

 

As the DGD of a fibre changes with time, because of environmental effects like temperature 

and vibrations, the DGD spectrum measured on one day may not be the same as that 

measured at a later time. Generally, any measured DGD value could occur at any other 

wavelength at another time [8]. 

 

The importance of a statistical analysis of PMD is underlined by the observed large 

fluctuations of the DGD with small wavelength drifts. A good statistical analysis of a fibre 

requires long wavelength scans, or long time averages [15]. However, the statistical nature 

of the DGD and the fact that any measurement involves only a finite sample set implies that 

there is an inherent limitation to the accuracy of PMD measurements. This limitation is 

independent of any measurement setup implementation, and is unavoidable, similarly to the 

well-known example of the calculation of the probability of a person obtaining a head from a 

coin toss with only a finite number of trials.  

 

In practice, one is interested in the range of all possible values of the PMD for a fibre in its 

various physical states. This can either be estimated by collecting wavelength ensembles 

(averaging the DGD over a bandwidth range) or time ensembles (averaging the DGD over 

time). However, wavelength ensembles are much easier and faster to produce. 

Consequently, several major PMD measurement techniques are established on a 

wavelength ensemble. Note that large wavelength ranges correspond to long time 

fluctuations [6]. 

 

It has been found that the necessary wavelength ensemble over which to measure depends 

on the PMD value itself [8]. Since the required range is difficult to know before measuring, it 

is helpful to use a wide range.  
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When a fibre under test is exposed to a time-varying environment (such as in the case of 

installed cables), the measured PMD may also change in time as it samples its ensample 

space or possible DGD values.  Averaging the measured DGD over bandwidth as well as 

over time, in order to allow one to measure more of the fibre’s distinct states, is called a 

“long term” measurement” [13]. These “long term” measurements were collected for the 

analysis of actual PMD data in sections 4.5 and 4.6. 

 

 

2.7  Polarization Scramblers 

 

This time-averaging is usually impractical because the DGD may only change on a time-

scale of days or slower. This means that a tolerable measurement duration usually does not 

give a sufficient sample of the possible DGD behaviour. So in practice, time averaging 

means measuring the test fibre once, and then disturbing the mode coupling geometry of 

the fibre, thereby increasing the number of possible states of the fibre, and then the PMD is 

measured again. Apart from physically disturbing the fibre, one way in which to ‘randomise’ 

the state of polarization of the fibre is through the use of a polarization scrambler.  

 

Polarization scramblers, which are usually attached to either the transmitter or receiver part 

of a fibre, actively change the state of polarization of each pulse travelling through a fibre. 

This allows one to measure the various possible PMD values of a fibre much more quickly, 

and therefore allowing for a more efficient and accurate PMD estimation. 

 

Chapter 4 will show to what extent a scrambler helps in generating PMD values which are 

not serially correlated. 
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3 Statistical Concepts 
 
The analysis of experimental data that have been observed at different points in time leads 

to new and unique problems in statistical modelling and inference. The obvious correlation 

introduced by the sampling of adjacent points in time can severely restrict the applicability of 

the many conventional statistical methods traditionally dependent on the assumption that 

the observations are independent and identically distributed. The systematic approach by 

which one goes about answering the mathematical and statistical questions posed by these 

time correlations is commonly referred to as time series analysis. 

 

In this chapter, all statistical methods used in subsequent chapters will be described and 

defined. 

 

 

3.1 Basic Definitions 

 

3.1.1  Stationarity 

 

The foundation of time series analysis is stationarity. A time series, X , is said to be strictly 

stationary if the probabilistic behaviour of every collection of values 

},...,,{ 21 kxxx  

is identical to that of the time shifted set  

},...,,{ 21 hkhh xxx +++  

That is, 

},...,{},...,{ 1111 khkhkk cxcxPcxcxP ≤≤=≤≤ ++  

for all ,...2,1=k , all numbers kccc ,...,,. 21 and all time shifts ...,2,1,0 ±±=h  This is a very 

strong condition that is hard to verify empirically. Moreover, it is difficult to assess strict 

stationarity from a single data set. A weaker version of stationarity, called covariance 

stationarity, is often assumed.  

 

More specifically X  is weakly stationary if: 

(i) µ=)(XE , which is constant, and 

(ii) kktt xxCov γ=− ),(  depends only on k . 
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In practice, suppose the dataset has T  data points },...,1|{ Ttxt = . The weak stationarity 

implies that the time plot of the data would show that the T  values fluctuate with constant 

variation around a constant level. For the remainder of this dissertation, unless otherwise 

stated, all references to “stationary” will mean “weakly stationary”. 

 

Implicitly in the condition of weak stationarity, it is assumed that the first two moments of X  

are finite. From the definitions, if X  is strictly stationary and its first two moments are finite, 

then X  is also weakly stationary. The converse is not true in general. However, if the time 

series X  is normally distributed, then weak stationarity is equivalent to strict stationarity. In 

chapter 4, the actual PMD data sets will be tested for weak stationarity. 

 

 

3.1.2 Autocovariance 
 

The covariance )])([()( , ktktttkttk xxExxCov −−− −−== µµγ  is called the lag k  

autocovariance of 
tx . The autocovariance measures the linear dependence between two 

points on the same series observed at different times. Very smooth series exhibit 

autocovariance functions that stay large even when k  is large, whereas choppy series tend 

to have autocovariance functions that are nearly zero for large separations. 

 

In practice, the theoretical autocovariance is estimated from the sample autocovariance 

defined as: 

),)((
1

ˆ
1

xxxx
n

t

kn

t

ktk −−= ∑
−

=

+γ                          (3.1.2.1) 

It has two important properties:  

(a) )(0 XVar=γ  and  

(b) kk −= γγ  

It is clear that, for 0=k , the autocovariance reduces to the (assumed finite) variance, 

because ])[( 2

0 ttxE µγ −= . The second property holds because:  

k

ktt

ktt
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xxE
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+
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The set of autocovariance values 0γ  to kγ is called the autocovariance function (ACVF) at 

lag k . 

 

 

3.1.3 Correlation 
 

The correlation coefficient between two random variables X  and Y  is defined as: 
 

22
,

)()(

)])([(

)()(

),(

yx

yx

yx

YEXE

YXE

YVarXVar

YXCov

µµ

µµ
ρ

−−

−−
==  

 

Where xµ and yµ  are the means of X  and Y  respectively, and it is assumed that the 

variances exist. It can be shown that 11 , ≤≤− yxρ  and xyyx ,, ρρ = . The two random 

variables are uncorrelated if 0, =yxρ . In addition, if both X  and Y  are normal random 

variables, then 0, =yxρ  if and only if X  and Y  are independent. When the sample 

T

ttt yx 1)},{( =  is available, the correlation can be consistently estimated by its sample 

counterpart. 

∑ ∑
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where ∑ =
=

T

t t Txx
1

 and ∑ =
=

T

t t Tyy
1

 are the sample means of X  and Y , respectively. 

 

 

3.1.4 Autocorrelation 
 

Consider a weakly stationary time series X . The correlation coefficient between tx  and 

ktx −  is called the lag k  autocorrelation of tx  and is commonly denoted by kρ , which under 

the weak stationarity assumption is a function of k  only. Specifically, it is defined: 
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γ
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where the property )()( ktt xVarxVar −=  for a weakly stationary series is used. From the 

definition,  10 =ρ , kk −= ρρ  and −1 ≤ kρ  ≤ 1. In addition, a weakly stationary series tx  is 

not serially correlated if and only if 0=kρ  for all k > 0. 

 

The set of standardized autocovariance coefficients, or autocorrelation coefficients, 

constitutes the autocorrelation function (ACF). The set of autocorrelation coefficients 0ρ  to 

kρ is called the autocorrelation function at lag k. To be able to detect autocorrelation in a 

time series, the ACF can be plotted against the lag variable k . The graph of the ACF is 

called a correlogram, which will be used to investigate the structures of the data sets. 

 

In Chapter 4, various methods for constructing confidence intervals for the means of time 

series data will be tested and compared. For this, various time series data sets based on 

different models will be generated. These models will now be introduced. 

 

 

3.2 ARMA Models 

 

The time series models in sections 3.2.1 – 3.2.3 make use of a concept called Gaussian 

white noise. White noise is a (univariate or multivariate) discrete-time stochastic process 

whose terms are independent and identically distributed (i.i.d.), all with zero mean. The i.i.d. 

requirement is often too restrictive for applications and is typically replaced with a 

requirement that terms have constant second moments, zero autocorrelations and zero 

means. This is:  

 

A one-dimensional stochastic process ...,,,,,..., 2112 ++−− ttttt wwwww  is said to be white noise 

if: 

0

)(

0)(

2

=

=

=

n

t

t

wV

wE

ρ

σ  

 

for some constant σ and any integer n . An independent white noise whose terms are all 

normally distributed is called a Gaussian white noise. 
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3.2.1 AR Models 
 

Autoregressive models are based on the idea that the current value of the time series, tx , 

can be explained as a function of p past values, ,...,,, 21 pttt xxx −−− where p determines the 

number of steps into the past needed to forecast the current value. An autoregressive model 

of order p, abbreviated AR(p), is of the form: 

 

                                          tptpttt wxxxx ++++= −−− φφφ ...2211                          (3.2.1.1) 

 

Where 
tx  is stationary, pφφφ ,...,, 21 are parameters, )0( ≠pφ  and 

tw  is a Gaussian white 

noise series with mean zero and variance 2

wσ . The mean of 
tx  in (3.2.1.1) is zero. If the 

mean, ,µ of tx is not zero, replace tx  by µ−tx , i.e., 

 

tptpttt wxxxx +−++−+−=− −−− )(...)()( 2211 µφµφµφµ  

 

or write 

 

tptpttt wxxxx +++++= −−− φφφα ...2211  

 

where )...1( 1 pφφµα −−−=  

 

 

 

3.2.2 MA Models 
 
The moving average model of order q, or MA(q) model, is defined to be: 

 

qtqtttt wwwwx −−− −−−−+= θθθα ...2211  

 

where there are q lags in the moving average, α  is a constant, qθθθ ...,,, 21 are parameters, 

)0( ≠pφ  and again tw  is assumed to be a Gaussian white noise. 
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3.2.3 ARMA Models 
 
A time series is ARMA(p, q) if it is stationary and 

 

qtqttptptt wwwxxx −−−− −−−+++= θθφφ ...... 1111  

 

with 0≠pφ , 0≠qθ . The parameters p and q are called the autoregressive and the moving 

average orders, respectively. If 
tx  has a non-zero mean, µ , set )...1( 1 pφφµα −−−= and 

write the model as 

 

qtqttptptt wwwxxx −−−− −−−++++= θθφφα ...... 1111  

 

When 0=q  and 0≠p , the model is called an autoregressive model of order p, AR(p), and 

when 0=p  and 0≠q , the model is called a moving average model or order q, MA(q). 

 

 

 

3.3 Confidence Interval Construction Methods 

 

In Chapter 4, two methods of constructing confidence intervals will be tested against each 

other in order to determine the best method for constructing confidence intervals for certain 

types of time series data. Three versions of each of the methods will be tested. Once the 

best method has been established, it will then be applied to the PMD data sets to determine 

the precision of the estimates. 

 

3.3.1 Autocovariance Methods 
 
The first two variations of this method were suggested in Box and Jenkins [16]. The third 

variation was employed in an attempt to improve upon the Autocovariance Quarter-matrix 

method (3.3.1.2).  

 

 
3.3.1.1 Autocovariance Matrix Method 

 

Let the time series, X , have a variance-covariance matrix of the form: 
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Then if X  is a stationary process then the above simplifies to: 
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The moment estimator of the mean µ  of a stationary process is the sample mean:  

XbX
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=  
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The mean square error of X is  
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All kγ  in the above matrix sum will be estimated by kγ̂ as defined in (3.1.2.1). If X  is 

Gaussian, then X is normal: ))var(,(~ XNX µ . 

 

Then a confidence interval for µ  can be calculated as:  

 

αµ
µ

µ αα −=<
−

<− 1)
)(

(
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P  
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which can be rearranged to  

 

αµµµ αα −=+<<− 1))()(( XVarXXVarXP  

 

where αµ is such that αµα −=< 1)|(|UP  and )1,0(~
)(

N
XVar

X
U

n

n µ−
= . Therefore in order 

to construct say a 95% )05.0( =α confidence interval for the mean, the limits are 

))(96.1;)(96.1( nnnn XVarXXVarX +−  

 

 

 
3.3.1.2 Autocovariance Quarter Matrix Method 

 

Estimates of kγ are good if k  is much smaller than n , where n  is the total number of 

observations. For k  close to n , there are too few pairs )( , ktt XX +  for the estimate to be 

reliable. Box and Jenkins suggest that the dataset should have at least 50 observations and 

4/nk ≤  [16]. In order to incorporate this idea, when calculating the sum of the variance-

covariance matrix, one should sum only those values of the matrix where 4/nk ≤ . It is 

then assumed the rest of the values of the matrix are equal to 0. The shaded area in the 

matrix below demonstrates the above idea:  

































−−

−−−

−

−

−

0124/14/

1

24/0124/14/

14/10

12

24/101

14/210

ˆˆˆˆ000

ˆ

0

ˆˆˆˆˆ

ˆˆˆ

0ˆˆ

0ˆˆˆˆ

00ˆˆˆˆ

γγγγ

γ

γγγγγ

γγγ

γγ

γγγγ

γγγγ

L

OOOOOOM

MOOOOOO

OOL

OOOOM

OOMOO

OOO

LK

nn

nnn

n

n

n

 

 

The kk −= γγ  property mentioned in 3.1.2 is used in the matrix above. The new variance 

estimate therefore becomes 
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The confidence interval is then constructed similarly as in (3.3.1.1). 

 

 

 
3.3.1.3 Autocorrelation-length Matrix Method 

 
The ACF of a stationary time series should approach 0 as the lag increases. The standard 

deviation of the estimate 
0

ˆ

ˆ
ˆ

γ

γ
ρ k

k =  is approximately 
n

1
[16].  

 

Now for any particular value k , there is the Bartlett test of the null hypothesis 

0:
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The null hypothesis is rejected at the 5% significance level if 
n

k

96.1
|ˆ| >ρ  [17]. This test will 

be used to determine, for each time series which is simulated, at which lag, k , the serial 

correlation becomes insignificant. This value k  will then replace 4/n , suggested in section 

(3.3.1.2), as the cut off number of rows and columns which will be summed in the 

autocovariance matrix. The variance estimate therefore becomes 
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where 
n

k

96.1
|ˆ| <ρ . The confidence interval is then constructed similarly as in (3.3.1.1). 

 

 

 

3.3.2 Batch Means Methods 
 
The method of non-overlapping batch means is frequently used to estimate the steady-state 

mean, µ , of a time series, nXXX ,...,, 21 , or the )(XVar  and owes its popularity to its 

simplicity and effectiveness. The classic approach divides the output nXXX ,...,, 21  of a time 

series into a number of batches of equal size and treats the sample means of these batches 

(a.k.a. batch means) as i.i.d. normal data points to produce point and interval estimates.  

 

Assume that the data has been split into b  batches, each consisting of h  observations (for 

now assume bhn = ). Then the i-th batch consists of the observations 

ihhihi XXX ,...,, 2)1(1)1( +−+−      for i b,...,2,1=  

The i-th batch mean is denoted as 

∑
=

+−=
h

j

jihi X
h

hX
1

)1(

1
)(  

If bhn ≠ , then the first m  observations are considered a “warm-up period” and are rejected. 

Each batch will then contain 
b

mn
h

−
= observations. Figure 3.1 shows how the warm-up 

period is treated as well as how to split the sample up.  

 

 

Figure 3.1 – Batch Means method example 
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The simulation in Figure 3.1 contains mhxb +)(  observations. 

 

The final estimator for µ is then given by: 

∑∑∑
= =
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=

==
b

i
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jih
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i

ib X
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hX
b

X
1 1

)1(

1

1
)(

1
  

This is simply the sample average of the whole run (after the warm-up period). The variance, 

2σ , is estimated by the variance of the b batch means: 

2

1

))((
1

1
)(ˆ

b

b

i

ib XhX
b

hV −
−

= ∑
=

 

An approximate α−1 confidence interval for µ is thus computed as: 

bhVtX bbb )(ˆ
1−±  

The main setback with the application of the batch means method is the choice of the batch 

size h . If h  is too small, the batch means will very likely be highly correlated and the 

resulting confidence interval will frequently have coverage below the desired α−1 . On the 

contrary, a large batch size will probably result in very few batches being produced which 

will create potential problems with the application of the central limit theorem in order to use 

the confidence interval above. 

 

Optimally, one would like as many batches as possible, to produce an accurate confidence 

interval, whilst still ensuring that the batch means are not highly correlated. For the scope of 

this project, two fixed number of batches were tested, namely 10 and 50, and the author’s 

own suggested number of batches (see  3.3.2.3). 

 

 
3.3.2.1 Batch Means – 10 batches (batch size = 50) 

 
If the number of batches is fixed at 10, the batch sizes become large very quickly for long 

time series, but this will ensure that the batch means generated will not be highly correlated. 

The downside to this method is the potential problems associated with the application of the 

central limit theorem. 

 

An approximate 95% confidence interval for µ is thus computed as: 

10)(ˆ
10910 hVtX ±  
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3.3.2.2 Batch Means – 50 batches (batch size = 10) 
 
If the number of batches is fixed at 50, the batch size remains small until the time series 

becomes very long (e.g. the batch size will be 10 if there are 500 observations). As 

mentioned in section 3.3.2, the potential problem with this method is that the batch means 

will be highly correlated if the number of observations is not large enough. 

 

An approximate 95% confidence interval for µ for this method is thus computed as: 

50)(ˆ
504950 hVtX ±  

 
 

 
3.3.2.3 Batch Means – Autocorrelation-length batch size 

 
This method was created in an attempt to minimize the problems of the previous two fixed 

number of batches approaches. Similar to the method described in section 3.3.1.3., for each 

time series generated, Bartlett’s Test was used to determine at which lag, k , the serial 

correlation becomes insignificant. This value k  was then used as the new batch size, 

implying that there were kn /  batches.  

 

An approximate 95% confidence interval for µ for this method is thus computed as:  

)/()(ˆ
/1// knhVtX knknkn −±  

This method should generate a large enough number of batches in order to apply the central 

limit theorem, whilst still keeping the batch means themselves as independent as possible. 
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3.4 Test for Stationarity 

 
In time series models, a linear stochastic process is said to have a unit root if 1 is a root of 

the process’s characteristic equation. Consider a discrete time stochastic process X  and 

suppose it can be written as an AR(p) process: 

tptpttt wxxxx ++++= −−− φφφ ...2211  

For convenience, assume 00 =x . If m=1 is a root of the characteristic equation: 

02

2

1

1 =−−−− −−
p

ppp mmm φφφ L  

then the stochastic process has a unit root. If the process has a unit root, then it is a non-

stationary time series. 

 

The Dickey-Fuller test tests whether a unit root exists in an autoregressive model. It is 

named after the statisticians D. A. Dickey and W. A. Fuller. Suppose one has an AR(1) 

model:  

ttt wxx += −11φ . 

A unit root is present if 1|| 1 =φ . The model would be non-stationary in this case. Moreover, it 

would be even more non-stationary if 1|| 1 >φ . The model can be rewritten as: 

ttttt wxwxx +=+−=∆ −− 111 )1( δφ  

where ∆  is the first difference operator. Testing for a unit root is equivalent to testing 

011 =−= φδ (null hypothesis). Since this test is performed over the residual term instead of 

the raw data, one cannot use the t-distribution to find critical values. Therefore this statistic, 

τ , has a specific distribution simply known as the Dickey-Fuller table. 

 

Dickey & Fuller also created an extension to their test called the augmented Dickey-Fuller 

test (ADF) which removes all autocorrelation in the time series and then tests using the 

same procedure as above. The ADF statistic used in the test is a negative number. The 

more negative the statistic, the stronger the rejection of the null hypothesis (i.e. that there 

exists a unit root) at some level of confidence. 
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4 Results 
 

4.1 Overview 

 
The first part of this chapter will contain the results from testing various methods of 

constructing confidence intervals for the means of time series data, which were simulated. 

The methods employed to simulate the time series data will be shown. An example of how 

each of the confidence interval construction methods was calculated will be demonstrated, 

along with the results of the simulations. 

 

In the second part of the chapter, the most accurate confidence interval construction 

methods will be applied to actual time series data, i.e. PMD runs taken from the field. These 

will be compared to “standard” methods of confidence interval construction. 

 

In the final part of this chapter, the effectiveness of using a PMD scrambler, when 

constructing confidence intervals, will be investigated. 

 
 

4.2 Simulation Example 

 
In order to determine which of the tested confidence interval construction methods works 

best for time series data, five time series models were simulated, namely: AR(1), AR(2), 

MA(1), MA(2), ARMA(1,1). All of these models were defined in Chapter 3. A dataset taken 

from the normal distribution was also simulated in order to see how the methods would work 

on independent data, i.e. data which are not serially correlated. 

 

For each of the above six time series models, seven different methods of calculating the 

datasets’ standard errors were utilized. These were: 

 

1. “Standard” Standard Error Method 

2. Autocovariance Matrix Method 

3. Autocovariance Quarter Matrix Method 

4. Autocorrelation-Length Matrix Method 

5. Batch Means (10 batches of size 50) Method 

6. Batch Means (50 batches of size 10) Method 

7. Batch Means (Autocorrelation-length batch size) Method 
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The details of these methods were described in Chapter 3. One run of the simulation will 

now be shown to explain how the confidence intervals from the above methods were 

calculated. 

 

To keep all the models comparable, each model was modelled to have 5)( =XE  (true 

mean) with a 1.0)( =XV . This is what a typical PMD dataset would look like. For the 

simulation example an AR(1) time series model was used to generate the dataset. 

 

For this model, 8.01 =ϕ . This value was set arbitrarily for purposes of testing these 

methods, but was chosen as the dataset simulated from this value looks the most like a 

PMD dataset. Similarly, all parameters for the other models were set in order to most closely 

replicate a PMD dataset.  

 

Using the formula below, from Chapter 3,  

 

11
][

ϕ

α

−
=txE  

 

one can solve for α as 1)8.01(5)1]([ 1 =−=−= ϕα txE . So the AR(1)  model will look as 

follows:  

 

ttt wxx ++= − 18.0 1
 

 

where tw is a Gaussian white noise series.  

 

 

4.2.1 Autocovariance Methods 
 

The kk −= γγ  property of autocovariance simplifies the summation of the autocovariance 

matrix for all of the autocovariance matrix methods. As discussed in Chapter 3, the matrix 

looks as follows: 
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Because of the symmetry property, the matrix above can be rewritten as follows: 
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As the matrix is perfectly symmetrical (around both diagonal axes), it is necessary to obtain 

only the first column (or row) of the matrix in order to calculate its sum. The only remaining 

information required is to calculate the number of times each autocovariance appears in the 

matrix. It is then simply a matter of multiplying each autocovariance by the number of times 

it appears in the matrix, and summing these terms, to obtain the matrix sum. 

 

Table 4.1 contains the information which was used in the Excel simulation for one run 

(number of observations = 500) - a randomly generated AR(1) series, together with its 

autocovariance and autocorrelation values at each respective lag. The “# Times” columns 

refer to how many times each covariance appears in that respective method’s 

autocovariance matrix.  

 

The three autocovariance methods will be investigated, followed by the three batch means 

methods. 
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AR(1) Lag Autocovariance Autocorrelation 
# Times 

in Matrix 

# Times in 

¼ Matrix 

# Times in 

Auto-Matrix 

5.000 0 0.21698507 1.0000 500 500 500 

5.297 1 0.16151078 0.7443 998 998 998 

5.027 2 0.11426503 0.5266 996 996 996 

4.920 3 0.08591486 0.3959 994 994 994 

5.198 4 0.05912268 0.2725 992 992 992 

5.334 5 0.04135956 0.1906 990 990 990 

5.114 6 0.03275974 0.1510 988 988 988 

4.915 7 0.02931672 0.1351 986 986 986 

4.333 8 0.02640783 0.1217 984 984 984 

4.279 9 0.02202475 0.1015 982 982 982 

4.188 10 0.02288795 0.1055 980 980 980 

4.338 11 0.02132505 0.0983 978 978 978 

4.299 12 0.01671380 0.0770 976 976 976 

… … … … … … 0 

… … … … … … … 

4.294 120 -0.03244482 -0.1495 760 760 0 

4.279 121 -0.03082052 -0.1420 758 758 0 

4.182 122 -0.02183413 -0.1006 756 756 0 

4.439 123 -0.01304580 -0.0601 754 754 0 

4.433 124 -0.01246330 -0.0574 752 752 0 

5.056 125 -0.01392339 -0.0642 750 0 0 

… … … … … … … 

… … … … … … … 

4.818 495 0.00041289 0.0019 10 0 0 

5.109 496 0.00047568 0.0022 8 0 0 

5.271 497 0.00064921 0.0030 6 0 0 

5.572 498 0.00035834 0.0017 4 0 0 

5.220 499 0.00005555 0.0003 2 0 0 

Table 4.1: Autocovariance matrix methods calculations 

 
 

4.2.1.1  Autocovariance Matrix Method 
 

To illustrate the above sum product idea, the variance for this method would be calculated 

as: 
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Therefore a 95% confidence interval for the mean would be: 

 

]976.4;844.4[

]001115.09647.1910.4;001115.09647.1910.4[

])(;)([ 499;499;

+−

+− XVartXXVartX αα

 

 

During the simulation, after each confidence interval is constructed for each run, a check is 

done to ascertain whether the true mean of the series – in this case, five – falls within the 

constructed confidence interval or not. If this procedure is repeated a large number of times 

– 10,000 runs for each time series model – and the ratio of “hits” (when true mean falls 

within interval) is compared to the actual desired confidence level (e.g. 50% and 95% were 

tested), it will be possible to see which of the various methods work best for constructing 

confidence intervals for each time series model.  

 

Accordingly, for the above run of the simulation, a zero would be captured for the “Mean in 

Interval” variable, as the true mean, five, does not fall into the interval [4.844; 4.976]. 

 
 
 

4.2.1.2 Autocovariance Quarter Matrix Method 
 

The variance for this method is calculated as: 
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Notice the differences in the matrix summation. The 95% confidence interval for the mean 

would be as follows: 

 

]040.5;780.4[

]0.004369647.1910.4;0.004369647.1910.4[

])(;)([ 499;499;

+−

+− XVartXXVartX αα

 

 

Here a one would be recorded for “Mean in Interval” as the interval contains five. 

 

Unfortunately this method seems to produce negative terms during some of the matrix 

summation steps. These runs were excluded from the simulation and only the valid runs 

were used. Practically, this means that this method cannot be used when it returns a 

negative value for the variance calculation (i.e. the matrix summation). In section 4.3, the 

number of runs excluded will be stated for each simulation / method combination. 

 

 

4.2.1.3 Autocorrelation-length Matrix Method 
 

As can be seen from Table 4.1, the autocorrelation drops below  0877.0
96.1

=
n

 at lag 12 

(See Bartlett’s test from section 3.3.1.3), so k = 12 in the following variance formula:  
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The 95% confidence interval for the mean would be as follows: 
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]017.5;803.4[

]0.002959647.1910.4;0.002959647.1910.4[

])(;)([ 499;499;

+−

+− XVartXXVartX αα

 

A one would be captured for “Mean in Interval” here too, as the interval contains five. 
 

 

 

4.2.2 Batch Means Methods 
 

Table 4.2 contains the same AR(1) run values as in Table 4.1, and shows the means of the 

three batch means methods used. This information is all that is necessary for computing the 

confidence intervals using the Batch Means methods.  

 

Data Point AR(1) 
Batch Mean  

 (10 batches) 

Batch Mean  

 (50 batches) 

Batch Mean 

 (autocorrelation-length size) 

1 5.000 4.896 4.942 

2 5.297   

3 5.027   

4 4.920   

5 5.198   

6 5.334   

7 5.114   

8 4.915   

Warm-up 
Period 

9 4.333            4.466  

10 4.279    

11 4.188  4.498  

12 4.338    

13 4.299    

14 4.865    

15 4.489    

16 4.469    

17 4.878    

18 4.583    

19 3.997    

20 4.872    

21 5.130  5.328 5.317 

… … … … … 

481 4.692  4.253  

482 4.285    

483 3.853    

484 4.527    

485 4.377    

486 3.972    

487 3.751    

488 4.256   5.113 

489 4.427    

490 4.390    

491 4.857  4.927  

492 4.672    

493 4.507    

494 4.752    
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495 4.488    

496 4.818    

497 5.109    

498 5.271    

499 5.572    

500 5.220    

Table 4.2: Batch Means methods calculations 

 

 
4.2.2.1 Batch Means (10 batches) Method 

 
The batch means (from batches of size 50) are computed using the following formula from 

Chapter 3: 
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The 95% confidence interval for this method is calculated as: 
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This interval does contain five, so a one would be captured under “Mean in Interval” 

variable. 

 

 

4.2.2.2 Batch Means (50 batches) Method 
 
The batch means are computed using the following formula from Chapter 3: 
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And the variance is calculated from: 
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Using this method, the 95% confidence interval for the mean would be calculated as follows: 
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]99997.4;82067.4[

]50/100.0010.2910.4;0.100/502.010-[4.910

]50)10(ˆ;50)10(ˆ[ 50150505015050

+

+− −− VtXVtX

 

 
As this interval does not contain five, a zero would be captured under “Mean in Interval” 

variable. 

 

 

4.2.2.3 Batch Means (Autocorrelation-length batch size) Method 
 
As the autocorrelation length is 12 (see 4.2.1.3) which is not a divisor of 500, a “warm-up” 

period of eight observations is used. The first batch, of size 12, therefore starts at 

observation nine. This batch size yields 41 batches for this sample. 

 

The 95% confidence interval is constructed as: 

 

]94715.4;86730.4[

]41/0168.0021.2907.4;0.016/412.021-[4.907
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This interval does not contain five, so a zero would be captured under “Mean in Interval” 

variable. 
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4.3 Model Results 

 
For each of the five time series models and one normal distribution model which were 

tested, the above simulation was run 10,000 times each using 500 observations. When 

generating each time series, it was assumed that each series had an expected value of 5 

and a variance of 0.1. This is what a typical PMD series would look like. Using these values, 

the necessary parameters for each model could be calculated, as will be shown. After each 

simulation run, a check was made to see if the two confidence intervals constructed (50% 

and 95% intervals were tested) contained the true mean, 5. The number of times the interval 

actually did contain this mean was recorded for each time series model and each method 

used. A simple check could then be performed which will show the effectiveness of each 

method. 

 

The reason that two intervals, 95% and 50%, were tested was because although 95% 

confidence intervals are commonly used in practice, if some of the methods over-estimated 

the size of the interval in certain time series models, it would be difficult to quantify by how 

much they over-estimated and compare that number to how much other models under-

estimated the confidence interval size. To rectify this problem, 50% confidence intervals 

were also tested. Now, if a method produced intervals which contained the true mean 40% 

of the time, this number would be comparable to and equally as bad as a method which 

contained the mean 60% of the time, although for practical purposes the method which 

contained the mean 60% of the time should be preferred in order to remain on the 

conservative side. 

 

Apart from the six confidence interval construction methods outlined above,  the “standard” 

method used for independent data was also included: 

 

][ 2/
n

S
tX α±  

 

in order to show its drawbacks when it comes to time series (serially correlated) datasets. 

For all of the models, all tw  were generated to follow a N(0, 0.32) distribution. This produced 

series which were most like an actual PMD dataset.  
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4.3.1 AR(1) Model 
 
As mentioned in (3.2) the model for this series looks as follows:   

ttt wxx ++= − 18.0 1  

After generating this series 10,000 times, and summing the number of times the constructed 

intervals contained the true mean for each method, the following results were obtained: 

AR(1) - 95% Interval Simulation Results
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Figure 4.1 - AR(1) 95% interval simulation results 
 

As the constructed confidence interval was supposed to be a 95% interval, one can see that 

some of the above methods did not perform well. The Standard method employed for 

independent data did particularly poorly, where only 47% of the time the interval contained 

the true mean. The best of the methods was the Batch Means (10 batches of size 50) 

method which constructed intervals containing the mean 94% of the time, followed closely 

by the Autocorrelation length matrix method at 92%.  737 of the 10,000 observations (7.4%) 

produced negative matrix sums for the Quarter-matrix method and were excluded, so the 

81% recorded for this method is interpreted as 81% of the valid runs contained the true 

mean. This same number of invalid runs would apply for the 50% intervals in each method 

as well. 
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AR(1) - 50% Interval Simulation Results
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Figure 4.2 - AR(1) 50% interval simulation results 
 

Figure 4.2 contains the 50% interval simulation results for the same time series data. As with 

the 95% simulation results, all of the confidence interval construction methods under-

estimated the correct sizes of the confidence intervals. Again, the Standard method 

performed badly at 14%, while the Batch Means (10 batches) method and the 

Autocorrelation length matrix method performed the best, coming closest to the expected 

50%. 

 

 

4.3.2 AR(2) Model 
 
For this model,  

211
][

φφ

α

−−
=txE  

 

Here it is assumed that 6.01 =φ and 2.02 =φ , then one can again solve for 1=α . The time 

series now looks like:   

tttt wxxx +++= −− 12.06.0 21
 

 

Here 703 runs were invalid for the Quarter Matrix method (7.0%). The results for this model 

are as follows: 
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AR(2) - 95% Interval Simulation Results
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Figure 4.3 - AR(2) 95% interval simulation results 

  

 

AR(2) - 50% Interval Simulation Results
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Figure 4.4 - AR(2) 50% interval simulation results 

 
In both the 95% and 50% confidence interval simulations which were run, the Batch Means 

(10 batches) generated the confidence intervals which contained the true mean the closest 

number of times compared to the expected, followed again by the Autocorrelation matrix 

method. 
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4.3.3 MA(1) Model 
 

For this model it is assumed that 8.01 =θ , so the model will look as follows: 

 

18.05 −++= ttt wwx  

 
Here 772 runs were invalid for the Quarter Matrix method (7.7%). The results for this model 

are as follows: 

MA(1) - 95% Interval Simulation Results
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Figure 4.5 - MA(1) 95% interval simulation results 

 
Here one can see that auto-correlation matrix and all of the batch means methods produced 

the best confidence intervals.  

 

Figure 4.6 shows that the same methods performed well for the 50% confidence intervals, 

all producing intervals containing the true mean ranging from 42% to 48% of the time. The 

Matrix method performed the poorest in both the 95% and 50% results.  
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MA(1) - 50% Interval Simulation Results
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Figure 4.6 - MA(1) 50% interval simulation results 

 
 

 

4.3.4 MA(2) Model 
 

For this model it is assumed that 8.01 =θ  and 12 =θ , so the model will look as follows: 

 

21 1.08.05 −− +++= tttt wwwx  

 
Here 738 runs (7.4%) were excluded from our Quarter Matrix calculations below. The results 

for this model are as follows: 
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MA(2) - 95% Interval Simulation Results
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Figure 4.7 - MA(2) 95% interval simulation results 

 

MA(2) - 50% Interval Simulation Results
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Figure 4.8 - MA(2) 50% interval simulation results 

 

 
Figure 4.7 and 4.8 show that the auto-correlation matrix method and all the batch means 

approaches performed very well here again. 
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4.3.5 ARMA(1,1) Model 
 

For this model it is assumed that 9.01 =φ  and 5.01 −=θ , so the model will look as follows: 

 

11 5.09.05 −−++= ttt wwx φ  

 
Here 630 runs (6.3%) were excluded from our Quarter Matrix calculations below. The results 

for this model were as follows: 

ARMA(1,1) - 95% Interval Simulation Results
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Figure 4.9 - ARMA(1,1) 95% interval simulation results 

 
Once again, one can see how poorly the Standard method of interval construction performs 

with serially correlated data in both the 95% and 50% confidence intervals. The 

Autocorrelation-length matrix method and the Batch means (10 batches) again seem to 

outperform the other methods. 
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ARMA(1,1) - 50% Interval Simulation Results
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Figure 4.10 - ARMA(1,1) 50% interval simulation results 
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4.3.6 Normal(5, 0.1) Model 
 

 
Here all the points in the series were generated using a N(5,0.1) distribution, therefore each 

point is independent of all others. Here 1150 runs (11.5%) were excluded from our Quarter 

Matrix calculations below. The results for this model were as follows: 

 

Normal(5,0.1) - 95% Interval Simulation Results
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Figure 4.11 - N(5, 0.1) 95% interval simulation results 

 

Here one can see that the traditional method of calculating confidence intervals does very 

well with 94% of all constructed intervals containing the true mean. However, many of the 

other methods, which were primarily developed to deal with serially-correlated data, also did 

very well here. 
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Normal(5,0.1) - 50% Interval Simulation Results
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Figure 4.12 - N(5, 0.1) 50% interval simulation results 
 

Figure 4.12 shows that the Standard method performed very well with a hit-rate of 52% 

when constructing 50% intervals, but several of the other models performed very well too. 

 

 

 

4.3.7 Model Results Summary 
 
Each of the summary tables 4.3 and 4.4 consist of the results from the bar charts shown in 

sections 4.3.1-4.3.6. For each time series model’s column, the method which was closest to 

the expected result has been shaded and bolded. 

 

95% Confidence Interval summary 

Method AR(1) AR(2) MA(1) MA(2) ARMA(1,1) Normal(5,0.1
2
) MAD 

Standard 47% 42% 81% 79% 29% 94% 33% 

Matrix 65% 65% 68% 67% 64% 72% 28% 

Quarter Matrix 81% 81% 82% 80% 80% 88% 13% 

Auto-Matrix 92% 91% 94% 94% 91% 92% 3% 

Batch Means (10) 94% 94% 95% 95% 93% 89% 2% 

Batch Means (50) 86% 84% 94% 94% 75% 95% 7% 

Batch Means (Auto) 87% 85% 92% 93% 86% 92% 6% 

                

MAD 16% 18% 8% 9% 21% 6%   

Table 4.3: 95% confidence interval result summary 
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Table 4.3 shows that the 95% confidence interval construction method with the lowest MAD 

(Mean Absolute Deviation) at 2%, across all time series models, is the Batch Means (10 

batches) method. Poorest of all the methods employed was the Standard method of 

calculating confidence intervals for independent data with a MAD of 33%. This shows how 

important it is in practice to determine beforehand whether one’s data is independent or 

serially correlated. Notice, however, how well the method performed for the normal model, 

with its intervals containing the true mean 94% of the time versus an expected 95%.  

 

All of the models calculated intervals for the normal (independent) data well, with the 

average deviation of 6% across all models. With exception of the Batch Means (10) and 

Auto-Matrix methods, all the methods seemed to struggle calculating the correct size 

confidence intervals for the AR and ARMA models. The average deviation from the 

expected was 16% for the AR(1), 18% for the AR(2) and 21% for the ARMA(1,1) models. 

 
50% Confidence Interval summary 
 

Method AR(1) AR(2) MA(1) MA(2) ARMA(1,1) Normal(5,0.1
2
) MAD 

Standard 14% 13% 33% 30% 10% 52% 26% 

Matrix 25% 24% 25% 25% 22% 27% 25% 

Quarter Matrix 34% 33% 34% 33% 34% 40% 15% 

Auto-Matrix 45% 41% 48% 47% 42% 44% 6% 

Batch Means (10) 45% 44% 49% 47% 42% 45% 5% 

Batch Means (50) 37% 34% 48% 48% 27% 43% 11% 

Batch Means (Auto) 42% 34% 42% 41% 34% 48% 10% 

                

MAD 16% 18% 10% 11% 20% 8%   

Table 4.4: 50% confidence interval result summary 

 
Table 4.4 shows that the 50% confidence interval construction method with the lowest MAD 

(Mean Absolute Deviation) at 5%, is the Batch Means (10 batches) method. Both the 

Standard method and Matrix method performed poorly here, with MADs of 26% and 25% 

respectively. The methods performed best with the normal data again, with an average 

deviation of 8% across all methods. The methods again performed quite well on the MA(1) 

and MA(2) data as well. 

 
The results in Table 4.3 and Table 4.4 show that overall, the best of the tested methods was 

the Batch Means (10 batches) method, followed by the Autocorrelation-length 

autocovariance method, while the poorest of all the methods was the Standard method of 

calculating confidence intervals. 
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4.4 Standard Error Histograms 

 

During each simulation which was run for section 4.3, the standard error was recorded. This 

means that for each time series model, and for each confidence interval construction 

method, 10,000 standard errors were recorded (except for the Quarter-matrix method where 

only the standard errors from the valid runs were recorded).  

 

These standard errors were then plotted in the form of histograms.  The theoretical standard 

error of each time series model was then calculated and displayed on the histograms. The 

distribution of standard errors from the simulation could then be compared to the true 

standard error for that particular model. 

 

4.4.1 True standard errors 
 

 
For each of the time series models, the true standard error can be calculated as: 

 

)var(XSE =   where  























=

−−

−

−

0121

1

012

2101

1210

2

1
)var(

γγγγ

γ

γγγ

γγγγ

γγγγ

L

OOMM

MO

L

L

nn

n

n

n
X  

 

Each simulation was run with 500 observations therefore n = 500. In order to solve for each 

auto-covariance, kγ , in the matrix above, it is necessary to first obtain all the auto-

correlation values, kρ .  

 

Now for AR(p) processes, all kρ can be found by using the following Yule-Walker equations: 
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By substituting in all known kφ  and using the properties that kk ρρ =− and 10 =ρ , one can 

solve for each kρ recursively. 
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For MA(q) processes, it can be shown that all kρ can be solved by using the ACF which has 

the following form: 
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Once all kρ have been calculated, one can use the equality 
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For an ARMA(1,1) process all kγ can be calculated using the following properties: 
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Using the above properties and the constants used in section 4.3 ),,,( 2121 θθφφ  the 

following theoretical standard errors were calculated for each model: 

 

Model True S.E. 

AR(1) 0.07040 

AR(2) 0.07031 

MA(1) 0.02544 

MA(2) 0.02685 

ARMA(1,1) 0.25213 

Normal(5,0.1) 0.01414 

Table 4.5 True standard errors 

The standard error for the normal data set was simply calculated as: 
500

1.0
=SE  
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4.4.2 MA(2) Histograms 
 

This section contains examples of what the histograms of standard errors, obtained from the 

simulations, look like for a particular time series model, in this case the MA(2) model. All of 

the remaining time series models’ histograms can be found in Appendix A. All of the 

histograms were drawn in SAS using the same scale (w.r.t the x-axis) across the different 

methods, so as to make comparisons easier. 

 

 

Figure 4.13 - MA(2) SEs - Standard Method 

 

Figure 4.13 contains the histogram of simulated standard error values (green) for the 

standard method. A kernel density function was used to smooth the data. The red dotted 

line is the mean of all the standard errors generated, while the blue dotted line represents 

the true standard error for this time series (with the specified constants). The histogram 

shows that all of the simulated standard errors which were generated for the MA(2) model 

were too small. This would explain why this method of creating confidence intervals did 

poorly during the simulation (see section 4.3.4). 
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Figure 4.14 - MA(2) SEs – Autocovariance Matrix Method 

 

Figure 4.14 shows that the autocovariance matrix method did even poorer than the standard 

method because, even although some of the generated standard errors were larger than the 

true standard error, the mean of the standard errors was 0.014955, whereas the true 

standard error was 0.026853. 
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Figure 4.15 - MA(2) SEs – Autocovariance Quarter Matrix Method 

 

Figure 4.15 shows that many of the standard errors generated using the autocovariance 

quarter matrix method were better than the previous two methods, but the mean was still 

lower than the true standard error. The sample size here was 9261, showing that more than 

7% of simulation runs yielded invalid results which were discarded. 
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Figure 4.16 - MA(2) SEs – Autocorrelation-length Matrix Method 

 

The Autocorrelation-length matrix method produced standard errors which were very close 

to the true mean, with a mean of 0.026012. This differs from the true mean by 0.0084 or 

3.14%. This explains why this method performed very well during the simulation. The 

method created confidence intervals which contained the true mean 94% of the time when it 

was creating 95% intervals, and 47% of the time when it was creating 50% intervals. 
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Figure 4.17 - MA(2) SEs – Batch Means (10 batches) Method 

 

The first of the batch means methods which was tested was the 10 batches of size 50 

method. It performed very well with a mean standard error of 0.025199, differing from the 

true mean by 6.16% 
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Figure 4.18 - MA(2) SEs – Batch Means (50 batches) Method 
 
Figure 4.18 shows that the Batch Means method with 50 batches of size 10 also performed 

very well with a mean standard error of 0.025762. 
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Figure 4.19 - MA(2) SEs – Batch Means (Autocorrelation-length) Method 

 
Although Figure 4.19 shows that all of the standard errors generated by the auto-correlation 

length batch means method were below the true mean (the maximum standard error 

generated was 0.027114), it performed quite well with a mean standard error of 0.022429.  
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4.5 Actual PMD data 

 

Now that the best of the methods tested in section 4.3 has been established, those methods 

were applied to actual PMD data which were recorded in the field. For each dataset, the 

following steps will be performed: 

 

• The PMD-plot will be shown. 

• An autocorrelation plot will be examined in order to detect whether the data are 

serially correlated. 

• The data will be tested for stationarity. 

• The best methods, determined in section 4.3, will be used to construct confidence 

intervals. 

 

4.5.1 Hopetown to Britstown 
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Figure 4.20 - PMD plot: Hopetown to Britstown 

 
The data in figure 4.20 were recorded over a 17 hour period between the towns of 

Hopetown and Britstown, which are situated in Northern Cape Province of South Africa. 

Apart from the PMD spike near the end of the recording, the dataset appears to be 

stationary.  
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ACF Plot - Hopetown to Britstown
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Figure 4.21 - Autocorrelation plot: Hopetown to Britstown 

 
A quick look at the autocorrelation function plot shows that the data have significant 

autocorrelations up to at least lag 20. This means that the standard method of calculating 

confidence intervals is very likely insufficient and our other methods should be utilized. If the 

blue autocorrelation bars had dropped off below the 95% confidence limit lines from lag 1 

onwards, the standard, autocovariance and batch means methods would be expected to 

perform similarly. Table 4.6 contains output from the program EViews 3.1 which shows the 

statistics required to test the data for stationarity. 

 

Null Hypothesis: Hopetown to Britstown data has a unit root  

Exogenous: Constant   

Lag Length: 3 (Automatic based on AIC, MAXLAG=25) 
     
     
   t-Statistic   Prob.* 
     
     

Augmented Dickey-Fuller test statistic -5.222724  0.0000 

Test critical values: 1% level  -3.448889  

 5% level  -2.869605  

 10% level  -2.571135  
     
     

*MacKinnon (1996) one-sided p-values.  

  
  

Table 4.6 – Augmented Dickey-Fuller stationarity results for Hopetown to Britstown 
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Recall from section 3.4, that the more negative the ADF statistic, the stronger the rejection 

of the null hypothesis that there is a unit root (i.e. that the data are non-stationary). Here one 

can see the critical value for a 5% level of significance is -2.87. A test statistic lower than -

2.87 therefore implies stationarity, whereas a value greater than -2.87 does not imply 

stationarity. The τ -statistic for this dataset is -5.22, therefore the dataset is stationary. 

Knowing that the data are stationary, one can proceed to utilizing the interval construction 

methods tested in section 4.3. 

 

The following standard errors were calculated, using the standard and two best methods 

from section 4.3, for the Hopetown to Britstown dataset: 

 

Method Standard Error 95% Lower 95% Upper 

Standard 0.0159 4.7479 4.8104 

Auto-Matrix 0.0616 4.6579 4.9003 

Batch Means (10) 0.0281 4.7225 4.8355 

Table 4.7 – Standard Errors and 95% confidence limits for Hopetown to Britstown data. 

 

The mean of the Hopetown to Britstown data was 4.779. Combining this with the standard 

errors calculated by the different methods produces lower and upper confidence limits as 

shown in Table 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 - 95% interval - Standard method: Hopetown to Britstown 
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Figure 4.23 - 95% interval - Batch Means (10) method: Hopetown to Britstown 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   Figure 4.24 - 95% interval - Autocorrelation-length Matrix method: Hopetown to Britstown 

 

 
Figures 4.22 – 4.24 show the different confidence intervals for the mean of the PMD dataset 

using the various interval construction methods. It is clear that for serially-correlated data, 
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the methods tested in section 4.3 produce much wider and more conservative confidence 

intervals than the standard method.  

 

Using the above data, a telecoms company could conclude that the intervals constructed 

would contain the true mean of the fibre 95% of the time. They could then use this piece of 

information to decide whether the fibre’s mean PMD level is too high (in which case the fibre 

might need replacing) and whether or not they could increase the data transfer rate being 

utilized. 

 

 

4.5.2 Britstown to Victoria West 
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Figure 4.25 - PMD plot: Britstown to Victoria West 

 

 
The data in figure 4.25 were recorded over a 27 hour period between the towns of Britstown 

and Victoria West, which are situated in Northern Cape Province of South Africa. Here too 

the dataset appears to be stationary.  
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ACF Plot - Britstown to Victoria West
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Figure 4.26 - Autocorrelation plot: Britstown to Victoria West 

 
The autocorrelation function plot of the dataset shows significant serial correlation between 

the data points. 

 

Null Hypothesis: Britstown_VicWest has a unit root  

Exogenous: Constant   

Lag Length: 3 (Automatic based on AIC, MAXLAG=25) 
     
     
   t-Statistic   Prob.* 
     
     

Augmented Dickey-Fuller test statistic -4.249485  0.0006 

Test critical values: 1% level  -3.451078  

 5% level  -2.870561  

 10% level  -2.571647  
     
     

*MacKinnon (1996) one-sided p-values.  
 

Table 4.7: Augmented Dickey-Fuller stationarity results Britstown to Victoria West data 
 

 
As the τ -statistic of this dataset is -4.249 is below the critical value of -2.87, one can 

conclude that the dataset is stationary and proceed to the next step. 

 

The following standard errors were calculated for this dataset: 
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Method Standard Error 95% Lower 95% Upper 

Standard 0.0188 4.2483 4.3218 

Auto-Matrix 0.0902 4.1082 4.4619 

Batch Means (10) 0.0351 4.2145 4.3556 

Tables 4.8: Standard Errors and 95% confidence limits for Britstown to Victoria West data 

 
The mean of the Britstown to Victoria West data was 4.285. Combining this with the 

standard errors calculated by the different methods produces lower and upper confidence 

limits as shown in Table 4.8.  

 

Graphically these confidence intervals are shown as in Figures 4.27 – 4.29: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.27 - 95% interval - Standard method: Britstown to Vic West 
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Figure 4.28 - 95% interval - Batch Means (10) method: Britstown to Vic West 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  Figure 4.29 - 95% interval - Autocorrelation-length Matrix method: Britstown to Vic West 
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4.6 Effects of Polarization Scramblers 

 

As mentioned in Chapter 2, fibres which are buried, as opposed to aerial (or a combination 

of buried/aerial), tend to show a lower variation in the different PMD values measured. This 

is because these fibres are not exposed to environmental shocks such as trains or trucks 

riding over the ground where the fibres are laid, as well as temperature and wind extremes. 

Stated another way, buried fibres take a longer time period to fully sample through each 

possible state of the fibre.  
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Figure 4.30 - Unscrambled data 

 

Consider Figure 4.30 which contains PMD data generated in a laboratory. The series does 

not look very “random” or independent, with its steady upwards trend. This is one of the 

problems with measuring PMD. If the data are non-stationary – as one would expect the 

above dataset to be – then the interval construction methods already described cannot be 

used. 
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Null Hypothesis: Unscrambled has a unit root  

Exogenous: Constant   

Lag Length: 2 (Automatic based on AIC, MAXLAG=25) 
     
     
   t-Statistic   Prob.* 
     
     

Augmented Dickey-Fuller test statistic -2.002448  0.2858 

Test critical values: 1% level  -3.449977  

 5% level  -2.870084  

 10% level  -2.571391  
     
     

*MacKinnon (1996) one-sided p-values.  
Table 4.9: Augmented Dickey-Fuller stationarity results - unscrambled data 

 

As expected the Augmented Dickey-Fuller τ -statistic of -2.00 is above the 5% critical value 

of -2.87, implying that this dataset is not stationary. 

 

Polarization scramblers were fitted to the start and end sections of this fibre, and the same 

measurements were carried out. Figure 4.31 shows the output. 
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Figure 4.31 - Scrambled data 

 

It is immediately clear that the use of scramblers makes the data more independent and less 

serially correlated. The scrambler literally scrambles the states of the fibre and makes each 
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observation from scratch. Measurements made on an unscrambled fibre (especially if 

buried) are recorded when the fibre’s orthogonal axes have not been reset after each 

recording. The stationarity test for the scrambled data, which confirms the stationarity, can 

be found in Table 4.10. 

 

Null Hypothesis Scrambled has a unit root  

Exogenous: Constant   

Lag Length: 5 (Automatic based on AIC, MAXLAG=25) 
     
     
   t-Statistic   Prob.* 
     
     

Augmented Dickey-Fuller test statistic -5.756122  0.0000 

Test critical values: 1% level  -3.447675  

 5% level  -2.869071  

 10% level  -2.570849  
     
     

*MacKinnon (1996) one-sided p-values.  
 

Table 4.10: Augmented Dickey-Fuller stationarity results - Scrambled data 

 

Apart from allowing one to quickly get a picture of the range of possible PMD values, 

scrambling also makes it more likely that a fibre’s PMD data are stationary. This then allows 

one to use the methods tested in section 4.3. 
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5 Conclusion 
 
Polarization mode dispersion is a statistical effect created by minute random deviations, and 

an effect found to some extent in all fibres. Understanding PMD, its contributing factors and 

its effect on system performance becomes critical when planning to build a new optical 

network or when considering an existing installation. 

 

The following conclusions, which answer the research questions mentioned in Chapter 1, 

and contributions to current knowledge were reached during this project: 

 

• The Standard method of calculating standard errors and confidence intervals is 

insufficient for PMD data, as well as other forms of time series data, as it produces 

confidence intervals which are too narrow. The confidence intervals which are 

constructed with the other methods are wider and therefore more reliable. 

• There is a significant problem with the application of the Quarter-matrix method as 

suggested by Box and Jenkins [16], namely that some of the variances, and 

therefore standard errors, calculated are negative. The Autocorrelation-length Matrix 

method is a significant improvement upon this method. 

• The Batch Means method works well especially when there is a relatively large batch 

size. In the simulation, the method with 10 batches of size 50 performed the best of 

all the methods tested. 

• The field data which were tested was found to be stationary. 

• The use of PMD scramblers greatly reduces serial correlation between data points. 

The resultant datasets are also very likely to be stationary. 

 

Potential future areas of research include: 

• Methods for determining optimal batch size when using the Batch Means method. 

• Methods for determining sample sizes when a given precision is required. 

• Whether the use of polarization scramblers increase/decrease the confidence 

intervals produced. 
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7 Appendix 
 
AR(1) data – Various methods 
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AR(2) – Various methods 
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MA(1) data – Various methods 
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ARMA(1,1) data – Various methods 
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Normal (5,0.1) data – Various methods 
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