
,Vlak ~ '''lr own notes.
1\1 EYI':I? underline or

'",,.·itc in }! hook
RHODES UNIVERSITY

LIBRARY

tl. No TI1.C'.?.-:::-J.L
llRN._ --............ _--...... _ ... _-

Constructing a Low-Cost, Open-Source, VoiceXML

gateway

Submitted in fulfilment

of the requirements of the degree

Masters in Computer Science

of Rhodes University

Adam King

March 22, 2007

Abstract

Voice-enabled applications, applications that interact with a user via an audio channel, are used ex

tensively today. Their use is growing as speech related technologies improve, as speech is one of the

most natural methods of interaction. They can provide customer support as IVRs, can be used as an

assistive technology, or can become an aural interface to the Internet. Given that the telephone is used

extensively throughout the globe, the number of potential users of voice-enabled applications is very

high.

VoiceXML is a popular, open, high-level, standard means of creating voice-enabled applications

which was designed to bring the benefits of web based development to services. While YoiceXML

is an ideal language for creating these applications, YoiceXML gateways, the hardware and software

responsible for interpreting VoiceXML applications and interfacing with the PSTN, are still expensive

and so there is a need for a low-cost gateway.

Asterisk, and open-source, TDMNoIP telephony platform, can be used as a low-cost PSTN inter

face. This thesis investigates adding a YoiceXML service to Asterisk, creating a low-cost YoiceXML

prototype gateway which is able to render voice-enabled applications.

Following the Component-Based Software Engineering (CBSE) paradigm, the YoiceXML gateway is

divided into a set of components which are sourced from the open-source community, and integrated

to create the gateway. The browser requires a YoiceXML interpreter (OpenYXI), a Text-To-Speech

engine (Festival) and a speech recognition engine (Sphinx 4).

The integration of the components results in a low-cost, open-source VoiceXML gateway. System

tests show that the integration of the components was successful, and that the system can handle

concurrent calls. A fully compliant version of the gateway can be used in the real world to render

voice-enabled applications at a low cost.

Acknowledgements

Most importantly, to my family. Your support, love and sacrifices will never go unnoticed, and have

got me where I am today.

To Alf, whose influence and hard work is evident on every page of this thesis. Thanks for all the

years of guidance, help and advice.

To Peter, who has provided valuable input and helped shape this project into what it is today. Thank

you for the time and effort spent in making my masters studies possible.

To the Computer Science department and associated staff here at Rhodes . It has been pleasure being

part of such a great team.

To my peers, and friends , for all the support and friendship, and for providing a valuable place to

bounce ideas off.

Finally, to Grahamstown, Rhodes and the Rat, without which I wouldn ' t be who I am today.

hit ...

l~. :.. h uk
{)l ;)nlC ~a 1"'r~

Contents

1 Introduction 10

1.1 Aim . . 11

1.2 Methodologies and environment 12

1.2. 1 Component-based software engineering 12

Thesis Implications 14

1.2.2 Agile and extreme programming . 14

Thesis Implications . 17

1.2.3 Environment 17

1.3 Document overview. 18

2 Related work 19

2.1 Voice-enabled applications and IVRs . 19

2.2 VoiceXML .. . 22

2.2.1 Origins and definitions 22

2.2.2 VoiceXML in detail. . 26

2.2.2.1 Architectural model 26

2.2.2.2 Implementation platform requirements 28

2.2.2.3 Applications 28

CONTENTS 2

2.2.2.4 Form Interpretation Algorithm (FIA) 29

2.2.2.5 Summary 32

2.2.3 Advantages of VoiceXML 32

2.2.4 Summary 33

2.3 Asterisk ... , . 34

2.3.1 What is Asteri sk? . 34

2.3.2 The PSTN interface . 37

2.3.3 Extending Asteri sk 38

2.3.4 Summary 39

2.4 Summary 40

3 Component selection and system design 41

3. 1 Requirements and restrictions . 41

3.2 OpenVXI , 43

3.2.1 Speech browser . 44

3.2.2 Platform components . 45

3.2.3 Summary 46

3.3 Festival 46

3.3.1 . Festival interfaces. 47

3.3.2 Alternatives . 48

3.3.3 Summary 48

3.4 Sphinx 49

3.4. 1 Alternatives . SO

3.4.2 Summary SO

3.5 System architecture 51

3.6 Summary . , .. . 52

CONTENTS

4 Building the gateway: Phase 1

4.1 Creating an Asterisk application

4.1.1 Creating the test

4.1.2 The voicexml application module .

4.2 Asterisk and Open VXI .

4.2.1 Creating the test

4.2.2 Adding the VoiceXML interpreter to the voicexml application

4.2.3 Running the test

4.3 Giving the gateway voice

4.3.1 The prompt API

4.3 .2 SSML parser

4.3.3 Creating the prompt queue

4.3.4 Playing the prompts

4.3.4.1 Audio

4.3.4.2 Synthesized speech

4.3.5 Running the test

4.4 Summary ..

S Building the gateway: Phase 2

5.1 Creating the Test ...

5.2 Adding DTMF support

5.3 Adding Sphinx

. ..

5.3.1 Creating Sphinx applications.

5.3.2 JNI and pipes - a first attempt

3

S3

53

54

54

57

57

58

59

62

62

64

66

67

68

70

73

74

10

76

77

80

80

81

CONTENTS

5.3.3 The client-server approach

5.3.4 SphinxFarrn

5.3.5 Testing the recognize application .

5.4 Results

5.5 Final testing.

5.6 Summary ..

6 Conclusion

6.1 Completed work.

6.2 Achievements . .

6.3 Future work and extensions.

6.4 Conclusion

References

A VoiceXML 2.0 elements

B VoiceXML 2.1 elements

C Sample zaptel configuration files

D Application module skeleton

E A Sphinx 4 application

F Sphinx configuration

4

85

87

89

92

93

96

98

98

100

100

101

102

110

112

113

115

117

119

List of Figures

2, I A web browser requesting and displayi ng a web page 23

2,2 The W3C Speech Interface Framework [90] , 24

2.3 A simple ' Press One' VoiceXML application 25

2.4 The VoiceXML architectural model , as described by the VoiceXML 2,0 specification

[56] "" "" " "' , ',',' , '," "',""""""" 27

2,5 A VoiceXML gateway requesting and rendering a VoiceXML page 33

2,6 A simple ' Press one' dial plan IVR , , , , , , , , , , , , , , , , 35

2,7 A simple ' Press one' IVR system with re-prompting capabilities 36

3, I The OpenVXI architecture, as described by Eberman et ai, [24] 44

3,2 The VoiceXML gateway's architecture , , , , , , , , , , , .. , 51

4, I The core of the gateway after Asterisk and Open VXI are integrated. 61

4,2 The new architecture reflecting the integration of Festival , , , . , , 74

5, I The final gateway architecture , , , , , , , , , , , , , . . , , . , , .. ' , ' , " 94

5

List of Tables

2.1 Vcommerce revenue models and their chances of success as described by Duggan (23) 21

2.2 Possible PSTN interfaces in South Africa and their current approximate prices (Oc-

tober 2006) (60) .. 38

3.1 Comparison of Sphinx 3.3 and Sphinx 4 performances, as shown in (14) 49

5.1 Sample test results 91

A.I VoiceXML elements in the VoiceXML 2.0 specification III

B.I Elements added or enhanced in the VoiceXML 2.1 specification 112

6

Glossary of terms

API Application Programming Interface,

ASR Automatic Speech Recognition,

ATOM Automated Telephone Disease Management.

BRI Basic Rate Interface,

CBSE Component-Based Software Engineering,

CLI Command Line Interface,

COM Component Object Model.

CORBA Common Object Request Broker Architecture,

COTS Commercial Off The Shelf.

DTMF Dual Tone Multi Frequency,

EMMA Extensible MultiModal Annotation,

FIFO First In First Out.

FXO Foreign Exchange Office,

FXS Foreign Exchange Station,

HMM Hidden Markov Model.

HTML HypterText Markup Language,

lAX Inter-Asterisk eXchange,

IDE Integrated Development Environment.

IPC Inter Process Communication,

7

ISDN Integrated Services Digital Network.

IVR Interactive Voice Response.

JNI Java Native Interface.

JVM Java Virtual Machine.

LAN Local Area Network.

MGCP Media Gateway Control Protocol.

PBX Private Branch eXchange.

PCM Pulse-Code Modulation

PDA Personal Digital Assistant.

PML Phone Markup Language.

PRI Primary Rate Interface.

PSTN Public Switched Telephone Network.

SIP Session Initiation Protocol.

SRGS Speech Recognition Grammar Specification.

SSML Speech Synthesis Markup Language.

TDM Time Division Multiplex.

TTS Text To Speech.

UDP User Datagram Protocol.

URL Uniform Resource Locator.

VOFR Voice Over Frame Relay.

VoiceXML Voice eXtensible Markup Language.

VoIP Voice over Internet Protocol.

VSP Voice hosting Service Provider.

WER Word Error Rate.

WSJ Wall Street Journal.

8

XML eXtensible Markup Language.

XP eXtreme Programming.

9

Chapter 1

Introduction

Voice-enabled services have been around for a while. Due to the improvement in speech-related

technologies, they are becoming increasingly popular. The potential to reach vast numbers of users is

very large. Telephones are a familiar sight in many homes and businesses worldwide, and provide a

relatively inexpensive, reliable means of communication. It follows that a voice-enabled application

which is able to interface with the PSTN has the potential to reach many users cheaply and reliably.

In addition to this, many people are used to interacting with the telephone, and it is therefore a very

familiar means of communication. While full natural language processing is not achievable at present,

well designed speech user interfaces can result in satisfied users.

The most common form of voice-enabled applications are Interactive Voice Response (rVR) sys

tems, which traditionally have been created using low-level, platform-specific languages. Newer

examples of voice-enabled applications include multimodal applications and information interfaces,

both of which require a bridging of the PSTN and IP networks, and applications to assist the visually

impaired or the elderly. VoiceXML (Voice eXtensible Markup Language) has been proposed for cre

ating voice-enabled applications. VoiceXML is an open, high-level, XML-based language aimed at

creating audio dialogs. Using VoiceXML brings all the advantages of web-based development to the

development of voice-enabled applications.

VoiceXML has sufficient functiona lity to replace, and extend, traditional IVR systems in a standard,

portable manner, as well as to create any other voice-enabled applications. These applications, de

scribed by VoiceXML, require rendering on a VoiceXML browser, in a relationship very similar to

the one that exists between web applications and web browsers. Because of the number of potential

PSTN users, these browsers should be capable of interacting with the PSTN. A browser with these

capabilities can be referred to as a gateway. These gateways must have specialised hardware to in

terface with the PSTN, which is very expensive. Consequently, VoiceXML gateway prices can begin

at $10 000 USD [37] . Hosting can be considered as a means of reducing costs. Hosted solutions do

10

CHAPTER 1. INTRODUCTfON 1 I

not require the outright purchase of a gateway; instead lines are hired on other gateways provided by

entities known as Voice hosting Service Providers (VSPs) [21). While thi s is beneficial , hosting costs

are still high, because the VSPs need to recoup the high gateway costs.

There is, therefore, a need for a low-cost VoiceXML gateway, and the purpose of thi s thesis is to in

vestigate the construction of such VoiceXML gateway. Asterisk, an open-source telephony platform,

provides an inexpensive PSTN interface through PC-based hardware, and so gives us the opportunity

to create a low-cost gateway. In this thesis we will be investigating the addition of a VoiceXML

service to the Asterisk system,

1.1 Aim

Defining a set of goals provides a clear benchmark against which the success of the thesis can be

evaluated. As said, the central thrust of the thesis revolves around the construction of a VoiceXML

gateway; more specifically, whether or not it is possible to create a VoiceXML gateway which is both

inexpensive and effective.

While it may be possible for an individual to create a browser from scratch, it is perhaps an unrea

sonable undertaking. We will therefore investigate the feasibility of constructing a usable VoiceXML

gateway using the Component-Based Software Engineering methodology (Section 1.2.1). Due to

time constraints the implemented gateway will not be fully compliant, but will instead be a proof-of

concept system.

Keeping the cost of the browser as low as possible is a major priority, and so other components/systems

used in the creation of the browser need to be at least free and preferably, where possible, open-source.

Therefore the research question of the thesis is:

Is it possible to create a low-cost, open-source VoiceXML gateway using Asterisk as

the telephony platform and integrating open-source components to provide the required

functionality?

We wi ll answer thi s question through the actual construction and testing of a such a gateway.

CHAPTER 1. INTRODUCTION 12

1.2 Methodologies and environment

This thesis will subscribe, to a certain degree and where appropriate, to certain methodologies. The

task of creating a VoiceXML gateway can be approached as the integration of two different disci

plines, namely Software Engineering and Systems Development. The Software Engineering aspect

governs how the system is structured - essentially the evolution of the system's architecture - while

actual implementation of the system is a Systems Development problem.

The two methodologies used for the thesis, Component-Based Software Engineering and Extreme

Programming wi ll be discussed here.

1.2.1 Component-based software engineering

The concept of Component-Based Software Engineering (CBSE) is not new and was originally pro

posed by Mcilroy at a NATO Software Engineering conference in 1968 [57] . He suggested a change

in the software industry whereby a new 'sub-industry' dealing in components would enable the mass

production of software, similar to the production of hardware. This new industry would create inde

pendent components. In McIlroy's proposal these components were routines of a high quality, which

could be used in many different contexts. Software systems would then be created by integrating

those routines which best implement the required portions of functionality. In addition to dimin

ishing development times, this process would also result in the creation of software with improved

reliability and performance, as the components are written, once, by experts, and then distributed

across many different applications [57].

The modern definition of CBSE does not appear to have changed dramatically. It can still be thought

of as a building block-based style of development [66], with the additional restriction of having to fall

within the constraints of a clearly defined architecture [13]. There is evidence of this industry being

active today. Some successful examples of companies selling components are componentsource.com,

ilog.com and flashline .com [86]. The total value of components sold in 1998 was $440 million USD.

While improving development time, reliability and performance, CBSE also leads to ease of mainte

nance [18, 13] and improved flexibility [10].

The definition of a component has evolved somewhat from what was originally proposed as a rou

tine. Cox and Song [18] refer to a component as an independent software artifact which has a clearly

defined interface to provide a specific functionality. Cai et al. [13] state that a component has three

features - it is an independent and replaceable part of a system which provides a specific function

ality, fornls part of an architecture and communicates with other components via interfaces. Grundy

CHAPTER 1. INTRODUCTION 13

el al. [32] define a component as being an extension of an object. Events are used to advertise the

component's behavior, and the component is responsible for making public information about its

data, methods and events, allowing interaction from other components. Conversely, Szyperski dis

tinguishes between a component and an object [86]. He claims that a component is an independent,

executable piece of software which has no externally visible state and which may be created by a

third party. Objects, on the other hand, are not independent and executable, are instantiated and have

a unique identity.

While these definitions may differ, there are some common themes. A component is an independent,

executable piece of software which provides a defined functionality within a well defined architecture,

and is replaceable. Components within a system interact through well defined interfaces.

Components can be sourced by two methods, building components from scratch or obtaining pre-built

ones. Building components from scratch forfeits any development time gains, but still can provide

flexibility, perfonnance benefits, ease of maintenance and the possibility of structuring development

teams. In addition to these benefits, purpose built components will best fit the system, not requiring

the configuration effort third party components would [86]. Since one of the main motivating factors

for using CBSE in this thesis is that its use can significantly reduce development time and simplify the

development process, we are interested only in obtaining third party components. Such components

are known as Commercial Off The Shelf (COTS) components. When using COTS components the

Software Engineering task becomes one of "application assembly" [10]. This means, however, that

one is reliant on the creator of the COTS component for long term support [10] . To avoid such

vendor lock-in when creating COTS based components systems, it is desirable to create an open

system, as described by Oberndorf [67]. An open components based system is one which allows

simple interchanging of components. Essentially, it strives for flexibility. This is achieved by using

well documented and standard interfaces represented by APls, protocols or file standards. Open in

this context refers to the interfaces being open.

We can now define a component as it will be used for the purposes of this thesi s:

Component: An independent, replaceable, executable piece of third-party software with well de

fined interfaces used to provide a specific functionality within a larger system.

Following a COTS based approach may complicate the issue of component selection somewhat, as

there is no guarantee that the components will run on the same platforms or be written in the same

languages. While careful component selection may help, it can also lead to a possible sacrifice in

quality if the ideal component is not compatible with the system's chosen platform or language.

There are, however, a number of CBSE enablers available such as Common Object Request Broker

CHAPTER 1. INTRODUCTION 14

Architecture (CORBA), Component Object Model (COM) and the subsequent .net framework, and

JavaBeans [13, 66], which facilitate component interaction. In addition to these formal methods,

techniques such as simple client-server architectures can be used to integrate components.

CBSE is therefore an excellent methodology to facilitate the creation of a VoiceXML gateway. This

piecemeal approach can drastically reduce the time and effort required to develop the gateway. In

addition, it will result in improved stability and performance. The creation of an open system means

that the components of the gateway will be 'plug and play-able'. This allows other developers with a

different set of requirements, such as not having a low-cost pre-requisite, to add components of their

choice.

Thesis Implications What are the implications of the CBSE approach for our project? Firstly,

the VoiceXML gateway requirements have to be determined and analyzed to identify the required

components. Next the components themselves must be sourced. Besides having to be supported, be

sustained and have open interfaces, the components also have to adhere to the requirements prescribed

by the thesis. Namely, they have to be pre-built, COTS, systems which have open standards, are robust

and free, and must be able to perform adequately in a real world environment. Succinctly, a COTS

based Open-Source system with open standards.

Once the components have been identified and sourced, a simple architecture can be created display

ing the component's interaction. Finally, the components can be integrated according to a develop

ment methodology.

1.2.2 Agile and extreme programming

Attention to Systems Development methodologies has been shown to be beneficial [26] to develop

ment projects still, traditional methods such as the Waterfall method, Unified Process and the Spiral

Model have been criticized in part for not being responsive enough to change, being over complex

and for treating people as predictable entities [53, 2]. Sommerville [81] discusses the need for Agile

methodologies. Traditional 'plan-based' software development methodologies emphasized careful

and meticulous planning, formal documentation and a tightly controlled development process. A

large effort is therefore required before the actual development process can begin. The rigidity and

necessity of documentation was due to the largeness of the projects and the fact that development

teams were often disparate and geographically separated. The planning process represents a large

overhead, which can overwhelm smaller projects. In addition, because of the pre-development effort,

traditional methods do not cater for changes in requirements very well. When change occurs it occurs

at a high cost, as the specifications and designs have to be altered to reflect the changes.

CHAPTER 1. INTRODUCTION IS

Agile methods, as described by Sommervil!e [81 J, are considered an alternative to these 'plan-driven',

heavyweight processes. These Agile methods al! subscribe to the Agile Manifesto [40].

Focusing on the actual creation of software as opposed to design and documentation, Agile methods

are capable of reducing both the overhead and the cost of change. These methods are al! iterative,

with quick development cycles aimed at frequently delivering working software to the customer.

Abrahamsson [I] states that a methodology can be considered Agile if it is incremental, cooperative,

straightforward and adaptive.

While there are many methods subscribing to the Agile process, there are a number of principles

common to each. Users are heavily involved in the development processes, providing and prioritizing

new requirements, and testing functionality. Delivery of software is incremental, with each delivery

containing new functionality. Emphasis is placed on the people (and their skil!s) involved in the

development process as opposed to developers following a rigid development process. Agile projects

do 'embrace change'. In fact, they do expect change and proceed accordingly. Final!y, these projects

must attempt to maintain simplicity, both in software and the development process.

The perceived lack of structure and discipline involved with Agile methods leads to the criticism that

they promote a ' hacking' style of development [48], as discussed by DeMarco and Boehm [22]. Agile

methods are also not suited to large teams and projects [53] . Discipline, however, can be incorporated

into a project by infusing some plan-driven elements, balancing both Agile and plan-driven aspects

in a single project [8]. Agile processes are not recommended for large and/or critical systems, where

a thorough understanding of the systems requirements is required [48, 81].

Additional!y, Sommervil!e warns that not al! the Agile principles are feasible for al! situations [81] . In

particular, customer involvement depends on the customer's ability to spend time with the developers,

developers may not get along, prioritizing changes may be difficult, and maintaining simplicity may

prove to be difficult.

Fortunately, this thesis does not involve a large team and is not safety critical, and so Agile Methods

can be employed.

There are a number of Agile methods, including:

• eXtreme Programming

• Scrum

• Crystal

• Adaptive Software Development

CHAPTER 1. INTRODUCTION 16

• Dynamic Systems Development Method

• Feature Driven Development

Of these, eXtreme Programming (XP) can be considered the most popular [I], and those elements of

XP which are deemed advantageous will be employed by this thesis. In fact, field studies [26] suggest

organizations are consciously customizing methodologies in a process called methodology tailoring .

XP itself recognizes that it does not need to be employed verbatim [1,6].

Kem Beck described XP in 1999 [6] , which he developed while working on a project at Daimler

Chrysler. The XP life cycle comprises of development episodes, which are the "smallest units of

scheduling" [6]. Units of functionality, known as user stories, are written on cards. Pairs of program

mers implement each user story following a Test Driven Development method [31] . While opinion

regarding pair programming is uncertain and divided [34, 63, 94], it cannot be employed for the

purposes of this thesis as there is only a single developer.

Once the code passes all the tests, it is integrated into the system and the full suite of tests are run. A

refactoring process then takes place, to ensure that the entire system is as simple as it can be and there

there is no redundant code. Keeping the design and code as simple as possible gives the system its

agility, meaning that the cost of change does not grow exponentially over time, as it does with plan

driven projects. This simplicity also reduces the possibility of introducing errors into the system. The

result is that important decisions can be delayed for as long as possible, increasing the chance of them

being con·ect.

The XP development process has four control variables, according to Beck. External forces - includ

ing management - and the development team use these variables to control the project. Best practice

is to have three variables set by external forces and the fourth set by the developers. The variables

are:

Cost Increasing the cost of the project can reduce development time and improve quality and

scope, but Beck warns that too much money can be detrimental.

Time

Quality

Scope

More time leads to improved quality and broader scope.

Beck cautions against using quality as a control variable, but sacrifices in quality can

reduce costs and time.

Reducing the scope increases quality while reducing time and cost. Scope is the best

control variable to use and should be set by the development team.

CHAPTER 1. INTRODUCTION 17

For the purposes of this thesis, cost, time and quality are all governed by external forces, and so

scope becomes the only available control variable. This form of scope-driven development dictates

the development process. The most important functionality has to be implemented first, because

should there be a forced change in scope then less important functionality is dropped.

This whole development process, according to Beck, comprises four basic activities, has at its core

four values and involves a set of principles and activities. The four basic activities are coding, testing,

listening and designing. The four core values are communication, simplicity, feedback and courage.

XP's fundamental principles include rapid feedback, simplicity and incremental change. The list of

practices which facilitate XP is relatively long, however those that have relevance to this thesis are

small releases, simple design, continuous testing, refactoring and continuous integration.

Thesis Implications Employing methodology tailoring we can extract those aspects of XP which

are of benefit, bringing structure and discipline to the development process. While formal customers

do not exist to provide user stories and test the system, members of the research group can be used

to fill their role. In addition to the research group, the author performs both the role of developer and

user. Disassembling the system into units of functionality required by the CBSE approach provides

clearly defined , clearly separated episodes of development. Integrating a new component provides

additional functionality and hence represents a user story. Scope-driven development determines the

order of integration.

The integration of each component will represent a complete development episode. Tests are created

before any implementation is started, and once the tests are passed integration and refactoring take

place. Creating the tests can be as simple as creating VoiceXML applications. Unfortunately, how

ever, these tests can not always be automated. Testing voice recognition, for instance, requires human

involvement.

Keeping in line with the XP paradigm, as well as open CBSE practices, the design of the system will

be kept as simple as possible, minimizing the cost of change, reducing the potential for errors and

emphasizing 'plug and play-ability'.

1.2.3 Environment

Once the question of how to proceed has been answered, the question ofthe development environment

can be addressed. This involves the selection of platforms, applications and IDE's or any other similar

tool s.

CHAPTER 1. INTRODUCTION 18

Firstly, the question of which platform to use is determined by the selection of Asterisk as the primary

telephony platform . Since Asterisk is Linux based, we will be developing specifically for the Linux

platform. Initially, therefore, we need a Linux machine, Asterisk and a C compiler, as Asterisk is

written in C. The development machine runs Gentoo Linux with the 2.6.11. \0 kernel, gcc 3.3.4 and

Asterisk version 1.0.6. gcc is an open-source C and C++ compiler, amongst other languages . Java

was also used in the development process. In particular Sun's JDK 1.5 and its compi ler, javac, are

used.

For the purpose of creating and editing source code, the text-based editor, Vim, has been used. This

provided a number of advantages. Firstly, it allows simple, remote, platform independent editing of

the code under development, and secondly Vim provides syntax highlighting for, amongst others, C,

C++ and Java, which was found to be a great aid in the development process.

So, armed with a Linux platform, a text editor, some compilers, a version of Asteri sk and a method

ology, the task of creating a VoiceXML gateway can get underway.

1.3 Document overview

Chapter 2: This chapter presents a review of work related to this project and background infor

mation. The concepts of voice-enabled applications, VoiceXML and Asterisk are defined and

explained.

Chapter 3: This chapter explores the selection of components and the process undertaken before

implementation could commence. The collection of components is important, as correctly

selected components can greatly ease the task of implementation.

Chapter 4: The task of implementation is broken into two chapters. This chapter deals with ex

tending Asterisk's functionality, using the components selected in Chapter 3, to include a

VoiceXML interpreter and audio output capabilities.

Chapter 5: This chapter covers the second half of the implementation effort - adding audio input

functionality to the system.

Chapter 6: In this chapter a summary of the completed work is presented and related to the project's

aims. Future work is also discussed.

Chapter 2

Related work

This chapter presents a review of work related to this project in order to establish a clear understanding

of all the relevant concepts.

Firstly we wi ll show the potential of voice-enabled applications and their popularity in telephony,

justifying the need for a low-cost VoiceXML gateway.

Secondly, since we are proposing to use VoiceXML to create these applications and are attempting to

build a gateway to execute them, a thorough understanding of VoiceXML, a VoiceXML application

and how VoiceXML is interpreted is required. Besides clarifying concepts and improving under

standing, this process will also allow us to draw up a set of requirements and divide a gateway into a

set of components.

Finally, we will describe the Asterisk system. While Asterisk is a component of the system, it has

been selected at the outset, and provides the base upon which a VoiceXML service will be built.

So before we look into component selection we need to discuss the Asterisk system. In particular,

we will describe the use of Asterisk as a PSTN interface and the available methods of extending

Asterisk's functionality.

2.1 Voice-enabled applications and IVRs

The notion of using voice as a mode of human computer-interaction has been around for a number

of years. The first full English speech synthesis system was developed in Japan in 1968 [77], and

the Hidden Markov Model (HMM), used by many speech recognition systems today, was initially

proposed in the late 1960s [75]. In 1971 IBM developed its first speech recognition system, which

19

CHAPTER 2. RELATED WORK 20

was used by engineers to talk to a computer [35]. Applications which incorporate these speech

technologies are called voice-enabled applications:

Voice-enabled Application: Any application which is accessed through an audio channel and uses

voice in the form of voice recognition, text synthesis or pre-recorded audio as a form of input

and/or output.

Voice-enabled applications are not limited to interaction between a human and a computer, though.

Perhaps the most common example of a voice-enabled application is the traditional Interactive Voice

Response (IVR) system, which has been described as a system where users interact with a pre

recorded script using DTMF input [17]. Today IVRs are evolving to include features such as voice

recognition. In fact, voice recognition has been shown to improve both performance [85] and cus

tomer satisfaction [3] in an IVR system.

IVRs have been applied to many different areas, from call centers to the health care industry and data

collection. They are able to provide continuous, automatic access to information at a low cost per

call for the user [17].

In the corporate environment IVRs are used by companies as an extra service option for users [84] and

as a means of creating a business advantage by providing better access to information for customers

[3]. IVRs are also used in call centers to reduce costs, by reducing agent-user interaction time. It

is estimated that more than 70% of all business interactions are conducted via call centers, and that

agents represent about 70% of a call center's costs [11]. Hence, the correct use of an IVR in the call

center environment can result in large savings.

The use of IVRs in the health industry has been researched extensively. IVRs can be used to focus

on health related behavior, informing and advising patients, aiding diagnosis, monitoring disease

or counseling [38]. Using IVRs as reminder services for patients has been shown to be effective

[19]. Studies have also shown that Automated Telephone Disease Management (ATDM) can be an

effective form of health care [72]. In a survey amongst low income diabetes sufferers where ATDM

was used as part of their care, 85% of respondents were satisfied with their calls, and 76% said they

would choose to use ATDM in the future [71] .

Another important application of IVRs is as an aid in data collection surveys. Computer aided data

collection is now the major means of survey research in the USA [87]. Using IVR systems to conduct

interviews over the telephone is an efficient, low-cost means of gathering data. Surveys conducted

over the phone using an IVR system have been found to be preferred to web-based questionnaires

[29], and produce more honest input [58, 87]. While the process of recording audio prompts can be

long and expensive, it has been shown that speech synthesis can be used as a replacement without

CHAPTER 2. RELATED WORK

Revenue
Model

Adverti sing

Fee based

Premium rate

Referrals

Selling over
the phone

Development
& outsourcing

Content
provision

Description

Revenue is generated from advertisers on
voice portals
Revenue is generated from monthly or yearly

fees charged for a service
Revenue is generated from the amount

charged for a user to make a call

Revenue is generated from companies
referred by voice portals

Revenue is generated from orders placed
over the phone and savings in customer

service agents charges

Revenue is generated by developing and
hosting an enterprise voice enabled

application for a third party
Revenue is generated by selling on

aggregated or specially prepared content to
voice portal providers

21

Viability

Low

High

Medium (suitable for
specialist services or small

markets)
Low

High - (Dependent on
integration with existing
ecommerce systems and

voice verification systems)
High

Medium - (Dependent on the
continuing success of the

voice portal market)

Table 2.1: Vcommerce revenue models and their chances of success as described by Duggan [23]

affecting the quality of the answers [58], driving survey costs down even further. It has been found,

however, that more people are likely not to complete IVR-based surveys [58, 29, 87].

While IVRs have been shown to be versatile, caution must be exercised when implementing an IVR

system, as poor user interface design can lead to customer dissatisfaction. Poorly designed interfaces

can be a hindrance and a source of frustration, causing users to opt for a live agent at the first op

portunity. The design of an IVR dialog is therefore critical to the success of any IVR-based system

[84,93, 39].

In addition to enhancing IVRs, the field of voice-enabled applications is expanding as speech related

technologies improve [16]. The increasing popularity of mobile devices such as PDAs and smart

phones is one of the drivers of this process. The interfaces for these devices are not always ade

quate or convenient [92, 64] , screens are small and input devices are inadequate. As users become

increasingly mobile, they require that their information also becomes mobile and the most natural

and unobtrusive means of interacting with information is by using voice. Multi-modal applications ,

applications which have both visual and aural interfaces [42], are becoming a popular means of in

formation interaction on these mobile devices . Other examples of voice-enabled applications include

audio interfaces to web sites, databases and personal computers.

CHAPTER 2. RELATED WORK 22

The concept of a voice enabled web provides the opportunity to generate revenue. While speech

technology remains immature and continues to evolve, these revenue opportunities will as well [23].

However, a number of models have already been already been used, successfully and unsuccessfully,

as shown in Table 2.1.

Aside from bringing the web to telephones, voice services are being created to allow telephone users

remote access to their personal computers. These services are aimed at providing users unlimited

access to personal desktop applications such as e-mail and calendars [70, 78].

A final example of the use of voice-enabled applications is as an assistive technology for both older

adults and those with visual or motor disabilities [39]. or when interacting directly with a device is

impossible, such as when driving a car [64]. Voice-enabled applications can be used to aid interaction

between elderly people and computers and as an efficient reminder service [96] . Similarly, voice

enabled applications provide visually impaired people with a mode of interaction with a computer.

The use of VoiceXML, designed to create audio dialogs, can enhance voice-enabled applications, as

it separates the application logic from the interface itself. VoiceXML is becoming one of the major

IVR languages [88], is being used as a bridge between the web and the PSTN [80,62], and to create

assistive services [61]. The following section describes, in more detail, the VoiceXML language.

2.2 VoiceXML

This section describes the origins of VoiceXML, looks at the specification, at how VoiceXML appli

cations are created and interpreted and at the advantages associated with VoiceXML development.

2.2.1 Origins and definitions

VoiceXML is an open, XML-based standard which can be used to describe speech enabled applica

tions [9, 5]. It provides a means of creating audio dialogs utilizing speech synthesis, pre-recorded

audio, DTMF recognition and speech recognition [56]. While it has also been described as HTML for

the telephone [5 , 59]. it is important to note that it is not only restricted to the telephone, as any audio

channel will suffice. The first specification, VoiceXML 1.0, was released in 2000. The primary goal

of VoiceXML is to bring advantages associated with web based development to IVRs [56]. The cur

rent version of the standard is 2.0 [56]. which was released in March 2004. Due to the popularity of

the 2.0, standard the W3 released VoiceXML 2.1 [68]. which defined a set of features (see Appendix

C) not initially included in 2.0 but commonly found in commercial 2.0 implementations [68].

CHAPTER 2. RELATED WORK

HTML

fL--LJ= - v

Web Server

IP cloud

Welcome 10 my
HOITl~ Page

Web Browser

Figure 2.1: A web browser requesting and displaying a web page

23

The VoiceXML architecture is very similar to that of web based applications: a VoiceXML interpreter

is analogous to a web browser, although the interaction with the user is aural as opposed to visual

[20]. We can therefore begin by briefly looking at a simple web transaction, a web browser requesting

and displaying a web page, shown in Figure 2.1.

Web applications reside on a web server. When a user requests to view a page in a browser, the

browser is responsible for fetching the page from the web server and rendering it. The user is then

able to interact with the web page via the browser. The HTML document contains no platform

specific information, and so any HTML compliant browser on any platform is able to process the ap

plication. This abstraction brings with it a number of advantages. The HTML application is portable

across many platforms. It is the browser's responsibility to ensure that the application is rendered

correctly, not the application's. The application developer is only concerned with application logic at

a high level, easing the development and maintenance effort. Finally, because HTML is popular and

standard, many tools have been created to assist in the development process.

These features of the web-based model were non-existent in the voice application arena. Languages

and applications were low level and specific. This led, in 1995, to attempts to ease the task of

creating voice-enabled applications. These attempts are at the origin of VoiceXML, as discussed in

the VoiceXML specification [56] . In 1995 AT&T designed an XML-based language, named Phone

Markup Language (PML), aimed at simplifying their speech recognition applications. The PML idea

was picked up by Motorola and Lucent. By 1998, at a W3C-hosted voice browser conference, AT&T

and Lucent had separate implementations of PML and there existed a number of other voice browser

languages created by other organizations. These organizations then decided to work together to create

a voice browser language, and so AT&T, Lucent, Motorola and IBM created the VoiceXML Fomm.

The result was VoiceXML, which has been accepted as a W3C standard.

CHAPTER 2. RELATED WORK

N-cr6ltlGr_WL

DTMF tone recogruur

Con~:rt

inllnpfel4tion

Media
P1Vtnir.g

W orld
Wide
Wob

Tel~phone

System.

Figure 2.2: The W3C Speech Interface Framework (90)

24

Subsequently, the W3C's Voice Browser Working Group defined a number of standards aimed at

supporting speech applications . These fall under the Speech Interface Framework (90), which is

a set of open standards that can be used to create speech and natural language applications (45) .

Speech applications created using the Speech Interface Framework are rendered by a voice browser.

A voice browser is hardware and software capable of interpreting voice markup languages so that it

can generate voice outputs and interpret voice inputs (90). Beasley el al. describe a voice browser

as an application residing in the network that is able render VoiceXML applications using speech,

telephony and Internet components (5).

The Speech Interface Framework can be seen in Figure 2.2. The rounded blue boxes represent data

conforming to one of the standard Speech Interface Framework specifications. The arrows show

the flow of inputs and outputs, and the white boxes represent the components of a typical speech

application.

One can see that VoiceXML is the standard means of defining the Dialog Manager. It is also apparent

that there are four modes of 110: Automatic Speech Recognition (ASR), DTMF tones, Pre-recorded

audio, and Text To Speech (TTS) synthesis.

The Speech Recognition Grammar Specification (SRGS) [l2) is used to specify the grammars used

to determine user input. Specifically, VoiceXML grammars represent the set of words and/or DTMF

inputs the application ' understands'.

Speech Synthesis Markup Language (SSML) (91) is used as a standard means of defining input for

text synthesizers, ensuring that the input adheres to a pre-defined set of rules, thus allowing good

CHAPTER 2. RELATED WORK

<?xml version="l . O"?>
<!DOCTYPE vxml PUBLIC ~ -I/W3CIIDTD VOlCEXML 2 . 0 //EN "
'' http://www . w3 . org/'l'R/voicexm120 / VXJIll .dtd ''>

<vxml version="2 . 0" xmlns=''http://www . w3 . org/2001/vxml '' >

<var name=" greeting" expr::: '" Welcome to Adam King 's Voice XML
page '''/>

<form>
<block>

<value expr="greeting"/>

<audio src="pressOne.wav"/>
<choice dtrnf"" "l " next"' '' #one '' />

< form id="one">
<block>

<prompt>
Congratulations , you pressed one

</prompt>
</block>

</ form>

</block>
</ torm>
</vxm.l>

------- --- -------
Figure 2.3: A simple 'Press One' VoiceXML application

25

performance. SSML is also be used to provide additional linguistic information, such as emphasis,

to synthesizers [36].

A simple VoiceXML 2.0 example is the 'press one' IVR , shown in Figure 2.3. This simply syn

thetically welcomes a user before prompting the user to press the DTMF key corresponding to the

digit ' 1' . If the user presses it, he is congratulated. While the application is very simple, and has no

real purpose, it is an example of the "press one for sales, press two for inquiries" structure that is so

common in IVRs. The tags in blue are VoiceXML tags, a full list of which can be seen in Appendix

A, and the black tags are XML tags. The IVR includes examples of speech synthesis, pre-recorded

audio and DTMF input. The speech synthesis is represented by a SSML document describing the

prompt, which is passed to a TIS engine. A simple grammar is used to determine what action to take

should the user press one. It is important to note the difference between recognizing a DTMF tone

and matching input against a grammar. Recognizing a DTMF tone simply involves the representation

of a DTMF tone as a token, which is then matched against a grammar. Grammars deal exclusively

with tokens, and are not responsible for converting audio signals into tokens.

The application begins by synthesizing the text " Welcome to Ad am King ' s Voice XML

page" , which is expressed as a variable. Once the text has been synthesized, an audio file ,

pre ssOne . way, is played. This file asks the user to press one, and if the user presses one the

CHAPTER 2. RELATED WORK 26

text "Congra tulat i ons, y ou p r essed one " is synthesized, and the application exits . If

the user does not press one, the application exits once the audio file is finished playing.

We can see that any VoiceXML browser wanting to render this IVR by implementing the Speech

Interface Framework has be be able to interpret the specified markup languages and provide semantic

action (playing pre-recorded audio, synthesizing speech, ' understanding' utterances) accordingly.

We can now define a VoiceXML browser for the purposes of this thesis:

VoiceXML Browser: Hardware and software residing in the network that is capable of rendering

VoiceXML applications which interact with a user in a standardized manner via synthesized

speech, pre-recorded audio, DTMF and speech recognition over an audio channel.

The concept of a VoiceXML gateway can also be defined now, as it is a specialised form ofVoiceXML

browser:

VoiceXML Gateway: A VoiceXML browser that has at least one of its audio channels interfaced to

the PSTN.

Now that the terms VoiceXML, VoiceXML browser and VoiceXML gateway are understood, we can

investigate how VoiceXML works.

2.2.2 VoiceXML in detail

Before a VoiceXML gateway can be constructed, a complete understanding of the specification is

required. This process defines the requirements of the gateway, which are used to identify units of

functionality, and so help to disassemble a gateway into its components. This whole section is an

overview of the VoiceXML specification and is based on [56). The VoiceXML architectural model,

the gateway requirements and the application and interpretation processes are all discussed.

2.2.2.1 Architectural model

The architectural model described by the specification can be seen in Figure 2.4. There are four

components: the document server, the interpreter, the interpreter context and the implementation

platform. The interpreter, interpreter context and the implementation platform represent a VoiceXML

gateway as it is defined for the purposes of this thesis. The document server can regarded simply as

a web server. The interpreter deals solely with the VoiceXML language itself, essentially VoiceXML

CHAPTER 2. RELATED WORK 27

I DocUl"I'\.!!.nt Server I
Request Document

VoiceXI\.1L

Interpreter
Context

I VolceX1vn..lnterpreter j

!
- ~ -

I Implementation Platfonn I

Figure 2.4: The VoiceXML architectural model, as described by the VoiceXML 2.0 specification
[56J

elements, while the interpreter context deals with those events which are not part of the VoiceXML

language, such as an incoming telephone call. Any action, receiving of input or playing audio files,

is the responsibility of the implementation platform.

Communication using events is described by the VoiceXML event model, which is explained by

Turner [88 J. The event model is hierarchical, with four different levels to handle events: the platform

level , the application level , the form level and the field level. An application is made up of forms,

which in turn consi st of fields. Therefore, field event handlers are the most specific and platform

event handlers the most general. When events occur, control is transferred to the corresponding event

handler.

Using the IVR seen in Figure 2.3 as an example, we can see how the architecture components interact.

The gateway receives a request from the user who wishes to listen and interact with the IVR. This

request event is thrown by the interpretation platform and is received by the the interpreter context,

as the request event is not part of the VoiceXML language. The interpreter context then requests the

relevant VoiceXML document from the web server. The implementation platform is responsible for

fetching the file from the server using HTTP [25]. Once the document has been fetched, it is handled

by the interpreter. The interpreter generates the events to synthesize text as well as a request to fetch

and play back the audio file, pressOne . way. It is the responsibility of the implementation platform

to honour these requests. Once the audio prompt has been played, the implementation platform passes

any input it receives to the interpreter. Should the implementation platform not receive any input

within a pre-defined time, it will pass a time-out event to the interpreter context.

CHAPTER 2. RELATED WORK 28

2.2.2.2 Implementation platform requirements

As one can see from the previous scenario, the implementation platform is responsible for providing

the voice gateway's functionality. The platform's requirements are listed by the specification as:

l. Document acquisition

2. Audio output

3. Audio input

4. Transfer

The implementation platform must retrieve documents requested by either the interpreter or the in

terpreter context using HTTP.

It is also responsible for providing audio output support. This involves synthesizing and outputting

TTS and playing audio files identified by a URI. The platform must at least support both mu-law and

A-law raw and mu-law and A-law WAY formats, although other formats may also be supported.

With regards to audio input, the platform is responsible for detecting and reporting both spoken and

DTMF input as well reporting input detection events. Grammar support for inputs must be provided

via support for SRGS, including multiple and dynamic grammar matching. N-best recognition, one or

more possible recognition results with their associated confidence scores [24], must also be supported.

Actual recognition, in other words converting the audio into symbols, is the responsibility of the

platform. Additionally, the platform is required to record audio in any of the supported formats.

The final requirement of the implementation platform, as required by the specification, is that it must

provide the functionality to transfer connections, for example, transferring a call.

Since we are creating a VoiceXML gateway, the further requirement of PSTN interfacing capabilities

can be added.

2.2.2.3 Applications

A VoiceXML application is a set of one or more VoiceXML documents which contain one or more

dialogs. Dialogs are either menus, which present the user with a set of options, or forms, which,

similar to HTML forms, provide information and can collect values. Users transition between dialogs

and can only ever be within a dialog. The first document of a VoiceXML application is known as the

CHAPTER 2. RELATED WORK 29

root document. When the gateway begins executing the application, the root document is loaded into

the interpreter and, unless otherwise stated, execution begins at the first dialog. The root document

remains loaded for the duration of the user's interaction with the application, which effectively means

that any variables defined in the root document are global, and apply for any child documents. Each

dialog can have grammars associated with it, and these grammars are activated when the dialog is

entered. An active grammar is one which is actively waiting for input. This includes any grammars

associated with the particular input item, including those grammars specified by a link (See Appendix

A) element, the grammars, and linked grammars, of the form and document, and those grammars and

linked grammars of the root document.

The example seen in Figure 2.3 is a simple VoiceXML application consisting of a single document

containing a single form dialog, which in turn contains a single subdialog, in this case another form.

Subdialogs are used to represent a new interaction within a dialog, and return to the calling dialog.

Execution of the application begins at the first, and only, form element in the document, as no specific

dialog is specified. The active grammar will, if the user inputs aI, transfer the user to the subdialog,

which, once the prompt is played, will return to the parent dialog. At this point, or if the user did not

press 1, the application exits, as no other dialogs are specified for transition.

This IVR is a small example of a machine directed application, which is an application where the

only active grammar is the one belonging to the dialog the user is in. The alternative, when the list

of active grammars includes those linked to the input item or those active in the root document, is

known as a mixed-initiative application.

If, during a mixed initiative application, input is received during the execution of dialog A which

matches an active grammar in dialog B, execution is transferred to dialog B as if the input was

received while dialog B was executing. This functionality can be used to add power and flexibility

to the application. Help functions of varying scope can be created, for instance, and the navigation

of an applications can be greatly improved. Traversing many layered menus in a traditional IVR

means entering each menu and selecting the next menu, while in a mixed initiative application one

can simply select the exact menu.

Now that the architecture has been described and an application has been defined we can look at the

actual interpretation of a VoiceXML document.

2.2.2.4 Form Interpretation Algorithm (FIA)

The interpretation process is governed by the Form Interpretation Algorithm (FIA), which is de

scribed by the VoiceXML specification [56]. The FIA is responsible for driving input and output

CHAPTER 2. RELATED WORK 30

between the user and a dialog [20]. Any activity related to the fonn is controlled by the FIA, includ

ing initialising the fonn, prompting the user and controlling the grammars. Essentially, the FIA is

responsible for selecting a fonn item from the fonn to interpret, interpreting it while collecting inputs

and events, and perfonning the required action. There are two types of fonn items, input items and

control items. Input items gather input from the user and control items contain a block of VoiceXML

code to be executed. There are five input elements:

l. <field>

2. <r e c ord>

3. <trans f e r>

4. <object >

5. <subd ialog>

The two control elements are:

I. <block>

2. <i ni tial>

The FIA has four phases: an INITIALIZATION phase, after which it enters a loop which contains the

SELECT phase, the COLLECT phase and the PROCESS phase.

The INITIALI ZATION phase occurs when a fonn is entered and is responsible for initialising prompt

counters and variables. Each prompt has a counter which counts the number of times a prompt has

been played since the fonn began executing. Any variable that is within scope is initialized. If the

expr attribute of a variable is specified, the variable is initialized to that value, otherwise the variable

is initialized to undefined. (The var element requires a name attribute and an optional expr attribute

specifies the value of the variable. See Appendix A).

Once the INITIALIZATION phase is complete, the main loop is entered. If the user has entered the

current fonn because a grammar belonging to the current fOlm has been matched during another

form's execution, the loop begins at the PROCESS phase, as there is already input on which to act,

otherwise the loop begins at the SELECT phase. The loop repeatedly selects a fonn item and interprets

it, running until the FIA interprets a transfer of control or exit statement or when there are no more

form items left to interpret, at which point the application exits.

CHAPTER 2. RELATED WORK 31

The SELECT phase is responsible for selecting the next form item to interpret. This will either be the

item specified by a golO element, or the next available item in the form.

When the next form item has been selected, the COLLECT phase is responsible for collecting input

and events for the PROCESS phase and queuing prompts. The COLLECT phase queues only those

prompts that are to be played before the next COLLECT phase is entered, and queues them in order

of their execution. The execution of a prompt results in audio being played to the channel. The

prompt queue will always contain only those prompts which can expected to be played (barring, say,

a hangup) and in the correct order of execution. The PROCESS phase deals with any input collected

in the COLLECT phase.

The FIA will execute the next iteration of the loop unless a transfer or exit statement has been inter

preted.

Using the example in Figure 2.3 we can observe the FIA at work.

When the document is loaded, the FIA begins with the INITIALIZATION phase. This will reset the

prompt counters and initialise the greeting variable to 'Welcome to Ad am King' s Voice

XML page' .

Once INITIALIZATIO N has been completed, the FIA enters the main loop at the SELECT phase. Since

there is no goto element specified from a previous iteration (this is the first iteration) the SELECT

phase selects the first available form item, in this case the first block item. Once the form item has

been selected, the SELECT phase is complete and the FIA continues with the COLLECT phase.

The COLLECT phase first queues any prompts in the selected form item's scope. In this exam

ple it will be the initialized greeti ng variable, which is to be synthesized, and the audio file

p r essOne . wa y . When the prompts are queued, their prompt counters are also incremented. The

COLLECT phase then activates any grammars and waits for input or a time out. "Activating the gram

mar" in this example means that the application will match any DTMF I input. The final task of the

COLLECT phase is to execute the form item. Since the selected form item is a block element, this

means executing the block's content, in this case rendering the two prompts .

The FIA will only proceed with the PROCESS phase if the COLLECT phase managed to collect any

input. If no input has been received during the COLLECT phase the loop iterates, the SELECT phase

will not able to find another form item and so the application exits . Should there be input, however,

the PROCESS phase can process the input. If the input is DTMF I the choice element is considered

filled and execution transitions to the one form, where the FIA will select the block element, queue

and play the prompt and exit. If input has been received but does not match an active grammar a

nomatch event is thrown.

CHAPTER 2. RELATED WORK 32

2.2.2.5 Summary

We now have a complete insight into VoiceXML documents and the process of rendering them. This

allows us to define requirements for the functionality in a gateway, and help the task of separating

a VoiceXML gateway into its components. The three architectural components of a gateway are the

interpreter, the interpreter context and the implementation platform. These interact using standards

defined in the Speech Interface Framework to render VoiceXML applications . Creating a gateway

requires at least a PSTN interface.

A VoiceXML application consists of one or more VoiceXML documents which consist of one or

more dialogs. The interpretation of these dialogs is done by the FlA, which reacts to inputs or events

and generates requests for outputs. The task of capturing inputs, generating events and honoring the

FlA's requests for output fall s on the implementation platform. This, for example, is what actually

plays audio on a channel, or receives input from a channel.

We can now define the task of creating a gateway in terms of a number of smaller tasks. Firstly, a

YoiceXML interpreter is required . This is an implementation of the FlA. Secondly, an implemen

tation platform which interacts with the interpreter is needed. The platform must be able to fetch

documents from a web server, listen for voice and/or DTMF inputs, synthesize speech, play audio

files of a certain format on an audio channel and transfer connections. Finally, these inputs and

outputs must be rendered on a PSTN interface.

2.2.3 Advantages of VoiceXML

As we have seen, YoiceXML is very similar to HTML, both in terms of appearance (both are 'tagged'

languages [59]) and in the fact that both follow the client-server model [41].

The VoiceXML equivalent transaction to the one seen in Figure 2.1 can be seen in Figure 2.5. We can

see that the server side of the transaction remains unchanged. Those web servers which are able to

serve XML content are able to host the VoiceXML applications, and serve requests to the VoiceXML

gateway, which mayor may not represent a gateway to the PSTN. A user can use any audio device to

interact with the VoiceXML application via an audio channel. This audio channel includes telephony

networks such as the PSTN, GSM networks and YolP protocols.

The similarity in architectures results in similar advantages. VoiceXML applications are portable,

high-level applications which have many tool s associated with ease of development. Because VoiceXML

is a high-level language it is relatively easy to learn, potentially lowering development and mainte

nance costs.

CHAPTER 2. RELATED WORK 33

VoiceXML

Audio Channel)
Web Server

VoiceXML Browser

Figure 2.5: A VoiceXML gateway requesting and rendering a VoiceXML page

VoiceXML provides the functionality to completely replace the traditional development of IVRs,

bringing the advantages of the VoiceXML model to the IVR domain. It can replace the low-level,

platform-specific, proprietary applications which have been traditionally been used to create IVRs.

Since it is an open standard, VoiceXML can be expected to work on any compliant platform, meaning

that organizations can change platforms without having to change any existing voice applications [4].

Additionally, a VoiceXML application residing on a corporate web server has the same access to

corporate databases as the web site, which can be accessed using familiar, mature web technologies

[9].

These advantages are also enjoyed when using VoiceXML to create other voice-enabled applications.

Ease of development and portability means that creating assistive applications becomes a simple task.

The fact that VoiceXML gateways bridge the IP and PSTN networks means that VoiceXML is an ideal

language for the creation of audio information interfaces.

2.2.4 Summary

Being an open, high-level web-based standard means that VoiceXML enjoys many advantages over

the traditional means ofIVR creation and is therefore an ideal means of replacing IVR systems as well

as creating other voice-enabled applications. VoiceXML gateways are entities residing in the network

which interpret these applications. While a browser in itself may be inexpensive, a connection to the

PSTN is essential, and the resulting combination is currently very expensive.

A VoiceXML gateway can be divided into three parts, the interpreter itself, the interpreter context

and the implementation platform, which is responsible for any audio on the channel, amongst other

things. The implementation platform requires a text-synthesis system, a speech-recognition engine

CHAPTER 2. RELATED WORK 34

and the ability to fetch documents from a web server. The interpreter uses the Form Interpretation

Algorithm to interpret VoiceXML documents.

The final section of this chapter discusses the Asterisk system. into which a VoiceXML service will

be integrated.

2.3 Asterisk

Before we can proceed there are a number of things we need to know about Asterisk. Firstly. we need

to understand what it is and what is it capable of. Secondly. how it can provide an inexpensive PSTN

interface. and finally. how it is possible to extend Asterisk to include extra functionality. Specifically.

how does one begin going about adding VoiceXML functionality to Asterisk. This section addresses

these issues. and provides a little discussion on VoIP. which will also be supported by the VoiceXML

gateway.

As stated previously. Asterisk is a pre-selected component of our system. and so it is where we begin

our investigation into the creation of a VoiceXML gateway. before moving on to the selection of the

other required components in the next chapter.

2.3.1 What is Asterisk?

The Asterisk handbook [82] describes Asterisk and its uses. Asterisk is an open-source suite of

telecommunications software which aims to support every possible telephony technology [69. 82].

The applications for Asterisk are quite broad. It can be used as a conference server. a Private Branch

eXchange (PBX). a VoIP gateway or an IVR server. for instance. Since we are using it as our tele

phony platform. of particular interest to this thesis are its PSTN interfaces and its VoIP capabilities.

This section will also explore the use of Asterisk as an IVR server. as this represents a possible

alternative to VoiceXML.

Once installed on a PC running Linux. Asterisk does not require any other hardware, besides a net

work card. Using Asterisk in this way means, of course, that there is no PSTN interface, but that is

easily fixed via inexpensive PC-based PSTN hardware. This means that for a bit more than the price

of a desktop PC one gets a VoIP gateway, an IVR server, and. most importantly for our purposes, a

gateway to the PSTN.

The VoIP protocols currently supported by Asterisk are Session Initiation Protocol (SIP), Inter

Asterisk eXchange (lAX). Media Gateway Control Protocol (MGCP) and H.323. Voice Over Frame

CHAPTER 2. RELATED WORK

exten = > s, 1 ,setvar ($greeting, "Welcome 10 Adam King 's Voice X M L page")
exlen => s ,2,answer
exlen : > s,3,festival (${greeting})
exten "' > s ,4 ,background (PressOne)
exlen => s,5,hangup

exten => ,1.festival (Congratulations you pressed one)
exten => ,2.hangup

Figure 2.6: A simple ' Press one' dial plan IVR

35

Relay (VOFR) is also supported . The latest Asterisk beta provides some support for the jingle proto

col, which is used by glalk. These capabilities, which are provided out of the box, mean that once the

VoiceXML gateway has been integrated into Asterisk, it will have support for these VoIP technolo

gies . The gateway will have both PSTN and VoIP capabilities. Since these technologies, in particular

SIP, are becoming increasingly common, this is a major advantage.

According to the Asterisk handbook, the most important part of Asterisk is its dial plan. The Asterisk

dial plan is responsible for routing all calls through a variety of applications and on to their final

destination. The dial plan consists of one or more extension contexts [69] . These contexts can be

used to implement a host of features including security, routing, auto-attendant and multilevel menus

amongst others . The extension contexts can be used to create IVRs.

An IVR equivalent to the VoiceXML application shown in Figure 2,3 and created in the Asterisk dial

plan can be seen in Figure 2.6. An extension context is made up of one or more steps , referred to as

priorities. A priority is always of the form

e x ten = > <exten>, <priority> , <application> , [«args»)

where exten is the extension the user has dialed (and it is used to match DTMF input) , priority

represents the order of execution, application is the application to execute at any given priority, and

args are the arguments, if any, passed to the application. The functionality of grammars is created

CHAPTER 2. RELATED WORK

[simple J vrJ

exlo = > 5.1 ,setvm (:)qre eting, ~Welcome to Adam King":.; Voict' X M l page")
exton => s.2.answer
axlen => s.3.festival (${gree ti ng})
exten => sA.background (P ressOne)
{?xt n::;;> s.5.hangup

exten :::> 1.1.festivar (Congratulations you pressed one)
axten => 1.2.h.mgup

ext;::n =;. i.l ,goto (reprompt)
exten => t.1 ,goto (reprompt)

{reprompt]

exlen = > S,' ,setvar (Sgreeting. -Welcome to Adnm King's Voice X M L page-)
exten ; > s.2,answer
exten = > s.3,f9stival (${groeting})
exten => sA .background (pressOne)
axlen => '5 .5,hangup

exten - > 1.1.fe:stival (Congrutulalions you pressed one)
axlen => 1.2,hangup

Figure 2.7: A simple 'Press one' IVR system with re-prompting capabilities

36

using <exten>, which allows pattern matching. There is also a special set of extensions. Among them,

s represents the start extension, t is the timeout extension and i is the invalid extension. In this example

the user enters at the s extension and the gre eting variable is initialized, the call is answered and

then the application fe s tival is used to synthesis gre et i ng. The festival application uses

the Festival ITS to synthesis text. The background application plays the PressOne . wav fil e

while waiting for DTMF input. If I is received, the congratulatory prompt is synthesized and the call

is hung up, otherwise the call is simply hung up .

While thi s IVR has the same basic functionality as the one created using VoiceXML, the two appli

cations differ, functionality wise, in how they handle abnormal events, timeouts and incorrect (out of

grammar) input. While VoiceXML has a default behavior, which can be overridden, given a noinput

or nomalch event, similar behavior has to be explicitly built into the dial plan. In the event of an

input error, VoiceXML re-prompts the user. To create similar handlers in Asterisk, the use of the

special extensions t and i are required. A revised dial plan IVR can be seen in Figure 2.7 , which

shows the simplest way to re-prompt. The lack of a prompt counter results in some extra complexity

to re-prompt once, let alone the three times VoiceXML defaults to .

CHAPTER 2. RELATED WORK 37

While it is possible to create IVRs in the Asterisk dial plan, it is not as good as VoiceXML for creating

large voice-enabled applications, for a number of reasons. While the dial plan notation may be

relatively simple to learn it is not as familiar as the tagged notation of VoiceXML. More importantly,

portability of the IVR applications is not guaranteed. While the syntax may remain constant, porting

a dial plan may conflict with another Asterisk application's routing plan or the applications on the two

machines may not be consistent, for instance. The dial plan IVR has to reside on the local machine,

and to take an Asterisk dial plan to another platform is out of the question. Speech recognition

can not be assumed - speech recognition formaliy supported by Asterisk is available, but is not free

and requires a license. Finally, ali those advantages gained by VoiceXML by mirroring web based

development are lost using the dial plan.

2.3.2 The PSTN interface

This section describes the process involved in adding a PSTN interface to Asterisk. It notes and

describes the different options and their associated prices before briefly describing the instaliation

and configuration process.

The Asterisk telephony interfaces are divided into three categories, Zaptel hardware, non-Zaptel hard

ware and packet voice. Of these, the Zaptel and non-Zaptel hardware can be used to interface with

the PSTN. The difference between Zaptel and non-Zaptel hardware is that Zaptel hardware supports

pseudo-TDM switching while non-Zaptel hardware provides proper TDM switching. Pseudo-TDM

hardware provides the same functionality, and almost the same performance, as TDM hardware but

at a considerably lower cost [54]. The hardware can provide connectivity to the PSTN via a TI or EI

Primary Rate Interface (PRI), an ISDN Basic Rate Interface (BRI), or a simple Plain Old Telephone

System (POTS) interface. Any of these interfaces can be used to create a gateway to the PSTN,

depending on requirements.

The first task in creating a PSTN gateway is to purchase the hardware, usually in the fOlm of a

PCI card. The different cards fit different requirements, including number of available channels per

card, location and Signaling type, and cost requirements. South Africa falis in the El area, and the

available options are PRI, BRI or POTS interfaces. Table 2.2 shows the capacity and current cost of

these interfaces. The FXO card is an analog interface, requiring a normal telephone line, while PRI

and BRI are ISDN interfaces. The number of channels is the number of simultaneous voice calis the

line can handle . We can see that, excluding the cost of a PC, a simple, double channel PSTN gateway

can be created for as little as R360. (This figure ignores the cost of line rental as it is unavoidable:

it will be incurred by any gateway.) So, an open-source, Asterisk-based VoiceXML gateway can be

created for the cost of a PC plus the cost of a card. A relatively large 30 channel VoiceXML gateway

for instance wili cost in the region of RIO 000, accounting for a generous R8 000 for an entry-level

CHAPTER 2. RELATED WORK 38

Device I Number of Voice Channels I Approximate Cost I
Single span PRI 30 (EI) R4800
Single span BRI 2 R360
Single port FXO 1 RI200

Table 2.2: Possible PSTN interfaces in South Africa and their current approximate prices (October
2006) [60)

PC (October 2006), which is significantly lower than the $10 000 USD to $100 000 USD quoted in

Chapter I.

Once the hardware has been purchased, setting it up and configuring Asterisk is a simple task. Inter

faces in Asterisk are implemented as channels, and a channel, the zap channel, represents the Zaptel

and non-Zaptel hardware. One simply needs to install the hardware, load its drivers and configure the

system. Configuration is simple, and involves editing two well documented files, zaptel. conf

and zapata . conf . The zaptel . conf file simply defines the spans and groups associated with

an ISDN interface. A span usually maps to a physical interface (an ISDN port for example), which can

be divided into one or more groups. zapata . conf is used for any Asterisk specific configuration,

such as the signaling type, the context an incoming call is placed into, or the group associated with

the interface. Example configuration files for a BRI, single span interface can be seen in Appendix

C.

As we have seen, creating a PSTN gateway using Asterisk is both cost-effective and simple. We can

now look at the question of extending Asterisk's functionality.

2.3.3 Extending Asterisk

Because Asterisk aims at including support for any telephony technology, it has been designed to

allow simple extension (82). This section investigates these methods, and selects the most appropriate

for our task. Some important restrictions govern the selection process. Firstly, extending Asterisk's

functionality must not change any source code. In other words, the functionality must be added as

transparently as possible. This will maximize the number of existing Asterisk implementations the

VoiceXML service can be added to, and, at the same time, ensure that the integration is as seamless as

possible. Secondly, this functionality must be added in such a way as to be available to any channel.

This means that the VoiceXML service will be available to any technology Asterisk supports, or any

technology which will be supported in the future .

Hitchcock [33J thoroughly explores the issue of extending Asterisk. There are four methods of adding

to Asterisk's functionality. These are the Dialplan, the External Interfaces, the Asterisk Gateway

Interface and Application Modules.

CHAPTER 2. RELATED WORK 39

The IVR example above is an example of using the Dial Plan to extend Asterisk. This method can be

disregarded as, while it may be able to mimic a VoiceXML application, it is insufficient and does not

provide enough functionality to completely implement a VoiceXML service.

The second option, External Interfaces, are interfaces which allow other applications to connect, make

queries and issue commands. There are two interfaces provided, the Manager API and the Asterisk

Command Line Interface (CLI). The Manager API interacts with other applications via a TCP port.

The CLI presents a prompt at which users, or applications, can enter commands. Once again, these

two methods do not provide sufficient functionality to implement a fu lly fledged VoiceXML service.

The Asterisk Gateway Interface (AGI) is a dial plan application, similar to hangup, answer or

festival which were seen in Figures 2.6 and 2.7. This application executes any external exe

cutable with in the AGI environment. The external application has access to a limited set of com

mands, and Asterisk and the executable interact using standard in and standard out. There are almost

no restrictions on an AGI application as far as implementation is concerned, the only requirements

being that it is an executable and that it can communicate with standard in and standard out. While an

AGI application does not alter the Asterisk source and is visible to all Asterisk channels, the control

of the hosting Asterisk is limited.

This leaves the Application Module. An Asterisk application is a module which conforms to a naming

convention (see Section 4. 1.2) which is compiled against, and linked to, the Asterisk libraries. This

option presents by far the most powerful method of extending Asterisk because it is linked to the

Asterisk libraries. Applications of this form are used in the dial plan itself, are available to all channels

and do not alter the source. This method, therefore, is ideal for our purposes. It has some limitations,

however. The applications must be written in C and must conform to the Asterisk C API.

These constraints, fortunately, do not represent a major obstacle, and so the way to add a VoiceXML

service to Asterisk is to create an application module. This method conforms to our requirements

and presents sufficient functionality to implement a fu lly fledged VoiceXML gateway. Unlike an AGI

application, however, using this method means that the application must be written in C. The process

of extending Asterisk using application modules is fully explained in Section 2.3.3.

2.3.4 Summary

Asterisk is open-source, multi-protocol software system that is easily configurable and extensible.

While it may serve as an IVR server, it does not afford IVR developers the same advantages as

VoiceXML does. By adding suitable hardware, Asterisk can become an inexpensive gateway to the

PSTN.

CHAPTER 2. RELATED WORK 40

Creating a VoiceXML gateway as an application module and then adding relatively inexpensive hard

ware allows us to create a low-cost VoiceXML gateway with TDM and VoIP interfaces.

2.4 Summary

This chapter has outlined some of the uses of voice-enabled applications and IVRs, showing that they

represent a large and important field. We have also seen how VoiceXML works and how it can be

used to improve and ease IVR development. While VoiceXML is ideal for creating voice-enabled

applications, VoiceXML gateways are expensive. This chapter has shown that it might be possible to

create a low cost VoiceXML gateway using Asterisk.

Now that we have justified the need for a low-cost gateway, and identified a means of creating such

a device, we can discuss the actual creation. Following the CBSE paradigm, we first need to identify

the various functionality units and obtain COTS systems which can be used as components. These

components must have clearly defined interfaces, in keeping with our requirement for an open system,

and preferably be open-source, to keep costs to a minimum. Once the components are decided upon, a

simple architecture can be defined, and the components can be integrated using XP as a development

guide.

The following three chapters detail this process. Chapter 3 describes the process of selecting compo

nents and creating a simple architecture, and Chapters 4 and 5 cover the integration process.

Chapter 3

Component selection and system design

In the previous chapter we have seen how CBSE can decrease development time while increasing

quality and maintainability, that there is a need for a low-cost VoiceXML gateway and that the tele

phony platform for such a system is available. We have also gained a deeper understanding of a

VoiceXML gateway, its requirements and the interpretation process. We can now continue with the

process of creating a VoiceXML gateway on top of the telephony platform.

This chapter separates the VoiceXML gateway architecture into separate units of functionality by

examining the gateway requirements. Once these units have been identified, COTS systems can be

selected to perform these functions . We will discuss the selected systems here, weighing them up

against a list of requirements to determine their suitability.

We will conclude the chapter showing the architecture of the proposed gateway.

3.1 Requirements and restrictions

The component selection process requires that the different units of functionality have been cor

rectly identified. Fortunately, the architecture of a VoiceXML gateway lends itself very nicely to a

components-based approach, as it is very modular in nature. A VoiceXML gateway, as defined in

Section 2.2.1 is:

Hardware and software residing in the network that is capable of rendering VoiceXML ap

plications which interact with a user in a standardized manner via synthesized speech, pre

recorded audio, DTMF and Speech recognition over any audio channel.

41

CHAPTER 3. COMPONENT SELECTION AND SYSTEM DESIGN 42

Looking at the architecture of a VoiceXML gateway (Section 2.2.2.1) we can see that the rendering of

the VoiceXML document is handled by two separate entities. Interpretation is done by the interpreter

and input and output is handled by the implementation platform. Our first requirement, therefore, is

an interpreter. The second is the implementation platform which is able to " interact with a user in

a standardized manner via synthesized speech, pre-recorded audio, DTMF and Speech recognition".

The implementation platform, therefore, needs a TTS engine, functionality to output an audio file ,

a DTMF recognizer, speech recognition engine and access to an audio channel. It has already been

decided that Asterisk will be used to provide the audio channel, in the form of a PSTN interface.

Finally, a gateway needs to be able to fetch documents from a web server, also a responsibility of the

implementation platform. The succinct li st of requirements, and so the required components, are as

follows:

• VoiceXML 2.1 interpreter

• TIS engine

• Speech recognition engine

• Document fetcher

Viewing the components in relation to the Speech Interface Framework we see that the interpreter is

essentially an implementation of the FlA, the TTS should be able to synthesize SSML documents,

the speech recognition engine has to handle SRGS grammars and the document fetcher must be able

to fetch documents using HTTP. An advantage of both the VoiceXML architecture and the Speech

Interface Framework is that the selection of components is very straightforward. In addition to this,

the functional units all have clear, well defined boundaries, and so are ideal for the creation of an

open system, as described in Section 1.2.1.

The sourcing of the components is governed by a handful of restrictions. These come from many

different sources: the thesis requirements themselves, the decision to build a component-based system

and the selection of Asterisk as the telephony platform. As stated in Section 1.1, the gateway must be

inexpensive and open-source. Section 1.2.1 states that the system is to be COTS-based and open. To

make the system open requires clearly defined interfaces with which other components can interact

[67]. These interfaces, which can either be APIs or a protocol, lend flexibility to the entire system.

Finally, using Asterisk means that the components must be able to run on the Linux platforn1. In

summary, the components must conform to the following requirements:

CHAPTER 3, COMPONENT SELECTION AND SYSTEM DESIGN 43

• Open-source

• Implemented by a third party

• Clearly defined API or protocol

• Well supported (longevity and maintainability)

• Independently executable

• Available on the Linux platform

When choosing open-source components care must be taken to ensure that the projects are well

maintained and supported, The level of activity in the mailing lists and the activity of the project

itself are indicators of the amount of maintenance and support a project has, These indicators must

be kept in mind when choosing the components,

Now that it has been established what exactly is needed, we can discuss the selection of the compo

nents,

The following sections discuss the components which have been selected as well as the reasons for

their selection, They are: OpenVXI (interpreter and document fetcher), Festival (TIS engine) and

Sphinx 4 (speech recognition engine),

3.2 OpenVXI

OpenVXI is an open-source VoiceXML interpreter written in C and C++, It was originally started at

Carnegie Mellon University before being taken over by ScanSoft and then finally by Vocalocity, It

is essentially a framework for building VoiceXML gateways [24], While the project itself is open

source, support is sold by Vocalocity, which means that documentation is rare and this can complicate

implementation, The mailing lists, however, have been very active [24], The version of OpenVXI

used in this thesis is 3.3, which claims to be completely VoiceXML 2, I compliant. An initial goal of

the project was to make the interpreter as portable as possible, While this has been achieved, it can

run on a host of different platforms including Linux, Windows and Solaris, it has been done at the cost

of simplicity, Mechanisms introduced to ensure portability, such as adding extra layers of interaction

or specialized data types to pass information across interface boundaries, increase the complexity of

the system, The construction of a VoiceXML gateway using Open VXI is discussed by Eberman et

at. [24],

CHAPTER 3. COMPONENT SELECTION AND SYSTEM DESIGN 44

---1

Speech !
Browser !

: •
VXI I l n~~~ce I JavaScript I Logging I OS API

1 API.

Pial form
RecAPI Prompt API Tel API MAIN

i
I

Components Rccog "I I ~ Tel t: ... il' ;
Hardware API !

! i
L. ___ __ __ ___ __ __ . ___ ... ___ _ .. .1

Figure 3.1 : The OpenVXI architecture, as described by Ebennan et at. [24]

The Open VXI framework can be seen in Figure 3.1. One can see that the framework is separated into

two distinct sections, the Speech Browser and the Platfonn Components, which is consistent with

the VoiceXML architecture, where the Speech Browser is equivalent to the interpreter and interpreter

context and the Platform Components with the implementation platform. The OpenVXI framework

heavily influenced the selection of CBSE as a software engineering methodology, as it lends itself to

a component-based approach.

The Platform Component APls are just stubs, which must be fleshed out to give the gateway any form

of audio capabilities. One can see that the remainder of our components, including Asterisk, integrate

very nicely into this architecture.

3-2.1 Speech browser

The Speech Browser component of the Open VXI architecture requires no further implementation on

our part, and is independently executable, but will have no audio functionality until such time as the

APls are implemented. It itself comprises of a number of components: the VXI, an XML interface, a

JavaScript component, a logging interface and an OS API.

The VXI (VoiceXML Interpreter) is the main control loop, the FlA, and can interpret VoiceXML 2.1.

A SAX XML parser (OpenVXI uses Xerces) is used to both validate the VoiceXML. ECMAscript

scripting functionality is required by the VoiceXML specification to provide some programmatic

functionality to VoiceXML documents, and this is provided by OpenVXI's JavaScript interface.

OpenVXI uses SpiderMonkey, Mozilla's JavaScript interpreter, for this purpose. The logging and

OS interfaces are self explanatory.

CHAPTER 3. COMPONENT SELECTION AND SYSTEM DESIGN 45

In addition to these components, Open VXI provides fully implemented Internet and caching func

tionality, which fetches and caches both VoiceXML documents and any associated files, such as

grammar audio files. This caters for the Document Fetcher item on the list of requirements.

3.2.2 Platform components

The Platform Component section of Open VXI is where implementation is required. Filling out the

stubs gives the gateway audio functionality, including providing an audio channel. The stubs are the

rec API, the prompt API and the tel API.

The rec API is responsible for handling any input, including voice recognition, DTMF recognition

and recording. It is responsible for converting the input waveforms (speech or DTMF tones) into

corresponding tokens and matching the tokens against one or more grammars. The interpreter is

responsible for activating grammars, so the rec API requires a DTMF and speech recognizer, as

well as recording functionality. The act of matching the tokens returned from the recognizers against

the active grammars has been implemented. As per the specification, the speech recognition engine

itself must be able to handle dynamic grammars and n-best results with confidence indicators. As we

have seen in Section 2.3.1 , Asterisk provides DTMF tone recognition, and so, component wise, all

that is required to implement the rec API is a compliant speech recognition engine. Asterisk also

provides recording functionality.

The prompt API is responsible for fetching and playing audio as well as synthesizing TIS prompts.

Once again Asterisk can be used to provide some functionality, as it is able to play audio files (Section

2.3.1), so an SSML TIS is all that is required for the prompt API.

Finally, the tel interface interacts with the gateway's audio channel. This API has to provide any

telephony functionality required by the specification. In our case this functionality (setting up and

tearing down calls for instance) is provided by Asterisk. The tel API is where the gateway function

ality of the browser is implemented. It is plain to see how using Asterisk to provide the tel API's

functionality results in a VoiceXML gateway.

The fleshing out of these APIs gives the interpreter audio functionality, and results in the creation of

the implementation platform. Open VXI, therefore, is a good candidate for the purposes of this thesis,

but it still worthwhile mentioning publicVoiceXML as an alternative.

publicVoiceXML (74) claimed to be a turn-key solution, providing DTMF recognition and TIS ca

pabilities. This seemed ideal, but unfortunately this did not appear to be true. The project could not

compile and seemed to have been abandoned at the time of component selection.

CHAPTER 3. COMPONENT SELECTION AND SYSTEM DESIGN 46

3.2.3 Summary

Open YXI conforms to our list of requirements . It is open-source, implemented (and maintained) by

a third party and independently executable. Component interaction is provided by an API. Since it

is written in C and C++, interaction between OpenVXI and Asterisk is simple, and can easily be

integrated into an Asterisk Application Module. It also appears to be well maintained and supported,

as suggested by Eberman and by the fact that it supports VoiceXML 2.1. Finally, it runs on the Linux

platform .

We can now discuss the two outstanding components required for the gateway, the TIS engine and

the speech recognition system.

3.3 Festival

Festival is a Linux-based, open-source framework for creating multilingual TIS systems, written in

C++ [7]. Different voices can be created in any language in a relatively simple and quick manner

[55]. The advantages of this feature can best be understood if we look at voice-enabled applica

tions from the South African perspective. A synthesized voice is impersonal and alien, which can

make a user uneasy. Making the accent of the voice familiar can help this . Additionally, as South

Africa has many official languages, different languages means a higher number of potential users.

Research into creating Festival voices in indigenous languages is currently underway, for example,

at the Speech Technology and Research (STAR) group [83]. For the purposes of this thesis we used

the default, free, voices which are distributed with the Festival system. These produce clear, if very

mechanical, sounding voices, which suffice for our purposes. While Festival claims to be capable

of handling SSML documents, and so meets the Speech Interface Framework specification, we will

only be passing text to the Festival engine to simplify matters.

The framework provides six interfaces which can be used to create a full speech-synthesis system,

which are described by Black et al. [7]. There are a few restrictions to keep in mind when deciding

on an API. Firstly, time delays associated with initialization must be kept to an absolute minimum.

Since we are using the synthesized speech for real-time applications, it must be made available im

mediately as any time delays will result in a degradation in the usability of the system. Also, the API

must provide sufficient functionality to allow concurrent access to the synthesis engine, without any

resource-dependent time delays . These two conditions also apply to the speech recognition-engine

di scussed in the following section.

CHAPTER 3. COMPONENT SELECTION AND SYSTEM DESIGN 47

3.3.1 Festival interfaces

The six interfaces are implemented using either an API or a client-server approach. They present

access to the engine in a variety of manners and languages, each of which provide a different com

bination of control and ease of use. The interfaces are the Scheme API, Shell API, C/C++ API, Java

and JSAPJ, C only API and the client-server API. These interfaces are explained by Black et at. [7].

The Scheme API allows full control of the Festival functionality using the Scheme programming

language. The command

(SayText "We lcome to Adam King's Voice XML page ")

will create the prompt required for the VoiceXML example discussed in Section 2.2. Commands are

either read from files or from the command prompt. This API represents the most fine grained, as

one has access to a full programming language. The Scheme API is also the most direct means of

controlling Festival, as most other methods use Scheme at some point. Commands are interpreted

by Festival in either balch mode or live mode. In batch mode Festival will exit as soon as it is done

executing the Scheme commands, while in live mode it continuously reads Scheme commands from

the command line.

Using the Scheme API in batch mode does not satisfy the system requirements, as there is an ini

tialization time delay associated with Festival having to restart after every synthesis request. Using

the Scheme API in the live mode only incurs the initiali zation penalty the first time it is started, but

not on subsequent synthesis requests. Unfortunately, neither method allows concurrent access to the

synthesis engine, which means that a new Festival process has to be created for each concurrent call ,

wasting resources and incurring at least one time penalty for every call . We therefore have to look at

one of the other methods.

The Shell API provides simple access to Festival through the shell. Besides being limited, this method

does not allow concurrent users and will result in an initialization time penalty for each call. This is

because a new Festival instance has to be created for each call.

The C/C++ API allows developers to embed Festival in their own C/C++ applications. An application

can link its source to the Festival libraries, which gives the application access to a number of external

commands. This method is desirable, as OpenYXI, with which we would be interacting, is written in

both C and C++. This method will also allow each process handling a call to have full access to the

Festival system. However, it had to be di scarded as it still has an initialization penalty.

The three final APIs all make use of the Festival server. The text to be synthesized is sent to the

Festival server as Scheme commands and the server replies with the synthesized text. Since the client

CHAPTER 3. COMPONENT SELECTION AND SYSTEM DESIGN 48

sends Scheme commands, a lot of the Scheme API functionality is retained. The client-server ap

proach has numerous advantages. Clients do not have to link with other, Festival specific, code; the

server can reside on a separate machine; and, most importantly, a client-server approach allows con

current synthesis requests and, once the server is up and running, there are no initialization penalties.

The C client-server interface is therefore ideal. Additionally, Asterisk uses this approach in imple

menting the festival application, and Festival provides an extensive example. Therefore a C++

client was created to provide half the functionality of the prompt API, i.e the acoustic rendering of

text messages. The other half, the playing of pre-recorded audio, will be done directly by Asterisk.

3.3.2 Alternatives

The Cepstral speech synthesis system also runs on the Linux platform, and it is also multilingual.

Comparing the Festival free voices to the demos available for Cepstral it appears, to thi s author'S

untrained ear, that the Cepstral output is of a better quality. Unfortunately, Cepstral is closed source,

and uSing Cepstral is not free . Voices require licensing, and cost $29.99 USD (October 2006) each;

and a further license is required for concurrent execution, which starts at $200 USD (October 2006)

for four ports [IS). In addition to this, voices cannot be created by a third party, and so obtaining

unsupported languages and accents may be problematic. However, this does raise the point that

some of the open-source components may not be the most suitable in all scenarios, and should an

organization be able to afford a Cepstral voice they may want to use it. This highlights an advantage

of creating an open component-based system, as it would be relatively simple to replace Festival

with Cepstral. While thi s may require some knowledge of the system and implementation skills, it

is still better than having to pay for another system with expensive hardware . Additionally, the more

open the system is, the easier the component swapping should be. In this case it should simply mean

changing the prompt API to interface with the Cepstral system.

3.3.3 Summary

The Festival TIS engine conforms with our list of requirements . It is Linux-based and open-source,

independently created and executable. Component interaction is done by a client-server architecture.

The two additional advantages, the ability to create specific voices and the fact that Asterisk already

uses it, makes it a very attractive option.

CHAPTER 3, COMPONENT SELECTION AND SYSTEM DESIGN 49

Test S3.3 WER S4WER S3,3 RT S4RT S4RT Vocabulary Language
(I) (2) Size Model

TI46 1,217 0,168 0,1 4 ,03 ,02 I I isolated digits
recognition

TIDIGITS 0,661 0,549 0,16 0,07 0,05 11 continuous
digits

AN4 1,300 U92 0.38 0,25 0,20 79 trigram
RMI 2.746 2,88 0,50 0.50 0.41 1,000 trigram

WSJ5K 7.323 6,97 1.36 1.22 0.96 5,000 trigram
HUB4 18,845 18 ,756 3,06 -4.4 3,95 60,000 trigram

Table 3, I: Comparison of Sphinx 3,3 and Sphinx 4 performances, as shown in [14]

3.4 Sphinx

The final component that is required is a speech recognition engine. This must be able to support

SRGS, n-best results, confidence scores and dynamic grammars, as described in Section 2,2.2.2, The

telephony environment in which we are wanting to use the engine adds two important constraints,

Firstly, speaker independence is required, Secondly, the speech engine must come with 8Khz audio

samples, as the PSTN samples audio at 8Khz, (While it may be possible to create our own samples,

thi s is time consuming and certainly beyond the scope of building a proof-of-concept prototype,)

Sphinx is an open-source, speaker-independent, continuous-speech, large-vocabulary speech-recognition

engine which was created at Carnegie Mellon University [47, 46], It has been observed, by joining

the mailing list, that the Sphinx project has a large and active community, There are three main

versions: Sphinx 2, Sphinx 3 and Sphinx 4, Sphinx 3, a successor to Sphinx 2, is written in C++

and runs on the Linux platfornl, Sphinx 4 is written in Java, Both support n-best recognition lists

with confidence scores and the SRGF specification [76, 14], While it may seem preferable to use the

Sphinx 3 system, as it is written in C++, Sphinx 4 outperforms Sphinx 3 both in terms of word error

rate and real-time performance in a number of tests run on different acoustic models, as can be seen

in Table 3, I. The Word Error Rate (WER) figure shows how many words were incorrectly recognized

(as a percentage), the lower the figure the better the accuracy, RT stands for Real-Time and represents

the time taken to decode the utterance, The Sphinx 4 tests were run on both single and dual processor

architectures, hence the different real-time results , One can see that Shpinx 4 outperforms Sphinx 3

in most tests, except in the RM I test, where it has a worse WER, and the HUB4 test, which has a

worse RT figure, One can see that the 5000 word Wall Street Journal (WSJ) model tested better in

Sphinx 4 than in Sphinx 3, An 8Khz version of this model is contained in the Sphinx 4 package and

is what will be used for thi s project. We have therefore chosen the Sphinx 4 system to implement the

rec API.

Sphinx 4 has been designed to be as modular and flexible as possible, supporting many kinds of

CHAPTER 3. COMPONENT SELECTION AND SYSTEM DESIGN 50

grammars and acoustic models [44). Creating applications using Sphinx is discussed in the Sphinx 4

help files [43) . Building such an application simply requires a Java front end, a configuration file and

a grammar. The configuration file allows us to configure the engine to accept audio from the PSTN.

A detailed description of how to create a speech-recognition application using Shpinx 4 will be given

in Section 5.3. I.

3.4.1 Alternatives

A relatively new alternative is the inclusion of speech recognition functionality directly into the As

terisk system. The LumenVox speech engine has been added to Asterisk and provides out-the-box

speech recognition. While this may seem ideal , this service is not free, as licensing fees are required .

A single speech-recognition port costs $50 USD while 5 ports cost as much as $1 500 USD (October

2006) [52) . As with the Cepstral TIS engine, these costs confl ict directly with the requirements set

out in this thesis, and so Lumen Vox will not be discussed further.

3.4.2 Summary

Sphinx 4 satisfies most of the requirements for a component for the system under construction. It is

open-source, independently created and available on the Linux platform. The one requirement which

is not immediately obvious is the one of a clearly defined interface.

Integrating Sphinx into the system involves three distinct entities: the engine itself, the front end,

and the OpenVXI rec interface. We have to ensure that the entities can all interact. The front-end

simply uses the Sphinx API. An interface between OpenVXI's rec interface and the Sphinx front

end results in the integration of Sphinx into the system. This integration process is discussed in full

in Chapter 5.

While the integration issue may have been simplified greatly by the use of Sphinx 3 (because different

languages would not be an issue), we chose Sphinx 4 for two reasons. Firstly, and most importantly,

Sphinx 4 outperforms Sphinx 3 both in terms of word error rate and real time performance. Secondly,

integrating Sphinx 4, which is written in Java, into OpenVXI, which is written in C and C++, an

interesting exercise in Inter Process Communication (IPC) on a Linux platform. Audio must be sent

to Spinx for recognition and the resulting recognition must be set in the rec API.

In addition to meeting the project requirements Sphinx 4 is also flexible enough to conform to all the

gateway related requirements . It is therefore ideal for our purposes. From this point on Sphinx 4 will

simply be referred to as Sphinx.

CHAPTER 3. COMPONENT SELECTION AND SYSTEM DESIGN 51

Sphinx

Asterisk OpenVXI

Festival

Figure 3.2: The VoiceXML gateway's architecture

3.5 System architecture

As discussed in Section 1.2.2, we wanted to keep the architecture of the gateway as simple as possible.

Fortunately, due to the way in which VoiceXML has been designed (Section 2.2.2.1), this is not a

complicated task, particularly given that the system has only four components (Asterisk, OpenVXI,

Festival and Sphinx). OpenVXI's architecture is clearly influenced by the VoiceXML architecture,

resulting in the distinction between the Speech Browser and the Platform Components. Since we are

integrating the components into Open VXI, this will have a large impact on the gateway's architecture.

This architecture can be seen in Figure 3.2.

There are a few things to note about the architecture. The first is that despite the requirement of an

open system, Asterisk and Open VXI have become tightly coupled and heavily dependent on each

other. Asterisk will be used to provide DTMF recognition and audio playback as well as telephony

functionality, which means that it is used to flesh out all three of the Open VXI interfaces. Architec

turally, this means that the core of our system, which was Asterisk, has expanded to include Open VXI,

and removing either of these will result in an entirely new system.

On the other hand, both Festival and Sphinx are loosely coupled, keeping in line with our open system

requirements. These systems can easily be replaced, as they are not bound to the system.

The simplicity of the architecture is apparent. The core of the system is the combination of the

Asterisk and Open VXI systems (in other words the audio channel to the PSTN and the interpreter2.
~:-:: '- -"' ~""

n \, */"",
I\~O·J~·:: \

UNI~£R~ ; i \1:
\ Of\ 1 ~!y
" Uut< !\i\, . ~ ,\. ;

~-

CHAPTER 3. COMPONENT SELECTION AND SYSTEM DESIGN 52

This core provides hooks for the other two components to interact with.

3.6 Summary

This chapter follows directly from the CBSE principles discussed in Section 1.2.1. We have divided

the gateway up into units of functionality, after examining the VoiceXML specification. Given As

terisk as a pre-requisite, the remaining units of functionality have been found to be: an interpreter, a

text-to-speech (TIS) system, a speech-recognition engine and a document fetcher. Components were

selected to provide the required functionality.

The three components selected, in addition to Asterisk which was pre-selected, are: OpenVXI (in

terpreter and document fetcher), Festival (TIS system) and Sphinx (speech-recognition engine). We

have seen how these components have met both functionality and thesis requirements, justifying their

inclusion in the system.

The next two chapters discuss the integration process of the selected components.

Chapter 4

Building the gateway: Phase 1

This chapter discusses the first half of the implementation process, that is the integration of Asterisk,

OpenVXI and Festival, resulting in a VoiceXML gateway which has only output capabilities.

The entire implementation process subscribes to the XP methodology, which was described in Section

1.2.2. Following the scope-driven development paradigm gives us both the order of implementation

and the user stories for each stage in the development process. Firstly, the task of extending Asteri sk,

as described in Section 2.3.3, must be completed. To this we have to add VoiceXML interpreta

tion capabilities, resulting in a system which can handle PSTN (and other) calls, fetch and interpret

VoiceXML documents but can not interact with a user. This interaction is made possible by filling the

Open VXI APIs to provide input and output capabilities. Prompting capabilities, in terms of scope

driven development, are more important than handling input, and so we will examine the process of

implementing OpenVXI's prompt API.

In keeping with the XP paradigm we employed continuous testing. At each step in the development

process we discuss the testing process. Fortunately, creating these tests was usually a simple matter

of creating a VoiceXML document to test whichever unit of functionality that has been implemented.

Once the new functionality passed the tests, the code could be refactored and integrated into the main

system.

As the various user stories were implemented we could see the system grow, finaJ1y culminating in a

VoiceXML gateway.

4.1 Creating an Asterisk application

Our first, and most important, task in the development process is to extend Asterisk in a way that does

not alter the source code, making it portable across different Asterisk installations, and allowing any

53

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 54

channel, the Zap and VolP channels in particular, to access the new functionality. For this we have

chosen to create an Asterisk application module. Asteri sk applications of this sort are called from the

dial plan. This section simply describes the process of creating and adding an Asteri sk application

module . The actual functionality of the application is discussed later in the chapter. This process

is generic, and anyone wishing to add an application module has to first complete this step. It must

be noted that this process has changed slightly in later versions of Asterisk - the naming of some

variables has changed.

Before creating the application, and in keeping with XP practices, we need to create the tests. Hence

this section will also discuss and motivate the test. Finally, the application has to be named. We have

simply decided to call it voice xml .

4.1.1 Creating the test

Creating a test for this is simple, as it involves a single dial plan command. Since we want to be

able to pass the application arguments, in particular the VoiceXML URL, the test has to reflect this

functionality:

exten => 999 , 1 , voicexml(http://king . rucus.net/test . vxml)

Should a user dial 999, the voicexml application must be executed, and, to verify argument han

dling, the application must simply output the argument. Should the test pass it means that we have

successfully created a new Asterisk dial plan application which is exposed to any channel supported

to Asterisk.

Now that we have created the test we can proceed with the application module itself.

4.1.2 The voicexml application module

There are two steps involved in creating an Asterisk application module. The first is to create the

application itself and the second is to ensure it gets built and loaded. While this is a relatively

straightforward process, it does require some knowledge of the Asterisk system and some Linux

fundamentals . We will discuss this process in the rest of this section.

All the Asterisk applications are written in C and follow a simple template. The voicexml skeleton

application is shown in Appendix D. These C files all follow a naming convention. The C file must

CHAPTER 4. BUILDING THE GATEWAY.- PHASE 1 55

be named ' app_ <name> . c ' where name corresponds to the name of the application. In our case

thi s will be app_ voicexml . c . Each application is then required to provide a number of global

variables and functions. The variables all point to strings which are used for the description of the

application in places such as the Asteri sk CLI. These follow a similar naming convention, with the

application name being substituted into the name of the variable to create a unique identifier.

These variables are followed by a number of methods: voice xml_ e xec, un l oad_ module,

load_ module , description, usecou nt and ke y. Of these voice xml_ e xec, unload_ module

and load_ module are of interest. loa d_ module and unload_module are responsible for

loading and unloading the application respectively. voicexml_ e x ec is where execution begins

when the application is called, and where application specific functionality is added. In thi s user

story it simply checks for arguments and output them, but eventually this is where OpenVXI and

Asterisk will be integrated.

Handling the arguments is relatively simple. The v oicexml_ e x ec function accepts two arguments,

a pointer to the channel structure associated with the call and a void pointer, called data, which

points to any arguments passed to the application from the dial plan. Checking for arguments is a

simple matter of evaluating the data variable.

The channel structure passed to voice xml_exec is what is used by the application to manipulate

the channel. It has already been initialized at this point, and so the application itself is not concerned

with any channel specific issues . This means that any application created in thi s manner is imme

diately available to any Asterisk channel , and so is available to any Asterisk supported telephony

technology. In our case it means that the vo i cexml application will be available to the zap channel,

and so the PSTN, creating a gateway. In addition to this, the application will support any channels

that are added at a later date. This means that should Asterisk include a new technology, say a new

VoIP protocol , it will have immediate access to the vo i cexml application , with no changes to the

application required.

It is important to note that while the application has to conform to the template and naming conven

ti ons, it is still simply a C file, and so other methods and global variables can be added as usual. Once

the template has been created, it needs to be built, linked and loaded against the Asterisk source.

Once again, this is a fairly simple process, but once again is done in a manner which is specific to

Asterisk .

All Asterisk applications can be found in the apps / directory of the Asterisk source, and so our new

application, app_voicexml . c, must be put there. To ensure that the application is built and linked,

the apps/Makefile file has to be edited. The make command, which is used to build Asterisk,

is di scussed by Fowler [27] . Instructions on what to do with specific files are passed to make in

the form of a Makefile. A Makefile consists of one or more targets . A target represents the

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 56

file which is to be built. It depends on one or more prerequisite files, and has an associated action,

which is responsible for the actual building. So a simple Make f ile entry to build an object file, say

my_object_ file . 0 , from a C file, my_ c_ fil e. c, would look like this:

my_object_f ile . o : my_c_ file.c

#action - build t h e ob j e ct file, whi ch requi r e s my_c_fi l e.c

gcc -c my_ c_ file . c -0 my_ ob j e ct_file. o

So, we need to create a target to the Makefile to build a pp_voicexml. c . This can be done in two

ways, explicitly and implicitly. While it will suffice to add our application implicitly at this time, we

will discuss both methods here, as the implications of creating explicit targets will become apparent

in the following section.

The majority of Asterisk applications are built implicitly. What this means is that they are all built

using the same build commands. This generic approach eases the task of creating the Make f ile,

and will suffice for most cases as most applications do not require any special build arguments. Since

our application does not have any abnormal build requirements at the moment (we are not linking to

any extra libraries for instance) this method is sufficient for our purposes. The a pps/Ma ke file

file contains an APP variable, which is a list of all the targets which are to be built in this manner.

Simply adding app_voicexml . so to this list will ensure that the application module will be built

correctly, passing the standard arguments to the compiler.

The build process creates a shared object, which is dynamically linked to Asterisk, and loaded at

run-time.

The install process copies the shared object files from the a pps / directory to Asterisk's main module

folder, lusr/libs/ as t er i sk / modules/. These modules are loaded at run-time, and can be

configured in the Asterisk module loader configuration file found at / e tcl ast e r isk /module s . c on f .

It is plain to see that extending Asterisk in this manner is very simple and powerful. Creating the

application is a simple matter of fleshing out the skeleton and ensuring that it gets built by editing

the appropriate Makefi l e . The creation of the module does not require the Asterisk source to be

altered, and is done in such a way as to be available to any channel.

Finally. we can run the tests, which show that we have successfully created the application, and

that we can pass arguments from the dial plan to the application. The test is simply run by dialing

999 from a telephone connected to the Asterisk system. If we log to the CLI from the voicexml

application we see the following output when running the test:

CHAPTER 4. BUILDING THE GATEWAY: PHASE]

NOTICE(30189] : app_voice xml . c : 12S voicexml_exec:

voice xml called successfully

NOTICE(30189]: app_voice xml . c :1 26 voicexml_exec:

argument is : http : // king.rucus.net /test .vxml

57

Since this is such a simple process, the task of refactoring and integrating can be ignored. Now that

we can add functionality, we can look at integrating OpenVXI into the voicexml application.

4.2 Asterisk and Open VXI

The the integration of Asterisk and Open VXI is mainly an exercise in linking libraries, as we have

to link OpenVXI and the voicexml application. Once that is done, we can add the interpretation

functionality to the voicexml application, and pass the channel pointer to the OpenVXI platform.

Once this is complete, we will have a VoiceXML gateway with no input or output capabilities. While

this does not immediately create anything useful , it does result in the core of our system, and the

architecture described in Figure 3.2 begins to take shape.

Linking Asterisk and OpenVXI in this way provides most of the functionality required by the tel

API without actually needing to add anything to the API itself. By the time the interpreter is required

in the voicexml application, the incoming call has been set up and answered, and so handling

the incoming call is not part of the tel API's responsibility. Similarly, once interpretation of the

VoiceXML application is complete, the voicexml application can simply exit and Asteri sk will

be responsible for tearing down the call. The remaining functionality required by the tel API is

to provide support for the transfer and disconnect elements. Our proof-of-concept gateway will not

support the transfer element, but providing support for the disconnect element will be discussed later.

In addition to this, the linking process will also give the OpenVXI APIs access to the Asterisk DTMF

recognition and audio file handling functions, as described in Section 4.3 and Chapter 5.

Once again we can begin the process by designing a simple test.

4.2.1 Creating the test

There are a number of things which have to be tested. Firstly, since we are making use ofOpenVXI's

document fetching mechanisms, we need to be sure that the VoiceXML documents can be fetched.

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 58

Secondly, we need to test that the integration has been successful, and that the voicexml application

is able to initialise and execute the interpreter, passing it the URL argument and the channel pointer.

A means of testing this was not immediately apparent, as there was no means of input or output. It

was decided to simply create a VoiceXML application which plays some prompts and then edit the

prompt API to see if the interpreter makes the request to render the prompts. (As said, at the moment

our gateway will not be able to render the prompts, but we can study the output to determine if the

interpreter makes the requests to the API.) Of course, should this test be passed, we can assume that

the document-fetching test also passed.

Once again, creating the tests is a simple task, and involves creating a VoiceXML application and

uploading it to a web server. The VoiceXML application that has been created is a simplified version

of the example application in Figure 2.3, and we expect a successful test to output the greeting

and the p res sOne. wa y prompt requests.

4.2.2 Adding the VoiceXML interpreter to the voicexml application

To allow the yoicexml application to interpret VoiceXML documents the vo icexml application

and Open VXI have to link to each other, as both components need access to each other's libraries.

yoi c e xml needs to begin the interpretation process and OpenVXI needs to be able to control the

Asterisk channel from its APIs.

To do this, we have to ensure that when each component builds it is linked to the correct libraries

at the correct places. So we once again edit the respective Makefile, creating explicit rules (as

described in the previous section) to ensure that the prerequisite files are linked correctly.

Applications can be linked either dynamically or statically. If an application is statically linked to

a set of libraries, those library functions used by the application will be copied and built into the

resulting executable. This allows the application greater portability, as the linked libraries are not

required on the target machine. The downside of this is that more memory will be used.

When a library is dynamically linked, a reference to the library is inserted into the executable, and the

actual linking only takes place at run-time. This means that the size of the application will be smaller,

but the libraries are required on the target computer, hindering portability. Linking in this way means

that the application and the library are independent, and many different applications can link to the

same library, avoiding having the same functions repeated in many different applications [28] . An

added, although somewhat risky. advantage is that changes to the library will affect any dynamically

linked modules.

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 59

In keeping with our open system approach we will use dynamic linking. This means that, while

OpenVXI and Asterisk are still tightly coupled, they are still separate entities. This eases the task of

maintenance, as upgrading or installing either can be done independently.

Once the components are linked, we can begin to add functionality to the voicexml application,

by filling out the voicexml_exec function, taking care to do any required housekeeping. The

following pseudo code segment shows the application logic:

voicexml_exec (channel , data)

1* deal with the parameters *1
if we have a URL

1* set up and run the interpreter *1
initialise the interpreter, passing URL and channel

allocate the interpreter resources

interpret the VoiceXML

1* once we get here we are done with the VoiceXML

* application , for whatever reason , and can shut down

*1
shut down the interpreter

clean up memory

else (there is no URL)

show an error message and exit

One can see that the linking process is where the majority of the work has been done, and that once

that is accomplished we can use the Open VXI API to run the interpreter. All that remains is to pass

the channel pointer through to the APIs, which has been achieved by adding an extra argument to the

initialization function. It is passed to the interpretation engine when it is initialized by the voi cexml

application and then again when the engine initializes the APIs.

It is also apparent that neither the voicexml application itself nor the interpreter concern them

selves with any call specific details, maintaining the channel portability amongst Asterisk channels,

including the Zap channel, which gives our system and interface to the PSTN.

We can now apply the tests to ensure that the process has been completed successfully.

4.2.3 Running the test

As with the previous test dialing 999 runs the test, and we see the following output:

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1

NOTICE (30189] : app_voice xml . c :1 25 voicexml_exec:

voicexml called successfully

NOTICE (30189] : app_voicexml . c : 126

voicexml_exec : argument is:

http://king.rucus.net/test.vxml

<?xml version= ' l.O'?>

<speak version='l.O'

xmlns='http://www . w3 . org/2001/10/synthesis ' xml:base=H

xml:lang='en'>

Welcome to Adam King's Voice XML page

</speak>

<?xml version='l.O'?>

<speak version= ' l . O'

xmlns='http://www . w3.org/2001/10/synthesis' xml:base=H

xml:lang='en'>

<audio pressOne.wav/>

</speak>

60

There are a number of things to note. Firstly, the VoiceXML doc has been fetched correctly. Secondly,

the document has been processed and the interpreter has attempted to play the prompts, so we can

assume that the linking process has been successful.

This output also shows that Open VXI handles prompts internally as SSML documents, which is com

pliant with the VoiceXML standard. The interpreter encountered the two prompts in the VoiceXML

app lication and created SSML documents for the prompts before sending them to be queued by the

prompt interface. The interpreter queues prompts in the manner discussed in Section 2.2.2.4, and

the implementation of this queue is discussed in the following section. Both types of prompts (text

and audio files) are represented by SSML documents, which means that it is not possible to send the

queued SSML documents directly to the Festival system, as it can not play back audio files. There

fore the SSML prompts have to be parsed at some stage to differentiate between audio files and text

for synthesis. This process is also discussed in the following section.

The resulting architecture can be seen in Figure 4.1. The figure illustrates the tightly coupled rela

tionship between Asterisk and OpenVXI, and how Asterisk is capable of interacting with all three

OpenVXI APls. Now that Asterisk and OpenVXI are linked, we can move on to giving the gateway

voice by implementing the prompt API.

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 61

Asterisk OpenVXI

Figure 4.1: The core of the gateway after Asterisk and Open VXI are integrated

CHAPTER 4. BUILDING THE GATEWAY PHASE 1 62

4.3 Giving the gateway voice

This section describes the implementation of the prompt API, which will enable the gateway to

produce output. This is not quite a simple as integrating Festival into the system. As noted in the

previous section, an SSML parser will have to be created and a prompt queue implemented. Only

once these mechanisms have been put in place can we look at actually playing the prompts on the

channel.

This development episode will result in a gateway with output capabilities, and we can start creating

some VoiceXML applications which have some use, mainly information services. The first example

that comes to mind is the time server - "At the beep the time will be".

Since the tests created in the previous section used simple prompts to prove that the interpreter was

functioning correctly, we do not have to create new tests. Running the tests and evaluating the output

requires a user. One has to listen to the call to ensure that the gateway is producing output and that the

output is of a satisfactory nature. Listening to the Festival output from the Shell API and comparing

it with that of the gateway will give us an indication of the level of success of the integration process.

Should the system produce audio of a worse quality than when using standard Shell API, we can

assume that the integration was not completely successful. While a test of this sort would be regarded

as subjective, it will only be used as an indicator as to whether the integration process has been

successful. Should understandable speech be turned into garbled sound, we can assume that the

integration was unsuccessful.

We will begin by describing how the APls work, and then investigate the contents of the prompt

API which determines the implementation requirements. We can then look at the SSML parsing

routine, queue implementation and the playing of both types of prompts. Finally, the test will be run.

4.3.1 The prompt API

As stated in Section 3.2, a primary goal of the OpenVXI system is portability, which is reflected in

the structure of the APIs. They are more complex than if portability was not required. This section

discusses the APIs, using the prompt API as an example. It will also examine those functions of the

API which need to be filled.

The Speech Browser component of the system has been implemented so that it is not in any way

platform-specific, maintaining the goal of portability. The Platform Components, however, are plat

form dependent as they have to access hardware, sound cards and telephony interfaces for instance.

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 63

These have therefore been implemented as a set of APls, which are used to implement any platform

specific requirements , and are responsible for asynchronous event handling.

The framework has been designed to allow components to be replaced either at run-time or initial

ization, as stated by Eberman et at. [24]. Each API is built on an abstract C interface, in this case

the VXlpromptlnterface . The VXlpromptlnterface is essentially a branch table used to

transfer control to the API, allowing the run-time replacement of components in a generic, portable

manner. The APls themselves contain another structure, VXlprompt Impl in this case, which has

as its base the abstract interface, and includes pointers to any other interfaces the API may require,

such as the logging or Internet components and, in particular, the channel pointer. When the resources

are created for the API, the abstract interface's function pointers are set to point to the appropriate

functions. In other words, each API is represented in the Open VXI system simply by an abstract

C interface containing function pointers. Anyone using the Open VXI framework must create an in

terface which resolves these pointers and provides the required functionality. Open VXI provides an

example of how to do this, which we have used and extended. This implementation, represented by

the VXlpromptImpl structure, provides the functions the base interface points to. To this structure

we have added a pointer to the Asterisk channel representing the call, giving the various functions

control of the channel.

Communication from the APIs to the interpreter is handled by return values. An extensive list of

result codes has been provided by Open VXI, which are returned to the interpreter. Each interface has

a set of codes which are defined in the include file of the API. A result code of zero indicates success.

Result codes smaller than zero indicate a severe error, which is likely to be the result of a platform

error (such as an out-of-memory error) and may cause the termination of the call. Result codes larger

than zero are warnings, and are usually application related errors, such as errors when fetching an

audio file or restricted access to the TIS system. VXIprompt_RESULT_SUCCESS is an example

of a successful prompt API return code.

The base interface, the VXIprompt Inter face, gives us an indication of the functions which have

to be provided:

• VXIpromptBeginSession

• VXIpromptEndSession

• VXIpromptPlay

• VXIpromptPlayFiller

• VXIpromptPrefetch

CHAPTER 4. BUILDING THE GATEWAY. PHASE 1 64

• VXlpromptQueue

• VXlpromptWait

• VXlpromptStop

Of these, the most impOitant functionality is provided by VXlpromptP lay and VXlpromptQueue .

We have not implemented the VXlpromptPrefetch and VXlpromptPlayFiller functions,

as they do not represent important gateway functionality, and so could be disregarded in the construc

tion of our proof-of-concept system.

VXlpromptBeginSession is used to set up a prompting session for a call , and in this case all that

has to be done is to set the channel pointer to the pointer passed through from the voicexml applica

tion. VXlpromptEndSess ion is similarly used at the end of a session to do any housekeeping. In

this case we ensure that the prompt queue is empty and the memory has been freed. We also remove

any files that were used during the prompting session. VXlpromptStop is used to stop a playing

prompt. This behavior is discussed when implementing the barge-in attribute in Section 4.3.4. The

final two functions that have been implemented, VXlpromptPlay and VXlpromptQueue, are

discussed in depth further on in this chapter. Before that can be done we have to discuss the SSML

parser.

4.3.2 SSML parser

This section discusses the implementation of a simple SSML parser. This parser is only used to

extract the most important information from the SSML document, and the rest of the information

is disregarded. As we have seen in Section 4.2.3, OpenVXI handles prompts as SSML documents

internally. While it would be ideal to pass the SSML directly to Festival for synthesis. we have chosen

not to for two reasons. Firstly, the interpreter represents both audio and synthesized prompts as SSML

documents. Asterisk, which does not support SSML, is used to render the audio prompts and so the

audio prompts , at least, have to be represented in some other fashion, requiring the SSML to be

parsed. Secondly, it is simpler to pass Festival plain text as opposed to an SSML document. While

disregarding SSML specific functionality reduces the VoiceXML functionality somewhat (words will

not be emphasized, for instance) , it makes the text synthesis process simpler, and this is sufficient for

the purposes of this thesis. It must be noted that the gateway still conforms to the standard in that it

represents prompts as SSML documents and can handle these documents.

We therefore have to parse the SSML documents, extract the required information, and represent them

in some manner appropIiate to our system. Since each prompt is queued before it is played, we have

CHAPTER 4. BUILDING THE GATEWAY PHASE 1 65

two opportunities to parse the SSML - VXIpromptQueue and VXIpromptP lay. VXIpromptQueue

takes a number of parameters , including a pointer to the SSML document itself and a list of properties

which include some of the VoiceXML tags' attributes. It makes sense to parse before queuing the

prompts, as we have access to the attributes.

The list of attributes passed to the VXIpromptQueue are passed as a VXIMap. The VXIMap

data structure is a container for key/value pairs which are of type VXIchar *. The VXIchar

type represents the local char type. All the primitive data types used by OpenVXI are declared as

typdefs to allow portability across as many operating systems as possible. VXIMaps are used to

pass data across interface boundaries, in this case from the interpreter to the prompt interface.

Before parsing can begin, a data structure must be chosen to represent a prompt. A prompt struc

ture was created for this purpose. The attributes required for the structure can be derived from

examining both the prompt and audio tags. The prompt structure contains type, barge In,

fetchtimeout , fetchinit and payload attributes. The type attribute indicates whether the

prompt is an audio fi le or text and bargeIn is a Boolean variable indicating whether or not user input

can stop the prompt while it is playing, and is used for both types of prompts. fetcht imeout and

fetchinit are audio attributes which control the fetching of an audio file. Finally, the payload

attribute is used to store either the URL of the audio file or the text which is to be synthesized.

These account only for some of the more common attributes. The most notable exclusion is the

xml:lang attribute of the prompt tag, which has been ignored by the parser because we only have one

language available at one time. When the Festival server is started, it is configured to use a voice but

this functionality has not been made available to the gateway.

Now that a data structure representing a prompt exists, the task of parsing the SSML can begin. The

barge I n property of a prompt is not part of the SSML, and is instead passed to VXlpromptQueue

as a property in the VXIMap. An accessor, VXIMapGetProperty, has been provided to get values

from a VXIMap by their name. We can therefore use this to set the bargeln property of the

prompt structure.

SSML tags, as can be seen in Section 4.2.3, consist of an xml tag followed by a speak tag containing

a number of attributes, a payload and then finally a trailing speak tag [91). It is assumed, since the

XML document has been created by the interpreter, that it is well formed, and we can di sregard the

opening xml tag. While the speak tag contains the xml: lang attribute, this is ignored and so the speak

tag is also ignored. The first part of the SSML document that is of interest to us is the payload. If the

payload is not an audio tag it is assumed that it is text to be synthesized, and the pay load attribute

of the prompt structure is pointed to the text. If the payload is an audio tag it also has to be parsed

and the fetchtimeout , fetchinit and src attributes have to be extracted. In the case of an

audio tag, the payload attribute of the prompt structure is set to the value of src . Finally we

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 66

can set the type. The type attribute is important because it is used to easily check which system,

Asteri sk or Festival, must be used to render the prompt.

Once the prompt has been parsed and its corresponding prompt data structure has been filled, it can

be queued for playing.

4.3.3 Creating the prompt queue

The VoiceXML specification [56] requires a queue to hold those prompts which are to be played by

the Implementation Platform. This section will briefly discuss the implementation of such a queue.

It is the responsibility of the FIA to queue the prompts, which it does during the COLLECT phase. As

seen in Section 2.2.2.4, the FIA will only queue those prompts which will be played and in the correct

order. A prompt which is in the queue will be played unless a disconnect element is encountered, in

which case the queue is flushed, or if a hangup is detected. This holds true even if a transfer element

is encountered - all prompts in the queue are played before a transfer takes place. Because of this, we

know that when the interpreter requests a prompt to be queued it can be unconditionally added to the

queue, and once the prompt has been played it can be discarded. Should the same prompt have to be

played for a second time, it is the responsibility of the FIA to queue the prompt again.

This behavior greatly simplifies the queue data structure - it is simply a First In First Out (FIFO)

queue. A FIFO queue can simply be implemented as a singularly linked list. To create this list a

pointer to the next prompt is added to the prompt structure, and a global variable, currPrompt,

is created and initialized to NULL. This always points to the head of the queue, and is only updated

once a prompt has finished executing, not as it begins executing, because of the bargein behavior,

which will be discussed later. The queue is global because a number of functions need to access the

queue, including VXlpromptPlay, VXlpromptQueue and VXlpromptStop.

Adding and removing prompts from the queue is straightforward. Once the SSML has been parsed,

a prompt is added to the queue according to the following algorithm:

create a new prompt

initialize the new prompt ' s next pointer to NULL

if this is the first member of the queue

point currPrompt to this prompt

else

add the prompt to the end of the queue

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 67

As said above, prompts can be removed from the queue at two stages, once they have been played

and when the prompting session shuts down. Once a prompt has fini shed executing (or has been

interrupted by the user) it must be removed from the queue and its memory freed. Removing a

prompt from the queue is a simple matter of updating the global currPrompt to point to the

next element in the queue. If VXlpromptEndSess ion is called and there are still elements in the

queue it means that there has been an abrupt end to the call; either a disconnect tag was encountered

or a hangup was received. In both cases the call has completed and the queue is no longer needed,

and so it must be flushed and the memory freed.

The system can now parse, if in a rather rudimentary way, SSML documents and queue them appro

priately. It must now be extended to play prompts of either type.

4.3.4 Playing the prompts

As we have seen, there are two types of prompts, audio prompts and synthesized text. This section

will discuss the process of playing each type. Once this process has been completed the gateway will

be able to produce output.

The FIA, during the COLLECT phase, is responsible for queuing and playing prompts. In terms of

OpenVXI this means that the interpreter sends a message to the prompt API implementation to play

the prompts in the queue, and specifically, in our case, VXlpromptPlay is called. Due to the work

done by the FIA when queuing the prompts, playing the prompts is as simple as emptying the queue.

The prompt at the head of the queue is always the next prompt to be played and the queue can be

emptied, barring, say, a hangup. The algorithm to do this is very simple:

while there is something in the queue

if it is an audio prompt

else

fetch the file

use Asterisk to play the file

use festival to synthesize the prompt

use Asterisk to play the audio

/* when we get here the prompt has finished

* executing and the queue member will not

* be needed again - discard

*/

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1

remove the prompt from the queue

free memory

return the result code

68

As said earlier" the prompt type attribute is used to distinguish between the two types of prompts.

Both types of prompts require some form of acquisition - a file must be fetched or audio must be

generated. Once the audio has been obtained it can be rendered on the Asterisk defined channel,

which has been passed to the API from the voicexml application.

During the execution of the prompts the interpreter is in the WAITING state [56] (the FIA is in the

COLLECT phase), which is when the system waits for input. In other words, input is being received

while prompts are being processed. This affects the design of the system, as it will be seen in the next

section. Currently, however, we are not concerned with input, and we next investigate the rendering

of each type of prompt next.

4.3.4.1 Audio

As we have seen, Asterisk can play audio files to the channel, and can therefore be used to exe

cute audio prompts. The version of Asterisk used for this thesis, 1.0.6, comes with support for the

GSM, wav and raw formats, amongst others. GSM is the predominant format used by many As

terisk applications but since the wav and raw formats are supported, the gateway complies with the

VoiceXML standard. In addition to this, Asterisk provides generic file format support, which is de

fined in file . h. ast_format_register is a function which can be used to add support to

Asterisk for a specific file format. We will use wav files for the tests.

Since audio prefetching is not currently supported, audio is only fetched once an audio prompt reaches

the front of the prompt queue. This may cause delays in some scenarios, but we will ignore them in

this version of the system. As already stated, playing the file requires two steps - fetching the audio

file from a remote server and playing the file on the channel. It was decided that the wget interface

would provide the simplest interface for file fetching. wget is a Linux utility for downloading files

from the Internet and is described in the Linux Manual Pages [65]. wget can navigate through

proxies, provides support for a number of timeout scenarios and can be configured to only attempt

to fetch a file if it does not already exist on the host machine. Since the prompt element in the

queue has already been parsed, its attributes can be passed straight to wget . If the fetch process

gives an error (the fetch times out or the file does not exist, for instance) the execution of the prompt

is abandoned and the result code VXlprompt_RESULT_FETCH_ERROR is returned, indicating to

the interpreter that the file could not be fetched.

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 69

Should the file be retrieved successfully we can proceed with playing it on the channel. To achieve

this we need to stream a file to the channel associated with the prompting session, wait for the file to

stop streaming (or be interrupted) while accepting input, and finally stop the streaming.

Examining Asterisk's file handling capabilities in file. h we see that a number of file streaming

functions are provided. Of interest to us at this point is ast_streamfile, ast_wait s tream

and ast_ stopst ream. ast_s treamfile streams a file to a channel and takes as its arguments

the channel to which the file must be streamed, the file name of the file and a language preference.

It returns 0 on success or -Ion failure. If the stream completes naturally, 0 is returned. Finally the

a s t _ stop st r eam simply stops a stream on a specified channel.

These functions can be used to stream the audio file to the channel and, because Open VXI has been

linked to the Asterisk libraries, the functions can be called from within the Open VXI system. We

just need to include the header file, file. h . The language argument passed to ast_s treamf i le

is used by Asterisk to help navigate through its sound libraries, and does not apply to the gateway.

We can therefore simply pass the channel and the file name to ast_s t reamfil e and let Asterisk

handle the rest. If an error occurs during streaming, VXlprompt_RESULT_HW_ERROR is returned

to the interpreter. ast_ wa itst rea m is used to wait for input while the file is being played. Finally

ast_ stopstrea m is called to ensure that the streaming process ends cleanly.

While the streaming process itself is simple, it justifies a number of design decisions and highlights

some of the advantages of the system. Firstly, and perhaps most importantly, it justifies the tight

coupling between Open VXI and Asterisk. Should this relationship not exist, another component

would have to be obtained to give the gateway the functionality to play audio files , requiring an

interface both to Asterisk and the prompt API, complicating both the implementation process and

the system architecture.

Secondly, it provides a concrete example of why the channel is passed right through to the prompt

API. While one may assume that since the channel structure represents the call, it should be controlled

by the te l API, one can see that this is not the case. The tel API is used primarily as a means for

Open VXI to interface with the underlying telephony platfonn to set up and tear down calls. This is

handled internally by Asterisk before the vo icexml application is even called, and so the channel

structure now represents the audio channel through which the gateway interacts with the user. Playing

audio files on the channel is an example of this interaction.

Thirdly, the benefits of parsing the SSML before queuing the prompt can be seen, as this greatly

simplifies the play back process.

Fourthly, this process provides a small example of the use and range of the OpenVXI error codes.

Thanks to these codes, creating a robust mechanism to fetch and play audio files was easy. The

system can recover, and discriminate between, fetching and playing errors.

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 70

Finally, the streaming process provides an opportunity to discuss an example of the advantage of

dynamic linking. Should further fi le format support be added to Asterisk it will immediately become

available to the gateway, without requiring even a re-build of OpenYXI.

The gateway is now able to fetch and play audio files for the user to li sten to. The following section

describes the process of synthesizing prompts and playing the resulting audio to the user.

4.3.4.2 Synthesized speech

Rendering a prompt which is to be synthesized is, in theory, very similar to rendering an audio

prompt, and requires two basic steps: obtaining the prompt, in this case the synthesized text, and

then streaming it to the channel. That, however, is where the similarities end. Obtaining the prompt

means sending the text to a TIS engine, Festival, and receiving the result. Because we are not simply

streaming audio files, the process of playing the prompts on the channel is very different.

The first task is to integrate the Festival system into the prompt API using the client-server approach

discussed in Section 3.3.1. The client-server approach has been selected because it allows concurrent

processes, in this case prompting sessions, to access the Festival TIS engine simultaneously while

removing any initialization-related time penalties. Another advantage of this approach is that both

Festival and Asterisk provide extensive examples of clients. In particular, Asterisk provides an exam

ple of streaming the Festival output to a channel, and this is di scussed later in this section. While it

may be possible to simply use the Asterisk festival application to synthesize the text, this is not

ideal because it does not give sufficient control of the synthesis process to the prompt API. We did,

however, rely heavily on the app_festival. c file for guidance.

Before we begin with the implementation, Festival had to be installed and configured. Since we will

be following a similar approach to the Asterisk Festival client implementation we can install Festival

as per Asterisk's requirements. This is discussed on the voip-info wiki [89].

Once Festival is installed, it mList be configured before it can be used by Asterisk. There are three

ways of doing this: modifying the Festival configuration file, patching the Festival source code or

using an external Perl script. Since patching the source violates our requirement for an open system,

this option can be ignored. Using an external Perl script is overly complicated. The simplest and

most effective way of setting Festival to run with Asterisk is to change the configuration file. The

following Scheme command, taken from the wiki, is placed in the festival. conf file.

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1

(define

(tts_textasterisk string mode)

" (tts_textasterisk STRING MODE) Apply tts to STRING .

This function is specifically designed for use in

server mode so a single function call may synthesize

the string. This function name may be added to the

server safe functions. "

(utt . send . wave . client (utt.wave.resample (utt.wave . rescale

(utt.synth (eval (list ' Utterance ' Te xt string))) 5) 8000)))

71

This simply defines the command which will be sent to the server by the Festival client. The full

command is of the form (tts_textasterisk string mode) where string is the string to

be synthesized. The final portion of the Scheme command ensures that the text sent back to the client

is sampled at 8Khz, and so is suitable for a telephony environment. (This configuration file can also

be used to change the voice, and so the language, of the system.)

With the server correctly configured we can proceed with the implementation. In broad terms, obtain

ing the synthesized text is a simple matter of connecting to the Festival server, sending it the properly

formatted command, and receiving the result.

A TCP socket is used for the connection, and a socket is created. By default the Festival server

runs on port 1314 and binds to localhost . This behavior can be changed in the configuration file

and the server can be run on a remote machine, enabling load balancing or separate servers running

on separate interfaces which can be used to provide different voices. This is a rudimentary way of

adding multilingual support to the gateway. A file descriptor is used as a handle to the socket, and

so we can treat the socket as a simple file . (Using Unix file abstraction in this manner provides

a simple and powerful way to manage a network connection [73) .) If the socket fails to open for

whatever reason, VXIprompt_RESULT_ TTS_ERROR is returned to the interpreter. If the socket is

successfully opened we can send the command, and wait for the result, which is sent by the Festival

server as a sampled waveform.

The waveform, sent by the server as a file, is read into a buffer by the client. In this way the audio

can be treated as an array of characters. Once the waveform has been received, it can be sent to the

channel. To do so the waveform must be separated into frames. A Unix pipe (another example of

Unix file abstraction) is used to break the waveform up into chunks which will be used as data for a

frame.

A Unix pipe is simply a special file with a read end and a write end. A read process will block

when trying to read from an empty pipe, and a write process will block when trying to write to a

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 72

full pipe [51] . Pipes are used extensively in Unix for Inter-Process Communication (IPC). Following

the example in app_festival. c , a pipe is created and the process forks . The child process then

writes the waveform (in chunks) to the pipe and the parent process reads from the pipe, creates a

frame, and writes the frame to the channel , as can be seen in the following algorithm, which has been

taken from the Asterisk fest ivaI application:

for ever

/ * give the last frame a second to play,

* observing the channel for activity

*/

wait for 1000 ms

/* check the state o f the channel */

read a frame from the channel

/* check the type of frame that has been read

* most normal frames are classified as voice

* frames , such as silence , other frames types

* include video, DTMF , and control

*/

if the frame is a voice frame

read the waveform data from the pipe

create a frame

write the frame to the channel

if this is the last of the waveform

exit

There are a few things to note here. One would assume that waiting before sending each frame

would result in patchy audio. This, however, is not the case. Because ast_wr i te writes the frames

to the channel in a non-blocking manner, we have to wait in between sending frames , otherwise

the frames overlap and the audio is garbled. Checking what is on the channel before sending al so

produces cleaner sounding audio, as the frames are sent only when we can be sure that the user

will hear them. For example, if a waveform is being played to a channel and a user pushes a key,

the DTMF tone the user hears does not overlap the other audio: the waveform is paused, during

execution, while the DTMF tone is played. Another reason for reading from the channel is so that

we can detect a hangup. If a hangup is detected we can stop sending the waveform to the channel

and exit gracefully. The result code VXlprompt_RESULT_FAILURE is returned if either a hangup

is received or ast_write fails for some reason. Otherwise VXlprompt_ RESULT_ SUCCESS is

returned.

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 73

This implementation episode signals the end of the user story, and so we can move to the testing

stage. Before that it is worth noting that some of the aspects touched on in this section, Unix file

abstraction and pipes, will be used later in an attempt to create IPC between the Java Sphinx process

and the voicexml application , and are revisited in the following chapter.

4.3.5 Running the test

Once again we can verify results of the test by logging strategically in the code and looking at the

CLI output.

NOTICE(30189]: app_voicexml . c:125 voicexml_exec:

voicexml called successfully

NOTICE(30189]: app_voicexml.c:126

voicexml_exec : argument is:

http://king.rucus.net/test.vxml

saying: Welcome to Adam King's Voice XML page. bargein 1

playing audio file: pressOne.wav

fetchtimeout=7000 f etchinit=2 bargein = 1

--22 :00:18-- http : //king.rucus .net/pressOne.wav

=> '/tmp/app_voicexml/SIP/1000-df29/pressOne.wav'

Resolving king . rucus .net . .. 146 . 231 . 115 . 12

Connecting to king.rucus.net(146.231.1 15 .12] : 80 .. . connected .

HTTP request sent , awaiting response ...

200 OK Length: 18 , 810 (text/plain]

100%(====================================>] 18 , 810 -- .--K/s

22 : 00 : 19 (15 . 72 MB/s) -

'/tmp/app_voicexml/SIP/1000- df29/pressOne.wav'

saved (18810/18810]

Playing ' /tmp/app_ voicexml/SIP/1000-df29/pressOne '

(language ' en')

We can see that the SSML we saw logged in Section 4.2.3 has been parsed, the important information

extracted, and the text synthesized, The argument passed from the dial plan to the voicexml appli

cation is the URL of the VoiceXML document to be parsed, The two prompts are queued, parsed and

played. Firstly "Welcome to Adam King's Voice XML page" is synthesized, and then the audio file

is played. The audio file to play is pressOne.wav, which is fetched from the web server and saved

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 74

Asterisk OpenVXI

Festival

Figure 4.2: The new architecture reflecting the integration of Festival

to the session's unique work space, in this case the /tmp/app_voicexml/S IP /1000 - d f29 /

directory. The workspace is created using the unique channel name, in this case SI P / 1 OOO- df 2 9,

which allows us to clean up at the end of a session safely, without running the risk of removing files

that have just been downloaded or are in use. Finally, Asterisk streams the file to the channel.

Comparing the synthesized text output from the gateway with Festival's normal output we do not hear

any difference in quality, and so we can assume that the integration was successful.

It can be seen that the test was passed. The resulting architecture can be seen in Figure 4.2, with

Festival interfacing with the prompt API.

4.4 Summary

This chapter described the implementation of the gateway 's output functionality. This involved inte

grating Asterisk, Open VXI and Festival. Asterisk and Open VXI now form the core of the system.

To integrate Asterisk and OpenVXI an Asterisk application module, v o i cexml , was created, and

CHAPTER 4. BUILDING THE GATEWAY: PHASE 1 75

the Asterisk and OpenVXI libraries were linked. This gives the application the capability to interpret

VoiceXML documents.

An SSML parser was then written to handle prompt requests from the interpreter and a queue was

created to hold the parsed prompts. Prompts are either audio files or text, which is to be synthesized.

Asterisk was used to play the audio files. The client-server API of the Festival system was used to

convert text into a waveform, which is then played on an audio channel. Testing the system showed

that both types of prompts could be rendered.

The final element of the gateway - input - will be discussed in the next chapter.

Chapter 5

Building the gateway: Phase 2

This chapter discusses the second half of the implementation phase - adding input functionality to the

system, essentially giving the gateway ears. In particular, we will discuss adding DTMF and speech

recognition support. Integrating Sphinx into the system requires integrating a Java application with

Asteri sk, which is written in C. Two different approaches to this will be discussed, one which failed

and one which was successful.

The integration step described in this chapter results in the final system, and so the final architecture

will be described. A final test involving concurrent calls will then be conducted to test the complete

functionality of the gateway.

Before implementation can begin, a test has to be created. Should the test be successful, we can claim

to have created a low-cost, open-source, proof-of-concept VoiceXML gateway, as per the aims of this

thesis.

5.1 Creating the Test

The test is the simple part of the process: all we need to do is create a simple VoiceXML application

which requires both DTMF and speech input. Working from the original example (Figure 2.3) we

will add a greeting, using a simple grammar. The VoiceXML required to do this is as follows:

76

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2

<audio src= "pre s sOne.wav ll / >

<choice dtmf= "l " ne x t= ll #o ne ll / >

<f o rm id= "o ne ">

<block >

<promp t>

Cong r atulat i on s , you pre s sed on e

</p r ompt>

</block >

</ f orm>

77

<gramma r type= " te xt/gs l "> [(Good Morning) (Hello)) </gr ammar>

<aud io src= " t e st . g s m" />

<filled>

<pr ompt> Hello user </promp t>

</fil l ed>

The YoiceXML code simply creates a greeting. If the user greets the YoiceXML application, the

application answers with "Hello user". The grammar accepts either "Good Morning" or "Hello".

The test makes use of all the components introduced in Chapter 3. It does not test dynamic grammars

and n-best recognition results because, while required by the VoiceXML specification and provided

by Sphinx, they have not been implemented. The ability to change grammars would provide a means

of lIsing only the active VoiceXML grammars when listening for input, and so may improve the

recognition performance of the system, as smaller grammars result in a lower word error rate. Unfor

tunately, due to time constraints, support for dynamic grammars has not been added.

5.2 Adding DTMF support

Input is collected during the execution of prompts, and therefore the output functions discussed in the

previous section need to be extended to capture DTMF input as well. (The specification [56] states

that input is only collected during the play back of prompts.) So, there are two areas which have to

be altered, the streaming of the audio file and the streaming of the waveform from Festival. Another

form of input which we can detect is a hangup, and that must also be dealt with.

Asterisk includes a DTMF recognizer, so we simply have to read from the channel while outputting

both types of prompts and check for any DTMF frames or NULL frames, which indicate a hang up.

We also have to implement the bargein attribute.

CHAPTER 5. BUILDING THE GATEWAY PHASE 2 78

As the output process already reads from the channel, this is simple and our algorithm only changes

slightly.

for ever

/* wait for the last frame to play */

wait for 1000 ms

/* check the state of the channel */

read a frame from the channel

if the frame is null

inform the tel API

stop the prompt

exit

if the frame is a DTMF frame

if the prompt ' s barge in property is true

set the result in the rec API

stop the prompt

exit

if the frame is a voice frame

read the waveform data from the pipe

create a frame

write the frame to the channel

if this is the last of the waveform

exit

Adding this behavior presents a number of design questions, which we will discuss here before adding

support for DTMF input during audio prompt execution.

The prompt API needs access to both the rec and tel APIs. This is done by altering the

VXIpromptImpl structure to include pointers to the other APIs and initializing the pointers when

the prompt sess ion begins. What this means is that all events are caught by the prompt API, which

is then responsible for informing the other APIs, resulting in a somewhat prompt-centric architecture,

and altering the design of the system slightly. Given the way VoiceXML behaves, however, the new

design is acceptable. A VoiceXML application begins, from the user's point of view, with a prompt.

Any input received before a prompt is played is disregarded, due to the behavior of the FIA. Input

(and events) are detected during a prompt 's execution, after which the next prompt is played. We

can see that the nature of a VoiceXML application is itself very prompt-centric, and this has been

reflected in the implementation.

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 79

The next design consideration is how to handle input with regards to the bargein attribute. If the

prompt's barge in attribute is set to true, a user may interrupt a prompt with an utterance or a DTMF

key. This interruption happens at the first indication of any input. It is the VoiceXML developer's

responsibility to ensure that multiple inputs, such as a telephone number, are acquired correctly using

grammars. The hot word attribute of the <prompt> attribute can be used to ensure that a prompt

will only be interrupted once a grammar is matched, allowing for multiple inputs and barge-in during

the execution of a prompt.

The specification describes how to handle input received during the execution of prompts with a

barge in property of false [56]. Any DTMF input received in such a situation is not buffered

and so can be ignored. This means that prompts which can not be inten·upted are used only to render

information and are not used to collect input. This behavior seems to match the behavior of traditional

IVRs.

When interrupting the prompt it is important to set the the appropriate variable in the rec API to the

recognized token before stopping the prompt. The F1A enters the PROCESS phase once the COLLECT

phase is finished, and so, once the prompt finishes executing, the interpreter requests the rec API to

attempt a recognition (match the input against an active grammar). There are two situations when the

interpreter will make the request: when a prompt finishes executing naturally, and once a prompt has

been interrupted. The input is therefore set before the prompt it interrupted, to ensure that the r e c

interface uses the input that caused the prompt to be interrupted.

The second area which needs to be changed when adding DTMF support is the playback of audio

files. Initially ast_ streamfile was used to play the file. This does not, however, provide any

mechanism of collecting input. While this method would suffice for prompts with their bargein

attribute set to false, it will does not allow any input collection when ba rge I n is set to true. There

are two options available to provide this. Firstly, a technique similar to the text synthesis process

discussed earlier can be used, where we read from the channel while writing to it and evaluate each

frame. The other option is to check Asterisk's functionality to see if a mechanism usable in this case

is provided. A function called ast_app_ getdata is available for Asterisk's IVR modality. This

function plays an audio file to a channel and gets any DTMF input. As soon as the function gets some

input the streaming is stopped. This behavior is precisely what is needed and so DTMF support can

be added to the audio prompt very simply. If the prompt's bargein property is set to false we can

ignore any DTMF input and continue as before. If, however, it is set to true, ast_app_getdata

is used as opposed to ast_ streamfile .

Now that the input has been obtained, it has to be sent to the rec interface, so that it can be evaluated

against the active grammars at the request of the interpreter. A function , VXIpromptHandle Input ,

was created for this purpose. Since we are passing infonnation across interface boundaries, a VX IMap

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 80

was created. A VXIMap is a table, which in this case reduces to a key/value pair holding the type and

corresponding value of input received. Care must be taken when creating the VXIMap, as memory

management issues can arise. It is the responsibility of the prompt API to set aside memory for the

structure, and the responsibility of the rec API to ensure that it is freed.

Catering for the input on the rec API side is simply a matter of assigning the received VXIMap to

a global variable. The rec interface is responsible for managing all the active grammars. When the

interpreter requests a match to be made the global map is used.

We now have a system which is able to completely replace traditional IVR platforms in terms of func

tionality. It can interact with a user using synthesized speech and audio files and receive user input

via DTMF tones. The system, as it is at the moment, can be considered a low cost VoiceXML IVR

platform, and could be used to replace many of the IVR systems in use today. The final component

of the gateway, speech recognition, can potentially improve user satisfaction . The following section

will discuss the integration of Sphinx into the system.

5.3 Adding Sphinx

As discussed in Section 3.4, it was decided to use the Sphinx 4 Java version as opposed to Sphinx 2

or 3, which are written in C++. This section looks at the creation of speech-recognition applications

using Sphinx, and then goes on to examine the integration process . The integration process provides

a discussion on Inter-Process Communication (IPC) between a Java process and a native process on

a Linux platform. The first attempt at thi s, using the JNI, the Invocation Interface and the Unix file

abstraction fai led, but will be di scussed here because of the lessons learned. We will then look at a

client-server implementation , which worked and resulted in speech-recognition support for both the

VoiceXML gateway and the Asterisk system.

5.3.1 Creating Sphinx applications

The creation of Spinx applications is discussed in the Sphinx help files [43] . Once the Sphinx system

has been installed, a speech enabled application can be created by simply creating three files: a Java

application, an XML configuration file and a grammar file.

The Java application is surprisingly simple to create. There are three main classes used in Sphinx

applications: the Recogni zer class , the Resul t class and the Conf igurat ionManager class.

The application must load the configuration file and configure the different components using the

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 81

Conf igurat ionManager, capture input for the Recogni zer and process the Resul t returned

by the Recognizer.

The Sphinx engine has been designed to be as configurable and modular as possible. To achieve this

the ConfigurationManager class uses the configuration file to configure the different compo

nents. The configuration file can be used to configure any components as well as to define properties.

The components of interest are the front-end pipeline, the grammar and the acoustic model. The

front-end pipeline is used to configure the engine to accept the input format, the grammar component

is responsible for loading the grammar, and the acoustic model component defines which acoustic

model is to be used. As already stated, we will be using the WSJ 8Khz acoustic model, and so the

acoustic model component must be suitably configured.

Finally, the grammar file used to define the Resul t is created. It can be in various formats, including

SRGF. Excerpts from a Sphinx application and the corresponding configuration file can be seen in

Appendices E and F respectively.

Now that we know how to create a Sphinx application, we can concentrate on the integration, passing

the audio from the channel to Sphinx.

5.3.2 JNI and pipes - a first attempt

The integration of the Sphinx Java application into the current system requires bidirectional interac

tion between Asterisk and Sphinx. All the audio has to be passed from Asterisk to the Sphinx process,

and the result has to be passed to Open VXI's rec API. To ensure that the Sphinx engine has the best

chance of making the correct recognition, it is desirable to have the audio stream up and running by

the time the VoiceXML interpretation starts. Altering the structure of the voicexml application

discussed in Section 4.2.2 we get this:

voicexml_exec (channel, data)

/* deal with the parameters */

i f we have a URL

/* set up the speech recognition */

start the sphinx process

thread and send the audio

/* set up and run the interpreter */

initialise the interpreter, passing URL and channel

allocate the interpreter resources

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2

interpret the VoiceXML

/* once we get here we are done with the VoiceXML

* application , for whatever reason , and can shut down

* /

shut down the interpreter

clean up memory

else there is no URL

show an error message and exit

82

We can see that the voice xml application needs to have two threads of execution. One is respon

sible for sending the audio to the Sphinx process and another to interpret the VoiceXML. Before any

audio can be sent, however, the Sphinx Java process has to be started. To start the Java Virtual Ma

chine (JVM) and run the application, and receive the result from the application, we decided to use

the Invocation API and the Java Native Interface ONI). The JNI can be used to aIJow native processes

and Java applications to interact with each other, as described in [30, 49] . The JNI can be used to

incorporate native libraries into Java applications. Java developers may find this necessary in real

time application where Java does not perfOlm adequately, or where existing native libraries already

perform the required functions. The Invocation API, on the other hand, can be used by native pro

cesses to gain direct control of the JVM. A native process is one which is written in either C or C++.

The JNI and Invocation APIs seem ideal for this situation, as they provide the two-way interaction

required .

Given that we have a possible means of interaction between the different processes, we can investigate

a mechanism for passing the audio from the voicexml application to the Java process. There are a

number of issues to keep in mind when designing and implementing such a mechanism. Firstly,

audio is read from the channel in Asterisk specific frames . These need to be converted to a constant

audio stream to be sent to Sphinx. Secondly, Asterisk is able to handle many different types of audio

formats and codecs. While Sphinx is able to handle different types of audio, the type is set in the

configuration file and changing the audio format during execution is not possible. Therefore we have

to ensure that the audio being sent to the Sphinx process is in the format that matches the chosen

acoustic model. Thirdly, Java does not have very good access to low level, platform specific devices,

as it is dependent on the JVM. Sending the audio to a Unix abstract device (such as / dev / nUll)

on the Linux platform wiIJ not work because the Java application will have difficulty in accessing the

device in a generic manner.

It was therefore decided to stream the audio from Asteri sk to a file which the Sphinx application

would access independently. Because of the amount of housekeeping that would be required to

ensure that the two independent processes access the file correctly, it was decided to use a pipe.

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 83

The pipe will block a write while there is nothing to read, and vice versa. Due to the Unix file

abstraction system, the pipe can simply be treated by both processes as a normal file. The Asterisk

function ast_writefile creates a stream for writing in a specified format. One can use this

function to write a stream to a file in a consistent format, which can be read on the other side by

the Java application, treating the pipe as a simple wav file. This scenario theoretically solved all our

problems. The ast_writefile creates a stream of audio of a consistent format which is written

to a file. The Java application on the other side can handle the pipe as a normal file . What is left to

do is to start the Java process.

Starting the Java process requires another thread to run the JVM and a second pipe for communi

cation between the two processes. Since the initialization of the Sphinx process takes a while, the

voicexml application needs to wait before proceeding with the VoiceXML interpretation. The ini

tiali zation penalty can not be avoided, and thi s means that there is a pause before the VoiceXML

begins executing, which is not desirable. The voicexml application now looks like this:

voicexml_exec (channel , data)

/* deal with the parameters */

if we have a URL

/* set up the speech recogn it io n */

create a pipe for the audio

create a pipe for other communication

create a thread to manage t he JVM

/ * to sy nchronize the processes we can simply

* read from the communication pipe - this read

* will block until the Java app licat i on wr ites

* to the pipe

*/

read f r om the communication pipe

start an audio th read

/* set up and r un the interpr eter */

initialise the interpreter, passing URL and channel

allocate the interpreter resources

interpret the VoiceXML

/* once we get he re we are done with the VoiceXML

* application , for whatever reason , and can shut down

*/

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2

shut down the inte rpreter

stop the th r eads

remove the pipes

clean up memory

e lse there i s no URL

show an error message and exit

/* J VM thread */

start the \...TVM

start the Sphinx application - passing, as fil es , b oth pipes

/* audio th read */

read from the channel

write a stream to the pipe in wav f ormat

84

The Sphinx application simply wrote to the communication pipe once initialized and then read audio

from the audio pipe, treating it as a wav file. Finally, the JNI API was used to link the Sphinx

application with the rec API and set the input. Adding native libraries to a Java application is

relatively simple, as described by Schuermann [79). The native method is declared, without a body,

in the Java application and the library is loaded in a static block following the declaration, as follows:

private native void setResu l t(String result) ;

static (System . loadLibrary("VXIrec ");

j ayah, a C header file generator, is then used to create a C header file from the Java application which

is included in the native library. The Sphinx application can now theoretically call setResult to

interface with the rec API.

Once the solution was implemented and tested it was found that not only did it not work, but it

had managed to break the DTMF recognition. While the main symptom of failure was that the

ast_writefile call continuously gave an error, there are also a number of issues which would

ensure that the solution would not have worked. We will first discuss the ast_wr i tefile issue

before discussing the related issues.

Studying the Asterisk file writing process we saw that, after every frame was written, the header of

the wav file was updated. Looking at the header structure of a wav file we saw that it included a

chunksize field used to indicate the size of the wav file [95). After each write Asterisk attempts

to update thi s header, and this fails. Since a pipe is a file of size zero, the wav header does not exist,

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 85

and has already been read by the Sphinx process. In fact, it is not possible to lsee k on a pipe [51].

(lseek is used to change the position in the file where writing (or reading) occurs [50].) Since the

process of writing to the wav file cannot update the file size header, because the wav file is actually a

pipe, it gives an error. The Java program on the other end is being blocked by the behavior of the pipe,

as it attempts to read while there is no corresponding write. While this could be changed, it involves

altering the Asterisk source code to blindly write to the pipe and neglect updating the wav header.

Since we are attempting to avoid altering the Asterisk source, the method of sending the audio to the

pipe needed to be revi sed.

Had the streaming worked, or a suitable alternative been found, the solution still would have failed.

The JNI call to a native library is not able to call a particular instance of that library, and so the Sphinx

application would not interact with the instance of the rec API associated with the call, and the input

would have been lost. Similarly, there is no way to handle concurrent calls, and there is no way to

associate an executing instance of a library with a JNI call.

Finally, because there were two process concurrently reading from the channel , on average only half

of the DTMF input would be received by the prompt API, as the other half is read by the process

streaming to the audio file. While this is unacceptable, any solution to the Sphinx integration problem

requires a separate thread to send all the audio to the Sphinx process and so this must be solved.

These errors caused a re-consideration of the problem, and a new solution was created based on the

client-server architecture.

5.3.3 The client-server approach

Since the first solution was not feasible we had to investigate another approach. It was decided to

use a client-server architecture whereby a client, the voicexml application, streams the audio to a

Sphinx server. Before we begin discussing this approach it is worth reviewing some XP principles

which come into play due to the change. Besides using the test based and scope-driven development

approaches prescribed by XP, a conscious attempt has continuously been made to keep the code as

simple as possible. The effect of this is to minimize the cost of change over time as well as to

reduce the possibility of errors in the system. Combining the two separate processes that read from

the channel into a single one represents a large change to the design of the system, as the DTMF

input solution has to be reworked. Fortunately, because the code has been kept as simple as possible,

making the alterations does not affect the progress of the project drastically.

The solution to the channel access problem is to only read from the channel at a single point - when

sending the audio to the Sphinx application. Any DTMF input received is simply sent to the prompt

API where it is dealt with, as before, by the VXlpromptHandlelnput function.

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 86

It was decided to create first a simple Asterisk recognition application to see whether the client-server

approach was viable, and therefore another application module, app_recognize . c, was created,

in the same manner as app_vo icexml . c. Should the new approach work, it would provide a

speech recognition system for Asterisk itself, as well as for the gateway.

Fortunately, the recognize application was very similar to the voicexml application discussed

in the previous section without, of course, the OpenVXI integration. Instead of writing to a pipe

audio had to be written to a socket. (Due to Unix file abstraction, sockets and pipes are essentially

equivalent, and can be treated in the same manner.) So, instead of opening a file stream we now

opened a socket and connect to the server.

Once a connection to the server was made, the client had to synchronize with the Sphinx process,

like before. The synchronization was necessary to ensure that audio was only sent once the server

was ready to accept it and that the VoiceXML application did not begin execution before such a time.

Once the server was ready, the client could send the audio.

As with the previous approach, the problem of audio formats had to be addressed. The client had to

ensure that the same format was consistently sent to the server, and that the format was one which

could be handled by the server. The native audio format used by Asterisk is PCM SLINEAR, which is

8Khz, signed, big endian audio with 160 bytes per sample, and any Asterisk supported audio should

be able to be converted into this PCM SLINEAR format. Since we had already chosen an 8Khz

acoustic model , we simply had to configure the front-end pipeline to accept this audio, as it can be

seen in Appendix F.

The recognize application behaves as follows:

recognize_exec (channel, data)

open a socket to the sphinx server

create a thread to listen for results

connect to the sphinx server

wait for the sphinx server to initialize

for ever

if the audio is not PCM SLINEAR

convert the audio

send the audio to the socket

1* result thread *1

for e ver

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 87

li s t en to the socket

log a n y r esult s to the eL I

Now that we have a client that can connect to a server and send correctly formatted audio, we can

look at implementing the corresponding server. Since the responsibility of the server is to simply

farm out Sphinx processes , it was called SphinxFarm.

5.3.4 SphinxFarm

SphinxFa r m is a Java TCP server which farms out Java processes, in our case Sphinx applications,

to any incoming connections. As seen previously, the main issue associated with integrating Sphinx

and Asterisk is the transport of the audio from the C application to the Java application. The device

used in this scenario, a socket, is again easily accessible by a Java application.

The choice of Java as an implementation language was made because we are farming out Java pro

cesses. It was also found that because of the way in which Java handles exceptions, a great deal of

robustness could be easily built into the server.

TCP has been chosen because it encapsulates the notion of a connection, while UOP is connection

less. We need to ensure that the client is sending the audio to the correct Sphinx process, and that

the Sphinx process in return is sending the results to the correct client, and providing this behavior

using TCP is simpler than using UDP. If UOP was used we would have had to create some form of

connection, either by using another TCP connection to negotiate a separate port for communication

between the client and the thread associated with it, or by manipulating the UOP packets to provide

some TCP functionality.

The final issue affecting the design of the SphinxFa r m application is the issue of time penalties.

SphinxF a r m must attempt to minimize any Sphinx related time penalties - in particular the ini

tialization delay. This has been done by pre-initializing the Sphinx processes at start up. The server

initializes a number of Sphinx processes before opening a socket and waiting for connections.

The pre-initialization process works as follows. Each Sphinx process is run in a separate thread,

and can be in one of three states - INITIALIZED, CONNECTED or WAITING. The INITIALIZED state

refers to a thread containing a Sphinx process, which has been initialized but has not yet been run.

(Specifically, its run method has not been called.) A thread in the CONNECTED state is one which

is busy recognizing speech, and is connected to a client. The WAITING state refers to a thread which

has already been run and has dealt with at least one client connection, but is currently idle. A WAIT

ING thread, in other words, is one which has been in the CON NECTED state at least once, while an

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 88

INITIALIZED thread has never been. Because the number of connections is theoretically unbounded.

a vector has been used to keep track of the threads. A load argument. passed to the server at start up.

is used to determine the amount of Sphinx processes to pre-initialize.

Once initialization is complete. the server opens a socket and listens for connections. On an incoming

connection the server first attempts to find a thread in the INITIALIZED or WAITING state before

creating a new thread as follows :

for each thre a d i n the vector

synchronized

if the th r ead is i nitia l i zed a nd i s n ot connecte d

use this threa d

1* t he re are n o s uch t hrea d s *1
create a new thread

Since both the server process and the client process itself can change the state variables. any access

of the variables is done in a synch ronized block statement. Once a suitable thread has been

selected. the server passes the socket to the Shpinx process and executes the thread . Executing the

thread involves either running it for the first time. in the case of an INITIALIZED thread. or waking

a thread. in the case of a WAITING thread. To wake a thread a process simply calls the notif y

method.

On the Sphinx side. on initialization the Sphinx front-end must load and configure the components

and allocate the resources. This is what takes time. and means that the value of the load argument

should be carefully selected. Setting the value too low means that calls will. at first. take an initial

ization penalty. as not enough processes have been initialized. Setting the value too high will result

in useless consumption of system resources. If the load value is never exceeded (the value is greater

than the highest number of concurrent calls). there should never be any time penalties. and a client

process will have immediate access to a voice recognition service. Initialization was timed on two

separate machines . A and B. A had an Intel Pentium 4 CPU 3.00 GHz with I GB RAM and B had

an Intel Xeon CPU 2.40 GHz CPU with 1 GB RAM. A is a desktop PC which was running many

other processes at the time. It was observed that initialization on A took around 1 minute. while on B

initialization took around 8 seconds. which illustrates that the initialization time can be substantial.

and therefore it is well worth avoiding.

Once the process is initialized. it waits for the server to pass it a socket. at which point the socket's

input stream is set as Sphinx's data source. and the process can be activated.

Upon activation. the process must indicate to the client application. using the socket. that it is ready

to receive audio. This is done to synchronize with the client process. as in the event of the load

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 89

value being exceeded the client has to wait for the new process to initialize before proceeding. After

confilmation, the recognition process can continue as normal , obtaining results and sending them to

the client process over the socket.

When a client disconnects, the connection is closed, the thread's state is updated to WAITING and the

thread calls the wa i t method, which causes the thread to wait until the server calls not i fy.

The client-server approach has a number of advantages over the wav file approach. Firstly, and most

importantly, it works, as will be shown in the following section. Secondly, being able to pre-initialize

threads means that we can eliminate the initialization time penalty. Finally, being able to suspend

threads and change their input streams means that initialized processes can be assigned to many

different clients. The thread is immediately available after a client disconnects.

5.3.5 Testing the recognize application

This test has been designed with a number of issues in mind. Firstly, it must test the integration

between the two systems. This involves checking that the audio is sent to Sphinx and that the client

is getting recognized tokens back: this can be done by logging the result from the Sphinx application.

Testing that the result of the recognition is returned to the Asterisk application is done by simply

di splaying text read from the socket to the CLI .

Secondly, the transitioning of the thread states must be tested . The following scenarios must be tested

for:

• a single call connecting to an INITIALI ZED process

• a single call connecting to a WAITING process

• the load value being exceeded

• concurrent calls

Finally, an indication of the word error rate is required . Comparing this error rate with the native

error rate of Sphinx in identical conditions helps determine whether the audio transfer mechanism,

the socket, has been implemented correctly. In what follows, [n J represents the thread's index in

the vector. Since the Asterisk server and the SphinxFarm server are both running on the same

machine, all the connections are from 127 . 0 . 0 . 1.

Testing for a single call connecting to an initialized thread and then to a waiting thread:

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2

[OJ --> Initialising

Server initialization successful!

Bound to : 127 . 0 . 0 . 1 :1 315

Pre - loaded clients: 1

[OJ --> Connected .

[OJ --> Hang up - pausing thread

New connection from /127 . 0 . 0 . 1

[OJ --> Connected.

90

Testing for the load value being exceeded. This tests simply did not initialize any processes, and

so the first connection (at index 0) results in the load being exceeded. The following output was

observed:

Server initialization successful!

Bound to: 127 . 0 . 0 . 1:1315

Pre-loaded clients : 0

New connection from /127 . 0 . 0.1

load e xceeded - initializing

[OJ --> Connected .

Finally, testing with concurrent calls:

[OJ --> Initializing

[lJ --> Initializing

Server initialization successful!

Bound to : 127 . 0 . 0 . 1 : 1315

Pre-loaded clients: 2

New connection from /127 . 0 . 0 .1

[0 J --> Connected .

New connection from /127 . 0 . 0 .1

[1 J --> Connected .

[1 J --> Hang up - pausing thread

[0 J --> Hang up - pausing thread

New connection from /127 . 0 . 0 .1

[0 J --> Connected.

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 91

I TEST A I TEST B I TEST C I
First Utterance 100% 95% 75%

Second Utterance 90% 80% 65%
Full Utterance 90% 80% 65%

Table 5.1: Sample test results

As we can see from the tests, the mechanism for minimizing initialization time penalties is working

correctly. There are no initialization time penalties when the number of clients is less than the given

load value and when the load is exceeded a new process is created properly. We can now move on to

assessing the recognition performance of the system.

Three very simple tests were run using a variety of speakers and grammars. The test subject for test

A was a South African male and test B an Australian female. Tests A and B made use of the same

grammar, while test C introduced a different grammar, the speaker being the same as in test A. The

grammars were as follows:

grammar testAB ;

public <greeting>

((Hello I Good Morning) (Adam I Bradley I Will I Rita)) ;

grammar teste ;

public <direct>

(call to I move to) (quick f o x I Bradley I Adam);

The speaker's actual utterance was evaluated against the result produced by SphinxFarm. The test

results can be seen in Table 5.1, and give some indication of the word error rate that can be expected.

Unfortunately, the word error rates of between J 0% and 35% that have been observed are very large.

Since the value is expected to be around 7% (Table 3. J) this is a disappointing result.

The discrepancy between the different values can be due to a number of things, one of which may be

the integration mechanism - incorrectly formatted audio being sent to the Sphinx process for example.

In an attempt to rule out the integration, another test was conducted. Using the same telephone, we

recorded a set of utterances, conforming to the grammars above, to file using Asteri sk's recording

functionality. A Sphinx front-end was created to recognize utterances from a file and the recorded

files were passed to the Sphinx system. An example of the front end output was as follows:

Loading Recognizer ...

Decoding

/usr/src/sphinx4/s r c/demo/sphinx /wavfile/test.wav

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2

WAVE (. wav) file , byte l ength : 62924 ,

data forma t : PCM_SI GNED 8000 . 0 Hz,

16 bit , mono , 2 bytes/frame , little-endian ,

frame length : 31 440

RESULT : good morn ing rita

92

It was observed that saving the utterances as files before decoding them resulted in an error rate

of approximately 30%, which falls within the range of the SphinxFarm test results. This result

strongly indicates that the problem does not lie in the integration, but somewhere else instead.

While it is not been determined what is causing the poor recognition performance, the fact that the

WSJ acoustic model comprises of American accented voices, while our accent is South African must

account for at least some of the discrepancy. Creating our own acoustic model would clarify thi s

problem. This was, however, outside the scope of the thesis.

Finally, since we can assume that the process itself is correct, we can integrate Sphinx into the

voicexml application in a similar manner to what has been done in the recogn i ze applica

tion. The recogn ize application also extends the Asterisk system independently of the gateway

implementation.

5.4 Results

Running the test described in Section 5.1 we can observe the following logging excerpts from the

CLI:

NOTICE[30189] : app_voicexml. c : 125 voicexml_ exec :

voicexml ca l led successfu l ly

NOTICE[30189] : app_ voicexml. c : 126

voicexml_e xec : argument is : http: //king .rucus . net/test . v xml

saying : We l come t o Ada m Ki ng ' s Voi ce XML pag e . bargein = 1

/* fetch and play pressOne */

NOTICE [1 1 261] :

app_voicexml.c : 301 asr_stream : DTMF input received 1

setting dtmf input as 1

saying: Congratulations , you pressed one bargein = 1

/* fetch and play test */

CHAPTER 5. BUILDING THE GATEWAY PHASE 2

NOTICE[1l331] :

app_voicexml . c : 286 asr_ stream : Sphin x recognized: --> hello

setting speech input as hello

saying: Hello use r bargein = 1

93

Of course. if the user did not provide any input or the input was not correct (which it will be for

speech input approximately 10-35 % of the time) nomatch or noinput errors were thrown and the

VoiceXML default behavior was observed, as can be seen in the following example:

saying : Welcome to Adam King ' s Voice XML page.

bargein = 1

app_voice xml . c : 301 asr_stream : DTMF input received 2

saying : Sorry , I didn ' t understand you .

barge in = 1

sa y ing : Welcome to Adam King ' s Voice XML page.

bargein = 1

saying : Welcome to Adam King ' s Voice XML page .

bargein = 1

saying : Sor ry, I didn ' t hear you. bargein = 1

saying : Welcome to Adam King ' s Voice XML page.

bargein = 1

saying : I didn't hear you that time either .

bargein = 1

Looking at the tests we can see that the DTMF collection is reliable and, while perhaps not quite

suitable for real world purposes , speech input can be received and handled correctly.

The final architecture can be seen in Figure 5.1. It can be seen that the architecture is slightly different

from the architecture shown in Figure 3.2, as the initial architecture assumed that Sphinx would only

be integrated into OpenVXI's rec interface. One can see, however, that this is not the case, and there

is interaction between Asterisk and Sphinx. The audio is being passed from the voicexml module to

the Sphinx process, which represents the integration of Sphinx and Asterisk as well.

5.5 Final testing

After creating a complete gateway we needed to test the system a little more thoroughly. To do thi s

we used tests similar to those created for testing the various steps taken in the integration process

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 94

Sphinx

Asterisk OpenVXI

estival

Figure 5.1: The final gateway architecture

CHAPTER 5. B UILDING THE GATEWAY: PHASE 2 95

and run them with concurrent call s. We also executed successive calls, to show that the system was

stable. The unique channel name, provided by Asterisk, was added to the logging infonnation to

discriminate between the different call s.

Output from the eLI is as follows (to improve readability, the unique identifier representing the first

call is shown in bold and italics, and the second call just in bold):

app_ voicexml . c : 121 voicexml_exec :

SIP/ I001-flfl - voice xml cal l ed successfully

app_voice xml .c:1 22 voicexml_exec:

SIP/ I001-flfl - argument is :

http : //f r og . ict . ru .ac . za/helloWorld.xm1

SIP/ I001-flfl - saying :

Press or say one , t wo, three or hash . bargein = 1

app_voicexml.c : 121 voicexml_exec:

SIP/IOOO-4282 - voi cexml cal l ed successfully

app_voicexml . c : 122 vo i ce xml_e xe c :

SIP/IOOO-4282 - argument is:

http : //frog .ict . ru . ac . za/helloWorld .xml

SIP/IOOO-4282 - saying :

Press or say one , two , three or hash. bargein 1

SI P/IOOO-4282 - setting dtmf input as 1

SIP/IOOO-4282 - saying:

Congratulations , you pressed one bargein = 1

SI P/IOOO-4282 - playing audio file : test.gsm

fetchtimeout=7000 fetch i nit=2 ba rge in = 1

http://frog.ict.ru.ac.za/test . gsm

=> ' /tmp/app_voicexml/SIP/IOOO-4282 /test . gsm '

' /tmp/app_voicexml/ SIP/IOOO-4282 /test.gsm'

saved [18810/18810]

Playing' /tmp/app_vo i cexml/SIP/IOOO-4282 /test . gsm '

(language ' en ')

SIP/ I001 - flfl - setting dtmf input as 2

SIP/ IOOl - flfl - saying:

Congratulations , you p r essed one ba rge in = 1

SIP/ lOOl - flfl - playing audio file : test.gsm

fetchtimeout=7000 fetchinit =2 bargein = 1

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2

http : //frog .ict.ru.ac.za/test.gsm

=> '/ tmp/app_voice xml/ SIP/lOOl-flfl /test.gsm '

' /tmp/app_voice xml/ SIP/lOOl-flfl /test.gs m'

saved [18810/18810J

- - Playing ' /tmp/app_voi cexml/ SIP/lOOl-flfl /test . gsm'

(language ' en')

SIP/IOOO-4282 - app_voicexml . c : 286 asr_stream:

Sphinx recognized: - -> hello

SIP/IOOO-4282 - setting speech i nput as hello

SIP/IOOO-4282 - saying: Hello user bargein = 1

96

We can see two calls accessing the same VoiceXML document. Call A (1001 - fl fl) and call B

(1000-4282) happen simultaneously. B enters 1 before any input is received from A. B then goes

on to play an audio file. During the playing of B's audio prompt A inputs 2, and the audio prompt is

played to A. Finally, B says "hello" and the corresponding prompt is played. A does not enter any

more input.

As can be seen, the system can handle concurrent calls, accepting input from each, and we can

therefore conclude that the expected gateway functionality is finally available.

5.6 Summary

This chapter described extending the system to handle input. In particular we discussed adding DTMF

support and integrating Sphinx, which is Java-based.

Adding DTMF functionality involved obtaining the token representing the DTMF tone from Asterisk

and setting thi s value in the rec interface. Since Asterisk provides DTMF tone recognition, obtaining

the corresponding token was a simple matter of reading from the channel, during the execution of a

prompt which could be interrupted, and collecting any frames containing DTMF tokens . These tokens

were passed to the rec interface using a VXIMap, and, if appropriate, the execution of the prompt

was interrupted. Any input received during the execution of a prompt which can not be interrupted is

ignored.

Linking Sphinx system required integrating a Java application into Asterisk, which is written in C.

Initially the Java Native Interface (INI) and Unix file abstraction were tried. The Sphinx process was

started by the Invocation API. A wav file (represented by a Unix pipe) was then used to transfer the

audio from the Asterisk application to the Sphinx process. The voice xml application wrote all the

CHAPTER 5. BUILDING THE GATEWAY: PHASE 2 97

audio from the call to the pipe. This approach failed, because the writing process could not update

the wav file header, and so we investigated another approach.

The second approach, based on a client-server model, was successful. We created SphinxFarm,

a Java server which serves Sphinx processes. The voicexml application was extended to connect

to an initialized Sphinx process and send audio over a socket. SphinxFarm is responsible for

managing the processes, in such a way as to minimize any initialization time delays, associating a

client request with an initialized Sphinx process.

While this approach has been found to be successful, a poor word error rate of between 65% and

90'70 was observed. This will have to be improved before this solution can be used in a real world

application.

Chapter 6

Conclusion

The purpose of this chapter is to review and summarize the work that has been done in this thesis.

The completed work will then be compared to the aims of the project as discussed in Chapter I to

show that we have achieved our goal. We will also discuss future work and extensions to the project.

6.1 Completed work

The work that has been done can be broadly organized into four distinct categories: methodologies

were chosen to aid the construction process, the concepts of voice-enabled applications, VoiceXML

and the Asterisk system were explored, components were selected and discussed and, finally, these

components were integrated to create the gateway.

Due to the time constraints involved with the project, building the gateway from scratch was un

feasible. We therefore needed to select a software engineering methodology which could reduce

development time. As seen in Section 1.2.1 , the CBSE approach is designed to do exactly that. A

system is built by integrating a set of components. This approach drastically reduces development

time while improving the flexibility and maintainability of the system. Next a methodology gov

erning the implementation process was chosen. eXtreme Programming, discussed in Section 1.2.2,

was used. Scope-driven development gave us the order of implementation, ensuring that the most

important parts of the system were implemented first.

Once the methodologies were selected, voice-enabled applications, the VoiceXML standard and As

terisk were discussed in Chapter 2. We saw that voice-enabled applications are being used in call

centers, in the health sector, for example to assist the elderly and impaired, and, in general, as an

98

CHAPTER 6. CONCLUSION 99

information interface. These applications can all be created using VoiceXML. The VoiceXML spec

ification, first released in 2000, can be used to create voice-enabled applications. It was found that a

VoiceXML gateway consists of a VoiceXML interpreter and an input and output component. Inputs

can either be DTMF tones or speech fragments and outputs are either synthesized speech or audio

files. We have seen how the VoiceXML interpreter interprets a VoiceXML document by implement

ing the FIA. We defined a VoiceXML gateway as a VoiceXML browser which is able to interface with

the PSTN. Finally, Chapter 2 discussed the Asterisk telephony platform. It was shown how Asterisk

has the potential to be used as the starting point to create a low-cost PSTN gateway, and how the

Asterisk system can be extended using the Application Module API.

Next, the component selection process was discussed in Chapter 3. The main requirements for a

VoiceXML gateway were found to be an interpreter, a TIS system and an ASR system. OpenVXI,

Festival and Sphinx 4 were selected to provide these required units of functionality. OpenVXI is

a framework for building VoiceXML gateways. It provides a set of APIs which have to be " filled

out" to create a functional gateway. The APIs represent the gateway's input, output and telephony

capabilities. Festival was selected to provide text synthesis functionality and the Java based Sphinx

4 was selected as the speech recognition engine. Spinx 4 was selected over the C++ based Sphinx 3

because of its better performance.

Finally, Chapters 4 and 5 discussed the actual implementation of the system. Chapter 4 discussed

the creation of the gateway's prompting functionality. This involved creating an Asterisk application,

voicexml, linking the OpenVXI libraries and adding audio file playback and speech synthesis func

tionality. Asterisk was used to play audio files and the Festival system was integrated into OpenVXI's

prompt API to provide text synthesis.

Chapter 5 discussed the second half of the implementation effort, adding input functionality. DTMF

support was added using Asterisk's DTMF recognizer. Integrating the Sphinx system with Asterisk

was more difficult and required two attempts. In the second, we made use of a client-server structure,

where a server, SphinxFarm, served Sphinx processes to individual voicexml processes. This

allowed the Java and C processes to interact using a socket, which was also used to pass the audio

between the two processes.

Integrating all the components resulted in a proof-of-concept VoiceXML gateway. Revisiting the

thesis aims, we can evaluate the system created by the implementation process to gauge whether or

not the goals have been met.

CHAPTER 6. CONCLUSION 100

6.2 Achievements

In Section 1.1 the question was posed as to whether it was possible to create a low cost, open source

VoiceXML gateway using the Asterisk telephony platform. To this we added the request to create an

open COTS-based system, to decrease the time required for implementation, and to maintain clear

boundaries for each component.

This thesis has described the construction of a low-cost, open-source, proof-of-concept VoiceXML

gateway. Asteri sk can be used to create a PSTN gateway for as little as R360 (in addition to the cost

of a PC), and so the main cause of high-cost VoiceXML gateways (the expensive PSTN hardware)

has been avoided. Asterisk was then extended by adding open-source COTS systems to create the

proof-of-concept gateway.

Tests have shown that system is capable of rendering prompts represented as SSML documents. It is

able to fetch audio files from a remote web server and play them to a user as weB as synthesizing text

and outputting the resulting waveform.

Support for both DTMF and speech input has been provided. The speech-recognition component

of the system has a high word elTor rate. Tests have shown, however, that this is not due to an

implementation error, but is instead due to some other factor, possibly the lack of a comprehensive

South African acoustic model.

We can therefore positively answer the question from Section 1.1: it is possible to create a low-cost

open-source proof-of-concept VoiceXML gateway.

6.3 Future work and extensions

There are a number of areas where further work can be done.

Firstly, the gateway must be made fully standards compliant. The transfer and record tags have to be

supported, and dynamic grammar handling and n-best recognition must be added to the Sphi nxF arm

system. The functionality required for the transfer and record tags is provided by Asterisk, and since

Asteri sk is already linked to OpenVXI, supporting these tags should not require much effort. Dy

namic grammars and n-best recognition are also supported by Sphinx, and they should be integrated

into the gateway. FinaBy, the system must be extended to handle SSML documents. Since Festival

can already handle SSML this simply involves updating the commands sent to the Festival server by

the client.

CHAPTER 6. CONCLUSION 101

The second area requiring work is the speech-recognition perfonnance. The use of speech recog

nition in voice-enabled applications can improve customer satisfaction, and providing this feature

adequately is important, besides being required to be compliant. The cause of the poor recognition

rate must be identified and repaired .

Thirdly, the system must be tested for robustness and scalability. A large amount of telephone calls

must be made to the system, simulating a real world scenario, which will indicate whether or not the

system is robust and can scale appropriately.

Finally, being South African, it would be nice to include better language support - specifically for

African languages. Adding voices to Festival is a relatively simple task, and to extend the system

to be able, at least, to prompt in a multi-lingual fashion, is desirable. This can improve access to

information for a larger section of the population.

6.4 Conclusion

VoiceXML is capable of creating voice-enabled applications. In addition to this, VoiceXML gateways

can be used to bridge both IP and PSTN networks, from the point of view of infonnation distribution

and collection.

We have proved, through the building of a proof-of-concept prototype, that Asterisk can be extended

to create a low-cost, open-source VoiceXML gateway, which can be used to render these VoiceXML

based voice-enabled applications. Before this system is used in the real world, it must be made fully

standards compliant.

References

[I] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software development methods

Review and analysis. Technical Report 478, VTT PUBLICATIONS, 2002.

[2] Ali Khan. A Tale of Two Methodologies for Web Development: Heavyweight vs Agile. Mas

ters Thesis, Department of Information Systems, The University of Melbourne, Australia, June

2004.

[3] Jon Anton. The past, present and future of customer access centers. International Journal of

Service Industry Management, 11(2): 120-130, 2000.

[4] Chris Bajorek. VoiceXML - Taking IVR to the Next Level, 2000. Avaliable at

http://www.cconvergence. com/article/CTM20000927S0003 [Last Accessed: 23 November

2006].

[5] Rick Beasley, John O'Reilly, Kenneth Michael Farley, and Leon Henry Squire. Voice Applica

lion Development with Voice XML. Sams, Indianapolis, IN, USA, 2001.

[6] Kent Beck. Extreme programming explained: embrace change. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2000.

[7] Alan W. Black, Paul A. Taylor, and Richard Caley. The Festival Speech Synthesis System:

System documentation. Technical report, Human Communciation Research Centre, University

of Edinburgh, University of Edinburgh, UK, 2002. Avaliable at http://festvox.org/docs/manual-

1.4.3 [Last Accessed: 23 November 2006] .

[8] Barry Boehm. Get Ready for Agile Methods, with Care. Computer, 35(1):64-69, 2002.

[9] Kristy Bradnum. VoiceXML: A Field Evaluation. Honour's thesis, Department of Computer

Science, Rhodes University, Grahamstown, South Africa, November 2004.

[10] Alan W. Brown and Kurt C. Wallnau. The Current State of CBSE. IEEE Software, 15(5):37- 46,

1998.

102

REFERENCES 103

[11 J Lawrence Brown, Noah Gans, Avishai Mandelbaum, Anat Sakov, Haipeng Shen, Sergey ZeJtyn,

and Linda. Statistical Analysis of a Telephone Call Center:A Queueing-Science Perspective.

Journal of the American Statistical Association, 100:36-50,2005.

[12) Mike Brown, Dan Burnett, Emily Candell, Jerry Carter, Debbie Dahl, Debajit Ghosh, Andrew

Hunt, Stefan Krause, Sol Lerner, Bruce Lucas, Jens Marschner, Scott McGlashan, Yves Nor

mandin, Brad Porter, Dave Raggett, David Ramsthaler, Luc Van Tichelen, Kuansan Wang, and

Laura Werner. Speech Recognition Grammar Specification Version 1.0, 2004. Avaliable at

http://www.w3.orgITRIspeech-grammar [Last Accessed: 23 November 2006].

[1 3) Xia Cai, Michael R. Lyu, Kam-Fai Wong, and Roy Ko. Component-based software engineering:

technologies, development frameworks, and quality assurance schemes. In APSEC, page 372,

2000.

[14] Carnegie Mellon University and Sun Microsystems and Mitsubishi Electric Research Laborato

ries. Sphinx-4. Technical report. Avaliable at http://cmusphinx.sourceforge.net/sphinx4 [Last

Accessed: 23 November 2006).

[15) Cepstral LLC . Cepstral Text-to-Speech. Avaliable at http://www.cepstral.com/[Last Accessed:

23 November 2006).

[16) Phillip R. Cohen and S. L. Oviatt. The Role of Voice Input for Human-Machine Communica

tion. Proceedings of the National Academy of Sciences, 92(22):9921-9927, 1995.

[1 7) Ross Corkrey and Lynne Parkinson. Interactive voice response: Review of studies 1989-2000.

Behavior Research Methods, Instruments, & Computers, 34(3):342-353, 2002.

[18) Philip T Cox and Baoming Song. A Formal Model for Component-Based Software. In HCC

'01: Proceedings of the IEEE 2001 Symposia on Human Centric Computing Languages and

Environments (HCeO]), page 304, Washington, DC, USA, 2001. IEEE Computer Society.

[19] Albert G. Crawford, Vanja Sikirica, Neil Goldfarb, Richard G. Popiel, Minalkumar Patel, Cheng

Wang, Jeffrey B. Chu, and David B. Nash. Interactive Voice Response Reminder Effects on

Preventive Service Utilization. American Journal of Medical Quality, 20:329-336, 2005.

[20) Avnish Dass, Vikas Gupta, and Charul Shukla. VoiceXML 2.0 Developers Guide Building Pro

fessional Voice-Enabled Applications with ISP, ASp, & ColdFusion . McGraw-Hill/Osborne,

Berkeley, California, USA, 2002.

[21] David L. Thomson and John M. Hibel. The Business of Voice Hosting with

VoiceXML. Technical report, Lucent Speech Solutions, 2000. Avaliable at

http://members.tripod.com/David_ThomsonlpaperslHost4.doc [Last Accessed: 23 November

2006).

REFERENCES 104

[22] Tom DeMarco and Barry Boehm. The Agile Methods Fray. Computer, 35(6):90-92, 2002.

[23] Bryan Duggan. Revenue Opportunities in the Voice Enabled Web, 2002. Dublin Institute of

Technology, School of Computing Report.

[24] Brian Eberman, Jerry Carter, Darren Meyer, and David Goddeau. Building voiceXML browsers

with openVXI. In WWW '02: Proceedings of the 11th international conference on World Wide

Web, pages 713-717, New York, NY, USA, 2002. ACM Press.

[25] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hy

pertext Transfer Protocol : HTTP/I.1. Internet Engineering Task Force: RFC 2616, June 1999.

Avaliable at http://www.ietf.org/rfc/rfc2616.txt [Last Accessed: 23 November 2006] .

[26] Brian Fitzgerald. The use of systems development methodologies in practice: a field study.

Information Systems Journal, 7(3):201-212,1997.

[27] G. Fowler. A case for make. Softw. Pract. Exper., 20(SI):35-46, 1990.

[28] Michael Franz. Dynamic Linking of Software Components. Computer, 30(3):74--81, 1997.

[29] Scott Fricker, Mirta Galesic, Roger Tourangeau, and Ting Yan. An Experimental Comparison

of Web and Telephone Surveys. Public Opinion Quarterly, 69(3):370-392, 2005.

[30] Evgeniy Gabrilovich and Lev Finkelstein. JNI-C++ integration made easy. C/C++ Users 1.,

19(1):10-21,2001.

[31] Boby George and Laurie Williams. An initial investigation of test driven development in in

dustry. In SAC '03: Proceedings of the 2003 ACM symposium on Applied computing, pages

1135-1139, New York, NY, USA, 2003. ACM Press.

[32] John C. Grundy, Warwick B. Mugridge, and John G. Hosking. Constructing component-based

software engineering environments: issues and experiences. Information & Software Technol

ogy, 42(2):103-114, 2000.

[33] J. Hitchcock. Decorating Asterisk: Experiments in Service Creation for a Multi-Protocol Tele

phony Environment Using Open Source Tools . Masters thesis, Department of Computer Sci

ence, Rhodes University, Grahamstown, South Africa, March 2006.

[34] Hanna Hulkko and Pekka Abrahamsson. A multiple case study on the impact of pair program

ming on product quality. In ICSE '05: Proceedings of the 27th international conference on

Software engineering, pages 495- 504, 2005 .

[35] IBM . Research History Highlights. Avaliable at

http://www. research.ibm.com/aboutlpaschistory.shtml [Last Accessed: 23 November 2006].

REFERENCES 105

[36] A. Isard. SSML: A Markup Language for Speech Synthesis, 1995. PhD thesis, University of

Edinburgh.

[37] JA Quiane Ruiz and JR Manjarrez Sanchez. Design of a VoiceXML Gateway. In proceedings

of the Fourth Mexican International Conference on Computer Science, 00:49- 53, 2003.

[38] Julie A. Wright Robert H. Friedman Jeffrey P. Migneault, Ramesh Farzanfar. How to write

health dialog for a talking computer. Journal of Biomedical Informatics, 39:468--481,2006.

[39] Candace Kamm. User Interfaces for voice applications. pages 422--442, 1994.

[40] Kent Beck and Mike Beedle and Arie van Bennekum and Alistair Cockburn and Ward Cun

ningham and Martin Fowler and James Grenning and Jim Highsmith and Andrew Hunt and

Ron Jeffries and Jon Kern and Brian Marick and Robert C. Martin and Steve Mellor and Ken

Schwaber and Jeff Sutherland and Dave Thomas. Manifesto for Agile Software Development.

Avaliable at http://www.agilemanifesto.org [Last Accessed: 23 November 2006].

[41] Irina Kondratova. Performance and Usability of VoiceXML Application. In Proceedings of the

Eighth World Multi-Conference on Systemics, Cybernetics and Informatics.

[42] Irina Kondratova. Voice and multimodal technology for the mobile worker. Special Issue Mobile

Computing in Construction, 9:345-353, 2004.

[43] Sun Microsystems Laboratories, Carnegie Mellon University, and Mitsubishi Electric Re

search Laboratories . Sphinx-4 Application Programmer's Guide. Technical report. Avaliable

at http://cmusphinx.sourceforge.neUsphinx4/doc/ProgrammersGuide.html[Last Accessed: 23

November 2006].

[44] Paul Lamere, Philip Kwok, Evandro B. Gouvea, Bhiksha Raj, Rita Singh, William Walker,

and Peter Wolf. The cmu sphinx-4 speech recognition system. Technical report. Avali

able at hUp://research.sun.comlsunlabsday/docs.2004/sphinx4.pdf [Last Accessed: 23 Novem

ber 2006].

[45] Jim A. Larson. VoiceXML 2.0 and the W3C speech interface framework. In IEEE Workshop

on Automatic Speech Recognition and Understanding, pages 5-8, 2001.

[46] Kai-Fu Lee, Hsiao-Wuen Hon, and Mei-Yuh Hwang. Recent progress in the SPHINX Speech

Recognition system. In HLT '89: Proceedings of the workshop on Speech and Natural Lan

guage, pages 125- 130, Morristown, NJ, USA, 1989. Association for Computational Linguistics.

[47] Kai-Fu Lee, Hsiao-Wuen Hon, and Mei-Yuh Hwang. An overview of the SPHINX speech

recognition system. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(1):35-

45, January 1990. see also IEEE Transactions on Signal Processing.

REFERENCES 106

[48) Linda Levine. Reflections on software agility and agile methods: challenges, dilemmas and the

way ahead. Technical report, 2005.

[49) Sheng Liang. The Java Native Intet/ace Programmer's Guide and Specification. Addison

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[50) Linux Programmer's Manual. Lseek - reposition read/write file offset, 2001. Avaliable at

http://ibm5.ma.utexas.edu/cgi-binlman-cgi?lseek+2 [Last Accessed: 23 November 2006).

[51) Linux Programmer's Manual. Pipe - overview of pipes and F1FOs, 2005. Avaliable at

http://ibm5 .ma.utexas .edulcgi-binlman-cgi?pipe+7 [Last Accessed: 23 November 2006).

[52) LumenVox. LumenVox - Innovators of Speech Recognition Technology and Deployment Tools .

Avaliable at http://www.lumenvox.com![Last Accessed: 23 November 2006).

[53) M. A. Awad. A Comparison between Agile and Traditional Software Development Methodolo

gies . Honours Thesis, School of Computer Science and Software Engineering, The University

of Western Australia, 2005.

[54) Nasser K. Manesh. Asterisk: A Non-Technical Overview, 2004. Avaliable at

http://www.millenigence.com!articles/asterisk-non-technical-review.pdf [Last Accessed: 23

November 2006).

[55) Matthew Hood. Creating a Voice for Festival Speech Synthesis System. Honour's thesis, De

partment of Computer Science, Rhodes University, Grahamstown, South Africa, November

2004.

[56) Scott McGlashan, Daniel C. Burnett, Jerry Carter, Peter Danielsen, Jim Ferrans, Andrew Hunt,

Bruce Lucas, Brad Porter, Ken Rehor, and Steph Tryphonas. Voice Extensible Markup Lan

guage (VoiceXML) 2.0, 2004. Avaliab1e at http://www.w3.orgITRIvoicexmI20 [Last Accessed:

23 November 2006).

[57) M. Douglas Mcilroy. Mass-Produced Software Components. In J. M. Buxton, Peter Naur, and

Brian Randell, editors, Software Engineering Concepts and Techniques (1968 NATO Conference

of Software Engineering) , pages 88- 98, 1976.

[58) Eleanor Singer Mick P. Couper and Roger Tourangeau. Does voice matter? An interactive voice

response (rVR) experiment. Journal of Official Statistics, 20(3): 1-20, 2004.

[59) Mark Miller. Voicexml: 10 Projects to Voice Enable Your Web Site. John Wiley & Sons, Inc.,

New York, NY, USA, 2002.

[60] Miro Distribution. Miro Distribution - POWERFUL I COMMUNICATION I SOLUTIONS.

Avaliable at http://www.miro.co.zal[Last Accessed: 23 November 2006).

REFERENCES 107

[61 J Ramki shore Modukuri and Richard Morris. Voice based web services - An assistive technology

for visually impaired persons. Technology and Disability, 6: 195-200, 2004.

[62] Narayanan Annamalai. An Extensible Transcoder for HTML to VoiceXML Conversion. Mas

ters Thesis, The University of Texas at Dallas, 2002.

[63] Jerzy Nawrocki and Adam Wojciechowski. Experimental Evaluation of Pair Programming. In

Proceedings of European Software Control and Metrics, London, UK, April 2001.

[64] Georg Niklfeld, Robert Finan, and Michael Pucher. Component-based multi modal di alog in

terfaces for mobile knowledge creation. In Proceedings of the workshop on Human Language

Technology and Knowledge Management, pages 1- 8, Morristown, NJ, USA, 2001. Association

for Computational Linguistics.

[65] Hrvoje Niksic. Wget - The non-interactive network downloader, 2006. Linux Program

mer's Manual. Avaliable at http://gentoo-wikLcomlMAN_wgeCI [Last Accessed: 23 Novem

ber 2006].

[66] Jim Q. Ning. Component-Based Software Engineering (CBSE). In SAST '97: Proceedings of

the 5th International Symposium on Assessment of Software Tools (SAST '97), page 34, Wash

ington, DC, USA, 1997. IEEE Computer Society.

[67] Patricia A. Oberndorf. Facilitating Component-Based Software Engineering: COTS and Open

Systems. In SAST '97: Proceedings of the 5th International Symposium on Assessment of

Software Tools (SAST '97), page 143, Washington, DC, USA, 1997. IEEE Computer Society.

[68] Matt Oshry, RJ Auburn, Paolo Baggia, Michael Bodell, David Burke, Daniel C. Burnett, Emily

Candell, Jerry Carter, Scott McGlashan, Alex Lee, Brad Porter, and Ken Rehor. Voice Extensi

ble Markup Language (VoiceXML) 2.1, 2006. Avaliable at http://www.w3.org/TRIvoicexmI21

[Last Accessed: 23 November 2006].

[69] J. Penton and A. Terzoli. Asterisk: A Converged TDM and Packet-based Communications

System. In Proceedings of SATNAC 2003 - Next Generation Networks, September 2003.

[70] Manuel A. Perez-Quinones and Jochen Rode. You've Got Mail! Calendar, Weather and More:

Customizable Phone Access to Personal Information. Technical report, Computer Science, Vir

ginia Tech, 2004. Avaliable at http://eprints.cs.vt.edu/archive/00000698/0Ilchi05phonePIM.pdf

[Last Accessed: 23 November 2006] .

[71] John D. Piette. Satisfaction With Automated Telephone Disease Management Calls and Its

Relationship to Their Use. The Diabetes Educator, 26(3):1003-1010, 2000.

REFERENCES 108

[72] John D. Piette, Morris Weinberger, Frederic B. Kraemer, and Stephen J. McPhee. Impact of

Automated Calls With Nurse Follow-Up on Diabetes Treatment Outcomes in a Department of

Veterans Affairs Health Care System. Diabetes Care, 24:202-208, 2001.

[73] Padmanabhan Pillai and Kang G. Shin. Extending UNIX File Abstraction

for General-Purpose Networking, January 2004. Avaliable at http://www.intel

research .netJPublications/Pittsburgh/101220041324_277.pdf [Last Accessed: 23 November

2006].

[74] publicVoiceXML. Official Home of publicVoiceXML. Avaliable at

http: //publicvoicexml.sourceforge.net [Last Accessed: 23 November 2006].

[75] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. pages 267-296, 1990.

[76J Mosur K. Ravishankar. Sphinx-3 s3.X Decoder (X=6). Technical report. Avaliable at

http://cmusphinx.sourceforge.netJsphinx3/s3_description.html[Last Accessed: 23 November

2006].

[77] Sami Lemmetty. Review of Speech Synthesis Technology. Masters Thesis, Laboratory of

Acoustics and Audio Signal Processing, Helsinki University of Technology, 1999.

[78] Chris Schmandt. Phoneshell: the telephone as computer terminal. In MULTIMEDIA '93:

Proceedings of the first ACM international conference on Multimedia, pages 373-382, New

York, NY, USA, 1993. ACM Press.

[79] Udo Schuermann. The "JNI HOW-TO", 200 1. Avaliable at http: //ringlord.com/publications/jni

howto/ [Last Accessed: 23 November 2006].

[80] Zhiyan Shao, Robert Capra, and Manuel A. Perez-Quinones. Annotations for HTML

to VoiceXML Transcoding: Producing Voice Web Pages with Usability in Mind. CoRR,

cs.HC/0211 037, 2002.

[81 J Ian Sommerville. Software Engineering (7th Edition). Pearson Addison Wesley, 2004.

[82] Mark Spencer, Mack Allison, Christopher Rhodes, and The Asterisk Documenta-

tion Team. The Asterisk Handbook Version 2. Technical report. Avaliable at

http://www.digium.com/handbook-draft.pdf [Last Accessed: 23 November 2006].

[83] STAR. The Speech Technology And Research (STAR) Group. Avaliable at

htlp:llwww.slar.za.net [Last Accessed: 23 November 2006].

[84] F. w. M. Stentiford and P. A. Popay. The Design and Evaluation of Dialogues for Interactive

Voice Response Services. BT Technology Journal, 17(1): 142-148, 1999.

REFERENCES 109

[85] Bernhard Suhm, Dam McCarthy, and Pat Peterson. Maximizing Benefit while Minimizing

Risk in Speech-Enabling Customer Care. Technical report, BBN Technologies. Avaliable at

http://www.bbn.comldocs/whitepapers/max-benefits.pdf [Last Accessed: 23 November 2006].

[86] Clemens Szyperski . Component Software: Beyond Object-Oriented Programming. Addison

Wesley Longman Publishing Co., Inc ., Boston, MA, USA, 2002.

[87] Roger Tourangeau, Darby Miller Steiger, and David Wilson. Self-administered questions by

telephone: Evaluating interactive voice response. Public Opinion Quarterly, 66(2):265-278,

2002.

[88] Kenneth J. Turner. Analysing interactive voice services. Computer Networks: The International

Journal of Computer and Telecommunications Networking, 45(5):665-685, 2004.

[89] voip info.org. Asterisk Festival Installation, 2006. Avaliable at http://www.voip-

info.orglwiki/view/Asterisk+festival+installation [Last Accessed: 23 November 2006].

[90] W3C. Introduction and Overview of W3C Speech Interface Framework, 2000. Avaliable at

http://www.w3.org/TR/voice-intro [Last Accessed: 23 November 2006].

[91] W3C. Speech Synthesis Markup Language (SSML) Version 1.0, 2004. Avaliable at

http://www.w3.org/TR/speech-synthesis [Last Accessed: 23 November 2006).

[92] MelTill Warkentin. The Next Big Thing in eCommerce. Decision Line, 32(1):7-10,2001.

[93] M.F. Weegels. Users' Conceptions of Voice-Operated Information Services. International Jour

nal of Speech Technology, 3(2):75-82, 2000.

[94] Laurie Williams, Robert R. Kessler, Ward Cunningham, and Ron Jeffries. Strengthening the

Case for Pair Programming. IEEE Softw., 17(4): I 9-25, 2000.

[95] Scott Wilson. WAVE PCM soundfile format, 2003. Avaliable at

http://ccrma.stanford.edu/courses/422/projects/WaveFormat/ [Last Accessed: 23 Novem

ber 2006].

[96] Mary Zaj icek, Richard Wales, and Andrew Lee. Towards yoiceXML dialogue design for older

adults . In: Palanque, P, Johnson, P. and O'Neill, E., Editors, 2003. Design for Society Proceed

ings of HCI 2003.

Appendix A

VoiceXML 2.0 elements

Element Purpose

<assign> Assign a variable a value

<audio> Play an audio clip within a prompt

<block> A container of (non-interactive) executable code

<catch> Catch an event

<choice> Define a menu item

<clear> Clear one or more form item variables

<disconnect> Disconnect a session

<else> Used in <if> elements

<elseif> Used in <if> elements

<enumerate> Shorthand for enumerating the choices in a menu

<error> Catch an error event

<e x it> Exit a session

<field> Declares an input field in a form

<filled> An action executed when fields are filled

<form> A dialog for presenting information and collecting data

<goto> Go to another dialog in the same or different document

<grammar > Specify a speech recognition or DTMF grammar

<help> Catch a help event

<i f> Simple conditional logic

<initial> Declares initial logic upon entry into a (mixed initiative) form

<link> Specify a transition common to all dialogs in the link's scope

<log> Generate a debug message

110

APPENDIX A. VOICEXML 2.0 ELEMENTS III

Element Purpose

<menu> A dialog for choosing amongst alternative destinations
<meta> Define a metadata item as a name/value pair

<metadata> Define metadata information using a metadata schema
<noinput> Catch a noi nput event
<nomatch> Catch a nomatch event
<object> Interact with a custom extension
<option > Specify an option in a <field>
<param> Parameter in <object> or <subdialog>

<prompt> Queue speech synthesis and audio output to the user
<property> Control implementation platform settings

<record> Record an audio sample
<rep r ompt> Playa field prompt when a field is re-visited after an event
<return> Return from a subdialog.
<script> Specify a block of ECMAScript client-side scripting logic

<subdialog> Invoke another dialog as a subdialog of the current one
<submit> Submit values to a document server
<throw> Throw an event

<transfer> Transfer the caller to another destination
<value> Insert the value of an expression in a prompt

<var> Declare a variable
<vxml> Top-level element in each VoiceXML document

Table A.I : VoiceXML elements in the VoiceXML 2.0 specification

Appendix B

VoiceXML 2.1 elements

Element Purpose I EnhancedlNew I
<data> Fetches arbitrary XML data from a document server New

<disconnect> Disconnects a session Enhanced

<grammar> References a speech recognition or DTMF grammar Enhanced

<foreach> Iterates through an ECMAScript array New

<mark> Declares a bookmark in a sequence of prompts Enhanced

<property> Controls platform settings Enhanced

<script> References a document containing client-side ECMAScript Enhanced

<transfer> Transfers the user to another destination Enhanced

Table B.I: Elements added or enhanced in the VoiceXML 2.1 specification

112

Appendix C

Sample zaptel configuration files

Example zaptel configuration files. This sample configuration represents a single PRI interface con

nected either to the PSTN.

The zaptel . conf file. This file is not Asterisk specific and is used to configure the interface itself.

use US indication tones

loadzone=us

defaultzone=us

configure the span - a span usually corresponds

to an interface format is

span= (spannum) , (timing) , (LBO) , (framing) , (coding) 1

ccs and ami indicare an EI PRI as opposed to a TI

span=l , l , O, ccs , ami

confugure the bearer channels - these channels carry the voice

bchan=1-15

bchan=17-3I

configure the data channel

dchan=16

The zapta . conf fi le, which is Asterisk specific and is used to configure Asterisk's zap channel.

This example shows only a small subset of the available configuration options.

I http://www. voip-info.org/wikilindex. php ?page=Zaptel.conf +span+syntax

113

APPENDIX C. SAMPLE ZAPTEL CONFIGURATION FILES

switchtype=euroisdn

singalling type - specifies that we are on

the customer premises side of a connection,

essential if we are connecting to the PSTN

signalling=pri_cpe

pridialplan=unknown

echocancel=yes

; do not answer the channel immediate ly

immediate=no

available channels can be divided into

groups - different groups can be used

for different purposes, there is

one group in this example

group = 1

; this group enters the dial plan at the pstn context

context=pstn

; assign some channels to the group '

channel => 1-15

channel => 17-31

114

Appendix D

Application module skeleton

The voicexml application skeleton. Of interest here is the naming of the variables and functions.

II descriptions for the Asterisk CLI help system

static char *tdesc = "vo icexml" ;

static char *app_ voicexml = II vo icexml " ;

static char *voicexml _synopsis = " VoiceXML Application ";

static char *voicexml _descrip =

"voicexml (urI [I sphinxhost I [port]]) \n "

" urI: VoiceXML url\n "

" sphinxhost : SphinxFarm host - default is 127.0.0.1\n "

" port :

"

Port to connect to the SphinxFa r m on -

default is 1315\n\n"

"The voicexml app renders a

"voicexml document with Festival \n "

" for Voice Synthesis and Sphinx 4 for voice recognition .";

STANDARD_LOCAL_USER;

LOCAL_ USER_DECL ;

static int voicexml_exec

(struct ast_channel *chan , void *data)

II execution begins here

II Asterisk housekeeping

int unload_ module (void)

int res ;

115

APPENDIX D. APPLICATION MODULE SKELETON

STANDARD_ HANGUP_ LOCALUSERS ;

res = ast_unregister_ app l ication(app_ voicexml) ;

return res ;

int load_ module (void)

int res ;

res = ast_register_ application

(app_ voice xml , voicexml_ e xec ,

voicexml_ synops i s , voicexml_ desc r ip) ;

return res ;

c har *description(void)

return tdesc ;

int usecount(void)

int res ;

STANDARD_ USECOUNT(res) ;

return res ;

char *key ()

return ASTERISK_ GPL_ KEY ;

116

Appendix E

A Sphinx 4 application

Exerpts of the Sphinx process used to recognize speech.

/* configure the components */

URL urI = new File (conf) .toURI (). toURL ();

ConfigurationManager em = ne w ConfigurationManager(url);

recognizer = (Recognizer) cm.lookup(" recognizer ");

reader = (StreamDataSource) cm .lookup (" strea mDataSource ") ;

/* allocate the resource necessary for t he recognizer */

recognizer . allocate();

/* grab the r esults */

while (true)

Result r esult = null;

String result String = null ;

result = recognizer .recogn i ze() ;

if (result != null)

result String = result . getBestResultNoFiller();

System . out .println

("[" + id + "J --> " + resultString);

117

APPENDIX E. A SPHINX 4 APPLICATION

setResult (resultString);

else

System . out.println

(" (" + id + "J --> Hang up - pausing thread ");

try {

conn. close () ;

synchronized (this)

this . connected = false;

this.wait () ;

catch (InterruptedException e)

118

Appendix F

Sphinx configuration

Excerpts from the Sphinx configuration fi le

<'-- the dictionary configuration , set to WSJ BKhz -->

<component name= "dictionary "

type="edu . cmu . sphinx . linguist . dictionary . FastDictionary " >

<property name= "dictionaryPath "

value= " file :

/home/adam/sphinxfarm/

WSJ_Bgau_13dCep_BkHz_31mel_ 200Hz_ 3500Hz/dict/cmudict . O.6d" />

<property name= "fillerPath "

value= " file :

/home/adam/sphinxfarm/

WSJ_Bgau_13dCep_BkHz_ 31mel_ 200Hz_3500Hz/dict/fillerdict " />

<property name= " addSilEndingPronunciation " value="false " />

<property name= " allowMissingWords " value=" false " />

<property name= "unitManager " value= "unitManager " />

</component>

<! -- the acoustic model configuration , set to WSJ BKhz -->

<component name= "wsjBk "

type=

"edu.cmu.sphinx.model.acoustic.

WSJ_Bgau_ 13dCep_ BkHz_31mel_200Hz_ 3500Hz . Model " >

<property name= " loader " value= "wsjLoader " />

119

APPENDIX F. SPHINX CONFIGURATION 120

<property name= " unitManager " value= "u n itManager " />

</component>

<component name= "wsjLoader "

type=

"edu . cmu . sphinx . model . acoustic.

WSJ_Sgau_13dCep_SkHz_ 31mel_200Hz_ 3500Hz . ModelLoader">

<property name= " logMath " value = " logMath " />

<property name= "unitManager " v a lue= "unitMan a ger " />

</component>

< !-- the front-end pipeline - - >

<component name= " streamDataSource "

type= " edu.cmu . sphinx .frontend . util.StreamDataSource " >

<property name= " sampleRate " value= " SOOO " />

<property name= "bitsPerSample " value= " 16 " />

<proper t y name= "bigEndianDa t a " value= "true " />

<property name= " signedData " value= " t r ue " />

<property name =" bytesPerRead " value= "1 60 " />

</component>

