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Chapter 1

Introduction

Consider a system of particles performing random walks on Zd and branching, with each
particle dying and being replaced by a random number of offspring, the average number of
offspring being one. Two forces are in conflict here: the branching produces fluctuations
in the spatial distribution and the random motion smooths the fluctuations out. Which of
the two tendencies will prevail in the long run? If we begin with a spatially homogeneous
particle configuration, will the system evolve towards a non-trivial equilibrium, or are
the fluctuations so strong that the system is doomed to local extinction? Will the
equilibrium, if it exists, have finite second moments, or will the fluctuations destroy
them? These are the central questions to which this thesis addresses itself.

The answers are well known in the classical case where the particles branch indepen-
dently. If the offspring variance is finite, everything hinges on whether the symmetrized
random walk is recurrent or transient. With recurrence, the system is driven to local
extinction; with transience it has a one-parameter family of non-trivial equilibria, and
finiteness of second moments of the initial state persists in the long-term limit.

We investigate the case of dependent branching, in which the branching behaviours
of particles at the same site are correlated, whether by genuine interaction between the
particles or simply because they share the same local environment. These two alternative
mechanisms of dependence are embodied in the following two models.

1) The branching rate at a site depends on the number of particles there: if there are
k individuals at x, a branching event occurs at rate σ(k). The particle which is chosen
to branch then produces a random number of offspring according to a fixed distribution
ν with mean one and finite variance. This model is studied in chapter 2. The classical
case of independent branching corresponds to σ(k) = const× k.

2) The offspring laws Q(x, n) in generation n at site x are i.i.d. copies of a random dis-
tribution Q on N0 whose expectation m1(Q) has mean one and finite variance. Given
Q(x, n), all particles at site x in generation n independently produce offspring with distri-
bution Q(x, n). Dependencies in the branching are induced by the random environment,
not by the particles themselves. These branching systems in random environment are
considered in chapter 4.

For systems of type 1 the following two extreme cases turn out to be especially
interesting:

a) σ(k) = Cσk
2.

b) σ(k) = 1{k=1}.
The branching rate in b) is extremely low: particles only branch as long as they are
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alone. By contrast, the order of growth of the branching rate function in a) is as high
as possible consistent with preventing an explosion of the second moment in finite time.

Assume that the symmetrization of the random walk is transient, and consider spa-
tially homogeneous initial conditions with finite second moments. Then, both in case 1a)
and in case 2, the long-term behaviour of the system depends on the interplay of three
quantities: b, β2, and β∗. The parameter b is a measure of the variability of the branch-
ing: in case 1a) b := CσVar(ν), and in case 2, b := Var(m1(Q)). β2 and β∗ describe the
random walk, as we now briefly explain.

Let V be the total collision time of two independent copies of the random walk.
Call E[exp(βV )] and E[(1 + β)V ] the exponential moment of order β in cases 1a) and 2,
respectively. Let β2 be the supremum of all β for which the exponential moment of order
β of V is finite, and let β∗ be the supremum of all β for which the exponential moment
of order β of V , conditional on one of the two random walk copies, is finite almost surely.

We show that, both in case 1a) and 2, β−1
2 is the value at zero of the Green function

of the difference random walk S − S′, where S and S′ are two independent copies of the
underlying random walk. We prove for case 2, using tools from large deviation theory,
that β−1

∗ is the sum over exp(−Hn), where Hn is the entropy of the random walk position
Sn at time n. Moreover, we present strong evidence that the same is true in case 1a),
with n ∈ N replaced by t ∈ R+, and the sum replaced by an integral. In particular, these
characterizations ensure that, under mild conditions on the random walk dynamics, β2

is strictly less than β∗.

Both in case 1a) and in case 2) the three parameters b, β2, and β∗ determine the
long-term behaviour of the process, as follows.
(i) for b < β2, second moments remain bounded in the large-time limit, and the system
converges to an equilibrium which only depends on the initial intensity.
(ii) for β2 ≤ b < β∗, second moments grow exponentially in time, but the system still
converges to an equilibrium which preserves the initial intensity. Thus contrary to the
classical case of independent branching we have a family of equilibria with local particle
numbers of infinite variance.

For the proof of (i) we use coupling arguments and expressions for mixed moments
involving random walks. The proof of (ii) relies on a representation of the cluster of
“siblings” of a randomly sampled particle in terms of its genealogical tree. For particle
systems with independent branching, the idea of employing spatially embedded locally
size-biased genealogical trees in order to analyse the long-term behavior can be traced
back (at least) to the seminal paper of Kallenberg [19]. For particle systems with locally
dependent branching as in cases 1 and 2, we give a representation of the locally size-biased
genealogical trees (or “Kallenberg trees”) in section 2.5 and in section 4.4, respectively.

In case 2 the Kallenberg trees are not conceived as conditioned on the environment
(as in [16]) but as randomized over the environment. In such an “annealed” situation,
a construction of Kallenberg trees for a special example of locally dependent branching
in continuous time related to case 2 (the so-called “coupled branching process”) appears
in [14]. There the environment is given by an i.i.d. family (indexed by the sites) of
homogeneous Poisson processes on the time axis, each Poisson time point designating
a “local catastrophe” at the respective site. Given the environment, particles branch
independently with a mean offspring bigger than one, but whenever a local catastrophe
occurs, the population at this site is wiped out.

Part of the present thesis was motivated by an attempt to understand Greven’s
arguments in [14] better and to discern a more general structure behind them. The latter
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endeavour has met with some success; progress in the former has been less complete. In
particular, a big question remains open: Does b > β∗ imply local extinction?

A second source of inspiration for the present thesis has been the ongoing investi-
gations of Greven and den Hollander on the diffusion limit of systems of type 1a), also
known as the parabolic Anderson model, cf. [1]. This is a system (Xx(t))t≥0,x∈Zd of
interacting diffusions

dXx(t) =
∑
y

px−y(Xy(t)−Xx(t))dt+ bXx(t)dBx(t),

where the Bx are independent standard Brownian motions. (We are grateful to the
authors for making their manuscript [15] available.) They give a characterization of β∗
in terms of a variational problem similar to our (5.6), but they do not give an explicit
formula for the maximiser. Our arguments can be carried over to the continuous-time
case (see section 5.5), thus yielding a more explicit characterization of β∗. Shiga proved,
using techniques from stochastic analysis, that the parabolic Anderson model becomes
locally extinct even for transient p if the coefficient b is sufficiently large, cf. [29]. He was
not able to give the exact threshold value; in [15] the authors conjecture that it is β∗.

The parallels between systems of type 1a) and 2, which are expressed in the above
stated assertions (i) and (ii), are less surprising when one realizes that both types of
systems have the property that the variance of the increment of the local density, given
the current population, is proportional to the square of the current local density. Thus
one might expect that these systems should be in the same “universality class” as the
parabolic Anderson model.

Let us now turn to branching particle systems of type 1, with a branching rate
σ(·) more general than in 1a). (In in order to ensure the “attractivity” of the systems,
we assume that σ(k) is monotone in k or that the branching is critical binary.) For
transient symmetrised particle motion and lim supσ(k)/k2 < β2/Var(ν) we prove that
there is persistence (of the initial intensity in the large-time limit). Any such system has
a family of equilibria parametrised by the local density, all these equilibria having finite
(local) variance. This complements a result of Cox and Greven ([5]) on the corresponding
interacting diffusion limit.

For particle systems of type 1 with general particle motion we prove a comparison
result showing that if the system ξ uses branching rate function σ, the system ξ′ uses
branching rate function σ′, and σ(·) ≥ σ′(·), then certain convex functionals of ξ(t) have
larger expectations than their counterparts involving ξ′(t). This is a particle analogue
of the main result of [4] who treated interacting diffusions. Applying the comparison
theorem to Laplace functionals we get as an immediate consequence that local extinction
of ξ implies the same for ξ′, which is intuitively plausible because more branching should
lead to more fluctuations, driving the system more easily to its (absorbing) vacuum state.

Finally, the state-dependent branchers with recurrent symmetrised motion pose in-
triguing questions. In view of the comparison theorem and well-known properties of
systems with independent branching, there must obviously be local extinction whenever
σ(·) grows at least linearly. On the other hand, can a strong “down-regulation” of the
branching rate make possible a non-trivial equilibrium? Taking this to the extreme leads
us back to the above-mentioned systems of type 1b), i.e. to σ(k) = 1{k=1}. If such a
system of “lonely branchers” suffers local extinction, the answer must generically be “no”.
The question whether the lonely branchers in Z1 and Z2 die out locally was posed by
Ted Cox a few years ago (private communication), and is still open.
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One tool for investigating the long-time behavior of these systems is the Kallenberg
tree: its local clumping is equivalent to local extinction of the particle system, cf. Lemma
9. As we have not yet succeeded in analysing the long-term behavior of the “full” Kallen-
berg tree of the lonely branchers, instead we have considered a caricature, where the
trunk does not move and the side-lines do not branch. This leads to systems of random
walks with “self-blocking immigration”, which are studied in chapter 3. We have been
able to show that these systems experience local overflow whenever the motion is recur-
rent. This leads us to the conjecture that the same holds for the true Kallenberg tree
and thus that the lonely branchers die out locally.

We also study the quantitative long-time behaviour of self-blocking immigration sys-
tems starting from the empty configuration. We obtain a fairly complete picture for
positive recurrent motion: the total number of particles (or, equivalently in this case,
the local density) grows logarithmically in time. By applying ideas from the theory of
hydrodynamic limits we derive an “effective equation” for the local density in the case
of simple random walk on Z, and analyse the precise asymptotic long-time behaviour of
this equation. This predicts that the number of particles should grow like C

√
t log t, and

again that the local density grows like log t. Finally, we use the relative entropy method
to show that the prediction captures at least the correct power of t, namely that the
number grows more slowly than t1/2+ε for any ε > 0. It remains a challenging problem
to make the

√
t log t-prediction rigorous. Together with the elimination of the “carica-

ture step” this would say something interesting about one-dimensional lonely branchers:
The family of an individual alive at time t should be of size

√
t log t, not of size t as in

non-interacting systems.
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Chapter 2

Spatial branching processes with
state dependent branching rate

2.1 Scenario

We deal with spatially extended systems of branching particles in continuous time, that
is, we consider populations of particles that move around randomly on some discrete
space S – we will mostly consider Zd – and branch into a random number of offspring.
The spatial motion is given by some Markov dynamics which is independent for different
particles, but the rate at which particles die is a function of the overall number of
particles which are currently at the same site. Upon her death, a particle is replaced by
a random number of offspring, possibly none. The number of children is independent of
everything else with a fixed distribution ν with mean one and finite variance. Here is
our list of formal ingredients:

S . . . . . . . . . . . . . . . . . . . . . . . “basic space”, some countable set
ξx(t) . . . . . . . . . . . . . . . . . . . no. of particles at x ∈ S at time t
σ : N0 → R+ . . . . . . . . . . branching rate function (σ(0) = 0),

each individual at x dies at rate σ(ξx)/ξx
ν ∈M1(N0) . . . . . . . . . . . . . individual offspring distribution:

at her death, a particle is replaced
by k offspring with probability νk.

We assume
∑

k kνk = 1,
Var(ν) :=

∑
k k

2νk − 1 <∞.
px,y . . . . . . . . . . . . . . . . . . . . irreducible stochastic matrix on S,

particles follow independent p-motion with rate κ.

The time evolution of the configuration ξ(t) is a Markov process on a suitably chosen
subspace of ZS+ with formal generator given by

LF (ξ) = κ
∑
x,y∈S

ξxpxy

(
F (ξ(x,y))− F (ξ)

)
+
∑
x∈S

σ(ξx)
∑
k≥0

νk

(
F (ξ + (k − 1)δx)− F (ξ)

)
(2.1)

=: κLrwF (ξ) + LbrF (ξ),

9



where δx is the configuration with exactly one particle at position x, we use the obvious
component-wise addition of particle configurations, and ξ(x,y) = ξ + δy − δx is obtained
from ξ by moving one particle from x to y.

We assume further on that

σ(k) ≤ Cσk2 for some Cσ > 0, (2.2)

and that
A := sup

z∈S

∑
y∈S

pyz <∞. (2.3)

Remark 1 (2.2) ensures for n ∈ N that if ξ(0) and ν have n moments, this will also
be true of ξ(t) for any t > 0, see Lemma 3. One checks easily, e.g. by considering a
one-point space, that if σ(k) = k2+ε for some ε > 0 this would not be true. In fact, the
system would then loose even second moments in finite time.

(2.3) excludes the possibility of instantaneous implosion of mass moving in from infinity,
if we start from an initial condition ξ(0) with uniformly bounded intensity. It guarantees
that then the number of particles at any given site and any time is almost surely finite.
Observe that (2.3) is satisfied whenever p has an invariant measure α satisfying 0 <
inf αx ≤ supαx < ∞. It is automatically satisfied for doubly stochastic p, thus in
particular for p of random walk type, i.e. p satisfying pxy = p0,y−x, and also for p
corresponding to a random walk on any directed graph where the vertices have uniformly
bounded degree. From (2.3) we easily get by induction that supz

∑
y p

n
yz ≤ An (note e.g.

that
∑

y p
2
yz =

∑
y pyz

∑
x pxy ≤ A

∑
y pyz ≤ A2).

Additionally, we impose
Assumption A We assume that one of the following cases holds

ν =
1
2

(δ0 + δ2), i.e. the offspring law is critical binary, or (2.4)

σ : N0 → R+ is a non-decreasing function. (2.5)

Observe that either of (2.4) or (2.5) ensures that the ξ-process is attractive, as then e.g.
the“obvious”coupling provided by (2.18) is order-preserving. By considering a one-point
space one easily sees that if both fail, the system will in general not be attractive.

While (2.2) and (2.3) are mild and rather natural in our scenario, Assumption A is more
stringent. Some parts of our program, namely the construction of the process and the
moment computations, could as well be carried through without it. In general, we might
not be able to prove that the Markov semigroup specified by L is unique, unless we im-
posed additional Lipschitz conditions on σ, see the beginning of section 2.2. Other parts,
in particular the coupling techniques used in section 2.4 to prove existence of equilibria
and find their domains of attraction, depend heavily on attractivity. Nonetheless, it
may well be that attractivity is just convenient to work with, but the results hold more
generally.

We have to clarify which set of configurations our processes will live on. In order to
do so choose a reference function γ : S → (0,∞) satisfying for some M ≥ 0∑

y∈S
pxyγy ≤Mγx for all x ∈ S (2.6)
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and
∑

x γx < ∞. We assume without loss of generality that
∑

x γx = 1. We shall see
below that then

E1 :=
{
ξ : S → N0

∣∣ ||ξ||γ,1 :=
∑
x

γx|ξx| <∞
}

(2.7)

or, when dealing with initial conditions with finite second moments,

E2 :=
{
ξ : S → N0

∣∣ ||ξ||2γ,2 :=
∑
x

γx|ξx|2 <∞
}

(⊂ E1) (2.8)

are reasonable state spaces for our purposes. We will also have occasion to consider

Efin :=
{
ξ : S → N0

∣∣ |ξ| := ∑
x

|ξx| <∞
}
,

the set of all configurations consisting of finitely many particles. Of course, E1 and E2

can be given the topology induced by their respective metrics. On the other hand, we
will be mostly considering convergence in finite dimensional distributions for Ei-valued
processes, i ∈ {1, 2}. Thus, we usually equip Ei with the (coarser) product topology.
Observe that E1 and E2 are measurable subsets of (N0)S (if the latter is given the product
σ-algebra), and that any probability measure ν on (N0)S with supx∈S

∫
ξx dν < ∞

automatically satisfies ν(E1) = 1 because
∫
||ξ|| dν ≤ supx∈S

∫
ξx dν ×

∑
y γy. Similarly,

supx∈S
∫

(ξx)2 dν < ∞ implies ν(E2) = 1. As we will be mostly dealing with shift-
invariant situations with locally finite intensities our statements will not depend on the
particular choice of γ.

The standard way of obtaining a suitable γ, following Liggett and Spitzer, is to choose
β : S → (0,∞) summable and put γx :=

∑∞
n=0M

−n∑
y∈S p

n
xyβy, where M > A ∨ 1

and pn is the n-th matrix power of p, see e.g. [24], p. 444 (observe that
∑

x γx ≤∑
n(A/M)n

∑
y βy ). (2.6) implies

∑
y∈S p

n
xyγy ≤Mnγx by induction, hence∑

y∈S
pxy(t)γy ≤ exp(tκM)γx for all x ∈ S.

For a metric space E, B(E) denotes the bounded, measurable functions from E to R,
M1(E) the probability measures on E, andN (E) the set of purely atomic, integer-valued
measures on E.

We consider Efin ⊂ E2 ⊂ E1 ⊂ (N0)S to be equipped with the product topology.
For µ, µ1, µ2, . . . ∈ M1(E1) we write µn ⇒ µ for convergence in finite dimensional
distributions.

2.2 Formal construction

Here we formally construct the Markov processes (ξ(t))t≥0 that this chapter is all about.
Readers who are satisfied with the informal description given at the beginning of section
2.1 are cordially invited to skip on to the next section where they will find more meaty
statements about properties of (ξ(t)). But observe that the construction is not completely
standard because in general, ξx(t) need not have a second moment and σ(·) is allowed to
grow quadratically. So the expected rate of local changes can be infinite, which causes
some trouble for in principle desirable formulas like “(d/dt)E f(ξ(t)) = ELf(ξ(t))”, even
for bounded f depending only on finitely many coordinates: the righthand side might
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not be well defined. This kind of problem does not occur if we assume that σ is globally
Lipschitz. Then the existence of (ξ(t)) as a process on E1 follows from more or less
standard arguments, see e.g. [2], Thm. 13.17. As the case of a quadratic function σ(k) =
Ck2 exhibits interesting features (see section 2.6), we have refrained from imposing
Lipschitz conditions on σ and instead chosen to work with Assumption A.

Let us denote by Lip(E1) the set of Lipschitz-continuous functions on E1, that is all
functions f : E1 → R for which there exists a Cf <∞ such that

|f(η)− f(η′)| ≤ Cf ||η − η′||γ,1 for all η, η′ ∈ E1.

Our strategy for the construction, inspired by [24], is to first consider finite initial
conditions, which are then used to approximate more general initial states. On the
way, coupling arguments will be our main tool. In doing so, the following system of
stochastic differential equations driven by Poisson processes is useful, as it provides a
natural simultaneous coupling for all (finite) initial conditions. Assumption A ensures
that this coupling is also order-preserving.

Let F = (Ft)t≥0 be a (right-continuous, complete) filtration, N rw
x,y for x, y ∈ S, x 6= y,

Poisson point processes on R+ × N with intensity measure κpxydt ⊗ d`, and Nbr
z,k for

z ∈ S, k ∈ {0, 2, 3, . . .} Poisson point processes on R+×N× [0, 1] with intensity measure
Cσνkdt⊗ d`⊗ du, all independent and F-adapted in the “time” component. The super-
script “rw” refers to random walk, “br” to branching, and ` denotes counting measure on
N. For brevity, let us denote by Ñ :=

(
N rw
x,y, N

br
z,k

)
x,y,z∈S,k∈N0\{1} the collection of all the

driving Poisson processes.
We require (ξ(t))t≥0 to be a solution of

ξx(t) = ξx(0) +
∑
y 6=x

{∫ t

0
1(ξy(s−) ≥ n)N rw

y,x(ds dn)

−
∫ t

0
1(ξx(s−) ≥ n)N rw

x,y(ds dn)
}

(2.9)

+
∑
k≥0

∫ t

0
(k − 1)1(ξx(s−) ≥

√
n,
σ(ξx(s−))
Cσξx(s−)2

≥ u)Nbr
x,k(ds dn du)

for all x ∈ S and t ≥ 0.

Lemma 1 a) For any η ∈ Efin there is a unique strong solution (ξ(t))t≥0 of (2.9)
starting from ξ(0) = η. More precisely, there is a (measurable) function

Φ : Efin × R+ ×
(
N (R+ × N)S×S ×N (R+ × N× [0, 1])S×(N0\1)

)
→ Efin

such that for any η ∈ Efin (
Φ(η, t, Ñ)

)
t≥0

is an (Ft)-adapted, Efin-valued process with càdlàg paths that starts from η and is a
solution to (2.9).
b) The function Φ provides a simultaneous monotone coupling for solutions to (2.9): Let
η ≤ η̃ ∈ Efin and

ξ(t) = Φ(η, t, Ñ), ξ̃(t) = Φ(η̃, t, Ñ), t ≥ 0.

Then
ξx(t) ≤ ξ̃x(t) for all x ∈ S, t ≥ 0 almost surely.
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c) (ξ(t)) is a Markov process, we denote its semigroup by

S(t)f(η) := E[f(ξ(t))|ξ(0) = η], η ∈ Efin (2.10)

acting on f ∈ B((N0)S) ∪ Lip(E1). S(t)f ∈ Lip(E1) for f ∈ Lip(E1), more precisely

|S(t)f(η)− S(t)f(η̃)| ≤ Cf exp(tκM)||η − η̃||γ,1 for η, η̃ ∈ Efin, (2.11)

where Cf is the Lipschitz constant of f . Furthermore, for any f ∈ Lip(E1) and ξ(0) =
η ∈ Efin , the process

Mf (t) := f(ξ(t))− f(ξ(0))−
∫ t

0
Lf(ξ(s)) ds (2.12)

is a martingale.

d) For m ∈ N let

||η||γ,m :=
(∑

γx|ηx|m
)1/m

be the Lm(γ)-norm of η. If
∑

k k
mνk < ∞ for some m ∈ N, then there is a Cm < ∞

such that
E

[
||ξ(t)||mγ,m

]
≤ exp(Cmt)||η||mγ,m (2.13)

for any η ∈ Efin , where (ξ(t)) is the solution of (2.9) starting from η.

Proof. a) Fix η ∈ Efin , define

T1 := inf
{
t :

N rw
x,y([0, t]× {1, 2, . . . , ηx}) > 0 for some x, y ∈ S or

Nbr
x,k([0, t]× {1, 2, . . . , η2

x} × [0, 1]) > 0 for some x and k

}
.

Then T1 > 0 almost surely, define ξ(t) := η for t ∈ [0, T1). If ∆N rw
x,y(T1, {i}) = 1 for some

x, y and i with ξx(T1−) ≤ i put ξ(T1) := ξ(T1−) + δy − δx. Otherwise, there is some x,
k and i, u such that ∆Nbr

x,k(T1, {i}, {u}) = 1 and i ≤ ξx(T1−)2. In this case we put

ξ(T1) := ξ(T1−) + 1(u ≤ σ(ξx(T1−))/Cσξx(T1−)2)(k − 1)δx.

Note that independent Poisson processes almost surely have no jump times in common,
so that this procedure is always well defined. Define similarly the jump time T2 and
ξ(T2), put ξ(t) := ξ(T1) for t ∈ [T1, T2). Iterating this procedure we obtain a sequence of
random times (in fact, F-stopping times) 0 =: T0 < T1 < T2 < T3 < · · · and a process
ξ(t) defined on [0, supn Tn) with paths in Efin that are constant on each interval [Ti−1, Ti).
From

∑
k(k−1)νk = 0 we get that Mn :=

∑
x ξx(Tn) is a non-negative martingale, hence

supnMn < ∞ almost surely. This implies that supn Tn = ∞, so that (ξ(t)), which is
by construction a F-adapted solution to (2.9), is well defined, has càdlàg paths and is
Efin -valued for all times. The function Φ is defined by the above procedure (we refrain
from stating a lengthy formal definition).

In order to obtain (pathwise) uniqueness observe that for any other solution (ξ̃(t))t≥0

starting from the same ξ̃(0) = η we see from (2.9) that ξ̃x(t) = ξx(t) for all x ∈ S and
t ∈ [0, T1), and also that ξ̃(T1) = ξ(T1). Now proceed inductively to see that ξ and ξ̃
agree on [Tn−1, Tn) for all n ∈ N.

13



b) Let η ≤ η̃, ξ(·) and ξ̃(·) be as in the statement. We have ξ·(0) ≤ ξ̃·(0), and we
have to prove that any jump of the joint process

(
ξ, ξ̃
)
(t) again leads to an ordered

pair. Assume for example that the Poisson process Nbr
x,k has an atom {t} × {n} × {u}

(with ξx(t−) ∨ ξ̃x(t−) ≥
√
n), and that the pair

(
ξ, ξ̃
)
(s) is ordered for all s < t. Now

Assumption A comes into play: If (2.5) holds true, i.e. σ(·) is non-decreasing, then there
are three possibilities for the joint process:

1. Depending on u, no jump might occur.

2. The (smaller) ξ-component jumps, replacing ξx(t−) by ξx(t−) + (k− 1). But then
because ξ̃x(t−) ≥ ξx(t−), ξ̃ makes the same jump.

3. Only the ξ̃-component jumps. Note that this can only happen if ξ̃x(t−) > ξx(t−),
and that then still ξ̃x(t−) + (k − 1) ≥ ξx(t−) because k ≥ 0.

In either case, the ordering is preserved. The case of (2.4), i.e. binary branching, and
the jumps of the “motion driving” processes N rw

x,y can be treated similarly and are left to
the reader.

c) and d) The fact that Poisson processes have independent and stationary increments
implies that the distribution of ξ(t + h), given Ft, depends only on ξ(t), thus (ξ(t))
is Markov. Now consider any measurable function f : (N0)S → R. Then Mf defined
by (2.12) need not be a martingale, but by compensating the driving Poisson processes
in (2.9) we see that it is at least a local martingale: A natural localizing sequence of
stopping times is given by

Tn := inf
{
t ≥ 0 :

∑
x

ξx(t) > n or there is y 6∈ Sn such that ξy(t) > 0
}
,

where Sn ↗ S is an exhausting sequence of finite subsets of S. Consider m ∈ N such
that

∑
k k

mνk <∞ – note that our standing assumptions imply that this is always true
for m = 1, 2 – and put ψm(η) := ||η||mγ,m. We have for η with ψm(η) <∞

Lψm(η) = κ
∑
x,y

ηxpxy

{
γy
(
(ηy + 1)m − ηmy

)
+ γx

(
(ηx − 1)m − ηmx

)}
+
∑
x

σ(ηx)
∑
k

νkγx

{
(ηx + k − 1)m − ηmx

}
= κ

∑
x

γxηx

m∑
j=1

(
m

j

)
(−1)jηm−jx + κ

∑
x,y

ηxpxyγy

m∑
j=1

(
m

j

)
ηm−jy

+
∑
x

σ(ηx)γx
∑
k

νk

m∑
j=1

(
m

j

)
ηm−jx (k − 1)j .

Observe that the term for j = 1 in the last line disappears because
∑

(k − 1)νk = 0.
Because of (2.2) we can estimate

|Lψm(η)| ≤ κcm

(
ψm(η) +

∑
x,y

ηxpxyγyη
m−1
y

)
+ c′mψm(η) (2.14)
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where cm :=
∑m

j=1

(
m
j

)
(= 2m − 1), c′m := Cσ

∑m
j=2

(
m
j

)∑
k νk(k − 1)j < ∞. Now the

function η̃ given by η̃y :=
∑

x ηxpxy lies in Lm(γ):

||η̃||mγ,m =
∑
y

γy

(∑
z pzy

)m∣∣∣∣∑
x

pxy∑
z pzy

ηmx

∣∣∣∣m
≤

∑
y

γy

(∑
z pzy

)m−1∑
x

ηmx pxy ≤ Am−1M
∑
x

γxη
m
x = Am−1M ||η||mγ,m

by Jensen’s inequality, (2.3) and (2.6). This allows to use Hölder’s inequality (with
p = m, q = m/(m− 1)) on the righthand side of (2.14) to estimate

|Lψm(η)| ≤
(
κcm(1 + (Am−1M)(m−1)/m) + c′m

)︸ ︷︷ ︸
=: Cm

ψm(η). (2.15)

Now for any n, (Mψm(t ∧ Tn))t≥0 is a martingale, thus

E[ψm(ξ(t ∧ Tn))] = ψm(η) + E
[ ∫ t∧Tn

0
Lψm(ξ(s)) ds

]
≤ ψm(η) + Cm

∫ t

0
E

[
1(s ≤ Tn)ψm(ξ(s))

]
ds

≤ ψm(η) + Cm

∫ t

0
E

[
ψm(ξ(s ∧ Tn))

]
ds.

Thus we see from Gronwall’s lemma that E[ψm(ξ(t ∧ Tn))] ≤ exp(Cmt)ψm(η) uniformly
in n. (2.13) follows from this and Fatou’s lemma by letting n→∞.

Next we wish to prove that (2.12) is indeed a martingale for f ∈ Lip(E1). A key
observation is that for any such f there is a constant C = C(κ, p, σ, ν, f) such that

|Lf(η)| ≤ C||η||2γ,2 for all η ∈ E2. (2.16)

To prove (2.16) note that

|Lrwf(η)| =
∣∣∣∣∑
x,y

ηxpxy(f(η(x,y))− f(η))
∣∣∣∣ ≤∑

x,y

ηxpxy|f(η(x,y))− f(η)|

≤ Cf
∑
x,y

ηxpxy||η(x,y) − η||γ,1 ≤ Cf
∑
x,y

ηxpxy(γy + γx)

≤ Cf (M + 1)||η||γ,1 ≤ Cf (M + 1)||η||2γ,2,

where M is defined as in (2.6), and ||η||γ,1 ≤ ||η||2γ,2 because configurations are integer-
valued. Additionally, observe that

|Lbrf(η)| =
∣∣∣∣∑
x

σ(ηx)
∑
k

νk(f(η + (k − 1)δx)− f(η))
∣∣∣∣

≤
∑
x

σ(ηx)
∑
k

νk|f(η + (k − 1)δx)− f(η)|

≤ Cf
∑
x

σ(ηx)
∑
k

νk||(k − 1)δx||γ,1 =
(
Cf
∑
k

νk|k − 1|
)∑

x

σ(ηx)γx

≤
(
CfCσ

∑
k

νk|k − 1|
)
||η||2γ,2
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by assumption (2.2). Thus (2.16) holds true with

C := Cf

(
M + 1 + Cσ

∑
k
νk|k − 1|

)
. (2.17)

Now let us consider a bounded f ∈ Lip(E1). As noted above (Mf (t)) is a local
martingale, so we have for all t, h ≥ 0

E

[
Mf ((t+ h) ∧ Tn)

∣∣Ft] = Mf (t ∧ Tn) a.s. .

The righthand side tends to Mf (t) as n→∞, to treat the lefthand side observe that

E

[
f
(
ξ((t+ h) ∧ Tn)

)
− f(ξ(0))

∣∣Ft]→ E

[
f
(
ξ(t+ h)

)
− f(ξ(0))

∣∣Ft]
by dominated convergence, and that

E

[ ∫ (t+h)∧Tn

0
Lf(ξ(s)) ds

∣∣∣∣Ft]→ E

[ ∫ t+h

0
Lf(ξ(s)) ds

∣∣∣∣Ft]
as n → ∞ again by dominated convergence, as the term inside the conditional expec-
tation is bounded by C

∫ t+h
0 ||ξ(s)||2γ,2 ds, which is integrable. Thus (Mf (t)) is indeed a

martingale in this case.
Next, let f ∈ Lip(E1) be non-negative, but not necessarily bounded. Put fn(η) :=

f(η) ∧ n, note that fn is bounded, fn ∈ Lip(E1) with Lipschitz constant Cfn ≤ Cf (as
the mapping R+ 3 x 7→ x ∧ n has Lipschitz constant 1). We have Mfn(t) → Mf (t)
a.s. as n → ∞, E

[
fn(ξ(t + h))

∣∣Ft] → E

[
f(ξ(t + h))

∣∣Ft] a.s. by monotone convergence,
observing that |Lfn(η)| ≤ C||η||2γ,2 uniformly in n (note that by (2.17), C depends on
fn only through its Lipschitz constant) we obtain

E

[ ∫ t+h

0
Lfn(ξ(s)) ds

∣∣∣∣Ft]→ E

[ ∫ t+h

0
Lf(ξ(s)) ds

∣∣∣∣Ft]
a.s. as n→∞ by dominated convergence. Thus (Mf (t)) is a martingale for non-negative
Lipschitz f . To treat the general case we decompose f ∈ Lip(E1) as f = f+ − f− into
its positive f+(η) := f(η) ∨ 0 and negative part f−(η) := (−f(η)) ∨ 0.

It remains to prove that the semigroup (S(t)) corresponding to (ξ(t)) maps Lip(E1)
into itself. Fix f ∈ Lip(E1), η(1), η(2) ∈ Efin , put η(3) := η(1) ∧ η(2), η(4) := η(1) ∨ η(2).
By solving (2.9) simultaneously for these four initial conditions (e.g. using the function
Φ from part a)) we obtain (ξ(j)(t))t≥0, j = 1, . . . , 4, where ξ(j)(0) = η(j), on the same
probability space such that ξ(3)

x (t) ≤ ξ
(1)
x (t), ξ(2)

x (t) ≤ ξ
(4)
x (t) for all x ∈ S and t ≥ 0.

Thus we see that
E|η(1)

x (t)− η(2)
x (t)| ≤ E

[
η(4)
x (t)− η(3)

x (t)
]
,

showing that∣∣∣S(t)f(η(1))− S(t)f(η(2))
∣∣∣ =

∣∣∣E [f(η(1)(t))− f(η(2)(t))
]∣∣∣

≤ CfE||η(1)(t)− η(2)(t)||γ,1 = Cf
∑
x

γxE|η(1)
x (t)− η(2)

x (t)|

≤ Cf
∑
x

γxE
[
η(4)
x (t)− η(3)

x (t)
]

= Cf
∑
x,y

γx(η(4)
y − η(3)

y )pyx(t)

≤ CfetκM
∑
y

γy(η(4)
y − η(3)

y ) = Cfe
tκM ||η(1) − η(2)||γ,1.
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This proves (2.11). �

Remark 2 By considering two solutions of (2.9) starting from η resp. η̃ ∈ Efin simul-
taneously, we obtain a Markov process (ξ(t), ξ̃(t))t≥0 on Efin × Efin starting from (η, η̃)
such that each component is a system of (state dependent) branching random walks
as above and the two systems move their particles together as much as possible. The
generator of the joint process is given by

L(2)f(ξ, ξ̃)

= κ
∑
x,y

(ξx ∧ ξ̃x)pxy
(
f(ξ(x,y), ξ̃(x,y))− f(ξ, ξ̃)

)
(2.18)

+ κ
∑
x,y

(ξx − ξx ∧ ξ̃x)pxy
(
f(ξ(x,y), ξ̃)− f(ξ, ξ̃)

)
+ κ

∑
x,y

(ξ̃x − ξx ∧ ξ̃x)pxy
(
f(ξ, ξ̃(x,y))− f(ξ, ξ̃)

)
+
∑
x

(
σ(ξx) ∧ σ(ξ̃x)

)∑
k

νk

(
f(ξ + (k − 1)δx, ξ̃ + (k − 1)δx)− f(ξ, ξ̃)

)
+
∑
x

(
σ(ξx)− σ(ξx) ∧ σ(ξ̃x)

)∑
k

νk

(
f(ξ + (k − 1)δx, ξ̃)− f(ξ, ξ̃)

)
+
∑
x

(
σ(ξ̃x)− σ(ξx) ∧ σ(ξ̃x)

)∑
k

νk

(
f(ξ, ξ̃ + (k − 1)δx)− f(ξ, ξ̃)

)
,

the process

f(ξ(t), ξ̃(t))− f(ξ(0), ξ̃(0))−
∫ t

0
L(2)f(ξ(s), ξ̃(s)) ds

is a martingale for f ∈ Lip(E1 × E1). This can be proved along the same lines as
Lemma 1.

So far we have constructed the Markov process corresponding to the generator L
given by (2.1) for finite initial conditions. Now we extend the definition to general initial
states in E1 by approximation. Let us denote by η1S′ the restriction of the configuration
η ∈ E1 to the subset S′ ⊂ S, i.e.

(η1S′)x = ηx1(x ∈ S′).

Lemma 2 Fix an initial condition η ∈ E1, let Sn ↗ S be an exhausting sequence of finite
subsets. For n ∈ N, let (ξ(n)(t))t≥0 be the solution of (2.9) starting from ξ(n)(0) = η1Sn,
i.e. ξ(n) = Φ(η1Sn , ·, Ñ), where Φ is as defined in Lemma 1, a). Then there is an E1-
valued (Ft)-adapted process (ξ(t))t≥0 with càdlàg paths starting from ξ(0) = η such that
for all T > 0, finite B ⊂ S

P

(⋃
m

⋂
n≥m

{
ξ(n)
x (t) = ξx(t) for all x ∈ B, t ∈ [0, T ]

})
= 1. (2.19)

(ξ(t)) is a (strong) solution of (2.9).
Furthermore, the limit process ξ(·) we obtain does not depend on the choice of the

sequence (Sn) used in the approximation procedure.
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Proof. Define h(ξ, ξ̃) := ||ξ − ξ̃||γ,1. Then we have

L(2)h(ξ, ξ̃) = κ
∑
x,y

(ξx − ξ̃x)+pxy
(
||ξ + δy − δx − ξ̃||γ,1 − ||ξ − ξ̃||γ,1

)
+ κ

∑
x,y

(ξ̃x − ξx)+pxy
(
||ξ̃ + δy − δx − ξ||γ,1 − ||ξ − ξ̃||γ,1

)
+
∑
x

(σ(ξx)− σ(ξ̃x))+
∑
k

νk
(
||ξ + (k − 1)δx − ξ̃||γ,1 − ||ξ − ξ̃||γ,1

)
+
∑
x

(σ(ξ̃x)− σ(ξx))+
∑
k

νk
(
||ξ̃ + (k − 1)δx − ξ||γ,1 − ||ξ − ξ̃||γ,1

)
.

The sum of the “motion” terms yields κ
∑

x,y |ξx − ξ̃x|pxy(γy − γx). For the “branching”
terms, Assumption A comes into play: assume (2.4), i.e. critical binary branching. Then∑

k νk
(
||ξ+(k−1)δx− ξ̃||γ,1−||ξ− ξ̃||γ,1

)
= (|ξx+1− ξ̃x|+ |ξx−1− ξ̃x|−2|ξx− ξ̃x|)/2 = 0,

if ξx 6= ξ̃x, because |a+ 1|+ |a− 1| − 2|a| = 0 for a ∈ Z \ {0}. Note that x with ξx = ξ̃x
do not contribute to the sum. Analogously the second sum yields 0. Consequently we
have in this case

L(2)h(ξ, ξ̃) = κ
∑
x,y

|ξx − ξ̃x|pxy(γy − γx) ≤ κ(M − 1)||ξ − ξ̃||γ,1 (2.20)

by (2.6). Now assume (2.5), i.e. σ(·) is non-decreasing. Then only x with ξx > ξ̃x
contribute

∑
k νk

(
||ξ+(k−1)δx− ξ̃||γ,1−||ξ− ξ̃||γ,1

)
to the first “branching” sum. But in

this case we have ||ξ+ (k−1)δx− ξ̃||γ,1−||ξ− ξ̃||γ,1 = γx(|ξx+ (k−1)− ξ̃x|− |ξx− ξ̃x|) =
γx(k − 1), and the term vanishes because

∑
k kνk = 1 by assumption. The second sum

vanishes analogously, and hence (2.20) also holds in this case.
Let g(t, ξ, ξ̃) := exp(−tκ(M − 1))||ξ − ξ̃||γ,1, then

M (n)(t) := g(t, ξ(n)(t), ξ(n+1)(t))−
∫ t

0

( ∂
∂s

+ L(2)
)
g(s, ξ(n)(s), ξ(n+1)(s)) ds

is a martingale starting from M (n)(0) = ||ξ(1Sn+1 − 1Sn)||γ,1. By (2.20), M (n) is non-
negative, and ||ξ(n)(t)− ξ(n+1)(t)||γ,1 ≤ etκ(M−1)M (n)(t) for all t ≥ 0. Thus we see that
for any ε > 0

P

(
supt≤T ||ξ(n)(t)− ξ(n+1)(t)||γ,1 ≥ ε

)
≤ P

(
supt≤T M

(n)(t) ≥ e−Tκ(M−1)ε
)

≤ eTκ(M−1)

ε
||η(1Sn+1 − 1Sn)||γ,1 ,

where the second inequality comes from a Doob inequality for non-negative martingales,
see e.g. [9], Prop. 2.2.16. As

∑
||η(1Sn+1−1Sn)||γ,1 = ||η||γ,1 <∞ we can conclude with

the Borel-Cantelli lemma that for any ε > 0 only finitely many of the events{
supt≤T ||ξ(n)(t)− ξ(n+1)(t)||γ,1 ≥ ε

}
occur. Observe that the opposite event implies that ξ(n)

x (t) = ξ
(n+1)
x (t) for all t ∈ [0, T ]

and all x ∈ S with γx > ε. This proves (2.19), which in turn implies that ξ(t) is
Ft-adapted for any t and that ξ(·) has càdlàg paths. Observe that

E

[
||ξ(t)||γ,1

]
= lim

n
E

[
||ξ(n)(t)||γ,1

]
≤ lim

n
exp(C1t)||η1Sn ||γ,1 = exp(C1t)||η||γ,1 <∞
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by monotone convergence and (2.13) to see that ξ(t) ∈ E1 almost surely.
We wish to prove that ξ(·) solves (2.9). Fix x ∈ S and t ≥ 0 for the moment. For

given ε > 0 we can find a finite B ⊂ S \ {x} such that the event

A1(B) :=
{

some particle jumps from Bc to x during [0, t]
}

has probability at most ε, because by the above E
[
||ξ(s)||γ,1

]
is uniformly bounded for

s ≤ t. The above arguments also show that there is some n such that

A2(B) :=
{
ξy(s) = ξ

(n)
y (s) for all y ∈ B, s ∈ [0, t]

}
has probability at least 1− ε. Note that A1(B)c ∩A2(B) imply that ξ(·) solves (2.9) at
(x, t), because for any n, ξ(n) is a solution. Taking ε→ 0 we see that

P

(
ξ(·) solves (2.9) at (x, t)

)
= 1.

Then the fact that ξ(·) has càdlàg paths shows that it is indeed a solution at all space-
time points simultaneously.

Finally note that our arguments show that for finite subsets S′, S′′ ⊂ S, and ξ(·),
ξ′(·) solutions of (2.9) starting from η1S′ resp. η1S′′ we have

P

(
supt≤T ||ξ′(t)− ξ′′(t)||γ,1 ≥ ε

)
≤ C(T, ε)||η1S′ − η1S′′ ||γ,1 ≤ 2C(T, ε)||η1(S′∩S′′)c ||γ,1.

This proves that ξ(·) does not depend on the choice of the sequence (Sn). �

Proposition 1 The process (ξ(t))t≥0 constructed in Lemma 2 is a Markov process, we
denote its semigroup again by

S(t)f(η) := E

[
f(ξ(t))

∣∣ξ(0) = η
]
, η ∈ E1.

It is the unique extension of the semigroup constructed in Lemma 1 to inputs η ∈ E1.
For all f ∈ Lip(E1), S(t)f is well defined and lies again in Lip(E1), its Lipschitz

constant is at most Cf × exp(tκM).
If f is either bounded, or in Lip(E1), or monotone, then S(t)f can be computed as

S(t)f(η) = limn→∞S(t)f(η1Sn) for η ∈ E1, (2.21)

where Sn ↗ S is any exhausting sequence of finite subsets of S. Furthermore S(t)
satisfies

S(t)f(η) = f(η) +
∫ t

0

(
S(s)(Lf)

)
(η) ds (2.22)

for all η ∈ E2 and f ∈ Lip(E1), also for η ∈ E1 and any f(η) = g(ηx1 , . . . , ηxm)
depending on finitely many coordinates that is constant on {η : ηx1 + · · ·+ ηxm ≥M} for
some M > 0. Under any of these conditions t 7→ S(t)f(η) is differentiable with

d

dt
S(t)f(η) =

(
S(t)(Lf)

)
(η). (2.23)

Proof. By Lemma 2, (ξ(t))t≥0 is a solution to (2.9), hence the Markov property follows
from the fact that Poisson processes have independent increments. Note that (2.21) is
satisfied for bounded f by the dominated convergence theorem: in Lemma 2, we have
constructed ξ(·) and the approximating ξ(n)(·) on the same probability space.
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Formula (2.11) in Lemma 1, c) shows that (2.21) is also true for f ∈ Lip(E1), and
gives the bound on the Lipschitz constant of S(t)f . For a monotone function f : E1 → R,
not necessarily Lipschitz, the limit in (2.21) exists because then by Lemma 1, b) we have
S(t)f(η1Sn) ≤ S(t)f(η1Sn′ ) for n ≤ n′.

Furthermore note that any bounded function g : E1 → R which depends only
on finitely many coordinates x1, . . . , xm is automatically in Lip(E1): |g(η) − g(η̃)| ≤
2||g||∞(min{γx1 , . . . , γxm})−1||η− η̃||γ,1 (where ||g||∞ := sup{|g(η)| : η ∈ E1}). Thus the
extension of S(t) is unique.

It remains to prove (2.22) Let us first consider f ∈ Lip(E1) and η ∈ E2. Let Sn ↗ S
and (ξ(n)(t))t≥0 be as above, (ξ(t))t≥0 := limn(ξ(n)(t)t≥0). Taking expectation in (2.12)
in Lemma 1, c) yields

E[f(ξ(n)(t))] = f(η1Sn) +
∫ t

0
E

[
Lf(ξ(n)(s))

]
) ds. (2.24)

The lefthand side equals S(t)f(η1Sn), which converges to S(t)f(η) by the first part of
the proof. For the righthand side note that

|Lf(ξ(n)(s))| ≤ C||ξ(n)(s)||2γ,2 ≤ C||ξ(s)||2γ,2

by (2.16) and the monotonicity properties of solutions of (2.9). Furthermore note that

E

[
||ξ(s)||2γ,2

]
≤ lim inf

n
E

[
||ξ(n)(s)||2γ,2

]
≤ exp(C2s)||η||2γ,2

by Fatou’s lemma and by (2.13). This allows to conclude that

E

[
Lf(ξ(n)(s))

]
→ E

[
Lf(ξ(s))

]
=
(
S(s)Lf

)
(η) as n→∞

by dominated convergence. Another application of the dominated convergence theorem
(on the integral

∫ t
0 . . . ds in (2.24)) yields (2.22).

In order to prove (2.22) for a function f(ξ) = g(ξx1 , . . . , ξxm) which is constant on
{ξ ∈ E1 : ξx1 + · · ·+ ξxm ≥M} note that such an f is bounded and satisfies

|Lf(η)| ≤ C||η||γ,1, η ∈ E1

for some suitable C, then argue as before.
Finally, (2.23) follows from (2.22) by differentiation because under the given condi-

tions, the mapping t 7→
(
S(t)Lf

)
(η) is continuous and locally bounded. �

Remark 3 a) Incidentally, we have proved that (2.9) has a strong solution starting from
any η ∈ E1. Uniqueness in law follows from the Markov property of solutions and the
fact that the semigroup is determined by its restriction to Efin .
b) The semigroup (S(t)) has the following continuity property: Let µn ∈M1(E1), n ∈ N
with supn,x

∫
ξ2
x µn(dξ) <∞ and µn ⇒ µ as n→∞. Then we also have µnS(t)⇒ µS(t)

for any t ≥ 0:
Let ξ(n)(·) be the solution of (2.9) constructed in Lemma 2 with L(ξ(n)(0)) = µn,

ξ(·) the corresponding solution with initial distribution L(ξ(0)) = µ. Note that by
assumption, the family of random variables ξx under µn, x ∈ S, n ∈ N is uniformly
integrable. This allows to choose ξ(n)(0), n ∈ N and ξ(0) in such a way that E ||ξ(n)(0)−
ξ(0)||γ,1 → 0. Arguing as in the proof of Lemma 2 we see that

E ||ξ(n)(t)− ξ(t)||γ,1 ≤ exp(tκM)E ||ξ(n)(0)− ξ(0)||γ,1 → 0.
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We will have occasion to use the coupled process (ξ, ξ̃) corresponding to the generator
L(2) again in section 2.4. Then, the following proposition, which can be proved along
the same lines, will be helpful:

Proposition 2 The analogue of Proposition 1 holds true for the coupled process (ξ, ξ̃).

Note that Assumption A guarantees that the model is attractive: L(2) provides a
monotone coupling, that is starting from ξ·(0) ≤ ξ̃·(0) we have

P(ξx(t) ≤ ξ̃x(t) for all x and t) = 1.

In order to see this we can either use Lemma 1, b) and an approximation argument, or
observe that f : E1 × E1 → R+, f(ξ, ξ̃) = 1(ξx ≤ ξ̃x ∀x) satisfies L(2)f(ξ, ξ̃) = 0 for any
pair (ξ, ξ̃) with ξ ≤ ξ̃.

The next lemma implies that if the initial condition has uniformly bounded n-th
moments and the offspring distribution has a finite n-th moment, the system will preserve
finite n-th moments over any finite time horizon.

Lemma 3 If
∑

k νkk
m <∞ for some m ∈ N, then there is a Cm <∞ such that

E

[
||ξ(t)||mγ,m

]
≤ exp(Cmt)E

[
||ξ(0)||mγ,m

]
,

in particular E
[
||ξ(0)||mγ,m

]
<∞ implies ||ξ(t)||mγ,m <∞ for all times.

Proof. Consider first a deterministic initial condition η with ||η||γ,m < ∞, let Sn ↗ S
be an exhausting sequence of finite subsets. Then

Eη

[
||ξ(t)||mγ,m

]
= lim

n→∞
Eη1Sn

[
||ξ(t)||mγ,m

]
≤ lim

n→∞
exp(Cmt)||η1Sn ||mγ,m = exp(Cmt)||η1Sn ||mγ,m

by (2.21) and Lemma 1, d). The general case follows by conditioning on the initial
configuration. �

2.3 Moment computations

We assume further on that the transition matrix p has a strictly positive invariant mea-
sure α. Let qxy := (αypyx)/αx be the dual transition matrix with respect to α. We denote
the semigroup generated by κ(p−I), that is the transition semigroup of a continuous time
Markov chain X on S with jump rate matrix κ(p− I), by (p(t))t≥0 =

(
(pxy(t))x,y∈S

)
t≥0

,
analogously we define (q(t))t≥0.

Remark 4 If S = Z
d and pxy = p0,y−x is shift invariant and irreducible then by the

Choquet-Deny Theorem (see e.g. [23], Cor. II.7.2) any invariant measure α must be a
constant multiple of counting measure. Thus in such a scenario q is just the transpose
of p.

A system of independent p-random walks, that is an (E1-valued) Markov process
with generator Lrw, is dual with respect to the function given by (2.25) (in the sense of
Liggett, [23], Definition II.3.1) to a system of independent q-random walks, see e.g. [13]
and references in there:
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For a configuration η ∈ (N0)S with |η| :=
∑

x ηx <∞ define the test function

Fη(ξ) :=
∏
x∈S

α−ηx [ξx]ηx , ξ ∈ (N0)S , (2.25)

where [n]k := n(n− 1) · · · (n−k+ 1), [n]0 := 1. Observe that e.g. for α ≡ 1 this factorial
moment function has a combinatorial interpretation as the number of (ordered) |η|-tuples
of particles one can pick from the ξ-configuration if one prescribes that ηx particles have
to be chosen from site x. The reweighting with α−ηx accounts for spatial inhomogeneity.
A key observation is that(

LrwFη(·)
)
(ξ) =

(
L̃rwF·(ξ)

)
(η) for ξ, η ∈ (N0)S , |η| <∞, ξ ∈ E1, (2.26)

where L̃rw is is the generator of a system of independent q-random walks. In order to
see this write(

LrwFη(·)
)
(ξ) =

∑
x,y

ξxpxy

{
Fη(ξ(x,y))− Fη(ξ)

}
=
∑
x,y

ξxpxy

{∏
z

α−ηz [ξz]ηz

}(
ξx − ηx
ξx

ξy + 1
ξy − ηy + 1

− 1
)

=
∑
x,y

pxy

{∏
z

α−ηz [ξz]ηz

}(
ηy

ξx − ηx
ξy − ηy + 1

− ηx
)

=
∑
x,y

pxy
αy
αx
ηy

{∏
z

α−η
(y,x)
z [ξz]η(y,x)

z

}
−
{∏

z

α−ηz [ξz]ηz

}∑
x,y

pxyηx

=
∑
x,y

ηyqyxFη(y,x)(ξ)− Fη(ξ)
∑
x,y

qyxηy =
(
L̃rwF·(ξ)

)
(η).

Observe that the sums are all well defined because the condition ξ ∈ E1 ensures that∑
x ξx

∑
y∈B pxy <∞ for any finite set B, thus in particular for B := {z : ηz > 0}.

We use the duality relation (2.26) together with perturbation formulas for Markov
semigroups to represent (the first and the second) moments of ξx(t) as expected values of
functionals of independent p-chains. This idea has been used before for other interacting
particle systems and interacting systems of diffusions, see e.g. [24], [5], [13].

Lemma 4 a) Assume that E||ξ(0)||γ,1 <∞. Then

E ξx(t) =
∑
z

αx
αz
qxz(t)E ξz(0) =

∑
y

E ξy(0)pyx(t). (2.27)

b) Assume that E||ξ(0)||2γ,2 <∞. Then for all x, y ∈ S

E

[
ξx(t)(ξy(t)− δxy)

]
=

∑
u,v

αx
αu
qxu(t)

αy
αv
qyv(t)E

[
ξu(0)(ξv(0)− δuv)

]
+ Var(ν)

∫ t

0

∑
u

αxαy
α2
u

qxu(s)qyu(s)Eσ(ξu(t− s)) ds

(2.28)

=
∑
u,v

E

[
ξu(0)(ξv(0)− δuv)

]
pux(t)pvy(t) +

∑
u

Var(ν)
∫ t

0
Eσ(ξu(t− s))pux(s)puy(s) ds
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Remark 5 1) These formulas have an interpretation in terms of the genealogy of the
branching particle system: In a) we ask about the expected number of particles at x
at time t. As the expected number of offspring per branching event is always one, each
summand E ξy(0)pyx(t) represents the expected number of particles at x whose ancestor
at time 0 lived at y.
In b) we compute the expected number of pairs of different particles we can build at
time t by choosing one from x and one from y. The “+” on the righthand side combines
two possibilities: Either we choose two unrelated particles, then we have to decompose
according to the position of their respective ancestors at time 0. The integral gives the
expected number of pairs of related particles.

2) Unlike the “classical” case σ(k) = c×k corresponding to independent branching there
is in general no closed form solution for (2.28). As we have no special assumptions on
the functional form of σ we cannot hope to obtain an equation that is expressed entirely
in EFη(ξ(t)), where Fη is as in (2.25). Nonetheless together with assumption (2.2),
equation (2.28) does give useful information that we will exploit in section 2.4.

3) For n ≥ 3, if ν has an n-th moment and E||ξ(0)||nγ,n <∞, the n-th (mixed factorial)
moments of ξ(t) will be finite by Lemma 3. We can in principle use the same ideas to
obtain expressions for them involving n independent p-chains. We have refrained from
stating those here as they get more complex for increasing n and we have no further use
for them in this thesis.
4) Observe that for σ(k) = c×k2, we obtain again systems of equations involving mixed
moments. Then we can express n-th moments of ξ(t) in terms of exponential functionals
of collision times of n independent p-chains. This is considered by Greven and den
Hollander in [15] for the parabolic Anderson model, a system of interacting diffusions
which is a “superprocess” limit of ξ in the case of a quadratic function σ. They prove
that there is non-classical behaviour: Even if a non-trivial limit exists, the limit system
only has moments up to order n0(c) where the threshold depends on c, the variance of
the driving Brownian motions. We expect analogous behaviour of the moments of ξ in
this case, but we have not pursued this issue further.

Proof of Lemma 4. a) Let Fx(ξ) := α−1
x ξx, fx(t) := EFx(ξ(t)). Using (2.1), (2.26) and

the fact that
∑
kνk = 1 we see that

(LFx(·))(ξ) = κ(L̃(1)F·(ξ))x + 0 for x ∈ S, ξ ∈ E1

where κL̃(1) is the generator of (q(t))t≥0, the one-particle semigroup with jump rate
matrix κ(q − I). Hence

∂

∂t
fx(t) =

∂

∂t
EFx(ξ(t)) = κ(L̃(1)

EF·(ξt))x = κ(L̃(1)f·(t))x, x ∈ S.

This system with given initial condition f·(0) = E ξ·(0) is (uniquely) solved by

fx(t) =
∑
z

qxz(t)E ξz(0),

yielding (2.27).

b) Defining Fx,y(ξ) := α−1
x α−1

y ξx(ξy − δxy) and fx,y(t) := EFx,y(ξ(t)) we similarly see
that

(LFx,y(·))(ξ) = κ(L̃(2)F·,·(ξ))xy + α−2
x Var(ν)δxyσ(ξx(t))
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where κL̃(2) is the generator of a pair of independent q-chains (for the second term
observe that

∑
k νk

(
(ξx + k− 1)(ξx + k− 2)− ξx(ξx− 1)

)
= Var(ν) because

∑
kνk = 1).

Let us first consider a deterministic, finite initial condition ξ(0). Then we can conclude
from the above and Proposition 1 that

∂

∂t
fxy(t) = κ(L̃(2)f·,·(t))xy + Var(ν)δxyEσ(ξx(t)), x, y ∈ S.

A perturbation formula (see e.g. Pazy, [28], Thm. 6.1.2) yields (2.28) for this initial
condition. We approximate a general deterministic ξ(0) ∈ E2 by a sequence ξ1Sn and
use monotone resp. dominated convergence (observe that Eξξx(t)2 < ∞ for ξ ∈ E2) on
each of the terms in (2.28). Finally averaging over the distribution of ξ(0) yields the
general case. �

2.3.1 The shift-invariant case

Here we assume that S = Z
d, pxy = p0,y−x, i.e. p is of random walk type, and L(ξ(0)) is

invariant under shifts. This assumption allows more explicit calculations. As remarked
before, in this situation qxy = pyx is just the transpose of p. We will also need the
symmetrized transition rates p̂xy := (pxy + pyx)/2 as well as the semigroup (p̂xy(t))
corresponding to p̂-motion at rate κ. This is again a random walk. In fact, it can
be represented as the difference of two p-random walks running at speed 1/2. We will
sometimes drop the first subscript and write px := p0x, analogously qx, p̂x.

If in this scenario Eµξx(0) = θ for some θ ∈ R+ then we have Eµξx(t) ≡ θ for all t by
Lemma 4. If furthermore the symmetrized motion p̂ is transient the system will preserve
globally bounded second moments, provided that the branching rate function does not
grow too fast:

Lemma 5 Let pxy = p0,y−x and L(ξ(0)) be shift invariant with E[ξ0(0)] := θ, E[ξ0(0)2] <
∞. If p̂ is transient and

lim sup
k→∞

σ(k)
k2

<
2

Var(ν)Ĝ0(∞)
, (2.29)

where Ĝ0(∞) :=
∫∞

0 p̂0(s) ds is the Green function of p̂. Then

sup
t≥0
E[ξx(t)2] <∞.

Proof. By (2.29) there exist C1 > 0 and 0 ≤ C2 < 2/(Var(ν)Ĝ0(∞)) such that σ(k) ≤
C1 + C2k

2. Denote h(t) := E[ξ0(t)2]. Using (2.28) and shift-invariance we can estimate

h(t) = θ + E ξ0(t)(ξ0(t)− 1)

≤ θ + sup
u,v
E ξu(0)(ξv(0)− δuv) + Var(ν)

∫ t

0

∑
u

q0u(s)2
Eσ(ξu(t− s)) ds

≤ C +
∫ t

0
h(t− s) Var(ν)C2p̂0(2s)ds = C +

∫ t

0
h(t− s)F (ds), (2.30)

where F (ds) := Var(ν)C2p̂0(2s)ds and C is a suitable constant. Now e.g. by [10],
Thm. VI.6.1, the solution z(·) of the (renewal) equation corresponding to (2.30) is given
by z(t) = C · U([0, t]), where U =

∑∞
n=0 F

∗n. Observe that F ([0,∞)) < 1 by (2.29),
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hence U([0,∞)) = 1/(1 − F ([0,∞))) < ∞ and sup z(t) < ∞. Finally observe that
z(t) ≥ h(t) for all t, as the difference z − h starts non-negative at 0 and satisfies an
obvious renewal inequality, forcing it to remain non-negative for all times. �

Remark 6 Condition (2.29) is sharp in the following sense: If σ(k) = Cσk
2 with Cσ ≥

2/(Var(ν)Ĝ0(∞)) we have E[ξx(t)2]→∞ as t→∞. In this case we have

h(t) ≥ θ + CσVar(ν)
∫ t

0

∑
u

q0u(s)2h(t− s) ds = θ +
∫ t

0
h(t− s)F (ds)

with F (ds) = CσVar(ν)p̂0(2s)ds, which satisfies F ((0,∞)) ≥ 1 by the assumption on Cσ.
The second moment diverges exponentially if Cσ is strictly larger than 2/(Var(ν)Ĝ0(∞)),
as then F ((0,∞)) > 1. It is unclear to me if the same holds if we only require σ(k) ∼ ck2

as k →∞ where c > 2/(Var(ν)Ĝ0(∞)).

Definition We denote by Rθ the set of all shift-invariant probability measures µ on
(N0)S with

∫
ξ0 dµ = θ and

∫
(ξ0)2dµ < ∞ which are “asymptotically uncorrelated” in

the following sense:

lim
t→∞

∑
x,y∈Zd

q0x(t)q0y(t)
∫
ξxξydµ = θ2. (2.31)

Observe that this amounts to
∑

x q0x(t)ξx → θ as t→∞ in L2(µ). Any shift-ergodic µ
with

∫
ξ0 dµ = θ and

∫
(ξ0)2dµ <∞ lies in Rθ, see e.g. [24], Lemma 5.2.

In the situation of Lemma 5, Rθ will be a good set for limits to concentrate on. This
will be very helpful in the next section where we combine it with coupling arguments to
find equilibrium states for (ξ(t))t≥0.

Lemma 6 Let pxy = p0,y−x be of random walk type, µ ∈ Rθ and assume that (2.29)
holds. Then
a) µS(t) ∈ Rθ for all t ≥ 0.
b) If p̂ is transient, σ satisfies (2.29) and µS(tn)⇒ µ∞ for some sequence tn ↑ ∞ then
also µ∞ ∈ Rθ.

Proof. Fix t ≥ 0 for the moment. Using Lemma 4 we can compute (with Fx,y(ξ) as in
the proof of Lemma 4 and αx ≡ 1)

Eµ

(∑
x

q0x(T )(ξx(t)− θ)
)2

=
∑

x,y∈Zd
q0x(T )q0y(T )

{
EFx,y(ξ(t)) + δxyθ − θ2

}
= θp̂00(2T ) +

∑
x,y

q0x(T )q0y(T )
{∑

u,v

qxu(t)qyv(t)
[
EµFu,v(ξ(0))− θ2

]
+ γ2

∫ t

0

∑
u

qxu(s)qyu(s)Eµ σ(ξ(t− s)) ds
}

= θp̂00(2T ) +
∑
u,v

q0u(T + t)q0v(T + t)
[
EµFu,v(ξ(0))− θ2

]
(2.32)

+ γ2

∫ t

0

∑
u

q0u(T + s)2
Eµ σ(ξ(t− s)) ds.
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The first term on the righthand side of (2.32) tends to 0 as T →∞ because p̂ is transient
or null recurrent, and the second term tends to 0 because µ ∈ Rθ by assumption. The
third term is at most

γ2

(
C1 + C2 sup

0≤r≤t
E[ξ0(r)2]

)∫ t

0
p̂00(2T + 2s) ds,

which is finite by Lemma 3 and tends to 0 as T →∞ because lims→∞ p̂00(s) = 0. This
proves part a).

Now assume additionally that µS(tn)→ µ∞ in finite dimensional distributions along
some sequence tn ↑ ∞. Fatou’s lemma shows that for any fixed T > 0 we have

∫ (∑
x

q0x(T )(ξx − θ)
)2

µ∞(dξ) ≤ lim inf
n

Eµ

(∑
x

q0x(T )(ξx(tn)− θ)
)2

.

The proof of part a) shows that the righthand side is at most

θp̂00(2T ) + 0 + γ2

(
C1 + C2 sup

0≤r
E[ξ0(r)2]

)∫ ∞
0

p̂00(2T + 2s) ds

(note that limn
∑

u,v q0u(T + tn)q0v(T + tn)
[
EµFu,v(ξ(0))− θ2

]
= 0 because µ ∈ Rθ)

which is finite by Lemma 5 and tends to 0 as T →∞ by the transience of p̂. �

2.4 Coupling in the regime of globally bounded second mo-
ments

In our setting a sucessful coupling – if available – is a useful tool to prove convergence to
equilibrium and uniqueness of equilibria with given intensities. Let us consider a process
(ξ(t), ξ̃(t))t on E1 × E1 such that each component is a system of (state dependent)
branching random walks as above and the two systems move their particles “in unison as
much as possible”. The coupled systems have already been considered in section 2.2, see
(2.18) for the form of their (formal) generator L(2) and Proposition 2 for basic properties.
We wish to prove that the coupling works, that is that the two systems really become
similar in the long run. A well-established strategy, see e.g. [24] or [5], works as follows:
attractivity can be used to show that in the long run, either ξ is above ξ̃ or vice versa.
Then we exploit the fact that both have the same constant intensity θ to conclude that
ξ(∞) = ξ̃(∞).

Let ∆x := ξx − ξ̃x, Fx(ξ, ξ̃) := |∆x|. In the case that (2.4) holds we use the fact that
|a + 1| + |a − 1| − 2|a| = 0 for all a ∈ Z \ {0}, respectively in case of (2.5) we observe
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that
∑

k νk(|a+ k − 1| − |a|) = 0 for a > 0. This allows to compute

L(2)Fz(ξ, ξ̃) = κ
∑
x,y

(ξx − ξx ∧ ξ̃x)pxy
(
Fz(ξ(x,y), ξ̃)− Fz(ξ, ξ̃)

)
+ κ

∑
x,y

(ξ̃x − ξx ∧ ξ̃x)pxy
(
Fz(ξ, ξ̃(x,y))− Fz(ξ, ξ̃)

)
= κ

∑
x,y

∆x1(∆x > 0)pxy
(
|∆z + δyz − δxz| − |∆z|

)
+ κ

∑
x,y

(−∆x)1(∆x < 0)pxy
(
|∆z − δyz + δxz| − |∆z|

)
= κ

∑
x

{
∆xpxzsgn(∆z)−∆zpzxsgn(∆z) + |∆x|pxz1(∆z = 0)

}
= κ

∑
x

pxz(|∆x| − |∆z|) + κ
∑
x

pxz|∆x|
(
1(∆z = 0)− 1(sgn(∆x) 6= sgn(∆z))

)
− κ

∑
x

pxz|∆x|1(sgn(∆x) 6= sgn(∆z)).

We used that |a + δ| − |a| = δsgn(a) + |δ|1(a = 0) for a ∈ Z, δ ∈ {−1, 0, 1}, where
sgn(a) := 1(a > 0)− 1(a < 0).

Lemma 7 Let L(ξ·(0), ξ̃·(0)) be shift-invariant, E ξ0(0)2, E ξ̃0(0)2 <∞ and assume that
p̂ is transient and σ satisfies (2.29).
a) E|∆x(t)| is non-increasing in t and for all x, y ∈ Zd we have

P(ξx(t) > ξ̃x(t), ξy(t) < ξ̃y(t))→ 0 as t→∞.

b) If L(ξ(0)),L(ξ̃(0)) ∈ Rθ for some θ ∈ R+ the coupling is successful, i.e.

E |∆x(t)| → 0 as t→∞ for all x ∈ S.

Proof. a) From the above computation and shift-invariance we have

d

dt
E |∆z(t)| = κ

∑
x

pxzE
[
|∆x(t)|

(
1(∆z(t) = 0)− 1(sgn(∆x(t)) 6= sgn(∆z(t)))

)]
− κ

∑
x

pxzE [|∆x(t)|1(sgn(∆x(t)) 6= sgn(∆z(t)))]

≤ −κ
∑
x

pxzE [|∆x(t)|1(sgn(∆x(t)) 6= sgn(∆z(t)))] ≤ 0.

In particular, c := limt→∞ E |∆z(t)| ≤ E[ξ0(0) + ξ̃0(0)] exists (and is independent of z by
shift-invariance). If c = 0 we are done, so let us assume c > 0. Let Hxz(ξ, ξ̃) := 1(∆x >
0,∆z < 0). As (d/dt)E |∆z(t)| ≤ −κpxzEHxz(ξ(t), ξ̃(t)) we conclude that∫ ∞

0
P(∆x(t) > 0,∆z(t) < 0) dt <∞ (2.33)

for any x, z with pxz > 0. One easily checks that∣∣∣L(2)Hxz(ξ, ξ̃)
∣∣∣ ≤ κ

∑
y

{|∆x|pxy + |∆z|pzy + |∆y|(pyx + pyz)}

+ σ(ξx) + σ(ξ̃x) + σ(ξz) + σ(ξ̃z),
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hence (observe that supt≥0 Eσ(ξx(t)) < ∞ for all x by our assumptions on p̂, σ(·),
E ξx(0)2 <∞ and Lemma 5)

sup
t≥0

∣∣∣ d
dt
P(∆x(t) > 0,∆z(t) < 0)

∣∣∣ = sup
t≥0

∣∣∣EL(2)Hxz(ξ(t), ξ̃(t))
∣∣∣ <∞,

which together with (2.33) implies our claim for this pair x, z. Now consider x, y ∈ Zd
with pxy = 0, but assume that there exists some z satisfying pxzpzy > 0. Consider the
events

A(t) :=
{
ξx(t) > ξ̃x(t), ξy(t) < ξ̃y(t), ξz(t) = ξ̃z(t)

}
. (2.34)

If we can show that
lim
t→∞

P(A(t)) = 0 (2.35)

then we have shown that the claim is also true for x and y, as we already know from the
above that it holds for {x, z} and {y, z}. Then we use irreducibility of p and induction
on the number of p-steps required to connect a given pair x, y ∈ Zd to complete the proof
of a).

It remains to prove (2.35), so let us assume that on the contrary a := lim supt P(A(t)) >
0 was true. Consider also the events

B(t) :=
{
ξz(t) > ξ̃z(t), ξy(t) < ξ̃y(t)

}
.

If (2.35) failed then we would also have

lim sup
t→∞

P(B(t)) > 0 (2.36)

in contradiction to what we already know about the pair {y, z}. The intuitive idea
behind (2.36) is as follows: Note that the bounded intensity of (ξ, ξ̃) guarantees that
it is unlikely that a particle from outside jumps to {x, y, z} during a very short time
interval. Given that A(t) has occured at time t there is a certain probability that the
only transition we observe at the sites x, y and z in the time interval [t, t+ h] is that a
ξ-surplus particle jumps from x to z, which implies that B(t+ h) occurs.

To give a formal argument let us denote the event we have just described by C(t, h),
and define for K > 0

D(t,K) :=
{∑

u

(ξu(t) + ξ̃u(t))(pux + puy + puz) ≤ K, ξv(t) + ξ̃v(t) ≤ K for v = x, y, z
}
.

We have P(D(t,K)) → 1 as K → ∞ uniformly in t (use e.g. the fact that E[ξx(t) +
ξ̃x(t)] ≡ 2θ and the Markov inequality). Furthermore we have C(t, h) ⊂ B(t + h) and
P(C(t, h)|A(t)∩D(t,K)) ≥ ε(K,h) > 0. Choose K large enough that P(D(t,K)c) ≤ a/4
for all t ≥ 0. Then we have for any t∗ with P(A(t∗)) ≥ a/2

P(A(t∗) ∩D(t∗,K)) = P(A(t∗))− P(A(t∗) ∩D(t∗,K)c)
≥ P(A(t∗))− P(D(t∗,K)c) ≥ P(A(t∗))/2,

which implies

P(C(t∗, h)|A(t∗)) ≥
P(C(t∗, h) ∩A(t∗) ∩D(t∗,K))

P(A(t∗))

≥ 2−1P(C(t∗, h) ∩A(t∗) ∩D(t∗,K))
P(A(t∗) ∩D(t∗,K))

≥ ε(K,h)/2 > 0,
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yielding lim supt P(B(t + h)) ≥ aε(K,h)/4 > 0. This is a contradiction, proving that
(2.35) holds true.

b) Note that the distributions of (ξ(t), ξ̃(t)) are tight (as probability measures on E1×E1,
with respect to the vague topology) because supt,x E[ξx(t) + ξ̃x(t)] = 2θ < ∞. In order
to see this define for K > 0

Λ(K) :=
{

(ξ, ξ̃) ∈ E1 × E1 : ξzi , ξ̃zi ≤ K2i for i = 1, 2, . . .
}
,

where z1, z2, . . . is any enumeration of the state space. Λ(K) is a compact subset of
E1 × E1 with respect to the product topology, and by the Markov inequality we have

P((ξ(t), ξ̃(t)) 6∈ Λ(K)) ≤
∞∑
i=1

P(ξzi > K2i) + P(ξ̃zi > K2i)

≤
∞∑
i=1

2
θ

K2i
=

2θ
K

Thus can choose a sequence tn ↑ ∞ such that (ξ(tn), ξ̃(tn)) → (ξ(∞), ξ̃(∞)) in the
sense of finite dimensional distributions. By Lemma 6 we have L(ξ(∞)),L(ξ̃(∞)) ∈ Rθ.
Using shift-invariance and part a) we can compute

E

∣∣∣ξ0(∞)− ξ̃0(∞)
∣∣∣ = E

[∑
x

q0x(T )
∣∣∣ξx(∞)− ξ̃x(∞)

∣∣∣]

= E

∣∣∣∣∣∑
x

q0x(T )
(
ξx(∞)− ξ̃x(∞)

)∣∣∣∣∣
≤ E

∣∣∣∣∣∑
x

q0x(T )
(
ξx(∞)− θ

)∣∣∣∣∣+ E

∣∣∣∣∣∑
x

q0x(T )
(
ξ̃x(∞)− θ

)∣∣∣∣∣ .
Letting T →∞ we obtain E|ξ0(∞)− ξ̃0(∞)| = 0 because L(ξ(∞)),L(ξ̃(∞)) ∈ Rθ both
have asymptotic density θ (in an L2-sense, which implies the same in L1). Finally observe
that {|∆0(t)| : t ≥ 0} is uniformly integrable (we are in a regime with globally bounded
second moments by Lemma 5), proving limn→∞ E|∆0(tn)| = E|∆0(∞)| = 0. �

These ingredients allow us to clarify the long-time behaviour of ξ(t) in the regime of
globally bounded second moments:

Proposition 3 Assume that p̂ is transient and σ satisfies (2.29). For any θ ≥ 0

νθ = lim
t→∞

Poi(θ)S(t) ∈ Rθ (2.37)

exists. νθ is a shift-invariant equilibrium and satisfies
∫
ξx dνθ = θ,

∫
(ξx)2 dνθ <∞. νθ

is stochastically smaller than νθ′ for θ ≤ θ′. We have

lim
t→∞

µS(t) = νθ for all µ ∈ Rθ.

Proof. Observing that
∫
ξxPoi(θ)S(t)(dξ) ≡ θ we see that the family Poi(θ)S(t), t ∈ R+ is

tight, so there is a sequence tn ↗∞ such that νθ = limn→∞ Poi(θ)S(tn) exists. νθ ∈ Rθ
by Lemma 6 b). In order to prove that νθ is invariant fix h > 0 and put µ := Poi(θ)S(h)
(∈ Rθ by Lemma 6 a)). Lemma 7 b) with (ξ, ξ̃) starting from µ ⊗ Poi(θ) shows that
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µS(tn)⇒ νθ as n→∞, on the other hand we see from Lemma 5 and Remark 3 b) that
µS(tn) = (Poi(θ)S(tn))S(h)⇒ νθS(h), proving that νθ is invariant.

Now assume that ν ′θ := limn Poi(θS(t′n) along some other sequence t′n ↗∞. Arguing
as above we see that ν ′θ ∈ Rθ is S(t)-invariant. Another application of Lemma 7 b),
starting from νθ ⊗ ν ′θ shows that νθ = ν ′θ and hence that the limit in (2.37) exists.

We have supt
∫
ξ2
x Poi(θS(t)(dξ) < ∞ by Lemma 5, which implies that νθ has full

intensity θ and bounded second moments. Finally, another application of Lemma 7
shows that µS(t)⇒ νθ for any µ ∈ Rθ. �

Let us remark that we strongly expect νθ, which is a limit of branching particle
systems, to have positive correlations in the sense of [23], chap. 2. If this was the
case, we could proceed as in the proof of Corollary 2 in chapter 4 and show that νθ is
spatially mixing. This would show that any shift-ergodic equilibrium ν of (ξ(t)) with
finite intensity is necessarily some νθ.

2.5 Local size-biasing

2.5.1 Discrete generations

Here we look at a discrete-time analogue of the branching systems considered so far.
Apart from our standing belief that the big picture should not depend on implementation
details, discrete-time systems will be used to approximate the continuous-time system
in order to transfer the structural result about local size-biasing to the continuous-time
world, see Propositions 4 and 5 below.

Thus, in this subsection we play the following game: Given the configuration η(n) ∈
E1 at time n, the next configuration η(n+1) arises as follows: At site x a branching event
occurs with probability s(ηx(n)). In this case, one particle – uniformly chosen among
those at x – is replaced by K offspring, otherwise the number remains unchanged. Then
all particles take an independent step according to transition matrix rxy to form the
(n+ 1)-th generation. Here s : N0 → [0, 1] is the branching probability function (observe
that at most one particle per site and time-step can branch in this model), L(K) = ν is
the offspring law as before, and (rxy) is a stochastic matrix on S. Formally define

M(n, x, k) := k + 1(Un(x) ≤ s(k))(Kx(n)− 1),

the number of offspring of k particles located at x in generation n,

κ
(n)(x, k) :=

M(n,x,k)∑
i=1

δYx(n,i), and let

η(n+ 1) =
∑
x

κ
(n)(x, ηx(n)), (2.38)

with Ux(n), x ∈ S, n = 0, 1, . . . i.i.d. uniform([0, 1]), Kx(n) independent with law ν,
Yx(n, i) independent with P(Yx(·, ·) = y) = rxy. The random population η(n+ 1) is well
defined and lies in E1 almost surely for η(n) ∈ E1, if r is compatible with γ from the
definition of E1 in the sense that (2.6) also holds if we replace p by r. As

∑
k kνk = 1

we have E ηx(n) =
∑

y E ηy(m)r(n−m)
yx for 0 ≤ m ≤ n.

We are interested in the behaviour of η̂(x)(n), the locally size-biased η(n), with
distribution given by EF (η̂(x)(n)) = E[ηx(n)F (η(n))]/E[ηx(n)] – technically speaking,
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L(η̂(x)(n)) is the Palm measure (with respect to x ∈ S) of L(η(n)). Note that the fol-
lowing considerations assume a fixed n, we do not consider η̂(x)(n) as a process in n (in
forward time). The following lemma is the key step for a stochastic representation of
η̂(x)(n).

Lemma 8 Write

κ̂
x,(n)(y, k) := δx + 1(Vy(n) ≤ 1

k
)
M̃(n,y,k)∑
i=1

δYy(n,i)

+ 1(Vy(n) >
1
k

)
M(n,y,k)∑
i=1

δYy(n,i)

for the offspring of k particles at y in generation n, locally size-biased in x. Here,
M(n, y, k) is as above and

M̃(n, x, k) := k + 1(Un(x) ≤ s(k))(K̂x(n)− 1)

where Vy(n) is uniform([0, 1]), K̂x(n) is distributed according to the size-biasing of K,
and the remaining ingredients are as above (and all independent). Fix x ∈ S. Then for
any bounded, measurable function F we have

1
E ηx(n+ 1)

E[ηx(n+ 1)F (η(n+ 1))]

=
∑
y

E ηy(n)ryx
E ηx(n+ 1)

× E
[
ηy(n)
E ηy(n)

F
(
κ̂
x,(n)(y, ηy(n)) +

∑
z 6=y

κ
(n)(z, ηz(n))

)]
.

In words, the configuration η̂(x)(n+1) can be constructed in the following manner: pick a
site y with probability (E ηy(n)ryx)/E ηx(n+ 1). This will be the site the ancestor of the
selected particle in x came from. Given y choose a configuration with the law of η̂(y)(n).
Its particles in z 6= y branch (with probability depending on the local number) and move
independently as above. One of the, say, k particles at y is the “selected particle”. If
a branching occurs at y, it is with probability 1/k the selected particle that produces
offspring. In this case, there is a size-biased number of children. With probability 1−1/k
the branching happens to one of the remaining individuals who use the usual offspring
law. Finally, everybody (except the “selected one”, who automatically moves to x) has
to make their independent step according to ry·.

Proof of Lemma 8. It suffices to consider F (η) = exp(−〈g, η〉) for some g : S → R+. We
have

E [ηx(n+ 1)F (η(n+ 1)]

=
∑
y

E

[(
κ

(n)(y, ηy(n))
)
x
×
∏
z

exp
(
−〈g,κ(n)(z, ηz(n))〉

)]

=
∑
y

E

[
E

[(
κ

(n)(y, ηy(n))
)
x
× exp

(
−〈g,κ(n)(y, ηy(n))〉

)∣∣∣ η(n)
]

×
∏
z 6=y

E

[
exp

(
−〈g,κ(n)(z, ηz(n))〉

)∣∣∣ η(n)
] ]

=
∑
y

E

[
Fy(ηy(n))

∏
z 6=y

E

[
exp

(
−〈g,κ(n)(z, ηz(n))〉

)∣∣∣ η(n)
] ]
,
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where Fy(k) := E

[(
κ

(n)(y, k)
)
x
× exp

(
−〈g,κ(n)(y, k)〉

)]
. Let L := k + 1(Un(y) ≤

s(k))(Ky(n)− 1), then

Fy(k) =
∞∑
l=1

P(L = l)E

 l∑
j=1

1(Yy(n, j) = x) exp
(
−

l∑
m=1

gYy(n,m)

)
=

∞∑
l=1

P(L = l)l × ryxe−gx
(∑

z

ryze
−gz
)l−1

= kryx

∞∑
l=1

P(L̂ = l)E

[
exp

(
− 〈g, δx +

l−1∑
m=1

δYy(n,m)〉
)]

= kryxE exp
(
− 〈g, κ̂x,(n)(y, k)

)
.

Observe that EL = k and the size-biased L̂ satisfies

P(L̂ = k +m) =
{

1− s(k) + s(k)ν1 ifm = 0
s(k)k+m

k νm+1 ifm ∈ {−1, 1, 2, . . .},

hence
L̂ =d k + 1(U ≤ s(k))

{
1(V ≤ 1

k
)(K̂ − 1) + 1(V >

1
k

)(K − 1)
}
,

where U, V,K and K̂ are as in the definition of κ̂x,(n)(y, k). Thus we see that

E [ηx(n+ 1)F (η(n+ 1)]

=
∑
y

ryxE

ηy(n) exp
(
−
〈
g, κ̂x,(n)(y, ηy(n)) +

∑
z 6=y

κ
(n)(z, ηz(n))

〉) ,
which completes the proof. �

The following alternative representation of η̂(x)(N) is the main result of this subsec-
tion:

Proposition 4 Fix N ∈ N, x ∈ S. Assume that E ηx(N) =
∑

y E ηy(0)r(N)
yx < ∞.

Choose Y (0) in S with P(Y (0) = y) = E ηy(0)r(N)
yx /E ηx(N). Given Y (0) = y let

(Y (0), Y (1), . . . , Y (N) = x) be distributed like an r-bridge from y to x and choose η̃(0)
with distribution L(η̂(y)(0)). Pick one particle uniformly from those at y in η̃(0), this
is the (ancestor of the) “selected particle”. The system η̃(0), i = 1, 2, . . . , N evolves as
follows: The selected particle is immortal, its spatial path is Y (0), Y (1), . . . , Y (N). Par-
ticles not at the site of the selected one branch and move with the same dynamics as in the
original η-system. If there are k particles (including the selected one) at site Y (i) in gen-
eration i, a branching event occurs – as in the unmodified system – with probability s(k).
In the case of a branching event at a site with currently k particles including the selected
one we add a random number of offspring with distribution 1

kL(K̂ − 1) + k−1
k L(K − 1).

Then
η̃(N) and η̂(x)(N) have the same distribution.

Proof. We use induction on N : For N = 0, and given x ∈ S, then distribution of η̃(0) is
by definition the the same as that of η̂(x)(0). If the representation is correct for N − 1,
we see from Lemma 8 that it also holds for N . �
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2.5.2 Approximating the continuous-time system

The discrete-time results of the previous subsection suggest the following approach to
the Palm measures of ξ(T ): Fix T > 0, x ∈ S. Let ξ(0) satisfy

∑
y E ξy(0)pyx(T ) < ∞.

Pick X(0) with distribution P(X(0) = y) = E ξy(0)pyx(T )/E ξx(T ). Given X(0) = y let
(X(t))0≤t≤T be a p-bridge from y to x and let ξ̃x,T (0) have the law of ξ̂(x)(0). Given the
path (X(t)) the system (ξ̃x,T (t))0≤t≤T evolves according to the dynamics of a branching
system from section 2.1 except that one of the particles at X(0) at time 0 becomes
the “selected particle”. This particle follows the path X. Whenever a branching event
refers to the selected particle (which happens with probability 1/ξ̃x,TX(t)(t) if a branching
event occurs at site X(t) at time t), the system uses the size-biased offspring law ν̂
instead of the usual offspring law ν. (We remark that we could also view ξ̃x,T as a time-
inhomogeneous Markov process on configurations together with one marked particle. The
time-inhomogeneity comes from the condition that the marker has to be at position x at
time T .) For fixed x and T , ξ̃x,T is a stochastic representation of the locally size-biased
law of ξ(T ):

Proposition 5 Assume that E ||ξ(0)||γ,1 < ∞. ξ̃x,T (T ) is distributed according to the
Palm measure of ξ(T ) with respect to x, that is

E

[
F (ξ̃x,T (T ))

]
=

1
E ξx(T )

E

[
ξx(T )F (ξ(T ))

]
(2.39)

for all bounded measurable functions F .

We only give a sketch of the proof. Let us first consider the case that the branching
rate function σ(·) is bounded. Then we can approximate the system ξ by a sequence of
discrete-time branching systems ηN as defined in section 2.5.1 in the following way: For
N ∈ N (N ≥ supk σ(k) ) let ηN be a discrete-time branching system as considered in the
previous subsection with offspring law ν, branching probability function sN (k) = σ(k)/N
and individual motion transition matrix rNxy = pxy(1/N) starting from ηN (0) = ξ(0).
Then we have for all t ≥ 0

ηN ([Nt])→ ξ(t) as N →∞,

at least in the sense of finite-dimensional distributions. Furthermore we have for fixed
T ≥ 0, x ∈ S (here, we always think of η̃N as being constructed with respect to this x,
but we do not give it another index)

η̃N ([NT ])→ ξ̃x,T (T ) as N →∞.

Since L(η̃N ([NT ]) = L(η̂N
(x)

([NT ])) for all N , we obtain (2.39) by taking N →∞.
In order to treat the case of an unbounded σ we approximate ξ by a sequence of

continuous-time state dependent branching systems ξM with the same specifications as
ξ and ξM (0) = ξ(0), except that ξM uses the modified branching rate function σM (k) :=
σ(k∧M). We conclude from the above that (2.39) holds true for all ξM and the respective
(ξ̃M )x,T . Furthermore we can couple ξ and ξM in such a way that motion and branching
of particles is done exactly in parallel in both systems at all sites with at most M
particles. As ||ξ(t)||γ,1 has bounded paths we see that for any fixed finite A ⊂ S, the
probability that ξ and ξM agree on A × [0, T ] tends to one as M → ∞. Thus (2.39)
holds in general.
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Remark 7 ξ̃x,T can be continued beyond time T in the obvious manner by letting all
particles including the “selected one”, which gives up its special status at time T , simply
follow the ξ-dynamics. This allows to study also E[ξx(T )F (ξ(T + t))] and might thus
be interesting for questions about temporal or space-time correlations of ξ. We do not
pursue this issue here.

2.6 The case of a quadratic branching rate function

Here, we use the representation of ξ̂(x)(T ) via ξ̃x,T from the previous section to give a
sufficient criterion for persistence of ξ(t) in the situation of a quadratic branching rate
function σ(k) = Cσk

2 and shift-invariant pxy = p0,y−x. Technically, the link between
ξ and its locally size-biased law is provided by the following well-known, elementary
lemma.

Lemma 9 Let (Xt)t∈T, where T ⊂ R+, be a family of non-negative random variables
with finite constant mean θ > 0. Let (X̂t)t∈T have the respective size-biased distributions,
that is E

[
f(X̂t)

]
= θ−1

E

[
Xtf(Xt)

]
for t ∈ T, f : R+ → R+. Then

(Xt)t∈T is uniformly integrable ⇐⇒ (X̂t)t∈T is tight,

Xt → 0 stochastically as t→∞ ⇐⇒ X̂t →∞ stochastically as t→∞.

We include the proof for convenience: For the first equivalence note that for all t, c ≥ 0
we have E[Xt1(Xt ≥ c)] = θP(X̂t ≥ c). Now let us assume that Xt → 0 stochastically
as t→∞. Fix K > 0. Then

P(X̂t ≤ K) =
1
θ

∫ K

0
xP(Xt ∈ dx) ≤ ε

θ
P(Xt ≤ ε) +

K

θ
P(Xt ∈ (ε,K]),

showing that lim supt→∞ P(X̂t ≤ K) ≤ ε/θ. Let ε↘ 0 to obtain “⇒” in the second line.
Finally assume that X̂t →∞ stochastically. Fix δ > 0, let ε > 0. We have

P(Xt ≥ δ) = P(Xt ∈ [δ, θ/ε]) + P(Xt > θ/ε) ≤ P(Xt ∈ [δ, θ/ε]) + ε

by the Markov inequality. Observing that P(Xt ∈ [δ, θ/ε]) ≤ (θ/δ)P(X̂t ∈ [δ, θ/ε]) we
see that lim supt→∞ P(Xt ≥ δ) ≤ ε. Let ε↘ 0 to obtain “⇐”. �

We remark that the criterion given by Proposition 6 is parallel to Proposition 9 in
section 4.4.1, which treats the corresponding situation for branching random walk in
random environment.

Proposition 6 Let ξx(0), x ∈ Zd be shift-invariant with E ξ0(0) = θ > 0 and E[ξ0(0)2] <
∞, and assume that the difference of two independent q-random walks is transient. Let
the branching rate function be given by σ(k) = Cσk

2 and assume that CσVar(ν) < β∗,
where

β∗ = sup
{
β ≥ 0 : E

[
exp(β

∫ ∞
0

1(X ′(s) = X(s)) ds
∣∣X] <∞ L(X)-almost surely

}
with X and X ′ independent random walks with rate matrix κ(q−I) starting from X(0) =
X ′(0) = 0. Then the family (ξ0(t))t≥0 is uniformly integrable. In particular, whenever
ξ(tn)→ ξ(∞) in finite dimensional distributions for some sequence tn →∞, then ξ(∞)
has full intensity θ.
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Remark 8 Note that by Theorem 7 and Jensen’s inequality, we have β∗ > 2/Ĝ0(∞)
whenever p satiesfies (5.18) and p̂ is transient, see section 5.5. Combining Remark 6
and Proposition 6 we see that in the case of transient p̂ and a quadratic branching
rate function σ(k) = Cσk

2, there is a regime in which all equilibria have infinite second
moments.

Proof of Proposition 6. We start with a general observation about branching particle
systems. Consider a system ζ consisting of particles that move independently with rate
κpxy and that at each site x branch at rate σ̃(ζx(t−) into a random number of offspring
with mean mx(t), where mx(t) can depend on x, t and ζx(t−). Then we have

∂

∂t
E ζx(t) = κ

∑
y

pyx
(
E ζy(t)− E ζx(t)

)
+ E[σ̃(ζx(t))(mx(t)− 1)].

Now fix T > 0 and consider the population in the construction of ξ̃0,T with the
exception of the selected particle, i.e. define

ζ(t) := ξ̃0,T (t)− δX(t), 0 ≤ t ≤ T.

where (X(t))0≤t≤T is the path of the selected particle in the construction from section
2.5.2. It will be more convenient to work with the time reversal Y defined by Y (t) :=
X(T − t), 0 ≤ t ≤ T , which is by construction and the shift-invariance of L(ξ(0)) a
(unrestricted) q-random walk starting from 0.

Conditional on the path Y , ζ is a branching system with space-time dependent
branching rates and offspring laws as considered above. By construction we have σ̃(ζx(t)) =
Cσ(ζx(t) + 1(Y (T − t) = x))2 and

mx(t) =


1

1 + ζx(t)

∑
kν̂k +

ζx(t)
1 + ζx(t)

= Var(ν)/(1 + ζx(t)) + 1 if Y (T − t) = x

1 otherwise.

This allows to compute

∂

∂t
E[ζx(t)|Y ] = κ

∑
y

pyx
(
E[ζy(t)|Y ]− E[ζx(t)|Y ]

)
+ CσVar(ν)1(Y (T − t) = x)E[ζx(t) + 1|Y ].

The Feynman-Kac formula (see e.g. [18], chapter 2.17, Thm. 3) shows that

E[ζx(T )|Y ] = E

[
exp

(
CσVar(ν)

∫ T

0
1(X ′(t) = Y (t)) dt

)
ζX′(T )(0)

∣∣∣Y ]
+
∫ T

0
CσVar(ν)E

[
1(X ′(t) = Y (t)

× exp
(
CσVar(ν)

∫ t

0
1(X ′(s) = Y (s)) ds

)∣∣∣Y ] dt,
where X ′ is a q-random walk starting from x, independent of Y . Note that this formula
has a natural interpretation in genealogical terms: the first summand on the righthand
side gives the expected number of particles in ξ̃0,T (T ) at site 0 which are not related to
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the selected particle, while the second term is the expected number of relatives. Our
assumption E[ξ0(0)2] <∞ ensures that supx Eζx(0) <∞, yielding

E[ζx(T )|Y ] ≤ c× E
[
exp

(
CσVar(ν)

∫ ∞
0

1(X ′(t) = Y (t)) dt
) ∣∣∣Y ]

+
∫ ∞

0
CσVar(ν)E

[
1(X ′(t) = Y (t)

× exp
(
CσVar(ν)

∫ t

0
1(X ′(s) = Y (s)) ds

)∣∣∣Y ] dt.
The righthand side is finite for Cσ < β∗/Var(ν), showing that the family ξ̃0,T (T ), T ≥ 0,
and thus also the family ξ̂(0)(T ) is tight. The claim follows from Lemma 9. �

2.7 If branching is bad for you more branching is worse

In this section we prove a comparison result for state dependent critical binary branching
random walks. Consider two such systems (ξ(1)(t))t≥0 and (ξ(2)(t))t≥0 starting from
the same initial condition with the same specifications except for the branching rate
functions σi corresponding to ξ(i), and assume that σ1(·) ≥ σ2(·). Then we intuitively
expect the first system to “branch more frequently” than the second, thus there should
be more variability in it and it should “more easily” reach the boundary (namely the
absorbing state 0) than the second system. This idea, which technically means that
E f(ξ(1)(t)) ≥ E f(ξ(2)(t)) for certain convex functions, is made precise in Theorem 1. It
may be viewed as a “particle companion” of the main result in [4], where a corresponding
theorem for interacting diffusions is proved.

Denote by F the set of all bounded Lipschitz continuous functions F : E1 → R such
that

∀ ξ ∈ E1, x, y ∈ S F (ξ + δx + δy)− F (ξ + δx)− F (ξ + δy) + F (ξ) ≥ 0. (2.40)

This is a discrete analogue of the requirement that all second derivatives should be
positive: If F (ξ) = f(ξy1 , . . . , ξyn) for some y1, . . . , yn ∈ S and f : Rn → R+ with
∂
∂xi

∂
∂xj

f ≥ 0, i, j = 1, . . . , n, then F ∈ F. We remark that F ∈ F is equivalent to the
requirement that

F (ξ + h1δx + h2δy)− F (ξ + h1δx)− F (ξ + h2δy) + F (ξ) ≥ 0

for all ξ, x, y and all h1, h2 ∈ N0, as can be checked by induction. An important example
is of course F (ξ) := exp(−λ1ξy1 −· · ·−λnξyn) for any λ1, . . . , λn ≥ 0 and y1, . . . , yn ∈ S.

Let L(σi) denote the generator, (S(σi)(t))t≥0 the semigroup corresponding to ξ(i),
i = 1, 2.

Theorem 1 Assume (2.4), that is the branching law is critical binary. Then for all
F ∈ F, ξ ∈ E1, t ≥ 0: S(σ1)(t)F (ξ) ≥ S(σ2)(t)F (ξ).

Before giving a proof let us explain the title of this section by the following

Corollary 1 Assume (2.4), and let ξ(1) and ξ(2) be as above. If ξ(2) suffers (weak) local
extinction, i.e. if

(ξ(2)
x1

(t), . . . , ξ(2)
xn (t))→ (0, . . . , 0), t→∞

in distribution for all x1, . . . xn ∈ S, then so does ξ(1).
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Proof. Let F (ξ) := exp(−ξx1 − · · · − ξxn) (≤ 1). By Theorem 1 we have S(σ1)(t)F (ξ) ≥
S(σ2)(t)F (ξ) and the rhs converges to 1 as t → ∞ because ξ(2) suffers local extinction.
�

Remark 9 We work in this chapter only under assumption (2.4) of critical binary
branching. We do not consider more general offspring distributions because the ana-
logue of the crucial Lemma 10 will be false in the general case. The present proof, which
relies on the preservation of convexity properties by the semigroup, can therefore not
be adapted to the general setting. On the other hand, the intuitive arguments given
at the beginning of this section apply whenever the expected number of children equals
one. Thus one might suspect that Corollary 1 should be true for any critical offspring
distribution. Alas, it is unclear how to prove this.

Modulo technicalities – which we leave aside for a second – the proof of Theorem 1
rests on two pillars:

Lemma 10 Assume (2.4). The semigroup (S(σi)(t)) preserves F, i.e. S(σi)(t)F ∈ F for
all F ∈ F, i = 1, 2.

and an application of the integration by parts formula for semigroups (cf. e.g. [23], p. 367)

S(σ1)(t)− S(σ2)(t) =
∫ t

0
S(σ2)(t− s)(L(σ1) − L(σ2))S(σ1)(s) ds. (2.41)

Because the motion parts of L(σ1) and L(σ2) are the same we have

(L(σ1) − L(σ2))F (ξ) =
∑
x∈S

(
σ1(ξx)− σ2(ξx)

)∑
k≥0

νk (F (ξ + (k − 1)δx)− F (ξ)) .

This is (summand-wise) non-negative for F ∈ F since σ1(ξx) ≥ σ2(ξx) by assumption
and by Jensen’s inequality as the function N0 3 n 7→ F (ξ + nδx) ∈ R is convex for any
F ∈ F, ξ ∈ E1, x ∈ S.

Finally, there remain some technicalities to be settled before the theorem follows from
(2.41) and Lemma 10. Unfortunately, (2.41) does in general not hold in our situation,(
S(σi)(t)L(σi)f

)
(ξ) need not even be defined for all ξ ∈ E1 when σ(i) grows faster than

linearly. This can be remedied by an approximation argument: We indeed have

S(σ1)(t)f(ξ)− S(σ2)(t)f(ξ) =
∫ t

0
S(σ2)(t− s)(L(σ1) − L(σ2))S(σ1)(s)f(ξ) ds

for f ∈ Lip(E1) and any finite ξ, so the theorem is true for all finite ξ. It remains to
observe that by (2.21) we have S(σi)(t)f(ξ) = limn S

(σi)(t)f(1Snξ) for all f ∈ Lip(E1)
and ξ ∈ E1, where Sn ↗ S is an exhausting sequence of finite subsets. �

Proof of Lemma 10. The idea is to first show that both the motion dynamics and the
branching dynamics preserve F and then glue the two parts together via Trotter’s product
formula. For technical reasons we first consider Efin as the underlying configuration space
because L given by (2.1) does generate a strongly continuous contraction semigroup S(t)
on Cb(Efin ,R). Observe that Lf(ξ) = Lrwf(ξ) + Lbrf(ξ), where

Lrwf(ξ) = κ
∑
x,y∈S

ξxpxy

(
f(ξ(x,y))− f(ξ)

)
, and

Lbrf(ξ) =
∑
x∈S

σ(ξx)
∑
k≥0

νk
(
F (ξ + (k − 1)δx)− F (ξ)

)
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are the motion and branching part respectively. We denote the corresponding semigroups
by Srw(t) and Sbr(t).

Claim 1 Srw(t) preserves F.

We observe that the Markov process (ξrw(t)) with semigroup (Srw(t)) consists of in-
dependent p-chains jumping at rate κ. This allows a simple coupling argument: Fix
ξ ∈ E1, x, y ∈ S. Let (ξrw(t)) be such a system with initial condition ξ and (Xt) and
(Yt) be two independent p-Markov chains with X0 = x, Y0 = y. Thus

Srw(t)F (ξ + δx + δy)− Srw(t)F (ξ + δx)− Srw(t)F (ξ + δy) + Srw(t)F (ξ)
= E [F (ξrw(t) + δXt + δYt)− F (ξrw(t) + δXt)− F (ξrw(t) + δYt) + F (ξrw(t))] ≥ 0

for F ∈ F, proving Claim 1.

Claim 2 Sbr(t) preserves F.

The Markov process (ξbr(t)) corresponding to (Sbr(t)) consists of |S| independent copies
of a continuous-time Markov process (Y (t)) on Z+ with Q-matrix r(m,n) = σ(m)1(|m−
n| = 1)/2 for m 6= n. Let F ∈ F. Fix x, y ∈ S and an initial state η ∈ E1. We wish to
prove that

E[F (ξbr(t))|ξbr(0) = η + δx + δy]− E[F (ξbr(t))|ξbr(0) = η + δx]
− E[F (ξbr(t))|ξbr(0) = η + δy] + E[F (ξbr(t))|ξbr(0) = η] ≥ 0. (2.42)

Let us denote by X(t) the number of particles at x at time t, by Y (t) the corresponding
number at y, and let ξ′(t) = (ξ′z(t))z 6=x,y be the vector of the remaining coordinates.
Conditioning on ξ′(t) and observing that the coordinate processes are independent, we
can rewrite (2.42) as follows:

E

[
E[F (ξbr(t))|X(0) = ηx + 1, Y (0) = ηy + 1, ξ′(t)]

− E[F (ξbr(t))|X(0) = ηx + 1, Y (0) = ηy, ξ
′(t)]

− E[F (ξbr(t))|X(0) = ηx, Y (0) = ηy + 1, ξ′(t)]

+ E[F (ξbr(t))|X(0) = ηx, Y (0) = ηy, ξ
′(t)]

∣∣∣∣ξ′(0) = (ηz)z 6=x,y

]
.

Now for fixed ξ′(t), the terms inside the big expectation are functions of only two co-
ordinates, namely ηx and ηy. Consequently it suffices to consider F ∈ F of the form
F (ξ) = g(ξx, ξy) for some suitable g : N2

0 → R.
Case x = y, i.e. F (ξ) = g(ξ(x)) for some (convex) g : N0 → R. Define

ϕ(n, t) := Eng(Y (t)), n ∈ N0, t ≥ 0.

ϕ solves

∂

∂t
ϕ(n, t) =

1
2
σ(n)(ϕ(n+ 1, t) + ϕ(n− 1, t)− 2ϕ(n, t)), t ≥ 0, n ∈ N0

ϕ(n, 0) = g(n)

and because (Y (t)) is a martingale and g convex, g(Y (t)) is a submartingale obeying
∂
∂tEng(Y (t)) ≥ 0. This proves

Eξ+2δxF (ξbr(t)) + EξF (ξbr(t))− 2Eξ+δxF (ξbr(t)) =
2

σ(ξx + 1)
∂

∂t
ϕ(ξx + 1, t) ≥ 0 (2.43)
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as desired if σ(ξx+1) > 0. But on the other hand if σ(ξx+1) = 0 we have Eξ+δxF (ξbrx (t)) ≡
F (ξx+δx) so that the lhs of (2.43) is still non-negative for all t ≥ 0 by the submartingale
property.

Case x 6= y, i.e. F (ξ) = g(ξx, ξy) for some g satisfying g(m + h, n + k) − g(m + h, n) −
g(m,n+ k) + g(m,n) ≥ 0 for all m,n, h, k ∈ N0. Here we use an obvious coupling: Let
ξx = n, ξy = m and (Y 1(t)) and (Ỹ 1(t)) be two continuous time Markov chains with rate
matrix r(a, b) = σ(a)1(|a− b| = 1)/2 as above with Y 1(0) = m, Ỹ 1(0) = m+ 1 coupled
such that Y 1

t ≤ Ỹ 1
t for all t, and similarly (Y 2(t)) and (Ỹ 2(t)) be two such chains as

above (but independent of (Y 1, Ỹ 1)) with Y 2(0) = n, Ỹ 2(0) = n+ 1 and Y 2(t) ≤ Ỹ 2(t)
for all t. Observe that our assumption of attractiveness guarantees that we can choose
such order-preserving couplings. This allows to estimate

Eξ+δx+δyF (ξbr(t))− Eξ+δxF (ξbr(t))− Eξ+δyF (ξbr(t)) + EξF (ξbr(t))

= E

[
g(Ỹ 1(t), Ỹ 2(t))− g(Ỹ 1(t), Y 2(t))− g(Y 1(t), Ỹ 2(t)) + g(Y 1(t), Y 2(t))

]
≥ 0

by the properties of g.
To complete the proof of Lemma 10 we split the interval [0, t] into n pieces in which

we first run the ξrw-dynamics for time t/n and then the ξbr-dynamics for time t/n. This
corresponds to the operator

F 7→ (Sbr(t/n)Srw(t/n))n F

which by Claims 1 and 2 preserves F. But by Trotter’s product formula (see e.g. [9],
Cor. 1.6.7) this converges to StF (as an element of C(Efin ,R)). Then approximate ξ ∈ E1

by ξ1Sn to obtain the general statement. �

2.8 With recurrent motion, critical branching is presum-
ably always bad for you

In view of the comparison result Corollary 1 it is natural to ask about the long-time
behaviour of the so-called lonely branching system using the branching rate function
σ(k) = 1(k = 0). By Lemma 9 and Proposition 5, the lonely branchers will become
locally extinct if and only if the corresponding ξ̃0,T (T ) become infinitely dense. Unfor-
tunately, we have not been able to decide whether this is the case. This has lead us to
consider a caricature, where the “trunk” does not move and “side-lines” do not branch.
This model, which is a (special case of a) system of independent Markov chains with a
density-regulated immigration mechanism, is studied in the next chapter. Here we have
been able to decide the longtime behaviour, see Theorem 2. It turns out that (as in the
case of the “classical Kallenberg tree”) the system becomes infinitely dense if and only if
the underlying motion is recurrent.

These results and our faith that the truth is captured by the caricature step lead us
to

Conjecture 1 Consider a state dependent branching system ξ(t) with critical binary
branching, a non-trivial branching rate function σ(·) and underlying motion given by a
symmetric recurrent random walk, starting from a shift invariant initial condition (with
finite intensity E ξx(0) < ∞). Then ξ(t) dies out locally as t → ∞. In particular, there
are no non-trivial equilibria.
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Chapter 3

Systems with self-blocking
immigration

We consider systems of independent Markov chains on a countable space S. New particles
try to immigrate at x0 ∈ S at rate 1 but are only allowed to do so if the source x0 is
not occupied by another (older) particle. We show that – starting from the empty
configuration – such a system grows locally without bound iff the motion of individual
particles is recurrent. We present some heuristic arguments for the growth rate in certain
special cases, namely positive recurrent motion and simple random walk in d = 1, and
give a proof for a resulting conjecture under rather restrictive assumptions, namely if
the individual motion is uniformly exponentially ergodic. We find some partial results
about the quantitative long-time behaviour in the random walk case.

3.1 Ingredients and construction

S . . . . . . . . . . . . . . . . . . . . . . . “basic space”, some countable set
ηx(t) . . . . . . . . . . . . . . . . . . . no. of particles in x ∈ S at time t
(pxy) . . . . . . . . . . . . . . . . . . irreducible stochastic matrix on S,

particles follow independent p-motion with rate 1.
x0 ∈ S . . . . . . .“immigration source”, at rate 1(ηx0(t−) = 0)

a new particle enters at x0.

We construct an interacting particle system (η(t)). Particles move around independently
in a Markovian manner, at rate 1 new particles enter the system at “source” x0 unless
there is already one (or more) particle(s) at x0 at this time: In that case no immigration
occurs. This is the “self-blocking” the name refers to.

We denote the corresponding transition semigroup of the continuous-time chain with
jump rates p by pxy(t). For (fixed) initial condition η(0) in

S := {ξ : S → N0 | ∀t ≥ 0, x ∈ S :
∑

y∈Sξypyx(t) <∞} ⊂ N0
S (3.1)

Note that E1 ⊂ S if p is compatible with the weight function γ from the previous chapter
in the sense that (2.6) is satisfied.

We can construct the process η in the straightforward manner:
Let N = (τ1, τ2, . . .) (τ1 < τ2 < · · · ) be a homogeneous rate 1 Poisson point process on
R+ and given N let (X(i)(t))t≥τi be independent p-chains, X(i)(τi) = x0. Furthermore
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let (X(x,i)(t))t≥0, x ∈ S, i = 1, 2, . . . be independent p-chains with X(x,i)(0) = x,
independent of N and {X(i)}. Observe that for η(0) ∈ S, x ∈ S, t ≥ 0

E

∑
y

ηy(0)∑
i=1

1(X(y,i)(t) = x)

 =
∑
y

ηy(0)pyx(t) <∞ (3.2)

saving the system from “instantaneous explosions”. We can therefore safely define

η(t) :=
∑
x

ηx(0)∑
i=1

δX(x,i)(t) +
∑
n

1(τn ≤ t)1(An)δX(n)(t)

where the An are recursively defined as An := {ηx0(τn−) = 0}.
Because in finite time only a finite number of immigrants enters the system a.s. (the

number of immigrants up to time t is stochastically bounded by Poisson(t)) we have for
all η(0) ∈ S

η(t) ∈ S for all t ≥ 0 almost surely.

By the independence of the ingredients and standard properties of Poisson processes
on R, (η(t)) is a Markov process. We denote its semigroup (acting, say, on bounded
measurable functions f on S) by

T (t)f(ξ) := Eξ

[
f(η(t))

]
, ξ ∈ S.

Remark 10 a) The set S is the largest possible state space for such a system: An easy
argument using Laplace transforms shows that if for some t, x we have

∑
y ηy(0)pyx(t) =

∞ then the system explodes by time t in the sense that ηx(t) =∞ almost surely.
b) A simple coupling shows that T (t) preserves monotonicity, that is T (t)f is monotone
whenever f : S → R is: Let η·(0) ≤ η̃·(0). We let the particles in η move in uni-
son with “partners” in η̃, possible overshoot particles in the larger system simply move
independently. We use a common Poisson process of potential immigrations: Immigra-
tion events at times t when η0(t−) = η̃0(t−) = 0 are realised in both systems; while if
0 = η0(t−) < η̃0(t−), the immigration occurs only in the smaller system. Note that the
ordering is preserved in any case.

3.2 The backward picture

Here we give an alternative construction of the historical process of (η(u))0≤u≤v for a
fixed v. This construction works “backwards” in time. It shows easily that L(η(u)) is
increasing in u.

Let M := {(f, t) : t ≤ 0, f : [t, 0] → S càdlàg, f(t) = x0} be the set of càdlàg paths
on S that start at some time t ≤ 0 at x0 and are marked by their “birth time”. We
construct a family (Ψt)t≤0 of random simple counting measures on M (or equivalently,
of finite random subsets of M), such that for s < t ≤ 0 “the restriction of Ψs to ‘what
happens to paths in [t, 0]’ is equal to Ψt”.
Instead of (or at least in addition to) reading the rest of this rather notation-loaded section the
reader might want to look at the cartoon in section 3.7.

Let N =
∑

i δτi , 0 ≥ τ1 > τ2 > . . . be a rate 1 Poisson process on R−, given N let
X(1), X(2), . . . be independent continuous-time p-chains, (X(i)(t))t≥τi starts at time τi at
x0. With these ingredients we define iteratively Ψt := ∅ for 0 ≥ t > τ1, Ψτ1 := δ(X(1),τ1).
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If Ψt has been constructed for t ≥ τn−1 we define Ψt := Ψτn−1 for t ∈ (τn, τn−1). Now
if Ψτn−1({all paths} × {r : X(n)(r) = x0}) = 0, that is if X(n) does not hit any “birth
point” of a path currently “in Ψ”, we define Ψτn := Ψτn−1 + δ(X(n),τn). Otherwise there is

some Rn ∈ [τn−1, 0] and Ỹ (n)(·) such that Ψτn−1({(Ỹ (n), Rn)}) = 1 and X(n)(Rn) = x0

(and Rn is the smallest r with these properties). By construction, Rn will be some τkn
with kn < n. In this case we define

Y (n)(r) :=
{
X(n)(r), r ∈ [τn, Rn)
Ỹ (n)(r), r ∈ [Rn, 0]

and set Ψτn := Ψτn−1 − δ(Ỹ (n),Rn)
+ δ(Y (n),τn). Observe that Y (n) is distributed like a

p-chain starting at time τn at x0.
For a fixed t < 0 we can also look at Ψt =

∑
δ(Y (i),Si)

in “reversed” (with respect to
the above construction), i.e. forward direction, time:
Let τ1

Nt
be the smallest jump point of N in [t, 0] then by construction Ψt has an atom

δ(Y (1),τ1
Nt

) where Y (1) is a continuous-time p-chain starting at x0 at time τ1
Nt

and Ψt

cannot have an atom of the form δ(Y,r) for r ∈ {s : Y (1)(s) = x0}. Now let τ2
Nt

be the
smallest jump point of N in [τ1

Nt
, 0] \ {s : Y (1)(s) = x0}. If there is any such τ2

Nt
by

construction Ψt also has an atom δ(Y (2),τ2
Nt

) where Y (2) is a p-chain starting at x0 at

time τ2
Nt

independent of (Y (1), τ1
Nt

). Now we look for the smallest jump point of N in
[τ2
Nt
, 0] \ {s : Y (1)(s) = x0 or Y (2)(s) = x0}, etc.
Thus we see that for t ≤ 0 fixed Ψt is the historical empirical measure (at time 0)

of a system of independent p-chains with self-blocking immigration that starts with the
empty configuration at time t (For convenience we may think of a shifted time-axis and
speak rather of [0, |t|] than of [t, 0]).

3.3 Qualitative longtime behaviour

In this section we consider the case η(0) ≡ 0 and ask whether the system will overflow
locally, i.e. ηx(t)→∞ in probability?

Lemma 11 Let η(0) ≡ 0. The family
{
L(η(t)) : t ≥ 0

}
is stochastically monotone.

Furthermore exactly one of the following holds: Either
i)
{
L(η(t)) : t ≥ 0

}
is tight, or

ii) ηx0(t)→∞ stochastically as t→∞.

In case i) η(t) → η(∞) (in the sense of finite-dimensional distributions), where η(∞) is
an (S-valued) equilibrium for the process.

Proof. To show monotonicity we use the coupling provided by the backward con-
struction of the previous section. Denoting for t ≥ 0

η̃(t) :=
∫
δf(0)Ψ−t(d(f, s))

(that is we record only the terminal positions of the particles in the backward construc-
tion) we have by construction

η̃·(s) ≤ η̃·(t) for s ≤ t
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(because once a path has reached the ‘top’ in the backward construction its tip is never
removed) and for all t ≥ 0

L(η(t)) = L(η̃(t)).

This gives the monotonicity. In particular there exists a family (η(∞)
x )x∈S of (N0∪{∞})-

valued random variables such that η(t) → η(∞) in f.d.d. (functions of the type f(η) =
1(ηx1 ≥ k1, . . . , ηxn ≥ kn) are monotone).

Observe that the backward construction can be viewed as a deterministic construc-
tion using independent random ingredients: Z1, Z2, . . . Exp(1)-rv’s for the waiting times
between jumps of the Poisson process N and (X(1)

s ), (X(2)
s ), . . . paths of p-chains starting

from x0. The event

{η̃x0(t)→∞} = {infinitely many paths arrive at x0 at time 0}

remains unchanged if we permute a finite number of these ingredients: Any such permu-
tation can only create or destroy a finite number of “birth points” and hence only affects
the behaviour of a finite number of paths in the construction. By Hewitt-Savage’s 0-1
law we obtain P(η̃x0(t) → ∞) ∈ {0, 1}. This gives the dichotomy we claimed above
because P(η̃x0(t) → ∞) = P(η(∞)

x0 = ∞). So if the family L(η(t)), t ≥ 0 is not tight, i.e.
P(η(∞)

x0 =∞) > 0, we see that indeed the limit law puts all of its mass on ∞.
Assume now case i). To conclude the proof we want to convince ourselves that

P(η(∞) ∈ S) = 1. Hence we check that

ηx0(t), t ≥ 0 is tight ⇐⇒ ∀h, x :
(∑

y
ηy(t)pyx(h), t ≥ 0 is tight

)
.

”⇐” is obvious because ηx0(t) ≤ (1/px0,x0(t))
∑

y ηy(t)py,x0(1). For the other direction
assume that there exist h′ and x′ for which the righthand side above is not tight. Because
the distribution of ηx′(t + h′) given η(t) is stochastically larger than that of

∑
y By

where theBy are independent, Bin(ηy(t), pyx′(h′))-distributed we can compute for (small)
λ > 0:

E[e−ληx′ (t+s)] = E

[
E[e−ληx′ (t+s)|η(t)]

]
≤ E

[∏
y
(1− pyx′(s)(1− e−λ))ηy(t)

]
= E

[
exp

(∑
ηy(t) log(1− pyx′(s)(1− e−λ))

)]
≤ E

[
exp

(
− (1− e−λ)

∑
ηy(t)pyx′(s)

)]
≤ E

[
exp

(
(−λ/2)

∑
ηy(t)pyx′(s)

)]
From this and the assumed non-tightness of the family appearing inside the exp in the
last line we get

lim
λ→0+

inf
t
E(e−ληx′ (t)) < 1

so that (ηx′(t), t ≥ 0) is also not tight. Because px′,x0(1) > 0 the same holds with x′

replaced by x0. Consequently in case i):

1 = P

(
∀x ∈ S, t ∈ Q+ :

∑
yη

(∞)
y pyx(t) <∞

)
= P(η(∞) ∈ S).
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To see that L(η(∞) is invariant fix h > 0 and a bounded monotone function f : S→ R+

and compute (0 := (0, 0, . . .) ∈ S denotes the empty configuration)

E

[
T (h)f(η∞)

]
= lim

t→∞
T (t)(T (h)f)(0) = lim

t→∞
T (t+ h)f(0) = E

[
f(η(∞))

]
.

�

Remark 11 It is obvious that η(t) converges to some equilibrium if p-motion is tran-
sient. A simple coupling with a system (η′(t)) in which immigration occurs unrestrictedly
at constant rate shows that

E ηx0(t) ≤ E η′x0
(t) =

∫ t

0
px0x0(t− s)ds ≤

∫ ∞
0

px0x0(u)du <∞.

On the other hand if p is recurrent there exist no equilibria at all. Heuristically
the existence of an equilibrium leads to a contradiction because started from it the
system would produce new particles at constant rate but a recurrent motion is too
slow to move them away so that they pile up higher and higher “around x0”: Assume
(η(∞)(t))t≥0 was such a stationary process with η(∞)(t) ∈ S for all t almost surely, whence
β := P(η(∞)

x0 (0) = 0) > 0. Fix a T > 0. By stationarity for all t ≤ T the probability that
a new immigrant enters the system (at x0) in (t, t + dt) is β dt and because once born
the immigrant performs independent p-motion the probability that she is back in x0 at
time T is then px0x0(T − t). Thus

E η(∞)
x0

(0) = E η(∞)
x0

(T ) ≥ β
∫ T

0
px0x0(T − t)dt −→∞ as T →∞. (3.3)

While this simple argument only shows that necessarily E η(∞)
x0 (t) ≡ ∞ it can be be

strengthened to

Lemma 12 For recurrent p there exists no equilibrium for η concentrated on S.

Lemma 12 and Lemma 11 together yield

Theorem 2 Let η(0) ≡ 0, assume |S| > 1. Then

ηx0(t)→∞ in probability ⇐⇒ p is recurrent.

Proof of Lemma 12. We argue by contradiction. Assume that η(0) were distributed
according to an (S-valued) equilibrium for (T (t)). We denote β := P(ηx0(0) = 0) > 0.
Then we can use the construction of section 3.1 to construct a stationary process ηt,
t ≥ 0. Recall the ingredients N = (τ1, τ2, . . .), a homogeneous rate 1 Poisson process
of “potential immigrations”, (X(n)(t))t≥τn , n = 1, 2, . . ., the paths of these (potential)
immigrants, and (X(x,i)(t))t≥0, x ∈ S, i = 1, 2, . . . , the paths of all individuals (and
possibly many more) originally in the population. We denote as before by An the event
that the n-th potential immigration is realized in the system. Fix a T > 0 for the
moment and let

BT :=
∑
n≥1

1(τn ≤ T,An, X(n)(T ) = x0)
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be the number of immigrants that enter the system in [0, T ] and are back in x0 at time
T . By stationarity we can compute

EBT =
∫ T

0
βpx0x0(T − t) dt = β

∫ T

0
px0x0(t) dt. (3.4)

On the other hand

E (BT )2 ≤
∑
m,n≥1

P(τm ≤ T, τn ≤ T,X(m)
T = x0 = X

(n)
T )

=
∫ T

0
px0x0(t) dt+

(∫ T

0
px0x0(t) dt

)2

(3.5)

(observe that the rhs in the first line above is just the expectation of the square of the
number of marked points in [0, T ] of a Poisson process where a point at t is marked with
probability px0x0(T − t) independently of the others). This allows to estimate (using
Cauchy-Schwarz for the first inequality)

P(BT ≥ (EBT )/2) = E

[
1(BT ≥ (EBT )/2)2

]
≥

(
E

[
1(BT ≥ (EBT )/2)1(BT ≥ (EBT )/2)BT

])2
E

[
1(BT ≥ (EBT )/2)2B2

T

]
≥

(
EBT − E

[
BT1(BT < (EBT )/2)

])2
EB2

T

≥ 1
4

(EBT )2

EB2
T

But by construction ηx0(T ) ≥ BT , hence using (3.4) and (3.5)

P

(
ηx0(0) ≥ (β/2)

∫ T
0 px0x0(t) dt

)
≥ β2

4

(∫ T
0 px0x0(t) dt

)2

∫ T
0 px0x0(t) dt+

(∫ T
0 px0x0(t) dt

)2 .

By assumption
∫ T

0 px0x0(t)dt → ∞ as T → ∞ so that the rhs of the above tends to
β2/4 > 0 showing that P(ηx0(0) =∞) > 0 which is in contradiction to η(0) being in (a
S-valued) equilibrium.

3.4 Quantitative longtime behaviour I: The positive recur-
rent case

We have seen in the previous section that a system (ηt) of independent p-chains with
self-blocking immigration (started off from η(0) = 0, say) experiences local overflow as
t → ∞ whenever p is recurrent. Thus a (possibly) natural question is the speed of
divergence, i.e. how many particles do we typically see at some late time t? Here we
consider the case that p is positive recurrent with stationary distribution π and present
some evidence (and prove under a uniform exponential ergodicity assumption) that this
number grows logarithmically.

3.4.1 Heuristics

Let η be as above, ϕ(t) := P(ηx0(t) = 0). The expected number of particles at time t is
then Φ(t) := E

∑
x ηx(t) =

∫ t
0 ϕ(s) ds. If at time t there are Φ(t) particles which perform
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independent p-motions the probability that all of them avoid x0 at this instant might
plausibly be something like

ϕ(t) ≈ (1− πx0)Φ(t) = exp(log(1− πx0)
∫ t

0 ϕ(s) ds). (3.6)

This ansatz makes the implicit assumption that the immigration events are rare so that
the particles’ locations have had a lot of time to be close to equilibrium. Taking equality
in (3.6) leads to the ordinary boundary value problem

d

dt
ϕ(t) = log(1− πx0)ϕ(t)2, t ≥ 0, ϕ(0) = 1

with solution ϕ(t) =
(
1 + t · log(1/(1− πx0))

)−1, leading to the conjecture

Φ(t) ≈ log(t)
log(1/(1− πx0))

. (3.7)

Under stronger assumptions this can indeed be proved, see the next subsection.

3.4.2 The “finite” case

From now on we make the stronger assumption (something like “uniform exponential
ergodicity”) that there exist constants κ, λ > 0 such that

∀ t : sup
x∈S

d(Px(X(t) ∈ ·), π) ≤ κ e−λt (3.8)

where Px denotes the distribution of a p-chain X starting at X(0) = x and d is the
total variation distance. Recall that for probability measures µ, ν on a measurable space
M the total variation distance is defined as d(µ, ν) := sup |µ(A) − ν(A)| where the sup
ranges over all measurable subsets A ⊂ M . Observe that (3.8) is quite stringent but is
fulfilled whenever S is finite and p is irreducible. This is what the apostrophes in the
title of this subsection refer to.

Theorem 3 Let N(t) :=
∑

x ηt(x) be the overall number of particles at time t. Under
assumption (3.8) starting from η0 ≡ 0 we have

N(t)
log1/a t

−→ 1 in probability as t→∞

where a := π(S \ {x0}) and log1/a t = (log t)/(log 1/a) is the logarithm with basis 1/a.

Proof. We denote the time until the n-th immigrant enters by

Tn := inf{t : N(t) ≥ n}. (3.9)

For 0 ≤ x < 1/ log(1/a) we have

P(N(t) ≤ x log t) = P(T[x log t] > t)

= P(T[x log t]a
x log t > tax log t)→ 0

as t→∞ because by Proposition 7 a) the family (T[x log t]a
x log t)t>1 is tight and tax log t =

t1−x log(1/a) →∞ by the choice of x. On the other hand for x > 1/ log(1/a) we can choose
ã > a such that still x > 1/ log(1/ã) and then use Proposition 7 b) to see that as t→∞

P(N(t) ≥ x log t) = P(T[x log t] ≤ t) = P

(
T[x log t]ã

[x log t] ≤ tã[x log t]
)

≤ P

(
T[x log t]ã

[x log t] ≤ tãx log t−1
)
→ 0.

�
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Lemma 13 For n ∈ N let η(n) be a self-blocking system that starts with n particles
independently distributed according to π, i.e. η(n)(0) =

∑n
i=1 δXi where X1, X2, . . . are

independent, π-distributed. Let τ (n) be the time until in system η(n) the next, i.e. the
(n+ 1)-th immigrant enters. We have

L((1− πx0)nτ (n)) −→ Exp(1) as n→∞.

Proof. Let X(1), X(2), . . . be independent p-chains, N an independent homogeneous
rate 1 Poisson point process on R+. As it will appear frequently throughout the proof
we abbreviate (again) a := π(S \ {x0}). Define

F (n)(t) :=
∫ a−nt

0

n∏
i=1

1(X(i)(s) 6= x0) ds, (3.10)

the “free time of x0” (measured on a sped-up time scale). We have for t ≥ 0

P(anτ (n) > t) = P

(
N({s ≤ a−nt :

∏n
i=1 1(X(i)

s 6= x0)}) = 0
)

= E

[
exp(−F (n)(t))

]
,

so all we have to show is that

F (n)(t)→ t in distribution as n→∞. (3.11)

We have EF (n)(t) = t for all t and n, furthermore

VarF (n)(t) = E

(∫ a−nt

0

∏n
i=1 1(X(i)(s) 6= x0)

)2

− t2

= 2
∫ ∫

0≤s1≤s2≤a−nt
E

[∏n
i=1 1(X(i)(s1) 6= x0 6= X(i)(s2))

]
− a2n ds1 ds2

= 2
∫ ∫

0≤s1≤s2≤a−nt

(∑
x,y 6=x0

πxpxy(s2 − s1)
)n
− a2n ds1 ds2

= 2
∫ ∫

0≤u1≤u2≤t
(f(a−n(u2 − u1))n − 1) du1 du2 (3.12)

with
f(u) :=

1
a2

∑
x,y 6=x0

πxpxy(u) =
1
a
− 1
a2

∑
x 6=x0

πxpxx0(u). (3.13)

Note that 0 ≤ f(u) ≤ 1/a for all u ≥ 0, and that

f ′(0) = − 1
a2

∑
x 6=x0

πxrxx0 < 0, (3.14)

where (rxy)x,y∈S is the Q-Matrix of the p-chain X. As pxx0(u) is continuous and strictly
positive for any x and u > 0 we see from (3.13) that supu≥ε f(u) < 1/a for any ε > 0.
This together with (3.14) allows us to choose some b > a such that

f(u) ≤
((1
b
− 1
a

)
u+

1
a

)
1(u ≤ 1) +

1
b
1(u > 1). (3.15)
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Additionally, (3.8) implies

|f(u)− 1| ≤ 1
a2

∑
x 6=x0

πx
∑
y 6=x0

|pxy(u)− π(y)| ≤ κ

a
exp(−λu). (3.16)

Finally, we split the integral on the righthand side in (3.12) into three parts

VarF (n)(t) = 2
∫ ∫

0≤u1≤u2≤t, u2−u1<an

f(a−n(u2 − u1))n − 1 du1 du2

+ 2
∫ ∫

..., an≤u2−u1<nan

. . . du1 du2 + 2
∫ ∫

..., nan≤u2−u1

. . . du1 du2

=: 2
(
I1 + I2 + I3

)
and estimate them e.g. in the following way:

I1 ≤ t

∫ an

0

((1
b
− 1
a

)
a−nu+

1
a

)n
du = tan

∫ 1

0

((1
b
− 1
a

)
v +

1
a

)n
dv

= tan
[

1
(n+ 1)

1
1/b− 1/a

((1
b
− 1
a

)
v +

1
a

)n+1
]v=1

v=0

→ 0

by (3.15), which also shows that

I2 ≤ t

∫ nan

an

(1
b

)n
du = (n− 1)

(a
b

)n
→ 0.

Using (3.16) we see that

I3 ≤ t

∫ t

nan

(
1 +

κ

a
e−λa

−nu
)n
− 1 du = tnan

∫ ta−n/n

1

(
1 +

κ

a
e−λnw

)n
− 1 dw

≤ t2
{(

1 +
κ

a
e−λn

)n
− 1
}

= t2
{

exp
(
n log

(
1 +

κ

a
e−λn

))
− 1
}

≤ t2
{

exp
(
n
κ

a
e−λn

)
− 1
}
→ 0.

Thus VarF (n)(t)→ 0 as n→∞ and we conclude, e.g. with Chebyshev’s inequality, that
(3.11) holds true. �

Remark. Of course assumption (3.8) is a bit overkill here when all we need is that VarF (n)(t)
converges to 0. However, (3.8) will be needed later on.

Now consider a system η that starts with the empty configuration η(0) = 0, and let

Tn := inf
{
t :
∑

x ηx(t) ≥ n
}

be the time until the n-th immigrant enters. In view of the above we might expect Tn
to be of the order (1− πx0)−n. Indeed we can show

Proposition 7 a) The sequence ((1− πx0)nTn), n ∈ N is tight.
b) For each γ > 1− πx0 we have

γnTn −→∞ in probability as n→∞.
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Proof. a) We compare η with a system η′ of “censored” self-blocking immigrants which
behaves like η except that immediately after the n-th particle has entered the system
η′, any further immigration is prohibited for a time K log n irrespective of the number
of particles at x0 (K will be chosen suitably later on). We can couple η and η′ such
that η′(0) = η(0) and η′·(t) ≤ η·(t) for all t ≥ 0. Define T ′n analogously to Tn, obviously
Tn ≤ T ′n. Thus it suffices to show that there exists a real-valued r.v. Z such that

(1− πx0)nT ′n −→ Z in distribution as t→∞. (3.17)

In order to do this we write

T ′n = θ0 +K log 1 + θ1 +K log 2 + θ2 + · · ·+K log(n− 1) + θn−1

where the time between the immigration of the (n − 1)-th and the n-th particle is
K log(n − 1) + θn−1. Let τ (1), τ (2), · · · be a sequence of independent r.v.s where τ (n) is
distributed as in Lemma 13. The key step is to show that for all m ≤ n

d(L(θm, θm+1, . . . , θn),L(τ (m), τ (m+1), . . . , τ (n))) ≤
n∑

j=m

κ

jλK−1
. (3.18)

To see this observe first that by assumption (3.8)

d(L(θm),L(τ (m))) ≤ mκe−λK logm =
κ

mλK−1
.

Now fix n > m and a (measurable) B ⊂ Rn−m+1. Using the strong Markov property at
the stopping time T ′n−1 +K log(n− 1) we see that

P((θm, . . . , θn) ∈ B) = E

(
E

(
1B(θm, . . . , θn−1)

∣∣∣FT ′n−1+K log(n−1)

))
= E

(
fm,n,B(η′T ′n−1+K log(n−1), θm, . . . , θn−1)

)
,

where
fm,n,B(η, s1, . . . , sn−m) := Pη((s1, . . . , sn−m, Tnext) ∈ B)

with Tnext being the time until the first new immigrant appears. Using assumption (3.8)
again we see that∣∣∣∣fm,n,B(η, s1, . . . , sn−m)−

∫
R+

1B(s1, . . . , sn−m, t)P(τn ∈ dt)
∣∣∣∣ ≤ nκe−λK logn.

Hence we can see inductively∣∣∣P((θm, . . . , θn) ∈ B)− P((τ (m), . . . , τ (n)) ∈ B)
∣∣∣ =∣∣∣∣∣

∫
fm,n,B(η, sm, . . . , sn−1)P(η′T ′n−1+K log(n−1) ∈ dη, θm ∈ dsm, . . . , θn−1 ∈ dsn−1)

−
∫
P((sm, . . . , sn−1, τ

(n)) ∈ B)P(τ (m) ∈ dsm, . . . , τ (n−1) ∈ dsn−1)

∣∣∣∣∣
≤ κ

nλK−1
+
∣∣∣ ∫ P((sm, . . . , sn−1, τ

(n)) ∈ B)
(
P((θm, . . . , θn−1) ∈ d(sm, . . . , sn−1))

− P((τ (m), . . . , τ (n−1)) ∈ d(sm, . . . , sn−1))
)∣∣∣

≤ κ

nλK−1
+ d

(
L(θm, . . . θn−1),L(τ (m), . . . , τ (n−1))

)
49



(Remember that |
∫
f(dµ− dν)| ≤ d(µ, ν) for any (measurable) f with values in [0, 1]). Finally

Lemma 13 and estimate (3.18) with a K ≥ 3/λ imply (3.17).
b) It suffices to show that for each γ > 1− πx0 (=: a)

P(Tn ≥ γ−n) −→ 1. (3.19)

We initially start the system with 0 particles. At time Tn−[
√
n]−1 we observe the first n−

[
√
n]−1 particles. Denote the positions of these particles at time T ′n := Tn−[

√
n]−1 +n1/4

by Y1, . . . , Yn−[
√
n]−1 (there might be more particles around at time T ′n but here we keep

only track of those that are older than n1/4). By assumption (3.8) we have as n→∞

dn := d
(
L(Y1, . . . , Yn−[

√
n]−1), π⊗(n−[

√
n]−1)

)
≤ (n− [

√
n]− 1)κe−λn

1/4 → 0.

Observe that P(Tn ≤ T ′n)→ 0 because otherwise there would have to be [
√
n] + 1 immi-

grations over a time period of length n1/4 — this becomes more and more improbable
even without any blocking of the immigration mechanism (to be precise, one could bound
it above by the probability that a Poisson(n1/4)-r.v. exceeds [

√
n]+1). Now on the event

{Tn > T ′n} there are at most n − 1 particles in the system at time T ′n and Tn − T ′n is
stochastically larger than the time that it takes until in a system η′ started off from∑n−[

√
n]−1

i=1 δYi the next immigrant appears — we can arrange a coupling by simply ig-
noring blockings in η caused by particles that were born after Tn−[

√
n]−1. Hence (using

the notation of Lemma 13)

P(Tn ≥ γ−n) ≥ P(Tn ≥ γ−n, Tn > T ′n)
≥ P (inf{s :

∑
x η
′
x(s) ≥ n− [

√
n]} ≥ γ−n)− P (Tn ≤ T ′n)

≥ P
(
τ (n−[

√
n]−1) ≥ γ−n

)
− dn − P(Tn ≤ T ′n)

= P

(
a(n−[

√
n]−1)τ (n−[

√
n]−1) ≥ a(n−[

√
n]−1)γ−n

)
− dn − P(Tn ≤ T ′n)→ 1

as n→∞ by Lemma 13 because a(n−[
√
n]−1)γ−n → 0. �

Remark 12 1) The proof of Proposition 7 shows that the Z appearing on the rhs of
(3.17) can be represented as

∑∞
i=0(1− πx0)iZi where the Zi are i.i.d. Exp(1).

2) It is unclear if (1 − πx0)nTn also converges in distribution. At least for the case
S = {0, 1} and symmetric p I have a proof that 2−nTn indeed has a limit (of the above
form).

3.5 Quantitative longtime behaviour II: 1-d symmetric sim-
ple random walk

In view of section 2.8, the most interesting case is that of recurrent random walk. Unfor-
tunately, this case is also more difficult, and we have only partial answers, even for the
case of symmetric simple random walk on Z on which we concentrate in the following.

Let η be a system of self-blocking immigrants on Z with η·(0) = 0, denote ϕ(t) :=
P(η0(t) = 0) and let N(t) :=

∑
x ηx(t) be the number of particles that immigrated

up to time t. Heuristics suggests that ϕ(t) should decay a little slower than 1/
√
t or

equivalently EN(t) =
∫ t

0 ϕ(s) ds should grow a little faster than
√
t. The intuitive idea
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is the following: At time t there are about EN(t) particles, most of which have an age
comparable to t (because as the birth rate is trivially ≤ 1 there can be no “explosion of
newly-borns”) and are thus spread out on an interval roughly of size

√
t. Now if EN(t)

≤ t1/2−ε was eventually true, the expected number of particles at the origin would be
≈ EN(t)/

√
t→ 0 as t→∞ showing that ϕ(t) would not converge to 0.

On the other hand if N(t) ≥ t1/2+ε held true for all sufficiently large t, we would have
at least a density of about tε on the interval [−

√
t,
√
t]. If the “t1/2+ε growth regime”

did hold at time 2t there would have to be ≈ 21/2+ε times more particles than at time
t. But we expect the dense mass of particles existing at time t to become similar to a
Poisson process with constant intensity tε over the time interval (t, 2t], at least if we look
at a small window around the origin. Thus the system could up to time 2t let at most
≈ t exp(−tε) new immigrants enter even if we ignore blocking by particles born in (t, 2t],
which is by far too few to sustain the desired growth.

The heuristics that a system of many independent particles should be approximately
Poisson leads to the ansatz

ϕ(t) = P(η0(t) = 0) ≈ exp(−E η0(t)) = exp
(
−
∫ t

0 ϕ(s)p0(t− s) ds
)
, (3.20)

where (px(t)) is the transition semigroup of symmetric simple random walk on Z. Let
ρ0(t) be the solution of the integral equation ρ0(t) =

∫ t
0 p0(t− s) exp(−ρ0(s)) ds we

obtain by putting ρ0(t) := − logϕ(t) and assuming equality in (3.20), set R(t) :=∫ t
0 exp(−ρ0(s)) ds.

The Poisson ansatz, which amounts to replacing the immigration by an ”effective
immigration”, leads to the conjecture that

N(t)
/
R(t)→ 1 (in probability as t→∞). (3.21)

Furthermore, if (3.21) holds it is also natural to guess that the shape of η(t) for a large
t should look like a mixture of the transition probabilities weighted with the effective
immigration probabilities, i.e. η(t) ≈

∑
x

(∫ t
0 px(t− s)e−ρ0(s) ds

)
δx.

We shall see below that ρ0(t) ∼ 1
2 log t and R(t) ∼ (2/π)1/2 ×

√
t log t as t→∞, see

Lemma 14 with β =∞, but we have only been able to prove a rather weak result in the
direction of (3.21), namely

Proposition 8 (“very weak law”) Let η be a system of random walks on Z with self-
blocking immigration at the origin, η(0) ≡ 0. Then for any ε > 0

P

(∑
xηx(t) ≥ t1/2+ε

)
−→ 0 as t→∞.

We prove this proposition in the next section using an adaptation of the so-called relative
entropy method, which is well-known in the field of hydrodynamic limits, see e.g. [22],
chapter 6.

Remark 13 The techniques in section 3.6 are in principle not restricted to d = 1, nor do
they rely on strict nearest-neighbour motion. In fact, they can be applied to any random
walk. The analogue of Lemma 14 can be proved along the same lines for simple random
walk in d = 2, yielding a prediction of ρ0(t) = log log t − log log log t − log 2π + o(1) for
the local density and R(t) = (2πt log log t)/ log t for the total number of particles at time
t in a self-blocking system on Z2. But observe that then the analogue of Proposition 8
for d = 2 (namely that the number of particles grows more slowly than t1+ε) is trivial.
Unfortunately, the present method seems unable to capture the finer correction terms.
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3.6 1-d soft self-blocking, the relative entropy method and
the proof of a very weak law

Consider a system η of independent symmetric simple random walkers on Z where at
rate exp(−βη0(t−)) a new particle enters at the origin. Here ηx(t) denotes the number
of particles at x ∈ Z at time t; β ∈ R+ is a (fixed) parameter. We interpret e−∞n :=
1(n = 0). Observe that for β =∞ this is the notorious self-blocking system.

η is a Markov process with generator given by

Lf(η) =
1
2

∑
x∈Z,e=±1

ηx
(
f(ηx,x+e)− f(η)

)
+ exp(−βη0)

(
f(η0,+)− f(η)

)
=: Lrwf(η) + Lcf(η), (3.22)

where η0,+ := η + δ0 is the configuration we obtain by adding to η a particle at the
origin. The “c” in Lc stands for “creation”.

Here, we pursue the program indicated in the previous section: In order to obtain
information on the long-time behaviour of η(t), we want to compare it with a Poisson
system, which is much easier to analyse. Observe that if η0 really was Poisson(ρ)-
distributed, we would have EPoi(ρ) exp(−βη0) = exp(−ρ(1−e−β)). Let ρ be the solution
of the following inhomogeneous (lattice) heat equation

∂tρx(t) =
1
2

∆ρx(t) + δ0(x) exp(−(1− e−β)ρ0(t)), t > 0, x ∈ Z

ρx(0) ≡ 0

(3.23)

and for t ≥ 0 let πt be a probability measure on (finite) particle configurations on Z
given by

πt({η : ηxi = ki}) =
∏
i

exp(−ρxi(t))
ρxi(t)

ki

ki!
,

i.e. under πt the configuration is product Poisson with local intensities given by ρ(t).
The long-time behaviour of ρ is given by the following lemma, which is a special case of
Lemma 17 in subsection 3.6.1 (put α := 1, γ := 1− e−β).

Lemma 14 As t tends to infinity

ρ0(t) =
1

1− e−β

(
1
2

log t− log log t+ log
(
(1− e−β)

√
2π
))

+ o(1), (3.24)

∑
x

ρx(t) =
∫ t

0
e−(1−e−β)ρ0(s)ds ∼ (1− e−β)−1

(
2
π

)1/2√
t log t. (3.25)

Our aim is to compare L(η(t)) (when started off from η(0) = ∅) and πt. We use
the relative entropy method, which consists in computing (and suitably estimating) the
relative entropy of L(η(t)) with respect to πt. If we can show that (3.28), the specific
relative entropy, is small, then we see by the entropy inequality (cf. (3.36)) that the two
systems are “macroscopically similar” in the sense that the distributions of functionals
involving a positive fraction of all the particles are close. This method is well-known in
the field of scaling limits of interacting particle systems, see e.g. [22], chapter 6 and the
references there.
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It is convenient to introduce a (product) reference measure µ on (finite) particle
configurations. Choose any summable1 m : Z→ (0,∞) and let µ be the product Poisson
measure with

∫
ηxµ(dη) = mx, x ∈ Z.

Let qt be the density of L(η(t)) with respect to µ. By general theory for continuous-
time Markov chains, it solves

∂tqt(η) = L∗qt(η), (3.26)

where L∗ is the adjoint in L2(µ) of the generator L of (η(t)) given in (3.22).
Furthermore let pt be the density of πt with respect to µ. As πt is a product measure

one easily computes

pt(η) = exp
(∑

mx

)
exp

(∑
−ρx(t) + ηx(log ρx(t)− logmx)

)
and checks that

∂tpt(η) = pt(η)
∑
x

{
−∂tρx(t) + ηx

∂tρx(t)
ρx(t)

}

= pt(η)

{
− exp(−(1− e−β)ρ0(t))

+
∑
x

ηx
1

ρx(t)

(
1
2
ρx+1(t) +

1
2
ρx+1(t)− ρx(t)

)

+ η0
1

ρ0(t)
exp(−(1− e−β)ρ0(t))

}

=
1
2

∑
x

ηx

(
mx+1

mx
pt(ηx,x+1) +

mx−1

mx
pt(ηx,x−1)− 2pt(η)

)
(3.27)

+ exp(−(1− e−β)ρ0(t))
(

η0

ρ0(t)
− 1
)
pt(η)

Note that the first term in the last equation is the adjoint of Lrw with respect to L2(µ).
The relative entropy of L(η(t)) with respect to πt is

H(L(η(t))|πt) =
∑
η

µ(η)qt(η) log(qt(η)/pt(η)),

where the sum ranges over all configurations of finitely many particles. Our ultimate
goal will be to estimate

H(L(η(t))|πt)
/∑

x

ρx(t) (3.28)

i.e. to control the per particle relative entropy. Since L(η(0)) = π0 = δ∅ we have

H(L(η(t))|πt) =
∫ t

0
∂sH(L(ηs)|πs) ds.

Thus we have to compute

∂tH(L(η(t))|πt) =
∑
η

µ(η)
{
∂tqt(η) log

qt(η)
pt(η)

+ qt(η)
∂tqt(η)
qt(η)

− qt(η)
∂tpt(η)
pt(η)

}
.

1It would seem natural to choose m ≡ 1 but then there would be infinitely many particles under µ so
that it would be singular to L(η(t)) and πt. Another way out would be to first consider everything on
Z/(nZ) and then let n→∞.
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The summation over the second term yields 0 because
∑

η µ(η)qt(η) ≡ 1. Using (3.26)
in the first term we get

∂tH(L(η(t))|πt) =
∑
η

µ(η)
{
qt(η)L

(
log

qt
pt

)
(η)− qt(η)

qt(η)
∂tpt(η)

}
.

Using the elementary estimate log b − log a ≤ (b − a)/a and the fact that Lrw is the
generator of a (pure jump) Markov process we see that for any positive function f (such
that log f is in the domain of Lrw) on particle configurations

L log f(η) ≤ 1
f(η)

Lf(η).

Hence we can estimate

∂tH(L(η(t))|πt) ≤
∑
η

µ(η)pt(η)L
(
qt
pt

)
(η)−

∑
η

µ(η)
qt
pt

(η)∂tpt(η)

=
∑
η

µ(η)
qt(η)
pt(η)

{(L∗ − ∂t)pt(η)} .

One easily checks that L∗c , the adjoint of Lc with respect to L2(µ), is given by L∗cf(η) =
exp(−βη0)

(
eβ

m0
η0f(η0,−)− f(η)

)
, where η0,− = η − δ0 is obtained from η by removing

one particle at 0. This allows to compute

(L∗ − ∂t)pt(η) = L∗cpt(η)− exp(−(1− e−β)ρ0(t))
(

η0

ρ0(t)
− 1
)
pt(η)

= pt(η)
{
e−βη0

(
eβ η0

ρ0(t)
− 1
)
− e−ρ0(t)(1−e−β)

(
η0

ρ0(t)
− 1
)}

=: pt(η)Vt(η0).

(observe that pt(η0,−) = pt(η)m0/ρ0(t) ). Hence we arrive at the following bound on the
increase of relative entropy

∂tH(L(η(t))|πt) ≤
∫

qt
pt

(η)Vt(η0)dπt(η) (3.29)

Remark that
∫
Vt(η0)dπt(η) = 0. Observing that qt/pt is a probability density with

respect to πt, (3.29) immediately yields

∂tH(L(η(t))|πt) ≤ sup
n∈Z+

Vt(n). (3.30)

The proof of the following lemma is a lengthy, but straightforward calculus exercise,
and we omit it.

Lemma 15 Let fr : R+ → R for r > 0 be given by

fr(x) = e−βx
(
eβ x

r
− 1
)
− e−r(1−e−β)

(x
r
− 1
)
. (3.31)

fr assumes its maximal value

sup
R+

fr =
{

1
βr

(
W(er(e

−β(β+1)−1)−β+1) + W(er(e
−β(β+1)−1)−β+1)−1 − 2

)
+ 1− e−β

}
× exp(−r(1− e−β)) (3.32)
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at

x∗(r) =
1
β

+ re−β − 1
β

W(exp(r(e−β(β + 1)− 1)− β + 1)).

Here, W denotes (the principal branch of) Lambert’s W function, i.e. xex = y ⇐⇒
x = W(y).

Observe that for any β > 0 we have e−β(β+ 1)− 1 < 0, hence for large r the biggest
term inside the curly brackets in (3.32) will be W(. . .)−1. Furthermore W(0) = 0,
W′(0) = 1, thus

lim
r→∞

1
r

log fr(x∗(r)) = 1− e−β(β + 1)− (1− e−β) = −βe−β (3.33)

Denote the system with immigration rate exp(−β#{particles at 0}) by (η(β)(t))t≥0,
the corresponding product Poisson laws by (π(β)

t )t. We conclude from (3.33) and Lemma 17
below that for any ε > 0

H(L(η(β)(t))|π(β)
t ) = O

(∫ t

0
exp(−(1− ε/2)βe−βρ(β)

0 (s)) ds
)

= O

(∫ t

0
exp(−(1− ε) βe−β

1− e−β
1
2

log s) ds
)

= O

(
exp

{(
1− 1

2
(1− ε) βe−β

1− e−β
)

log t
})

. (3.34)

Under π(β)
t the total number of particles

∑
x ηx is Poisson distributed with mean

∑
x ρ

(β)
x (t).

For a Poisson(y)-distributed random variable Z and a > 1 we have

PPoi(y)(Z > ya) = exp (−(a− 1)ya log y +O(ya)) ,

which can be easily checked by the form of the Poisson weights and Stirling’s formula.
Lemma 17 shows that

∑
x ρ

(β)
x (t) ∼ Cβ

√
t log t, hence for any δ > 0

π
(β)
t

(∑
xηx ≥ t

1/2+δ
)
≥ π(β)

t

(∑
xηx ≥ (Cβ

√
t log t)1+2δ

)
= exp

(
−Θ(t1/2+δ)

)
. (3.35)

Combining (3.34), (3.35) and the entropy inequality (see e.g. [22], Prop. A1.8.2)

P(η(β)(t) ∈ A) ≤ log 2 +H(L(η(β)(t))|π(β)
t )

log(1 + 1/π(β)
t (A))

for all measurable A ⊂ (N0)Z (3.36)

we obtain the following weak (and β-dependent) upper bounds on the total number of
particles by choosing A :=

{
η :
∑

x ηx ≥ t1/2+δ
}

in (3.36):

Lemma 16
P

(∑
xη

(β)
x (t) ≥ t1/2+δ

)
−→ 0 as t→∞

provided

δ >
1
2

(
1− βe−β

1− e−β

)
. (3.37)
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We do not expect the bound on δ given in the statement of Lemma 16 to be sharp at
all: Observe that the righthand side of (3.37) becomes smaller as β ↘ 0, even though
smaller β means less blocking of immigrations. In view of (3.25), we would expect the
total number of particles in η(β)(t) to grow like constβ×

√
t log t for any β ∈ (0,∞], where

only the constant depends on β. The bound in (3.37) is an artefact of our method, note
that e.g. by passing from (3.29) to (3.30), we give away information (alas, it is unclear
how to proceed with (3.29) directly). Note also that we can never obtain a lower bound
on the number of particles in this way because π(β)

t (
∑

x ηx = 0) = exp(−O(
√
t log t)),

which shows that we can not even make use of (3.34) in combination with (3.36) for
A = {η ≡ 0}.

The method will also fail in dimension 2 where we expect about (t log log t)/ log t
particles at time t, so that there will be no room to play with the exponent.

Finally observe that the results of this section still tell us a little bit about “real”
self-blocking immigration:

Proof of Proposition 8. For β ≤ β′ ≤ ∞ we can couple η(β) and η(β′) starting from the
same initial condition in such a way that η(β)

x (t) ≥ η(β′)
x (t) for all x and t. In particular, a

“real” self-blocking system η (= η(∞)) is below any soft-blocking η(β). As the lower bound
on δ in Lemma 16 converges to 0 as β → 0 we obtain Proposition 8 by comparison with
weaker and weaker soft-blocking systems. �

3.6.1 Asymptotics of a semilinear lattice heat equation

Here we consider the long-time behaviour of the solution of the following inhomogeneous
heat equation on Z

∂tρx(t) =
1
2

∆ρx(t) + αδ0(x) exp(−γρ0(t)), t > 0, x ∈ Z (3.38)

ρx(0) ≡ 0,

where ∆fx = fx+1 + fx−1− 2fx is the 1-dimensional lattice Laplacian. Observe that 1
2∆

is the generator of a random walk with variance t at time t. α, γ > 0 are parameters.

Remark 14 Let ρ be the solution of (3.38). Then ϑx(t) := γρx(t) solves ∂tϑx(t) =
1
2∆ϑx(t) + α′δ0(x) exp(−ϑ0(t)) with α′ := αγ, hence it suffices to consider the case
γ = 1.

Lemma 17 Let ρ be the solution of (3.38). As t tends to infinity we have

ρ0(t) =
1
γ

{
1
2

log t− log log t+ log
√

2π + log(αγ)
}

+ o(1), (3.39)

∑
x

ρx(t) = α

∫ t

0
e−γρ0(s)ds ∼ 1

γ

(
2
π

)1/2√
t log t. (3.40)

Proof of Lemma 17. We assume w.l.o.g. γ = 1, cf. Remark 14. Let px(t) = P0(Xt = x)
be the probability that a symmetric simple random walker on Z started at 0 is at x ∈ Z
at time t. Writing (3.38) in integral form we get

ρx(t) =
∫ t

0
αpx(t− s) exp(−ρ0(s)) ds,
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in particular ρ0(t) is the solution of

f(t) =
∫ t

0
αp0(t− s) exp(−f(s)) ds, t ≥ 0. (3.41)

Let us call a function ϕ̄ : Zd × R+ → R+ with ϕ̄·(0) ≡ 0 a strict supersolution to
(3.38) if it solves

∂tϕ̄x(t) =
1
2

∆ϕ̄x(t) + αrϕ̄(t)δ0(x), t > 0, x ∈ Z

with an rϕ̄(t) > exp(−ϕ̄0(t)).
(3.42)

Then we see that ϕ̄0(t) ≥ ρ0(t) for all t ≥ 0:
ψx(t) := ϕ̄x(t)− ρx(t) solves

∂tψx(t) =
1
2

∆ψx(t) + α (rϕ̄(t)− e−ρ0(t))︸ ︷︷ ︸
=:rψ(t)

δ0(x)

and ψ0(t) > 0 for small t. Assume that t0 := inf{t : ψ0(t) < 0} < ∞. Then we would
have ψ0(t0) = 0 by continuity, but also ψx(t0) ≥ 0 for all x. To see this observe that
ψx(t), x 6= 0 has a representation (ψ solves the heat equation away from 0, consider
ψ0(t) as exogenous input)

ψx(t) =
∫ t

0
ψ0(t− s)Px(T0 ∈ ds) + Ex[ψXt(0);T0 > t] (= ExψXt∧T0

(t− (t ∧ T0)) )

where T0 := inf{s : Xs = 0} (see Lemma 19). Hence ψx(t0) ≥ 0 for all x because
ψ(0) ≡ 0 and ψ0(s) ≥ 0 for 0 ≤ s ≤ t0 by definition. Consequently ∆ψ0(t0) ≥ 0 and we
conclude that α−1∂tψ0(t0) ≥ rψ(t0) > exp(−ϕ̄0(t0))− exp(−ρ0(t0)) = 0 in contradiction
to the definition of t0.

Observe that we can construct a supersolution to (3.38) from a strict subsolution to
(3.41): Assume f : [0,∞)→ [0,∞), satisfies f(0) = 0 and

f(t) <
∫ t

0
αp0(t− s) exp(−f(s)) ds for t > 0. (3.43)

Then ϕ̄x(t) :=
∫ t

0 αpx(t− s) exp(−f(s)) ds solves

∂tϕ̄x(t) =
1
2

∆ϕ̄x(t) + α exp(−f(t))δ0(x)

and in particular ϕ̄0(t) > f(t), hence exp(−f(t)) > exp(−ϕ̄0(t)).
Similarly, if ϕ is a strict subsolution we have ϕ

0
(t) ≤ ρ0(t) for all t ≥ 0 and such a ϕ

can be constructed analogously from a supersolution f̄ to (3.41).

Observe that the solution ρ of (3.38) has the property that ρ0(t) is an increasing
function: Obviously ∂tρ0(t) > 0 for t small. Assume that t0 := inf{t : ∂tρ0(t) < 0} <
∞. Then by continuity ∂tρ0(t0) = 0. Let x be a neighbour of 0. We have by the
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representation given in Lemma 19

∂tρx(t0) = lim
h

1
h

[∫ t0

0
ρ0(t0 − s)Px(T0 ∈ ds)−

∫ t0−h

0
ρ0(t0 − h− s)Px(T0 ∈ ds)

]
= lim

h

∫ t0−h

0

1
h

(ρ0(t0 − s)− ρ0(t0 − h− s))Px(T0 ∈ ds)

+ lim
h

1
h

∫ t0

t0−h
ρ0(t0 − s)Px(T0 ∈ ds)

=
∫ t0

0
∂tρ0(t− s)Px(T0 ∈ ds) + ρ0(0)︸ ︷︷ ︸

=0

Px(T0 ∈ dt)
dt

|t=t0 > 0

because ∂tρ0(t) > 0 in [0, t0) and supp(Lx(T0)) = R+. So we see that

∂2
t ρ0(t0) =

1
2d

∑
x=±1

(∂tρ0(t0)− ∂tρx(t0))− ∂tρ0(t0)α exp(−ρ0(t0)) > 0,

contradicting the definition of t0.

Lemma 18 Assume γ = 1.
i) For C < log

(
α
√

2π
)

there exists a K > 0 such that

f(t) :=
{

1
2 log t− log log t+ C if t ≥ K,

0 if 0 ≤ t < K

is a strict subsolution for (3.41).
ii) For C > log

(
α
√

2π
)

there exist K,K ′ > 0 such that

f̄(t) :=
{

1
2 log t− log log t+ C if t ≥ K,

K ′ if 0 ≤ t < K

is a strict supersolution for (3.41).

Proof of Lemma 18. This is a straightforward computation using the asymptotics p0(t) ∼
(2πt)−1/2. Here are some details:
i). Let e−C = (1 + ε)/(α

√
2π). Observe that p0(t) = e−tI0(t) ≥ 1/

√
2πt for t ≥ 0.5 (I0

is the modified Bessel function of the first kind with index 0). For f as in i) and any
t > K we can estimate∫ t

0 p0(t− s)αe−f(s) ds ≥ α
eC
√

2π

∫ t−0.5
K

log s√
s(t−s)

ds = 1+ε
2π

∫ 1− 0.5
t

K/t
log t+log u√
u(1−u)

du

≥ 1+ε
2π

{
log t

[∫ 1
0

1√
u(1−u)

du− 2
√
K/t−

√
2/t
]

+
∫ 1

0
log u√
u(1−u)

du

}
.

Observing that
∫ 1

0 (u(1−u))−1/2du = π we see that there exists n (= n(ε)) ≥ 1 such that
for all K ≥ 1∫ t

0
αp0(t− s)e−f(s) ds ≥ 1 + ε/2

2
log t > f(t) whenever t ≥ nK.

On the other hand for K < t < nK we have∫ t

0
αp0(s) exp(−f(t− s)) ds ≥ α√

2π

∫ t

t−K

e−0

√
u
du ≥ 1

2π

∫ nK

(n−1)K
u−1/2du

= α(2/π)1/2
(√

nK −
√

(n− 1)K
)
≥ α

√
K

2πn

58



and f(t) ≤ log(nK). So we just have to chose K ≥ 1 so big that
√

K
2πn > log(nK).

ii) can be treated similarly.
�

Proof of Lemma 17, continued. We would like to conclude directly from this lemma that
ρ0(t) = 1

2 log t− log log t+ logα
√

2π + o(1), but there seems to be no formal argument.
So we resort to the following:

Constructing ϕ̄ and ϕ satisfying ϕ ≤ ρ ≤ ϕ̄ from the functions given in Lemma 18 we
see that

ρ0(t) ∼ 1
2

log t as t→∞, (3.44)

but we need a finer result. Denoting ξ(t) := α exp(−ρ0(t)) we can write (3.41) as
ρ0 = p0 ∗ ξ, after taking Laplace transforms this reads

ρ̂0(λ) = p̂0(λ)ξ̂(λ), λ > 0. (3.45)

It is well known that p̂0(λ) ∼ (2λ)−1/2 as λ↘ 0. From (3.44) and a Tauberian theorem
(see e.g. [10], chap. XIII.5, Thm. 4, p. 423) we conclude that ρ̂0(λ) ∼ 1

2λ log(1/λ), hence
ξ̂(λ) ∼ (2λ)−1/2 log(1/λ) for λ ↘ 0. Invoking the Tauberian theorem in the other
direction we get

α exp(−ρ0(t)) =
(

(2π)−1/2t−1/2 log t
)

(1 + o(1)).

(3.39) follows by taking logarithms. Observe that the use of (this direction of) the
Tauberian theorem is justified because ρ0 and hence g is a monotone function. Finally
observe that

∫
(log s)/

√
s ds = 2

√
s log s− 4

√
s to obtain (3.40). �

Lemma 19 Let ψ·(0) : Zd → R and ψ0(·) : R+ → R be given real-valued continuous
functions and define ψ on Zd×R+ as the solution of the heat equation away from 0 with
given boundary behavior, i.e. ψ solves

∂tψx(t) =
1
2

∆ψx(t), x ∈ Zd \ {0}, t > 0.

Then ψ has the stochastic representation

ψx(t) = ExψX(t∧T0)(t− (t ∧ T0))

where (X(s)) is a continuous-time simple random walk on Zd, and T0 := inf{s > 0 :
X(s) = 0} the hitting time of the origin.
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3.7 The self-blocking backward construction cartoon

This cartoon illustrates the
backward construction of sec-
tion 3.2 for the historical pro-
cess (Ψt)t≤0 of a self-blocking
system η: The horizontal axis
denotes space (in this illustra-
tion a part of R), the vertical
axis is time in backward direc-
tion, their intersection is the
space-time point (x0, 0).
We observe how at jump times
0 > τ1 > τ2 > · · · of a Poisson
process new paths try to enter
the system but before they are
allowed to do so they have to
prove themselves in the space-
time medium of the paths al-
ready there: The fat black dots
on the time axis are “lethal” for
paths that hit them from be-
low.

At (backward) time τ1 the first
path enters. A path is always
marked by its birth-time (the
fat dot). Ψτ1 consists of exactly
this path.

At time τ2 a new path is added.
As this path avoids the space-
time point (x0, τ1) we have now
two paths in Ψτ2 .

At time τ3 we try to add a
new particle but we see that
this path hits the point(x0, τ1)
which is the birth point of a
path currently in Ψ so that we
stop the new path there and
glue it the old path...

... erasing the “old birthpoint”:
Ψτ3 still consists of two paths.
The philosophy is that we re-
alise that τ1 can not have been
a birth point because at that
time there was already a parti-
cle at x0 that was born earlier
but we “recycle” the path that
belonged to τ1.

The path born at τ4 does not
hit any fat dots so far in the
system so that we simply add
it. Ψτ4 has three paths. Ob-
serve that the new path can
pass the (former) birth point τ1

undisturbedly (and away from
birth points paths can inter-
penetrate anyway).

60



Chapter 4

Branching random walks in
space-time i.i.d. random
environment

4.1 Model

Individuals live on a countable state space S – we will consider mostly Zd in the following
– in discrete, non-overlapping generations. An individual at position x in generation n
has k offspring with probability Qk(x, n), each child moves then independently to y ∈ S
with probability p(x, y). The offspring of all individuals of the n-th generation form the
(n+ 1)-st generation.

The random offspring distributions Q(x, n), x ∈ S, n ∈ N0 model the influence of
a randomly fluctuating environment on the population. We assume that they are in-
dependent and identically distributed. Given the Q’s, all individuals branch and move
independently. For a probability measure q = (qk) on N0 we denote

m1(q) :=
∑
k

kqk, m2(q) :=
∑
k

k2qk.

We assume furthermore that the random offspring distribution has at least two moments
in the following sense:

E[m1(Q)], E[m2(Q)] <∞. (4.1)

Remark 15 1) Formally, we have a pair of processes, namely (population, environ-
ment). Our considerations center on the population (averaged over the environment),
not conditional on a fixed realisation of the environments. This is sometimes called the
“annealed case” in random media-parlance.

2) The following example is inspired by Greven’s “coupled branching process” ([13]).
Consider a [0, 1]-valued i.i.d. space-time field U . We interpret U(x, n), x ∈ S, n ∈ N0

as the survival probability of a child whose mother lived at position x in generation n:
Each individual has a random number K of potential offspring , with a fixed distribution
and independently of everything else, but a potential child survives only with probability
U(x, n). The surviving children form the next generation.

This amounts to considering a (possibly supercritical) classical spatial branching
process with random thinning depending on its spatial embedding.
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4.1.1 The Markov chain point of view

Let us denote the number of individuals at position x in generation n by ηn(x). Then
ηn+1 arises, given ηn, in the following way:

ηn+1(x) =
∑
y∈Zd

ηn(y)∑
i=1

Kn(y,i)∑
j=1

1(Yn(y, i, j) = x), (4.2)

where

Q(x, n), x ∈ Zd, n ∈ N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . independent copies of Q,
the random offspring distribution

Kn(y, i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . independent given Q(·, ·),
with P(Kn(y, i) = k|Q(·, ·)) = Qk(y, n)

Yn(y, i, j) . . . . . . . . . . . . independent, P(Y·(y, ·, ·) = x) = p(y, x) = p(0, y − x).

Q(·, ·) is the random environment, Kn(y, i) is the number of descendants of the i-th
particle at position y in generation n, and Yn(y, i, j) is the site that the j-th of these
descendants jumps to.

Observe that, compared to the previous chapters which worked in continuous time,
we have slightly changed the notation of objects which depend on space and time: It
appeared more natural to us to put the discrete generation index in the subscript.

As in chapter 2, we follow Liggett and Spitzer [24] and consider the following state
space:

E1 := {η ∈ (N0)Z
d

:
∑

xγ(x)η(x) <∞},
with γ : Zd → (0,∞) summable, satisfying∑

y

p(x, y)γ(y) ≤Mγ(x) for all x ∈ S

for some suitable M > 0. Then our assumption Em1(Q) <∞ implies

ηn ∈ E1 =⇒ ηn+1 ∈ E1 almost surely,

because
E[ηn+1(x)|ηn] =

∑
y

ηn(y)E[m1(Q)]p(y, x),

and hence

E [
∑

xηn+1(x)γ(x)|ηn] = E[m1(Q)]
∑
x,y

ηn(y)p(y, x)γ(x) ≤ E[m1(Q)]M
∑
y

ηn(y)γ(y).

Further on we assume that
E[m1(Q)] = 1, (4.3)

and consequently a spatially homogeneous intensity measure is constant in time.
Let (Sn)n denote the transition semigroup generated by the dynamics of (ηn), i.e.

for η ∈ E1, f : E1 → R bounded

(Snf)(η) := E[f(ηn)|η0 = η]. (4.4)

Remark 16 Observe that Sn has the following continuity property (with respect to
the product topology on E1): µm ⇒ µ and supx,m

∫
η(x)µm(dη) < ∞ imply µmS1 ⇒

µS1 (and of course also µmSn ⇒ µSn by induction). To see this it suffices to rea-
son that under the above assumptions for any finite set A ⊂ Z

d and ε > 0 there
exists a finite subset B ⊂ Z

d with the property µm({some offspring of a particle in
Bc reaches A in the next step}) ≤ ε uniformly in m.
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4.1.2 The genealogical point of view

Obviously our branching dynamics gives rise to a (random) genealogy, simply by record-
ing each individual’s mother — this information had been obliterated in the Markov
chain-viewpoint.

The descendants of an individual in generation 0 form a rooted, ordered, spatially
embedded tree. We formalize such a tree t as set of nodes together with a (cycle free)
successor relation. We write b ∈ offspring(a) if a, b ∈ t and b is a child of a. Let root(t)
be the root of t, |a| the height of node a ∈ t, i.e. its genealogical distance from the root.
We consider ordered (or planar) trees, i.e. the successors b1, . . . , b|offspring(a)| of a node
a have an order, so that it makes sense to speak of the i-th child of a given individual.
Let us denote the tree we obtain by truncating t at height N by t|N . It arises from t by
discarding all nodes b of height |b| > N . Finally, any node a ∈ t (including the root) has
a spatial position pos(a) ∈ Zd.

We denote the tree formed by the descendants of the i-th individual at position x
in generation 0 (1 ≤ i ≤ η0(x)) by τx,i. We can specify the joint distribution of η0,
(Q(x, n))x∈Zd,n∈N0

and (τy,i)y∈Zd,i∈N in the following way (µ denotes the law of Q): For
N ∈ N, a finite A ⊂ Z

d, nx ∈ N0 for x ∈ A, tx,i, x ∈ A, i ≤ nx (finite, rooted,
ordered, spatially embedded) trees of height at most N , Zd ⊃ B ⊃ A with |B| <∞ and
pos(σ) ∈ B for all σ ∈ tx,i, x ∈ A, i ≤ nx and (measurable) Cy,j ⊂ M1(N0) for y ∈ B,
j < N , we have

P

( {η0(x) = nx, x ∈ A} ∩ {Q(y, j) ∈ Cy,j for y ∈ B and 0 ≤ j < N}
∩ {τz,i|N = tz,i for z ∈ A and 1 ≤ i ≤ nz}

)
= P(η0(x) = nx, x ∈ A)×∫

M1(N0)
· · ·
∫
M1(N0)

∏
y∈B,j<N

µ(dq(y, j))1Cy,j (q(y, j))

{
∏
x∈A

∏
1≤i≤nx

∏
σ∈tx,i

q|offspring(σ)|(pos(σ), |σ|)
∏

σ′∈offspring(σ)

p(pos(σ),pos(σ′))

}
.

The probabilities of these events characterise the joint distribution.

4.2 Collision time of two independent random walks

Here we consider certain characteristics of the underlying individual motion of particles
playing a part in determining the long-time behaviour of the system. These quantities
are studied more closely in chapter 5.

Let X,X ′ be two independent p̄-random walks, where p̄(x, y) := p(y, x) is the trans-
posed transition matrix.

α2 := sup
{
α > 0 : E(0,0)[α

#{i≥1:Xi=X
′
i}] <∞

}
. (4.5)

Let us denote the difference random walk by Z = X − X ′. Starting from Z0 = 0 the
number of visits of Z to 0 is geometrically distributed with parameter P0(Zi 6= 0, i ≥ 1)
by the Markov property, hence

α2 =
1

1− P0(Zi 6= 0 for all i ≥ 1)
.
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In particular we see that α2 > 1 if and only if Z transient. Using the explicit form of
the geometric weights we find that E(0,0)

[
α

#{i≥1:Xi=X
′
i}

2

]
=∞. Furthermore let

α∗ := sup
{
α > 0 : E(0,0)[α

#{i≥1:Xi=X
′
i} |X] <∞ a.s.

}
. (4.6)

Obviously we have α∗ ≥ α2. We have α∗ > α2 > 1 whenever the difference random walk
Z = X −X ′ is transient and p satisfies (the mild) assumption (5.1), see Corollary 4 in
chapter 5. Obviously recurrence of Z implies α2 = α∗ = 1.

Remark 17 Since for a p-random walk X the Markov chain (−Xn)n is a p̄-random
walk and obviously Xi = X ′i ⇐⇒ −Xi = −X ′i, we have α2 = α2(p) = α2(p̄) and
α∗ = α∗(p) = α∗(p̄). Thus for the quantities defined in this section it is irrelevant if we
consider the random walk dynamics p generating the individual motion of η-particles or
its time reversal p̄.

4.3 Two moments

Using a discrete “path integral representation” we find a condition on the distribution
of the random offspring distribution which (in a shift-invariant scenario with a tran-
sient random walk as individual motion and under assumption (4.3) of “criticality”) is
necessary and sufficient for the global boundedness of the second moments of ηn(x),
n ∈ N.

Lemma 20 We have
1)

E ηn(x) =
∑
y

p̄n(x, y)(Em1(Q))nE η0(y) = (Em1(Q))nExη0(X̄n).

2) Assume furthermore supx E[η0(x)2] <∞.
Then with ϕx,y(η) := η(x)η(y)− δx,yη(x)

Eϕx,x′(ηn) = E(x,x′)

[
ϕX̄n,X̄′n(η0)α#{1≤i≤n :X̄i=X̄

′
i}β#{1≤i≤n :X̄i 6=X̄′i}

+ E[m2(Q)−m1(Q)]
n∑
i=1

1(X̄i = X̄ ′i)α
#{1≤j≤i−1 :X̄j=X̄

′
j}

×β#{1≤j≤i−1 :X̄j 6=X̄′j}Eηn−i(X̄i)

]
,

where α := E[(m1(Q))2], β := (Em1(Q))2. Here X̄ and X̄ ′ are two independent random
walks with transition matrix p̄(x) = p(−x), independent of (ηn).

Proof. 1) Condition on ηn−1 to see

E[ηn(x)] = E[E[ηn(x)|ηn−1]] = E

[∑
y

ηn−1(y)E[m1(Q)]p(y, x)

]
= E[m1(Q)]

∑
y

p̄(x, y)E ηn−1(y).
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2) Observe that Eϕx,x′(ηn) is the expected number of ordered pairs of particles we can
form by choosing the first particle from those living at position x in generation n and
the second particle from those living at x′ in the same generation. We decompose this
number according to the possible provenances y, y′ of the ancestors of these particles in
generation n− 1.

For y 6= y′, the total number of offspring born at y in generation n − 1 that move
to x in the next step is independent of the corresponding number of descendants of y′-
parents that move to x′, given the population ηn−1. Thus the conditional expectation of
the number of such pairs is

(ηn−1(y)E[m1(Q)]p(y, x))× (ηn−1(y′)E[m1(Q)]p(y′, x′))
= p̄(x, y)p̄(x′, y′)(Em1(Q))2ϕy,y′(ηn−1).

For y = y′ we first consider the case x = x′. We write the number of offspring that
move to x as A1 + · · · + Aηn−1(y) (where Ai are descendants of the i-th particle at y
in generation n − 1). Conditional on ηn−1(y) and Q(y, n − 1), the Ai are independent
and identically distributed with E[A1|ηn−1(y), Q(y, n− 1)] = m1(Q(y, n− 1))p(y, x) and
E[(A1)2|ηn−1(y), Q(y, n−1)] = (m2(Q(y, n−1))−m1(Q(y, n−1)))p(y, x)2 +m1(Q(y, n−
1)p(y, x). Consequently we have

E[(A1 + · · ·+Aηn−1(y))(A1 + · · ·+Aηn−1(y) − 1)|ηn−1(y), Q(y, n− 1)]

= ηn−1(y)(ηn−1(y)− 1)(m1(Q(y, n− 1)))2p(y, x)2

+ ηn−1(y)
(
(m2(Q(y, n− 1))−m1(Q(y, n− 1)))p(y, x)2 +m1(Q(y, n− 1))p(y, x)

)
− ηn−1(y)m1(Q(y, n− 1)p(y, x)

= p(y, x)2
{
ηn−1(y)(ηn−1(y)− 1)(m1(Q(y, n− 1)))2

+ ηn−1(y)(m2(Q(y, n− 1))−m1(Q(y, n− 1))
}

= p(y, x)2
{
ϕy,y(ηn−1)(m1(Q(y, n− 1)))2

+ ηn−1(y)(m2(Q(y, n− 1))−m1(Q(y, n− 1))
}
.

Finally for y = y′ and x 6= x′ we decompose the total number of offspring of particles at
y that move to x in the next step as A1 + · · ·+Aηn−1(y) and the corresponding number
of children that move to x′ as B1 + · · ·+Bηn−1(y) (again Ai and Bi count descendants of
the i-th particle at position y in generation n − 1). We have E[AiBj |ηn−1(y), Q(y, n −
1)] = m1(Q(ym, n − 1))2p(y, x)p(y, x′) for i 6= j and E[AiBi|ηn−1(y), Q(y, n − 1)] =
(m2(Q(y, n− 1))−m1(Q(y, n− 1))p(y, x)p(y, x′). Hence we can compute

E[(A1 + · · ·+Aηn−1(y))(B1 + · · ·+Bηn−1(y))|ηn−1(y), Q(y, n− 1)]

= ηn−1(y)(ηn−1(y)− 1)m1(Q(ym, n− 1))2p(y, x)p(y, x′)
+ ηn−1(y)(m2(Q(y, n− 1))−m1(Q(y, n− 1))p(y, x)p(y, x′)

= p(y, x)p(y, x′)
{
ϕy,y(ηn−1)m1(Q(y, n− 1))2

+ ηn−1(y)(m2(Q(y, n− 1))−m1(Q(y, n− 1))
}
.
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By taking the expectation with respect to ηn−1 and Q(·, n − 1) in the above identities
and summing over all possible pairs (y, y′) we find

Eϕx,x′(ηn) =
∑
y,y′

p̄(x, y)p̄(x′, y′)

{
α1(y=y′)β1(y 6=y′)

Eϕy,y′(ηn−1)

+ 1(y = y′)E[m2(Q(y, n− 1))−m1(Q(y, n− 1))]E ηn−1(y)

}
.

Our claim follows by iteration using a“discrete Feynman-Kac formula”, see e.g. Lemma 22
at the end of this section. �

Let us denote by Rθ the set of all shift-invariant initial conditions µ ∈ M1(E1)
satisfying

∫
η(x) dµ ≡ θ,

∫
η(0)2 dµ <∞ and

lim
N→∞

∑
x,y∈Zd

p̄N (0, x)p̄N (0, y)
∫
η(x)η(y)µ(dη) = θ2. (4.7)

Observe that (4.7) is in this situation equivalent to
∑

x p̄N (0, x)η(x)→ θ in L2(µ). Any
shift-ergodic µ with

∫
η(0) dµ = θ and

∫
η(0)2dµ < ∞ lies in Rθ, see [24], Lemma 5.2

(note that [24] treats transition kernels for continuous-time random walks, but the adap-
tation to discrete-time random walks is obvious).

Lemma 21 Assume (4.3). Let L(η0) be shift invariant with Eη0(0) = θ, Eη0(0)2 <∞,
satisfying

Cov(η0(x), η0(y))→ 0 as |x− y| → ∞.

1) For any fixed n, L(ηn) also has these properties.

2) If α (= E[m1(Q)2]) < α2 we have furthermore

sup
n
E ηn(0)2 <∞, lim

|x−y|→∞
sup
n
|Cov(ηn(x), ηn(y))| = 0.

3) If α < α2, L(η0) ∈ Rθ and ηnk → η∞ in finite dimensional distributions along some
subsequence nk →∞, then also L(η∞) ∈ Rθ.

4) If α ≥ α2 we have lim
n
E ηn(0)2 =∞, for α > α2 even lim

n

1
n

logE ηn(0)2 > 0.

Proof. Obviously L(ηn) is shift invariant whenever this is true for L(η0). Lemma 20,
part 1) shows that in this situation we have E ηn(x) ≡ θ for all n. Furthermore we have
for all x, y ∈ Zd

E[ϕx,y(η0)] ≤ E η0(x)η0(y) ≤
(
E η0(x)2

E η0(y)2
)1/2 = E η0(0)2 =: θ2 <∞.

Consequently Lemma 20, 2) allows to estimate (putting γ := E[m2(Q) − m1(Q)] for
brevity)

E ηn(0)2 ≤ θ + θ2E(0,0)

[
α#{1≤i≤n :X̄i=X̄

′
i}
]

+ γθE(0,0)

[
n∑
i=1

1(X̄i = X̄ ′i)α
#{1≤j≤i−1 :X̄j=X̄

′
j}

]
.
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This is apparently finite for any n. Defining B0 := {i ≥ 1 : X̄i = X̄ ′i} we can estimate
uniformly in n:

E ηn(0)2 ≤ θ + θ2E(0,0)α
B0 + γθE(0,0)B0α

B0 ,

the rhs is finite for α < α2. In order to treat the covariances we define T := min{k :
X̄k = X̄ ′k} and again use Lemma 20 (for x 6= y) to compute

Cov(ηn(x), ηn(y)) = Eϕx,y(ηn)− θ2

= E(x,y)

[
1(T > n)Eη[ϕX̄n,X̄′n(η0)]

]
− θ2

+
n∑
k=1

∑
z∈Zd

E(x,y)

[
1(T = k, X̄k = z)

{
E
η[ϕX̄n,X̄′n(η0)]α#{1≤i≤n :X̄i=X̄

′
i}

+γθ
∑n

i=1
1(X̄i = X̄ ′i)α

#{1≤j≤i−1 :X̄j=X̄
′
j}
}]

=
∑
x′,y′

P(x,y)(X̄n = x′, X̄ ′n = y′, T > n)
(
E
η[ϕx′,y′(η0)]− θ2

)
− P(x,y)(T ≤ n)θ2

+
n∑
k=1

∑
z∈Zd

P(x,y)(T = k, X̄k = X̄ ′k = z)Eη[ϕz,z(ηn−k)]

=
∑
x′,y′

P(x,y)(X̄n = x′, X̄ ′n = y′, T > n)Cov(η0(x′), η0(y′))− P(x,y)(T ≤ n)θ2

+
n∑
k=1

P(x,y)(T = k)Eη[ϕ0,0(ηn−k)].

As for fixed n and any bound M it holds that P(x,y)(|X̄n − X̄ ′n| ≥ M,T > n) → 1 as
|x − y| → ∞ we see that asymptotic uncorrelatedness is retained over any finite time
interval. If α < α2 (which in particular implies that the difference random walk X̄ − X̄ ′
is transient) we can furthermore estimate

|Cov(ηn(x), ηn(y))| ≤
∑
x′,y′

P(x,y)(X̄n = x′, X̄ ′n = y′, T > n)|Cov(η0(x′), η0(y′))|

+ P(x,y)(T <∞)
(
θ2 + supm E

η[ϕ0,0(ηm)]
)

uniformly in n. As P(x,y)(T < ∞) → 0 and P(x,y)(infn |X̄n − X̄ ′n| ≥ M) → 1 for
|x − y| → ∞ by the transience of the difference random walk, the second claim in 2) is
proved.

3) η∞ is shift-invariant as a limit of shift-invariant ηnk . 2) implies uniform integrability
of (ηnk(0))k, hence E η∞(0) = θ. It remains to verify that L(η∞) satisfies (4.7). Fix
N ∈ N for the moment. Using Lemma 20 we compute

E

[(∑
x

p̄N (0, x)ηnk(x)− θ
)2]

=
∑
x,y

p̄N (0, x)p̄N (0, y)E
[
ϕx,y(ηnk) + θδx,y − θ2

]
= θ

∑
x

(p̄N (0, x))2 +
∑
x,y

p̄N (0, x)p̄N (0, y)E(x,y)

[
ϕX̄nk ,X̄′nk

(η0)α#{1≤i≤nk:X̄i=X̄
′
i} − θ2

+ θγ

nk∑
i=1

1(X̄i = X̄ ′i)α
#{1≤j≤i−1:X̄j=X̄

′
j}
]
,
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showing that

E

(∑
x

p̄N (0, x)ηnk(x)− θ
)2

= θp̃2N (0, 0) + E(0,0)

[
ϕX̄N+nk

,X̄′N+nk

(η0)− θ2
]

+ E(0,0)

[
ϕX̄N+nk

,X̄′N+nk

(η0)
(
α#{N+1≤i≤N+nk:X̄i=X̄

′
i} − 1

)]
+ E(0,0)

[
θγ

N+nk∑
i=N+1

1(X̄i = X̄ ′i)α
#{N+1≤j≤i−1:X̄j=X̄

′
j}

]
.

Observe that the second term on the righthand side vanishes as k →∞ because L(η0) ∈
Rθ, observe also that

∑
x p̄N (0, x)ηnk(x) →

∑
x p̄N (0, x)η∞(x) in probability. Denoting

BN := #{i > N : X̄i = X̄ ′i} we can thus estimate by Fatou’s Lemma

E

[(∑
x

p̄N (0, x)η∞(x)− θ
)2]

≤ lim inf
k

E

[(∑
x

p̄N (0, x)ηnk(x)− θ
)2]

≤ θp̃2N (0, 0) +
(

sup
z,z′
Eϕz,z′(η0)

)
E(0,0)

[
αBN − 1

]
+ θγE(0,0)

[
BNα

BN
]
.

Using BN ≤ B0, the fact that α < α2 implies that E(0,0)α
B0 , E(0,0)B0α

B0 <∞ and that
BN → 0 in probability as N →∞ as well as p̃2N (0, 0)→ 0 by transience of the difference
random walk we can conclude by dominated convergence that

0 ≤ lim sup
N

E

[(∑
x

p̄N (0, x)η∞(x)− θ
)2]
≤ 0,

which proves our claim.
4) For the case α ≥ α2 we observe that

E[ϕx,y(η0)] ≥ C1(|x− y| ≥M)

for suitable C,M > 0 by the assumed shift invariance and asymptotic uncorrelatedness
of η0. Thus we see from Lemma 20

E ηn(0)2 ≥ C E(0,0)

[
1(|X̄n − X̄ ′n| ≥M)α#{1≤i≤n:X̄i=X̄

′
i}
]
.

Transience of the difference random walk gives 1(|X̄n − X̄ ′n| ≥ M)α#{1≤i≤n:X̄i=X̄
′
i} →

α#{1≤i:X̄i=X̄′i} almost surely as n→∞ so that we can conclude with Fatou’s lemma that

lim inf
n→∞

E ηn(0)2 ≥ C E(0,0)α
#{1≤i:X̄i=X̄′i} =∞.

Finally the results from chapter 5, section 5.4 show that E(0,0)α
#{1≤i≤n:X̄i=X̄

′
i} grows

exponentially in n if α > α2. �

The following lemma is the analogue of the Feynman-Kac formula in this discrete-
time setting. The proof is elementary, e.g. by induction, and we omit it here. Note
that in general, one would have to work with the dual of p with respect to an invariant
measure. In our situation, where p is doubly stochastic and thus counting measure is
invariant, the transpose p̄ coincides with the dual.
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Lemma 22 (“discrete Feynman-Kac formula”) Let S be a countable set and p a
doubly stochastic transition matrix on S, let an : S → R, bn : S → R for n = 0, 1, . . .,
sequences of bounded functions on S and a bounded ϕ0 : S → R be given. Define (ϕn)
recursively by

ϕn(x) =
∑
y∈S

p(y, x)
(
an−1(y)ϕn−1(y) + bn−1(y)

)
.

Then ϕn has a probabilistic representation as the expectation of a functional of a path of
the Markov chain (X̄n)n with transition matrix p̄, where p̄(x, y) = p(y, x):

ϕn(x) = Ex

ϕ0(X̄n)
n∏
i=1

an−i(X̄i) +
n∑
j=1

bn−j(X̄j)
j−1∏
k=1

an−k(X̄k)

 .
4.4 Local size-biasing

Let the distribution of η under P̂ be size-biased with respect to ηN (x0), the number of
particles at position x0 in generation N , i.e. P̂(η ∈ B) = (E ηN (x0))−1

E[ηN (x0)1B(η)].
We derive in this section a stochastic representation of η under P̂.

To do this we take up again the genealogical point of view from section 4.1.2 and
define a probability measure P̃ on {initial configurations} × {space-time fields of offspring
distributions} × {genealogies} × {tagged ancestral lines}. Here a tagged ancestral line
is a ray (of length N) that ends at spatial position x0 and is part of the genealogy.
Alternatively we could speak of a tagged individual at x0 in generation N . The gist is
to construct P̃ in such a way that the weight does not depend on which particle we tag,
i.e. such that for any initial configuration n = (n(x))x∈Zd , space-time configuration of
offspring distributions (q(n, x)), genealogy (tx,i) and tagged ancestral line a (that is part
of some ty,i∗ and ends at x0 in generation N) we have with a fixed constant c

“P̃(η0 = n,Q = q, τ = t, α = a) = cP(η0 = n,Q = q, τ = t)”

(of course a slight technical difficulty lies in the fact that the above equation actually reads“0 = 0”
because there are uncountably many possibly configurations). By summing out all possible
tagged ancestral lines we see that P̃ = P̂ as desired (formally, one has to “project away”
the ancestral line component).

Here is our list of ingredients: Let YN be a Zd-valued random variable with P̃(YN =
y) = E[η0(y)mNpN (y, x0)]/E[ηN (x0)], where m := Em1(Q). Given YN = y let the path
(Y0, Y1, . . . , YN ) be a p̄-bridge from x0 to y.

Given YN = y let the initial configuration η0 be an independent copy of η̂(y), where
η̂(y) has the locally (with the number of particles at y) size-biased distribution of η0, i.e.
P(η̂(y) ∈ B) = (Eη0(y))−1

E[η0(y)1B(η0)].
Let Q̂(1), . . . , Q̂(N) be independent, distributed according to the law of Q reweighted

by its first moment m1(Q), i.e. P̃(Q̂ ∈ B) = m−1
E[m1(Q)1B(Q)]. Given the Q̂(·)s

let K̂1, . . . , K̂N be independent, K̂i distributed according to the size-biasing of Q̂(i),
i.e. P̃(K̂i = k|Q̂(i)) = kQ̂(i)k/m1(Q̂(i)). Given the K̂i choose I1, . . . , IN indepen-
dent, Ii uniformly distributed on {1, . . . , K̂i}. Let IN+1 be uniformly distributed on
{1, 2, . . . , η0(YN )}.

For j < N, z ∈ Zd, z 6= YN−j let Q(z, j) be independent copies of Q, define Q(Yj , N−
j) := Q̂(j), j = 1, . . . , N .

Our system arises from these ingredients as follows: Individual number IN+1 at
location YN in the initial population becomes the founding mother of the tagged ancestral

69



line. This individual has K̂N offspring, the IN -th of them continues the tagged line. In
general the individual in generation N − j on the tagged ancestral line has K̂j offspring,
and the Ij-th of them continues the special line. The spatial embedding of the tagged
ancestral line is (YN , . . . , Y0). Given the space-time field of offspring distributions Q(·, ·)
let all the siblings branching off the tagged ancestral line take an independent p-step
from the position of their respective mother. Then they found independent, spatially
embedded branching trees in the already generated space-time medium. All the other
individuals in the initial population, which are not related to the tagged line also found,
given Q(·, ·), independent branching trees. See also the figure on page 72.

Formally we define P̃ as follows: For a (finite) A ⊂ Zd, n(z) ∈ N0 for z ∈ A, tz,i,
z ∈ A, i ≤ n(z) (finite, rooted, ordered, spatially embedded) trees of height at most
N , an ancestral line a, which is a part of ty,i∗ , where i∗ ∈ {1, . . . , η0(y)}, with spatial
embedding (y = yN , yN−1, . . . , y0 = x0), Zd ⊃ B ⊃ A with |B| <∞ and pos(σ) ∈ B for
all σ ∈ tz,i, z ∈ A, i ≤ n(z) and (measurable) Cw,j ⊂M1(N0), w ∈ B, j < N , we set

P̃

(
{η0(z) = n(z), z ∈ A} ∩ {Q(w, j) ∈ Cw,j , w ∈ B, 0 ≤ j < N}

∩ {τz,i|N = tz,i, i ≤ n(x), z ∈ A} ∩ {α = a}
)

=
E[η0(y)]mNpN (y, x)

E[ηN (x)]
×

 1
p̄N (x, y)

N∏
j=1

p̄(yj−1, yj)


× 1
E[η0(y)]

n(y)P(η0(z) = n(z), z ∈ A)

×
∫

M1(N0)

· · ·
∫

M1(N0)

N∏
k=1

µ(dq(yk, N − k))
m1(q(yk, N − k))

m
1Cyk,N−k(q(yk, N − k))

∫
M1(N0)

· · ·
∫

M1(N0)

∏
z∈B,j<N
z 6=yN−j

µ(dq(z, j))1Cz,j (q(z, j))

{

N∏
`=1

1
m1(q(y`, N − `))

|offspring(aN−`)| × q|offspring(aN−`)|(y`, N − `)

×
N∏
m=1

1
|offspring(aN−m)|

× 1
n(y)

×

×
∏

σ∈ty,i∗ ,σ 6∈a
q|offspring(σ)|(pos(σ), |σ|)

( ∏
σ′∈offspring(σ)

p(pos(σ),pos(σ′))
)

×
∏

w∈A,n≤n(w)
(w,n) 6=(y,i∗)

∏
ρ∈tw,n

q|offspring(ρ)|(pos(ρ), |ρ|)
( ∏
ρ′∈offspring(ρ)

p(pos(ρ),pos(ρ′))
)}

=
1

E[ηN (x)]
P(η0(z) = n(z), z ∈ A)

∫
M1(N0)

· · ·
∫

M1(N0)

∏
z∈B,j<N

µ(dq(z, j))1Cz,j (q(z, j))

{

∏
w∈A,i<n(w)

∏
ρ∈tw,i

q|offspring(ρ)|(pos(ρ), |ρ|)
( ∏
ρ′∈offspring(ρ)

p(pos(ρ),pos(ρ′))
)}

.
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Our claim follows because the probabilities of these events determine P̃.

Remark 18 1) This genealogical construction has of course its own genealogy: Among
its ancestors are at least Olav Kallenberg’s pioneering [19], Dawson and Fleischmann’s
[6], [7], Lyons, Pemantle, Peres’ [25], and work of Jochen Geiger, see e.g. [11], [12].

2) “One – two – size-bias: a doubly stochastic construction”: Observe that the distribu-
tion of the number of children along the tagged ancestral line is the size-biasing of the
original offspring distribution,

P(K̂ = k) = E

[
k

m1(Q̂)
Q̂k

]
=

1
E[m1(Q)]

E

[
k

m1(Q)
×m1(Q)Qk

]
=

1
E[m1(Q)]

E [kQk] =
k

EK
P(K = k).

This is analogous to the “classical” (non-interacting) constructions mentioned above.
There is a simple observation behind this: Consider a doubly stochastic scenario

where one first chooses a random distribution Q and then, given Q, a positive random
variable K with this distribution. Then the size-biased law L(K̂) can also be constructed
in a doubly stochastic way. First choose Q̂ according to the law of Q reweighted by its
first moment

∑
k kQk, then K̂ according to a size-biased Q̂.

4.4.1 ... and a condition for uniform integrability

Let us consider a shift-invariant scenario with E η0(x) ≡ θ and E η0(x)2 < ∞ under
assumption (4.3). Then we have in particular that E ηn(x) ≡ θ. The question whether
any limit point η∞ also satisfies E η∞(x) ≡ θ is equivalent to the question whether the
family (ηn(0))n∈N is uniformly integrable. This, in turn, is by Lemma 9 equivalent to
tightness of the size-biased family (η̂n(0))n∈N.

We can use the above construction of L(η̂N (0)) to find a (sufficient) criterion by
averaging out the field of random offspring distributions conditional on the spatial em-
bedding Y = (Y0, Y1, . . .) of the tagged line: Obviously (ηn(0))n∈N is tight under P̃ if even
supn Ẽ[ηn(0)|Y ] <∞ holds.

Proposition 9 Let η0 be shift-invariant with E η0(x) ≡ θ and E η0(x)2 < ∞. Assume
(4.3) and α = E[(m1(Q))2] < α∗, where α∗ is defined in (4.6). Then any limit point η∞
satisfies E η∞(x) = θ.

Proof. Let us first consider a family (ηx,nk )k≥n founded by one single ancestor at
position x in generation n ≤ N . Then conditioned on the environment Q(·, ·) we have

E[ηx,nN (x′)|Q(·, ·)] =
∑

xn+1,...,xN−1∈Zd

xn=x, xN=x′

N−1∏
j=n

p(xj , xj+1)m1(Q(xj , j)),

as can be proved analogously to Lemma 20, 1).
By shift invariance it is sufficient to consider P̃(ηN (0) ∈ ·). The assumption Eη0(x) ≡

θ implies that Y = (Y0, . . . , YN ) is a (unconditional) p̄-Markov chain starting from Y0 = 0
under P̃.
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Along Y , we attach
the favourable Q̂(i)’s,

away from Y , the off-
spring laws are i.i.d.
copies of the
“ordinary”Q

There are K̂i

cousins of i-th
degree

Unrelated
individuals
found indepen-
dent families
in the given
environment

A schematic representation of the construction of η under P̃
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Let us denote by (η(j)
n )n=N−j,...,N the subpopulation of individuals arising in the

construction of P̃ whose most recent common ancestor with the tagged particle lived j
generations before (the present) time N . These are all side trees that branch off the
tagged line in generation N − j. As above we find

Ẽ[η(j)
N (0)|Q(·, ·), (K̂i)i=1,...,N , Y ] =

(K̂j − 1)
∑

xN−j+1,...,xN−1

xN=0

p(Yj , xN−j+1)
N−1∏

i=N−j+1

p(xi, xi+1)m1(Q(xi, i)).

Averaging out Q(·, ·) and the K̂is this yields

Ẽ[η(j)
N (0)|Y ]

= E[K̂ − 1]
∑

xN−j+1,...,xN−1

xN=0

p(Yj , xN−j+1)
N−1∏

i=N−j+1

p(xi, xi+1)
{
E[m1(Q)]1(xi 6= YN−i)

+ E[m1(Q̂)]1(xi = YN−i)
}

= E[K̂ − 1]EXYj
[
1(Xj = 0)α#{1≤i<j:Xi=Yj−i}

∣∣∣Y ]
= E[K̂ − 1]EX̄0

[
1(X̄j = Yj)α#{1≤i<j:X̄i=Yi}

∣∣∣Y ] ,
where X is a p- and X̄ an independent p̄-random walk, both independent of all the
other ingredients, and we use E[m1(Q̂)] = E[(m1(Q))2]/1 = α. Observe that E K̂ =
(E[m1(Q)])−1

∑
k k

2
EQk = E[m2(Q)]/E[m1(Q)] < ∞. EXz refers to expectation under

the measure with X0 = z, and EX̄0 refers to X̄0 = 0.
Let (η(−)

n )n be the subpopulation founded by individuals not related to the tagged
ancestral line. We have

Ẽ[η(−)
N (0)|Y, η0] =

∑
z

(η0(z)− 1(z = YN ))EXz
[
1(XN = 0)α#{0≤i<N :Xi=YN−i}

∣∣∣Y ]
= E

X̄
0

[
(η0(X̄N )− 1(X̄N = YN ))α#{1≤i≤N :X̄i=Yi}

∣∣∣Y, η0

]
.

Using

Ẽ[η0(z)|Y ] =
1
θ
E[η0(z)η0(YN )|Y ] ≤ 1

θ
E[η0(0)2] (<∞)

we estimate
Ẽ[η(−)

N (0)|Y ] ≤ 1
θ
E[η0(0)2]EX̄0

[
α#{1≤i≤N :X̄i=Yi}

∣∣∣Y ] .
Putting B := #{i ≥ 1 : X̄i = Yi} we can thus estimate altogether

Ẽ[ηN (0)|Y ] ≤ 1 + E[K̂ − 1]
N∑
j=1

E
X̄
0

[
1(X̄j = Yj)α#{1≤i<j:X̄i=Yi}

∣∣∣Y ]
+ EX̄0

[
α#{1≤i≤N :X̄i=Yi}

∣∣∣Y ]
≤ 1 + const.× EX̄0 [(B + 1)αB |Y ]

uniformly in N . Observe that the righthand side is almost surely finite if α < α∗. �
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4.5 Limits of Poisson systems

Similar to the classical case, Poisson initial conditions are particularly suitable for rela-
tively explicit calculations. A complication stems from the fact that the system is only
infinitely divisible if we condition on the medium Q(·, ·).

Lemma 23 Let η0(x), x ∈ Zd be independent, Poisson(θ)-distributed. ηn converges in
distribution to a shift invariant, E1-valued η∞. L(η∞) is invariant under the time evo-
lution semigroup (Sn).

Proof. Set U(m,n) := σ
(
Q(x, i) : x ∈ Zd,m ≤ i < n

)
, U := U(0,∞); for q ∈ M1(N0)

let
ϕq(s) :=

∑
k

skqk, s ∈ [0, 1]

be the generating function of the number of children of an individual with offspring
distribution q, ϕ̄(s) := EϕQ(s) =

∑
k≥0 s

k
EQk the (absolute) generating function of

the number of offspring of an individual in our population. Observe that ϕ̄ is convex
and monotone increasing and satisfies ϕ̄′(1) = E[m1(Q)] = 1 by assumption (4.3). This
implies that 1− ϕ̄(s) ≤ 1− s for s ∈ [0, 1].

For (fixed) f : Zd → R+ and m ≤ n define

wm,n(x) := Eηm=δx [exp(−〈ηn, f〉) | U ] .

Apparently, wm,n is U(m,n)-measurable. Decompose according to the m-th generation
to find the following recursion for m < n:

wm,n(x) =
∑
k

Qk(m,x)
∑

y1,...,yk

k∏
i=1

{
p(x, yi)Eηm+1=δyi

[
exp(−〈ηn, f〉) | U(m+ 1, n)

]}

=
∑
k

Qk(m,x)

(∑
y

p(x, y)Eηm+1=δy

[
exp(−〈ηn, f〉) | U(m+ 1, n)

])k
= ϕQ(m,x)

(∑
yp(x, y)wm+1,n(y)

)
For L(η0) = Poi(θ) we can use this to compute (recall that for Z ∼ Poi(θ) we have
E exp(−αZ) = exp(−θ(1− e−α)))

`n(f) := E exp(−〈ηn, f〉) = E [E[exp(−〈ηn, f〉) | U ]]

= E

[∏
xw0,n(x)η0(x)

]
= E exp

(
−θ
∑
x

(1− w0,n(x))

)
,

consequently (by the independence of the Qs and Jensen’s inequality)

`n(f) ≥ E
U(1,n) exp

(
−EU(0,0) [θ

∑
x(1− w0,n(x))]

)
= E

U(1,n) exp
(
−θEU(0,0)

[∑
x

{
1− ϕQ(0,x)

(∑
yp(x, y)w1,n(y)

)}])
= E

U(1,n) exp
(
−θ
∑

x

{
1− ϕ̄

(∑
yp(x, y)w1,n(y)

)})
≥ E

U(1,n) exp
(
−θ
∑

x,yp(x, y)(1− w1,n(y))
)

= E
U(1,n) exp

(
−θ
∑

y(1− w1,n(y))
)

= `n−1(f).

74



This shows that the sequence of Laplace transforms of L(ηn) converges for any (positive)
test function f , which implies convergence in (finite-dimensional) distribution(s), see [20].

Obviously, as a limit of shift invariant ηn, η∞ is shift invariant too. By Fatou’s
lemma we have Eη∞(x) ≤ θ, thus P(η∞ ∈ E1) = 1. Using Remark 16 we see that
L(η∞)S1 = (limn→∞Poi(θ)Sn)S1 = limn→∞Poi(θ)Sn+1 = L(η∞), proving that L(η∞) is
invariant under time evolution. �

Combining this with Proposition 9 and Lemma 21 we find

Theorem 4 Assume (4.3) and α < α∗.
1) Then for any θ ≥ 0 we have Poi(θ)Sn ⇒ νθ , where

νθ is invariant and has full intensity measure
∫
η(0)νθ(dη) = θ.

2) For α ∈ [α2, α∗) we have
∫
η(0)2νθ(dη) =∞,

3) for α < α2,
∫
η(0)2νθ(dη) <∞ and L(νθ) ∈ Rθ.

4.6 Order and positive correlations

Recall that the probability measures M1(M) on a partially ordered set (M,≤) are also
partially ordered via µ ≤ ν (“µ is stochastically smaller than ν”) iff

∫
f dµ ≤

∫
f dν

for all bounded, monotone increasing functions f : M → R+. A probability measure
µ on M is said to have positive correlations if

∫
fg dµ ≥

∫
f dµ

∫
g dµ for all bounded,

monotone functions f and g. See [23], chapter II.2 for more on this.
Equip E1 ⊂ (N0)Z

d
with its natural componentwise partial ordering. We assume in

this section that

the random offspring distribution Q takes values in
a linearly ordered subset M̃ ⊂M1(N0). (4.8)

Observe that (4.8) is automatically satisfied in the “random thinning” case considered in
Remark 15, 2).

I am confident that the following observation is well known. For lack of reference,
and since the proof is short I present it here:

Lemma 24 Let η =
∑

i δxi be a Poisson point process on a Polish space M with σ-finite
intensity measure µ. Then L(η) has positive correlations.

Proof. Consider a sequence Pn, n ∈ N of finite families of subsets of M , Pn =
{A1,n, . . . , Amn,n} with Ai,n∩Aj,n = ∅ for i 6= j and µ(Ai,n) <∞ for all i, n. We assume
that Pn+1 is a refinement of Pn, that is for all B ∈ Pn+1 there exists an A ∈ Pn such that
B ⊂ A, and each A ∈ Pn is the union of some Bk ∈ Pn+1. Set Fn := σ(η(A), A ∈ Pn),
then Fn ⊂ Fn+1. We can choose the sequence in such a way that σ(∪nFn) = σ(η).
Observe that then F (η) = limn E[F (η)|Fn] by the martingale convergence theorem for
any bounded measurable F : N (M)→ R (where N (M) denotes the counting measures
on M). Now consider F,G : N (M) → R bounded, measurable, monotone increas-
ing. Recall that the conditional distribution of η, given η(Ai,n) = ki,n, i = 1, 2, . . . ,mn

arises as follows: For each i, η has ki,n atoms in Ai,n whose positions are independent
with distribution µ(· ∩Ai,n)/µ(Ai,n), while the restriction to

⋂
iA

c
i,n is conditionally dis-

tributed like a Poisson point process with intensity measure µ(· ∩
⋂
iA

c
i,n), independent
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of η(· ∩
⋃
iAi,n). Thus

E

[{F
G

}
(η)
∣∣Fn] =

{
fn
gn

}(
η(A1,n), . . . , η(Amn,n)

)
,

for some bounded monotone functions fn, gn : (N0)mn → R. Thus we can compute using
dominated convergence

E [F (η)G(η)] = lim
n
E

[
E[F (η)|Fn]G(η)

]
= lim

n
E

[
E[F (η)|Fn]E[G(η)|Fn]

]
= lim

n
E

[
fn
(
η(A1,n), . . . , η(Amn,n)

)
gn
(
η(A1,n), . . . , η(Amn,n)

)]
≥ lim

n
E

[
fn
(
η(A1,n), . . . , η(Amn,n)

)]
E

[
gn
(
η(A1,n), . . . , η(Amn,n)

)]
= E[F (η)]E[G(η)]

where the inequality comes from the observation that a Poisson process on a finite set
(is a product measure on a product of linearly ordered spaces and thus) has positive
correlations, see e.g. [23], p. 78. �

Proposition 10 Let η0(x), x ∈ Zd be independent, Poisson(θ) and assume that (4.8)
holds. Then L(ηn) has positive correlations for all n, in particular νθ has positive corre-
lations.

Proof. This is more or less “general nonsense”. Let f, g : E1 → R+ be bounded and
monotone increasing. We first observe that for any n

L(ηn|Q(·, ·)) has positive correlations for (almost) all Q(·, ·) :

Conditional on the offspring laws Q(·, ·) the particles branch and move independently,
thus the Poisson initial configuration leads to a Poisson field of “families” of individuals
alive in generation n, that is a Poisson process on Nfinite(Zd). This process has positive
correlations by Lemma 24. Furthermore, F : N (Nfinite(Zd))→ R,

∑
i δη(i) 7→ f(

∑
i η

(i))
is monotone increasing. Using this we compute

E[f(ηn)g(ηn)] = E

[
E [f(ηn)g(ηn)|Q(·, ·)]

]
≥ E

[
E [f(ηn)|Q(·, ·)]E [g(ηn)|Q(·, ·)]

]
.

The function M̃Z
d×N0 3 q(·, ·) 7→ E [f(ηn)|Q(·, ·) = q(·, ·)] ∈ R is monotone increasing

and L(Q) has positive correlations as a product measure on a product of linearly ordered
spaces (see [23], chapter II.2). Hence

E[f(ηn)g(ηn)] ≥ E

[
E [f(ηn)|Q(·, ·)]

]
E

[
E [g(ηn)|Q(·, ·)]

]
= E[f(ηn)]E[g(ηn)].

�

Remark 19 1) As η is a system of branching particles the positive correlations are not
surprising. For an intuitive explanation consider F and G that are some growing function
of the number of particles that ηn has in AF ⊂ Zd respectively in AG ⊂ Zd. Then an
atypically large value of F is likely to be caused by one or more atypically large families.
Given this it is also likely that some members of these large families have moved to AG,
causing G to be large, too.

2) It is well possible that νθ will always have positive correlations even if (4.8) fails. Alas
it is unclear how to prove this.
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Lemma 25 Assume α < α2 and (4.8). There is a C <∞ such that

0 ≤ Covνθ(η(x), η(y)) ≤ C × P(x,y)(X̄i = X̄ ′i for some i > 0).

Proof. As νθ has positive correlations we have
∫
η(x)η(y) νθ(dη) ≥ θ2. On the other hand,

Fatou’s lemma together with Lemma 20 shows (we assume without loss of generality that
x 6= y) ∫

η(x)η(y) νθ(dη) ≤ lim inf
n

EPoi(θ)[ϕx,y(ηn)]

≤ θ2
P(x,y)(X̄i 6= X̄ ′i for all i > 0) + C ′P(x,y)(X̄i = X̄ ′i for some i > 0)

for some C ′ <∞. Thus

Covνθ(η(x), η(y)) =
∫
η(x)η(y) νθ(dη)− θ2

≤ (θ2 + C ′)P(x,y)(X̄i = X̄ ′i for some i > 0).

�

Corollary 2 Assume α < α2 and (4.8). Then νθ is spatially mixing for any θ ≥ 0.

Proof. We proceed as in [5], p. 844. Fix a finite A ⊂ Zd and put

Y0 :=
∑
x∈A

cxη(x), Yz :=
∑
x∈A

dxη(x+ z),

where for x ∈ A, cx, dx are positive constants. Y0 and Yz are positively correlated by
Proposition 10, thus by Thm. 1 of [26] we have for s, t ∈ R∣∣∣Eνθ[ei(sY0+tYz)

]
− Eνθ

[
eisY0

]
Eνθ

[
eitYz

]∣∣∣ ≤ |st|Covνθ(Y0, Yz).

Now by Lemma 25 we have

Covνθ(Y0, Yz) =
∑
x,y∈A

Covνθ(η(x), η(y + z))

≤ C
∑
x,y∈A

cxdyP(x,y+z)(X̄i = X̄ ′i for some i > 0),

which converges to 0 as |z| → ∞ by transience of the difference random walk. This
proves that Y0 and Yz become asymptotically independent, or in other words that the
joint law of 〈f, η〉 and 〈f, η(·+ z)〉 under νθ converges to the corresponding product law
as |z| → ∞ for any two test functions f, g : Zd → R+ with support contained in A. Thus
νθ is mixing. �

4.7 Coupling and ergodic theory in the regime of globally
finite second moments

In order to compare two systems η(1)
0 and η

(2)
0 of branching random walks in random

environment starting from different initial conditions it is useful to couple them together
in such a way that each of (η(i)

n )n, i = 1, 2 for itself is a system of branching random
walks in random environment as above, but also both systems evolve as closely together
as possible. To formalize this idea we use
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Q(n, x), x ∈ Zd, n ∈ N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . independent copies of Q
K

(c)
n (y, i), K(1)

n (y, i), K(2)
n (y, i) . . . . . . . . . . . . . . given Q(·, ·) independent with

P(K(·)
n (y, ·) = k|Q(·, ·)) = Qk(y, n),

Y
(c)
n (y, i, j), Y (1)

n (y, i, j), Y (2)
n (y, i, j) . . . . . . . . . . . . . . . . . . . . . . . . . . independent,

P(Y (·)
· (y, ·, ·) = x) = p(y, x).

The idea is that objects with index (c) refer to particles that are common to both systems,
while objects with index (1) respectively (2) will be used for“overshoot”particles in system
η(1) resp. η(2).

Then, given the configurations (η(1)
n , η

(2)
n ), the (n+ 1)-th generation arises as follows:

Both systems use the same field of offspring distributions Q, and η
(1)
n ∧ η(2)

n particles
behave in exactly the same way in both systems. Possible overshoot particles in one of
the two systems branch and move independently, given the Qs, and their offspring are
then simply added to those of the common particles. Formally we put

ξ
(c)
n+1(x) =

∑
y∈Zd

η
(1)
n (y)∧η(2)

n (y)∑
i=1

K
(c)
n (y,i)∑
j=1

1(Y (c)
n (y, i, j) = x),

ξ
(1)
n+1(x) =

∑
y∈Zd

(
η

(1)
n (y)−η(2)

n (y)
)+∑

i=1

K
(1)
n (y,i)∑
j=1

1(Y (1)
n (y, i, j) = x),

ξ
(2)
n+1(x) =

∑
y∈Zd

(
η

(2)
n (y)−η(1)

n (y)
)+∑

i=1

K
(2)
n (y,i)∑
j=1

1(Y (2)
n (y, i, j) = x)

and set
η

(1)
n+1(x) := ξ

(c)
n+1(x) + ξ

(1)
n+1(x), η

(2)
n+1(x) := ξ

(c)
n+1(x) + ξ

(2)
n+1(x).

Observe that our model is attractive in interacting-particle-systems parlance: Start-
ing from η

(1)
0 ≥ η(2)

0 the coupling gives η(1)
n ≥ η(2)

n for all n.

Lemma 26 Assume (4.3). Let µ and ν be two shift invariant probability measures on
E1 with finite intensities, i.e.

∫
η(0)µ(dη),

∫
η(0)ν(dη) < ∞. Then the coupled system,

starting from µ⊗ ν, satisfies

E|η(1)
n+1(x)− η(2)

n+1(x)| ≤ E|η(1)
n (x)− η(2)

n (x)| for all x ∈ Zd, n ≥ 0, and (4.9)

lim
n
P

(
η(1)
n (x) > η(2)

n (x), η(1)
n (y) < η(2)

n (y)
)

= 0 for all x, y ∈ Zd. (4.10)

Proof. Obviously we have

|η(1)
n+1(x)− η(2)

n+1(x)| = |ξ(1)
n+1(x)− ξ(2)

n+1(x)| ≤ ξ(1)
n+1(x) + ξ

(2)
n+1(x).

Furthermore for y ∈ Zd

E


(
η

(1)
n (y)−η(2)

n (y)
)+∑

i=1

K
(1)
n (y,i)∑
j=1

1(Y (1)
n (y, i, j) = x)


= E[E[. . . |(η(1)

n , η(2)
n )]] = E[m1(Q)]p(y, x)E

(
η(1)
n (y)− η(2)

n (y)
)+

.
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Summing over y and using shift-invariance this gives E ξ(1)
n+1(x) = E

(
η

(1)
n (y)− η(2)

n (y)
)+

,

and analogously E ξ(2)
n+1(x) = E

(
η

(2)
n (y)− η(1)

n (y)
)+

. This proves (4.9).
Consider events corresponding to an overshoot of (1)- resp. (2)-particles at x in

generation n

U (1)(n, x) := {η(1)
n (x) > η(2)

n (x)}, U (2)(n, x) := {η(1)
n (x) < η(2)

n (x)},

and let
A(n+ 1, z) := {ξ(1)

n+1(z) ∧ ξ(2)
n+1(z) > 0},

be the event that an “annihilation” of (1)- and (2)-particles occurs at position z in
generation n+ 1.

Let us first consider a pair x 6= y such that there exists a z ∈ Zd with p(x, z), p(y, z) >
0. Put an(z) := E|η(1)

n (z)− η(2)
n (z)| (≥ 0). Observing that

|ξ(1)
n+1(z)− ξ(2)

n+1(z)| ≤ ξ(1)
n+1(z) + ξ

(2)
n+1(z)− 1(ξ(1)

n+1(z) ∧ ξ(2)
n+1(z) > 0)

we see from the considerations above that

an+1(z) ≤ an(z)− P(A(n+ 1, z)) ≤ an(z)− cx,yP(U (1)(n, x) ∩ U (2)(n, y))

for some cx,y > 0, because

U (1)(n, x) ∩ U (2)(n, y) ∩ {some offspring from x jumps to z}
∩ {some offspring from y jumps to z} ⊂ A(n+ 1, z).

This implies that P(U (1)(n, x) ∩ U (2)(n, y)) → 0 as n → ∞, i.e. (4.10) holds true for
this pair (x, y), because the sequence an(z) is bounded from below. The same argument
shows that limn P(A(n, z)) = 0 for any z ∈ Zd.

Now consider a pair x, y with p(x, z)p(y, z) = 0 for all z, but such that there exist
x′, y′ with p(x, x′), p(y, y′) > 0 and limn P(U (1)(n, x′) ∩ U (2)(n, y′)) = 0. Then we have

U (1)(n, x) ∩ {some offspring from x jumps to x′} ∩A(n+ 1, x′)c

∩ U (2)(n, y) ∩ {some offspring from y jumps to y′} ∩A(n+ 1, y′)c

⊂ U (1)(n+ 1, x′) ∩ U (2)(n+ 1, y′).

Hence

P

(
U (1)(n, x) ∩ {some offspring from x jumps to x′}
∩ U (2)(n, y) ∩ {some offspring from y jumps to y′}

)
−P(A(n+ 1, x′) ∪A(n+ 1, y′)) ≤ P(U (1)(n+ 1, x′) ∩ U (2)(n+ 1, y′)),

which gives

cx,x′,y,y′P(U (1)(n, x) ∩ U (2)(n, y))

≤ P(A(n+ 1, x′)) + P(A(n+ 1, y′)) + P(U (1)(n+ 1, x′) ∩ U (2)(n+ 1, y′))

with some cx,x′,y,y′ > 0. This proves (4.10) also for this pair. Observe that by irreducibil-
ity of the difference random walk, any pair x, y can be connected via finitely many steps
of the difference random walk. Thus (4.10) can be proved for any x 6= y by induction.

�

In the case α < α2 we can use this together with the fact that η has asymptotic
density θ under νθ to show that all equilibria (with finite intensity) are mixtures of the
νθ:
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Proposition 11 Assume (4.3) and α < α2. Then

ν ∈M1(E1) shift-ergodic, invariant under (Sn),
∫
η(0)ν(dη) = θ =⇒ ν = νθ.

The same conclusion holds if we replace the assumption of shift-ergodicity by the require-
ment ν ∈ Rθ. Furthermore

µSn ⇒ νθ as n→∞ for all µ ∈ Rθ.

Proof. Let ν be invariant under (Sn) with
∫
η(0) dν = θ, and assume that either ν

is shift-ergodic or ν ∈ Rθ. We start the coupled system in νθ ⊗ ν and show that the
coupling is eventually successful, that is that |η(1)

n − η
(2)
n | converges (vaguely) to the

zero configuration in probability. Because supx,n Eνθ⊗ν
[
η

(1)
n (x) + η

(2)
n (x)

]
= 2θ < ∞

the family L((η(1)
n , η

(2)
n ))n∈N0 is tight (w.r.t. the vague topology on E1 × E1), hence we

can choose a subsequence satisfying L((η(1)
nk , η

(2)
nk )) ⇒ ν̃ as k → ∞, where ν̃ is some

probability measure on E1×E1. ν̃ has marginals νθ and ν as both are (Sn)-invariant; in
particular the marginals are shift-invariant. By Lemma 26 we have furthermore for all
x, y ∈ Zd

ν̃
(
{η(1)(x) > η(2)(x), η(1)(y) < η(2)(y)}

)
= 0.

This allows to estimate for all N (using (4.10) in the second equality)∫
E1×E1

|η(1)(0)− η(2)(0)| ν̃(d(η(1), η(2)))

=
∫
E1×E1

∑
x

p̄N (0, x)|η(1)(x)− η(2)(x)| ν̃(d(η(1), η(2)))

=
∫
E1×E1

∣∣∣∑
x

p̄N (0, x)(η(1)(x)− η(2)(x))
∣∣∣ ν̃(d(η(1), η(2)))

≤
∫
E1

∣∣∣∑
x

p̄N (0, x)(η(1)(x)− θ)
∣∣∣νθ(dη)

+
∫
E1

∣∣∣∑
x

p̄N (0, x)(η(2)(x)− θ)
∣∣∣ν(dη).

The first term in the last line converges to 0 as N →∞ because νθ ∈ Rθ (observe that
L2(νθ)-convergence implies the same in L1(νθ)). The second term converges to 0 by the
same argument if ν ∈ Rθ, it also converges to 0 if ν is shift-ergodic by an approximation
argument involving finite boxes.

In order to prove the second claim let ν ∈ Rθ and consider a subsequence (nk) such
that νSnk ⇒ ν ′ for some ν ′ ∈ M1(E). A coupling argument similar to the first part of
the proof shows that ν ′ = νθ. Hence νSn ⇒ νθ because the family (νSn)n is tight and
any convergent subsequence has the right limit. �

By combining Proposition 11 and Corollary 2 we obtain

Corollary 3 Assume α < α2 and (4.8). Then the set of all shift-ergodic, (Sn)-invariant
probability measures ν on E with

∫
η(0) dν <∞ is given by {νθ : θ ≥ 0}.
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Chapter 5

Some quantities pertaining to two
random walk paths

Let ξ, ξ′ be two independent discrete-time random walks on Zd with transition matrix
p(·), ξ0 = ξ′0 = 0. Let ξ̃ = ξ − ξ′ be the difference random walk with transition prob-
abilities p̃(x) :=

∑
y p(x + y)p(y), and G̃(x) :=

∑∞
n=0 p̃n(x) the corresponding Green

function. We assume that ξ̃ is transient and furthermore that

sup
n≥1,x∈Zd

pn(x)
p̃n(0)

<∞. (5.1)

The local CLT shows that p satisfies (5.1) whenever
∑

x p(x)|x|2 <∞, also any symmet-
ric p in the domain of attraction of a stable law satisfies (5.1).

5.1 Exponential moments of the collision time of two in-
dependent discrete-time random walks, conditional on
one of them

Let V :=
∑∞

n=1 1(ξn = ξ′n),

α∗ := sup{α : E[αV |ξ] <∞ almost surely}. (5.2)

Defining
α2 := sup{α : E[αV ] <∞}

we obviously have α∗ ≥ α2. Our aim in this chapter is to compute α∗ using a variational
problem and in particular to prove that α∗ > α2 under assumption (5.1) for transient p̃.

Remark 20 Note that the event {E[αV |ξ] < ∞} is invariant under permutation of
finitely many ξ-increments, so that we have P

(
E[αV |ξ] <∞

)
∈ {0, 1} by the Hewitt-

Savage 0-1 law. In particular α > α∗ implies that P(E[αV |ξ] =∞) = 1.
Thus we could alternatively choose a regular conditional distribution of V , given ξ,

and define α∗ through (5.2) without the term “almost surely” inside the braces. Then
α∗ would formally be a random variable, but its value would almost surely be equal to
the righthand side of (5.2).
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Theorem 5 Assume that ξ̃ is transient and p satisfies (5.1). Then

α∗ = 1 +
(∑
n≥1

exp
(
−H(pn(·))

))−1

,

where H(pn(·)) = −
∑

x pn(x) log pn(x) is the entropy of pn := p∗n.

Corollary 4 Under the assumptions of Theorem 5 we have α∗ > α2 > 1.

As Ṽ =
∑∞

n=0 1(ξ̃n = 0) has a geometric distribution with parameter p̃esc = P0(ξ̃n 6=
0, n > 0), we have

α2 = (1− p̃esc)−1 = 1 +
1

p̃−1
esc − 1

= 1 +
(
G̃(0)− 1

)−1
. (5.3)

Now Jensen’s inequality shows that

exp (−H(pn(·)) = exp (
∑

xpn(x) log pn(x))

<
∑
x

pn(x)elog pn(x) =
∑
x

pn(x)2 = p̃n(0).

�

Observe that E[(α2)V ] =∞ by the form of the geometric weights.

Proof of Thm. 5. The question whether or not the conditional distribution of V given ξ
possesses an exponential moment of a given order translates naturally into the question
about the growth of its moments, which we consider in the following. It will be more
convenient to work with factorial moments, note that for any α ≥ 1 and v ∈ N0 we have

αv =
(
(α− 1) + 1

)v =
∞∑
k=0

(
v

k

)
(α− 1)k = 1 +

∞∑
k=1

(α− 1)k
[v]k
k!

by the Binomial theorem, where [v]k := v(v−1) · · · (v−k+1) is the k-th falling factorial
of v. Now V =

∑∞
n=1 1(ξn = ξ′n), thus

[V ]k
k!

=
∑

0<j1<j2<···<jk

1(ξj1 = ξ′j1 , . . . , ξjk = ξ′jk)

is the number of ordered pairwise distinct k-tuples of times at which the two paths meet.
This allows to rewrite

E

[
αV | ξ

]
= 1 +

∞∑
k=1

(α− 1)kE
[ [V ]k
k!

∣∣ξ] = 1 +
∞∑
k=1

(α− 1)kFk(ξ),

where
Fk(ξ) :=

∑
0<j1<j2<···<jk

P(ξj1 = ξ′j1 , . . . , ξjk = ξ′jk |ξ)

is the conditional k-th ordered falling factorial moment of V given ξ. Thus if we can
show that

lim
k

1
k

logFk(ξ) =: r (5.4)

82



exits and is L(ξ)-almost surely constant, we have shown that α∗ − 1 = e−r. Of course
this method gives no information about the exponential moment exactly at the threshold
value α∗ itself.

In order to do this let us denote the (i.i.d.) sequence of ξ-increments by X = (Xi),
Xi = ξi − ξi−1, i = 1, 2, . . . and write

Fk(ξ) =
∑

0<j1<j2<···<jk

pj1(ξj1)pj2−j1(ξj2 − ξj1)× · · · × pjk−jk−1
(ξjk − ξjk−1

)

=
∞∑

`1,...,`k=1

k∏
i=1

p`i(ξ`1+···+`i − ξ`1+···+`i−1
) =

∞∑
`1,...,`k=1

k∏
i=1

p`i(∆i(`,X))

where ∆i(`,X) := X`1+···+`i−1+1 +X`1+···+`i−1+2 + · · ·+X`1+···+`i−1+`i .
Let R1, R2, . . . be i.i.d. with P(R1 = n) = p̃n(0)/(G̃(0) − 1), n = 1, 2, . . . (and

independent of X), set Tn := R1 + · · ·+Rn and

Yi := (XTi+1, XTi+2, . . . , XTi+1), i = 0, 1, . . . .

We can rewrite

Fk(ξ) = (G̃(0)− 1)k
∞∑

r1,...,rk=1

k∏
i=1

P(Ri = ri)
pri(∆i((rj), X))

p̃ri(0)

= (G̃(0)− 1)kE

[
k∏
i=1

pRi(∆i((Rj), X))
p̃Ri(0)

∣∣∣∣∣X
]

= (G̃(0)− 1)kE

[
k−1∏
i=0

f
(
(XTi+1, XTi+2, . . . , XTi+1)

)∣∣∣∣∣X
]

= (G̃(0)− 1)kE

[
exp

(
k−1∑
i=0

log f(Yk)

)∣∣∣∣∣X
]

= (G̃(0)− 1)kE
[

exp
(
k

∫
log f(y)Yk(dy)

)∣∣∣∣X] , (5.5)

where f :
⋃∞
n=1

(
Z
d
)n → R+ is defined by

f(x) =
pn(x1 + · · ·+ xn)

p̃n(0)
for x = (x1, x2, . . . , xn) ∈ Zn

and

Yk :=
1
k

k−1∑
i=0

δYi

is the empirical distribution of Y0, Y1, . . . , Yk−1.
Now according to Theorem 6 from section 5.2 the family L(Yk|X) almost surely

satisfies a large deviation principle with rate k and (‘good’) rate function

h̃(ν) =

 h(ν̃;L(R1)) if ν(dy) =
∑∞

n=1 ν̃n1(Zd)n(y)(L(X1))⊗n(dy)
for some ν̃ ∈M1(N),

∞ otherwise,

where h(µ; ρ) =
∑

a µa log(µa/ρa) is the relative entropy of (the probability measure) µ
with respect to (the probability measure) ρ.
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So we can use Varadhan’s lemma (see e.g. [17], Thm. III.3 or [8], Thm. 2.1.10) to
compute (here our assumption (5.1), which ensures that log f is bounded from above,
comes into play)

s := lim
k→∞

1
k

logE
[

exp
(
k

∫
log f(y)Yk(dy)

)∣∣∣∣X]
= sup

ν∈M1(∪n(Zd)n)

{∫
log f(y) ν(dy)− h̃(ν)

}
(5.6)

= sup
ν̃∈M1(N)

∑
n≥1

ν̃n

∫
log f(y)L(X1)⊗n(dy)− h(ν̃;L(R1))


= sup

ν̃∈M1(N)

∑
n≥1

ν̃n
∑
x∈Zd

pn(x) log
pn(x)
p̃n(0)

−
∑
n≥1

ν̃n log
ν̃n

p̃n(0)/(G̃(0)− 1)


= sup

ν̃∈M1(N)

∑
n≥1

∑
x∈Zd

ν̃npn(x) log
pn(x)

ν̃n(G̃(0)− 1)

 .

Combining this with (5.5) we conclude that L(ξ)-almost surely

r = lim
1
k

logFk(ξ) = log(G̃(0)− 1) + s

= sup
ν̃∈M1(N)

−∑
n≥1

ν̃n log ν̃n +
∑
n≥1

ν̃n
∑
x∈Zd

pn(x) log pn(x)


= sup

ν̃∈M1(N)

H(ν̃)−
∑
n≥1

ν̃nH(pn)

 ,

where H(µ) = −
∑

a µa logµa is the entropy of µ. For a given sequence fn ≥ 0 with

C :=
∑
n≥1

exp(−fn) <∞, (5.7)

and ν∗ = (C−1 exp(−fn))n∈N , the variational problem

r = sup
{
H(ν̃)−

∑
n≥1

ν̃nfn : ν̃ ∈M1(N)
}

= sup
{
−
∑
n≥1

ν̃n log(ν̃nefn) : ν̃ ∈M1(N)
}

= logC + sup
{
−
∑
n≥1

ν̃n log
ν̃n

1
C e
−fn

: ν̃ ∈M1(N)
}

= logC − inf
ν̃∈M1(N)

h(ν̃; ν∗)

has the obvious maximiser ν̃ = ν∗, leading to r = logC. We apply this to fn := H(pn)
to prove the theorem. Observe that condition (5.7) is satisfied because exp(−H(pn)) <
p̃n(0) by Jensen’s inequality, and the assumed transience of ξ̃ ensures that p̃n(0) is
summable. �
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5.2 An almost sure Sanov-type theorem involving a condi-
tional distribution

Let X = (X0, X1, . . .) be a sequence of i.i.d. random variables with values in some Polish
space E, R1, R2, . . . be i.i.d. N-valued, independent of X. Set T0 := 0, Tn := R1+· · ·+Rn.

Let us observe the sequence X0, X1, . . . in pieces cut out by the renewal times by
setting

Yi := (XTi , XTi+1, . . . , XTi+1−1), i = 0, 1, 2, . . .

Obviously Yi are Ẽ := ∪∞n=1E
n valued random variables. Ẽ is a Polish space e.g. with

the metric

d̃(x, y) :=
{ ∑n

i=1(d(xi, yi) ∧ 1) if x, y ∈ En
1 otherwise.

Let us consider the empirical distributions

Yn :=
1
n

n−1∑
i=0

δYi with values in M1(Ẽ).

By assumption the sequence Y0, Y1, . . . is i.i.d. with L(Y0) = µ, where

µ(B) = P((X0, X1, . . . , XR1−1) ∈ B) for measurable B ⊂ Ẽ.

We equip M1(Ẽ) with the weak topology. The law of large numbers implies that

Yn −→ µ almost surely as n→∞.

Furthermore Sanov’s theorem states that (L(Yn))n∈N satisfies the following large devia-
tion principle with (rate n)

−H(intB;µ) ≤ lim inf
n

1
n

logP(Yn ∈ B) ≤ lim sup
n

1
n

logP(Yn ∈ B) ≤ −H(clB;µ)

for any measurable B ⊂M1(Ẽ). Here H(B;µ) = infν∈B h(ν;µ) and

h(ν;µ) =
{ ∫

dν
dµ log dν

dµ dµ if ν � µ

∞ otherwise

is the relative entropy of ν with respect to µ. h(·;µ) is a ‘good’ rate function, see e.g.
[8], Thm. 3.2.17.

What can we say about (Yn)n conditional on the sequence X?

In the following we always think of a regular version of the conditional distribution
of (X,R), given X, which is guaranteed to exist by the assumed ‘Polishness’ of the
underlying spaces (see e.g. [27], Thm. V.8.1).
First, an almost sure convergence statement with a deterministic limit automatically
translates into almost surely the same behaviour, given X:

P({Yn → µ}) = 1 ⇐⇒
(
P({Yn → µ}|X) = 1 L(X) almost surely

)
.

Consider
M̃ := {ν ∈M1(Ẽ) | ∀n : ν(·|En) = (L(X0))⊗n}
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Observe that M̃ is a closed subset with respect to the weak topology (and is isomorphic
to M1(N) via M̃ 3 ν 7→ ν̃ = (ν(En))n∈N ∈M1(N)). Define a modified rate function

h̃(ν;µ) :=
{
h(ν;µ) if ν ∈ M̃
∞ otherwise.

Set I(B) := infν∈B h̃(ν;µ).

Theorem 6 The family (L(Yn|X))n∈N almost surely satisfies a large deviation principle
with rate function I, more precisely the event{

lim inf
1
n

logP(Yn ∈ O |X) ≥ −I(O) for all open O ⊂M1(Ẽ)
}⋂

{
lim sup

1
n

logP(Yn ∈ C |X) ≤ −I(C) for all closed C ⊂M1(Ẽ)
}

has probability one.

Remarks 1) The statement maybe looks more scary than necessary: AsM1(Ẽ) is Polish
(see e.g. [8], Lemma 3.22) and therefore second countable, it suffices to consider countable
families of open resp. closed sets. See below.

2) The proof follows a choreography that is quite common in large deviation theory:
the upper bound uses an exponential Markov inequality, the lower bound is proved by
tilting.

3) The theorem is similar to a main result in [3]. Yet there appears to be no way to
derive the theorem directly from Comets’ Theorem III.1.

Proof. 1) Let C ⊂ M1(Ẽ) be closed. We first consider the case I(C) < ∞. Choose
a decreasing sequence C̃m of closed neighbourhoods of M̃ such that ∩mC̃m = M̃. Put
Cm := C ∩ C̃m. Fix ε > 0 and choose m so large that1

H(Cm;µ) ≥ I(C)− ε. (5.8)

The (unconditional) Sanov theorem shows that

P(Yn ∈ Cm) ≤ exp(−n(H(Cm;µ)− ε)) (5.9)

for n sufficiently large.
1 We have to show that

inf
ν∈C∩C̃m

h(ν;µ)↗ inf
ν∈C∩M̃

h(ν;µ) as m→∞

(with the usual convention infν∈∅ h(ν;µ) = +∞). Assume that on the contrary

M := sup
m

inf
ν∈C∩C̃m

h(ν;µ) < inf
ν∈C∩M̃

h(ν;µ) =: M ′,

in particular M < ∞. Then there would exist ε ∈ (0,M ′ −M) and for each m a νm ∈ C ∩ C̃m with
h(νm;µ) ≤M + ε. As h(·;µ) has compact level sets we could choose a subsequence (mk)k such that

νmk → ν∗ ∈ ∩m
(
C ∩ C̃m

)
= C ∩ M̃

with h(ν∗;µ) ≤M + ε < M ′ in contradiction to the definition of M ′.
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Observe that µ ∈ M̃ ⊂ C̃m, hence C̃m is a neighbourhood of µ. From the strong law
we conclude the (almost sure) existence of a finite-valued random variable N(X) such
that

P

(
{Yn ∈ C̃m for n ≥ N(X)}|X

)
= 1. (5.10)

Now consider the events

A(n, ε) := {P(Yn ∈ C|X) ≥ exp(−n(I(C)− 3ε))} .

The (exponential) Markov inequality shows that

exp(−n(I(C)− 3ε))P(A(n, ε) ∩ {n ≥ N(X)})
≤ E [1(A(n, ε) ∩ {n ≥ N(X)})P(Yn ∈ C|X)]
= E [1(A(n, ε) ∩ {n ≥ N(X)})P(Yn ∈ Cm|X)]
≤ P(Yn ∈ Cm).

Combining this with (5.8) and (5.9) we see that

P(A(n, ε) ∩ {n ≥ N(X)}) ≤ exp(−nε)

for n sufficiently large. The Borel-Cantelli lemma shows that with probability one only
finitely many of the events A(n, ε)∩{n ≥ N(X)} occur, which together with N(X) <∞
almost surely proves that the event

B(ε) :=
{

lim sup
n

1
n

logP({Yn ∈ C}|X) ≤ −(I(C)− 3ε)
}

has probability one. Then of course also

U(C) :=
{

lim sup
n

1
n

logP({Yn ∈ C}|X) ≤ −I(C)
}

=
⋂
k

B(1/k)

occurs almost surely.
The case I(C) =∞ can be treated similarly.
For completeness, here are some details: Fix M > 1 and choose m big enough such that
H(Cm;µ) ≥ M , where (Cm)m is as above. Then again by Sanov’s theorem P(Yn ∈ (Cm)) ≤
exp(−n(M − 1)) for n big enough. Consider

A(n,M) := {P(Yn ∈ C|X) ≥ exp(−n(M − 2))} .

Arguing as above we see that P(A(n,M)) ≤ exp(−n) and we can again conclude using the
Borel-Cantelli lemma.

Finally we want to improve this result to hold for all closed sets simultaneously with
probability one. This is standard in a Polish setting, see e.g. [3]: Let the family (Ok)k∈N
of open sets be a countable basis of the topology of M1(Ẽ), and define

U :=
⋂

B⊂N,|B|<∞

⋂
k∈B

U((Ok)c).

Then P(U) = 1. Now any closed C ⊂M1(Ẽ) can be written as C = ∩k∈B′(Ok)c for some
subset B′ ⊂ N. Fix ε > 0 and choose a finite B ⊂ B′ with I(∩k∈B(Ok)c) ≥ I(C) − ε.
Then

U ⊂
{

lim sup 1
n logP(Yn ∈ C|X) ≤ lim sup 1

n logP(Yn ∈ ∩k∈B(Ok)c|X)
≤ −I(∩k∈B(Ok)c) ≤ −I(C) + ε

}
.
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Take ε→ 0 to see that on U, the upper bound holds simultaneously for all closed sets.

2) Let O ⊂M1(Ẽ) be open. We can assume without loss of generality that I(O) <∞.
Consider ν ∈ O ∩ M̃ with h(ν;µ) <∞. We can write ν as

ν(dy) =
∞∑
n=1

ν̃n1En(y)(L(X0))⊗n(dy)

with some probability measure ν̃ = (ν̃n)n∈N ∈M1(N), and of course h(ν̃; ρ) = h(ν;µ) <
∞, where ρ = L(R1). Consider a probability measure P̃ with density

n∏
i=1

ν̃Ri
ρRi

on σ(R1, . . . , Rn, X) with respect to P,

that is, under P̃ the (Xi) and the (Ri) are still independent i.i.d. sequences, but each Ri
has distribution ν̃. As Yn = Fn(X,R1, R2, . . . , Rn) is a function of X and R1, . . . , Rn,
we can estimate for any ε > 0

P(Yn ∈ O|X) =
∞∑

r1,...,rn=1

(
n∏
i=1

ρri

)
1(Fn(X, r1, . . . , rn) ∈ O)

=
∞∑

r1,...,rn=1

(
n∏
i=1

ν̃ri

)
exp

(
−

n∑
j=1

log
ν̃rj
ρrj

)
1(Fn(X, r1, . . . , rn) ∈ O)

= Ẽ

exp
(
−

n∑
j=1

log
ν̃Rj
ρRj

)
1(Yn ∈ O)

∣∣∣∣∣∣X


≥ exp
(
− n(h(ν̃; ρ) + ε)

)
P̃

( 1
n

n∑
j=1

log
ν̃Rj
ρRj
≤ h(ν̃; ρ) + ε, Yn ∈ O

∣∣∣X).
Now the law of large numbers implies that

1
n

n∑
j=1

log
ν̃Rj
ρRj
−→ Ẽ

[
log

ν̃R1

ρR1

]
= h(ν̃; ρ) as n→∞ almost surely under P̃

and as O is an open neighbourhood of ν we also have P̃-almost surely Yn ∈ O for all
sufficiently large n, showing

P̃

( 1
n

n∑
j=1

log
ν̃Rj
ρRj
≤ h(ν̃; ρ) + ε, Yn ∈ O

∣∣∣X) −→ 1 as n→∞

for P̃|σ(X)-almost all X. But P̃|σ(X) = P|σ(X), so we can conclude from the above that

lim inf
n

1
n

logP(Yn ∈ O|X) ≥ −h(ν̃; ρ)− ε

holds P-almost surely. Taking ε↘ 0 along a countable sequence we see that

lim inf
n

1
n

logP(Yn ∈ O|X) ≥ −h(ν;µ) P-almost surely
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for any ν ∈ O ∩ M̃ with h(ν;µ) < ∞. Finally choose a sequence (νk) ⊂ O with
h̃(νk;µ)↘ I(O) to obtain the desired conclusion:

L(O) :=
{

lim inf
n

1
n

logP(Yn ∈ O|X) ≥ −I(O)
}

has probability one.

Again we want to strengthen this to hold with probability one simultaneously for all
open sets. Consider a family (Ok)k∈N of open sets that forms a basis of the topology
of M1(Ẽ). Of course the event L := ∩kL(Ok) has probability one. Any open O can
be written as O = ∪k∈B′Ok for some B′ ⊂ N. For ε > 0 there exists k ∈ B′ such that
I(Ok) ≤ I(O) + ε, hence

L ⊂
{

lim inf 1
n logP(Yn ∈ O|X) ≥ lim inf 1

n logP(Yn ∈ Ok|X) ≥ −I(Ok) ≥ −I(O)− ε
}
.

Take ε→ 0 to see that on L, the lower bound holds simultaneously for all open sets.

Remark 21 Let us consider a related situation: LetR1, R2, . . . be as above and X̃(0), X̃(1), . . .
be independent copies of X. Define an Ẽ valued i.i.d. sequence

Ỹi := (X̃(i)
0 , X̃

(i)
1 , . . . , X̃

(i)
Ri+1−1), i = 0, 1, 2, . . .

and the corresponding empirical distributions

Ỹn :=
1
n

n−1∑
i=0

δỸi .

Then not only are (Ỹn)n and (Yn)n equal in distribution, but also the families

L(Yn|X) and L(Ỹn|X̃(j), j ≥ 0)

almost surely satisfy a large deviation principle with the same rate function. This follows
from Comets’ Theorem III.1, see [3].

5.3 A numerical example

Here we consider numerical approximations to α2 and α∗ for our favourite p, which is

p(x) =
{

1
7 x ∈ Z3, ||x||2 ≤ 1
0 otherwise.

(5.11)

Observe that p is symmetric, aperiodic, irreducible and a p-random walk (as well as the
difference of two independent p-rws) is transient. In view of (5.3) and Theorem 5 we
have to compute

A :=
∑
n≥1

p̃n(0) and B :=
∑
n≥1

exp (−H(pn(·))) .

For an increment X with P(X = x) = p(x) we have EX = 0 and Σ := Cov(X,X) =
(2/7)Id3, so the local CLT shows

pn(x) ∼ 1
(2π|Σ|n)3/2

exp
(
− 1

2n
xTΣ−1x

)
,
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in particular
p̃n(0) = p2n(0) ∼ (8πn/7)−3/2. (5.12)

As p has finite range we can compute p̃n explicitly for n = 1, . . . , N0 and use (5.12) for
n > N0, giving the approximation

ÂN0 =
N0∑
n=1

p̃n(0) + (8π/7)−3/2

(
ζ(3/2)−

N0∑
n=1

1
n3/2

)
.

The choice N0 = 100 leads to the numerical value of Â100 = 0.3485214 + 0.0293247 =
0.377846, which translates into an estimate α̂2 = 3.6466.

To approximate α∗ we consider

B̂N0 =
N0∑
n=1

exp (−H(pn(·))) + (4πe/7)−3/2

(
ζ(3/2)−

N0∑
n=1

1
n3/2

)

(pn ≈ N (0, (2/7)nId3), whose entropy is (3/2) log(4πn/7) + 3/2 ). B̂240 = 0.309944,
translating into α̂∗ = 4.2264.

5.4 Exponential growth in the α > α2 regime

Let ξ̃ be a p̃-random walk, Ṽn := #{1 ≤ i ≤ n : ξ̃i = 0}. We ask about the growth (as
n→∞) of

an(α) := E0 α
Ṽn , α ≥ 1. (5.13)

We have an+1(α) ≥ an(α) for all n and α ≥ 1, furthermore

Ex α
Ṽn =

n∑
k=0

Px(T̃0 = k)an−k(α) ≤ an

for any x ∈ Zd, where T̃0 = min{k ≥ 0 : ξ̃k = 0}. Thus by the Markov property also

an+m =
∑
x

E0[αṼn+m1(ξ̃m = x)] =
∑
x

E0[αṼm1(ξ̃m = x)]Ex αṼn

≤ anE0[αṼm ] = an am,

so that
γ(α) := lim

n

1
n

log an(α) = inf
n

log an(α)
n

(≥ 0) (5.14)

exists by the Subadditivity lemma (see e.g. [21], Lemma 10.21). Of course for α < α2

given by (5.3) the sequence an(α) is bounded and thus γ(α) = 0. Also as P(Ṽn = k) ≤
(1− p̃esc)k we see that an(α2) grows at most linearly, proving that γ(α2) = 0. Here is a
“quick’n’dirty” argument why γ(α) > 0 for α = (1 + ε)/(1− p̃esc) > α2:
Choose N0 so big that P0(T̃0 ≤ N0) ≥ (1− p̃esc)/(1 + ε/2). Then

an(α) ≥ α[n/N0]
P(Ṽn = [

n

N0
]) ≥

(
αP0(T̃0 ≤ N0)

)[n/N0]
p̃esc ≥

( 1 + ε

1 + ε/2
)[n/N0]

p̃esc,

proving that lim inf n−1 log an(α) ≥ (N0)−1 log
(
(1 + ε)/(1 + ε/2)

)
> 0.
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5.5 Analogous quantities for continuous-time random walks

Let (pxy) = (p0,y−x) be a (shift invariant) stochastic matrix on Zd and let X and X ′ be
two continuous-time random walks with rate matrix κ(pxy − δxy), starting from X(0) =
X ′(0) = 0. V :=

∫∞
0 1(X(s) = X ′(s)) ds is their collision time. Here we are interested

in

β2 := sup{β ≥ 0 : E[exp(βV )] <∞}, (5.15)

β∗ := sup{β ≥ 0 : E[exp(βV )|X] <∞ L(X)-almost surely}. (5.16)

As above we have β∗ ≥ β2, and β2 can be computed in terms of the Green function
of the difference random walk X̃ := X − X ′. X̃ jumps at rate 2κ according to the
symmetrised transition matrix qxy := (pxy + pyx)/2. Obviously V =d

∫∞
0 1(X̃(s) =

0) ds =d
∑B

k=1 Zi, where Zi are independent and Exp(2κ)-distributed, B is geometric
with parameter qesc, and finally qesc is the probability that a discrete-time random walk
with transition matrix q does not return to the origin. Hence E exp(βV ) =

∑∞
k=1 qesc(1−

qesc)k−1 (E exp(βZ))k <∞ iff E exp(βZ) < (1− qesc)−1. As E exp(βZ) = 2κ/(2κ− β)
for 0 < β < 2κ we see that

β2 = 2κqesc =
1

(2κ)−1
∑∞

n=0 q
n
00

=
1∫∞

0 P0(X̃(s) = 0) ds
. (5.17)

In order to get a feeling for β∗ we approximate by discrete-time random walks: Let
ξN and ξ′N be two discrete-time random walks with transition matrix given by p

(N)
xy :=

(1− κ/N)δxy + (κ/N)pxy (for N ≥ κ). Then (ξN ([Nt])t≥0 ⇒ (X(t))t≥0 as N →∞ and
we may expect that

E

[
exp

(
β

∫ ∞
0

1(X(s) = X ′(s)) ds
)∣∣∣X] ≈ E[exp

(
β

1
N

∞∑
k=1

1(ξN (k) = ξ′N (k))
)∣∣∣ξN] .

By Theorem 5 the righthand side is finite for exp(β/N) < α∗(p(N)), and hence the N -th
threshold value is

β
(N)
∗ = N log

(
1 +

(∑
n≥1

exp
(
−H

(
(p(N))n

)))−1
)

−→
(∫ ∞

0
exp

(
−H(P0(X(s) ∈ ·))

)
ds

)−1

as N →∞

(Observe that N log(1 + xN ) ∼ NxN if xN → 0).
This approximation indeed gives the right answer:

Theorem 7 Assume that px,y(t) satisfies

sup
t≥0,x∈Zd

px(t)
p̃0(t)

<∞. (5.18)

Then we have

β∗ =
(∫ ∞

0
exp

(
−H(P0(X(s) ∈ ·))

)
ds

)−1

,

where β∗ is defined in (5.16) and H(µ) = −
∑

x∈Zd µx logµx is the entropy of µ ∈
M1(Zd).
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Proof. It is unclear how to make the above approximation argument itself rigorous
but the proof of Theorem 5 can be adapted to continuous time: Again we convert the
question of existence of conditional exponential moments into questions about the growth
of conditional moments by writing

E

[
exp

(
β

∫ ∞
0

1(X(s) = X ′(s)) ds
)
|X
]
− 1

=
∞∑
n=1

βn

n!
E

[ ∫ ∞
0
· · ·
∫ ∞

0
1(X(s1) = X ′(s1), . . . , X(sn) = X ′(sn)) ds1 . . . dsn|X

]
=
∞∑
n=1

βn
∫
· · ·
∫

s1≤s2≤···≤sn

P(X(s1) = X ′(s1), . . . , X(sn) = X ′(sn)|X) ds1 . . . dsn

=
∞∑
n=1

βnFn(X),

where Fn(X) is defined to be the n-fold integral in the last but one line. Thus we have to
compute (the almost sure limit of) (1/n) logFn(X). Denote by πx(t) := P0(X(t) = x) the
transition probability of X and by π̃(t) := P(0,0)(X(t) = X ′(t)) the return probabilities
for the difference walk X̃. Let G̃ :=

∫∞
0 π̃(s) ds. As (we put s0 := 0)

P(X(s1) = X ′(s1), . . . , X(sn) = X ′(sn)|X) =
n∏
j=1

πX(sj)−X(sj−1)(sj − sj−1)

we can write

Fn(X) = G̃n
∫ ∞

0
· · ·
∫ ∞

0

( n∏
j=1

π̃(rj)
G̃

)

×
n∏
i=1

πX(r1+···+ri−1+ri)−X(r1+···+ri−1)(ri)
π̃(ri)

dr1 . . . drn

= G̃nE

[ n∏
i=1

π∆i(Ri)
π̃(Ri)

∣∣X]
where R1, R2, . . . are i.i.d. with density 1R+(r)π̃(r)/G̃ and independent of X, ∆i :=
X(R1 + · · ·+Ri−1 +Ri)−X(R1 + · · ·+Ri−1). We can also formulate this in terms of
the empirical distribution of the increments of the path X observed between the renewal
points given by the sums of the Ris: Let

Yn :=
1
n

n∑
i=1

δ(
X(R1 + · · ·+Ri−1 +Ri)−X(R1 + · · ·+Ri−1), Ri

)
with values in M1(Zd × R+), and f : Zd × R+ → R+ given by f(y, t) := πy(t)/π̃0(t).
Then we can reformulate

Fn(X) = G̃n E

[
exp

(
n

∫
log f(y, t) dYn(y, t)

)∣∣∣X]
and use large deviation theory as in the proof of Theorem 5. The function f is continuous
and bounded from above by assumption (5.18), so we can use use Proposition 12 and
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Varadhan’s lemma to compute

lim
n

1
n

logFn(X)

= log(G̃) + sup
ν∈M1({paths}×R+)

{∫
log f(y, t) dν(y, t)− H̃(ν)

}
= log(G̃) + sup

ν̃∈M1(R+)

{∫
R+

E0

[
log f((X(s ∧ t))s≥0, t)

]
ν̃(dt)− h(ν̃; µ̃)

}

= log(G̃) + sup
ν̃∈M1(R+)


∫
R+

∑
x∈Zd

πx(t) log
πx(t)
π̃(t)

ν̃(dt)− h(ν̃; µ̃)


= sup

0≤g,
∫
g dµ̃=1


∫
R+

∑
x∈Zd

πx(t) log
πx(t)
π̃(t)/G̃

g(t)
π̃(t)
G̃

dt−
∫
R+

g(t) log g(t)
π̃(t)
G̃

dt


= sup

0≤g,
∫
g dµ̃=1

{
−
∫
R+

H(π·(t)) g(t)
π̃(t)
G̃

dt−
∫
R+

log
(
g(t)

π̃(t)
G̃

)
g(t)

π̃(t)
G̃

dt

}
= sup

0≤ϕ,
∫
ϕ(t) dt=1

{
−
∫
R+

ϕ(t) logϕ(t)dt−
∫
R+

H(π·(t))ϕ(t)dt
}

= sup
0≤ϕ,

∫
ϕ(t) dt=1

{
−
∫
R+

ϕ(t) log
(
ϕ(t) exp

(
H(π·(t))

))
dt

}

= logC∗ − inf
0≤ϕ,

∫
ϕ(t) dt=1

{∫
R+

ϕ(t) log
ϕ(t)

C−1
∗ exp

(
−H(π·(t))

)}
= logC∗ − inf

0≤ϕ,
∫
ϕ(t) dt=1

h(ϕ(t)dt;ϕ∗dt)

= logC∗ − 0 = log
∫ ∞

0
exp

(
−H(π·(t))

)
dt

where ϕ∗(t) = C−1
∗ exp

(
−H(π·(t))

)
is the obvious maximiser (and C∗ is the normalizing

constant to make it a probability density). Observe that β∗ = exp
(
− lim 1

n logFn(X)
)

to conclude. �

Proposition 12 Let X be a continuous-time random walk on Zd starting from X(0) =
0, and let R1, R2, . . . be i.i.d. non-negative random variables independent of X. Let
T0 := 0, Ti := Ti−1 +Ri, i = 1, 2, . . . be the renewal process constructed from the waiting
times Ri. Define

Yn :=
1
n

n∑
i=1

δ(
X(Ti)−X(Ti−1), Ri

),
the joint empirical distribution of the increments of X observed along the renewal times
and the lengths of the corresponding renewal intervals.

The family
(
L(Yn|X)

)
n∈N almost surely satisfies a large deviation principle with rate

n and rate function

H̃(ν) =


h(ν̃; µ̃) if ν =

∫∞
0

{
L
(
X(t)

)
⊗ δt

}
ν̃(dt)

for some ν̃ ∈M1(R+) with ν̃ � µ̃
∞ otherwise,

where µ̃(dt) is the distribution of R1 and h(ν̃; µ̃) is the relative entropy of ν̃ with respect
to µ̃.
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Proof. The arguments are very similar to the proof of Theorem 6, so we only state
the replacements necessary to transfer it to the present continuous-time setting: Instead
of Ẽ we work with Zd × R+, which is again a Polish space, and hence M1(Zd × R+)
with the topology of weak convergence is also a Polish space (see e.g. [8], Lemma
3.2.2). The sequence

(
(X(Ti) − X(Ti−1), Ri

)
i=1,2,...

is i.i.d, and µ, the distribution of(
(X(R1) − X(0), R1

)
, is given by µ(x, dt) = pt(x)µ̃(dt). Thus by Sanov’s theorem the

unconditional distributions of Yn satisfy a large deviation principle with rate n and rate
function H(ν) = h(ν;µ). Set

M̃ :=
{
ν ∈M1(Zd × R+) : there is a ν̃ ∈M1(R+) such that ν(x, dt) = pt(x)ν̃(dt)

}
,

this is the relevant subset on which the rate function of the conditional laws concentrates.
M̃ is closed with respect to the weak topology. (In order to see this consider (νn) ⊂ M̃
with νn

w→ ν as n→∞. Then there is (ν̃n) ⊂M1(R+) such that νn(x, dt) = pt(x)ν̃n(dt).
Note that (ν̃n)n∈N is tight because lim inf ν̃n([0,K)) = lim inf νn(Zd × [0,K)) ≥ ν(Zd ×
[0,K)) ≥ 1−ε for K large enough. Thus there is a subsequence (nk) and a ν̃∞ ∈M1(R+)
such that ν̃n

w→ ν̃∞, hence ν = limk νnk is of the form ν(x, dt) = pt(x)ν̃∞(dt) [and ν̃ is of
course uniquely determined by ν].)

With these replacements the proof of is a more or less verbatim copy of the proof of
Theorem 6. �
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Deutsche Zusammenfassung

Teilchensysteme mit lokal abhängiger Verzweigung:
Langzeitverhalten, Genealogie und kritische Parameter

Wir betrachten Systeme unabhängiger Irrfahrer auf Zd mit Verzweigung, wobei ein
Individuum (oder Teilchen) bei seinem Tod eine zufällige Anzahl Nachkommen hinter-
läßt, im Mittel genau einen. Das Langzeitverhalten wird durch das Zusammenwirken
zweier gegensätzlicher Kräfte bestimmt: Die zufällige Verzweigung erzeugt Fluktuatio-
nen in der räumlichen Verteilung der Teilchen, während die unabhängige Bewegung dazu
neigt, die Teilchen relativ homogen im Raum zu verteilen und daher glättend wirkt. Wel-
cher der beiden Mechanismen setzt sich auf lange Sicht durch? Wenn wir mit einer räum-
lich homogenen Teilchenkonfiguration beginnen, konvergiert das System dann gegen ein
nicht-triviales Gleichgewicht, oder sind die Fluktuationen so stark, dass die Population
lokal ausstirbt? Wenn sich das System langfristig stabilisiert, wird die Gleichgewichtspo-
pulation immer noch endliche Varianz der lokalen Teilchenzahl aufweisen, oder können
die Fluktuationen dazu führen, dass die zweiten Momente verloren gehen? Das sind die
zentralen Fragen, denen sich die vorliegende Arbeit stellt.

Die Antworten sind wohlbekannt im klassischen Fall unabhängiger Verzweigung: So-
fern die Kinderzahlen endliche Varianz haben, hängt alles davon ab, ob die Symmetri-
sierung der zugrundeliegenden Irrfahrt rekurrent oder transient ist. Ist sie rekurrent,
so stirbt das System lokal aus. Im transienten Fall gibt es eine (natürlicherweise mit
der erwarteten Teilchendichte parametrisierte) Schar von Gleichgewichten, und endliche
zweite Momente bleiben im Limes erhalten.

Wir untersuchen den Fall lokaler Abhängigkeit im Verzweigungsmechanismus, in dem
die Kinderzahlen verschiedener Individuen am selben Ort korreliert sind, sei es durch
echte Interaktion oder einfach dadurch, dass sie durch diesselbe Umgebung beeinflußt
werden. Diese alternativen Mechanismen zur Erzeugung lokaler Abhängigkeiten verkör-
pern wir in zwei Klassen von Modellen:

1) Systeme mit zustandsabhängiger Verzweigungsrate: Wenn an einen Ort k Teilchen
sind, kommt es mit Rate σ(k) zu einem Verzweigungsereignis. Dann stirbt ein Teilchen
an diesem Ort und hinterläßt eine zufällige Anzahl Nachkommen gemäß einer vorge-
gebenen Verteilung ν mit Erwartungswert 1 und endlicher Varianz. Der klassische Fall
unabhängiger Verzweigung ist durch die Wahl einer linearen Funktion σ gegeben.
2) Verzweigungssysteme in zufälliger Umgebung: Die Kinderzahlverteilungen Q(x, n) am
Ort x in Generation n sind unabhängige Kopien einer zufälligen Nachkommensverteilung
Q. Wir nehmen an, dass der Erwartungswert m1(Q) von Q Mittelwert 1 und endliche
Varianz hat. Gegeben die Q(z, j), z ∈ Zd, j ∈ N, verhalten sich alle Individuen unabhän-
gig, Teilchen am Ort x in Generation n haben eine zufällige Anzahl Nachkommen mit
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Verteilung Q(x, n). Die Abhängigkeit zwischen verschiedenen Teilchen entsteht hier also
indirekt durch den Einfluß des zufälligen Mediums. Wir bemerken, dass die Annahme
eines unabhängigen Raum-Zeit-Feldes von zufälligen Kinderzahlverteilungen natürlicher-
weise diskrete Zeit erzwingt, da in zeitstetigen Modellen generisch niemals zwei Teilchen
exakt zur gleichen Zeit verzweigen und so die Abhängigkeit, die wir studieren möchten,
verloren ginge.

Für Populationen mit zustandsabhängiger Verzweigungsrate erweisen sich die beiden
folgenden Extremfälle als besonders interessant:
a) σ(k) = Cσk

2

b) σ(k) = 1{k=1} .
Die Verzweigungsrate im Fall b) ist extrem niedrig, Teilchen können nur verzweigen,
solange sie alleine an einem Ort sind. Auf der anderen Seite ist das quadratische Wachs-
tum von σ im Fall a) ein Grenzfall in dem Sinn, dass ein noch stärkeres Wachstum zur
Explosion der zweiten Momente in endlicher Zeit führt.

Nehmen wir an, dass die symmetrisierte Individualbewegung transient und dass die
Startbedingung in Verteilung räumlich homogen ist mit endlicher Varianz der lokalen
Teilchenanzahl. Dann hängt das Langzeitverhalten von drei Parametern b, β2 und β∗
ab. b mißt die Variabilität des Verzweigungsmechanismus: Im Fall 1a) ist b := CσVar(ν),
im Fall 2) ist b := Var(m1(Q)). Die Stärke der Irrfahrtsbewegung drückt sich folgender-
maßen in β2 und β∗ aus: Sei V die Kollisionszeit zweier unabhängiger Kopien S und S′

der zugrundeliegenden Irrfahrt, E[eβV ] bzw. E[(1 + β)V ] das exponentielle Moment der
Ordnung β von V im Fall 1a) bzw. 2). β2 ist das Supremum über alle Ordnungen β, für
die das exponentielle Moment von V endlich ist; β∗ ist das Supremum über alle β, für die
das entsprechende exponentielle Moment von V , bedingt auf einen der Irrfahrtspfade,
endlich ist.

Wir zeigen, dass sich β2 jeweils mittels der Greenfunktion der Differenzirrfahrt S−S′
berechnen läßt, und dass im Fall 2) unter schwachen Voraussetzungen an die Irrfahrt β−1

∗
gegeben ist als

∑
n≥1 exp(−Hn), wo Hn die Entropie der n-Schritt Übergangsverteilung

der Irrfahrt ist. Darüberhinaus vermuten wir, dass β∗ im Fall 1a) durch einen entspre-
chenden Ausdruck gegeben ist, in dem n ∈ N durch t ∈ R+ und die Summe durch ein
Integral ersetzt wird. Wir skizzieren ein analoges Programm zum Beweis dieser Vermu-
tung. Insbesondere folgt aus diesen Darstellungen, dass β2 < β∗.

Das Langzeitverhalten in den Fällen 1b) und 2) wird folgendermaßen durch b, β2 und
β∗ bestimmt:
(i) Für b < β2 sind die zweiten Momente gleichmäßig beschränkt, und das System kon-
vergiert gegen ein Gleichgewicht, das (nur) von der Anfangsintensität abhängt.
(ii) Für β2 ≤ b < β∗ wachsen die zweiten Momente mit der Zeit über alle Schranken,
sogar exponentiell wenn β2 < b, aber das System konvergiert immer noch gegen ein
Gleichgewicht, das die Anfangsintensität erhält. Im Gegensatz zu ”klassischen“ unab-
hängigen räumlichen Verzweigungssystemen zeigt hier insbesondere jedes nicht-triviale
Gleichgewicht unendliche Varianz der lokalen Teilchenanzhl.

Zum Beweis von (i) benutzen wir Kopplungsargumente und Darstellungen von (ge-
mischten) Momenten solcher räumlicher Verzweigungssysteme mittels Funktionalen un-
abhängiger Irrfahrten. Der Beweis von (ii) benutzt eine stochastische Darstellung der

”Verwandten“ eines zufällig aus der Population herausgegriffenen Individuums mittels
seines genealogischen Baums. Die Idee, das Langzeitverhalten mittels räumlich eingebet-
teter, lokal größenverzerrrter genealogischer Bäume zu analysieren geht im Fall unabhän-
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giger Verzweigung auf Kallenberg (1977) zurück. Wir konstruieren entsprechende stocha-
stische Darstellungen für die lokal größenverzerrten Bäume (oder ”Kallenberg-Bäume“)
in den von uns betrachteten Modellen 1) und 2).

Eine verwandte Konstruktion für ein sehr spezielles Verzweigungssystem in zufälliger
Umgebung in kontinuierlicher Zeit, der sogenannte “coupled branching process”, findet
sich in einer Arbeit von Greven (2000). Er betrachtet einen klassischen superkritischen
räumlichen Verzweigungsprozess, bei dem an jedem Ort ein Poissonprozess von ”Kata-
strophen“ ab und zu die lokale Population auslöscht. Die vorliegende Arbeit ist zum Teil
motiviert durch den Versuch, die Argumente in der Arbeit von Greven besser zu verste-
hen und eine allgemeinere Struktur hinter ihnen zu erkennen. Während letzteres geglückt
zu sein scheint, war ersterem nur partieller Erfolg beschieden. Insbesondere bleibt die
große offene Frage, ob b > β∗ lokales Aussterben erzwingt.

Eine weitere Quelle der Inspiration waren Untersuchungen, die Greven und den Hol-
lander derzeit über das parabolische Anderson-Modell durchführen. Das ist in unserem
Kontext ein System (Xx(t))t≥0,x∈Zd linear gekoppelter Diffusionen, Lösung von

dXx(t) =
∑
y

py−x(Xy(t)−Xx(t))dt+ b dBx(t),

wo Bx unabhänginge Standard-Brownbewegungen sind. Shiga (1992) konnte mit Me-
thoden der Stochastischen Analyis zeigen, dass das parabolische Anderson-Modell lokal
ausstirbt, sofern b genügend groß ist, konnte aber den genauen Schwellwert nicht bestim-
men. Greven und den Hollander vermuten, dass es gerade β∗ ist.

Die Parallelen zwischen Systemen mit quadratisch von der Teilchenzahl abhängiger
Verzweigungsrate einerseits und Verzweigungssystemen in zufälliger Umgebung anderer-
seits sind vielleicht weniger überraschend, wenn man sich vergegenwärtigt, dass beide
die Eigenschaft haben, dass die Varianz der lokalen Populationsänderung, gegeben die
derzeitige Teilchenzahl, proportional zum Quadrat der derzeitigen lokalen Dichte ist. Da-
her ist es nicht unplausibel, dass beide in derselben ”Universalitätsklasse“ liegen wie das
parabolische Anderson-Modell.

Für Systeme mit allgemeiner zustandsabhängiger Verzweigungsratenratenfunktion
σ(·) treffen wir die Annahme, dass entweder σ nicht-fallend ist oder die Kinderzahlver-
teilung binär, d.h. es gibt stets entweder null oder zwei Nachkommen. Diese Annah-
me garantiert, dass das System “attraktiv” (in der Nomenklatur interagierender Teil-
chensysteme) ist. Wir zeigen, dass für transiente symmetrisierte Individualbewegung
und lim supσ(k)/k2 < β2/Var(ν) das System sich gewissermaßen ähnlich einem klas-
sischen unabhängigen Verzweigungssystem verhält: Es gibt eine einparametrige Schar
von Gleichgewichten, alle mit endlichen zweiten Momenten, und wir beschreiben ihre
Anziehungsbereiche. Diese Ergebnisse liegen parallel zu entsprechenden Resultaten von
Cox und Greven (1994) über interagierende Diffusionen, die man als Skalierungslimes
von Systemen vom Typ 1) erhalten kann.

Darüberhinaus zeigen wir für Systeme vom Typ 1) einen Vergleichssatz, der besagt,
dass für zwei solche Systeme ξ und ξ′, die sich nur in der Verzweigungsratenfunktion
σ(·) ≥ σ′(·) unterscheiden, die Erwartungswerte gewisser konvexer Funktionen der Teil-
chenkonfiguration in derselben Weise geordnet sind. Dieses Ergebnis ist wiederum ein
“Teilchen-Kollege” eines entsprechenden Resultats über interagierende Diffusionen, das
Cox, Fleischmann und Greven 1996 bewiesen haben. Eine unmittelbare Anwendung des
Vergleichsatzes auf die Laplace-Transformierten zeigt, dass ein System um so leichter

99



ausstirbt, je größer seine Verzweigungsratenfunktion ist. Das ist auch intuitiv einsichtig,
da größere Fluktuationen das System schneller an den absorbierenden Rand, nämlich
den Leerzustand, befördern können.

Schließlich wenden wir uns auch Systemen mit zustandsabhängiger Verzweigungs-
rate und rekurrenter Individualbewegung zu, hier erhalten wir aber nur recht partielle
Resultate. Angesichts des Vergleichssatzes und des Verhaltens unabhängiger räumlicher
Verzweigungssysyeme ist klar, das eine solche Population stets ausstirbt, sofern σ minde-
stens linear wächst. Andererseits bleibt die Frage: Kann ein starkes ”Herunterregulieren“
der Verzeigungsrate die ”Klumpigkeit“ der klassischen Systeme verhindern und so lang-
fristiges Überleben ermöglichen? Angesichts des Vergleichsresultats bietet sich hier auf
natürliche Weise der Fall 1b) zum Studium an. Wenn diese sogenannten “lonely bran-
chers” lokal aussterben, dann lautet die Antwort generisch ”nein“. Die Frage nach dem
Langzeitverhalten von Fall 1b) für Z und Z2 wurde ursprünglich von Ted Cox (1998,
private Mitteilung) gestellt, sie ist bis heute offen. Ein denkbarer Ansatz liegt im Stu-
dium der zugehörigen Kallenberg-Bäume: Das System stirbt genau dann aus, wenn der
entsprechende lokal größenverzerrte genealogische Baum lokal über alle Grenzen wächst.
Da wir diese Frage nicht entscheiden konnten, haben wir stattdessen ein Karikaturmo-
dell studiert, bei dem der Stamm des Baumes sich nicht bewegt und die Seitenlinien
nicht weiter verzweigen. Wir klären das Langzeitverhalten dieser Systeme mit selbst-
blockierender Immigration. Der Name rührt daher, dass sie aus unabhängigen Irrfahrern
bestehen, zu denen sich zu den Sprungzeitpunkten eines Poissonprozesses an einen festen
Raumpunkt, einer ”Quelle“, jeweils ein weiteres Teilchen hinzu gesellt, aber nur, wenn die
Quelle derzeit nicht gerade besetzt ist. Es stellt sich heraus, dass die lokale Teilchenzahl
in Wahrscheinlichkeit über alle Schranken wächst genau dann, wenn die Individualbe-
wegung rekurrent ist. Wir vermuten daher, dass auch die wahren Kallenberg-Bäume
klumpen und und die lonely branchers folglich aussterben.

Wir erhalten einige Resultate bezüglich des quantitativen Langzeitverhaltens von Sy-
stemen mit selbstblockierender Immigration mit rekurrenter Individualbewegung, d.h.
wir beantworten (teilweise) die Frage, wie schnell ein solches System wächst, wenn man
es aus der leeren Konfiguration startet. Für positiv rekurrente Individualbewegung zeigt
sich, dass die Gesamtanzahl an Teilchen logarithmisch in der Zeit wächst. Für den inter-
essanten Fall der (nullrekurrenten) gewöhnlichen Irrfahrt auf Z leiten wir mittels Ideen
aus der Theorie der hydrodynamischen Limiten eine ”effektive Gleichung“ für die Teil-
chendichte her, deren Langzeitasymptotik wir analysieren. Dies führt zu der Vorhersage,
dass die Gesamtanzahl in diesem Fall wie C

√
t log t wachsen sollte. Mittels der der aus

der Theorie hydrodynamischen Limiten bekannten Methode der relativen Entropie kön-
nen wir zeigen, dass die Vorhersage mindestens die richtige t-Potenz beschreibt, nämlich
dass das System nicht schneller wachsen kann als t1/2+ε. Diese Wachstumseigenschaf-
ten zusammen mit der ”Invertierung des Karikatur-Schritts“ würden eine interessante
Eigenschaft der eindimensionalen lonely brancher aufzeigen: Die Familie eines zur Zeit
t lebenden Individuums wäre von der Größenordnung

√
t log t, nicht von der Ordnung t

wie im Fall unabhängigen Verzweigens.
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