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Abstract 

In this research we propose a Bayesian networks approach as a promissory classification 

technique for detecting malicious traffic due to Denial of Service (DoS) attacks. Bayesian 

networks have been applied in numerous fields fraught with uncertainty and they have been 

proved to be successful. They have excelled tremendously in classification tasks i.e. text 

analysis, medical diagnoses and environmental modeling and management. The detection of DoS 

attacks has received tremendous attention in the field of network security. DoS attacks have 

proved to be detrimental and are the bane of cloud computing environments. Large business 

enterprises have been/or are still unwilling to outsource their businesses to the cloud due to the 

intrusive tendencies that the cloud platforms are prone too. To make use of Bayesian networks it 

is imperative to understand the ―ecosystem‖ of factors that are external to modeling the Bayesian 

algorithm itself. Understanding these factors have proven to result in comparable improvement 

in classification performance beyond the augmentation of the existing algorithms. Literature 

provides discussions pertaining to the factors that impact the classification capability, however it 

was noticed that the effects of the factors are not universal, they tend to be unique for each 

domain problem. This study investigates the effects of modeling parameters on the classification 

performance of Bayesian network classifiers in detecting DoS attacks in cloud platforms. We 

analyzed how structural complexity, training sample size, the choice of discretization method 

and lastly the score function both individually and collectively impact the performance of 

classifying between normal and DoS attacks on the cloud. To study the aforementioned factors, 

we conducted a series of experiments in detecting live DoS attacks launched against a deployed 

cloud and thereafter examined the classification performance in terms of accuracy of different 

classes of Bayesian networks. NSL-KDD dataset was used as our training set. We used 

ownCloud software to deploy our cloud platform. To launch DoS attacks, we used hping3 hacker 

friendly utility. A live packet capture was used as our test set. WEKA version 3.7.12 was used 

for our experiments. Our results show that the progression in model complexity improves the 

classification performance. This is attributed to the increase in the number of attribute 

correlations. Also the size of the training sample size proved to improve classification ability. 

Our findings noted that the choice of discretization algorithm does matter in the quest for optimal 

classification performance. Furthermore, our results indicate that the choice of scoring function 
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does not affect the classification performance of Bayesian networks. Conclusions drawn from 

this research are prescriptive particularly for a novice machine learning researcher with valuable 

recommendations that ensure optimal classification performance of Bayesian networks 

classifiers.    
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Chapter 1: Introduction 

This dissertation considers the application of Bayesian Network classifiers to Denial of Service 

(DoS) attack detection, and attempts to reformulate the task of DoS attack detection in Cloud 

Computing environments. The purpose of this chapter is twofold, firstly to provide underlying 

reasons for research described in this dissertation and secondly to present research goals. It 

serves as an introduction to the research and to the chapters that follow. Section 1.1 outlines the 

background and motivation for the presented work in this dissertation. The problem statement is 

provided in Section 1.2 and thereafter the aim and research objectives are discussed in Section 

1.3 and 1.4 respectively. Section 1.5 outlines the research questions of this study. The scope of 

the research is presented and clarified in Section 1.6. The final section is devoted for the 

description of the dissertation structure and the conclusion of this chapter. 

1.1 Background Information 

In the past decade cloud computing technology has been a buzzword and has become a major 

fabric of our contemporary lives. Firstly because of its immeasurable importance to large 

enterprises that deliver their services through the cloud like Google, Amazon, Microsoft etc and 

its immediate benefits to the customers or users of cloud services. Secondly cloud computing has 

been buzzy with activities directed at improving management of computational resources in the 

cloud. Large enterprises such as Amazon, Sales Force and Google own vast computational 

resources that need efficient mechanisms put in place to manage and scale up those resources. 

Scalability is particularly important as cloud computing heavily rely on shared infrastructure. 

However as more critical infrastructures for example power grid and air traffic control 

management which are vital to our modern society are migrating to cloud computing 

environments, security concerns at all levels have paralleled the growth of the computing model. 

According to recent reports on Internet security, voluminous and sophisticated intrusions 

targeting the network layer have substantially increased (Citrix, 2014; Alotaibi, 2015). Among 

the various types of intrusive behaviours, the most security breaches are attributed to Denial of 

Service (DoS) attacks (Ismail et al., 2013; Vidhya, 2014; Alotaibi, 2015). Increased situational 

awareness and cyber security solutions in the form of intrusion detection systems (IDS) are 

required to counter these ever growing sophisticated attacks which threaten cloud computing 

environments (Eskridge et al., 2009). Cloud network attacks are considered as intrusions and any 
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endeavour to eliminate the attacks entails first detecting those attacks. ID is a form of security 

management tool that gathers and analyses information with the aim of identifying possible sets 

of malicious activities that could compromise the confidentiality, integrity and the availability of 

computer system resources (Scarfone & Mell, 2007).  ID is thus a front-end line of defence for 

securing computer systems. It is essential for alerting security administrators of impending 

attacks thus ensuring the smooth and efficient running of cloud-based activities. The 

development of IDSes is naturally inclined towards incorporating trade-offs in terms of detection 

accuracy, detection speed etc. Advanced and powerful approaches are required for the ID 

purpose for efficacy and efficient differentiation of normal activities and malicious activities for 

early and accurate detection. Securing of cloud computing environments against DoS attacks is 

realised using ID systems. 

To ensure reliability and availability of cloud computing environments it requires early and 

accurate detection of intrusion attempts. Due to the commercialisation of, the increasing 

popularity and growing dependence on cloud computing by business enterprises, realization of 

an attack has devastating repercussions. Securing of the cloud computing infrastructure has 

therefore become an utmost priority research area for exploration. There are two major 

approaches to intrusion detection: signature-based and anomaly-based (Modi et al., 2013). In 

signature detection, the learning algorithm is trained using a dataset in which each instance is 

labelled as either normal or intrusion. A setback on signature-based approach is that only the 

modelled attack signatures can be detected. In order for the algorithm to detect novel intrusions 

that were not present in the training sample, the signature database must be updated by retraining 

the algorithm with new attack instances. However, in anomaly detection approach the behaviour 

is modelled and any event that deviates from modelled baseline is flagged as intrusive (Modi et 

al., 2013). Although this method is able to detect new attack activities its major problem is that it 

suffers from high rates of false positives which are due to unobserved normal events. In fact 

most methods that have been designed to detect intrusions have a number of setbacks which are 

presented later in our literature review. In section 1.2 the research presents the problem analysis. 

1.2 Problem statement 

The process of intrusion detection usually includes the processes of information gathering 

identification and classification. Classification is one of the core concepts in the field of pattern 
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recognition (Duda, Hart & Stork, 1997; Bishop, 2006). It has been applied in numerous problems 

e.g. document classification, speech recognition, internet search engines etc. Classification is the 

process of taking an instance of a training sample and predicting the class to which it belongs to 

based on its features. A classifier is a function therefore used to perform a classification task. A 

classifier may be used for instance to differentiate between cancerous cells from non-cancerous 

cells. Classifier models are learned from a given training dataset and subsequently used to infer 

the class of instances of new observations. Learning of classifier models has been an active 

research area and numerous researchers have developed classifier models for the intrusion 

detection problem: neural networks (Ryan, Lin & Mikkulainen, 1998; Reddy & Iaeng, 2013), 

rule-based (Arjunwadkar & Kulkarni, 2010), support vector machines (Khan, Awad & 

Thuraisingham, 2007), decision trees (Peddabachigari, Abraham & Thomas, 2004) and Bayesian 

analysis (Barbará, 2001). However, literature points that Bayesian networks are more 

advantageous as a classification approach e.g. the graphical representation of the problem 

domain and the quantification of uncertainty using probability (Uusitalo, 2006).  

A preliminary study on the use of Bayesian networks algorithms in the intrusion detection 

problem is documented by (Barbara, Wu & Jajodia, 2001) and subsequently a number of 

scholars have applied various Bayesian network models for classification of internet traffic 

(Scott, 2004; Moore & Zuev, 2005; Bringas & Santos, 2010). Despite the widespread use of 

Bayesian networks in various fields, the researcher felt there exist uncertainties that need to be 

explored to yield optimal performance of Bayesian networks and consequently the accurate 

detection of DoS attacks.  Most of the concerns are with regards to the impact of the training 

sample size, the choice of discretization approach and the score metric used in the induction 

process on the classification performance (Dougherty, Kohavi & Sahami, 1995; Sordo & Zeng, 

2005; Liu, Malone & Yuan, 2012). The aforementioned factors generally tend to affect the 

predictive power of Bayesian networks, albeit in varying extents commensurate with the factors 

under investigation. Empirical studies conducted on these factors have been analysed and 

observed to produce varying results hence this rendered their findings inconclusive (Sordo & 

Zeng, 2005; Mizianty, Kurgan & Ogiela, 2008; Carvalho, 2009; Bielza & Larrañaga, 2014). 

Notably, the empirical studies were conducted on synthesized datasets or gold standard hence 

making it difficult to make the findings to be universal even in real world applications.  

Consequently, this exposes research gaps in the area of classification capability of Bayesian 



 

4 

networks. Furthermore publications that investigate the connection of structural complexity and 

the classification performance of Bayesian networks point out that the behaviour of a classifier is 

not universally ideal in all problem domains, hence it is important to conduct an empirically 

assessment (Madden, 2009; Bielza & Larrañaga, 2014). This consideration is important with 

respect to the no-free-lunch theorem. Despite the enhancements or augmentation of model 

structurally, this does not universally guarantee an improved in performance. Hence this factor is 

open for investigation. Literature indicates that training sample size is important for learning 

optimal classifiers (Foody et al., 2006). Inasmuch as sufficiently large sample tends to be 

representative of the real world domain and crucial in Bayesian models, it is important for 

learning more accurate probability estimates however it is interesting to note the behaviour with 

training sample size in Bayesian networks. Statistics researchers have pointed out that training 

sample size six times the sample dimensionality is adequate. There is uncertainty in how the 

models behave when inputted with novel examples. Considerations are also on the impact of 

both model complexity and training sample size on classification performance of Bayesian 

networks. 

Studies also reveal disparities on the effect of the type of discretization approach and scoring 

function on predictive ability of Bayesian networks (Yang & Chang, 2002; Flores et al., 2011). 

There are a number of discretization techniques and score metrics to use during the learning 

process. Therefore there is some uncertainty on what is the best choice of algorithm to 

incorporate in the design of Bayesian networks (Liu, Malone & Yuan, 2012; García et al., 2013). 

Flores et al. (2011) describes discretization as a process that strongly impacts Bayesian network 

classification ability in terms of runtime, bias-variance discretization and accuracy. (Friedman, 

Geiger & Goldszmidt, 1997; Madden, 2003) describe scoring functions as factors that affect the 

quality of optimal network structure identified during the induction phase and hence influence 

the performance of Bayesian networks. Numerous studies have been conducted and no 

justifications were provided for choosing a particular algorithm while there are other candidate 

choices. Consequently, this exposes research gaps in the area of classification ability of Bayesian 

networks. 



 

5 

1.3 Aim 

Determine how various factors impact the detection of DoS attacks on the cloud using Bayesian 

network classifiers. This broader aim has been broken down into specific objectives in Section 

1.4. 

1.4 Objectives of study 

 To review issues of DoS attacks in cloud environments. 

 To review Bayesian networks as a method of detection. 

 To determine how the complexity of Bayesian network classifiers affects their 

classification performance. 

 To determine how the training set size impacts the classification performance of Bayesian 

network classifiers. 

 To analyse how discretization approaches impact the classification performance of 

Bayesian network classifiers. 

 To determine how the scoring function impact the classification performance of Bayesian 

network classifiers. 

1.5 Research questions 

1) How do DoS attacks impact the cloud computing environments? 

2) How do Bayesian networks perform classification tasks? 

3) How does structural complexity of Bayesian classifiers affect their classification 

performance?  

4) Does the size of the training dataset impact the classification performance of Bayesian 

classifiers? 

5) Does the choice of discretization technique matter and how is the discretization process 

affected by the training sample size? 

6) Does the choice of scoring function result in better classifiers and how are the score 

metrics affected by the training sample size? 

1.6 Scope of the study 

Data mining algorithms have been used to model IDS. In this study we used Bayesian networks 

for this purpose. The Bayesian based IDSes were applied in securing cloud computing 
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environments. There are a lot of intrusive behaviours that cloud platforms are prone to, however 

this study is limited to DoS attacks. Also this study does not focus on producing a new 

classification algorithm or improving the state-of-the art detection of DoS attacks but our study is 

limited to how the modelling factors of Bayesian networks affect their classification 

performance. 

1.7 Dissertation structure 

The dissertation consists of six chapters inclusive of this introduction chapter. 

Chapter 1: gives the introduction of the research by presenting the background information to 

the study. It outlines the underlying reasons for the research work, presents the problem to be 

investigated and the research scope is also clarified. 

Chapter 2: introduces the cloud computing technology from its definition, its essentials 

characteristics, the service models and the type of clouds. It provides the issues in terms of 

security that mar the cloud technology and thereafter limits the intrusive behaviour to DoS 

attacks. A special section is devoted to describe what DoS attacks are and how they are launched. 

Chapter 3: provides an in-depth literature review of the concept of Bayesian networks. 

Furthermore it introduces the Bayesian networks classifiers, which are Bayesian networks 

adapted for classification tasks. The chapter gives a discussion of the application of Bayesian 

network classifiers in intrusion detection and outlines also the theory on the induction of 

Bayesian networks classifiers. It also introduces the classification concept in data mining which 

is the gist of this study. It thereafter introduces the factors that affect the classification 

performance of Bayesian networks. There is a relationship between classification performance of 

Bayesian networks with the type of classifier, the appropriate size of the training sample set, the 

discretization approach and the score function. This chapter is partitioned into sections that 

discuss the aforementioned factors and the relevant algorithms under study. After each section a 

review ensues of the past work done of the factors that impact classification performance. These 

factors are the focus of the experiments that will be discussed in the later chapters. 

Chapter 4: presents the materials used, methodology followed and experiments conducted in 

this study. 



 

7 

Chapter 5: describes the results and presents the evaluations of the research. The aims of the 

empirical study are stated, described and the results are analysed. Discussions on the 

classification performance of BN under the scenarios of the factors investigated. 

Chapter 6: presents the conclusions drawn from the research and also give the further areas that 

can be explored in this particular study. 

In addition to the chapters outlined above, Appendix A-M gives the snapshots of the output of 

the Friedman test, Nemenyi test and lastly the Boxplot. Appendix N gives the detailed 

characteristics of the NSL-KDD dataset used as our training dataset.  

1.8 Conclusion 

The chapter introduced the research study by providing the relevant background information, 

listing the research objectives and outlined the research questions that will be answered by this 

study. The chapter stated the research scope and concluded with the dissertation structure. An 

extensive review of the cloud computing technology and the concept of DoS attacks ensues in 

Chapter 2.  
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Chapter 2: Cloud Computing 

This chapter introduces the notion of cloud computing and related underlying concepts. 

Furthermore, it introduces the cloud essential characteristics, the service models and lastly the 

type of clouds. Presented also are the issues in terms of security that characterise the cloud 

computing environments. It also discusses the concept of DoS attacks and their detection. 

2.1 The notion of Cloud Computing 

Computing has undergone a series of major innovations since its inception. Throughout the 

history of computing, there have been several quests to obviate computer hardware needs from 

users and detach them from time-shared computing (Zissis & Lekkas, 2012a).  It is to that end 

that we have witnessed the emergence of cloud computing. The cloud technology is the latest 

innovative and distributed computing paradigm in which dynamically scalable and virtualized 

resources are accessed as a services over the Internet (Kim & Korea, 2009; Shahzad, 2014). At 

its simplest state, Cloud computing is basically a means through which computational power, 

storage, collaboration infrastructure, business processes and applications are consumed as 

services from anywhere through an internet connection. The cloud technology leverages end-

users from their local hardware requirements and in the same vein diminishing overall 

requirements and complexity on the client-side. Basically this contemporary paradigm seeks to 

provision computing capabilities (Vaquero et al., 2009). The key capabilities are elaborated on in 

the ensuing section as essential characteristics. 

2.2 Definition of Cloud Computing 

The term cloud computing was coined from the cloud symbol that is traditionally used to depict 

the Internet in flowcharts. Presently, migration to the cloud has reached an advanced stage with 

end-users storing their personal data such as bookmarks, photographs and their music file etc. on 

datacenters accessible via the internet. The foundation of the cloud computing technology is 

virtualization (Zissis & Lekkas, 2012a). Virtualization is a technology that was conceived in the 

late 1960s. A synopsis of the virtualization technology entails abstraction of the computing 

resources of services from the underlying operating system (Pearce, Zeadally & Hunt, 2013).  

There are a number of definitions that are associated with cloud computing. The web is awash 

with efforts to pen down a stable definition that grips the essence of the distributed, elastic 
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computing paradigm. At its broadest level cloud computing is “A standard IT capability 

(services, software or infrastructure) delivered via the Internet technologies in a pay-per-use, 

self-service way”(Scarfone & Mell, 2007, p. 2; Badger et al., 2011, p. 1). 

The definition of cloud computing describes some of the essential characteristics, three service 

models and four deployment models (Badger et al., 2011; Hogan et al., 2011): 

 Essential Characteristics:- 

o On-demand self-service: end-users can provision computing resources such as 

network bandwidth and storage on-demand (as needed) in an autonomous mode 

without human intervention from service providers. 

o Broad network access: computing resources are available over networks and can 

be consumed through standard mechanisms that permit the use of different client 

platforms e.g. mobile phones, tablets, laptops, and workstations 

o Resource pooling: the cloud service provider’s cloud resources are pooled to 

serve end-users using a multi-tenant model that has different physical and virtual 

resources dynamically assigned and reassigned based on the customer’s demand. 

In a multi-tenant architecture, customers share the underlying infrastructure. 

o Rapid elasticity: computing resources can be rapidly scaled up or down at any 

given time. To the client, the cloud resources are seemingly an infinite pool that 

can be consumed in any quantity at any time. 

o Measured service: the usage of computing capabilities by cloud clients is 

monitored, controlled and reported by a metering system. The metering system 

reports the type of service consumed e.g. storage, processing and provides 

accurate and transparency to both the cloud vendor and client. 

 Cloud Computing Service Models – In the stead of products, in cloud computing we 

speak of services and there are basically three categories of service models as illustrated 

in Figure 2.1. With respect to the OSI model, the physical layer is the first or lowest 

layer. The first service model layer is known as the Infrastructure as a Service (IaaS). 

 IaaS – it is the first and lowest level service available to a cloud computing 

consumer and provides controlled access to a virtual infrastructure upon which 

operating systems and application software can be deployed. 
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 PaaS – it is situated above the IaaS. The layer is for deployment of consumer-

created applications and also tools provided by the vendor. The vendor 

exclusively manages or controls the underlying cloud infrastructure such as the 

network, operating system, servers and storage but however assigns consumers 

with control rights over the hosted applications and their application hosting 

platform configurations.  

 SaaS – it permits the consumer to access the vendor’s application hosted on the 

cloud infrastructure. The hosted applications can be consumed by use of a thin 

client interface, for instance a web browser. Consumers have no control rights 

over the underlying infrastructure but are however permitted to alter the 

application configurations. 

 Types of Cloud Computing – there exist three types of cloud computing (Furht & 

Escalante 2010) as depicted in Figure 2-1. 

 

Figure 2-1: Cloud computing model (Shahzad, 2014) 

 Public cloud - also known as the external cloud. The cloud resources are 

accessible to the public. Basically, public clouds are generally under the control of 

a third-party which sells the cloud services. 

 Community cloud – the cloud deployment is a collaboration of different 

organizations and is made available to cater for concerns of a specific community. 

Usually managed by either the involved organizations or a third party and may be 

deployed on site or otherwise. 
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 Private cloud – refers to a cloud deployed for a private organization. They are 

basically built for use by exclusively one client, powered with full control over 

data, security, and quality of service. The cloud infrastructure may be managed or 

controlled by the organization or a third party. It may be situated on site or off 

site. 

 Hybrid cloud – it is generally an environment that is a fusion of public, 

community, or private cloud models. The clouds each with its unique 

characteristics are integrated together by a standard that ensures the portability of 

the data and applications between the clouds.  

2.2.1 Issues for Cloud Computing  

Typically like any new technology, there exists limitations by which benefits can be achieved 

and a new approach may come with unique additional challenges. Since cloud computing is in its 

infancy, still maturing, it has not been spared in this respect. The implementation of cloud 

computing is thus marred with critical issues. One of the issues is taking critical applications and 

sensitive data, to public and shared cloud environments. From a consumer’s point of view there 

are a lot of discrepancies on security and trust that are currently inherent in the technology. Many 

users have mixed feelings about the location and storage of their data. 

2.2.1.1 Security in the Cloud  

Despite the positive business and technical implications associated with cloud computing, 

security, trust and privacy are notably the prime hurdles that avert the widespread adoption of the 

technology (Zissis & Lekkas, 2012a; Khalil, Khreishah & Azeem, 2014). Arguably the most 

critical security issue in Cloud Computing is detecting malicious activities at the network layer 

(Subashini & Kavitha, 2011; Zissis & Lekkas, 2012b; Fernandes et al., 2014). Adversaries 

exploit the existing cloud vulnerabilities and consequently temper with the confidentiality, 

availability and integrity of cloud resources and offered services. IaaS is the core tier for the 

other service layers in the cloud. Without a strong protection mechanism embedded in this layer, 

the security of other cloud layers is compromised. It is to that end that, various IaaS vendors are 

at task to develop defense schemes that will ensure the protection of their customer’s data and 

applications. Cloud security has thus been widely discussed in industry and academia (Vaquero 

et al., 2008; Pearce, Zeadally & Hunt, 2013; Sen, 2013). An IDC survey depicted in the Figure 2-
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2 below reveals that cloud security is the greatest challenge that is preventing many 

organizations from migration to the cloud (Ramgovind, Eloff & Smith, 2010). 

 

Figure 2-2: Cloud adoption challenges  

The Cloud computing environments have brought about certain specific challenges when it 

comes to the nature of cyber-attacks in the form of theft-of-service (Gruschka & Jensen, 2010), 

Denial of Service (Khorshed, Ali & Wasimi, 2012; Deshmukh & Devadkar, 2015), cloud 

malware injection (Zunnurhain & Vrbsky, 2011; Qaisar & Khawaja, 2012), cross VM side 

channels (Zhang et al., 2012), target shared memory (Khalil, Khreishah & Azeem, 2014) and 

phishing (Gonzalez et al., 2011).  

To date there are several security mechanisms that have been put in place by cloud providers. 

First and foremost, physical security measures need to be established on-site to protect 

datacenters from break-ins and other physical violations. Network security uses approaches 

including firewalls and IPSes which are deployed to analyze network traffic and safeguard data 

in transit. Deployed also are IDSes to alert network administrators of malicious intrusion 

attempts (Khalil, Khreishah & Azeem, 2014) and honeypots to detect and thereafter deflect any 

attempts to unauthorized use of networks.  
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2.3 Anatomy of Denial of Service attacks 

Our contemporary society is largely dependent on the reliability of the Internet, so are the cloud 

computing environments. It has been proved that it is not adequate to secure communications 

from eavesdroppers or guard it from being infected with viruses. Traditionally, the security 

fraternity paid most attention on confidentiality and integrity of information and largely 

overlooked Denial of Service (DoS) attacks. DoS attacks have become a prevalent security threat 

that is associated with instability of the internet (Ismail et al., 2013). 

2.3.1 What is a Denial of Service? 

Denial of Service (DoS) is a form of attack that disrupts a legitimate activity and makes sure that 

information or data is not available to its intended users (Specht & Lee, 2004; Abliz, 2011). The 

attack paralyses normal services and consequently affecting the usability and reachability of 

network services such as web, mail, voice and data. DoS attacks tend to tarnish the reputation of 

the service provider. There are several methods that are used to implement this attack. A DoS 

attack is executed by sending useless messages to a target host so as to interfere with its 

operations, thus making it to crash or process useless operations. The attack renders a machine or 

a network resource to be unavailable or to extremely slow for use by legitimate users (Mirkovic, 

2003).There are however other ways with which services are made to be inaccessible rather than 

just sending an avalanche of IP packets. This involves the exploitation and attacking of various 

loopholes that exist on the victim to make it unstable. 

2.3.2 DoS attacks mechanisms 

There are basically two ways which are used to interfere with a legitimate operation (Douligeris 

& Mitrokotsa, 2004):- 

a) Exploitation of vulnerability inherent on a target machine or application - this entails 

sending messages made in a specific manner to take advantage of a given vulnerability. 

b) Sending vast number of messages so as to consume some key resource – useless traffic is 

sent to a key resource such as CPU time, bandwidth, and memory at the target machine. 

It is therefore that target applications, host or network spends critical resources 

processing malicious traffic and not attending legitimate clients. 
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2.3.3 Network Flooding  

To prevent the exploitation of a vulnerability, simply patching of the system vulnerability is 

required. It is however difficult to manage flooding-based DoS attacks. Presently, it is easy to 

launch flooding-based attacks on the Internet because attack tools such as hping and nmap are 

readily available and easy to use. Basically any Internet user can use them with great ease.  

Discussed briefly below are common flooding-based DoS attacks: 

 UDP flood entails sending an overwhelming number of UDP packets with spoofed source 

IP addresses to either random or specified ports on the victim machine (Specht & Lee, 

2004). The spoofing of the attacking packets helps to hide the identity of the secondary 

victims due to the fact that the return packets from the victim host will be sent to the 

spoofed addresses.  

 ICMP flood follows a similar mechanism and depicts a behavior similar to that of the 

UDP flood (Bogdanoski & Risteski, 2011). Basically, large volumes of 

ICMP_ECHO_REPLY packets are generated and directed to a victim machine. The 

essence of the attack is to ensure that the number of ICMP_ECHO packets significantly 

saturates the CPU and network resources such as bandwidth of the victim network 

connection to make full responses. Smurf attack is a well-known instance of ICMP flood 

(Bogdanoski & Risteski, 2011). 

 Lastly, TCP flood is a form of DoS attacks that exploits the vulnerability inherent in the 

implementation of the TCP protocol. The most prevalent instance of TCP flood is the 

TCP SYN flood. It takes advantage of the vulnerability in TCP’s three-way handshake 

process and its inability in maintaining half-open connections (Divakaran, Murthy & 

Gonsalves, 2006). Figure 2-3 shows the diagram of a three-way handshake. 
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Figure 2-3: TCP three-way handshake (Divakaran, Murthy & Gonsalves, 2006) 

The mechanism of the three-way handshake as per TCP connection is described in-depth below. 

a) The client initiates the connection by sending a TCP-SYN packet to the server to request 

a service. 

b) Upon reception of the SYN packet, the server enters into a SYN-RECEIVED mode and 

allocates a Transmission Control Block (TCB) to store the information about this 

connection and subsequently responds to the connection request with a SYN-ACK 

packet. 

c) Lastly, in normal and legit conditions, the client sends an ACK upon reception of the 

SYN-ACK packet from the server and thus finalizes the establishment of the connection 

with the server. 

2.4 Detection method  

This section aims to deliver an overview of the security schemes that are designed for the 

detection of DoS attacks. For the purpose of detecting DoS attacks, detection can be achieved 

through the use of two complementary strategies namely (Butun, Morgera & Sankar, 2013):   

 signature-based  

 anomaly-based 
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2.4.1 Signature-based detection 

It is also known as misuse-based detection. Its quest is to detect an attack by defining or 

modeling a set of rules or signatures or predefined profile baselines that can be used to compare 

with a given behavior to decide whether it is intrusive (Paxson, 1999; Modi et al., 2013). This 

approach is characterized by high detection rates and low number of false positives. A slight 

deviation or variation in the intrusive behavior may however by-pass the detection system. It is 

thus to that end that signature-based engines are an efficient solution for the detection of known 

attacks but they have no capacity to detect unknown attacks. The approach requires constant 

maintenance and updating of signature engines. 

2.4.2 Anomaly-based detection 

Anomaly-based detection is basically concerned with identifying behaviours or events that might 

be anomalous with respect to normal behavior (Modi et al., 2013). The approach is based on the 

assumption that intrusive patterns differ mathematically or statistically with normal behaviours. 

The classifiers used to detect the anomalous activities are modeled from advanced mathematical 

or statistical techniques. For example, normal network traffic can be collected over a period of 

normal operations and thereafter a modeling technique is applied to build the normal network 

profiles. During the detection phase, any degree of deviation between the current network flow 

and the modeled normal network profiled is calculated. In the event that the deviation overshoots 

past a pre-set threshold, the current network flow will be flagged as an intrusive pattern. 

Anomaly detection systems have the advantage that they can detect previously unknown events, 

zero-day attacks.  

2.4.3 DoS detection in cloud computing 

According to CSA (2010), DoS attacks top the list of threats to cloud computing environments. 

Worldwide Infrastructure Security Reports reveal that 94% of cloud computing clients have been 

subject to security attacks. Notably, 76% of the attacks are DoS related attacks (Deshmukh & 

Devadkar, 2015). About 43% experienced partial or total infrastructure outages due to DoS 

related attacks (Deshmukh & Devadkar, 2015). Many prominent websites such as Yahoo, 

Facebook and Twitter have been affected by DoS attacks. Not only have DoS attacks become 

more prevalent, they have intensified in destructive capacity. Numerous detection methods have 

been constructed to counter DoS attacks in cloud platforms. There exist many solutions towards 
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DoS traffic detection and each based on differing ideas. Below are synoptic reviews of 

publications of techniques used to detect DoS attacks on the cloud. 

Lonea, Popescu & Tianfield (2013) applied the Dempster-Shafer theory based IDS to detect DoS 

attacks on the cloud. Their solution proved to be efficient in reducing false alarm rates in their 

detection. (Ismail et al., 2013) implemented a cloud-IDS based on Covariance Matrix approach 

to detect DoS attacks. The algorithm was used to model a traffic profile for normal activities. 

Their results indicate that the approach is quite effective for detecting abnormal activities.  

Navaz, Sangeetha & Prabhadevi (2013) constructed an entropy based anomaly detection system 

for detecting DoS attacks on the cloud. Artificial Neural Networks (ANNs) are a machine 

learning technique inspired by the observation from the human nervous system with an 

interconnected web of neurons (Moyo & Sibanda, 2015). ANN have been successfully applied in 

the detection of DoS attacks, such as the work presented by (Alfantookh, 2006). The authors of 

(Ahmad et al., 2009) conducted a study on the use of multiple layered perceptron architecture 

with resilient back propagation for modeling a detection system. In comparison with other neural 

network approaches, the resultant tool has better performance with more accuracy and precision 

on the detection rate of DoS attacks.  

2.5 Conclusion 

This chapter gave an introduction to the cloud computing technology. The underlying concepts 

were stated and a comprehensive definition was provided. The essential characteristics, service 

models and the four deployments of the cloud were outlined. This chapter also gave a review of 

issues associated with cloud computing technology. Security challenges and the vendor security 

mechanisms were discussed in this chapter. Finally the chapter ended by discussing the anatomy 

of DoS attacks and how the attacks are launched. Furthermore, DoS detection on the cloud was 

briefly discussed. The information presented is essential in order to appreciate and understand 

the case-study area of this study. Chapter 3 will deal with the theoretical background and 

literature of the fundamental of Bayesian networks. 
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Chapter 3: Bayesian Networks Theory 

The focal point of this study revolves around the concept of Bayesian networks. Bayesian 

networks are a member of the graphical models family and they are used to capture domain 

knowledge for reasoning and decision making in environments fraught with uncertainty. 

Uncertainty arises as a result of vagueness and missing or incomplete knowledge in stochastic 

environments. The probability theory coupled with the statistical analysis in Bayesian networks 

offer an antidote to the problem of uncertainty hence, making it possible to draw conclusions. 

Probability is the underlying core of Bayesian network theory and thus a synoptic review of the 

probability theory will precede the in-depth introduction to Bayesian networks. The inductive 

learning of accurate Bayesian network classifiers is an important goal in the field of machine 

learning. Several factors have been noted to adversely impact the classification performance 

hence the primary focus has been drawn to investigating the influences on the accuracy of BN 

classifiers. In this chapter we review literature of the existing research on the classification 

accuracy of Bayesian network classifiers. Much attention will be on the factors outlined in the 

objectives by which the research work is based. Incredible interest is on the model complexity, 

type of discretization approach, on sample size and lastly the type of scoring function used. We 

carefully review previous work done by academia and industry in various case studies. The aim 

is to identify the approaches used in each case study. The chapter is outlined as follows. The 

primary concepts of the probability theorem are briefly discussed in Section 3.1. The definition 

of Bayesian networks based on literature will be provided in Section 3.2. Section 3.3, the 

notation of Bayesian networks which is of interested in this dissertation will be given. Section 3.4 

addresses the foundation of Bayesian networks and the generic flow of information in Bayesian 

networks. The various kinds of probabilistic inference and variable elimination algorithm are 

discussed in Section 3.5. Bayesian parameter and structure learning are in discussed in Section 

3.6.  

3.1 Probability theory 

Mathematics provides the foundation of the probability theory. It was conceived more than two 

thousand years ago and has been a foundational block of all sciences. Probability theory is highly 

recommended for empirical studies fraught with uncertainty. It provides a rational framework for 

making intelligent decisions in uncertain environments. Heckerman (1996) states that probability 
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is the degree of belief in an event and it can be expressed on a linear scale with a range from 0 to 

1. There are two schools of thought in interpreting probability: frequentism and Bayesianism. 

Frequentists interpret probability as a measure of the frequency of trials while Bayesians view 

probability as a subjective measure of the outcome of a trial. The probability theory is one of the 

core components of Bayesian networks. Before we delve into the theory of Bayesian networks, it 

is imperative to commence by reviewing the underlying principle which is the Bayes’ theorem in 

the ensuing section.  

3.1.1 Bayes’ theorem 

For a better understanding of the Bayesian networks, it is a prerequisite to familiarize with some 

notions about the Bayesian theory. The Bayesian theory dates back from the eighteenth century 

and this work is attributed to the English statistician Reverend Thomas Bayes.  

The Bayes theorem is  

  ( | )  
 ( | ) ( )

 ( )
                                                  (   ) 

where  

   ( ) is the prior probability or marginal probability of X. 

  ( | ) is the conditional probability of X given Y. It is also known as the posterior 

probability because it is dependent on the specified value of Y. 

   | ) is the conditional probability of Y given X. 

  ( ) is the prior or marginal probability of Y, acts as a normalizing constant. 

Intuitively, the Bayes’ theorem is a description of an observer’s beliefs of an event X is updated 

by the occurrence of event Y. Bayes’ theorem is used to compute ―inverse probability‖. This 

means that if the conditional probability  ( | ) is known, consequently the probability of 

 ( | ) can be computed. The formula basically all entails an overall summary of the theory 

behind Bayesian tool internals. 
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3.2 Bayesian Networks 

After the discussion on the Bayesian theory, this section is devoted to explaining the term; 

Bayesian networks. The question is posed, “What are Bayesian networks?”. Literature is awash 

with differing definitions on what the term Bayesian networks refers and notably all the 

formulations amount to the same thing. Pearl (1993) coined the term ―Bayesian Networks‖ in 

1988. He referred Bayesian networks as (Pearl, 1993, p. 52): 

“A probabilistic network (also referred to as a belief network, Bayesian network or causal 

network) consists of a graphical structure, encoding a domain’s variables and the qualitative 

relationships between them, and a quantitative part, encoding probabilities over the variables”. 

The above statement is one of the simple, used and most cited definitions of a Bayesian network. 

In this dissertation, the term Bayesian networks will stand in for all the terms such as causal 

networks, belief networks that are interchanged in most literature articles. 

Heckerman (1996, p. 1) introduced a simpler, shorter definition of the Bayesian network which 

he stated as follows: 

“Bayesian network is a graphical model for probabilistic relationships among a set of 

variables.” 

Korb & Nicholson (2004, p. 26) proposed a more recent definition of Bayesian network which 

he stated as follows: 

“A Bayesian network is a graphical structure that allows us to represent and reason about an 

uncertain domain.” 

Korb & Nicholson (2004)’s definition provides a broader definition that introduced the term 

reasoning which adds a new dimension to the concept of Bayesian networks. Basically this 

implies that new observations will allow updating of knowledge and the belief embedded in a 

Bayesian network thus Bayesian networks can therefore be used for reasoning in environment 

marred with uncertainty based on probabilities. 

Bayesian algorithms offer the following advantages for data analysis especially when coupled 

with statistical techniques (Heckerman, 1996, 1997): 
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 They are readily capable of handling scenarios where there are missing data entries 

because the model can encode dependencies among all the modelled variables. For 

instance take into account a classification problem where two input variables are strongly 

anti-correlated. The correlation is not a challenge for standard supervised learning 

techniques, provided all input are measured in every case. In the event that one of the 

inputs is not measured, most models tend to produce an inaccurate prediction because 

they do not encode the correlation between the input variables. Bayesian networks, 

however offer a natural way to encode such dependencies. 

 They allow the learning of causal relationships and thus providing an effective way to 

gain understanding of the problem domain and consequently allow predictions to be 

made on the presence of new evidence. 

 When coupled with Bayesian statistics, they present an ideal framework that combines 

domain knowledge and data because the model is embedded with both causal and 

probabilistic semantics. Bayesian networks have a causal semantics that makes the 

encoding of causal prior knowledge fairly straightforward. Additionally, Bayesian 

networks quantize the strength of causal relationship using probabilities.  

 Bayesian statistical methods coupled with Bayesian networks impart efficacy and a 

principled approach to evading the over-fitting of data.  

The following section introduces Bayesian networks by an extensive discussion from the first 

principles. 

3.3 Notation  

Bayesian networks are a formalism that provides a powerful framework for modelling 

relationships among random variables in domains fraught with uncertainty.  They provide a 

representation of joint probability distribution on the modelled variables. Bayesian networks are 

a dual-concept model that consists of the qualitative component where features from the graph 

theory are implemented and an associated component which comprises of real-valued functions 

over all the modelled variables on the graph. A Bayesian network built for a set of variables 

  *          + has the following properties (Heckerman, 1996): 
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1. A network structure   that encodes a set of conditional independence assertions about   

random variables in  . 

2. Each variable has an associated local probability distribution  . 

The abovementioned properties define the joint probability distribution for     The structure   is 

a directed acyclic graph. The variables in   are in a bijection function with the variables  . The 

term    is used to denote a variable and its corresponding variable.     denotes the parents of the 

variable    in   as well as the corresponding variables of those parents. A lack thereof of an arc 

in structure   encodes conditional independencies. The probability distribution for   given 

structure   is given by 

 ( )   ∏ (   |   )

 

   

                                                   (   ) 

Equation 3.2 represents the local probability distributions   which is a product of individual 

variable distributions. Together the structure   and the probability distribution   encode the joint 

probability distribution  ( ). 

In a Bayesian network, the probabilities encoded maybe either Bayesian or physical. If a 

Bayesian network is constructed solely from prior knowledge, the probabilities encoded will be 

Bayesian. When a network is built from data, the structure will be encoded with physical 

probabilities. The focus of this research we focus on learning a Bayesian network and its 

corresponding probabilities from data. In subsequent sub-section, we present a discussion on 

constructing a network from data. 

In building a Bayesian network, a directed acyclic graph is constructed that encodes the 

conditional independence assertions. Using the chain rule of probability: 

 ( )   ∏ (  |            )

 

   

                                      (   ) 

This basically means that for every   , there is a corresponding subset    ⊆ {         + such 

that    and *            +   are conditionally independent given   . Therefore for any  : 

 (   |              )   (  |   )                                      (   ) 
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Equation 3.3 and 3.4 combined will result in 

 ( )   ∏ (  |   )

 

   

                                                           (   ) 

A comparison of Equation 3.3 and 3.4, we observe that the variable set (       ) corresponds 

to the Bayesian network parents (         ). This will specify the edges linking the variables 

in structure  .  

According to Heckerman (1997), the structure   is dependent on variable ordering and the 

variables of interest        . The approach suffers from a major challenge in that if the 

variable ordering is chosen without care, the resultant network structure may specify less 

conditional independencies among the variables. There are    possible variable orderings to 

explore and seek for the best one. Beside the variable ordering approach for constructing a 

Bayesian network, there exists another approach that derives a network from observations.  

Experts will model a Bayesian network for a given set of variables by simply drawing edges 

connecting variables in a cause and effect relationship. The final phase in constructing a 

Bayesian network involves encoding the associated local probability distributions  (   |    ).  

The arc-direction in Bayesian networks represents causal dependency between variables. Events 

in a domain are represented as variables. The events are connected by directed edges. An edge is 

a representation of the causal relationship between the events and the direction of edge is from 

the cause to the effect. In Bayesian networks, there exists a parent-child relationship if there is an 

edge from the former to the later. The degree of the strength of the parent-child connections are 

quantitatively determined by use of probability values. These values are automatically updated as 

new information is observed. 

3.4 Conditional Probabilities 

Bayesian networks are a formalism capable for reasoning under uncertainty by use of a graph 

structure that will present the relations between events. Bayesian networks handle uncertainty in 

its structure through the use of conditional probabilities. 

A variable   with   states           , the probability distribution  ( ) over these states is 

represented as: 
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 ( )   (          )        ∑                                              (   )

 

   

 

where     represents the probability of    being in a state.  

The fundamental rule of probability 

 ( | ) ( )   (   )                                                                   (   ) 

where  (   ) is the probability of the event   and  . Furthermore,  ( | ) ( )  

 ( | ) ( ) this consequently leads to the Bayes’ rule: 

 (   )   
 ( | ) ( )

 ( )
                                                                (   ) 

The probabilities are elicited from a domain expert (Stefanini, 2008; Paulson et al., 2011) or can 

be induced from a from dataset (Cooper & Herskovits, 1992a; Heckerman, 1996).  

Bayesian networks provide a concise and composite representation of a domain and its 

uncertainty. Any subset of the modeled variables can be conditioned upon reception of new 

information or evidence. Bayesian networks support the ―flow of information‖, reasoning, in any 

direction. During the inference process, any variable may be a query variable and can also be an 

evidence variable as well. In a probabilistic network, the model will compute the posterior 

probability for the query variables given the evidence variables.    

3.5 Bayesian Networks as classifiers 

Bayesian network classifiers are a special kind of Bayesian networks tailored for classification 

tasks (Friedman, Geiger & Goldszmidt, 1997). With Bayesian network classifiers, the 

conditional probabilities for node are a quantization of the attribute dependencies given their 

parents. A feature which consists of attributes *             + is represented as variables in a 

Bayesian network and (             )  are the attribute values of an instance   . The 

classification node C is always the top node in a Bayesian network. Let the value of C for 

instance E be c. According to equation 3.9, a Bayesian network classifier is defined as 

 ( )         
   

 ( ) (          | )                                   (   ) 
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3.5.1 Naïve Bayes Classifiers 

The simplest type of Bayesian network classifier is the Naïve Bayes (NB) classifier (Langley, 

Iba & Thompson, 1992; Friedman, Geiger & Goldszmidt, 1997) (See Figure 3-3) since 

conditional independence given the class is assumed amongst modelled variables.  In NB, there 

exist connections only from the parent node to the child nodes. No connections are permitted 

between any pair of child nodes and this concept is prominently referred to as the conditional 

independence assumption. By conditional independence we are referring to independence 

probabilistically;   is independent of   given   whenever  ( |   )   ( | ) for all possible 

values of     and  , whenever  ( )   .  Due to its simple structure, building a NB is done 

with ease and it does not require a structure learning algorithm. Thus,  

 ( | )   ( )∏  (  | )                                                          (    )

 

     

 

NB classifies using maximum a posterior (MAP) hypothesis by selecting: 

      
  

  (  )∏ (  |  )

 

   

                                              (    ) 

The independent assumption accounts for the simple and computational efficiency of the NB 

model. Despite that the attribute independence assumption being grossly violated in the real-

world, literature Langley, Iba & Thompson (1992) reveals that NB performs remarkably well 

across various domains. 

 

Figure 3-1: NB 
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NB classifier learns from the training data, the conditional probability of each variable    given 

the class variable C. Any classification is performed through the application of the Bayes’ 

theorem which computes the probability of C given the particular instance of             , 

and subsequently predicts the class with the highest posterior probability using: 

 (  | )   
 (  ) ( |  )

 ( )
  

 (  ) ∏  (  |  )
 
   

∑  (  )∏  (  |  )
 
   

   
 

                      (    ) 

where   is the number of classes,   is the number of variables and  (  |  ) is the calculated 

conditional probability of an observed event’s variable    given the class   . With respect to the 

conditional independence assumption, conditional probabilities are multiplied and this results in 

a reduced less expensive learning process. After the computation of  (  | ) for each class, the 

induction algorithm assigns an instance to the class with the highest probability. 

At training time, NB algorithm generates a one-dimension with a time complexity  (  ), where 

  is the number of training examples. The space complexity is  (   ) where   is the average 

number of values per attribute and   is the number of classes. The resulting time complexity at 

classification time is  (  ), while the space complexity is  (   )   

3.5.2 Tree Augmented Naïve Bayes Classifier 

The supposition of conditional independence among attributes given the class in the training set 

does not hold true in real life domains. However, the classifier performs outstandingly in practice 

even in datasets with strong attribute correlations. Friedman, Geiger & Goldszmidt (1997) 

introduced the tree augmented Naïve Bayes classifier (TAN) as a natural enhancement of the NB 

classifier (Friedman, Geiger & Goldszmidt, 1997) (See Figure 3-2). TAN classifier is based on a 

NB classifier structure and the restricted family of Bayesian networks in which the classification 

variable has no parents and each of the child attribute has as parents the class attribute and at 

most one other attribute. As depicted in the Figure 3-2, there exists a edge in the structure from 

   to   . This implies that the conditional independence in TAN has been relaxed been attribute 

   to    . Therefore the attribute    influences the class probabilities of attribute   . It is that end 

that the posterior probability  ( |       ) takes into account all the involved variables. Edges 

among the attributes are taken into consideration as to account for the correlations among the 

attributes. In a structure of   attributes,     edges are added to relax the independence 
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assumption (Friedman & Goldszmidt, 1996). The learning procedure of the TAN classifier is 

described in-depth in Algorithm I adapted from (Flores et al., 2011). 

 

Figure 3-2: TAN 

Algorithm I The TAN algorithm 

   1: Calculate   (       ) for each pair of attributes (        where      1…  ) 

   2: Build a complete undirected graph (UG) with all the   attributes 

   3:   arc connecting    and   assign the weight   (       ) 

   4:{CHOW AND LIU ALGORITHM: Maximum Weight Spanning Tree} 

   5: Add the two arcs with maximum weight 

   6: while (arc_in_BN ≤ (n – 1)) do 

   7:       add the arc with maximum weight if not cycle in BN 

   8: end while 

   9: Transform the UG into a directed graph (DG) selecting a root 

 10: Complete the DG adding C and arcs from C to   ,    

 11: Compute the CPTs 

 

It is considered a fair trade-off between model complexity and model accuracy. At training time 

TAN generates a three dimensional table with a space complexity  ( (  ) ). The time 

complexity of forming the three-dimensional probability table is  (   ) and  (     )of 

creating the parent function. A maximum spanning tree is then generated with time complexity 

 (      ). At classification time TAN only needs to store the probability tables with space 

complexity  (    )  The time complexity of classifying of a single example is  (  )  



 

28 

3.5.3 Averaged One Dependence Estimators (AODE) 

AODE is regarded as an improvement of NB (Webb, Boughton & Wang, 2005). As stated 

previously the conditional independence assumption in NB is highly violated in the real datasets 

and this consequently leads to Equation 3.10 incurring significantly high error rates. Lazy 

Bayesian Rules (LBR) (Zheng & Webb, 2000) and Super-Parent TAN (SP-TAN) (Keogh & 

Pazzani, 1999) are some of the resultant approaches in the quest of obviating the error problem. 

They both rely on relaxing the conditional independence assumption in NB. In-depth discussions 

of LBR and SP-TAN are found in their respective publications cited. Webb, Boughton & Wang 

(2005) states that although the training of LBR and SP-TAN is associated with low error rates, 

their computation are undesirably expensive. This is mainly attributed to (1) model selection (2) 

probability estimation. AODE is an enhancement of both LBR and SP-TAN approaches. It 

achieves its efficiency by restricting its search space to 1-dependence classifiers only. This thus 

obviates the model selection problem. To this end, computation is greatly minimised. However, 

1-dependence classifiers require that each variable to have one other variable as parent and the 

specific attribute must be selected. To solve this problem, a limited number of 1-dependence 

classifiers are selected and aggregated. In principle, AODE exclusively accommodates models 

characterized by pair-wise attribute interdependencies. The model is therefore regarded as an 

ensemble of all dual parent models with one of the attributes as one of them (see Figure 3-3).  

 

Figure 3-3: AODE 

Given a set of random variables             , to estimate the probability of C we use the 

formula: 

 ( |       )   
∑  (    )∏  (  |    )

 
            (  )  

∑ ∑  (     )∏  (  | 
    )

 
            (  )      

                    (3.13) 



 

29 

At training time, AODE has a  (   ) time complexity, whereas the space complexity is 

 ( (  ) ). The resulting time complexity at classification time is  (   ), while the time space 

complexity is  ( (  ) )   

3.5.4 General Bayesian Networks 

Discussed in previous sections are Bayesian network classifiers belonging to the restricted 

family. Generally, the maximum number of parents that a node is designed to have is relatively 

low. Their main difference from other Bayesian classification models is in the manner in which 

P(  |  ,   ,…,   ,C) is computed. The main advantage of this family of semi-Naïve Bayesian 

classifiers is the convenient trade-off between accuracy and computational time. With GBN 

classifiers, an exhaustive search for the network structure using inductive learning algorithms 

such as hill climbing which performs arc addition, deletion and reversal (Buntine, 1996). GBN 

classifier models are learnt when the maximum number of parents is greater than 2. A visual 

notable feature with GBN classifiers is that the classification node    is just like other random 

variables           (Madden, 2009) (see Figure 3.4).  

 

Figure 3-4: GBN 

The learning procedure associated with GBN adapted from (Cheng & Greiner, 1999) is outlined 

in Algorithm II. 
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Algorithm II The GBN Algorithm 

   1: Take the training set and the  feature set (along with the node ordering) as input 

   2: Call the (unmodified) CBL1 algorithm 

   3: Find the Markov blanket of the classification node  

   4: Delete all the nodes that are outside the Markov blanket 

   5: Learn the parameters and output the GBN 

 

3.6 Learning Bayesian Networks 

Induction of Bayesian networks from data is an attractive field of research that has attracted a lot 

of research over the last decade (Heckerman, Geiger & Chickering, 1994; Peña, Björkegren & 

Tegnér, 2005). Learning of Bayesian network is two-fold: 

1. Learning the graphical structure 

2. Parameter learning 

It is rather a trivial exercise to learn the parameters that are optimal for a given graphical 

structure given the training dataset. The learning algorithm makes use of the empirical 

conditional frequencies embedded in the dataset. Roure (2004, p. 19) formally defines learning in 

the context of Bayesian networks as follows: ―Given a data set, infer the topology for the belief 

network that may have generated the dataset together with the corresponding uncertainty 

distribution.”. 

From this definition we can simply infer that the learning of a Bayesian network is the extraction 

of a model by a learning algorithm from a given the dataset.  

3.6.1.1 Structure Learning  

The learning of the structure is known to be NP-hard (Buntine, 1996). There are generally two 

approaches for learning Bayesian network structures from data. The first method is based on the 

analysis of dependence relations that considers learning as a constraint problem (Friedman, 

Geiger & Goldszmidt, 1997). Inductive algorithms used in this approach work by testing for 

conditional independencies and dependencies in the dataset and then attempt to find a network 

structure that best exhibits these dependencies and independencies. However this approach has 

limitations in that they are highly prone to failure during the statistical tests. Consequently if an 

incorrect result is produced, this will thus lead to learning of an inaccurate network structure.  
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The second approach is the search and scoring based method and specified as a statistical model, 

therefore considers the learning process as model selection problem. Prior the learning process, 

the algorithms define a score that searches for a candidate structure that best fits the observed 

data. Example of commonly used scores metrics include Minimum Description Length (MDL) 

(Suzuki, 1993) and Bayesian score (Cooper & Herskovits, 1992a; Heckerman, 1996). For an 

extensive discussion, the reader is advised to refer to Section 3.10.  

3.6.1.1.1 Learning strategies 

The number of network structures produced grows super-exponentially in the number of 

variables. It is to that end that learning algorithms follow a greedy search path. Hill-climb 

algorithm is an optimization method that belongs to the local search family (Selman & Gomes, 

2002). It iteratively solves a problem by initially starting with an arbitrary node-ordering and 

thereafter incrementally changing the node-ordering in search of the optimal node ordering. 

Resultant node-ordering is evaluated using a scoring function, then selects the best node 

ordering. The process iterates until the addition of a new node doesn’t increment the score of the 

resulting node-ordering. 

One of the most prominent and classical structure learning algorithms is the K2 algorithm 

(Cooper & Herskovits, 1992b). K2 algorithm is based on scoring search and is a fusion of the 

Bayesian scoring metric and hill climbing algorithm. The K2 algorithm uses a greedy search 

(Lerner & Malka, 2011). To use the K2 algorithm, node ordering must be determined initially as 

well as the maximum number of parents of each node. This consequently accounts for its 

computational efficiency because the search space would have been significantly reduced. 

However, an improper node ordering is said to lead to poor performance. Thus for improved 

performance, it is crucial to provide the K2 algorithm with an optimum node ordering.  

3.6.1.2 Parameter learning 

After the Bayesian network structure has been learnt, it is necessary to represent the joint 

probability distribution which will allow for probabilistic inference. However, it remains a 

challenge to specify the quantitative component of Bayesian networks which involves filling the 

Conditional Probability Tables (CPTs). There are basically three ways to populate the CPTs: 
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 Elicitation of the probability values from domain experts. However, this tends to be 

subjective, time consuming and expensive. 

 Estimating the probabilities from domain data. 

 A combination of both domain knowledge and prior data. 

The Expectation-Maximization (EM) algorithm is one of the algorithms that have been studied in 

learning parameters for Bayesian networks from data (Heckerman, 1996). 

3.7 Application of Bayesian network classifiers in the Intrusion detection 

problem 

Table 3-1: Research on Bayesian classifiers and their application to intrusion detection domain 

BN classifier Origin of model Application to intrusion detection 

scenario 

NB (Langley, Iba & Thompson, 1992) (Barbara, Wu & Jajodia, 2001) (Panda & 

Patra, 2007) 

TAN (Friedman, Geiger & Goldszmidt, 1997) (Benferhat et al., 2008) 

AODE (Webb, Boughton & Wang, 2005) (Koc & Carswell, 2015)(Baig, Shaheen 

& Abdelaal, 2011) 

GBN (Koller & Friedman, 2009) (Bringas et al., 2008) 

 

Table 3-1 presents NB and its variants that are discussed in Section 3.5 and the studies where 

they have been implemented in the intrusion detection domain. (Benferhat et al., 2008) applied 

the TAN algorithm on the KDD dataset. (Koc & Carswell, 2015) recently used AODE classifier 

in detecting DoS attacks too. 

The aforementioned studies produced promising results of the application of Bayesian network 

classifiers, however they are evaluated using different methods. With respect to the literature 

discussed, there has been no research done to compare the Bayesian based classifiers 

performance in an intrusion detection problem. This research work presents a platform where 

they can be compared in detecting only DoS attacks in cloud computing environments. 

3.8 Classification performance of Bayesian Networks Classifiers 

3.8.1 What is classification?   

Data mining is a powerful analytic process crafted to discover patterns and systematic 

relationships among variables from different perspectives with the purpose of extracting useful 
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information (Duda, Hart & Stork, 1997; Mitchel, 1997; Haghanikhameneh et al., 2012). 

Classification, also known as classification learning, is a major data mining technique used to 

explore and find the hidden knowledge in a dataset. A classification problem essentially involves 

categorising objects into groups according to their similar observed features (Melton et al., 

1999). The problem aims to learn the relationship between the features variables and a target 

variable of interest. The problem of classification has been applied in a variety of data mining 

applications. Aggarwal (2014, p. 2) states the classification problem as follows: “Given a set of 

training data points along with associated training labels, determine the class label for an 

unlabelled test instance”. 

 

Figure 3-5 : Supervised Classification based on probabilistic classifiers(Rodriguez, 2013) 

There are many variations in the definition of the classification problem discourse over varying 

settings. (Duda, Hart & Stork, 1997; Mitchel, 1997; Hastie, Tibshirani & Friedman, 2008) 

provide comprehensive overviews on the composition and application of data classification. Data 

classification is basically a two-step process as shown in Figure 3-5. In the first step, a 

classification model, mostly known as a classifier is constructed from a predetermined set of 

labeled examples. This is the training phase where a classification algorithm learns from a 

training set consisting of dataset instances and their associated class labels. An instance   is 

represented by an   attributes,   (          )  Each instance is assumed to belong to a 
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predefined class and is determined by the additional dataset attribute known as the class label 

attribute. Because the class label for each training instance is provided, this renders this phase as 

supervised learning (Love, 2002; Sathya & Abraham, 2013). 

The first phase of a classification task is the learning of a classifier, a mapping or function, 

    ( )  that is capable of assigning an associated class label    to a given instance     

Classification tasks can either be binary (classifying an instance into one of the two classes) or 

multiclass (classifying an instance into one of the more than two classes) . Our research focuses 

on binary classification. A binary classifier assigns a class    *   + to an instance   based on 

its attributes     .  

In the second phase, the function is put to the test and used for classification. Classification 

performance can be defined as the ability to assign a class to a novel observation (Marcot, 2012). 

The strength of Bayesian networks classifiers largely depends on how well it categories the test 

instances after the completion of the training phase.  

3.9 Classification performance – Bias and variance trade-off 

 

Figure 3-6 Bias and variance trade-off 

The last two decades has seen a plethora of research exploring the factors that impact the 

classification performance of Bayesian network classifiers. The concept of bias and variance is 

inescapable with regards to the performance of classification algorithms. When a Bayesian 

model that is too complex given the training dataset is inducted, this leads to over-fitting 
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attributed to too much variance in the model. However, if a simple Bayesian classifier is learnt, it 

cannot extract a true structure given the data leading to under-fitting the data therefore there is 

too much bias in the model. To enhance the performance of Bayesian network classifiers, it is 

imperative to minimize either bias or variance. As shown in Figure 3-6, a bias/variance 

compromise has to be obtained for optimal classification performance of a learner (Brain & 

Webb, 1999). 

It has been hypothesised and empirically investigated that the listed factors below are to a certain 

extent attributed to the over-fitting or under-fitting of Bayesian models (Brain & Webb, 1999; 

Castillo & Gama, 2005): 

 Structural complexity of Bayesian network classifiers 

 The training sample size 

 The type of discretization approach 

 The choice of score metric 

The aforementioned factors, each has unique bearing of the classification performance of 

Bayesian network classifiers. It is however interesting to investigate how each factor impacts 

Bayesian models in classifying novel instances. In academia, ample studies have been conducted 

to date however they are not conclusive or binding. We review accordingly the literature in the 

following section. 

3.9.1 Network structure: Model/Structure Complexity 

There have been ample studies conducted in statistical modelling on the trade-off between 

parsimony and accuracy in prediction tasks (Marcot, 2012). A major concern is the 

determination of the appropriate classifier complexity so as to achieve optimal performance in a 

problem domain. In principle, many machine learning practitioners believe that an increase in 

model complexity should result in improve classification performance. Bayesian network 

classifiers can be arranged hierarchically with the order of structural complexity, as from NB to 

the most complex namely Bayesian multinet (Bielza & Larrañaga, 2014). The Bayesian 

classifiers investigated in the study can be organized as shown in Figure 3-7. The question 

stands: ―Does an increase in structural complexity learn a good classifier in a particular 

dataset?‖. This might seem like obvious phenomena however empirically it could be otherwise. 
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Traversing the model complexity hierarchy, the independence supposition in simple NB is 

relaxed by addition of arc amongst variables. It also has an effect on the bias and variance of the 

model and ultimately the focus of this research on the classification performance of the model 

(Flores et al., 2011). A more elaborate motivation for this investigation, with respect to the no-

free-lunch (NFL) theorems, the behavior of classifiers is not universal (Wolpert & Macready, 

1997; Bielza & Larrañaga, 2014). Bielza & Larrañaga (2014, p. 35) states that it ―depends on the 

dataset”. Furthermore the authors point that it is significant to investigate the behavior of the 

whole hierarchy of Bayesian network classifiers. Numerous studies have been conducted on the 

comparison of the different classes of Bayesian networks to determine their classification 

accuracy. One such study was conducted (Bielza & Larrañaga, 2014). The authors did an 

empirical study on twelve different Bayesian network classifiers with varying model 

complexities. They trained their classifiers on Ljubljana breast cancer dataset with sample size of 

286 instances. The results obtained are found in Table 3-2. Their results indicate that ―increasing 

model complexity does not necessarily imply a better model does not necessarily imply a better 

model” (Bielza & Larrañaga, 2014, p. 32).     

Table 3-2: Results from experiments done by (Bielza & Larranaga, 2014) 

Classifier Classification Accuracy 

NB 71.64 

TAN 77.57 

BAN 74.78 

Markov blanket-based Bayesian classifiers 75.16 

 

Cheng & Greiner (1999) also did a study on the classification performance of Bayesian 

classifiers. They did an investigation on NB, GBN, TAN, CL multinet classifier, C4.5 and 

Selective Naïve Bayesian classifiers. The experiments were run on 25 datasets. One of the aims 

of this empirical study is ―improve the performance of the naïve Bayesian classifier by relaxing 

these independence assumptions” (Cheng & Greiner, 1999, p. 2). Therefore this is basically an 

investigation on the progression in structural complexity of the Bayesian classifiers. From their 

results it is observed they are at variance with concept of universal optimal performance of 

algorithms. The simple NB classifier at particular dataset exhibited superior performance over its 

enhanced versions. 
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Figure 3-7: Summary of Bayesian network classifiers (Bielza & Larrañaga, 2014) 

Madden (2009) conducted an empirical examination of the performance of some Bayesian 

classifiers namely NB, TAN and the GBN. They applied the aforementioned classifiers on 28 

standard benchmark datasets. Their findings revealed that the GBN classifier significantly 

outperformed the NB with its performance closely equivalent to that of TAN. Table 3-3 provides 

a partial synopsis of their results. 

Table 3-3: Results on classification performance of Bayesian network classifiers (Madden, 2009) 

Dataset NB TAN GBN-K2 GBN-HC 

Adult 84.03 ± 0.53 86.15 ± 0.35 86.16 ± 0.33 86.02 ± 0.48 

Car 85.15 ± 2.74 93.96 ± 1.90 89.61 ± 2.20 86.36 ± 3.15 

Soyabean-large 91.83 ± 3.50 92.35 ± 3.08 89.22 ± 4.22 78.02 ± 6.45 

Waveform-21 80.90 ± 1.64 81.96 ± 1.70 81.67 ± 1.56 79.73 ± 1.96 

Australian 85.80 ± 4.03 85.06 ± 3.90 86.22 ± 3.83 85.93 ± 4.06 

Lymphography 82.16 ± 10.61 81.07 ± 9.57 77.46 ± 9.47 75.06 ± 10.98 
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Table 3-3 depicts the progression in complexity from NB to GBN and their corresponding 

accuracies in the respective domains. Madden (2009) points out that GBN significantly 

outperforms NB on average. After a more rigorous analysis of their overall results reveals that 

the increase in model complexity does not necessarily guarantee improved classification 

performance. There are however instances of datasets such as Soyabean-large and Australian 

where we take note that the NB performance is good. Despite the dominance of the GBN over 

NB, there are domains in which the latter is the suitable choice of a classifier. Careful analysis of 

their results of the comparison between TAN and GBN reveals that there is no significant 

difference in term of classification accuracy. They propose an explanation of minor superiority 

of TAN in terms of the computational complexities. It is concluded that it more computational 

expensive to construct a GBN classifier as compared to a TAN.  

Furthermore (Baesens et al., 2004) did a study towards the classification performance of 

Bayesian network classifiers in predict the future spending pattern of a newly acquired customer 

based on their first purchase. Their results are shown in Table 3-4. 

Table 3-4: Results on classification performance of Bayesian classifiers (Baesens et al., 2004) 

Classifier Training (%) Testing (%) 

NB 71.0 72.5 

TAN 74.9 74.0 

GBN 75.3 75.0 

GBN multinet 70.6 72.3 

 

From Table 3-4, note that with progression in complexity from NB to GBN multinet there is 

some notable increase in the training accuracy however there is an irregular pattern in the test 

classification. GBN classifier had the highest classification performance on unseen data. This is 

at variance with finding of (Bielza & Larrañaga, 2014).  

However, most of the experiments have been conducted on artificial data hence their findings 

might not be reliable when a real-life dataset is used. Section 3.5 provided a review of the 

Bayesian networks classifiers used in this study.    
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3.9.2 Training sample size 

The number of instances in the training set at the induction phase has a notable impact on the 

predictive accuracy of Bayesian network classifiers. The training set plays a pivotal role in 

providing accurate probability estimates (Bielza & Larrañaga, 2014). Using bias-variance 

decomposition to explain how a finite training sample size   influences classification 

performance of a classifier: 

1. Bias: a classifier inducted with   training instances performs poorly than a classifier 

trained with   =   training instances. 

2. Variance: a training sample size of   could build a classifier f different model 

performance. Also to note variance is inversely proportional to training sample size  . 

 

Figure 3-8: Generic learning curve (Figueroa & Zeng-treitler, 2012) 

According to Beleites et al. (2013, p. 5), ―The learning curve describes the performance of a 

given classifier for a problem as function of the training sample size”. To emphatically explain 

how crucial the training sample size, it is imperative to make reference to an example of a 

learning curve depicted in Figure 3-8. Basically, the learning curve illustrates the relationship of 

computational cost and performance with increasing training sample data. There is a general 

agreement in the machine learning community that in the event of limited training sample size, 

the Bayesian network classifiers cannot populate the conditional probability tables with reliable 
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probability estimates (Bielza & Larrañaga, 2014). Also the larger the training sample size the 

joint probability distribution encoded to approximate the sampled domain (Hastie, Tibshirani & 

Friedman, 2009). In simpler terms, a large training sample contains more information.  Also if 

the number of training instances is smaller as compared to the number of predictive variables this 

tends to lead to inaccurate classification rates.  On the flip side, the number of training instances 

is linear on the time complexity of Bayesian network classifiers (Flores et al., 2011; Bielza & 

Larrañaga, 2014). It is thus crucial to have a training sample that is adequate for the induction 

process.  

Numerous research studies have been done to explore the mechanisms towards sampling the 

optimum training sample data with respect to classifiers and ultimately their classification 

performance. This is highly ambiguous and there is bound to be significant disparities on the 

conclusions of respective publications.   

Consequently this presents a gap during the learning process; the sampling of the training set and 

also how the size if the training sample set is impacted by other factors that are studied in the 

research i.e. discretization approach, score function etc. Furthermore traditional statistical 

classifiers such as Bayesian networks are said to more sensitive to the size of training sets 

compared to non-parametric classifiers such as ANNs and SVMs. Also general guidelines 

suggest that the number of training instances should be at least 6 times the number of predictive 

variables for optimum and accurate classification performance. Training sample sizes adversely 

affects the time, space complexities of the classifiers and ultimately their classification 

accuracies (Flores et al., 2011). 

Bennett (2012) pointed out that according to the information theory; larger sample sizes contain 

more information than the smaller dataset of the same feature set. He explained this concept 

mathematically using the principal formula of the information theory using equation below: 

 ( )   ∑ (  ) (  )     ∑ (  )      (  )

 

   

 

   

                             (    ) 
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where  ( ) represents the entropy value of  ;  () denotes the probability distribution;  () 

represents the self-information measure;   denotes the log base which is usually 2 and lastly   

represents the sample size. 

Bennett inferred from the Equation 3.14 that with the increase in  , the training sample tends to 

approach the true sample size thus the probability distribution of the training sample size tends to 

approach the probability distribution of true sample. Furthermore, he pointed that increasing the 

sample size tends to obviate the impact of outliers and the perceived arbitrariness embedded in 

small datasets.   

There is limited literature on the empirical studies pertaining to the correlation between the 

training sample size and the classification performance of Bayesian network classifiers. Scholars 

allude that there is a trade-off between the classifier accuracy and introduction of bias in relation 

to the size of the training set. Some researchers have pointed that good classifiers can be 

inducted from small training sets especially taking into consideration the cost of supervised 

learning data. On the other hand, some scholars alludes that a decrease in the number of training 

instances tend to produce inaccurate values particularly with regards to statistical models such as 

Bayesian based models. Therefore there is some form of discrepancy with regards to the 

opinions. The lack of adequate literature that is solely focused toward the impact of real sample 

size on the classification of Bayesian network classifiers motivated this object of our research.  

Rossi (2013) in his study explored the effect of the training sample size on accuracy of NB and 

TAN classifiers. The classifiers were trained with sample sizes ranging from 10 to 435 of the 

Congressional Voting Records dataset from UCI. At small training size, NB outperformed TAN 

however as training sample size increases, TAN has a superior performance over NB. Rossi 

(2013, p. 5) attributed this to the fact that ―models learned with a small number of training 

examples have a very high variance but as the training data increased the variance decreases 

significantly”. Bielza & Larrañaga (2014) points out that the independence supposition in NB 

works well with a small training sample size.  

A typical study conducted by Sordo and Zeng (2005) who investigated the impact of sample size 

on classification accuracy of three classification algorithms NB, SVM and decision trees in 

classifying smoking data. NB was trained with sample size ranging from 50 to close to 8000 
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instances. As the training set size increases, the classification ability behaved asymptotically 

about 85%. They revealed that sample size is seemingly irrelevant with regards to classification 

accuracy. They discovered that the NB’s accuracy stabilizes at a 4000 sample size threshold and 

thereafter remains invariant to some degree. The results depict that the most variation in 

accuracy occurs between 100 and 1000 samples. 

Another study done by Rossi on the use of two Bayesian classifiers, NB and TAN in gene 

classification. Their training set had a maximum of 400 instances. Their results reveal that as the 

sample size increases, the classification accuracy increases from 70% to close to 95%.  They 

concluded that by addition of the training instances that the classification accuracy significantly 

improved. Their work provided a comprehensive discussion that accounts for low accuracies at 

small sample sizes. Rossi pointed out that limited samples sizes are fraught with high variance 

and as the training set increases the variance decreases significantly. As the previous scholars, 

Rossi shows that the classification accuracy increases monotonically after a specific threshold 

training sample size. This pattern is typically of both the classifiers under investigation. 

Domingos & Pazzani (1997) in their paper, ―On the Optimality of the Simple Bayesian Classifier 

under Zero-One Loss” states rather striking findings pertaining to the relationship between the 

sample size and the predictive power of Bayesian classifiers. They point out that the 

classification accuracy of Bayesian classifiers does not necessarily increase with the increase in 

the number of training samples. They conducted empirical studies with artificial domain data 

with varying training sets. Their finding reveal that a sample size of 250 produced an accuracy of 

84% while 500 instances of Diabetes data had an accuracy value of 75.5%. A Mushroom dataset 

of 800 instances has 94% accuracy however Wisconsin cancer of 500 sample size had an 

accuracy of 97.3%. Therefore classification accuracy is also domain-dependent. It is thus 

interesting to note the behavior of TCP/IP network dataset with regards to the sample size. They 

rather concluded with a contrary hypothesis that stipulates that Bayesian classifiers performs 

optimally when the sample size is small. 

There is no shadow of doubt on how the training sample set plays a pivotal role in the 

classification performance of Bayesian network classifiers. The relationship between the sample 

size, the type of model and lastly classification performance must not be overlooked. It is 

fundamental to determine the amount of training size that will result in optimal performance of 
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Bayesian network classifiers. Being mindful of the cost of producing a labeled dataset for 

supervised learning purposes, it crucial to be able to determine that critical sample size that 

results in optimal performance. This might assist in evading trial and error that will introduce 

subjectivity concerning the appropriate sample size. Since the different Bayesian classifiers are 

built using different algorithms hence having varying structural, space and lastly time 

complexities, it would be interesting to note how they behave with regards to the sample size. 

3.10 Induction phase: Score functions 

The problem of building Bayesian networks remains a major research area. A recap of Section 

3.6, the induction of Bayesian network is two-fold. The first step is for search for the network 

structure. There are numerous learning algorithms for constructing Bayesian networks from data. 

They come in two categories (Dally, Shen & Aitken, 2011): (1) conditional independence tests 

(2) score+search. Search+score techniques have received considerable attention in the machine 

learning community. This research is interested in algorithms that belong to the score+search 

paradigm. 

3.10.1 Score+search algorithms 

These algorithms approach the inductive learning process as a combinatorial optimization 

problem (Campos, 2006; Brenner & Sontag, 2013). Due to the ―hardness‖ of this learning 

problem, heuristics methods are used to traverse the search space (Dally, Shen & Aitken, 2011). 

The search strategy involves seeking a structure from a pool of candidate models and the 

algorithm searches for the model that best fits the data based on the scoring function. The crucial 

task is to search for the highest-scoring network (Chickering, Heckerman & Meek, 2013). The 

structure learning problem is an optimization problem. The search space of potential network 

structures is a combinatorial space and contains a super-exponential number of network 

structures (Heckerman, Geiger & Chickering, 1994). Depending on how the score is defined, the 

learning problem should search for a structure that maximises or minimizes the score. One of the 

crucial decisions to be taken during the training of Bayesian networks is the type of scoring 

function. The score is a trade-off between how well the network structure best fits the data and 

the complexity nature of the network. Some score functions possess the decomposability 

property (Liu, Malone & Yuan, 2012). A scoring function is decomposable if the score value for 
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a network structure can be expressed as a sum of scores of the individual variables in the 

network; furthermore the score of the variable is computed based on the variable and its parents. 

Thus, 

     ( | )   ∑     (  |     

 

   

)                                     (    ) 

Where   denotes the Bayesian network structure,   represent the training data. 

The learning problem seeks to find    , where 

          
 

     ( | )                                            (    ) 

As defined earlier, a Bayesian network structure encodes the joint probability distribution. Two 

structures are said to be class equivalent if they encode the same joint probability distribution 

(Liu, Malone & Yuan, 2012). A score function is said to be score equivalent if it assigns the 

same score to network structures that belong to same equivalent class (Yang & Chang, 2002; 

Liu, Malone & Yuan, 2012). Carvalho (2009) states that for optimality, it is imperative for 

score+search methods to possess the property of decomposability.  In the same vein, for an 

efficient search in the context of equivalent classes of network structures, scoring functions must 

be score-equivalent too. 

In the last decade, the induction of Bayesian networks from data has attracted significant 

attention in the field of artificial intelligence. To this end, as discussed in Section 3.6, algorithms 

have been developed to learn Bayesian networks from a database. The basic intuition of the 

algorithms such as K2 is to compute the joint probability of the Bayesian networks structure 

given the data and then thereafter create the most probable network structure that will maximise 

the joint probability. Thus, a scoring function plays the role of calculating the joint probability of 

the network structure given the data (Yang & Chang, 2002; Liu, Malone & Yuan, 2012). 

Unfortunately, the candidate structures are super-exponential in the number of variables of the 

model. The learning process is thus an intractable optimization problem especially if the number 

of variables is big e.g 5 variables will produce 29 281 structures while 10 variables produce 4.2 

       network structures. 
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Most scoring metrics are created based on the assumption of network parameter distribution. 

Cooper (1992) coined two scoring metrics UPSM and DPSM based on the uniform distribution 

and general Dirichlet distribution respectively. (Bouckaert, 1994) derived the Minimum 

Description Length (MDL) to evaluate the quality of a network structure. The likelihood 

equivalence assumption which can also be referred to as Dirichlet distribution was proposed by 

(Heckerman, 1996) and produced the BDe score metric. Chang introduced the conditional 

uniform distribution and it derived the CUPSM score metric (Yang & Chang, 2002). Yang & 

Chang (2002) proposed that the network parameters are a subset of a valid prior. They believed 

that network parameters selected based on the different priors. They further alluded that different 

priors may perform differently under certain conditions. Liu, Malone & Yuan (2012) proposed 

that priors have different underpinnings hence they will output different optimal network 

structures. 

Score metrics are introduced independently and the success of each is not an obvious universal 

venture. Yang & Chang (2002) suggested that their success varies with each application. 

Structure learning is thus engulfed by a mystery on the choice of scoring function to use in a 

particular application (Dally, Shen & Aitken, 2011; Liu, Malone & Yuan, 2012). Score-based 

approach to learning Bayesian networks has been proved to be NP-hard (Chi ckering, 1996). The 

basic idea behind a Bayesian scoring function is to evaluate the posterior probabilities of 

candidate networks   constructed from pre-knowledge of prior probability distribution given the 

training data    ( | )   The concept behind the score+search algorithms for learning Bayesian 

networks can be simply expressed as follows as adapted from (Campos, 2006, p. 4): 

Given a complete training dataset   *       + of instances of   , find a DAG S* such that 

          
  ى    

 (   )                                                   (    ) 

g(S : D) represents the scoring function that evaluates the degree of fitness of any candidate 

Bayesian network model   to the data and    is the pool of all candidate models defined in     

3.10.1 Score functions for Learning Bayesian networks 

Literature provides several scoring functions for learning Bayesian networks. They are 

categorised into two (Yang & Chang, 2002; Liu, Malone & Yuan, 2012): 
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 Bayesian  

 Information-theoretic  

Bouckaert (2008) provides a comprehensive synopsis of the scoring metrics used in this study. 

Following is a brief description of the equations that describe the scores. 

3.10.1.1 Akaike Information Criterion (AIC) 

Bozdogan (1987) provides a comprehensive description of AIC. The AIC scoring function 

calculation is derived based on the asymptotic behavior of models having sufficiently large 

datasets. Given a pool of models for a given set of data, AIC evaluates the quality of each 

candidate model given other candidate models.  AIC is an application of the information theory 

consequently it is used statistical modeling to estimates information loss in learning a model 

given its data. Hence during model selection, AIC handles the trade-off between goodness of fit 

and the complexity of a model. To further conceptualize the concept, we will use mathematical 

equation adapted from (Bouckaert, 2008). Let   represent a dataset and   to denote the network 

structure. Furthermore, let   (       ) denote the cardinality of   . Let also    represent the 

cardinality of the parent set of    in  . Let     (                ) to represent the number 

of instances in   for which the parent node for    takes the  th value. Thus      (      

                     ) to represent the number of instances in   for which the parent of 

    takes  th value while     takes  th value. Lastly   denotes the number of instances in  . 

Let  (   ) be the entropy value of a network structure and dataset and be represent as: 

 (   )     ∑∑∑
    

 
    

    

   

  

   

  

   

 

   

                                 (    ) 

The number of parameters   be represented by  

   ∑ (    )     
 
                                              (3.19) 

Finally, the AIC score metric    (   ) of a network structure   for a dataset   is represented  

    (   )   (   )                                              (3.20) 
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3.10.1.2 Minimum Description Length (MDL) 

The MDL scoring prior for Bayesian networks learning was introduced by (Lam & Bacchus, 

1994). MDL belongs to the information-theoretic family of scoring functions. Its principal idea 

for inducting the best model is based on minimizing the data used to encode the network 

structure and the training data given the network structure. The network can be encoded by 

storing both the parents of each modeled variable and the set of conditional probabilities 

associated with each variable. Given that there are   variables in the problem domain and a 

variable has   parents, a memory space of 
 

 
      bits is required to list the parent variables and 

   denotes the number of individual probability values for all variables.  

The MDL principle dictates that with increasing model complexity, the longer the encodings 

required. Liu et al., (2012) proposes that the penalty term for MDL tends to be greater when 

compared to those produced by other scoring priors hence the best network output from the 

MDL prior tends to be denser than the best-fit structure of other scoring functions. In the stead of 

inducting an optimal structure, the MDL output a network structure that minimizes the score. 

The minimum description length metric      (   ) of a Bayesian network structure S for a 

training dataset   is defined as 

    (   )    (   )   
 

 
                                         (3.21) 

3.10.1.3 BAYES 

BAYES originally known as K2, is the first Bayesian scoring function introduced by (Cooper & 

Herskovits, 1992b). The Bayesian metric of a Bayesian network structure   for a training dataset 

  is 

      (   )   ( )∏ ∏
 (  

  )

 (  
       )

 ∏
 (  

         )

 (  
   )

  
   

  
   

 
            (3.22) 

where  ( ) represents the prior on the network structure and Γ(.) the gamma-function whereas 

     and       represents the choices of prior on counts restricted by       ∑      
  
     The 

BAYES score satisfies the decomposability property. 
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3.10.1.4 Bayesian Dirichlet equivalence uniform (BDeu) 

The Bayesian Dirichlet (BD) scoring function was coined by (Cooper & Herskovits, 1992a). The 

algorithm calculates the joint probability of a network structure given the dataset. Unfortunately, 

the metric has setbacks in that it requires user input to parameterize all the possible variable-

parent relationships. Also, it is does not possess the score equivalence property. To mitigate the 

aforementioned limitations, Heckerman & Chickering (1993) proposed the equivalent sample 

size also known as hyperparameter α. The hyperparameter is the source of the required 

parameters and the prior distribution. The resulting score is referred to as the BDe and it is score 

equivalent. In the event that the network structures are of the class, the prior distribution over the 

network structures is assumed to be uniform. Coupling the BDe score metric and the uniformity 

assumption results in the BDeu. 

When                
⁄  and consequently          

⁄  leads to the Bayesian Dirichlet 

equivalent (BDe) metric. The BDe uses Bayesian analysis to evaluate a network structure given 

the training dataset. Chickering, Heckerman & Meek (1997) developed the BDe scoring method. 

BDe is based on the BD metric. The approach is characterized by a multinomial distribution that 

describes the conditional distribution of each random variable in the structure. 

With the Bayesian Dirichlet equivalent with uniform prior (BDeu) method, the Dirichlet 

distribution is modified by creating a fixed or uniform distribution of prior variable states. The 

score assumes likelihood equivalence which implies that the training dataset cannot be used 

expected to discriminate equivalent structures. 

The described score functions are common and are provided in the WEKA suite. Several studies 

have been conducted that focus on evaluating score metrics for learning Bayesian network. 

However, Liu, Malone & Yuan (2012) cites that their conclusions are flawed due to the 

following reasons:- 

1. They used local search algorithms such as Greedy Thick Thinning algorithm for selecting 

network structures which output suboptimal structures or arbitrarily produced network 

structures. 

2. They used randomly generated datasets as test data hence synthesized data is different 

from a real–world dataset. 
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Van Allen & Greiner (2000) conducted a comparative study on three score metrics AIC, BIC and 

cross-validation to investigate the trade-off between structural complexity and goodness of fit to 

the training dataset. The researchers used randomly generated gold standard Bayesian network 

structures and also arbitrarily populated the conditional probability tables of the networks. Their 

results indicate that AIC as well as cross-validation are best at evading over-fitting during model 

selection. Their study also investigated the behaviour of the score metrics with changing training 

sample sizes. BIC was found to exhibit optimally performance at large dataset sizes and 

relatively poor for small sample sizes. 

Yang & Chang (2002) performed an empirical comparison on five scoring functions UPSM, 

CUPSM, DPSM, BDe and BIC. The authors performed their investigation on the common 

ALARM benchmark network. K2 search algorithm was used in learning the Bayesian networks. 

The results produced noted that UPSM, CUPSM, DPSM and BIC learnt true networks. The 

study suffered a similar setback as the previous research; the experiment was not performed on a 

real-world dataset. 

Carvalho (2009) investigated the impact of scoring functions on local search algorithms for 

Bayesian networks. Their study considered information theoretic-based scoring functions such 

LL, AIC, MDL, NML and MIT as well as K2, BD, BDe and BDeu. The authors evaluated the 

score metrics in a classification task by inducting a TAN model. Their findings based on the UCI 

datasets indicate that information-theoretic based classifiers produce optimally performing 

models than their Bayesian counterparts. Furthermore, we noted from their results that the 

performance of the scoring function was not universally ideal across the datasets. Malone & 

Matti (2015, p. 1) in their paper stated that, ―there is no guarantee that a network which 

optimizes a score for a training set will generalize well to new data”. 

Malone & Matti (2002) conducted experiments on UCI and sam datasets. The authors wrote a 

publication titled, ―Impact of learning strategies on the quality of Bayesian networks‖. Their 

study partially discussed the discourse of score functions. Their results suggested that simple 

network generalize well and they concluded that score functions with a high complexity penalty 

such as BIC will yield model with good classification abilities. Dally, Shen & Aitken (2011) also 

did a study on the issues affecting the learning of Bayesian networks. The ambiguity of the score 

functions in the induction process was explicitly stated. Another group of researchers, 
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Shaughnessy & Livingston (2005) did a study on search+score algorithms. They observed that 

choice of score function greatly impacts the ―true classifier‖ more than the local search 

algorithm. They did a comparison on three score functions BDeu, ―Bayesian metric‖ and MDL. 

The authors concluded that the type of scoring functions used involves a trade-off between 

sensitivity and precision of the resulting model. As a closing note, the researchers prescribed that 

the choice of scoring function is highly depended on how the network will be used. Riesen & 

Serpen (2009) embarked on a study to develop a Bayesian networks classifier that would be used 

in prediction of a victimization attribute in National Crime Victimization survey. Their results 

revealed that predictive ability of classifiers specified with different score functions were hurt by 

the type of score metric chosen. We provide part of their results in Table 3-5. 

Table 3-5: Results on the prediction of the Victimization attribute 

Search Algorithm Training (%) Testing (%) 

Local Hill Climber (-P 3 –N –S BAYES) 99.28 99.22 

Local Hill Climber (-P 3 –N –S ENTROPY) 99.61 98.77 

Local K2 (-P 3 –N –S AIC) 98.98 98.86 

Local K2 (-P 3 –N –S BAYES) 98.93 98.88 

Local K2 (-P 3 –N –S ENTROPY) 99.15 98.17 

Local K2 (-P 3 –N –S MDL) 97.13 97.08 

 

The above reviewed papers’ empirical evaluations do not suffice to draw conclusions from that 

could be deemed universal. Also all the studies do not discuss how the decomposability and 

equivalence properties help pertaining to classification tasks since they amount to a reduction in 

computational cost (Chickering, Heckerman & Meek, 2013).    

The plethora of novel score functions in various field certainly implies that there exist some 

intrinsic relationship between the choice of score metric and the classification ability of new 

observations. Studies on choosing the appropriate scoring function for a particular dataset 

remains uncertain hence the fundamental question still remains: for a given dataset, which 

scoring function will be appropriate for learning a good classifier?. Most studies that have been 

done are to prove that different score functions identify different true networks. Liu, Malone & 

Yuan (2012) even pointed that local search algorithms using the same score function learn 

equivalent networks, the only notable difference will be on algorithm’s runtime and memory 
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usage. Literature on how a score function impact the classification ability when their respective 

true networks classify new observations is limited.  Acid et al. (2004) on their study on 

emergency medical service data asserts that score function influence generalisation power of 

Bayesian network classifiers and further identifying that non-Bayesian metrics result in robust 

classifiers as compared to Bayesian metrics. However Acid et al. (2004, p. 223) explicit state 

that, ―these assertions cannot be generalized without extensive experimentation using many 

different datasets‖. This therefore dictates that the answer to the question requires an empirical 

study.  

3.11 Discretization 

In the field of data mining and machine learning, data pre-processing is a crucial phase that will 

guarantee the success of an algorithm (Pyle & Cerra, 1999; Maletic & Marcus, 2005). Data pre-

processing entails processes; data transformation, data cleaning, data reduction. Discretization is 

one of the data reduction techniques and it has attracted a lot of attention as a pre-processing 

approach in data mining (Murphy, 2001; Liu et al., 2002). In machine learning, the Bayesian 

learning methods approach the classification task with the assumption that example attributes are 

discrete in nature. This unfortunately does not hold true in real life datasets that contain 

significant information that comes in continuous format. We intend to make use of the inherent 

information without stalling the learning the process. Bayesian networks classifiers can only 

work with nominal or discrete attributes. At its basic state, a discretization process converts 

quantitative attributes into qualitative format. Therefore numerical attributes are transformed into 

discrete or nominal attributes of finite number of partitions. Each partition is thereafter 

associated with a numerical discrete value. 
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Figure 3-9 : Discretization process(Liu et al., 2002) 

Discretization is defined as the process that transforms continuous variables into discrete 

variables (Dougherty, Kohavi & Sahami, 1995; Liu et al., 2002; Yang & Webb, 2002). 

Performing this aforementioned step requires the application of discretization methods to dataset 

inherently continuous in nature. Discretization of continuous variables has been investigated 

extensively in the following publications (Fayyad & Irani, 1993; Boullé, 2005; Divina & 

Marchiori, 2005). In supervised learning, classification in particular, discretization is defined by 

Mizianty, Kurgan & Ogiela (2008, p. 1) as follows: ―a discretization scheme D on a feature F 

converts the domain of values of F into d disjoint discrete subintervals, bound by a pair of values 

(boundary points) 

  *,     -   (       -   (       -+ 

A typical discretization process follows a series of steps (see Figure 3-11). The process is usually 

conducted prior the induction process. Discretization is a necessary and important process due to 

several factors (Dougherty, Kohavi & Sahami, 1995; Liu et al., 2002; Maletic & Marcus, 2005): 
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1. Algorithmic requirements that are primarily designed to handle nominal attributes. 

2. Results in data reduction which results in increased runtime. 

3. Attributes of discrete nature are relatively human-readable, easy understand. 

In the discretization context, a ―cut-point‖ is a real value that exist within the range of continuous 

values and its partitions the range into two intervals. For instance, the continuous interval 

[      - of the feature F is divided into ,      -, (      - etc, where a certain value     is a cut-

point. The term cut point is also referred to as a split-point. The term arity refers to the number of 

partitions or intervals. Prior the discretization process, arity must be assigned a certain value k. a 

discretization process is allowed a maximum of k-1 cut-points. The ultimate goal of the 

discretization process is reducing the arity and there is a trade-off between arity and its impact on 

accuracy. A higher arity tends be unsuitable for the induction problem while a smaller arity is 

associated with a risk of information loss. Figure 3-10 illustrates how a continuous feature F1 is 

transformed into a discrete F’1 with values (V1, V2, V3). 

 

Figure 3-10: Transforming of continuous valued features into discrete (Hacibeyoglu, Arslan & Kahramanli, 2011) 
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However, despite discretization being of necessity, there is no standard approach to deal with the 

process. The nature of a discretization approach is impacted by the data set used, the model 

complexity (Sarkar, Srivastav & Shashanka, 2013). Despite outlining the criteria for optimality 

for discretization, the process is NP-complete (García et al., 2013; Sarkar, Srivastav & 

Shashanka, 2013)  There are a vast number of discretization approaches that can be found in 

literature. García et al. (2013) alludes that the choice of a discretizer conditions the classification 

performance of a classifier. 

Various heuristic algorithms have been proposed for discretization, schemes based on 

information entropy (Dougherty, Kohavi & Sahami, 1995), statistical (Kerber, 1992), likelihood 

(Wu, 1996) etc. The following section will further describe the criteria of discretizer.  

3.11.1 Discretization methods classification 

In accordance to the definition of discretization as a process of transforming or converting a 

large interval of continuous values into a set of finite values, each range of the original dataset is 

associated with a value in the discrete set; there are various types of methodologies with which 

this association is performed. Therefore there are at least three different axes in the classification 

of discretization approaches (Dougherty, Kohavi & Sahami, 1995). Discretization methods are 

classified as either: 

 Supervised or Unsupervised- is the most discussed (Dougherty, Kohavi & Sahami, 1995; 

Liu et al., 2002; Hall et al., 2009) 

o Unsupervised methods also known as class-blind methods because they construct 

the discretization structure without involving the class attribute of an instance. 

This approach has possible limitations in that two data intervals of the 

discretization structure may overlap each other with regards to the class attribute 

value incorporated on both side of the interval division.  

o  Supervised methods involve the class attribute in the discretization structure. 

With the knowledge of the class attribute, the interval division also referred to as 

the cut point will be more accurate rather than have values in the same range split 

in between.  

 Global or local- the frequently discussed axes(Dougherty, Kohavi & Sahami, 1995) 
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o Local approaches, such as the C.45 decision tree are inherent with a method of 

discretization within their internal structure. These approaches discretize subsets 

of the data that is within a particular section of the learning algorithm for instance 

a branch of a decision tree. Therefore the discretization algorithm is employed 

only on particular local instances rather than as a whole. 

o Global algorithms transform all the dataset instances in a single operation. Thus 

these approaches are on the front-end side of the learning phase.  

 Static or Dynamic 

o Static methods are based on user input of the parameter that determines the 

number of cut points to be found in the dataset. The approach takes the data as 

input and determines the appropriate cut point at which to divide the data into k 

intervals. Each attribute is treated independently and binned according to its sub-

intervals.  

o Dynamic approaches do not determine the number of intervals beforehand; rather 

the value of k will be derived from the dataset. During the discretization process 

the method uses a metric to evaluate the possible numbers of the cut point 

locations therefore the k assumes various values and subsequently chooses the 

value that optimizes the score metric for the final discretization process. 

 Bottom-Up or Top-Down  

o Bottom-Up methods initiate the discretization process by first sorting the attribute 

data to be discretized and rendering each instance as a cut point. It traverses 

through the data set merging the instances and clusters of instances by getting rid 

of the cut points based on a certain metric. When the merging process elapses, 

substitution for values occurs.   

o Top-Down approach commences the discretization process with a single range for 

all the values of the continuous attribute data and employs an approach to 

determine additional cut points at which to partition the range. The binning 

process elapses when a particular condition is met. 

Figure 3-11 illustrates a hierarchical decomposition of the taxonomy of discretization 

approaches. Various discretization approaches exist and many more are being developed. The 
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following subsection will discuss the discretization methods under study and review the state of 

the art criterions. 

 

Figure 3-11: Decomposition of discretization methods 

Empirical investigations conducted by several authors namely (Dougherty, Kohavi & Sahami, 

1995), (Liu et al., 2002), (Clarke & Barton, 2000) found that in terms of classification accuracy, 

supervised discretization approach outperformed their unsupervised counterparts. The 

unsupervised algorithms tend to be arbitrary in terms of the division of variables. Hence the user 

determines the number of partitions. Their simplicity is attributed to the fact that a user is control 

of the resolution of attributes. They are preferably used in cases where ―there is not any 

information to determine relationships between variables” (Hoyt, 2008, p. 6). A set-back of 

unsupervised methods is in their ―class-blind‖ approach that tend to lead to over partitioning of 

the attribute values (Clarke & Barton, 2000; Hoyt, 2008). 

3.11.2 Discretization criterions 

Described in the following section are some of existent discretization approaches. 

3.11.2.1 Equal Width Discretization (EW) 

Equal Width Discretization also known as Equal Width Interval Discretization (Dougherty, 

Kohavi & Sahami, 1995) or Fixed k-Interval Discretization (Yang & Webb, 2001) is  the 

simplest discretization method that is an unsupervised direct method. It divides the range of 
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observed attributes into k bins of equal size, where k is a parameter provided by the user 

(Dougherty, Kohavi & Sahami, 1995). If an attribute x is observed to have values bounded by 

     and     , then this method computes the bin width by: 

   
          

 
                                                           (    )                                                                                    

Then the bin boundaries or thresholds are set at        , where   = 1, …,    . 

This discretization method works independently of any multi-relational structure that could be 

inherent in the data. It is quite usual to set this value to 5 or 10 bins (Yang & Webb, 2001), 

although the optimum value for k depends on, among other factors, the dataset size. Its time 

complexity is  ( ),   being the number of data instances. For our empirical study, we will use a 

EW with k values set to both 5 and 10. 

3.11.2.2 Equal Frequency Discretization (EF) 

This discretization algorithm sorts values in an ascending order and divides the range into   bins 

so that each one contains approximately the same number of training instances (Dougherty, 

Kohavi & Sahami, 1995). 

Hence, every bin contains     data instances with adjacent values.  This discretization method 

provides a more balanced discretization by causing continuous values to be distributed into 

different bins. A group of data instances with identical values must be placed in the same bin 

therefore it is not always possible to generate   intervals with exactly the same number of values. 

Time complexity for this algorithm is  (     ) as it is necessary to perform an ordering of the 

data. 

3.11.2.3 Fayyad and Irani’s Entropy based Minimum description Length (MDL) Method 

This technique is a supervised split method which is based on an entropy minimization heuristic 

to determine cut-points for discretization (Dougherty, Kohavi & Sahami, 1995). It uses a top-

down approach whereby a numeric attribute is split to produce several discrete bins using a 

heuristic to decide on the number of intervals. The algorithm also uses the class information 

entropy of the numeric partitions to select a cut-off point that minimizes the entropy. The process 

is performed recursively by employing the Minimum Description Length (MDL) principle to 
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determine when to stop, which is when the MDL criterions or an optimal number of partitions 

has been satisfied.  

The MDL principle subscribes to the notion “that the best hypothesis is the one with minimal 

description length” (Miltov et al., 2009, p. 33). The binning process tends to decrease the 

entropy value (Miltov et al., 2009). Recursive binning of an attribute with this criterion tends to 

result in the discretization of the attribute in question. The discretizer evaluates each candidate 

cut point which is the mid-point between successive attribute values. Furthermore during the 

evaluation of a cut-point, the attribute is discretized into two bins and thereafter the resultant 

class information is computed. In a case of binary discretization, a cut-point is chosen if its 

entropy is minimal when compared to other candidate cut points. The discretization is 

recursively applied and tends to select the optimal cut-point. The technique has a time 

complexity of  (      )  

3.11.2.4 Proportional k-Interval Discretization (PKID) 

Proportional k-Interval Discretization is a discretization approach that was designed for the NB 

classifier (Yang & Webb, 2001). It aims to evaluate the trade-off between discretization bias and 

discretization variance (Boland, 2007). To explain the discretization bias and variance concepts 

we adapted the discussion from (Boland, 2007; Flores et al., 2011). The error component is 

categorised into bias, variance and an irreducible error. Bias is referred to as error due to the 

systematic error during the induction of the classification algorithm while variance is the error 

due to random variation in training data and random variation existing in the training dataset and 

from the random behaviour when inducting the algorithm. Classification variance is thus a metric 

to evaluate how a classification algorithm responds to variation in the training dataset. 

Discretization variance is thus the impact that a discretization approach has on the classification 

variance of a classification algorithm. To reduce the error, the number of intervals and the 

number of training instances must be considered. Intuitively, there is a conflict between reducing 

discretization bias and discretization variance. Discretization that results in fewer intervals will 

reduce variance. This means that the intervals will be large and therefore will accommodate 

more training instances. On the flip side, a discretization that produces more intervals will reduce 

bias. This is the source of the trade-off between bias and variance. 
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In light of the above discussion, Yang & Webb (2001) introduced PKID so as to provide a 

balance in terms of discretization bias and variance. It is similar to the EW, however, it does not 

have fixed number of intervals and the algorithm determines the number of intervals based on 

the number of training instances. Given that there are   training instances with known training 

attributes, PKID produces    √  intervals, each containing approximately    √  instances. 

                                                                      (    ) 

                                                                        (    ) 

where   represents the number of training instances,   represents the number of bins and 

  represents the number of training instances per partition.  

3.11.2.5 Class-attribute interdependency maximization (CAIM) 

Class-attribute interdependency maximization (CAIM) criterion takes a continuous attribute as 

input and transforms it into a finite number of intervals and thereafter associates each interval 

with a discrete value. This transformation tends to reduce the size of the data. The criterion is 

designed expressly to use class-attribute dependency information. In the stead of being 

dependent on user intervention, the CAIM approach automatically generates the number of 

intervals and computes the interval-width based on class-attribute interdependency values. The 

approach is associated with minimum number of discrete values as well as minimum loss of the 

class-attribute interdependency. In other words, this approach aims to generate intervals that 

maximize the class-attribute interdependency. Therefore CAIM makes use of the class-attribute 

interdependency information as a criterion for optimum discretization. For a detailed review of 

the criterion and the associated mathematics, the reader may refer to (Kurgan & Cios, 2001; 

Mizianty & Kurgan, 2010). 

CAIM criterion is the underlying principle for the CAIM discretization algorithm. This 

discretization algorithm traverses the search space with the goal of finding the highest values of 

the CAIM criterion. CAIM algorithm makes use of the greedy approach since the search problem 

is combinatorial.  
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3.11.2.6 ur-Class-attribute interdependency maximation (ur-CAIM) 

ur-CAIM is an extension of the CAIM algorithm. The ur-CAIM criterion (Cano et al., 2014), is a 

resultant of three class-attribute interdependence criterions that are designed to work together in 

a robust manner. For a comprehensive review and the associated mathematics of the ur-CAIM 

algorithm, the reader may refer to (Flores et al., 2011; Cano et al., 2014). 

The above reviewed discretization approaches can be used for any classification task that 

involves Bayesian networks. The question however remains: “Which discretization algorithm 

will be best for a particular dataset?‖ The search for the best discretization for a classification 

task is hard. The choice of discretization approach is of a discretization algorithm is crucial as it 

tends to impact the efficacy and effectiveness of a Bayesian classifier (Flores et al., 2011). 

Discretization approaches also improves the runtime of Bayesian algorithms. However most 

importantly reflecting on the focus on this work to check how the choice of discretization 

approach impacts the classification ability of Bayesian networks classifiers. The type of 

discretization method whether supervised or unsupervised, the number of bins are the pertinent 

features for a discretization algorithm (Dougherty, Kohavi & Sahami, 1995; Flores et al., 2011). 

Each of these attributes impact the classification performance of a Bayesian network, we study 

each of the attributes. García et al. (2013) suggests that performing empirical experiments using 

a set of classifier models and discretization approaches help to identify the best performing 

approach. Furthermore, we examine how the training sample size impacts the discretization 

process and consequently the classification performance of Bayesian network classifiers. 

3.11.3 The choice of discretization approach  

As previously mentioned, the discretization process generally involves some form of data 

reduction hence leads to information loss. Therefore it is the ultimate goal to have a 

discretization approach that minimizes information loss.  The selection of an optimally 

performing discretization method is NP-complete (García et al., 2013). There is a wealth of 

literature that discusses the use of discretization schemes, however these methods have not been 

compared on how they condition the classification in terms of accuracy.  

Kaya et al (2011) conducted experiments on the diagnosis of Parkinson’s disease. They did a 

comparison of non-discretized and discretized data on classification performance. They 

concluded that discretization does impact the classification accuracy of machine learning 
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techniques. Lee (2007) did a study on the relationship between the choice of discretization 

approach and classification accuracy. He notes that a discretization approach incurs some form 

of information loss that tends to lead to classification error. Furthermore, he alludes that poorly 

discretized attributes are likely to lead to inaccurate classifications. Freitas (2002, p. 50) states 

that, “In practice, discretization may either increase or decrease classification accuracy, 

depending on the original data and on the data mining applied to the discretized data”. They 

also mentioned that discretization is a type of abstraction process hence relevant information 

tends to be lost during the process. 

Flores et al (2011) did a study on the extent to which the type of discretization algorithm affects 

classification ability NB and its variants on 26 datasets. They concluded that a discretization 

approach produces different results for each dataset. They further stated that the discretization 

methods do not really affect the classifier ranking when compared. Tillander & Pavlenko (2009) 

also embarked on a similar study to investigate the relationship between the discretization 

algorithm and classification performance of high dimensional classifiers. Their study pointed that 

the discretization procedure affects the dependence structure of classifiers. Results revealed that 

supervised discretization method incur the lowest misclassification errors since they alter the 

dependence structure the most.  Dougherty, Kohavi & Sahami (1995) also did a study titled, 

“Supervised and Unsupervised discretization of continuous features,” reveal that on average 

discretization methods lead to an increase in accuracy. However the effects of discretization 

approach is not universally positive because the performance might be improved in certain 

datasets and significantly degrades in other datasets. The authors note that it is significant to 

know whether the discretization algorithm is global or local since they have varying effect on the 

accuracy of classifiers. They also concluded that supervised learning algorithms are better than 

their unsupervised counterparts.  

There is some form of uncertainty around the appropriate choice of discretization approach. 

García et al (2013) advised that the choice of discretization method is highly dependent on the 

domain under study and the data mining method employed. They allude that an empirical study 

is crucial to determine the suitable candidate. 
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3.12 Conclusion 

This chapter gave an extensive review of literature and the first principles of Bayesian networks. 

The basics of Bayesian networks: the probability theory, their network structure, the conditional 

probabilities, the inference process were discussed in detail. This chapter presented a detailed 

overview of Bayesian network classifiers namely Naïve Bayes (NB), Tree-augmented naïve 

Bayes (TAN), Averaged one-dependence estimators (AODE) and General Bayesian network 

(GBN). The equations defining the classifiers were presented. Finally the chapter dedicated a 

section to discuss in the detail the application of Bayesian network classifiers implemented in the 

research in the intrusion detection domain. The discussions revealed the different approaches 

used in the training of the classifiers in detecting intrusions. However they did not provide a 

comparison of the classifiers in a similar set-up. The concepts about the training set size, 

discretization approach and score functions were not reviewed in these publications. The 

following chapter will deal with the concepts mentioned and how they are involved with 

Bayesian networks models. The chapter has introduced and discussed important literature that 

concerns the classification performance of Bayesian network classifiers. The review might not be 

entirely extensive and exhaustive however it acknowledged relevant scholarly work that pertains 

to the optimal performance of Bayesian network classifiers. The ultimate purpose of this chapter 

was to introduce the elementary knowledge available by referencing the relevant research works.  
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Chapter 4: Methodology and Design 

This chapter gives the methodology framework followed in the design of the Bayesian networks 

classifier-based intrusion detection system. Presented, are the software tools used in capturing 

the datasets and discussion of the associated issues in the creation of the dataset. Section 4.1 

describes the conceptual framework adapted for our study. Section 4.2 provides a detailed 

account of the training dataset, its composition as well as the source. It also describes the steps 

taken towards the live packet capture on the cloud platform. It outlines the data-pre-processing 

procedure done prior to the empirical study. Lastly the chapter presents metric for performance 

evaluation of the experiments done, followed by a conclusion and summary of the chapter in 

Section 4.3. 

4.1 Methodology 

Kothari (1990) in his book states that there are basically two approaches to research namely 

quantitative and qualitative. He further points out that the former can be categorised into 

inferential, experimental and simulation methods to research. Inferential approach entails 

forming a database from which to deduce the characteristics or relationships of the sample 

population. Usually the characteristics are determined through questionnaires or observations. 

Simulation approach is particularly used for research that involves complex phenomena and 

hence cannot be setup in a laboratory environment. Experimental research involves conducting 

empirical studies with the aim of obtaining results from a real-world test-bed. The experiments 

are largely for testing the veracity of formulated research hypotheses. This research method is 

the most used in computer science for performance and behaviour analysis. Experimental 

approaches are an important methodology for environments such as a network setup with 

multiple users accessing services. In this study we used the experimental research method. 

Figure 4-1 illustrates the experimental design process.  
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Figure 4-1: Research design 

The design process stipulates that the researcher must first formulate the hypothesis. Research 

questions outlined are based on the motive of the research study. The object of the research is to 

test the hypothesis or answering the research questions posed. Subsequently, the design other 

experiments commences. The materials and technologies are described and acquired. The test-

bed is setup and experiments are conducted. Collected data will still be in its raw form. 

Therefore, it was subjected to some analysis to produce information. Conclusions were drawn 

from the information extracted. Lastly, there is an assessment on whether the conclusions made 

answer the research question outlined initially. For this research, we chose the experimental 

approach because the core of our work involved the manipulation of variables in the model and 

observe what effect they will produce. 

4.2 Research Design 

The research methodology adopted in this work has been discussed in section 4.1. This sub-

section provides experimental research design, which involves the details of the materials and 

procedures of our experiments. 

4.2.1 Conceptual approach to BNC-NIDS 

This study was conducted under the framework that is depicted conceptually in Figure 4-2. We 

made use of the NSL-KDD dataset for the intrusion detection for constructing the Bayesian 

classification models through supervised induction and evaluating the classifiers on test set. The 
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framework incorporates Bayesian networks classifiers under study as illustrated in the 

classification model module in Figure 4-2. The classifiers are implemented for a classification 

task for detecting DoS attacks as revealed in the Classification of network event module.   

 

Figure 4-2: Conceptual Framework 

Our empirical research design follows the steps below: 

1. Training set and test set. 

2. Perform data pre-processing. 

3. Model induction from the NSL-KDD dataset by applying cross-validation. 

4. Evaluation of the induced classifiers on the test set. 

The first step entails the NSL-KDD dataset as the training set. The test set consists of the raw 

dataset captured on the cloud environment as illustrated on Figure 4-2. In-depth reviews of the 

NSL-KDD dataset and the collection of the test set on the cloud are provided in Section 4.2.3. 

 We conducted data pre-processing on both the training and test set in step 2. Firstly, the training 

set and the test set must be in the same format. The test set was in its raw format, packet level, 

while the training set was in the connection-level format. Therefore the test set was converted to 

convention-level using Wireshark. As discussed in Section 3.4 Bayesian networks only model 

discrete features. Our training and test sets consist of continuous features which therefore must 
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be discretized. With respect to the conceptual framework, in step 3 and 4 is where our 

experiments were conducted. The results gathered in the experiments will be presented in 

Chapter 5.  

 

Figure 4-3: System flowchart used in the study  

Figure 4-3 illustrates the systematic sequence followed in this study. Our empirical experiments 

started with data collection which plays a pivotal role in the evaluation of the constructed 

classifiers. Data-preprocessing, the most critical stage follows and it is imperative to ensure an 

accurate evaluation dataset. As reviewed in Section 3.4, due to the algorithmic requirements of 

the Bayesian networks under investigation, this study used the discretization process responsible 

for transforming the data attributes of continuous nature to discrete format. Lastly the Bayesian 

network classifier structures were constructed on the fourth step. Thereafter the experiments 

involve both the training and testing process of the built models. 
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4.2.2 NSL-KDD Intrusion Detection Dataset 

In the year 1998 and 1999, Massachusetts Institute of Technology (MIT) Lincoln Labs in 

collaboration with Defence Advanced Research Projects Agency (DARPA)  prepared the 1998 

DARPA dataset and 1999 the DARPA dataset for use in Intrusion Detection field (Lippmann & 

Haines, 2000; Lippmann, Fried, et al., 2000; Lippmann, Haines et al., 2000). KDD-99 dataset is 

a sample of the DARPA dataset developed by Wenke Lee and Sal Stofo (KDD, 99). The 

KDD’99 training dataset that consist of TCPDUMP data simulated over a span of seven weeks 

of network traffic processed to connection–level format. A connection comprises of a sequence 

of TCP packets moving from a source host to a target host using a particular protocol. Each 

connection is labeled as either normal or as attack.  Each record consists of 41 features, which 

are detailed in Appendix N and a target class (Lee, Stolfo & Mok, 1999). Features are grouped 

into categories: 

 Basic features are the first six features that describe each individual TCP connection. 

 Content Features: Domain knowledge is used to assess the payload of the original TCP 

packets. This included features such as the number of failed login attempts. 

 Time-based Traffic Features: these features are designed to capture properties over a 2 

second temporal window. One example of such a feature would be the number of 

connections to the same host over the 2 second interval. 

 Host-based Traffic Features: Utilize a historical window estimated over the number of 

connections, for instance 100, instead of time. Host based features are therefore designed 

to assess attacks, which span intervals longer than 2 seconds.  

The training dataset comprises of a total of 22 attacks categorized as follows: 

 Denial of service (DoS): the attacker seeks to prevent legitimate end-users from accessing 

a service e.g. Neptune, Smurf, Pod and Teardrop. 

 Remote-to-Local (R2L): unauthorized access of a local host from a remote machine e.g. 

Guess-password, Ftp-write, Imap and Phf. 

 User-to_Root (U2R): unauthorized access to root privileges e.g. Buffet=overflow, Load-

module, Perl and Spy. 

 Probing e.g. Port-sweep, IP-sweep, Nmap and Satan. 
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Appendix N gives a description of KDD’99 Dataset feature and their respective data types 

(Kayacik et al., 2005). The dataset has been the widely used in IDS research studies (Sabhnani & 

Serpen, 2003). There exist inherent issues with KDD’99 Data and Tavallaee et al. (2009) 

provides an in-depth analysis of the inherent problems in that dataset. To address the issues, a 

new data set, NSL-KDD, was proposed. The dataset comprises of selected records from the 

KDD data set. However there have been many critiques and arguments against the use of this 

dataset (Mahoney & Chan, 2003; Brugger & Chow, 2007). The most highlighted issue is that 

there exists no validation to ensure that the NSL-KDD dataset is a real and authentic reflection of 

existing real network traffic. Unfortunately, due to the lack of contemporary and free public 

datasets, the NSL-KDD dataset was used as our common reference point. The data was 

downloaded and saved as an ARFF format which is compatible with WEKA software. 

4.2.3 Data collection from the Cloud Computing Environment 

The dataset used as the test set in this research study was prepared in a normal lab environment, 

under a proxy network at the University of Fort Hare. In order to acquire raw tcpdump network 

data for a Cloud Computing environment, a cloud deployment test-bed was set-up using open-

source ownCloud software (OwnCloud, 2015). ownCloud is a file storage, sync and sharing 

platform that works in a similar way as dropbox. The test-bed comprised of three workstations. 

All workstations were running a Linux environment operating on Ubuntu 12.04. One workstation 

was used for the attacking role and other node was used by the legitimate cloud user. The 

remaining workstation served as a server in which we deployed our minimal cloud environment 

with the following specifications: Pentium(R) Dual-Core CPU T4400 @ 2.20GHz CPU, 80GB 

disk space and 3GB memory. Figure 4-4 depicts the general overview of the test-bed. 

In our test-bed setup, data transmission between the workstations was attained through a LAN 

network with 100Mbps bandwidth. Data transmission was through a wired network. The 

rationale for our choice of a wired network over a wireless network in this research study was 

due to the fact that a wired network is stable and fast, hence the connectivity was more reliable 

(Isnin, 2011).  

The first dataset collection experiment involved the consumption of cloud services. The process 

required that the user validated by entering their logging credentials. At this point, the client user 

would have been registered already into the cloud system. 
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Figure 4-4: Overview of the design set-up 

When the client user performs the file uploading, file deletion processes, the tcpdump software 

utility was invoked to sniff the network traffic data between the two communicating nodes 

(client and server machines). Tcpdump is an open source software package that is available at no 

cost. The advantage of using tcpdump in this empirical study was due to the fact that it inherently 

allows command expressions that permit the user to filter out various types of traffic and focus 

on the traffic required. Figure 4-5 illustrates the expression invoked for our experiment. 

 

Figure 4-5: Expression invoked for packet capture 

The captured traffic data was saved as a tcpdump pcap file. The tcpdump pcap file contained a 

connection sequence of TCP packets starting and ending at some well-defined times, between 
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which data flows to and from a source IP address to a target IP address under a specified 

protocol. A sample of the raw tcpdump is shown in Figure 4-6. 

 

Figure 4-6: Sample of normal traffic activity 

The second evaluation dataset experiment involved adding a third node for simulating DoS 

traffic to attack the cloud system. The DoS traffic is a type of attack whereby an attacker floods 

the cloud network with useless packets (Yu, 2013). DoS attacks investigated in numerous 

research works involving cloud networks (Shea, 2012; Alina & Popescu, 2013; Lonea, Popescu 

& Tianfield, 2013). During the simulation of the DoS attack, the motive of the attacker is to 

handicap the cloud services so that they are not available to the cloud clients. The attacker makes 

use of hping3 attack tool developed by Salvatore Sanfilippo famously known as Antirez from 

Italy to perform the DoS attacks (Sanfilippo, 1998). Hping3 is a packet generator and analyser 

for the TCP/IP protocol but for the purpose of this research it was only used for assembling 

custom packets. It can be easily installed on any Linux distribution using the synaptic manager. 

Hping3 was used to initiate Layer 4 attack. A Layer 4 attack is realised by exploiting the three-

way handshake in the client-server model. Figure 4-7 shows the command used to initiate a DoS 

attack in our experiments.  
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Figure 4-7: Hping3 command 

 

Figure 4-8: Sample of assembled packets by hping3 

After the launch of the DoS from the attacking node to the cloud server, the tcpdump captured 

the raw attacking traffic ingress to the cloud coming from the attacking machine. The collected 

raw attacking traffic was saved as a pcap file.  The pcap file had 888 transmission records. This 

dataset was used to test the Bayesian network classifiers. A sample of the raw tcpdump is shown 

in Figure 4-8. 

4.2.3.1 Data Analysis using Wireshark 

To perform a detailed analysis of the tcpdump output presented in the previous sub-section, we 

used Wireshark tool which was installed on the server side. Wireshark is GUI version of 

tcpdump and it has the capability of giving more detailed information of the tcpdump capture 

file. As illustrated from the sample shown in Figure 4-8, we can see that a TCP packet was sent 

from a host with IP address 172.20.56.41 and received by destination host with IP address 

172.20.56.73 at a particular time. Wireshark tool was used to mine more information that can be 
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revealed on the Wireshark GUI. Wireshark transforms the output from packet-level data to 

connection-level data.  

The analysis of the dataset was conducted by applying the Bayesian network classifier under 

study to classify the network instances as either normal or DoS traffic.  

4.2.4 Data pre-processing 

In building Bayesian network models, data pre-processing is an important step for achieving the 

best performance (Kotsiantis, Kanellopoulos & Pintelas, 2006). Generally, data preprocessing is 

a technique for converting raw data into understandable or usable format. Real-world data mostly 

comes incomplete, inconsistent and containing various errors. Data preprocessing is a method 

that resolves issues of this nature. In the data pre-processing stage, the dataset collected from 

tcpdump contained packet header information. It is a violation of standard procedure to have 

training dataset in its raw format. The data must be subject to standard pre-processing procedure 

which includes steps such as data cleaning, integration, feature construction to derive new 

higher-level features, feature selection to choose the optimal subset of relevant features, 

reduction and discretization (Kotsiantis, Kanellopoulos & Pintelas, 2006). The product of this 

stage will be a training dataset.  

According to (Bhattacharyya & Kalita, 2014), pre-processing of the data prior training of a BN is 

important for the following reasons: 

a) It reduces feature dimensionality and helps improve the performance of the BN 

algorithm. 

b) It removes the irrelevant or noisy instances in the dataset. 

c) It enhances the data quality thus consequently improving the performance of the learning 

mechanism. 

d) The resultant model will be more accurate. 

A number of pre-processing methods and algorithms have been used by various authors. Before 

the algorithms are applied, the data should be prepared accordingly and it should be in the 

appropriate format suit for training a Bayesian network. Prior the data pre-processing phase, the 

tcpdump data contained packet header information as shown in Figure 4-8: 
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o Flags such as SYN, FIN, PUSH, RST, URG flags; 

o Data sequence number of each packet; 

o Data sequence number of the return packet; 

o Size of the available receive buffer in bytes; 

o Length of the packet; 

 As discussed in Section 4.2.2, the NSL-KDD dataset has 41 features in connection-level. 

Therefore, the live packet capture must hence be converted to connection-level format. There are 

basically two ways found in literature for this purpose. First one uses the Bro language (Lee et 

al., 1999) and the other uses the a software known as tcptrace (Ostermann, 2003). The 

aforementioned methods are capable of extracting the 41 features from raw tcpdump data. 

During data pre-processing of the live packet capture, we encountered a major limitation in the 

extraction of all the features found in the NSL-KDD dataset. This was due to inaccessibility of 

the specialized Bro programs to perform the extraction as well as the challenges encountered in 

using tcptrace. To mitigate this challenge, we used (Palmer, 2011)’s notion of using Wireshark 

for pre-processing the packet capture so that they could be used with NSL-KDD. However, 

Wireshark only managed to extract on five features that are displayed in Table 4-1. This meant 

that the original NSL-KDD dataset be reduced down to the tabulated features and this was 

accomplished by using the perl script found in WEKA. 

Table 4-1: Features extracted using Wireshark 

Number Parameter 

1 Duration 

2 Protocol type 

3 Service type 

4 Src_bytes 

5 Dst_bytes 

 

4.2.5 Bayesian Networks Classifier Model 

The Bayesian networks classifiers were implemented in the WEKA machine learning 

workbench. WEKA provides a comprehensive collection of machine learning algorithms and 
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data processing (Hall et al., 2009). WEKA framework can perform classification and regression 

tasks. It also allows for:  

o Model learning, 

o Testing and evaluating trained network. 

4.2.5.1 Induction of a Bayesian network classifier 

The induction of a Bayesian network classifier involves the following steps taken: 

 Importation of the training set 

 The following three processes were carried out prior training: 

i. We used the filter of ReplaceMissingValues within WEKA to make sure 

missing values were replaced. 

ii. We used the appropriate discretization filter in WEKA to discretise 

numeric attributes. 

iii. Class imbalance in the training dataset was mitigated using the filter of 

SMOTE. This is for ensuring that there is a right distribution to evade bias 

towards the majority class.  

4.2.6  Performance evaluation 

The classification performance of the Bayesian network classifiers under study was examined 

during the testing stage, where the models were tested on a dataset with DoS attacks. The 

classification ability was measured by measuring the predictive accuracy. In this study, binary 

classification is applied. The confusion matrix was the most appropriate way to present the 

binary classification results. In the binary classification nature of detection, there are the 

following four possibilities: 

 True Positive (TP): the model correctly classified an intrusion as intrusive. 

True Negative (TN):  the model correctly classified a normal event as normal. 

False Positive (FP): the model incorrectly classified a normal event as intrusive. 

False Negative (FN): the model incorrectly classified as intrusive behaviour as normal 
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A graphical format is used to visualize how the aforementioned concepts are related in a 

confusion matrix. The confusion matrix is depicted in Table 4-2. 

Table 4-2: Confusion matrix for binary classification model 

Actual 

Predicted 

Attack Normal 

Attack True Positive (TP) False Negative (FN) 

Normal False Positive (FP) True Negative (TN) 

  

The classification problem can be solved by further processing information extracted from the 

confusion matrix. Listed below is the performance measure that was adapted in this study. 

 Accuracy:  this measure indicates the total number of events that are correctly classified 

including normal and intrusive events (See Equation 4.1) 

 

          
     

           
                                            (4.1) 

Accuracy is the simplest form of evaluation in classifier performance. Flores et al. (2011, p. 378) 

provided the motivation for the researcher to evaluate the performance in terms of accuracy 

when they said, ―Accuracy is an important factor when evaluating a classifier or even when 

studying more general data mining techniques”. Researchers such as (Friedman & Goldszmidt, 

1996), (Madden, 2009), (Flores et al., 2011) used accuracy to measure the classification 

performance of Bayesian network classifiers. 

4.2.7 Results analysis 

To provide a descriptive and sound comparison between the results obtained from the empirical 

study, we considered the objects being investigated (model complexity, training sample size, 

discretization approaches and score function) and graphically represented them by mapping the 
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classification accuracy values. The information represented is highly useful, since we were 

comparing different Bayesian network classifiers the results obtained were bound not to be 

commensurable. Therefore we conducted some statistical tests to provide a different dimension 

for analysis. 

For this reason we employed the Friedman test based on the guidelines provided in (Demˇsar, 

2006). We are interested in how the classification performances of classifiers are conditioned by 

structural complexity, size of training set, different discretization approaches and score functions. 

Friedman test is one of the non-parametric statistical tests and works in a similar manner as 

ANOVA. To compare the factors against each other we use the Nemenyi test and Turkey test for 

Friedman test and ANOVA respectively. In experiments where the classifier performance is 

conditioned by two factors e.g. training sample size and discretization approach used, we made 

box plots for visual comparison. An example of a box plot is shown in Figure 4-9. 

 

Figure 4-9: Box plot parameters  

4.2.8 Experiments set up 

Figure 4-2 depicts the framework used for our experiments. We obtained the results for the 

classification of DoS attacks in a cloud platform using the experiment with the following 

configurations comprising of six discretization approaches; EW, EF, MDL, KON-MDL, CAIM 

and ur-CAIM, five score functions; BDeu, AIC, MDL and BAYES, five classifiers NB, TAN, 

AODE and GBN, varying training set size. We have model combinations that were implemented 

in WEKA workbench. Table 4-3 presents characteristics of the dataset used. 
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Table 4-3: Data characteristics 

Dataset Instances Attributes Discrete Continuous Classes 

Training 1000 5 2 3 2 

Testing 880 5 2 3  

Total  1880     

 

The GBN structures were trained with K2 and HC learning algorithms provided in WEKA 

setting the maximum number of parent node as three. All the Bayesian network classifiers were 

implemented within the Weka tool. We adopted the widely acceptable method that produces 

statistically meaningful results, the 10-fold cross-validation for the training purposes. 10 fold 

cross-validation randomly partitions the available data into 10 disjoint subsets of equal sizes. 9 

sets are used for constructing the classifiers and the remaining set used as the test set for 

estimating the accuracy of the classifiers. The process is repeated 10 times until each partition is 

used as a test set once. Throughout the experiments, the cross-validation folds remained 

invariant. Runs with the four classifiers were conducted using the same training set. A two-tailed 

test with 0.95 confidence level was applied to measure significance so as to compare the 

classifiers.  

4.3 Conclusion  

This chapter has outlined the methods used and data techniques implemented in our study. The 

conceptual framework followed for the experiments was presented. A section was devoted for 

the description of the intrusion dataset used as our training set. The cloud environment was in 

which the empirical study was conducted was described as well as the data collection and pre-

processing techniques applied. Hardware and software requirements, specifications and the 

methodology were also presented. The test-bed setup and the steps for the experiments 

conducted in the study were clearly presented. This chapter also stated the performance 

evaluation criteria used to assess the performance of the Bayesian network classifiers. Chapter 5 

presents the results of the experiments done and their respective discussions and findings. 
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Chapter 5: Results and Discussion 

This chapter presents and discusses the results from the empirical experiments described in 

Chapter five. The Chapter is sectioned as follows, section 5.1 presents the results of the various 

experiments conducted, section 5.2 provides discussions and statistical analyses of the results of 

the experiments and lastly 5.3 concludes the chapter. By presenting, interpreting and analysing a 

series of graphs from the experiments the chapter explores how the classification performance of 

Bayesian network classifiers, empirically calculated using Accuracy on the test instances, is 

affected by model complexity, the sample size of the training set, the type of discretization 

approach and the type of score functions. In the chapter we further do perform tests such as 

Friedman tests, ANOVA and Nemenyi so as to deduce sound conclusions. The experiments were 

conducted with respect to the following series of steps;  

 Individual factor tests: - investigation of how each factor individual impact the classifier 

performance with all the other factors held invariant. 

 Collective factor test: - investigations of how several combinations of training 

parameters collectively affect classification performance. 

 

5.1 The results 

5.1.1 Model Complexity 

In the first experiment, we focussed on how model complexity of Bayesian network classifiers, 

that entails the progression from the simple model NB through AODE and lastly GBN, affects 

the predictive power of the classifier when subjected to a test set. Literature has revealed that the 

augmentation of the NB model is not commensurate with classification performance (Cheng & 

Greiner, 1999; Madden, 2009). Therefore our empirical study investigates how the progression 

from NB to GBN affects the classification of DoS attacks. Our quest was to identify the classifier 

that will exhibit the best classification performance in the detection task. The GBN classifier was 

trained with both K2 and HC search algorithms just for empirical curiosity. With all the other 

parameters invariant, the training set size at 1000 instances and the test set at 880, PKID was 

used as the discretization approach and MDL was chosen as the scoring function), the results for 

the experiment performed are shown in Table 5-1. 
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Table 5-1: Model complexity and classification accuracy 

Model Accuracy 

NB 74.6747 

TAN 86.8969 

AODE 89.683 

GBN-K2 86.7968 

GBN-HC 85.996 

 

5.1.2 Sample size 

Of the 1880 samples used in this research, 1000 were dedicated to training. If the classification 

performance remains invariant while training set is reduced then it is possible to curb the 

duration of the training session and computational costs (Brain & Webb, 1999). In this second 

set of experiments, we studied the impact of the training sample size on the classification 

performance of Bayesian network classifiers. The five classes of Bayesian networks classifiers 

were inducted to distinguish between normal and DoS traffic using either the full training sample 

set of 1000 instances or the reduced variations of the training set. We partitioned the full training 

dataset into ten subsets. These subsets were generated at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 

80%, 90% and 100% of the full designated training set of 1000 instances. As alluded by (Bielza 

& Larrañaga, 2014), learning a Bayesian network from data implies that the conditional 

probabilities will be physical. It is that end that the size of the training set is crucial in inducting 

accurate probability estimates. Therefore we chose to start to generate the training set size at 

10% of the total training sample size. The results for the experiment conducted are shown in 

Table 5-2. Figure 5-1 presents the results graphically. 

Table 5-2: Varying training set size 

 NB TAN AODE GBN-K2 GBN-HC 

10% 74.5721 77.7477 78.0616 75.9468 74.8097 

20% 82.9648 83.9698 83.9698 84.4724 82.4623 

30% 83.9799 84.6488 84.3144 84.6488 87.3244 

40% 84.9875 85.7859 86.7419 85.2381 84.7368 

50% 82.5852 82.9864 87.7956 82.7856 84.99 

60% 84.4908 85.8264 87.4958 85.8264 84.9917 

70% 86.9914 87.4212 88.4241 87.4212 86.5616 
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80% 87.1214 87.2466 88.373 87.4969 86.2453 

90% 87.3274 88.1069 88.441 87.9955 86.5479 

100% 86.6747 86.8969 89.683 86.7968 85.996 

 

 

Figure 5-1: Varying training set size 

Appendix C shows a boxplot that summarises the response of Bayesian network classifiers to 

changes in the training sample size. Friedman test was applied to compare the different 

classifiers for each training sample size. There was a statistically significant difference in 

classification performance of the Bayesian network classifiers over varying training sample size, 

  ( ) = 20.154,   = 0.0004657. Friedman’s test claims there is a statistical difference between 

the performances of the classifiers hence it was meaningful to conduct multiple comparisons so 
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as to identify differences between the classifiers. For the output of Friedman is shown in 

Appendix A. Pairwise comparisons using Nemenyi post-hoc test were performed. The output of 

the test is shown in Appendix B. According to the Nemenyi post-hoc test for the Bayesian 

network classifiers comparison, NB differs highly significantly (      ) to AODE and GBN-

K2. The remaining comparisons are not significant (      )  

In our first set of empirical study, we examined the classification performance of five classes of 

the Bayesian network classifiers. During the experiment, a fixed training sample size was used as 

well as a similar discretization approach and the score function was chosen for the induction 

process. It is the model complexity that varied. In this second scenario of experiments, the 

sample size, which is the number of training instances, is varied whilst the other configurations 

are fixed. 

5.1.3 Discretization  

There exist different types of discretization algorithms; some are supervised, others 

unsupervised, some need user input while others are automatic, some provide improved 

experiment runtime. In this third scenario, 6 discretization approaches were evaluated primarily 

on how they impact the classification performance of Bayesian networks classifiers, further 

experiments were conducted to assess how a collective of a discretization and training sample 

size impact the classification performance of the Bayesian network classifiers. The Equal Width 

(EW), Equal Frequency (EF), Proportional k-interval (PKI), Fayad and Irani’s Entropy based 

Minimum Description Length (MDL), Class Attribute Interdependency Maximization (CAIM) 

and ur-Class Attribute Interdependency Maximization (ur-CAIM) were considered in the task of 

detecting DoS attacks. 

In the first set of the empirical study, the five classes of Bayesian networks classifiers were 

trained on the same parameters such as a fixed training set and score metric. The performance of 

the Bayesian networks classifiers was evaluated on the 888 instances of test data. Score function 

used is MDL. Figure 5-2 shows the classification accuracy with the different algorithms and 

Table 5-3 shows the results of the classification accuracy on both train and test dataset for the 

experiments. 
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Table 5-3: Results of discretization approach comparison 

Classifier EW5 EW10 EF5 EF10 PKID MDL CAIM ur-CAIM 

NB 74.9 76.4 75.2 79.5 83.8 82.0 79.6 81.4 

TAN 76.7 77.2 76.9 77.7 85.6 87.7 82.6 84.7 

AODE 79.1 80.7 83.8 81.7 87.5 87.5 85.8 86.2 

GBN-K2 78.3 79.9 82.3 80.6 86.1 87.1 84.0 83.6 

GBN-HC 77.5 78.0 81.2 80.2 85.3 86.6 82.9 84.2 

 

 

Figure 5-2: Discretization approach against Classification performance 
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Appendix F shows a boxplot that summarises the response of Classification accuracy to differing 

discretization approaches used. According to the Friedman test shown in Appendix D there was a 

statistically significant difference in classification performance of the Bayesian network 

classifiers over different discretization approach employed   ( ) = 33.56,   = 2.082e-05. 

Friedman’s test claims there is a statistical difference between the performances of the 

discretization methods hence it was meaningful to conduct multiple comparisons so as to identify 

differences between the classifiers. Pairwise comparisons using Nemenyi post-hoc test were 

performed. The output of the test is shown in Appendix E. According to the Nemenyi post-hoc 

test for the Bayesian network classifiers comparison, the modelled using EW differs highly 

significantly (      ) to classifier trained using MDL and PKID. The remaining comparisons 

are not significant (      )  

Appendix I shows a boxplot that summarises the response of Classification accuracy to differing 

discretization approaches used. According to the Friedman test shown in Appendix G there was a 

statistically significant difference in classification performance of the Bayesian network 

classifiers over different discretization approach employed   ( ) = 10.13,   = 0.03833. 

Friedman’s test claims there is a statistical difference between the performances of the 

discretization methods hence it was meaningful to conduct multiple comparisons so as to identify 

differences between the classifiers. Pairwise comparisons using Nemenyi post-hoc test were 

performed. The output of the test is shown in Appendix H. 

The second set of experiments investigates the behavior of the discretization approach as training 

sample size increases for each Bayesian classifier. 
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 NB  

Table 5-4: Results of discretization against size of training set of NB 

 EW5 EW10 EF5 EF10 PKID MDL CAIM ur-CAIM 

10% 79.899 81.9192 82.9293 83.0515 82.9293 85.9596 84.9495 82.9293 

20% 79.9497 78.9447 83.4673 82.9477 84.4724 85.9799 81.4573 84.4724 

30% 80.301 79.6321 85.3177 82.3077 86.3211 86.6555 82.9766 85.9866 

40% 78.7218 80.4762 84.4862 83.2331 85.7393 87.2431 83.7343 84.7368 

50% 77.5752 81.1824 84.1884 82.7856 85.5912 87.5952 82.986 85.7916 

60% 78.6477 78.9816 84.1569 82.8214 85.3255 87.4958 82.6544 85.4925 

70% 78.6981 79.9857 84.2775 82.8469 85.8512 87.568 82.8469 85.422 

80% 78.9088 80.2378 84.2428 82.7409 85.8698 87.3717 82.4906 85.4944 

90% 79.1892 80.2378 83.9933 82.5473 86.218 87.3304 82.3248 85.3281 

100% 77.8879 80.3904 83.3934 83.1932 85.7958 87.3974 82.6927 84.8949 

 

 

Figure 5-3: Classification performance versus training size 
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TAN 

Table 5-5: Results of discretization approach against size of sample set TAN 

 EW5 EW10 EF5 EF10 PKID MDL CAIM ur-

CAIM 

10% 79.899 81.9192 81.9192 84.9495 82.9293 86.9697 82.9293 85.3954 

20% 79.9497 78.9447 82.4623 82.4623 85.4774 85.9799 82.4623 83.9698 

30% 78.2943 78.6288 84.6488 82.6421 86.3211 86.99 82.9766 85.6522 

40% 78.4712 79.4737 84.7368 83.7343 85.99 87.4937 83.2331 84.9875 

50% 77.976 78.978 83.988 82.7856 85.5912 87.3948 83.3868 85.992 

60% 78.9816 78.9816 84.1569 82.8214 85.8264 87.4958 82.3205 86.4942 

70% 78.9843 79.9857 84.4206 82.99 86.1373 87.568 82.1316 86.4235 

80% 79.2665 80.2378 83.7422 85.3692 86.3705 87.1214 81.99 86.1202 

90% 79.5072 80.1001 83.7709 87.2191 86.4405 87.2191 82.3248 85.5506 

100% 78.0881 80.5906 83.4935 85.5956 86.5966 87.6977 82.5926 85.3954 

 

 

Figure 5-4: Classification accuracy versus training set 
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AODE 

Table 5-6: Results of discretization approach against training set size AODE 

 EW5 EW10 EF5 EF10 PKID MDL CAIM ur-

CAIM 

10% 79.899 81.9192 82.9293 84.9495 82.9293 86.9697 84.9495 82.9293 

20% 79.9497 78.9447 83.4673 81.4573 84.9749 85.4774 82.4623 83.9698 

30% 80.6355 80.6355 85.3177 85.3177 87.3244 86.6555 82.6421 84.6488 

40% 80.2256 81.4787 84.7368 85.4887 86.9925 87.2431 82.9825 84.9875 

50% 78.5772 81.1824 83.988 85.7916 87.1944 86.994 82.3848 85.992 

60% 78.9816 80.6511 83.823 85.6594 87.3289 86.995 82.1536 84.9917 

70% 78.9843 81.1302 84.1345 86.7096 87.568 87.4249 83.5622 85.5651 

80% 79.9821 80.2378 83.617 86.1202 87.622 87.3717 83.2416 85.1189 

90% 79.9841 80.1001 83.1034 86.4405 87.7753 87.2191 83.1034 85.4394 

100% 78.0881 80.4905 83.2933 86.6967 87.4975 87.7978 83.2933 84.995 

 

 

Figure 5-5: Classification accuracy versus training set 
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GBN-K2 

Table 5-7: Results of discretization approach against training set size 

 EW5 EW10 EF5 EF10 PKID MDL CAIM ur-

CAIM 

10% 79.899 81.9192 81.9192 84.9495 82.9293 86.9697 83.9394 80.9091 

20% 79.9497 78.9447 83.4673 81.4573 85.4774 85.9799 81.9598 84.9749 

30% 78.2943 78.2943 85.3177 82.6421 86.3211 86.6555 83.6455 85.9866 

40% 78.2206 79.4737 83.2331 83.4837 85.99 87.4937 82.9825 85.4887 

50% 77.7756 78.978 83.7876 82.7856 85.5912 87.5952 82.5852 85.5912 

60% 78.9816 78.9816 84.4908 82.8214 85.8264 87.4958 82.3205 85.3255 

70% 78.9843 79.9857 84.4206 83.133 86.1373 87.568 82.5608 85.1359 

80% 79.2665 80.2378 83.8673 82.7409 86.3705 87.3717 82.3655 85.2441 

90% 79.5072 80.1001 83.9933 82.5473 86.3293 87.1079 82.2136 85.3281 

100% 77.988 80.5906 83.3934 82.5473 86.0961 87.6977 82.2136 84.4945 

 

 

Figure 5-6: Classification accuracy against training set size 
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GBN-HC 

Table 5-8: Results of discretization approach against training set size GBN-HC 

 EW5 EW10 EF5 EF10 PKID MDL CAIM ur-

CAIM 

10% 69.596 70.6061 77.8788 79.899 79.596 86.9697 82.9293 84.9495 

20% 69.799 72.8141 81.9598 80.9548 81.4573 84.9749 82.4623 82.9648 

30% 70.2007 70.2007 80.9699 83.9799 84.6488 86.3211 83.311 84.9833 

40% 69.8997 71.6541 83.985 84.2356 84.4862 86.9925 82.7318 85.7393 

50% 69.1182 72.9259 83.3868 85.1904 85.7916 87.1944 81.7836 86.7936 

60% 70.2671 73.4391 82.8214 83.823 84.9917 87.1619 82.6544 86.4942 

70% 77.9828 80.1001 83.8484 83.9914 85.8512 87.4249 82.8469 85.1359 

80% 72.4329 76.6083 83.7422 82.7409 86.2453 87.2466 82.2403 85.2441 

90% 74.2289 76.7631 82.7697 82.5473 85.8843 86.3293 82.2136 85.2169 

100% 77.988 77.7878 82.0921 83.1932 85.2953 86.8969 82.7928 84.3944 

 

 

Figure 5-7: Classification accuracy versus training set size 
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5.1.4 Score Function  

There are various types of score functions. They are built under different criterions. The search 

for the network that maximizes the score is a optimization problem (Liu, Malone & Yuan, 2012). 

In our experiments, we trained the classifiers on five variables. According to (Liu, Malone & 

Yuan, 2012), five variables produces 29 281 network structures. In this last scenario, the focus is 

toward the impact of different scoring functions on the classification ability of Bayesian network 

classifiers. The Bayes, Minimum description length (MDL), AIC, entropy, BDeu metric were 

considered in this empirical study. WEKA’s default configurations of the score functions were 

used in the experiments. During the experiments the training sample size remained invariant at 

1000 instances and simple discretization approach PKID was used. The results for the 

experiment conducted are shown in Table 5-9. 

Table 5-9: Results of score function on classification performance 

Algorithm % Correct 

(Training) 

% Correct 

(Testing) 

TAN –S BAYES 88.46 87.998 

TAN –S AIC 87.68 86.4965 

TAN –S MDL 89.24 86.5966 

TAN –S BDeu 87.54 88.1982 

   

GBN K2 –P 3 –S BAYES 88.91 87.7978 

GBN K2 –P 3 –S AIC 88.66 86.0961 

GBN K2 –P 3 –S MDL 86.13 85.1569 

GBN K2 –P 3 –S BDeu 87.34 87.5976 

   

GBN HC –P 3 –S BAYES 86.85 87.7978 

GBN HC –P 3 –S AIC 87.04 86.0961 

GBN HC –P 3 –S MDL 86.90 85.2953 

GBN HC –P 3 –S BDeu 88.67 87.1982 
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Figure 5-8: Classification accuracy vs type of score function 

Appendix M shows a boxplot that summarises the response of Classification accuracy to 

differing scoring function chosen for the induction process. According to the Friedman test 

shown in Appendix J there was a statistically significant difference in classification performance 

of the Bayesian network classifiers over different discretization approach employed   ( ) = 

10.13,   = 0.03833. Friedman’s test claims there is a statistical difference between the 

performances of the discretization methods hence it was meaningful to conduct multiple 

comparisons so as to identify differences between the classifiers. Pairwise comparisons using 

Nemenyi post-hoc test were performed. The output of the test is shown in Appendix K. 

In the next set experiments, the impact of training sample size on type of scoring function and 

ultimately the classification performance is investigated. 
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5.1.4.1 TAN 

Table 5-10: Results of score function against varying training sample set 

 BAYES AIC  MDL  BDeu 

10% 70.9091 76.8687 76.8687 77.8788 

20% 83.4673 83.9698 83.9698 83.4673 

30% 88.3278 84.9833 84.6488 86.3211 

40% 86.4912 84.9875 84.9875 86.7419 

50% 87.996 82.986 82.986 88.3968 

60% 87.6628 85.8264 85.8264 88.3306 

70% 88.5673 87.4212 87.4212 88.4241 

80% 88.1227 87.4969 87.2466 88.1227 

90% 88.3296 88.1069 88.1069 87.1047 

100% 87.998 86.4965 86.5966 88.1982 

 

 

Figure 5-9: Classification accuracy against training sample size 
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5.1.4.2 GBN-K2  

Table 5-11: Results of score function against varying training set size 

 BAYES AIC  MDL  BDeu 

10% 80.9091 76.8687 76.8687 76.8687 

20% 84.4724 83.9698 83.9698 82.4623 

30% 87.3244 84.6488 84.6488 86.6555 

40% 87.7444 85.2381 85.2381 86.2406 

50% 87.7956  82.986 82.7856 87.1944 

60% 88.3306 85.8264 85.8264 87.9967 

70% 88.4241 87.4212 87.4212 88.2808 

80% 88.373 87.4969 87.4969 88.2478 

90% 88.9978 87.9955 87.9955 88.9978 

100% 87.7978 86.0961 86.0961 87.5976 

 

Figure 5-10: Classification accuracy against training sample size 
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5.1.4.3 GBN-HC 

Table 5-12: Results of score function against varying training sample size 

 BAYES AIC  MDL  BDeu 

10% 77.8788 79.899 79.899 77.8788 

20% 85.4774 84.4724 82.4623 81.4573 

30% 87.3244 84.6488 86.3211 85.6522 

40% 87.7444 85.2381 84.7368 86.4912 

50% 87.7956  82.7856 84.99 87.7956 

60% 88.3306 85.8264 84.9917 87.8297 

70% 88.4241 87.4212 86.5616 88.4241 

80% 88.373 87.4969 86.2453 87.9975 

90% 88.8864 87.9955 86.5479 87.8842 

100% 87.7978 86.0961 85.2953 87.7978 

 

 

Figure 5-11: Classification accuracy versus training set size 
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5.2 Discussion of results 

This subsection is dedicated to discussing the results presented in section 5.1. The reader should 

note that the results outlined are based on the effects of a particular parameter under 

investigation and also how it behaves varied while other parameters remain invariant. For 

instance, in one of the experiments conducted on the how the choice of discretization approach, 

various methods were used to assess how they impact the classification performance while the 

factors such as training sample size, score function remain constant. Furthermore we investigated 

the behaviour of discretization methods when varying the training sample size. The goal of this 

empirical study was to exhaust the entire factors under study in how they affect the classification 

ability of Bayesian network classifiers. 

5.2.1 Structural/model complexity 

We commence the analysis with the impact of the model complexity on the classification 

performance of Bayesian network classifiers in detecting DoS attacks in cloud computing 

platforms.  We firstly analyse the results exhibited by the progression in structural complexity 

starting from the simple NB to the GBN. The results from Table 5-1 show that accuracy values 

increase from NB through TAN until AODE then the drastically drop when GBN classifiers 

were used. The results are congruent with the experimental results from (Madden, 2009) and 

(Friedman, Geiger & Goldszmidt, 1997). The AODE classifier outperformed the NB with the 

former having an accuracy of 89.63% while the latter has an accuracy of 74.67%. This is due to 

the fact that the independence assumption among attributes has been relaxed and represented to 

some degree in AODE. Therefore the class probability estimates of AODE were thus more 

accurate than those of NB. AODE also outperforms the TAN significantly. The classification 

accuracy of TAN is 86.90% which lower than that of AODE. This is attributed to the fact that 

TAN is subjected to computational burden due to model selection and probability estimation. 

(Cheng & Greiner, 1999) states that model selection tends to increase variance. Thus to evade 

model selection, AODE pre-empts this phase by averaging the one dependence classifiers. Hence 

AODE has computational advantage over TAN leading it to have better classification 

performance. Comparing TAN with NB and also with GBN, TAN outperforms the NB classifier. 

TAN algorithm also performs better than GBN classifiers while the GBN performs better than 

NB. GBN-K2 needs a node ordering this may result in additional computational costs. That 

being said, GBN-HC required no node ordering, however the performance of GBN-K2 exhibited 
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superior performance than that of GBN-HC. GBN-K2’s seemingly algorithmic limitation is 

important because in specific case where it may be applied, a passable ordering may be derived 

from domain. TAN has more attribute correlations than NB making it to perform the 

classification role better. Due to the Markov blanket, the GBN classifier might contain fewer 

attribute correlations than TAN, thus making TAN a better classifier. (Madden, 2009) reveals 

that TAN classifier incurs low computational overhead when compared to GBN classifiers.  

5.2.2 Training sample size 

This section deal with the analysis of how  varying training sample sizes affects the classification 

performance of Bayesian network classifiers in detecting DoS in cloud computing environments. 

We start our analysis by making reference to Figure 5.1 which depicts how the classification 

accuracy against the percentage of the total training sample size behaves and changes. In Figure 

5.1 it can be vividly observed that the classification accuracy increases as the number of training 

instances increases. According to Friedman, Geiger & Goldszmidt (1997), a Bayesian network 

structure that encodes a joint probability distribution  (         ) is induced from the training 

sample. That being said, training sample size plays a critical role in parameter estimation. An 

increase in training sample size tends to result in an asymptotic approximation for the probability 

distribution of the real domain under study.  Consequently, the larger the training dataset, the 

lesser the bias.  Figure 5.1 depicts that there is generally an improvement in predictive 

classification performance as we traverse the graph from 10% to 100% of the total training set. 

The plotted graph is not directly proportional but haphazard as observed by the decrease 

particularly from 30% to 50%. This can be attributed to uneven distribution of the instances in 

the training sample. AODE classifier is shown to be the best performing model as compared to 

its rivals. This can be explained by Webb, Boughton & Wang (2005) who attributed this to more 

accurate base probability estimates in the one-dependence models. AODE is a high variance 

model. The performance of the TAN is basically better than the NB, which can be explained to 

be due to improved probability estimates that come about as a result of the smoothing operation. 

Our results of the performance of NB with increasing training sample are at variance with those 

of (Sordo & Zeng, 2005) and (Brain & Webb, 1999) who state that the performance of NB is 

indistinguishable with changes to training sample size.  
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5.2.3 Choice of discretization approach 

Now we are moving to the empirical study that analyses the impact of the discretization 

algorithm on the classification performance of Bayesian network classifiers in detecting DoS 

attacks in cloud computing environments. Figure 5-2 depicts the classification accuracy of the 

Bayesian classifier under study against the discretization method used prior training. The 

different line graphs correspond to how the five classifiers behaved for the 8 discretization 

approaches tested. The discretization methods are represented on the x-axis. It is observed that 

the classification accuracy followed an irregular exponential curve with each change of 

discretization approach. The ranking among the classifiers remains unchanged with AODE 

outperforming the other classifiers yet again except for TAN when discretizing with MDL, we 

also observe that proportional k-interval discretization is particularly good for AODE whereas 

EW5 performs worse for almost all the classifiers. Among the supervised discretization 

algorithms, CAIM performs poorly. Also observed is the least sensitivity of the AODE classifier 

to the EF10, PKID and MDL discretization approaches applied. In (Flores et al., 2011), the 

behaviour of Bayesian networks classifiers is examined in terms of bias and variance which the 

authors termed discretization bias and variance. They studied the analysis extending to some of 

the classifiers used in this study. The authors pointed out that a sensitive algorithm has a higher 

variance. Furthermore they discuss about what they referred to as the irreducible error which 

they described as the level of noise in the data. They used these concepts to explain the number 

of intervals produced by a discretization approach. A discretization process that results in a large 

number of intervals tends to result in low bias models. This therefore explains the reason why 

there is an increase in accuracy when the number of intervals of both equal width and equal 

frequency increase from 5 to 10. From the findings of bias-variance decomposition in (Flores et 

al., 2011), we can further deduce the reasoning behind the excellent performance of AODE. It is 

said that AODE has the lowest error rates.  

In the same vein, our empirical experiments involved the investigation of how the size of the 

training sample size affects the discretization process and ultimately the classification 

performance of the Bayesian classifiers. Figure 5-3 to Figure 5-7 shows the behaviour of the 

accuracy value against the variation of training sample sizes for each Bayesian classifier. 

Generally, it is observed that each classifier reacts uniquely to the discretization approaches. 

However, overall the MDL method ranked higher across all the classifiers.  Noted also was that 
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on average lower sample sizes lead to optimistic bias in classification performance across the 

classifiers. Our results are at variance with the fact that supervised discretization methods result 

in better classifiers when compared to those trained with unsupervised approaches. 

5.2.4 Choice of score function  

This section will discuss the results of the experiments investigating how the choice of the score 

function affects Bayesian network classifiers performance. We commence our discussion by 

analysing the results depicted in Figure 5-8, which shows the classification accuracy values of 

the TAN, GBN-K2 and GBN-K2 trained with different score functions. From Figure 5-8 it is 

noted that the choice of score function did not significantly affect the classification accuracy. As 

published by (Friedman, Geiger & Goldszmidt, 1997), a particular scoring function might learn a 

high quality network structure but however exhibit mediocre performance on test instances. 

Figure 5-9 to Figure 5-11 shows the behaviour of the classification accuracy value against the 

variation of training sample sizes for each Bayesian classifier. It is observed also that the score 

function is impacted by changes in the size of the training sample. Across all the experiments, 

bayes score produced classifiers that gave the best results on test data. Literature explicitly 

alluded the importance of the score-equivalent property. Carvalho (2009); Liu, Malone & Yuan 

(2012) emphatically state the property as mandatory.  All the scoring functions under study are 

decomposable but bayes and BDeu are not equivalent. Our results are in harmony with the 

findings of (Yang & Chang, 2002). In their findings they noted that the property is rather useless 

because the score-equivalent score metrics produced network structures of inferior performance 

when compared with the non-score-equivalent score metrics. 

5.3  Conclusion 

This chapter outlined the classification performance of Bayesian network classifiers under 

individual and collective empirical configurations. Each experiment was described and discussed 

in detail and thereafter detailed analysis of the outcomes of the experiments was conducted. 10 

graphs were produced from the investigations. Observations and conclusions were drawn based 

on the results of the experiments performed. The closing chapter of this dissertation is for 

consolidating the findings discovered in this chapter and outlining the future studies that can be 

explored in this research. 
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Chapter 6: Conclusion and Future work 

Our research has been an empirical investigation to answer the critical questions: how do the 

model complexity, size of training set, type of discretization approach and the type of score 

function individual and collectively affect the classification performance of Bayesian networks 

classifies in distinguishing between normal and anomaly data? We made use of the widely used 

NSL-KDD dataset for intrusion detection and real DoS network traffic to explore this question 

in-depth by performing several experiments. This closing chapter aims to show how the findings 

of the research tally with the research questions outlined in the first chapter. The chapter also 

provides a comprehensive synopsis of the highlights of the research. Further, we close this 

chapter by describing areas of possible further exploration for this study. 

6.1 Introduction 

Bayesian network classifiers are a customised version of Bayesian networks used for 

classification tasks. They have been used to implement IDS and have proven to be successful and 

comparative in performance with other data mining algorithms. The constant quest for the data 

mining or machine learning community is the implementation of optimal performing classifiers. 

In this study, there are factors we hypothesized to impact the classification performance of 

Bayesian network classifiers. These are namely structural complexity, training sample size, the 

type of discretization approach and the lastly the choice of scoring function used. These factors 

formed the core of the experiments of this research. There exist discrepancies and ambiguous 

findings about the impact of the factors on classification performance. These have been reviewed 

accordingly in Section 3.11. This motivated the researcher to conduct empirical investigations of 

the impact of the aforementioned factors. The domain of application of the experiments is in the 

detection of DoS attacks in cloud computing.  

6.2 Empirical findings vs research questions 

1) How do DoS attacks impact the cloud computing environments? 

The research introduced the concept of Cloud computing in Chapter 2. Cloud computing is 

presently the most important internet centric service model. It comes with a wide variety of 

benefits that are appealing organisation’s business model. However, there exist challenges in 

terms of security that threaten the cloud technology. DoS attacks are the chief security intrusion 
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that has stalled the mass adoption of the cloud computing environments. DoS attacks affect the 

availability of cloud resources. Furthermore they degrade the quality of network connectivity of 

end users. Their ultimate goal is to handicap the consumption of cloud services by users and the 

availability the services is affected. Consequently, cloud service providers will incur business 

losses and ultimately lose their clientele. 

2) How do Bayesian networks perform classification tasks? 

The research firstly discussed the concepts of Bayesian networks in chapter 3. A few definitions 

were presents to explain the concept. The use of Bayesian networks were justified for 

classification tasks because of the following advantages: 

o Probability theory. 

o Graphical structure. 

o Ability to fuse expert knowledge and data to construct models. 

o Its support for missing data during induction. 

Bayesian network are a customized version of Bayesian networks used for classification tasks. 

The simplest type of Bayesian network classifiers is NB. Due to the unrealistic assumption, the 

NB tends to perform poorly in certain domains hence it is augmented to TAN, AODE, GBN etc.  

3) How does structural complexity of Bayesian classifier affect the classification 

performance of Bayesian classifiers?  

Bayesian network classifiers come in various forms starting from the simple NB up to the 

complex variants. As stated in literature, the progression in structural complexity is not 

straightforward and may not be directly proportional to classification performance of Bayesian 

classifiers. Also in accordance to the no-free-lunch theorem, performance of a classifier is not 

universal; it varies most notably with dataset types. With reference to Section 3.2.1, it was 

mentioned that the structural complexity of the Bayesian network classifiers under study 

increased from NB to GBN. Findings from our empirical study indicate an improved 

classification performance from NB to AODE but however drop when it comes to GBN. Madden 

(2009, p. 12) accounts for the drop in performance of GBN buy explaining in terms of 

computational complexity stating that, ―…GBN classifiers are more expensive to construct than 
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TAN classifiers…”. Our findings do however confirm that the structural complexity factor does 

affect the classification performance of Bayesian network classifiers. 

4) Does the size of the training dataset impact the classification performance of Bayesian 

classifiers? 

The empirical study pertaining to the relationship between the training sample size and the 

classification performance of Bayesian network classifiers was discussed in Section 3.2.2. The 

findings indicate that varying the training sample size used in the induction of the Bayesian 

networks classifiers has an apparent impact on their classification performance. In light of 

tediousness of annotating the training data, scholar presented studies that prove that NB may not 

necessarily require a large dataset for training. Sordo & Zeng (2005) in their study reveal a 

dwindling performance of NB as training set size increases. This sparked interest in the 

researcher to investigate the behaviour of the TAN, AODE and GBN when altering the size of 

the training set. Contrary to the findings by (Sordo & Zeng, 2005), our experiments show that the 

performance of NB increased with increasing training set size. This was typical for the TAN, 

AODE and GBN classifiers too. As discussed earlier on, when inducting Bayesian networks 

from a dataset, the probabilities will be physical not Bayesian. It is to that end that the size of the 

training set dictates the accuracy of the probability estimates in the resultant Bayesian network 

structure. Worst classification performance exhibited at small training sample sizes might be due 

to the distribution of the instances in the dataset not being representative of the problem domain. 

Furthermore, poor performance can be attributed to the class imbalance phenomena. 

5) Does the choice of discretization technique matter and how is the discretization process 

affected by the size of the training set? 

The experimental results regarding the effects of the type of discretization algorithm on the 

classification performance of Bayesian network classifiers were discussed in Section 5.2.3. It 

was observed that discretization techniques do impact the classification performance. This 

investigation was motivated by the fact that data mining suites e.g WEKA and keel come 

embedded with a number of discretization algorithms hence the researcher was curious on their 

impact on the classification ability of build Bayesian networks. There exist discrepancies in 

literature on the supposed impact on classification performance. Other factors of interest was 
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whether the number of produced intervals and the number of training instances. We also 

focussed on the impact of supervised and unsupervised discretization algorithms on 

classification. We noted that supervised learning algorithms produced poor performing models 

and the findings are at variance with results from other studies. The proportional k-interval 

discretization algorithm was generally the best performing discretization method. Also the more 

the interval produced by a discretization the better the classification ability. Larger training sets 

imply that more information will be contained within the intervals after the discretization 

process.   

6) Does the choice of scoring function result in better classifiers and how are the score 

metrics affected by the size of the training set? 

The empirical results concerning the impact of the score function on the classification 

performance of Bayesian network classifiers were discussed in section 5.2.4. We investigated 

and obtained that the score function generally does not impact the classification performance of 

Bayesian network classifiers. This investigation was motivated by the curiosity invoked by 

several research papers that are on the development of novel score function or metrics. This 

sparked interest in whether they in anyhow impact the classification performance of classifiers. It 

was however discovered that the investigated that the score functions under study did not affect 

the classification ability of the classes of Bayesian networks in this study.  

6.3 Recommendations and Future work 

During the course of study any field of interest, various questions will remain unanswered. With 

respect to this study, our findings have considerable areas that need further exploration. We can 

extend our study by investigating Bayesian network classifiers as multiclass classifiers. We 

would like to empirically investigate whether they will provide better classification performance. 

This study can be modified to study how the Bayesian networks behave when applied to detect 

other intrusion attacks categories. Furthermore, investigations can be done on the impact of the 

discretization process during the training phase instead after prior training. The NSL-KDD 

dataset used as our training set has 41 features. In this study we only managed to derive 5 

features. Therefore to improve the quality of our empirical study, given the necessary algorithms 

for converting packet-level data to connection-level data, we need to embark on 41 features from 

the live packet capture. The greatest challenge in data mining is in the annotation of the training 
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data. It is therefore tedious as well as expensive to label large training samples required for 

optimum classification performance. With this in mind, further exploration can be done to 

determine how small training samples can be made to augment the classification performance of 

Bayesian network classifiers.    

6.4 Conclusion 

Bayesian networks have been applied in a wide-range of applications. The focal point of this 

research has been to apply them in detecting DoS attacks in cloud computing environments. 

Literature provides numerous advantages that make Bayesian networks to be the better data 

mining algorithm. They have proven to be excellent in classification tasks. This research 

embarked on the analysis of the impact of structural complexity, training sample size, 

discretization algorithm and score functions on the classification performance in detecting DoS 

attacks. The hope of the researcher is that this study will provide sound ―ecosystem‖ modelling 

choices for researchers intending to apply any class of Bayesian network in any field of study. 

Poor choices of the sample size, discretization technique will have adverse effects on the 

classification accuracy of chosen classifier. By virtue of our research, the induction of Bayesian 

networks should be an easy task since the parameters involved have been analysed and 

presented. For optimal performance of Bayesian network classifiers, it is highly imperative to be 

acquainted with the options of the involved parameters and the associated issues. Thus, the 

general rules outlined can be essential for novice machine learners.   
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Appendix N 
NSL-KDD dataset – List of Features 

Feature Set Description Amount 

Basic features of individual TCP 9 

Content feature within a connection suggested by domain knowledge 13 

Traffic features computed using a two-second time window 9 

Host features 10 

Total 41 

 

NSL-KDD Dataset-Basic Features 

Feature name Description Type 

duration length of the connection continuous 

protocol_type type of the protocol e.g tcp, 

udp, etc 

discrete 

service network service on the 

destination e.g http, telnet 

discrete 

src_bytes number of data bytes from 

source to destination 

continuous 

dst_bytes number of data bytes from 

destination to source 

continuous 

flag normal or error status of the 

connection 

discrete 

land 1 if connection id from/to the 

same host/port; o otherwise 

discrete 

wrong_fragment number of ―wrong‖fragments continuous 

urgent number of urgent packets continuous 

   

 

NSL-KDD Dataset – Content Features 

Feature Name Description  Type 

hot number  of ―hot‖ indicators continuous 

num_failed_logins number of failed login 

attempts 

continuous 

logged_in 1 if successfully logged in; 0 

otherwise 

discrete 

num_compromised number of ―compromised‖ 

conditions 

continuous 

root_shell 1 if not shell is obtained; 0 

otherwise 

discrete 

su_attempted 1 if ―su_root‖ command 

attempted; 0 otherwise  

discrete 



 

124 

num_root number of ―root‖ accesses continuous 

num_file_creations number of file creation 

operations 

continuous 

num_shells number of shells continuous 

num_access_files number of shell prompts continuous 

num_outboundcmds number of outbound 

commands in an ftp session 

continuous 

is_hot_login 1 if the login belongs to the 

―hot‖ list; 0 otherwise 

discrete 

is_guest_login 1 if the login is a ―guest‖ 

login; 0 otherwise 

discrete 

 

NSL-KDD Dataset – Traffic features 

Feature Name Description Type 

count number of conections to the 

same host as the current 

connection in the past two 

seconds 

continuous 

serror_rate % of connections that have 

―syn‖ errors 

continuous 

rerror_rate % of connections that have 

―rej‖ errors 

continuous 

same_srv_rate % of connections to the same 

service 

continuous 

diff_srv_rate % of connections to different 

services 

continuous 

srv_count number of connections to the 

same service as the current 

connection in the past two 

seconds 

continuous 

srv_serror_rate % of connections that have 

―syn‖ errors 

continuous 

srv_diff_host_rate % of connections to different 

hosts 

continuous 

 

NSL-KDD Dataset – Host Features 

Feature Name Description  Type 

dst_host_count number of connections to the 

destination host as the current 

connection in the past two 

continuous 

dst_host_srv_count number of connections to the 

destination service as the 

continuous 
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current connection in the past 

two seconds 

dst_host_same_srv_rate % of connections to the same 

service at destination host 

continuous 

dst_host_same_src_port_rate % of connections to the same 

source ports at destination host 

continuous 

dst_host_srv_diff_host_rate % of connections to the 

different host at destination 

host 

continuous 

dst_host_serror_rate % of connections that have 

―syn‖ errors at destination host 

continuous 

dst_host_srv_serror_rate % of connections that have 

―syn‖ errors at the destination 

host 

continuous 

dst_host_rerror_rate % of connections that have 

―refj‖ errors destination host 

continuous 

dst_host_srv_rerror_rate % of connections that have 

―ref‖ errors at destination host 

continuous 

 


