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ABSTRACT 
 

 

The development of a CNC-based technology FSW machine to accurately produce 

friction stir weld samples that can be analyzed for research purposes is implemented 

and discussed.  A process diagnosis and control scheme to improve the process 

monitoring and weld evaluation capabilities of an FSW machine are proposed and 

implemented.  Basic CNC-based hardware implementation such as optical encoders 

and inverters for process control are explained and verified.  The control scheme and 

framework of interfaces to the digital I/O cards for PC user interface are explained.  

An advanced monitoring system which senses process performance parameters such 

as tool temperature, 3-axis tool forces, torque and spindle speed are explained.  

Mechanical designs and manufacturing techniques such as tool, clamp and backing 

plate designs are explained and verified.  The process parameters for quality 

optimization are investigated and optimized by making use of Correlation and 

Regression Analysis.  The statistical data and analytical relationships between 

welding parameters (independent) and each of the performance parameters 

(dependent) are obtained and used to simulate the machining process. 

 

The weld research samples are tested for strength and integrity making use of various 

scientific testing techniques.  The reliability of the samples are also evaluated and 

compared to that of other institutions.  Process variables and the optimum operating 

range of the Friction Stir Welding machine is determined and a framework for further 

research into weld quality optimization is set. 
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Introduction 

 

Friction Stir Welding (FSW) is a solid-phase joining technique invented and patented 

at TWI (UK) for the butt and lap welding of ferrous and non-ferrous metals and 

plastics.  FSW is a continuous process that involves plunging a portion of a specially 

shaped rotating tool between the abutting faces of the joint.  The relative motion 

between the tool and the substrate generates frictional heat that creates a plasticised 

‗third-body‘ region around the immersed portion of the tool.  The contact of the 

shouldered region of the tool with the work pieces also generates significant frictional 

heat, as well as preventing plasticised material from being expelled.  The tool is 
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moved (relatively) along the joint line, forcing the plasticised material to coalesce 

behind the tool to form a solid-phase joint.   

At present, Friction Stir Welding has found various applications in a number of areas.  

Potential applications are space shuttle fuel tanks, aluminum decking for car ferries, 

manufacturing of compound aluminum extrusions and automotive structural 

components.  Most of the applications are on aluminum alloys although several 

facilities have reported experiments on titanium alloys and steels.  The process is not 

yet fully understood and further research is required to optimize this technology.   

To improve quality and increase welding speed a better understanding of tool 

geometry and interaction with material behavior would be necessary.   Historically, 

the criteria for development of an advanced tool tip have largely been qualitative due 

to difficulty generalizing the design.  It is important to investigate the relationship 

between the different welding parameters and their influence on material behavior 

since the material being welded endures a high range of static and dynamic frictional 

forces. 

Objective of Research 

Development of a FSW machine 

The development of the FSW machine will be made possible by converting a 

conventional milling machine into an adequate, functional, workstation where 

experimental friction stir welded joints may be performed on various base materials. 

Process Monitoring 

Process parameters such as welding speed and feed must be monitored and evaluated 

to obtain various comparisons between process characteristics and welded material 

characteristics. 
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Material Characterization 

The welded joints must be analyzed to determine their metallurgical behavior.  

Comparisons must be made to other methods of welding techniques to prove the 

advantages of using FSW. 

Problem Statement 

To develop a FSW facility for analysis of the interaction between friction stir weld 

parameters and thin aluminum plate behavior.   

Subproblems 

Various subproblems will have to be addressed in order to successfully accomplish 

the intended purpose and objective of this research project.  These will include the 

following: 

Subproblem 1 (Conversion) 

Conversion of a conventional vertical milling machine to a structural multifunctional 

workstation in order to perform experimental friction stir weld samples on thin 

aluminum plate   

Subproblem 2 (Tool Design) 

Design and development of a tool that will also lead to a better understanding of the 

interfacing of the tool tip with the material 

Subproblem 3 (Clamp Design) 

Design and manufacture of clamping surfaces and backing plates to support the base 

material being welded 
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Subproblem 4 (Process Monitoring) 

Investigate, evaluate and control of process welds with the aid of embedded sensors 

Subproblem 5 (Weld Evaluation) 

To determine and evaluate the weld capabilities and performance of the FSW facility 

at the MTRC 

Hypothesis 

To develop an experimental set-up for a friction stir welding unit using a process 

design methodology based on theoretical and experimental analysis from a standard 

vertical milling machine that will produce acceptable research samples. 

Delimitations  

The development of the FSW unit will purely be for research purposes.   

Only longitudinal butt welds on aluminum alloy plate ranging with plate thickness of 

1 to 20mm will be considered since the machine power is limited.  Development of 

profile welds will not be considered until we fully understand the characteristics 

involved during normal longitudinal butt welds. 

Mechanical tests (ex. fatigue and tensile tests) will be carried out on welded 

specimens to compare various property behaviors but this project will not aim to 

broach further in advanced material research such as Synchrotron Radiation for 

Residual Stress Measurement.   

For the purpose of the investigation into the characteristic behavior of the welded 

joints we will use Aluminum alloy 5083 H321 since comparable information is 

available on these types of alloys and is used readily in industrial applications. 
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Assumptions 

 The standard vertical milling machine will have adequate power to produce a 

friction stir weld. 

 The increment adjustment for feed and speed will be adequate for accurate 

adjustment of the welding process. 

 Adequate analysis of the weld for comparison of property behavior produced 

can be conducted by means of fatigue, tensile, hardness and impact testing 

alone. 

 At the time when experimental welding should be addressed basic electrical 

equipment will be operational. 

 Background literature will be available for accessing certain parameters on 

friction stir welding techniques. 

 The result and outcome will be similar to that expected from other friction stir 

welding machines. 

 It is assumed that the investigation will lead to a better understanding of the 

welding process and that the material properties achieved will be in close 

approximation to that what is expected. 

Importance of the Research 

Within the Technikon 

It would be a Technikon based research project that would expand the research to 

further areas in friction stir welding.  A fundamental research framework in this field 

will be launched. 
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A research workstation for multidisciplinary research into FSW will be set up on 

which researchers will be able to do hands-on experimental welding on various types 

of materials as well as intelligent control. 

This research project will contribute to the development of fields in design, intelligent 

machining, mechatronics and materials research at the Technikon. 

General 

Improved material fatigue life and reduction in crack growth are only two of many 

other advantages that friction stir welding introduced.  Further development and more 

advanced application for FSW will assist in establishing FSW as a more acceptable 

joining technique. 

Advantages of friction stir welding have resulted in widespread interest and rapid 

development of the application thereof in industry.  The friction stir welding 

techniques are playing an increasingly important role in manufacturing industries. 

Other researchers and industries can benefit from possible new and better 

methodology developed by the Technikon researchers. 

The project could make a contribution to other research fields by encouraging other 

academic institutions to also develop a better understanding in FSW.    

Summary of Related Literature and Discussions 

The study of literature has been concentrated on the mechanical response of friction 

stir welds.  The property characterization of materials being welded depends on 

certain weld parameters and tool designs. 



 174 

The FSW process 

A wear resistant rotating tool is used to join sheet and plate materials such as 

aluminum, copper, lead and others.  In laboratory experiments, magnesium, zinc, 

titanium and steel have also been friction stir welded.  The welds are made below the 

melting point in the solid state. 

Designs of tool tips 

The ability to weld faster at a given thickness relates critically to the FSW tool design.  

At TWI a new development, reported by Dawes
[3,13]

, has been the introduction of a 

scroll profile on the tool shoulder.  Thomas and Gittos
[4,13]

 reported the development 

of two new types of tools known as Whorl and Triflute.  Mostly new inventions in 

tool manufacture arise at TWI since they hold the patent. 

The other well-known development was from NASA
[14]

 and Boeing for the invention 

of a retractable tool tip.  Related papers of these new achievements are available. 

Material Characterization 

Some of the comparisons, related to material characterization, have already been 

analyzed and documented in papers.  Some of the latest papers released are as 

follows: 

 Latest publication 2001 to be released: Y.J.  Chao and K.W.  Miller., Friction 

Stir Welding Effects on Dynamic Properties of AA2024-T3 and AA7075-

T351, Welding Journal. 

 Year 2000 release: Y.J.  Chao., Heat Transfer Analysis and Test of Friction 

Stir Joining of AA-2195 Plates, Presentation at Aeromat, Bellevue, WA. 
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 A.P.  Reynolds., W.D.  Lockwood and T.U.  Seidel., Processing-Property 

Correlation on Friction Stir Welds, Materials Science Forum, Vols.  331-337, 

(2000) pp.  1719-1724, 2000 Trans Tech Publications, Switzerland 

Proceedings of ICAA-7, Charlottesville, VA, (April 2000) 

Other related literature on latest technology and findings are available on CD‘s.  The 

1st, 2nd and 3rd International FSW Symposiums held on 1999,2000 and 2001 are 

available. 

Research Methodology 

This project is envisaged to comprise of the following stages: 

 Investigation and development of criteria describing the welding process and 

basic procedure  

 Establishment of important parameters to create a friction stir weld.  Such 

parameters will include feed range, vertical force application, temperature 

regulation, material and tool sizes that will indicate the specification of 

material and weld speed limits for the proposed machine. 

 Design and manufacturing of a tool tip that can perform a friction stir weld 

 Design and manufacture of clamping devices to ensure stability and accuracy 

of the welding process  

 Conversion and development of a conventional milling machine into a friction 

stir welding unit with an appropriate workstation to analyze data     

 Creating successive butt welds on aluminum plates by using CNC technology  



 176 

 Revision on previous tool designs and welding techniques so that possible 

improvements to the process can be made   

 The selection and installments of embedded sensors for the monitoring of 

process behavior 

 Development of a conceptual design methodology for the welding process and 

procedure by monitoring certain parameters such as weld temperature, process 

speed, axial force and vibration 

 Comparing and evaluating FSW joint characteristics in certain aluminum 

plates to that specified by other institutions   

The Researcher’s Qualifications 

 National Diploma in Mechanical Engineering – N Dip Mech Eng - Port 

Elizabeth Technikon (2000) 

 Bachelor of Mechanical Engineering – B Tech Mech Eng - Port Elizabeth 

Technikon (2001) 
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The FSW Process 

 

The main objective of this chapter is to obtain a better understanding of the Friction 

Stir Welding Process and current developments.  In this chapter fundamental 

knowledge will be presented and in so doing will provide insight to some basic 

operational issues, which relates to the welding process.  The principal of operation, 

development and reasons for using this welding technique with relevance to the 

advantage of this process for future manufacturing of metal joining, will be discussed.    

Background to FSW and related processes 

Friction stir welding is a solid state joining technique, which has made possible the 

welding of a number of materials that were previously extremely difficult to weld 

reliably without voids, cracking or distortion.  The method was derived from 

conventional friction welding. 
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The earliest reference to the use of friction heat for solid-phase welding and forming 

appeared over a century ago in a United States patent.
[1]

  A period of fifty years then 

passed before any significant advancement in friction technology took place namely a 

British patent in 1941 that introduced what is now known as friction surfacing.
[2]

  Yet 

another fifty years went by before friction stir welding (FSW) was invented and 

patented in Cambridge at TWI (The Welding Institute of UK) in 1991.
[3]

  This 

relatively recent innovation has permitted friction technology to be used to produce 

continuous welded seams for plate fabrication, particularly in light alloys.   

Aluminum alloys are used in many applications today where the combination of high 

strength and low weight are attractive.  Shipbuilding is one in which the low weight 

can be of significant value.  In fact, the first aluminum boat was built in 1891 and the 

first welded aluminum ship in 1953.
[4]

  The two most frequently used aluminum 

alloys for shipbuilding are AA5083 (AlMg4.5Mn) for plates and AA6082 (AlSi1Mg) 

for extrusions.  The main alloying element in the 5000 series is magnesium. 

MIG welding is a flexible and productive method and is therefore widely used for 

welding of aluminum alloys in shipbuilding.  However, two disadvantages with MIG 

welding are deformation of the base material and a decrease in strength within the 

heat affected zone.  Other fusion welding techniques like TIG and plasma welding are 

also widely used.  However, these methods have the same weakness as MIG welding.  

FSW presented an alternative welding/joining technique to existing fusion welding 

methods.   

Friction stir welding techniques have developed to a stage, in the early 21
st
 century, 

where they are applied in small-scale production.  Currently 51 organizations hold 

non-exclusive licenses to use the process.  Most of them are industrial companies, and 
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several of them exploit the process in commercial production, e.g. in Scandinavia, 

USA, Japan and Australia.
[5]

  They have filed more than 285 patent applications 

related to FSW. 

The characteristics of the FSW technique can be compared with other friction process 

variants.  For example, when Continuous Drive Rotary, Inertia, Linear, Orbital and 

Arcuate friction welding variants are used to join two bars of the same material and 

same diameter or aligned cross-section, axial shortening (consumption of the bars) 

occurs equally from each bar to form a common plasticised ‗third body‘.  However, 

differences in diameter or section, lead to preferential consumption of the smaller 

component.  Differences of material in one of the parts to be joined also lead to 

preferential consumption of the comparatively softer material.
[6]

  The unequal 

consumption and temperature distribution in rotary friction welding between different 

diameter bars has already been studied
[7,8]

 and is illustrated in Figure 2.1. 

 

 

Figure 0.1  Rotary Friction Welding
[15]

 

This preferential consumption and reprocessing of one component in a friction system 

has been put to good use in the development of Friction Surfacing, as illustrated in 

Figure 2.2.  Other related processes are Friction Hydro Pillar Processing and Friction 

Pillaring, Radial Friction Welding and Friction Plunge Welding. 
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Figure 0.2  Friction Surfacing
[15]

 

Friction Stir Welding is a further development in that only the workpiece weld region 

is processed, to form a solid-phase welded joint.  Friction Extrusion and Friction 

Third-body are exceptions to the latter variants in that the consumed and reprocessed 

material is introduced into the friction system.  This introduced material, which has a 

comparatively lower thermal softening temperature than the components being 

welded are frictionally treated or extruded to provide a ‗third-body‘ material.  

Suitably conditioned, this ‗third-body‘ material can be harnessed either as an extruded 

product or be used as a joining medium. 

By introducing new workpiece material at a nominally ambient temperature, the 

lateral movement in Friction Surfacing
[8,9]

 and FSW modifies the already unequal 

temperature distribution.  This is due to the comparatively small diameter rotating 

consumable bar in Friction Surfacing and the rotating tool in FSW.  Both these 

techniques rely on producing suitable temperature and shear conditions within the 

‗third-body‘ transient region.  In Friction Surfacing it exists between the consumable 

bar and the substrate while it exists between the tool and the workpiece in FSW. 

In Friction Surfacing any increase in temperature differential (by the intrusion of cold 

substrate material) enhances the deposition mechanism and allows comparatively 

harder materials to be deposited onto nominally softer materials.
[9,10,11]

 

Principal of Operation 

FSW uses a non-consumable tool to generate frictional heat at the point of welding, 

inducing gross plastic deformation of the workpiece, resulting into a complex mix 
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across the joint.  The plates to be joined are placed on a rigid backing plate and 

clamped in a manner that prevents the abutting joint faces from separating.  A 

cylindrical-shouldered tool, with a specially projecting pin (probe) with a screw 

thread, is rotated and slowly plunged into the joint line.  The pin length is similar to 

the required weld depth.
[12]

  The shoulder of the tool is forced against the plates.  The 

rotating tool causes friction heating of the plates which in turn lowers their 

mechanical strength.  The threads on the pin assist in ensuring that plastically 

deformed material flows around the pin as the tool advances along the joint line.  As 

the tool proceeds along the joint line, frictional heating is maintained ahead of the tool 

ensuring the required plastic state.  It subsequently stirs and recombines the 

plasticized material to the side of the tool where the material cools to form a solid 

state weld.  At the end of the weld, the tool is retracted from the plate and leaves a 

hole at the end of the weld.   

 

 

 

 

 

Figure 0.3  Principle operation of a friction stir weld
[25]

 

Figure 2.3 illustrates the process schematically as well as the terminology used.  Due 

to the tool rotation, friction stir welds are not symmetric about the weld centerline.  

The side of the weld on which the rotational velocity of the tool has the same 

direction as the welding velocity (X-axis) is designated the advancing side of the 
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weld.  The side of the weld on which the two velocities have opposite direction is 

designated the retreating side of the weld.  This onion flow pattern that the tool leave 

is also schematically illustrated in Figure 2.4.  Friction stir welding can be regarded as 

an autogenous keyhole joining technique without the creation of liquid metal.  The 

consolidated weld material is thus free of typical fusion welding defects.  No 

consumable filler material or profiled edge preparation is normally necessary.    

 

 

 

 

 

 

 

 

 

 

Figure 0.4  Schematic illustrating flow pattern
[15]

 

The microstructure of a friction stir weld is unlike that of a fusion weld in that no 

solidification products are present and the grains in the weld region are equiaxed and 

highly refined.  Indeed, the FSW microstructure is that of a wrought rather than a cast 

product. 
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Welding Parameters 

Welding Speed 

Depending on the thickness and type of material, the tool rotational speed is between 

200 to 1000 revolutions per minute.  The pin section of the tool is forced into the 

material under 15 000 to 45 000 N of force.
[14]

  The pin continues rotating and moves 

forward at an average rate of 80 to 250 mm/min.  The highest feed rate possible 

depends on various parameters e.g. tool geometry, spindle speed and the downward 

force (Z-axis).  As the pin rotates, friction heats the surrounding material and rapidly 

produces a softened ‗plasticized‘ region around the pin.  As the pin travels forward, 

the material behind the pin is forged under the pressure from the tool shoulder and 

consolidates to form a bond.  Unlike fusion welding, no actual melting occurs in this 

process and the weld is left in the same fine-grained condition as the parent metal. 

TWI established an empirical formula that determines the relationship between 

welding speed, material thickness, tool geometry and material type.  The following 

formula indicates the relationship between these parameters
[45]

: 

( 0-1)  

 

 

V = feed rate mm/min 

  = material factor 

 = tool factor 

t = material thickness (mm) 

 

Certain factors such as tool and material factors are implemented in the formula to 

compromise for error in process performance.  Factors are experimentally pre-

determined to make the use of various tool and material geometries compatible with 

the formula.  The following tool factors are provided: 

t
V


 .
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Initial tool designs with no special pin and shoulder profiles have  = 1   

Improved tool designs will have  = 2 

For material factors, the following has been designated: 

Lead = 3700      Magnesium = 400 

Copper = 300      Titanium = 100 

Aluminum 6xxx = 1200    Aluminum 5xxx = 700 

Aluminum 7xxx and 2xxx = 600 

This project focuses on the welding of 5000 series aluminum with plate thickness of 

6mm.  Since the researcher does not know the efficiency of the tool geometry at this 

stage, a factor of 1 and/or 2 is used.  The estimated welding speed can be calculated as 

follows: 

 

Software related packages are also available that determine the outcome of certain 

parameter settings according to this empirical formula.   

Weld Quality 

Thomas W.M.
[16]

 describes the optimization for the friction stir welding process as 

follows: 

―For a given tool shape and tool inclination, the process only involves, rotational 

speed and travel rate, which enables the FSW to be readily optimized.‖ 

To make the optimizing process intelligent, plunge force and other variables will have 

to be measured and controlled.  The contribution of this research project will focus on 

factors that determine the possibility of the weld such as the tool geometry, spindle 

and feed rates as well as downward axial force of the tool shoulder.  When thicker 

material is being welded more attention must be given to the pin or probe design of 

the tool since adequate mixing of the plasticized material is essential.  Parameters like 

min/233116
6

21
700 mmor

or
V 
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temperature, torque and force profiles that change during the welding process will be 

sensed and monitored.  This then provides a scope for further research into intelligent 

welding techniques.  Many uncertainties also arise along related FSW parameters and 

weld quality for various materials.  The development of an FSW facility with 

monitoring capabilities will enhance research into weld quality. 

Relationship of viscosity levels to welding parameters 

In order to reduce tool wear, increase weld quality and minimize welding defects it is 

important for the friction stir welding technologist to understand the close relationship 

between friction stir welding parameters and the viscosity levels reached in the base 

material during a welding trial.  This relationship gives us a better understanding 

around the visual characterization of material flow during a weld.   

During the welding trial the welding parameters can be adjusted to correspond to weld 

quality to a certain degree.  Looking at obstacles like side flash, onion ring flow 

pattern, plunge depth and plastisized material flow, it is possible to adjust the 

parameter settings accordingly.  This plastisized third body needs to be controlled by 

adjusting some parameters. 

Development of a satisfactory 3-dimensional process model for FSW depends on 

determination of the material properties in the fully-plasticised (third body) region.  

The material viscosity is determined using plunge testing, where the forces that act on 

a rotating steel pin as it penetrates the aluminum alloy base material are measured and 

converted into effective viscosities and temperature output.
[31]

  Since this process was 

already addressed in the past by other institutions the researcher will only be 

concerned about the relationship between the viscosity and welding parameters 

obtained by these inspections.   
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A relation involving material viscosity and key welding parameters was developed 

based on the requirement that satisfactory joining depends on the formation of a 

plasticised layer immediately ahead of the moving tool.  The width of the plasticised 

region formed ahead of the traversing tool is inversely proportional to the travel speed 

and is also dependent on the amount of preheat available prior to the FSW.
[31]

  The 

width of the plasticised region ahead of the rotating pin also depends on the ratio of 

the square of the angular velocity and the travel speed
 
as well as the thermal 

conductivity of the aluminum alloy base material.
[31]

 

The width of the plasticised region () formed ahead of the moving pin is determined 

by the relation
[31]

: 

( 0-2) 

 

where,   R :   tool radius 

   :  material viscosity 

 :  thermal diffusivity 

 :   angular velocity of the tool 

Vwelding:  the travel speed 

Tsolidus:  solidus temperature of the substrate 

kth :  thermal conductivity of the substrate 

 :   viscosity of the plasticised region 

 :   Constant 

The one dimensional model equation above is explained in detail in reference [31]. 

In conclusion the material viscosity values for 6061 aluminum base material were 

determined using combination of numerical modeling and experimental testing.  

These material properties are critical during the development of a satisfactory 3-

dimensional process model for FSW.  The following has been concluded from the 
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investigations done by the department of Metallurgy and Materials Science, 

University of Toronto, Ontario, Canada: 

1. The viscosity of the base material decreases when the rotational speed of the 

tool increases.  The decrease in relative viscosity values corresponded well 

with a well-known fluid flow relation indicating that the material viscosity 

would be inversely proportional to the angular velocity.
[31]

 

2. The calculated and experimentally measured temperature values were in close 

agreement during plunge testing, with the calculated peak temperature at the 

periphery of the rotating pin corresponding with the solidus temperature (582 

C) of 6061-T6 base material.  It is worth emphasizing that this peak 

temperature was calculated without applying any a priori assumptions during 

the numerical modeling process.
[31]

 

3. A relation was developed based on the requirement that satisfactory friction 

stir welding depends on the formation of a plasticised layer immediately ahead 

of the moving tool.  The width of the plasticised region formed immediately 

ahead of the traversing tool was inversely proportional to the travel speed, the 

preheat level prior to FSW and the thermal conductivity of the aluminum alloy 

base material.  The width of the plasticised region ahead of the rotating pin 

also depended on the ratio of the square of the angular velocity and the travel 

speed.
[31]

 

During the experimental weld trials on 6mm aluminum and 6.35mm brass plate 

interesting results were found that could be closely linked to the formation of this 

plasticised layer or region.  As mentioned earlier, the width of this region depended 
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on various factors like travel speed, preheat level and the thermal conductivity of the 

material.  During our evaluation we found that the spindle speed (related to angular 

velocity) had a great influence on the heat being dissipated throughout the material.   

From Figure 2.5, welding the 6mm thick A5083 H321 at a relatively low spindle 

speed of 400rpm and feed rate of 60mm/min complete penetration was obtained.  

From the backing end of the plate the TMAZ is about 3mm apart on either side of the 

joint line.  This then proves that the heat flow is dissipated throughout the entire plate 

thickness when using these parameters. 

 

 

 

 

 

Figure 0.5  Figure illustrating the complete penetration of the heat throughout the plate viewing 

it from the backing end  (Alluminum - 400rpm @ 60mm/min) 

 

When keeping all welding parameters constant and only increasing the spindle speed 

to 650rpm a drastic change in weld quality and surface finish exists.  From the surface 

discoloring, viewed in Figure 2.6, it can be seen that the surface temperature increases 

but still not creating enough heat distribution throughout the entire plate thickness.  

This lack of fusion can be verified when viewing the backing end of the plate in 

Figure 2.6 and 2.7 where the TMAZ decreases considerably.  Materials of rubbing 

components cannot warm up throughout during the short-term process of high speed 

friction, and the heat is absorbed by thin surface layers only.
[39] 

 

 

 

TMAZ 
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Figure 0.6  Increase in surface rubbing velocity causing surface defects and incomplete 

temperature distribution  (Brass - 850rpm @ 40mm/min) 

 

 

 

 

 

 

 

 

 

Figure 0.7  Increase in surface rubbing velocity causing incomplete temperature distribution and 

a decreasing heat pattern  (Aluminum 650rpm @ 60mm/min) 

In conclusion the philosophy would be to establish a certain critical point or limitation 

of maximum surface rubbing velocity (or rpm) with respect to time whereas the 

researcher can control this width of the plasticised region or heat distribution pattern 

by means of spindle speed only, since it will be preferred to keep other parameters 

such as welding speed and plunge depth constant.  Further research into this area is 

necessary to verify this philosophy and preliminary phenomenon.   

Weld formation and flow patterns 

In friction joining and forming, the process is similar to a fluid layer of high viscosity 

between solid components in relative motion and under significant compressive 

Poor heat profile, joint 

can be seen 

Discoloring showing 

surface breaking defects 

Backing end 

Top View 

Backing end 
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loading.  The thixotropic properties and fluid flow features that occur in conventional 

friction welding have been reported, along with friction induced ‗third body‘ 

conditions and superplasticity that occur as a result of extreme plastic deformation.  

Thus the science of these processes, in some respects, is probably closely allied to that 

of rheology.
[17,18,19]

 

The relative motion between the tool and the substrate generates sufficient frictional 

heat to reduce the yield strength of the material.  As the temperature rises the yield 

strength falls below the applied shear stress so that a ‗third body‘ region of highly 

deformed plasticised material forms around the immersed and contacting regions of 

the tool. 

The outer edges of the weld track only experience limited friction from the periphery 

of the tool shoulder.  In contrast, and depending on the degree of tool tilt, most of the 

shoulder acts upon the central region of the weld track.  Inevitably, it is the central 

region that receives most friction as well as the stirring due to the probe.
[15]

 

This highly plasticised ‗third-body‘ material provides some hydrostatic effect.  As the 

rotating tool moves along the joint, this hydrostatic effect helps the plasticised weld 

material to flow around the tool.  The plasticised weld material then coalesces behind 

the tool, to form a solid phase joint as the tool moves away.   

Figure 2.8 provides evidence that hydrostatic pressure leads to displacement of 

plasticised material.  The recovery of the through-thickness dimension was proven 

during the welding of dissimilar metal produced by TWI.  Figures 2.9 & 2.10 show 
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that even where the trailing edge (heel part of the shoulder) is sunk below the plate 

surface recovery in plate thickness is possible. 

 

 

 

Figure 0.8  Transverse macrosection of dissimilar 12% chromium alloy steel/carbon steel.  First 

weld pass showing increased hydrostatic effect with 12% chromium alloy shallow 

ridge above the plate surface
[15] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.9  Transverse taper macrosection of dissimilar 12% chromium/low carbon steel FSW 

joint showing cyclic flow pattern
[15]

 

In the case of dissimilar materials, preferential recovery occurs with the more 

plasticised material, especially when positioned on the retreating side of the weld.  

The presence of a shallow bulge above the plate surface, as shown in Figure 2.10, 

confirms this effect. 
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Figure 0.10  Transverse macrosection of dissimilar 12% chromium alloy steel/low carbon steel 

FSW double sided weld  (First pass hand ground flat)
[15]

 

More of these appearances and surface related weld features are dealt with in subset 

chapters. 

Both friction stir welding and friction surfacing processes show some lack of 

symmetry.  The use of optimized conditions however, virtually ensures that 

differences between the advancing side and retreating side do not cause any adverse 

effects.  However, with less suitable conditions, the asymmetric nature of the process 

can lead to defects.  In friction surfacing lack of symmetry can lead to excess 

expulsion of material at the retreating edge of the deposit, as shown in Figure 2.11.  In 

FSW, defects can be found such as buried voids, ―worm holes‖ or a surface-breaking 

groove that usually runs along the advancing side.  Figure 2.6 illustrates the surface 

breaking defect and Figure 2.12 illustrates the ―worm hole‖ defect that was produced 

during the first welding trials at PE Technikon. 

 

 

 

 

Figure 0.11  Friction surface deposit - Mild steel deposit showing excess plasticised material 

(extreme example)  Speed - 330rev/min, force 28kN, touchdown 7.5sec, traverse rate 

2.0mm/sec
[15] 

The inherent lack of process symmetry causes a differential pressure around the probe 

such that the rotating tool tries to veer away from the retreating side of the weld 
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towards the advancing side
[15]

.  This phenomenon can be verified by future 

development in polar force plots that can be generated to graphically illustrate the 

force pattern around the tool while welding.  This 2D force pattern will be explained 

in Chapter 5.  Secure fixturing and robust machine tool equipment prevent any 

noticeable sideways deflection.
[1,2] 

 

 

 

 

 

 

Figure 0.12  An all weld tensile specimen showing a sub surface “worm” hole defect on the 

advancing side 

 

Improving Thermal Management 

Investigations are continuing to study the value of preheating ferrous and other 

comparatively high temperature materials to improve welding speed and minimize 

tool wear.   

Before frictional contact is made the workpiece material will be at its hardest, and 

therefore, be more prone to tool wear and damage.  Therefore the plunging of the tool 

into the material is regarded as the most critical. 

It may be beneficial, for the higher temperature materials, to preheat the touch down 

region of workpieces so as to condition this region before plunging the probe into the 

work piece.  The welding process can then progress without further additional 

Worm hole defect 
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heating.  It is expected that this simple procedure will significantly reduce tool wear 

during plunging. 

Depending on the properties of the workpiece material and its thermal diffusivity, it 

can also be beneficial to continue the preheating throughout the welding operation.  

Conversely, cooling or even welding certain materials underwater is found to be 

beneficial.
[15]

 

Preheating of the tool is also recommended for certain tool materials that are brittle at 

room temperature, so that they become more ductile and thus better suited for 

carrying out the welding process.  It is considered that any suitable heating process 

can be adopted for heating the workpiece.  Heating techniques may include the use of 

flame, coherent or incoherent radiation, friction, induction resistance or arc/plasma.  

High frequency induction heating and high frequency resistance heating may be of 

particular advantage since they can achieve heating through the thickness of the 

workpiece, rather than just surface heating. 

Processes such as TIG, MIG, sub-arc and hot wire welding methods as well as 

resistance hot wire can be used to fill gaps between plates just in front of the FSW 

tool.  This hybrid approach effectively allows the FSW technique to become a gap 

filling and a post fusion welding process to refine and improve the weld from the 

prior fusion process. 

In some cases, where the FSW process is used at high temperatures, a non-oxidising 

gaseous atmosphere may be needed to protect the joint from atmospheric 

contamination and to prevent certain tool and workpiece materials becoming oxidised. 
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The FSW process seems ideally suited to the welding of hot plate where the entire 

plate or product is raised to a higher temperature e.g. hot plate welding in the steel 

mills or hot strip tube manufacture in pipe mills. 

Advantages and Disadvantages of FSW 

Generically friction welding and its related process variants are characterized by 

being thermo-mechanically energy efficient solid-phase joining techniques.  Friction 

stir welding is no exception and in addition the welding operation is simple and 

operator friendly.  The following lists some of the advantages of the process at 

present: -  

 The process is machine tool technology based, which can be semi-or fully 

automated.   

 The surface appearance approaches to that of a rough machined surface.  In 

most cases this reduces production costs in further processing and finishing.   

 For most materials the process does not normally require a shielding gas.   

 High integrity welds are produced for an increasing range of materials.   

 Parent metal chemistry is retained without any gross segregation of alloying 

elements.   

 The process is essentially an autogeneous non-consumable keyhole technique.  

(Therefore, eliminating the problems associated with the selection and storage 

of consumables.)   

 Plain low carbon steel and 12% chromium alloy steel can be welded in a 

single pass in thickness from 3-12mm.   

 Steel thickness up to 25mm can be welded from two sides.  (Similarly to arc 

welding, the double sided weld joint is more process tolerant.)   
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 Welding is carried out without spatter, ozone formation, or visual radiation 

associated with fusion welding techniques.   

 The process is relatively quiet.   

 The process is solid-phase, with process temperature regimes much lower than 

fusion techniques, thus avoiding problems which can occur with the liquid 

phase, such as alloy segregation, porosity and cracking.   

 The process can be carried out in all positions - vertical and overhead.   

 No special edge preparation is required (only nominally square edged abutting 

plates are needed for a butt joint), so it saves consumable material, time and 

money.   

 A feature associated with FSW weldments is the comparatively reduced 

distortion levels.   

 FSW is easy to automate, and user friendly.   

 Equipment is simple with relatively low running costs.   

 Once established optimized process conditions can be pre-set and subsequent 

in-process monitoring can be used as a first line check that weld quality is 

being maintained.   

 Like most friction techniques the process can be operated underwater. 

The following lists some of the disadvantages:  

 It is necessary to clamp the workpiece materials firmly.  Suitable jigging and 

backing bars are needed to prevent the abutting plates moving apart or 

material breaking out through the underside of the joint.   

 An end of run hole is left as the probe is withdrawn.   

 To overcome the latter feature run-on/run-off plates which take the end of the 

run hole from the substrate joints are sometimes used or the hole can be left in 
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a suitable region.  In addition, one of the friction hole filling techniques, such 

as taper plug and friction hydro pillar welding can be considered.   

 At present for plain low carbon and 12% chromium steels the welding traverse 

speed is typically in the order of 1.7 to 4 mm/sec which could be considered 

comparatively slow for relatively thin plate material.   

 For plain low carbon steels and to a lesser extent 12% chromium alloy steels 

tool wear is a limiting feature.   

 Industrial Applications 

The process has been used for the manufacture of butt welds, overlap welds, T-

sections, fillet, and corner welds.  For each of these joint geometries specific tool 

designs are required which are being further developed and optimized.  Longitudinal 

butt welds and circumferential lap welds of Al alloy fuel tanks for space flights have 

been friction stir welded and successfully tested.
[24] 

The FSW process can also cope with circumferential, annular, non-linear, and three-

dimensional welds.  Since gravity has no influence on the solid-phase welding 

process, it can be used in horizontal, vertical, overhead and orbital configurations.  

Current investigations at GKSS are to improve profile, or welds made on curvatures.  

Figure 2.13 shows typical joint configurations possible to FSW: 

 

 

 

 

 

 

Figure 0.13  Joint configurations
[24]

 



 198 

 

a. Square butt     e.    3 Piece T butt 

b. Combined butt and lap   f.     2 Piece T butt 

c. Single lap     g.    Edge butt 

d. Multiple lap     h.    Possible corner fillet weld 

 

Shipbuilding and marine industries 

The shipbuilding and marine industries are two of the first industry sectors that have 

adopted the process for commercial applications.  The process is suitable for joining 

panels for decks and floors, aluminum extrusions, hulls and superstructures, 

helicopter platforms, offshore accommodation, marine and transport structures, masts 

and booms for sailing boats and refrigeration plants.  Some of these applications are 

illustrated in Figure 2.14. 

Aerospace industry 

Currently the aerospace industry is welding prototype parts by friction stir welding.  

Opportunities exist to weld skins to spars, ribs, and stringers for use in military and 

civilian aircraft.  This offers significant advantages compared to riveting and 

machining from solid, such as reduced manufacturing costs and weight savings.  

Longitudinal butt welds and circumferential lap welds of Al alloy fuel tanks for space 

vehicles have been friction stir welded and successfully tested.  The process could 

also be used to increase the size of commercially available sheets by welding them 

before forming.  The friction stir welding process can therefore be considered for 

wings, fuselages, empennages, cryogenic fuel tanks for space vehicles, aviation fuel 

tanks, external throw away tanks for military aircraft, military and scientific rockets 

and repair of faulty MIG welds. 
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Railway industry 

The commercial production of high speed trains made from aluminum extrusions 

which may be joined by friction stir welding has been published.  Applications 

include high speed trains, underground carriages, railway tankers and container 

bodies.   

Land transportation 

The friction stir welding process is currently being experimentally assessed by several 

automotive companies and suppliers to this industrial sector for its commercial 

application.  A joint EWI/TWI Group Sponsored Project is investigating joint designs 

for automotive lightweight structures.  Potential applications are engine and chassis 

cradles, wheel rims, attachments to hydroformed tubes, tailored blanks, truck bodies, 

tail lifts for trucks, mobile cranes, armour plate vehicles, fuel tankers, caravans, buses 

and airfield transportation vehicles, frames and personnel bridges.  Figure 2.15 

illustrates this application. 

Construction industry 

The use of portable FSW equipment is possible for aluminum bridges, facade panels 

made from aluminum, copper or titanium, window frames, aluminum pipelines, 

aluminum reactors for power plants and the chemical industry, heat exchangers, air 

conditioners and pipe fabrication.   

Electrical industry 

The electrical industry shows increasing interest in the application of friction stir 

welding for electric motor housings, busbars, electrical connectors, and encapsulation 

of electronics. 
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Other industry sectors 

Friction stir welding can also be considered for refrigeration panels, cooking 

equipment, white goods, gas tanks and gas cylinders, connecting of aluminum or 

copper coils in rolling mills and various furniture.   

 

 

 

 

 

 

Figure 0.14  Esab SuperStir machine 

at Hydro Marine Aluminum to weld aluminum extrusions for shipbuilding panels
[22] 

 

Available Machines and Equipment for FSW 

If one is to consider building a friction stir welding machine, it will be advisable to 

first do a thorough literature review on currently available FSW machines in order to 

expand knowledge on machine and construction parameters.  A range of modified 

machines now exists at TWI, which is briefly discussed below.   

 

 

 

 

 

 

 

 

 

 

Figure 0.15  Prefabricated FSW panel for catamaran side-wall, rolled for road transport (at 

Hydro Marine Aluminum)
[22]

 

Modular machine FW22 to weld large size specimens 
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A laboratory machine was built in October 1996 to accommodate large sheets and to 

weld prototype structures.  The modular construction of FW22 enables it to be easily 

enlarged for specimens with even larger dimensions.  This machine is illustrated in 

Figure 2.16.    

 

 

 

 

 

 

 

Figure 0.16  FW22 to weld large size sheet metal
[23]

 

 

The machine specifications can briefly be described as follows: 

 

 Sheet thickness: 3mm-15mm aluminium  

 Maximum welding speed: up to 1.2m/min  

 Current maximum sheet size: 3.4m length x 4m width  

 Current maximum working height: 1.15m  

 

Moving gantry machine FW21 

The purpose built friction stir welding machine FW21 was built in 1995.  This 

machine uses a moving gantry with which straight welds up to 2m long can be made.  

It was used to prove that welding conditions can be achieved which guarantee 

constant weld quality over the full length of long welds.     

 

 

 

Figure 0.17  FW21, the moving gantry machine to weld 

long continuous welds
[23]
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Machine specifications as follows: 

 

 Sheet thickness: 3mm-15mm aluminum  

 Maximum welding speed: up to 1.0m/min  

 Current maximum sheet size: 2m length x 1.2m width  

 

Heavy duty Friction Stir Welding machines FW18 and FW14 

Two existing machines within TWI's Friction and Forge Welding Group have been 

modified exclusively to weld thick sections.  The following thickness range has been 

experimentally investigated but the machines are not yet at their limits.   

 Sheet thickness:  5mm-50mm aluminum from one side 

   10mm-100mm aluminum from two sides 

   5mm thick titanium from one side 

 Power: max 22kW  

 Welding speed: max 1m/min  

 

High rotation speed machine FW20 

For welding thin aluminum sheets TWI equipped one of its existing machines with an 

air cooled high speed head which allows rotation speeds of up to 15,000rev/min.   

 Sheet thickness: 1.2mm-12mm aluminum  

 Maximum welding speed: up to 2.6m/min, infinitely variable  

 

Friction Stir Welding demonstrator FW16 

TWI's small transportable machine produces annular welds with hexagonal aluminum 

alloy discs.  It has been exhibited on fairs in USA, Sweden, Germany, and the United 

Kingdom in recent years.  It is an eye catcher which enables visitors to produce their 

first friction stir weld themselves.  It can be operated with 110V or 220V-240V and 

has been used by TWI and its member companies to demonstrate the process.   
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Other machines 

Portable CRC machine 

TWI commissioned a prototype machine, which was designed and manufactured by 

their CRC partners at the Department for Mechanical Engineering of the University of 

Adelaide, Australia.  This machine can be carried and aligned by two operators 

without the use of a crane or other lifting device.  It has been used to weld curved 

sheets under site conditions in a shipyard.   

Commercially available FSW machines 

Purpose built friction stir welding machines have been designed, manufactured, and 

commissioned.  One of them, which is installed at Marine Aluminum Aanensen, 

Norway, is capable of making 16m long welds.  It was built by ESAB in Laxå, 

Sweden and is used for the mass production of panels, which are made by joining 

extruded profiles.  The machine and the welding procedure have been approved by 

Det Norske Veritas and Germanischer Lloyd.  Several shorter machines, some of 

them with CNC systems of up to 5 axes, have been built for experiments and for the 

production of prototype parts.  ESAB demonstrated FSW with a welding speed of 

750mm/min in 5mm thick aluminum (6000 series) at the 14th International Welding 

Fair in Essen.  Even friction stir welds with very rigid robots were successful and 

demonstrated the possibility of non-linear welds. 

ESAB in Laxå (Sweden) started in December 2000 with the manufacture of two new 

SuperStir
TM

 machines.  These machines are representing the state of the art of 

commercially available FSW equipment and will be used in the EuroStir Project
[23]

 

which is part funded by the Eureka program and focuses on 'European 

Industrialisation of Friction Stir Welding'.  The first contract was signed between 
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ESAB and TWI.  The equipment has a gantry type design with a welding area of 8 x 

5m and two heads of different sizes.  The first head will be used for welding thin 

sheets with high rotation speeds.  The second head can be used for thick sheets while 

applying high downward forces.  The machine will be capable of welding aluminum 

alloys of 15mm and larger. Up to 25mm thick aluminum plates can be welded in the 

centerline of the machine.  At a later stage the machine will be used for welding full 

size industrial prototypes.  The machine is large enough to weld for example a 

complete side panel of a double-decker bus.   

ESAB received also another order from the first European FSW ―job‖ shop, DanStir 

ApS in Copenhagen (Denmark).  This machine is of the same gantry type design as 

that for TWI but is designed for a welding area of 5 x 3m and has one welding head.  

It has a vertical clearance under the gantry of 0.85m.  It is equipped with a high-power 

main drive and a hydraulic actuator for vertical spindle movements.  The versatile 

control system allows for numerous operations modes including position or force 

control and/or various combinations thereof.  The power-full design facilitates up to 

100kN (10t) downward force on the parts to be welded, and up to 40kN (4t) 

transverse thrust on the welding head.  This allows the welding of all aluminum alloys 

in thickness up to 15mm and beyond. 

A Powerstir machine has been tailor-made by Crawford Swift in Halifax (UK) and 

delivered in autumn 1999 to BAE Systems in Filton (UK) where it is being used for 

fabricating prototype aluminum wings and fuselage skins for large aircraft, among 

them the future Airbus A380.  The FSW machine was named '360' which refers to its 

3-axis CNC capability and 60kW spindle power.  This machine can be viewed in 

Figure 2.19.  The mechanics of the machine withstand a 100kN (=10t) downward 
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force with minimum deflection.  The machine is 11.5m long x 5.7m wide x 4.7m high 

and takes the basic form of a moving table machine.  The table, onto which the 

workpieces are clamped, moves underneath the gantry and is accelerated by the latest 

servomotor and ball-screw technology to speeds of up to 8m/min. 

 

 

 

 

 

Figure 0.18  Crawford Swift‟s Powerstir
TM

 machine with 3 CNC axes and 60kW spindle power.  

It can react up to 10ton force.
[22]

 

Another SuperStir
TM

 machine has been installed at Sapa and is used for the 

production of large panels and heavy profiles with a welding length of up to 14.5m 

and a maximum width of 3m.  This machine has three welding heads, which means 

that it is possible to weld from two sides of the panel at the same time, or to use two 

welding heads (positioned on the same side of the panel) starting at the center of the 

workpiece and welding in opposite directions.  Using this method, the productivity of 

the FSW installation is substantially increased. 

Conclusion 

The advantages and disadvantages for FSW in industry were mentioned.  This gave 

the researcher a good idea on what the process is capable of doing and in what 

direction research must lead to.  Although machines are currently made for friction 

stir welding our knowledge about the process from an academic point of view is still 

limited.  Only aluminum alloys are currently being welded in a limited industry and 
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South Africa, as such has never done FSW related processes nor any investigations 

into this welding process.  There are no tables of related parameter settings available 

for producing a good weld on certain materials and thus proves that research in this 

field needs more attention. 

This chapter provided the researcher with grounding knowledge about machine 

capacities and what need to be controlled during the FSW process.  Important aspects 

were addressed which will provide the welding enthusiast with a good idea on what 

the process is capable of doing and how to go about building or creating a friction stir 

weld.  If one is to consider building a specialized FSW machine, this chapter will 

provide a good foundation on general machine requirements and capacity.  Basic 

formula is introduced in this chapter to provide the researcher with a starting point on 

what parameters to use.  At this stage the researcher performed small preliminary 

studies to get more familiar with the welding procedure and the type of plasicized 

flow patterns to expect.  These studies were done with manual pushbutton operations, 

thus improved control schemes have not yet been implemented. 
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Development of FSW Equipment, Hardware    Implementation and 

Advanced Process Control Schemes 

 

There are many important FSW machines currently in production.  A background 

survey gave the researcher a good idea of machine parameters and required power 

consumption necessary to make a friction stir weld.  This chapter will provide a 

description of the refurbishing of a conventional milling machine into a CNC machine 

so that it can function as an advanced FSW machine for research purposes. 

Refurbishing Process 

Figure 3.1 shows a conventional milling machine as purchased.  The machine was not 

electrically connected and the outdated electronic controls and contactors restricted 

the flexibility required for FSW.  Please view Appendices A for a basic specification 

sheet on this machine.  

 

 

 

 

 

 

 

 

Figure 0.1  

Conventional Milling Machine as purchased 

The minimum requirements that need to be considered when purchasing a milling 

machine with the intention of transforming it into a friction stir welding machine are:  

 Sufficient horsepower to generate constant torque at various spindle speeds 
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 High Z-force capability (At least 1.5 tons depending on material thickness) 

 Vertical spindle rotation 

 Fairly big feed bed for welding big sheet-metal alloys 

 Stable machine with rigid bed that can handle heavy vibration 

 Spindle head (quill) that can tilt to a preferred angle of 0-5
o
 

 Wide variety of feed and spindle speed ratios 

 Preferably a second Z-axis that can be controlled individually during the weld.   

The diagram in Figure 3.2 illustrates the control configuration and interfaces between 

the drive controllers/inverters and other system hardware. 

 

 

 

 

 

 

 

Figure 0.2  Block diagram illustrating the control and hardware configuration
[39]

 

The system is controlled with two motors only, the spindle motor and feed motor.  

These motors are linked to drive controllers with RS 485 connections that make 

interface possible with a PC.  Feedback for positioning purposes is given by means of 

optical encoders providing pulses related to linear movement.  The Spindle motor is 

rated at 5.5kW and the Feed bed motor is rated at 1.5kW.  Both these motors use 

mechanical gearboxes to increase the torque on the output shaft.  The main spindle 

motor provides the spindle rotation while the feed bed motor supplies power to all the 

three axes movements of the bed.  The various axes of the bed namely X, Y and Z are 
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engaged with 24V electromagnetic clutches.  The clutches are in tern controlled by 

contactors that are linked to the PC with digital I/O boards as illustrated in Figure 3.2.  

Limit switches and emergency stop buttons are also linked to the PC with the PCI 

boards.  Further details on the hardware implementation are explained in Section  3.2.   

First it had to be verified that the machine would be capable of performing a friction 

stir weld.  Previous parameter settings established by other institutions, such as feed 

rate and force distributions during weld trials gave good indications of the 

requirements expected.   For 6mm aluminum plate an average vertical force of 1 to 

1.5 tons is required to maintain a good quality weld.
[26]

 An experimental setup was 

made by means of strain gauging a short length of square bar using two quarter bridge 

diagonal circuits as shown in Figure 3.3.  The two bridges were completed to a full 

bridge in a UPM 40 Amplifier.  The system was calibrated by compressing the bar in 

a tensile machine.  The test results revealed that for every 1 strain change a 215N of 

compressive force was induced. 

 

 

 

 

 

 

Figure 0.3  Two quarter bridge diagonal circuit used as a loadcell 

strain gauge 
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The loadcell was compressed in the milling machine by first using the bed vertical 

feed.  It was noted that the Z-force was climbing easily to over 3tons of force.  The 

quill downward force power provided by the spindle motor could deliver over 2 tons.  

In both cases the machine did not run to its full potential, thus preventing any damage 

due to overload.  From these results it was concluded that the machine was capable of 

performing a good quality weld on 6mm thick aluminum plate.  For details on the 

experimental setup see Appendix A.  Other mechanical aspects of the process e.g. 

clamp and tool designs, which also are major role players, will be dealt with in 

Section 3.3 and in Chapter 4. 

Motion Control Implementation 

The machine was automated with CNC capabilities making use of inverters or drive 

controllers, which in turn are controlled by a computer.  For reliability and safety, all 

bed axis movements, spindle speeds and feed speeds were critical from a control point 

of view.  The controls of the original milling machine were outdated consisting of 

numerous contactors, push buttons and pin boards for programming.  A detailed 

report on the electric circuit diagrams and automation software is available in a 

Master Dissertation by Mr. G. Kruger to be published early in 2003.  The following 

subsections will report briefly on all modifications made during the conversion and 

re-design process. 

Spindle Motor 

The 5.5kW main spindle motor had to be accurately controlled to establish 

consistency in each weld trial.  The drive controllers or inverters, communicate with 

the PC via RS 485 connections.  An optical encoder mounted at the back of the motor 

shaft gives parameter feedback of the actual spindle speed.  This in tern is build into a 
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closed loop control system.  The drive has a fixed torque setting that will maintain a 

constant torque input on the motor.  Built-in safety features like ramp-up and ramp-

down time are implemented on the inverters in case of emergencies.  All drives are 

protected against overload but an additional emergency push button is installed that 

will allow the power supply to the drive controllers to be shut down in case of 

emergencies.  

 Feed Motor for Position Control 

Figure 3.4 shows a closed loop system also referred to as a servo or feedback system.  

The control system issues commands to the drive controllers, which then compares 

the results of these commands as measured by the movement or location of the 

machine component, such as the table or spindlehead.  The feedback devices normally 

used for measuring movement or location of the component are called resolvers, 

encoders, Inductosyns, or optical scales. 

 

 

 

 

Figure 0.4  General Arrangement of a Closed-Loop Control System 

 

Optical incremental encoders were retrofitted to the rotating shaft of the motors via a 

special coupling.  These encoders will supply feedback by means of a series of pulses, 

which relates to linear bed movement.  Position control was established by controlling 
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the bed movement using the motor speeds.  Figure 3.5 illustrates the position of the 

encoder.  

 

 

 

Figure 0.5  Incremental Optical Encoder connected to the shaft of the feed motor. The cowl of the 

motor is custom-made to accompany a forced convection fan of 220V 

Drive (Inverter) Controls Layout and Description 

Figure 3.6 illustrates the layout of the motor drives, contactors and electrical safety 

mechanisms installed for the control of the FSW process.  The following items are 

numbered in the figure as follows: 

1. Main 3 phase power switch     

2. Main 3 phase power contactor with 24V DC coil 

3. Fuses 

4. Siemens 24V power supply 

5. Manual 24V power switch 

6. Transformer 

7. Input choke for primary drive controller 

8. Input choke for secondary drive controller 

9. Siemens drive controller for main spindle 5.5kW (Primary) 

10. Siemens drive controller for feed motor 1.5kW (Secondary) 

11. 24V Contactors 

12. Connection terminal block  

 

From the left the nine contactors are: Auxiliary contactor for power supply, Rapid 

Feed, Normal Feed, X-Brake, Y Brake, Z-Brake, X-Feed, Y-Feed and Z-Feed. 

The main 3phase power supply leads to the main power switch (1) which is connected 

in parallel with the main power contactor (2) and the set of fuses (3) that leads to the 

24V power supply (4).   
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The 24V DC coil of the main 3phase contactor (2) can be switched via two methods.  

The first option is manually with switch 5.  Second option is with auxiliary contactor 

(11) via the digital interface from the I/O card of the PC.  Once this coil is excited the 

contactor will switch 3 Phase to the transformer and the input chokes via a set of 

fuses.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.6  Image illustrating the electrical modifications made to the conventional milling 

machine for automatic control 
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The 3 Phase power supply is filtered for noise reduction by means of the input chokes 

before it is supplied to the drive controllers. The transformer (6) supplies an output of 

220V to the two cooling fans, one on each motor.  The drive controllers are 

programmed and controlled via the RS485 interfaces. 

The digital inputs from the PC I/O cards are connected to the terminal block (12) that 

will supply the excitation to the appropriate contactor coil that will switch the 24V 

power supply to the various brakes and electromagnetic clutches. 

The drive controllers and contactors are fully integrated and are controlled from a 

computer by the end user.  The integrated software will monitor and log data from the 

monitoring unit and also use the data feedback from the optical encoders to control 

the process through a closed loop system as mentioned in the previous section.  

Chapter 6 will address the data logging device and its operation in more detail. 

Design and Development of Mechanical Fixtures 

The main purpose of a fixture for friction stir welding is to hold the workpieces in 

position during welding.  However, there is limited published information that details 

the fixture design requirements.  The main reason for having appropriate clamps or 

fixtures is to prevent the specimens from moving while being welded.  Obtaining 

good stability during the process is important since any deflection or major vibration 

would affect the quality of the weld.  A logical representation of the forces to expect 

during this process gives the researcher a good idea of clamp or fixture design 

requirements.    

 Clamping Requirements 

The forces that act on the base plates as a result of transversal and rotational 

movement of the tool can be summarized and built into a clamping design.
[25,26]

  The 
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initial plunge of the tool, before welding feed (cold start), transfers forces to the base 

material.  Firstly the tool generates a moment while rotating against the frictional 

surface of the base material.  This frictional moment or shearing force is assisted by 

the downward thrust of the tool increasing the linear force vector at every increment 

of rotation.  The probe that is sunk into the joint line wants to push the two base plates 

apart.   Movement of the tool through the joint line also produces translational forces 

that tend to push the plates in the x-axis direction.  The magnitude of these forces will 

depend on the viscosity level reached as well as the feed rate that the process 

commences at.
[25,26]

  The other forces to be under attention are the transverse forces 

produced by the rotating tool due to the shearing action.  An important aspect to 

consider then is the relationship between the transvers and translational forces.  

Vanderbilt University stated that the transverse (force perpendicular to the direction 

of travel) is the dominant force over the tranlational force (force opposite the direction 

of travel).   

 

 

 

 

 

 

Figure 0.7  Illustration of the direction of clamping forces in a FSW process 

 

Figure 3.7 illustrates the force model and important concepts related to the clamping 

techniques. 

Key features that a FSW weld fixture must have are as follows: 
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  Welding tool‟s axial force and deflection 

The forces in action during FSW are significant, and proper fixture design is critical 

to the success of the weld.  The axial force applied to the welding tool, keeping it 

embedded in the workpiece, is commonly from 20kN to 60kN.
[26]

  This depends on 

the welding tool, workpiece alloy, thickness, travel speed, etc.  This force must be 

controlled with minimal deflection, since it is necessary to control the position of the 

welding tool precisely in relation to the surface of the workpiece.   

 Joint or workpiece separation 

During the initial plunge of the welding tool into the workpieces load is transferred 

laterally to separate the plates along the joint line where large forces are required to 

prevent this separation.  The magnitude of this force has not been published in any 

literature.  In addition, during the course of welding plates tend to separate under the 

thermal expansion/contraction associated with passage of the welding tool.  This 

produces an in-plane moment that opens the unwelded section in front of the welding 

tool.  In the case of the plate separation due to the plunge of the welding tool at the 

start of the weld, restraining the plates laterally immediately adjacent to the plunge 

location is most effective.  As the weld progresses, the thermal expansion that causes 

plate separation in front of the welding tool is most effectively counteracted by 

clamping at the end of the plate, producing the maximum in-plane moment to counter 

the separation with minimal force. 

 Workpieces buckling due to thermal expansion 

While constraining plate separation produced by thermal expansion, workpiece plates 

can sometimes buckle upward into a convex profile, rising around the welding tool 
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and making the tool appear to be diving into the workpiece when actually the 

surrounding plate is lifting off the backingplate.  This results in a weld with 

―dropout‖, a term borrowed from fusion welding, where the weld zone protrudes from 

the back of the welded panel.  The effect is often worse with thin plates, in the 3mm 

to 10mm range, since these plates are less able to resist the in-plane moment without 

buckling.  To counteract this, clamping is required to apply out-of-plane forces that 

prevent buckling.  This is best applied as close as is practical to the weld zone, usually 

about 50mm on either side of the joint.  This clamping also serves the purpose of 

deflecting plates that may not be perfectly flat so that the plates are in contact with the 

backingplate at all points along the joint. 

 Preventing the longitudinal sliding of workpieces 

Preventing workpiece plates from sliding longitudinally is not usually important for 

flat butt welds, since the large axial load applied by the welding tool tends to pin the 

workpiece to the backingplate.  However, in making corner welds it is necessary to 

pin one of the two plates being welded to prevent sliding in the direction of the weld.  

Restraining only one plate is adequate to prevent sliding of the pair, since the pair of 

plates are sufficiently welded at completion of the initial plunge of the workpiece to 

prevent the unrestrained plate from sliding on its own. 

Concept clamp design 

A recommended advantage on the engineering design side was a universal clamp that 

would characterize easy manufacturing; good stability and quick disassembling 

characteristics.  The first prototype design concentrated on easy disassembling 

methods as well as universal applications i.e. clamping of wider and thicker material.  

After the initial concept design it was realized that the clamping strength was not 
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adequate.  Since the clamp was only bolted down with one T-nut it could not prevent 

any rotational (moments) movement of the clamp base.  Figure 3.8 illustrates this 

clamp model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.8  First clamping model 

This clamp had a 45
o
 shoulder inclination on the one side so that the clamping arm 

could be adjusted to suite the appropriate plate thickness.  Complete manufacture 

drawings of this clamp design can be viewed in Appendix A. 

Final clamp design 

Figure 3.9 illustrates the assembly bed for the clamping configuration.  The exact 

dimensions were copied from the actual feed bed so that the model could be drawn to 

full scale.  Objects like T-nuts, allen cap bolts, clamp adjustment lengths and the 

backing plate sizes were also drawn to scale.  The two flat plates shown are the 6 x 

120 x 800mm Aluminum plate specimens to be welded on the first weld trial.   
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Figure 0.9  Assembly bed of clamping method 

For this clamp a 5mm shouldered step is designed to prevent the plates being forced 

apart when the probe penetrates the specimens.  The clamping arm prevents the plates 

from moving or sliding in any direction.  Figure 3.10 illustrates the clamping 

configuration where the design is easy to manufacture, universal, quick and easy to 

adjust and disassemble.   

 

 

 

 

 

Figure 0.10  Final clamp design illustrating the clamping configuration 

Backing Plate Design 

The design of the fixtures had to be based around a backing plate size.  This ‗backing 

plate‘ is a piece of material, normally made out of a medium carbon steel, placed at 

the bottom (back) of the plates to be welded.  The main purpose of this backing plate 

is to prevent the welded material being forced out of the joint line during a weld run.  

Since the tool shoulder applies a downward force on the plasticised material the 

backing plate must support the welded plate and resist any thermal deflection.  Advise 
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on backing plate design was given from a personal e-mail letter from Dr. A. P.  

Reynolds (University of South Carolina).  From past experience he suggested that the 

plate should be manufactured from medium carbon steel since copper-backing plates 

will conduct too much heat away from the joint line.  In some cases this is not an 

advantage since more frictional heat needs to be generated to accomplish a weld.  The 

backing plate designed was 1000 x 100 x 20mm and not heat treated.  The clamping 

base and the backing plate height are both 20mm thick to support the two plates being 

welded.  The backing plate manufacture drawings can be viewed in Appendix A. 

Tool holder for Sensor and Data Transmission System 

The first few weld trials were made by using a standard milling machine chuck with a 

19.05mm (¾ inch) tool shank & cullet.  This tool clamping method, taper cullet, was 

not of the latest methods available but the required accuracy and eccentricity error 

were in allowable limits.  The tool ran very true to the axis of rotation and therefore 

concentric limits approved.  A continuous welding trial of 800mm in total length was 

made to investigate the heat load on the standard chuck.  The estimated temperature 

of the chuck at the end of the weld trial ranged from 100 to 200 degree Celsius.  This 

was estimated by simply placing an external temperature probe on the surface of the 

chuck.   Since it is a transient heat transfer process, the temperature of the chuck walls 

will increase as weld length increases.  This temperature gradient will follow its trend 

until it reaches the steady state temperature of 300 to 400 degree Celsius, depending 

on the maximum tool temperature.  This practical evaluation proved that the chuck 

surface would reach high temperature values and that any electrical equipment would 

fail under these conditions. 
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A custom-made tool holder with a strain gauge based sensor system was to be 

designed that can accurately monitor important process parameters during the welding 

trials.  The measurement system consisted of strain gauges and a telemetry system to 

transfer data from the rotating unit to a stator arm.  High temperature strain gauges 

were available on the market but also still out of our temperature range required.  The 

outcome was to design a tool holder with a heat sink in order to lower the temperature 

gradient on the areas were the gauges would be applied.  In Section 5.1 more detail on 

the measuring unit and its capabilities are given.  Figure 3.11 illustrates the 

mechanical model of the custom tool holder system with its appropriate heat sink 

theory. 

The Heat Sink Design 

The tool holder is designed so that it could withstand high tensile and compressive 

forces but still produce a high enough stimulation to detect a small enough change in 

strain readings from the gauges applied at the position indicated in Figure 3.11.  The 

main shaft of the chuck, where the strain gauges will be applied, is 50mm in diameter.  

The heat sink portion was to be separate from the chuck but also robust in design 

since the tool collet will fit in it.  The entire system had to be manufactured in close 

tolerances since concentricity of the unit was of great importance.  Good alloy steel, 

EN19, was selected and not need to be heat-treated since it already had high strength 

and ductile characteristics.  An additional 5mm Tufnol disc with a very low thermal 

conductivity ―k‖ was implemented in the design to isolate the heat flow even further.  

The chuck or tool holder is manufactured so that it can be retrofitted to the current 

milling machine quill.  The full manufacture drawings of the model are available in 

Appendix A. 
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Figure 0.11  Tool holder with heat sink theory 

Tool Holder Heat Transfer Model 

The rate of heat transfer from a surface at a temperature Ts to the surrounding medium 

at T is given by Newton‘s law of cooling as
[28]

: 

 ( 0-1) 

Where ‗A‘ is the heat transfer surface area and ‗h‘ is the convection heat transfer 

coefficient.  When the temperatures Ts and T are fixed by design considerations, as is 

often the case, there are two ways to increase the rate of heat transfer: to increase the 

convection heat transfer coefficient h or to increase the surface area A.  Increasing h 

may require the installation of a pump or fan, or the replacement of the existing one 

with a larger one, and this approach may or may not be practical.  Besides, it may not 

be adequate.  The alternative is to increase the surface area by attaching extended 

surfaces called fins made of highly conductive materials such as aluminum.  For this 
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project it would complicate the manufacturing of the chuck considerably if a different 

material for the fins than that of the tool holder was to be used.  For manufacturability 

and mechanical strength purposes, the complete unit was made out of alloy steel, 

EN19.  Fins enhance heat transfer from a surface by exposing a larger surface area to 

convection.  In the analysis of fins the researcher considers steady operation with no 

heat generation in the fin, and assuming the thermal conductivity ―k‖ of the material 

to be constant.  Another assumption made is that the convection heat transfer 

coefficient ―h‖ is constant and uniform over the entire surface of the fin for 

calculations purposes. 

In reality, however, the temperature of the fin will drop along the fin, and thus the 

heat transfer from the fin will be less because of the decreasing temperature difference 

T(x)- T towards the fin tip.  To account for the effect of this decrease in temperature 

on heat transfer, we define fin efficiency.  In text to follow we will see that the fin 

design of the chuck is 2mm thick.  Normally fins are very small in cross-section since 

limited space is available and more surface area is required.  The reasons for the 

thicker fin surface are to simplify manufacturability, lower manufacturing costs, 

create a more stronger and rigid assembly and to absorb a higher heat load during a 

longer weld trial.  Already from this data the researcher can expect a fairly big 

temperature drop across the fins and thus relative low fin efficiency. 

Fin efficiency is defined as follows
[28]

: 
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( 0-3) 

 

where Afin is the total surface area of the fin.  This relation enables us to determine the 

heat transfer from a fin when its efficiency is known.  Fin efficiency relations are 

developed for fins of various profiles.  This relationship can be obtained from Figure 

3.12. 

 

 

 

 

 

 

 

 

Figure 0.12  Efficiency of circular fins of length L and constant thickness t
[28]

 

An important consideration in the design of finned surfaces is the selection of the 

proper fin length L.  Normally the longer the fin, the larger the heat transfer area and 

thus the higher the rate of heat transfer from the fin.  But also, the larger the fin, the 

bigger the mass, the higher the price, and the larger the fluid friction.  Therefore, 

increasing the length of the fin beyond a certain value cannot be justified unless the 

added benefits outweigh the added cost.  Also, the fin efficiency decreases with 

increasing fin length because of the decrease in fin temperature with length.   

Another important element in fin design is the fin effectiveness.  Fins are used to 

enhance heat transfer, and the use of fins on a surface cannot be recommended unless 
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the enhancement in heat transfer justifies the added cost and complexity associated 

with the fins.  In fact, there is no assurance that adding fins on a surface will enhance 

heat transfer.  The performance of the fins is judged on the basis of the enhancement 

in heat transfer relative to the no-fin case, and expressed in terms of the fin 

effectiveness fin defined as: 

( 0-4) 

 

Here Ab is the cross-sectional area of the fin at the base, and Qno fin represents the rate 

of heat transfer from this area if no fins are attached to the surface.  An effectiveness 

of fin=1 indicates that the addition of fins to the surface does not affect heat transfer 

at all.  An effectiveness fin < 1 indicates that the fin actually acts as insulation, 

slowing down the heat transfer from the surface.  This situation can occur when fins 

made of low thermal conductivity materials are used.  An effectiveness fin > 1 

indicates that the fins are enhancing heat transfer from the surface, as they should.  

Finned surfaces are designed on the basis of maximizing effectiveness for a specified 

cost, or minimizing cost for a desired effectiveness. 

When determining the rate of heat transfer from a finned surface, the unfinned as well 

as the fin portion of the surface must be considered.  Therefore, the rate of heat 

transfer for a surface that contains ―n‖ fins can be expressed as: 

 

( 0-5) 

The overall effectiveness for a finned surface is the ratio of the total heat transfer from 

the finned surface to the heat transfer from the same surface if there were no fins, 
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( 0-6) 

 

Where Ano fin is the area of the surface when there are no fins, Afins is the total surface 

area of all the fins on the surface, and Aunfin is the area of the unfinned portion of the 

surface.  Note that the overall fin effectiveness depends on the fin density (number of 

fins per unit length), as well as the effectiveness of the individual fins.  A small value 

of thermal resistance indicates a small temperature drop across the heat sink, and thus 

a high fin efficiency. 

Design verification 

Design considerations for fin effectiveness and fin efficiency were revised and then 

combined to bring forward a custom-made heat sink-design concept that would suit 

our FSW process.  Although this is a transient heat conduction process it was 

considered to be at maximum steady state heat transfer conditions in order to simplify 

calculations.  This estimate will be very close to the true value and will be acceptable 

to verify and conclude the design to be appropriate for the application.  The following 

theoretical calculations were made to estimate the heat sink potential: 

Note: The combined heat transfer coefficient of h = 60W/m
2
.
o
C is a good estimate to 

compare the fin and no-fin heat transfer comparison and will not influence the overall 

result.  (The ratio of heat transfer between fins included and excluded will remain the 

same.) 

Design Specifications: Approximate operating conditions of our finned 

cylinder 

    D1 = 7.6cm (Outer diameter of shaft) 

    D2 = 17 cm (Outer diameter of fins) 
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    t = 2mm thick 

n = fins per meter, 10 fins in 43mm thus 232 fins in 1 

meter 

    T = 25 
o
C 

    Tb = 400 
o
C 

h = 60 W/m
2
.
o
C 

 

To be Determined:  Increase in heat transfer associated with using fins 

 

Proof heat sink to be an advantage for the application 

 

 

 

 

Schematic: 

 

 

 

 

 

  

Solution: 

In the case of no fins, heat transfer from the tube per meter of its length is determined 

from Newton‘s law of cooling to be: 
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The efficiency of the circular fins attached to a circular tube is plotted in Figure 3.12.  

 

Note that:          

 

 L  = 0.5(D2 – D1) 

    

     = 0.5(0.17-0.076) 

      = 0.047m     thus: 
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Therefore, the increase in heat transfer from the tube per meter of its length as a result 

of the addition of fins is: 

 

For this case the tube 

length is 43mm and thus Qincrease = 4129.6W 

Discussion:  The overall effectiveness of the finned tube is: 

 

 

This overall effectiveness value demonstrates that the rate of heat transfer from the 

tube will increase by a factor of almost 19 as a result of adding fins.  This verifies the 

design and provides insurance that the fins will be appropriate for the application. 

Safety considerations 

The safety for operators and fellow researchers involved during the FSW process is 

always of utmost importance.  During the machining process safety on the electrical 

and mechanical side was important.  From the electrical point of view an emergency 

stop switch on the control board that is linked with the main power contactor is 

installed.  The drive controllers that will control the various motors have a build-in 

safety device for overload protection.  An additional safety feature for overload 

protection was the installation of temperature gauges or better known as thermistors 

on the motor windings.  The three thermistors, one on each winding, are connected in 

series to each other and are directly connected to the drive controllers.  The total 

)(03896

1.5372)1041.101(
3

lengthtubemeterperW

QQQ
finnofintotalincrease







88.18

103721.5

1041.101

3

3








finnototal

fintotal

overallfin

Q

Q




 230 

change in resistance will be signaled back to the controllers and if this change exceeds 

the limit it will shut down the power supply to the motors.  The thermistors that were 

installed are rated 130
o
C.  

The mechanical safety was also to be controlled for rapid deceleration of the spindle.  

The time that the spindle will take to stop or decelerate was to be controlled by the 

drive ramp down time.  The drive controllers had a build-in feature for electrical 

braking of the motors.   

To isolate the operator from the spindle movement while machining a safety screen or 

barrier (thickness of 10mm) was mounted around the feed bed.  The clear Perspex 

shield is designed so that it could easily be disassembled but still be rigid during the 

machining process.  Further more the feedbed with multi-axis movement has soft 

stops and hard stops (mechanical trip dogs) that function as limit switches to protect 

the bed against over-feed. 

Additional Modifications 

Motor cowls 

Since the process will be controlled via the drive controllers some method of tracking 

is necessary.  For control purposes it was necessary to know exactly where the bed 

was at any time in order to maintain a closed loop control system.  In order to keep 

track of the movement of the axes, optical encoders were coupled to each shaft of the 

motors.  The encoders gave incremental outputs that were calibrated with linear bed 

movement.  Forced convection cooling had to be implemented on each motor since 

the motor windings will reach higher temperature gradients at lower speeds.  This 

could be expected since the motor current will increase at lower rpm in order to 

Motor cowls 
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maintain a constant torque setting.  The original fan cowls were replaced by custom-

made housings in order to accommodate the encoders as well as the electrical fans.   

 

 

 

 

 

 

Figure 0.13  Custom motor cowls for optical encoders and forced convection cooling 

The manufacture drawings of the fan cowls with the encoder brackets can be viewed 

in Appendix A. 

Other small modifications made were the bracket arm for the stator unit of the 

telemetry system.  This measuring system is explained in Chapter 5 and the bracket 

can be viewed in Figure 5.5.  The manufacture drawings are also available in 

Appendix A. 

Future modifications 

Installing a mechanical ―movement‖ arm that will apply a certain load on the material 

onto the backing plate can assist in future development for the downward pressure 

application onto the joint line.  The arm will be mounted onto the spindle head and 

thus move with the joint line while applying the downward force.  This arm will also 

be capable of controlling the plunge depth of the tool shoulder into the parent metal, 

therefore maintaining good weld consistency.  Figure 3.14 illustrates the mechanical 

movement arm that Gemcor has introduced. 
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Figure 0.14  Mechanical movement arm from Gemcor 
[36] 

Another future modification that needs to be considered will be the control of the 

downward (Z-direction) force during traverse.  The intention will be to install an 

additional servomotor and controller on a separate axis that will be interfaced to the 

personal computer.  This motor will control the Z-axis accurately and make force 

control possible during the machining process.    

Conclusion 

This chapter concentrated on the design and development process that had to be 

addressed during the modification of a conventional milling machine in order to 

convert it into a reliable friction stir welder that can be used for research purposes.  

The modifications made consisted mainly out of hardware although software changes 

were also done but are not explained in detail in this report.  The reader should now 

have a better understanding of the machine development side and important changes 

that were made for improved machine control.  The machine will be capable of 

monitoring the important welding parameters such as temperature, force and torque 

changes while the process can be accurately controlled via a computer.  The design 

and basic concept of the measurement system‘s mechanical structure was also 

introduced.  The weld data and parameter settings will be captured and analyzed for 

the assessment of weld quality making use of this newly developed measuring system.  

More about this measurement system and tool holder will be dealt with in Chapter 5.  
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The structural design of components was explained and developed and can now be 

manufactured and installed.  The safety mechanisms and future development under 

machine modifications were also addressed.   

 

 

 

 

 

 

 

 

 

 

Tool Technology 

 

Friction stir welding uses a non-consumable rotating tool, which moves along the 

joint line of two plates to produce high-quality butt or lap welds.  The FSW tool is 

generally made with a profiled pin, which is contained in the center of a larger 

diameter shaft.  For butt joints the length of the pin is approximate the thickness of the 

workpiece.  The pin is traversed through the joint line while the shoulder is in contact 
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with the top surface of the workpiece.  The contact area of the tool shoulder is 

determined by the tool tilt angle.  

The tools are manufactured from a wear resistant material with good static and 

dynamic properties at elevated temperature.  Tool technology has advanced 

considerably over the last few years and tool tips that can last up to 1000m of weld 

length on 5mm thick aluminum extrusions have been developed.  Since the tool 

creates frictional heat, high temperature gradients exit at the tool tip and shoulder.  

Some of the important properties that the tool material should have are good hot 

hardness, toughness and good high temperature strength in order to minimize tool 

wear. 

Tools with specially profiled pins and optimized shoulder designs that provide large 

tolerance envelopes have been developed and are common in industrial 

applications.
[13]

  Tool designs, optimized welding parameters and specialized 

clamping techniques have been developed during a large number of confidential 

studies to serve the industrial demands.  Since advanced technical information on tool 

designs is mainly the privilege of the patent holders, the research team in the MTRC 

had to develop their own tool designs and manufacturing technology.   

Tool Functionality 

The designing principal of the local developed tool was based on the MX Triflute tool 

that can be viewed in Figure 4.1.  In 

general terms, the tool as shown in the 

figure comprises of a shoulder and a probe. 

 
Probe 

Triflutes 
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Figure 0.1  MX Triflute TM tool with frustrum shaped probe and triflutes   and additional 

helical ridge around the triflute lands
[13]

 

The probe/pin 

As the workpiece thickness increases, more heat needs to be generated through 

friction between the rotating probe and the workpiece.  The probe needs to ensure 

sufficient stirring of the material at the weld line and also needs to control the flow of 

the material around the tool to form a satisfactory weld.  The probe generally has a 

profiled or threaded surface to facilitate a downward augering effect.  This augering 

effect can be defined as the gripping movement of the rotating tool, pulling the 

plasticisized material in a downward direction. 

The shoulder 

The shoulder compresses the surface of the workpiece and contains the plasticised 

weld region.  Heat is generated on the surface by friction between the rotating 

shoulder and the workpiece surface and, when welding thin sheets, this is the primary 

source of heat.  The secondary source of heat will be from the rotating tool pin in the 

material.   

For tools positioned perpendicular to the workpiece the leading edge of the shoulder 

in effect provides some preheat and hence thermal softening of the workpiece in front 

of the probe, which can be of advantage when dealing with harder or difficult to weld 

Shoulder 
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materials.  The greater the area of the shouldered region making contact with the work 

surface the greater the preheat available, but this becomes less effective for 

substantially thick plate.  Increasing the diameter of the shouldered region, however, 

has practical limitations and tends to produce side flash on the weld surface.
[13]

  On 

the other hand, as the tool tilt angle increases the surface contact area of the shoulder 

decreases thus lowering the energy efficiency of the system.  The system efficiency 

can be defined as electrical energy input over thermal heat energy output.  The tools 

can be manufactured so that it would have a degree of tilt on the surface to be welded 

thus compromising for the zero degree tilt position.  In our case the tools are 

manufactured concentrically and aligned with the central axis of rotation and 

therefore in most cases some degree of tilt angle will be beneficial.  

The machine quill (head) is tilted at a specified angle between 0 and 5 degrees to 

establish a better hydrostatic pressure and flow path on the tool shoulder surface.  

Inclined tools are used, where the trailing edge of the shoulder is set slightly below 

the workpiece top surface, which helps to consolidate the weld.  Essentially 

hydrostatic pressure within the third-body region leads to subsequent recovery of the 

joint through-thickness as the FSW tool moves away as illustrated in Figure 4.2. 

 

 

 

Figure 0.2  Hydrostatic 

pressure leads to plastic 

recovery
[16]

 

 

Plastic recovery 
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This degree of tilt then also determines the stagnating point of mixing of the probe in 

the third-body region, also illustrated in Figure 4.2.  The hydrostatic pressure and 

point of mixing are very important parameters to be evaluated when it comes to 

creating a complete fusion weld with no defects. 

Tool Profiles and Design Theory 

A major factor in achieving weld integrity and process efficiency is the design 

characteristics of the tool to provide a suitable ratio between the volume of the probe 

swept during rotation to the volume of the probe itself.  This relationship is also 

termed the dynamic to static volume flow ratio.
[16]

  This can be explained better if one 

is to push a stationary (static) tool probe through a liquid and then obtaining the 

difference in material volume displaced to that when the same tool is rotated 

(dynamic) through the material.  With conventional tools, the dynamic to static 

volume ratio is achieved by the design of the probe geometry.   

Early in the development of FSW, it was realized that the form of the welding tool 

was critical in achieving sound welds with good mechanical properties.   

Preferably, the probe has an odd number (tri-flute) of equally spaced flutes to 

maintain maximum cross-section opposite to any re-entrant feature.  Examples of 

these designs can be viewed in Figure 4.1 and Figure 4.3 respectively.  This sort of 

design is more effective when welding thicker materials.  It should also be noted that 

the change in section between the shoulder and the probe is well radiused in order to 

reduce stress concentration.  In essence, the probe is tapered to maintain 

approximately a uniform stress distribution owing to torsion and the forward thrust.  

The helical flutes of the MX Triflute tool are comparatively steeply angled and this, 
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together with a coarse outer thread provides a significant augering effect and flow 

path. 

This tapered design of the probe will not be that critical tool design for the welding of 

thin (6mm) plate.  For this project a short probe with a circular profile was selected 

which will be explained further in Section 4.6.1.   

The MX Triflute tools were designed so that the probe was not parallel sided but 

frustum shaped.  Together with re-entrant features, the MX Triflute probe displaces 

substantially less material during welding (approximately 70%) than the cylindrical 

pin type probe.
[13]

  This provides for a more uniformly stressed tool and allows for a 

more efficient flow path.  The coarse helical ridge around the triflute lands reduces 

the tool volume further, (and therefore aid material flow), and thus breaks up and 

disperses surface oxides.  The re-entrant helical flutes and thread features used on 

these probes are responsible for increasing the surface area of the probe.  This 

increases the interface between the probe and the plasticised material resulting in a 

more complete stirring effect. 

The high performance and the superiority of the MX Triflute probe over the 

conventional cylindrical pin type probe (especially for thick plate welding), can be 

attributed to the ratio of the volume of the probe swept during rotation to the volume 

of the probe itself.  As mentioned earlier it is the ratio between 'dynamic volume' as 

opposed to the static volume that is important in providing a sufficient flow path.  

Typically, this ratio for similar root diameter and length probes was 1.1:1 for 

conventional pin probes and 2.6:1 for MX Triflute probes.
[13]
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The frustum shaped tool probes incorporate a helical ridge profile designed to augur 

the plasticised weld metal in a downward direction.  Some probes also have side flats, 

or re-entrant features, to enhance the weld metal flow path. 

Figure 4.3 illustrates the various designs that will improve welding speed and weld 

quality on that of thicker materials because of the improved pin profiles which allows 

better mixing or stirring of the plasticised material.  The manufacturing of these 

helical ridges and flute lands on smaller probes (6mm and less pin lengths) will be 

very difficult, if not impossible, because of their small dimensions. 

 

 

 

 

 

 

 

 

 

 

Figure 0.3  Figures illustrating the basic concept of the probe designs for welding thicker 

materials
[13]

 

The first probe design was based on the re-entrant technique illustrated in Figure 4.3.  

The figures also illustrate that tool designs with good stirring effect is necessary.  

Things to consider are the type of flute lands, the pitch and angle of these flutes as 
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well as the various design geometries possible.  Figure 4.4 illustrates shoulder designs 

that exist for welding thinner sheet metal alloys. 

 

 

Figure 0.4  Tool shoulder geometries, viewed from underneath the shoulder
[13]

 

 

These shoulder profiles improve the coupling between the tool shoulder and the 

workpiece by entrapping plasticised material within special re-entrant features.  This 

essentially provides frictional contact and improves weld closure by helping prevent 

plasticised material from being expelled. 

General considerations on tool design 

Past experience shows that the middle of the tool shoulder should be in contact with 

the workpiece, therefore; pin lengths must be designed according to the plunge depth 

that will be used during welding to ensure full weld penetration.  If the material plate 

thickness is 6mm and a shoulder plunge depth of 0.2mm is to be used then a tool pin 

length of approximately 5.7mm is necessary.  Figure 4.5 illustrates the shoulder 

plunge depth of 0.2mm from a tool tilt angle of 2.5 degrees.   

 

 

 

 

Figure 0.5  Figure illustrating a shoulder plunge depth of 0.2mm below the plate surface 

The classification of Tool Steels 

As a cooperative industrial effort under the sponsorship of AISI and SAE, a tool steel 

classification system has been developed in which the commonly used tool steels are 

0.2mm, 

from 

center of 

pin to 

shoulder 

end 
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grouped into seven major categories.  These categories, several of which contain more 

than a single group, are listed in Table 4.1 with the symbols used for identification.  

Suffix numbers following the letter symbols identify the individual types of tool steels 

within each category.   

Category Designation 
 

Letter 

Symbol 

 

Group Designation 

 

High-Speed Tool Steels 

 

Hot-Work Tool Steels 

 

 

 

Cold Work Tool Steels 

 

 

 

Shock Resisting Tool Steel 

Mold Steels 

 

Special Purpose Tool Steels 

 

 

Water Hardening Tool Steels 

M 

T 

 

H1-H19 

H20-H39 

H40-H59 

 

D 

A 

O 

 

S 

P 

 

L 

F 

 

W 

Molybdenum types 

Tungsten types 

 

Chromium types 

Tungsten types 

Molybdenum types 

 

High carbon, high chromium types 

Medium alloy, air hardening types 

Oil hardening types 

 

… 

… 

 

Low alloy types 

Carbon tungsten types 

 

… 

 

Table 0.1  Classification of Tool Steels 

 

Selection of Tool steel for Aluminum 5083 H321 

From to the various options of steels and alloys available it was necessary to select an 

appropriate steel with specific characteristic behaviors that would apply to joining 

Aluminum 5083 H321 plate.  During the welding process the tool will reach 

temperatures in the range of 500 
o
C at tool tip depending on the type of material being 

welded.  The tool material must have good hardness, toughness and wear resistant 

properties at elevated temperatures.   
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A hot-work tool steel that comprises of outstanding high temperature strength, high 

temperature toughness, high temperature wear resistance and good machineability is 

W302.  This tool steel selection was also motivated by its cost and availability.   

Thermal treatment of W302 (H13) 

Since this tool steel has a very specific tempering phase, great precaution had to be 

followed during the heat treatment stage in order to produce a high quality tool.  Two 

specimens were prepared with the same diameter of that of the machined tool to be 

tempered.  The dimensions of the test specimens were 30.5mm x 20mm long.  The 

specimens were heat treated by the following specifications supplied by Bohlersteels 

in order to produce the required hardness. 

Stress relieving:  600 to 650
o
C Slow cooling in furnace; intended to relieve stresses 

set up be extensive machining, or in complex shapes.   After through heating, hold in 

neutral atmosphere for two hours. 

Hardening: 1020 to 1080
 
Oil, salt bath  (500 to 550

o
C), air holding time after 

temperature equalisation: 15 to 30 minutes Obtainable hardness: 52 - 54 HRc (Oil or 

Salt Bath), 50 - 54 HRc (Air). 

Tempering:  Slow heating to tempering temperature immediately after hardening / 

time in furnace.  One hour for each 20mm of workpiece thickness but at least two 

hours cooling in air.  It is recommended to temper at least twice.   A third tempering 

cycle for the purpose of stress relieving may be advantageous.   1ST TEMPER: 

Approx.  30
o
C above maximum secondary hardness.  2ND TEMPER: Temper to 

desired working hardness. 3RD TEMPER: For stress relieving, at a temperature 30 - 

50
o
C below highest tempering temperature. 
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Figure 0.6  Tempering chart for W302 supplied by Bohlersteels 

The actual heat treatment procedure was as follows:  

1. Specimens in furnace: 0.5 hour @ 1050 
o
C - Actual time in 25min at 

1050 
o
C  from equalization. 

2. Quench in oil directly after heating. 

3. 1
st
 Temper: Placed in second furnace equalization temperature @ 530 

o
C.  

– Actual time in 1hour. 

4. Cool in air for 2hours. 

5. 2
nd

 Temper: Placed in furnace equalization temperature @ 600 
o
C – Actual 

time in 1 hour. 

6. Cool in air for 2hours. 

7. 3
rd

 Temper: Place in furnace equalization temperature @ 550 
o
C – Actual 

time in 1 hour. 
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The product must be slowly heated in furnace until temperature reaches equalization 

point, time taken from there onwards. 

The tempering procedure of the test specimens was done according to Figure 4.6 and 

then  Related Vickers hardness tests were performed on each specimen to establish 

the hardness of the material.  Table 4.2 and 4.3 illustrate the related Vickers results 

obtained before and after respectively.   

 

 

 

 

 

 

 

Table 0.2  Specimen 

hardness before heat treatment 

 

 

 

 

 

Table 0.3  Specimen 

hardness after heat treatment 

The equivalent to the Rockwell C scale is about RC 52.
[27]

  Since the experimental 

test run with the specimens produced the required properties and characteristics, the 

same procedure was used for the heat treatment of the final tools.  

Specimen 1 @ 30kg Vickers Specimen 2 @ 30kg Vickers 

1.)       210.6 1.)       205.7 

2.)       207.3 2.)       204.2 

3.)       213.9 3.)       205.7 

Average: 210.6 
 

Average: 205.2 

Specimen 1 @ 30kg Vickers Specimen 2 @ 30kg Vickers 

1.)       583 1.)       575 

2.)       525 2.)       583 

3.)       563 3.)       517 

Average: 557 
 

Average: 558 
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Figure 0.7  Two specimens tested at tempered condition 

Tool Characteristics 

Most welds made by institutions are evaluated by their characteristic external 

appearance during and after a weld.  The welding parameters are then adjusted to 

eliminate any surface defect features that appear.  Weld appearance and the 

preliminary quality of the weld can be evaluated by the type of footprint pattern, 

amount of side flash build-up, concave plunge depth, discoloring of HAZ, amount of 

plasticised material flow in front and rear end of tool and also the bottom or backing 

end joint line visibility after the weld.  The next couple of tool designs were 

investigated with respect to these external appearance factors.  

Tool Design – FSW1  

The first tool design that was manufactured by the MTRC was based on the following 

criteria: 

 6mm Aluminun Plate to be welded 

 Diameter of shoulder 25.4mm 

 Diameter of probe 10mm 

 Re-entrant probe configuration 

 Shoulder design – Concentric ring type 
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As illustrated in Figure 4.4 the shoulder design with concentric rings was selected 

since machineability was easier and a better dimensional accuracy was possible 

during manufacturing. 

 

 

 

 

 

Figure 0.8  FSW1 tool model illustrating the shoulder and probe designs 

The tool model shown in Figure 4.8 has a probe length of 5.5mm intended to weld 

only 6mm plate since the probe length governs the plate thickness of the weld. 

 

 

 

 

 

 

 

Figure 0.9  First FSW tool manufactured by PE Technikon 

In Figure 4.9 the tool was designed so that it consists out of two components: The tool 

housing and the tool tip.  The intention of this design, although more costly to 

manufacture, was to use the tool housing section and just replace the tool tip section 

by new designs.  The manufacturing drawings can be viewed in Appendix B. 

Tool (FSW1) Preliminary Performance Evaluation 

The very first welds that were made using this tool profile produced interesting 

results.  External surface evidence indicate that this tool geometry produced enough 

Re-entrant probe 

design 

Concentric ring 

shoulder design 



 247 

surface contact to produce a good friction stir weld although there was still room for 

improvement on probe design.  The first welding trials were made with a 0
o
 tilt of the 

tool axis.  During these welding trials an increase or build-up of aluminum, termed 

―side flash‖, on the retreating side was produced.  This can be attributed to the 

increasing downward pressure.   

 

 

 

 

 

 

Figure 0.10  The first few sample joints made using the FSW process at Port Elizabeth Technikon 

The peal-like effect can be viewed at a higher magnification in Figure 4.11.  This 

phenomenon is well documented and can be reduced by increasing the tool tilt angle, 

ranging from 1 to 5 degrees or using a helical or spiral ridge profile on the tool 

shoulder.
[5][13]

 

Figure 4.10 illustrates that by increasing the Z-force at a 3-degree tilt results in an 

increasing hydrostatic pressure of the tool shoulder and eliminates side flash build up.  

It is important to note that the hydrostatic pressure on the tool surface has to be 

increased if a faster traverse feed rate is required.   

 

1 

2 

Tool 

movement 
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Figure 0.11  Figure illustrating the side flash limiting the hydrostatic pressure on the tool surface 

by using a 0
0
 tilt angle 

During studies done at the University of South Carolina (UOSC) by Dr. A.  P.  

Reynolds it was found that for a zero degree tilt a special tool shoulder profile design 

could reduce side flash build up.  A specially shaped shoulder with a scroll type 

feature must be implemented so that the clockwise rotation of the tool will produce 

the anti-clockwise scroll profile to auger the movement of the plasticized material 

away from the retreating side keeping the material in the region of the flow path.
[13]

  

This tool design will be investigated in Section 4.6.1.  

The higher feed rates are only possible by a 2-3 degree set tilt angle with this tool 

geometry.  It seems that the flow path of the plasticised material is well controlled by 

this tool shoulder since the weld flow pattern and footprint are of uniform nature. 

 

 

 

Side- flash on the retreating side of weld using 0
o
 tilt. 

Smooth surface finish, increased feed rate, with a tool 

angle of 3
o
, no side flash effect. 

Tool 

movement 

Tool 

movement 
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Figure 0.12  Figure illustrating the surface finish produced by a 3
0
 tilt angle of the tool axis 

Tool Design - FSW2 

The second tool concept was based on the following criteria: 

 6mm Aluminun Plate to be welded 

 Diameter of shoulder 25.4mm 

 Diameter of probe 10mm x 5mm 

 Paddle type probe design 

 Shoulder design – Concentric ring type 

 

The main reason for this configuration was to evaluate and create a better stirring 

effect of the plasticized material.  This paddle type design is also mentioned in 

reference [16].  Although the static to dynamic volume ratio of the probe/pin to 

material flow is low it was important to estimate the effect it has on the material 

welding parameters especially for thin plate welding.  Figure 4.13 illustrates the 

model of the concept shoulder and pin profile of the second tool design. 

 

 

 

 

 

Concentric ring type 

shoulder design 

Paddle type pin 

design 
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Figure 0.13  FSW2 tool model illustrating the shoulder and probe designs 

 

The full manufacture drawings can be viewed in the Appendix B. 

Tool (FSW2) Preliminary Performance Evaluation 

The paddle type concept did not work as well as expected.  During this welding trial 

we could clearly see the drastic effect of the low static to dynamic volume flow ratio.  

The tool seemed to have produced enough friction on the tool shoulder to rapidly 

reach plasticized conditions in the material but the probe design was inadequate.  By 

using the same spindle speed and feed as in the first tool design we found that a big 

wormhole or surface-breaking groove existed all along the joint line.  The incomplete 

fusion can be explained because of the probe pushing the material away from the flow 

path and not causing it to mix and combine at the trailing edge of the tool shoulder.  It 

can clearly be seen in Figure 4.14 that this probe design causes less mixing than 

expected and actually pushes the material away from the joint line rather than 

bringing the material together.   

 

 

 

 

 

 

Figure 0.14  Results produced by the second concept tool.  Figure illustrating the difference in 

surface finishes obtained between inadequate probe design and good probe design. 

Surface breaking grooves 

on the joint line 

Good quality surface finish 

with different tool design. 

Probe extraction point 

illustrating the footprint  
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Tool Design – FSW3 

The third tool design is based on the following criteria: 

 6mm Aluminun Plate to be welded 

 Diameter of shoulder 25.4mm 

 Major diameter of probe 10mm 

 Accommodate a thermocouple 

 Single flute configuration on probe 

 Threaded probe design 

 Shoulder design – Recess type 

 

In Section 4.2 the functionality of the tool was explained in detail.  The aim of this 

tool design was to meet these requirements.  Firstly a new shoulder design was used 

to create a better flow path for the plasticized material on the surface and to also 

reduce side flash.   

The probe has a single flute and threaded surface that will help improve the static to 

dynamic volume flow ratio and assist in the downward auguring effect respectively.  

The probe has a better stirring effect since the single flute has a bigger surface area 

and taper angle.  This tool design was made to work under a preferred tool tilt angle 

of 2.5 degrees.  Figure 4.15 illustrates this tool design before it was heat treated. 

 

 

 

 

 

 

 

 

 

 

Figure 0.15  Third tool illustrating the threaded probe with a single inclined flute and a recessed 

shoulder design 

Shoulder Recess 

Single taper flute 

Threaded Probe 
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Further more the tool can accommodate a thermocouple that will give us an indication 

of the tool operating temperature.  The full manufacturing drawings can be viewed in 

Appendix B. 

Tool (FSW3) Preliminary Performance Evaluation 

The surface finish of the weld is slightly concave due to the hydrostatic pressure 

effect of the tool shoulder.  Further more the plasticized flow formation around the 

tool seemed to be controlled and maintained in the direction of flow although it was 

observed that the plasticized region (third-body) is maintained in the central region of 

the tool.  This will not always be an advantage since the probe will then experience 

more X-force due to the forging action rather than to mix the plasticized material 

around the tool on the leading edge.  No surface breaking grooves or worm-hole 

defects were observed at this stage.  Figure 4.16 illustrates the surface finish on the 

face and root respectively.  

 

Figure 0.16  Results produced by the third concept tool.  Figure illustrating the surface finish of 

the face and root weld respectively. 

Future Developments under attention 

Tool Design – FSW4 

The fourth tool design is based on the following criteria: 
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 6mm Aluminun Plate to be welded 

 Diameter of shoulder 25.4mm 

 Major diameter of probe 10mm 

 Accommodate a thermocouple 

 Single flute configuration on probe 

 Threaded probe design 

 Shoulder design – Scroll type 

 

This tool design must still be evaluated by using various welding parameters.  The 

shoulder is designed so that it can augur the material flow path during the weld in a 

radial inward direction towards the stirring region.  This auguring effect should 

reduce the side flash build up and make welding at a 0
o
 tilt angle possible.  The 

advantage of using a 0
o
 tilt angle in certain alloys was observed during a visit to the 

University of South Carolina.  It was understood that the angle plays an important role 

during the heating of the material in front of the tool during the weld.  Since the tool 

is now flush with the material, the heat input is better during a weld run.  A negative 

factor that could play a role during the quality of the weld will be the change in 

hydrostatic pressure between the tool shoulder and substrate.  This change must be 

proportionally controlled to ensure a good quality surface finish.  Further 

investigation into this matter must still be done.  Figure 4.17 illustrates the 

manufactured tool (FSW4) intended for 0
o
 welding.  The full manufacture drawings 

of this tool are also available in Appendix B.   
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Figure 0.17  FSW4 Tool illustrating the scroll profile tool shoulder with an embedded 

thermocouple 

Skew-Stir  

Currently under investigation at TWI
[13]

 are improvements relating the dynamic to 

static volume ratio of the tool by use of a skew motion.   

The Skew-stir variant of friction stir welding differs from the conventional method in 

that the axis of the tool is given a slight inclination (skew) from that of the machine 

spindle.  As shown in Figure 4.18 the face of the shoulder is produced such that it is at 

90° to the axis of the machine spindle.  The intersection of the two axes can occur 

above the plate, through the plate thickness, and to a position below the plate being 

welded.  This intersection, or focal point, can be varied to suit the material, the 

process parameters and the tool geometry.   

 

 

 

 

 

Figure 0.18  Basic principle of 

Skew-Stir showing different 

focal points
[30]

 

Tilting the plate substrate or machine spindle with respect to the shoulder can then 

additionally produce a plate to tool tilt, similar to that often used in conventional 

FSW. 
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When the focal point is positioned slightly above the top surface of the plate, at any 

position through the thickness of the plate, or slightly below the plate, the shoulder 

contact face makes a nominally orbital movement.  This orbital motion of the 

shoulder is dependent on the angle of skew and the focal point.  The greater the skew 

angle and the greater the distance of the focal point from the top of the plate, the 

greater is the shoulder orbit. 

This tool does not rotate on its own axis, and therefore only a specific part of the face 

of the probe surface is directly involved in working the substrate component material.  

Consequently, the inner part of the tool can be cut away to improve the flow path of 

material during welding.  This results in an asymmetric shaped probe as shown in 

Figure 4.15.  The skew-stir technique provides an increase flow path, and the width of 

the weld nugget region is greater than the diameter of the probe.  This feature is 

ideally suited for lap and T-joints and similar welds, where the interface is 90
o
 to the 

machine axis, i.e. parallel with the work piece surface. 

Friction Skew-stir welding increases the extent of the plasticized material surrounding 

the probe.  The Skew-stir technique, therefore, provides a method of increasing the 

'dynamic to static volume ratio' of the probe by the skew motion of the tool.  

Traditionally, the 'dynamic to static volume ratio‘ is provided by the geometry of the 

probe because of its re-entrant features.  Skew-stir, therefore, can be used to the 

advantage where complex shaped tools cannot be employed.  Moreover, the skew 

action results in a greater volume of plasticized material within which the disrupted 

surface oxide layer can be dispersed.  This should minimize the risk of undesirable 

joint remnant features.
[13]
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Conclusion 

It can be seen from Section 4.5 that the tool designs have a great influence on weld 

appearance and quality.  The probe of the tool plays an important role during the flow 

path of the plasticized material.  If this flow path is not controlled by the mixing and 

downward auguring effect of the probe, major defects will arise such as surface 

breaking grooves and worm holes.  The tool profile must firstly be linked to the 

possibility of creating a weld before any attempts are made to improve the weld 

quality.  When a good welded joint is obtained with the specific tool design, it will be 

up to the process parameters settings and interactions, such as spindle speed and feed-

rate, to optimize the weld quality.  The importance of the tool geometry is conducted 

and verified in Chapter 5.  The non-profiled tools produced high welding loads and 

very poor quality.  Welds were not possible when using non-profiled tool geometries, 

thus simply rotating a pin in the material will not produce a welded joint.  The surface 

finishes of the profiled and non-profiled tool geometries can be viewed in Appendix 

C.  From the FSW3 tool geometry it can be seen that good welds are achievable, 

making faster feed-rates possible with lower loads.  The pin and shoulder plays a very 

important role in the design as well as the type of tool material used.  The tool 

material should be chosen according to the base material being welded.  Tool material 

that need to be considered when welding base materials such as 12% Chromium alloy 

steel will be tools manufactured out of Tungsten Carbide alloys that can resist heat 

generated at shoulders whith temperature ranges from about 1000
0
C.  Aluminum 

alloys have low melting points (600
0
C), thus normal tool steel may be used and 

selected by their toughness and strength characteristics.  

The heat of the process, which is directly related to tool temperature, must be 

controlled in order to maintain good plasticized conditions.  The tool shoulder and 
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geometry will affect this heat input since it is the rotating tool shoulder and pin 

surface that create the heat.  Many different tool geometries can be used but must still 

be tested for quality, such as the FSW4 tool.  The optimum condition that all FSW 

researchers would like to meet will obviously be to weld at the highest feed-rate 

possible with the best quality and strength. 

Good welds are now made possible making use of improved tool technology such as 

the FSW3 tool.  In order to improve the quality of the weld, better process parameters 

such as spindle speed and feed-rate must be adopted.  For the researcher to determine 

what optimal parameters to use, a measuring system had to be implemented to 

monitor real time process variables such as tool temperature and vertical Z-force.  

This monitoring system will be explained in detail in Chapter 5. 

 

Advanced Monitoring Equipment for Process Optimization 

 

In order to monitor torque and forces Fx, Fy and especially Fz on the rotating tool, 

specialized measuring techniques had to be implemented.  A thorough investigation 

was made to determine the best practical methods for monitoring the crucial 

parameters during the FSW process and then selecting the best and most economical 

sensor and transducer application method.  For all the various forces, X, Y, Z and 

Torque, measurements will be conducted by means of strain gauging in one form or 

another.  An initial method was to strain gauge the backing plate itself or to strain 

gauge the rotating shaft.   Figure 5.1 demonstrates the concept model for measuring 

the forces applied by strain gauging the backing plate. 

 

Backing Plate cut-

out section 
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Figure 0.1  Alternative concept for measuring weld forces 

On the other hand temperature of the tool could be monitored using an infrared 

thermal imaging camera, embedded sensors in the parent plate or simply embedding a 

thermocouple in the rotating tool.  All these options also have its limitations, mainly 

being cost. 

It was decided to make use of a non-contact measuring system on the rotating tool-

chuck since this method will enable us to monitor all the relative variables including 

temperature and torque directly form the actual tool.  The system is illustrated 

schematically in Figure 5.2. 

 

 

 

 

 

 

 

Strain gauges mounted 

on supports 

Strain gauging on 

rotating shaft 

Telemetry system 
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Working Tool 

Tool holder 

and Heat sink 
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Figure 0.2  Improved concept model for measuring weld parameters 

A few non-contact measuring systems are available on the market.  Custom-made 

sliprings and dynamometers are available for selected milling machines but the 

process needs at least one additional built-in channel for temperature measurement.  

To mention a few that were under investigation are: from Kistler, the rotating cutting 

force dynamometer 9123C and 9124B; from Microstrain, the Strainlink (TM) a 

multichannel digital strain transmitter; from Kraustelemetry, the MT32 and RT8/16 

mini telemetry systems.  Most of these where unsuitable because of their poor 

response time, were costly and had limited flexibility in terms of building in 

additional channels. 

A local company called LMI (Libra Measuring Instruments)
[40]

 builds custom 

telemetry units making use of inductive/capacitance transmission.  In this chapter the 

measuring system; its operation and capabilities will be described. 

Operation of the Data Measuring System 

An instrumented chuck for the machine was developed to measure realtime process 

data.  The mechanical structure and design can be viewed in Section 3.5.  Strain 

gauges were mounted on the shaft and a thermocouple was inserted near the tool pin. 

This unit provides a direct stream of data (process variables) during a welding run. 

The following data are the conditioned data that can be obtained using this system.   

 Tool rotational speed 

 Tool torque 

 Tool temperature 

 Tool vertical force on material 

 Tool 360
o
 polar force footprint around the tool 
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The configuration of the measuring system can be better explained with the aid of the 

diagram as illustrated in Figure 5.3. 

 

Figure 0.3  Block diagram illustrating the basic control configuration of the measuring system
[40]

 

 

The electronics mounted on the chuck allow all the required variables to be sampled, 

the raw sensor data is signal conditioned and passed to a microprocessor, where it is 

prepared for transmission to the TS1000 interface unit.  Electrical power is transferred 

to the chuck using induction and the sampled data is transferred off the chuck in a 

digital format, using a capacitive technique.  The power coil and capacitive receiver 

can be seen on Figure 5.5.  There are two of the above systems installed on the chuck, 

as each system can only support four channels of sampled data.  Both systems share 

the same power coil and capacitive receiver.
[40]

  

The channels of sampled data are received by the microcontroller housed in the 

interface unit, for processing. When the interface unit receives a request for data, it 
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transfers the information via the RS232 serial interface to the requesting device (the 

computer).  The two interface units can be viewed in Figure 5.4. 

 

 

 

 

 

 

Figure 0.4  LMI interface units illustrating the various output channels on LCD screens 

The captured data in the controller software is recorded and processed.  Data is 

displayed on the user interface in real-time to enable the operator to make control 

decisions or to be used as inputs to a fuzzy logic controller.  The fuzzy logic 

controller‘s rule base can be modified and new process control schemes can be 

tested.
[39]

   The two interface units display the rotor voltage of the two systems and 

must be checked before each weld trial.  These voltage settings are typically in the 

range of 5.1 V for each unit and must not fluctuate during weld trials.  These settings 

can be checked on the setup menu on the LMI unit display.  Figure 5.5 illustrates the 

final design and the measuring unit currently in operation. 
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Figure 0.5  Non Contact FSW Data measuring system 

The shaft of the custom-made chuck is strain gauged making use of standard strain 

gauging procedure.  Detailed information regarding the strain gauging procedure, 

selection and application thereof can be viewed in references [37] and [38].   

 

 

 

 

 

 

 

 

 

Figure 0.6  Diagram of a measurement system making use of strain gauges
[37] 

A typical strain gauge measurement system is illustrated in the diagram shown in 

Figure 5.6.  There are three Wheatstone full bridge configurations implemented on the 

rotating shaft.
[38,41]

 One bridge for Torque, one for Z-force and the other for X/Y-

force measurement
[41]

.  All the above circuits do compensate for temperature 

fluctuations.  An additional temperature gauge is also mounted within the rotating 

electronic unit of the tool holder for safety purposes in case of overheating.  The 

system will shut down if the threshold level of 70
o
C is reached within the unit.  A 

proximity sensor mounted on the receiver measures the exact rotational speed of the 

tool holder and is displayed in revolutions per minute.  A type K thermocouple with a 

Thermocouple 

Tool 

Stator Bracket 

Heat sink 
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3mm diameter probe is imbedded within the tool, close in contact with the tool 

shoulder.  The thermocouple will measure the tool temperature during operation and it 

is calibrated to the signal conditioner reflecting a change with 0-43mV.  This range 

will be the typical operating range from 0-1000
o
C. 

Calibration 

LMI calibrated the equipment and the interface thereof to the display unit.  The 

researcher double checked the measured strain readings and made sure that they are in 

the correct proportion to the applied loadings.  The Z-force was checked by the 

custom-made two quarter bridge diagonal loadcell mentioned in Section 3.1. 

During the calibration procedure the most difficulty was experienced during the 

calibration of the 2D force profile on a 360
o
 polar pattern.  This was to be obtained 

when applying a constant force on the rotating tool.  Firstly the theory behind the 

experimental approach will be explained. 

Since measuring is by means of strain gauges on a rotating chuck arm, it can be 

closely related to the existing theory on a bar (square or tubular) in tension or 

compression.  The maximum of the tension or compressive stresses act in the 

direction in which the forces act.  In all other directions the stresses are smaller and 

follow the relationship as shown in Equation 5.1.
[37]

 

 ( 0-1) 

 = angle between the active direction of force, i.e. the principal direction, and the 

direction under consideration. 

In Figure 5.7 this relationship is represented in a polar diagram for the tension bar. 
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Figure 0.7  Stress distribution on the tension bar
[37] 

 

 

Figure 5.8 shows the relationship (Figure 5.7) for the compression bar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.8  Stress distribution on the compression bar
[37] 

Both principal directions are always perpendicular to one another.  The first Principal 

direction is always that with the algebraically larger numerical value; therefore there 

is a change in the indexing of the tension and compression bars.  

If the strain distribution is regarded in a similar manner as with the stress distribution, 

a biaxial strain is found despite the uniaxial stress state.  There are two defined 

directions, one in the active direction of the force (0
o
) and the other perpendicular to it 
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(90
o
).  Starting from the principal strain 0 = 1, the strains , which occur at the angle 

0
o
 <  < 90

o
 to the direction, can be calculated according to Equation 5.2

[37]
: 

( 0-2) 

The relation of the two principal strains is expressed by the transverse strain factor 

‗m‘ or its reciprocal, Poisson‘s ratio . 

 

 2 =  -. 1 ( 0-3) 

In Figures 5.9 and 5.10 the relationship is shown for a tension bar and a compression 

bar respectively.  These diagrams are drawn for a material with a Poisson‘s ratio  = 

0.3.  Typical EN19 steel, the tool holder steel, reflects the same Poisson‘s ratio of 

approximately 0.3.  In this case the strain becomes zero at an angle  = 61
o
, i.e. the 

zero crossover between the positive and the negative strain regions is in this direction. 

  

 

 

 

 

 

Figure 0.9  Strain distribution on the tension bar
[37]

 

The difference, shown in the diagrams, between the stress distribution and the strain 

distribution in dependence of the active direction of the force leads to an extremely 

important conclusion:  The material stress  should be calculated from the measured 

strain only according to Hooks‘s Law for the uniaxial stress state as in Equation 5.4. 
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( 0-4) 

In the transverse direction (90
o
 direction) there is no material stress present despite the 

measurable strain (transverse contraction, transverse dilation).  Therefore for reliable 

results the active direction of the force must be known and the strain must be 

measured in this direction. 

 

 

 

 

 

 

 

Figure 0.10  Strain distribution on the compressive bar
[37] 

 

The calibration of the polar force pattern is based on this theory.  A force was applied 

in a known direction on a non-profiled tool to ensure symmetrical readings.  The 

strain was recorded from the measuring unit and transferred via RS 232 cabling to the 

computer software program were further conditioning took place.  Since only a 

certain number of samples are available per revolution and due to certain limitations 

of the LMI software, a linear interpolation average had to be taken between certain 

degrees in order to obtain precise 10
o
 incremental readings.  More of these limitations 

will be explained in Section 5.3.  When the maximum principal strain reading or load 

reading is obtained, Equation 5.2 is applied to obtain each individual strain/load 

reading at a specific interval (degree).  Firstly a one directional force was applied on 

the tool shoulder (Figure 5.12) and the corresponding force profile, plotted as shown 

.E 
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in Figure 5.11.  Also shown in this figure is the corresponding force profile (dashed 

line) of the calculated data obtained when using Equation 5.2. 

 

 

 

 

 

 

 

Figure 0.11  Polar Force Plots made for Calibration Purposes 

A comparison can be made from Figure 5.11 with the illustration of the force trend 

lines.  They are of the same nature and the transition zones are at the same interval.  

The narrower gradient of the calculated curve (dashed) is due to the fact that a sharper 

point load is applied on a flat theoretical surface.  This dampen effect is schematically 

illustrated in Figure 5.12.  

 

 

 

 

 

Figure 0.12  Figures illustrating the difference between the force distribution obtained when load 

is applied with a sharp point, and a flat surface 

Actual Theoretical 
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  The more rounded gradient of the actual force plot (solid) is due to the load that is 

applied on a round, rotating, surface giving a more dampen gradient.  This calibration 

plot proves the biaxial theory behind the tensile and compressive force relationships.   

After the calibration of the measuring unit, three tests were performed to verify the 

repeatability of the system.  The three tests conducted were all done at 560rpm, 

0.1mm plunge depth and with a feed rate of 80mm/min with a non-profiled tool.  The 

shape of the non-profile tool as well as the three calibration polar plots can be viewed 

in Appendix C.  These plots represent the same orientation and profile of forces 

around the tool in all three tests conducted.  It must be emphasized that the readings 

do fluctuate now and then due to the sensitivity setting on the signal conditioner.   The 

discrepancy in the last 50 degrees is due to system limitations explained in Section 

5.3.  The accuracy and repeatability are estimated to be in the range of 100 to 150N of 

X/Y force and 200N Z-Force due to the amplifier gain setting.  Other possible reasons 

for the small discrepancies in magnitudes ranging from tensile to compressive forces 

are the fact that the tool is rotating and a frictional, rubbing velocity vector could 

cause an additional force apposing the direction of travel.  It is not the main objective 

of this report to investigate all these forces and the shape of the profiles obtained, thus 

comment on these plots are restricted.  The tool eccentricity factor may also have an 

influence in non-symmetrical profiles.  This scenario must still be further investigated 

to verify these statements. 

Limitations 

The following limitations were encountered during the calibration and experimental 

procedure of the measurement system: 
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Machine vibration  

Excess machine vibration during the weld trials can cause instability of the stator arm.  

This results in induced voltage fluctuations and therefore loss in communication.  In 

order to overcome this problem a more rigid mounting bracket for the stator arm can 

be used as well as an improvement on the stability of the machine base. 

Limited Sampling Rate 

The number of samples possible during one revolution of the tool is inversely 

proportional to the rotational speed of the tool.  The maximum sample period allowed 

by the measuring system is 5 milliseconds due the communication baud rate of 28800 

bytes per second.  This can‘t be changed since it is a fixed specification of the 

purchased unit. 

Fluctuation of communication response times 

Response times vary when data is transferred between the measurement system and 

the PC, due to the design of the purchased hardware.  This is not controllable and 

results in deviations of the sampling periods expected.  

Machine and Equipment Limitations 

 

 Excess vibration of the traverse bed can cause measured tool forces to deviate. 

 Tool eccentricity can cause major deviations in force profiles if not correctly 

inserted in the tool holder. 

 Tool slippage in the tool holder during excessive forces causes the 2D polar 

force plot to shift orientation. 

 Although the profile and magnitude of the polar force plots stay constant 

during tool changes, the angle of orientation changes with respect to the gauge 

reference marker on the tool holder.  
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 During multiple tests conducted and results obtained via the statistical analysis 

procedure, it can be concluded that the machine is limited to welding 

maximum plate thickness ranging from 6 to 8mm.  This is due to the fact that 

the machine spindle and feed motor will not support the high loads that will be 

required during welding of thicker plate sections. 

Statistical Analysis using Linear Correlation and Regression 

Experiments planning 

When designing experiments, very often researchers resort to approaches such as the 

evaluation of the effects of one factor at a time or to a factorial design.
[33]

  The latter 

design would obviously lead to a large number of tests.  In contrast, the use of an 

efficient testing strategy such as the orthogonal arrays (OAs) developed by 

Taguchi
[34,35]

 would minimize this number of tests.  In addition, an advantage of an 

OA design is its equal representation of all factors; some combinations of factors and 

factor levels are tested which otherwise would not have been investigated.  

Accordingly, the OAs will be used here for the design of experiments and models. 

As shown in Appendix C, in the design of experiments table, weld parameters N, f 

and D were assigned four different levels varying from 300 to 600rpm, 40 to 100 

mm/min and 0.1 to 0.4mm, respectively.  These ranges are chosen so to ensure 

maximum deviation of dependent variables. 

The Process cause-effect diagram for the design of experiments is illustrated in Figure 

5.13.  The Process Conditions each have two level inputs.  The following are the 

designations given for the two levels, used as input symbols in the experiments table. 

Material Properties       Tool Type            
P1: Oxide layer      Y1: Profiled                 

P2: No-oxide layer         Y2: Non-profiled 
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Material thickness      Dwell time 

s1: 6mm        t1: 16s 

s2: 8mm          t2: 8s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.13  Weld Process cause-effect diagram and factor levels 

 

 The orthogonal array that best fits this experiment is the L16
[34,35]

 with a total of 16 

tests.  This first level analysis is to determine how all these parameters, mentioned in 

Figure 5.13, relate to one another.  In order to test the repeatability of the sensors and 
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eventually evaluate the capacity of our fusion model, a set of three tests were 

designed as mentioned in Section 5.2.   

Introduction to Correlation and Regression Analysis 

 

Correlation and regression refer to the relationship that exist between two variables, X 

and Y, in the case where each particular value of Xi is paired with one particular value 

of Yi.
[43]

  In this case an example can be taken from the Correlation Matrix table were 

‗ps‘ and ‗ts‘ are the two correlation variables.  Obviously ‗ps‘ related to itself will 

result in a 100% correlation that reflects a value of 1 as can be seen in Figure 5.14.  

From the table it can be seen that ‗ps‘ and ‗ts‘ have a strong correlation coefficient of 

0.58. 

 

 

 

 

 

 

 

 

Figure 0.14  Correlation Matrix Table illustrating significant correlations between variables 

Fundamentally, it is a variation on the theme of quantitative functional relationship.
[43]

  

The more you have of this variable, the more you have of that one.  Or conversely, the 

more you have of this variable, the less you have of that one.  This can be seen when 

viewing the Matrix Plot in Figure 5.15 where ‗ps‘ and ‗ts‘ are related.  As ‗ps‘ 

increase so will ‗ts‘ and from the plot ‗fx‘ vs ‗fz‘ it is seen that as ‗fx‘ decreases, ‗fz‘ 

increases. 



 273 

 

 

M a tr ix  P lo t (W e ld  d a ta  R e su lts  fo r  a n a lys is .s ta  2 1 v * 1 6 c )

p s

ts

c s

p f

tf

c f

t

fx

fy

r

fz

 

 

Figure 0.15  Matrix Plot illustrating various quantitative functional relationships between 

variables 

In the first case (the more of this, the more of that), you are speaking of a positive 

correlation between the two variables; and in the second kind (the more of this, the 

less of that), you are speaking of a negative correlation between the two variables. 

Correlation and regression are two sides of the same coin. In the underlying logic, you 

can begin with either one i.e. ‗ps‘ and end up with the other i.e. ‗ts‘ or vice versa.   

In examining the relationship between two causally related variables, the 

independent variable is the one that is capable of influencing the other, and the 

dependent variable is the one that is capable of being influenced by the other.  For 

example, spindle speed will tend to increase the tool temperature, whereas a change in 

tool temperature will have no systematic effect on spindle speed.  In this relationship 
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between spindle speed and tool temperature, spindle speed is the independent variable 

and tool temperature is the dependent variable.  The welding parameters and process 

conditions are both independent variables and the sensor measurements such as tool 

temperature and ‗fx‘ are dependent variables. 

For cases where the distinction between "independent" and "dependent" does not 

apply, it makes no difference which variable is called X and which is called Y (ex. 

‗ps‘ & ‗ts‘).  

The basic possibilities are: (i) positive correlation; (ii) negative correlation; and 

(iii) zero correlation. In the case of zero correlation, the coordinate Matrix plot will 

look something like the rather patternless jumble like ‗ps‘ and ‗t‘, reflecting the fact 

that there is no systematic tendency for ‗ps‘ and ‗t‘ to be associated, either the one 

way or the other.  This correlation plot between ‗ps‘ and ‗t‘ can be seen in Figure 

5.15.  The plot for a positive correlation, on the other hand, will reflect the tendency 

for high values of Xi to be associated with high values of Yi, and vice versa; hence, 

the data points will tend to line up along an upward slanting diagonal, as ‗ps‘ and ‗cs‘.  

The plot for negative correlation will reflect the opposite tendency for high values of 

Xi to be associated with low values of Yi, and vice versa; hence, the data points will 

tend to line up along a downward slanting diagonal, as ‗fy‘ and ‗fz‘ in Figure 5.15.  

The line, called the regression line, fits the best line possible between the data points 

thus linking the mean of X and the mean Y intersections on the graph.
[44]

 

The slant of the line upward or downward is what determines the sign of the 

correlation coefficient (r), positive or negative; and the degree to which the data 

points are lined up along the line, or scattered away from it, determines the strength of 

the correlation (r
2
).

[43]
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The primary measure of linear correlation is the Pearson product-moment 

correlation coefficient, symbolized by the Roman letter r, which ranges in value 

from r = +1.0 for a perfect positive correlation to r = —1.0 for a perfect negative 

correlation.  Note that this letter ‗r‘ is replaced by a capital letter ‗R‘ in the Regression 

Table but has the same meaning.  The midpoint of its range, r = 0.0, corresponds to a 

complete absence of correlation.  Values falling between r = 0.0 and r = +1.0 

represent varying degrees of positive correlation, while those falling between r = 0.0 

and r = —1.0 represent varying degrees of negative correlation. 

A closely related companion measure of linear correlation is the coefficient of 

determination, symbolized as r
2
, which is simply the square of the correlation 

coefficient. The coefficient of determination can have only positive values ranging 

from r
2 

= +1.0 for a perfect correlation (positive or negative) down to r
2 

= 0.0 for a 

complete absence of correlation.  The advantage of the correlation coefficient, r, is 

that it can have either a positive or a negative sign and thus provide an indication of 

the positive or negative direction of the correlation.  The advantage of the coefficient 

of determination, r
2
, is that it provides an equal interval and ratio scale measure of the 

strength of the correlation.  In effect, the correlation coefficient, r, gives you the true 

direction of the correlation (+ or —) but only the square root of the strength of the 

correlation; while the coefficient of determination, r
2
, gives you the true strength of 

the correlation but without an indication of its direction.  Both of them together give 

you the whole works.
[44]

 

For purposes of interpretation, you can translate the coefficient of determination into 

terms of percentages (i.e., percentage = r
2
x100), which will then allow you to state 

that, for example, the correlation in the regression table for ‗ps‘ (r
2 

= 0.609 ) is 60.9% 
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as strong as it possibly could be, whereas the one for regression table ‗ts‘ (r
2 

= 0.869) 

is 86.9% as strong as it possibly could be. 

An adjusted r
2
 will be the more accurate value to use since it incorporates a factor of 

penalty related to the number of tests conducted to that of dependant variables used.  

This Adjusted r
2
 will become closer to the original r if more tests are conducted thus 

following a bigger orthogonal array or simply using less dependant variables in the 

experimental design. 

What needs to be added is a measure of probable error, something that reflects the 

strength of the observed correlation, hence the strength of the tendency for actual 

values of Yi to approximate their predicted values.  Within the context of linear 

regression, the measure of probable error is a quantity spoken of as the standard 

error of estimate. Essentially, it is a kind of standard deviation.  This error of 

estimate can be incorporated in the linear regression formula to adjust for error as 

follows
[43,44]

: 

                                                                  predicted Yi = a + bXi±SE                                                      ( 

0-5) 

Results obtained 

Section 5.4.2 explains important terms and concepts used during the analysis that will 

now be used in the next sub-section for the explanation of the results. 

The Correlation Matrix 

Values that are highlighted in the table have a significant correlation between each 

other.  All these values have a correlation significance of 95% or higher (p < 0.05).  

The bold values show no significance since their values are much lower than 1.  From 

the Correlation Matrix table in Figure 5.14 it can be seen which significant, and by 
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what magnitude, correlations exist between dependant variables.  The following 

examples will explain the advantage of the Correlation Matrix table illustrated in 

Figure 5.14: 

‗ps‘ and ‗ts‘: 0.58 – Average strength  positive correlation exists 

‗ps‘ and ‗cs‘: 0.95 – Very strong positive correlation exists (as expected) 

‗ps‘ and ‗tf‘: 0.52 - Lower strength  positive correlation exists 

‗ps‘ and ‗fz‘: 0.68 – Strong negative correlation exists 

 

 

From the above it is seen that ‗ts‘, ‗cs‘, ‗tf‘ and ‗fz‘ are the only strong correlations 

that existed between themselves and ‗ps‘.  All the other 10 variables can be evaluated 

in exactly the same manner. 

The Matrix Plot 

The matrix plots in Figure 5.15 are all illustrated as a mirror image of the top half to 

the bottom half section.  This mirror image explains the corresponding plots in a 

different direction i.e. regression line ‗ps‘ to ‗ts‘ and vice versa ‗ts‘ to ‗ps‘.  The 

regression line will determine the best fit and direction of the correlation that exists as 

explained in Section 5.4.2.  The histograms of data points inside the graphs give an 

indication of data input trends.  The purpose of the plots can be explained better by 

means of the following examples that are taken from Figure 5.15: 

‗ps‘ and ‗ts‘: have a positive correlation, as ‗ps‘ increases so will ‗ts‘ 

‗ps‘ and ‗cs‘: a strong correlation exists because the data points form a good 

regression line that also indicates a positive correlation 

‗ps‘ and ‗tf‘: not a very strong correlation since regression line deviates quite a bit 

from the regression line 

‗ps‘ and ‗fz‘: strong negative correlation exists, regression line illustrating as ‗ps‘ 

decreases ‗fz‘ will increase 

All the other plots can be analyzed in exactly the same manner as demonstrated 

above. 



 278 

The Regression Summary table  
 

All the regression tables are listed in Appendix C but an example is given in Figure 

5.16 and Figure 5.17. 

Regression Summary for Dependent Variable: ps (Weld data Results for analysis.sta)

R= .78064883 R²= .60941259 A djusted R²= .26764861

F(7,8)=1.7831 p<.21752 Std.Error of  estimate: 909.68

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

oxide

type

thick

time

-675.597 2263.135 -0.29852 0.772911

0.413695 0.234969 5.016 2.849 1.76064 0.116333

0.333957 0.232332 15.727 10.941 1.43741 0.188539

0.134740 0.313676 1178.528 2743.625 0.42955 0.678857

-0.085124 0.223182 -175.224 459.412 -0.38141 0.712829

0.047781 0.286687 98.355 590.134 0.16666 0.871769

0.666961 0.242850 1372.913 499.897 2.74639 0.025199

-0.255301 0.228895 -525.528 471.172 -1.11536 0.297076

 

 

Figure 0.16  Regression Table relating dependant variable „ps‟to independent variables 

In the regression summary tables (Appendix C) the dependent variables ‗ps‘, ‗ts‘, ‗cs‘ 

etc. are correlated with each independent variable such as rpm, feed, plunge etc.  In 

Section 5.4.2 the theory around r, r
2
, adjusted r

2
 and standard error of estimate are 

explained.  With the aid of the following examples the purpose of these functions will 

be made clearer. 

In the regression summary table illustrated in Figure 5.16 it can be concluded that the 

factorial table is only accurate or reliable within 26.7% if the corresponding factors 

are to be used.  All the individual factors relating the independent variables with the 

dependent variable ‗ps‘ have various efficiency factors for accuracy in data available 

i.e. ‗p-values.‘  A low p-level will be a significant correlation and is highlighted in the 

table.  For ‗ps‘ in Figure 5.16, thickness (of the plate) is the significant correlation.  

The error of estimate in this linear equation will be in the range of 909.68Watts.  
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It is important to remember that since we have a very low adjusted r
2
 value it could 

mean that other factors also determine the change in ‗ps‘ and thus p-values with an 

average (relative lower) p-level must not be neglected at this stage.  

Another example can be taken from the regression table for ‗ts‘ as illustrated in Figure 

5.17, where a better-adjusted r
2 

is obtained showing more reliability in the equation 

factors.  Four p-levels are highlighted showing that all of them had a dominant 

correlation between themselves and ‗ts.‘  The error of estimate in the total equation 

will be in the range of 3.84Amps. 

Regression Summary for Dependent Variable: ts (Weld data Results  for analys is .s ta)

R= .93237423 R²= .86932170 A djusted R²= .75497818

F(7,8)=7.6027 p<.00520 Std.Error of  estimate: 3.8479

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

oxide

type

thick

time

33.11654 9.57293 3.45939 0.008575

-0.455522 0.135910 -0.04039 0.01205 -3.35164 0.010056

0.475613 0.134386 0.16380 0.04628 3.53917 0.007629

-0.016836 0.181436 -1.07690 11.60538 -0.09279 0.928350

0.020301 0.129093 0.30560 1.94329 0.15726 0.878938

-0.032017 0.165825 -0.48196 2.49623 -0.19307 0.851712

0.559358 0.140469 8.42024 2.11453 3.98208 0.004050

-0.088104 0.132397 -1.32626 1.99303 -0.66545 0.524481

 

 

Figure 0.17  Regression Table relating dependant variable „ts‟ to independent variables 

Formulas for Intelligent Control 

In order to control the system intelligently in the future, a control algorithm with a set 

of rules need to be implemented.
[40]

  A foundation for these rules can now already be 

established making use of the results obtained from the preliminary studies done.  The 

regression analysis made it possible for the researcher to obtain a set of formulas that 

link the dependent variables with the independent variables.  It must be emphasized 

that most of the regression tables have relative low adjusted r
2
 values meaning that 

other variables, not taken into account in this design, must still be introduced.  To 

improve the design reliability, a higher-level orthogonal array or factorial design must 
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be followed.  At this stage the formulas are adequate to give a good indication of the 

correlation that exists between variables, what significant effect they have on the total 

formula as well as by how much they compare with each other. 

The final results of the regression formulas that link the variables with each other are 

displayed in Table 5.1. 

Since the p-levels give a good indication whether the variables have a strong 

correlation it is a good estimate of what to leave out in the next design or in the 

predicted formula for that regression summary.  Also to note that if all the variables, 

with low and high p-levels, are to be implemented in the regression formula it will 

only be an advantage to consider in the next design.  For future development of these 

formulas, only p-levels are implemented that seem to have average correlation 

strengths since it might still show a better significance in future analysis.   

Regression Formulas Units 

 ps = -675.597+(5.016.rpm)+(15.727.feed)+(1372.913.thick)-(525.528.time)   W 

 ts = 33.11654-(0.04039.rpm)+(0.1638.feed)+(8.42024.thick)-(1.32626.time)   N.m 

 cs = 4.03186+(0.03666.feed)+(3.10006.thick)-(1.03066.time)   A 

 pf = 30.44096-(0.01084.rpm)+(5.34155.feed)+(1.79081.oxide)-(4.48396.thick)+(5.08189.time) W 

 tf = -1.1805+(0.00218.rpm)+(0.00994.feed)+(1.03749.type)+(0.74877.thick)-(0.5997.time) N.m 

 cf = 2.662-(0.000224.rpm)-(0.1552.plunge)-(0.0456.type)-(0.0412.thick)+(0.0861.time) A 

 t = 406.775+(0.1371.rpm)-(0.6647.feed)+(107.455.plunge)+(27.8745.thick) 
 

 fx = -341.862+(3.479.feed)-(121.73.oxide)+(658.081.type)+(404.503.thick)-(273.969.time) N 

 fy = 589.722-(0.212.rpm)-(211.222.plunge)-(118.357.type)-(30.837.thick)-(23.352.time) N 

C0
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 r = -16.806+(0.0137.rpm)+(9.3477.type)+(4.3665.thick)-(2.856.time)   

 fz = 7.34152-(0.01218.rpm)-(0.12607.feed)-(4.57352.type)-(5.26259.thick)+(2.31748.time) kN 

 

Table 0.1  Formulas obtained for Regression Summary of Dependent Variables 

 

Surface Plots 

Variables that influence the process quality such as tool temperature and vertical Z-

Force can now be displayed on 3D Surface Plots where further deductions in process 

trends can be made.  All the surface plots are illustrated in Appendix C but only the 

significant plots will now briefly be discussed in the following sub-sections: 

The Tool Temperature Plot (t) 

3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

t =  -4 8 .7 3 1 4 + 2 .3 8 2 4 * x+ 0 .6 7 3 4 * y -0 .0 0 2 1 * x * x -0 .0 0 7 2 * x * y + 0 .0 1 2 6 * y * y

 5 2 0  

 4 8 0  

 4 4 0  

 4 0 0  

 3 6 0  

 3 2 0  

 

Figure 0.18  3D Surface Plot for Tool Temperature „t‟ 

The curves given on the plot illustrates two possible optimum design points for 

welding at lower temperatures.  Either increasing rpm and feed-rate or by decreasing 
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the feed rate as well as the rpm, these points may be reached.  Medium range settings 

for rpm and feed tend to results in higher temperature values. 

The X-Force Plot (fx) 
 

3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

fx  =  -3 0 3 .9 7 3 2 + 6 .5 3 3 8 * x -0 .6 7 3 3 * y -0 .0 1 0 5 * x * x + 0 .0 2 5 4 * x * y -0 .0 5 2 2 * y * y

 1 0 0 0  

 8 0 0  

 6 0 0  

 4 0 0  

 2 0 0  

 0  

 
 

Figure 0.19  3D Surface Plot for X-Force „fx‟ 

It seems that by increasing the rpm and decreasing the feed-rate results in a lower ‗fx‘ 

value.  When evaluating the temperature curve to this high rpm range it can be seen 

that an increase in temperature results in a lower ‗fx.‘  This can then also prove that 

the degree of plasticized flow is influenced by the temperature gradient. 

 

The Z-Force Plot (fz) 
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3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

fz  =  3 1 .0 7 8 6 -0 .2 1 7 * x + 0 .0 4 6 1 * y + 0 .0 0 0 2 * x * x + 0 .0 0 0 2 * x * y -0 .0 0 2 * y * y

 -8  

 -1 2  

 -1 6  

 -2 0  

 -2 4  

 
 

Figure 0.20  3D Surface Plot for Z-Force „fz‟ 

If to be welded at a lower Z-force it will be advised to increase the rpm and decrease 

the feed-rate slightly.  The surface plot illustrates a lesser effect of feed-rate on ‗fz‘ 

than that of rpm.  The conclusion can be made that the welding speed can be 

increased, resulting in only a slight change in ‗fz.‘ 

 

 

 

The Y-Force Plot (fy) 

Again in the corresponding force plot the researcher can conclude that welding at a 

higher rpm and lower feed-rates will result in lesser force, in this case ‗fy.‘ 
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3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

fy  =  3 4 9 .7 4 7 9 + 0 .1 6 2 1 * x -4 .3 6 1 3 * y -0 .0 0 1 3 * x * x + 0 .0 1 0 7 * x * y -0 .0 0 4 4 * y * y

 2 5 0  

 2 0 0  

 1 5 0  

 1 0 0  

 5 0  

 0  

 

Figure 0.21  3D Surface Plot for Y-Force „fy‟ 

 

The Spindle Torque Plot (ts) 

The dominant variable that will influence ‗ts‘ on this plot is feed.  It seems that by 

lowering the feed-rate a lower torque is being applied on the spindle.  The increase in 

rpm has a small significance but a noticeable change in the gradient of ‗ts‘ can be 

seen.  
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3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

ts  =  -7 .5 2 9 + 0 .1 9 6 7 * x + 0 .2 6 1 2 * y -0 .0 0 0 2 * x * x -0 .0 0 1 4 * x * y + 0 .0 0 3 4 * y * y

 6 0  

 5 0  

 4 0  

 3 0  

 2 0  

 

Figure 0.22  3D Surface Plot for Spindle Torque „ts‟ 

 

Optimal Operating Range of the PET FSW machine 

From the surface plots discussed in Section 5.4 it can be seen that all the forces during 

the process are very much influenced by the spindle speed and feed rate.  In all the 

plots it was concluded that an increase in rpm and a decrease in feed-rate, result in 

lower applied forces during the process weld.  The Z-Force (fz) is the pre-dominant 

force under consideration since it is of the highest magnitude and thus determines the 

capacity and weld capabilities of the machine.  When welding at higher rpm and 

lower feed-rates these forces can be lowered which would be an advantage during 

machine selection.  Machine capacity can be lowered and thus save money.  On the 

other hand there are disadvantages in welding at lower feed-rates and increased rpm‘s.  

Firstly, it results in increasing the production costs of each weld run since welding is 

done at slower feed-rates.  Secondly, if welding is done at higher rpm‘s it can be seen 

on the surface plots that the temperature increases dramatically.  The increase in 
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temperature plays an important role during the quality achieved by the welded joints 

as discussed in Section 6.2.2 and will be a disadvantage if excess heat is applied. 

It must now be concluded that welds must either be made with relative lower 

temperatures for improved weld quality or welds at faster feed-rates but resulting in 

higher forces.  In Section 6.2.2 it was seen that welding at tool temperatures in excess 

of 500
0
C resulted in surface defects.  This statement is purely based on the specific 

weld parameters that correspond with it.  It is then safe to approximate an optimal 

operating temperature in the range of 420
0
C for this particular alloy.  The researcher 

can then also by evaluating the machine structure and motor power capability estimate 

a safe load of 2tons for the Z-force.  These variables can now be implemented in the 

formulas specified in Table 5.1 to obtain a simultaneous equation that will solve the 

approximate optimal operating range for the machine as follows: 

Set Parameters Considered  

t = 420
0
C 

fz = 20kN 

Plate thickness = 6mm 

Plunge = 0.2mm 

Dwell time (16s) = 1 

Profile Tool Used (FSW3) = 1 

Oxide Layer Present = 1 

 

 

t = 406.775+(0.1371.rpm)-(0.6647.feed)+(107.455.plunge)+(27.8745.thick) ± Error 
 

420 = 406.775+(0.1371 x rpm)-(0.6647 x feed)+(107.455 x 0.2)+(27.8745 x 6) 

 

( 0-6) 

 

 

 

fz = 7.34152-(0.01218.rpm)-(0.12607.feed)-(4.57352.type)-(5.26259.thick)+ 

(2.31748.time)  ± Error  

 

)6647.0()1371.0(513.175 feedrpm 
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20 = 7.34152-(0.01218 x rpm)-(0.12607 x feed)-(4.57352x1)-

(5.26259x6)+(2.31748x1)  

 

( 0-7) 

 

 

When solving Equation 5.6 and 5.7 simultaneously it is found that: 

 

Feed-rate = (-) 166.9 mm/min 

Rpm = (-) 471 rpm 

From the above the machine optimum design point for the corresponding process 

parameters is established.  

Verification of Optimal Design Point 

From the Regression Formulas an optimum design point for the machine was 

established.  From the previous section the optimum design point was to weld at a 

temperature of 420
0
C with a vertical Z-Force not exceeding 20kN.  The researcher 

made a weld using these values provided (spindle speed of 471rpm and a feed rate of 

167mm/min).  The weld was made of a slightly longer weld length than that 

performed in the original array for the design of experiments.  The weld was 300mm 

long but the results obtained were of an exceptional standard.  The good surface finish 

of the weld can be seen in Figure 5.23 and it can be noted that no surface defects are 

visible.  The tool temperature at the 80mm marker was 478.9
0
C and the Z-Force was 

–19.4kN.  The error of estimate given in the regression tables are for t: 27.752
0
C and 

for Fz: 3.1524kN.  This means that it is in the acceptable limit and is very close to the 

predicted weld of 420
0
C and Fz of 20kN.  This then provides a good confidence level 

for making use of the regression formulas in weld lengths of up to 100mm.  After the 

100mm marker is reached, temperatures and forces need to be controlled with 

)12607.0()01218.0(49006.46 feedrpm 
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artificial intelligence via the computer, in order to remain in the desired operating 

conditions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.23  Figure illustrating the good surface finish with no surface defects. Weld was made to 

evaluate the regression formula reliability. 

 

The actual force plots and temperature profile for this weld evaluation can be seen in 

Figure 5.24. 
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Figure 0.24  Figures illustrating the Spindle Torque and Z-Force distribution during a weld 

evaluation 
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Figure 0.25  Figures illustrating the Tool Temperature and 2D Force Plot obtained during the 

evaluation of a weld for the Regression Formulas 
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Conclusion 

With the measuring system up and running many process variables can now be 

reliably monitored.  Improved experimental designs can now be implemented to 

create a better understanding about the process characteristic behavior.  Welds can be 

made and process variables can be linked to the quality of the welded joints.  Since 

the main objective for the FSW researcher was to obtain good quality welds, the 

importance of having a reliable measuring system was critical.  With this new 

measurement system new doors are opened for future researchers since opportunities 

in further quality analysis and intelligent control of the process are now made 

possible.  Parameters can now be monitored and make the visualization of various 

process interactions possible.  With the linkage provided between process interactions 

improvement can be made to process control.  Many graphs, from the raw data 

captured, can now be analyzed to provide a link between process parameter settings 

and weld quality.  These graphs can include spindle power, spindle torque, spindle 

current, feed power, feed torque, feed current, tool temperature, tool Z-force, 2D X/Y 

polar force around tool, spindle torque, spindle rpm and many more.  It can thus be 

said that without the measuring system, good quality and improvement into FSW 

research will be impossible.  This chapter also provided a framework for future 

development in statistical and multiple regression analysis.  The optimum design 

point for the machine was established for welding 6mm and 8mm aluminum plate.  

Further evaluation and characterization of welds made by PET will be addressed in 

Chapter 6.  

 

Friction Stir Weld Evaluation 
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In this Chapter a preliminary evaluation of the weld strengths and structure will be 

done to determine the usefulness of the FSW samples produced by PET.   

The parent plates that are being used are 6mm thick Aluminum 5083 H321 alloy 

plate.  This specific alloy has its own chemical composition and behavior under 

mechanical conditions and therefore evaluation of the material prior to the test welds 

is necessary.   

5000 series: Magnesium is one of the most effective alloying elements for 

aluminum.  When it is used as the major alloying element or with manganese, the 

result is a moderate to high strength non-heat-treatable alloy.  Magnesium is 

considerably more effective than manganese as a hardener, about 0.8% magnesium 

being equal to 1.25% manganese, and it can be added in considerably higher 

quantities.  Alloys in this series have good welding characteristics and resistance to 

corrosion in marine atmospheres.  However, certain limitations should be placed on 

the amount of cold work and the safe operating temperatures permissible for the 

higher magnesium content alloys (over about 3.5% for operating temperatures over 

about 66
o
C.) to avoid susceptibility to stress corrosion.

[27]
   

Mechanical Properties of Al5083-H321 

The ‗H3‘ temper applies to products which are strain hardened and then stabilized by 

a low temperature heating to slightly lower their strength and increase ductility.  This 

designation applies only to the magnesium-containing alloys, which unless stabilized, 

gradually age-soften at room temperature.  The number following this designation 

indicates the degree of strain-hardening remaining after the product has been strain-

hardened a specific amount and stabilized. 
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Parent Plate 

The Tensile test specimens from the parent plate were taken in both the transverse and 

parallel plane to that of the rolling direction.  Dimensions for these specimens are 

specified by the ASTM standards reference [32].  Figures 6.1 and 6.2 illustrate some 

of the tensile test data obtained during the analysis of the parent plate.  Appendix D 

provides more graphs. 

 

 

 

 

 

 

 

 

 

Figure 0.1  Stress-strain curve for parent plate tensile test taken parallel to rolling direction 

 

 

 

 

 

 

 

 

Figure 0.2  Stress-strain curve for parent plate tensile test taken in the transverse direction 

The average of the three parent plate tensile tests conducted, parallel and transverse to 

the rolling direction is reflected in Table 6.1: 

                 Measured Values 

 
0.2% Proof 
Stress, Mpa 

Tensile 
strength, Mpa 

Thickness, 
mm 



 294 

Parallel to Rolling 
Direction 

267 348 6 

As per 
Specification 

250 340 6 

Transverse to 
Rolling Direction 

305 350 6 

As per 
Specification 

250 340 6 

 

Table 0.1  Tensile properties for the parent material parallel and transverse to the rolling 

direction 

As-welded Tensile 

Tensile properties of the weld will obviously change dramatically depending on the 

tool geometry as well as the corresponding process parameters used.  In this report the 

scope is to compare a typical FSW weld made by PET to that of another institution 

and then to comment on the results obtained.  The weld to be investigated was done 

with the FSW3 tool using the following parameters: 

- Spindle rpm:  400rpm Feed rate: 100mm/min Plunge depth: 0.2mm 

Figure 6.3-6.5 illustrates the corresponding stress-strain graphs obtained when tensile 

samples were taken at various intervals on a 200mm weld run. 
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Figure 0.3  Tensile Test data – 20mm from plunge (start) position  (UTS 340Mpa) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.4  Tensile Test data – 80mm from plunge (start) position (UTS 290 Mpa) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.5  Tensile Test data – 140mm from plunge (start) position (UTS 216 Mpa) 

From the results it can be seen that the UTS decreases as the weld length increases.  

As the weld length increases it is clearly noted that the temperature of the tool 

increases and that the surface appearance of the welded flow path changes after a 

certain temperature range is met.  The tool temperature profile can be viewed in 

Figure 6.7.  Near the end of the weld trial, where the tool temperature is the highest, 

the surface tends to create a defect like feature at the retreating side of the tool 

shoulder as if the shoulder almost burns the surface.  This defect is illustrated in 

Figure 6.6.  Point A will be the start of the weld and point C the end.  These points are 
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more or less where the actual tensile samples were taken.  The corresponding 

temperature graph (Figure 6.2) shows that the temperature of the tool at intervals 20, 

80 and 140mm are 446, 487 and 510
0
C respectively.   

 

 

 

 

Figure 0.6  Figure illustrating the surface defect obtained primarily during excessive tool 

temperatures 

This defect being created on the surface that is clearly visible verifies the importance 

and need for intelligent control of process variables.  Other related graphs  and data 

pertaining this weld i.e. Z-Force, Spindle Torque and the Polar Force Plot can be 

viewed in Appendix D. 

The UTS of the welds made are 

At 20mm Marker (A):  340Mpa 

At 80mm Marker (B):  290Mpa 

At 140mm Marker (C): 216Mpa 

 

From Tensile tests conducted at the University of Plymouth
[42]

, using the same alloy 

5083 H321 a typical UTS of 300 to 350Mpa is obtained.  Other institutions that 

produced similar results are ESAB AB in Sweden.
[47]
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Figure 0.7  Tool temperature profile during a 200mm weld run 

From the similar test results shown it can now be verified that the PET Friction Stir 

Welder is more than capable of producing good quality test samples.  

Microstructure Classification of weld 

The first attempt at classifying microstructures was made by P L Threadgill (Bulletin, 

March 1997).
[16]

  His work was based solely on information available from aluminum 

alloys.  However, it has become evident from work on other materials that the 

behavior of aluminum alloys is not typical of most metallic materials, and therefore 

the scheme cannot be broadened to encompass all materials.  It is therefore proposed 

that the following revised scheme is used.  This has been developed at TWI, but has 

been discussed with a number of appropriate people in industry and academia, and has 

also been provisionally accepted by the Friction Stir Welding Licensees 

Association.
[16]

  The system divides the weld zone into distinct regions as follows:  
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Figure 0.8  Friction stir welding principle and microstructure
[16] 

 

Unaffected material or parent metal: This is material remote from the weld, which 

has not been deformed, and which although it may have experienced a thermal cycle 

from the weld is not affected by the heat in terms of microstructure or mechanical 

properties. 

 

 
  

 

A.  Unaffected material 

B.  Heat affected zone (HAZ) 

C.  Thermo-mechanically affected zone (TMAZ) 

D.  Weld nugget (Part of thermo-mechanically affected zone)  
 

Figure 0.9  Classification of weld zone
[16]

 

Heat affected zone (HAZ): In this region, which clearly will lie closer to the weld 

centre, the material has experienced a thermal cycle, which has modified the 

microstructure and/or the mechanical properties.  However, there is no plastic 

deformation occurring in this area.  In the previous system, this was referred to as the 

"thermally affected zone".  The term heat affected zone is now preferred, as this is a 

direct parallel with the heat affected zone in other thermal processes, and there is little 

justification for a separate name. 

Thermo-mechanically affected zone (TMAZ): In this region, the material has been 

plastically deformed by the friction stir welding tool, and the heat from the process 

will also have exerted some influence on the material.  In the case of aluminium, it is 

possible to get significant plastic strain without recrystallisation in this region, and 
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there is generally a distinct boundary between the recrystallised zone and the 

deformed zones of the TMAZ.  In the earlier classification, these two sub-zones were 

treated as distinct microstructural regions.  However, subsequent work on other 

materials has shown that aluminium behaves in a different manner to most other 

materials, in that it can be extensively deformed at high temperature without 

recrystallisation.  In other materials, the distinct recrystallised region (the nugget) is 

absent, and the whole of the TMAZ appears to be recrystallised.  This is certainly true 

of materials, which have no thermally induced phase transformation, which will in 

itself induce recrystallisation without strain, for example pure titanium, b titanium 

alloys, austenitic stainless steels and copper.  In materials such as ferritic steels and a-

b titanium alloys (e.g.Ti-6Al-4V), the understanding of the microstructure is made 

more difficult by the thermally induced phase transformation, and this can also make 

the HAZ/TMAZ boundary difficult to identify precisely.
[16] 

Weld Nugget: The recrystallised area in the TMAZ in aluminium alloys has 

traditionally been called the nugget.  Although this term is descriptive, it is not very 

scientific.  However, its use has become widespread, and as there is no word, which is 

equally simple with greater scientific merit, this term has been adopted.  A schematic 

diagram is shown in Figure 6.4, which clearly identifies the various regions.  It has 

been suggested that the area immediately below the tool shoulder (which is clearly 

part of the TMAZ) should be given a separate category, as the grain structure is often 

different here.  The microstructure here is determined by rubbing by the rear face of 

the shoulder, and the material may have cooled below its maximum.  It is suggested 

that this area is treated as a separate sub-zone of the TMAZ.  Figure 6.10 illustrates 

the typical weld nugget obtained when using the FSW3 tool geometry and weld 

parameters set to 400rpm, 100mm/min and plunge depth of 0.2mm.  References [48] 
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and [49] indicates similar macrographs illustrating the same nugget and TMAZ 

formation. 

 

 

 

 

 

 

 

Figure 0.10  Macrograph of a SP friction stir weld transverse cross-section illustrating the 

distinct weld zone. Welding direction is inward and the right hand side is the retreating side. 

Bend tests 

Bend tests always give a good indication of the strength capability of the welded joint.  

Sections of the weld are cut out in the transverse plane (perpendicular to the weld) in 

order to make an 180
0
 bend test.  The total length of the sample is 240mm and about 

25mm in width.  The bend is made around a 40mm diameter roller.   

A clear split of the root or crack on the face will determine whether the samples pass 

or fail.
[46]

  All three face and root samples tested, passed and no flaws or lack of 

penetration (fusion) were visible.  The successful bend tests performed are illustrated 

in Figure 6.11. It must be noted that the tool pin length will play an important role in 

obtaining a good weld penetration throughout the entire plate thickness as well as the 

plunge depth of the tool shoulder.  The required plunge depth of the tool shoulder is 

important to consider when designing for a certain pin since the plunge depth governs 

the pin length. 
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Figure 0.11 Successful Face (top) and Root (bottom) 180
0
 bend tests performed on a weld made at 

400rpm, 0.2 Plunge and 100mm/min. 

 

Microhardness Evaluation 

Figure 6.12 illustrates a micro hardness profile of the welded transverse cross-section 

of the weld.  The results were as expected, similar to that specified by other 

institutions.
[42,47]

  Since aluminum alloy 5083-H321 is a strain hardened alloy (Section 

6.1) the welded joint, TMAZ and weld nugget region (Section 6.2), are ‗work soften‘ 

during the weld and lower the mechanical strength of the alloy.  This then also being 

the main reason for the tensile specimens to all fail within the TMAZ for an H temper 

(strain hardened) and in the parent material for the O (annealed) condition.
[46]

  The 

parent plate hardness under a 200g load drop is 105 and in the weld nugget region this 

hardness value can drop to the lower 70‘s as can be seen in Figure 6.12.  The typical 

hardness in the weld region for 5083 aluminum alloys is known to be ±75HV.
[47]
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Figure 0.12  Microhardness data for a single pass (SP) weld in 5083-H321 aluminum plate 

Future work must thus accentuate welding at lower temperatures in order to increase 

the related hardness number in the TMAZ. 

Conclusion 

In this chapter fundamental background is provided on the characterization of 

aluminum alloys.  The 5000 series aluminum alloys were the ones particular of 

interest.   The FSW process is a stirring and forging process where the rotating tool 

work softens the material in order to reach plasticized conditions.  After the welds are 

made the mechanical strength is thus lowered by a certain degree.  The ideal would be 

to optimize the process so that a welding strength as close as possible to that of the 

parent material can be obtained.  From the microstructural verifications made, the 

welded zone is known to be grain refined and not related to grain growth as some 

other welding techniques introduced.  This grain refinement of the weld nugget will 

be an advantage for improvement in fatigue life.  Future evaluations will look into the 

fatigue life of the welds since this is the main advantage of the FSW process.  From 

the tensile graphs obtained it can be seen that the actual tensile strength lowers as the 

weld length increases.  This will be the case when the temperature of the tool gets too 

hot and start to cause surface defects.  In the future the process variables such as tool 
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temperature must be intelligently controlled in order to maintain a constant weld 

quality.  From the microhardness tests conducted the softer region of the weld is in the 

TMAZ.  The researcher must thus try to weld with the lowest temperature possible so 

that the hardness of the TMAZ may be improved.  Future research is required to 

establish this optimal welding temperature range. 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion and Future Developments 
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It can now be concluded that the PET Friction Stir Welder is complete.  The process 

was started from scratch where a conventional milling machine was transformed into 

a FSW machine by means of numerous control modifications.  The modifications 

made were in combination with mechanical and electrical engineering aspects, 

covering various fields of knowledge such as mechatronics, mechanics, mathematics, 

electronics and many more.  The main reasons for the major machine modifications 

made were to improve the controllability of the welding process.  This was made 

possible by installing two inverters or drive controllers to directly control the main 

motor speeds.  Related software programs were developed to assist with the control 

and monitoring of process parameters.  When the machine control side was completed 

and the machine could accurately be controlled by a personal computer more time 

was put into the development of welding tools and the measuring of weld parameters. 

Information on tool designs and process parameter settings are very much limited 

since the process is patented.  The PET developed new tool designs and only 

experimental evaluations would determine the outcome of the design.  Eventually an 

improved tool design was developed that makes welding at faster feed-rates with 

lower forces possible.  The FSW3 tool is capable of making good butt welds on 

Aluminum plate ranging from 6 to 8mm in plate thickness.  This tool can now be used 

with all other process parameters settings to determine the related weld qualities.  

Other than the control modifications made on the machine, tool fixturing and material 

clamping techniques had to be designed and manufactured.  The clamping of the 

workpieces plays an important role during the welding process since it must prevent 

any deflection or movement of the base material.  The clamps must be so designed 

that it is easy to disassemble and also easy to manufacture.  The mechanical structure 

of the tool holder must also be able to withstand the high welding forces of each weld 
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trial.  Other small modifications made on the machine will be things like motor cowls, 

couplings, telemetry brackets and safety screens.   

For the measuring of crucial weld parameters a specialized sensor and data 

transmission system was developed.  This unit can measure realtime process data 

directly from the rotating tool holder while welding.  It enables the researchers to link 

process variables, such as tool temperature, with that of process parameter settings 

such as spindle speed and feed-rate.  Further advanced studies can now be made to 

link weld quality with that of process variables and then improve on the design for 

optimal operating points. 

After a range of comprehensive tests conducted by the researchers a good knowledge 

was built on process optimization.  The weld quality can vary considerably with only 

a slight change in one or two variables.  A method was to be designed that could link 

process parameters to that of process variables so that the researcher will know what 

to change to influence what and by how much during the process.  An experimental 

approach was followed to determine the correlations that existed between these 

variables.  A regression summary was now also established and related mathematical 

formula links the dependent variables with that of the independent variables.  These 

formulas are being used to establish the optimal operating point of the PET friction 

stir welder when a number of parameters such as spindle speed and feed-rate are set.  

Successful welds were made on 6mm and 8mm thick aluminum plates.  At this stage 

the machine is limited to welding plate thickness of not more than 8mm because of 

the spindle and feed-motor power availability. 
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Future developments at the PET will be to improve weld quality.  Since the MTRC 

specializes in manufacturing, weld quality will be a high priority.  Quality of the 

welds is mainly related to mechanical properties obtained by tests such as fatigue and 

tensile testing thus the aim will be to improve these properties.  At the moment it is 

preferable to obtain a higher tensile strength, closer to that of the parent material.  

Temperature will be a good starting point to evaluate weld quality since FSW is a heat 

related process.  Other variables that can be linked to weld quality are the tool forces 

generated during a welding trial.  Polar force plots generated around the tool can be 

linked to the characterization of material flow.  The optimum will be to weld at lower 

feed forces since it will save money during machine selection and availability. 

Other important developments that need attention will be to weld at higher feed-rates.  

This is important since it will drop the production cost and make FSW a more 

efficient process.   

Profile welding on thin sheets need to be further investigated to make the process 

more industry related.  Profile welding will have to be done through advanced control 

algorithm and will be a problem on its own.  Much work still need to be done in this 

field of study. 

A ‘bobbin’ tool used to make welding without a backing plate was recently invented.  

This is not everyday technology yet and work in this field also needs attention.  If the 

process can operate at lower Z-Forces and without any backing plates it will make 

many other weld configurations possible.  

Improvement in tool design will always be an advantage since it plays an important 

role during weld quality.  A new tool that can weld at lower forces, achieve better 

surface finishes and improve the tensile strength of the joint, are to be considered.  
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A portable welder that industry can use will be a future concept under attention.  

Since the process is energy efficient, the motor industry should be interested in the 

process if a relatively low priced aluminum welder can be introduced. 

The researcher is planning to investigate the effects that temperature and force- 

distribution profiles have on the residual stress and fatigue life of FSW. 

 

Attached please find the CD containing a FSW video that will demonstrate the 

operation of the PET Friction Stir Welder. 

 

 

 

 

GLOSSARY OF TERMS 
 

A 

 

augering effect – the gripping movement of the rotating tool in FSW where the tool 

shape or profile pulls or stirs the plasticized material in a downward 

direction. 

alloying element – an element added to and remaining  in 

metal that changes structure and properties. 
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annealing – heating to and holding at a suitable temperature followed by cooling at a 

suitable rate. 

as manufactured – pertains to sheet metal plate in it as manufactured form. 

 

B 

bending stress – if a beam is subjected to a bending moment 

the fibres in the upper part are extended and 

those in the lower part are compressed.  Tensile 

and compressive stresses are thereby induced 

which vary from zero at the neutral axis of the 

beam to a maximum at the outer fibres.  These 

stresses are called bending stresses. 

D 

drop-out – a term borrowed from fusion welding where the 

weld zone protrudes from the back of the 

welded panel. 

 

E 
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eccentricity – displacement or off-set adjustment with 

reference to the center position. 

elastic region – a material is said to be stressed within the 

elastic region when the working stress does not 

exceed the elastic limit. 

etchant – a chemical solution used to etch a metal to reveal structural details. 

etching – subjecting the surface of a metal to preferential chemical or electrolytic 

attack to reveal structural derails for metallograhic examination.  

 

F 

fatigue – a phenomenon which results in the sudden fracture of a component after a 

period of cyclic loading in the elastic regime. 

fatigue life – the number of load cycles a component can withstand prior to failure. 

 

G 

grain growth – an interface separating two grains at which the orientation of the 

lattice changes from that of one grain to that of the other.  When the 

orientation change is very small the boundary is sometimes referred to as a 

sub-boundary structure. 

 

H 
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hardness – a term used for describing the resistance of a material to plastic 

deformation under the action of an indenter. 

hardening – increasing hardness by suitable treatment, usually cold working. 

homogeneous – a chemical composition and physical state of any physical small 

portion are the same as those of any other portion. 

hot working – deformation under conditions that result in re-crystallization. 

hot hardness – this property designates the steel‘s resistance to the softening effect at 

elevated temperatures. 

hydrostatic pressing – the application of liquid pressure directly to a perform which 

has been sealed, e.g. in a plastic bag.  It is characterized by equal pressure 

in all directions maintaining perform shape to reduced scale. 

 

I 

incremental steps – refers to the small amount of movement during positioning or 

control of a process or part thereof. 

incremental optical encoders – electrical device coupled to a rotating motor shaft. 

This unit provides a set of pulses that are related to linear movement. 

longitudinal plane – is a plane that is normal to the longitudinal axis. 

longitudinal axis – that direction parallel to the direction of maximum elongation in a 

worked material.  

 

M 



 311 

macrograph – a graphic reproduction of a prepared surface of a specimen at a 

magnification not exceeding 25x. 

macrostructure – the structure of metals as revealed by macroscopic examination of 

the etched surface of a polished specimen. 

magnification – the ratio of the length of a line in the image plane to the length of a 

line on the imaged material. 

maximum bending strain – a cylindrical shaft is said to be subject to pure torsion 

when the torsion is caused by a couple, applied so that the axis of the 

couple coincides with the axis of the shaft.  The state of stress, at any point 

in the cross-section of the rod, is one of pure shear, and the strain is such 

that one cross-section of the shaft moves relative to another. 

microsturcture – the structure of a prepared surface of a metal as revealed by a 

microscope at a magnification exceeding 25x. 

 

O 

onion-skin flow pattern – a characteristic weld pattern featuring a cyclic ring or 

onion skin-like profile. 

oxidation – the addition of oxygen to a compound.  More generally, any reaction 

involving the loss of electrons from an atom.  

 

 

P 
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plastic deformation – deformation that remains or will remain permanent after 

release of the stress that caused it. 

plasticity – capacity of a metal to deform non-elastically without rupturing. 

polished surface – a surface that reflects a large proportion of the incident light in a 

specular manner. 

principal strains – the maximum and minimum direct strains in a material, subjected 

to complex stress are called Principal Strains.  These strains act in the 

directions of the principal stresses. 

principal stresses – at any point within a stressed material it will be found that there 

exist three mutually perpendicular planes on each of which the resultant 

stress is a normal stress (i.e. no shear stresses occur on these planes).  

These mutually perpendicular planes are called principal planes, and the 

resultant normal stresses are called Principal Stresses. 

plunge force – during the plunging stage of the tool pin in FSW, the vertical force in 

the direction of the Z-axis movement is normally referred to as the 

plunging force. 

 

Q 

 
quantitative – identification of relative amounts making up a sample. 

quench hardening – in ferrous alloys, hardening by austenitising, then cooling at a 

rate so that a substantial amount of austenite transforms to martensite.  

quill – the mechanical section of a milling machine head that contains the chuck or 

tool holder. 
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R 

 

re-crystallisation – a change from one crystal structure to another, such as that 

occurring upon heating or cooling through a critical temperature. 

relieved – allowing for freedom of movement or relaxation. 

residual stress – are stresses inherent in a component prior to service loading 

conditions. 

restrained – hold back movement in any direction. 

rolling direction – refers to the direction in which the billet was rolled during the 

sheet metal plate manufacture. 

 

S 

side-flash – in FSW, a build-up of weld material, normally on the retreating side of 

the rotating, which has a ‗peal like‘ effect is termed side-flash. 

solid-phase – a physically homogeneous and distinct portion of a material system in 

the solid state. 

spindle speed – the speed of the work holding device (chuck), measured in 

revolutions per minute. 

stagnation point – the point, at or near the nose of a body in motion in a fluid, where 

the flow divides and where, in a viscous fluid pressure is at a maximum, 

and in an inviscid one the fluid is at rest. 

strain – strain is a measure of the deformation of a body acted upon by external 

forces and can be expressed as a change in dimension per unit of original 

dimension or in the case of shear as a change in angle between two 

initially perpendicular planes. 
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strain amplifier – the ratio of the voltage supplied to the voltage delivered by the 

Wheatstone Bridge as a result of the unbalance caused by a change of 

strain gauge resistance is equivalent to the strain and is amplified into a 

suitable voltage or current which can be fed into an analogue or digital 

indicator or graphic recorder. 

stress – load applied to a piece of material tends to cause deformation which is 

resisted by internal forces set up within the material which are referred to 

as stresses.  The intensity of the stress is estimated as the force acting on 

the unit area of the cross-section, namely as Newtons per square meter or 

Pascals. 

sub-surface – a location just beneath the surface of a component. 

 

T 

 
telemetry system – a system making use of non-contact methods such as radio and 

capacitive transmission, normally used for measuring and data transfer 

purposes. 

tempering – in heat treatment, reheating hardened steel to some temperature below 

the eutectoid temperature to decrease hardness and/or increase toughness. 

 

 

Tensile strength (UTS-ultimate tensile strength) – maximum load in tension which 

a material will stand prior to fracture.  For ductile iron = 414MPa to 1380 MPa. 

 

AreaSectionalCross

LoadMaximum
UTS 
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threshold level – generally the lowest intensity of an effect, which is detectable.  

thixotropic – a property of fluids and plastic solids, characterized by a high viscosity 

at low stress, but a decreased viscosity when an increased stress is applied. 

toughness – in tool steels, this property expresses ability to sustain shocks, suddenly 

applied loads and relieved loads, or major impacts, without breaking. 

transverse direction – refers to the perpendicular direction in which the billet was 

rolled during sheet plate manufacture. 

Triflute Tool – a TWI trademark tool. 

third-body region – area where recrystalization took place of the parent and/or filler 

metal due to the plastic flow of material during a weld.  This region 

contains the weld nugget within the TMAZ. 

 

 

 

 

V 

 
viscosity – the resistance of a fluid to shear forces, and hence to flow.  Such shear 

resistance is proportional to the relative velocity between the two surfaces 

on either side of a layer of fluid, the area in shear, the coefficient of 

viscosity of the fluid and the reciprocal of the thickness of the layer of 

fluid.  
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void – the space that exist between particles or grains.  Normally in welding voids are 

associated with defects and incomplete penetration. 

 

W 

 
Whorl tool – a TWI trademark tool. 

worm holes – a  sub-surface defect in a Friction Stir weld, normally on the advancing 

side of the rotating tool, due to the lack of mixing and re-bonding of 

plasticized material. 

wear resistance – the gradual erosion of the tool‘s operating surface, most 

conspicuously occurring at the exposed edges, is known as wear. 

 

X 

 
x-axis – relating to a specific axis (Horizontal) or a fixed line determining the 

direction of movement or placement in a 2D or 3D coordinate system.  

 

Y 

 
y-axis – relating to a specific axis (perpendicular to x-axis)or a fixed line determining 

the direction of movement or placement in a 2D or 3D coordinate system.  

 

Z 
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z-axis – relating to a specific axis (vertical) or a fixed line determining the direction 

of movement or placement in a 2D or 3D coordinate system. 

 

(Note:  For other definitions and nomenclature please see text.) 
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Appendix A: 

 
 

 

In Combination with Chapter 3 

 

 

 
Page 162   – Machine Technical Specification sheet 

 

Page 163   – Loadcell and UPM40 amplifier setup 

 
Page 163   – Incremental Optical Encoder housing/ Motor Cowl 

 

Page 164-165  – Manufacture Drawings of First Clamp Design 

 

Page 166-167  – Manufacture Drawings of Final Clamp Design 

 

Page 168  – Manufacture Drawing of Backing Plate Design 

 

Page 169-170  – Mechanical Model of Tool Holder for Measuring System 

 

Page 171   – Optical Encoder Coupling to Motor shaft 

 

Page 172-174  – Stator Bracket for Telemetry System 

 

Page 175-181 – Manufacture Drawings of Motor Cowls, End Caps and 

Encoder brackets  
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Technical characteristics chart of the conventional milling machine as purchased. 
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 Loadcell setup for two diagonal quarter bridge circuits.  

Full bridge conditioned and completed in UPM 40 amplifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 337 

 Encoder housing (motor cowl) with an internal force 

convection fan and safety grid, system mounted on the feed 

bed motor. 
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In Combination with Chapter 4 

 

 

 
Page 183-185   – Manufacture Drawings of FSW1 Design 

 

Page 186-187   – Manufacture Drawings of FSW2 Design 

 
Page 188-189   – Manufacture Drawings of FSW3 Design, 6mm  

 

Page 190-191  – Manufacture Drawings of Spiral Tool Design, 6mm 

 

Page 192  – Manufacture Drawing of FSW3 Design, 8mm 
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In Combination with Chapter 5 

 

 

 
Page 194-195   – Manufacture Drawings of Non-Profile Tool 

 

Page 196   – Three Polar Force Plots for Repeatability Tests 

 
Page 197   – Example of Sorted Weld Data Obtained - T2 

 

Page 198   – Table of Training Exemplars, Design of Experiments 

 

Page 199   – Table of Actual Exemplars measured during Experiments 

 

Page 200  – Table of Sensor Measurements and Surface Appearance 

making use of a Factorial Design 

 

Page 201-216  – Important Graphs obtained during the analysis of the L16 

orthogonal array. 

 

Page 217-219  – Regression Summary Tables relating Dependent Variables to 

Independent Variables 

 

Page 220-225  – 3D Surface Plots illustrating the comparisons between 

Dependent Variables and two Independent Variables 

 

Page 226  – Weld Evaluation Plots for Regression Formula Verification 
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Example of Sorted Weld Data Obtained - T2 

Feed X Position 440 450 460 470 480 490 500 510 520 530 

Spindle Speed 537.5 495.1 484.1 477.6 472.2 457.4 443.5 427.3 421.7 417.6 

Spindle Power 1812.7 5057.4 5072.7 5118.7 5166.2 5229 5279.8 5402.9 5438 5430.7 

Spindle Torque 12.6 35.7 36.7 37.3 37.9 39.3 40.7 42.6 43.1 43.6 

Spindle Current 4.8 13.3 13.3 13.4 13.5 13.7 13.9 14.3 14.3 14.3 

Feedrate 8.1 96.4 96.6 96.7 96.7 96.7 96.7 96.7 96.7 67.8 

Feed Power 100.1 543.8 542 543.6 543.7 545.5 544.1 548.2 544.9 409 

Feed Torque 1.3 2 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.8 

Feed Current 1.3 2.5 2.5 2.5 2.5 2.5 2.5 2.6 2.5 2.6 

Tool Temperature 149.6 374.3 399.2 419 434.6 448.2 460.4 470.4 479.7 488.6 

Tool Fx/Fy 1.2 4.2 3.7 2.7 2.37 2.48 2.78 2.31 2.38 1.89 

Tool Fz -2.9 -16.9 -16.9 -17.5 -18.6 -19.4 -19.5 -19.5 -19.6 -19.7 

0 114.9 528.1 538.2 430.7 446.2 398 511.8 444.6 442.7 401.7 

10 112.8 504.2 516.7 410.7 410.8 371.5 504.9 416.7 417.6 386.3 

20 109.7 450.1 483 364.4 358.8 327.4 484.9 367.3 366.1 346.3 

30 105.3 356 405.5 301.5 301.5 271 458.1 314.7 309.6 297.5 

40 101.4 256.5 318.9 240.2 240.3 208.5 430 250.7 246.3 244 

50 97.9 155.1 231.3 179.1 183.3 150 405.5 189.3 182.2 187.2 

60 95.1 53.5 144.8 118 128.1 94.5 385.1 126.3 118.4 133.2 

70 92.9 43.5 58.3 61.8 74.1 40.3 343.3 64.7 58.6 82.5 

80 91.8 134.1 26.3 11.2 27.7 6.3 291.2 12.1 5.2 36.3 

90 91.4 217.4 104.4 32.1 13.4 48.2 238 35.3 38.5 3.5 

100 91.8 288.9 174.9 67.3 48.7 84 184 71.4 71.2 35.4 

110 93.6 345 235.6 95.2 73.1 107.7 130.8 97.2 95.2 57.7 

120 96.2 383.2 282.9 112.4 88.3 122.4 80 111.1 108.4 70.6 

130 99.4 405.9 315.6 118.2 90.5 125.8 32.8 114.1 109.4 73.4 

140 103.6 411.2 335.1 114.1 84.2 116.6 9.4 106.1 99.3 65.3 

150 108.3 396.5 336.6 98.8 68.9 98.6 44.8 86.1 79.7 49.9 

160 113.6 366.5 323.3 72.7 42.2 70.5 67.5 57.6 53.2 26.6 

170 119 320.6 297.1 39.7 9.9 34.2 81.6 20.9 15.3 4.2 

180 124.3 259 254.8 0.3 29.1 7.2 86.6 22.4 26.7 42.3 

190 129.5 186.4 201.3 47 76.8 54.4 80.4 70.8 73.1 83.7 

200 134.3 104.3 139.2 97.8 125.7 105.1 64.9 124.1 127.2 128.9 

210 138.6 11.8 67.9 152.4 178.8 159.9 41.7 180.1 181.1 178.3 

220 142.1 81.9 10.1 211.2 237 216.6 11.6 235.4 236.3 225.4 

230 144.9 178 90.5 269.3 291.5 271.9 25.6 291.6 292.3 273.1 

240 146.8 277.3 172.2 326.9 344.7 325.7 67.4 345.1 344.7 320.1 

250 148 371.7 255.7 382.3 397.3 376.3 113.6 392.3 395.9 362.8 

260 148.3 458.7 333.6 431.5 441.5 421.8 161.9 437.4 440.7 403.7 

270 147.9 540.1 406 475.4 481.6 461.3 211.2 474.3 479.8 438.8 

280 146.9 611.7 475 512.9 514.8 492.5 261 504.6 513.3 468.2 

290 145.3 668 532.9 540.7 537.8 516.2 310.1 528.6 539.8 492.7 

300 142.5 709.1 580.9 560.1 554.5 532.2 355.3 542 556.3 508.1 

310 139.4 737.3 617.5 570.8 561.5 537.8 396 546.1 563.7 515.3 

320 135.9 747.3 633.1 570.1 559.2 536.8 432.6 541.2 563.2 516 

330 132 739.3 638.1 562.2 548.7 527.1 461.7 528.7 552.5 508.9 

340 128 717.5 627.6 542.3 528.4 504.9 485.2 499.4 528.7 490.2 

350 124 683.1 602.3 522.2 502.5 477.9 502.2 464.6 502.7 471.7 

360 114.9 528.1 538.2 430.7 446.2 398 509.5 444.6 442.7 401.7 
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Regression Summary for Dependent Variable: ps (Weld data Results for analysis.sta)

R= .78064883 R²= .60941259 A djusted R²= .26764861

F(7,8)=1.7831 p<.21752 Std.Error of  estimate: 909.68

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

oxide

type

thick

time

-675.597 2263.135 -0.29852 0.772911

0.413695 0.234969 5.016 2.849 1.76064 0.116333

0.333957 0.232332 15.727 10.941 1.43741 0.188539

0.134740 0.313676 1178.528 2743.625 0.42955 0.678857

-0.085124 0.223182 -175.224 459.412 -0.38141 0.712829

0.047781 0.286687 98.355 590.134 0.16666 0.871769

0.666961 0.242850 1372.913 499.897 2.74639 0.025199

-0.255301 0.228895 -525.528 471.172 -1.11536 0.297076

 
Regression Summary for Dependent Variable: ts (Weld data Results  for analys is .s ta)

R= .93237423 R²= .86932170 A djusted R²= .75497818

F(7,8)=7.6027 p<.00520 Std.Error of  estimate: 3.8479

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

oxide

type

thick

time

33.11654 9.57293 3.45939 0.008575

-0.455522 0.135910 -0.04039 0.01205 -3.35164 0.010056

0.475613 0.134386 0.16380 0.04628 3.53917 0.007629

-0.016836 0.181436 -1.07690 11.60538 -0.09279 0.928350

0.020301 0.129093 0.30560 1.94329 0.15726 0.878938

-0.032017 0.165825 -0.48196 2.49623 -0.19307 0.851712

0.559358 0.140469 8.42024 2.11453 3.98208 0.004050

-0.088104 0.132397 -1.32626 1.99303 -0.66545 0.524481  
Regression Summary for Dependent Variable: cs (Weld data Results for analysis.sta)

R= .73986555 R²= .54740103 Adjusted R²= .15137693

F(7,8)=1.3822 p<.32818 Std.Error of  estimate: 2.2587

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

ox ide

type

thick

time

4.03186 5.619328 0.717498 0.493482

0.113189 0.252934 0.00317 0.007074 0.447503 0.666381

0.337462 0.250096 0.03666 0.027167 1.349329 0.214173

0.075732 0.337660 1.52791 6.812377 0.224284 0.828158

-0.087674 0.240247 -0.41629 1.140713 -0.364934 0.724619

0.016678 0.308607 0.07919 1.465294 0.054042 0.958227

0.652906 0.261418 3.10006 1.241235 2.497558 0.037083

-0.217069 0.246397 -1.03066 1.169914 -0.880975 0.404021

 
Regression Summary for Dependent Variable: pf (Weld data Results for analysis.sta)

R= .99947192 R²= .99894413 A djusted R²= .99802024

F(7,8)=1081.2 p<.00000 Std.Error of  estimate: 5.3673

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

oxide

type

thick

time

30.44096 13.35294 2.27972 0.052094

-0.007876 0.012217 -0.01084 0.01681 -0.64469 0.537170

0.999503 0.012080 5.34155 0.06456 82.74221 0.000000

-0.004675 0.016309 -4.64065 16.18793 -0.28667 0.781647

0.007666 0.011604 1.79081 2.71062 0.66066 0.527391

0.003186 0.014906 0.74425 3.48191 0.21375 0.836091

-0.019196 0.012627 -4.48396 2.94949 -1.52025 0.166937

0.021755 0.011901 5.08189 2.78001 1.82801 0.104956
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Regression Summary for Dependent Variable: tf  (Weld data Results for analysis.sta)

R= .92915152 R²= .86332254 Adjusted R²= .74372977

F(7,8)=7.2189 p<.00614 Std.Error of  estimate: .39655

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

ox ide

type

thick

time

-1.18050 0.986561 -1.19658 0.265725

0.243602 0.138995 0.00218 0.001242 1.75259 0.117767

0.286521 0.137436 0.00994 0.004770 2.08476 0.070591

0.057189 0.185554 0.36862 1.196020 0.30820 0.765799

-0.056703 0.132023 -0.08602 0.200270 -0.42950 0.678895

0.683940 0.169589 1.03749 0.257255 4.03293 0.003773

0.493608 0.143657 0.74877 0.217918 3.43602 0.008876

-0.395336 0.135402 -0.59970 0.205397 -2.91971 0.019300

 
Regression Summary for Dependent Variable: c f (Weld data Results  for analys is .s ta)

R= .77632362 R²= .60267836 Adjusted R²= .25502192

F(7,8)=1.7335 p<.22857 Std.Error of  estimate: .05344

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

ox ide

type

thick

time

2.662035 0.132949 20.02304 0.000000

-0.316866 0.236986 -0.000224 0.000167 -1.33707 0.217970

-0.037222 0.234327 -0.000102 0.000643 -0.15885 0.877725

-0.304697 0.316369 -0.155229 0.161175 -0.96311 0.363698

0.038123 0.225098 0.004571 0.026988 0.16936 0.869715

-0.380642 0.289148 -0.045637 0.034668 -1.31643 0.224494

-0.344255 0.244934 -0.041275 0.029367 -1.40550 0.197498

0.718425 0.230860 0.086136 0.027679 3.11195 0.014403

 
Regression Summary for Dependent Variable: t (Weld data Results for analysis.sta)

R= .79478862 R²= .63168895 Adjusted R²= .30941679

F(7,8)=1.9601 p<.18289 Std.Error of  estimate: 27.752

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

oxide

type

thick

time

406.7750 69.04195 5.89171 0.000365

0.360033 0.228170 0.1371 0.08692 1.57792 0.153237

-0.449272 0.225610 -0.6647 0.33379 -1.99137 0.081600

0.391046 0.304600 107.4547 83.70036 1.28380 0.235144

0.158526 0.216724 10.2517 14.01538 0.73146 0.485367

-0.246808 0.278392 -15.9608 18.00336 -0.88655 0.401187

0.431032 0.235823 27.8745 15.25045 1.82778 0.104994

-0.080133 0.222272 -5.1822 14.37416 -0.36052 0.727793

 
Regression Summary for Dependent Variable: f x (Weld data Results  for analys is .s ta)

R= .95228128 R²= .90683964 Adjusted R²= .82532432

F(7,8)=11.125 p<.00146 Std.Error of  estimate: 187.30

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

ox ide

type

thick

time

-341.862 465.9749 -0.73365 0.484105

0.007358 0.114754 0.038 0.5866 0.06412 0.950450

0.175219 0.113466 3.479 2.2528 1.54424 0.161110

0.023482 0.153193 86.591 564.9068 0.15328 0.881970

-0.140268 0.108997 -121.730 94.5920 -1.28689 0.234117

0.758299 0.140012 658.081 121.5075 5.41597 0.000634

0.466105 0.118602 404.503 102.9277 3.92997 0.004357

-0.315692 0.111788 -273.969 97.0134 -2.82403 0.022355
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Regression Summary for Dependent Variable: f y (Weld data Results  for analys is .s ta)

R= .84069276 R²= .70676432 Adjusted R²= .45018311

F(7,8)=2.7545 p<.08957 Std.Error of  estimate: 50.020

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

ox ide

type

thick

time

589.722 124.4410 4.73897 0.001466

-0.275653 0.203591 -0.212 0.1567 -1.35395 0.212755

-0.097832 0.201307 -0.292 0.6016 -0.48598 0.640010

-0.380534 0.271788 -211.222 150.8612 -1.40011 0.199048

-0.051101 0.193379 -6.675 25.2613 -0.26425 0.798265

-0.906042 0.248403 -118.357 32.4492 -3.64746 0.006518

-0.236065 0.210420 -30.837 27.4874 -1.12188 0.294456

-0.178762 0.198329 -23.352 25.9079 -0.90134 0.393732

 
Regression Summary for Dependent Variable: r (Weld data Results for analysis.sta)

R= .84546614 R²= .71481300 Adjusted R²= .46527437

F(7,8)=2.8645 p<.08179 Std.Error of  estimate: 4.2350

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

oxide

type

thick

time

-16.8060 10.53612 -1.59508 0.149361

0.206791 0.200778 0.0137 0.01326 1.02995 0.333164

0.086083 0.198525 0.0221 0.05094 0.43361 0.676024

0.198191 0.268032 9.4448 12.77306 0.73943 0.480779

-0.090725 0.190706 -1.0175 2.13881 -0.47573 0.646984

0.833485 0.244971 9.3477 2.74740 3.40239 0.009327

0.389339 0.207512 4.3665 2.32729 1.87623 0.097470

-0.254650 0.195588 -2.8560 2.19356 -1.30197 0.229161

 
Regression Summary for Dependent Variable: f z (Weld data Results  for analys is .s ta)

R= .88689315 R²= .78657946 Adjusted R²= .59983649

F(7,8)=4.2121 p<.03058 Std.Error of  estimate: 3.1524

N=16

Beta Std.Err.

of  Beta

B Std.Err.

of  B

t(8) p-level

Intercept

rpm

feed

plunge

ox ide

type

thick

time

7.34152 7.842569 0.93611 0.376609

-0.214346 0.173688 -0.01218 0.009873 -1.23409 0.252192

-0.571013 0.171739 -0.12607 0.037916 -3.32489 0.010464

-0.170515 0.231868 -6.99188 9.507637 -0.73540 0.483098

0.090810 0.164975 0.87633 1.592026 0.55045 0.597043

-0.473935 0.211918 -4.57352 2.045026 -2.23641 0.055737

-0.545341 0.179513 -5.26259 1.732320 -3.03789 0.016115

0.240151 0.169198 2.31748 1.632780 1.41934 0.193566
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3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

p s  =  -8 5 1 7 .6 7 4 8 + 5 6 .4 2 5 6 * x -1 7 .7 5 5 6 * y -0 .0 5 0 5 * x * x -0 .1 6 0 4 * x * y + 0 .7 3 1 7 * y * y

 5 0 0 0  

 4 0 0 0  

 3 0 0 0  

 2 0 0 0  

 
 

3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

ts  =  -7 .5 2 9 + 0 .1 9 6 7 * x + 0 .2 6 1 2 * y -0 .0 0 0 2 * x * x -0 .0 0 1 4 * x * y + 0 .0 0 3 4 * y * y

 6 0  

 5 0  

 4 0  

 3 0  

 2 0  

 
 

rpm 
Feed 

ps 

rpm 

ts 

Feed 
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3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

c s  =  -1 0 .1 6 8 3 + 0 .1 0 4 * x -0 .0 6 1 5 * y -9 .5 1 7 E -5 * x * x -0 .0 0 0 4 * x * y + 0 .0 0 1 8 * y * y

 1 4  

 1 2  

 1 0  

 8  

 6  

 
 

3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

p f =  6 6 .2 3 0 2 -0 .1 8 2 8 * x+ 5 .3 6 7 9 * y + 0 .0 0 0 2 * x * x + 0 .0 0 0 4 * x * y -0 .0 0 1 3 * y * y

 6 0 0  

 5 0 0  

 4 0 0  

 3 0 0  

 2 0 0  

 
 

rpm 
Feed 

pf 

Feed rpm 

cs 
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3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

tf =  -2 .8 3 1 8 + 0 .0 2 3 4 * x -0 .0 1 0 2 * y -2 .7 0 2 6 E -5 * x * x + 5 .6 6 1 4 E -6 * x * y+ 0 .0 0 0 1 * y * y

 2 .5  

 2  

 1 .5  

 1  

 
 

3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

c f =  3 .2 0 0 8 -0 .0 0 3 * x -0 .0 0 1 3 * y + 3 .6 4 2 6 E -6 * x * x -2 .4 1 2 5 E -6 * x * y+ 1 .6 2 0 2 E -5 * y * y

 2 .7  

 2 .6 5  

 2 .6  

 2 .5 5  

 
 

rpm 

cf 

Feed 

rpm Feed 

tf 
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3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

t =  -4 8 .7 3 1 4 + 2 .3 8 2 4 * x+ 0 .6 7 3 4 * y -0 .0 0 2 1 * x * x -0 .0 0 7 2 * x * y + 0 .0 1 2 6 * y * y

 5 2 0  

 4 8 0  

 4 4 0  

 4 0 0  

 3 6 0  

 3 2 0  

 
 

3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

fx  =  -3 0 3 .9 7 3 2 + 6 .5 3 3 8 * x -0 .6 7 3 3 * y -0 .0 1 0 5 * x * x + 0 .0 2 5 4 * x * y -0 .0 5 2 2 * y * y

 1 0 0 0  

 8 0 0  

 6 0 0  

 4 0 0  

 2 0 0  

 0  

 
 

rpm 

fx 

Feed 

Feed 

t 

rpm 
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3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

fy  =  3 4 9 .7 4 7 9 + 0 .1 6 2 1 * x -4 .3 6 1 3 * y -0 .0 0 1 3 * x * x + 0 .0 1 0 7 * x * y -0 .0 0 4 4 * y * y

 2 5 0  

 2 0 0  

 1 5 0  

 1 0 0  

 5 0  

 0  

 
 

3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

r =  -2 6 .1 5 2 3 + 0 .0 9 0 5 * x + 0 .4 1 3 7 * y -8 .2 E -5 * x * x -0 .0 0 0 2 * x * y -0 .0 0 2 1 * y * y

 8  

 6  

 4  

 2  

 0  

 
 

rpm 

r 

Feed 

rpm Feed 

fy 
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3 D  S u rfa c e  P lo t (W e ld  d a ta  R e su l ts  fo r a n a lys is .s ta  2 7 v * 1 6 c )

fz  =  3 1 .0 7 8 6 -0 .2 1 7 * x + 0 .0 4 6 1 * y + 0 .0 0 0 2 * x * x + 0 .0 0 0 2 * x * y -0 .0 0 2 * y * y

 -8  

 -1 2  

 -1 6  

 -2 0  

 -2 4  

 
 

 

Feed 

fz 

rpm 
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Appendix D: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Combination with Chapter 6 

 

 

 
Page 228   – Parent Plate Tensile Specimens on Al 5083 H321 

 

Page 228  – Specifications of Tensile Specimens according to ASTM   standard 
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Page 229   – Important graphs obtained during a Weld evaluation 

 

Page 230   – Successful Face and Root Bends at 180
0
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Parent Plate tensile specimens pulled and viewed after fracture. 

 

 

 

 

 

 

 

 

 

 



 231 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimensions of tensile test specimens used for the analysis of the welded joint strength. 
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Successive Face (top) and Root (bottom) 180
0
 bend tests perform on a weld made at 400rpm, 0.2 Plunge and 100mm/min. 

 


