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Abstract 
 

Type 2 diabetes mellitus (T2DM) is rapidly emerging as one of the greatest global health 

issues of the 21st century.  Insulin-resistance is a condition associated with T2DM and in the 

cell it is defined as the inadequate strength of insulin signalling from the insulin receptor 

downstream to the final substrates of insulin action involved in multiple metabolic, gene 

expression, and mitogenic aspects of cellular function.  To investigate the potential 

mechanisms involved in the development of insulin-resistance, two in vitro liver cell models 

were established using palmitate or a combination of insulin and fructose as inducers.  The 

development of insulin-resistance was determined via the capacity of the hepatocytes to 

maintain normal glucose metabolism functionality by measuring hepatic gluconeogenesis and 

glycogenolysis.  It was established that the treatments induced the development of insulin-

resistance after 24 hours chronic exposure.  Previous studies have investigated the potential 

of Sutherlandia frutescens extracts as therapeutic agents for insulin-resistance.  The aim of 

this study was thus to investigate the ability of a hot aqueous extract of S. frutescens to 

reverse the insulin-resistant state, via measuring gluconeogenesis and glycogenolysis, the 

associated changes in cellular physiology (lipid accumulation, oxidative stress, and acetyl-

CoA levels), and changes in mRNA expression.  The results showed that S. frutescens had a 

significant effect on reversing the insulin-resistant state in both models of insulin-resistance.  

Furthermore, S. frutescens was capable of reducing lipid accumulation in the form of 

triacylglycerol in the high insulin/fructose model, while this was unaffected in the palmitate 

model.  However, S. frutescens did reduce the accumulation of diacylglycerol in the palmitate 

model.  Oxidative stress, seen to be associated with the insulin-resistant state, was 

successfully treated using the extract, as indicated by a reduction in reactive oxygen species.  

However no change was seen in the nitric oxide levels, in either model.  Interestingly, 

although S. frutescens had no effect on the level of acetyl-CoA in the insulin/fructose model, 

it was found to increase this in the palmitate model.  It is suggested that this may be due to 

increased β-oxidation and metabolic activity induced by the extract.  The analysis of mRNA 

expression gave some insight into possible mechanisms by which insulin-resistance develops, 

although the results were inconclusive due to high variability in samples and the possibility of 

the RNA being compromised.  Future studies will address this issue.  The results of this study 

reflect different proposed clinical causes of insulin-resistance through the responses seen in 

the two cell models.  These indicate that liver steatosis and insulin-resistance are induced by 

high palmitate as well as high insulin and fructose levels, and reversed by S. frutescens.  

Therefore the potential of S. frutescens to be used as a therapeutic agent in the treatment of 

insulin-resistance is indicated by this study. 
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Chapter 1 

Introduction and Literature Review 

 

Introduction 

 

Diabetes mellitus (DM) is the most common endocrine disorder in man, currently (Diabetes 

Atlas statistics for the year 2013) affecting over 382 million people worldwide and, 

potentially, over 592 million by the year 2035 (Sicree et al., 2011).  Type 2 DM (T2DM) is 

rapidly emerging as one of the greatest global health issues of the 21st century.  Furthermore, 

it is also expected to trigger a rise in the complications associated with diabetes, such as 

ischemic heart disease, stroke, neuropathy, retinopathy, and nephropathy (Cornier et al., 

2008).  As well as pancreatic β-cell failure, the major pathophysiological event contributing 

to the development of T2DM is the resistance of target tissues to insulin (called insulin-

resistance), which is usually associated with abnormal insulin secretion.  Clinically, the term 

“insulin-resistance” implies that elevated concentrations of insulin are required to maintain 

normoglycaemia.  At the cellular level, it defines the inadequate strength of insulin signalling 

from the insulin receptor downstream to the final substrates of insulin action involved in 

multiple metabolic, gene expression, and mitogenic aspects of cellular function (Saini, 2010). 

 

The pathogenesis of T2DM involves abnormalities in both insulin action and secretion.  The 

precise pathophysiological mechanism which leads to insulin-resistance is still largely 

unknown, but recent studies have contributed to a greater understanding of the underlying 

molecular mechanisms.  These mechanisms involve alterations in the insulin signalling 

process through mutations in the genes encoding signalling molecules, hyperinsulinaemia and 

hyperglycaemia.  In addition, free fatty acids (FFAs) have been shown to activate a serine 

kinase cascade, which leads to insulin signalling defects downstream of the insulin receptor 

(IR).  The latter two mechanisms (hyperinsulinaemia/hyperglycaemia and FFA action) affect 

insulin signalling by inducing insulin-resistance in target cells (Saini, 2010).  In recent studies, 

cell models have been used to study the molecular mechanisms underlying T2DM (Ruddock 

et al., 2008; Williams, 2010).  These studies have shown that either combined high 

concentrations of insulin and fructose (Williams, 2010) or palmitate (Ruddock et al., 2008) 

result in the development of insulin-resistance in hepatic cell cultures.    Furthermore, 

Williams (2010) investigated the potential of South African medicinal plant extracts as 
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therapeutic agents and showed that aqueous extracts of Sutherlandia frutescens were capable 

of reversing the insulin-resistant state through increasing the expression of genes associated 

with vesicle transport and insulin signalling. 

 

The current study aims at investigating the changes in gene expression at the mRNA level 

which are involved in insulin signalling and the associated protein synthesis, as well as 

changes in cellular physiology.  The two insulin-resistant cell models, cells in which insulin-

resistance is induced using palmitate or insulin/fructose and then treated with a hot aqueous 

extract of S. frutescens, will be compared.  This comparison will aid in providing more 

insight into the mechanism of insulin-resistance, its reversal, and potential treatment. 

 

Literature Review 

 

1 Insulin and Its Function in Blood Glucose Homeostasis 

 

1.1 Insulin and the Insulin Receptor 

 

Insulin is produced by the pancreatic β-cells and is a major anabolic hormone that is involved 

in growth, development and homeostasis of glucose, fat, and protein metabolism.  Insulin is a 

pleiotropic molecule which affects amino acid uptake, protein synthesis, and proteolysis 

(Cornier et al., 2008).  Glucose levels are regulated by insulin at many sites; reducing hepatic 

glucose output and increasing the rate of glucose uptake, primarily into striated muscle and 

adipose tissue.  Lipid metabolism is affected by insulin that increases lipogenesis in 

hepatocytes and adipocytes, and attenuating fatty acid release from triglycerides (TGs) in fat 

and muscle.  Insulin mediates its effects on metabolism and gene expression through 

interaction with its receptor present on target cell surfaces (Pessin and Saltiel, 2000). 

 

The IR is a member of the receptor tyrosine kinase family that also includes the type 1 

insulin-like growth factor I (IGF-I) receptor (IGF-IR) and the orphan receptor: insulin 

receptor-related receptor (IRR).  The complete insulin receptor is a heterotetrameric 

glycoprotein composed of two α-subunits and two β-subunits linked by disulphide bonds.  

The α-subunits are extracellular and contain the insulin binding site.  The β-subunit is 

composed of an extracellular domain, a transmembrane domain, and an intracellular domain, 

which possesses the intrinsic tyrosine kinase activity (Figure 1).  The insulin receptor mRNA 
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is subject to alternative splicing events of exon 11 due to hormonal and/or metabolic factors 

in a tissue-specific manner, giving rise to two functionally unique isoforms (Mosthaf et al., 

1990).  Isoform B, also named Ex11+, contains a 12-amino-acid peptide at the carboxyl-

terminus of the α-subunit.  Isoform A, also named Ex11-, lacks this amino acid insertion 

(Sesti, 2006).   

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic representation of the human insulin receptor structure.  The insulin 

receptor is a heterotetrameric glycoprotein composed of two extracellular α-subunits and two 

β-subunits comprising of an extracellular and transmembrane domain (adapted from Sesti, 

2006). 

 

The Ex11- isoform shows a two-fold higher affinity for insulin as compared to the Ex11+ 

isoform.  This difference in ligand binding affinity is concomitant with a higher sensitivity 

for both anabolic and metabolic actions of insulin.  Furthermore, the Ex11- isoform appears to 

have higher rates of internalization, recycling, and is a better activator of phosphoinositide 3-

kinase (PI3K) class Ia.  Thus, increased expression of the Ex11+ isoform in skeletal muscle 

has been positively correlated with both hyperglycaemia and hyperinsulinaemia (Norgren et 

al., 1994; Sesti, 2006). 

 

1.2 Insulin Signalling 

 

There are two general models of in vitro insulin signalling: insulin signalling in adipocytes 

and myocytes (Figure 2), and insulin signalling in hepatocytes.  The adipocyte/myocyte 

model is the best studied and understood, and it is accepted that the general mechanism of 

insulin signalling that occurs in adipocytes/myocytes also occurs in hepatocytes.  These two 
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signalling models differ slightly in that hepatocytes do not maintain the glucose transporter 4 

(GLUT4), and thus do not contain any signalling pathways leading to the translocation of 

GLUT4 to the plasma membrane from its intracellular pool (Sesti, 2006).  Hepatocytes do, 

however, maintain isoforms of the GLUT4 protein, namely GLUT2 and GLUT8.  In 

hepatocytes, GLUT2 is predominantly expressed that allows facilitated diffusion of glucose 

across the plasma membrane.  GLUT8 is a high-affinity glucose transporter which cycles 

between intracellular vesicles and the plasma membrane (Gorovits et al., 2003).  It is, 

therefore, proposed that GLUT8 functions similarly to the GLUT4 of adipocytes and 

myocytes. 

 

The insulin signalling cascade is divided into three major pathways namely, (i) the PI3K-Akt 

pathway which is mainly involved in the regulation of metabolic actions by insulin (glucose, 

lipid, and protein metabolism), (ii) the mitogen-activated protein kinase (MAPK) pathway, 

mediating the mitogenic, growth and cell differentiation effects, and (iii) signal transduction 

through the CAP/Cbl/Tc10 pathway, which controls the GLUT4 (and GLUT2/8) 

translocation event (Leclercq et al., 2007).  The latter pathway involves the interactions 

between Cbl associated protein (CAP), the E3 ubiquitin-protein ligase Cbl, which was first 

identified as a product of the Cbl proto-oncogene, and Tc10, belonging to the G protein 

members of the Rho family of guanosine triphosphatases (GTPases).  This is a well-

established insulin signalling pathway that influences the actin cytoskeleton and assembly of 

the exocytosis complex required for GLUT4 translocation to the plasma membrane. 

 

The physiological control of the glucose fluxes across the plasma membrane is solely 

dependent on the intracellular glucose phosphorylation/dephosphorylation ratio.  Insulin does, 

however, indirectly stimulate glucose influx in hepatocytes through the activation of 

glucokinase (or hexokinase) and thus the use of glucose for energy consumption, glycogen, 

and lipid synthesis (Leclercq et al., 2007). 

 

1.3 Adipocytes and Myocytes 

 

Due to the extensive studies performed on insulin signalling in adipocytes and myocytes, the 

insulin signalling mechanisms described here use the adipocyte/myocyte model; however the 

focus of this project is on insulin signalling in hepatocytes.  GLUT4 translocation is a 

complex process involving release of GLUT4 from its intracellular reservoir compartment, 
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translocation, and docking and fusion to the plasma membrane.  This signalling cascade is 

initiated by the binding of insulin to the extracellular α-subunit of the IR.  This binding event 

results in the autophosphorylation of tyrosine residues located in the cytoplasmic region of 

the transmembrane β-subunit of the IR (Sesti, 2006).  The activated receptor recruits and 

phosphorylates a variety of substrates (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic representation of the insulin signalling cascade (Sesti, 2006). 

 
These substrate molecules consists, amongst others, of the insulin receptor substrate (IRS) 

molecules (IRS1 to IRS6), which appear to be the adapter molecules playing a major role in 

linking the PI3K, protein kinase B (PKB also known as Akt), and MAPK downstream 

kinases (Fröjdö et al., 2009; Sesti, 2006).  Other molecules include the Shc adaptor protein, 

Gab-1 and Cbl.  Once these molecules are phosphorylated, IRS proteins bind to several Src 

homology 2 (SH2) domain proteins, including p85 (the regulatory subunit of PI3K), 

recruiting PI3K (Fröjdö et al., 2009), tyrosine kinases Fyn and Csk, the tyrosine protein 

phosphatase small heterodimer partner 2 (SHP-2), several smaller adapter molecules such as 

the growth factor receptor-binding protein 2 (Grb-2), Crk, and Nck (Sesti, 2006) to the 

plasma membrane.  Once recruited and activated, PI3K proceeds to produce the second 

messenger phosphatidylinositol 3,4,5,-trisphosphate (PIP3), which activates a serine/threonine 
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phosphorylation cascade of PH domain-containing proteins (as summarised in figure 2) 

(Fröjdö et al., 2009). 

 

This serine/threonine phosphorylation cascade consists of the initial phosphorylation of the 

phosphoinositide-dependent protein kinase (PDK) by PIP3, which in turn phosphorylates and 

activates two classes of serine/threonine kinases, Akt/PKB and the atypical protein kinase C 

(aPKC) isoforms ζ and λ (PKCζ/λ) on threonine residues located in the activation loop of the 

catalytic domain (Sesti, 2006; Fröjdö et al., 2009).  Both Akt/PKB and PKCζ/λ are thought to 

be important in the mediation of glucose transport effects of insulin in muscle and adipose 

tissue.  However, Akt, rather than aPKCs, is important in stimulating glycogen synthesis and 

promoting glucose storage in muscle, adipose, and liver tissue, as well as diminishing 

gluconeogenesis and glucose secretion by the liver (Sesti, 2006).  Protein kinase B targets 

glycogen synthase kinase 3 (GSK-3) and Akt substrate of 160 kDa (AS160) [containing a 

GTPase-activating protein (GAP) domain], of which the phosphorylation of AS160 has been 

found to be essential for the insulin-induced translocation of GLUT4 to the plasma membrane 

in 3T3-L1 adipocytes (Fröjdö et al., 2009; Sano et al., 2003).  Glycogen synthase kinase 3 is 

inactivated by PKB-mediated phosphorylation at the serine-9 residue in parallel to protein-

phosphatase-1 (PP1) activation, counteracting the inhibitory phosphorylation of glycogen 

synthase (GS), resulting in the synthesis of glycogen (Fröjdö et al., 2009).  Furthermore, PKB 

regulates the insulin-stimulated translocation of GLUT4 to the plasma membrane through the 

inhibitory phosphorylation of AS160.  The inhibition of AS160 favours the GTP-loaded state 

of Rab, counteracting the inhibitory effect towards GLUT4 translocation from intracellular 

compartments to the plasma membrane.  Complementing the function of PKB in regulating 

GLUT4 translocation is the aPKCs, acting in parallel to, or even being substitutive for, PKB 

(Fröjdö et al., 2009). 

 

Parallel to the PI3K-mediated pathway, IRS recruits Grb2, which associates with the Son of 

Sevenless (SOS) protein, and activates the extracellular regulated kinase 1/2 (ERK1/2) 

MAPK pathway.  Additionally, the p38 and c-jun N-terminal kinase (JNK) stress-activated 

kinases, which are mainly dependent on activation through stress signals and inflammatory 

cytokines, have been shown to be activated (via phosphorylation) in response to insulin 

(Fröjdö et al., 2009). 
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1.4 Hepatocytes 

 

Hepatic insulin signalling occurs in the same manner as described for the adipocytes and 

myocytes.  The only difference is that the GLUT4 translocation event is omitted due to the 

absence of GLUT4 in hepatocytes, which is replaced by GLUT2, which is independent of 

insulin-stimulated regulation. 

 

1.4.1 Control of Hepatic Glucose Production 

 

Insulin mediates the activation of several signalling proteins upon binding to the IR.  The 

cascade mediated by this follows through IRS activation by the IR, subsequently activating 

two main pathways: (1) the PI3K pathway is mainly involved in the control of metabolic 

actions by insulin (glucose, lipid and protein metabolism), protein synthesis [(via the 

Mammalian Target of Rapamycin (mTOR)] and control of cell survival, and (2) the MAPK 

pathway which mediates the mitogenic, growth and cell differentiation effects.  Activation of 

PI3K induces the conversion of phosphatidylinositol bisphosphate (PIP2) to PIP3, followed by 

recruitment and activation of PDK and PKB/Akt by PIP3.  Thereafter, PKB/Akt proceeds to 

phosphorylate GSK-3, preventing its inhibition of GS, thereby facilitating the synthesis of 

glycogen.  This inhibition of GSK-3 by PKB/Akt is achieved through activation of forkhead 

box protein o 1 (FoxO1) by PKB/Akt, which leads to the transcription of key enzymes 

involved in gluconeogenesis, namely phosphoenolpyruvate carboxykinase (PEPCK), and 

glucose-6-phosphatase (G6Pase).  Hence, through the activation of PI3K and PKB/Akt, 

insulin promotes the storage of glucose as glycogen and inhibits glucose synthesis and output 

via inactivation of GSK-3 and activation of FoxO1 (Leclercq et al., 2007). 

 

1.4.2 Transcriptional Control of Hepatic Lipogenesis 

 

The effects of insulin on lipogenesis are controlled by the transcription factor sterol 

regulatory element-binding protein 1c (SREBP-1c) through its regulatory function on mono-

unsaturated fatty acid synthesis (Figure 3).  Its precursor is maintained within the 

endoplasmic reticulum (ER), being freed in times of sterol depletion.  The SREBP-1c in itself 

is subject to complex regulation through the activities of sterol depletion and tumour necrosis 

factor (TNF) (in an insulin-independent manner).  It is suggested that insulin is responsible 

for the regulation of SREBP-1c’s transcription, maturation, and activity (Foufelle & Ferre, 
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2002), as well as the transcription of Insig2a (participating in the retention of SREBP-1c in 

the ER) (Leclercq et al., 2007).  Hence, these regulatory pathways of SREBP-1c remain 

insulin sensitive.  Furthermore, inhibitory phosphorylation of SREBP-1c by GSK-3 or ERK 

modulates its activity.  In insulin-resistant states, expression of TNF-α is increased, which 

stimulates the maturation and activity of SREBP-1c.  Thus, TNF participates in increased 

intrahepatic lipogenesis (Leclercq et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Regulation of SREBP-1c (Leclercq et al., 2007). 

 

1.4.3 Cell Growth, Proliferation, and Survival 

 

The MAPK cascade is activated downstream of IR phosphorylation via IRS, Gab1, and Shc 

(Figure 2).  The MAPK pathway is associated with the mitogenic and proliferative effects of 

insulin via the control of the cell cycle; however it does not appear to have any role in 

mediating hepatic glucose production or the anabolic effects of insulin.  The PKB/Akt 

pathway also functions in mediating the effect of insulin on cell growth and survival.  When 

phosphorylated, PKB promotes anti-apoptotic effects and protein synthesis.  Eukaryotic 

initiation factor 2B (eIF2B), a guanine nucleotide exchange factor which is inhibited upon 

phosphorylation by GSK-3, controls the initiation phase of protein translation.  This protein 

biosynthesis stimulated by PKB/Akt is dependent on phosphorylation of mTOR (Leclercq et 

al., 2007). 
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1.5 Insulin Signalling Alterations in Type 2 Diabetes Mellitus 

 

Insulin signalling is altered in the insulin-resistant and diabetic states.  Four major defects 

have been identified as the causes of impaired insulin signalling, namely (1) mutations or 

post-translational modifications of the IR or any of its downstream effector molecules, (2) 

increased degradation of the IR, (3) defective binding of insulin to the IR, and (4) defect(s) in 

the post-binding insulin signalling cascade (Fröjdö et al., 2009). 

 

The IR is subject to inhibition by serine/threonine phosphorylation – inhibiting the intrinsic 

tyrosine kinase activity of the receptor.  Thus, the downstream signalling cascade is 

decreased in proportion to this inhibition (Sesti, 2006).  It has been found that PKCs and 

MAPKs are capable of phosphorylating the IR at these serine/threonine residues (Saini, 2010).  

The same inhibitory effect is seen when IRS proteins are phosphorylated at serine residues 

(discussed in more detail in section 3), resulting in decreased downstream insulin signalling.  

Serine phosphorylation is also induced by the pro-inflammatory cytokine, TNF-α (Saini, 

2010).  During the pro-inflammatory state, the suppressor of cytokine signalling (SOCS) is 

activated, which in turn alters the insulin signalling cascade.  The SOCS is able to compete 

with IRS1/2 for IR binding, thus attenuating tyrosine phosphorylation and downstream 

signalling of IRS1/2, and is capable of inducing IRS degradation (Qatanani and Lazar, 2007).  

Free fatty acids and FFA derivatives [such as diacylglycerol (DAG) and acyl-Coenzyme A 

(CoA)] are also capable of increasing serine phosphorylation of IRS through activation of 

several serine/threonine protein kinases, such as PKCs, JNK, and the inhibitor of nuclear 

factor-κB kinase-β (IkkB); decreasing the insulin signalling cascade (Lee et al., 2010). 

 

2 Mechanism of Insulin-Resistance 

 

The state in which the body has a decreased capacity of circulating insulin for the regulation 

of nutrient metabolism is referred to as insulin-resistance.  Several mechanisms may act 

individually or in synergy to inhibit insulin signalling.  These mechanisms include: elevated 

insulin secretion (hyperinsulinaemia) due to elevated blood glucose levels (hyperglycaemia), 

elevated levels of serum FFAs (Zick, 2001; Van Epps-Fung et al., 1997), oxidative stress, ER 

stress, glycated proteins and their products, and adipokines (such as leptin).  This can occur 

via three major processes: first, signal propagation can be altered through decreased 

expression or increased degradation of any one of the components of the insulin signalling 
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cascade.  Increases in protein expression and/or activation may also act as negative feedback 

signals.  Post-translational modifications such as phosphorylation are the second mechanism 

by which insulin signalling can be altered.  The third mechanism is through interactions with 

inhibitory proteins (Leclercq et al., 2007). 

 

2.1 Insulin/Fructose-induced Insulin-Resistance  

 

Characteristics of the insulin-resistant state are increased glycaemia and the subsequent 

compensatory hyperinsulinaemia, both of which are factors that exacerbate the insulin-

resistant state (Meshkani and Adeli, 2009).  Hyperinsulinaemia induces down-regulation of 

IR expression at the protein level via ligand internalization and degradation, followed by 

resistance downstream of the receptor by increased degradation of IRS and other insulin 

signalling molecules.  Furthermore, hyperinsulinaemia can damage the pancreatic β-cells, 

participating in reduced insulin secretion and T2DM.  Also, hyperglycaemia may reduce the 

activation step from PI3K to PKB/Akt, but does not affect the proximal part of the IR-

mediated pathway (Saini, 2010). 

 

The motivation for using high levels of both insulin and fructose for inducing insulin-

resistance in experimental procedures is, firstly, that high circulating insulin levels are 

associated with insulin-resistance and thus high levels of insulin are used to mimic the 

hyperinsulinaemic state of T2DM.  Secondly, following ingestion of a meal containing 

complex carbohydrates or glucose, the liver becomes a glucose-consuming organ, accounting 

for 20–30% of the total dietary carbohydrate disposal.  Most of this glucose is used to 

replenish glycogen stores, with the remainder primarily directed to glycolysis.  Upon 

ingestion of fructose or fructose-containing carbohydrates (sucrose), the liver becomes more 

active in absorption of carbohydrates.  This is due to the highest fructokinase concentrations 

being expressed in the liver.  Thus, fructose extraction from blood by the liver is elevated.  

Furthermore, fructose-1-phosphate (the product of fructokinase) stimulates glucose uptake in 

the liver.  Therefore, the replacement of glucose or complex carbohydrates by sucrose or 

fructose results in an increase in the contribution of the liver to carbohydrate disposal (Wei et 

al., 2007). 

 

Wei et al. (2007) performed studies on the effect of high fructose diets on the liver by feeding 

rats a high sucrose diet (HSD).  It was found that the liver concentrations of xylulose 5-



12 

 

phosphate (X5P), lactate and DAG were significantly increased, while levels of inorganic 

phosphate were significantly decreased in the HSD compared to the standard diet.  The liver 

was found to express elevated levels of phosphorylated cyclic adenosine 5’-monophosphate 

(cAMP) responsive element binding protein (CREB) and increased JNK activity and 

subsequent serine phosphorylation of IRS1.  Here, CREB regulates transcription of genes 

controlled by the cAMP-mediated pathways of signal transduction.  Such genes include the 

G6Pase and PEPCK genes.  Furthermore, hepatic gluconeogenesis was increased in HSD-fed 

rats while insulin-stimulated suppression of hepatic glucose production (HGP) was decreased.  

The same effect was seen in rats fed the high-fructose diets.  Additionally, tyrosine 

phosphorylation of IRS1/2, association of IRS1/2 with PI3K, PI3K activity, and 

phosphorylation of PKB/Akt were significantly reduced in HSD livers.  Therefore, fructose is 

able to impair post-receptor insulin signalling in the liver (Wei et al., 2007).  This has also 

been observed in models using high fructose levels under hyperinsulinaemic conditions (Wei 

et al., 2004). 

 

The mechanism by which fructose mediates the development of insulin-resistance is 

attributed to the activities of protein tyrosine phosphatase 1B (PTP1B) and JNK (Wei et al., 

2007).  It is known that PTP1B negatively regulates IRS tyrosine phosphorylation (Gum et al., 

2003).  Furthermore, JNK interferes with the insulin signalling cascade through serine 

phosphorylation of IRS1.  It has also been suggested that JNK is a critical component of the 

biochemical pathway responsible for development of insulin-resistance in the liver (Hirosumi 

et al., 2002).  Fructose-mediated increases in PTP1B and activator protein-1 activity in the 

liver had been observed in rat models fed HSD, resulting in hepatic insulin-resistance.  This 

demonstrates that fructose can activate hepatic JNK activity and that this activity contributes 

to the fructose-induced hepatic insulin-resistance through serine-phosphorylation of IRS1 

(Wei et al., 2007).  It has also been hypothesised that high rates of fructose delivery leads to 

accumulation of intermediates which serve as acute, short-term signals of sugar excess.  This 

sugar excess inflicts a metabolic burden upon the hepatocytes; selectively increasing MAPK 

kinase 7 (MKK7), activation of JNK, and association of JNK with IRS and JNK-interacting 

protein-1 (JIP1).  The association of JNK with IRS1/2 results in decreased tyrosine 

phosphorylation of IRS1/2 and consequently decreases insulin signalling (Figure 4) (Wei et 

al., 2007). 
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Figure 4: Working model for fructose-induced insulin-resistance in the liver (Wei et al., 

2007). 

 

Williams (2010) found that exposing Chang liver cells to high concentrations of a 

combination of insulin and fructose was able to induce the insulin-resistant state in vitro.  

This state was determined through investigating changes in expression of a set of 84 diabetes-

related genes.  The study found that exposure to high doses of insulin and fructose resulted in 

decreased glucose uptake and increased lipid accumulation – characteristic of the insulin-

resistant state.  Furthermore, IRS1/2 and MAPK signalling molecules were up-regulated in 

the insulin-resistant state, while signalling from IRS1/2 to PI3K was decreased, resulting in 

an increase in hepatic gluconeogenesis.  The increase in IRS1/2 and MAPK signalling 

molecules is likely in compensation for this reduced activity of insulin-induced stimulation of 

the insulin signalling cascade.  Thus, the increase in hepatic gluconeogenesis leads to 

hyperglycaemia (Williams, 2010). 

 

2.2 Lipid-induced Insulin-Resistance 

 

It is well known that in addition to glucose uptake, adipose tissue lipolysis and suppression of 

hepatic glucose production are regulated by insulin.  Lipolysis is highly sensitive to the action 

of insulin in adipose tissue, in which stored lipids are released into the circulation as FFAs 

and glycerol.  During the insulin-resistant state, the anti-lipogenic activity of insulin is 

inhibited, resulting in increased release of FFAs by adipose tissue.  This subsequently 

disrupts blood glucose homeostasis via the effects elevated circulating FFAs have on other 

tissues such as the liver (Stumvoll, 2005).  Serum FFA, frequently elevated in obesity, has 

been implicated as an important causative link between obesity, insulin-resistance, 

hyperglycaemia, and T2DM (Chen et al., 2006).   This leads to the development of non-
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alcoholic fatty liver due to an increase in hepatic FFA uptake, as the rate of hepatic FFA 

uptake is an unregulated process, solely dependent on the plasma concentration of FFAs (Lee 

et al., 2010). 

 

Endogenous glucose production (EGP) is the only post-absorptive source of glucose, of 

which the liver is responsible for 80% of EGP and the remaining 20% by the kidneys.  

Excessive EGP is responsible for the hyperglycaemic state characteristic of T2DM.  

Furthermore, excessive EGP during T2DM usually occurs despite the presence of 

hyperinsulinaemia, suggesting that hepatic insulin-resistance is a key component of the 

pathogenesis of fasting hyperglycaemia (Stumvoll, 2005).  In previous studies, plasma FFAs 

stimulated gluconeogenesis in healthy subjects.  In patients with T2DM, an increase in FFA 

concentration also stimulated gluconeogenesis, which was consistent with findings in healthy 

subjects (Chen et al., 1999).  Since EGP is derived from gluconeogenesis and glycogenolysis, 

it is suggested that FFAs interfere with the inhibitory action of insulin on these.  The 

mechanism responsible for lipid-induced insulin-resistance in liver may be due to known 

mechanisms involved in insulin-induced T2DM.  In T2DM, this may be explained by several 

observations: (1) increased plasma FFA levels increase FFA uptake by hepatocytes, leading 

to accelerated lipid oxidation and accumulation of acetyl-CoA.  This stimulates pyruvate 

carboxylase and PEPCK, the rate-limiting enzymes for gluconeogenesis, as well as glucose 6-

phosphatase (G6Pase), the rate-limiting enzyme for glucose release from hepatocytes, (2) 

increased FFA oxidation provides a source of energy for gluconeogenesis, and (3) an increase 

in plasma FFA leads to hepatic insulin-resistance by inhibiting the insulin signal transduction 

system similarly to skeletal muscle (Stumvoll, 2005). 

 

Oxidation of FFAs (also referred to as β-oxidation) is only partly responsible for the FFA-

induced decrease in hepatic insulin signalling, suggesting that hepatic PKC activation could 

be implicated in the FFA-induced decrease in insulin binding.  It is known that FFAs are 

capable of activating PKC directly and/or through de novo synthesis of DAG (Diaz-Guerra et 

al., 1991).  Also, insulin binding is reduced by the PKC stimulators, phorbol esters or DAG, 

and PKC activation may stimulate internalization of the IR (Chen et al., 2006). 

 

Previous studies have shown that increased release of FFAs from adipocytes leads to insulin-

resistance and TG accumulation in the liver, progressing to hepatic steatosis (Montell et al., 

2001).  More recent studies have shown that saturated long chain FAs are associated with the 
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defects of insulin signalling, of which palmitate was found to decrease IR mRNA and protein 

in hepatocyte cell lines, attenuating insulin signalling (Ruddock et al., 2008; Dey et al., 2007).  

HepG2 cells treated with either saturated fatty acid (palmitate) or unsaturated fatty acid 

(oleate) showed that palmitate significantly activated JNK and inactivated PKB.  This 

confirmed the involvement of ER stress in palmitate-mediated insulin-resistance.  Oleate, but 

not palmitate, significantly induced intracellular TG deposition and activated SREBP-1.  The 

DAG levels and PKCε activity were significantly increased by palmitate, suggesting the 

possible role of DAG in palmitate-mediated lipotoxicity (Lee et al., 2010).  Dasgupta et al. 

(2011) have shown that lipid-induced PKCε phosphorylation occurs via palmitoylation.  

Phosphorylated PKCε is transported by F-actin to the nuclear region where it impairs the 

high-mobility group protein A1 (HMGA1).  Subsequently, this results in reduced IR 

expression, significantly decreasing insulin sensitivity in target cells. 

 

3 Genes Associated with Insulin-Resistance 

 

Williams (2010) has shown, using an RT2 profiler, changes in the mRNA expression of signal 

transduction genes.  This group includes several signal transduction molecules which are key 

intermediates in the insulin signalling cascade, namely IRS1/2, Akt, MAPK, JNK, and PKCε.  

The signalling cascade proteins involved in normal insulin signalling can be investigated in 

order to elucidate the mechanism by which insulin-resistance develops. 

 

In normal insulin signalling, insulin binds to the α subunit of the IR and activates the tyrosine 

kinase in the β subunit (Figure 5).  Once the tyrosine kinase of IR is activated, it promotes 

autophosphorylation of the β subunit, where phosphorylation of three tyrosine residues (Tyr-

1158, Tyr-1162, and Tyr-1163) is required for amplification of the kinase activity.  Most of 

the metabolic and anti-apoptotic effects of insulin are mediated by the signalling pathway 

involving the phosphorylation of the IRS proteins, and the activation of the PI3K, PKB/Akt, 

mTOR, and p70 S6 kinase.  The IR tyrosine kinase phosphorylates the IRS proteins, and 

phosphotyrosine residues on IRS proteins become targets for the p85 regulatory subunit of 

PI3K.  The activated PI3K generates PIP3 via phosphorylation of PIP2, which binds to and 

activates PDK1.  Known substrates of the PDKs are PKB and also aPKCs (Saini, 2010). 

 

Studies have shown that mutations in the IRS protein are associated with insulin-resistance as 

these disrupt the IRS-PI3K signalling (Figure 5).  Furthermore, IRS is inactivated by serine 
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phosphorylation, reducing its ability to recruit and activate PI3K.  This phosphorylation of 

IRS proteins also increases degradation of IRS and decreases tyrosine phosphorylation, 

decreasing the downstream effector functions of IRS.  Physiological homeostasis depends on 

this inherent inactivation of IRS proteins in order to prevent insulin signalling when needed 

(Saini, 2010).  Studies have shown a link between IRS dysfunction in skeletal muscle and 

adipocyte biology and lipotoxicity, meaning that circulating FFAs and the adipokine TNF-α 

may increase serine phosphorylation of IRS proteins, thereby causing impaired insulin signal 

transduction (White, 2002). 

 

The fasting hyperglyceamia in patients with T2DM is the clinical link with increased glucose 

production by the liver due to insulin-resistance.  This is the result of the lack of inhibition of 

the two key gluconeogenic enzymes, PEPCK and the G6Pase catalytic subunit.  There is 

increasing evidence that FoxO-proteins are critically involved in the insulin-dependent 

regulation of gluconeogenic gene expression and insulin-resistance in vivo (Saini, 2010).  

Studies in hepatoma cells suggest that transcription of reporter genes containing insulin 

response elements from the PEPCK and G6Pase promoters are regulated by FoxO-1 and 3 

(Hall et al., 2000; Guo et al., 2012).  Furthermore, FoxO-1 is phosphorylated in an insulin-

responsive manner by Akt.  Reduced activity of Akt2 results in decreased phosphorylation of 

FoxO protein, allowing it to enter the nucleus and activate the transcription of these rate-

limiting enzymes of gluconeogenesis (Figure 5) (Saini, 2010; Zhang et al., 2006). 

 

The balance between the PI3K subunits provides another possible mechanism by which 

insulin-resistance occurs.  PI3K exists as a heterodimer (class 1a of PI3K), consisting of a 

regulatory subunit, p85, tightly associated to the catalytic subunit, p110.  Normally, the 

regulatory subunit exists in stoichiometric excess to the catalytic one, resulting in a pool of 

free p85 monomers not associated with the p110 catalytic subunit.  However, there exists a 

balance between the free p85 monomer and the p85-p110 heterodimer, with the latter being 

responsible for the PI3K activity.  The p85 monomers and p85-p110 heterodimers constantly 

compete for the tyrosine phosphorylated IRS protein-binding sites.  Thus, an imbalance in 

monomer to heterodimer levels will lead to either an increase or decrease in PI3K activity.  

Studies have shown that elevated expression of the p85 monomer result in a decrease in PI3K 

signalling and subsequent interruption of insulin signalling, leading to insulin-resistance 

(Saini, 2010).  The recent work of Williams (2010) shows decreased expression of PI3K 
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isotype genes when inducing insulin-resistance in Chang liver cells with high concentrations 

of insulin and fructose. 

 

In recent years, research on the insulin-resistant state has shifted from a glucocentric to a 

lipocentric view.  Here, the involvement of high fat diets is investigated in order to uncover 

the process by which insulin-resistance develops.  The mechanism of FFA-induced insulin-

resistance is still unclear; however it has been studied recently by Dasgupta et al. (2011) and 

Lee et al. (2010), suggesting the possible involvement of PKC isoforms in the insulin-

resistant state.  The molecular mechanism underlying defective insulin-stimulated glucose 

transport activity can be attributed to increases in intra-myocellular lipid metabolites such as 

fatty acyl CoAs and DAG, which in turn activate a serine/threonine kinase cascade, thus 

leading to defects in insulin signalling through the serine/threonine phosphorylation of IRS-1.  

Diacylglycerol has been shown to increase in muscle during both lipid infusions and fat 

feeding and it is also a known activator of novel PKC isoforms.  PKC isoforms are classified 

as classical (cPKCα, βI, βII, γ), novel (nPKCδ, ε, θ, η) or atypical (aPKCζ, λ).  cPKCs are 

activated by calcium (Ca2+) and DAG, nPKCs are activated only by DAG, and aPKCs 

respond to neither Ca2+ nor DAG.  Among these PKC isoforms, nPKCs are said to have a 

modulatory role in insulin signalling.  Boden & Shulman (2002) have demonstrated a link 

between nPKCs and FFA-induced insulin-resistance.  Lipid infusion in rats and humans 

impaired insulin-stimulated glucose disposal into the muscle and concomitantly activated 

PKCθ and PKCδ (Itani et al., 2002).   The latter has been shown to be a possible candidate 

for phosphorylation of the IR on serine residues, resulting in defects in the insulin signalling 

pathway and inducing insulin-resistance (Figure 5) (Saini, 2010). 

 

The IR is one of the major targets of FFA-induced impairment of insulin activity.  In vivo 

studies have shown that glucose uptake rather than glucose metabolism is the rate-limiting 

step for FFA-induced insulin-resistance in humans (Shulman, 2000).  Therefore, the 

accumulation of intracellular fatty acids, or their metabolites, results in the impairment of 

IRS/PI3K signalling and a decrease in GLUT4 recruitment to the cell membrane (Saini, 

2010). 

 

Phosphorylation of PKCs may be catalysed by PDK1 (Toker & Newton, 2000).  PKCε 

phosphorylation, as well as PDK-1 independent phosphorylation due to FFA, is involved in 

development of insulin-resistance (Lee et al., 2010; Dey et al., 2007).  This is possibly due to 
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a constitutive phosphorylation of PKCε by FFA in a PDK-1-independent manner as shown 

through incubation of HepG2 cells with myristic acid, resulting in myristoylation of PKCε 

and consequent phosphorylation of PKCε in the kinase domain.  The same PDK-1-

independent phosphorylation of PKCε was found through palmitoylation of PKCε.  Therefore, 

FFA causes PDK-1-independent phosphorylation of PKCε, which in turn translocates to the 

nucleus; where upon entry into the nucleus coincides with inhibition of IR gene transcription 

through the possible phosphorylation of the transcription factor HMGA1 (Figure 5) (Dey et 

al., 2007; Reeves, 2001).   

 

These studies all show the effect establishment of insulin-resistance has on the insulin 

signalling cascade through the effects hyperinsulinaemia/hyperglycaemia and FFAs have on 

the signalling molecules. 
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4 Metformin 

 

4.1 Background 

 

The biguanide derivative, metformin (1,1-dimethylbiguanide), is the most widely prescribed 

drug to treat hyperglycaemia in individuals suffering from T2DM and is recommended, in 

addition to lifestyle changes, as the first line oral therapy in the guidelines of the American 

Diabetes Association, the European Association of the Study of Diabetes (Viollet et al., 

2012), and the 2012 SEMDSA Guideline for the Management of Type 2 Diabetes (Amod et 

al., 2012).  The drug was first clinically introduced in the 1950s although its mechanism of 

action is still not fully understood.  However, it has been shown to have several therapeutic 

uses including anti-hyperglycaemic activity, treatment of diabetes-related disease (such as 

nephropathy), and more recently, anti-cancer activity (Viollet and Foretz, 2013). 

 

4.2 Mechanism of Action 

 

Early investigations into the mechanism of metformin activity indicated it to be most likely 

via the inhibition of gluconeogenesis.  It has now been discovered to act through the 

activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) which 

plays a crucial role in the protection of cellular functions under energy-restricted conditions 

in the liver (Amod et al., 2012).   

 

A rise in AMP levels paired with a fall in adenosine triphosphate (ATP) levels, during 

metabolic stress leads to the activation of AMPK.  This increase in the ratio of AMP:ATP 

levels is indicative of a decreased cellular energy state as seen in glucose deprivation.  The 

heterotrimeric protein requires the activation, through phosphorylation of Thr172, within its 

α-subunit.  This phosphorylation is catalysed by upstream kinases, namely the tumour 

suppressor serine/threonine kinase 11 (STK11) or also known as liver kinase B1 (LKB1) and 

Calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ).  Once activated, AMPK 

switches cells from an anabolic to a catabolic state by switching ATP-consuming synthetic 

pathways off and restoring energy balance.  This AMPK-governed regulation is achieved 

through phosphorylation of key metabolic enzymes, transcription factors, and co-activators 

modulating gene expression by AMPK.  Ultimately, this results in attenuation of lipogenesis, 

protein synthesis, and cell growth, while promoting fatty acid oxidation and glucose uptake 
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(Viollet and Foretz, 2013).  Metformin does not activate AMPK or affect its phosphorylation 

by LKB1, but rather activates AMPK as a secondary effect causative of its effect on the 

mitochondria (primary target of the drug).  In the mitochondria, metformin inhibits the 

respiratory chain complex 1 in a time- and concentration-dependent fashion.  This suggests 

that metformin activates AMPK through the inhibition of ATP production which, in turn, 

leads to an increase in ADP and AMP levels (Viollet and Foretz, 2013). 

 

The anti-hyperglycaemic activity of metformin may be attributed to two possible mechanisms 

of which the first is the most well-known of explanations (Figure 6).  Here metformin 

suppresses hepatic gluconeogenesis through the LKB1/AMPK signalling pathway.  This 

pathway regulates the phosphorylation and nuclear exclusion of the transcriptional co-

activator CREB-regulated transcription co-activator 2 (CRTC2) better known as the 

transducer of regulated CREB 2 (TORC2).  TORC2 is a key regulator of HGP in response to 

fasting by directing transcriptional activation of the gluconeogenic pathway.  This is achieved 

by the translocation of non-phosphorylated TORC2 to the nucleus, where it associates with 

phosphorylated CREB to drive the expression of peroxisome proliferator-activated receptor-γ 

coactivator-1α (PGC-1α) and subsequent gluconeogenic genes, PEPCK and G6Pase.  

Alternatively, metformin’s inhibitory effect on TORC2-mediated gluconeogenesis involves 

the deacetylation of TORC2 by nicotinamide adenine dinucleotide (NAD+ or NADH)-

dependent sirtuin 1 (SIRT1).  This results in the loss of protection by coat protein 1(COP1) 

mediated ubiquitinisation and subsequent degradation (Viollet and Foretz, 2013).  It is likely 

that, in addition to this, other mechanisms involving the disassembly of the CREB-CBP 

(CREB binding protein)-TORC2 complex from gluconeogenic gene promoters, occur in 

parallel.  The metformin-induced regulation of gluconeogenic gene expression is dependent 

on CBP phosphorylation through AMPK-induced aPKC activation and dissociation of the 

CREB co-activator complex.  This suppression of gluconeogenic gene expression is further 

mediated through AMPK-induced up-regulation of the nuclear receptor, SHP.  This nuclear 

receptor functions as a transcriptional repressor of CREB-dependent hepatic gluconeogenic 

gene expression through direct interaction with CREB and competing with TORC2 binding 

in the CREB-CBP complex (Viollet et al., 2012; Viollet and Foretz, 2013). 
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Figure 6: Potential molecular mechanisms of metformin action on hepatic steatosis and 

gluconeogenesis.  After hepatic uptake through OCT1 (organic cation transporter 1), 

metformin exerts specific and AMPK-independent inhibition of respiratory-chain complex 1.  

The resultant mild decrease in energy status leads to acute and transient inhibition the energy-

consuming gluconeogenic pathways.  In addition, through AMPK-dependent and -independent 

regulatory points, metformin can lead to the inhibition of glucose production by disrupting 

gluconeogenic gene expression.  In parallel, the LKB1-dependent activation of AMPK triggered 

by ATP depletion could reduce hepatic lipogenesis and exert an indirect effect on hepatic insulin 

sensitivity to control hepatic glucose output (Viollet et al., 2012). 

 

5 Sutherlandia frutescens 

 

5.1 Botanical Information 

 

The Sutherlandia genus belongs to the family of Fabaceae (Leguminosa) and is closely 

related to Astragalus L. and Lessertia DC.  The genus can be divided into two species, 

namely Sutherlandia tomentosa and Sutherlandia frutescens (Figure 7).  The latter occurs 

endemically in the western, central, and eastern parts of southern Africa, the majority of the 

Lesotho region, southern parts of Namibia, and the south-eastern corner of Botswana.  S. 

frutescens is a perennial shrub, of 0.2-2.5m in height, with red flowers and large bladdery 

pods containing numerous seeds.  Locally, S. frutescens is known as cancer bush, balloon pea, 

and turkey flower in English, and as kankerbos, gansies, wildekeur, and belbos in Afrikaans 

(Van Wyk and Albrecht, 2008). 
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5.2 Use as Medicinal Plant 

 

Sutherlandia frutescens is widely used as a medicinal plant in southern Africa.  Traditionally, 

medication is prepared by infusion of “two or three leafy twigs” in boiling water.  The 

resultant tea, containing approximately 2.5-5g of dry material, is given as a daily dosage.  It is 

used for a wide variety of conditions, including: cancer, diabetes, inflammation, back pain, 

stomach pain, eye disease, skin disease, influenza, human immunodeficiency virus/acquired 

immunodeficiency syndrome (HIV/AIDS), and many more.  The traditional use of S. 

frutescens far exceeds that of S. tomentosa due to its limited localized distribution on coastal 

dunes of the Western Cape area of South Africa (Van Wyk and Albrecht, 2008). 

 

Several biologically active compounds have been isolated and identified from S. frutescens, 

although many questions still remain about its mode of action.  Recent studies conducted 

have focussed on its anti-cancer, -diabetic, -HIV, -inflammatory, and anti-oxidant properties.  

The known active compounds identified are: pinitol (patented for anti-diabetic properties) 

(Van Wyk and Albrecht, 2008), L-canavanine (L-arginine competitor, yielding anti-

inflammatory and anti-cancer properties) (Akaogi et al., 2006), and triterpenoid glycosides 

(show anti-inflammatory and improved lipid metabolism) (Kawada et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Sutherlandia frutescens.  S. frutescens is a perennial shrub, of 0.2-2.5m in height, 

with red flowers and large bladdery pods containing numerous seeds (Van Wyk et al., 2012). 
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Aims and Objectives 
 

In recent studies, cell models have been used to study the molecular mechanisms underlying 

T2DM (Ruddock et al., 2008; Williams, 2010).  These cell models have shown that high 

concentrations of insulin and fructose (in vitro hepatic cell culture) and high fat diets (in vivo 

rat model) are capable of inducing the insulin-resistant state.  Furthermore, Williams (2010) 

investigated the potential of South African medicinal plant extracts as therapeutic agents and 

showed that extracts of S. frutescens were capable of reversing the insulin-resistant state.  The 

current investigation aimed to measure changes in hepatocyte physiology and gene 

expression in insulin-resistant states and during their reversal.  The action of a hot aqueous 

extract of S. frutescens on the insulin-resistant cell cultures was also analysed.  This was done 

by investigating the changes in glucose metabolism and homeostasis, lipid accumulation, 

oxidative stress, cellular energy state in the form of acetyl-CoA, and gene expression of 

signalling proteins involved in normal and impaired insulin signalling, as well as their 

respective protein expression levels.  Cells of the human HepG2 line was made insulin-

resistant using palmitate or a combination of high levels of insulin and fructose, and the two 

models were compared biochemically.  Investigating the effect of the hot aqueous S. 

frutescens extract on the two models of insulin-resistance may help in elucidating the 

mechanism of its anti-diabetic activity. 

 

The objectives of this study were thus: 

1 Establishing two insulin-resistant models using the insulin/fructose and palmitate 

methods in HepG2 human liver cell line. 

2 Investigating changes in cellular physiology in the two models. 

3 Comparison of the two insulin-resistant models in terms of cellular physiology, gene 

expression, and protein synthesis. 

4 qRT-PCR analysis of selected gene expression. 

5 Measurement of changes in signal transduction proteins. 

6 Investigation of action S. frutescens has on the insulin-resistant cell models. 
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Chapter 2 

Insulin-Resistant Cell Models 

 

This chapter discusses the establishment of two cellular models of insulin-resistance using 

two different mechanisms.  These models aim to reflect the physiological states during (1) 

hyperglycaemia and the compensatory hyperinsulinaemia, and (2) elevated serum FFAs.  

This was achieved by treating cells in culture with medium supplemented with either high 

levels of fructose and insulin, or high levels of the saturated FFA palmitate (Williams, 2010; 

Chavez and Summers, 2010). 

 

In order to determine successful induction of insulin-resistance, hepatic glucose production 

via gluconeogenesis and cellular glycogen content was measured in the presence of insulin.  

As insulin acts to inhibit gluconeogenesis and promote glycogenesis, insulin-resistant cells 

would not respond to these effector functions. 
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Methods 

 

1. Cell Culture 

 

HepG2 cells were cultured in Eagle’s Minimum Essential Medium (EMEM) (Lonza) 

supplemented with 10% (v/v) foetal bovine serum (FBS) (HyClone) and 1% (v/v) non-

essential amino acids (HyClone) as growth medium.  Cells were maintained at 37 °C in 

humidified air and CO2 (5%). 

 

2. Preparation of Stock Solutions 

 

2.1. Preparation of Sutherlandia frutescens Aqueous Extract 

 

Fresh leaves of S. frutescens were collected in September 2011 from a site in the Karoo, 

between Graaff Reinet and Murraysburg.  The leaves were air dried for three days. 

  

Dried leaves (15 g) were added to 700 mL boiling water, boiled for 10 minutes, and allowed 

to cool overnight following the procedure of Chadwick et al. (2007) which replicated the 

traditional procedure.  The mixture was filtered on a Buchner funnel using filter paper 

(Whatman number 1), the extract frozen at -80 °C and then freeze-dried under vacuum over 2 

days using the Savant Freeze Drying System.  Dried material was collected, placed in 

Eppendorf microcapped tubes as 30 mg samples, sealed and kept in a desiccator until use.  

The S. frutescens extract was dissolved in 1 mL 50% (v/v) dimethyl sulfoxide (DMSO) in 

water, diluted in MCDB-201 medium (Sigma), filter sterilised using 0.2 µm acrodiscs (Pall), 

and used at a final concentration of 12 µg/mL (Williams, 2010). 

 

2.2. Preparation of Metformin 

 

Metformin, an established medication for the treatment of insulin-resistance and T2DM, was 

prepared as a 1 mM stock solution in DMSO.  The stock solution was diluted to 20 µM with 

MCDB-201 medium for use at a final concentration of 1 µM as a positive control for 

treatment (Williams, 2010). 
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2.3. Conjugation of FFAs to FAF-BSA 

 

To conjugate palmitate or oleate to fatty acid-free BSA (FAF-BSA) (Sigma), a 100 mM 

solution of palmitate in 0.1 M sodium hydroxide (NaOH) was heated to 65 °C with stirring 

until dissolved.  A 0.1 mL aliquot of the resulting fatty acid solution was added, while 

stirring, into 1.3 mL 10% (w/v) FAF-BSA solution (Sigma) at 50 °C.  After 15 min of slow 

stirring to allow clarification of the solution, 0.6 mL sterile deionised distilled water (ddH2O) 

was added to bring the final concentration to 5 mM fatty acid.  The solution was filter 

sterilised using an acrodisc (0.2 µm pore size) and stored in aliquots at -20 °C for up to 6 

months (Pappas et al., 2002; Ruddock et al., 2008). 

 

3. Induction of Insulin-Resistance 

 

3.1. Insulin/Fructose Method 

 

HepG2 cells were seeded at a density of 2.5 × 104 cells/mL and grown for 48 hours in EMEM 

containing 10% FBS and 1% non-essential amino acids in a humidified incubator at 37 °C 

and 5% CO2.  After 48 hours, the culture medium was aspirated and replaced with either 

serum-free MCDB-201 (Sigma) medium (control); or serum free MCDB-201 supplemented 

with 0.1 µM insulin (Roche) and 1 mM fructose (Sigma) (IF) to induce insulin-resistance.  

Additionally, cells were exposed to IF induction medium supplemented with either a 12 

µg/mL (final concentration) aqueous extract of S. frutescens (IFSF) or 1 µM metformin 

(IFM) (positive control for treatment) for 24 hours (Williams, 2010). 

 

3.2. Palmitate-BSA Method 

 

HepG2 cells were grown in culture medium for 48 hours after which the culture medium was 

aspirated and replaced with either serum-free MCDB-201 medium (control); or serum-free 

MCDB-201 supplemented with palmitate-BSA (0.25 mM) (PB) to induce insulin-resistance.  

Parallel cultures were exposed to PB-induction medium supplemented with either 12 µg/mL 

(final concentration) aqueous extract of S. frutescens (PSF) or 1 µM metformin (PM) 

(positive control for treatment) for 24 hours (Ruddock et al., 2008). 
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4. Cell Viability Testing 

 

The viable cell number was determined in parallel experimental plates using the 4,5-

dimethylthiazol-2,5-diphenyltetrazolium bromide (MTT, Sigma) assay (Mosmann, 1983).  

 

The assay measures the activity of mitochondrial reductase in viable cells to reduce the 

yellow MTT to formazan crystals (purple colour).  The crystals were extracted from the cells 

by the addition of DMSO and absorbance measured spectrophotometrically against a DMSO 

blank at 540 nm. 

 

5. Verification of Insulin-Resistance 

 

5.1. Hepatic Glucose Production Assay 

 

After 48 hours of growth in growth medium, the medium was aspirated and replaced with the 

various treatments as described in section 3 and incubated for a further 24 hours.  Glucose 

production was monitored by the method of Gao et al. (2010).  Briefly, the medium was 

aspirated and cells washed twice with phosphate buffered saline (1× PBS) (8 g/L NaCl, 0.2 

g/L KH2PO4, 2.9 g/L Na2HPO4, and 0.2 g/L KCl, pH 7.4) to remove any residual glucose 

contained in the culture media. The cells were then incubated for 16 hours in glucose-

production medium (glucose- and phenol red-free EMEM containing gluconeogenic 

substrates, 20 mM sodium lactate and 2 mM sodium pyruvate) (Sigma) with the addition of 

0.1 µM insulin during the last three hours.  Medium from each sample was analysed using 

glucose oxidase colourimetric determination of glucose content at 510nm. 

 

5.2. Analysis of Glycogen Content 

 

The cellular glycogen content was analysed after three hours incubation in the presence of 0.1 

µM insulin using the anthrone test for carbohydrates.  Briefly, culture medium was aspirated 

and cells boiled in the culture plate for 20 min in 30% (v/v) KOH followed by the addition of 

95% (v/v) ethanol.  The resultant mixture was thoroughly mixed, transferred to Eppendorf 

microcapped tubes, and centrifuged at 4000 ×g for 15 min.  The supernatant was removed 

and 0.01% (v/v) anthrone in 98% (v/v) sulphuric acid added to each sample.  Samples were 
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placed at 4 °C for 10 min, boiled for 20 min, and left at room temperature for 20 min before 

spectrophotometric analysis at 620 nm (Chun and Yin, 1988).   

 

6. Data analysis 

 

Absorbance data were normalised to cell number as determined by the MTT assay and 

expressed as a percentage of the control (MCDB-201).  Statistical analysis was performed by 

ANOVA (one- or two-way depending on the data set) with post-test analyses performed 

(Newman-Keuls or Bonferroni post-tests).  Confidence levels were set to 95%. 
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Results and Discussion 

 

1. Cell Viability 

 

HepG2 cells cultured in the insulin-resistance induction media for 24, 48, and 72 hours were 

subjected to cell viability analysis using the MTT assay (Figure 8).  The absorbance readings 

obtained from the extracted formazan crystals were compared to those obtained from a 

standard curve of serial dilution of cells seeded at densities from 75000 to 625 cells per well. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Cell viability of HepG2 cells. HepG2 cells were cultured in various conditions for 24, 

48, and 72 hours followed by MTT cell viability analysis.  The data is represented as mean 

percentages versus control (MCDB-201 at 24 hours) ± S.D. (n = 3).   Statistical analysis 

performed using two-way ANOVA (n = 3). * = p < 0.05, ** = p < 0.005, *** or ### = p < 0.0005 

(compared to control or IF, respectively).  IF = Insulin and Fructose in MCDB-201 medium, IFM = IF 

supplemented with 1 µM metformin, IFSF = IF supplemented with 12 µg/mL S. frutescens aqueous extract, 

PB = Palmitate-BSA conjugate in MCDB-201 medium, PM = PB supplemented with metformin, PSF = PB 

supplemented with S. frutescens aqueous extract, OB = Oleate-BSA conjugate in MCDB-201 medium, OM = 

OB supplemented with metformin, and OSF = OB supplemented with S. frutescens aqueous extract. 

 

The cell viability studies show, in comparison to the control, a relative decrease in cell 

viability over the 72 hour study in the control, IFM-, and IFSF treatments.  This decline is 

mainly due to the depletion of nutrients from the culture wells, resulting in a decline in cell 

viability by 72 hours.  In the 48 hour treated cells, significantly higher (p < 0.0005 for IF and 

IFM, p < 0.005 for IFSF) cell viability is seen in the IF-, IFM-, and IFSF treatments 

compared to the control group’s 48 hour time point.  This may be due to the presence of 
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fructose in the induction medium which adds to the nutritional capacity of the media, 

allowing it to sustain the cells for longer.  Interestingly, the metformin and S. frutescens 

treatments yielded a more significant (p < 0.0005) decline in cell viability at 72 hours than 

the IF treated cells.  This effect is comparable to the trend seen in the control cells, suggesting 

that the cause for the decline in cell viability may be similar.  It is thought that this difference 

in viability between the metformin- or S. frutescens-treated cells and the IF-induced cells is 

due to the recovery of cellular glycolytic functions and the associated depletion of glucose 

from the media, resulting in the decline in cell growth and viability due to nutrient depletion.  

In the IF-induced cultures, however, cellular glycolysis is attenuated (as seen in the glucose 

oxidase study) resulting in a decline in the rate at which glucose is depleted from the culture 

medium.  This combined effect of decreased glucose uptake and glycolysis results in the 

higher viability seen in the IF-induced cells as compared to metformin- and S. frutescens-

treated cells.  Furthermore, metformin acts on mitochondria to mildly inhibit ATP production, 

resulting in increased AMP levels (Viollet and Foretz, 2013).  AMPK, therefore, becomes 

more active, which results in switching of the cells from an anabolic to a catabolic state.  This 

causes ATP consuming processes to shut down in order to restore energy balance.  As a result, 

lipid and protein synthetic pathways as well as cellular growth become inhibited while 

enhancing glucose uptake.  This effect of metformin to mildly attenuate cellular growth is 

supported by the newly proposed use of the drug in cancer therapy (Viollet et al., 2012).  In 

this respect, metformin would cause a decline in cell viability of the HepG2 cell line as it is a 

hepatoma culture.  Hence, the metformin-induced reduction in cell viability may be attributed 

to the combinatory effect of the metformin-induced reduction in cell growth and depletion of 

media nutrients. 

 

In the palmitate model, a reduction of approximately 50% in cell viability within 24 hours 

was seen.  Further reduction in cell viability was observed at the 48 and 72 hour intervals (p < 

0.0005).  Palmitate mediates the production of reactive oxygen species (ROS) and induces 

ER stress (Gao et al., 2010).  Elevated ROS production and ER stress are implicated in 

cellular damage and apoptosis (Karaskov et al., 2006; Liu et al., 2007).  In contrast, oleate 

treatment resulted in an initial reduction in cell viability, followed by an increase in cell 

survival over the time-course.  Oleate stimulates the accumulation of lipid in hepatocytes 

which contributes to lipotoxicity, hence the initial reduction in cell viability (Lee et al., 2010).  

However, oleate also allows for the passage of long chain fatty acids into the mitochondrial 

matrix by increasing Cpt-I expression (Coll et al., 2008), allowing these to be utilized for 
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ATP production while also suppressing ROS production, ER stress, and inflammation.  Cpt-I 

is involved in facilitating the transport of long chain fatty acids into the mitochondrial matrix, 

allowing these to be fed into β-oxidation.  Furthermore, oleate has been shown to promote 

Akt phosphorylation, which induces downstream activation of cell survival signalling and 

cellular growth (Coll et al., 2008).  This effect of oleate possibly attributes to the increase in 

cell viability seen after 24 hours.  Increased β-oxidation increases the available energy the 

cells have access to, allowing for cellular growth.     

 

The MTT assay allows for the exclusion of any effects which may be associated with the 

various treatments, such as apoptosis, as seen in the palmitate model (Yuzefovych et al., 

2010).  This exclusion allows for the analysis of all subsequent data in an unbiased fashion. 

 

2. Verification of Insulin-Resistance 

 

For the verification of successful induction of insulin-resistance by the two models, cellular 

responses to the induction or treatments in the presence of insulin were investigated.  Here 

HGP and glycogen content were analysed (Figures 9 and 10, respectively).  Lipid 

accumulation is also indicative of insulin-resistance in some, but not all cases, will be 

discussed in a later chapter.  During the insulin-resistant state, the hepatocytes suffer from 

impaired regulation of glucose production, resulting in increased gluconeogenesis and 

glucose release.  Glucose production is fuelled by the conversion of lactate to pyruvate with 

subsequent pyruvate conversion to phosphoenolpyruvate (PEP).  This allows for the PEP to 

enter the gluconeogenic pathway.  In order to monitor gluconeogenesis, the cells were 

supplemented with these two gluconeogenic substrates in the form of sodium lactate and 

sodium pyruvate.  This supplementation avoids depletion of the substrates which would limit 

glucose production, as the study is focussed on monitoring gluconeogenesis alone.  

Gluconeogenesis and glycogenolysis feeds G6P into the ER lumen via the G6P transporter 

(T1).  Here, G6P is converted to glucose by hepatic G6Pase, allowing export of glucose via 

the GLUT2 transporter (Kresge et al., 2005). 

 
HepG2 cells treated with IF (0.1 µM insulin and 1 mM fructose) and PB (0.25 mM palmitate) 

showed a significant increase in HGP in both models, with the increase being greatest in the 

presence of palmitate (p < 0.0005).  Furthermore, treatment with either metformin or S. 

frutescens yielded a significantly (p < 0.05 in IF and p < 0.005 in PB) suppressive effect on 
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the HGP (Figure 9).  Concomitant decreases in glycogen content in the insulin-resistant 

cultures were observed with recovery of glycogen stores following metformin or S. frutescens 

treatment (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9: Hepatic glucose production.  HepG2 cells were incubated in the presence of 0.1 µM 

insulin for three hours after 13 hours incubation in glucose-free medium.  Glucose production 

was measured by glucose oxidase activity.  Data is represented as mean percentage of the 

control (MCDB-201) ± S.D.  Statistical analysis was performed using one-way ANOVA (n = 3).  

*** = p < 0.0005 (compared to control),   # = p < 0.05, ## = p < 0.005 (compared to either IF or 

PB).  IF = Insulin and Fructose in MCDB-201 medium, IFM = IF supplemented with 1 µM metformin, IFSF 

= IF supplemented with 12 µg/mL S. frutescens aqueous extract, PB = Palmitate-BSA conjugate in MCDB-

201 medium, PM = PB supplemented with metformin, PSF = PB supplemented with S. frutescens aqueous 

extract. 
 

Hepatic gluconeogenesis is regulated by SIRT1, an NAD+-dependant protein deacetylase, 

which is involved in the deacetylation of PGC1-α, leading to increased glucose production 

(Rodgers et al., 2005).  Hepatic SIRT1 is also implicated in the regulation of genes involved 

in cholesterol and lipid metabolism and is able to induce lipogenesis (Chen et al., 2008).  

Caton et al. (2011) demonstrated the role of fructose in SIRT1 activation and subsequent 

gluconeogenesis.  Therefore, one mode by which the IF model may induce gluconeogenesis 

is through this SIRT1-dependant mechanism.  The SIRT1-induced gluconeogenesis has been 

shown to act initially through an acute activation of JNK after which SIRT1 activation occurs 

in a JNK-independent manner within 30 minutes of fructose exposure (Caton et al., 2011).   
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Figure 10: Hepatic glycogen levels. Glycogen content of HepG2 cultures in the presence of 0.1 

µM insulin was measured by the anthrone test for carbohydrates.  Glycogen content is 

expressed as a percentage of the MCDB-201 control.  Statistical analysis performed using one-

way ANOVA (n = 3).  ** = p < 0.005, *** = p < 0.0005 (compared to control), ## = p < 0.005, ### 

= p < 0.0005 (compared to either IF or PB).  IF = Insulin and Fructose in MCDB-201 medium, IFM = IF 

supplemented with 1 µM metformin, IFSF = IF supplemented with 12 µg/mL S. frutescens aqueous extract, 

PB = Palmitate-BSA conjugate in MCDB-201 medium, PM = PB supplemented with metformin, PSF = PB 

supplemented with S. frutescens aqueous extract. 
 

Decreased glycogen synthesis is induced by fructose due to fructose-induced decrease in 

GSK-3 phosphorylation through CREB activity.  Furthermore, CREB affects expression of 

G6Pase and PEPCK.  Therefore, apart from increasing SIRT1 activity, fructose also 

increases PEPCK and G6Pase activity (Wei et al., 2007).  Of these, PEPCK is involved in 

converting oxaloacetate to PEP during the first glycolytic bypass reaction of gluconeogenesis, 

while G6Pase is involved in conversion of G6P to glucose in the hepatic ER; promoting 

glucose production (Matte et al., 1997). 

 

To further induce the insulin-resistant state, high levels of chronic insulin exposure leads to a 

decrease in insulin receptor autophosphorylation and subsequent IRS1 and IRS2 

phosphorylation.  Chronic exposure to high levels of insulin has also been shown to decrease 

the protein levels of the IR and IRS1/2 in HepG2 cells (Yuan et al., 2013).  The inhibition of 

IRS1/2 activities result in a decrease in PI3K and GS activities, while relieving the inhibitory 

effect of insulin on PEPCK.  The combination of these effects of high insulin and fructose 

levels results in attenuation of insulin signalling, promoting gluconeogenesis and 



35 

 

glycogenolysis, thus making these key markers for the detection of insulin-resistance during 

the establishment of insulin-resistant cell culture models. 

 

Palmitate-induced gluconeogenesis may act through a different mechanism to that of the IF 

model.  There are several proposed mechanisms by which palmitate may induce insulin-

resistance (Figure 11).  Emerging studies show that insulin-resistance may be induced by 

fatty liver (Stefan and Häring, 2011).  In hepatic steatosis, FFAs and triacylglycerol (TAG) 

metabolites, such as DAG and fatty acyl-CoA, accumulate.  Palmitate has been implicated in 

increasing β-oxidation with concomitant increases in acetyl-CoA (Noguchi et al., 2009).  

Fatty acid oxidation involves the transport of acyl-CoAs into the mitochondrial matrix by the 

addition of carnitine to acyl-CoA.  Once inside the mitochondrial matrix, acyl-carnitine is 

converted back into acyl-CoA by carnitine acyltransferase.  This allows for successive rounds 

of β-oxidation of the fatty acids to yield acetyl-CoA.  From here, acetyl-CoA enters the citric 

acid cycle for ATP production in the same fashion as acetyl-CoA derived from glycolysis.  

As the acetyl-CoA levels rise, it acts as a signal for the activation of acetyl-CoA carboxylases, 

resulting in production of malonyl-CoA.  Malonyl-CoA functions as a negative feedback 

signal by inhibiting the transfer of carnitine to acyl-CoA for the transportation of fatty acids 

into the mitochondrial matrix.  Furthermore, acetyl-CoA acts as an inducer of pyruvate 

carboxylase activity while inhibiting the activity of pyruvate kinase, promoting the 

gluconeogenic pathway (Noguchi et al., 2009).  Fatty acids can induce inflammation by 

stimulating the nuclear factor-κB (NF-κB) pathway or via induction of ER and oxidative 

stress by the activation of JNK.  In this particular case, the saturated fatty acid palmitate plays 

an important role (Stefan and Häring, 2011). 

 

In the present study, the effects of an aqueous extract of S. frutescens on insulin-resistance 

were investigated.  It was found that the plant extract has the ability to decrease hepatic 

glucose output and recover the activity of glycogen synthase, seen as increased levels of 

glycogen (Figures 9 and 10).  This effect is similar to that of metformin.  Metformin acts 

through AMPK activation by its mild and specific inhibition of the mitochondrial respiratory-

chain complex I, resulting in increased AMP levels which activate AMPK (Viollet et al., 

2012).  In turn, AMPK regulates TORC2 phosphorylation, which in turn regulates HGP in 

response to fasting by directing transcriptional activation of gluconeogenesis.  

Phosphorylated TORC2 is not able to translocate to the nucleus, preventing PGC-1α 

activation.  In the liver, PGC-1α drives expression of the gluconeogenic genes, PEPCK and 
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G6Pase, which are therefore inhibited (Viollet et al., 2012; Viollet and Foretz, 2013).  

Although S. frutescens has the same effect as metformin here, it cannot be concluded that 

they work through the same mechanism of action. 

 

Figure 11: Pathways involved in 

inflammation and metabolism in human 

fatty liver disease.  Abundant levels of 

glucose, fructose, and free fatty acids induce 

ER stress.  Fatty acids and free cholesterol are 

also thought to induce mitochondrial 

dysfunction and increase ROS production.  

This leads to the activation of inflammatory 

pathways involving JNK and IKK, which then 

induce the transcription of inflammatory 

cytokines and consequently play a role in the 

inhibition of insulin signalling via IRS1 and 2.  

By increasing hepatic de novo lipogenesis, 

fatty acids, glucose, and fructose increase the 

DAG pool which, through activation of PKCs, 

also impairs insulin signalling.  IR = insulin 

receptor, P = phosphorylation, MD-2 = myeloid differentiation protein-2 (Stefan and Häring, 2011). 
 

This study shows that insulin-resistance may be induced using either a combination of high 

levels of insulin and fructose or oversupply of the saturated fatty acid, palmitate.  The insulin-

resistant state causes the liver to increase glucose output and glycogen breakdown, while 

inhibiting glycolysis and glycogen synthesis.  Insulin-stimulated glycogen synthesis and 

suppression of glucose production is restored upon treatment of hepatic cells with metformin 

and S. frutescens (Figures 9 and 10).  The treatments used here provided two working cell 

models of insulin-resistance which were used to elucidate some of the mechanisms 

underlying the development of insulin-resistance in each via investigation of lipid 

accumulation, ROS, nitric oxide (NO), acetyl-CoA, and genetic studies in later chapters.  We 

also investigated the effects of S. frutescens on these parameters in comparison to metformin. 
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Chapter 3 

Changes in Cellular Physiology 

 

During insulin-resistance, the normal functioning of insulin-sensitive tissues becomes altered.  

These alterations lead to changes in cellular physiology such as changes in lipid accumulation, 

NO and ROS production, and changes in acetyl-CoA levels. 

 

Using the two models of insulin-resistance, these changes in cellular physiology in each 

model were investigated.  Lipid accumulation was studied using three methods, namely: Oil-

Red-O staining, Nile Red staining, and thin-layer chromatography (TLC).  These allow for 

the elucidation of the lipid profiles of the cells, while also quantifying these.  Previous studies 

have shown that fructose and FFAs are capable of inducing liver steatosis in cell cultures 

(Samuel, 2011; Tappy et al., 2010; Gao et al., 2010).  Nitric oxide has been implicated in 

palmitate-induced insulin-resistance, while ROS has been shown to be involved in both 

fructose- and palmitate-induced insulin-resistance (Yuzefovych et al., 2010; Tappy et al., 

2010; Gao et al., 2010).  Increased levels of FFAs lead to increased rates of β-oxidation and 

subsequent increased levels of acetyl-CoA.  Acetyl-CoA acts as an intracellular signal of high 

energy levels, thus promoting pyruvate carboxylase activity during the first bypass reaction 

of gluconeogenesis (Hers and Hue, 1983).  It also promotes activation of acetyl-CoA 

carboxylases which leads to the inhibition of β-oxidation through prevention of FFA transfer 

into the mitochondrial matrix, promoting lipotoxicity, mitochondrial dysfunction, ROS 

production, and ultimately insulin-resistance (Noguchi et al., 2009; Coll et al., 2008). 

 

This chapter investigates the effects of S. frutescens on these changes in cellular physiology 

in comparison to metformin.  This will allow for possible elucidation of the mechanism of S. 

frutescens anti-diabetic action. 
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Methods 

 

1. Lipid Accumulation Assays 

 

Two lipid stains, Oil-Red-O and Nile Red, were used quantify lipid accumulation in 

hepatocytes.  The Oil-Red-O assay detects cellular neutral lipids, while Nile Red staining is 

used for the detection of neutral lipids (yielding a yellow-gold fluorescent colour) and 

phospholipids (yielding an orange-red fluorescence). 

 

Previous studies have shown oleate to be a strong inducer of lipid accumulation in the form 

of TAG and phospholipids (Lee et al., 2010).  Oleate was thus used as a positive control for 

lipid accumulation in HepG2 cells in the Oil-Red-O and Nile Red assays.  The treatment was 

performed following the same procedure as the palmitate-BSA induction model, but instead 

used 0.25 mM oleate (OB).  The OB medium was also supplemented with either 12µg/mL S. 

frutescens (OSF) or 1 µM metformin (OM) as treatment of the OB-treated cultures. 

 

1.1. Oil-Red-O Assay 

 

HepG2 cells were exposed to the various conditions as described in Chapter 2 for 24 hours, 

after which, the medium was removed and cells fixed in 10% (v/v) formaldehyde in 1× PBS 

(pH 7.4) for 10 min.  Cells were rinsed with ddH2O followed by 70% (v/v) ethanol, and 

stained with 3% (v/v) Oil-red-O solution (6 parts Oil-Red-O stock in isopropyl alcohol + 4 

parts water) for 15 min.  The stain was removed and cells washed with 70% (v/v) ethanol and 

finally water.  The stain was then extracted by addition of isopropyl alcohol and the 

absorbance measured at 520 nm (Gao et al., 2010). 

 

1.2. Nile Red Assay 

 

After 24 hour exposure to the various conditions as in section 1.1, the cells were washed with 

1× Hanks Balanced Salts Solution (HBSS; pH 7.4), and background fluorescence determined 

(535nm excitation, 580nm emission) on a Synergy MX (BioTek) plate reader.  Freshly 

diluted Nile Red (1 µM Nile Red in 1% (w/v) Pluronic F127 in HBSS) was added to each 

well.  After 4 hours incubation in the dark at room temperature, the Nile Red was removed 
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and cells washed once with HBSS.  After a further incubation for 8-16 hours in HBSS in the 

dark at room temperature, fluorescence was determined as above and the background 

subtracted to determine the bound Nile Red fluorescence (Williams, 2010). 

 

1.3. Thin Layer Chromatography 

 

After 24 hour exposure to the conditions indicated in section 1.1, the medium was aspirated 

and cells gently scraped into 1 mL growth medium.  Cells were then transferred to 2 mL 

microcentrifuge tubes and centrifuged for 5 min at 400 ×g.  The supernatant was removed 

and the pellet re-suspended in 0.75 mL chloroform-methanol (1:2, v/v) and the phases 

separated by addition of 0.25 mL ddH2O and 0.25 mL chloroform, followed by centrifugation 

at 1000 ×g for 5 min.  The lower phase was dried and re-dissolved in 50 µL chloroform and 

spotted on silica gel TLC plates (Sigma).  The total lipid extract was separated using 

diethylether-heptane-acetic acid (75:25:1, v/v/v).  The solvent used to resolve the TLC plates 

causes the separation of the neutral lipid class.  Thus, waxes and sterol esters migrate most 

quickly, followed by TAG, FFAs, DAG, and MAG, while polar lipids remain at the sample 

origin. Once the solvent has run to approximately ¾ of the length of the TLC plate, the TLC 

plates were stained using 0.003% (w/v) Coomassie blue in 100mM NaCl in 30% (v/v) 

methanol for 30 min.  The plates were de-stained in dye-free solution for 5 min. (Baldanzi et 

al., 2010).  Developed TLC plates were imaged using an AlphaImagerTM 3400 (Alpha 

Innotech) and spot densities analysed using Alphaview software (version 3.2.2.0, 2010). 

  

2. Nitric Oxide Quantification  

 

After 24 hours exposure to the various conditions indicated in section 1.1, aliquots (50 µL) of 

medium were taken from each sample and analysed using the Griess system for nitrite 

detection.  Briefly, the 50 µL samples were transferred to wells of a 96-well microtitre plate, 

followed by addition of 50 µL 1% sulfanilimide in 5% phosphoric acid (w/v) and incubated 

at room temperature for 10 minutes in the dark.  Next, 50 µL 0.1% (w/v) N-1-

naphthylethylenediamine dihydrochloride (NED) was added and incubated as before (a pink 

colour developed).  The absorbance of the resultant mixture was measured at 520 nm.  Nitrite 

concentrations were compared to the absorbance readings obtained from a nitrite standard 

curve using sodium nitrite (Sigma) (0-100 µM). 
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3. Measurement of Reactive Oxygen Species 

 

For the quantification of ROS production, the dye 2’,7’-dichlorodihydrofluorescin diacetate 

(DCFH-DA) was used.  It is freely permeable and incorporates into the hydrophobic lipid 

regions of the cell.  The acetate moieties are cleaved by cellular esterases, leaving non-

fluorescent 2’,7’-dichlorodihydrofluorescin (DCFH).  This is oxidised by hydrogen peroxide 

and peroxidases into dichlorofluorescein (DCF), which is fluorescent (Robinson et al., 1994). 

After 24 hours exposure to the various conditions indicated in section 1.1, the medium was 

aspirated and cells washed twice with 1× PBS (pH 7.4).  Thereafter, the cells were loaded 

with the DCFH-DA dye (20 µM in DMSO) for 30 minutes in the dark at 37 °C.  Excess dye 

was removed by washing cells with PBS as before.  Cells were then harvested, transferred 

into polypropylene tubes in phenol red-free EMEM, centrifuged at 400 ×g and incubated in 

phenol red-free EMEM for 10 minutes at 37 °C in the dark.  Cells were centrifuged as before, 

washing with PBS.  Once washed, the cells were re-suspended in 500 µL PBS and DCF 

fluorescence analysed by flow cytometry using the fluorescein isothiocyanate (FITC) channel 

(excitation/emission: 480 nm/530 nm). 

 

4. Quantification of Acetyl-CoA 

 

After 24 hours exposure to the various conditions indicated in section 1.1, the medium was 

aspirated from the cells and acetyl-CoA levels determined using the method of Hovik et al. 

(1991).  The cells were harvested, by accutase (HyClone) treatment, into 200 µL hypotonic 

buffer (10 mM KPO4 containing 1% (v/v) Triton X-100) and sonicated for five seconds.  

Thereafter, 1 M ZnSO4 was added to a final concentration of 0.1 M, the solutions mixed 

thoroughly, and centrifuged at 1900 ×g for 15 minutes.  The supernatants were collected and 

1 mM L-carnitine (0.1 mM final concentration in 50 mM HEPES) added, pH adjusted (pH 

7.0-7.5) using 15% (w/v) KOH, L-carnitine acetyltransferase (1 U/mL) (CAT, Sigma) added, 

and incubated at 37 °C for 10 minutes.  Aldrithiol-4 (2 mM stock in 50 mM HEPES) (Sigma) 

was added to a final concentration of 0.2 mM and incubated as before.  The absorbance 

readings were obtained at 324 nm and compared to a standard curve (1-5 µg) of acetyl-CoA 

(Sigma). 
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5. Data Analysis 

 

All data were normalised to cell number as determined by the MTT assay and expressed as a 

percentage of the control (MCDB-201).  Statistical analysis was performed by ANOVA (one- 

or two-way depending on the data set) with post-test analyses performed (Newman-Keuls or 

Bonferroni post-tests).  Confidence levels were set to 95%. 

 

 

 



42 

 

Results and Discussion 

 

1. Lipid Accumulation 

 

After the confirmation of successful insulin-resistance induction using the two methods of 

induction (insulin/fructose and palmitate) (Chapter 2), HepG2 cells were subjected to lipid 

accumulation analyses.  Lipid accumulation is related to the development of insulin-

resistance, therefore this change in cellular physiology within the two models was 

investigated.  HepG2 cells were exposed to the various media conditions for 24 hours, and 

then subjected to Oil-Red-O or Nile Red staining, or TLC of the lipid fractions. 

 

The Oil-Red-O staining of the insulin-resistant cells showed a significant increase (p < 0.05 

for IF and p < 0.0005 for PB and OB) in cellular lipid content. Significant decreases in lipid 

content were seen compared to the insulin-resistant cells following the metformin or S. 

frutescens treatments of the IF (p < 0.05) and OB (p < 0.0005) insulin-resistant cells, but no 

significant effect on the lipid content of palmitate-treated insulin-resistant cells was observed 

(Figure 12A).  Visual representation of the cells containing Oil-Red-O-lipid droplet 

complexes can be seen in figure 12B.  Compared to the control, it can be seen that the amount 

of stained lipid droplets is increased or decreased in a corresponding fashion to what is seen 

in the absorbance data (Figure 12A). 

 

The Oil-Red-O dye stains predominantly TAG and other neutral lipids.  In the IF model, 

there is an oversupply of fructose.  Fructose, although having the same chemical formula as 

glucose, is quite distinct from glucose.  Thus, the metabolism of fructose is directed by 

different biochemical mechanisms.  In the case of hepatocytes, fructose is predominantly 

transported by GLUT2 into the cytosol, where it is rapidly phosphorylated to yield fructose-

1-phosphate, due to the high levels of fructokinase in hepatocytes (Samuel, 2011; Wei et al., 

2007).  Fructokinase activity is not regulated by ATP levels, and thus is less responsive to the 

energy levels of the cell.  This results in fructose being metabolised more favourably than 

glucose due to the fructolysis being less tightly regulated (Samuel, 2011).  Once fructose-1-

phosphate is cleaved to yield glyceraldehyde 3-phosphate, it may enter the glycolysis 

pathway and proceed to acetyl-CoA production.   

 



43 

 

*

# #

***
*** ***

*** ***

###
***

###

$

0%

50%

100%

150%

200%

250%

300%

350%

400%

MCDB-201 IF IFM IFSF PB PM PSF OB OM OSF

%
 L

ip
id

 C
o

n
te

n
t 

(E
M

E
M

 =
 1

0
0

%
)

Treatment

 

 

 

 

 

 

 

 

 

 

 
 

 

Control 

 

IF

 

IFM

 

IFSF

 
 

 

PB

 

PM

 

PSF

 
 

 
 

OB

 

OM

 

OSF

 

Figure 12: Neutral lipid and triacylglycerol accumulation in HepG2 cells.  The cellular lipid 

content of HepG2 cells grown for 24 hours in various conditions was measured by Oil-Red-O 

staining.  A) Data are represented as mean percentage of the control (MCDB-201) ± S.D., B) Oil-

Red-O stained lipid droplets within cells as viewed under light microscopy using a 20× objective.  

Scale bar 50 µm.  Statistical analysis was performed using one-way ANOVA (n = 3).  * = p < 0.05, 

*** = p < 0.0005 (compared to control),   # = p < 0.05, ### = p < 0.0005 (compared to either IF 

or OB), $ = p < 0.05 (Compared to metformin treatment of the positive control). 
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Acetyl-CoA in turn may enter the tricarboxylic acid (TCA) cycle or be directed to fatty acid 

synthesis.  Further, trioses can be used for glycerol 3-phosphate synthesis, which forms the 

backbone of TAG.  Thus, fructose contributes to TAG synthesis either by forming the 

glycerol backbone or a fatty acyl moiety.  Several studies have shown the contribution of 

fructose to increased TAG levels (Samuel, 2011; Wei et al., 2007). 

 

An alternative lipid specific dye was also used, namely Nile Red.  The Nile Red dye 

predominantly stains cholesterol and phopsholipids and fluoresces when exposed to light at a 

wavelength of 535 nm.  In the current study, no significant changes in both cholesterol and 

phospholipids were observed in any of the insulin-resistant models when compared to the 

control (MCDB-201).  However, oleate was seen to induce a significant (p < 0.0005) increase 

in the fluorescent signal, indicating a significant increase in either cholesterol or 

phopspholipids, or both.  Metformin and S. frutescence treatment of the OB-induced cells 

showed a mean decrease in lipid accumulation, however this was not significant (Figure 13).  

Associated with non-alcoholic fatty liver disease is the impaired secretion of very low density 

lipoprotein (VLDL) and high density lipoprotein (HDL) (Stefan and Häring, 2011).  This 

impaired secretion will lead to elevated cholesterol within the liver, hence the increase in Nile 

Red fluorescence may be attributed to this accumulation of VLDL within the hepatocytes.  

Zhang et al., showed the involvement of FoxO1 in increasing lipid metabolism and 

decreasing plasma cholesterol levels using transgenic mice wherein FoxO1 was constitutively 

expressed.  Furthermore, FoxO1 activation through hepatic stress signals (such as increased 

JNK activity) during the development on insulin-resistance may exacerbate this condition 

(Gao et al., 2010).  However this is seen only under elevated FFA levels and concomitant β-

oxidation of short-chain fatty acids, such as oleate. 

 

The mechanism by which fructose induces lipogenesis is still not fully understood, but some 

pathways have been proposed (Figure 14).  One such mechanism involves the fructose-

induced alteration of specific lipogenic enzymes (Samuel, 2011).  Fructose is able to alter the 

activity of pyruvate dehydrogenase (PDH) by inhibiting PDH kinase (PDK) (Figure 14).  

This is in line with previous studies which showed decreased PDK activity and increased 

PDH activation in rats fed a fructose-rich diet (Park et al., 1992).  PDH activity causes a rise 

in acetyl-CoA levels, which is directed to lipid synthesis.  This leads to increased DAG 

production which inhibits insulin signalling via PKCε activation.  DAG levels do not remain 



45 

 

***

***
***

0%

50%

100%

150%

200%

250%

300%

350%

MCDB-201 IF IFM IFSF PB PM PSF OB OM OSF

%
 L

ip
id

 C
o

n
te

n
t 

(M
C

D
B

 =
 1

0
0

%
)

Treatment

elevated, however, but are converted to TAG under the control of SREBP1c for subsequent 

exportation as VLDL.   

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 13: Cholesterol and phospholipid accumulation in HepG2 cells.  The cellular lipid 

content of HepG2 cells grown for 24 hours in various conditions was measured by Nile Red 

staining.  Data are represented as mean percentage of the control (MCDB-201) ± S.D.  Statistical 

analysis was performed using one-way ANOVA (n = 3).   *** = p < 0.0005 (compared to control). 
 

Figure 14: Proposed mechanism of 

fructose-induced lipogenesis.  Fructose 

promotes lipogenesis by (a) increasing 

PDH activity by inhibiting PDK and (b) 

stimulating increases in SREBP-1c 

transcription, (c) SCD-1 catalysed 

desaturation of fatty acyl-CoA to produce 

monounsaturated fatty acids such as 

oleyl-CoA, which may also increase 

SREBP-1c expression, and (d) DAG 

activates PKCε, which attenuates insulin 

signalling, leading to hepatic insulin-

resistance (Samuel, 2011). 

 

Another proposed mechanism of fructose-induced lipogenesis is through PGC-1β activity 

(Samuel, 2011).  PGC-1β acts as a nuclear receptor co-activator which can increase the 

expression of many transcription factors, such as the peroxisome proliferator-activated 

receptors α and γ (PPARα and PPARγ).  Furthermore, PGC-1β can bind to and transactivate 
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SREBP1, linking PGC-1β-induced lipogenesis to the aforementioned PDH/PDK-induced 

mechanism of fructose-induced lipogenesis. 

 

The signal by which fructose activates these pathways is still unknown; however some 

suggestions have been made.  The carbohydrate response element binding protein (ChREBP) 

is key to connecting glucose metabolism to increased expression of glycolytic and lipogenic 

enzymes.  In this case, X5P produced from glucose via the pentose-phosphate pathway, acts 

in protein phosphatase 2A (PP2A) activation, enhancing nuclear translocation of ChREBP.  

In the case of fructose, X5P is not increased per se, since fructose is rapidly metabolised into 

trioses.  These trioses are destined for incorporation into TAG, thus feeding into the lipogenic 

action of fructose (Samuel, 2011).  Studies have shown increased activity of ChREBP in the 

absence of increased X5P, suggesting another means of ChREBP activation (Koo et al., 

2009).  G6P is capable of activating ChREBP directly without X5P accumulation and PP2A 

activation, providing a link to fructose metabolism.   

 

Gonzalez et al. (2011) showed the involvement of the hyperinsulinaemic state in lipid 

accumulation.  Here, a state of selective insulin-resistance develops, causing an uncoupled 

insulin action wherein FoxO1’s insulin responsiveness is maintained.  This uncoupling is due 

to the high sensitivity of FoxO1 to insulin stimulation.  During insulin-resistance, inhibition 

of hepatic gluconeogenesis by insulin is disrupted due to deregulation of FoxO1, while 

regulation of fatty acid and TAG biosynthesis through SREBP-1c remains functional, which 

in turn contributes to hyperglycaemia and hypertriglyceridaemia (Matsumoto et al., 2007).  

Furthermore, regulation of FoxO1 by insulin may be tissue-specific and thus respond 

differently under hyperinsulinaemic states.  In the liver, FoxO1 modulates carbohydrate 

metabolism and is exposed to higher levels of insulin than other tissues (such as adipose), 

both in the fasted and postprandial state.  FoxO1’s transcriptional activity is negatively 

regulated by insulin-activated Akt and positively regulated by JNK, which promotes its 

translocation into the nucleus (Guo et al., 2012). 

 

This involvement of FoxO1 in the development of insulin-resistance may be a key 

component in the models investigated in this study.  In the IF-induced cells, it was observed 

that gluconeogenesis was elevated (Chapter 2).  This may be due to the elevated activity of 

FoxO1 through either 1) its ability to be still responsive to insulin signalling under 

hyperinsulinaemic states and insulin-resistance or 2) the hyperglycaemic-induced (high 
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fructose content) stress activation of JNK and consequent FoxO1 activation, or 3) a 

combination of both.  FoxO1 in turn regulates the expression of gluconeogenic genes, 

resulting in dysregulation of carbohydrate metabolism and homeostasis (Guo et al., 2012).  

This may be why the IF-induced cells exhibit a different lipid profile than the PB-induced 

cells.  In the IF-induced cells, the oversupply of fructose will be directed to increased 

lipogenesis through the lipogenic mechanism described above.  Therefore, it is expected to 

see increased TAG levels in the cells exposed to IF (Figure 15).  Models of lipogenesis 

previously described provide the explanation for the increased TAG in IF-induced cells.  

Palmitate-induced DGAT2 inhibition result in no TAG being produced and lipogenesis 

arresting at the DAG stage, thus increasing DAG.  The IF-induction does not inhibit DGAT2, 

allowing TAG synthesis to proceed.  This same response may be at work in the palmitate 

model (PB) where it is known that palmitate activates JNK, which would then cause this 

activation of FoxO1, providing a link between the hyperinsulinaemic (and consequent 

hyperglycaemic) and hyperlipidaemic states associated with T2DM. 

 

In contrast, palmitate-induced lipogenesis results in a different lipid profile to that of 

fructose-induced lipogenesis.  Palmitate is thought to alter the expression of genes involved 

in TAG synthesis, such as Dgat2, which is involved in the conversion of DAG to TAG 

(Chavez and Summers, 2010).  Palmitate is mainly directed to incorporation into DAG which, 

together with palmitate-induced diacylglycerol acetyltransferase 2 (DGAT2) inhibition, 

results in accumulation of DAG (Coll et al., 2008).  In the present study, palmitate-induction 

(PB) significantly increased DAG levels (p < 0.0005) while having no significant effect on 

either monoacylglycerol (MAG) or TAG levels.  Further, DAG was significantly reduced by 

metformin and S. frutescens (p < 0.05), although these remained significantly higher than that 

of the control (p < 0.0005) (Figure 15).  In the liver, DAG activates the novel PKC isoform, 

nPKCε via palmitoylation (Sampson and Cooper, 2006).  Novel PKCε is involved in serine 

phosphorylation of IRS1, inhibiting insulin signalling, and impairment of HMGA1 activity, 

which results in decreased insulin receptor expression, contributing to insulin-resistance 

(Dasgupta et al., 2011). 

 

It is suggested that the anti-lipogenic activity of metformin is directed through AMPK and the 

concomitant decrease in ChREBP and SREBP-1 activity, leading to decreased hepatic 

steatosis, thus alleviating the lipotoxic and insulin-resistant states (Viollet et al., 2012).  In the 

current study, metformin and S. frutescens treatment showed a significant decrease in lipid 
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accumulation (Figures 12 and 15) (p < 0.05) in comparison to the IF-treated cells, while 

having no significant effect on the palmitate-induced lipid accumulation.  This decrease in 

lipid accumulation in the IFM and IFSF treatments is accompanied by increased insulin 

responsiveness, as measured by insulin-induced suppression of gluconeogenesis (Chapter 2).   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15: Thin layer chromatography of lipid fractions.  The cellular lipid profile of HepG2 

cells grown for 24 hours in various conditions was analysed by A) representative thin layer 

chromatograph and B) subsequent densitometry.  In the chromatograph, lanes represent the 

samples as 1) MCDB-201, 2) IF, 3) IFM, 4) IFSF, 5) PB, 6) PM, and 7) PSF.  Data are represented 

as fold increase compared to the control (MCDB-201) ± S.D.  Statistical analysis was performed 

using two-way ANOVA (n = 3).  * or # = p < 0.05 (compared to control or insulin-resistant model, 

respectively), *** = p < 0.0005 (compared to control).  MAG = monoacylglycerol, DAG = 

diacylglycerol, TAG = triacylglycerol. 

 

A possible reason for the lipid accumulation not being decreased in the palmitate-treated cells 

by either metformin or S. frutescens is due to the type of lipid accumulated in these cells.  

Here, DAG is accumulated in contrast to the TAG accumulation as seen in the IF model.  

Metformin increases β-oxidation, thus increasing palmitate metabolism, alleviating the 
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inhibitory effect of palmitate on DGAT2.  This allows the excess of DAG to continue into 

TAG synthesis.  Hence, metformin appears to not reduce lipid accumulation as seen in the 

Oil-Red-O experiments, but does reduce DAG levels as seen in the TLC analyses (Figure 15). 

 

This study shows that the changes in cellular lipid metabolism involved in the two models of 

insulin-resistance are directed through different mechanisms and toward different fates.  In 

the hyperinsulinaemic/hyperglycaemic state (IF model), lipid accumulation in the form of 

TAG is directed by fructose-induced increased PDH and PGC-1α activities, resulting in 

increased lipogenesis.  This increased activity of PGC-1α is also involved in the induction of 

insulin-resistance (Chapter 2).  In the palmitate model, DAG accumulation is observed due 

the inhibitory effect of palmitate on lipolysis and the predominant incorporation of palmitate 

into DAG (Coll et al., 2008).  Furthermore, palmitate, but not IF, inhibits the activity of 

DGAT2, resulting in DAG accumulation, which in turn induces insulin-resistance through 

inhibition of IRS1/2.  Treatment of these models with either metformin or S. frutescens 

yielded different effects on the observed lipid accumulation (Figures 12 and 15).  Thus, 

palmitate causes an initial increase in β-oxidation, resulting in increased levels of acetyl-CoA.  

This in turn stimulates the gluconeogenic pathway and TAG synthesis.  However, palmitate-

induced down-regulation of DGAT2 activity prevents the conversion of DAG to TAG during 

TAG biosynthesis.  DAG levels rise as a result (while TAG levels remain low), causing 

increased activation of JNK and subsequent serine phosphorylation of IRS1/2 either directly 

by JNK or via activation of PKC isoforms, inhibiting insulin signal transduction and 

ultimately increasing HGP and decreasing activity of glycogen synthase (Sampson, 2006; Lee 

et al., 2010). 

 

2. Oxidative Stress 

 

In the liver, NO has several functions.  Exogenous NO down regulates gluconeogenesis, 

although this effect is only mild, during states of inflammation such as sepsis and 

endotoxaemia.  A more important effector function of NO is on mitochondrial respiration.  

Here, NO decreases respiratory activity by interacting with the cytochromes of the electron 

transport chain and also affects mitochondrial permeability.  This results in a net decrease in 

the metabolic rate of hepatocytes.  It must be noted that many of the effector functions of NO 

are not regulated directly by NO itself, but rather by its more stable form, peroxynitrite.  

Furthermore, the nitric oxide synthase (NOS) enzymes are also capable of forming 
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superoxide instead of NO when the substrate (arginine) or cofactor (tetrahydrobiopterin) is 

limited.  This results in co-generation of both NO and superoxide (O2
-) by the same enzyme, 

which may be implicated in inflammatory states where inducible nitric oxide synthase 

(iNOS) up-regulation results in depletion of arginine and tetrahydrobiopterin (BH4).  The 

most significant direct effect of NO is that of its effect of apoptosis. At high levels, NO 

induces apoptosis, which is primarily mediated by peroxynitrite’s ability to increase 

mitochondrial permeability, either directly or through DNA damage with subsequent 

activation of the polyadenylate ribose synthase pathway.  This leads to release of cytochrome 

c from the mitochondria, initiating the apoptotic signal, while uncoupling of NOS activity 

from NO production leads to mitochondrial DNA damage (Clemens, 2001). 

 

Given the involvement of oxidative stress in the development of insulin-resistance, the levels 

of NO (as nitrite) and reactive oxygen species (ROS) were analysed.  As before, the HepG2 

cells were exposed to the different induction media or treatments for 24 hours (nitrite assayed 

at 1, 3, and 6 hours post-treatment or post-induction, as well as 24 hours) after which the cells 

were subjected to oxidative stress analyses.  The time points for the nitrite assays were 

chosen based on previous work done by Yuzefovych et al. (2010).  Nitrite levels were found 

to be significantly elevated within the first six hours post-induction with palmitate (p < 

0.0005) while the levels had reverted to the control level after 24 hours (Figure 16).  The IF 

model showed no significant change in nitrite levels and neither metformin nor S. frutescens 

showed any effect on the nitrite levels.  At 24 hours post-induction, the levels of cellular ROS 

were found to be significantly elevated in the IF (p < 0.005) and PB (p < 0.0005) models, and 

significantly reduced in the IFM (p < 0.05), IFSF (p < 0.05), PM (p < 0.0005) and PSF (p < 

0.0005) treatments.  However, the PM treatment still yielded significant ROS levels (p < 

0.005) (Figure 17). 

 

Fructose metabolism leads to an increase in pyruvate levels which may be converted to acyl-

CoA by PDH; however, pyruvate is also the precursor molecule to the TCA cycle.  Pyruvate 

enters the mitochondrial matrix where it commits to the TCA cycle, which in turn produces 

the electron carriers, nicotinamide adenine dinucleotide (NADH) and flavin adenine 

dinucleotide (FADH2).  The NADH and FADH2 are then used in the mitochondrial electron 

transport chain during ATP synthesis.  The elevated mitochondrial activity leads to increased 

ROS production (superoxide and hydrogen peroxide).  Through this increase in ROS 
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production, fructose may induce increased activity of JNK, leading to attenuation of insulin 

signalling (Stefan and Häring, 2011). 

 
 
 
 
 

Figure 16: Nitrite levels within the culture medium.  After exposure to the various induction 

media or treatments, aliquots of the medium were analysed for nitrite levels at 1, 3, 6, and 24 

hours post-induction or post-treatment.  The data are represented as mean percentage of the 

control (MCDB-201) ± S.D.  Statistical analysis was performed using two-way ANOVA (n = 3).  

*** = p < 0.0005 (compared to control). 
 

The palmitate-induced insulin-resistant cells showed an increase in NO production (Figure 

16) prior to ROS production.  It is suggested that this initial production of NO is responsible 

for significant mitochondrial DNA damage, which in turn causes increased mitochondrial 

ROS production, detected at the later time point.  Palmitate has been found to inhibit insulin 

signalling through the activation of JNK (Gao et al., 2010).  One way in which palmitate-

induced JNK activation occurs is through the consequential increase in ROS production, 

related to increased electron flux in the mitochondrial respiratory chain due to increased β-

oxidation of palmitate.  The high mitochondrial oxidative phosphorylation fuelled by 

palmitate metabolism, therefore, may induce increased ROS production and result in the 

development of insulin-resistance (Stefan and Häring, 2011). 

 

Treatment with either metformin or S. frutescens yielded decreased ROS, but not NO, 

production (Figures 16 and 17).  Metformin’s ability to decrease ROS production is likely 

due to its effect on the mitochondrial electron transport chain, where it results in mild 
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inhibition of mitochondrial chain complex I (Viollet and Foretz, 2013).  Through this 

inhibition, ATP production is decreased and thus consequent superoxide production is 

decreased.  The same effect is seen in the PM treatment, although ROS levels were still 

significantly higher than the control.  This may be due to the increased metabolism of 

palmitate, induced by metformin, which leads to ROS being produced.  Thus, in the case of 

the PM culture, metformin may be involved in both directly decreasing ROS production 

through inhibition of the mitochondrial electron transport chain and increasing palmitate β-

oxidation and concomitant ROS production.   

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 17: Reactive oxygen species levels in HepG2 cells.  After 24 hours exposure to the 

various induction media or treatments the cells were loaded with DCFH-DA and relative 

fluorescence measured by flow cytometry.  The data are represented as mean percentage of the 

dye-loaded, untreated cells (control) ± S.D.  Statistical analysis was performed using one-way 

ANOVA (n = 3).  # = p < 0.05 (compared to IF), ** = p < 0.005 (compared to control), *** or ### 

= p < 0.0005 (compared to control or PB, respectively).  

 

Sutherlandia frutescens yielded significantly lower ROS levels than in both the PB and PM 

cultures, suggesting that it has a better anti-oxidant capacity than metformin (in the case of 

the palmitate-induced insulin-resistant cultures) and may also act through similar mechanisms.  

Fernandes et al. (2003) investigated the anti-oxidant activity of S. frutescens using a hot 

water, whole plant extract in two systems: in vivo cell culture and a cell-free system.  

Sutherlandia. frutescens was found to exert a significant anti-oxidant activity in both systems, 

decreasing ROS production in the in vivo cell model at concentrations as low as 10 µg/mL 

and 0.62 µg/mL in the cell-free system.  This anti-oxidant activity is suggested to be related 
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to the phenolic compounds, such as tannins and flavonoids present in S. frutescens.  

Furthermore, Tai et al. (2004) demonstrated this ROS scavenging capability, while also 

indicating a lack of suppression and stimulation of NO production.  Although L-canavanine is 

a selective inhibitor of iNOS, the lack of NO suppression may be concentration related.  This 

is supported by the use of 0.5 mM L-canavanine and 10 mM pinitol (far higher than present in 

the hot aqueous extracts), which exhibited an inhibitory effect on NO production.  Therefore, 

S. frutescens possesses a significant ROS scavenging ability as demonstrated by this study 

and others (Fernandes et al., 2003; van Wyk and Albrecht, 2008). 

 

3. β-oxidation 

 

After the 24 hour exposure to the various treatments, cellular acetyl-CoA levels were 

determined as acetyl-CoA reflects the level of β-oxidation (primarily) occurring within the 

cells.  This study shows that in the IF-induced insulin-resistant cells a significant increase (p 

< 0.05) in acetyl-CoA is present as compared to the control cells (MCDB-201), while the 

palmitate model yielded a greater increase (p < 0.0005).  Metformin and S. frutescens 

treatment of the IF-induced insulin-resistant cells yielded no significant change in the acetyl-

CoA levels, although the levels were decreased (9% and 1%, respectively). Interestingly, 

metformin and S. frutescens caused an increase in acetyl-CoA levels in the palmitate model.  

Cellular acetyl-CoA in the metformin-treated cells was significantly higher than in the control 

(p < 0.0005), while S. frutescens significantly further increased the acetyl-CoA levels beyond 

those of the PB and PM cultures (p < 0.0005) (Figure 18). 

 

As seen in the previous experiments, high doses of fructose cause a metabolic burden upon 

the cells.  Here, fructolysis results in production of fructose-1-phosphate, which is cleaved to 

yield glyceraldehyde 3-phosphate.  This in turn may enter the glycolysis pathway and 

proceed to acetyl-CoA production (Samuel, 2011).  The significant increase in acetyl-CoA 

levels in the IF model reflects this metabolism of fructose, which in turn may feed the 

lipogenic and/or gluconeogenic pathways, leading to the increase in lipid accumulation and 

HGP seen with this model.  Furthermore, an increase in acetyl-CoA due to increased 

fructolysis allows for increased activity of the TCA cycle and subsequently results in electron 

transport chain dysfunction and increased ATP production.  This in turn increases ROS 

production (Figure 17).  In the case of palmitate, acetyl-CoA levels are elevated due to 

increased β-oxidation of palmitate.  The acetyl-CoA produced may be used again for 



54 

 

* * *

***

***

***

### $$$

0%

50%

100%

150%

200%

250%

MCDB-201 IF IFM IFSF PB PM PSF

P
e

rc
e

n
ta

g
e

 A
ce

ty
l-

C
o

A
 (

M
C

D
B

-2
0

1
 =

 1
0

0
%

)

Treatment

increased lipid accumulation or HGP.  Furthermore, acetyl-CoA is also implicated in the 

induction of pyruvate carboxylase activity and inhibition of pyruvate kinase activity, 

promoting the gluconeogenic pathway (Noguchi et al., 2009).  Thus, both IF and PB 

induction leads to increased acetyl-CoA production, which is a major factor in the increases 

in lipid accumulation and HGP seen in these insulin-resistant models.  Interestingly, 

metformin and S. frutescens treatment resulted in increased acetyl-CoA production in the 

palmitate-induced model, although these improved the insulin-resistant state (through 

decreasing HGP).  This may be through the increased β-oxidation of the palmitate present in 

the induction media, resulting in increased acetyl-CoA production.  Although the acetyl-CoA 

levels are increased, insulin responsiveness is improved in the PM and PSF treatments.  This 

may be due to the usage of the acetyl-CoA in the production of glycogen, as seen in Chapter 

2, instead of HGP and lipogenesis as metformin (and possibly S. frutescens inhibits the latter 

two pathways).  Furthermore, through the anti-oxidant activities of both metformin and S. 

frutescens, a protective effect is inferred upon the cells, preventing mitochondrial dysfunction 

and subsequent insulin-resistance. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: Acetyl-CoA levels in HepG2 cells.  After 24 hours exposure to the various media 

conditions, the cells were lysed and assayed for acetyl-CoA levels.  The data are represented as 

mean percentage of control (MCDB-201) ± S.D.  Statistical analysis was performed using one-

way ANOVA (n = 3).  * = p < 0.05 (compared to control), *** or ### or $$$ = p < 0.0005 

(compared to control, PB, or PM, respectively). 
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4. Summary 

 

In the liver, the development of insulin-resistance is governed by several factors which are 

induced by the oversupply of insulin, fructose, and FFAs acting through several mechanisms, 

such as changing enzyme activity and gene expression (Figure 19).   

 

Hyperinsulinaemia causes deregulation of FoxO1, leading to decreased glycogenesis and 

increased translocation of FoxO1 to the nucleus.  FoxO1 stimulates the expression of the 

gluconeogenic genes PEPCK and G6Pase, increasing gluconeogenesis.  Fructose is taken up 

by the liver in an unregulated fashion, and is rapidly metabolised to fructose 1-phosphate 

(F1P) due to the high levels of fructokinase in the liver.  Together with fructose-induced 

inhibition of PDK, F1P induces the activity of PDH, increasing the conversion of pyruvate to 

acetyl-CoA.  Furthermore, glyceraldehyde 3-phosphate derived from F1P may be 

metabolised to yield acetyl-CoA via the glycolytic pathway.  From this fructose-derived 

acetyl-CoA, lipogenesis is stimulated through the high-energy signal provided by acetyl-CoA 

and increased SREBP-1c activity (induced by acetyl-CoA derived oleyl-CoA) during which 

glycerol 3-phosphate (derived from F1P) is used as the glycerol backbone.  Fructose may also 

be converted to fructose 6-phosphate (F6P) by phosphohexose isomerase.  This then enters 

the pentose phosphate pathway (PPP), where it is converted to X5P, which in turn induces 

PP2A activity and subsequent increased nuclear translocation of ChREBP; inducing 

lipogenesis.  The fructose-induced lipogenesis results in increased levels of DAG, which 

inhibits insulin action through activation of JNK.  Diacylglycerol is converted to TAG and 

stored in lipid droplets, resulting in liver steatosis.  The increased production of acetyl-CoA 

from fructose metabolism is also further metabolised via the TCA cycle.  The increased 

activity within the mitochondria place a metabolic burden upon the cell, resulting in electron 

transport chain dysfunction which causes increased ROS production.  These ROS are 

implicated in the activation of stress signalling via JNK.  The increased acetyl-CoA 

metabolism also increased the ATP output, which increases the ATP/AMP ratio and 

subsequently inhibits AMPK’s anti-gluconeogenic activity.  Acetyl-CoA is further capable of 

promoting the gluconeogenic pathway via induction of pyruvate carboxylase, PEPCK, and 

G6Pase and inhibition of pyruvate kinase (Noguchi et al., 2009). 
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On the other hand, palmitate induces lipogenesis via increased acetyl-CoA derived from 

increased β-oxidation.  The elevated acetyl-CoA levels have the same fate as the fructose-

derived acetyl-CoA: increasing gluconeogenesis, ROS, ATP, and TAG levels.  However, the 

lipogenic pathway, in the presence of high levels of palmitate, becomes impeded through 

palmitate-induced inhibition of DGAT2.  This results in the prevention of TAG synthesis 

from DAG, causing DAG accumulation.  The increased levels of DAG, in turn, activates JNK 

via palmitoylation, leading to increased FoxO1 and PKCε activity and consequent increased 

serine phosphorylation of IRS1/2, PEPCK and G6Pase expression.  Furthermore, PKCε is 

implicated in the inhibition of HMGA1, leading to decreased expression of the insulin 

receptor (Dasgupta et al., 2011).  Palmitate metabolism is not limited to mitochondria alone, 

but β-oxidation also occurs within peroxisomes.  Here, palmitate metabolism results in the 

direct production of hydrogen peroxide (H2O2) as opposed to TCA cycle derived H2O2.  Thus, 

palmitate induces the insulin-resistant state via increased ROS production, and concomitant 

JNK activation, and increased acetyl-CoA production which leads to increased 

gluconeogenesis and lipogenesis (Stefan and Häring, 2011; Gao et al., 2010; Noguchi et al., 

2009).  

 

Metformin and the hot aqueous extract of S. frutescens show the ability to improve the 

insulin-resistant state by inhibiting gluconeogenesis, lipogenesis, and oxidative stress and 

related stress signalling.  Furthermore, metformin and S. frutescens induce glycogenesis, 

glycolysis, and lipolysis.  In the case of metformin, these effects are achieved through 

activation of AMPK by metformin’s ability to inhibit the mitochondrial transport chain 

(Stephenne et al., 2011), resulting in decreased ATP production and thus decreasing the 

ATP/AMP ratio and ROS production.  S. frutescens, on the other hand, decreases ROS 

production through its inherent ROS scavenging characteristics.  Furthermore, S. frutescens 

may act in increasing β-oxidation as seen in its ability to increase cellular acetyl-CoA levels.  

Thus, lipid accumulation, oxidative stress, and the related stress signalling are decreased.  

However, investigation of the metabolic enzymes involved in glycolysis/gluconeogenesis, 

lipolysis/lipogenesis, and stress signalling (such as JNK and IkkB) may elucidate the cellular 

mechanisms involved in the anti-diabetic activity of S. frutescens. 
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Chapter 4 

Changes in Gene Expression 

 

During the development of insulin-resistance, several physiological changes occur within the 

hepatocytes.  These changes may have an underlying genetic mechanism, which translates 

into changes in mRNA and possibly protein levels.  These changes may include increased or 

decreased expression of metabolic enzymes, allowing for a shift in cellular metabolism from 

a glycolytic to a gluconeogenic state.  For analysis of changes in the mRNA expression, the 

reverse transcriptase quantitative polymerase chain reaction (qRT-PCR) technique is used.   

 

In order to investigate at this level of gene expression, RNA must first be isolated from the 

samples and linearly converted to cDNA, which is used in qPCR.  The reverse transcription 

and PCR may be performed in a one-step reaction where both occur in the same tube or in a 

two-step process, where these occur in two separate tubes.  This study employed the two-step 

procedure.  The qRT-PCR method has developed into an important and powerful tool for the 

investigation of gene expression, accurately and reproducibly (Bustin and Nolan, 2004).  This 

method, however, has several pitfalls, which will be discussed in this chapter alongside the 

experimental data.  The method itself involves the collection of data throughout the PCR 

process, hence the “real-time” aspect of the method (Wong and Medrano, 2005).  This data 

collection is achieved at the end of each PCR cycle through the use of a variety of fluorescent 

dyes and probes used with fluorescence detection equipment, which allow for the correlation 

of fluorescence to PCR-product concentration.  For this study, SYBR Green was used to 

detect PCR progression, as it provides two main advantages over the probe-based procedures.  

Firstly, being a non-specific, interchelating dye, it can be incorporated into optimised and 

long-established PCR protocols, simply by adding the dye as a reagent to the PCR cocktail of 

standard reactions.  Secondly, the cost is significantly lower than that of probe-based 

detection systems (Bustin and Nolan, 2004), since the dye can be incorporated into PCR 

reactions using any primer pairs, avoiding the need to use different probes for each gene to be 

examined and optimised.  However, the non-specific nature of the dye results in its binding to 

any double-stranded DNA (dsDNA), which can result in fluorescence readings in so-called 

“no template controls” (NTCs) due to the dye binding to primer dimers.  Primer dimers are 

short sequences of non-specific dsDNA formed as a consequence of the primer pairs 

annealing to non-target sequences.  These non-target sequences may be of several origins, of 
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which the first two give rise to primer dimers: (1) primer pairs may recognise complementary 

sequences within one another.  If this inter-primer association is stable enough, it may be 

amplified by the DNA polymerase in the PCR reaction mixture, (2) primers may self-anneal, 

forming what is called a hairpin loop.  This occurs when a sequence in the 3’ or 5’ end is 

capable of stably annealing to a sequence within the primer itself, causing the primer to fold 

back onto itself and thus forming a hairpin loop, and (3) the primers may recognise other 

sequences in the target cDNAs which are either upstream, downstream, within the target gene, 

or in other gene sequences, resulting in amplification of incorrect amplicon lengths.  The 

latter describes the formation of non-specific products and not primer dimers.  This non-

specific amplification is usually addressed by the use of melt curve analysis (Bustin, 2000).  

In this method, the fluorescence generated by SYBR green binding to dsDNA is plotted as a 

function of temperature, generating the melt curve.  This is achieved by increasing the 

temperature from a starting temperature of 1 °C below the annealing temperature (Ta) of the 

primers by 1 °C every 30 seconds and measuring the fluorescence at each time point and 

plotting the differential of fluorescence against time.  This generates a characteristic melting 

peak at the Ta of the amplicon (the dsDNA product formed during the PCR process) which 

distinguishes it from any other products, such as primer dimers, which form broad peaks at 

lower temperatures. Any amplification of other sequences not within the gene of interest will 

appear as separate distinct melt peaks (Bustin, 2000). 

 

During the PCR process, there will be a PCR cycle at which the SYBR green-labelled target 

amplification is first detected to be significantly above background.  This cycle is referred to 

as the quantification cycle (Cq).  The greater the quantity of target cDNA in the sample, the 

earlier in the PCR process the Cq will be reached (Bustin, 2000).  At the end of the qPCR 

procedure, amplification curves are generated which indicate the Cq-value, which is inversely 

proportional to the amount of cDNA in the original sample.   

 

This amount of PCR template may be determined in two ways: relative or absolute 

quantification (Wong and Medrano, 2005).  Relative quantification involves the measurement 

of the steady-state levels of a gene of interest relative to an invariant control gene.  In contrast, 

absolute quantification requires the use of a sample of known quantity (also referred to as the 

copy number) of the gene of interest which may be diluted to generate a standard curve.  The 

unknown samples are compared to this standard curve for absolute quantification (Valasek 

and Repa, 2005).  This study used the relative quantification procedure.  This procedure relies 
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on the use of control genes or sequences (referred to as reference or housekeeping genes) and 

a normalisation procedure.  During the analysis of gene expression, several variables need to 

be controlled, such as the amount of starting material, enzymatic activity, and differences 

between the overall transcription activity of the experimental cells (Vandesompele et al., 

2002).  One strategy to normalise for these variations is the use of reference or housekeeping 

genes which should not vary in any of the experimental and control cells. 

 

In this study, the mRNA levels of genes involved in the insulin signalling pathway were 

investigated after exposure to the various induction media or treatments.  These included, 

IRS1, Akt1/PKB, JNK, and PKCε, of which the latter two are involved in the attenuation of 

insulin signalling (Gao et al., 2010; Dasgupta et al., 2011). 
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Methods 

 

1. Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) 

 

1.1 RNA Extraction 

 

After exposure to the various induction media or treatments as described in Chapter 2, the 

cells were exposed to either an equal volume of 1× PBS (pH 7.4) or 0.1 µM insulin for 30 

minutes.  Thereafter, the medium was removed from the cells.  Cellular RNA was extracted 

using TriZol™ (BioRad).  Briefly, TriZol™ reagent was added directly to the culture wells at 

1 mL per 1 × 107 cells.  The lysate was suspended and transferred to a 2 mL safe-lock 

microcapped tube.  The homogenate was allowed to stand for 5 minutes at room temperature, 

followed by the addition of 200 µL chloroform.  The mixture was vigorously vortexed for 15 

seconds and left at room temperature for 3 minutes.  The samples were then centrifuged at 

12 000 ×g for 15 minutes at 4 °C.  The upper aqueous phase (containing cellular RNA) was 

transferred to 1.5 mL RNase-free tubes. 

 

1.2 RNA Precipitation and Quantification 

 

The RNA was precipitated using the ethanol-precipitation technique.  Absolute ethanol was 

added at 1× the volume of the RNA-containing sample and mixed thoroughly, but gently to 

avoid shearing of RNA.  The samples were incubated on ice for 1 hour before centrifugation 

at 12 000 ×g for 30 minutes at 4 °C.  The RNA pellet was re-suspended in 0.5 mL 75% 

ethanol and mixed gently.  The samples were centrifuged as before and incubated for 15 

minutes at room temperature.  Centrifugation was again performed as before and the pellet 

air-dried for 5-10 minutes at room temperature.  The RNA pellet was finally dissolved in 

RNase-free water (Ambion) and incubated for 15 minutes at room temperature before being 

stored at -80 °C.  The RNA samples were quantified using a NanoDrop 2000c (Thermo 

Scientific) 
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1.3 cDNA Preparation and qPCR 

 

cDNA was prepared from the RNA samples using the iScript cDNA synthesis kit from 

BioRad, according to the manufacturer’s instructions. Each reverse transcriptase reaction was 

set up as indicated in Table 1. 

 
Table 1: RT Reaction Mix.  Relative amounts of each component from the iScript cDNA 

synthesis kit added per reaction. 

Components Volume per Reaction 

5× iScript reaction mix 4 µL 

iScript reverse transcriptase 1 µL 

Nuclease free water x µL 

RNA template (1 µg total RNA) x µL 

Total volume 20 µL 

 

The reactions were run using a thermocycler with the following reaction protocol as: 5 

minutes at 25 °C, 30 minutes at 42 °C, 5 minutes at 85 °C, and a final hold at 4 °C.  The 

generated cDNA was stored at -20 °C. 

 

Table 2: qPCR reaction mix components and relative volumes used of each.  The master 

mix described is suitable for use with multiple cDNA samples wherein a single target gene is to 

be analysed.  cDNA is added into separate tubes to which this master mix is added. 

Components Volume per Reaction Volume for 10 reactions 

1× SoFast Evergreen 

Supermix 
6 µL 60 µL 

Sense Primer 1 µL 10 µL 

Anti-sense Primer 1 µL 10 µL 

cDNA 2µL 20µL 

RNase-free PCR Grade 

Water 
10 µL 100 µL 

Total volume 20 µL 200 µL 

 

Quantitative polymerase chain reaction was performed using the SoFast™ Evergreen 

Supermix (BioRad) in a 20 µL reaction.  Each reaction contained a final concentration of 1× 

SoFastTM Evergreen Supermix, 500 mM final concentration forward and reverse primers, 

and 2 µL cDNA (50 ng/µL) in PCR-grade water (Ambion), in duplicate.  Prior to performing 

qPCR, the total number of reactions in each experiment was calculated (plus one extra 
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reaction to accommodate pipetting error) in order to accurately prepare a qPCR master mix 

(Table 2). 

 

The qPCR master mix was set up under sterile conditions as set out in Table 2, with the 

omission of the cDNA component, in a sterile microcapped Eppendorf tube.  The master mix 

was then gently vortexed and briefly spun down.  Thirty six µL of the master mix was 

transferred to pre-labelled, sterile microcapped Eppendorf tubes, each intended for one cDNA 

sample.  Technical replicates were set up in the same tube.  Thus, for the analysis of a single 

target gene or sequence, a total of 14 samples and 2 NTCs required the preparation of 35 

reactions (each sample in duplicate plus 10% compensation for pipetting losses).  Once each 

tube contained the aliquot of master mix, 4 µL cDNA (pre-diluted to 50 ng/µL in PCR-grade 

water (v/v)) was added to each tube corresponding to the cDNA sample.  Thereafter, the 

completed qPCR reaction mix was gently vortexed, briefly centrifuged, and 20 µL transferred 

from each reaction mix to two adjacent wells of a 96-well PCR reaction plate (Bio-rad).  The 

96-well PCR reaction plate was kept on a chilled IsoFreeze plate holder to ensure all 

reactions remained cold while transferring the reactions to the plate.  Thereafter, the plate was 

covered with optical tape (Bio-rad) and centrifuged at 1200 ×g for 2 minutes at 4 °C.  The 

PCR reaction was performed in a Bio-rad iCycler as described below (Table 3).  After each 

experiment, a melt curve analysis was performed to confirm production of a single product.  

The genes investigated are listed in Table 4, indicating the primer sequences and annealing 

temperatures used for each. 

 

The Ta for each primer pair was determined by performing a temperature gradient experiment.  

This involves the preparation of a qPCR reaction as described above, but using a cocktail of 

the cDNA samples.  This cocktail was set up by mixing equal volumes of each cDNA sample 

in a single tube from which 2 µL was used per qPCR reaction.  For each primer pair, a 

theoretical Ta was reported by the supplier (Inqaba Biotech) which was used as a guideline 

for the temperature gradient experiment.  The iCycler was programmed to run a temperature 

gradient ranging from ~2 °C below the theoretical Ta to ~65 °C, providing 8 temperatures for 

testing.  Once the PCR reaction was completed, the highest Ta at which the amplification 

efficiency was still as high as the most-efficient lower Ta was chosen as the experimental Ta 

to be used.  The qPCR data was recorded on the iCycler software, and the Cq values were 

exported for analysis by the qBasePLUS (version 2) software programme (BioGazelle).  

Relative changes in gene expression were compared.  
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Table 3: qPCR conditions used for each of the reference and target genes.  The annealing 

temperature for each primer pair varied between genes (designated Tm) as listed in Table 3. 

Step 
Number of 

Cycles 
Temperature (°C) Time 

Denaturation 1 95 3 minutes 

Denaturation 

40 

95 30 seconds 

Annealing Ta 30 seconds 

Extension 72 30 seconds 

Denaturation 1 95 30 seconds 

Melt Curve 1 Variable 30 seconds 

Hold 1 18 ∞ 

 

Table 4: Primers used for the reference genes or sequences and genes of interest.  Primer 

sequences and respective annealing temperatures of each primer pair were determined using a 

temperature gradient of which the highest, most efficient temperature was chosen to be used. 

Target 
Accession 

Number 

Primer Sequences 
Ta (°C) 

Sense Anti-sense 

TATABP P20226 5’-AGTCCAATGATGGCTTACGG-3’ 5’-TTGCTACTGCCTGCTGGTTG-3’ 59 

ATP5B P06576 
Obtained from GeNorm kit (Primer 

Design) 

Obtained from GeNorm kit (Primer 

Design) 
57 

ALUsx N/A 5’-TGGTGAAACCCCGTCTCTACTAA-3’ 5’CCTCAGCCTCCCGAGTAGCT-3’ 60 

ALUsq N/A 5’-CATGGTGAAACCCCGTCTCTA-3’ 5’-GCCTCAAGCCTCCCGAGTAG-3’ 60 

IRS1 P35568 5’-TCTGTAAGTCTGTCTCCTA-3’ 5’-CCTAATGTGATGCTCTGT-3’ 59 

PKCε Q02156 5’-ATGAGTTCCAGTCTGAATACA-3’ 5’-ATTGACAGCATCCACCTT-3’ 60 

PKB/Akt P31749 5’-AAATGAATGAACCAGATT-3’ 5’-CTAGGAAAGCAAAGAAAT-3’ 56.5 

JNK P45983 5’-ATGTCCTACCTTCTCTATCA-3’ 5’-TTACTACTATATTACTGGGCTTTA-3’ 59 
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Results and Discussion 

 

To investigate whether the various induction media or treatments used in the experimental 

conditions described in Chapter 2 have an effect on mRNA levels within the cells, qRT-PCR 

was performed on RNA samples isolated from cultures of the experimental HepG2 cells.  

Here, the method of relative quantification was used, which requires the use of reference 

housekeeping genes for relative quantification of the genes of interest in the samples. 

 

1. Quantification of RNA 

 

Before analysis of gene expression can be performed, RNA needs to be extracted from 

sample cells and quantified in order to use equal amounts of cDNA per sample in the qPCR 

procedure.  For this, RNA was extracted from HepG2 cells treated with either 1× PBS (pH 

7.4) or 0.1 µM insulin for 30 minutes after being treated with the various experimental 

conditions described in Chapter 2.  The isolated RNA was subsequently quantified using a 

NanoDrop 2000c (shown in Table 5). 

 

Table 5: RNA concentrations per experimental sample.  Each sample represents the 

respective media conditions the cell cultures were exposed to followed by incubation in either 

PBS (designated “-“) or 0.1 µM insulin (designated “+”). 

Sample 
RNA concentration 

(ng/µL) 

A 

260/280 
Sample 

RNA concentration 

(ng/µL) 

A 

260/280 

MCDB-201- 386.5 2.06 IFSF+ 180.5 1.99 

MCDB-201+ 223.2 2.01 PB- 78.5 2.06 

IF- 141.5 1.85 PB+ 91.8 1.62 

IF+ 566.3 1.93 PM- 56.5 1.78 

IFM- 446.3 2.1 PM+ 145.9 1.76 

IFM+ 312.3 2.04 PSF- 50.9 1.64 

IFSF- 680.8 2.06 PSF+ 155.6 1.83 

 

The use of the NanoDrop quantification of RNA provides the advantage of using very little 

sample per quantification (1 µL) and the quantification procedure is very fast.  However, this 

quantification has the disadvantage of being unable to provide accurate insight into the 

quality of the RNA samples and does not discriminate between varying lengths of RNA.  The 

only indication of the purity of RNA is through the A 260/280 ratio and absorption spectra 

reported by the software.  In general, “pure” RNA has an A 260/280 ratio of approximately 
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2.0.  In the experimental samples, it can be seen that in the various cultures there was some 

degree of variation in the A 260/280 ratios and thus indicates variations in RNA purity (Table 

5).  The less “pure” RNA was found in the IF- and all palmitate-treated samples (PB, PM, 

and PSF), except for the PB- sample which had a shift in the 260-280 nm peak.  Inspection of 

the curve shape and absorption peaks may provide some insight into the quality of the sample.  

The curves generated for the experimental samples generated high absorption spectra 

between 220-240 nm (Figure 20).  This indicates the presence of common contaminants such 

as guanine, phenol, or TriZol™, which in this case the peak between 220-240 nm is likely to 

be due to residual TriZol™ in the samples.  More importantly, the presence of residual 

TriZol™ in the samples may result in a shift in the 260-280 nm peak, resulting in an 

overestimation of the RNA concentrations.   

 

 

 

 

 

 

 

 

 

 
 
 

Figure 20: Representative absorption spectrum of RNA sample as analysed by a 

NanoDrop 2000c.  The absorption spectrum ranges from 220-350 nm which indicates the 

characteristic peak at 260 nm for the RNA sample.  Also seen is a peak at 220 nm, indicative of 

the presence of contaminants such as TriZol™. 

 

Therefore, degraded and/or contaminated RNA may still provide high yields of RNA, which 

will result in complications at the qPCR stage.  This may account for the differences seen in 

the expression levels of the reference genes analysed.  The differences in RNA concentrations 

between the samples may be attributed to the effect each treatment has on gene expression or 

effects on apoptosis, as well as the presence of TriZol™ in some of the samples.  Particularly, 

in the palmitate-treated cells, the lowest RNA yield was achieved and these cells showed the 

highest degree of cell death (Chapter 2).  This high degree of cell death may be responsible 
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for the low yield through the small amount of cells present in the sample and the higher 

degree of apoptosis-induced DNA and RNA degradation.  Therefore, quantification of the 

RNA using a different technique would be more beneficial to ascertaining the integrity of the 

RNA prior to cDNA synthesis. 

 

1.1 Reference Genes 

 

For the calculation of relative expression of the genes of interest, three reference genes 

should ideally be used.  For this, four candidate genes or sequences were analysed by qPCR - 

these included the Arthrobacter luteus (ALU) repeat sequences, ALUsx and ALUsq, and the 

TATA binding protein (TATABP), and the ATP synthase β subunit (ATP5B) genes (Figure 

21).  The TATABP was excluded as the primers resulted in no amplification in the samples 

and could thus not be used as a reference gene.  The ALU repeat sequences and ATP5B 

reference gene were selected to be used in this study as their GeNorm analysis yielded 

reference target stabilities in the acceptable range for a reference target to be used. 

 

The ALU repeat sequences are short stretches of DNA originally characterised by the action 

of the Alu (Arthrobacter luteus) restriction endonuclease.  These ALU elements are 

retrotransposons originating from human evolutionary ancestry and are thus present in all 

individuals with a common ancestor.  They are comprised of repetitive DNA sequences of 

approximately 300 base pairs long and occur at high copy number in introns, 3’ untranslated 

regions of genes and intergenic genomic regions.  The ALU repeats are predominantly 

located in gene-rich regions of the human genome and account for more than 10% of the 

genome mass.  Thus, these are the most abundant mobile element and are divided into several 

well-conserved subfamilies, namely the ALUsx, ALUsq, ALUy, ALUj, etc.  Due to their 

genome-wide distribution, any changes in individual gene expression in the cells of interest 

will not influence the total ALU element expression.  This makes the ALU repeat sequences 

valuable in normalisation of qRT-PCR experiments (Vossaert et al., 2013). 

 

ALUsx, ALUsq, and ATP5B were subsequently subjected to analysis using the qBasePLUS 

software (version 2, 2010) to determine the reference gene stabilities and normalisation 

factors to be used in the calculation of the relative expression of the genes of interest (Table 

6).  During analysis, two parameters are calculated by the qBasePLUS software in order to 

verify the selected reference genes.  The M value represents the gene expression stability 
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parameter as calculated by GeNorm, and CV represents the variation of the normalised 

relative quantities of a reference gene across all samples.  The significance of these two 

values is that the lower the M value is, the greater the stability of the reference gene 

expression and the lower the CV value the more significant this stability becomes.  Thus, one 

would select reference genes with the lowest M and CV values.  In this study, the cut-off 

values for the validation of the reference genes were set to 1 and 0.5, respectively. Although 

the genes did not meet these criteria, they were near to them and so were used. 

 

Table 6: Reference gene stability values.  GeNorm calculated housekeeping gene stabilities, 

indicating the M and CV values.  

 

Reference 

Target 
M CV 

ALUsq 0.848 0.292 

ALUsx 0.897 0.340 

ATP5B 1.014 0.423 

Average 0.920 0.351 

 

For each of the reference genes, the fold expression per experimental sample was calculated 

in relation to the experimental control (MCDB-201–) (Figure 22). For ALUsx, the fold-

expression varied between 1 and 8.20, 1 and 5.99 for ALUsq, and 1 and 4.65 for ATP5B.  

The variations seen in the fold-expression of the reference genes when compared individually 

illustrate the problems associated with using only a single reference gene for normalisation of 

qPCR data.  Therefore, the use of the geometric mean of multiple reference genes is a more 

accurate method for normalisation (Vandesompele et al., 2002). The mean M value generated 

was thus 0.920 and the mean CV value 0.351. 
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Figure 21:  Amplification and melt curves of reference genes or sequences.  A) ALUsx 

amplification and melt curve, respectively, B) ALUsq amplification and melt curve, respectively, 

and C) ATP5B amplification and melt curve, respectively. 
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Figure 22: Fold-expression of the three reference genes.  Data are represented as fold 

expression relative to the control sample (MCDB-201-).  A) ALUsx, B) ALUsq, and C) ATP5B. 

 

The variation in the fold-expression may be attributed to differences in the amount of input 

biological material in the qPCR procedure, which may be due to differences in the efficiency 

of cDNA synthesis, RNA integrity, and pipetting.  However, the process of normalisation 

corrects for these differences as it would affect both the reference and target genes to the 

same degree.  From the relative expression of the reference genes, normalisation factors were 

thus calculated based on the geometric mean of the fold expression of the three reference 

genes for all of the samples (Figure 23), which varied between 0.53 and 1.65. 
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Figure 23: Normalisation factors used in the calculation of relative gene expression.  The 

normalisation factor calculated for each experimental sample based on the average expression 

of the three reference genes (ALUsx, ALUsq, and ATP5B) as determined by the qBasePLUS qPCR 

data analysis software.  Data represents the calculated normalisation factors ± S.E.  Samples 

ending with a + or – indicate whether the experimental cells were incubated in the presence or 

absence of 0.1 µM insulin for 30 minutes prior to RNA extraction. 

 

1.2 Genes of Interest 

 

The amplification with the primer pairs for each of the genes of interest (IRS1, PKB/Akt, JNK, 

and PKCε) using the conditions indicated in Table 3 generated a single melt peak for IRS1 

and PKB/Akt, while non-specific melt peaks were generated for JNK and PKCε (Figures 24a 

and 24b).  The NTCs generated non-specific amplicons after 32 cycles.  The difference 

between the lowest NTC Cq values and the highest value in the experimental amplifications 

(true amplicons) was at least 6 cycles.  This indicates that the non-specific amplicon formed 

was a late reaction, which would not affect the specific amplification of cDNA in the samples.  

In the case of PKB/Akt, the amplicons returned high Cq values of 31 and NTCs returned Cq 

values of 37.  The same pattern was seen for the JNK expression and in the PKCε expression 

(Figure 24b); the NTCs did not yield any amplification.  However, in the JNK and PKCε melt 

curves, additional peaks were present.  This additional peak seen in each of these indicates 

the presence of non-specific amplification and must be considered in the interpretation of the 

data analysis, as it will result in inaccurate estimation of relative gene expression. 
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Figure 24a: Amplification and melt curves for genes of interest.  A) Amplicon detection for 

the IRS1 gene starts at the 21st cycle and the latest sample appears at cycle 26.  The NTCs show 

amplification at cycle 32, B) PKB/Akt amplicon has a lowest Cq of 31 and the latest sample 

appears at cycle 32.  The NTCs show amplification at cycle 37.  
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Figure 24b: Amplification and melt curves for genes of interest.  A) The lowest Cq value for 

the JNK gene is 19 highest 26.  The NTCs show amplification at cycle 32, and B) Amplicon 

detection for the PKCε gene starts at the 9th cycle and the latest sample appears at cycle 22.  The 

NTCs show no amplification. 

 

Using the normalisation factors, each target gene’s expression was normalised to the 

expression of the reference genes and expressed as fold-change relative to the control sample 

(MCDB-201-) (Figure 25). 

 

1.2.1 IRS1 expression 
In the control cultures (MCDB-201), insulin stimulation did not cause any clear changes in 

IRS1 expression (Figure 25A).  IRS1 expression was found to be down-regulated in the cells 

made insulin-resistant by IF (0.11 fold change relative to the control non- insulin-resistant 

cells) while insulin stimulation of these cells resulted in an expression level similar to that of 

the control cultures (1 fold change relative to the control non-insulin-resistant cells).  This 

one fold change indicates that the expression level of the sample was identical to that of the 

control sample, indicating some degree of insulin responsiveness and thus may imply 
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incomplete insulin-resistance in the IF-treated cultures.  The PB-treated insulin-resistant 

cultures showed decreased IRS1 expression (0.43 fold change relative to the control non-

insulin-resistant cells) (Figure 25A).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Fold expression of genes of interest.  The relative fold expression (compared to 

MCDB-201-) for each sample normalised to the expression of the three reference genes or 

sequences.  A) IRS1, B) PKB/Akt1, C) JNK, and D) PKCε. 
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1.2.2 PKB/Akt expression 

The expression of PKB/Akt mRNA showed sensitivity to insulin stimulation in the control 

sample (Figure 25B).  Pre-incubation with 0.1 µM insulin up-regulated the expression of 

PKB/Akt by 3.95 fold.  This insulin-stimulated up-regulation was not observed in the IF- and 

PB-treated cells, although the expression levels were at the same level as the control non-

insulin stimulated cells.  Metformin treatment of the cells made insulin-resistant by IF-

induction resulted in up-regulation of PKB/Akt expression in both insulin-stimulated and non-

stimulated cultures.  In contrast, S. frutescens treatment of the IF-induced insulin-resistant 

cultures did not change the expression of PKB/Akt relative to the insulin-resistant culture (IF).  

Furthermore, metformin had no distinct effect on the expression levels in the PM-treated 

cultures, while S. frutescens induced up-regulation of expression in the insulin-stimulated and 

non-stimulated cultures (2.01 and 3.5 fold change, respectively). 

 

Both IRS1 and PKB/Akt are involved in eliciting the effector functions of insulin through 

transduction of the initial phosphorylation signal from the insulin receptor to IRS1.  IRS1 in 

turn activates PKB/Akt through PI3K activity.  PKB/Akt is involved in the promotion of 

glycogen synthesis and suppression of gluconeogenesis through phosphorylation of FoxO1 

(Sesti, 2006).  Therefore, the insulin-resistant state seen in the IF and PB cultures may be a 

consequence of, or exacerbated by, the down-regulation of the IRS1 gene, leading to 

decreased signalling capacity upon insulin binding to the insulin receptor.  Expression of 

PKB/Akt appears to be enhanced in the presence of insulin.  The insulin-resistant samples (IF 

and PB) showed no increased expression in the presence of insulin.  These changes in gene 

expression indicate the involvement of regulation or disruption of IRS1 and PKB/Akt gene 

expression in the development of insulin-resistance.  Through down-regulation of IRS1 and 

prevention of insulin-induced PKB/Akt up-regulation in the IF and PB cultures, insulin 

signalling becomes impeded, exacerbating the insulin-resistant state.  This effect of the IF 

and PB induction media is reversed by metformin and S. frutescens, respectively.  This is in 

line with previous studies where S. frutescens treatment up-regulated IRS1 expression above 

that of IF-induced cells (Williams et al., 2013). 

 

1.2.3 JNK expression 

It is thought that JNK is involved in the development of insulin-resistance through 

attenuation of insulin signalling and promoting HGP and liver steatosis (Gao et al., 2010; 

Dasgupta et al., 2011).  Analysis of JNK expression showed decreased expression in the 
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insulin-stimulated control cells (0.6 fold change relative to the MCDB- culture) (Figure 25C).  

The IF culture resulted in increased JNK expression and cultures stimulated by insulin 

showed down-regulation of JNK expression, reflecting once again incomplete insulin-

resistance in the IF-treated cultures.  Metformin or S. frutescens treatment of the insulin-

resistant IF-treated cultures resulted in no distinct change in JNK expression compared to the 

insulin-resistant cultures (IF).  Palmitate-treated cultures, however, increased JNK expression 

in both insulin-stimulated and non-stimulated cultures (12.07 and 11.73 fold change, 

respectively).  Metformin treatment of the insulin-resistant PB-cultures resulted in down-

regulation of expression relative to the PB-culture, yielding an expression level similar to that 

of the control culture.  The S. frutescens-treated PB insulin-resistant cultures still showed up-

regulated levels of expression (7.54 and 7.6 in the insulin stimulated and non-stimulated 

cultures, respectively).   

 

1.2.4 PKCε expression 

It is known that PKCε is involved in the JNK-induced insulin-resistance (Dasgupta et al., 

2011).  The expression levels of PKCε showed a similar pattern to that of JNK expression 

(Figure 25D).  In the control cultures, insulin stimulation down-regulated PKCε expression 

by 0.01 fold relative to the non-insulin stimulated culture.  In the insulin-resistant cultures 

treated with IF, this insulin-related down-regulation of PKCε expression was abolished – 

having the same expression levels as the control culture.  Metformin treatment of these 

insulin-resistant cultures did not show any distinct effect on PKCε expression, while S. 

frutescens treatment (PSF) resulted in recovery of the insulin-related down-regulation of 

PKCε expression (having a 0.54 fold change in the insulin stimulated culture).  In contrast, 

PB-treated cultures yielded a distinct increase in PKCε expression, but insulin stimulation of 

these cultures did not have any effect on the expression levels (6.4 and 6.24 fold change, 

respectively, relative to the control).  Metformin treatment of the insulin-resistant PB cultures 

caused the expression of PKCε to revert back to the level of the control and to be insulin-

responsive once more (1.43 and 0.33 fold change in the non-insulin and insulin-stimulated 

cultures, respectively).  Similarly, S. frutescens-treatment recovered the insulin-related effect 

on PKCε expression; however the levels were still higher than that of the control culture (5.34 

and 4.11 fold change in the non-insulin and insulin-stimulated cultures, respectively).   

 

The up-regulation of the JNK and PKCε genes may lead to attenuation of insulin signalling 

through increased activity of both JNK and PKCε.  Interestingly, the expression of these 
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genes is up-regulated in the PB-culture, wherein palmitate-induced insulin-resistance acts 

mainly through the activities of both JNK and PKCε.  However, this change in gene 

expression may not be a direct consequence of palmitate induction, but rather an indirect 

consequence due to the oxidative stress induced by palmitate, which activates the cellular 

stress signalling response in which JNK and PKCε are functional (Gao et al., 2010). 

 

S. frutescens shows potential as an anti-diabetic treatment through its ability to recover 

insulin-responsive expression of genes involved in insulin signalling (IRS1 and PKB/Akt) and 

recover the insulin-responsive expression of genes involved in attenuating insulin-resistance 

(JNK and PKCε).  The expression of these genes may, however, not be causative factors in 

the development of insulin-resistance, but may be consequences of the insulin-resistant state.  

This cause and effect relationship between gene expression and insulin-resistance is difficult 

to elucidate and it may also be a complex combination of both causative and consequent 

responses.  Furthermore, it must be noted that the expression of JNK and PKCε may be 

misrepresented due to the presence of non-specific peaks in the melt curve analyses.  In 

addition, the qPCR experiment was performed using only a single run per gene which 

contained duplicate samples.  This affects the statistical analysis of data such that no 

reasonable statistics can be performed due to a lack of replicate experiments (n = 1 in this 

study). 
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Chapter 5 

Summary 

 

Recent studies into the molecular mechanisms underlying T2DM have shown that high levels 

of insulin and fructose and high fat diets are capable of inducing the insulin-resistant state 

(Williams et al., 2013; Ruddock et al., 2008).  Furthermore, the potential of the South 

African medicinal plant (S. frutescens) as an anti-diabetic agent was investigated in this study.  

 

The primary objective of the current study was to investigate the changes in cellular 

physiology during the development of insulin-resistance and the effect a hot aqueous extract 

of S. frutescens has on the insulin-resistant state and related physiologic changes.  In order to 

do this, two models of insulin-resistance were established, using the hepatocyte cell line 

HepG2, which reflected two causative factors in the development of insulin-resistance, 

namely hyperglycaemia and the compensatory hyperinsulinaemia, and hyperlipidaemia.  

HepG2 human hepatocyte cultures were chronically exposed to high levels of a combination 

of insulin and fructose (IF) (0.1 µM and 1 mM, respectively) or high levels of palmitate (PB) 

(0.25 mM).  After 24 hours, the insulin-resistant state was confirmed by measuring hepatic 

glucose metabolism and homeostasis in the presence of 0.1 µM insulin by, monitoring 

gluconeogenesis and glycogenolysis (Chapter 2).   

 

Upon chronic exposure to the IF and PB induction media, gluconeogenesis and 

glycogenolysis were significantly increased, characteristic of the insulin-resistant state, as 

insulin normally supresses these metabolic pathways.  It is suggested that the unregulated 

metabolism of fructose in the liver results in increased TCA cycle activity, causing increased 

activity in the mitochondrial electron transport chain and consequently increases ROS 

production.  This in turn leads to ROS-induced JNK activation, which is implicated in 

attenuation of insulin signalling through increased serine phosphorylation of IRS1/2, either 

by JNK directly or JNK-induced PKCε activity.  Furthermore, JNK causes activation of 

FoxO1, activity which causes decreased glycogenesis and increased expression of the 

gluconeogenic genes PEPCK and G6Pase, HGP (Gao et al., 2010).  In addition to this, 

increased fructolysis causes an increase in acetyl-CoA levels through metabolism of the 

fructolysis product, glyceraldehyde 3-phosphate and fructose-induced inhibition of PDK, and 

subsequently increased PDH activity.  The activity of PDH is further induced by fructose 1-
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phosphate and acts in conversion of pyruvate to acetyl-CoA, further increasing acetyl-CoA 

levels derived from fructose metabolism.  Acetyl-CoA induces pyruvate carboxylase, PEPCK, 

and G6Pase activities and inhibits pyruvate kinase – promoting gluconeogenesis (Noguchi et 

al., 2009).  Hyperinsulinaemia is implicated in uncoupling of insulin action wherein 

deregulation of FoxO1 results in increased gluconeogenesis, while SREBP-1c insulin 

responsiveness remains intact, resulting in insulin-induced lipogenesis still being active 

(Gonzalez et al., 2011). 

 

Palmitate-induced gluconeogenesis and glycogenolysis occurs through a similar mechanism 

to that induced by fructose.  The main difference is that palmitate metabolism occurs within 

the mitochondria and peroxisomes where successive rounds of β-oxidation lead to increased 

acetyl-CoA production.  Acetyl-CoA may enter the TCA cycle leading to increased ATP 

production.  Apart from the oxidative stress this induces, it also results in an increase in the 

cellular ATP/AMP ratio, leading to inactivation of AMPK, which in turn alleviates the 

AMPK-induced inhibition of TORC2 and SREBP-1c activity – increasing gluconeogenesis 

and lipogenesis (Viollet and Foretz, 2013).  In addition to this, inactivation of AMPK 

alleviates its inhibitory effect on acetyl-CoA carboxylase (ACC).  This allows ACC to 

convert acetyl-CoA to malonyl-CoA, which in turn inhibits the activity of CAT.  This 

prevents the transfer of acyl-CoAs into the mitochondrial matrix for subsequent β-oxidation.  

Thus, cytoplasmic levels of palmitate increases, which in turn inhibits DGAT2, leading to 

increased DAG accumulation (Coll et al., 2008). 

 

In chapter 2, the successful establishment of two insulin-resistant cell models using elevated 

levels of insulin and fructose and elevated levels of palmitate is described.  Treatment of 

these cultures using a hot aqueous extract of S. frutescens improved the insulin-resistant state 

through decreasing the amount of hepatic gluconeogenesis and glycogenolysis. 

 

After the establishment of the insulin-resistant models, the next step was to investigate the 

changes in cellular physiology under the insulin-resistant condition.  Changes in lipogenesis, 

as measured by the amount of lipid accumulation, oxidative stress, and β-oxidation were 

analysed in Chapter 3. 
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Lipid accumulation was seen to be increased in both IF and PB models as measured by the 

Oil-Red-O assay, which predominantly measures the levels of TAG.  In contrast, the Nile 

Red assay detected no significant increases in lipid accumulation, except in the positive 

control.  This may indicate that the insulin-resistant models do not accumulate phospholipids.  

Due to the differences in lipid accumulation detected using the two staining methods for 

cellular lipids, it was decided to analyse the cellular lipid profiles within the different 

treatments.  This was achieved by running TLC plates of total lipid extracts from cells 

exposed to the various induction media or treatments.  The TLC analysis indicated 

differences in lipid profiles within the two models of insulin-resistance and treatments.  The 

IF model showed mainly significant TAG accumulation, while the PB model showed mainly 

DAG accumulation.  The differences in lipid accumulation reflect the different mechanisms 

through which the IF- and PB-treatments induce insulin-resistance.  Treatment with IF 

predominantly involves fructose-induced insulin-resistance and liver steatosis.  On the other 

hand, palmitate-induced DAG accumulation results in activation of JNK, which in turn elicits 

the insulin-resistant state.  Thus, in the IF model, lipid accumulation may be more a 

symptomatic effect, while in the PB-model the lipid accumulation may be a causative factor 

in the development of insulin-resistance. 

 

Oxidative stress is involved in the development of insulin-resistance.  This study investigated 

the levels of NO and ROS after induction and treatment.  The NO levels were to be elevated 

only in the PB model 1 hour post-induction, and remained elevated for up to 6 hours.  After 

24 hours, the NO levels returned to normal, while ROS levels were significantly increased in 

both the IF and PB models.  It is suggested that NO is implicated in the palmitate-induced 

ROS production through initiating mitochondrial DNA damage, exacerbating mitochondrial 

dysfunction.  Reactive oxygen species are generated by mitochondria during the metabolism 

of FFAs and acetyl-CoA derived from metabolic pathways, such as glycolysis and fructolysis.  

The increased metabolism of palmitate and fructose was reflected by the increase in acetyl-

CoA and ROS levels.  Increased acetyl-CoA allows for increased ROS production through 

the TCA cycle and subsequent ATP production via the electron transport chain.  Elevated 

ROS levels in turn induce JNK activity, which leads to the insulin-resistant state (Gao et al., 

2010). 
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The aim of this study was to investigate the anti-diabetic activity of S. frutescens.  Treatment 

of the IF- and PB-treated cultures with the plant extract resulted in reversal of the insulin-

resistant state as indicated by the glucose oxidase and anthrone assays described in chapter 2.  

This reversal is attributed to the ability of S. frutescens to decrease lipid accumulation of both 

TAG and DAG, as found in the lipid accumulation study described in chapter 3.  Furthermore, 

S. frutescens is implicated in reducing the amount of ROS, but not NO, leading to decreased 

oxidative stress and subsequently decreased activation of JNK.  This in turn prevents JNK-

induced gluconeogenesis and impaired insulin signalling.  In the IF model, ROS levels were 

returned to the control level, while in the PB model, although being significantly reduced, the 

levels were still above the control level.  This may be explained by the increased acetyl-CoA 

levels measured in the PSF treatment.  S. frutescens may be implicated in increasing β-

oxidation of the free palmitate contained in the induction medium, increasing acetyl-CoA 

production.  The ROS levels may also be decreased by the anti-oxidant activity of L-

canavanine contained in the S. frutescens extract.  Thus, S. frutescens shows potential as anti-

diabetic treatment through its ability to induce suppression of gluconeogenesis, lipid 

accumulation, and oxidative stress. 

 

The work described in chapter 4 focussed on determining whether the various models and 

treatments described in Chapter 2 had any effect on the mRNA expression of two genes 

involved in the insulin signalling pathway (IRS1 and PKB/Akt) and two genes involved in 

attenuating insulin signalling (JNK and PKCε). 

   

From the relative fold expression of the genes of interest, it was determined that the IF-

induction resulted in incomplete insulin-resistance, as it causes down-regulation of the 

expression of IRS1, but insulin-stimulated up-regulation of the gene remains intact.  In 

contrast, PKB/Akt expression does not maintain insulin-responsive up-regulation. However, 

in both the insulin-stimulated and non-stimulated cultures, the gene expression was still seen 

to be at control level.  Thus, the IF model does not seem to induce changes in the expression 

of PKB/Akt but rather prevents the insulin-induced changes in expression.  Similarly, IF-

induced cultures showed up-regulation of JNK, while being down-regulated in the presence 

of insulin. PKCε expression did not respond to the insulin stimulus.  Hence, some degree of 

insulin sensitivity must remain intact.   
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The palmitate model yielded different results.  IRS1 expression was down-regulated and did 

not maintain insulin responsiveness; while PKB/Akt exhibited the same expression as in the 

IF-induced cultures.  Furthermore, both JNK and PKCε expression was up-regulated in the 

PB-induced cultures and insulin stimulation had no effect on their expression.  This pattern of 

expression indicates that the mechanism by which insulin-resistance develops is complex and 

may be different depending on the causative factor, i.e. whether hyperinsulinaemia and 

hyperglycaemia or hyperlipidaemia is responsible. 

 

Treatment of the insulin-resistant cultures with either metformin or S. frutescens had differing 

effects on gene expression, suggesting that these treatments for insulin-resistance may be 

acting through different mechanisms, as also indicated by data presented in chapter 3.  

Metformin treatment of the cells made insulin-resistant by the IF model produced up-

regulation of IRS1 and PKB/Akt in both insulin-stimulated and non-stimulated cultures.  In 

the PB-induced cultures, IRS1 and PKB/Akt expression remained down-regulated. JNK and 

PKCε expression were down-regulated in comparison to the PB-induced cultures, but 

recovered insulin responsiveness.  In contrast, S. frutescens was able to recover the 

expression of IRS1 and PKB/Akt to the same level of the control in non-insulin treated 

cultures, as well as the insulin responsiveness of these genes following insulin stimulation.  

JNK expression was down-regulated by S. frutescens, compared to the PB culture, however it 

was still above that of the control non-insulin-resistant MCDB culture, and insulin 

responsiveness was not recovered.  PKCε expression remained up-regulated, although insulin 

responsiveness appeared to be recovered. 

 

The changes in gene expression indicates two main points.  First, the method of insulin-

resistance induction influences the expression of these genes in specific ways and hence may 

act via different mechanisms.  Second, metformin and S. frutescens exhibit anti-diabetic 

activity as indicated by their differing effects on the recovery of gene expression to the level 

on non-insulin-resistant cultures.  This indicates that these treatments act through different 

mechanisms in order to reverse the insulin-resistant state. 

 

It must be noted that the RNA extracts may have been compromised and thus the gene 

expression data may not fully represent the expression levels of the respective genes and 

reference genes.  Furthermore, mRNA expression levels do not reflect the functional protein 

expression levels.  This is due to different RNA processing mechanisms, RNA silencing 
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which can prevent translation of the mRNA, RNA degradation which may affect the levels of 

protein (if any) expressed, differing translation efficiencies, differing protein half-lives and 

post-translational modification or activation of the protein product (Bustin and Nolan, 2004; 

Bustin, 2010).  For full elucidation of gene expression, it was intended to analyse the protein 

expression levels of the genes of interest and to determine the phosphorylation states of these 

under the various induction or treatment conditions by flow cytometry.  However, due to time 

constraints this analysis could not be performed. 

 

Conclusion 

In conclusion, the two models of insulin-resistance indicate that the development of insulin-

resistance may be through different mechanisms.  Treatment of the insulin-resistant cells with 

either metformin or S. frutescens showed different effects in each model, suggesting different 

modes of action. 

 

Future studies would include repetition of the qRT-PCR experiment and the addition of flow 

cytometric analysis of protein levels and phosphorylation.  Firstly, the purification of RNA 

may be performed by using RNA spin columns which would decontaminate the samples.  

Furthermore, RNA quantification may be performed using the Agilent RNA 6000 Nano kit 

which will allow for more accurate quantification of RNA and provide a so-called RIN-value 

which indicates the quality of the RNA sample.  This RIN-value would enable the selection 

of the most “intact” RNA samples for cDNA generation and further analysis by qPCR.  This 

approach would ensure that the cDNA used in the qPCR analysis are of the highest quality 

and thus avoid the complications encountered in the current study.   Additional genes may be 

investigated by qRT-PCR, such as genes involved in the metabolic pathways described in 

chapters 2 and 3.  These would include gluconeogenic genes such as PEPCK and G6Pase, 

and lipogenic genes such as TORC2 and SREBP-1c.  The analysis of these genes may reveal 

other mechanisms at work in the two models and during treatment with either metfromin or S. 

frutescens.  Flow cytometric analysis of proteins and nuclear factors involved in changing 

gene expression such as FoxO1, HMGA1, and ChREBP would also be informative.  This 

would reveal more about how the two models induce the insulin-resistant state.  Additionally, 

the investigation of the lipid fractions may be done by using alternative methods such as gas 

chromatography (GC) or GC-mass spectrometry (GC-MS) would allow for more accurate 

and specific quantification of different lipid subtypes not limited to a single class, as seen 

with the TLC plates in this study.  Alternatively, liquid chromatography tandem mass 
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spectrometry (LC-MS/MS) can be used to analyse specific subtypes of lipids more in detail in 

order to identify the different proportions of each type of lipid.  The analysis of acetyl-CoA 

may be performed using high performance liquid chromatography (HPLC), reverse phased-

HPLC, or LC-MS/MS as this would be more sensitive and accurate in the determination of 

each type of acyl-CoA.  This will allow investigation of important mediators of hepatic 

steatosis such as stearoyl-CoA, acetyl-CoA, and malonyl-CoA.  Finally, analysis of ATP 

levels and mitochondrial membrane potential would help determine whether S. frutescens 

acts through a similar mechanism to metformin with regards to decreasing lipid accumulation 

and gluconeogenesis. 

 

This study therefore indicates the promising ability of S. frutescens to reverse the insulin-

resistant state, and associated cellular physiological changes through decreasing 

gluconeogenesis, glycogenolysis, liver steatosis, and oxidative stress, making it a strong 

candidate for the development of a novel alternative treatment for insulin-resistance and 

T2DM. 
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