

SoDA: A Model for the
Administration of Separation of
Duty Requirements in Workflow

Systems

Stephen Perelson

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by South East Academic Libraries System (SEALS)

https://core.ac.uk/display/145051747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SoDA: A Model for the Administration of Separation of Duty
Requirements in Workflow Systems

This dissertation comprises research work completed in the field of

INFORMATION TECHNOLOGY

and is submitted by

STEPHEN PERELSON

in accordance with the requirements for the degree of

MAGISTER TECHNOLOGIAE : INFORMATION TECHNOLOGY

at the

PORT ELIZABETH TECHNIKON

Promoter : R.A. Botha
Year : 2001

iii

DECLARATION

I, Stephen Perelson, hereby declare that –

• The work in this dissertation is my own original work.

• All sources used or referred to have been documented and recognised.

• This dissertation has not been previously submitted in full or partial

fulfilment of the requirements for an equivalent or higher qualification at

any other recognised education institution.

Stephen Perelson

 iv

ABSTRACT

The increasing reliance on information technology to support business

processes has emphasised the need for information security mechanisms.

This, however, has resulted in an ever-increasing workload in terms of

security administration. Security administration encompasses the activity of

ensuring the correct enforcement of access control within an organisation.

Access rights and their allocation are dictated by the security policies within

an organisation. As such, security administration can be seen as a policy-

based approach.

Policy-based approaches promise to lighten the workload of security

administrators. Separation of duties is one of the principles cited as a criterion

when setting up these policy-based mechanisms. Different types of

separation of duty policies exist. They can be categorised into policies that

can be enforced at administration time, viz. static separation of duty

requirements and policies that can be enforced only at execution time, viz.

dynamic separation of duty requirements.

This dissertation deals with the specification of both static separation of duty

requirements and dynamic separation of duty requirements in role-based

workflow environments. It proposes a model for the specification of

separation of duty requirements, the expressions of which are based on set

theory. The model focuses, furthermore, on the enforcement of static

separation of duty. The enforcement of static separation of duty requirements

is modelled in terms of invariant conditions. The invariant conditions specify

restrictions upon the elements allowed in the sets representing access control

requirements.

The sets are themselves expressed as database tables within a relational

database management system. Algorithms that stipulate how to verify the

additions or deletions of elements within these sets can then be performed

within the database management system. A prototype was developed in

order to demonstrate the concepts of this model. This prototype helps

demonstrate how the proposed model could function and flaunts its

effectiveness.

 v

ACKNOWLEDGEMENTS

Reinhardt Botha, for his guidance and perseverance.

The Port Elizabeth Technikon for their complete
support.

The National Research Foundation, whose financial
support made this research possible.

My sincerest gratitude goes to

 vi

CONTENTS

Chapter 1. Introduction.. 1

1.1 The Research Domain .. 2

1.1.1 Role-Based Access Control ... 3

1.1.2 Separation of Duty ... 4

1.1.3 Access Control Administration ... 5

1.2 Research Questions ... 5

1.3 Research Objectives... 6

1.4 Methodology ... 6

1.5 Layout of Dissertation ... 7

Chapter 2. The Workflow Environment.. 10

2.1 Architecture of a Workflow System ... 10

2.1.1 Build-Time Functions ... 12

2.1.2 Run-Time Functions... 13

2.2 Example Workflow .. 13

2.2.1 Defining the Process.. 14

2.2.2 Interpreting the Definition... 15

2.2.3 Interacting with the User .. 16

2.3 Conclusion .. 17

Chapter 3. Information Security... 19

3.1 Information Security Services ... 20

3.2 Access Control.. 22

3.3 Role Based Access Control .. 24

3.4 The RBAC96 Model .. 25

3.4.1 The RBAC96 Entities ... 26

3.4.2 Role Hierarchies .. 27

 vii

3.4.3 Constraints... 28

3.4.4 Formal Summary of RBAC96 .. 29

3.5 Conclusion .. 31

Chapter 4. Separation of Duty... 33

4.1 Related SoD Research ... 34

4.2 A Taxonomy of SoD Constraints... 35

4.2.1 Static Separation of Duty ... 35

4.2.2 Dynamic Separation of Duty .. 36

4.3 Conclusion .. 37

Chapter 5. SoDA: The Concept and Model ... 39

5.1 Scope of Proposed Solution.. 40

5.1.1 Information Technology Scope .. 40

5.1.2 Information Security Scope.. 41

5.2 Conceptual Overview.. 42

5.2.1 The administration paradigm ... 43

5.2.2 The enforcement strategy .. 44

5.3 Conclusion .. 44

Chapter 6. SoDA: The Administration Paradigm ... 45

6.1 Workflow extensions ... 45

6.2 The conflicting entities administration paradigm 48

6.3 Integrity Requirements.. 53

6.4 Conclusion .. 55

Chapter 7. SoDA: The Enforcement Strategy ... 57

7.1 The conceptual Entity Relationship Diagram 57

7.2 Algorithms for Entity Associations... 59

7.2.1 Creating Associations .. 59

 viii

7.2.2 Deleting Associations... 62

7.2.3 Maintaining Role Networks .. 62

7.3 Algorithms for Entity Conflicts ... 65

7.3.1 Creating conflicting entities .. 65

7.3.2 Deleting conflicting entities .. 69

7.4 Algorithms for Entity Maintenance .. 71

7.4.1 Creating entities... 71

7.4.2 Deleting entities ... 71

7.5 Conclusion .. 72

Chapter 8. SoDA: The Prototype... 74

8.1 SoDA: The First Prototype .. 74

8.1.1 Design approach.. 74

8.1.2 Functionality... 75

8.1.3 Difficulties with this approach... 77

8.2 SoDA: The Second Prototype... 77

8.2.1 Design approach.. 78

8.2.1.1 Using triggers to achieve integrity..................................... 79

8.2.1.2 Special considerations when using triggers...................... 80

8.2.2 Functionality... 83

8.2.2.1 Creating role conflicts ... 85

8.2.2.2 Creating user conflicts .. 86

8.2.2.3 Creating permission conflicts.. 87

8.2.2.4 Creating task conflicts... 88

8.2.2.5 Deleting conflicting entities ... 89

8.2.2.6 Creating the role network.. 90

8.2.2.7 Deleting a role from a role network 92

 ix

8.2.2.8 Creating user to role associations..................................... 93

8.2.2.9 Creating permission to role associations 94

8.2.2.10 Creating task to role associations..................................... 95

8.2.2.11 Deleting associations.. 97

8.2.3 Further functionality ... 97

8.3 Implementation Issues .. 97

8.4 Conclusion .. 98

Chapter 9. Conclusion... 99

9.1 Research Questions Reviewed... 100

9.2 Contribution of this dissertation... 101

9.2.1 Development of conflicting entities administration paradigm . 101

9.2.2 Development of enforcement algorithms for static SoD......... 101

9.3 Future Research ... 102

Bibliography .. 104

Appendix A. Paper at Conference... 108

Appendix B. Paper published .. 114

Appendix C. SoDA Prototype Scripts .. 122

 x

LIST OF FIGURES

Fig. 1.1 Layout of Dissertation .. 7

Fig. 2.1 The workflow reference model and components 11

Fig. 2.2 The “internal order” process... 14

Fig. 2.3 Example process instances ... 15

Fig. 2.4 Task instances and user interaction... 16

Fig. 3.1 Role-based access control model.. 26

Fig. 3.2 Role hierarchy example ... 27

Fig. 3.3 Role-based access control model with constraints 28

Fig. 4.1 Categories of Separation of Duties .. 35

Fig. 5.1 Access control phases... 40

Fig. 5.2 Scope of the proposed model .. 41

Fig. 5.3 Detail scope for SoDA.. 42

Fig. 5.4 SoDA: Conceptual view ... 43

Fig. 6.1 Role-based access control model extended with tasks............ 46

Fig. 7.1 Conceptual ERD .. 58

Fig. 7.2 Adding user/role associations .. 60

Fig. 7.3 Adding permission/role or task/role associations 61

Fig. 7.4 Adding roles to a role network ... 63

Fig. 7.5 Deleting role associations from a role network 64

Fig. 7.6 Adding conflicting entities .. 66

Fig. 7.7 Checking user/role association .. 67

Fig. 7.8 Checking permission/role and task/role associations............... 68

Fig. 7.9 Checking user/role associations for role conflict assignments . 69

Fig. 7.10 Checking entity associations for role conflict deletion.............. 70

Fig. 7.11 Deleting a user, permission or task entity 72

 xi

Fig. 8.1 Design approach of the first SoDA prototype........................... 75

Fig. 8.2 Form design environment used to create a.............................. 76

Fig. 8.3 Ensuring conflicting task to conflicting role assignments. 76

Fig. 8.4 Design approach of the second SoDA prototype. 78

Fig. 8.5 A solution to the problem of mutating tables. 82

Fig. 8.6 Anticipated employee assignments for the SoDA environment.84

 xii

LIST OF TABLES

Table 4.1 Static SoD constraints .. 36

Table 6.1 RBAC definitions .. 46

Table 6.2 Conflicting entities matrix ... 55

Table 7.1 The enforcement model chapter layout 59

Table 8.1 The SoDA model prototype scenario layout 85

1

Chapter 1.

Introduction

Businesses are beginning to realise that in order to remain competitive they

need to manage their information more intelligently (Mohanty, 1998). Many

methods exist which a business can make use of to accomplish this task.

Such methods include knowledge management, total quality management

and business process re-engineering (BPR).

BPR projects involve streamlining the current business processes in order to

improve the efficiency of the business (Motwani, Kumar & Jiang, 1998). Often

the implementation of information systems and technology is used to bring

about the improvement of the business processes.

It is generally noted that the use of information systems and technology can

enable better information management. One such information system is

known as a workflow management system. A workflow management system

is often seen as a suitable solution for BPR projects as it separates the

business logic and the information technology support it requires

(Hollingsworth, 1995).

Workflow is a growing area of business technology concerned with the

automation of processes that involve various participants. Workflow

automates the procedures where documents, data, or tasks are passed

between participants according to defined rules to achieve, or contribute to, an

overall business goal. Workflow can thus be seen as the computerised

facilitation or automation of a business process, in whole or in part

(Hollingsworth, 1995).

Workflow software coordinates workflow processes, which are comprised of a

series of tasks that must be performed. These tasks form the basis of a

business process. The workflow software will follow the defined process and

will execute these tasks in the correct order as and when the conditions

stipulate it. This will normally result in items of work that must be completed

by the users that are part of the workflow environment.

Chapter 1. Introduction

 2

These work items are created as the workflow progresses along the defined

process. For example, a purchase order for a low value item may not require

special approval, while orders for a high value item will require approval from

the departmental manager. Due to the nature of the information being passed

through the organisation, information security is an important issue within the

workflow environment. The prevention of fraud and other detrimental

activities within the workflow environment needs to be ensured.

As such, the workflow management coalition (WfMC) has recognised that

information security is an important issue within workflow environments and

has begun working on security specifications (WfMC, 1998). But rather than

specify exactly how the security is to be implemented, the WfMC has left the

decision and the implementation of security services to the software

manufacturers.

Security services form a vital part of any information system within a business.

Information in a business must be protected, and for this reason workflow

management systems do implement security mechanisms (Bertino & Ferrari,

1999). Unfortunately, information security administration is a very complex

and time-consuming activity. The complex nature of the administration of

information security is eased through the introduction of role based access

controls (Bertino & Ferrari, 1999).

The complex nature of information security administration could be alleviated

more if the relationship between the workflow environment and the role-based

environment was better understood. This understanding would result in a

greater understanding of how and where security can be enforced.

In order to understand exactly what this research covers, an overview of the

research domain is in order.

1.1 The Research Domain

The research reported on, in this dissertation, primarily addresses access

control administration. In order to understand what access control is, it is

necessary to review information security services.

Chapter 1. Introduction

 3

Information security involves five generic services (ISO 7498–2, 1989). These

services are: Authentication; Integrity; Non-repudiation; Access Control and

Confidentiality.

An authentication service ensures that the person trying to gain access is

properly identified and is in possession of the required access rights.

The integrity service ensures that the information being accessed is not

corrupted in any way. Corruption may occur through the tampering of data.

A non-repudiation service ensures that the information received is from the

correct source. This enables the receiving party to know without a doubt that

the data came from the sending party and not a third party.

The access control service ensures that data is disseminated to persons who

have valid access rights and not to those persons who do not have the correct

access rights.

The confidentiality service ensures that the information remains secure.

Complex security features can be created by the careful combination of the

basic security services. This project, however, will focus primarily on the

access control service and its synergy with the integrity service.

Access control has to do with the control of access to resources. The

demands required from access control mechanisms have quickly grown to not

only include the specification of "who has access", but also the "type of

access" that is allowed. In the workflow environment, this can be extended to

“who has what type of access to which information, under which

circumstances” (Cholewka, Botha & Eloff, 2000).

In order to ease the administration of access rights to resources, the notion of

user groupings has been defined. This type of access control is referred to as

Role-Based Access Control (RBAC) (Sandhu, Coyne, Feinstein & Youman,

1996).

1.1.1 Role-Based Access Control

In essence RBAC associates permissions with roles, and users with roles.

Users, therefore, receive permissions based on the roles with which they are

Chapter 1. Introduction

 4

associated. Roles typically represent the various job functions in an

organisation and users are therefore assigned roles based on their

responsibilities and qualifications. Users can be re-assigned from one role to

another with ease. Roles can be granted new permissions as new

applications and systems are incorporated, and permissions can be revoked

from roles as needed (Sandhu, 1998). Rules, which are known as

constraints, can be established to govern the relationships between roles.

Constraints are sometimes considered the principle motivation for RBAC.

One common constraint is that of mutually disjointed roles, such as accounts

payable manager and purchasing manager. If the same individual is allowed

to be a member of both these roles, the possibility of committing fraud is

enhanced. This forms the basis for a well-known and time-honoured principle

known as Separation of Duty (SoD) (Ahn & Sandhu, 1999).

1.1.2 Separation of Duty

SoD is a fundamental security principle frequently exercised even in the

paper-based world. The general idea is to ensure that no single person can

be responsible for the completion of a business process (Simon & Zurko,

1997). Several types of SoD can be identified (Simon & Zurko, 1997) (Gligor,

Gavrila & Ferraiolo, 1998).

These types of SoD can be grouped according to time of enforcement. SoD

requirements that can be evaluated already at design time are known as static

separation of duties. Requirements that can only be evaluated during the

execution of workflow processes are known as dynamic separation of duties.

The specification of SoD constraints for either static or dynamic SoD can be

accomplished within the access control administration environment. The

enforcement of static SoD constraints can only be done within the access

control administration environment. Dynamic SoD constraints are enforced

during execution of the workflow processes. This is an important distinction

for this research as it impacts on what can be accomplished within the access

control administration environment.

Chapter 1. Introduction

 5

1.1.3 Access Control Administration

As already mentioned, access control administration is a very complex

problem. Although this administration problem is eased through the use of

roles and permission groupings, the users of the administration systems can

still make mistakes.

An access control administration environment that can prevent user errors

would increase security and maintain ease of use. This is possible by

controlling the complex relationships between the various entities in the

workflow environment.

The entities involved would include those found within RBAC as well as those

identified within the workflow environment. The linking of the workflow

environment with RBAC only serves to increase the complexity of the access

control administration environment. Information security concepts, in

particular access control, will be discussed in more detail in chapter 3.

Now that the research domain has been established the research questions

are examined.

1.2 Research Questions

The creation of a model for an advanced access control administration

environment is envisaged. This model will require a number of problems to be

researched. These problems are specified in the form of questions.

1.2.1 How can RBAC concepts be applied in the workflow environment?

RBAC environments formulate access control requirements in terms of Roles,

Users and Permissions. Additional elements may need to be included into

these formulations due to the fact that the propagation of work will have an

effect on access control. The workflow environment will also dictate how the

RBAC environment makes use of these elements.

1.2.2 How is the specification of SoD requirements influenced by the

inclusion of the workflow entities?

With the inclusion of the additional workflow information into the RBAC

environment, it will be necessary to examine the specification of SoD

Chapter 1. Introduction

 6

principles. Specifically, what the impact upon the constraints between the

different entities will be and what rules will govern how they inter-relate.

1.2.3 Can a single administration paradigm successfully formulate the

range of separation of duty requirements?

The term single administration paradigm describes a shift towards an access

control administration model that combines what used to be separate access

control tasks into one logical entity. The single administration paradigm will

involve the specification of access control requirements and will ensure the

enforcement of these requirements. Other approaches could separate these

tasks into two distinctly different administration entities. The single

administration paradigm would allow for a consistent and easy to use

approach to access control administration.

The answers to these questions all contribute towards the accomplishment of

the primary research objectives.

1.3 Research Objectives

The objective of this research project is to propose a model that can be used

to support the specification and enforcement of static SoD constraints in the

workflow environment. The model should, furthermore, provide a single

administration paradigm.

The proposed model will, furthermore, address the specification of dynamic

SoD constraints employing the same administration paradigm. The proposed

model does not, however, address the enforcement of dynamic SoD

constraints, since this would be the responsibility of run-time components

within the workflow environment.

1.4 Methodology

The research commenced with a literature study. The first part of the literature

study developed an understanding of the workflow environment and

technology currently applied. Thereafter, a study of access control,

specifically focusing on the access control requirements of the workflow

environment, followed.

Chapter 1. Introduction

 7

This study of access control requirements resulted in a detailed study of the

RBAC mechanisms that are frequently used in workflow environments. The

focus of the literature study then shifted to examine SoD requirements.

A model that embodies a single administration paradigm was proposed for the

specification of SoD requirements. The model has been extended to include

the enforcement of static SoD requirements. The research will furthermore

demonstrate the proposed model through the development of a security

administration prototype.

The next section discusses how the results of this research have been

incorporated into the dissertation.

1.5 Layout of Dissertation

The layout of the dissertation is depicted in Figure 1.1. The structure of the

chapters is described below.

Introduction1.

Workflow
Technology

2. Information Security3.

Access Control

RBAC

Separation of Duty4.

Dynamic SoD

Static SoD

SoDA: The Concept and Model5.

SoDA: The Administration
Paradigm

6. SoDA: The
Enforcement Strategy

7.

SoDA: The Prototype8.

Conclusion9.

Figure 1.1 Layout of Dissertation

Chapter 1. Introduction

 8

Chapter 1. Introduction

The problem statement, the objective of the dissertation and the research

methodology are introduced here.

Chapter 2. Workflow Technology

A clarification of the terminology used in workflow environments is followed by

a state of the art overview. A discussion of the concepts of workflow and a

description of the WfMC's reference model is included.

Chapter 3. Information Security

An introduction to information security services is followed by a discussion of

access control in broad terms. Focus then shifts to role-based access control

(RBAC). It is shown how RBAC eases security administration through a

policy-based approach.

Chapter 4. Separation of Duty

Separation of duty as a security policy is introduced. It is shown that the

workflow environment provides an appropriate context for specifying SoD

policies. This chapter introduces the difference between static and dynamic

SoD.

Chapter 5. SoDA: The Concept and Model

The conceptual framework of the model is followed by a definition of the

scope of the model.

Chapter 6. SoDA: The Administration Paradigm

An introduction to the entities that are involved is followed by descriptions and

explanations of the relationships between these entities. It then describes the

conflict paradigm that has been adopted. Thereafter, the conflict concept is

incorporated as part of the model.

Chapter 7. SoDA: The Enforcement Strategy

This chapter introduces algorithms for maintaining integrity in the model.

Chapter 1. Introduction

 9

Chapter 8. SoDA: The Prototype

A discussion of the design of the prototype is followed by an explanation of

the implementation issues. The detailed workings of the prototype are shown.

The lessons learnt and the shortcomings of the prototype conclude this

chapter.

Chapter 9. Conclusion

A summary of the findings of this research is followed by a discussion of

possible future research.

The workflow environment forms the basis of the access control

administration model and, as such, the next chapter will discuss the workflow

environment. In addition to describing the workflow environment, an example

workflow process will be introduced in this chapter and will be referred to

throughout this dissertation.

10

Chapter 2.

The Workflow Environment

Interest in workflow technology has been increasing as is evident with the

plethora of workflow systems available. Companies such as Oracle, SAP,

Microsoft and Adobe have all adopted some workflow functionality into their

products. Workflow systems are also currently being used to facilitate other

areas of business such as customer relationship management (Stadler, 2000).

Many companies have adopted workflow systems as a means of

implementing business process reengineering (BPR) projects (Teng, Jeong &

Grover, 1998). Workflow technology is often used as the solution for BPR

projects as it separates the business logic and the IT infrastructure

(Hollingsworth, 1995).

It is necessary to examine the workflow environment in order to gain answers

to the research questions that were formulated in the previous chapter. The

knowledge gained about the workflow environment will enable role-based

access control to be applied to the workflow environment.

In order to gather this knowledge of the workflow environment, a study of the

Workflow Management Coalition’s (WfMC) generic workflow product

reference model will be carried out. This model identifies the characteristics,

terminology, and components of the generic workflow system (Hollingsworth,

1995). Any developments in workflow technology can be based upon this

generic model. As such, a look at the architecture of a workflow system is in

order.

2.1 Architecture of a Workflow System

The workflow reference model proposed by the WfMC is an effort to

standardise workflow management products. The reference model describes

the concepts of workflow management, the reference architecture, and the

interfaces between the various workflow components (Hollingsworth, 1995).

Chapter 2. The Workflow Environment

 11

Many existing or future workflow systems may differ in implementation but

they encompass some form of the architectural components described in the

workflow reference model. These similarities enable the model to be used as

a foundation for the study of existing and future workflow environments.

Administration and Monitoring Tools

Process
Definition

Tool

Workflow
Client

Applications

Invoked
Applications

Workflow
Enactment

Workflow
Engines

Build-time Run-time

Figure 2.1 The workflow reference model and components

The process definition tool defines a process into a computer processable

form. This defined process is known as a process definition. The process

definition holds all necessary instructions to enable the workflow enactment

software to correctly execute it. Information such as the starting and

completion conditions and user tasks to be undertaken is included within the

definition. In the workflow example, described in section 2.2, the process

definition would be the tasks and the rules to transform between the tasks.

The workflow enactment service interprets the process description. Based on

the process definition it will begin processes and sequence activities. The

workflow enactment software will also add work items to the user work lists

and invoke application tools as necessary.

A workflow engine is the part of the workflow enactment service that places

items onto worklists when user interactions are needed. The worklist handler,

which is part of the workflow client applications, will handle these items.

The worklist handler manages the interaction between users and the workflow

enactment service. The worklist handler progresses the work requiring user

attention. It uses the worklist to interact with the workflow enactment

software. The WfMC uses the term workflow client application in preference

to "worklist handler" to reflect its larger potential usage (Hollingsworth, 1995).

Chapter 2. The Workflow Environment

 12

The workflow environment may invoke applications to handle various tasks

that do not require user interaction. The workflow environment would need

sufficient logic built in to be able to communicate with the invoked application.

The final area of standardisation is a common interface for administration and

monitoring functions. This will allow a single administration and monitoring

tool from one vendor to be used, with multiple workflow environments from

other vendors. These administration and monitoring tools must take into

account the temporal nature of the workflow environment.

For the purposes of this research we distinguish events based upon the time

that they occur. Events can be either build-time or run-time.

Build-time events are typically the process definition and the access control

definition. This dissertation uses the term “build-time function” to refer to

these events. These events are distinct from the run-time events that include

the creation of process instances and the enforcement of access control.

2.1.1 Build-Time Functions

One aim of the build-time functions is to produce a computerised definition of

a business process. This is accomplished by translating a business process

from the real world into a computer processable definition. Various business

analysis, modelling and system definition techniques may be used to produce

the process definition. The process definition can be displayed in various

means such as graphically or textually and is also called a process model,

process template, or process metadata. A system administrator or the

process owner may be responsible for the creation of the process definition.

A process definition comprises of various tasks1 that have associated human

or computer operations. Tasks are the building blocks of business processes

and a user would perform each task. An example of a task that a user would

perform is the ‘Approve Order’ task described in the workflow example in

section 2.2. A computer-controlled task could possibly be the ‘Check Stock’

1 The term ‘activity steps’, which is used by the WfMC, is synonymous with the term ‘tasks’,

which is more widely used within this text (Workflow Management Coalition. 1996).

Chapter 2. The Workflow Environment

 13

task. The scenario depicts this task as being controlled by a user, however it

could be controlled by a computer application if the stock system was

automated. Tasks can be limited to certain sets of users ensuring a level of

access control. Access control specification is another of the build-time

functions and is a major area of focus for this research.

The constraints that ensure access control can also be used to govern the

progression between tasks within a workflow process. These constraints

govern when and if a task should be performed. In the workflow example in

section 2.2, the ‘Approve Order’ task only gets performed if the order is above

a certain value. This is an example of a constraint governing the progression

of the process.

The process definition is subject to standardisation while the means of

creating the definition can vary greatly between workflow products. This

standardisation is necessary to allow for the interchange of data between

other build-time and run-time components.

2.1.2 Run-Time Functions

The process definition is interpreted by software that will create and control

instances of the process. This software will schedule the activities and will

invoke the different human or IT applications as needed. The users who

interact with the workflow environment are the organisation employees and

other people who may form a part of the workflow processes. The run-time

control functions link the modelled process to the real-world process.

In order to understand how a real world process functions within a workflow

management system, an example workflow process will be discussed.

2.2 Example Workflow

The example workflow process definition, which will be used to explain the

workflow concepts in more detail, is depicted in figure 2.2. It describes an

internal order procedure within an organisation. It is made up of activities that

can be performed by members of certain roles such as Employee or Manager

roles. Roles are discussed in depth in chapter 3 but for now a role can be

seen as a direct mapping to an organisational structure. For example, an

Chapter 2. The Workflow Environment

 14

employee may place a purchase order, whilst only a departmental manager

may approve the order.

The internal order process needs to be converted into a process definition for

use by the workflow environment.

2.2.1 Defining the Process

The definition of the process will involve analysing all the tasks and conditions

for every step of the process. The process definition will also define

conditions that must be met during the performance of a task. These

conditions are often expressed as entry and exit conditions for a task

(Hollingsworth, 1995). For example, a purchase order for a low value item

(i.e.. value <= 100) may not require special approval, whilst other orders with

higher values would require approval from the departmental manager.

Note that a task definition may very well be a complete workflow. The "Order

stock" task in Figure 2.2 may, for example, require its own process definition

(WfMC, 1998).

Approved

Rejected

Value > 100 Stock available

Value
<=
100

Out of
stock

Complete order form
Role: Employee

T1
Check stock
Role: Stock controller

T2

Approve order
Role: Manager

T3

Issue stock
Role: Stock controller

T4

Write rejection memo
Role: Manager

T6

Order stock
Role: Stock controller

T5

Figure 2.2 The “internal order” process

At any stage within the workflow environment, multiple instances of this

workflow process may be in operation. Each instance of this workflow

process will need to be interpreted by the workflow enactment service.

Chapter 2. The Workflow Environment

 15

2.2.2 Interpreting the Definition

Each workflow process instance could be at a different point in execution as

shown in figure 2.3. The route taken by the workflow process depends upon

that particular instance’s operational data. An instance of a task is created

upon demand as the tasks are encountered during the processing of the

workflow. In this case, whether the item requested is above a certain value or

whether it is in stock, different tasks will be instantiated. In figure 2.3, process

instance 1 depicts a task (t11) that is waiting for a manager to approve it while

in instance 2 the order has been approved (t23) and is busy being checked by

the stock controller (t22).

 Defining the Process

t 1

t 5 t 6

t 4 t 3

t 2

Interpreting the Definition

Process Definition

Build-time Run-time

t 11

t 13

t 31

t 35

t 34

t 32

t
23

t 21 t 22

Process Instance 1

Process Instance 2

Process Instance 3

Figure 2.3 Example process instances

Process instance 3, however, was of a low value (<=100) and did not need

approval from the manager. This means that task t3 was not instantiated and

thus the process bypassed the manager. Task t2 was instantiated instead and

so the stock controller is checking the order (t32). But the item was not in

Chapter 2. The Workflow Environment

 16

stock and so the stock controller had to order the item (t35) before being able

to issue the stock (t34).

These tasks generally involve placing work items onto the user’s worklists.

Only a user that is associated to the correct role will receive the relevant work

items.

2.2.3 Interacting with the User

The users in the example system, as shown in figure 2.4, are as follows:

• Users A and B are associated with the Manager role.

• User C is associated with the Stock Controller role.

 Interpreting the Definition

Run-time

t 11

t 13

t 31

t 35

t 34

t 32

t 23

t 21 t 22

Process Instance 1

Process Instance 2

Process Instance 3

Interacting with the User

t 13

t 13

t 22

User A
Manager

User B
Manager

User C
Stock Controller

Figure 2.4 Task instances and user interaction

At various points during the execution of the workflow process instances,

worklist items will appear on different users’ worklists. These worklist items

will only appear in certain users’ worklists, which are determined by the

relationships between the users and the roles, and the task and the roles.

Chapter 2. The Workflow Environment

 17

The worklist items of a task may only be assigned to users who are

associated with the same role that the task is associated with.

An example is depicted in figure 2.4. Since a worklist item based on task

instance for task t13 appears on two worklists, user A’s and user B’s, both are

managers. As soon as one of them completes the worklist item, it will

disappear from both of their lists. Task instance t22 appears on user C’s

worklist as a worklist item, as user C is a stock controller within the

organisation.

Task instance t23 of process instance 2 only appears on user B’s worklist

unlike task instance t13, which appears on both user A and B’s worklists. This

is due to the fact that user A, as a member of the employee role, placed the

order. That is, user A submitted the order form that instantiated process

instance 2. A constraint is in place that prevents a user from approving self

placed orders in order to reduce the possibility of fraud. This technique of

restricting access rights is known as separation of duty and is discussed

further in chapter 4.

This type of constraint closely follows the organisational security policies and

would have to be programmed into the process definition through an

administration tool. An organisation’s access control policy needs to maintain

the integrity between system objects and real world objects. This means that

the organisation’s workflow systems should only allow actions that would be

allowed to occur in the real world. This can only happen when the business

constraints that form the organisational policies are mirrored within the

workflow access control decisions.

2.3 Conclusion

This chapter has defined the workflow environment and has introduced the

core components of the workflow environment. These components include

the build-time and run-time components as well as the concept of the task.

An example workflow definition was used to illustrate how the workflow

environment functions, as well as to demonstrate some access control

principles. This workflow example will be referred to when describing

information security.

Chapter 2. The Workflow Environment

 18

The WfMC has identified that information security and the area of security

administration are important for workflow systems (WfMC, 1998). An

important part of information security is access control and the accompanying

administration for the access control requirements.

While some information security services may be handled by the underlying

operating system, there are still areas of information security within the

workflow system that need specialised information security services. These

information security services, and especially access control services, will be

reviewed and discussed in the next chapter.

19

Chapter 3.

Information Security

Information security has been recognised as an important aspect of a

workflow environment from an organisation’s perspective. More importantly it

should be noted that even though various types of security services exist, it

was ascertained that access to the data and the integrity of the data are

paramount. In order to correctly implement these two information security

services, a proper understanding of all the information security services is

needed.

Another reason for examining the information security services is the

introduction of open systems such as the Internet. An organisation’s critical

data is being distributed through these open systems and as such a higher

degree of security is required.

A lapse of security that causes some of this information to become freely

accessible could be very detrimental to the day-to-day activities of the

business. In order to properly protect an organisation’s information, various

security services need to be implemented and used by the organisation.

Doing so will prevent many possible offences. Offences could include

(Stallings, 1995):

• Modification: An unauthorised user gains access to valuable data and

modifies that data. This constitutes an attack on integrity. An example of

this could be the alteration of the contents of a purchase order through the

worklist item in the workflow’s worklist handler.

• Fabrication: An unauthorised party adds fake objects to the system. This

constitutes an attack on authenticity. An example of this would be

transmitting fabricated worklist items in order to gain from manipulating the

workflow system.

• Interception: An unauthorised party gains access to an asset of the

system. This constitutes an attack on confidentiality. An example would be

Chapter 3. Information Security

 20

the monitoring of messages on the network. In so doing, values that would

trigger certain checks could be altered in order to bypass those checks.

Five different security services are generally recognised. These security

services are generally known as: authentication; confidentiality; non-

repudiation; integrity; and access control (ISO 7498–2, 1989). These security

services have evolved from within the real world and are also very relevant

within the information technology realm.

3.1 Information Security Services

Through the correct use of various security services, a secure information

environment can exist (Stallings, 1995). It is important to understand what

each service tries to accomplish and how they can work together.

Authentication services ensure the users are who they claim to be. The

correct identification of a user is important for maintaining accountability and

access control. There are three discernable methods of authentication, which

include: passwords; physical tokens; and biometric techniques (Sandhu &

Samarati, 1996).

Passwords are normally utilised within the login process in software products.

They are not a very secure method unless they are chosen carefully and

changed very often. Passwords, besides being susceptible to guessing or

automated dictionary attacks, are also susceptible to discovery through the

use of network sniffers. The use of passwords alone does not ensure a

secure environment.

Physical tokens, such as smart cards, are a better approach. Users now need

to physically have a valid access token to gain control. This coupled with

needing a password makes for better security. An example of a security token

would be a bank’s ATM card. However, tokens can be stolen or forged and

as such are not as secure as they could be.

Biometric techniques offer another approach to the security token method.

Instead of making a user keep a token such as a smart card, biometric

techniques allow the user themselves to be the key. A variety of

characteristics including fingerprints, retinas, voice patterns, and hand

Chapter 3. Information Security

 21

geometry, are able to be measured and to uniquely identify a person.

Biometric security methods are also not failsafe and as such should also be

used in combination with other authentication methods.

Confidentiality services maintain the non-disclosure of information from

unauthorised users. It also maintains the confidentiality of information that is

transferred between parties. To keep information confidential it can either be

kept hidden or it can be encrypted. Various encryption schemes exist

including symmetrical key and public/private key systems, using a variety of

enciphering mechanisms.

There are two levels of data confidentiality (Michener, 1999). Firstly, keep

unauthorised users unaware of the existence of the data. This can be

accomplished by proper access control to the data. As such, it is limited to

the computer systems and applications that store the data. Secondly, keep

unauthorised users unaware of the semantic content of the data. This can be

accomplished through the encryption of the data by utilising various

encryption techniques.

Non-repudiation services prevent denial of service to properly authenticated

and authorised users (Zhou & Lam, 1999). Non-repudiation is normally

achieved through the use of digital signatures (Zhou & Lam, 1999). These

digital signatures are made up of a public/private key encrypted addition to the

information being transmitted. If the sender’s public key deciphers the

encrypted signature, then it is proof that the message was from the sender.

For example, if a recipient of a message returns a proof of delivery with a

digital signature, then non-repudiation is provided. Due to the nature of public

and private key encryption, only the recipient’s private key could have created

the digital signature. And this digital signature provides non-forgeable

evidence of the delivery of the message. Symmetric encryption cannot

guarantee non-repudiation since the sender and the receiver share the key.

This enables either party to create a fake digital signature.

Integrity services are responsible for the sound state of the information.

Integrity of information is dependant upon the timely, accurate, complete and

consistent nature of the information. Integrity services provide for the basic

Chapter 3. Information Security

 22

protection against corruption during storage or transfer through the effective

use of various mechanisms such as a checksum. These mechanisms are

typically already in place in data storage devices and communication

protocols. Cryptographic methods provide for strong data integrity through the

use of a calculated message hash of the data. If the data gets corrupted

enroute then it will be identified as such when the message hash is decrypted.

As the data is not encrypted it does not provide for confidentiality.

Integrity issues can be separated into three different aspects (Leymann &

Roller, 1999): (1) operational integrity deals with concurrent access to data,

(2) physical integrity implies protection from loss of data and (3) semantic

integrity requires that the data complies with the appropriate business rules.

Operational integrity can be maintained through concurrency controls as part

of the integrity service. Physical integrity can be achieved by the use of

checksums, provided by the integrity service, and cryptographic techniques

provided by the confidentiality service. Semantic integrity relies heavily on the

access control service, as it will require that data can only be changed

according to certain business rules.

Access control services ensure that a user only has access to the

information and resources for which the user has rights. It is important to

ensure that users have access to the information that will allow them to do

their work. It may also be important to restrict users from access to resources

and information that they do not need. An organisation should be able to

specify who can access information and how and when it can be accessed,

including under which conditions (Sandhu et al., 1996). Access control is

seen as an indispensable part of any information sharing system (Shen &

Dewan, 1992).

This research focuses upon access control more than any of the other

security services. An in-depth look at this particular information security

service will be followed by an analysis of role based access control.

3.2 Access Control

Once authentication services are in place it becomes possible to implement

access control services. There are several forms of access control, including

Chapter 3. Information Security

 23

discretionary access control, lattice-based access control and role-based

access control (Sandhu & Samarati, 1994).

Discretionary Access Controls (DAC) revolves around the concept of the data

having an owner. The owner determines who will have access to this data.

Access to a copy of the data can be obtained as DAC allows data to be

copied without restriction from object to object.

Lattice-based access controls (Sandhu, 1993) are also known as mandatory

access controls (MAC). This type of access control is based on rules for

deciding whether a user may access requested data. The rules only allow the

transfer of information in one direction in a lattice of security labels. Labels

would include low, medium and high security and users would be assigned to

a label. The confidentiality requirements of the military brought about MAC,

but it has uses in many other applications.

In the workflow environment, access needs to be granted when a user needs

it and should be revoked once the user has completed the work. In the

workflow example shown in figure 2.2, the stock controller should only be able

to issue stock when an order comes through. The rights needed to issue

stock should only be granted when the internal order process has reached the

task that requires it. Neither MAC nor DAC support this functionality.

If the workflow system made use of MAC for its access control requirements

then a user would gain access to objects that they should not gain. This is

due to the global nature of the access that is granted.

If the workflow system made use of DAC for its access control requirements

the security administration of the system would become very complex. This is

due to the fact that each object within the system could be owned by a unique

user and as such would involve the complex administration of access rights

(Osborn, Sandhu & Munawer, 2000). Administration of the access rights to

the individual users is also a complex exercise.

Extensions to access control models such as role based access control have

been introduced in order to add these types of functions (Nyanchama &

Osborn, 1999). Access rights are assigned directly to the user with DAC,

while with MAC there is less control over the particular access rights that are

Chapter 3. Information Security

 24

assigned to a particular user. Role-based access control mechanisms deal

with these issues by assigning the access rights to roles. A user will gain

these access rights when he is assigned membership to the roles (Sandhu et

al., 1996). This greatly simplifies information security administration.

RBAC can effectively enforce both MAC and DAC (Sandhu & Munawer, 1998)

and is policy neutral. The policy that an RBAC based system enforces is a

direct result of the RBAC components and their interactions (Sandhu et al.,

1996). The RBAC model affords an administrator the opportunity to express

an access control policy in terms of the way that the organisation is viewed.

The RBAC model makes use of roles, which are used to logically group

permissions together so that they reflect the organisation’s view or the

application’s view. Roles are basically a semantic construct around which a

variety of different concepts and models can be formulated.

Since this dissertation will be utilising RBAC, a more in-depth look at RBAC is

in order.

3.3 Role Based Access Control

RBAC greatly simplifies the permission to user information security

administration. This simplification is achieved by only needing to administer

the user to role assignments instead of needing to assign all required

permissions to every user. Users get assigned to the roles with those

permissions they need to do their work.

This can be seen in a DBMS such as Oracle where roles can be created with

all the access rights and permissions necessary for a particular user group

(Oracle, 1999). Any user that comes into the organisation as part of the group

will be assigned to that role and will immediately have access to all required

data.

RBAC also supports the following security principles: least privilege and

separation of duties. It supports least privilege by only allowing the

permissions required to perform a job to be assigned to a role. It ensures

separation of duty by ensuring that mutually exclusive roles complete a

sensitive task. The application of these principles cannot be enforced by

Chapter 3. Information Security

 25

RBAC. These principles rely upon the correct use by the security

administrator.

It is possible to predefine the role-permission relationships in order to simplify

the assignment of users to predefined roles. The role-permission

assignments tend to change slower than the user-role assignments (Sandhu

et al., 1996). It is also seen to be desirable to allow administrators to be able

to administer the user-role assignments but not the permission-role

assignments. This is due to the fact that assigning users to roles is less

technical than assigning permissions to roles.

It is important to differentiate between the concept of groups and roles.

Groups are typically seen as groupings of users while roles are seen as

groupings of permissions (Sandhu et al., 1996). It can also be seen that a

role brings together groups of users and groups of permissions, and

consequently acts as an intermediary.

In this dissertation the existing and well-accepted RBAC96 model (Sandhu et

al., 1996) is used. Choosing an independently developed existing model for

this exercise gives us an element of objectivity in assessing the power of the

proposed administration paradigm. An overview of the RBAC96 model must

therefore be given.

In order to better understand the RBAC model, the different concepts that

form this model will now be described.

3.4 The RBAC96 Model

Sandhu et al (1996) describes four different conceptual RBAC models. The

first is RBAC0, which is the base model that specifies the minimum set of

requirements for any system that implements RBAC fully. The second is

RBAC1, which adds the concept of role hierarchies that allow roles to inherit

permissions from other roles. The third is RBAC2, which adds the concept of

the constraint. These constraints impose restrictions upon the configuration of

various components within RBAC. The final model is RBAC3, which includes

RBAC1, RBAC2 and RBAC0. This family of models is better known as

RBAC96.

Chapter 3. Information Security

 26

3.4.1 The RBAC96 Entities

The RBAC96 model consists of 4 main entities: users, roles, permissions and

sessions. These entities and their relationships with one another can be seen

in figure 3.1.

P
Permissions

R
Roles

U
Users

RH
Role Hierarchy

UA
User

Assignment

PA
Permission
Assignment

Many to Many
One to Many S

Sessions

Figure 3.1 Role-based access control model (Sandhu, 1996)

The user denotes a human being but can also denote any automated process.

To keep the model simple though, it will be assumed that it is a human being.

Users are part of a set called U as shown in figure 3.1.

A role is generally a job function or title within an organisation. A user that is

assigned to a particular role would generally be working within the job function

that the role denotes. Roles are part of a set called R as shown in figure 3.1.

A permission is a privilege to access an object or objects in the organisation in

a certain way. A permission is always positive and will allow the user to

access the referenced object in the way defined by the permission. The

objects that are referred to could be either data objects or resource objects.

The concept of the permission can vary from being very coarse grained to

being very fine grained. The particular nature of a permission depends upon

the system being implemented. Permissions are part of a set called P as

shown in figure 3.1.

Chapter 3. Information Security

 27

A session is a mapping of a user to one or more roles. This means that a

session is unique to a particular user. The user also receives the union of all

the permissions of the role. This means that a user that belongs to a few

sessions could be associated with many roles. Each role may, in turn,

associate many permissions to the user and as such care must be taken to

ensure that the user doesn’t get the ability to commit fraud. Sessions are part

of a set called S as shown in figure 3.1.

Users may have multiple sessions open simultaneously and users have

control over which roles they activate. A user can belong to a powerful role

but may leave it deactivated until required.

As can be seen in figure 3.1, user assignments and permission assignments

are both many to many relations with roles. This is denoted by the double-

headed arrows on both ends of the joining line. This means that roles can

have many users and a user can be assigned to many roles, and that

permissions can be assigned to many roles and many roles can have the

same permission.

3.4.2 Role Hierarchies

Role hierarchies are a natural way of structuring roles so that they match the

internal structure of an organisation. This dissertation refers to role

hierarchies as role networks.

 Manager

Stock Clerk Senior Clerk

Employee

Figure 3.2 Role hierarchy example

Roles within the hierarchy inherit the permissions from lower roles. This

would mean that the Stock Clerk role in figure 3.2 would have all of the

Employee role’s permissions as well as its own. The Manager role would

have the Stock Clerk, Senior Clerk and the Employee role’s permissions.

Chapter 3. Information Security

 28

Sandhu et al (1996) have defined the entities and their relationships through a

mathematical model. Users (U) are associated with roles (R) through the user-

assignment relation (UA), which is shown in figure 3.1. Similarly, permissions

(P) are associated with roles (R) through the permission-assignment relation

(PA), which is also shown in figure 3.1. Roles are arranged in role hierarchies

through the partial order RH. A role that is senior to another role inherits the

permissions of the junior role. A user that is associated with a senior role in

the role hierarchy, therefore, may also assume all the roles junior to the senior

role in the RH partial order.

3.4.3 Constraints

Figure 3.1, however, lacks the definition of RBAC2, which adds the concept of

the constraints. Figure 3.3 depicts the addition of the concept of constraints

into RBAC. Constraints affect every part of the relationships between the

RBAC entities.

P
Permissions

R
Roles

U
Users

RH
Role Hierarchy

UA
User

Assignment

PA
Permission
Assignment

Constraints Many to Many
One to Many S

Sessions
Figure 3.3 Role-based access control model with constraints (Sandhu, 1996)

Constraints are considered to be a very important aspect of RBAC. They are

the mechanism through which the organisation’s policies can be enforced.

Constraints that are in place will ensure that associations between the RBAC

entities will comply with what is allowable by the policies. As such, the

Chapter 3. Information Security

 29

administrator’s job will be eased, as the RBAC environment will ensure the

integrity of the data.

An example of a constraint would be mutually exclusive roles such as the

Manager and the Stock Controller roles. A user may not be a member of both

of these roles, as this would create an opportunity for fraud. This principle is

known as separation of duties.

Due to the nature of the concept of the constraint, numerous types can be

identified. These types of constraints include:

Mutually exclusive roles, which ensure that two roles cannot be assigned to

the same user. This helps to ensure separation of duty requirements.

Mutually exclusive permissions, which provides additional assurances for

ensuring separation of duty requirements.

Dual constraint on permission assignment, which restricts a permission from

being assigned to more than one role in a mutually exclusive set.

User assignment constraints, which, among many possible uses, could restrict

the number of users that may be assigned to a role.

Not all of the possible constraints would be needed in a system. The

constraints and the conflicts between entities that are used within this

research are discussed in more detail in chapter 6.

Also, the concept of the session is not considered within this research, as

access control requirements and separation of duty requirements do not need

the session entity in order to be enforced.

3.4.4 Formal Summary of RBAC96

Consider a short formal summary of the relevant components in the RBAC96

model, based on the work of Sandhu et al (1996) and Ahn & Sandhu (1999):

Definition 3.1 formalises the entities that are evident.

Chapter 3. Information Security

 30

Definition 3.1: RBAC entities

There are sets of users, roles and permissions.

U = set of users, {u1,u2,…,ul}

R = set of roles, {r1,r2,…,rm}

P = set of permissions, {p1,p2,…,pn}

Definition 3.2 formalises the associations that can exist between the entities.

Definition 3.2: RBAC associations

Users and permissions can be associated with roles and roles can form a

hierarchy with other roles.

UA ⊆ U × R, a many-to-many user-to-role assignment relation

PA ⊆ P × R, a many-to-many permission-to-role assignment relation

RH ⊆ R × R, a partial order on R called the role hierarchy, also written

as ≤

Definition 3.3 formalises the functions that are used to ascertain the roles that

a user or permission may be associated with. This is necessary in order to

know which users are allowed to receive the different worklist items that are

generated by the workflow enactment service.

Definition 3.3: Roles function

roles: U ∪ P→2R, a function mapping the sets U and P to a set of roles

roles* : U ∪ P→2R extends roles in the presence of a role hierarchy

roles(ui)={r∈R(ui,r)∈UA}

roles(pi)={r∈R(pi,r)∈PA}

roles*(ui)={ r∈R(∃r ≤ r')[(ui,r')∈UA]}

roles*(pi)={ r∈R(∃r' ≤ r)[(pi,r')∈PA]}

Note that the definition of roles* is carefully formulated to reflect the role

inheritance with respect to users going downwards and with respect to

permissions going upwards.

Definition 3.4 formalises the functions that are used to ascertain the

permissions that a user may be associated with through the user’s role

Chapter 3. Information Security

 31

association. This is necessary in order to know when a user may have

access to a system object.

Definition 3.4: Permissions function

perm: U ∪ R → 2P, a function mapping users and roles to a set of

permissions.

perm*: U ∪ R → 2P, extends perm in the presence of a role hierarchy.

perm(ri) = {p ∈ P (p,ri) ∈ PA}

perm(ui) = {p ∈ P (∃r∈roles(ui))[(p,r) ∈ PA]}

perm*(ri) = {p ∈ P (∃r' ≤ ri)[(p,r') ∈ PA]}

perm*(ui) = {p ∈ P (∃r ∈ roles*(ui))[(p,r) ∈ PA]}

Additions can now be made to these formalisations in order to extend RBAC’s

functionality. As such, RBAC can be adapted in order to enhance its

effectiveness within a workflow environment.

3.5 Conclusion

This chapter contributed to this research by firstly, introducing information

security and the information security services, and then discussing access

control and role based access control. The formal definition of the RBAC

environment will allow for the expansion of the RBAC environment to cater for

the needs of the workflow environment.

RBAC is not considered to be perfect for every access control scenario. This

is particularly evident with situations where sequences of operations will

necessitate more complex control. An example of this is a purchase

requisition where certain steps must be accomplished before the item can be

issued. Other types of access control mechanisms could be built onto RBAC

to extend its functionality for this purpose (Sandhu et al., 1996). Control of

sequence is generally the domain of workflow systems.

Thomas and Sandhu have argued that it is time to move towards new

paradigms in access control (1993). They have stated that authorisation

(access control) in distributed applications should be distinguished in terms of

tasks rather than individual objects. This observation is partly based upon the

emergence of workflow type software applications within organisations. This

Chapter 3. Information Security

 32

research takes the concept of tasks and integrates it within the RBAC

environment to actively support workflow environments.

It is important for an organisation to prevent fraud; one way to accomplish this

is to use separation of duty (Thomas & Sandhu, 1993). Separation of duty

aims to prevent fraud by separating the responsibility for a process between

different users. This enforcement of separation of duty requirements could be

accomplished through the use of constraints within the RBAC environment.

Separation of duty forms an essential component of this research and as such

it will be discussed in the next chapter.

33

Chapter 4.

Separation of Duty

A dominant security issue within organisations is the prevention and restriction

of fraud. The principle of separation of duty (SoD) is a time-honoured

principle for achieving this goal. Separation of duty involves never allowing an

individual to have enough privileges within the organisation to commit fraud on

his own (Sandhu, 1990). This is achieved through the breaking up of

business processes into smaller tasks and having these tasks performed by

different users.

A more formal definition of SoD is that it is a security principle that is used to

formulate multi-person control policies, requiring two or more distinct people to

be responsible for the completion of a task or set of tasks (Simon & Zurko,

1997). In doing so, fraud is discouraged by the distribution of the

responsibility between more than one user. The spreading of the

responsibility raises the risks of fraud by necessitating the involvement of

more than one individual.

Users only deal with smaller tasks that constitute a business process within a

workflow environment. And as such, the workflow environment could support

SoD principles.

This is achieved in the workflow example, which has been covered in chapter

2, by making use of three different roles to complete the various tasks when

processing an internal purchase order. Firstly, there is the employee role that

completes the order form, after which the order may be approved by the

manager role, and finally there is the stock controller role that gets the ordered

item to the employee. Fraud can be committed at various positions within this

process.

An example of a fraudulent act is if the person who is the manager places an

order for something expensive and then proceeds to approve the order. By

preventing the manager from approving his own order, fraud is prevented.

This is an example of one SoD requirement in the cited example.

Chapter 4. Separation of Duty

 34

To understand how SoD is used and how it fits into the workflow environment,

it is imperative to consider its history.

4.1 Related SoD Research

The term "separation of privilege" was identified as one of eight design

principles for the protection of information in computer systems by Saltzer and

Schroeder (1975). They built on the observation that a security system with

two keys is more robust and flexible than one that requires a single key. No

single accident, deception or breach of trust is therefore sufficient to

compromise the system.

Clark and Wilson (1987) identified separation of duty as one of the two major

mechanisms that can be implemented to ensure data integrity. SoD serves as

a mechanism to counteract fraud and error, whilst assuring correspondence

between system objects and the real world objects that they represent. They

asserted that, at the policy level, processes are divided into steps, with each

step being performed by a different person. Separation of duty is thus tightly

connected to application semantics.

The issue of separation of duty has been addressed from different

perspectives by several authors. Examples can be found in various

references: (Baldwin, 1990; Gligor, Gavrila & Ferraiolo, 1998; Nash & Poland,

1990; Sandhu, 1988; Sandhu, 1990; Simon & Zurko, 1997). Here, only work

in which concepts are directly quoted in our interpretation, is examined.

Kuhn (1997) explored the mutual exclusion of roles as a means of expressing

separation of duty requirements. He presented a taxonomy whereby

separation of duty requirements are categorised according to the time at

which mutual exclusion is applied (static vs. dynamic), as well as the degree

to which privileges are shared by mutually exclusive roles (strong or partial

exclusion).

Strong exclusion, on the one hand, implies no common permission or user

assignments for exclusive roles. Partial exclusion, on the other hand, implies

that mutually exclusive roles may share permissions (or users) but that each

role should have permissions assigned that are unique to that role.

Chapter 4. Separation of Duty

 35

Nyanchama and Osborn (1999) discussed various types of conflicts that have

to be considered when implementing separation of duty requirements. They

evaluated the effect of role hierarchies in great depth in terms of their role-

graph model.

Ahn and Sandhu (1999) defined the RSL99 language for specifying

separation of duty constraints. They based their SoD requirements on the

concepts of conflicting users, conflicting roles and conflicting permissions.

The RSL99 language can be used to study SoD within RBAC environments

as it helps with the identification of SoD properties that may not have been

known or understood.

SoD requirements are enforced through constraints. It is necessary to

understand the foundation for the constraints and the use of the constraints in

order to apply separation of duties to its full effect.

4.2 A Taxonomy of SoD Constraints

Simon and Zurko (1997) have formally defined a variety of different forms of

SoD. All of these variations fall under two main categories, which are: static

SoD and dynamic SoD. This is shown in figure 4.1.

 SoD

Static SoD Dynamic SoD

Simple

Object-based

Operational

History-based
Figure 4.1 Categories of Separation of Duties.

Particular attention is paid to static SoD due to the scope of the research,

which is outlined in chapter 5.

4.2.1 Static Separation of Duty

Static SoD constraints are considered the simplest variation of SoD (Ahn &

Sandhu, 1999). Constraints can exist for each of the RBAC entities.

Chapter 4. Separation of Duty

 36

This includes constraints such as not allowing the same user to be a member

of two conflicting roles. If a user were associated to both of the conflicting

roles, then that user would be able to commit fraud. An example of this is the

manager role and the stock controller role from the workflow example in

chapter 2. These roles are conflicting and as such a user may not be

associated to both of them.

Another constraint is that a user may not be associated to conflicting

permissions. Since permissions are obtained through role associations, care

must be taken when associating permissions to roles. An example of this is

the permissions needed to submit an order and to approve an order. These

permissions are conflicting, and as such may not be associated to a common

user through the role associations. This means that conflicting permissions

may not be associated to a common role.

These constraints are summarised in table 4.1.

Conflicting Entities Cannot be associated to:
Conflicting Roles Common User
Conflicting Permissions Common Role

Table 4.1 Static SoD constraints.

Other constraints exist and are identifiable through the use of methods such

as Ahn and Sandhu’s RSL99 language (1999). Chapter 6 formalises the

constraints that have been identified during this research.

These strongly exclusive relationships could be very useful in the

administration environment as an aid to the security administrator. It can also

form the basis for dynamic SoD.

4.2.2 Dynamic Separation of Duty

Dynamic SoD provides an improved set of possible policies. This is done by

the controlled activation and use of the roles in a system. As long as the

constraints are satisfied, users may be members of what would be considered

strongly exclusive roles in a static SoD environment.

An example of this would be a user who places an order as a member of the

Employee role but may not approve the order as a member of the manager

role. This allows dynamic SoD to reflect the functioning of an organisation.

Chapter 4. Separation of Duty

 37

There are many variations of dynamic SoD.

Simple Dynamic SoD is the simplest variation that states that restricted roles

may have the same members but a member may only be assigned to one role

at a time.

Object-based SoD states that restricted roles may have common members

and these members may assume both roles at the same time. Users may not

act upon any system object that they have previously operated upon.

Operational SoD implies that restricted roles may contain common members

as long as the union of the activities the roles perform does not contain all the

activities in a complete business process. It prevents any one person from

performing an entire business process.

History-based SoD handles various desirable actions that are prevented by

the previously mentioned SoD variations. It does this by the combination of

object-based SoD and operational SoD.

This research is only concerned with the specification and not the

enforcement of dynamic SoD.

4.3 Conclusion

The concept of separation of duties was introduced within this chapter. This

knowledge is essential in understanding how the RBAC environment needs to

function within the workflow environment in order to ensure that SoD

requirements are enforced.

The purpose of SoD policies is to prevent fraud. In doing so, an individual

user should be prevented from receiving mutually exclusive tasks. Stated in

another way, a user should not receive access rights to system objects that

could enable the user to commit fraud. This dissertation refers to access

rights as permissions, which is one of the entities of the RBAC model.

To prevent users from receiving mutually exclusive permissions, these

permissions can be set as conflicting. This conflicting paradigm is applicable

to the other RBAC entities and to workflow extensions to the RBAC model in

this research. These conflicts and how they associate to the administration

paradigm are discussed in-depth in chapter 6.

Chapter 4. Separation of Duty

 38

In order to clearly discuss the conflict paradigm, it is important to show the

scope of the research, and its conceptual framework.

39

Chapter 5.

SoDA: The Concept and Model

With the increasing amount of information available electronically it is not only

necessary to find a means to ease the job of the security administrator, but

also to ensure that the information is protected and managed according to

organisational policies. On the one hand, RBAC has been promoted as a

possible solution to the administration nightmares that face security

administrators (Ferraiolo, Barkley, & Kuhn, 1999). On the other hand,

workflow technology has been boasted as a means of controlling the flow of

information according to business process models. RBAC mechanisms

employed in the workflow environment should thus be sensitised to the

context of the work (Cholewka et al., 2000; Thomas & Sandhu, 1993).

The context of the work is determined by factors such as the sequence and

history of events, as well as the organisational policies. One expression of

organisational policy can be found in the age-old principle of separation of

duty.

The primary objective of separation of duty is to prevent fraud, i.e. protect the

integrity of the information (Clark & Wilson, 1987). SoD can be enforced

through the correct use of access control mechanisms.

Access control is a two-phase process as depicted in figure 5.1. During

phase one, users receive potential to perform certain activities – this is called

access control administration. Phase two occurs when an application is used

and the actual permissions are granted to the user – this is called run-time

access control.

Chapter 4 showed that SoD requirements could be evaluated and enforced at

two points in time. This can happen through the administration tool and

through the run-time environment. When evaluation and enforcement occur in

the administration tool it is referred to as static separation of duty. When

evaluation and enforcement occur within the run-time environment it is

referred to as dynamic separation of duty.

Chapter 5. SoDA: The Concept and Model

 40

 Phase 1 Phase 2

Potential to perform
activities

Actual permissions

Access control
administration

Run-time access
control

Figure 5.1 Access control phases

Static SoD requirements include constraints such as not allowing conflicting

permissions to be assigned to a common user. This type of requirement

would be evaluated when assigning a user to a role and when assigning

permissions to roles. If the assignment is going to cause constraint errors,

then the administration environment can prevent the assignment.

An example of a dynamic SoD requirement would be to prevent a common

user from working on conflicting tasks in the same workflow process. This

SoD requirement can be enforced within the run-time environment by not

allowing the user access to the conflicting task.

These concepts are central to the scope of this dissertation. In order to

understand the model it is important to appreciate the scope of the proposed

solution.

5.1 Scope of Proposed Solution

The proposed model focuses on the technical enforcement of static

separation of duty requirements in workflow systems. The scope of the

proposed model is, however, best defined by considering its information

technology scope and its information security scope.

5.1.1 Information Technology Scope

The information technology scope of the research, which is presented in this

dissertation, is primarily described in terms of the information technology

Chapter 5. SoDA: The Concept and Model

 41

domain it addresses, namely, workflow systems. Moreover, workflow systems

have been identified in chapter 2 as consisting of administration and run-time

components.

The information technology focus is thus on workflow systems, and in

particular, the administration component of workflow systems. Figure 5.2

shows the information technology scope by means of concentric circles. The

outer circle encapsulates information technology while the larger dashed inner

circle encapsulates workflow systems. The workflow circle is divided into a

run-time area and an administration area, which is shown as a grey disk in the

centre of the circles.

Authentication

Integrity

Non-repudiation

Access Control

Confidentiality

Workflow systems

Information technology scope

Information security scope
Run-time execution

Administration

Figure 5.2 Scope of the proposed model

It is also important to know what areas of information security this research

focuses on.

5.1.2 Information Security Scope

The triangle in figure 5.2 represents the field of information security. It is

shown to overlap with information technology, in particular, also workflow

systems.

Chapter 5. SoDA: The Concept and Model

 42

Information security has been shown in chapter 3 to involve five security

services: authentication, confidentiality, integrity, access control and non-

repudiation. These services are depicted as slices of the information security

triangle in figure 5.2. The access control service was chosen as the

information security scope of this research, as indicated by the shaded portion

of the triangle.

The darker shading indicates the overlap between the information technology

scope and the information security scope. This shaded overlap represents

the scope of this research and can be defined as the administration of access

control for workflow systems.

A more detailed look at the research scope will shed light on the conceptual

overview wherein this research was conducted.

SoD Specification
Enforcement
of Static SoD

Enforcement
of

Dynamic
SoD

Administration-time
functions

Workflow run-time
functions

A
cc

es
s

C
on

tr
ol

Enforcement
Strategy

Administration
Paradigm

Figure 5.3 Detail scope for SoDA

5.2 Conceptual Overview

The proposed model constitutes two basic components: an administration

paradigm and an enforcement strategy.

These components can be observed in terms of its relation to separation of

duty in figure 5.3, which provides a magnified view of the darkly shaded area

in figure 5.2. The administration paradigm involves the specification of access

control, while the enforcement strategy is concerned with enforcing static

access control requirements, specifically, requirements that can be checked at

administration time. Note that the enforcement of access control

Chapter 5. SoDA: The Concept and Model

 43

requirements that rely on the workflow execution environment falls explicitly

outside the scope of this research.

Figure 5.4 depicts these two components graphically. Consider each in turn.

 Administration Paradigm

User, Roles, Permissions,
Tasks and their associations

Conflicting Entities Separation of duty

CU
CR
CP
CT

Static Dynamic

Enforcement
Strategy

ON admin-event
 IF condition
 THEN disallow

Enforcement
in workflow

environment

Outside
scope of
this research

Figure 5.4 SoDA: Conceptual view

5.2.1 The administration paradigm

The proposed model strongly hinges on role-based access control. The

identification of users, roles and permissions thus is integral to the model. In

addition to these entities the concept of a task is introduced. Administration

tools will allow for the associations between users, roles, permissions and

tasks. These associations may be constrained according to static separation

of duty requirements. The “Conflicting Entities” administration paradigm is

introduced as a way of expressing these constraints. This paradigm is based

on the concept of mutual exclusion in sets, i.e. that two tuples may not belong

to the same set. A distinction is made between the time of exclusion, viz. at

administration-time or run-time. Run-time exclusion must be managed by the

workflow system and is thus not further addressed.

Chapter 5. SoDA: The Concept and Model

 44

5.2.2 The enforcement strategy

The administration time exclusions are addressed in the second component

by providing an enforcement strategy. The enforcement strategy is based on

active database technology and is thus defined in terms of event-driven action

rules.

The objective of the security administration paradigm is to disallow

assignments or associations that will violate the static SoD requirements. It

will, by default, disallow these prohibited actions. Algorithms to check the

conditions have been developed as part of the enforcement strategy.

5.3 Conclusion

The current chapter set the scope of the SoDA model and provided a

conceptual overview of its components. Chapters 6 to 8 will discuss these

components in more detail.

Chapter 6 will develop an administration paradigm and state its properties for

the static aspect mathematically.

Chapter 7 will develop algorithms for the use by an implementation of the

SoDA model. These algorithms will ensure that the static separation of duty

requirements remain valid.

Chapter 8 will describe the implementation details of the SoDA prototype

implementation.

45

Chapter 6.

SoDA: The Administration Paradigm

As described in chapter 5, the scope of the model involves the specification of

static and dynamic SoD and the enforcement of static SoD. These operations

occur within the administration environment of a workflow system. SoD is

built upon the access control specifications.

In order to specify the access control requirements, it is necessary to identify

the entities involved.

This chapter will formalise the aspects of the model by:

• Introducing the entities involved.

• Introducing the conflicting entities administration paradigm.

• Developing a model of the integrity requirements for static SoD.

The information that the workflow environment adds to the RBAC environment

is referred to as the workflow extensions.

6.1 Workflow extensions

The proposed extensions to the RBAC environment build upon the definitions

already outlined in chapter 3. For notational convenience they are reproduced

in table 6.1.

A typical process definition is a set of tasks linked together in a network, thus

forming a business process (Hollingsworth, 1995). The workflow system is

responsible for determining the route that work will follow through the

organisation. From an access control perspective the basic building blocks

are tasks that may be performed by a specific organisational role.

Figure 6.1 presents the RBAC entities with the task entity added. The

constraints are not shown to maintain clarity.

Chapter 6. SoDA: The Administration Paradigm

 46

RBAC entities
U = set of users, {u1,u2,…,ul}
R = set of roles, {r1,r2,…,rm}
P = set of permissions, {p1,p2,…,pn}

RBAC associations
UA ⊆ U × R, a many-to-many user-to-role assignment relation
PA ⊆ P × R, a many-to-many permission-to-role assignment relation
RH ⊆ R × R, a partial order on R called the role hierarchy, also written as ≤

Roles function
roles: U ∪ P→2R, a function mapping the sets U and P to a set of roles
roles* : U ∪ P→2R extends roles in the presence of a role hierarchy
roles(ui)={r∈R(ui,r)∈UA}
roles(pi)={r∈R(pi,r)∈PA}
roles*(ui)={ r∈R(∃r ≤ r')[(ui,r')∈UA]}
roles*(pi)={ r∈R(∃r' ≤ r)[(pi,r')∈PA]}

Permissions function
perm: U ∪ R → 2P, a function mapping users and roles to a set of
permissions.
perm*: U ∪ R → 2P, extends perm in the presence of a role hierarchy.
perm(ri) = {p ∈ P (p,ri) ∈ PA}
perm(ui) = {p ∈ P (∃r∈roles(ui))[(p,r) ∈ PA]}
perm*(ri) = {p ∈ P (∃r' ≤ ri)[(p,r') ∈ PA]}
perm*(ui) = {p ∈ P (∃r ∈ roles*(ui))[(p,r) ∈ PA]}

Table 6.1 RBAC definitions

P
Permissions

R
Roles

U
Users

RH
Role Hierarchy

UA
User

Assignment

PA
Permission
Assignment

Many to Many
One to Many

S
Sessions

T
Tasks

TA
Task

Assignment

Figure 6.1 Role-based access control model extended with tasks

Chapter 6. SoDA: The Administration Paradigm

 47

The task entities form a many-to-many relationship with the role entities just

as the user and permission entities do. The following formalisations add the

concept of the workflow’s task to the formal RBAC definitions that were

summarised in table 6.1.

Definition 6.1: Workflow entities

There are sets of tasks.

T = Set of tasks, {t1,t2,…,tn}, a set of task definitions.

The task entities will relate to the role entities as defined in the following

definition.

Definition 6.2: Workflow Associations

Tasks can be associated with roles.

TA ⊆ T × R, a many-to-many task-to-role assignment relation.

The set TA, as defined in definition 6.2, will contain the task to role

associations that will be created. The RBAC96 functions must thus be

extended to cater for the addition of this relationship.

Definition 6.3: Extended roles function

roles: U ∪ P ∪ T → 2R, a function mapping the sets U and P and T to a

set of roles.

roles* : U ∪ P ∪ T →2R extends roles in the presence of a role

hierarchy.

roles(ui),roles(pi), roles*(ui) and roles*(pi) remain according to Definition

3.3.

roles(ti)={r∈R(ti,r)∈TA}

roles*(ti)={ r∈R(∃r ≤ r')[(ti,r')∈TA]}

The standard roles functions that are listed in table 6.1 have been adapted to

cater for the addition of the task entity. The permission functions also need to

be adapted.

Chapter 6. SoDA: The Administration Paradigm

 48

Definition 6.4: Revised permissions function

perm: U ∪ R ∪ T → 2P, a function mapping users, roles and tasks to a

set of permissions.

perm*: U ∪ R ∪ T → 2P, extends perm in the presence of a role

hierarchy.

perm(ri), perm(ui), perm*(ri) and perm*(ui) remain according to

Definition 3.4.

perm(ti) = {p ∈ P (∃r ∈ roles(ti))[(p,r) ∈ PA]}

perm*(ti) = {p ∈ P (∃r ∈ roles*(ti))[(p,r) ∈ PA]}

The revised definitions give the elements which are essential to the

administration of access control in the workflow environment. The following

section will suggest a conflict paradigm to define further restrictions required

to support static SoD requirements.

6.2 The conflicting entities administration paradigm

The concept of conflicting entities needs to be described in order to

understand how SoD can be enforced. Any two of the identified entities may

be conflicting. That is, any two permissions, users, roles, or tasks may be

conflicting. Integrity is maintained by constraining the associations between

entities based on the conflicts between entities. As such it is important to

understand the conflicts that can occur.

The term conflicting permissions indicates two permission entities that are in

conflict with one another. This means that if two conflicting permissions were

associated to a common user, then that user would be able to commit fraud.

An example of conflicting permissions is the permissions needed to submit an

order and to approve an order.

If a user were associated to both of these permissions then that user would be

able to approve a self-placed order. By assigning a conflict between the two

permissions it becomes possible for the administration environment to

constrain any associations between the permissions and the users.

Chapter 6. SoDA: The Administration Paradigm

 49

The term conflicting users is misleading. The users are in fact not conflicting

at all. Rather, it is the user’s friendship that can result in an alliance to commit

fraud. With this description it becomes relevant to consider that single users

are in conflict with themselves.

It is important to realise that permissions are not directly associated to users.

Users receive permissions through their associations with roles. Figure 6.1

displays how the permission, user and task entities all connect with the role

entities with many-to-many relationships. In this way users will receive the

permissions that have been associated with the roles that they are associated

with. Permissions will also be associated with those tasks that share common

roles. It is therefore important to understand the consequences of assigning

conflicts between roles.

The term conflicting roles indicates two role entities that are in conflict with

one another. It is through conflicting roles that the associations between all

the entities can be controlled. An example of this is how conflicting

permissions are prevented from being associated to conflicting users. This

prevention is achieved by constraining the associations between permissions,

roles, and users.

For example, the manager and employee roles have to be conflicting before

being associated to the permissions needed to submit an order and to

approve an order. But this constraint alone is not enough to prevent

conflicting users from being associated with the conflicting permissions.

In order to prevent conflicting users from being associated with conflicting

permissions, conflicting users must be constrained from being associated with

conflicting roles. This constraint will prevent conflicting users from receiving

conflicting permissions.

Another constraint for conflicting roles is that conflicting roles cannot form part

of a role network. This is due to the fact that permissions get inherited from

the roles in a role network. If the employee and manager roles were part of a

role network, then the manager role will inherit the permissions that are

associated to the employee role. In so doing, any user associated to the

manager role would receive conflicting permissions.

Chapter 6. SoDA: The Administration Paradigm

 50

From the workflow environment’s point of view, the users and permissions

required to perform a task are obtained from role associations. It is with

conflicting tasks that SoD can be enforced within the workflow environment.

The term conflicting task indicates two task entities that are in conflict with one

another.

Tasks that are conflicting are workflow process tasks that may not be

performed by conflicting users. If conflicting users were allowed to perform

these tasks then there exists the possibility of fraud being committed. An

example of two conflicting tasks can be seen in Figure 2.2. This figure shows

the tasks that make up a workflow process and the “complete order form” task

and the “approve order” task are conflicting tasks.

In order to prevent these tasks from receiving conflicting users it is necessary

to restrict their associations with roles in the same way as conflicting

permissions are constrained. This is accomplished by not allowing conflicting

tasks to be associated with non-conflicting roles. Therefore, the “complete

order form” task and the “approve order” task must be associated with

conflicting roles such as the employee role and the manager role.

It has been shown that the conflicting entities paradigm can be used to

enforce static and dynamic SoD. Although conflicts between entities can be

used to enforce a variety of constraints within the run-time environment, this is

beyond the scope of this research and as such is not covered.

The conflicting entities administration paradigm has been discussed in an

informal manner. The following definitions formalise the aspects required for

enforcement. Conflicting permissions are formalised first as power is vested

in permissions.

Definition 6.5: Conflicting permissions are permissions that can result in

unnecessary power if bestowed on the same person. Formally it is

represented by

CP ⊆ P × P, a many-to- many relation indicating conflict between

permissions with

(pi,pj) ∈ CP ⇔ (pj,pi) ∈ CP and (pi,pi) ∉ CP.

Chapter 6. SoDA: The Administration Paradigm

 51

We can now present the following axiom, which will represent our basic safety

condition. The basic safety condition is the basic requirement for all proofs. If

an association between entities violates this basic safety condition then that

association is not to be allowed.

Basic Safety Condition: Conflicting permissions may not be assigned to a

user.

Formally, (perm*(u) × perm*(u)) ∩ CP = ∅)

Since non-conflicting permissions cannot influence the basic safety condition

the following axiom, to supplement the basic safety condition, is formulated.

Axiom 6.5: Non-conflicting permissions may be assigned to either conflicting

or non-conflicting roles.

It is also important to look at the other conflicting entities that form part of the

conflicting entity paradigm.

Definition 6.6: Conflicting users are users who are likely to conspire.

Formally they are represented by

CU ⊆ U × U, a many-to-many relation indicating conflict between users

with

(ui,uj) ∈ CU ⇔ (uj,ui) ∈ CU and (ui,ui) ∉ CU.

It can be seen that a single user could commit fraud without conspiring with

other users. As such, the following axiom is stated.

Axiom 6.6: Conflicting users are considered as a single user.

In practical terms conflicting users may be family members or people who are

known to have conspired.

Definition 6.7: Conflicting roles are roles that together have the ability to

conspire, i.e. they are assigned some (but not all) conflicting permissions.

They are represented by

CR ⊆ R × R, a many-to-many relation indicating conflict between roles

with

(ri,rj) ∈ CR ⇔ (rj,ri) ∈ CR , (ri,ri) ∉ CR and

Chapter 6. SoDA: The Administration Paradigm

 52

(ri,rj) ∈ CR ⇒ perm*(ri) × perm*(rj) ∩ CP ≠ ∅

Note that roles are abstractions to ease administration. Although the

conflicting permissions may not be identified as such in the administration

tool, making roles conflict if they are not assigned some conflicting

permissions is senseless. This principle thus is a logical principle, which in

practice may not be checked literally in the administration tool.

Since conflicting roles must have some conflicting permissions we can state

that non-conflicting roles do not have conflicting permissions. In the spirit of

Axiom 6.5, the following axiom is formulated.

Axiom 6.7: Non-conflicting roles may be assigned either non-conflicting or

conflicting users.

Definition 6.8: Conflicting tasks are tasks requiring conflicting permissions

to complete. Formally they are represented by

CT ⊆ T × T, a many-to-many relation indicating conflict between tasks

with

(ti,tj) ∈ CT ⇔ (tj,ti) ∈ CT, (ti,ti) ∉ CT and

(ti,tj) ∈ CT ⇒ perm*(ti) × perm*(tj) ∩ CP ≠ ∅

Note that conflicting tasks are assigned conflicting permissions. Since non-

conflicting tasks can have only non-conflicting permissions assigned to them,

we can see that they could not influence the basic safety condition, therefore,

the following axiom is formulated.

Axiom 6.8: Non-conflicting tasks may be assigned to conflicting and non-

conflicting roles.

These principles and definitions are essentially focused on the permissions

exercised by the users. The integrity of the access control information is,

however, determined by the associations in the access control model. In a

RBAC environment users are never assigned directly to permissions. The

role construct plays a pivotal role in linking tasks, users and permissions

together. The next section will therefore show the integrity requirements

pertaining to the associations allowed in the access control model.

Chapter 6. SoDA: The Administration Paradigm

 53

6.3 Integrity Requirements

The previous section dealt with the definitions for conflicting entities. It also

introduced the basic safety condition. This section presents a number of

theorems reflecting integrity requirements that will have to be upheld in a

security administration tool.

These theorems outline a model of enforcement that can be used to enforce

SoD within the administration tool. These theorems can be considered as

being rules or constraints. These theorems are enforced through the use of

conflicting entities.

Theorem 6.9: Under the basic safety condition, conflicting roles may only

have non-conflicting users assigned to them, i.e.

(ui,rk) ∈ UA ∧ (uj,rl) ∈ UA ∧ (rk,rl) ∈ CR ⇒ (ui,uj) ∉ CU

Proof:

Assume that (ui,rk)∈UA ∧ (uj,rl)∈UA) ∧ (rk,rl)∈CR. ∧ (ui,uj)∈CU:

perm*(ui) ⊇ perm*(rk) (Def 3.4)

perm*(uj) ⊇ perm*(rl) (Def 3.4)

(rk,rl)∈CR.

⇒ perm*(rk) × perm*(rl) ∩ CP ≠ ∅ (Def 6.7)

⇒ perm*(ui) × perm*(uj) ∩ CP ≠ ∅

which contradicts the Basic Safety Condition. QED.

Theorem 6.10: Under the basic safety condition, conflicting permissions may

only be assigned to conflicting roles. Formally

(pi,rk) ∈ PA ∧ (pj,rl) ∈ PA ∧ (pi, pj) ∈ CP ⇒ (rk, rl) ∈ CR

Proof:

Assume that two conflicting permissions pi and pj are assigned to non-

conflicting roles rk and rl, i.e.

(pi,rk) ∈ PA ∧ (pj,rl) ∈ PA ∧ (pi,pj) ∈ CP ∧ (rk,rl) ∉ CR

Choose a user ux and associate it with roles rk and rl. Since (rk,rl) ∉ CR

this is allowed by Th. 6.9.

Chapter 6. SoDA: The Administration Paradigm

 54

∴ (ux,rk) ∈ UA ∧ (ux,rl) ∈ UA ∧

 (pi,rk) ∈ PA ∧ (pj,rl) ∈ PA

⇒ {pi, pj} ⊆ perm*(ux) (Def 6.6)

But (pi, pj) ∈ CP, which contradicts the Basic Safety Condition.

 QED.

Theorem 6.11: Under the basic safety condition, conflicting tasks may only be

assigned to conflicting roles. That is

(ti,rk) ∈ TA ∧ (tj,rl) ∈ TA ∧ (ti,tj) ∈ CT ⇒ (rk, rl) ∈ CR

Proof:

Assume that two conflicting tasks ti and tj are assigned to non-

conflicting roles rk and rl.

(ti,rk) ∈ TA ∧ (tj,rl) ∈ TA ∧ (ti,tj) ∈ CT ∧ (rk,rl) ∉ CR

Choose a user ux and associate it with roles rk and rl. Since (rk,rl) ∉ CR

this is allowed by Th. 6.9.

perm*(rk) ⊆ perm*(ux) (Def 3.4)

perm*(rl) ⊆ perm*(ux) (Def 3.4)

also perm*(ti) ⊆ perm*(rk) (Def 6.4)

perm*(tj) ⊆ perm*(rl) (Def 6.4)

∴ perm*(ti) ⊆ perm*(ux)

and perm*(tj) ⊆ perm*(ux)

⇒ perm*(ti) × perm*(tj) ∩ CP ≠ ∅ (Def 6.8)

⇒ perm*(ux) × perm*(ux) ∩ CP ≠ ∅

which contradicts the Basic Safety Condition. QED.

Using truth table equivalence we state the following corollary.

Corollary 6.11: Under the basic safety condition, non-conflicting roles may

only have non-conflicting tasks assigned to them. That is

(ti,rk) ∈ TA ∧ (tj,rl) ∈ TA ∧ (rk, rl) ∉ CR ⇒ (ti,tj) ∉ CT

Chapter 6. SoDA: The Administration Paradigm

 55

These theorems limit the associations that can be allowed between users,

roles, permissions and tasks. By using the conflicting entities they are able to

ensure that integrity is maintained. These integrity requirements are essential

for the enforcement of SoD.

The following table summarises the results of this chapter.

 Roles
May be associated with

Conflicting Non - conflicting

Conflicting û ü
Users

Non - Conflicting
Th 6.9

ü
Ax 6.7

ü

ü û
Conflicting

Theorem 6.10
ü ü Permissions

Non - Conflicting
Axiom 6.5

ü û
Conflicting

Theorem 6.11
ü ü Tasks

Non - Conflicting
Axiom 6.8

Table 6.2 Conflicting entities matrix

A ü in the table indicates that an association is allowed, whilst a û shows that

an association is prohibited. For example, theorem 6.9 proves that non-

conflicting users may only be assigned to conflicting roles while axiom 6.8

states that non-conflicting tasks may be assigned to either conflicting or non-

conflicting roles.

6.4 Conclusion

This chapter explored the model required for the conflicting entities

administration paradigm. This paradigm is able to ensure static separation of

duty requirements and enable the specification of dynamic separation of duty

requirements in workflow environments.

This paradigm was enabled through the extension of the RBAC components

with workflow specific components. In particular, it demonstrated how static

separation of duty requirements specified through the use of conflicting users,

conflicting roles, conflicting permissions and conflicting tasks could be

enforced. Entities that are conflicting would imply certain constraints and as

Chapter 6. SoDA: The Administration Paradigm

 56

such would ensure the integrity of the associations. Enforcement is based on

maintaining the integrity of the associations allowed between entities.

Formulated algorithms, which would maintain the integrity of the associations,

were developed next. Thereafter, a prototype that demonstrates that the

SoDA model could be effective for the enforcement of static SoD in

administration tools was developed.

57

Chapter 7.

SoDA: The Enforcement Strategy

The previous chapter identified the entities involved in the conflicting entities

administration paradigm. It also introduced mathematical definitions and

proofs that describe how different associations between entities must be

evaluated and enforced. In so doing, it described a model that can be used to

ensure the integrity of the data and to prevent the possibility of fraud.

The integrity constraints imposed by the conflict paradigm were summarised

in the form of a matrix in chapter 6. This matrix shows the integrity constraints

as allowable/disallowable associations.

The SoDA model outlines algorithms for each of the possible actions that may

be performed upon the entities. These algorithms are designed according to

the specifications that have been defined in chapter 6 and are described in

detail in the current chapter.

Chapter 6 described the SoDA model in mathematical terms while this chapter

describes the algorithms using relational database system terminology. As

such, it is important to define a conceptual entity-relationship diagram (ERD)

for the SoDA model.

7.1 The conceptual Entity Relationship Diagram

It is possible to express the mathematical relations between the sets of

entities defined in chapter 6 as database tables. This is shown using an ERD

in figure 7.1.

Expressing the mathematical relations in this way simplifies the development

of the algorithms. There are three different categories of database tables

depicted in figure 7.1. These are associations, conflicts, and entities.

The associations are depicted by the UA, PA, TA and RH database tables.

Each association allows for a many-to-many relationship between a role and

another entity. The RH association is slightly different to the others. It is used

to create a role network.

Chapter 7. SoDA: The Enforcement Strategy

 58

U R

T

P

CU

UA

RH

PA

CP

TA

CT

Figure 7.1 Conceptual ERD

The conflicts between entities are depicted by the CU, CP, CR and CT

database tables. As can be seen, a conflict is a many-to-many relationship

between the entities of a particular set.

Finally, there are the database tables that represent the sets of entities.

These are denoted as U, P, R and T.

Within each of the categories, there exists the potential for a variety of

conflicts. Each possibility needs an algorithm that will outline what an

administration tool will do to test whether the action will violate an integrity

requirement. Any action that will violate an integrity requirement will not be

allowed to continue.

This includes actions such as adding or deleting entities from the system.

With the integrity of the system being an important aim, it will not be possible

to delete an entity without first checking the repercussions the deletion will

cause.

The algorithms involved with the associations action will be evaluated first,

followed by the algorithms for the conflicts action and finally, the algorithms for

the entities action. The layout of this is shown in table 7.1.

This table has two columns that show the operations that can be performed

upon the entities and their associations. These operations are Add and

Delete. The SoDA model allows for updates or modifications through a

twofold process of first deleting and then adding.

Chapter 7. SoDA: The Enforcement Strategy

 59

Operations

Add Delete
UA
PA
TA

7.2.1 7.2.2 Associations
(7.2)

RH 7.2.3
CU
CP
CR

Conflicts
(7.3)

CT

7.3.1 7.3.2

Users
Permissions

Tasks
Entities

(7.4)
Roles

7.4.1 7.4.2

Table 7.1 The enforcement model chapter layout

7.2 Algorithms for Entity Associations

It is assumed that a set of entities and their conflicts already exist within the

administration environment. The algorithms involved with the creation and

deletion of entities and conflicts will be dealt with in the following sections.

7.2.1 Creating Associations

The first algorithm to be discussed will be the creation of a user to role

association. As mentioned earlier, an example of this would be assigning

user A to the manager role. This association is denoted as (ui,r) ∈ UA.

Before this association may be allowed to take place, the steps shown in

figure 7.2 must be undertaken.

• Step 1: Does the user ui have any conflicting users? This is done by

iterating through all the conflicting user records where one of the users in

the record is the user being added to the association. If the answer to this

is yes, proceed to step 2, else create the association.

• Step 2: Find all the roles that have already been associated to the

conflicting users found in step 1. This is done by iterating through the

entire user to role association table where any of the associated users are

in the group of users found in step 1. If no roles are found then the

association can be safely made, else proceed to step three.

Chapter 7. SoDA: The Enforcement Strategy

 60

 Add user/role association
(u i , r) ∈ UA

Does u
i have

conflicting users?

Determine
conflicting user's
associated roles

Yes

No

Add association

Does role r conflict
with any of the
found roles?

Found

None
Found

1

2

4

3

No

Yes

Figure 7.2 Adding user/role associations

• Step 3: Do any of the roles found in step 2 conflict with the added role r?

This is accomplished by iterating through the conflicting roles records

where the current role and any of the roles found in step 2 form a record.

If none are found the association can be safely made, else the association

may not proceed.

• Step 4: Add the association as a record to the appropriate database table.

The algorithm used when adding permission to role associations is discussed

next. An example of this association would be assigning the permission that

encompasses the access rights to approve an order to the manager role. This

association is denoted as (pi,r) ∈ PA. Before this association may be allowed

to take place, the steps shown in figure 7.3 must be undertaken.

• Step 1: Does the permission pi have any conflicting permissions? This is

done by iterating through all the conflicting permission records where one

of the permissions in the record is the permission being added to the

association. If the answer to this is yes, proceed to step 2, else create the

association.

Chapter 7. SoDA: The Enforcement Strategy

 61

 Add permission/role
(p i , r) ∈ PA

or task/role association
(t i , r) ∈ TA

Does p
i or t

i have
any conflicting

entities?

Determine conflicting
perm's or task's
associated roles

Yes

No

Add association

Does role r conflict
with all of the

roles?

Found

None
Found

1

2

4

3

Yes

No

Figure 7.3 Adding permission/role or task/role associations

• Step 2: Find all the roles that have already been associated to the

conflicting permissions found in step 1. This is done by iterating through

the entire permission to role association table where any of the associated

permissions is in the group of permissions found in step 1. If no roles are

found then the association can be safely made else proceed to step three.

• Step 3: Do all of the roles found in step 2 conflict with the added role r?

This is accomplished by iterating through the conflicting roles records

where the current role and any of the roles found in step 2 form a record.

If none is found the association can be safely made, else the association

may not proceed. This step differs from the user to role association

algorithm in that only if all the found roles are conflicting then may the

association take place.

• Step 4: Add the association as a record to the appropriate database table.

Since the algorithm for adding a task to role association is so similar to the

algorithm for adding a permission to role association, figure 7.3 will be used

Chapter 7. SoDA: The Enforcement Strategy

 62

as its reference. An example of this association would be assigning the task

‘Approve Order’ to the manager role. This association is denoted as (ti,r) ∈

TA. Before this association may be allowed to take place, the steps shown in

figure 7.3 must be undertaken.

• Step 1: Does the task ti have any conflicting tasks? This is done by

iterating through all the conflicting task records where one of the tasks in

the record is the task being added to the association. If the answer to this

is yes, proceed to step 2, else create the association.

• Step 2: Find all the roles that have already been associated to the

conflicting tasks found in step 1. This is done by iterating through the

entire task to role association table where any of the associated tasks are

in the group of tasks found in step 1. If no roles are found then the

association can be safely made, else proceed to step three.

• Step 3: Do all of the roles found in step 2 conflict with the added role r?

This is accomplished by iterating through the conflicting roles records

where the current role and any of the roles found in step 2 form a record.

The association can be safely made if all of these roles conflict with the

added role r, else the association may not proceed.

• Step 4: Add the association as a record to the appropriate database table.

7.2.2 Deleting Associations

There is no restriction upon the deletion of these associations, as it will not

affect the secure nature of the environment. It may be necessary to ensure

that certain associations remain intact for the work processes to execute

correctly. The SoDA model does not cater for these situations.

7.2.3 Maintaining Role Networks

The last type of association that can be made is the role network, which is

defined in chapter 3. Each role can have a parent role and a child role and it

is important to not allow circular references to occur within a role network.

Figure 7.4 displays the algorithm for adding roles to a role network, which is

denoted as (rp,ri) ∈ RH. The role rp is the parent role which is used to identify

where the role ri will be inserted.

Chapter 7. SoDA: The Enforcement Strategy

 63

Add role to role network
(rp , ri) ∈ RH

Is ri conflicting
with any roles in

network?

Disallow

Yes

No

Add role to role
network

No

Will ri create a
circular reference?

Disallow

Yes

1

2

3

4

5

Figure 7.4 Adding roles to a role network

• Step 1: Does the role ri conflict with any of the roles in the role network?

This is done by iterating through the conflicting role database table where

the role ri and any of the roles in the role network form a record. The roles

within the role network can be ascertained from the role network database

table. If the answer to this is yes, proceed to step 2, else proceed to step

3.

• Step 2: Disallow the addition. This is accomplished in the form of an on

screen dialog that warns the administrator.

• Step 3: Check whether the addition of the role ri will create a circular

reference. A circular reference is where the same role is referenced again

along a branch of the role network. This check is accomplished by

recursively checking the branch for any occurrences of the current role. If

a circular reference is detected then the addition of this association will be

disallowed through step 4, else it will be created in step 5.

Chapter 7. SoDA: The Enforcement Strategy

 64

• Step 4: Disallow the addition. This is accomplished by an on screen dialog

that warns the administrator.

• Step 5: Create the role network association by writing the correct record

into the role network database table.

When a role is deleted from the role network, it becomes important to make

sure that a hole is not left behind. This is solved through making sure that the

parent and child roles of the role that was removed get associated with each

other. An algorithm that describes this logic is described with figure 7.5.

 Delete role to role
association

(r p , r i) ∉ RH

Does the
association being
deleted have child

associations?

No

Prevent delete
of entity.

Yes

1

2

Figure 7.5 Deleting role associations from a role network

• Step 1: Does the association that is being deleted have any existing

children associations? This is done by selecting all records where the

parentid equals the deleted record’s childid within the same role network.

If child associations exist, proceed to step 2.

• Step 2: Raise an error and prevent the delete.

Other issues are evident and should be understood when working with roles in

a role network. These issues include the inheritance of permissions and

assigning ambiguous roles or roles with similar or identical permissions.

These issues are not catered for in the SoDA model.

Chapter 7. SoDA: The Enforcement Strategy

 65

7.3 Algorithms for Entity Conflicts

It is important to be able to correctly maintain the conflicts between entities in

order for an administration tool to control the integrity of the data effectively.

We still assume that we have entities already in the administration

environment.

7.3.1 Creating conflicting entities

Conflict assignments follow the same rules for all entities. The same general

algorithm can be used to control all conflict assignments. These are depicted

mathematically as (ti,tj) ∈ CT for conflicting tasks, (ri,rj) ∈ CR for conflicting

roles, (ui,uj) ∈ CU for conflicting users and (pi,pj) ∈ CP for conflicting

permissions. This algorithm is depicted in figure 7.6.

• Step 1: Check whether the entities are already conflicting with each other.

This is done by checking the records in the relevant database table for one

that matches the current entities. If a record is found, then this conflict

assignment has already been done and should not be done again. If an

existing conflict is not found, then it should proceed to step 2.

• Step 2: Check whether the entities form associations. This is done by

iterating through all the applicable database tables, searching for any prior

associations for either of the entities. If an association is found then step 3

must be performed, else the conflict may be created.

• Step 3: An association may become invalid if the conflict assignment goes

ahead. It is therefore necessary to disallow any conflict assignment that

will cause integrity problems. This step is expanded in figures 7.7, 7.8 and

7.9 to show exactly what processing needs to be done to accomplish this

check for the different entities. If no problems will be caused by the

conflict, then the conflict can be created, else the conflict must be

disallowed.

• Step 4: Disallow the addition. This is accomplished in the form of an on

screen dialog that warns the administrator.

• Step 5: Create the conflict assignment by writing a record into the

appropriate database table.

Chapter 7. SoDA: The Enforcement Strategy

 66

Add conflict
(ri , rj) ∈ CR, (ui , uj) ∈ CU
(pi , pj) ∈ CR, (ti , tj) ∈ CU

Are entities already
conflicting?

Yes

No

Create conflict

No
Are the entities

already associated
with something

else?

Will conflict cause
integrity problems?

Yes

No

Yes

Disallow

1

2

3

4

5

Figure 7.6 Adding conflicting entities

If the conflict assignment is created between two users ((ui,uj) ∈ CU) then the

algorithm in figure 7.7 is performed.

• Step 3.1: We assume that the users ui and uj already conflict and we find

all of the associated roles for both users. If associated roles are found for

both users then go to step 3.2, else allow the conflict to be created.

• Step 3.2: Check whether any of the roles that are associated with the user

ui are conflicting with any of the roles that are associated with the user uj.

This is done by checking for the existence of the role pairing in the

conflicting roles database table. If none of the roles are conflicting, then

allow the conflict to be created.

• Step 3.3: Do not create the conflict, as it will cause an existing association

to become illegal.

Chapter 7. SoDA: The Enforcement Strategy

 67

Check user/role association
when adding user conflicts

(ui , uj) ∈ CU

Determine all
associated roles for

both ui and uj

Allow Conflict

Do ui 's associated
roles conflict with

any of uj 's
associated roles?

Found

None
Found

3.1

3.2

3.3

No

Yes

Disallow Conflict

3.4

Figure 7.7 Checking user/role association

• Step 3.4: Create the conflict by writing a record into the appropriate

database table.

If the conflict assignment is created between two permissions ((pi,pj) ∈ CP) or

two tasks ((ti,tj) ∈ CT) then the algorithm in figure 7.8 is performed.

• Step 3.1: We assume that the entities pi and pj or ti and tj already conflict

and we find all of the associated roles for both entities. If associated roles

are found for both entities, then go to step 3.2, else allow the conflict to be

created.

• Step 3.2: Check whether all of the roles that are associated with the first

entity (pi or ti) are conflicting with all of the roles that are associated with

the second entity (pj or tj). This is done by checking for the existence of

the role pairing in the conflicting roles database table. If all of the roles are

conflicting, then allow the conflict to be created.

• Step 3.3: Do not create the conflict, as it will cause an existing association

to become illegal.

• Step 3.4: Create the conflict by writing a record into the appropriate

database table.

Chapter 7. SoDA: The Enforcement Strategy

 68

Check permission/role or task/
role association when adding

permission or task conflicts
(pi , pj) ∈ CP or (ti , tj) ∈ CT

Determine all
associated roles for
both entities (pi and

pj or ti and tj)

Allow Conflict

Do pi 's or ti 's
associated roles
conflict with all of

the pj 's or tj 's
associated roles?

Found

None
Found

3.1

3.2

3.3

Yes

No

Disallow Conflict

3.4

Figure 7.8 Checking permission/role and task/role associations

If the conflict is created between two roles, then the algorithm shown in figure

7.9 is used. It is only necessary to check whether conflicting users are

assigned to the two roles, as this is the only association that will be affected

by the roles becoming conflicting.

• Step 3.1: Check whether both roles (ri and rj) are already part of a role

network. If they are, then it must go to step 3.5 to disallow the conflict,

else it must go to step 3.2.

• Step 3.2: We assume that the roles ri and rj are already conflicting and we

find all of the associated users for both roles. If associated users are

found for both roles, then go to step 3.3, else allow the conflict to be

created.

• Step 3.3: Check whether any of the users that are associated with the role

ri are conflicting with any of the users that are associated with the role rj.

This is done by checking for the existence of the user pairing in the

conflicting users database table. If any of the users are conflicting, then do

not allow the conflict to be created.

Chapter 7. SoDA: The Enforcement Strategy

 69

Check user/role association
when adding role conflicts

(ri , rj) ∈ CR

Determine all
associated users
for roles ri and rj.

Allow Conflict

Do ri 's associated
users conflict with

any of the rj 's
associated users?

Found

None
Found

3.2

3.3

3.4

No

Yes

Disallow Conflict

3.5

Check whether
roles ri and rj are

part of a role
network.

Yes

3.1

No

Figure 7.9 Checking user/role associations for role conflict assignments

• Step 3.4: Do not create the conflict, as it will cause an existing association

to become illegal.

• Step 3.5: Create the conflict by writing a record into the appropriate

database table.

Following these algorithms will ensure that the data’s integrity remains intact.

7.3.2 Deleting conflicting entities

It is important to know what integrity requirements must be checked and

maintained for each conflict type that is to be deleted.

User, permission and task conflicts may be safely removed without affecting

the integrity of the system. This is because only the conflicting entities restrict

how they are associated with the roles.

Deleting role conflicts require proper integrity checks to ensure that the

existing associations remain valid. This algorithm is shown in figure 7.10.

Chapter 7. SoDA: The Enforcement Strategy

 70

Check permission/role or
task/role association when

deleting role conflicts
(ri , rj) ∉ CR

Determine all
associated entities

for roles ri and rj
(excluding users)

Allow Delete

Do ri 's associated
entities conflict with

any of rj 's
associated
entities?

Found

None
Found

1

2

3

No

Yes

Disallow Delete

4

Figure 7.10 Checking entity associations for role conflict deletion

• Step 1: We find all of the associated permission and tasks for both roles ri

and rj. If associated entities are found for both roles, then go to step 2,

else allow the conflict to be deleted.

• Step 2: Check whether any of the permissions that are associated with the

role ri are conflicting with any of the permissions that are associated with

the role rj. Also, check whether any of the tasks that are associated with

the role ri are conflicting with any of the tasks that are associated with the

role rj. This is done by checking for the existence of the entity pairing in

the correct conflicting entity database table. If any of the permissions or

tasks are conflicting, then do not allow the conflict to be deleted.

• Step 3: Do not delete the conflict, as it will cause an existing association to

become illegal.

• Step 4: Delete the conflict by removing the record from the appropriate

database table.

The creation and deletion of entity associations as well as the creation and

deletion of conflicting entities have now been covered. The final set

Chapter 7. SoDA: The Enforcement Strategy

 71

algorithms which needs to be discussed are those to do with the creation and

deletion of entities.

7.4 Algorithms for Entity Maintenance

The algorithms that have been discussed so far have all assumed that there

were entities already in an administration environment. This section

discusses the issues surrounding the creation and deletion of entities within

an administration environment.

7.4.1 Creating entities

Entities may be added an administration environment at any time. New

entities do not affect the integrity of the data in the system. Care must be

taken when deleting entities to ensure the integrity of the system remains

intact.

7.4.2 Deleting entities

Any entity may be safely deleted if that entity does not form part of any

associations. The SoDA model will not allow any type of entity from being

removed if that entity has an association of any kind.

This logic is displayed in figure 7.11, which shows the algorithm used for the

user (ui ∉ U), permission (pi ∉ P) and task (ti ∉ T) entity deletion. This

algorithm also caters for deleting roles (ri ∉ R) as step 1 also handles role to

role associations or role networks.

• Step 1: Check whether the entity has an association. This is done by

checking the records in the relevant entity association database table for

one where the entity matches the current entity. If the entity is a role, then

it will be necessary to check whether the role forms part of a role network

as well by checking the relevant database table. If a record is found, then

this deletion may not continue, else if none are found then it can proceed

to step 3.

• Step 2: Disallow the delete from continuing. The administration tool will

display the reason for the error by prompting the administrator.

Chapter 7. SoDA: The Enforcement Strategy

 72

• Step 3: Check for the existence of any conflict assignments between the

current entity and any others. This is done by iterating through the

respective entity’s conflict database table where any of the entities in the

records matches the current entity. If an entry is found, then the record

must be deleted. If none is found, then the entity can be safely deleted.

Delete entity
ui ∉ U or pi ∉ P or ti ∉ T or ri ∉ R

Does an entity to
role association

exist?

Disallow Delete

Yes

No

Delete entity

No

Are there conflict
assignments for the

entity?

Remove conflict

Yes

1

32

4

5

Figure 7.11 Deleting a user, permission or task entity

• Step 4: Remove any conflicts that are between the current entity and any

other entities.

• Step 5: Delete the current entity. This is done by simply removing the

entity’s record from the respective entity’s database table.

7.5 Conclusion

This chapter built algorithms according to the definitions, theorems and

axioms in chapter 6 for use within the SoDA model. These algorithms

describe exactly how the SoDA model maintains the integrity of the data.

Chapter 7. SoDA: The Enforcement Strategy

 73

Chapter 8 will describe the prototype that was used to demonstrate the SoDA

model. This prototype was assembled following the concepts defined in the

previous chapters. It demonstrates how the SoDA model can be implemented

in an administration tool.

74

Chapter 8.

SoDA: The Prototype

Chapter 6 developed the concept of the integrity constraints while chapter 7

discussed various algorithms necessary to enforce these SoD requirements.

This chapter introduces a prototype used to demonstrate the concepts of the

SoDA model.

Two prototypes were developed for this purpose. The first prototype’s design

approach for enforcing the SoD requirements was markedly different to the

approach taken by the second prototype.

It is necessary to discuss how the first prototype functioned and to show the

lessons learnt through its design before discussing how the second prototype

operates.

8.1 SoDA: The First Prototype

When development of the SoDA prototype first began it was envisaged that

the prototype would be a workflow administration tool. It was decided that the

algorithms, defined in chapter 7, would be built into a client application. This

demanded extra attention to the design of the user interface for the client

application. This approach affected the design of the first prototype.

8.1.1 Design approach

The first prototype was a Windows based client application with a database

back-end. The client application was written using Visual Basic and the

database management system used was Oracle. The design approach is

depicted in figure 8.1.

The design approach for this prototype was an all-inclusive one. All of the

data constraint and integrity logic was built into the prototype. The prototype

itself enforced the various associations and would constrain the association

from occurring if the particular association or assignment would cause

integrity errors.

Chapter 8. SoDA: The Prototype

 75

Client Application,
Contains all integrity

checking logic

Database Management
System,

Stores data only

Integrity checking logic

Figure 8.1 Design approach of the first SoDA prototype.

The client application would accomplish this by dynamically changing options

depending upon what the user had selected. In so doing, the prototype gave

the user only the options that were available for the actions the user was

performing. With its design as a workflow administration tool, certain

functions were included to support the environment it was administrating.

8.1.2 Functionality

One of the included functions was form and field creation. This function

supported a certain type of workflow system that the prototype was created

for.

Each field formed part of a hierarchy, which enabled permission groupings.

This meant that a logical group of fields would all be accessed through the

same permission. For example the “Edit Order Fields” permission would only

have to be created for the field under which all the order fields fall. These

fields would be automatically accessible by a user with rights to this particular

permission.

This in turn would generally ease the administration of permissions. The form

building front-end is shown in figure 8.2.

Certain additional workflow functions were taken into account due to the fact

that the prototype was designed as a fully functional workflow administration

tool. An example of these functions is the concept of a workflow process.

Tasks had to belong to a process and only this process’ tasks could conflict

with one another. The second prototype does not cater for this level of detail.

Chapter 8. SoDA: The Prototype

 76

Figure 8.2 Form design environment used to create a “Purchase Order”.

The first SoDA prototype contained all the integrity checking logic as depicted

in figure 8.1. This resulted in complex user interface scenarios such as the

task to role associations shown in figure 8.3.

Figure 8.3 Ensuring conflicting task to conflicting role assignments.

As can be seen with the screenshot on the left of figure 8.3, the Manager role

is being associated to the “Approve Order” task. Once this association has

been made the user wants to then associate a role to the “Issue Stock” task.

The screenshot on the right displays only those roles that are allowed to be

associated with this task.

Chapter 8. SoDA: The Prototype

 77

The application will only give the user the allowed choice of roles to choose

from for a particular task. It does this by applying the necessary logic to select

the roles that can be associated with the currently selected task.

This type of interactivity was considered a feature of the first prototype. It

made the conflicting entity paradigm clear through how the user interface

responded to the user’s actions.

There were difficulties with the design of the first SoDA prototype due to the

fact that all of the integrity checks were incorporated into the client application.

This is most prevalent when considering the multitude of possibilities available

due to the flexible functionality of the client.

8.1.3 Difficulties with this approach

The difficulties experienced with the first prototype included:

• The first prototype maintained the integrity of the data from the client side

and not from the database side. This gave the whole system too much

flexibility in what could be done and when it could be done. Every possible

action needed to be catered for, thus causing the prototype to become

unnecessarily complicated and cumbersome.

• Whenever an association was made it was necessary for the prototype to

check every possible condition that could cause it to fail. This meant that a

large section of program code was devoted to querying and checking the

database tables. These database queries resulted in increased network

usage and generally slowed the process of checking for integrity conflicts.

• There was also nothing preventing a user from accessing the database

directly and making modifications to the data without the protective shell of

the prototype to prevent them.

These issues forced the prototype to be redesigned resulting in version 2.

8.2 SoDA: The Second Prototype

The first SoDA prototype did all of the integrity checks from within the client

application. Due to the difficulties experienced with this approach the second

Chapter 8. SoDA: The Prototype

 78

SoDA prototype moved the integrity checks from the client side and into the

database.

This was possible due to the fact that Oracle is able to extend its own

functionality through the use of procedures and triggers. The difficulties

experienced with the first prototype were thus solved through the use of a

different design approach.

8.2.1 Design approach

One of the design decisions for the second prototype was to incorporate

active database techniques. Active databases react to events in the database

(Paton & Díaz, 1999). An event could be caused by the insertion of a record

into a database table or by the timing out of a logged in user’s session.

Another aspect of active database management systems is that instead of

spreading organisational policies across various applications, these policies

can be placed within the database (Kappel, Rausch-Schott, Retschitzegger &

Sakkinen, 2001). Policies will be enforced for every business application

without encoding the requirements that they impose into those business

applications. The SoD requirements, as discussed in this dissertation, would

thus be enforced by the active database management system.

Client Application,
Only user interface

with no logic

Database Management
System,

Contains all integrity
checking logic

Integrity checking logic

Figure 8.4 Design approach of the second SoDA prototype.

The second SoDA prototype uses the concept of an active database by

implementing the integrity checks through database triggers. This approach is

depicted in figure 8.4.

Chapter 8. SoDA: The Prototype

 79

The algorithms in chapter 7, while capable of being implemented on the client

side, were, in this second version of the SoDA prototype, implemented as

triggers in an Oracle database. The redesigning of the original prototype to

use triggers helped solve the problems of the first prototype in the following

ways:

• Network traffic is reduced, as the client no longer has to perform

extraneous data queries to perform SoD requirements checks.

• The client application is not required to ensure the validity of an

assignment or association, as the database will control the inserts and

deletes.

• Changes can be made to the triggers to extend the integrity constraint

logic without necessitating a change in the client application.

• Users cannot bypass the client application to make changes to the data

through the database as the database itself prevents it.

In order to illuminate the ensuing discussion, consider how database triggers

can be used to enforce integrity constraints such as those imposed by static

SoD requirements.

8.2.1.1 Using triggers to achieve integrity

Using database triggers to enforce the conflict paradigm constraints was the

primary focus of the second prototype. The client application was a

secondary goal and its only purpose was to test that the SoD requirements,

which were implemented within the database, functioned correctly.

SoD requirements are, where possible, enforced through foreign key

constraints and through primary or unique key constraints. This type of

integrity constraint is known as declarative integrity constraints. This integrity

constraint prevents entities from being deleted if they are already used in

associations. If an entity is deleted but only has conflicts with another entity

and no other associations, then the conflicts are removed automatically

through the use of cascading deletes.

An example of this would be a database table that relies on values in another

database table. The database can be instructed to ensure that the relied

Chapter 8. SoDA: The Prototype

 80

upon records may not be deleted or to delete all records in the first table that

make use of the relied upon record’s values. But there are integrity constraint

situations that the database cannot manage. In these situations a database

trigger has to be used to enforce the integrity constraint.

This type of integrity constraint is known as a procedural integrity constraint.

An example of this type of integrity constraint would be checking to see if an

action is allowed to take place at a certain time of day. In this case a business

process, such as a sale, could be restricted to business hours.

Triggers have restrictions on what they can do and how they can be used.

Therefore, when designing database triggers, special considerations must be

taken into account.

8.2.1.2 Special considerations when using triggers

There are two types of triggers: row-based triggers and statement-based

triggers (ORACLE, 1999). Row-based triggers are executed for every row or

record in a table that a SQL statement affects. While statement-based

triggers are only executed once for a SQL statement, no matter how many

records are affected, row-based triggers are more difficult to work with, as the

possibility for errors is more prevalent.

One such error is the mutating table error. A mutating table error is caused

when a row-based trigger attempts to read data from a database table that is

in the process of undergoing change (Oracle, 1999). The database

management system raises an error and prevents the trigger from continuing

since it might read invalid data.

For example, the following SQL statement, which sets the hourly rate for wage

earning employees, could have repercussions:

UPDATE staff SET rate = rate + 10;

There may be procedural integrity constraints that ensure that the rate

increase is allowed for under organisational policies. This could be a

statement-based trigger, as it would most likely only need checking once for

the entire table. Another procedural integrity constraint could check the

increase for every employee that is affected. This would be a row-based

Chapter 8. SoDA: The Prototype

 81

trigger, as it will need to execute once for every record that is affected. The

creation of this trigger would be hampered if it needed to examine values

within the staff database table due to the mutating table error.

In designing the triggers for the prototype it was realised that they would have

to examine the contents of their own changing database tables. This forced

them to be designed in such a way to prevent mutating table errors. This

problem can be demonstrated practically with the following example.

A trigger will fire when two conflicting roles are inserted into the conflicting role

(CR) database table. This trigger will have to execute every time a conflicting

pair of roles gets inserted into this table. This means that this trigger is a row-

based trigger.

This trigger has to find all of the roles that are already conflicting with the

conflicting roles that are being added to the CR database table in order for it

to check the SoD requirements. This requires it to query the CR table that is

presently in the process of changing. Oracle will not allow this query to

proceed and will generate a mutating table error.

In order to work around this problem it was necessary to create an Oracle

package to hold PL/SQL table variables for each trigger. A package is a

globally accessible collection of variables and routines (ORACLE, 1999). A

PL/SQL table is an array-like structure that can be used to hold the values of

database records.

In order to make use of the PL/SQL tables in the package it was necessary to

design the triggers correctly. This design involves the creation of three

triggers, one for each type of action for each database table. This solution is

represented graphically in figure 8.5.

The package defines two PL/SQL tables for each database table and for each

action that will be handled. So there are two PL/SQL tables for inserting a

record into the role to role database table when creating role networks. There

are also two PL/SQL tables for the triggers that handle deleting records from

the role to role database table.

Of the two PL/SQL tables for each trigger, the first table holds the actual data

while the second is simply an empty structure used to reinitialise the first.

Chapter 8. SoDA: The Prototype

 82

Database
Package

Holds inserted or
deleted records

Before Statement
Trigger

Fires before any
records are

inserted or deleted

Initialises the
variables

Before Each Row
Trigger

Fires just before a
record is inserted

or deleted

Places the values of the
fields of the record into

the variables in the
package

After Statement
Trigger

Fires after all
changes to the
database table

Iterates through the
variables in the

package and does
the integrity checks

Figure 8.5 A solution to the problem of mutating tables.

The first of the three triggers does the reinitialising of the first PL/SQL table.

This trigger is a statement trigger that will run at the beginning of the insert or

delete action on a database table.

The second trigger is a row-based trigger that gets activated for every row that

is affected. This trigger adds the values of the fields of the affected records to

the first PL/SQL table’s fields and increments the first PL/SQL table’s counter

by one each time.

The third trigger is a statement-based trigger that fires after the changes on

the database table. This trigger loops through all the records in the first

PL/SQL table and checks the SoD requirements for the record that was

inserted or deleted. It must be remembered that at this point the record is

either already in the database table if it was inserted or it is already deleted

from the database table if deleted. If the SoD requirement check fails, then it

is necessary for the third trigger to raise an exception to cause the database

to cause a rollback to reverse the changes.

The client application for this approach has no SoD requirement checking

logic. It relies upon the database in order to operate effectively and securely.

This does have the added disadvantage that the client tends to show every

possibility as being available. Only after the user attempts an assignment or

association does the client show the error raised by the database.

Chapter 8. SoDA: The Prototype

 83

It is possible to address this issue by using stored procedures for the SQL

queries that will return a sensitised record set. However, this is a user

interface issue and not an integrity issue, and as such falls outside the scope

of this dissertation.

It is also possible to combine the approach taken with the first prototype and

the approach taken with the second prototype. Certain SoD requirements,

such as not allowing the same role to be conflicting with itself, could very

easily be guarded against from the client side as well as from the database.

To demonstrate the effectiveness of the second prototype’s approach, it was

necessary to make the client application as simple as possible. The client

application for the second SoDA prototype is just a user interface that

facilitates the creation of entities, conflict assignments and associations. The

client application contains no SoD requirements checking logic. As such, only

the triggers, which were coded in Oracle’s PL/SQL programming language,

are listed in appendix C along with the database tables and the declarative

constraints.

An in-depth discussion of the functionality of the triggers is required in order to

understand how this solution creates an environment that handles separation

of duty constraints.

8.2.2 Functionality

The second SoDA prototype implements the algorithms in chapter 7 as a set

of triggers. A scenario based on the workflow example in chapter 2 is

introduced in order to describe the functioning of these triggers.

The security administrator will create all of the conflict assignments. Once the

conflicts between entities have been identified, it will be up to the workflow

administrator, whose job it is to manage the workflow process definitions, to

create the associations between the entities. These employee assignments

are depicted in figure 8.6.

Chapter 8. SoDA: The Prototype

 84

Security Administrator

Workflow Administrator

RBAC
Entity Conflicts

Entity Associations

Functions Users

Figure 8.6 Anticipated employee assignments for the SoDA environment.

To facilitate the scenario, the following pre-existing entities shall be used:

Users UserID Tasks TaskID
Thomas 1 Complete Order Form 1
Peter 2 Approve Order 2
Frank 3 Check Stock 3
 Issue Stock 4
 Order Stock 5
 Write Rejection Memo 6

Roles RoleID Permissions PermID
Employee 1 Edit Order Fields 1
Stock Controller 2 Edit Approve Order Fields 2
Manager 3 Edit Rejection Fields 3
 Read Order Form 4
 Edit Order Completed Fields 5

The permissions declared here are similar to the permissions defined for the

first prototype. That is, they are named groupings of access rights to objects.

In this example, the permissions are derived from the concept of form-based

workflow. The permission “Edit Approve Order Fields” is thus a group of

access rights for a user to achieve a specific activity.

Within the first prototype, the security administrator would assign access

rights to the fields within a form to a named permission group. The second

prototype does not cater for this step, but rather treats permissions at a higher

level of abstraction.

The outline of this scenario is shown in table 8.1.

Chapter 8. SoDA: The Prototype

 85

 Operation Section

Conflicts

Creating role conflicts
Creating user conflicts
Creating permission conflicts
Creating task conflicts
Deleting conflicting entities

8.2.2.1
8.2.2.2
8.2.2.3
8.2.2.4
8.2.2.5

Role Networks Creating the role network
Deleting a role from a role network

8.2.2.6
8.2.2.7

Associations

Creating user to role associations
Creating permission to role associations
Creating task to role associations
Deleting associations

8.2.2.8
8.2.2.9
8.2.2.10
8.2.2.11

Table 8.1 The SoDA model prototype scenario layout

It is possible to begin with any of the associations or conflict assignments, but

in order to keep this explanation simple, the scenario will begin with the

creation of conflicts.

8.2.2.1 Creating role conflicts

In the example, only two roles are conflicting: the manager role and the

employee role. If these roles were not conflicting then they would be able to

exist in the same role network. Since permissions are inherited from the role

network, it would mean that one of the roles would have the permissions that

would permit fraud.

In order to set the conflict, which is denoted as (r1,r3) ∈ CR, a SQL statement

will insert a record into the CR database table. For these roles this can be

coded as:

INSERT INTO cr VALUES(1,3);

The “crstatafter_trig” trigger will check that this is possible by first checking

that they are not already conflicting. The algorithm for this trigger can be

found in chapter 7, section 7.3.1, figures 7.6 and 7.9. The primary key

constraint already present for the database table will capture this error

sometimes, but the roles may be reversed for the current record and so this

check is necessary.

It will then check whether the two roles form part of the same role network. If

they are, then the following error is raised:

Chapter 8. SoDA: The Prototype

 86

ORA-20223: Cannot insert role conflict - both roles are
already part of a role network.
ORA-06512: at "STEPHEN.CRSTATAFTER_TRIG", line 25
ORA-04088: error during execution of trigger
'STEPHEN.CRSTATAFTER_TRIG'

The trigger will proceed to check whether any of the users that are associated

with the first role are conflicting with any of the users that are associated with

the second role. If there are any then it will raise the following error:

ORA-20205: Cannot insert role conflict - both roles are
already associated to conflicting users.
ORA-06512: at "STEPHEN.CRSTATAFTER_TRIG", line 43
ORA-04088: error during execution of trigger
'STEPHEN.CRSTATAFTER_TRIG'

Only once these integrity constraint checks have passed will the trigger allow

the conflict to be inserted.

Conflicting roles restrict which associations may be made with other entities

and the roles that may form part of a role network.

8.2.2.2 Creating user conflicts

For this example it is not necessary to create conflicts between any of the

users. For thoroughness, a description of how the logic operates for an

example is described.

If the users Thomas and Frank were brothers it may be necessary to create a

conflict between them. In order to set the conflict, which is denoted as (u1,u3)

∈ CU, a SQL statement will insert a record into the CU database table. For

these users this can be coded as:

INSERT INTO cu VALUES(1,3);

The “custatafter_trig” trigger will check that this is possible by first checking

that they are not already conflicting. The algorithm for this trigger can be

found in chapter 7, section 7.3.1, figures 7.6 and 7.7. The primary key

constraint already present for the database table will capture this error

sometimes, but the users may be reversed for the current record and so this

check is necessary.

The trigger will then check if the first user has any associated roles that are

conflicting with any of the second user’s associated roles. If so, it generates

the following error:

Chapter 8. SoDA: The Prototype

 87

ORA-20207: Cannot insert user conflict - both users are
already associated to conflicting roles.
ORA-06512: at "STEPHEN.CUSTATAFTER_TRIG", line 43
ORA-04088: error during execution of trigger
'STEPHEN.CUSTATAFTER_TRIG'

If conflicting users have been defined, these conflicts will restrict which roles

may be associated with these users as well as the roles that may be part of a

role network.

8.2.2.3 Creating permission conflicts

The primary means for preventing fraud is by the manipulation of access

rights to the objects within a system. These access rights are known as

permissions and creating conflicts between certain permissions is the means

of manipulation necessary to enforce static separation of duty.

The security administrator needs to decide which permissions are conflicting.

Once the conflicting permissions have been identified it is necessary to set

them as conflicting.

In this example the permissions that are conflicting are:

Permission Conflicts with
Edit Approve Order Fields

Edit Order Fields
Edit Rejection Fields

In order to set these conflicts, which are denoted as (p1,p2) ∈ CP and (p1,p3) ∈

CP, a SQL statement will insert two records into the CP database table. For

these permissions this can be coded as:

INSERT INTO cp VALUES(1,2);

INSERT INTO cp VALUES(1,3);

The “cpstatafter_trig” trigger will check that this is possible by first checking

that they are not already conflicting. The algorithm for this trigger can be

found in chapter 7, section 7.3.1, figures 7.6 and 7.8. The primary key

constraint already present for the database table will capture this error

sometimes, but the permissions may be reversed for the current record and

so this check is necessary.

Chapter 8. SoDA: The Prototype

 88

The trigger will then check that all of the first permission’s associated roles are

conflicting with all of the second permission’s associated roles. If this is not

so, it will generate the following error:

ORA-20209: Cannot insert permission conflict - one or more
of the associated roles of the two permissions are not
conflicting.
ORA-06512: at "STEPHEN.CPSTATAFTER_TRIG", line 47
ORA-04088: error during execution of trigger
'STEPHEN.CPSTATAFTER_TRIG'

It is important to note that if one of the permissions does not have any

associated roles, then the conflict may be created.

Conflicting permissions will restrict which roles may be associated with them,

which causes a cascading effect that restricts the permissions assigned to

users.

Up to now this scenario has only dealt with the entities that are normally a part

of role based access control. Now it is necessary to include the concept of a

task.

8.2.2.4 Creating task conflicts

The workflow task helps to incorporate the separation of duty constraints into

the workflow environment. The enforcement of separation of duty

requirements becomes easier for workflow processes once the tasks have

been incorporated into conflict assignments and into the associations.

The security administrator will need to create conflicts between the following

tasks:

Task Conflicts with
Approve Order

Complete Order Form
Write Rejection Memo

It could be argued that even more conflicts could be created between various

other tasks. These conflicts could be made but they are dependent upon the

level of security needed.

In order to set these conflicts, which are denoted as (t1,t2) ∈ CT and (t1,t6) ∈

CT, a SQL statement will insert two records into the CT database table. For

these tasks this can be coded as:

Chapter 8. SoDA: The Prototype

 89

INSERT INTO ct VALUES(1,2);

INSERT INTO ct VALUES(1,6);

The “ctstatafter_trig” trigger will check that this is possible by first checking

that they are not already conflicting. The algorithm for this trigger can be

found in chapter 7, section 7.3.1, figures 7.6 and 7.8. This logic is identical as

that for the permission conflicts.

The trigger will then check that all of the first task’s associated roles are

conflicting with all of the second task’s associated roles. If this is not so, it will

generate the following error:

ORA-20211: Cannot insert task conflict - one or more of the
associated roles of the two tasks are not conflicting.
ORA-06512: at "STEPHEN.CTSTATAFTER_TRIG", line 48
ORA-04088: error during execution of trigger
'STEPHEN.CTSTATAFTER_TRIG'

As with the permission conflict assignment, it is important to note that if one of

the tasks does not have any associated roles then the conflict may be

created.

Conflicting tasks will prevent the possibility of conflicting permissions from

being assigned to conflicting users within the workflow environment.

At this point it is necessary to explain what will happen if it is necessary to

remove conflicts.

8.2.2.5 Deleting conflicting entities

Most conflict assignments can be removed without any repercussions. This is

due to the fact that the removal of most conflicts will not impact the data

integrity of the SoDA data.

The exception to this rule is the deletion of a role conflict assignment. A role

conflict cannot be removed if the first role’s associated tasks or permissions

conflict with the second role’s associated tasks or permissions. This means

that if two conflicting tasks or permissions are associated with two conflicting

roles, then the role conflict may not be deleted.

If the security administrator attempts to delete this role conflict then the

“dcrstatafter_trig” trigger generates the following error:

Chapter 8. SoDA: The Prototype

 90

ORA-20212: Cannot delete role conflict - the roles form part
of associations to tasks or permissions that will become
invalid if the role conflict is deleted.
ORA-06512: at "STEPHEN.DCRSTATAFTER_TRIG", line 66
ORA-04088: error during execution of trigger
'STEPHEN.DCRSTATAFTER_TRIG'

The algorithm for this trigger can be found in chapter 7, section 7.3.2, figure

7.10. This ensures that the data integrity of the SoDA associations remains

intact.

The security administrator has created all of the assignments up to this point

in the scenario. Once the conflicts have been created it is no longer the

security administrator’s job to continue with the associations. The creation of

the association is the job of the workflow administrator.

The workflow administrator must create the associations between all the

entities in order to support the workflow processes. These associations can

be made in any order. The creation of the role network will be demonstrated

first to continue the scenario.

8.2.2.6 Creating the role network

This scenario’s role network will be very small but the logic works on very

small or very large role networks.

The first step to creating a role network is to give the role network a name.

Inserting a record into the “RoleNet” database table does this. For his

scenario the description of the role network will be “Order Fulfilment”. This

role network’s ID will be used for every role inserted into this specific role

network.

The SQL statement that will insert this role network is:

INSERT INTO rolenet VALUES(1,’Order Fulfilment’);

The database table that holds the actual roles assigned to a role network is

named “RH”. This database table currently holds no roles for this role

network.

The first role to be inserted must be the root role. This record’s parentid field

is null with the childid field equal to the roleid being inserted. In this case it will

be the manager role. The SQL statement to insert this record is:

Chapter 8. SoDA: The Prototype

 91

INSERT INTO rh VALUES(1,null,3);

This record will not be inserted if the role network doesn’t already exist. This

integrity constraint is enforced by foreign key constraints. The

“rhstatafter_trig” trigger will check for a variety of other SoD requirements.

Firstly it will check whether an existing root role already exists for the

particular role network. If one does exist, then the trigger generates the

following error:

ORA-20217: Cannot insert role into role network - root role
already exists for the particular role network.
ORA-06512: at "STEPHEN.RHSTATAFTER_TRIG", line 42
ORA-04088: error during execution of trigger
'STEPHEN.RHSTATAFTER_TRIG'

The next role to be inserted into the RH database table for this role network

must be a child role of the root role. In this case it will be the stock controller

role. The SQL statement to insert this record is:

INSERT INTO rh VALUES(1,3,2);

The “rhstatafter_trig” trigger will check first for the existence of a root role for

the role network. The algorithm for this trigger can be found in chapter 7,

section 7.2.3, figure 7.4. Once found it then checks whether the parent role of

the inserted record is already in the role network as a child. In this case the

parent role is the manager role and it is in the role network as the root role

(parentid is null and childid is 3). If the parent role is not already there, then

Oracle will raise an error. The following SQL statement tries to add a role to

the role network where the parent role does not exist:

INSERT INTO rh VALUES(1,1,2);

And it generates the following error:

ORA-20213: Cannot insert role into role network - the parent
role is not an existing child role.
ORA-06512: at "STEPHEN.RHSTATAFTER_TRIG", line 87
ORA-04088: error during execution of trigger
'STEPHEN.RHSTATAFTER_TRIG'

The trigger then checks for the possibility of a circular reference. It does this

by executing a hierarchical query that will fail if a circular reference has been

created. If it will cause a circular reference, the trigger captures the exception

and raises the following error:

Chapter 8. SoDA: The Prototype

 92

ORA-20214: Cannot insert role into role network - it will
cause a circular reference to occur.
ORA-06512: at "STEPHEN.RHSTATAFTER_TRIG", line 94
ORA-04088: error during execution of trigger
'STEPHEN.RHSTATAFTER_TRIG'

The trigger’s final check is to see whether any of the roles already in the role

network are already conflicting with the role just inserted. If there are any then

the following error is raised:

ORA-20215: Cannot insert role into role network -
conflicting role(s) are already present in the role network.
ORA-06512: at "STEPHEN.RHSTATAFTER_TRIG", line 81
ORA-04088: error during execution of trigger
'STEPHEN.RHSTATAFTER_TRIG'

The role network for this scenario is very small. It only contains two roles,

namely the manager role as the root role, and the stock controller role as the

child role.

As with the creation of a role network, it is important to understand the SoD

requirement checks required when deleting roles from a role network.

8.2.2.7 Deleting a role from a role network

If a role needs to be deleted from a role network then the “drhstatafter_trig”

trigger checks that the role to be deleted has no children roles in the role

network. The delete statement below tries to delete the root role (manager)

from the role network.

DELETE FROM rh WHERE parentid IS NULL AND rolenetid = 1 AND

childid = 3;

And it generates the following error:

ORA-20222: Cannot delete role association - children
associations already exist for the role been deleted.
ORA-06512: at "STEPHEN.DRHSTATAFTER_TRIG", line 17
ORA-04088: error during execution of trigger
'STEPHEN.DRHSTATAFTER_TRIG'

A role network may only be removed when it no longer contains any roles.

Roles can be associated with all other entities and the scenario will now

continue with the steps involved with these associations.

Chapter 8. SoDA: The Prototype

 93

8.2.2.8 Creating user to role associations

The workflow administrator will now create associations between the users

and the roles. The user to role associations that need to be created for this

workflow example are displayed in the following table.

User Role
Thomas Employee
Peter Stock Controller
Frank Manager

A user to role association is denoted mathematically as (ui,ri) ∈ UA. The SQL

statements to insert these associations are:

The Employee role to the user Thomas:

INSERT INTO ua VALUES(1,1);

The Stock Controller role to the user Peter:

INSERT INTO ua VALUES(2,2);

The Manager role to the user Frank:

INSERT INTO ua VALUES(3,3);

Certain SoD requirements need to be enforced when adding these

associations and the “uastatafter_trig” trigger checks these SoD requirements.

The algorithm for this trigger can be found in chapter 7, section 7.2.1, figure

7.2. This trigger will generate an error if the user in the user to role

association has conflicting users that are associated to roles that are

conflicting with the role being added.

What this means is that if Frank were being associated to the Manager role

then it would be necessary to do the following checks:

• Ascertain if Frank is conflicting with any other users. For example,

Frank may be conflicting with Thomas.

• Check whether any of Thomas’s associated roles are conflicting with

the Manager role. The association may continue if Thomas has no

associated roles. If a problem was detected then the following error will

be raised by the trigger:

Chapter 8. SoDA: The Prototype

 94

ORA-20201: Cannot insert user to role association - a
conflicting user is already associated to a conflicting
role.
ORA-06512: at "STEPHEN.UASTATAFTER_TRIG", line 48
ORA-04088: error during execution of trigger
'STEPHEN.UASTATAFTER_TRIG'

These associations will restrict the permissions and the tasks that can be

associated with the roles and in effect, the users.

8.2.2.9 Creating permission to role associations

The workflow administrator will now create associations between the

permissions and the roles. The permission to role associations that need to

be created for this workflow example are displayed in the following table.

Permission Role
Edit Order Fields Employee
Edit Order Completed Fields Stock Controller
Edit Approve Order Fields
Edit Rejection Fields

Manager

A permission to role association is denoted mathematically as (pi,ri) ∈ PA.

The SQL statements to insert these associations are:

The Employee role to the “Edit Order Fields” permission:

INSERT INTO pa VALUES(1,1);

The Stock Controller role to the “Edit Order Completed Fields” permission:

INSERT INTO pa VALUES(2,5);

The Manager role to the “Edit Approve Order Fields” and “Edit Rejection

Fields” permissions:

INSERT INTO pa VALUES(3,2);

INSERT INTO pa VALUES(3,3);

The “pastatafter_trig” trigger will check the role to permission associations that

are inserted into the database table. The algorithm for this trigger can be

found in chapter 7, section 7.2.1, figure 7.3. This trigger will generate an error

if the permission in the permission to role association has conflicting

permissions and that some of these permission’s associated roles are not

conflicting with the role been added.

Chapter 8. SoDA: The Prototype

 95

What this means is that if the “Edit Approve Order Fields” permission is being

associated with the Manager role, then the following steps need to be taken:

• Identify all of the “Edit Approve Order Fields” permission’s conflicting

permissions. This would identify the “Edit Order Fields” permission.

• Now identify all of the associated roles for the previously identified

permissions. This would identify the Employee role.

• All of the previously identified roles must conflict with the Manager role.

In this case they do as the Employee role does conflict with the

Manager role. If this were not the case, the trigger would generate the

following error:

ORA-20202: Cannot insert permission to role association - a
conflicting permission must be assigned to a conflicting
role.
ORA-06512: at "STEPHEN.PASTATAFTER_TRIG", line 48
ORA-04088: error during execution of trigger
'STEPHEN.PASTATAFTER_TRIG'

The task to role association is conceptually equivalent to the permission to

role association.

8.2.2.10 Creating task to role associations

The workflow administrator will now create associations between the tasks

and the roles. The task to role associations that need to be created for this

workflow example are displayed in the following table.

Task Role
Complete Order Form Employee
Check Stock
Issue Stock
Order Stock

Stock Controller

Approve Order
Write Rejection Memo

Manager

A task to role association is denoted mathematically as (ti,ri) ∈ TA. The SQL

statements to insert these associations are:

The Employee role to the “Complete Order Form” task:

INSERT INTO ta VALUES(1,1);

Chapter 8. SoDA: The Prototype

 96

The Stock Controller role to the “Check Stock”, “Issue Stock” and “Order

Stock” tasks:

INSERT INTO ta VALUES(2,3);

INSERT INTO ta VALUES(2,4);

INSERT INTO ta VALUES(2,5);

The Manager role to the “Approve Order” and “Write Rejection Memo” tasks:

INSERT INTO ta VALUES(3,2);

INSERT INTO ta VALUES(3,6);

The “tastatafter_trig” trigger will check the role to task associations that are

inserted into the database table. The algorithm for this trigger can be found in

chapter 7, section 7.2.1, figure 7.3. This trigger will generate an error if the

task in the task to role association has conflicting tasks and if some of these

task’s associated roles are not conflicting with the role being added.

What this means is that if the “Approve Order” task is being associated with

the Manager role, then the following steps need to be taken:

• Identify all of the “Approve Order” task’s conflicting tasks. This would

identify the “Complete Order Form” task.

• Now identify all of the associated roles for the previously identified

tasks. This would identify the Employee role.

• All of the previously identified roles must conflict with the Manager role.

In this case they do as the Employee role does conflict with the

Manager role. If this were not the case, the trigger would generate the

following error:

ORA-20203: Cannot insert task to role association - a
conflicting task must be assigned to a conflicting role.
ORA-06512: at "STEPHEN.TASTATAFTER_TRIG", line 49
ORA-04088: error during execution of trigger
'STEPHEN.TASTATAFTER_TRIG'

As previously mentioned, both the permission to role association and the task

to role association are very similar. The correct usage of these associations

will help ensure a secure workflow environment.

The SoDA prototype also allows for associations to be deleted.

Chapter 8. SoDA: The Prototype

 97

8.2.2.11 Deleting associations

Associations may be deleted without compromising the data integrity of the

SoDA system.

This scenario demonstrated the effectiveness of the second version of the

SoDA prototype. By ensuring that separation of duty requirements are met

through the use of database triggers that guarantee the enforcement of the

integrity constraints, it has exhibited an ability to help and ease the

administrative burden.

8.2.3 Further functionality

While the triggers that form the basis of the second version of the SoDA

prototype ensure the integrity of the data, they do not cater for many different

security and management issues.

The first of these issues is the fact that a user can still connect directly to the

database and can update any of the records in the database. This is

generally easy to solve through a few different approaches.

For the first approach, triggers could be added to the database tables to

prevent updates from occurring. This is not an ideal situation as it

complicates the whole system unnecessarily.

Another approach is to maintain security through the proper use of users and

roles within Oracle. A specific user with enough access rights and privileges

would install the SoDA prototype. Then the users of the SoDA prototype

would only be given select, insert and delete rights to the database tables.

This would ensure that even if a user does access the database directly, they

can do no more damage than if they were using the client application.

8.3 Implementation Issues

The SoDA prototype was developed according to the proposed model. As

such, the design of the database tables followed the design of the sets of

entities used by the model. The triggers could be simplified if the database

tables were denormalised. This would involve adding redundant information

Chapter 8. SoDA: The Prototype

 98

into the database tables so as to improve the performance and to simplify the

algorithms utilised in the triggers.

The prototype also had to conform to the restrictions of the database

management system. These restrictions dictated how the database triggers

would function. The logic of the triggers could be simplified if the database

management system handled the restrictions differently.

8.4 Conclusion

The concept of the SoDA prototype has changed markedly throughout this

research. The current version has improved upon the previous version and

has tried to correct problems inherent in the older design.

More importantly though, both versions of the SoDA prototypes help

demonstrate the effectiveness of the conflicting entities paradigm. This

paradigm is discussed in chapter 6. The prototypes show that it is possible to

help prevent separation of duty conflicts within the workflow environment, and

in so doing, it could help enforce company policy. Company policies can also

be enforced through the use of active database technology.

It is evident that database management systems are incorporating active

database techniques and technologies (G. Kappel et al., 2001). The

capabilities of database management systems will expand to encompass the

ability to enforce policy driven rules for the protection of an organisation’s

data.

With these developments in database technology it also becomes possible for

the database management system to encompass elements of a workflow

system. It is foreseen that the SoDA prototype would become abstracted into

the database management system as part of a workflow component. Without

tasks it could be implemented as part of an active relational DBMS

(ARDBMS).

99

Chapter 9.

Conclusion

Due to the increasing volume and importance of information available

electronically it has become necessary to facilitate an organisation’s

information security administration. Along with easing the administration of

information security is the need to enforce organisational policies. This

ensures that the information is managed and protected according to the needs

of the organisation. For this research, these needs took the form of the

enforcement of separation of duties within an organisation’s workflow

environment.

Separation of duties and the administration thereof can be eased through the

utilisation of RBAC. In order to tie this ease of use to the managing of an

organisation’s information, it was necessary to ascertain if and how RBAC

could be applied to a workflow environment.

A workflow environment controls the flow of information according to rules

defined within business process models. RBAC employed within the workflow

environment should thus be sensitised to the context of the work (Cholewka et

al., 2000; Thomas & Sandhu, 1993). In order to employ RBAC into the

workflow environment a workflow specific entity, the task, was added to the

normal RBAC entities.

Through the use of the task entity it became possible to enforce separation of

duty requirements in the workflow environment. In order to enforce the

separation of duty requirements it was necessary to ascertain the different

associations between the entities that may be allowed to take place.

These associations became the methodology required to implement the

conflicting entities administration paradigm. The emphasis of this paradigm is

to help the security administrator ensure that separation of duty constraints

get enforced.

Chapter 9. Conclusion

 100

An implementation of the conflicting entities administration paradigm would

help security administration by enforcing the integrity constraints for the

administrators. The environment becomes sensitive to the requirements for

enforcing the integrity constraints and is able to prevent potential errors from

occurring.

This research relied upon answers for the research questions that were asked

in the first chapter. These questions were asked in order to understand the

requirements for accomplishing the primary research objective. This objective

was the creation of a model for an advanced access control administration

environment. These questions are now reviewed.

9.1 Research Questions Reviewed

The model of an advanced access control administration environment

required a number of problems to be researched. These problems were

specified in the form of questions.

9.1.1 How can RBAC concepts be applied in the workflow environment?

RBAC environments formulate access control requirements in terms of Roles,

Users and Permissions. An additional element, from the workflow

environment, was identified and included into these formulations. This

identified workflow element, the task, was incorporated into the RBAC

environment and the RBAC environment was adapted to make use of it.

9.1.2 How is the specification of SoD requirements influenced by the

inclusion of the workflow entities?

It was identified that SoD requirements could be imposed by integrity

constraints between the RBAC entities. These integrity constraints and the

additional integrity constraints required by the addition of the workflow task

were identified and formalised. Algorithms based upon these formalisations

were developed for use in a prototype in order to demonstrate the model’s

effectiveness.

Chapter 9. Conclusion

 101

9.1.3 Can a single administration paradigm successfully formulate the

range of separation of duty requirements?

The required range of SoD requirements can be formulated in the single

administration paradigm. The single administration paradigm has been shown

to handle the specification of SoD requirements and to ensure the

enforcement of these requirements. The single administration paradigm does

allow for a consistent and easy to use approach to access control

administration.

These questions and their subsequent answers have contributed towards the

accomplishment of the primary research objectives.

9.2 Contribution of this dissertation

The outcome of this research was a model for an advanced access control

administration environment that handled the administration of SoD constraints

in a workflow environment. This model has contributed various concepts.

These concepts include the conflicting entities administration paradigm and

enforcement algorithms for static SoD.

9.2.1 Development of conflicting entities administration paradigm

Once the concept of the task entity had been adapted into the RBAC

environment, it became necessary to identify a model for the use of the

extended RBAC environment. The solution that is presented is one where an

administration environment will enforce associations and assignments

between entities based upon the concept of conflicting entities.

Conflicting entities may only be related to other entities according to certain

rules. The development of these rules was an integral part of this research.

Once the rules were defined, it became possible to create generic algorithms

to provide integrity constraint checking.

9.2.2 Development of enforcement algorithms for static SoD

These algorithms include the logic required to check for every possible entity

association or conflict assignment that could occur. Each of these algorithms

takes into account various likely scenarios due to the fact that an association

or assignment needs to do a variety of checks before final approval.

Chapter 9. Conclusion

 102

These algorithms are generic enough to be realised in a variety of

implementations. In order to demonstrate their functionality two prototypes

were developed. The first prototype attempted to enforce the integrity

constraint rules in a client-side application. In order to improve upon the

design of the first prototype, it was decided to demonstrate the SoDA model

using a different approach. This approach involved the use of active database

techniques.

Active database techniques can be used to allow an organisation’s data to

abide by the organisation’s policies (Kappel et al., 2001). In so doing,

application systems do not need to be developed to support these policies as

the database management system will support them for all application

systems.

The second prototype was developed with these motives in mind. This

prototype implemented the algorithms as database triggers in order to enforce

the integrity constraints. This prototype demonstrated that the implementation

of the conflicting entities administration paradigm is feasible at the database

level.

9.3 Future Research

There are many areas of this research that require further analysis. This is

partly a result of the scope taken. With this in mind it is clear that more

integration with the workflow environment is required.

Future research would undertake to study how to evolve the conflicting

entities administration paradigm to include the dynamic workflow environment.

Topics such as the temporality of access rights and dynamic constraints

would need to be researched.

Another area of future research is the issue of management. Management

issues will become increasingly important once the SoDA model has been

extended to include dynamic SoD.

Understanding how an organisation can manage their resources efficiently

and maintain a high level of security would be advantageous. Research

Chapter 9. Conclusion

 103

would help in the design of a model that is flexible enough to adapt to any

organisation’s requirements while still remaining as secure as possible.

Another future research proposal for consideration is the concept of

abstraction. This would involve researching the possibilities and benefits

involved with abstracting workflow and its information security requirements

into lower level applications. These applications include the operating system

or the database management system.

Database management systems are evolving into active environments, able to

handle the enforcement of organisational policies and as such could

theoretically be extended to support the required workflow and security

services. Understanding what should be abstracted and what should remain

separate would also have to be assessed.

104

Bibliography

Ahn, G.J. & Sandhu, R.S. (1999). The RSL99 language for role-based
separation of duty constraints. In proceedings of the 4th ACM
Workshop on Role-based Access Control, Fairfax, Virginia, 28-29
October 1999.

Baldwin, R.W. (1990). Naming and grouping privileges to simplify security
management in large database. In proceedings 1990 IEEE
Symposium on Security and Privacy, 116 - 132, May 1990.

Bertino, E & Ferrari, E. (1999). The specification and enforcement of
authorization constraints in workflow management systems. ACM
Transactions on Information and System Security, 2 (1), February
1999, 65–104.

Cholewka, D.G., Botha R.A. & Eloff, J.H.P. (2000). A context-sensitive access
control model and prototype implementation. In proceedings of the
16th IFIP Information Security Conference, Beijing, China, August
2000.

Clark, D.D. & Wilson, D.R. (1987). A comparison of commercial and military
computer security policies. In proceedings of IEEE Symposium on
Security and Privacy, April 1987, 184 - 194.

Ferraiolo, D., Barkley, J.F., & Kuhn, D.R. (1999). A role-based access control
model and reference implementation within a corporate intranet.
ACM Transactions on Information and System Security, 2 (1),
February 1999, 34–64.

Gligor, V.D., Gavrila, S.I. & Ferraiolo, D. (1998). On the formal definition of
separation-of-duty policies and their composition. In proceedings of
IEEE Symposium on Security and Privacy, Oakland, California, 3 –
6 May 1998.

Hollingsworth, D. (1995). Workflow Management Coalition: The workflow
reference model [online]. Word Doc. Issue 1.1. Workflow
Management Coalition. [Retrieved 12 March 1998]. Available from
internet: URL http://www.wfmc.org.

ISO 7498–2. (1989). Information processing systems – Open Systems
Interconnection – Basic Reference Model – Part 2: Security
Architecture. International Standards Organisation, Geneva,
Switzerland.

105

Kappel, G., Rausch-Schott, S., Retschitzegger, W., & Sakkinen, M. (2001).
Bottom-up design of active object-oriented databases,
Communications of the ACM, 44 (4), April 2001, pg 99.

Kuhn, D.R. (1997). Mutual exclusion of roles as a means of implementing
separation of duty in role-based access control systems. In
proceedings of the 2nd ACM Workshop on Role-based Access
Control, Fairfax, VA, October 1997.

Leymann, F., & Roller, D. (1999). Production Workflow: Concepts and
Techniques. Prentice Hall PTR (ECS Professional) Copyright 2000
ISBN 0-13-021753-0

Michener, J. (1999). System insecurity in the internet age. IEEE Software,
July/August, 62-69.

Mohanty, R. P. (1998). BPR – Beyond industrial engineering? Work Study, 47
(3), 90–96.

Motwani, J., Kumar, A., & Jiang, J. (1998). Business process reengineering -
A theoretical framework and an integrated model. International
Journal of operations & Production Management, 18 (9/10), 1998,
964-977.

Nash, M.J. & Poland, K.R. (1990). Some conundrums concerning separation
of duty. In proceedings of the IEEE Symposium on Security and
Privacy, 201 - 207, May 1990.

Nyanchama, M., & Osborn, S. (1999). The role graph model and conflict of
interest. ACM Transactions on Information and System Security, 2
(1), February 1999, 3–33.

Oracle. (1999). Application developer’s guide – Fundamentals. Oracle
Corporation, [Cited 01 April 2001]. Available online at
http://www.oracle.com.

Osborn, S., Sandhu, R., & Munawer, Q. (2000). Configuring role-based
access control to enforce mandatory and discretionary access
control policies. ACM Transactions on Information and System
Security, 3 (2), May 2000.

Paton, N.W., & Díaz, O. (1999). Active database systems. ACM Computing
Surveys, 31 (1), March 1999, 63-103.

Saltzer, J.H. & Schroeder, M.D. (1975). The protection of information in
computer systems. In proceedings of IEEE, 63, 1278-1308.

106

Sandhu, R. (1988). Transaction control expressions for separation of duties.
In proceedings of 4th Aerospace Computer Security Conference,
282 - 286, Dec 1988.

Sandhu, R. (1990), Separation of duties in computerized information systems.
In proceedings of IFIP WG11.3 Workshop on Database Security,
September 1990.

Sandhu, R. (1993). Lattice-based access control models. IEEE Computer, 26
(11), November 1993, 9 – 19.

Sandhu, R. (1998). Role-based access control. Advances in Computers, 46,
Academic Press, 1998.

Sandhu, R., Coyne, E., Feinstein, H. L., & Youman, C. E. (1996). Role-based
access control models. IEEE Computer, 29 (2), 38-47, February
1996.

Sandhu, R., & Munawer, Q. (1998). How to do discretionary access control
using roles. In Proceedings of the 3rd ACM Workshop on Role-
based Access Control, Fairfax, Virginia, 22 – 23 September 1998,
47 – 54.

Sandhu, R., & Samarati, P. (1996). Authentication, access control, and audit.
ACM Computing Surveys. 28 (1).

Shen, H., & Dewan, P. (1992) Access control for collaborative environments,
CSCW 92 Proceedings, pg 51.

Simon, R & Zurko, M.E. (1997). Separation of duty in role-based
environments. In proceedings of 10th Computer Security
Foundation Workshop, Rockport, Massachusetts, 10 – 12 June
1997.

Stadler, C. (2000, Sept/Oct). Workflow: The missing link between customer
intelligence and customer interaction. Call Centre IQ, pp. 28 – 35.

Stallings, W. (1995). Network and Internetwork Security Principles and
Practice. Englewood Cliffs: Prentice Hall.

Teng, J., Jeong, S., & Grover, V. (1998). Profiling successful reengineering
projects. Communications of the ACM, 41 (6), June 1998 pg. 99

Thomas, R. & Sandhu, R. (1993). Towards a task-based paradigm for flexible
and adaptable access control in distributed applications. In
Proceedings of the 1992–1993 ACM SIGSAC New Security
Paradigms Workshop, Little Compton, RI, 138 – 142.

107

von Solms, R. (1999). Information security management: Why standards are
important. Information management & computer security, 7 (1), 50-
57.

WfMC (1996). Workflow Management Coalition: Terminology and glossary
[online]. Document Number WFMC-TC-1011. Issue 2.0. Workflow
Management Coalition. [Cited 25 May 2000]. Available from
internet: URL http://www.wfmc.org

WfMC (1998). Workflow Management Coalition: Workflow security
considerations - white paper [online]. Document Number WFMC-
TC-1019. Issue 1.0. Workflow Management Coalition. [Cited 25
May 2000]. Available from internet: http://www.wfmc.org

Zhou, J., & Lam, Y. (1999). Securing digital signatures for non-repudiation,
Computer Communications, 22 (8), 25 May 1999, 710-716.

 108

Appendix A. Paper at Conference

The paper titled “Conflict Analysis as a Means of Enforcing Static Separation

of Duty Requirements in Workflow Environments” was presented at the

SAICSIT 2000 conference in Cape Town, South Africa, 1-3 November 2000.

It was published as a short paper in a special conference issue of the South

African Computer Journal, number 26, November 2000.

Conflict Analysis as a Means of Enforcing Static
Separation of Duty Requirements in Workflow

Environments

Stephen Perelson and Reinhardt A. Botha

Faculty of Computer Studies, Port Elizabeth Technikon, Port Elizabeth, South Africa
rbotha@computer.org

Abstract

The increasing reliance on information technology to support business processes has emphasised the need for information
security mechanisms. This, however, has resulted in an ever-increasing workload in terms of security administration.
Policy-based approaches have been proposed, promising to lighten the workload of security administrators. Separation of
duty is one of the principles cited as a requirement when setting up these policy-based mechanisms. Different types of
separation of duty policies exist. They can be categorised into policies that can be enforced at administration time, viz.
static separation of duty requirements and policies that can be enforced only at execution time, viz. dynamic separation of
duty requirements. This paper deals with specifying static separation of duty requirements in role-based workflow
environments. It proposes a mathematical model based on the concept of “conflicting entities” to express static
separation of duty requirements. It provides a detailed explanation of the integrity checking that must take place at
administration time to ensure that specified separation of duty requirements are honoured.
Keywords: Access Control, Separation of duty, Authorisation constraints, Workflow
Computing Review Category: D4.6, G2.3, H4.1, K6.5

1 Introduction

With the increasing amount of information available
electronically it is not only necessary to find a means to
ease the job of the security administrator, but also to
ensure that the information is protected and managed
according to organisational policies.

On the one hand, Role-based Access Control (RBAC)
has been promoted as a possible solution to the
administration nightmares that face security administrators
[5]. On the other hand, however, workflow technology
has been boasted as a means of controlling the flow of
information according to business process models. RBAC
mechanisms employed in the workflow environment
should thus be sensitised to the context of the work [3,16].

The context of the work is determined by factors such
as the sequence and history of events, as well as the
organisational policies. One expression of organisational
policy can be found in the age-old principle of separation
of duty (SoD). Separation of duty's primary objective is
to prevent fraud, i.e. protect the integrity of the
information [4]. It can, however, be largely enforced by
means of appropriate access control mechanisms.

Access control is a two-phase process. During phase
one, users receive potential to perform certain activities –
this is called access control administration. Phase two
occurs when an application is used and the actual
permission is granted to the user – this is called run-time
access control.

SoD requirements can, similarly, be evaluated in two
ways. In the first instance, the access control

administration tool can check that specified requirements
are met. This is referred to as static separation of duty.
With static SoD the user would thus not even receive the
potential to ever perform an activity. In the second
instance the SoD requirements can be enforced at run-
time. This is referred to as dynamic separation of duty.
With dynamic SoD the roles that the user may activate are
thus controlled.

This paper focuses on static SoD requirements, i.e. it
addresses enforcement from an access control
administration perspective.

2 Related SoD Research

The term "separation of privilege" was identified as
one of eight design principles for the protection of
information in computer systems by Saltzer and Schroeder
[14]. They built on the observation that a security system
with two keys is more robust and flexible than one that
requires a single key. No single accident, deception or
breach of trust is therefore sufficient to compromise the
system.

Clark and Wilson [4] identified separation of duty as
one of the two major mechanisms that can be
implemented to ensure data integrity. SoD serves as a
mechanism to counteract fraud and error, whilst assuring
correspondence between system objects and the real world
objects that they represent. They asserted that, at the
policy level, processes are divided into steps, with each
step being performed by a different person. Separation of
duty is thus tightly connected to application semantics.

212 SACJ / SART, No 26, 2000

Stephen

Stephen

The issue of separation of duty has been addressed
from different perspectives by several authors. Interested
readers are referred to [2],[6],[10],[11], [12] and [15].
This paper only examines related work in which concepts
directly called upon in our interpretation are discussed.

Kuhn [8] explored the mutual exclusion of roles as a
separation of duty mechanism. He presented a taxonomy
whereby a separation of duty requirement is categorised
according to the time at which mutual exclusion is applied
(static vs. dynamic), as well as the degree to which
privileges are shared by mutually exclusive roles (strong
or partial exclusion). Strong exclusion implies no
common permission or user assignments for exclusive
roles. Partial exclusion, on the other hand, implies that
mutually exclusive roles may share permissions (or users)
but that each role should have permissions assigned that
are unique to that role.

Nyanchama and Osborn [9] discussed various types of
conflicts that have to be considered when implementing
separation of duty policies. They evaluated the effect of
role hierarchies in great depth in terms of their role-graph
model.

Ahn and Sandhu [1] defined the RSL99 language for
specifying separation of duty constraints. They based
their SoD requirements on the concepts of conflicting
users, conflicting roles and conflicting permissions. New
static separation of duty properties are discovered through
the application of their RSL99 language.

The observation that existing separation of duty
models do not take into consideration the work processes
has been made by [1] and [9]. The relevance of work
process models on the dynamic enforcement of separation
of duty requirements are easily recognisable, however the
impact of work process models is not identified. This
paper will extend the typical RBAC model to include the
notion of a task which represents the basic building block
of work models. It will show how the task concept
influences static SoD. In particular a single administration
paradigm that includes the task will be presented.

The administration paradigm presented hinges on the
understanding of role-based access control. A detailed
look at RBAC is thus in order.

3 Role-Based Access Control

The basic premise of RBAC is that access permissions
are assigned to roles rather than to individuals.
Individuals are assigned to roles in order to obtain the
access permissions that the individual requires in order to
work. This greatly reduces the administration burden.

In this paper the existing and well-accepted RBAC96
model [13] is used. Choosing an independently developed
existing model for this exercise gives us an element of
objectivity in assessing the power of the proposed
administration paradigm. An overview of the RBAC96
model must therefore be given.

3.1 RBAC96

The RBAC96 model consists of 4 main components:
users, roles, permissions and sessions. Since a session is a

run-time concept it is irrelevant to the administration
environment and thus to this paper.

Users (U) are associated with roles (R) through the
user-assignment relation (UA). Similarly, permissions (P)
are associated with roles (R) through the permission-
assignment relation (PA). Roles are arranged in role
hierarchies through the partial order RH. A role that is
senior to another role inherits the permissions of the junior
role. A user that is associated with a senior role in the role
hierarchy therefore may also assume all the roles junior to
the senior role in the RH partial order.

Consider a short formal summary of the relevant
components in the RBAC96 model [1,13]:

Definition 3.1: RBAC entities
U = set of users, {u1,u2,…,ul}
R = set of roles, {r1,r2,…,rm}
P = set of permissions, {p1,p2,…,pn}

Definition 3.2: RBAC associations
UA ⊆ U × R, a many-to-many user-to-role assignment
relation
PA ⊆ P × R, a many-to-many permission-to-role
assignment relation
RH ⊆ R × R, a partial order on R called the role hierarchy,
also written as ≤

Definition 3.3: Roles function
roles: U ∪ P→2R, a function mapping the sets U and P to
a set of roles
roles* : U ∪ P→2R extends roles in the presence of a role
hierarchy
roles(ui)={r∈R(ui,r)∈UA}
roles(pi)={r∈R(pi,r)∈PA}
roles*(ui)={ r∈R(∃r ≤ r')[(ui,r')∈UA]}
roles*(pi)={ r∈R(∃r' ≤ r)[(pi,r')∈PA]}
Note that the definition of roles* is carefully formulated to
reflect the role inheritance with respect to users going
downwards and with respect to permissions going
upwards.

Definition 3.4: Permissions function
perm: U ∪ R → 2P, a function mapping users and roles to
a set of permissions.
perm*: U ∪ R → 2P, extends perm in the presence of a
role hierarchy.
perm(ri) = {p ∈ P (p,ri) ∈ PA}
perm(ui) = {p ∈ P (∃r∈roles(ui))[(p,r) ∈ PA]}
perm*(ri) = {p ∈ P (∃r' ≤ r)[(p,r') ∈ PA]}
perm*(ui) = {p ∈ P (∃r ∈ roles*(ui))[(p,r) ∈ PA]}

Subsequently we introduce the workflow extensions.

3.2 Workflow extensions

A typical workflow is a set of tasks linked together in
a network, thus forming a business process [7]. The
workflow system is responsible for determining the route

SACJ / SART, No 26, 2000 213

Stephen

that work will follow through the organisation. From an
access control perspective the basic building blocks are
tasks that may be performed by a specific organisational
role.

Definition 3.5: Workflow entities
T = Set of tasks, {t1,t2,…,tn}

Definition 3.6: Workflow Associations
TA ⊆ T × R, a many-to-many task-to-role assignment
relation
The RBAC96 functions must thus be extended.

Definition 3.7: Extended roles function
roles: U ∪ P ∪ T → 2R, a function mapping the sets U and
R and T to a set of roles.
roles* : U ∪ P ∪ T →2R extends roles in the presence of a
role hierarchy
roles(ui),roles(pi), roles*(ui) and roles*(pi) remain
according to Definition 3.3
roles(ti)={r∈R(ti,r)∈TA}
roles*(ti)={ r∈R(∃r ≤ r')[(ti,r')∈TA]}

Definition 3.8: Revised permissions function
perm: U ∪ R ∪ T → 2P, a function mapping users, roles
and tasks to a set of permissions.
perm*: U ∪ R ∪ T → 2P, extends perm in the presence of
a role hierarchy.
perm(ri), perm(ui), perm*(ri) and perm*(ui) remain
according to Definition 3.4
perm(ti) = {p ∈ P (∃r ∈ roles(ti))[(p,r) ∈ PA]}
perm*(ti) = {p ∈ P (∃r ∈ roles*(ti))[(p,r) ∈ PA]}

The above definitions give the elements essential to
the administration of access control in the workflow
environment. The following paragraph will suggest a
conflict paradigm to define further restrictions required to
support static SoD requirements.

4 The conflict paradigm

Separation of duty is concerned with the prevention of
fraud by ensuring that a single user does not have too
much power. Power is vested in permissions, therefore
the essence of our paradigm lies with conflicting
permissions.

Definition 4.1: Conflicting permissions are permissions
that can result in unnecessary power if bestowed on the
same person. Formally it is represented by
CP ⊆ P × P, a many-to- many relation indicating conflict
between permissions with
 (pi,pj) ∈ CP ⇔ (pj,pi) ∈ CP and (pi,pi) ∉ CP.
We can now present the following axiom which will
represent our basic safety condition

Basic Safety Condition: Conflicting permissions may not
be assigned to a user.
Formally, (perm*(u) × perm*(u)) ∩ CP = ∅)

Since non-conflicting permissions cannot influence the
basic safety condition the following axiom to supplement
the basic safety condition is formulated.

Axiom 4.1: Non-conflicting permissions may be assigned
to both conflicting or non-conflicting roles.

Now consider the other conflicting entities that form
part of the conflicting entity paradigm.

Definition 4.2: Conflicting users are users who are
likely to conspire. Formally they are represented by
CU ⊆ U × U, a many-to-many relation indicating conflict
between users with
(ui,uj) ∈ CU ⇔ (uj,ui) ∈ CU and (ui,ui) ∉ CU.

Axiom 4.2 Conflicting users are considered as a single
user.

In practical terms conflicting users may be family
members or people who are known to have conspired.

Definition 4.3: Conflicting roles are roles that together
have the ability to conspire, i.e. they are assigned some
(but not all) conflicting permissions. They are represented
by
CR ⊆ R × R, a many-to-many relation indicating conflict
between roles with
 (ri,rj) ∈ CR ⇔ (rj,ri) ∈ CR , (ri,ri) ∉ CR and
 (ri,rj) ∈ CR ⇒ perm*(ri) × perm*(rj) ∩ CP ≠ ∅

Note that roles are abstractions to ease administration.
Although the conflicting permissions may not be
identified as such in the administration tool, making roles
conflict if they are not assigned some conflicting
permissions is senseless. This principle thus is a logical
principle, which in practice may not be checked literally
in the administration tool.

Since conflicting roles must have some conflicting
permissions we can state that non-conflicting roles do not
have conflicting permissions. In the spirit of Axiom 4.1
we thus formulate the following axiom.

Axiom 4.3: Non-conflicting roles may be assigned either
non-conflicting or conflicting users.

Definition 4.4: Conflicting tasks are tasks requiring
conflicting permissions to complete. Formally they are
represented by
CT ⊆ T × T, a many-to-many relation indicating conflict
between tasks with
 (ti,tj) ∈ CT ⇔ (tj,ti) ∈ CT, (ti,ti) ∉ CT and
 (ti,tj) ∈ CT ⇒ perm*(ti) × perm*(tj) ∩ CP ≠ ∅

Note that conflicting tasks are assigned conflicting
permissions. Since non-conflicting tasks can have only
non-conflicting permissions assigned to them we can see
that they could not influence the basic safety condition,
therefore the following axiom is formulated.

Axiom 4.4: Non-conflicting tasks may be assigned to
conflicting and non-conflicting roles.

These principles and definitions are essentially focused
on the permissions exercised by the users. The integrity
of the access control information is, however, determined
by the associations in the access control model. In a

214 SACJ / SART, No 26, 2000

Stephen

RBAC environment users are never assigned directly to
permissions. The role construct plays a pivotal role in
linking tasks, users and permissions together. The next
paragraph will therefore show the integrity requirements
pertaining to the associations allowed in the access control
model.

5 Integrity Requirements

This paragraph presents a number of theorems
reflecting integrity requirements that will have to be
upheld in a security administration tool.

Theorem 5.1: Under the basic safety condition,
conflicting roles may only have non-conflicting users
assigned to them, i.e.
(ui,rk) ∈ UA ∧ (uj,rl) ∈ UA ∧ (rk,rl) ∈ CR ⇒ (ui,uj) ∉ CU
Proof:
Assume that (ui,rk)∈UA ∧ (uj,rl)∈UA) ∧ (rk,rl)∈CR. ∧
(ui,uj)∈CU:
 perm*(ui) ⊇ perm*(rk) (Def 3.4)
 perm*(uj) ⊇ perm*(rl) (Def 3.4)
 (rk,rl)∈CR.
⇒ perm*(rk) × perm*(rl) ∩ CP ≠ ∅ (Def 4.3)
⇒ perm*(ui) × perm*(uj) ∩ CP ≠ ∅
which contradicts the Basic Safety Condition. QED.

Theorem 5.2: Under the basic safety condition,
conflicting permissions may only be assigned to
conflicting roles. Formally
(pi,rk) ∈ PA ∧ (pj,rl) ∈ PA ∧ (pi, pj) ∈ CP ⇒ (rk, rl) ∈ CR

Proof:
Assume that two conflicting permissions pi and pj are
assigned to non-conflicting roles rk and rl, i.e.
(pi,rk) ∈ PA ∧ (pj,rl) ∈ PA ∧ (pi,pj) ∈ CP ∧ (rk,rl) ∉ CR
Choose a user ux and associate it with roles rk and rl. Since
(rk,rl) ∉ CR this allowed by Th. 5.1.
∴ (ux,rk) ∈ UA ∧ (ux,rl) ∈ UA ∧
 (pi,rk) ∈ PA ∧ (pj,rl) ∈ PA
⇒ {pi, pj} ⊆ perm*(ux) (Def 4.2)
But (pi, pj) ∈ CP, which contradicts the Basic Safety
Condition.
 QED.

Theorem 5.3: Under the basic safety condition,
conflicting tasks may only be assigned to conflicting roles.
That is
(ti,rk) ∈ TA ∧ (tj,rl) ∈ TA ∧ (ti,tj) ∈ CT ⇒ (rk, rl) ∈ CR

Proof:
Assume that two conflicting tasks ti and tj are assigned to
non-conflicting roles rk and rl.
(ti,rk) ∈ TA ∧ (tj,rl) ∈ TA ∧ (ti,tj) ∈ CT ∧ (rk,rl) ∉ CR

Choose a user ux and associate it with roles rk and rl. Since
(rk,rl) ∉ CR this is allowed by Th. 5.1.
 perm*(rk) ⊆ perm*(ux) (Def 3.4)
 perm*(rl) ⊆ perm*(ux) (Def 3.4)
also perm*(ti) ⊆ perm*(rk) (Def 3.8)
 perm*(tj) ⊆ perm*(rl) (Def 3.8)
∴ perm*(ti) ⊆ perm*(ux)
and perm*(tj) ⊆ perm*(ux)
⇒ perm*(ti) × perm*(tj) ∩ CP ≠ ∅ (Def 4.4)
⇒ perm*(ux) × perm*(ux) ∩ CP ≠ ∅
which contradicts the Basic Safety Condition. QED.

Using truth table equivalence we state the following
corollary.

Corollary 5.3: Under the basic safety condition, non-
conflicting roles may only have non-conflicting tasks
assigned to them. That is
(ti,rk) ∈ TA ∧ (tj,rl) ∈ TA ∧ (rk, rl) ∉ CR ⇒ (ti,tj) ∉ CT

Above theorems limit the associations allowed
between users, roles, permissions and tasks.

6 Conclusion

This paper explored the static separation of duty
requirements in workflow environments. This was done
through extending the RBAC components with workflow
specific components. In particular it demonstrated how
static separation of duty requirements specified through
the use of conflicting users, conflicting roles, conflicting
permissions and conflicting tasks could be enforced.
Enforcement is based on maintaining the integrity of the
associations allowed between components.

The following table summarises the work explored in
this paper.

A in the table indicates that an association is

allowed, whilst a shows that an association is
prohibited. For example, theorem 5.1 proves that non-
conflicting users may only be assigned to conflicting roles
while axiom 4.4 states that non-conflicting tasks may be
assigned to either conflicting or non-conflicting roles.

Roles
May be associated with

Conflicting Non-
conflicting

Conflicting
Users

Non-
Conflicting

Th
5.1

Ax
4.3

Conflicting
Theorem 5.2

Permis-

sions Non-
Conflicting Axiom 4.1

Conflicting
Theorem 5.3

Tasks

Non-
Conflicting Axiom 4.4

SACJ / SART, No 26, 2000 215

Stephen

A security administration tool may allow conflicting
assignments to be made if it can ensure the integrity of the
association by the use of remedial actions. For example,
two conflicting permissions may be assigned to two non-
conflicting roles. The tool would provide the
administrator with an option to not continue with the
assignment or to set the two roles to be conflicting and to
continue with the assignment

Usability factors in security administration tools will
be considered in future work. The extension of the
paradigm to allow for the specification of dynamic
separation of duty requirements also needs to be
considered.

References

[1] Ahn, G.-J. and Sandhu, R.S.. The RSL99 Language
for Role-based Separation of duty constraints. In
Proceedings of the 4th ACM Workshop on Role-
based Access Control, Fairfax, Virginia, 28 –29
October 1999, pp. 43 – 53.

[2] Baldwin, R.W. Naming and Grouping Privileges to
Simplify Security Management in Large Database.
Proc 1990 IEEE Symposium on Security and
Privacy, , May 1990, pp. 116 – 132

[3] Cholewka, D.G., Botha R.A. and Eloff, J.H.P. A
context-sensitive access control model and prototype
implementation. Proc of the 15th IFIP TC11
Information Security Conference, Beijing, China,
August 2000, pp. 141 – 150.

[4] Clark, D.D. and Wilson, D.R.. A comparison of
commercial and military computer security policies.
Proc. of IEEE Symposium on Security and Privacy,
April 1987, pp. 184 – 194.

[5] Ferraiolo, D., Barkley, J.F. and Kuhn, D.R. A Role-
Based Access Control Model and Reference
Implementation Within a Corporate Intranet. ACM
Transactions on Information and System Security,
Vol. 2, No. 1, February 1999, pp. 34–64.

[6] Gligor, V.D, Gavrila, S.I. and Ferraiolo, D. On the
Formal Definition of Separation of Duty Policies
and their composition. In Proceedings IEEE
Symposium on Security and Privacy, Oakland,
California, 3 – 6 May 1998, pp. 172 – 183.

[7] Hollingsworth, D. The Workflow Reference Model.
Document Number TC-00-1003. Issue 1.1. 19 Jan
1995. Available from www.wfmc.org

[8] Kuhn, D.R. Mutual exclusion of roles as a means of
implementing separation of duty in role-based
access control systems. In Proceedings of the 2nd
ACM Workshop on Role-based Access Control,
Fairfax, VA, October 1997, pp. 23 – 30.

[9] Nyanchama, M. and Osborn, S. The role-graph
model and conflict of interest. ACM Transactions
on Information and Systems Security, 2(1), February
1999, pp. 3-33.

[10] Nash, M.J. and Poland, K.R. Some Conundrums
Concerning Separation of Duty. In Proceedings
1990 IEEE Symposium on Security and Privacy,
May 1990, pp. 201 – 207.

[11] Sandhu, R. Transaction Control Expressions for
Separation of Duties. Proc. of 4th Aerospace
Computer Security Conference, 282 – 286, Dec
1988.

[12] Sandhu, R.S. Separation of Duties in Computerized
Information Systems. S. Jajodia, C.E. Landwehr
(Eds.): Database Security, IV: Status and Prospects.
Results of the IFIP WG 11.3 Workshop on Database
Security, Halifax, U.K. 18-21 September 1990. pp.
179 – 190.

[13] Sandhu, R.S., Coyne, E.J., Fenstein, H.L. and
Youman, C.E.. Role-based Access Control Models.
IEEE Computer, Volume 29, Number 2, February
1996, pp. 38 – 47.

[14] Saltzer, J.H. and Schroeder, M.D. The Protection of
Information in Computer Systems. In Proceedings of
IEEE, 63(9), 1975, pp. 1278–1308,

[15] Simon, R. and Zurko, M.E. Separation of duty in
Role-based Environments. In Proceedings of 10th
Computer Security Foundation Workshop,
Rockport, Massachusetts, 10 – 12 June 1997.

[16] Thomas, R.K. and Sandhu, R.S. Towards a task-
based paradigm for flexible and adaptable access
control in distributed applications. In Proceedings.
of 1992–1993 ACM SIGSAC New Security
Paradigms Workshop, Little Compton, RI, 1993, pp.
138 – 142.

[17] Workflow Management Coalition. Workflow
Security Considerations - White Paper. Document
Number WFMC-TC-1019. Issue 1.0. Feb 1998.
Available from www.wfmc.org

216 SACJ / SART, No 26, 2000

Stephen

 114

Appendix B. Paper published

The paper titled “Separation of Duty Administration” was accepted for

publication in the South African Computer Journal, number 27.

Separation of Duty Administration

Stephen Perelsona Reinhardt Bothaa Jan Eloffb

aFaculty of Computer Studies, Port Elizabeth Technikon, Port Elizabeth
{stephen,reinhard}@petech.ac.za

bDepartment of Computer Science, Rand Afrikaans University, Johannesburg

eloff@rkw.rau.ac.za

Abstract

Access control administration is a huge task. Admin-
istration tools should assist the administrator in en-
suring that the access control requirements are met.
One example of an access control requirement is Sep-
aration of Duty (SoD). SoD requirements specify that
no single person may have sufficient authority to com-
plete a business process unilaterally.

The SoDA prototype administration tool has been
developed to assist administrators with the adminis-
tration of SoD requirements. It demonstrates how the
specification of both Static and Dynamic SoD require-
ments can be done based on the “conflicting entities”
paradigm. Static SoD requirements must be enforced
in the administration environment. The SoDA proto-
type, therefore, enforces the specified static SoD re-
quirements.
Keywords: Information Security, Access Control Ad-
ministration, Separation of Duty
Computing Review Categories: D4.6, H2.7,
H4.1, K6.5

1 Introduction

Security administrators must manage an ever-
increasing number of systems under their control. In
recent years, Role-based Access Control (RBAC) has
been promoted as a possible solution to the resultant
administration nightmares [5]. With the increasing
amount of information available electronically, it is
necessary not only to find a means to ease the job
of the security administrator, but also to ensure that
the information is protected and managed according
to organizational policies.

One expression of organizational policy can be
found in the age-old principle of Separation of Duty
(SoD). Saltzer and Schroeder [10] identified SoD, or
“separation of privilege” as they called it, as one of
eight design principles for the protection of informa-
tion in computer systems. They built on the obser-
vation that a security system with two keys is more
robust and flexible than one that requires a single
key. No single accident, deception or breach of trust is
therefore sufficient to compromise the system. Clark
and Wilson [4] identified SoD as one of the two ma-

jor mechanisms that can be implemented to ensure
data integrity. SoD serves as a mechanism to counter-
act fraud and error, while assuring correspondence be-
tween system objects and the real world objects that
they represent.

Furthermore, they [4] asserted that, at the pol-
icy level, processes are divided into tasks, with each
task being performed by a different person. [1] and [8]
observed that existing SoD models do not take work
processes into consideration. Work processes are of-
ten facilitated through the use of workflow systems.
Workflow systems are constructed around tasks that
are linked according to business rules to represent a
business process. This paper introduces the task as an
additional building block for expressing SoD require-
ments in workflow systems.

Even with the introduction of the task abstrac-
tion, the administration of SoD requirements remains
a mammoth task. In a large organization, there may
be thousands of objects that require protection. The
organization may have thousands of users, filling hun-
dreds of different positions in the organization. The
identification of all the access requirements requires a
huge effort. It is virtually impossible to maintain con-
sistency when performing such a huge task, unless the
administration tools provide appropriate assistance.

The SoDA prototype is introduced to assist se-
curity administrators with the specification of access
control requirements according to Role-based Access
Control principles. More specifically, the SoDA pro-
totype is intended to assist with the administration
of SoD requirements. In order to demonstrate the
“conflicting entities” administration paradigm as used
within the SoDA prototype, the remainder of the pa-
per is structured as follows. First, a brief review
of role-based access control principles is provided.
Thereafter, the additional concept of a task is intro-
duced. This is followed by a discussion on the use
of the “conflicting entities” paradigm to specify SoD
requirements. Finally, we illustrate how the SoDA
prototype is used to administer SoD requirements.

2 Basic Concepts

This section will provide the necessary background to
explain the principle of separation of duty within role-

64 SACJ / SART, No 27, 2001

Research Articles

Figure 1: Form design environment used to create a
“Purchase Order”

based workflow systems.

2.1 Role-based Access Control

The concept of a role is pivotal in role-based ac-
cess control. Users receive access permissions based
on the roles that they may assume. Users are any-
one/anything that accesses resources in the system. A
user may, therefore, be an individual or another pro-
gram. Roles often correspond to positions in the orga-
nizational structure. It is thus a semantic construct,
created to ease the management of access rights. Per-
missions can be interpreted as the right to execute a
certain method of an object.

The SoDA prototype considers an object to be a
document containing various field objects. Users may
perform different actions on the field objects, e.g. add
another instance of the field object, delete a field ob-
ject, edit the contents of a field object or view the
contents of a field object. Individual field objects may
be grouped, resulting in composite objects. Figure
1 shows how a hierarchical view, representing object
containment, can be used to create the ‘Internal Pur-
chase Order’ object. Permissions could relate to any of
the field objects, or composite field objects, in the ‘In-
ternal Purchase Order’ object. Permissions assigned
to an object are inherited for objects contained by that
object. For example, the permission to edit Employee
Details will imply the permission to edit all fields that
form part of Employee Details on the form.

Roles may be related through a partial order. A
role inherits permissions assigned to the roles that are
junior to it in the partial order. For example, the
‘Manager’ role may be considered senior to the ‘Super-
visor’ role. The ‘Manager’ role will, therefore, inherit
the permissions assigned to the ‘Clerk’ role. Figure
2 shows how the SoDA prototype manages the asso-
ciations between roles. In SoDA, roles are related to
other roles within disjoint, named role networks. The
combination of all named role networks is similar to
the role-graph presented by [8], if an artificial maxi-

Figure 2: SoDA associates roles according to named
role networks

mum and an artificial minimum role were introduced.
The concepts employed in RBAC are indeed very

powerful. However, Sandhu et al. [11] observed that:

“RBAC is not a panacea for all access con-
trol issues. More sophisticated methods are
required to deal with situations that control
operation sequences. [. . .] Other forms of ac-
cess control can be layered on top of RBAC
for this purpose.”

Workflow Systems provides an environment where
the sequences of operations are controlled according to
business rules. The next section introduces workflow
concepts, paving the way for the expression of access
control policies in terms of sequence of operations.

2.2 Workflow Concepts

Workflow Systems are concerned with the automation
and facilitation of business processes [6]. Business pro-
cesses are defined through process definitions. A pro-
cess definition consists of sets of tasks, connected ac-
cording to business rules.

The process definition is enacted by the workflow
engine. For each enactment of the business process,
e.g. for each ‘Internal Purchase Order’ that is issued,
a process instance is generated. Task instances are
generated on demand, based on the business rules en-
capsulated as part of the process definition.

SoDA is a tool that focuses on supporting access
control administration. Access control requirements
are, typically, described within the general context of
a business process and not for a specific enactment of
the workflow. The SoDA prototype is, therefore, only
concerned with the process and task definitions.

The “conflicting entities” paradigm relies on re-
stricting the associations between all the entities that
are involved, namely user, roles, permissions and
tasks.

SART / SACJ, No 27, 2001 65

Research Articles

3 SoDA – The “conflicting enti-
ties” paradigm

Separation of duty requirements are implemented by
restricting the associations allowed between entities.
This is to ensure that a single user may not receive
too many permissions. An example of such a con-
straint may specify that “the permission to approve
an order and the permission to issue an order may
not be assigned to the same role”.

Kuhn [7] explained how mutual exclusive roles, i.e.
roles that may not be assigned to the same user, can
be used to enforce SoD. Ahn and Sandhu [1] showed
through their RSL99 specification language that there
are several ways of expressing similar SoD require-
ments. SoDA builds on these observations, and ex-
tends it with the concept of conflicting tasks.

The term “conflicting entities” does not indicate
that there are any disharmony between the entities.
The “conflict” refer, rather to the disharmony that
the entities could cause between the actual and the
desired state of the system. Conflict thus indicates
a potential undesirable state of integrity. The “con-
flicting entities” paradigm, as employed in the SoDA
prototype, identifies four types of conflict [3]:

Conflicting permissions are permissions that can
result in unnecessary power if bestowed on the
same person. For example, a person with the per-
missions required for financial audits should not
receive permissions to approve financial transac-
tions. If this were allowed, auditors could lose
their independence.

Conflicting users are users who will together have
sufficient power to collude, and are likely to do
so. In practice, this may be family members or
previously known accomplices.

Conflicting roles are roles that together possess the
ability to conspire. This means that they are
assigned conflicting permissions. Consider, for
example, the ‘Auditor’ and ‘Financial Manager’
roles. It is common practice that auditors and
financial managers should be independent. The
roles may have certain permissions, e.g. ‘view or-
der’, in common. However, the ‘approve order’
and ‘approve audit’ permissions may be assigned
only to one of these roles.

Conflicting tasks are tasks requiring conflicting
permissions to complete. This would, for exam-
ple, imply that the ‘Audit Purchase Order’ task
and the ‘Approve Purchase Order’ task would be
conflicting since they require the ‘approve order’
and ‘approve audit’ permissions. These permis-
sions are, in turn, conflicting.

The “conflicting entities” paradigm is based on
the observation that power is vested in permissions.

The essence of the “conflicting entities” paradigm lies,
therefore, in conflicting permissions. It is argued, how-
ever, that tasks provide a more natural abstraction for
the specification of SoD requirements. The “conflict-
ing entities” paradigm allows for the specification of
both Static and Dynamic SoD requirements.

Static SoD requirements, on the one hand, con-
trol the associations between entities during admin-
istration time. They would, for example, disallow a
user to be assigned to a role if an SoD requirement
would be violated. Dynamic SoD, on the other hand,
does not restrict associations between entities at ad-
ministration time. Instead, it controls the execution of
permissions at run-time. It would, for example, allow
a user to belong to the ‘Manager’ and ‘Clerk’ roles.
However, during run-time, the user that initiated the
purchase order (using the ‘Clerk’ role) will not be able
to approve that purchase order (using the ‘Manager’
role).

The specification of both Static and Dynamic SoD
requirements within the SoDA prototype is similar.
This will be discussed in Section 4. Static SoD re-
quirements must, however, also be enforced in the ad-
ministration environment. The enforcement of Static
SoD requirements in the SoDA prototype is thus dis-
cussed in Section 5.

4 Separation of duty specifica-
tion in SoDA

The SoDA prototype allows for the specification of
conflicting users, conflicting roles, conflicting permis-
sions and conflicting tasks. A distinction is made be-
tween static and dynamic SoD. Conflicts are based on
the sets U , R, P and T , representing the user, role,
permission and task entities respectively. P is defined
as P ⊆ 2O×M , where O represents the objects and M
the methods that may be performed. Note that not
all the methods may necessarily be defined on all ob-
jects. Thus, the set of permissions is a subset of the
power set.

The specification of the conflicts is done through
the sets:

CUD, CUS , CRD, CRS , CPD, CPS , CTD, CTS .

The same naming convention is followed. CX denotes
conflicting entities of type X, and the subscript indi-
cates whether the conflict must be checked statically
(CXS) or dynamically (CXD). The “conflicting en-
tities” relations are defined in a symmetric and non-
reflexive fashion:

CXY ⊆ X × X such that ∀xi �= xj

(xi, xj) ∈ CXY ⇐⇒ (xj , xi) ∈ CXY

The specification for all 8 sets can be derived by re-
placing X with the appropriate entity (U ,R,P or T)

66 SACJ / SART, No 27, 2001

Research Articles

and Y with S or D, for Static and Dynamic respec-
tively.

Figure 3 shows how conflicting tasks are identified
within the SoDA prototype. The other conflicts are
specified in a similar manner. The interpretation of
the various conflicts is summarized in Table 1.

The enforcement of Dynamic SoD requires inter-
pretation of the process instance. Thus it is the re-
sponsibility of the workflow system. Consequently, it
falls outside the scope of the administrative tool. For
a more detailed discussing regarding dynamic SoD the
interested reader are refered to [3]. Static SoD must,
however, be enforced in the administration environ-
ment. The next section discusses how this is imple-
mented in the SoDA prototype.

5 Static Separation of Duty en-
forcement in SoDA

In order to enforce Static SoD, the SoDA prototype
ensures that the integrity of the associations between
entities is maintained. If an action cannot be per-
formed, remedial actions are suggested. For exam-
ple, if conflicting tasks are assigned to non-conflicting
roles, the user is given the option of making the roles
conflicting. The associations that are allowed are sum-
marized in Table 2 [9].

To illustrate how the SoDA prototype maintains
the associations, this section will review different
static SoD implementations of the requirement: “A
person who issues stock may never approve an order”.
Three approaches to enforcing this SoD requirement in
a static fashion are proposed. This is done by rephras-
ing the SoD requirement in the following ways:

(SoD1) A manager and a stock controller may not
perform the same tasks.

(SoD2) The ‘Issue Stock’ permission and the ‘Ap-
prove Order’ permission may not be assigned to
the same user.

(SoD3) The ‘Issue Stock’ task may not be performed
by someone who performs the ‘Approve Order’
task.

These SoD constraints will be implemented as con-
flicting roles, conflicting permissions and conflicting
tasks. Conflicting users can be used in combination
with these.

Conflicting users are interpreted in the same way
as in [AS99]. If two users are conflicting, it means
that the chances of them colluding are very high. In
essence, they should, therefore, be treated as if they
were one user. For example, if two tasks may not be
performed by the same user, two conflicting users may
not perform them either as the chances of a conspir-
acy are high. We shall now consider how each of the
approaches can, in turn, be handled in the prototype.

Figure 3: Specifying conflicting tasks

5.1 Conflicting Roles

First consider (SoD1) - A manager and a stock con-
troller may not perform the same tasks.

Since managers approve orders, and stock con-
trollers issue stock, the ‘Manager’ role in the ‘Ad-
min’ role network and the ‘Stock Controller’ role in
the ‘Stores’ role network may be set to conflict. Due
to the inheritance property of role networks, conflict-
ing roles cannot exist in the same role network. If
conflicting roles were allowed in one role network, the
topmost role in that role network would inherit the
permissions of both conflicting roles. This clearly de-
feats the purpose. A role may conflict with more than
one role in another network. Conflicts are, however,
inherited up the partial order and setting more than
one conflict, as such, may not be necessary. The SoDA
prototype will remove any unnecessary conflict.

In Figure 4, the ‘Stores Manager’ inherits the con-
flict set upon ‘Stock Controller’. ‘Stores Manager’
will, therefore, also conflict with the ‘Manager’ role
in the ‘Admin’ role network. In Figure 3, the ‘Ap-
prove order’ and ‘Issue stock’ tasks were made con-
flicting tasks. Conflicting roles and conflicting tasks
impact on the allowable associations as follows. Only
non-conflicting users may be assigned to conflicting
roles. Conflicting tasks must be performed by conflict-
ing roles. Recall that the ‘Stock Controller’ role and
the ‘Stores Manager’ role were identified as conflicting
with the ‘Manager’ role. Figure 5 depicts the ‘Man-
ager’ role as being assigned to the ‘Approve Order’
task. Figure 5 shows, furthermore, that subsequently
only the two roles conflicting with the ‘Manager’ role,
namely the ‘Stock Controller’ and ‘Stores Manager’
roles, may be assigned to the ‘issue stock’ task. If two
tasks are initially not indicated to be conflicting, but
they are assigned to conflicting roles, the tasks are
made conflicting tasks.

5.2 Conflicting Permissions

Now consider (SoD2) – The ‘Issue Stock’ permission
and the ‘Approve Order’ permission may not be as-
signed to the same user.

SART / SACJ, No 27, 2001 67

Research Articles

Conflict Static Dynamic
Conflicting
Roles

May not have the same user
(or conflicting users) as mem-
bers

May not be assumed by
the same user (or conflicting
users) in one process instance

Conflicting
Permissions

Must be assigned to conflict-
ing roles

May not be exercised by
the same user (or conflicting
users) for a specific process
instance

Conflicting
Users

May not belong to the same
role or conflicting roles

May not perform conflicting
tasks in the same process in-
stance

Conflicting
Tasks

Must be assigned to conflict-
ing roles

May not be executed by
the same user (or conflicting
users) in the same process in-
stance

Table 1: Interpretation of conflicts according to the “conflicting entities” paradigm

May be associated Roles
with Conflicting Non-conflicting

Conflicting N YUsers
Non-conflicting Y Y
Conflicting Y NPermissions

Non-conflicting Y Y
Conflicting Y NTasks

Non-conflicting Y Y

Table 2: Static SoD – Allowable associations

Figure 5: Conflicting tasks must be assigned to conflicting roles

68 SACJ / SART, No 27, 2001

Research Articles

Figure 4: Conflicting roles

The permissions involved are editing the ‘Ap-
proval’ and ‘IssueRec’ field groups on the ‘Internal
Order Form’ object. Conflicting permissions may only
be assigned to conflicting roles. If this is not enforced,
conflicting permissions could be assigned to conflict-
ing users. These conflicting users belong to non-
conflicting roles, which have conflicting permissions
that were incorrectly assigned to the non-conflicting
roles. This clearly opens the door for a conspiracy.
The SoDA prototype, therefore, only allows conflict-
ing roles to receive conflicting permissions.

If the roles are not conflicting, they are made con-
flicting, subject to additional integrity checking. Roles
cannot be made conflicting if conflicting users are as-
signed to the said roles. It can, therefore, be seen that
even if the ‘Manager’ and ‘Stock Controller’ roles were
not initially identified to be conflicting, they will be
made conflicting when the two conflicting permissions
are assigned to these two roles. Similar to section 4,
the tasks assigned to these two roles will also be made
conflicting.

5.3 Conflicting Tasks

Consider (SoD2c) – The ‘Issue stock’ task may not be
performed by someone who may perform the ‘Approve
order’ task. In section 5.1, it was shown how conflict-
ing roles could only be assigned to conflicting tasks.
If conflicting roles were assigned to tasks, these tasks
were automatically made conflicting. This approach
can be considered to be the reverse of that. Two tasks
are defined to be conflicting. Subsequently, the roles
that must be assigned to the user must be conflict-
ing. If two non-conflicting roles are assigned, the roles
are made conflicting, subject to a series of integrity
checks being performed. It is evident that the same
result is achieved, irrespective of the approach used,
since automatic maintenance of conflict relationships
is performed.

The results of the conflicting role and conflict-
ing task approaches are thus identical. The conflict-
ing permission approach can, however, be considered
stricter. Conflicting permissions must be performed

by conflicting roles. However, conflicting roles do not
only have conflicting permissions. For example, the
‘Manager’ and ‘Stock Controller’ roles are conflicting,
but both should still be allowed the ‘view purchase
order’ permission. The conflicting permissions ‘Edit
Approval’ and ‘Edit Issuerec’ may, however, also be
assigned to the ‘Manager’ and ‘Stock Controller’ roles
respectively.

6 Conclusion

This paper demonstrated the “conflicting entities”
paradigm as a way of specifying SoD requirements.
This paradigm uses the task abstraction to intuitively
define separation of duty requirements that involve se-
quence of operations. It was shown that both Static
and Dynamic SoD requirements can be formulated ac-
cording to the “conflicting entities” paradigm in the
SoDA prototype.

It was, furthermore, shown that the SoDA proto-
type enforces Static SoD requirements. By specifying
one SoD requirement in three different ways, it was
explained that equivalent results can be achieved.

It should be noted that Static SoD requirements
are extremely restrictive on the organizations func-
tioning. Consider, for example (SoD1). To assume
that a managers and a stock controller could never do
the same job could be, especially for a small company,
very restrictive. Dynamic SoD requirements addresses
this issue by imposing the restrictions per process in-
stance.

Other issues that could be of concern are the po-
tential of a lock-out situation. A situation could arise
that, for example no roles are available to assign to
a task. This would immediately be noticable to the
system administrator and he/she will have to rectify
the situation manually. However, due the extremely
strict restrictions imposed by static separation of duty,
it is likely to be used sparingly. This makes the like-
lihood of a lock-out occurring extremely small and
thus feasible for the adminstrator to manually cor-
rect. The issue of lock-out occuring due to dynamic
SoD requirements are much more complex and state-
of-the-art work regrading that may be found in [2].

References

[1] G-J. Ahn and R. S. Sandhu. The RSL99 language
for role-based separation of duty constraints. In
Proceedings of the 4th ACM Workshop on Role-
based Access Control, pages 43 – 54, 28 – 29 Oct.
1999.

[2] E. Bertino, E. Ferrari, and V. Atluri. Speci-
fication and enforcement of authorization con-
straints in workflow management systems. ACM

SART / SACJ, No 27, 2001 69

Research Articles

Transactions on Information and System Secu-
rity, 2(1):65–104, Feb 1999.

[3] R. A. Botha and J. H. P. Eloff. Separation of
duties for access control enforcement in workflow
environments. IBM Systems Journal, 40(3), 2001.

[4] D. D. Clark and D. R. Wilson. A comparison of
commercial and military computer security poli-
cies. In Proceedings of the 1987 IEEE Symposium
on Security and Privacy, pages 184 – 194, Apr.
1987.

[5] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A
role-based access control model and reference im-
plementation within a corporate intranet. ACM
Transaction on Information and System Security,
2(1):34 – 64, Feb. 1999.

[6] D. Hollingsworth. The workflow reference model.
Technical Report TC-00-1003, Workflow Man-
agement Coalition, www.wfmc.org, Jan 1995.

[7] D. R. Kuhn. Mutual exclusion of roles as a means
of implementing separation of duty in role-based
access control systems. In Proceedings of the 2nd
ACM Workshop on Role-based Access Control,
pages 23 – 30, Oct. 1997.

[8] M. Nyanchama and S. Osborn. The role-graph
model and conflict of interest. ACM Transactions
on Information and System Security, 2(1):3 – 33,
Feb. 1999.

[9] S. Perelson and R. A. Botha. Conflict analysis
as a means of enforcing static separation of duty
requirements in workflow environments. South
African Computer Journal, (26):212 – 216, Nov.
2000.

[10] J. H. Saltzer and M. D. Schroeder. The protection
of information in computer systems. Proceedings
of IEEE, 63(9):1278 – 1308, 1975.

[11] R. S. Sandhu, E. J. Coyne, H. L. Fenstein, and
C. E. Youman. Role-based access control models.
IEEE Computer, 29(2):38 – 47, Feb 1996.

Received: 10/00, Accepted: 5/01

70 SACJ / SART, No 27, 2001

 122

Appendix C. SoDA Prototype Scripts

These scripts create the second prototype described in chapter 8. This

prototype demonstrates the feasibility of the SoDA model.

The scripts in these listings are used to create the database tables and to

create the triggers for the Oracle DBMS as described in chapter 8. The

trigger creation script begins on page 123 while the table creation script

begins on page 136.

 123

--
-- SoDA integrity constraint rules
-- For Oracle DBMS
-- By Stephen Perelson
-- Copyright © 2001, Stephen Perelson and the Secure Workflow Research Group
--

-- When inserting
-- *associations into the ua, pa and ta tables
-- *conflicts into the cr, cu, cp, and ct tables
-- *roles into a role network (rh table)
-- and when deleting
-- *role conflicts from the cr table
-- *role associations from the rh table
-- it becomes necessary to restrict them from occurring based upon
-- the SoDA integrity constraints.
-- The logic that is followed within these triggers can be found in
-- chapter 7.

-- First create the package with the variables for the triggers. This
-- is to prevent mutating table errors. This package contains all the
-- variables for every SoDA trigger.

CREATE OR REPLACE PACKAGE wf_mutvars_pkg
IS
 -- variables for the ua table (user to role association)
 TYPE arrua IS TABLE OF ua%ROWTYPE
 INDEX BY BINARY_INTEGER;
 uavalues arrua;
 uaempty arrua;

 -- variables for the pa table (permission to role association)
 TYPE arrpa IS TABLE OF pa%ROWTYPE
 INDEX BY BINARY_INTEGER;
 pavalues arrpa;
 paempty arrpa;

 -- variables for the ta table (task to role association)
 TYPE arrta IS TABLE OF ta%ROWTYPE
 INDEX BY BINARY_INTEGER;
 tavalues arrta;
 taempty arrta;

 -- variables for the cr table (role conflict)
 TYPE arrcr IS TABLE OF cr%ROWTYPE
 INDEX BY BINARY_INTEGER;
 crvalues arrcr;
 crempty arrcr;

 -- variables for the cu table (user conflict)
 TYPE arrcu IS TABLE OF cu%ROWTYPE
 INDEX BY BINARY_INTEGER;
 cuvalues arrcu;
 cuempty arrcu;

 -- variables for the cp table (permission conflict)
 TYPE arrcp IS TABLE OF cp%ROWTYPE
 INDEX BY BINARY_INTEGER;
 cpvalues arrcp;
 cpempty arrcp;

 -- variables for the ct table (task conflict)
 TYPE arrct IS TABLE OF ct%ROWTYPE
 INDEX BY BINARY_INTEGER;
 ctvalues arrct;
 ctempty arrct;

 -- variables for the cr table (delete role conflict)
 TYPE arrdcr IS TABLE OF cr%ROWTYPE
 INDEX BY BINARY_INTEGER;
 dcrvalues arrdcr;
 dcrempty arrdcr;

 -- variables for the rh table (role network)
 TYPE arrrh IS TABLE OF rh%ROWTYPE
 INDEX BY BINARY_INTEGER;

 124

 rhvalues arrrh;
 rhempty arrrh;

 -- variables for the rh table (delete role network)
 TYPE arrdrh IS TABLE OF rh%ROWTYPE
 INDEX BY BINARY_INTEGER;
 drhvalues arrdrh;
 drhempty arrdrh;
END;
/

--
--
-- Triggers for the constraint of the user to role associations.
--
--
CREATE OR REPLACE TRIGGER uastatbef_trig
BEFORE INSERT ON ua
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.uavalues := wf_mutvars_pkg.uaempty;
END;
/

CREATE OR REPLACE TRIGGER uarowbef_trig
BEFORE INSERT ON ua
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.uavalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.uavalues (i).roleid := :new.roleid;
 wf_mutvars_pkg.uavalues (i).userid := :new.userid;
END;
/

CREATE OR REPLACE TRIGGER uastatafter_trig
AFTER INSERT ON ua
DECLARE
 -- Cursor to select all conflicting users for a particular user.
 CURSOR conusercur (v_userid NUMBER) IS
 SELECT userid FROM users
 WHERE userid IN
 (SELECT userid2 FROM cu WHERE userid1 = v_userid
 UNION
 SELECT userid1 FROM cu WHERE userid2 = v_userid);
 -- Get the conflicting roles for the roles associated with the
 -- conflicting users.
 CURSOR assrolecur (v_userid NUMBER, v_roleid NUMBER) IS
 SELECT roleid FROM ua, cr WHERE ua.userid = v_userid
 AND ((roleid = cr.roleid1) OR (roleid = cr.roleid2))
 AND ((cr.roleid1 = v_roleid) OR (cr.roleid2 = v_roleid));
 TYPE arrcu IS TABLE OF users.userid%TYPE
 INDEX BY BINARY_INTEGER;
 conuser arrcu;
 TYPE arrassroles IS TABLE OF ua.roleid%TYPE
 INDEX BY BINARY_INTEGER;
 assroles arrassroles;
 vuserid ua.userid%TYPE;
 vroleid ua.roleid%TYPE;
 v_count NUMBER(38);
 v_stop BOOLEAN := false;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.uavalues.COUNT
 LOOP
 -- Do the checks required here for each record inserted.
 vuserid := wf_mutvars_pkg.uavalues(i).userid;
 vroleid := wf_mutvars_pkg.uavalues(i).roleid;
 FOR conuserrec IN conusercur(vuserid) LOOP
 v_count := conuser.COUNT + 1;
 conuser (v_count) := conuserrec.userid;
 END LOOP;
 -- Move to the next step: check for conflicting roles.
 IF conuser.COUNT > 0 then
 FOR j IN 1..conuser.COUNT LOOP
 FOR assrolerec IN assrolecur(conuser(j), vroleid) LOOP

 125

 -- This could have been done with a simple SELECT (count 1)
 -- SQL statement with an IF statement to check it, but this works.
 v_stop := true;
 END LOOP;
 END LOOP;
 -- Move to the next step.
 if v_stop = true then -- assroles.COUNT > 0 then
 -- There are conflicting roles already assigned to conflicting users.
 -- Therefore raise an error.
 raise_application_error(-20201,'Cannot insert user to role ' ||
 'association - a conflicting user ' ||
 'is already associated to a ' ||
 'conflicting role.');
 END IF;
 END IF;
 -- Insert the record (or in this case don't do anything because it is
 -- already inserted).
 END LOOP;
END;
/

--
--
-- Triggers for the constraint of the permission to role associations.
--
--
CREATE OR REPLACE TRIGGER pastatbef_trig
BEFORE INSERT ON pa
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.pavalues := wf_mutvars_pkg.paempty;
END;
/

CREATE OR REPLACE TRIGGER parowbef_trig
BEFORE INSERT ON pa
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.pavalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.pavalues (i).roleid := :new.roleid;
 wf_mutvars_pkg.pavalues (i).permid := :new.permid;
END;
/

CREATE OR REPLACE TRIGGER pastatafter_trig
AFTER INSERT ON pa
DECLARE
 vpermid pa.permid%TYPE;
 vroleid pa.roleid%TYPE;
 v_cannot NUMBER(1) := 0;
 v_can NUMBER(38) := 0;
 v_none NUMBER(1) := 0;
 v_tally NUMBER(38) := 0;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.pavalues.COUNT
 LOOP
 -- Do the checks required here for each record inserted.
 v_tally := wf_mutvars_pkg.pavalues.COUNT;
 SELECT count(*) - v_tally INTO v_none FROM pa;
 IF (v_none <> 0) THEN
 vpermid := wf_mutvars_pkg.pavalues(i).permid;
 vroleid := wf_mutvars_pkg.pavalues(i).roleid;
 -- Count the conflicting permissions.
 SELECT count(*) INTO v_can
 FROM perms
 WHERE permid IN (SELECT permid2 FROM cp WHERE permid1 = vpermid
 UNION
 SELECT permid1 FROM cp WHERE permid2 = vpermid);
 IF (v_can <> 0) THEN
 -- Select all the roles associated to the conflicting permissions.
 -- If they are not all conflicting with the inserted role then it
 -- should raise an error.
 SELECT count(1) INTO v_cannot
 FROM DUAL

 126

 WHERE NOT EXISTS
 (SELECT distinct(roleid) FROM roles
 WHERE roleid in
 (SELECT distinct(roleid) FROM pa
 WHERE permid in (SELECT permid2 FROM cp WHERE permid1 = vpermid
 UNION
 SELECT permid1 FROM cp WHERE permid2 = vpermid))
 MINUS
 (SELECT roleid2 FROM cr WHERE roleid1 = vroleid
 UNION
 SELECT roleid1 FROM cr WHERE roleid2 = vroleid))
 AND EXISTS
 (SELECT distinct(roleid) FROM pa
 WHERE permid in (SELECT permid2 FROM cp WHERE permid1 = vpermid
 UNION
 SELECT permid1 FROM cp WHERE permid2 = vpermid));
 IF v_cannot = 0 then
 -- There are conflicting roles already assigned to conflicting
 -- permissions. Therefore raise an error.
 raise_application_error(-20202, 'Cannot insert permission to ' ||
 'role association - a conflicting ' ||
 'permission must be assigned to a ' ||
 'conflicting role.');
 END IF;
 END IF;
 END IF;
 -- Insert the record (or in this case don't do anything because it is
 -- already inserted).
 END LOOP;
END;
/

--
--
-- Triggers for the constraint of the task to role associations.
--
--
CREATE OR REPLACE TRIGGER tastatbef_trig
BEFORE INSERT ON ta
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.tavalues := wf_mutvars_pkg.taempty;
END;
/

CREATE OR REPLACE TRIGGER tarowbef_trig
BEFORE INSERT ON ta
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.tavalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.tavalues (i).roleid := :new.roleid;
 wf_mutvars_pkg.tavalues (i).taskid := :new.taskid;
END;
/

CREATE OR REPLACE TRIGGER tastatafter_trig
AFTER INSERT ON ta
DECLARE
 vtaskid ta.taskid%TYPE;
 vroleid ta.roleid%TYPE;
 v_cannot NUMBER(1) := 0;
 v_can NUMBER(38) := 0;
 v_none NUMBER(38) := 0;
 v_tally NUMBER(38) := 0;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.tavalues.COUNT
 LOOP
 -- Do the checks required here for each record inserted.
 v_tally := wf_mutvars_pkg.tavalues.COUNT;
 SELECT count(*) - v_tally INTO v_none FROM ta;
 IF (v_none <> 0) THEN
 BEGIN
 vtaskid := wf_mutvars_pkg.tavalues(i).taskid;
 vroleid := wf_mutvars_pkg.tavalues(i).roleid;

 127

 -- Count the conflicting tasks.
 SELECT count(*) INTO v_can
 FROM tasks
 WHERE taskid IN (SELECT taskid2 FROM ct WHERE taskid1 = vtaskid
 UNION
 SELECT taskid1 FROM ct WHERE taskid2 = vtaskid);
 IF (v_can <> 0) THEN
 -- Select all the roles associated to the conflicting tasks. If
 -- they are not all conflicting with the inserted role then it
 -- should raise an error.
 SELECT count(1) INTO v_cannot
 FROM DUAL
 WHERE NOT EXISTS
 (SELECT distinct(roleid) FROM roles
 WHERE roleid in
 (SELECT distinct(roleid) FROM ta
 WHERE taskid in (SELECT taskid2 FROM ct WHERE taskid1 = vtaskid
 UNION
 SELECT taskid1 FROM ct WHERE taskid2 = vtaskid))
 MINUS
 (SELECT roleid2 FROM cr WHERE roleid1 = vroleid
 UNION
 SELECT roleid1 FROM cr WHERE roleid2 = vroleid))
 AND EXISTS
 (SELECT distinct(roleid) FROM ta
 WHERE taskid in (SELECT taskid2 FROM ct WHERE taskid1 = vtaskid
 UNION
 SELECT taskid1 FROM ct WHERE taskid2 = vtaskid));
 IF v_cannot = 0 then -- assroles.COUNT > 0 then
 -- There are conflicting roles already assigned to conflicting users.
 -- Therefore raise an error.
 raise_application_error(-20203, 'Cannot insert task to role ' ||
 'association - a conflicting ' ||
 'task must be assigned to a ' ||
 'conflicting role.');
 END IF;
 END IF;
 END;
 END IF;
 -- Insert the record (or in this case don't do anything because it is
 -- already inserted).
 END LOOP;
END;
/

--
--
-- Triggers for the constraint of the role conflict assignment.
--
--
CREATE OR REPLACE TRIGGER crstatbef_trig
BEFORE INSERT ON cr
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.crvalues := wf_mutvars_pkg.crempty;
END;
/

CREATE OR REPLACE TRIGGER crrowbef_trig
BEFORE INSERT ON cr
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.crvalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.crvalues (i).roleid1 := :new.roleid1;
 wf_mutvars_pkg.crvalues (i).roleid2 := :new.roleid2;
END;
/

CREATE OR REPLACE TRIGGER crstatafter_trig
AFTER INSERT ON cr
DECLARE
 vroleid1 cr.roleid1%TYPE;
 vroleid2 cr.roleid2%TYPE;
 v_exists NUMBER(38) := 0;

 128

 v_asso NUMBER(38) := 0;
 v_conf NUMBER(38) := 0;
 v_rolenet NUMBER(38) := 0;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.crvalues.COUNT
 LOOP
 vroleid1 := wf_mutvars_pkg.crvalues (i).roleid1;
 vroleid2 := wf_mutvars_pkg.crvalues (i).roleid2;
 -- Check whether the roles are the same.
 IF vroleid1 = vroleid2 THEN
 raise_application_error(-20218,'Cannot insert role conflict - ' ||
 'both roles are identical.');
 END IF;
 -- Do they form part of a role network?
 SELECT COUNT(1) INTO v_rolenet FROM DUAL
 WHERE 2 <= ANY (SELECT COUNT(1) FROM rh
 WHERE childid = vroleid1 OR childid = vroleid2
 GROUP BY rolenetid);

 IF v_rolenet > 0 THEN -- Yes they do so raise an error
 raise_application_error(-20223,'Cannot insert role conflict - ' ||
 'both roles are already part of a ' ||
 'role network.');
 END IF;
 -- Are they already conflicting? We don't worry about checking whether
 -- id1 and id2 are in their respective places as the primary key
 -- constraints will prevent that from occuring.
 -- This also prevents the same role from conflicting with itself.
 SELECT count(1) INTO v_exists FROM cr
 WHERE roleid1 = vroleid2 AND roleid2 = vroleid1;
 IF (v_exists = 0) THEN
 -- Doesn't exist yet so we can continue checking.
 -- Check for user-role associations.
 SELECT count(1) INTO v_asso FROM ua
 WHERE roleid = vroleid1 OR roleid = vroleid2;
 IF (v_asso <> 0) THEN
 -- Found some associations so go to step 3.
 SELECT count(1) INTO v_conf FROM DUAL
 WHERE EXISTS ((SELECT userid FROM users
 WHERE userid IN (SELECT userid2 FROM cu
 WHERE userid1 IN (SELECT userid FROM ua
 WHERE roleid=vroleid1)
 UNION
 SELECT userid1 FROM cu
 WHERE userid2 IN (SELECT userid FROM ua
 WHERE roleid=vroleid1)))
 INTERSECT
 (SELECT userid FROM ua
 WHERE roleid = vroleid2));
 IF (v_conf <> 0) THEN
 raise_application_error(-20205,'Cannot insert role conflict - ' ||
 'both roles are already associated ' ||
 'to conflicting users.');
 END IF;
 END IF;
 ELSE
 raise_application_error(-20204,'Cannot insert role conflict - ' ||
 'the role conflict already exists.');
 END IF;
 END LOOP;
END;
/

 129

--
--
-- Triggers for the constraint of the user conflict assignment.
--
--
CREATE OR REPLACE TRIGGER custatbef_trig
BEFORE INSERT ON cu
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.cuvalues := wf_mutvars_pkg.cuempty;
END;
/

CREATE OR REPLACE TRIGGER curowbef_trig
BEFORE INSERT ON cu
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.cuvalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.cuvalues (i).userid1 := :new.userid1;
 wf_mutvars_pkg.cuvalues (i).userid2 := :new.userid2;
END;
/

CREATE OR REPLACE TRIGGER custatafter_trig
AFTER INSERT ON cu
DECLARE
 vuserid1 cu.userid1%TYPE;
 vuserid2 cu.userid2%TYPE;
 v_exists NUMBER(38) := 0;
 v_asso NUMBER(38) := 0;
 v_conf NUMBER(38) := 0;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.cuvalues.COUNT
 LOOP
 vuserid1 := wf_mutvars_pkg.cuvalues (i).userid1;
 vuserid2 := wf_mutvars_pkg.cuvalues (i).userid2;
 -- Check whether the users are the same.
 IF vuserid1 = vuserid2 THEN
 raise_application_error(-20219,'Cannot insert user conflict - ' ||
 'both users are identical.');
 END IF;
 -- Are they already conflicting? We don't worry about checking whether
 -- id1 and id2 are in their respective places as the primary key
 -- constraints will prevent that from occuring.
 -- This also prevents the same user from conflicting with itself.
 SELECT count(1) INTO v_exists FROM cu
 WHERE userid1 = vuserid2 AND userid2 = vuserid1;
 IF (v_exists = 0) THEN
 -- Doesn't exist yet so we can continue checking.
 -- Check for user-role associations.
 SELECT count(1) INTO v_asso FROM ua
 WHERE userid = vuserid1 OR userid = vuserid2;
 IF (v_asso <> 0) THEN
 -- Found some associations so go to step 3.
 SELECT count(1) INTO v_conf FROM DUAL
 WHERE EXISTS ((SELECT roleid FROM roles
 WHERE roleid IN (SELECT roleid2 FROM cr
 WHERE roleid1 IN (SELECT roleid FROM ua
 WHERE userid=vuserid1)
 UNION
 SELECT roleid1 FROM cr
 WHERE roleid2 IN (SELECT roleid FROM ua
 WHERE userid=vuserid1)))
 INTERSECT
 (SELECT roleid FROM ua
 WHERE userid = vuserid2));
 IF (v_conf <> 0) THEN
 raise_application_error(-20207,'Cannot insert user conflict - ' ||
 'both users are already associated ' ||
 'to conflicting roles.');
 END IF;
 END IF;
 ELSE
 raise_application_error(-20206,'Cannot insert user conflict - ' ||

 130

 'the user conflict already exists.');
 END IF;
 END LOOP;
END;
/

--
--
-- Triggers for the constraint of the permission conflict assignment.
--
--
CREATE OR REPLACE TRIGGER cpstatbef_trig
BEFORE INSERT ON cp
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.cpvalues := wf_mutvars_pkg.cpempty;
END;
/

CREATE OR REPLACE TRIGGER cprowbef_trig
BEFORE INSERT ON cp
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.cpvalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.cpvalues (i).permid1 := :new.permid1;
 wf_mutvars_pkg.cpvalues (i).permid2 := :new.permid2;
END;
/

CREATE OR REPLACE TRIGGER cpstatafter_trig
AFTER INSERT ON cp
DECLARE
 vpermid1 cp.permid1%TYPE;
 vpermid2 cp.permid2%TYPE;
 v_exists NUMBER(38) := 0;
 v_asso NUMBER(38) := 0;
 v_conf NUMBER(38) := 0;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.cpvalues.COUNT
 LOOP
 -- We need to check for an empty table?
 vpermid1 := wf_mutvars_pkg.cpvalues (i).permid1;
 vpermid2 := wf_mutvars_pkg.cpvalues (i).permid2;
 -- Check whether the permissions are the same.
 IF vpermid1 = vpermid2 THEN
 raise_application_error(-20220,'Cannot insert permission conflict - ' ||
 'both permissions are identical.');
 END IF;
 -- Are they already conflicting? We don't worry about checking whether
 -- id1 and id2 are in their respective places as the primary key
 -- constraints will prevent that from occuring.
 -- This also prevents the same permission from conflicting with itself.
 SELECT count(1) INTO v_exists FROM cp
 WHERE permid1 = vpermid2 AND permid2 = vpermid1;
 IF (v_exists = 0) THEN
 -- Doesn't exist yet so we can continue checking.
 -- Check for permission-role associations for both permissions only.
 -- If one of the permissions has no association yet then allow add.
 SELECT COUNT(1) INTO v_asso FROM pa p1, pa p2
 WHERE p1.permid = vpermid1 AND p2.permid = vpermid2;
 IF (v_asso <> 0) THEN
 -- Found some associations so go to step 3.
 SELECT count(1) INTO v_conf FROM DUAL
 WHERE EXISTS ((SELECT roleid FROM pa
 WHERE permid = vpermid2)
 MINUS
 (SELECT roleid FROM roles
 WHERE roleid IN (SELECT roleid2 FROM cr
 WHERE roleid1 IN
 (SELECT roleid FROM pa
 WHERE permid=vpermid1)
 UNION
 SELECT roleid1 FROM cr
 WHERE roleid2 IN

 131

 (SELECT roleid FROM pa
 WHERE permid=vpermid1))));
 IF (v_conf <> 0) THEN
 raise_application_error(-20209,'Cannot insert permission ' ||
 'conflict - one or more of the ' ||
 'associated roles of the two ' ||
 'permissions are not conflicting.');
 END IF;
 END IF;
 ELSE
 raise_application_error(-20208,'Cannot insert permission conflict ' ||
 '- permission conflict already exists.');
 END IF;
 END LOOP;
END;
/

--
--
-- Triggers for the constraint of the task conflict assignment.
--
--
CREATE OR REPLACE TRIGGER ctstatbef_trig
BEFORE INSERT ON ct
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.ctvalues := wf_mutvars_pkg.ctempty;
END;
/

CREATE OR REPLACE TRIGGER ctrowbef_trig
BEFORE INSERT ON ct
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.ctvalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.ctvalues (i).taskid1 := :new.taskid1;
 wf_mutvars_pkg.ctvalues (i).taskid2 := :new.taskid2;
END;
/

CREATE OR REPLACE TRIGGER ctstatafter_trig
AFTER INSERT ON ct
DECLARE
 vtaskid1 ct.taskid1%TYPE;
 vtaskid2 ct.taskid2%TYPE;
 v_exists NUMBER(38) := 0;
 v_asso NUMBER(38) := 0;
 v_conf NUMBER(38) := 0;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.ctvalues.COUNT
 LOOP
 -- We need to check for an empty table?
 vtaskid1 := wf_mutvars_pkg.ctvalues (i).taskid1;
 vtaskid2 := wf_mutvars_pkg.ctvalues (i).taskid2;
 -- Check whether the tasks are the same.
 IF vtaskid1 = vtaskid2 THEN
 raise_application_error(-20221,'Cannot insert task conflict - ' ||
 'both tasks are identical.');
 END IF;
 -- Are they already conflicting? We don't worry about checking whether
 -- id1 and id2 are in their respective places as the primary key
 -- constraints will prevent that from occuring.
 -- This also prevents the same task from conflicting with itself.
 SELECT count(1) INTO v_exists FROM ct
 WHERE taskid1 = vtaskid2 AND taskid2 = vtaskid1;
 IF (v_exists = 0) THEN
 -- Doesn't exist yet so we can continue checking.
 -- Check for permission-role associations for both tasks only.
 -- If one of the tasks has no association yet then allow add.
 SELECT COUNT(1) INTO v_asso FROM ta t1, ta t2
 WHERE t1.taskid = vtaskid1 AND t2.taskid = vtaskid2;
 IF (v_asso <> 0) THEN
 -- Found some associations so go to step 3.
 SELECT count(1) INTO v_conf FROM DUAL

 132

 WHERE EXISTS ((SELECT roleid FROM ta
 WHERE taskid = vtaskid2)
 MINUS
 (SELECT roleid FROM roles
 WHERE roleid IN (SELECT roleid2 FROM cr
 WHERE roleid1 IN
 (SELECT roleid FROM ta
 WHERE taskid=vtaskid1)
 UNION
 SELECT roleid1 FROM cr
 WHERE roleid2 IN
 (SELECT roleid FROM ta
 WHERE taskid=vtaskid1))));
 IF (v_conf <> 0) THEN
 raise_application_error(-20211,'Cannot insert task conflict - ' ||
 'one or more of the associated ' ||
 'roles of the two tasks are not ' ||
 'conflicting.');
 END IF;
 END IF;
 ELSE
 raise_application_error(-20210,'Cannot insert task conflict - ' ||
 'task conflict already exists.');
 END IF;
 END LOOP;
END;
/

--
--
-- Triggers for ensuring integrity when deleting role conflict assignments.
--
--
CREATE OR REPLACE TRIGGER dcrstatbef_trig
BEFORE DELETE ON cr
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.dcrvalues := wf_mutvars_pkg.dcrempty;
END;
/

CREATE OR REPLACE TRIGGER dcrrowbef_trig
BEFORE DELETE ON cr
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.dcrvalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.dcrvalues (i).roleid1 := :old.roleid1;
 wf_mutvars_pkg.dcrvalues (i).roleid2 := :old.roleid2;
END;
/

CREATE OR REPLACE TRIGGER dcrstatafter_trig
AFTER DELETE ON cr
DECLARE
 vroleid1 cr.roleid1%TYPE;
 vroleid2 cr.roleid2%TYPE;
 v_stop BOOLEAN := false;
 v_exists NUMBER(38) := 0;
 v_passo1 NUMBER(38) := 0;
 v_passo2 NUMBER(38) := 0;
 v_tasso1 NUMBER(38) := 0;
 v_tasso2 NUMBER(38) := 0;
 v_conf NUMBER(38) := 0;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.dcrvalues.COUNT
 LOOP
 vroleid1 := wf_mutvars_pkg.dcrvalues (i).roleid1;
 vroleid2 := wf_mutvars_pkg.dcrvalues (i).roleid2;
 -- Doesn't exist yet so we can continue checking.
 -- Check for user-role associations.
 SELECT count(1) INTO v_passo1 FROM pa
 WHERE roleid = vroleid1;
 SELECT count(1) INTO v_passo2 FROM pa
 WHERE roleid = vroleid2;

 133

 SELECT count(1) INTO v_tasso1 FROM ta
 WHERE roleid = vroleid1;
 SELECT count(1) INTO v_tasso2 FROM ta
 WHERE roleid = vroleid2;
 IF ((v_passo1 <> 0) AND (v_passo2 <> 0))
 OR ((v_tasso1 <> 0) AND (v_tasso2 <> 0)) THEN
 -- Found some associations so go to step 3.
 IF ((v_passo1 <> 0) AND (v_passo2 <> 0)) THEN
 -- Check the permissions first.
 SELECT count(1) INTO v_conf FROM DUAL
 WHERE EXISTS ((SELECT permid FROM perms
 WHERE permid IN (SELECT permid2 FROM cp
 WHERE permid1 IN (SELECT permid FROM pa
 WHERE roleid=vroleid1)
 UNION
 SELECT permid1 FROM cp
 WHERE permid2 IN (SELECT permid FROM pa
 WHERE roleid=vroleid1)))
 INTERSECT
 (SELECT permid FROM pa
 WHERE roleid = vroleid2));
 IF (v_conf <> 0) THEN
 v_stop := true;
 END IF;
 END IF;
 v_conf := 0;
 IF ((v_tasso1 <> 0) AND (v_tasso2 <> 0)) THEN -- check the tasks next.
 SELECT count(1) INTO v_conf FROM DUAL
 WHERE EXISTS ((SELECT taskid FROM tasks
 WHERE taskid IN (SELECT taskid2 FROM ct
 WHERE taskid1 IN (SELECT taskid FROM ta
 WHERE roleid=vroleid1)
 UNION
 SELECT taskid1 FROM ct
 WHERE taskid2 IN (SELECT taskid FROM ta
 WHERE roleid=vroleid1)))
 INTERSECT
 (SELECT taskid FROM ta
 WHERE roleid = vroleid2));
 IF (v_conf <> 0) THEN
 v_stop := true;
 END IF;
 END IF;
 IF (v_stop = true) THEN
 raise_application_error(-20212,'Cannot delete role conflict - ' ||
 'the roles form part of associations ' ||
 'to tasks or permissions that will ' ||
 'become invalid if the role conflict ' ||
 'is deleted.');
 END IF;
 END IF;
 END LOOP;
END;
/

--
--
-- Triggers for the constraint of the role network association.
--
--
CREATE OR REPLACE TRIGGER rhstatbef_trig
BEFORE INSERT ON rh
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.rhvalues := wf_mutvars_pkg.rhempty;
END;
/

CREATE OR REPLACE TRIGGER rhrowbef_trig
BEFORE INSERT ON rh
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.rhvalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.rhvalues (i).rolenetid := :new.rolenetid;

 134

 wf_mutvars_pkg.rhvalues (i).parentid := :new.parentid;
 wf_mutvars_pkg.rhvalues (i).childid := :new.childid;
END;
/

CREATE OR REPLACE TRIGGER rhstatafter_trig
AFTER INSERT ON rh
DECLARE
 e_rolenet_loop EXCEPTION;
 PRAGMA EXCEPTION_INIT (
 e_rolenet_loop, -1436);
 vrolenetid rh.rolenetid%TYPE;
 vparentid rh.parentid%TYPE;
 vchildid rh.childid%TYPE;
 v_root1 NUMBER(38) := 0;
 v_root2 NUMBER(38) := 0;
 v_exists NUMBER(38) := 0;
 v_circ NUMBER(38) := 0;
 v_conf NUMBER(38) := 0;
 v_count NUMBER(38) := wf_mutvars_pkg.rhvalues.COUNT;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.rhvalues.COUNT
 LOOP
 vrolenetid := wf_mutvars_pkg.rhvalues (i).rolenetid;
 vparentid := wf_mutvars_pkg.rhvalues (i).parentid;
 vchildid := wf_mutvars_pkg.rhvalues (i).childid;
 -- If there is no root record for the current rolenet
 -- (count - current records) then we cannot add the record
 -- if the parentid is not null.
 IF (vparentid IS NOT NULL) THEN
 SELECT count(1) INTO v_root1 FROM rh
 WHERE rolenetid = vrolenetid AND parentid IS NULL;
 IF (v_root1 = 0) THEN
 raise_application_error(-20216,'Cannot insert role into role ' ||
 'network - root role is missing ' ||
 'for the particular role network');
 END IF;
 END IF;
 -- Check for an existing root role. If one is found for the particular
 -- role network then raise an error.
 IF (vparentid IS NULL) THEN
 -- Must subtract the count because the record is already in the table.
 -- This of course assumes that there will only ever be one record
 -- inserted at a time. Disable all triggers and constraints when doing
 -- batch transfers.
 SELECT count(1) - v_count INTO v_root2 FROM rh
 WHERE rolenetid = vrolenetid AND parentid IS NULL;
 IF (v_root2 > 0) THEN
 raise_application_error(-20217,'Cannot insert role into role ' ||
 'network - root role already ' ||
 'exists for the particular role network.');
 END IF;
 END IF;
 -- Is parent role in the role network as a child?
 -- If not then raise an error.
 SELECT count(1) INTO v_exists FROM rh
 WHERE rolenetid = rolenetid AND childid = vparentid;
 -- Added extra checks to make the error message that
 -- occurs better because the record is already in the
 -- table. This screws up this check in cases when the
 -- parentid = childid. Also check if it is root level.
 IF ((v_exists <> 0) AND (vparentid <> vchildid)) OR (vparentid IS NULL) THEN
 -- Will it cause a circular reference? Rely on an
 -- exception to be raised when the sql statement
 -- fails. If it doesn't fail then it will work just
 -- fine. This works because the record is already in
 -- the table when this trigger fires.
 SELECT count(childid) INTO v_circ
 FROM rh
 WHERE childid <> vparentid
 START WITH childid = vparentid AND rolenetid = vrolenetid
 CONNECT BY PRIOR parentid = childid AND rolenetid = vrolenetid;
 -- Don't worry about checking the result of the previous
 -- SQL statement as it will not get to the next statement
 -- if it failed.
 -- Check whether any of the records in the role network

 135

 -- are conflicting with the child we wish to add. We only
 -- need to check the children in the role network.
 SELECT count(1) INTO v_conf FROM DUAL
 WHERE vchildid IN
 (SELECT roleid FROM roles WHERE roleid IN
 (SELECT roleid2 FROM cr WHERE roleid1 IN
 (SELECT childid FROM rh WHERE rolenetid = vrolenetid)
 UNION
 SELECT roleid1 FROM cr WHERE roleid2 IN
 (SELECT childid FROM rh WHERE rolenetid = vrolenetid)));
 IF (v_conf > 0) THEN
 raise_application_error(-20215,'Cannot insert role into role ' ||
 'network - conflicting role(s) ' ||
 'are already present in the role ' ||
 'network.');
 END IF;
 ELSE
 raise_application_error(-20213,'Cannot insert role into role ' ||
 'network - the parent role is not an ' ||
 'existing child role.');
 END IF;
 END LOOP;
EXCEPTION
 WHEN e_rolenet_loop THEN
 raise_application_error(-20214,'Cannot insert role into role ' ||
 'network - it will cause a circular ' ||
 'reference to occur.');
END;
/

--
--
-- Triggers for ensuring the integrity when deleting role network associations.
--
--
CREATE OR REPLACE TRIGGER drhstatbef_trig
BEFORE DELETE ON rh
BEGIN
 -- Empty the main PL/SQL table buffer.
 wf_mutvars_pkg.drhvalues := wf_mutvars_pkg.drhempty;
END;
/

CREATE OR REPLACE TRIGGER drhrowbef_trig
BEFORE DELETE ON rh
FOR EACH ROW
DECLARE
 i NUMBER := wf_mutvars_pkg.drhvalues.COUNT + 1;
BEGIN
 -- Copy the row's values across to the PL/SQL table.
 wf_mutvars_pkg.drhvalues (i).rolenetid := :old.rolenetid;
 wf_mutvars_pkg.drhvalues (i).parentid := :old.parentid;
 wf_mutvars_pkg.drhvalues (i).childid := :old.childid;
END;
/

CREATE OR REPLACE TRIGGER drhstatafter_trig
AFTER DELETE ON rh
DECLARE
 vrolenetid rh.rolenetid%TYPE;
 vparentid rh.parentid%TYPE;
 vchildid rh.childid%TYPE;
 v_child NUMBER(38) := 0;
BEGIN
 FOR i IN 1..wf_mutvars_pkg.drhvalues.COUNT
 LOOP
 vrolenetid := wf_mutvars_pkg.drhvalues (i).rolenetid;
 vparentid := wf_mutvars_pkg.drhvalues (i).parentid;
 vchildid := wf_mutvars_pkg.drhvalues (i).childid;
 -- Does it have children?
 SELECT COUNT(parentid) INTO v_child
 FROM rh
 WHERE parentid = vchildid AND rolenetid = vrolenetid;
 IF (v_child > 0) THEN --It has children so prevent it from been deleted.
 raise_application_error(-20222,'Cannot delete role association - ' ||
 'children associations already ' ||

 136

 'exist for the role been deleted.');
 END IF;
 END LOOP;
END;
/

--
--
-- End of SoDA integrity constraint rules.
--
--
--
--
-- SoDA Prototype Database Tables
--
--

--Drop all constraints

-- FK's for ua
ALTER TABLE ua
 DROP CONSTRAINT fk_userroleid;

ALTER TABLE ua
 DROP CONSTRAINT fk_useruserid;

-- FK's for pa
ALTER TABLE pa
 DROP CONSTRAINT fk_permroleid;

ALTER TABLE pa
 DROP CONSTRAINT fk_permpermid;

-- FK's for ta
ALTER TABLE ta
 DROP CONSTRAINT fk_taskroleid;

ALTER TABLE ta
 DROP CONSTRAINT fk_tasktaskid;

-- FK's for cu
ALTER TABLE cu
 DROP CONSTRAINT fk_user1userid;

ALTER TABLE cu
 DROP CONSTRAINT fk_user2userid;

-- FK's for cr
ALTER TABLE cr
 DROP CONSTRAINT fk_role1roleid;

ALTER TABLE cr
 DROP CONSTRAINT fk_role2roleid;

-- FK's for cp
ALTER TABLE cp
 DROP CONSTRAINT fk_perm1permid;

ALTER TABLE cp
 DROP CONSTRAINT fk_perm2permid;

-- FK's for ct
ALTER TABLE ct
 DROP CONSTRAINT fk_task1taskid;

ALTER TABLE ct
 DROP CONSTRAINT fk_task2taskid;

-- FK's for rh
ALTER TABLE rh
 DROP CONSTRAINT fk_rolenetrolenetid;

ALTER TABLE rh
 DROP CONSTRAINT fk_parentroleid;

ALTER TABLE rh

 137

 DROP CONSTRAINT fk_childroleid;

Drop Table tasks;
Drop Table roles;
Drop Table users;
Drop Table perms;
Drop Table rolenet;
Drop Table rh;
Drop Table cu;
Drop Table cr;
Drop Table cp;
Drop Table ct;
Drop Table ua;
Drop Table pa;
Drop Table ta;
--End of Dropping SoDATables

CREATE TABLE ta
(roleid Number(38),
 taskid Number(38),
 CONSTRAINT pk_ta PRIMARY KEY (roleid, taskid)
);

CREATE TABLE pa
(roleid Number(38),
 permid Number(38),
 CONSTRAINT pk_pa PRIMARY KEY (roleid, permid)
);

CREATE TABLE ua
(roleid Number(38),
 userid Number(38),
 CONSTRAINT pk_ua PRIMARY KEY (roleid, userid)
);

CREATE TABLE ct
(taskid1 Number(38),
 taskid2 Number(38),
 CONSTRAINT pk_ct PRIMARY KEY (taskid1, taskid2)
);

CREATE TABLE cp
(permid1 Number(38),
 permid2 Number(38),
 CONSTRAINT pk_cp PRIMARY KEY (permid1, permid2)
);

CREATE TABLE cu
(userid1 Number(38),
 userid2 Number(38),
 CONSTRAINT pk_cu PRIMARY KEY (userid1, userid2)
);

CREATE TABLE cr
(roleid1 Number(38),
 roleid2 Number(38),
 CONSTRAINT pk_cr PRIMARY KEY (roleid1, roleid2)
);

CREATE TABLE rh
(rolenetid Number(38) NOT NULL,
 parentid Number(38),
 childid Number(38) NOT NULL,
 CONSTRAINT pk_rh UNIQUE (rolenetid, parentid, childid)
-- Caused bad things:
-- CONSTRAINT pk_rh PRIMARY KEY (rolenetid, parentid, childid)
);

CREATE TABLE rolenet
(rolenetid Number(38),
 description Varchar2(128),
 CONSTRAINT pk_rolenet PRIMARY KEY (rolenetid)
);

CREATE TABLE perms

 138

(permid Number(38),
 description Varchar2(128),
 CONSTRAINT pk_perms PRIMARY KEY (permid)
);

CREATE TABLE users
(userid Number(38),
 description Varchar2(128),
 CONSTRAINT pk_users PRIMARY KEY (userid)
);

CREATE TABLE roles
(roleid Number(38),
 description Varchar2(128),
 CONSTRAINT pk_roles PRIMARY KEY (roleid)
);

CREATE TABLE tasks
(taskid Number(38),
 description Varchar2(128),
 CONSTRAINT pk_tasks PRIMARY KEY (taskid)
);

-- End of create tables

--Beginning of Foreign Key constraints

-- FK's for ua
ALTER TABLE ua
 ADD CONSTRAINT fk_userroleid FOREIGN KEY (roleid)
 REFERENCES roles(roleid);

ALTER TABLE ua
 ADD CONSTRAINT fk_useruserid FOREIGN KEY (userid)
 REFERENCES users(userid);

-- FK's for pa
ALTER TABLE pa
 ADD CONSTRAINT fk_permroleid FOREIGN KEY (roleid)
 REFERENCES roles(roleid);

ALTER TABLE pa
 ADD CONSTRAINT fk_permpermid FOREIGN KEY (permid)
 REFERENCES perms(permid);

-- FK's for ta
ALTER TABLE ta
 ADD CONSTRAINT fk_taskroleid FOREIGN KEY (roleid)
 REFERENCES roles(roleid);

ALTER TABLE ta
 ADD CONSTRAINT fk_tasktaskid FOREIGN KEY (taskid)
 REFERENCES tasks(taskid);

-- FK's for cu
ALTER TABLE cu
 ADD CONSTRAINT fk_user1userid FOREIGN KEY (userid1)
 REFERENCES users(userid)
 ON DELETE CASCADE;

ALTER TABLE cu
 ADD CONSTRAINT fk_user2userid FOREIGN KEY (userid2)
 REFERENCES users(userid)
 ON DELETE CASCADE;

-- FK's for cr
ALTER TABLE cr
 ADD CONSTRAINT fk_role1roleid FOREIGN KEY (roleid1)
 REFERENCES roles(roleid)
 ON DELETE CASCADE;

ALTER TABLE cr
 ADD CONSTRAINT fk_role2roleid FOREIGN KEY (roleid2)
 REFERENCES roles(roleid)
 ON DELETE CASCADE;

 139

-- FK's for cp
ALTER TABLE cp
 ADD CONSTRAINT fk_perm1permid FOREIGN KEY (permid1)
 REFERENCES perms(permid)
 ON DELETE CASCADE;

ALTER TABLE cp
 ADD CONSTRAINT fk_perm2permid FOREIGN KEY (permid2)
 REFERENCES perms(permid)
 ON DELETE CASCADE;

-- FK's for ct
ALTER TABLE ct
 ADD CONSTRAINT fk_task1taskid FOREIGN KEY (taskid1)
 REFERENCES tasks(taskid)
 ON DELETE CASCADE;

ALTER TABLE ct
 ADD CONSTRAINT fk_task2taskid FOREIGN KEY (taskid2)
 REFERENCES tasks(taskid)
 ON DELETE CASCADE;

-- FK's for rh
ALTER TABLE rh
 ADD CONSTRAINT fk_rolenetrolenetid FOREIGN KEY (rolenetid)
 REFERENCES rolenet(rolenetid);

ALTER TABLE rh
 ADD CONSTRAINT fk_parentroleid FOREIGN KEY (parentid)
 REFERENCES roles(roleid);

ALTER TABLE rh
 ADD CONSTRAINT fk_childroleid FOREIGN KEY (childid)
 REFERENCES roles(roleid);

-- End of Foreign Key constraints

-- Beginning of Sequence drop and create

Drop Sequence seq_rolenet;
Drop Sequence seq_perms;
Drop Sequence seq_users;
Drop Sequence seq_roles;
Drop Sequence seq_tasks;

CREATE SEQUENCE seq_rolenet;
CREATE SEQUENCE seq_perms;
CREATE SEQUENCE seq_users;
CREATE SEQUENCE seq_roles;
CREATE SEQUENCE seq_tasks;

commit -- End of Create Sequences
/

