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“Formerly, when religion was strong and science weak,
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 ABSTRACT

Acetaminophen and N,N-dimethylformamide (DMF) are compounds which are extremely

toxic to the liver. Acetaminophen is a drug which is well known for its analgesic and

antipyretic properties. However, the abuse potential of this agent as a non-narcotic

analgesic in alcoholics is well known. It is also the leading cause of overdose in England.

DMF toxicity results mainly from occupational exposure. At present there are no known

reports of an antidote for DMF poisoning, while N-acetylcysteine, the antidote for

acetaminophen poisoning, is known to produce adverse effects. The present study

evaluates the potential of melatonin as an antidote for acetaminophen and DMF poisoning.

This study also investigates the mechanism underlying acetaminophen addiction and abuse.

Initial studies involved in vitro techniques in an attempt to remove the complexities of

organ interactions. The photodegradation studies, using ultraviolet (UV) light, revealed

that melatonin accelerates the rate of acetaminophen degradation in the presence of air,

and reduces the rate of degradation in the presence of nitrogen. This study also revealed

that melatonin is rapidly degraded in the presence of air, following UV irradiation. The

effect of DMF on hydroxyl radical generation was also determined. DMF was shown to

act as a free radical scavenger, rather that a generator of free radicals.

The in vitro studies were followed by lipid peroxidation determination. DMF (0.4ml/kg

and 0.8ml/kg) did not produce any significant increases in lipid peroxidation in the liver.

Three different doses of acetaminophen (30mg/kg, 100mg/kg, and 500mg/kg) were

administered to rats for seven days. Acetaminophen (500mg/kg) was shown to

significantly increase (p<0.05) lipid peroxidation in the liver. Melatonin (2.5mg/kg) was

not able to significantly reduce the damage. The lower doses of acetaminophen (30mg/kg

and 100mg/kg) did not increase lipid peroxidation. Electron microscopy studies showed

that DMF adversely affects the liver, and in particular, the endoplasmic reticulum. Co-
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administration of melatonin (2.5mg/kg) was able to reduce the damage. Further

experiments need to be performed before an accurate assessment can be made on the

ability of melatonin as an antidote for DMF and acetaminophen poisoning. 

Several experiments were done in an attempt to uncover the biochemical mechanism

underlying acetaminophen addiction and abuse. The first experiment targeted the liver

enzyme tryptophan-2,3-dioxygenase (TDO). This enzyme is the major determinant of

tryptophan levels in vivo. Acetaminophen administration (100mg/kg for three hours) was

shown to significantly inhibit (p<0.05) the activity of TDO, indicating increased peripheral

levels of tryptophan. This experiment was followed up with determination of brain

serotonin and pineal melatonin. Brain serotonin was determined using the ELISA

technique. Melatonin was estimated using this technique as well as with pineal organ

culture. Acetaminophen administration (100mg/kg for three hours) significantly increased

(p<0.05) brain serotonin levels. Using organ culture where exogenous (3H) tryptophan is

metabolised to (3H) melatonin, acetaminophen (100mg/kg for three hours) was shown to

significantly increase (p<0.05) pineal melatonin concentrations. However, the ELISA

technique did not reveal any changes in endogenous pineal melatonin levels.

The final experiment was the determination of urinary 5-hydroxyindole acetic acid (5-

HIAA), the major metabolite of serotonin, following acetaminophen administration

(100mg/kg for three hours). Acetaminophen was shown to significantly reduce 5-HIAA

levels (p<0.05) suggesting reduced catabolism of serotonin. The findings of this study

indicate that acetaminophen mimics the actions of an antidepressant. This compelling

finding has important clinical implications, and needs to be examined further.
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Chapter 1

Literature Review

1. Introduction

Painkillers, such as acetaminophen, are generally available over-the-counter.

Acetaminophen is a very effective analgesic and antipyretic. It is relatively non-toxic at

therapeutic doses, but can produce potentially fatal hepatic necrosis when large quantities

are ingested. This necrosis is caused by its metabolite, N-acetyl-benzoquinoneimine (Insel,

1996), which does so via a proposed free radical mechanism. Incorrectly stored

acetaminophen is also susceptible to degradation with the possibility of a toxic compound

being formed. In some countries such as the United States, acetaminophen accounts for

70% of the annual reported poisoning incidents, while in England, acetaminophen is the

leading cause of death from drug overdose (Awang, 1997).

N-acetylcysteine is currently used in the treatment of acetaminophen toxicity.  However

the use of N-acetylcysteine is not without problems. Side effects associated with its use

include bronchospasm and life threatening anaphylaxis (Insel, 1996). The possibility of

using a non-toxic free radical scavenger for the treatment of acetaminophen-induced

hepatotoxicity thus needs to be investigated. Melatonin fits these criteria. It is a known

potent free radical scavenger of both hydroxyl radicals and superoxide anions at

physiological concentrations (Daya, 1999). Before such studies can be undertaken, it is

important to determine the behaviour of melatonin and acetaminophen under conditions in

which the complexities of organ interactions are absent. One such system involves the use

of a photoreactor and the subsequent analysis of the photodegradant products using a

validated high performance liquid chromatography (HPLC) analytical method.  This

investigation of the chemical interactions between melatonin and acetaminophen, in a

purely chemical environment, is an important initial investigation, albeit far removed from
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an in vivo situation.

 N, N-dimethylformamide (DMF), like acetaminophen, is also an extremely toxic agent. It

is commonly used for vinyl-based polymers in the manufacture of films, fibres and coatings

(Angerer et al, 1998). DMF toxicity results mainly from occupational exposure (Scailteur

et al, 1984). DMF commonly affects the liver, and at present there are no known reports

of an antidote for DMF poisoning. The mechanism of DMF-induced liver damage is not

fully understood. This report hypothesises that DMF-induced liver injury is via a free

radical mechanism, which can be confirmed using electron spin resonance and HPLC with

electrochemical detection. If this hypothesis is correct, melatonin would be the perfect

candidate as an antidote, as it is a potent free radical scavenger.

The in vitro studies can be compared to in vivo techniques using the rat as a model. The

quantification of lipid peroxidation products is a very reliable indicator of oxidative stress.

Lipid peroxidation can be measured using the Thiobarbituric acid (TBA) test, as this test is

the single most commonly used test used for measuring lipid peroxidation (Gutteridge and

Halliwell, 1990).

As stated earlier, acetaminophen is a drug which is well known for its analgesic and

antipyretic properties, however the abuse potential of this agent as a non-narcotic

analgesic in alcoholics  is  well known. This drug is also known to cause mood changes at

high doses (Payan and Katzung, 1995). Although at present there are no reports to

suggest that this agent alters neurotransmitter levels in the brain, which could contribute to

this phenomenon, the precursor of this drug, phenacetin, is also known to cause euphoria

in humans and sedation in animals. Phenacetin, although an analgesic, has been

compulsively misused in the past as an anti-anxiety agent (Meyers et al, 1978). It is

therefore crucial to gain insight into the biochemical events that underlie this addiction. It

is apparent after surveying the literature available on mood, that tryptophan metabolism

plays an important role in the synthesis of the neurotransmitter, serotonin (Walsh and

Daya, 1998). Curtailed serum and cerebral tryptophan levels and brain serotonin turnover
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as a consequence of an enhanced tryptophan-2,3-dioxygenase rate of catalysis, are linked

to mood changes. Tryptophan-2,3-dioxygenase (TDO) thus has the potential to be a key

regulatory site in the modulation of certain aspects of central nervous system activity.

Alterations in TDO activity could also affect behaviour. This study examines the activity

of this enzyme and its effect on brain and pineal indoleamine metabolism, using the rat as a

model, in an attempt to explain the biochemical parameters involved in acetaminophen

addiction and abuse. 

In the following sections the relevant aspects of the vast literature pertaining to this study,

are presented. Chapters Two and Three deal with the in vitro studies involving

acetaminophen and DMF respectively. Chapter Four examines the effect of both these

compounds on lipid peroxidation, using in vivo techniques. Chapters Five through to eight

deal with tryptophan metabolism as well as brain and pineal indoleamine metabolism. In

Chapter Nine, the results obtained are summarised and conclusions are drawn.

Recommendations for future experiments are also reported in the final chapter.

1.1 The Pineal Gland

1.1.1 The history of the pineal gland

After centuries of disregard and unfounded philosophical ideologies, the pineal gland has,

over the past decade, finally been acknowledged as an important functional

neuroendocrine gland. The human pineal gland was discovered by the famous anatomist

Herophilos (325-280 BC). The pineal gland was implicated as the regulator of the flow of

the spirit, and this lead the philosopher, René Descartes, to proclaim that the pineal gland

was the seat of the soul. During this period, physiological studies of the brain were

eclipsed by researchers' preoccupations with the spiritual significance of the brain.

Between the mid 18th and 19th, centuries methodical and thorough investigations into the

pineal gland were carried out. Cytological studies revealed that the pineal glands of lower
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Figure 1: Dorsal view of the rat brain (Rowett, 1968).

vertebrates functioned as  photosensory organs. This led to the pineal gland being referred

to as ‘the third eye’. Subcellular granules and clear vesicles were also identified. These

structures were consistent with a secretory function, and indicated that the pineal gland

had glandular functions. By the end of the 19th century there were suggestions that the

pineal gland had an endocrine role. In 1898, Heubner described a boy suffering from a

pinealoma, and showing signs precocious puberty. Later, in 1930, Marburg also thought

that precocious development of the primary and secondary sex organs was caused by

hypopinealism, due to pineal degeneration (Pevét, 1984 ). It wasn’t, however, until the

1950s, that scientists conducted serious research on the pineal gland. Subsequent research

confirmed this endocrine role and also uncovered a neural connection between the pineal

gland and the hypothalamus.

The pineal gland is presently recognised as an endocrine gland and its major metabolite,

melatonin, as a hormone. The full extent of the functions of the pineal is not yet known.

This has stimulated vast research worldwide in an attempt to elucidate the role of the

pineal gland in the mammalian body.

1.1.2 Pineal Anatomy and Location
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Figure 2: Median Sagittal view of the rat brain (Rowett, 1968).

The pineal gland develops from an evagination of the region of the neural tube which

becomes the diencephalon (Ariens Kappers, 1971). The size, shape, and location of the

gland varies in different species. It is superficially located between the cerebral

hemispheres in the rat (Figures 1 and 2). The pineal gland is attached to the brain by the

pineal stalk. The stalk consists of pinealocytes, pinealoblasts, and fibrocytes.

1.1.3 Indole metabolism in the pineal gland

Indole metabolism in the pineal gland occurs in the pinealocytes. The different stages are

outlined in Figure 3. It commences with the uptake of tryptophan from the blood stream.

Some of the tryptophan is utilized in the synthesis of pineal proteins, but the majority is

converted to 5-hydroxytryptophan by the enzyme tryptophan hydroxylase (Lovenberg et

al, 1967). This step occurs in the presence of oxygen, ferrous iron, and a reduced

pteridine cofactor (Snyder and Axelrod, 1964). The enzyme has a low affinity for

tryptophan, which is its substrate. Tryptophan availability is therefore the rate-determining

factor for this enzyme.
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5-Hydroxytryptophan is then decarboxylated by L-aromatic amino acid decarboxylase.

This leads to the formation of 5-hydroxytryptamine or serotonin (Lovenberg et al, 1962 ).

Serotonin can then be metabolised in three different ways:

(1) A fraction of the serotonin undergoes methoxylation by hydroxyindole-O-

methyltransferase (HIOMT) to form 5-methoxytryptamine. The methyl group is

donated by S-adenosylmethionine.

(2) Monoamine oxidase oxidises serotonin to 5-hydroxyindole acetaldehyde

(Axelrod et al, 1969). This is an unstable intermediate and is converted to either

one of two metabolites: 

(a) it may be converted to 5-hydroxyindole acetic acid and then to

5-methoxyindole acetic acid. These two steps are catalysed by

aldehyde dehydrogenase and HIOMT respectively (Lerner and

Case, 1960; Wurtman and Larin, 1968) 

(b) alternatively, 5-hydroxyindole acetaldehyde may be converted

to 5-hydroxytryptophol and 5-methoxytryptophol. These steps are

catalysed by alcohol dehydrogenase and HIOMT respectively

(Wurtman and Larin, 1968).

(3) The major fraction of serotonin is converted to melatonin. This is a two step

process. First, N-acetlytransferase transfers an acetyl group from acetyl coenzyme

A to the amino group of serotonin to form N-acetylserotonin. N-acetylserotonin is

the precursor of melatonin (Klein et al, 1971). N-acetylserotonin is then O-

methylated by HIOMT to form melatonin. Melatonin is the principal pineal

hormone and has been the focus of the larger part of pineal research.

1.1.4 Pineal peptides

A variety of pineal peptide constituents exist in the pineal gland. This does not necessarily

mean that these are produced by the pineal gland. These peptides could be synthesised in

other organs and taken up by the pineal gland. These peptides can be classified into three

different groups (Table 1). Various pineal peptide hormones act on the reproductive
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system and on the pituitary-gonadal axis.

Due to the difficulty in specifically isolating these peptides, some of them have not been

characterised. The physiological actions of the peptides are extremely complex and the

variation in biorhythms also raises difficulties in assigning a biological role to these (Feuer,

1990). 

Table 1: Various types of hormones and derivatives produced by the pineal gland

(Adapted from Feuer, 1990).

METHOXYINDOLES PEPTIDES

Melatonin 

Serotonin 
N-Acetylserotonin

5-Methoxyindoleacetic acid 

5-Methoxytryptamine

5-Hyroxytryptophol 
5-Methoxytrytophol 

N–Acetyl-5-

methoxytryptophol

Identified peptides and proteins: 

a) Neurohypophysial peptides: oxytocin, vasopressin, vasotocin

neurophysins.
b) Hypothalamic hormones: Somatostatin, TRH, etc.

c) ACTH, angiotensin 1 and 2, substance P, enkephalin, â-endorphins

Partially identified peptides and proteins:
Pinealin, E5 and NH2.

1.2 Melatonin

1.2.1 History

Melatonin is phylogenetically very old. Melatonin is known to have existed in the

dinoflagellate Gonyaulax polyedra (Reiter et al, 1994). Melatonin is known to be

produced in virtually all organisms in the animal kingdom. In 1917, McCord and Allen

reported that extracts of bovine pineals produced a dramatic blanching of the skins in

amphibians (Pevét, 1984). Forty-two years later, in 1959, the compound responsible for

this blanching was isolated from the mammalian pineal gland by Lerner and colleagues,

and chemically analysed for the first time (Reiter, 1997). This compound was identified as
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NH

CH3O
CH2CH2NHCOCH3

Melatonin

N-acetyl-5-methoxytryptamine. Since it caused aggregation of melanin granules with

melanophores, Lerner and colleagues named the compound melatonin (Pevét, 1984).

1.2.2 Chemical structure of melatonin

      

        Figure 4: The chemical structure of the pineal hormone, melatonin (Feuer, 1990).

       

1.2.3 Synthesis of melatonin

Melatonin is primarily synthesised in the pineal gland and this process is described in

section 1.1.3 above.

1.2.4 Other sites of melatonin synthesis

Melatonin synthesis is not confined to the pineal gland. Presently melatonin is known to be

synthesised in the retina, the Harderian gland, the intra-orbial lacrimal glands (Reiter,

1989), and the enterochromaffin cells of the gastro-intestinal tract (Raikhlin and Kvetnoy,

1976). Pineal melatonin, is however, predominately responsible for the melatonin

circulating in the blood. It is possible that melatonin produced in non-pineal sites may

exhibit a compensatory increase in melatonin synthesis in pinealectomized animals (Reiter,

1989).
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1.2.5 Circadian variation in melatonin synthesis

In vertebrates, melatonin production in the pineal gland exhibits a circadian rhythm, with

the highest levels of melatonin being produced during the night. Fiske et al (1960),

reported that the pineal gland decreases in size and mass following continuous exposure to

light. This was the first report of the influence of light on the pineal gland. 

The rhythm of melatonin synthesis depends primarily on the activity of the enzyme

serotonin-N-acetyltransferase (NAT). This enzyme is considered to be the rate-limiting

enzyme in the synthesis of melatonin (Reiter, 1994). The circadian rhythm in NAT activity

is responsible for the circadian rhythm in melatonin production. Activation of NAT is

controlled by signals from photoreceptor cells. Melatonin synthesis in the mammalian

pineal gland is regulated by endogenous oscillators and photoreceptors in the retina of the

eye. The eye is functionally and anatomically connected to the pineal gland by a neural

network. In mammals the endogenous oscillator is believed to be located in the

suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN has been shown to contain

melatonin receptors named the ML1 receptor (Hagan and Oakley, 1995). The effect of

light on pineal function is attributed to the inhibitory effects of light on the sympathetic

nerves to the pineal gland (Klein, 1973). 

Neural pathways from the SCN, where glutamate is the neurotransmitter, relay episodic

sympathetic nerve impulses via the superior cervical ganglion, terminating at the

postganglionic sympathetic fibres within the pineal gland (Petterborg et al, 1991).

Norepinephrine is released from the nerve terminals. This leads to a stimulation of

postsynaptic â1-adrenergic receptors which are coupled to adenylate cyclase. â-adrenergic

stimulation of the pinealocyte activates adenylate cyclase via a stimulatory guanine

nucleotide-binding regulatory protein, Gs , (Reiter, 1991). Adenylate cyclase catalyses the

conversion of ATP to cAMP (Strada et al, 1972).

The increase in intracellular levels of cyclic AMP (up to 60-fold in the rat pineal) results in 
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Figure 5: The schematic representation of light and innervation on melatonin             
synthesis in the pineal gland (Feuer, 1990).
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elevated NAT activity. Cyclic AMP serves as a second messenger in the nocturnal

elevation of melatonin biosynthesis. It elevates a cyclic AMP dependant protein kinase,

increases the transcription of mRNA, and eventually results in a rise in NAT (Reiter,

1991). NAT then converts serotonin to N-acetylserotonin which is converted to

melatonin. This is depicted in Figure 5. NAT activity has been shown to be lower during

the day (Reiter, 1997), resulting in lower melatonin production during the day. At night,

NAT is activated as described earlier, and melatonin production increases. The activity of

NAT is 30-70 fold greater at night than during the day (Arendt,1988; Daya,1999). As a

result of this circadian rhythm, the physiological levels of melatonin in body fluids and

tissues vary according to the light/dark cycle. At night, blood melatonin levels reach values

of 150pg/ml, which is ten times higher than daytime values.

1.2.6 Melatonin secretion and distribution

Melatonin is not stored in large pools in the pineal gland. Due to its high lipophilicity,

melatonin is secreted from the pinealocytes by diffusion. Melatonin is released directly into

the blood vascular system, and secondarily into other body fluids which include blood and

saliva (Lewis et al, 1990). The normal route of melatonin secretion comprises the pineal

capillaries draining into surrounding venous sinuses. This view is based on animal

experiments as well as human data (Feuer, 1990). The majority of circulating melatonin in

the bloodstream is plasma bound (60-70%), while melatonin is present in its free form in

the cerebrospinal fluid (Feuer, 1990). Melatonin has a relatively short life, and during a

single passage through the body, approximately 90% is taken up into the tissues (Lewis et

al, 1990). 

1.2.7 Catabolism of melatonin

The turnover of melatonin is fairly quick. In the rat, the half-life of melatonin is twenty

minutes. Approximately 75% of the melatonin taken up by the liver is inactivated by

hepatic microsomal enzymes, via hydroxylation, to form 6-hydroxymelatonin. This
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Figure 6: The catabolism of melatonin in the brain and liver (Feuer, 1990).

product is then conjugated either with sulphate, to form 6-sulphatoxymelatonin, or with

glucuronic acid. These products are excreted in urine. In the brain, excess melatonin is

converted to N-acetyl-5-N-methoxykynurenamine by the enzyme indoleamine-2,3-

dioxygenase. This is then converted to N-Acetyl-5-methoxykynurenine by hydrolysis

(Figure 6).

1.2.8 Free radicals and melatonin

1.2.8.1 Production of free radicals

Oxygen is vital for the survival of aerobic organisms. However, it is this very oxygen that

can lead to their destruction. Under normal physiological conditions aerobic organisms

utilize approximately 98% of cellular oxygen at cytochrome a3, which is the terminal
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Figure 7: Generation of free radicals and reactive oxygen species from     
molecular oxygen (Reiter et al, 1994).

cytochrome in the electron transport chain in the mitochondria (Reiter et al, 1994).

Oxygen is reduced by four electrons without partially reduced intermediates being

released. However, not all oxygen follows this pathway, and a small percentage is mono-

and divalently reduced to produce either the superoxide anion radical, or hydrogen

peroxide (H202).

The generation of free radicals from oxygen is depicted in Figure 7. Free radicals contain

unpaired electrons and are highly unstable. The complete reduction of one molecule of O2

to water is a four-electron process as mentioned earlier. The superoxide anion radical

(O2
.G) is produced by the addition of a single electron to O2. The superoxide anion is then

enzymatically reduced by superoxide dismutase to H2O2. Although H2O2 is not a free

radical, at high concentrations it can be toxic to cells. Neither O2
.G nor H2O2 is particularly

reactive. H2O2 can be further reduced in the presence of transition metals such as Fe2+ to

the highly toxic hydroxyl radical (.OH) (Reiter et al, 1995). This last step is known as the

Fenton reaction.
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Various physiological disturbances of cellular homeostasis, such as UV light and chemical

toxins, can lead to a dramatic increase in the production of O2
.G, H2O2 and .OH (Freeman

and Crapo, 1981). These radicals react with, and frequently irreversibly damage, a variety

of biological molecules including phospholipids, proteins, and nucleic acids. Cellular

damage to cells by free radicals is referred to as oxidative stress, and can adversely affect

cellular functions. This can ultimately lead to cell death. Inflammation, tissue ischemia, and

hypoxia are examples of oxidative stress. The ageing process is also believed to result

from accumulated free radical damage.

1.2.8.2 Melatonin as a free radical scavenger

1.2.8.2.1 In Vitro evidence

Tan and colleagues were the first to convincingly establish melatonin as a free radical

scavenger (Reiter et al, 1994). In these studies, the authors exposed H2O2 to UV light to

produce .OH. The hydroxyl radical has a very short half-life and cannot, therefore, be

easily detected. Using 5,5-dimethylpyrroline-oxide (DMPO), a spin trap agent, to trap the

hydroxyl radicals producing DMPO-.OH adducts, these authors separated the adducts

using HPLC. The adducts were further confirmed using electron spin resonance

spectroscopy.

Tan and colleagues then compared melatonin, mannitol, and glutathione as free radical

scavengers by measuring the reduction of the DMPO-.OH adducts. The results of this

study show melatonin to be the most effective free radical scavenger. 

Tan then went on to investigate the structure-activity relationships of melatonin and other

indoles in terms of their free radical scavenging ability. Melatonin was compared with

serotonin, N-acetylserotonin, and 5-methoxytryptamine. Using the system outlined earlier,

these authors again showed that melatonin was the most effective scavenger. These

authors concluded that the methyl group, at position five in the nucleus, is responsible for
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the ability of melatonin to scavenge the hydroxyl radical (Reiter et al, 1994).

In 1995, Vijayalaxmi and colleagues studied the effect of melatonin on free radical-

induced DNA damage (Reiter, 1997). Human lymphocytes were incubated with various

concentrations of melatonin. Treated and untreated lymphocytes were then exposed to

gamma radiation, and the resulting damage was estimated using a variety of cytogenetic

parameters, such as exchange aberrations. Melatonin was shown to reduce damage, once

again confirming its ability to scavenge free radicals in vitro, and thereby providing tissue

protection.

1.2.8.2.2 In Vivo evidence

Following the in vitro evidence, confirming melatonin as a free radical scavenger (Tan,

1993), Reiter undertook studies to determine its effectiveness as an antioxidant in vivo

(Reiter, 1997). Safrole, an extract of sassafras oil, was used to induce DNA damage.

Safrole is known to generate large numbers of oxygen-centred radicals (Reiter et al,

1994). Reiter proposed that prior administration of melatonin would assuage the damage

produced by safrole.

Rats were injected with safrole (300mg/kg). Some animals were treated with melatonin

(0.2 and 0.4 mg/kg) prior to the administration of safrole. After 24 hours the rats were

killed and the livers removed. The DNA was isolated and labelled with 32P. The damaged

DNA adducts were separated and autoradiographed. The autoradiograms were then

quantified using a Blot analyser (Reiter et al, 1994). The lower dose (0.2mg/kg) of

melatonin reduced DNA damage by 41% while the higher dose (0.4mg/kg) reduced

damage by 99%. This illustrated the ability of melatonin to scavenge free radicals in vivo.

Tan et al (1994) followed up these studies. Tan and colleagues injected rats with safrole

(100mg/kg) during the early light, and dark phases. Rats injected with safrole at night had

reduced DNA damage as compared to the animals injected during the day. This is due to
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higher physiological levels of melatonin at night (Reiter, 1997).

In 1995, Melchiorri and colleagues exposed the lungs of rats to the herbicide paraquat.

Paraquat was used to induce oxidative damage. The end products of lipid peroxidation,

malondialdehyde (MDA) and 4-hydroxyalkenals (4HDA), were measured. When

administered in conjunction with paraquat, melatonin totally overcame the rise in lipid

peroxidation products (Reiter and Fujimori, 1996). This showed melatonin to scavenge

the peroxyl radical (ROO.) which propagates and re-initiates lipid peroxidation. 

This study conclusively confirmed melatonin as a free radical scavenger. The in vivo

findings were also consistent with the in vitro findings.

1.2.8.2.3 Additional evidence supporting the antioxidative function of melatonin

Giusti and colleagues (1995) tested the ability of melatonin to protect cultured neurons

from the excitotoxic effects of glutamate and kainic acid. Melatonin was shown to

increase cellular viability, thereby protecting the neurons from damage. Melatonin was

however not effective against NMDA excitotoxicity, and was only effective against kainic

acid when administered simultaneously to the culture medium.

In another assessment of the antioxidative action of melatonin, Pentney and Bubenik

(1995) induced colitis in mice by adding dextran sodium sulphate (DSS) to their drinking

water (Reiter, 1997). DSS induces the proliferation of Escherichia coli in the intestine.

This leads to an excessive production of the endotoxin lipopolysaccharide (LPS) which

generates free radicals. These free radicals damage the mucosa lining the intestine, leading

to diarrhoea. The daily administration of melatonin was shown to significantly reduce the

severity of the colitis.
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1.2.8.2.4 Free radical scavenging mechanism of melatonin

Melatonin detoxifies free radicals by electron donation. Melatonin is oxidised to produce

the indolyl cation radical (Reiter et al, 1996). The indolyl cation radical is believed to

scavenge both the superoxide anion and the peroxynitrous radical, thereby becoming 

N-acetyl-N-formyl-5-methoxykynuramine, a non-toxic urinary by-product. It still needs to

be established whether or not the indolyl cation radical can be reduced back to melatonin.

Unlike the indolyl intermediate, which is easily oxidised upon exposure to O2
.G, melatonin

is inert, and specifically interacts with .OH. This results in melatonin being a potent and

selective free radical scavenger.
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1.2.8.2.5 Effect of melatonin on the antioxidative defence system 

In addition to the direct free radical scavenging actions of melatonin, melatonin has been

shown to stimulate the major antioxidative enzyme, glutathione peroxidase (Reiter, 1997).

This enzyme metabolises H2O2 to H2O (Figure 8), thereby reducing the generation of .OH.

In addition, according to Pierrefiche and Laborit (1995), melatonin also stimulates hepatic

and cerebral glucose-6-phosphate activity in mice, thereby increasing NADPH levels

(Reiter, 1997). This indirectly promotes the enzymatic production of glutathione via

glutathione reductase. Glutathione is a necessary cofactor of glutathione peroxidase.

Glutathione is required for, and oxidised by, innate cellular defences against free radicals

(Johnson et al, 1993). In addition, glutathione is also responsible for the detoxification of

acetaminophen (Correia, 1995).

Prozo et al (citied in Reiter et al, 1996) further reported that melatonin suppresses the

activity of nitric oxide synthase (NOS). Nitric oxide interacts with O2 to generate the

peroxynitrite anion, which can degrade to produce .OH. The inhibitory effect of melatonin

on NOS may contribute to its antioxidative capability.

1.2.9 Other important functions of melatonin

This report suggests that the most important function of melatonin is that of a free radical

scavenger. However melatonin has been shown to have other important functions.

Melatonin has been shown to effectively inhibit mammary tumorigenesis, induced by 

N-methylnitrosurea (NMU), when administered prior to the carcinogen (Blask et al,

1989). Melatonin is believed to block estrogen-induced mitogenesis.  

Another important study showed melatonin to complex metals thereby possibly reducing

metal toxicity (Limson et al, 1998 ). Using electrochemical techniques, Limson and

colleagues showed that melatonin was able to form complexes with toxic metals, such as

aluminium and copper. The ability of melatonin to bind to aluminium may ultimately have
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serious implications in the treatment of Alzheimer's disease, as this disease is characterised

by the accumulation of aluminium.

1.2.10 Melatonin and depression

The studies of melatonin patterns in depression have been conflicting. One study, using

eight patients who were suffering from depression, showed no significant differences in

melatonin levels when compared to normal controls (Lewis et al, 1990). Melatonin levels

were measured in serum and CSF, obtained by lumbar puncture.  Other studies have

shown higher melatonin levels in depressed individuals (Lewis et al, 1990).  However

recent studies indicate that depressed individuals are more sensitive to light than normal

individuals resulting in the inhibition of nocturnal melatonin synthesis. A study involving

30 acutely ill patients, and 24 patients with a history of unipolar or bipolar major affective

disorder, showed lower nocturnal serum melatonin levels compared to healthy individuals

(Lewis et al, 1990). 

Mendlewicz and colleagues (1979) reported a lowered amplitude of the nocturnal rise in

melatonin in three of four severely depressed women. The lowered melatonin levels were

still apparent six weeks following recovery (Branchey et al, 1982). Another study by

Wetterburg (1983), also reported lower nocturnal levels in 17 depressed patients. Reduced

night time levels of melatonin may therefore represent a marker for depression.

Melatonin production and secretion is known to exhibit a circadian rhythm. Depression is

characterised by a diurnal variation in mood associated with alterations in circadian

rhythms. This ‘dysregulation’ hypothesis of depression claims that there is

chronobiological instability in the depressed state (Maurizi, 1984). Thus malfunctioning of

the biological clock is symptomatic of the depressed state.

Biochemical indices of the depressed state due to dysregulation of the circadian rhythm

include earlier appearance of reduced night-time temperature, and phase advances in
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melatonin. Melatonin has the ability to re-entrain the biological clock. The biological clock

has been accepted to reside in the SCN, which is rich in melatonin receptors. Clinical data

suggests that regular doses of melatonin result in the re-entrainment of circadian

rhythmicity in depressives (Maurizi, 1984). However melatonin administration in healthy

individuals causes a drop in basal body temperature. Thus, there appears to be differential

melatonin metabolism in healthy and depressed individuals (Daya, 1994). 

1.2.11 Melatonin and antidepressants

The most promising and effective antidepressants are those whose action is based on the

‘biogenic amine’ hypothesis of depression (Daya, 1994). Studies on the effect of

antidepressants on melatonin production have yielded inconsistent results.

Wirz-Justice and Arendt (1980) reported on the effect of maprotiline treatment on the

morning plasma melatonin levels in three depressed patients. Melatonin was undetectable

in all three patients and this remained so during two to four weeks of therapy. Murphy et

al (1986), examined the morning plasma melatonin levels in 27 depressed patients before

and after treatment with monoamine oxidase inhibitors, such as clorgyline and deprenyl.

Melatonin levels increased with clorgyline but not with deprenyl (Murphy et al, 1986).

Similarly, studies involving patients on lithium and tricyclic antidepressant therapy showed

no significant changes in melatonin levels (Wetterburg, 1983). 

The noradrenaline uptake inhibitor, desipramine, administered as a single dose of 100mg

at 16h00, advances the onset of melatonin secretion, resulting in prolonged melatonin

secretion and therefore increased levels of melatonin (Daya, 1994). However the question

of whether the antidepressant action of these drugs is attributable to increased levels of

melatonin remains open.  
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1.3 Serotonin

1.3.1 History

Serotonin was discovered approximately a century ago. Physiologists discovered a

vasoconstrictor compound in serum after blood clotting. This led to the compound being

named vasotonin. This substance was a frequent nuisance in experiments requiring

defibrinated blood (Douglas, 1975). In the early 1940s, during research into hypertension,

the "nuisance"  proved to be an obstruction and had to be removed. In 1948 researchers

isolated this vasoconstrictor substance as a crystalline complex, and named it serotonin. A

year later it was discovered that the active moiety of serotonin was 5-hydroxytryptamine

(5-HT). Synthetically manufactured 5-HT possesses all the properties of naturally

produced serotonin (Douglas, 1975).

During this period independent studies led to another substance being isolated in the

enterochromaffin cells of the gastrointestinal mucosa. This substance was a gut stimulating

factor and was named enteramine. This substance was later identified as 

5-hydroxytryptamine or serotonin. Subsequent research has uncovered several important

functions of serotonin which are discussed later in the report.

1.3.2 Chemical structure of serotonin
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1.3.3 Synthesis of serotonin

The synthesis of serotonin has been discussed in section 1.1.3 above.

1.3.4 Distribution

In mammals, approximately 90% of the serotonin present in the body is located in the

gastrointestinal tract. The major fraction of this is in the enterochromaffin cells. The

remaining serotonin is found in platelets and the central nervous system (CNS). Some

serotonin has been identified in the mast cells of rodents (Douglas, 1975).

1.3.5 Catabolism of serotonin

The principal route of the catabolism of serotonin involves monoamine oxidase (MAO).

The catabolism process is outlined in Figure 10. MAO converts serotonin to 

5-hydroxyindole acetaldehyde (Sanders-Bush and Mayer, 1996). The enzyme, aldehyde

dehydrogenase, then catalyses the formation of 5-hydroxyindole acetic acid (5-HIAA)

from the aldehyde. 

5-HIAA is the major metabolite of serotonin and is excreted in the urine, mainly as

glucuronide or sulphate conjugates. Alternatively, 5-hydroxyindole acetaldehyde may be

reduced by alcohol dehydrogenase to produce 5-hydroxytryptophol. The production of 

5-hydroxytryptophol is quite insignificant (Sanders-Bush and Mayer, 1996).
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1.3.6 Functions of serotonin

1.3.6.1 Enterochromaffin cells

The enterochromaffin cells contain the highest proportion of serotonin. The physiological

functions of the enterochromaffin cells are presently unclear. Intestinal cells release

serotonin which is augmented by mechanical stretching, such as by food (Douglas, 1975).

It is speculated that serotonin plays an additional role in stimulating motility via the

myenteric network of neurons which are located between the layers of smooth muscle

(Sanders-Bush and Mayer, 1996). Serotonin may either enhance or inhibit gastric and

intestinal motility.

1.3.6.2 Platelets

Platelets do not synthesize serotonin. Serotonin is actively accumulated in platelets and is

stored in specialized intracellular organelles. When isolated, these organelles catalyse the

uptake of serotonin (Rudnick et al, 1980). The main function of platelets is to repair holes

in damaged endothelial cells. This is facilitated by aggregation of the platelets. It is

believed that serotonin potentiates this aggregation. This effect is however very small

(Sanders-Bush and Mayer, 1996).

1.3.6.3 C.N.S

Serotonin influences a multitude of brain processes and functions, including sleep and

appetite. Serotonin is also believed to be implicated in violent and compulsive behaviour

(Sanders-Bush and Mayer, 1996). 

1.3.6.3.1 Serotonin as a neurotransmitter

Most serotonin pathways originate from neurons in the raphe or midline regions of the
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pons and upper brainstem (Nicoll, 1995). Myelinated fibres that innervate most regions of

the CNS contain serotonin. The density of the innervation does vary. Serotonin has an

inhibitory action in most regions of the CNS. This inhibitory action is mediated by the 

5-HT1A receptors and is associated with an increase in potassium conductance. This leads

to membrane hyperpolarization. Serotonin does excite some cells by blocking the

potassium channels. This is mediated by the 5-HT2 receptors. Both inhibition and

excitation can occur on the same neuron (Nicoll, 1995).

1.3.6.3.2 The role of serotonin in depression

Research into biological determinants of depression has two focal points, namely

psychopathological and biochemical (van Praag, 1982). The role of serotonin in

depression is best explained by the ‘biogenic amine’ hypothesis, which is a biochemical

hypothesis. This theory predicts that disturbance in the biogenic amines, specifically,

noradrenaline, dopamine, and serotonin, underlies the pathology of depression and mania.

The first suggestion of the role of serotonin in depression was made in the 1950s when it

became apparent that reserpine induced depression when used in the treatment of

hypertension. When analysed, it was later revealed that reserpine inhibits the storage of

serotonin and noradrenaline in the vesicles of presynaptic nerve endings. It is therefore

reasoned that depression is associated with reduced serotonin levels and decreased amine-

dependant nerve transmission (Hollister, 1995).

Another impressive clinical finding in depressed patients, was an abrupt reversal of the

therapeutic response to antidepressant drugs by treatments that reduce the level of

serotonin, such as p-chlorophenylalanine. This clinical finding supported a role for

serotonin in the pathogenesis of depression (Sanders-Bush and Mayer, 1996). However,

as important as this theory was, it did not fully explain the aetiology of mood disorders,

for example, cerebrospinal fluid (CSF), and urinary and serum transmitter metabolites did

not exhibit a consistent pattern of abnormality in depressed individuals (Harvey, 1997).

The theory was simplistic, assuming that depression was caused by a synaptic deficiency
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of indoleamines such as serotonin.

The critical involvement of serotonin in mood regulation is, however, well supported.

Reduced platelet uptake of serotonin is observed in depressives, and the cerebrospinal

fluid of suicide victims reveals a reduction in 5-hydroxyindole acetic acid, the major

metabolite of serotonin (Harvey, 1997). A more sound anatomical and neurochemical

theory identifying the role of serotonin in depression and mania is the ‘permissive’

hypothesis. This theory emphasised the importance of serotonin as a neuro-modulator and

therefore a target for antidepressant therapy. It predicted that a fall in central nervous

system serotonin would allow an effective state which is regulated by noradrenaline.

Consequently depression arises due to decreased serotonin and noradrenaline levels. The

presence of anatomical, as well as functional receptor interactions, typifies the way in

which serotonin may act as a ‘permissive’ modulator of neurotransmitter function.

Heteroreceptors (serotonin neurons) enable synaptic connections between serotonergic

pathways and dopaminergic, cholinergic, and adrenergic pathways. This enables the

serotonergic pathway to loosely modulate the functions of the other pathways.

Conversely, release of both serotonin and noradrenaline is controlled by alpha-2

adrenergic neurons (autoreceptors) and serotonin neurons (heteroreceptors). Inhibition of

these receptors results in increased release of serotonin and noradrenaline, thereby

alleviating depression (Harvey, 1997).

1.3.6.3.3 Antidepressant drugs targeting serotonin

Monoamine oxidase inhibitors, such as isocarboxazid (marplan®) and phenelzine (nardil®),

block the degradation of serotonin. This permits more serotonin accumulation in

presynaptic stores and therefore allows more to be released. These antidepressants act

more specifically on monoamine oxidase A. Monoamine oxidase B is responsible for

dopamine catabolism (Hollister, 1995).

Another class of antidepressants that targets serotonin are the selective serotonin 
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re-uptake inhibitors (SSRIs). Examples of this group of antidepressants include fluoxetine

(prozac®) and paroxetine (paxil®) (Hollister, 1995). These drugs inhibit the inactivation of

serotonin by active reuptake. This potentiates the action of serotonin released by neuronal

activity (Sanders-Bush and Mayer, 1996). Antidepressant agents, such as mianserin and

mirtazepine, inhibit the serotonin neurons (heteroreceptors) in the CNS, thereby resulting

in enhanced serotonin release (Harvey, 1997). 

1.3.6.3.4 The onset of antidepressant action by serotonin targeting drugs

The onset of therapeutic activity is dependant on extracellular and intracellular dynamics.

Due to  prolonged starvation of serotonin amongst other neurotransmitters, various

receptors in the CNS of depressed individuals become upregulated in order to maintain

normal neurotransmission (Harvey, 1997). Antidepressants that elevate the synaptic levels

of serotonin, activate the synaptosomal 5-HT1A auto receptors, thereby inhibiting the

release of serotonin. It is only once these receptors are downregulated, due to changes in

subcellular elements, that the antidepressant can exert its full action.

Once serotonin has activated its specific receptor, a cascade of events is set in motion. The

extracellular signal (receptor stimulation), is conveyed through the cell membrane into the

nucleus, where cell function is regulated. For the serotonin receptors, 5-HT1 and 5-HT2,

the transmembrane signal is dependant on an interaction between the receptor and a

transducer G-protein which binds GTP. This complex is responsible for increasing or

decreasing the activity of adenylate cyclase and phospholipase C, which is responsible for

the synthesis of cyclic AMP and inositol triphosphate. The secondary messengers

phosphorylate critical regions in the DNA, leading to the encoding of transcription factors

which control transcription and translation of modified proteins such as receptors (5-HT,

etc.).

Once antidepressant drug therapy is initiated, upregulated receptor proteins have to be

disposed of, and new receptors have to be synthesised and incorporated into the
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membrane. Receptor stimulation can occur within six hours, while the resetting of the

cellular response can take up to three weeks. This is the main reason for the observed

delay in antidepressant action (Harvey, 1997).

 

1.3.6.3.5 Serotonin syndrome

Serotonin syndrome results from the interaction between the SSRIs and monoamine

oxidase inhibitors. This occurs when the two classes of antidepressants are used in

conjunction to treat depression. This increases stores of serotonin and increases serotonin

in the synapses (Hollister, 1995). The serotonin syndrome is typified by mental status

changes, diarrhoea, shivering, and incoordination (Brown et al, 1996). 

1.4 Tryptophan-2,3-dioxygenase 

1.4.1 Tryptophan-2,3-dioxygenase (TDO)

The haem-dependent enzyme, tryptophan-2,3-dioxygenase (EC 1.13.11.11), is a major

determinant of tryptophan levels in vivo. The enzyme (molecular weight 167 000) is a

tetramer consisting of two identical subunits, á2â2 , held together non-covalently (Tanaka

and Knox, 1959). Changes in circulating levels of tryptophan can be achieved by altering

the activity of the enzyme. This liver cytosolic enzyme catalyses the oxidative cleavage of

the pyrrole ring of L-tryptophan to produce N-formylkynurenine during the first step in

the kynurenine-nicotinic acid pathway of tryptophan degradation (Badawy and Evans,

1975). This first step is also the rate limiting step in the degradation of tryptophan.

Approximately 90% of the body's total tryptophan undergoes degradation via this pathway

(Figure 11).

The enzyme exists in at least two forms in certain animal species. These two forms are:

(1) the active reduced holoenzyme, and,

(2) the predominant, inactive apoenzyme which requires the addition of exogenous
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haematin for demonstration of its activity (Badawy and Evans, 1974). 

Both forms of the enzyme are present in the livers of rats, mice, chickens, and human

beings. The apoenzyme is absent from the livers of guinea pigs, hamsters, frogs, cats, and
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Figure 12: The activation of TDO (modified from Walsh, 1996).

the gerbil. Activation of the apoenzyme in vitro involves the conjugation of the

apoenzyme and haem to form the oxidised (ferrihaem) holoenzyme. The holoenzyme is

then reduced to the active form in the presence of tryptophan. Hepatic cellular levels of

tryptophan ultimately determine the rate of apo- to holoenzyme, and the distribution of

haem between the two forms and other haem binding proteins such as albumin. Two thirds

of the total enzyme in the cell exists as the apoenzyme (Knox and Piras, 1965).

1.4.2 Regulation of tryptophan-2,3-dioxygenase

Rat liver TDO is controlled by four mechanisms. These regulating factors are

glucocorticoids, tryptophan, haem, and NADPH (Badawy, 1979). The glucocorticoids,

hydrocortisone and corticosterone, cause a hormonal induction of TDO. This involves the

synthesis of a new apoenzyme (Knox and Auerbach, 1955; Young, 1981). TDO exhibits a

diurnal rhythm which correlates with plasma corticosteroid levels (Wurtman, 1974). The

basal capacity of the liver to metabolize tryptophan is however unaffected by the absence

of glucocorticoids. The metabolism of tryptophan is affected in adrenalectomised rats.

This is possibly due to the fact that these animals are unable to initiate the steroid-induced
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increases in TDO activity.

Tryptophan induces substrate activation of TDO. This involves decreased degradation of

the pre-existing apoenzyme in conjunction with its normal rate of synthesis. Substrate

activation of TDO is also accompanied by increases in haem saturation and stabilization of

TDO (Badawy and Evans, 1975). Agents that inhibit protein synthesis inhibit the substrate

activation of TDO.

Tryptophan-2,3-dioxygenase conjugation with haem, its cofactor, is the initial step in the

activation of the apoenzyme. The saturation of the apoenzyme with haem is modified by

several agents. This results in inhibition or enhanced synthesis of haem in the liver. The

administration of haematin has been shown to increase the activity of TDO (Badawy and

Evans, 1975).  Utilization of endogenous haem induces negative feedback inhibition on the

enzyme 5-aminolaevulinate synthase. This rate-limiting enzyme is responsible for the

production of haem from its precursor 5-aminolevulinic acid. This leads to further

synthesis of haem and increased activity of TDO. Drugs, such as the barbiturates, increase

haem turnover and thereby increase TDO activity. The daytime administration of the haem

precursor 5-aminolevulinic acid, has also been shown to increase TDO activity (Daya et

al, 1989). This is also due to saturation of the enzyme with haem.

1.4.3 TDO and its role in depression

The ‘biogenic amine’ hypothesis states that depression is characterised by a decrease of

serotonin at its synapse (Walsh and Daya, 1998). Several researchers have shown that in

depressed individuals, changes in serotonin metabolism affect mood. TDO activity is the

major peripheral determinant of tryptophan levels (Badawy et al, 1981). The availability of

tryptophan to the brain is also an important factor in the synthesis of serotonin (Daya et al,

1989). There is an inverse relationship between TDO activity and the rate of serotonin

synthesis (Walsh and Daya, 1998). Activation of TDO has been shown to reduce rat

forebrain serotonin levels (Daya et al, 1989; Van Wyk et al, 1991).
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Several inducers of TDO activity have been associated with depressive disorders. The

‘kynurenine’ hypothesis claims that a link exists between abnormal serotonin and

adrenocortical metabolism (Curzon and Green, 1969). As stated earlier, hepatic TDO

concentrations are increased by corticosteroids. High levels of plasma corticosteroid,

which stimulate TDO activity, have been found in depressed individuals (Hullin et al,

1967). Stress, which leads to an increase in the levels of corticosteroids has also been

shown to increase TDO activity and subsequently reduce brain serotonin levels (Curzon

and Green, 1969). It has also been demonstrated that a large number of antidepressant

drugs, for example, desipramine, increase brain tryptophan as a result of the inhibition of

TDO activity. This inhibition appears to be as a result of the prevention of the conjugation

of the apoenzyme with haem (Badawy and Evans, 1981).

1.5 Acetaminophen

1.5.1 History of acetaminophen

The first observations about the analgesic and antipyretic properties of acetaminophen

were made back in the late nineteenth century when alternative compounds were being

sought as antipyretic agents in the treatment of infections (Insel, 1996). The antipyretics

which were used at the time were preparations of natural compounds such as cinchona

bark, from which quinine is derived. These natural sources declined, and cheaper synthetic

substitutes were required. Between 1886 and 1887, two alternative antipyretic agents,

acetanilide, and phenacetin, were developed. Both these compounds possessed analgesic

and antipyretic actions resulting in them being more advantageous than quinine. However

both these compounds proved to be very toxic.

In 1893, another compound, acetaminophen, was first introduced into medicine. It was

shown to be present in the urine of patients who had taken phenacetin and acetanilide.

Subsequent research in 1949 established that acetaminophen was the major metabolite of

both phenacetin and acetanilide. It was believed that the action of these two compounds
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Figure 13: The chemical structure of the
analgesic and antipyretic agent, acetaminophen.

was due to their rapid conversion to acetaminophen. It was later established that

acetaminophen formation was not the mode of action of phenacetin. Acetaminophen was

introduced in the United Kingdom in 1956, and its popularity increased rapidly.

Acetaminophen has become one of the most widely used and accepted analgesic and

antipyretic agents worldwide.

1.5.2 Structure of acetaminophen

1.5.3 Pharmacological effect of acetaminophen

Acetaminophen has analgesic and antipyretic agents similar to those of aspirin. However,

it only possesses weak anti-inflammatory actions. This is mainly due to acetaminophen

being a weak inhibitor of cyclooxygenase in the presence of peroxides that are found in

inflammatory lesions (Insel, 1996). Acetaminophen, like aspirin, is indicated in the relief of

mild to moderate pain, such as headaches. Acetaminophen reduces fever by inhibiting the

action of endogenous pyrogen, which is released from leukocytes, on the hypothalamic

heat-regulating centres.

1.5.3.1 The antinociceptive action of acetaminophen

The antinociceptive action of acetaminophen is believed to be related to the serotonergic
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system (Pini et al, 1996). Srikiatkhachorn et al (1999) examined the antinociceptive effect

of both acute and chronic administration of acetaminophen, using tail flick latency

measurements in the rat. A significantly reduced tail flick latency was observed in acutely

treated rats but not in chronically treated rats (Srikiatkhachorn et al, 1999). The same

researchers then investigated the plasticity of receptors at the postsynaptic membrane by

employing a radioligand binding method on the frontal cortex and brainstem membrane.

Srikiatkhachorn and colleagues found a significant decrease in serotonin binding sites on

the frontal cortex after acetaminophen administration. These results are consistent with

other results which show a decrease in serotonin receptors (5-HT2 and 5-HT1A) following

acetaminophen treatment. These results suggest that the downregulation of serotonin

receptors in response to serotonin release is a major step in the mechanism underlying the

analgesic effect produced by acetaminophen (Srikiatkhachorn et al, 1999). 

1.5.4  Absorption and distribution of acetaminophen.

Acetaminophen is rapidly and completely absorbed from the gastrointestinal tract. Peak

plasma concentrations are reached within an hour (Payan and Katzung, 1995). The plasma

half-life is between one to three hours. Acetaminophen is evenly distributed throughout

most body fluids, and between 20% to 50% is plasma bound. Approximately 90% of

acetaminophen may be recovered in urine after the administration of therapeutic doses.  

1.5.5 Metabolism of acetaminophen

As stated earlier, approximately 90% of acetaminophen administered therapeutically is

recovered in the urine. There is a significant first pass metabolism of approximately 20%.

Approximately 60% undergoes hepatic conjugation with glucuronic acid. Another 35% of

the drug undergoes conjugation with sulphuric acid. A small amount (3%) is also
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conjugated with cysteine. Hydroxylated and deacetylated metabolites have also been

detected in urine. A small proportion of acetaminophen undergoes cytochrome P450

mediated N-hydroxylation to form N-acetyl-benzoquinoneimine. This is a toxic metabolite

and is detoxified by binding to the sulphydryl groups of glutathione (Figure 12). This
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complexation is catalysed by the enzyme gluthathione-S-tranferase (Gibson and Skett,

1986) and the complex is then excreted in the urine (Insel, 1996).

1.5.6 Toxicity of acetaminophen

In the recommended therapeutic dose, acetaminophen is well tolerated. Skin rashes, which

are usually urticarial, may occur occasionally. Renal tubular necrosis is also consistent

with chronic use of acetaminophen (Bach et al, 1998). The most serious adverse effect of

acetaminophen overdosage is a dose-dependant, potentially fatal, hepatic necrosis.

1.5.6.1 Acetaminophen and free radicals

The studies on acetaminophen and free radical generation have been conflicting.

Acetaminophen is metabolised to N-acetyl-benzoquinoneimine (Figure 12). This

compound is then metabolised by liver microsomes to produce the p-aminophenoxyl

radical (Mason and Fischer, 1986). The acetaminophen free radical is highly reactive.

Lores Anaiz et al (1995) analysed the effect of acute acetaminophen administration on

oxidative stress. These researchers administered a single dose (375mg/kg) of

acetaminophen, and then determined the effect of the dose on several parameters. These

authors found a significant decrease in the activity of catalase and glutathione peroxidase

after 15 minutes. This was also found to result in an increased steady state level of H2O2

and hydroperoxides. Microsomal superoxide production was also found to increase two-

fold following the administration of acetaminophen (Lores Anaiz et al, 1995).

However, there are reports which indicate that acetaminophen acts as a free radical

scavenger, rather than generating free radicals. Dinis et al (1994), showed acetaminophen

to be an effective peroxyl radical scavenger in vitro. These authors also found that

acetaminophen protected the sarcoplasmic reticulum membranes against Fe2+/ascorbate-

induced lipid peroxidation. Nakamoto et al (1997) also demonstrated the antioxidant

properties of acetaminophen. These authors showed that acetaminophen reduced lipid
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peroxidation caused by the hydroxy radical. This was authenticated by Tsujimoto et al

(1998). Using electron spin trap resonance, these authors showed that acetaminophen

scavenged the hydroxyl radical generated by Cu2+/H2O2. Acetaminophen has therefore

been shown to generate and scavenge free radicals. 

1.5.6.2 Hepatotoxicity

In therapeutic doses, acetaminophen produces a toxic metabolite. This metabolite, 

N-acetyl-benzoquinoneimine (NAB), is detoxified by glutathione. However when large

doses of acetaminophen are ingested, there is sufficient NAB produced to deplete hepatic

glutathione levels. This is due to glutathione being depleted faster than it can be

regenerated. Under these circumstances, NAB covalently binds with sulphydryl groups in

hepatic proteins, leading to hepatic necrosis (Figure 12). This necrosis is believed to result

from the accumulation of Ca+, the activation of Ca dependent endonuclease, and resultant

DNA fragmentation (Insel, 1996). Clinically, hepatotoxicity can be diagnosed by

measuring the increased levels of the serum transaminases. 

1.5.6.3 Toxic dose

In adults, hepatotoxicity may occur after the ingestion of 10g to 15g of acetaminophen.

Administration of a single dose of 15g or more is potentially fatal (Payan and Katzung,

1995).

1.5.6.4 Symptoms of overdosage

Symptoms that manifest during the first two days of acute poisoning of acetaminophen

may not reflect the potential seriousness of the intoxication. Symptoms that occur during

the first 24 hours include nausea, vomiting and abdominal pain, and this may persist for a

week. Hepatic damage is evident within two to four days after ingestion. Plasma

aminotransferases are elevated and prothrombin time is prolonged. Approximately 10% of



_______________________________________________________________________Literature Review                               39

poisoned patients who do not receive treatment develop liver damage. Between 10% and

20% of the patients who do not receive treatment eventually die due to hepatic failure

(Insel, 1996).

1.5.6.5 Treatment of overdosage

Early diagnosis of overdosage is vital in the treatment. Gastric lavage should be performed

within four hours of ingestion. The principal antidote used in the treatment of

acetaminophen overdosage is N-acetylcysteine which is effective if administered within

eight hours. N-acetylcysteine is a glutathione precursor and is also a source of sulphydral

groups. This facilitates the conversion of toxic metabolites to non-toxic metabolites. 

N-acetylcysteine may also act as a free radical scavenger and prevent lipid peroxidation.

N-acetylcysteine offers complete protection if administered within eight hours. Treatment

between 8 to 24 hours lowers mortality but does not offer complete protection.

However, N-acetylcysteine administration may also lead to adverse reactions such as

anaphylactoid reactions, nausea, and vomiting. This is partly due to half the dose,

150mg/kg, being administered immediately, and may worsen the situation.

1.6 Dimethylformamide 

1.6.1 Introduction

N,N-dimethylformamide (DMF) is an industrial chemical with an estimated worldwide

production capacity of approximately 250 000 tons in 1989 (Angerer, et al, 1998). It is

commonly used for vinyl-based polymers in the manufacture of films, fibres, and coatings.

DMF is also used as a solvent for making polyurethane lacquers for clothing and

accessories made of synthetic leather (Angerer et al, 1998). DMF is an excellent lipid and

water soluble solvent. Occupational exposure results mainly from inhalation of vapour and

from contact with skin (Scailteur et al, 1984). Although there is inadequate evidence for
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the carcinogenicity of DMF in experimental animals, DMF is possibly carcinogenic to

humans according to the International Agency for Research on Cancer of the World

Health Organisation (Angerer et al, 1998). 

1.6.2 Chemical structure of DMF

1.6.3 Metabolism and toxicity of DMF 

Current scientific evidence suggests that the main target organ, following acute or long-

term exposure to DMF, is the liver (Scailteur et al, 1984). The primary metabolite of

DMF is N-(hydroxymethyl)-N-methylformamide (HMMF). The metabolic end product

after oxidation of the formyl group of HMMF, is N-acetyl-S-(N-methylcarbamoyl)-

cysteine (AMMC) (Angerer et al, 1998). It is believed that the formation of AMMC may

occur via the pathway which may include the reactive intermediate methylisocyanate

(MIC) (Angerer et al, 1998). This reasoning is attributed to the Bhopal incident where 

N-methylcarbamoyl adducts were found at the N-terminal valine end of haemoglobin in

the post-mortem blood of victims following acute poisoning by MIC (Angerer et al,

1998). The end product following the analysis of this blood was found to be 3-methyl-5-

isopropyl-hydantoin (MIH). 
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Using capillary gas chromatography, Angerer et al (1998) investigated whether similar

haemoglobin adducts were present in workers after chronic exposure to DMF. The

workers chosen were those exposed to DMF (2.2ppm - 53,7ppm) in the polyacryl fibre

industry. Angerer and colleagues found identical haemoglobin adducts as those found after

exposure to MIC. This is illustrated in Figure 14. In a similar study, Wrbitzky (1999)

examined the effects of DMF exposure on liver function. Once again workers in a

synthetic fibre factory were chosen. The DMF concentrations in the air ranged between

0.1ppm and 37.9ppm. These authors found a statistically significant toxic influence on

liver function (Wrbitzky, 1999). Malley et al (1994) studied the toxicity and oncogenicty

of chronic DMF exposure on male and female rats. The results obtained indicate severe

hepatocellular injury. These studies undeniably illustrate the hazardous nature of DMF,

especially from occupational exposure.

1.6.4 Symptoms of DMF toxicity

The symptoms of acute and chronic intoxication by DMF are the same as those usually

associated with liver damage (Amatimaggio et al, 1998). The main symptoms of DMF

poisoning are gastrointestinal disturbances such as diarrhoea and nausea. There are also

numerous reports documenting alcohol intolerance following exposure to DMF

(Amatimaggio et al, 1998; Wrbitzky, 1999).

1.6.5 The monitoring of DMF exposure

Chang and Lin (1991) investigated a non-invasive method of monitoring DMF exposure.

Using a colorimetric method, HMMF was measured in rat urine following a single

exposure to DMF. The researchers found a linear relationship between the total excretion

of HMMF in two days, versus the exposure ranging from 1% (47.2mg/kg) to 20%

(944mg/kg) of the LD50 of DMF. This method was proposed as a non-invasive biological

method for monitoring exposure to DMF, and as a possibility in the prevention of the

occupational toxicity of DMF (Chang and Lin, 1991).  
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1.7 Research objectives

The first objective of this study was to investigate the hepatoprotective properties of

melatonin against acetaminophen and DMF-induced toxicity. This part of the study is

based on the assumption that melatonin might be able to protect the liver against

acetaminophen and DMF-induced damage. The first objective was to determine the toxic

doses of acetaminophen and DMF, and the mechanism of this damage. The investigation

of the mechanism of toxicity was to be carried out in vitro and in vivo using the rat as an

animal model. A determination of lipid peroxidation in the liver is a reliable indicator of

free radical-induced damage. Several in vitro techniques, such as free radical generation

and quantification using HPLC with electrochemical detection, would also be useful in

determining the mechanism of toxicity. Melatonin could be the perfect candidate as a

hepatoprotectant against acetaminophen and DMF induced damage if the damage is due to

free radical generation, since melatonin is a known potent free radical scavenger. To date

there have been no reports on an antidote for DMF poisoning. Melatonin is also known to

increase glutathione production. Glutathione is responsible for the detoxification of the

toxic metabolites produced by acetaminophen metabolism, and free radicals in general.

The second objective was to determine the effect of acetaminophen on rat brain and pineal

idoleamine synthesis. The precursor of acetaminophen, phenacetin, is known to produce

euphoria after ingestion. This would also possibly unlock the secret of analgesic addiction.

Most mood states depend on the levels of brain serotonin and pineal melatonin. As

discussed earlier, reduced serotonin and melatonin levels are a reflection of an altered

mind state. This change is usually manifested as depression. Therefore serotonin and

melatonin levels could possibly be indicators of mood states. By determining the effect of

acetaminophen on these indoles, an insight into the mind-altering capabilities of

acetaminophen can be obtained. This can be confirmed by determining the activity of

TDO, which is known to play a role in depression by altering the synthesis of serotonin.  
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1.7.1 Proposed experiments

1.7.1.1 Evaluation of melatonin as a hepatoprotectant (toxicology)

The effectiveness of melatonin as a hepatoprotectant would be established by:

• the effect of melatonin on acetaminophen degradation, using a photoreactor and

HPLC (in vitro);

• Melatonin stability in solution (in vitro);

• the quantification of free radical generation by DMF (in vitro), in collaboration

with the CSIR, Calcutta, India;

• Electron microscopy; and

• the determination of lipid peroxidation following the chronic administration of

acetaminophen and DMF (in vivo).

 

1.7.1.2 The effect of acute acetaminophen administration on brain and pineal indole

metabolism

Establishing the effect of acute acetaminophen administration on brain and pineal

metabolism would comprise:

• the determination of TDO activity following acute administration of

acetaminophen (in vivo);

• the determination of brain serotonin levels using ELISA (in vivo);

• the determination of urinary 5-HIAA levels (in vivo); and

• the determination of pineal melatonin levels using ELISA and Pineal organ culture

(in vitro).
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 Chapter Two

Photolytic Degradation of Acetaminophen and Melatonin

2.1 Introduction

Photodegradation studies can be performed either on an analytical or on a preparative

scale. Analytical apparatus enables the reaction vessels to be moved varying distances

from the light source, thereby controlling the rate of the reaction. This technique also

enables the use of a shutter, placed between the lamp and vessel which facilitates the

analysis of the solution without the lamp having to be switched off (Moore, 1987).

Preparative scale apparatus results in higher yields of photoproducts. Vigorous stirring is

essential, as the majority of absorption of light takes place in the layer of solution closest

to the light source.

The immersion-well photoreactor (Figure 17) is a useful instrument for performing

photodegradation studies. This instrument consists of an outer Pyrex vessel and an inner

removable double-jacketed immersion-well. The lamp is contained in the double-walled

immersion-well, which is made of either quartz or borosilicate glass. This allows water

cooling, and filtering of excitation radiation. Due to the lamp being surrounded by the

solution being irradiated, the immersion-well photoreactor is among the most efficient

reactors used for photochemical reactions (Photochemical Reactors, Applied

Photophysics).

Since the absorption of light is necessary to effect a photochemical change, the choice of

light is important (Moore, 1987). The most widely used sources of ultraviolet and visible

light for conventional photochemical experiments are the mercury and xenon lamps. All

irradiations carried out in this study involved using a 400W high pressure mercury lamp,

emitting over the ultraviolet-visible range. According to the ‘first law of photochemistry’,
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Figure 17: The Immersion well photoreactor with detail of the       
double-walled immersion well (1), and the outer borosilicate flask
(2) (Photochemical Reactors, Applied Photophysics)

the generation of free radicals by acetaminophen is possible in this case, since the

excitation wavelength is such that radiation absorbed by the molecule may result in a

chemical reaction (Gilbert & Baggott 1991).
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2.2 Materials and methods

2.2.1 Chemicals and reagents

Melatonin was purchased from the Sigma Chemical Co, St Louis, MO, USA. Acetonitrile

(HPLC grade) was purchased from BDH Laboratory Supplies, Poole, England. Absolute

ethanol (HPLC grade) was purchased from Saarchem (PTY) Ltd, Krugersdorp, South

Africa. 

2.2.2 Instrumentation 

Samples were analyzed on a modular, isocratic high performance liquid chromatographic

(HPLC) system. The chromatographic system used consisted of a Spectraphysics Iso

Chrom LC Pump, a Linear UVIS 200 Detector, and a Perkin Elmer 561 Recorder.

Samples were introduced into the system using a Rheodyne fixed loop injector, fitted with

a 20µl loop. The photodegradation apparatus consisted of a quartz immersion-well

photoreactor (Applied Photophysics), and a 400W high pressure mercury lamp. 

2.2.3 Chromatographic conditions 

Separation was achieved using  a C18 (Waters Spherisorb, 5µm, 250×4.6mm i.d.) column.

The mobile phase composition for the analysis was acetonitrile:water (10:90), and

acetonitrile:water (40:60), for acetaminophen and melatonin respectively. The mobile

phase flow rate was 1ml/min and the chart speed on the recorder was 5mm/min. The

detector sensitivity was set at 0.5 AUFS (absorbance units full scale). Acetaminophen was

detected at 254nm and melatonin at 304nm.The analytical procedure was validated by

assessment of peak purity and selectivity, linearity of calibration (0.01-0.1mg/ml),

repeatability, accuracy, precision, and limits of quantitation and detection. 
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2.2.4 Sample preparation

Separate solutions of acetaminophen (0.1mg/ml) and melatonin (0.1mg/ml) were made up

in 10% absolute ethanol in Millipore water. A combination of acetaminophen and

melatonin was also prepared using 0.1mg of each per ml of 10% absolute ethanol in

Millipore water. A calibration curve was obtained using 0.01mg/ml - 0.1mg/ml of both

acetaminophen and melatonin.

2.2.5 Method

Acetaminophen (0.1mg/ml) was placed in the immersion-well photoreactor and irradiated

continuously for six hours using a 400W UV lamp, whilst bubbling air or nitrogen through

the solution. Melatonin (0.1mg/ml) was placed in the immersion-well photoreactor and

irradiated continuously with a 400W lamp for one and a half hours, whilst bubbling air or

nitrogen through the solution. The selected times for UV irradiation were predetermined.

In addition, the combination of acetaminophen and melatonin was irradiated continuously

with the same intensity of UV light either in the presence of air or nitrogen. Aliquots of

5ml were removed every 20minutes for the first hour, and thereafter every 30minutes.

These aliquots were analysed using the HPLC system described above.

2.3 Results

The height of the peak at time (0) was taken to represent 100% of the drug. The decrease

of the peak height during the study was taken to be and indication of the percentage of

drug present. The mobile phase was optimized for a rapid and interference-free

chromatogram. As shown in Figure 18, the chromatogram obtained from the

acetaminophen and melatonin standard solutions demonstrates sharp, symmetrical, and

well resolved peaks. The peaks were also well removed from the solvent front. The

retention times for acetaminophen and melatonin were approximately 8.6 minutes and 7.2

minutes respectively.  As shown in Figure 19, the rate of melatonin photodegradation is
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A
RT 8.6 min

Injection

B
RT 7.2 min

Injection

Figure 18: A typical chromatogram of acetaminophen (A) and
melatonin (B)

accelerated when the solution is aerated, compared to purging with nitrogen only. In air,

only 20% of the melatonin remained after 20 minutes of irradiation, whereas under

nitrogen, 50% remained after the same period. The rate of acetaminophen

photodegradation was similar in air and nitrogen, with 50% of the drug remaining after six

hours of irradiation. In the experiment in which the two drugs were combined, melatonin

retarded the degradation of acetaminophen up to six hours in the presence of nitrogen,

with 10% more of the drug remaining at the end of six hours. However, in the presence of

air, melatonin rapidly enhances the photodegradation of acetaminophen, with total

degradation in two hours, with the degradation at 45% remaining stable from 20-60

minutes before declining to zero at two hours.
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Figure 19: The effect of 400W UV irradiation in the presence of air on the                
photodegradation of melatonin alone (>), and acetaminophen alone (#), and on
acetaminophen combined with melatonin (?).
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Figure 20: The effect of 400W UV irradiation in the presence of nitrogen on the        
photodegradation of melatonin alone (>), and acetaminophen alone (#), and on
acetaminophen combined with melatonin (?).  
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2.4 Discussion 

The possible use of melatonin as a potential antidote for acetaminophen toxicity is a novel

approach. However, before such studies can be undertaken it is important to determine the

behaviour of both acetaminophen and melatonin under conditions in which the

complexities of organ interaction are absent. The present system used in these

experiments, allows the investigation of chemical interaction between these agents in a

purely chemical environment, albeit far removed from an in vivo situation. 

UV irradiation of acetaminophen is known to result in photodegradation with the

possibility of free radical generation. Melatonin, the principal hormone of the pineal gland,

now known to be a potent free radical scavenger at physiological concentrations (Tan et

al, 1993; Daya, 1999), is an ideal candidate for scavenging such radicals, whether these

are formed as degradants of acetaminophen, or whether these assist in the

photodegradation of  acetaminophen (Anoopkumar-Dukie, In Press). 

The results of the present report show that the presence of oxygen accelerates the

photodegradation of melatonin, as opposed to purging with nitrogen. Such

photodegradation occurs with a complexity of photoproducts as is customary in the

presence of oxygen. Our finding that these photoproducts are more polar than melatonin,

suggests the incorporation of oxygen. The rate of acetaminophen degradation was much

slower than that of melatonin, as shown in Figures 19 and 20. It appears that this rate of

degradation is similar in air and in nitrogen, with 50% of the drug remaining after six

hours of UV irradiation. The photodegradants in this case, although more polar than the

parent drug, could not be identified as the major degradant of acetaminophen,

p-aminophenol, ruling out á-cleavage as the mechanism of photodegradation. This was

confirmed by comparison with a known sample of p-aminophenol. The results show that

the presence of melatonin retards the degradation of acetaminophen in nitrogen. However,

in the presence of air, melatonin dramatically enhances the photodegradation of 
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acetaminophen, suggesting that the reaction does not occur via a triplet state, since

molecular oxygen is an effective quencher of triplet excited states (Gilbert and Baggot

1991).

 

It is known that solutions of melatonin, maintained in sterile, pyrogen-free conditions, may

be stored at 4oC for six months without degradation (Cavallo & Hassan 1995). The

present study shows that exposure of a melatonin solution to UV irradiation causes rapid

degradation of melatonin. In the presence of air, melatonin also induces rapid

photodegradation of acetaminophen. This implies that the combination of melatonin and

acetaminophen, in the presence of air and UV irradiation, could lead to rapid inactivation

of both agents. One of the objectives of the present study (Section 1.7) was to determine

the stability of melatonin. The results from this study raise important concerns about the

medical use of melatonin in sunscreens, since it is rapidly inactivated by UV light. Further

studies need to be conducted to determine the exact nature of the photodegradants of both

acetaminophen and melatonin.
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Chapter Three

Melatonin and DMF-Induced Hepatotoxicity  

3.1 Introduction

Due to the ultra short half-life of oxygen free radicals, it has been extremely difficult to

demonstrate the formation of .OH in biological systems (Chiueh et al, 1993). The same

phenomenon is responsible for the ability of .OH radicals to produce site-specific

oxidative tissue damage in vivo (Chiueh et al, 1993). Hydroxyl free radicals (.OH) react

with salicylate, and generate 2,3- and 2,5-dihydroxybenzoic acid (DHBA). These

compounds can then be measured in picomole quantities by HPLC (Chiueh et al, 1992)

and could provide an assay for the measurement of .OH radicals.

DHBA formation, following the systemic administration of salicylate, is currently being

used as an index of .OH generation in the heart and brain tissues during ischemia and

reperfusion (Chiueh et al, 1992). However, it was recently discovered that 2,5-DHBA

can be formed not only by .OH adduct, but also by hydroxylation, catalyzed by liver

cytochrome P450 and microsomal enzymes. 2,3-DHBA can be nonenzymatically formed

by .OH aromatic hydroxylation, and can provide a more reliable assay for .OH formation

(Chiueh et al, 1992).

This technique (2,3- and 2,5-DHBA formation) has been adapted for the detection of .OH

formation in the extracellular fluid of the brain. Using a microdialysis probe, it is possible

to infuse salicylate into the brain by intracranial microdialysis brain perfusion. The

formation of 2,3-DHBA, the nonenzymatic .OH product of salicylate, is a reflection of
.OH generation. 2,3-DHBA is measured using HPLC coupled to an electrochemical

detector (Chiueh et al, 1993).   
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3.2 Materials and methods

3.2.1 Chemicals and reagents

Due to the unavailability of very expensive equipment required for the hydroxyl radical

determination, it was done in collaboration with the CSIR in Calcutta, India. All

materials, including chemicals and reagents, were provided by the CSIR. The chemicals

required for electron microscopy was provided the Electron Microscopy Unit, Rhodes

University, Grahamstown.

3.2.2 Hydroxyl radical generation and determination

This work was undertaken in collaboration with Dr. K. Mohanakumar at the CSIR. An in

vitro cell-free system was used in this study The radicals were generated based on the

method of Mohanakumar (1994). The radicals were measured by employing the salicylate

hydroxylation procedure of Chiueh et al (1992). Briefly, the reaction mixture contained

1ml Fe2+-citrate complex (2.1nmol), 1mM sodium salicylate and various concentrations

(0%, 0.1%, 1%, and 5.0%) DMF. 10µl of the samples were injected into an HPLC

equipped with an electrochemical detector. 2,3- and 2,5-DHBA were oxidized at +0.7V

and the peaks were measured in relation to the known standards of 2,3- and 2,5-DHBA.

3.2.3 Electron microscopy

3.2.3.1 DMF administration

Male Wistar rats weighing 250g-300g were used in the experiment. The rats were

maintained as described in Appendix 1. The control group (n=5) received

ethanol:0.9%saline (40:60) i.p. Another two groups (n=5) received 0.4ml/kg and

0.8ml/kg DMF i.p. respectively. The final two groups received the same doses of DMF in 
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conjunction with 2.5mg/kg melatonin i.p. The rats were injected for seven days and were

killed on day eight, and the livers were removed as described in Appendix 2.

3.2.3.2 Transmission Electron Microscopy

Small cubes of liver (1mm3) were placed in buffered gluteraldehyde (2.5% gluteraldehyde

in 0.1M sodium phosphate buffer), and incubated at 4oC overnight. The gluteraldehyde

was replaced the following morning. After 10 minutes the gluteraldehyde was replaced by

osmium tetroxide (1% in 0.1M sodium phosphate buffer) and left at room temperature

for an hour. Following this, the osmium tetroxide was decanted, and replaced with

gluteraldehyde for 10 minutes. The gluteraldehyde was decanted, and replaced with 30%,

50%, and 100% ethanol for three minutes each. This was followed with the addition of

propylene oxide for 15 minutes. The propylene oxide was replaced with propylene

oxide:araldite (75:25, 50:50, 25:75) for an hour each. Following the addition of the last

propylene:araldite mixture, the tissue was placed in pure resin overnight. The tissue was

then transferred to moulds containing pure resin and was left to polymerize at 60oC for

36 hours. After this period, the capsules were cooled and thin samples were cut on an

ultra microtome for examination.

3.3 Results 

The hydroxyl radicals generated were expressed as pmol/ml. The data is the average for

three estimations, with the variations being less than 2%. As shown in Figures 21 and 22,

there is a decrease in the hydroxyl radical formation (2,3- and 2,5-DHBA) with increasing

concentrations of DMF. At 5%, DMF is able to completely reduce the formation of 2,3-

and 2,5-DHBA.

As shown in Figure 23, the control livers contained no visible structural changes. DMF

was shown to affect the integrity of the endoplasmic reticulum in the rat liver (Figures 24
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Figure 21: The effect of DMF on 2,5-DHBA generation. Each bar represents the        
mean of three estimations.

and 25). As shown in Figures 26 and 27, melatonin was able to reduce the changes

caused by DMF.
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Figure 22: The effect of DMF on 2,3-DHBA generation. Each bar represents the mean   
of three estimations.
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Figure 23: Electron micrograph of control rat    
liver (15000× magnification).

Figure 24: Electron micrograph of DMF           
(0.4ml/kg) treated rat liver 
(16000× magnification).
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Figure 26: Electron micrograph of DMF            
(0.4ml/kg) and melatonin (2.5mg/kg)                 
treated rat liver (16000×magnification)

Figure 25: Electron micrograph of DMF          
(0.8ml/kg) treated rat liver 
(16000× magnification).
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Figure 27: Electron micrograph of DMF            
(0.8ml/kg) and melatonin (2.5mg/kg)                 
treated rat livers (16000× magnification)

3.4 Discussion

N,N-dimethylformamide is an organic solvent used in several industrial processes. This

solvent is toxic, and exposure to it leads to adverse effects. Several studies have shown

that DMF is harmful to human beings, with the liver being most adversely affected

(Amatimaggio et al, 1998). Injury to the liver is predominately due to its being the site of

metabolism of DMF. The exact mechanism of this damage is presently unclear. This study

hypothesizes that the damage is as a result of free radical generation, and in particular

hydroxyl radicals. DMF is known to generate peroxyl radicals in vitro (Misik and Riesz,

1996). These authors showed peroxyl radical formation by exposing DMF to 50kHz

ultrasound. The peroxyl radicals are then measured using electron spin trap techniques

(Misik and Riesz, 1996).
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The hydroxyl radicals in the in vitro cell-free system used in this study, are generated by

the Fe2+-citrate complex. This author speculates that Fe2+ itself may be involved in the

electron transfer reaction with molecular oxygen or with citrate, forming Fe3+ and

superoxide, leading to the formation of hydroxyl radicals by the Fenton reaction

(Mohanakumar et al, 1994). As shown in Figures 21 and 22, increasing concentrations of

DMF reduce the formation of both 2,3- and 2,5-DHBA, indicating that it has a negative

effect on hydroxyl radical generation. It is also evident that at a concentration of 5%

(DMF), there is no formation of these .OH adducts of salicylate. Hydroxyl radicals react

with salicylate to generate 2,3- and 2,5-DHBA. These adducts are taken to be reliable

indicators of hydroxyl radical generation (Chiueh et al, 1992). The results obtained in this

experiment refute the hypothesis that DMF induced hepatotoxicity is due to free radical,

and in particular hydroxyl radical, generation. DMF has rather been shown to be a

hydroxyl radical scavenger.

However, the electron micrographs show that DMF (0.4ml/kg and 0.8ml/kg) disrupts the

structure of the rat liver endoplasmic reticulum (Figures 24 and 25). Structural changes

observed include endoplasmic reticulum swelling and distortion. At 0.8ml/kg of DMF

there is evidence of disappearance of the endoplasmic reticulum (Figure 25). It is also

evident that melatonin (2.5mg/kg) protects against the DMF-induced morphological

changes.

The electron micrographs clearly indicate that DMF is hepatotoxic. However, the spin

trap studies show that DMF does not generate hydroxyl radicals. Thus, the mechanism by

which DMF induces changes in the endoplasmic reticulum, and the prevention of these

changes by melatonin, need to be investigated further (Anoopkumar-Dukie, 1997). 
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Chapter Four

Lipid Peroxidation of the Liver

4.1 Introduction

Biological membranes function as compartmentalizing structures, and are essential for cell

functioning. Biological membranes function as important barriers, protecting cells from

possible harmful compounds in the surrounding medium. The structure of these

membranes has been described by Singer and Nicholson as the ‘Fluid Mosaic Model’

(Mathews and Van Holde, 1991). According to this model, biological membranes are

dynamic, irregular lipid mixtures of phospholipids and cholesterol, with globular proteins

embedded within the membrane (Mathews and Van Holde, 1991). The membranes possess

machinery for the transportation of molecules across them, and are also the site of

metabolic activities such as electron transport. Membranes are also the site of cell-cell and

cell-organelle interactions, such as hormone-cell interactions (Clark and Switzer, 1977).

Changes in the membrane fluidity, by either physical or chemical disturbances, alter

membrane structure, and therefore membrane functions. This could lead to increased to

permeability to ions such as Ca2
+, ultimately leading to cell destruction. Free radicals are

able to cause such alterations in membrane integrity resulting in lipid peroxidation.

Peroxidation of lipids is initiated by the attack of any chemical species that has sufficient

activity, or produces metabolites that have sufficient activity, to abstract a hydrogen atom

from a methylene carbon in the side chain of the lipid. The hydrogen atom (Figure 28) is a

free radical, and its removal leaves behind an unpaired electron on the carbon atom to

which it was previously attached. The resulting carbon-centred radical can undergo

molecular rearrangement in aerobic cells, followed by a reaction with O2 to produce a

peroxyl radical. Peroxyl radicals can either combine with each other or they can attack

membrane proteins. The peroxyl radicals are also capable of initiating peroxidation in
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crosslinking if two radicals meet
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cause singlet oxygen ( 1O2) formation.
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Figure 28: An outline mechanism of lipid peroxidation (Gutteridge and Halliwell,
1990).

adjacent fatty acid side chains. This leads to a propagation of lipid peroxidation

(Gutteridge and Halliwell, 1990).
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Figure 29: The reaction of MDA with TBA to yield a pink TBA-
MDA complex (Mead et al, 1986).

MDA and 4-HDA are degraded lipid products in cell membranes and are reliable

indicators of free radical-induced damage (Reiter et al, 1995). The most widely employed

technique, used in the determination of peroxidation in biological materials, is the TBA

test. This test is based on the reaction of one molecule of MDA with two molecules of

TBA, resulting in the formation of a pink chromogen (Figure 29). This complex has an

absorption maximum at 532nm. Hot acid hydrolysis, usually TCA, is required for the

formation of the complex and the release of protein-bound MDA.

4.2 Materials and methods

4.2.1 Animals

Male Wistar rats weighing 250g-300g were used in the experiment. The rats were

randomly assembled into groups of five, and were maintained as described in Appendix 1.

The control group (n=5) received the drug vehicle, ethanol:0.9%saline (40:60). Another

three groups (n=5), received 30mg/kg, 100mg/kg, and 500mg/kg of acetaminophen i.p.

The final three groups (n=5), received the same doses of acetaminophen in conjunction

with 2,5mg/kg of melatonin i.p. The rats were injected (i.p.) for seven days and were

sacrificed on day ten, and the livers were removed as described in Appendix 2. The DMF

treated animals (two groups of five) were injected (i.p.) for seven days with 0.4ml/kg and 

0.8ml/kg of DMF respectively. The control animals (n=5) in this group received 0.9%
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saline. The final two groups (n=5) received 2.5mg/kg melatonin in conjunction with the

DMF i.p. These animals were injected for seven days and were sacrificed on day eight.

The livers were removed as described in Appendix 2.

4.2.2 Chemicals and reagents

1.1.3.3-Tetramethoxypropane (MDA) was purchased from Fluka AG, Switzerland.

Butylated hydroxytoluene (BHT), melatonin, and 2-thiobarbituric acid (TBA) were

purchased from Sigma Chemical Co, St Louis, MO, USA. Trichloroacetic acid and

butanol was purchased from Saarchem (PTY) Ltd, Krugersdorp, South Africa. All other

reagents were obtained from local sources and were of the highest purity available.

4.2.3 Methods

4.2.3.1 Preparation of the liver homogenate

The livers were removed immediately and placed at -70oC. Prior to homogenisation, the

livers were thawed to room temperature. A 10% w/v homogenate was then prepared

using 0.01M Tris-HCl buffer, pH 7.4. 1ml aliquots of the homogenate were then incubated

at 37oC  for 30 minutes.

4.2.3.2 The TBA test

A modification of the method of Sagar et al (1992), was used in this experiment. After the

incubation period 0.5ml BHT (0.5g/litre of ethanol) was added to each tube. This was

followed by the addition of 1ml TCA (10g/100ml distilled water). The sample was then

centrifuged at 2000 rpm for 20 minutes to remove insoluble proteins. 2ml of the

supernatant was then transferred to a clean set of tubes. 0.5ml TBA (0.33g/100ml distilled

water) was then added to the tubes. The tubes were boiled for 1 hour at 95oC. The tubes

were then cooled and the TBA-MDA complex was extracted using 2ml butanol. The
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absorbance of the butanol fraction was determined at 532nm. A series of standards (0-20

nmoles/ml) was also prepared using 1.1.3.3-tetramethoxypropane and a standard curve

was generated (Appendix 4). This was done exactly as described above, except that the

standards were made up to 1ml using distilled water. Protein concentration was also

determined according to the method of Lowry et al (1951), described in Appendix 3.

4.3 Results

The final results were corrected for dilutions and expressed as nmoles MDA produced/mg

protein. The data represented is the mean of five determinations. The mean ± SEM is

represented, and the differences in the means were statistically analysed using the Tukey-

Kramer multiple comparisons test. P<0.05 was determined to be statistically significant.

Range finding tests were carried out to optimize the assay. The effect of incubation time

and temperature on lipid peroxidation was determined. As shown in Figures 30 and 31, the

optimum incubation time and temperature was 60 minutes and 37oC, respectively. It is

also apparent from Figures 32, 33, and 34, that acetaminophen induces peroxidation

(p<0.05) at a dose of 500mg/kg only. It is also evident from Figures 35 and 36, that DMF

does not induce lipid peroxidation.
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Figure 30: The effect of incubation time on lipid peroxidation. Each point 
represents the mean of triplicate determinations.
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Figure 31: The effect of incubation temperature on lipid peroxidation. Each
point  represents the mean of triplicate determinations.
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Figure 32: The effect of acetaminophen administration (30mg/kg) on lipid   
peroxidation in rat liver. Each bar represents the mean ± SEM; n=5.
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Figure 33: The effect of acetaminophen administration (100mg/kg) on lipid 
peroxidation in rat liver. Each bar represents the mean ± SEM; n=5. 
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Figure 34: The effect of acetaminophen administration (500mg/kg) on lipid
peroxidation in rat liver. Each bar represents the mean ± SEM; n=5.          *
(p<0.05). Tukey-Kramer Multiple Comparisons test.



____________________________________________________________________Lipid peroxidation                   71

Figure 35: The effect of DMF administration (0.4ml/kg) on lipid peroxidation
in rat liver. Each bar represents the mean ± SEM; n=3.
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Figure 36: The effect of DMF administration (0.8ml/kg) on lipid peroxidation
in rat liver. Each bar represents the mean ± SEM; n=5.
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4.4 Discussion

There is considerable interest in the role played by lipid peroxidation, and other free

radical reactions, in human and animal disease, as well as in toxicology (Gutteridge and

Haliwell, 1990). Indeed, elevated end products of lipid peroxidation in human and animal

material, are probably indicative of the involvement of free radical reactions in tissue

damage (Gutteridge and Halliwell, 1990). Early research on lipid peroxidation involved

halogenated hydrocarbons, such as carbon tetrachloride and bromobenzene. These studies

indicate that free radical damage does not necessarily accompany an increase in

peroxidation of cell membrane lipids. The rise in intracellular levels of Ca2+, with the

consequent activation of proteases and nucleases, and the resultant damage to DNA, are

often more important toxic events than bulk lipid peroxidation (Halliwell, 1987). Lipid

peroxidation is often a late event, accompanying, rather than causing final cell death

(Kappus, 1987). 

This study employs the use of the TBA test to measure the effect of DMF and

acetaminophen on lipid peroxidation. This test is the single most widely used assay for

measuring lipid peroxidation. The test measures the levels of MDA, which is a product of

lipid peroxidation, and together with 4-HDA are taken to be reliable indicators of

oxidative stress (Reiter et al, 1995). As shown in Figure 32, at a dose of 30mg/kg,

acetaminophen does not induce any peroxidation. This is also shown to be the case at a

dose of 100mg/kg. As stated earlier, this does not necessarily indicate an absence of free

radical damage. As shown in Figure 34, at a dose of 500mg/kg, acetaminophen does

induce peroxidation of cell membranes. It is possible that at the lower doses of

acetaminophen there is free radical damage, but there is no increase in peroxidation of cell

membranes. At these doses, it is likely that the cell destruction process has just been

initiated. However, at 500mg/kg, it is evident that acetaminophen significantly (p<0.05)

increases lipid peroxidation. This step often accompanies cell death (Kappus, 1987).

As shown in Figure 34, melatonin is unable to significantly reduce the damage inflicted by
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acetaminophen. The slight reduction in peroxidation could indicate that melatonin is able

to partially thwart the free radical-induced damage caused by acetaminophen. Melatonin is

a known, potent free radical scavenger. The antidotes commonly used to treat

acetaminophen toxicity are N-acetylcysteine and methionine. These compounds possess

sulphydral groups which enables these agents to detoxify the toxic metabolite of

acetaminophen (Payan and Katzung, 1995). This compound, N-acetyl-benzoquinoneimine,

binds to the sulphydral groups of cell proteins and this leads to hepatocellular necrosis.  N-

acetyl-benzoquinoneimine, the toxic metabolite of acetaminophen, is metabolised to a

phenoxyl radical by the liver microsomes (Mason and Fischer, 1986). It is plausible to

suggest that melatonin, a compound known to scavenge hydroxyl and peroxyl radicals, is

not able to detoxify the phenoxyl radical. Melatonin does not possess sulphydral groups,

and this could partially explain the reason for it not being able to reduce acetaminophen-

induced lipid peroxidation. 

N-acetylcysteine is a precursor for glutathione, which is the chief agent responsible for

detoxifying acetaminophen and its metabolites. Melatonin is known to promote the

enzymatic production of glutathione (Reiter, 1997), and this property could enable it to

partially detoxify N-acetyl-benzoquinoneimine, thereby reducing the amount of phenoxyl

radicals generated. This could also be a reason for the slight reduction in peroxidation by

melatonin. The antioxidant properties of melatonin are well documented. Despite this

property, it is strikingly evident from this study that it is unable to detoxify the free

radicals generated by acetaminophen and its metabolites.

As shown in Figures 35 and 36, DMF does not induce lipid peroxidation at the doses

administered. Like acetaminophen, DMF is known to adversely affect the liver. The exact

mechanism of DMF induced liver damage is not clearly understood. It is speculated that

DMF toxicity could possibly be related to the fact that DMF and/or its metabolites form

adducts with haemoglobin (Angerer et al, 1998). This study suggests that the liver damage

could also occur via a free radical mechanism. The results depicted in Figures 35 and 36,

show that DMF does not induce lipid peroxidation. As was the case with the lower doses

of acetaminophen, it is not unlikely that DMF does not produce free radicals. Lipid
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peroxidation is often the last stage accompanying cell death (Kappus, 1987). However, the

results from Chapter Three, as well as the from this experiment, clearly suggest that DMF

does not induce liver damage via a free radical mechanism. 

The results (Figures 35 and 36) obtained in this study imply that it is unsuitable to evaluate

melatonin as hepatoprotectant against DMF. The results shown in Figure 34, clearly

suggest that melatonin is unable to reduce the peroxidation caused by acetaminophen

(500mg/kg). It can also be hypothesised that this highly reactive metabolite (N-acetyl-

benzoquinoneimine) produced by acetaminophen, is also able to disrupt the structure of

melatonin, thereby rendering it inactive against free radicals. The results obtained in this

experiment also suggest that acetaminophen is an antioxidant at low doses (0-100mg/kg).

However, at a higher dose (500mg/kg), acetaminophen acts as a prooxidant.

Acetaminophen has been reported to possess both these abilities (Mason and Fischer,

1986; Nakamoto et al, 1997). This needs to be examined further.     
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Chapter Five

The Effect of Acetaminophen on Liver Tryptophan-2,3-dioxygenase

Activity

5.1 Introduction

Tryptophan-2,3-dioxygenase (TDO) is a haem-dependant liver cytosolic metalloenzyme

that catalyses the irreversible insertion of molecular oxygen into the pyrrole moiety of L-

tryptophan to produce N-formylkynurenine (Walsh et al, 1994).This is the most important

peripheral determinant affecting plasma tryptophan levels. Changes in circulating levels of

tryptophan can be achieved by altering the activity of the enzyme, tryptophan-2,3-

dioxygenase (Daya et al, 1989). This also governs the availability of tryptophan to the

brain. In the brain, tryptophan is used to synthesize serotonin, an important

neurotransmitter implicated in depression (van Praag, 1982). Some antidepressants such as

Desipramine, have been shown to inhibit TDO thereby increasing tryptophan availability to

the brain (Walsh and Daya, 1998).

In the livers of some animal species, TDO exists in at least two forms: the active reduced

holoenzyme which does require the presence of a cofactor for the demonstration of its

activity, and the inactive apoenzyme which is dependant on exogenous haem for the

demonstration of its activity (Badawy and Evans, 1974). The conjugation of the enzyme

with haem results in its activation, forming the oxidised holoenzyme which is then reduced

in the presence of tryptophan to form the active form.

It is important to measure the activities of both the holoenzyme and apoenzyme when

assessing TDO activity. This elucidates the site of action of drugs which are able to alter

the activities of TDO. The assay employed in this study is a modification of the method

described by Badawy and Evans (1975).The activity of the enzyme is determined by
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measuring the formation of kynurenine from L-tryptophan. The holoenzyme is measured

in the absence of exogenous haematin and the total enzyme activity in the presence of

exogenous haematin. The apoenzyme is then calculated as the difference between the two.

5.2 Materials and methods

5.2.1 Animals

Male Wistar rats weighing 250g-300g were used in the study. These were randomly

assembled into groups of five and maintained as described in Appendix 1. The control

group (n=5), received 0.25ml 0.9% saline:ethanol (60:40), which was also the vehicle in

which acetaminophen was dissolved. The remaining group (n=5) received 100mg/kg

acetaminophen every hour for three hours. After three hours the rats were sacrificed as

described in Appendix 2, and the livers were removed and perfused with 0.9% saline. The

livers were homogenised and TDO activity was measured immediately.

5.2.2 Chemicals and reagents

L-Tryptophan and haematin were purchased from Sigma Chemical Co, St Louis, MO,

USA. All other chemicals were obtained locally and were of the highest chemical purity

available.

5.2.3 Preparation of the liver homogenate

A 10 % (w/v) homogenate was made using equal volumes of 140mM KCl/2.5mM NaOH

buffer, pH 7.0 and 0.2M sodium phosphate buffer, pH 7.0. The liver was homogenised

using a waring blender followed by sonication.
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5.2.4 Determination of TDO activity

A scheme of the assay is outlined in Table 2. To determine the activity of the apoenzyme,

a 15ml aliquot of homogenate was added to a solution containing 12.5ml distilled water

and 2.5ml 0.03M L-tryptophan. 0.1ml of 1.2M haematin was added to determine the

activity of the total enzyme. The assay was carried out in triplicate. 3ml aliquots of the

reaction mixture were transferred to clean test tubes. 

Table 2: Scheme of the Tryptophan-2,3-dioxygenase enzyme assay

Holoenzyme Total Enzyme

Distilled water 12.5ml 12.5ml

9

Homogenate (10% w/v) 15ml 15ml

9

Haematin (1.2M) 100µl

9

Tryptophan (0.03M) 2.5ml 2.5ml

Continue in triplicate

Transfer to clean tubes 3ml 3ml

Incubate in an atmosphere of carbogen for one hour at 37oC

9

TCA (0.9M) 2ml 2ml

Shake for two minutes and filter through Whatman No.1 filter paper and transfer 2.5ml

filtrate to another set of tubes

9

NaOH (0.6M) 2.5ml 2.5ml

Read absorbance at 365nm
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The mixture was saturated with carbogen (95% O2:5% CO2) and sealed. The tubes were

incubated at 37oC for 60 minutes in an oscillating water bath. The reaction was terminated

by the addition of 2ml 0.9M trichloroacetic acid (TCA). The mixtures were shaken for a

further two minutes and then filtered using Whatman No. 1 filter paper. 2.5ml of the

filtrate was transferred to another set of test tubes containing 1.5ml of 0.6M NaOH. The

absorbance was measured at 365nm using a Shimadzu UV-160A UV-visible

spectrophotometer with 2ml TCA and 1.5ml NaOH as the blank.

 5.3 Results 

The concentration of kynurenine was calculated by applying Beer-Lamberts Law. The

molar extinction coefficient of kynurenine is 4540 l/mole.cm. The results (average of five

estimations) were expressed as nmoles kynurenine formed/minute/mg protein. Extant

holoenzyme activity is taken to be that activity present in the hepatocyte in the absence of

added haematin, while total enzyme activity is that activity measured in the presence of

added haematin. The apoenzyme activity is the difference between the two. The data were

analysed by one-way analysis of variance, and the statistical variance among specific

means was determined using the Tukey-Kramer multiple comparison test. A p<0.05

between groups was accepted as being statistically significant. As shown in Figure 39,

acetaminophen administration did not alter either total enzyme or holoenzyme but

significantly reduced (p<0.05) apoenzyme activity.

The ëmax for kynureine was determined (Figure 37). The value was determined to be

365nm, and is consistent with the values reported in the literature. The optimum

incubation time for enzyme activity was also determined (Figure38). The formation of

kynurenine was linear for the first 60 minutes. There was no difference in product

formation between 60 minutes and 90 minutes, and 60 minutes was chosen as the

optimum incubation time as it indicates maximum product formation.
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Figure 37: Determination of ëmax for kynurenine. Each point         
represents the mean of duplicate determinations. 

Figure 38: The effect of incubation time on TDO activity. Each point 
represents the mean of triplicate determinations.
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Figure 39: The effect of acetaminophen administration on rat liver TDO
activity. Each bar represents the mean ± SEM; n=5. C vs C1 (p<0.05).
Tukey-Kramer Multiple Comparisons test.
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5.4 Discussion

Liver tryptophan-2,3-dioxygenase plays a very important role in determining the levels of

circulating tryptophan in the blood (Badawy et al, 1981). An increase in the activity of this

enzyme enhances the conversion of tryptophan to 

N-formylkynurenine, thus reducing the amount of tryptophan available for uptake into the

brain (Badawy, 1979). Therefore, agents which inhibit the activity of this enzyme could

increase plasma levels of tryptophan, and subsequently induce a rise in brain tryptophan

and serotonin levels (Daya et al, 1989). The tricyclic antidepressants are known inhibitors

of this enzyme and this effect could partially explain the rise in brain serotonin levels

following the administration of these drugs.

Phenacetin, the precursor of acetaminophen, is known to produce central effects such as

mild euphoria (Payan and Katzung, 1995). To date the mechanism underlying this

phenomenon has not been explained. Acetaminophen, a derivative of phenacetin, is widely

used as an analgesic. The mood changes observed with high doses of acetaminophen

(Payan and Katzung, 1995), could be related to central nervous system effects such as

alterations in neurotransmitter levels, for example, serotonin. As shown in Figure 39, the

results of the present experiment indicate that acetaminophen administration results in

inhibition of tryptophan-2,3-dioxygenase activity. The inhibition appears to be at the level

of the apoenzyme. This implies that acetaminophen could exert its inhibitory action by

partial inhibition of the binding of this enzyme component to its cofactor haem. This

conjugation is essential for the activation of the apoenzyme. This inhibition indicates that

acetaminophen administration increases the plasma tryptophan levels and in turn the

tryptophan available for uptake into the brain. This also affects serotonin and melatonin

production, and is discussed in Chapter Six.

It is also known that the binding of tryptophan to TDO induces a change, which is an

increase in the haem ligand binding affinity of the enzyme (Walsh et al, 1994). The enzyme

has a regulatory and catalytic site. At low concentrations of tryptophan binding of
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tryptophan only occurs at the catalytic site. At higher doses, binding occurs at both sites.

Acetaminophen administration could also possibly prevent the binding of tryptophan to

TDO thereby reducing its ability to bind to haem. This would therefore prevent

apoenzyme synthesis, and reduce the activity of TDO (Walsh et al, 1994). Acetaminophen

is also a poor substrate for the enzyme as it lacks the correct functional groups for proper

interactions at the catalytic site. Acetaminophen administration may therefore inhibit the

activity of TDO by one of the ways discussed above, or by an unknown mechanism. This

needs to be investigated further.  
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Chapter Six

The Determination of Rat Pineal Melatonin and Forebrain Serotonin

Levels Using Enzyme-linked Immunosorbent Assay (ELISA)

6.1 Introduction

The use of the ELISA technique is widespread. It has been rapidly adapted to a wide

range of applications such as indole determination, and to screen B-cell hybridomas for

antibody production. The ELISA technique can be modified depending on whether antigen

or antibody is being detected. If antibody is being detected, then the wells of the microtiter

plate are coated with antigen. In most cases the antigen will adhere spontaneously to the

wells. However, in certain instances the antigen may have to be coupled to the wells

chemically. The samples are then incubated in the antigen coated wells for a certain period

of time, after which unbound sample is removed by washing. A second antibody, coupled

to an enzyme such as alkaline phosphatase and horseradish peroxidase, is then added to

the wells.  A major requirement of the enzyme is that it still functions, when coupled, to

produce a coloured product using colourless substrate. This antibody also reacts with the

sample. The unbound antibody, as well as cofactors, are then washed away and the

colourless substrate for the particular enzyme is then added to the wells.  If the specific

antibody is present in the sample, then the second antigen will bind to the well, ultimately

leading to a colorimetric reaction. If antigen is being detected then the procedure is the

opposite to the one described (Clark, 1991). A clever ploy for amplifying the alkaline

phosphatase reaction is to use NADP as a substrate to generate NAD which is then able to

serve as a coenzyme for the second enzyme system. Generally, phosphatase from E. coli is

used as it is not present in any tissues. In addition, the enzyme from this source is stable

and generates a good colour reaction (Roitt, 1991).

ELISA plates are now available commercially and can be purchased precoated with either

antigens or antibodies. The sensitivity of ELISA, despite its ease of use, has made this
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technique one of the most commonly used immunoassay systems, particularly in clinical

laboratories.

6.2 Materials and methods

6.2.1 Animals

Male Wistar rats weighing between 250g-300g, were used in the experiment. These were

randomly assorted into two groups of five and were maintained as described in Appendix

1. The control group (n=5) received 0.25ml 0.9% saline:ethanol (60:40), which was the

vehicle. The remaining group (n=5) received 100mg/kg acetaminophen i.p. every hour for

three hours. The rats were killed after three hours, and the forebrains and pineal glands

were removed, as described in Appendix 2, and stored at 

-70oC until use.

6.2.2 Chemicals and reagents

All chemicals and reagents used in the ELISA determination were provided with the

diagnostic kit from Research Diagnostics INC, Flanders, NJ, USA. All other chemicals

and reagents were obtained locally and were of the highest purity available.

6.2.3 Serotonin determination

6.2.3.1 Specimen preparation

The forebrains were homogenized individually (10% w/v), using 0.9% saline. 20µl of the

homogenate was placed in a set of clean test tubes, followed by the addition of 100µl of

the assay buffer (Phosphate buffer with tween). 25µl of acylation reagent (acetic acid

anhydride in acetone) was added to the tubes which were then incubated for 15 minutes at

37oC. After incubation 4ml of the assay buffer was added to the tubes which were then

centrifuged at 1500×g for ten minutes.
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6.2.3.2 Test procedure

50µl of the acylated samples and standards were placed in the wells of the microtiter plate.

This was followed by the addition of the serotonin-biotin complex (50µl) and the

antiserum (50µl). The plate was then shaken and incubated overnight at 2oC - 8oC. The

wells were then washed three times with the wash buffer (1/10 dilution of phosphate

buffer). 150µl of the anti-biotin-alkaline phosphatase complex was then pipetted into each

well. The plate was then incubated for two hours at room temperature on an orbital shaker

(200 rpm). Following this, the plates were washed three times with the wash buffer. 200µl

of the substrate, para-nitrophenol phosphate (PNPP), was added to each well and the plate

was incubated at room temperature for an hour. The reaction was then terminated with the

addition of 50µl stop solution (1N NaOH with 0.25 M EDTA). The optical density was

measured at 405nm (reference wavelength 600-650nm) using a microtiter plate reader

(Powerwave) within an hour. A standard curve (Appendix 4) was also generated in the

same manner.

6.2.4 Melatonin determination

6.2.4.1 Extraction

The pineal glands were individually homogenised (10% w/v) in 0.9% saline. The

extraction columns (C18 reverse phase) were individually placed in extraction tubes

followed by the addition of two volumes (1ml) of undiluted methanol. The tubes were

then centrifuged for one minute at 200×g. The same procedure was repeated with distilled

water. Following this 0.5ml of the samples and standards were added to the tubes, which

were then centrifuged for one minute at 200×g. Subsequently the columns were washed

with two volumes (1ml) of 10% methanol and centrifuged for one minute at 500×g. The

columns were then placed in clean tubes and the melatonin was eluted with 1ml undiluted

methanol, followed by centrifugation for one minute at 200×g. Centrifugation in this step

is important to avoid any melatonin being left in the column. The methanol was then

evaporated to dryness, using a speed-vac evaporator centrifuge, and the melatonin was
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reconstituted in 0.15ml distilled water.

6.2.4.2 Test procedure

50µl of each sample and standard was pipetted into the appropriate wells. This was

followed by the addition of the melatonin-biotin (50µl) and antiserum (50µl). The plates

were shaken and incubated overnight at 2oC - 8oC. The next day the plates were washed

three times using the wash buffer (1/10 dilution of phosphate buffer). 150µl of the enzyme

conjugate was then added to the wells and the plates were sealed and incubated at room

temperature for two hours on an orbital shaker (200 rpm/min). After the incubation period

the plate was washed three times using the wash buffer. 200µl of the para-nitrophenol

phosphate substrate solution was then added to each well. The plate was then incubated at

room temperature for 20 minutes on an orbital shaker (200 rpm/min). The reaction was

terminated using 50µl of the stop solution (1N NaOH with 0.25 M EDTA) provided, and

the plate was gently shaken. The optical density was measured at 405nm (reference wave

length 600-650nm) using a microtiter plate reader (Powerwave) within an hour. A

standard curve (Appendix 5) was also generated in the same manner.

6.3 Results

The concentrations of the samples were obtained from the standard curve (log

concentration vs absorbance at 405nm). The values from the serotonin determination were

corrected due to dilution and acylation of samples. The data shown is an average of

duplicate values, and the values are expressed as the mean ± SEM. Values from the

serotonin determination are expressed as ng/mg tissue, while the melatonin values are

expressed as pg/ml. The data was analysed by the Student’s t-test. A p<0.05 between the

groups was accepted as statistically significant. As shown in Figure 40, acetaminophen

significantly increased (p<0.05) rat forebrain serotonin levels. The results shown in Figure

41, show that there was no significant (p>0.05) alterations in pineal melatonin levels

following acetaminophen administration.
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Figure 40: The effect of acetaminophen administration on rat        
forebrain serotonin levels. Each bar represents the mean ± SEM; n=5. *
(p<0.05). Student’s t-test.
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Figure 41: The effect of acetaminophen administration on rat  pineal
melatonin levels. Each bar represents the mean ± SEM; n=5.
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6.4 Discussion

Alterations in brain serotonin levels are known to result in mood disorders, particularly

depression (van Praag, 1982). The main function of serotonin is that of a neurotransmitter.

Interest in correlations between serotonin and depression was stimulated by the finding

that first generation antidepressants enhance the availability of serotonin at central

receptors (van Praag, 1982). As shown in Figure 40, acute acetaminophen administration

significantly (p<0.05) increases rat forebrain serotonin levels. This increase could possibly

be due to the inhibition of the enzyme tryptophan-2,3-dioxygenase, discussed in Chapter

Five. This inhibition is known to induce a rise in circulating tryptophan levels, which in

turn results in a concomitant rise in brain serotonin levels. This increase follows the

increase in tryptophan which is the precursor of serotonin (Daya et al, 1989). This result is

consistent with the theory that the antinociceptive activity of acetaminophen is linked with

the serotonergic system (Pini et al, 1996). The antinociceptive activity of acetaminophen is

believed to result from serotonin receptor downregulation and an increase of serotonin

levels in the pontine and cortical areas of the brain (Pini et al, 1996).

Acetaminophen administration may also affect the enzyme, tryptophan hydroxylase. This

enzyme is the rate-limiting step in serotonin synthesis (Carlson et al, 1972). This enzyme

has a poor affinity for its substrate and is normally not fully saturated with its substrate.

This makes tryptophan hydroxylase very sensitive to alterations in tryptophan

concentrations, which ultimately affects serotonin synthesis. The results obtained from

Chapter Five show that acetaminophen administration significantly inhibits TDO activity,

suggesting increased peripheral tryptophan levels. This increase could result in increased

tryptophan hydroxylase activity and ultimately increased serotonin levels. This needs to be

investigated further.

The increase in serotonin levels could also be due to another mechanism. Acetaminophen

administration could inhibit the activity of monoamine oxidase B. This enzyme is

responsible for the inactivation of serotonin. The enzyme is also the target for

antidepressant drugs such as isocarboxazid (marplan®). These monoamine oxidase
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inhibitors prevent the catabolism of serotonin and therefore increase its concentration in

the CNS (Hollister, 1995). It is possible that acetaminophen inhibits the enzyme and

therefore increases serotonin levels. 

There is also a possibility that acetaminophen administration mimics the action of

fluoxetine, a potent serotonin reuptake inhibitor. This would prevent the reuptake and

inactivation of serotonin thereby potentiating the action of serotonin released by neuronal

activity (Sanders-Bush and Mayer, 1996).

As shown in Figure 41, the acute administration of acetaminophen does not alter pineal

melatonin levels. Results from the previous experiments suggest an increase in peripheral

tryptophan levels, followed by a rise in brain serotonin levels. It would therefore be

accurate to assume that melatonin levels would also increase, as serotonin is the precursor

of melatonin. However, this was not found to be the case. This lack of a significant change

in pineal melatonin levels could be attributed to the finding that pineal serotonin

concentrations are 100-fold higher than the forebrain. Changes in forebrain serotonin will

not have a dramatic effect on pineal serotonin, and thus melatonin (Daya et al, 1989). The

pineal gland is protected from changes in circulating tryptophan by the high concentration

of serotonin within it. As a result, melatonin synthesis in the pineal gland is normally not

affected by increases in peripheral tryptophan and increased brain serotonin levels (Daya et

al, 1989). 

The results from this set of experiments authenticate the implication in the previous

chapter, that acetaminophen could have mild antidepressant activity. This implication is

analysed and discussed further in the chapters that follow.
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Chapter Seven

Organ Culture Studies: The effect of acetaminophen administration on

rat pineal indole metabolism

7.1 Introduction

The pineal gland is recognised as a fully functional organ that is responsible for the

synthesis of indoleamines. The pineal gland is an integral and important component of the

neuroendocrine system (Reiter, 1989). The quantification of the pineal indoles and

metabolism, requires a sensitive technique that is able to mimic normal physiological

processes and conditions as closely as possible.

The organ culture technique is one technique which provides the neurobiochemist with an

invaluable tool. This technique enables the researcher to finely control the experimental

conditions and avoid the complications of in vivo interactions. Due to its size, the pineal

gland is suitable for the organ culture technique. Pineal organ culture systems have been

utilized and optimised by a number of researchers (Klein and Rowe, 1970; Daya et al,

1989). The pineal gland in organ culture is able to remain viable for as long as six days

under optimum conditions. It is able to utilise exogenous radioactive (14C)serotonin and

(3H)tryptophan to produce various indoles including melatonin and serotonin (Daya et al,

1989). As much as 95% of the synthesised indoles are secreted into the culture medium

which can then be isolated and quantified.

Isolation of the pineal indoles are achieved by using a bi-dimensional thin layer

chromatography system (Klein and Notides, 1969). This technique employs the use of two

organic solvents. The first solvent, chloroform:methanol:glacial acetic acid (93:7:1), is

used to separate melatonin (aMT) from N-acetylserotonin (aHT), and the 5-

hydroxyindoles from the 5-methoxyindoles. The second solvent, ethyl acetate, is used to

separate 5-methoxyindole acetic acid (MA) and 5-methoxytryptophol (ML) from aMT, as
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well as 5-hydroxyindole acetic acid (HA) and 5-hydroxytrytophol (HL) from aHT.

Tryptophan, serotonin (HT), 5-hydroxytryptophan, and 5-methoxytrptamine are not

affected by either of the solvents and remain at the origin. The thin layer chromatographic

technique is rapid, simple, and effectively separates trace quantities of the pineal indoles.

7.2 Materials and methods

7.2.1 Animals

Male Wistar rats weighing 250g-300g were used in the experiment. These were randomly

assembled into groups of five and maintained as described in Appendix 1. The control

group (n=5) received 0.25ml ethanol:0.9% saline (40:60). The remaining group (n=5)

received 100mg/kg acetaminophen for three hours. The rats were killed after three hours

as described in Appendix 2, and the pineal glands were removed.

7.2.2 Chemicals and reagents

(3H)tryptophan (specific activity 55mCi/ml) was obtained from Amersham International,

England. The culture medium, BGJb culture medium, was purchased from Gibco, Europe,

and fortified with the antibiotics streptomycin and benzyl penicillin (Hoechst, South

Africa). The composition of this medium is represented in Table three. The aluminium

TLC plates coated with silica gel 60, Type F254 (0.25mm), were purchased from Merck,

Darmstadt, Germany. Beckman Ready-Sol multipurpose liquid scintillation fluid was

purchased from Beckman RIIC Ltd, Scotland. The indole standards, MT, HA, HL, MA,

ML, aMT, and aHT were purchased from Sigma Chemical Co, St Louis, MO, USA. All

other reagents and chemicals were obtained locally and were of the highest purity

available.
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Table 3: Composition of the BGJb culture medium

Contents Concentration (mg/litre)

Amino acids

L-Alanine 250.0

L-Arginine 175.0

L-Aspartic acid 150.0

L-Cysteine (HCl) 90.0

L-Glutamine 200.0

Glycine 800.0

L-Histidine 150.0

L-Isoleucine 30.0

L-Leucine 50.0

L-Lysine (HCl) 240.0

L-Methionine 50.0

L-Phenylalanine 50.0

L-Proline 400.0

L-Serine 200.0

L-Threonine 75.0

L-Tryptophan 40.0

DL-Valine 65.0

Vitamins

á-Tocopherol phosphate 1.0

Ascorbic acid 50.0

Biotin 0.2

Calcium pantothenate 0.2
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Contents Concentration (mg/litre)

Vitamins

Choline chloride 50.0

Folic acid 0.2

Inositol 0.2

Para-aminobenzoic acid 2.0

Pyridoxal phosphate 0.2

Riboflavin 0.2

Thiamine HCl 4.0

Vitamin B12 0.04

Inorganic salts

Dihydrogen sodium ortho-phosphate 90.0

Magnesium sulphate 200.0

Potassium Chloride 400.0

Potassium dihydrogen phosphate 160.0

Sodium bicarbonate 3500.0

Sodium chloride 5300.0

Other compounds

Calcium lactate 555.0

Glucose 10000.0

Phenol red 20.0

Sodium acetate 50.0
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7.2.3 Organ culture of the rat pineal gland

The pineal glands were placed individually into sterile 75×10mm Kimble tubes containing

52µl BGJb culture medium. 8µl of (3H)tryptophan (specific activity 55mCi/ml) was added

to each tube. The tubes were then saturated with carbogen and sealed. The tubes were the

placed at 37oC in the dark for 24 hours in a Forma Scientific model 3028 incubator. At the

end of the 24 hour incubation period, the reaction was terminated by the removal of the

pineal glands from solution.

7.2.4 Separation of the indoles using TLC

A modification of the technique employed by Klein and Notides (1969), was used to

separate the radio labelled indoles. The TLC plates were activated by placing them in an

oven at 100oC for 10 minutes. 5µl of the culture medium was spotted on a 10×10cm TLC

plate. The spot was dried using a gentle stream of nitrogen. 10µl of the standard solution

was spotted onto the culture medium. The standard solution was prepared as follows:

0.1mg of each standard indoleamine was dissolved together in a test tube containing 95%

ethanol and 1% ascorbic acid. The ascorbic acid serves as an antioxidant. The second spot

was also dried using a gentle stream of nitrogen. It is important to note that the plates

were spotted in subdued light to prevent photo-oxidation of the indoleamines.

The spotted plates were then placed in a TLC tank containing chloroform: methanol:

glacial acetic acid (93:7:1). The plates were developed twice in this direction, and were

allowed to develop until the solvent front had migrated approximately 9cm. The plates

were then allowed to dry, after which they were developed once in ethyl acetate. This was

done at right angles to the first direction of development. Following this the plates were

dried and sprayed with Van Urks reagent. Van Urks reagent is prepared by adding 1g 4-

dimethylamino-benzaldehyde to 50ml 25% HCl, followed by the addition of 50ml 95%

ethanol. The plates were subsequently dried in an oven at 60oC for 10 minutes to allow for
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colour development of the spots. The spots were then cut and individually placed in

scintillation vials. 3ml Beckman Ready-Sol scintillation fluid was added to each vial. The

vials were vortexed on a Vortex Rotor-mixer for 30 seconds, and the radioactivity of each

metabolite was then measured in a Beckman LS 2800 scintillation counter.

7.3 Results 

A typical bi-dimensional thin layer chromatogram of the pineal indole metabolites was

obtained. This is represented in Figure 42. Excellent separation of the indoles was

achieved. Results (average of three estimations) obtained from these studies are expressed

as DPM/10µl/pineal gland (mean ± SEM) for each  indole. The background counts were

negligible. The data were statistically analysed and the difference between the control and

acetaminophen groups was determined using the Student's t-test. P<0.05 was determined

to be statistically significant. As shown in Figure 43, acetaminophen administration

significantly increased (p<0.05) pineal (3H) melatonin synthesis.

Table 4: The effects of acetaminophen on pineal indole metabolism 

Pineal

Metabolites

Control 

(DPM/10µl/pineal)

Mean ± SEM

Acetaminophen

(DPM/10µl/gland)

Mean ± SEM

Serotonin 112100 ± 5485 105654 ± 2971

N-acetylserotonin 35963 ± 3035 38175 ± 3466

5-HIAA 1930 ± 222 2442 ± 238

5-Hydroxytryptophol 6119 ± 566 8784 ± 752

Melatonin 5813 ± 542 11155 ± 665

5-Methoxyindole acetic acid 24428 ± 3791 23080 ± 1233

5-Methoxytryptophol 30390 ± 652 31632 ± 3289
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ML

MA
HA

HL

aMT aHT

HT/MT

First direction (twice)
Chloroform:Methanol:Glacial acteic acid
(93:7:1)

Second direction with 
Ethyl acetate

HT- Serotonin
MT- 5-Methoxytryptamine
aHT- N-Acetylserotonin
aMT- Melatonin
HA- 5-HIAA
HL- 5-Hydroxytryptophol
MA- 5-Methoxyindole acetic acid
ML- 5-Methoxytryptophol

Figure 42: A trace of the TLC plate illustrating the direction in which the plate 
was run and the location of the pineal indole metabolites (Klein and Notides,
1969).
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Figure 43: The effect of acetaminophen administration on rat pineal indole
metabolism.Each bar represents the mean ± SEM; n=5. * (p<0.05). Tukey-     
Kramer Multiple Comparisons test.
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7.4 Discussion

Indole metabolism in the pineal gland occurs in the pinealocytes. The different stages are

outlined in Figure 3. As described in section 1.1.3, pineal indole metabolism commences

with the uptake of tryptophan from the bloodstream. Tryptophan is converted to 5-

hydroxytryptophan by the enzyme tryptophan hydroxylase. A decarboxylase enzyme then

converts 5-hydroxytryptophan to serotonin. Serotonin is then N-acetylated by NAT to

form N-acetylserotonin. The acetyl group is provided by acetyl CoA. The formation of

melatonin from N-acetylserotonin is catalysed by the enzyme HIOMT. The methyl group

donor in this step is S-adenosylmethionine (Reiter, 1981).

The rat pineal gland in organ culture is able to metabolise radiolabelled tryptophan to

various indoles (Olivieri et al, 1990). As shown in Figure 43, the results of this experiment

show that acetaminophen administration significantly increases melatonin levels (p<0.05).

Olivieri et al (1990) showed that exogenous radiolabelled tryptophan is converted to

melatonin in the organ culture system. The increased synthesis of radiolabelled melatonin

by pineals from rats which received acetaminophen could possibly  be due to enhanced

uptake of (3H)tryptophan into the pineal parenchymal cells. This needs to be investigated

further.

The acetaminophen-induced increase in pineal (3H) melatonin biosynthesis could be due to

increased N-acetylation of (3H) serotonin by NAT, resulting in elevated 

(3H) N-acetylserotonin levels as a substrate for conversion to (3H) melatonin.

Acetaminophen may also mimic the action of the antidepressants, desipramine and

maprotiline. Both drugs have been reported to inhibit pineal monoamine oxidase activity in

vitro (Nir and Hirschmann, 1983). This would increase (3H) serotonin levels for

conversion to (3H) melatonin.

Alternatively, the increase in (3H) melatonin synthesis could be attributed to the increase in



____________________________________________________________________Organ Culture Studies                        101

brain serotonin levels following acetaminophen administration (Chapter Six, Figure 40).

Acetaminophen could act either as a monoamine oxidase inhibitor, or as a serotonin

reuptake inhibitor in the brain, and thereby increase serotonin levels. The results from

Chapter Six, show that acetaminophen administration significantly increases forebrain

serotonin levels. This increases the levels of serotonin available for melatonin production,

and subsequently melatonin levels. Studies have demonstrated that selective serotonin

reuptake inhibitors increase melatonin synthesis in rats as well as in healthy human

volunteers (Wirz-justice et al, 1980). It is a possibility that the presynaptic inhibition of

serotonin, possibly by acetaminophen, may increase the availability of serotonin within the

pinealocyte as substrate for conversion to melatonin. However, Daya et al (1989), showed

that pineal serotonin and pineal melatonin are unlikely to be affected by changes in brain

serotonin because the levels of brain serotonin are 100-fold lower than in the pineal gland.

Thus, the relationship between brain serotonin levels, and pineal serotonin and melatonin

levels needs to be examined in greater detail.

The increase in melatonin levels following acetaminophen administration could also be due

to increased stimulation of the â-adrenergic receptors. Skene (1985) showed that the

antidepressants mianserin and trazodone, increase â-adrenergic receptor sensitivity. The

monoamine oxidase inhibitors also appear to increase melatonin production via â-

adrenergic receptor stimulation (McIntyre et al, 1985). It is possible that acetaminophen is

also able to do this. As described in section 1.2.5, these receptors are coupled to adenylate

cyclase, which is responsible for cAMP production. Skene (1985), showed that chronic

isoprenaline administration increases basal and pineal cAMP levels. Acetaminophen

administration could possibly increase adenylate cyclase activity, thereby increasing cAMP

levels, and consequently melatonin levels. This needs to be investigated further.



_______________________________________________________________________5-HIAA Determination                            102

Chapter Eight

The Measurement of Urinary 5-HIAA: The effect of acetaminophen

administration on rat urinary 5-HIAA levels

8.1 Introduction

Most of the data on central serotonin metabolism in depression has been obtained by

measuring the cerebrospinal fluid concentrations of 5-HIAA (van Praag, 1982). The

production of 5-HIAA from serotonin is illustrated in Figure 10. 5-HIAA is the major

metabolite of serotonin. Since tryptophan is the dietary precursor of serotonin, it is also

correct to state that it is also the precursor of 5-HIAA (Udenfriend et al, 1955). Due to

large quantities of 5-HIAA being present in urine it is believed that an appreciable amount

of tryptophan is metabolized via the 5-hydroxyindole route (Udenfriend et al, 1955). It has

been reported that 5-hydroxytryptophan, serotonin, and 5-HIAA, are excreted in the urine

when administered (Udenfriend et al, 1955). It is probable that 5-HIAA is derived solely

from serotonin, but it is possible that some of it is derived from the decarboxylation of 

5-hydroxyindolepyruvic acid which is derived from the transamination of serotonin

(Udenfriend et al, 1955).

Since 5-HIAA accounts for nearly 100% of the metabolism of serotonin in the brain, the

amount of the acid excreted reflect the secretion of serotonin (Sanders-Bush and Mayer,

1996). 5-HIAA from the brain, and peripheral sites of serotonin storage, is excreted in the

urine, together with small amounts of 5-hydroxytryptophol, and sulphate or glucuronide

conjugates. Probenicid, a drug used in the treatment of gout, inhibits the transport of 

5-HIAA from the central nervous system to the bloodstream. The resulting accumulation

of 5-HIAA in the brain provides a yardstick for serotonin metabolism in the CNS. Most

investigators have found the Probenicid-induced accumulation of 5-HIAA in the brain and
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cerebrospinal fluid to be diminished in depression, indicating diminished serotonin levels

(van Praag, 1982). Since urinary 5-HIAA is an indication of brain serotonin, the levels of

the metabolite present in urine may be important in the diagnosis of depression.

Depression is characterized by the reduction of serotonin levels in the brain (Walsh and

Daya, 1989). Low cerebrospinal fluid levels of 5-HIAA have also been linked to violent

and impulsive acts such as suicide (Sanders-Bush and Mayer, 1996). The large amounts 

5-HIAA, excreted in the urine of patients with malignant carcinoid, provide a valuable

diagnostic test for the disease (Sanders-Bush and Mayer, 1996). The enhanced excretion

of 5-HIAA in the urine is due to increased levels of serotonin in the tumor itself

(Udenfriend et al, 1955).

The alternative pathway for the metabolism of serotonin, rather than the oxidation to 

5-HIAA, is the reduction of 5-hydroxyindoleacetaldehyde to 5-hydroxytryptophol. The

ingestion of large amounts of alcohol results in elevated amounts of NADH, which diverts

5-hydroxyindoleacetaldehyde from the oxidative pathway to the reductive pathway. This

leads to an increase in the excretion of 5-hydroxytryptophol, with a corresponding

decrease in 5-HIAA excretion (Sanders-Bush and Mayer, 1996). 

8.2 Materials and methods

8.2.1 Animals

Male Wistar rats weighing 250g-300g were used in the experiment. The rats were housed

individually in metabolic cages, and were maintained as described in Appendix 1. The

control group (n=5) received 0.25ml 0.9% saline:ethanol (60:40) every hour for three

hours i.p. This was also the vehicle in which the drug was dissolved. The second group

received 100mg/kg of acetaminophen every hour for three hours i.p. Only urine collected

in the last hour (three to four hours after the first injection) of the experiment was

analyzed.
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8.2.2 Chemicals and reagents

1-Nitrosonapthol reagent was purchased from Sigma Chemical Co, St Louis, MO, USA.

2,4-Dinitrophenylhydrazine was purchased from Merck, Darmstadt, Germany. All other

reagents were purchased from local sources and were of the highest purity available.

8.2.3 5-HIAA determination

A modification of the method used by Udenfriend et al (1955) was used in this

experiment.1ml urine and 2,4-dinitrophenylhydrazine (2,4-DNPH) (0.5% in 2N HCl) were

mixed together in a clean test tube. This mixture was incubated for 30 minutes at room

temperature with occasional, gentle shaking. This was done to facilitate the removal of

keto acids. An aliquot of 4.2ml chloroform was added, and the mixture centrifuged at

3000×g for five minutes. The organic layer was removed, and 4.2ml chloroform was

added to the aqueous layer. This mixture was centrifuged at 3000×g for five minutes.

After centrifugation, 1.7ml of the aqueous layer was removed and added to a test tube

containing 0.6g NaCl and 4.2ml ethyl ether. The mixture was vortexed for approximately

five minutes, and then centrifuged at 3000×g for a further five minutes. 3.3ml of the ether

aliquot was then transferred to a tube containing 0.2ml phosphate buffer, pH 7. This

mixture was shaken and centrifuged at 3000×g for five minutes. The ethyl ether layer was

then evaporated in a fume hood under a gentle stream of nitrogen. 0.17ml of the aqueous

layer, 0.08 ml nitrosonapthol (0.1% in absolute ethanol) reagent, and 0.08 ml nitrous acid

were then mixed together and incubated at 37oC for five minutes. 0.83ml ethyl acetate was

added to the tube which was subsequently vortexed to separate the layers. Following this

procedure, the ethyl acetate then carefully removed and the aqueous layer transferred to a

plastic cuvette. This layer contained the 5-HIAA and its optical density was measured at

540nm, using a Shimadzu UV-160A UV-visible spectrophotometer. A standard curve (10-

200µmoles/ml) was generated using a 5-HIAA standard (Appendix 6).
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In order to determine whether 5-HIAA was present in the urine extract, and if the correct

metabolite was being analyzed, a TLC chromatogram was run. The method used is

described in section 7.2.4. The Rf values were measured for both the sample and the 

5-HIAA standard.

8.3 Results

The data obtained were expressed as µmol/ml of urine and were the mean of three

determinations. The data were analyzed by the Student’s t-test and a p<0.05 between the

groups was accepted as being statistically significant. As shown in Table 5, 5-HIAA was

present in the urine extract. The Rf values were the mean of three determinations and were

calculated measuring the distance migrated by the sample divided by the distance migrated

by the solvent front. It is also evident from Figure 44, that acetaminophen administration

significantly reduces (p<0.05) the urinary concentration of 5-HIAA.  

Table 5: The results (Rf values) of TLC analysis of the urine extract.

Compound Mean Rf values

Urinary extract 0.27

5-HIAA standard 0.26
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Figure 44: The effect of acetaminophen administration on rat urinary 5-HIAA levels.
Each bar represents the mean ± SEM; n=5. * (p<0.05). Student’s t-test. 
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8.4 Discussion

5-HIAA is the major metabolite of serotonin metabolism. The enzyme, monoamine

oxidase, catalyzes the formation of 5-hydroxyindoleacetaldehyde from serotonin. This is

an unstable intermediate, and is converted to 5-HIAA by aldehyde dehydrogenase (Figure

10). Reduced levels of 5-HIAA in the CNS and urine are an indication of reduced

serotonin turnover (van Praag, 1982). Several researchers have shown that reduced

serotonin levels in the CNS are associated with depression (Walsh and Daya, 1998).

Therefore, a reduction in the 5-HIAA levels are also an indication of depression (van

Praag, 1982).

The results obtained by the chromatographic analysis of the urine extract indicate that the

metabolite being analyzed was 5-HIAA (Table 5). The Rf values obtained by TLC analysis

were almost identical, indicating that the 5-HIAA was successfully extracted from the rat

urine samples. The results obtained from the colorimetric analysis of the urine extract

show reduced levels of 5-HIAA (Figure 44), suggesting that acetaminophen

administration induces depression. However the results obtained from previous

experiments (Figures 39 and 40) illustrate a decrease in TDO activity with a concomitant

rise in forebrain serotonin levels. These changes would normally be accompanied by a rise

in 5-HIAA levels. The decrease in urinary 5-HIAA levels obtained in this experiment

therefore contradict the suggestion that acetaminophen has the potential to alleviate

depression.

However, the reduction of urinary 5-HIAA levels can be interpreted differently. The

reduction of this metabolite could suggest that there is reduced breakdown of serotonin in

the CNS, making more of it available to perform its functions. This explanation is

consistent with the previous findings, and supports the ability of acetaminophen to alter

mood by acting as an antidepressant.
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Chapter Nine

Summary of Results: Conclusions and Recommendations for Future

Work

9.1 Summary of results

Chapter Two: The photodegradation of acetaminophen and melatonin

This study examined the effect of melatonin, a known free radical scavenger, on the

degradation of acetaminophen following irradiation. The results show that melatonin is

able to alter the photodegradation of acetaminophen in the presence of air and nitrogen.

Melatonin retards the rate of degradation of acetaminophen in the presence of nitrogen,

but enhances the rate of degradation of acetaminophen in the presence of air. The

photodegradation studies also revealed that melatonin is also rapidly degraded in the

presence of air.  

Chapter Three: Melatonin and DMF-Induced Hepatotoxicity

DMF is hypothesized to initiate liver damage via a free radical mechanism. This study was

done in collaboration with the CSIR in India, using a cell-free system. Hydroxyl radicals

were generated using Fe2+-citrate, in the presence of salicylate. This leads to the formation

of 2,3- and 2,5-DHBA adducts which are reliable indicators of hydroxyl radical

generation. DMF was shown to reduce the formation of both these adducts, and thereby

act as a hydroxyl radical scavenger, proving the hypothesis incorrect.

However, the electron microscopy studies clearly indicate that DMF is toxic to the liver,

and that melatonin is able to reduce the damage. 
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Chapter Four: The effect of DMF and acetaminophen on lipid peroxidation

The results from this experiment show that DMF administration (0.4ml/kg and 0.8ml/kg

for seven days) did not significantly increase lipid peroxidation in the rat liver. This in vivo

finding verifies the in vitro finding that DMF does not generate hydroxyl radicals. Three

different doses of acetaminophen (30mg/kg, 100mg/kg, 500mg/kg) were administered to

rats for a seven day period. Acetaminophen (500mg/kg) was found to significantly

increase (p<0.05) lipid peroxidation in the liver. This does not conclusively prove that the

lower doses of acetaminophen (30mg/kg and 100mg/kg) do not generate free radicals, as

lipid peroxidation is often a late process accompanying cell death, rather than initiating it.

Melatonin was not able to significantly reduce the peroxidation induced by acetaminophen

(500mg/kg), thereby indicating that melatonin alone would not be an effective antidote for

acetaminophen poisoning.

Chapter Five: The effect of acetaminophen administration on TDO activity

The haem-dependant enzyme, TDO, is a major determinant of tryptophan levels in vivo.

Acetaminophen administration (100mg/kg every hour for three hours) was found to

significantly inhibit (p<0.05) the activity of TDO at the level of apoenzyme, indicating that

acetaminophen prevents the conjugation between the holoenzyme and haem.

Acetaminophen did not alter the activity of the holoenzyme and the total enzyme.

Chapter Six: Acetaminophen administration and rat forebrain and pineal melatonin

levels

This study involved the use of the ELISA technique. Acetaminophen administration

(100mg/kg every hour for three hours) was found to significantly increase (p<0.05) rat

forebrain serotonin levels, but had no effect on pineal melatonin levels. The increase in

serotonin levels are consistent with the finding that acetaminophen administration inhibits
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TDO. The unchanged melatonin levels are however not consistent with TDO inhibition.

Chapter Seven: The effect of acetaminophen administration on pineal melatonin

levels

This study employed the use of organ culture and thin layer chromatography.

Acetaminophen administration (100mg/kg every hour for three hours) was shown to

significantly increase (p<0.05) pineal melatonin levels, using radiolabelled tryptophan as a

precursor.

Chapter Eight: The effect of acetaminophen administration on rat urinary 5-HIAA

levels

This study was performed in order to substantiate the results from Chapters Five, Six, and

Seven. However, acetaminophen administration (100mg/kg every hour for three hours)

was found to reduce urinary 5-HIAA levels. Reduced 5-HIAA levels are consistent with

increased TDO activity and reduced serotonin levels. The results could however, also

indicate reduced serotonin catabolism, which is indicative of increased brain serotonin

levels.

9.2 Conclusions

Section 1.7 outlines the two main research objectives of this study. The first objective was

to evaluate the effectiveness of melatonin, a non-toxic free radical scavenger, as a

hepatoprotectant against DMF and more importantly, acetaminophen poisoning. Both

these compounds are known to induce liver damage. Although melatonin appears to be an

effective antidote for DMF poisoning, the results indicate that DMF is not a hydroxyl

radical generator, and does not induce lipid peroxidation in the rat liver. The electron
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microscopy studies tentatively suggest that melatonin would be able to reduce the extent

of the damage caused by DMF.  However, the results obtained from the spin trap studies,

electron microscopy, and lipid peroxidation, do shed some light on the mechanism by

which DMF induces liver injury. This study hypothesizes that this damage is via a free

radical mechanism. The experimental data obtained refutes this hypothesis, indicating that

DMF-induced liver damage is not inflicted by free radicals. 

The results obtained tentatively suggest that acetaminophen generates other free radicals

besides the phenoxyl radical. Melatonin was also found to be ineffective against the

peroxidation induced by acetaminophen administration (500mg/kg for seven days). This

suggests that melatonin alone would not be an effective antidote for acetaminophen

poisoning. However, the effectiveness of melatonin as a potent free radical scavenger

cannot be ignored. A combination of melatonin and methionine may prove useful in the

treatment of acetaminophen poisoning. This, as well as the exact mechanism of DMF and

acetaminophen induced organ damage, needs to be further investigated.

The photodegradation studies also revealed important insight into the stability of both

acetaminophen and melatonin. This also needs to be investigated thoroughly. However,

the results obtained thus far indicate that both these compounds need to be stored in the

absence of sunlight, and in the case of melatonin, in an airtight bottle. This is important,

especially in medical institutions, where melatonin is used as a therapeutic agent. This

study revealed the adverse effects of melatonin on acetaminophen in the presence of UV

light, indicating that melatonin which if incorrectly stored, can be potentially hazardous if

co-administered with drugs such as acetaminophen.

The second objective of the study was to investigate the increasing abuse of and addiction

to acetaminophen in an attempt to outline the biochemical basis of such addiction. The

inhibition of TDO, accompanied by the rise in brain serotonin levels induced by

acetaminophen, implies that this drug has the potential to alter mood states, which could in
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turn explain why this drug causes mood changes at high doses. The antinociceptive action

of acetaminophen is already known to be linked to the serotonergic system. Certain

antidepressants have been shown to inhibit TDO, followed by a rise in brain serotonin

levels. Acetaminophen, therefore, mimics the action of an antidepressant. Criticisms may

be aimed at the previous statement due to the short period of acetaminophen

administration. However, it is well documented that antidepressant action can be exerted

within six hours (Harvey, 1997), adding credibility to the findings of this study. The

actions of this drug’s ability to alter the levels of this important neurotransmitter need to

be investigated further.    

In addition to the increased serotonin levels, the organ culture studies revealed that

acetaminophen administration increased pineal melatonin levels. Increased melatonin levels

have been reported following antidepressant therapy. This finding supports the idea that

acetaminophen mimics the action of an antidepressant. Acetaminophen administration was

also shown to reduce the urinary 5-HIAA levels indicating diminished serotonin

catabolism, thereby indicating increased serotonin levels in the brain.

The results obtained in this part of the study have important clinical applications and could

possibly explain acetaminophen addiction and abuse. Acetaminophen, could possibly be

used as an effective, mild antidepressant in cases where cost of therapy is an issue. Since

acetaminophen possibly acts as an antidepressant, care should be taken when it is

administered in conjunction with known antidepressant drugs as it could result in the

potentially dangerous serotonin syndrome. The findings from this study have generated

several possible areas of research. 

9.3 Possible future areas of work cultivated by this study

The toxicology part of this study needs to be further investigated. Several more

experiments on DMF and acetaminophen toxicology have to be performed before an
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accurate assessment can be made on the ability of melatonin as a hepatoprotectant against

these compounds. The measurement of the liver transaminases (alanine and aspartate)

could prove valuable. A rapid rise in the activity of these enzymes has been reported in

cases of serious liver damage. The effect of melatonin on the activity of these enzymes

would be indicative of its ability, or  lack of ability, to reduce the liver damage.

Hepatoprotectants such as N-acetylcysteine are able to reduce the activity of these

enzymes. 

Another enzyme that can be studied is cytochrome P450, as this enzyme is responsible for

formation of the toxic metabolite N-acetyl-benzoquinoneimine. Inhibitors of this enzyme

can reduce the severity of organ damage. It would be interesting to determine if melatonin

could alter the activity of  this enzyme.

The lipid peroxidation technique employed in this study is widely used. However, there are

more reliable and sensitive methods available for determining peroxidation of cell

membranes. These techniques include HPLC analysis, and antibody techniques, and will

definitely produce more accurate and reliable results. The only negative aspect of using

these techniques is the cost involved. 

In vitro chemical studies can also be performed to ascertain whether or not melatonin is

able to form complexes with acetaminophen, and its metabolite, N-acetyl-

benzoquinoneimine, and by doing so possibly inactivate these compounds. This

complexation can be studied using techniques such as infra-red and UV spectroscopy. 

The antidepressant action of acetaminophen can also be further investigated. The action of

acetaminophen on monoamine oxidase activity could clarify the antidepressant mechanism

of acetaminophen, as several antidepressants are known to inhibit this enzyme. There are

several short and relatively simple assays to determine the activity of monoamine oxidase.
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Acetaminophen should also be compared with known antidepressants, in terms of their

ability to inhibit TDO activity, and increase brain serotonin levels. This would determine

the potency of acetaminophen as an antidepressant. The effect of acetaminophen on

tryptophan hydroxylase could also be determined. This enzyme is the rate-limiting step in

brain serotonin synthesis, and could be a target for acetaminophen, thereby clarifying the

antidepressant action of acetaminophen.

The possible antidepressant activity of acetaminophen has important clinical implications,

and should definitely be examined in greater detail. 
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Appendix 1

Animals

All the work involving the use of animals was approved by the Rhodes University animal

ethics committee. The animals used throughout this study were male wistar rats weighing

250-300g. The animals were housed in opaque plastic cages with metal grid floors and

covers, under a diurnal lighting cycle 12 light:12 dark with food and water ad libitum. The

intensity of the light guring the 12 hour light phase was approximately 300 µWatts/cm2.

The temperature of the animal room was maintained between 20oC  and 25oC. The cages

were cleaned daily. 
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Appendix 2

Sacrificing and dissection of the animals

The rats were killed swiftly by cervical dislocation and rapidly decapitated. The top of the

skull was removed by making an incision through the bone on either side of the head.

Using a pair of forceps, the skull was lifted, exposing the pineal gland and brain. The

pineal glands and brains were either used immediately or stored at -70oC until needed. 

To remove the livers, a mid-ventral incision was made through the abdominal musculature

from the pelvic region to the posterior edge of the sternum. A transverse cut was made

anteriorly to expose the liver, which was removed carefully. The livers were either used

immediately or stored at -70oC until needed. 
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Appendix 3

Protein determination

Materials

Folin & Ciocalteu’s reagent was purchased from Saarchem (PTY) LTD, Krugersdorp,

South Africa. The Bovine serum albumin (BSA) was supplied by Sigma Chemical Co, St

Louis, MO, USA. All other chemicals and reagents were obtained locally and were of the

highest available purity.

Protein Determination

A modification of the method employed by Lowry et al, 1950 was used throughout this

study. 6ml of alkaline copper reagent (1ml 1% copper sulphate, 1ml 2% sodium tartrate,

and 98ml 2% sodium carbonate) was added to 1ml homogenate in a set of clean test tubes.

The tubes were mixed and allowed to stand at room temperature for ten minutes.

Following this, 0.3ml of the Folin-Ciocalteu reagent was added to the tubes. The tubes

were then mixed and allowed to stand in the dark for 30 minutes at room temperature.

After this period the absorbance was read at 500nm using a Shiamdzu UV-160 A UV-

visible spectrophotometer. A standard curve (0-300µg/ml) was also generated in the same

manner, using 1ml BSA instead of homogenate.
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Figure 45: Protein standard curve (r2 = 0.999).
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Figure 46: Lipid peroxidation standard curve (r2 = 0.999).
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Figure 47: Melatonin standard curve (r2 = 0.998)
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Figure 48: Serotonin standard curve (r2 = 0.991).
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Figure 49: 5-HIAA standard curve (r2 = 0.996).
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