

Developing SOA Wrappers for

Communication Purposes in Rural Areas

A thesis submitted in fulfillment of the requirements of the degree

Master of Science in Computer Science

at

University of Fort Hare

by

Jimmy Samalenge

November 2010

i

Acknowledgements

First and foremost I want to thank God, My Heavenly Father and Christ Jesus, My Lord and

Saviour. Father, it has been a sweet and sour two years of research, but through it all, You

taught me how to put my trust in You. You are the Wind beneath my wings.

To my supervisor Dr Mamello Thinyane: Sir, I want to thank you for your desire to get us to

research more and work hard.

To my sponsor Telkom SA: Thank you for helping me further my studies through your

financial support.

To my lovely wife and my family: thank you for encouraging me to press forward every time

I thought of giving up. Thank you for your prayers and support.

To my classmates, it was nice working together as a family. God bless you all.

ii

Declaration

I, Jimmy Samalenge (Student Number: 200507134), the undersigned acknowledge that all

references are accurately recorded and, unless stated otherwise, the work contained in this

dissertation is my own original work.

Signature:………………………………………………………………….

Date:……………………………………………………………………….

iii

Publications

Samalenge, J. & Thinyane, M. (2009). Deploying Web Services in Rural Communities for

Services of Personal Communication Synchronous and Asynchronous. SATNAC conference,

Swaziland.

Samalenge, J., Ngwenya, S., Kunjuzwa, D., Hlungulu, B., Ndlovu, K., Thinyane, M., &

Terzoli, A. (2010). Technology Solutions to Strengthen the Integration of Marginalized

Communities into the Global Knowledge Society. IST Africa 2010 conference, Durban,

South Africa.

Samalenge, J. & Thinyane, M. (2010). Web services communication in a local area network

for marginalized communities. ZAWWW 2010 conference, Durban, South Africa.

iv

Acronyms

3GPP 3rd Generation Partnership Project

AMR Adaptive Multi-Rate

COFISA Cooperative Framework on Innovation Systems between Finland and

South Africa

CSD Circuit Switched Data

DBMS Database Management System

DNS Domain Name Service

EAIF External Application Interface

FOSS Free Open Source Software

GIF Graphics Interchange Format

GPRS General Packet Radio Service

GSM Global System for Mobile communications

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HTTP over SSL

IBM International Business Machines

ICT Information and Communication Technology

ICT4D Information and Communication Technology for Development

IK Indigenous Knowledge

IMAP Internet Mail Access Protocol

ISP Internet Service Provider

IM Instant Messaging

JPEG Joint Photographic Experts Group

LGPL Lesser General Public License

LLiSA Living Labs in Southern Africa

MIDI Musical Instrument Digital Interface

MIME Multipurpose Internet Mail Extensions

MMS Multimedia Message Service

MMSC Multimedia Message Service Centre

MP3 MPEG Layer-3

MRAs Marginalised Rural Areas

v

MTA Mail Transfer Agent

OMA Open Mobile Alliance

OS Operating System

PC Personal Computer

PNG Portable Network Graphics

PHP Hypertext Pre-processor

POP Post Office Protocol

SIM Subscriber Identity Module

SLL Siyakhula Living Lab

SMIL Synchronized Multimedia Integration Language

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

TTS Text To Speech

UDDI Universal Description, Discovery, and Integration

UI User Interface

URL Universal Resource Locator

VAS Value Added Service

VSAT Very Small Aperture Terminal

WAP Wireless Application Protocol

Wi-Fi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

WSDL Web Service Description Language

W3C World Wide Web Consortium

WYSIWYG What You See Is What You Get

XML eXtensible Markup Language

XMPP Extensible Messaging and Presence Protocol

vi

Abstract

The introduction of Web Services as a platform upon which applications can communicate

has contributed a great deal towards the expansion of World Wide Web technologies. The

Internet and computing technologies have been some of the factors that have contributed to

the socio-economic improvement of urban and industrial areas. This research focuses on the

application of Service-Oriented Architecture (SOA) and Web Services technologies in

Information and Communication Technologies for Development (ICT4D) contexts. SOA is a

style used to design distributed systems, and Web Services are some of the common

realizations of the SOA. Web Services allow the exchange of data between two or more

machines in a simple and standardized manner over the network. This has resulted in the

augmentation of ways in which individuals in a society and in the world communicate. This

research aims to develop a SOA-based system with services that are implemented as Web

Services. The system is intended to support communication activities of Dwesa community

members. The communication methods identified as the most commonly used in the Dwesa

community are Short Message Services (SMSs) and voice calls. In this research we have

identified further methods (i.e. Multimedia Message Service, Electronic mail and Instant

Messaging) to augment communication activities in Dwesa.

The developed system, therefore, exposes SMS Web Service, MMS Web Service, Email

Web Service and IM Web Service that are consumed in machine-to-machine, machine-to-

person and person-to-person types of communication. We have also implemented a one-stop

communication shop, through a web portal which provides interfaces to the different

communication modules.

Elaborate functional and usability testing have also been undertaken to establish the viability

and end-user acceptance of the system respectively. This research has provided the initial

validation of the effectiveness of the SOA-based system in ICT4D contexts.

vii

Table of Contents

Acknowledgements ... i

Declaration.. ii

Publications .. iii

Acronyms ... iv

Abstract .. vi

Table of Figures.. xii

Table of Listings .. xiv

1. INTRODUCTION .. 2

1.1. Introduction ... 2

1.2. Research Context and Scope ... 2

1.3. Research problem .. 3

1.4. Research Objectives .. 3

1.5. Research Methodology .. 4

1.6. Research Deliverables ... 5

1.7. Structure of Thesis .. 5

1.8. Conclusion ... 6

2. LITERATURE REVIEW .. 8

2.1. Introduction ... 8

2.2. Information and Communication Technologies (ICTs) .. 8

2.3. ICT4D.. 9

2.4. ICT4D Technologies ... 10

2.4.1. Wireless Networks ... 10

2.4.2. Mobile Phones ... 11

2.4.3. Social Media .. 13

2.5. ICT4D methodology: Living Labs .. 14

2.5.1. Definition of a Living Lab ... 14

2.5.2. Origin of Living Labs .. 14

2.5.3. Living Labs in Southern Africa (LLiSA)... 15

viii

2.6. Siyakhula Living Lab (SLL) ... 15

2.6.1. SLL location: Dwesa.. 16

2.6.2. SLL Objectives. ... 17

2.6.3. SLL Infrastructure .. 17

2.6.4. SLL eService applications ... 19

2.7. Service-Oriented Architecture (SOA) ... 21

2.7.1. Definition ... 21

2.7.2. Origin ... 21

2.7.3. SOA Motivation ... 22

2.7.4. Web Services ... 24

2.7.5. History of Web Services .. 24

2.7.6. Web Services Standards ... 25

2.7.7. Web Services Architecture .. 25

2.7.8. Web Services Development Phases ... 26

2.8. Related Work... 27

2.9. Conclusion ... 27

3. TECHNOLOGIES REVIEW .. 29

3.1. Introduction ... 29

3.2. Hardware Required ... 29

3.3. Software Required ... 29

3.3.1. Kannel .. 29

3.3.2. Mbuni ... 31

3.3.3. Bind9 .. 32

3.3.4. Postfix .. 32

3.3.5. Openfire ... 33

3.4. Libraries Required ... 33

3.4.1. NuSOAP .. 33

3.4.2. MMSLib ... 33

3.4.3. XMPPHP.. 34

ix

3.5. Conclusion ... 34

4. THE SYSTEM DESIGN .. 36

4.1. Introduction ... 36

4.2. Functional and non-functional requirements specification 36

4.2.1. Functional requirements... 36

4.2.2. Non-functional requirements ... 36

4.3. The Design Scope.. 37

4.4. The System Architecture ... 37

4.5. The User Interface Layer... 38

4.6. SOAP-Server and SOAP-Client .. 39

4.7. SMS Web Service Architecture .. 40

4.8. MMS Web Service Architecture ... 43

4.9. Email Web Service Architecture ... 45

4.10. IM Web Service Architecture .. 47

4.11. System‟s Users .. 49

4.12. Conclusion ... 49

5. THE IMPLEMENTATION... 51

5.1. Introduction ... 51

5.2. SOAP-server.. 51

5.3. SMS Web Service ... 54

5.3.1. The Method .. 54

5.3.2. The Gateway: Kannel .. 55

5.3.3. Connecting to Kannel .. 56

5.4. MMS Web Service .. 58

5.4.1. The method .. 58

5.4.2. The gateway: Mbuni .. 58

5.4.3. Connecting to Mbuni ... 59

5.5. Email Web Service .. 60

5.5.1. The method .. 60

5.5.2. The DNS .. 60

5.5.3. The MTA: Postfix .. 61

x

5.5.4. POP/IMAP Server: Dovecot .. 62

5.6. IM Web Service .. 62

5.6.1. The Method .. 62

5.6.2. The XMPP Server .. 62

5.6.3. Configuring Openfire and Apache HTTP Server .. 63

5.6.4. The IM Client ... 64

5.6.5. Connecting to the XMPP server .. 64

5.7. SOAP-Client.. 65

5.8. The login interface .. 68

5.9. The registration interface .. 71

5.10. The welcome page ... 73

5.11. The logout page ... 74

5.12. SMS Web Service UI .. 75

5.13. MMS Web Service UI ... 77

5.14. EMAIL Web Service UI .. 78

5.15. IM Web Service UI .. 80

5.16. Conclusion ... 81

6. TESTING AND RESULTS.. 83

6.1. Introduction ... 83

6.2. Testing of back-end Applications ... 83

6.2.1. Kannel .. 83

6.2.2. Mbuni ... 84

6.2.3. Postfix .. 84

6.3. Non-functional testing ... 85

6.3.1. Compatibility ... 85

6.3.2. System Usability Scale. ... 85

6.4. Functional Testing ... 90

6.4.1. Registration .. 90

6.4.2. Login .. 91

6.4.3. Change Password ... 92

xi

6.4.4. Recover Password .. 93

6.5. Conclusions ... 94

7. DISCUSSION AND CONCLUSION .. 96

7.1. Introduction ... 96

7.2. Achievements .. 96

7.3. Challenges and limitations .. 97

7.3.1. Challenges .. 97

7.3.2. Limitations ... 97

7.4. Future work ... 97

7.5. Overall conclusion... 98

8. REFERENCES ... 100

9. APPENDIX A – Basic Technologies Required .. 108

10. APPENDIX B - System Implementation Screenshots ... 109

11. APPENDIX C - Configuration files .. 111

12. APPENDIX D – Code Snippets ... 119

13. APPENDIX E – Further system testing and results .. 130

14. APPENDIX F – Further usability testing results .. 131

xii

Table of Figures

Figure 2.1: Mobile subscribes. Mobile supply (Hahn, 2008) .. 11

Figure 2.2: Communication within Mpume (Pade, et al. 2009) .. 13

Figure 2.3: Communication with surrounding villages (Pade, et al. 2009) 13

Figure 2.4: SLL Overview ... 16

Figure 2.5: Dwesa location .. 17

Figure 2.6: SLL on the ground ... 18

Figure 2.7: A view of point-to-point integration and SOA (Kumar, et al. 2006). 22

Figure 2.8: System without SOA (Reitman, et al. 2007) ... 23

Figure 2.9: System with SOA (Reitman, et al. 2007) .. 24

Figure 3.1: Kannel as WAP gateway ... 30

Figure 3.2: Kannel as SMS gateway (Fink, et al. 2010) .. 30

Figure 3.3: Mbuni as MMS gateway (Mbuni, 2004) ... 32

Figure 4.1: System's overview ... 38

Figure 4.2: UI Architecture .. 39

Figure 4.3: SMS Web Service architecture.. 41

Figure 4.4: SMS Web Service sequence diagram .. 42

Figure 4.5: MMS Web Service architecture .. 43

Figure 4.6: MMS Web Service sequence diagram .. 44

Figure 4.7: Email Web Service Architecture ... 45

Figure 4.8: Email Web Service sequence diagram .. 46

Figure 4.9: IM Web Service Architecture .. 47

Figure 4.10: IM Web Service sequence diagram ... 48

Figure 4.11: Use Case diagram .. 49

Figure 5.1: NuSOAP interface ... 53

Figure 5.2: bearerbox and smsbox cron jobs ... 56

Figure 5.3: Interaction between the UI and SOAP-server via a SOAP-client. 68

Figure 5.4: Login page UI .. 70

Figure 5.5: Recover password UI .. 70

Figure 5.6: Change password UI ... 71

Figure 5.7: Validation of the Registration form ... 72

Figure 5.8: Welcome page ... 73

Figure 5.9: the user has successfully logged out.. 75

xiii

Figure 5.10: SMS User Interface ... 76

Figure 5.11: MMS User Interface .. 77

Figure 5.12: Email User Interface .. 79

Figure 5.13: IM User Interface .. 80

Figure 5.14: Link to the IM UI .. 80

Figure 6.1: bearerbox at work. .. 83

Figure 6.2: smsbox at work. ... 83

Figure 6.3: mmsbox at work ... 84

Figure 6.4: User name Jimmy has received the test email. .. 84

Figure 6.5: A java application communicating with the SOAP-server. 85

Figure 6.6: User's background ... 86

Figure 6.7: User Registering .. 91

Figure 6.8: Registration of User successful ... 91

Figure 6.9: User logging in .. 92

Figure 6.10: User successfully logged in ... 92

Figure 6.11: User gets a confirmation on the UI. .. 93

Figure 6.12: Password successfully changed in the users' database. 93

Figure 6.13: User has successfully received a temporary password via email. 94

xiv

Table of Listings

Listing 5.1: Creating a SOAP-server using NuSOAP ... 51

Listing 5.2: Part of the WSDL document .. 54

Listing 5.3: smsbox group. ... 56

Listing 5.4: sendsms-user group .. 57

Listing 5.5: mbuni group. ... 59

Listing 5.6: send-mms-user group.. 59

Listing 5.7: wapbox group ... 60

Listing 5.8: db.dwesaproject.com zone file ... 61

Listing 5.9: main.cf .. 61

Listing 5.10: Lines 116 and 121 have been uncommented in httpd.conf 63

Listing 5.11: Setting Apache XMPP proxy rule .. 64

Listing 5.12: Creating the SMS SOAP-client using NuSOAP .. 66

Listing 5.13: SMS SOAP-Client's call function. ... 67

Listing 5.14: The auth.php code .. 69

Listing 5.15: index.php .. 69

Listing 5.16 logout.php .. 74

1

CHAPTER

I

2

1. INTRODUCTION

1.1. Introduction

This chapter introduces the research presented in this thesis and provides a detailed discussion

of the research problem, the key objectives of the research, and the methodology followed to

offer a solution to the problem. It also discusses the scope within which the research is done

and what is expected to be delivered at the end of the research; before summarising its

content, it describes the structure of the thesis.

1.2. Research Context and Scope

This project is undertaken within the context of the Siyakhula Living Lab (SLL), which is

based in Dwesa. The SLL is an intervention that explores the use of Information and

Communication Technologies (ICTs) for the socio-economic development of marginalized

communities through the development of various eServices. Both the SLL and Dwesa are

discussed in detail in the second chapter.

As the local market is being replaced by the global market, industries have focussed on

becoming increasingly IT flexible in order to keep up with the market‟s demands. The focus

has been on adopting an approach that allows systems to remain scalable and flexible while

growing. The approach is known as Service-Oriented Architecture (SOA) (Josuttis, 2007).

SOA has become the architecture that many industries and organizations use to provide

support for processes distributed between systems on a local, national and international scale.

Departments and business units, in many industries, have started to use the SOA approach to

communicate with systems from other departments and/or business units. One of the

infrastructures which is used to implement the concept of SOA is Web Services (Josuttis,

2007; Oracle, 2008).

The SOA approach has also been utilized in the SLL context to provide a unified eServices

middleware. This allows the Information and Communication Technologies for Development

(ICT4D) eServices to be deployed in a distributed, reusable and flexible manner. In view of

this evolution of the SLL eServices platform, this research aims to develop a SOA system that

enhances and augments communication within the SLL and the Dwesa community.

3

1.3. Research problem

This research addresses two key problems:

 There are a number of software applications that have been developed within the context

of SLL which are almost stand-alone applications. All of these applications interact with

the end-user in one way or another. Wertlen states that the effectiveness of these

applications can be improved by getting them to collaborate, especially at a contextual

level (Wertlen, 2010). As a result, a SOA middleware framework has been deployed in

the SLL to create a platform upon which the applications collaborate. While there are core

services developed within the middleware (e.g. authentication, profile, data persistence,

etc.), it is imperative that other services are developed to support the functioning of the

SLL eService platform. Such supporting services include communication between various

system modules (e.g. notifications from the network monitoring system). The

development of these SOA based communication services is the first problem that this

research addresses.

 The SLL exists to provide new technologies and skills to the rural community of the

Mbashe municipality, specifically in Dwesa, to improve the quality of life of the people

(Pade, et al. 2009). One of the predominant needs within this community is for

communication both within the community and also with other distant communities. As

such, relevant communication services, consumable by the end users, have to be

developed. This is the second problem that the research addresses.

1.4. Research Objectives

The research has two main objectives:

 Objective one: the research aims to deploy a SOA system which implements its

functionalities as Web Services for the purpose of enhancing communication at machine-

to-machine and machine-to-person levels within the SLL.

o Machine-to-machine: The focus of this aspect is on the communication between this

system‟s Simple Object Access Protocol (SOAP)-server and other eService

applications deployed within SLL. These applications typically require certain

services, such as the communication services offered by this project, in their

functional requirements. As a result, this project focuses on deploying a SOAP-based

4

system in such a way that the other eService applications can easily communicate with

it and place their requests.

o Machine-to-person: The focus of this aspect is to expose the Web Services in such a

way that a machine can consume them for the purpose of communicating with a

person. For instance, the eHealth system needs to notify its users, via email, every

time the system administrator adds new information in the database. The eHealth

system can be programmed in such a way that, whenever new information is added to

the database, it automatically sends a pre-set email by requesting the service from the

SOAP-server.

In view of this, the research aims to develop SOA wrappers that offer communication

services, such as Short Message Service (SMS), Multimedia Message Service (MMS),

Electronic mail (Email), and Instant Messaging (IM) which form part of the SOA middleware

framework (mentioned under section 1.3) and eliminate the need for each application to

produce its own communication service.

 Objective two: the research also aims to provide a person-to-person type of

communication. The focus of this aspect is to establish a one-stop-shop for the Dwesa

community. This one-stop-shop is a single web-page interface from which users can

consume the Web Services for social and business communication.

The following are, therefore, the key sub-objectives of the project:

 Understanding the concept of SOA.

 Identifying key communication requirements within the SLL context.

 Investigating the viability of a SOAP-based Web Services system for communication

purposes within the SLL.

 Implementation of the actual system.

 Establishing the usefulness of the system developed.

1.5. Research Methodology

This research methodology is based on the following approach:

 The early stage of the literature review has been based on understanding the concept of

SOA and Web Services, especially SOAP-based Web Services.

5

 Further literature review has been consulted in order to understand how SOAP-based Web

Services are implemented. Related work has been thoroughly studied in order to

understand the development phases of a SOAP-based Web Service and the technologies

needed.

 Trips to the research area have been made in order to study the feasibility of a SOAP-

based Web Services system for communication purposes within the SLL.

 Implementation and testing of the system prototype has been done at departmental level in

order to assess the usability of the system.

1.6. Research Deliverables

This project has allowed the author to study the concept of SOA as an approach towards

developing a scalable and flexible system and having an in-depth understanding of Web

Services as one of the foundations of the service-oriented environment.

A system that offers its functionality as Web Services for communication purposes at

machine-to-machine, machine-to-person and person-to-person levels, is developed and a web-

based interface is added to it to provide a user-friendly user interface (UI).

1.7. Structure of Thesis

The rest of the thesis is structured as follows:

 Chapter 2: Literature Review

This chapter reviews the concept of ICT and distinguishes between old and new ICTs. It also

reviews the concept of ICT4D and describes and number of technologies used in ICT4D

contexts. It also introduces the research area and the concept of Living Labs. It defines the

approach followed in developing the system and discusses related work.

 Chapter 3: Technologies Review

This chapter identifies and discusses the relevant technologies for the implementation of the

proposed system.

 Chapter 4: The System Design

6

This chapter provides a specification of the key system requirements and illustrates the

overall design for the complete system consisting of a SOAP-server, SOAP-clients, Web

Services and the user interface.

 Chapter 5: The System Implementation

This chapter discusses the steps that are followed to implement the entire system.

 Chapter 6: System Testing and Results

This chapter discusses the different types of testing the system goes through and the results

thereof.

 Chapter 7: Discussion and Conclusion

This chapter summarises the work undertaken in this project. It also summarises all successes

and challenges in the deployment of the system.

 References

 Appendices

1.8. Conclusion

This chapter introduces the research study and discusses, in detail, the research problem, the

aims and objectives of the project and the structure of the research document. The next

chapter discusses the literature consulted during the research process.

7

CHAPTER

II

8

2. LITERATURE REVIEW

2.1. Introduction

The previous chapter focuses on introducing the project. This chapter starts by discussing the

concept of ICTs and its contribution to rural development. It also considers Dwesa as a

representative of rural areas in Africa and goes on to discuss two different approaches

towards ICT4D and the concept of living labs. It briefly describes the different Living Labs

that exist in Southern African and discusses, in detail, the Siyakhula Living Lab. It continues

by reviewing the approach that the system adopts at both its development and implementation

stages. Before concluding, the chapter directs its attention to a discussion of a related work

and its contribution to this project.

2.2. Information and Communication Technologies (ICTs)

The use of ICTs has made it possible for regional economies, societies and cultures to be

integrated into a global network of communication and trade, therefore offering a solution to

the distance factor; this is known as globalization (Sayo, 2004:85). They are also very

important for sustainable development in developing countries. They have contributed to the

changes seen in various aspect of life, such as education, economics, communications, travel

and in the way people do business (Thioune, 2003:12). One of the benefits of ICTs is they

allow information to be accessed and shared fast and easily, therefore allowing communities

to be part of the Knowledge Society.

ICTs are grouped into two categories: the “old” and the “new” ICTs. The “old” ICTs are

tools, such as newspapers, televisions and radios, which have been used from many

generations ago to disseminate information. These ICTs are cost-effective and do not require

any form of qualification or experience to be operated. On the other hand, the “new” ICTs are

referred to as new technologies, such as mobile phones, the Internet, personal computers and

many other new technologies used for information and communication purposes. The latter

are not as cost-effective as the former and they require certain levels of literacy, which does

not often come free of charge, in order to operate them. In spite of this, they have greater

advantages than the old ICTs and as a result they have been widely used at a socio-economic

level; below are the reasons why (Curtain, 2004).

9

 Interactivity: The new ICTs offer the ability for two or more parties to interact with each

other using two-way communication.

 Availability and Accessibility: The new ICTs, such as the Internet, can be available 24

hours a day making accessibility to information on a real time, synchronous or

asynchronous basis.

The new ICTs have permitted communities from various geographical locations to

communicate quickly and easily, hence eliminating the issue of geographical distance both in

the social and economic sectors.

As the new ICTs are widely used, there has been a progressive reduction in the relative cost

of communication although this differs from one region to another (Curtain, 2004).

In spite of the fact that new ICTs offer greater advantages than their older counterparts, the

issue of cost and literacy still remains one of the reasons why new ICTs are scarcely used in

rural areas. This has led to lack of access to ICTs infrastructure and services therefore

creating a digital divide between urban and rural areas (Curtain, 2004).

2.3. ICT4D

ICT4D refers to the use of ICTs within the field of socioeconomic development with the aim

of reducing poverty. This is a project that aims to eliminate the digital divide by exposing

communities in rural areas to a digital world through the use of ICTs. The lack of ICTs leads

the poor to a life which lacks education, income and wealth.

Heeks (2009) explains why the concept of ICT4D is of great importance. The economic,

social and political life in the 21
st
 century will become increasingly digital, and those who do

not have ICTs will be left behind. In order to have both the rich and the poor move with the

digital world, priority should be given to ICT applications for the poor.

There are two approaches to ICT4D (Curtain, 2004):

 ICT-driven: under this approach, ICTs are used as tools to promote economic growth.

This approach emphasizes that quick and easy ways of communication contribute to

economic development. A simple example of this type of approach is the use of

eCommerce platforms, in rural areas, to expose business men and women to a larger

market.

10

 ICT-in-support: under this approach, ICTs are used as support systems in on-going

projects. The projects already have their goals and objectives set in place, and ICTs are

then brought in to help fulfil the goals and objectives in a quicker and more advanced

way. An example of this is the use of ICTs in Education.

This project, being an ICT4D project, adopted the first approach. It took advantage of existing

ICTs in Dwesa to develop a system that will offer communication services to the Dwesa

community.

2.4. ICT4D Technologies

The following are some of the technologies used in ICT4D contexts:

2.4.1. Wireless Networks

Goldsmith (2005) states that a wireless network is commonly associated with a

telecommunications network which has interconnections between nodes that are implemented

without the use of wires.

WiMAX, Wi-Fi and mobile computer are being used to develop and implement eLearning

and wireless technologies in marginalized and rural areas (MRAs). Smyth (2005) states that

the use of broadband wireless standards and the implementation of mobile computing can

help to:

 Overcome the challenges of terrain, infrastructure, and finance to increase access,

 Deploy broadband quickly and cost-effectively to areas currently not served,

 Extend the benefits of digital education to previously unreachable populations.

The following is a list of wireless network ICT4D projects:

 Uganda‟s VSAT school-based Telecentre project: This project uses earth-satellite VSAT

technology in Uganda to connect schools and communities to the Internet with the aim of

creating access to knowledge, educational resources, in order to break isolation and thus

foster development opportunities (Schoolnet Uganda, 2007).

 Nepal wireless networking project: The main aim of this project is to bridge the digital

divide by means of wireless technology. This project has been able to reduce poverty,

create job opportunities, improve communication, encourage eCommerce and increase

the quality and availability of healthcare in the rural communities (Pun, et al. 2006).

11

 Fantsuam Foundation's Community Wireless Network: This project is undertaken in

Abuja, Nigeria. Its main purpose is to provide intranet and Internet access to local

educational institutions, faith-based institutions, health services, small enterprises and

individuals (Flickenger, 2008:309).

2.4.2. Mobile Phones

The demand of mobile phones in Africa has greatly increased over the past few years.

Africans are buying mobile phones at a world record rate and this revolution has transformed

commerce, healthcare and social lives. Africa is regarded as the fertile market for mobile

phones (LaFraniere, 2010).

Figure 2.1: Mobile subscribes. Mobile supply (Hahn, 2008) below shows that the demand of

mobile phones in Africa is so significant that it surpasses the actual supply of mobile phones.

Figure 2.1: Mobile subscribes. Mobile supply (Hahn, 2008)

Traditionally, operators targeted only urban areas, but the demand from rural and low income

areas has exceeded their expectations (N. Scott, et al. 2004). Mobile phones are changing the

face of the rural world by providing communication and other services at a low cost

(LaFraniere, 2010).

The expansion of mobile phones has contributed, to a large degree, to the development of

many sectors and aspects of life in Africa.

12

Burns (2010) has compiled a list of projects that show the contribution of mobile phones in

the development of African lives:

 Women and mobile phones: In Egypt, mobile services, such as SMS, are used by women

to report sexual harassment.

 Food security: In Uganda, women‟s groups share mobile phones and radios to participate

in agricultural radio shows and communicate with extension workers.

 Health: In Rwanda, the government has deployed mobile phone-based health information

systems that provide real-time reporting of field level health data. This allows the

government to take fast action.

 Literacy training: In Niger, Literacy training is done through SMS and mobile technology.

In times past, members of MRAs used word of mouth, community meetings, and the writing

of notes to communicate with each other (Pade, et al. 2009). The challenge with traditional

modes of communication is that they are greatly affected by distance. The further apart

communities are from one another the less communication exists between them. Mobile

phones have somehow dealt with the distance factor but their level of usage still remains

below average. This can be seen in Mpume
1
 where only 23% of the population owns mobile

phones and only 27% of the population have access to them. Those who own mobile phones

often use them when trying to communicate with someone who is considerably far away and,

as a result, they are able to reduce their costs (Pade, et al. 2009).

Below are two diagrams that show the use of different modes of communication between

members within the same village and between members of a village and its surroundings.

1
Mpume is one of the Villages in Dwesa. Dwesa is described in detail in section 2.6.1

13

Figure 2.2: Communication within Mpume (Pade, et al. 2009)

Figure 2.3: Communication with surrounding villages (Pade, et al. 2009)

2.4.3. Social Media

Kaplan and Haenlein (2010) define social media as "a group of Internet-based applications

that build on the ideological and technological foundations of Web 2.0, which allows the

creation and exchange of user-generated content."

Social media is not only a mere communication channel. It is the widest growing resource

since the Internet and the World Wide Web started. It is considered to be something that has

changed the way people interact with one another and the way companies interact with

14

clients. It is something that has changed the ways in which products and services are

marketed (Coetsee, 2010).

The following is a list of some popular social media:

 Google

 Facebook

 Yahoo

 Wikipedia

 Twitter

2.5. ICT4D methodology: Living Labs

Living Labs are one of the methodologies used in the ICT4D context.

2.5.1. Definition of a Living Lab

A Living Lab is a user-centred, open innovative ecosystem. It integrates a multidisciplinary

research approach and it is community driven. It is also defined as a vehicle designed to put

the concept of open-innovation into practice. By taking advantage of pools of creative

talents, imagination of the end-user and socio-cultural diversity, a Living Lab enables the

development of new services and products.

The concept of Living Labs adopts a triple-helix model of innovation. This model refers to

the convergence and crossing-over of the following sectors: public, private and academic

(Viale & Ghiglione, 1998). Eriksson, et al (2006) state that innovation generated from two out

of the three above sectors would have serious constraints. The triple-helix model has also, in

the SLL context, been adapted and referred to as the quadruple-helix model, to emphasize the

centrality of the end-users.

2.5.2. Origin of Living Labs

The concept of Living Labs was developed by Professor William J. Mitchell of the MIT

Media Lab and School of Architecture. He proposed user-centric research methods that will

help keep parties involved up to date with the continuously growing society and work

environment. The focus of his research methods is to identify and build prototypes, and to

evaluate multiple solutions (Helsinki Living Lab, 2007).

15

2.5.3. Living Labs in Southern Africa (LLiSA)

LLiSA is a project that focuses at building a network and community of Living Labs

practitioners in Southern Africa, with the purpose of advancing and supporting open user-

centric innovations and Living Labs in South Africa (Living Labs in Southern Africa, 2010).

There are a number of Living Labs that are part of the LLiSA (Living Labs in Southern

Africa, 2010):

 Athlone Living Lab

 Bushbuck Ridge Living Lab

 Limpopo Living Lab

 Moutse Living Lab

 Soshanguve Living Lab

 Sekhukhune Living Lab

2.6. Siyakhula Living Lab (SLL)

The SLL was initiated in 2005 in partnership between the Telkom Centre of Excellence at

Fort Hare University and Rhodes University. In 2008, it was formalized into the Siyakhula

Living Lab through the financial support of the Cooperative Framework on Innovation

Systems between Finland and South Africa (COFISA).

This project is a multi-stakeholder, multidisciplinary intervention consisting of academia,

industry, government and marginalized communities. The project facilitates user-driven

innovation in the ICT4D domain through the support of other entities within its ecosystem

(Dalvit et al, 2007).

16

Figure 2.4: SLL Overview

2.6.1. SLL location: Dwesa

Dwesa is a rural area that is, in many ways, a representative of rural areas in South Africa and

in the rest of the African continent.

Dwesa is located in the Wild-Coast, in Transkei, in the Eastern Cape province of South

Africa. The Wild Coast is situated far from large cities, consequently far from tarred roads

and airports. It recently saw the arrival of piped water and the area is currently undergoing the

installation of electrical poles and electrical connections into homes.

Dwesa has five villages, namely Mpume, Ngwane, Nqabara, Ntokwane and Nondobo, and its

population is currently 15000 people who live in, roughly, 2000 households. The locals have

no experience in industrial services because this is an area of subsistence farming and migrant

labour and they are also heavily dependent on government subsidies (Timmermans, 2004).

17

The presence of a nature reserve and the rich cultural heritage of Dwesa give the region great

eco-cultural tourism potential. There are two major projects undertaken in Dwesa that aim to

contribute towards its socio-economic improvement, namely the marine conservation project

undertaken at the nature reserve and the Siyakhula Living Lab project which is described

under section 2.6 of this document.

Figure 2.5: Dwesa location

2.6.2. SLL Objectives.

The following are the objectives of the SLL (Dalvit et al, 2007):

 To develop innovative user-driven context-sensitive eServices for the direct benefit of the

communities.

 To distribute community telecommunication infrastructure.

 To provide community empowerment through computer literacy training.

 To network the community and build the bridge to a knowledge society.

2.6.3. SLL Infrastructure

The following image depicts the Local Area Network (LAN) deployed in Dwesa.

18

Figure 2.6: SLL on the ground

19

2.6.4. SLL eService applications

There are a number of projects under the SLL umbrella. Most of them are web-based

eServices developed in the standard client/server environment.

The following is a list of web-based eServices applications already deployed:

 eCommerce - this service was developed to expand the financial revenue spectrum by

exposing local business products to the rest of the world (since they only depended on

local revenues) and, in the process, to expose the same business people to the use of ICTs

for business purposes (Dalvit, et al. 2007).

 eGovernment - Dwesa is located 47 km outside of Willowvale. In order for the

community of Dwesa to access basic public services (e.g. applying for an identity

document), they have to travel the distance. Disadvantaged rural communities in South

Africa have suffered from little to no public services provision. The eGovernment system

was developed to remedy such issues (Jakachira, 2009).

 eJudiciary – Dwesa legal issues have been always been discussed at the chief‟s house

under a tree, and once the issues have been resolved, the people are dismissed. A few

months later, a little is remembered concerning the matter. The eJudiciary services

augments traditional judiciary processes by making available a way of safeguarding vital

legal data, and guaranteed persistence and availability of data. It also makes legal

information easily available to the public (M. Scott, 2010).

The following is the list of eServices applications that are still being developed:

 Investigating next-generation services architectures for ICTD contexts: This project

investigates the current trends that will shape the future architectures of web applications.

Based on the projection of the technology, the project seeks to develop frameworks that

will enable the seamless migration and integration of these new developments in service

platforms for marginalized rural areas.

 Developing a help-desk system for a multi-purpose ICT platform in a marginalized

setting, Dwesa (A case study): This project aims to enable technical sustainability and up-

skilling in the community.

20

 Novel interaction techniques for mobile phones: This project aims to investigate novel

interaction techniques for mobile applications developed in the ICTD context.

 Cost-sharing and revenue management system for Siyakhula Living Lab: The project

investigates financial sustainability in Dwesa, and explores the implementation of

context-sensitive billing matrices for ICTD interventions.

 Developing eServices adaptors for the SOA middleware: This project aims to develop

Web Services adaptors for eServices that have been developed as standalone web

applications previously in the Siyakhula Living Lab. This is to enable these services to be

accessible through the SOA middleware that is being developed as the core of the SLL

eservices platform.

 Building an e-health component for a multipurpose communication centre: This project

aims to develop an eHealth portal for Dwesa, using the latest tools available for the

semantic web. The portal will also facilitate the collection and codification of local

medical Indigenous Knowledge.

 Experimentation with Mobile WiMAX in ICTD contexts: This project will investigate the

viability and effectiveness of Mobile WiMAX for network service delivery in ICTD

contexts.

 Developing Xhosa audio/telephony tools for ICTD contexts: This project will build Text

To Speech and Automatic Speech Recognition tools for the Xhosa language, to be used

within the Siyakhula Living Lab for the provision of telephony based services.

 Exploring user-driven telephony services in an ICTD context: This project aims to

develop a platform to facilitate user-driven orchestration of telephony services

 Deployment and extension of a converged WiMAX/WiFi network for Dwesa: This

project aims to deploy further WiMAX points on the Siyakhula Living Lab network, and

21

to setup WiFi hotspots around the schools. The investigation of the effectiveness of the

converged WiMAX / WiFi network for the ICTD context will be undertaken.

All the projects listed above collaborate through the SOA middleware framework mentioned

in section1.3. The next section introduces the concept of SOA.

2.7. Service-Oriented Architecture (SOA)

This section discusses the SOA and how it can be implemented in systems development.

2.7.1. Definition

SOA has no fixed definition. The World Wide Web Consortium (W3C) refers to SOA as a

set of components which can be invoked, and whose interface descriptions can be published

and discovered. According to Wikipedia, SOA expresses a software architectural concept

that defines the use of services to support users‟ requirements.

Two terms need to be considered when it comes to SOA (Srinivasan & Treadwell, 2005).

 Service: This is a software component that offers functionality to a service requester via

the network.

 Architecture: This refers to the style or manner in which the system is designed; it

describes the system‟s purpose, functions, externally visible properties and interfaces.

After defining the two terms, SOA can be defined as a style of designing a reliable distributed

system that provides functionality as services. SOA refers only to the design of the system

and not its implementation.

Unlike the traditional point-to-point architectures, SOA comprises of loosely-coupled and

highly interoperable application services.

2.7.2. Origin

Josuttis (2007:7) states that „Alexander Pasik, a former analyst at Gartner, coined the term

SOA for a class on middleware that he was teaching in 1994. Pasik was working before

eXtensive Markup Language or Web Services were invented, but the basic SOA principles

have not changed. Pasik was driven to create the term SOA because “client/server” had lost

its classical meaning. Many in the industry had begun to use “client/server” to mean

distributed computing involving a PC and another computer. A desktop “client” PC typically

22

ran user-facing presentation logic, and most of the business logic. The back-end “server”

computer ran the database management system, stored the data, and sometimes ran some

business logic. In this usage, “client” and “server” generally referred to the hardware. The

software on the front-end PC sometimes related to the server software in the original sense of

client/server, but that was largely irrelevant. To avoid confusion between the new and old

meanings of client/server, Pasik stressed “server orientation” as he encouraged developers to

design SOA business applications.

2.7.3. SOA Motivation

Unlike the point-to-point integration which forces the service provider to attend to clients‟

needs separately, which is time consuming and offers little reuse of the integration interface,

SOA provides an environment within which providers design and offer their products as

reusable services. If the products are correctly created, not only will they provide services and

support to current users, but also to unanticipated ones resulting in providers not having to

deal with users as separate entities (Kumar, et al. 2006).

Figure 2.7: A view of point-to-point integration and SOA (Kumar, et al. 2006).

The SOA approach emphasises loose coupling between interacting services (Josuttis, 2007;

Srinivasan & Treadwell, 2005).

The loose coupling concept focuses on reducing system dependencies which in turn reduce

system failures. Under this concept, the following can be achieved (Srinivasan & Treadwell,

2005):

23

 Reusability: Loosely coupled services can be reused. The concept of reusability saves a

lot of time at the development stage, because developers can take already existing

services and reuse them to meet new business requirements.

 Interoperability: One of the objectives of the SOA approach is for the client and services

to communicate with each other in such a way that they understand each other regardless

of platforms, systems and languages.

 Scalability: Services can be removed or added as demand varies.

 Flexibility: Unlike tightly-coupled services which share semantics, states and libraries and

are difficult to constantly modify, loosely-coupled services are more flexible because they

can be easily updated and modified to keep up with the constantly growing market needs

and requirements.

 Cost Efficiency: The fact that loosely-coupled services are reusable and flexible makes

them less costly.

Below, Figure 2.8 shows a system that runs three processes which have a login/Authentication

service duplicated within each of them. This is the approach the SLL followed when

developing current eServices (eCommerce, eGovernment and eJudiciary). Directly below it,

Figure 2.9 shows the same system but, this time, migrated to SOA. The login/Authentication

service is no longer part of each process, but it has become a separate service which allows

the user to login once and have access to each process.

Figure 2.8: System without SOA (Reitman, et al. 2007)

24

Figure 2.9: System with SOA (Reitman, et al. 2007)

2.7.4. Web Services

Srinivasan and Treadwell (2005) state that Web Services are well suited as the basis of a

service oriented environment. Josuttis (2007:209) says that „Web Services are widely

regarded as the way SOA should be viewed in reality‟. They are not mutually dependent

because SOA is an architectural style while Web Services are an implementation technology.

According to Richards (2006:11), Web Services do not have a single definition. He states

that a Web Service can be defined as a software system that is designed to support machine-

to-machine interoperability over a network. A Web Service has an interface written Web

Service Description Language (WSDL), and it communicates with other systems using

SOAP messages in a way defined by its description. The communication is done over a

native network protocol such as HyperText Transfer Protocol (HTTP) in conjunction with

many other web-based standards (Richards, 2006).

2.7.5. History of Web Services

In the year 2000, Microsoft coined the term Web Services to describe a set of standards to

permit computer-to-computer communication via a network, which includes the Internet

(Josuttis, 2007:210).

25

Initially, Microsoft, and others, used SOAP as a protocol that uses eXtensible Markup

Language (XML) to transfer data over a connection such as HTTP and Transmission Control

Protocol/Internet Protocol (TCP/IP). Later in the same year, IBM joined Microsoft and

others; as a result the WSDL and the Universal Description, Discovery and Innovation

(UDDI) standards were brought into the picture. Oracle, HP and Sun announced the support

and deployment of Web Services standards in their products by the end of the year 2000

(Josuttis, 2007:210; Richards, 2006:10).

At present, there are more than 50 Web Services standards and 10 profiles, specified by

different standard bodies such as the W3C, OASIS, and the Web Services Interoperability

Organization (WS-I), which cover almost all areas of distributed computing and remote

service calls (Josuttis, 2007:210).

2.7.6. Web Services Standards

Web Services use five fundamental standards. Two of them existed before web Services

(Josuttis, 2007):

 XML: This element is used to code and decode data. It is used to describe models, format

and data type. Web Services standards are based on XML schema definition and XML

namespace.

 HTTP (This includes also HTTPS): This is a low-level protocol used by the Internet. It is

also used to access Web Services over the network using Internet technologies.

The following three are specific to Web Services:

 SOAP: This is the protocol that specifies how structured information implemented in

Web Services is exchanged in computer networks.

 WSDL: This is an XML document that describes the type of service available in the Web

Service and gives a detailed description of the actual Web Service.

 UDDI: This provides a mechanism for the client to find Web Services.

2.7.7. Web Services Architecture

Web services architecture comprises of three roles, which interact with each other. These

three roles involve three operations and they are all based on the Web Services artefacts

(Josuttis, 2007).

26

 Roles: Services provider, service requestor and service registry.

o The service provider: This can be the service owner or the platform upon which

the service is hosted.

o The service requestor: This can be a person requesting the service via a browser or

other services requesting the service through a back-end operation.

o The service registry: This is a registry in which service providers publish their

service descriptions. This registry can be searched by service requestors.

 Operations: Publish, find and bind.

o Publish: A service provider needs to publish a service description in order for it to

be accessible.

o Find: Under this operation, the service requestor either retrieves the service

description directly or queries the registry.

o Bind: After the service requestor has collected the service descriptions, under the

bind operation, the service is finally invoked using the binding details from the

service descriptions.

 Web Services artefacts

o Services: A service is a software module deployed on the network by the service

provider and it is invoked by the service requestor. A service is the

implementation of a Web Service where the interface is the service description.

o Service descriptions: These are published to a service requestor or to a registry and

they contain data type, operations, binding information and network location, to

say the basics.

2.7.8. Web Services Development Phases

There are four phases in the development lifecycle of Web Services (Josuttis, 2007).

 Build: This phase includes the following

o The development and testing of Web Services implementation.

o The definition of the service interface description.

o The definition of the service implementation description.

 Deploy: At this stage, executables for the Web Service are deployed into an executing

environment and the service descriptions are published to the service requestor or service

registry.

 Run: At this stage, the service is fully deployed and available to the service requestor

27

 Manage: Finally, the availability, quality of service, performance and security of the Web

Service is constantly managed and administered.

2.8. Related Work

The Alcatel XML Web Services project is closely related to this research. It is a suite of

powerful services that Alcatel offers to developers to benefit from its communication

solutions (Alcatel-Lucent, 2006).

This suite offers the following services (Alcatel-Lucent, 2006):

 My Phone Web Services: They allow an external application to handle a user‟s calls on

his/her phone set and to configure a subset of parameters of the phone set. Those

parameters define the behavior of the phone set.

 My Messaging Web Services: They are used to interact with an Alcatel Voicemail 4635

or an Alcatel Voice Mail 4645.

 My Assistant Web Services: They give an external application the ability to set and

review the rules that route the incoming calls of a user.

 My Management Web Services: They allow the configuration of a subset of parameters of

a user‟s phone set. Those parameters are modified when assigning a phone set to an

employee.

Though the services offered, in the above project, are not identical to those of this research,

the concept, style and use of technologies are closely related.

2.9. Conclusion

This chapter discusses the literature that was consulted prior to the system‟s development. It

defines, in detail, the proposed approach of the system‟s development and how to implement

this approach. It briefly discusses a related project before its conclusion. The next chapter

focuses on the various technologies required in the development of the system.

28

CHAPTER

III

29

3. TECHNOLOGIES REVIEW

3.1. Introduction

The previous chapter focused on the researcher‟s literature review. This chapter focuses on

the technologies needed to develop a SOAP-based Web Services system.

3.2. Hardware Required

A GSM/GPRS modem is needed since the system involves sending of SMSs and MMSs. A

subscriber identity module (SIM) card is needed in order to establish connection with the

existing SMS and MMS centres.

More information on hardware required is found in Appendix A.

3.3. Software Required

The choice of software required for the development of this system is limited to Free and

Open Source Software (FOSS) because of the type of platform upon which the system is

deployed. SLL projects are developed upon and with FOSS only.

The type of Operating System (OS) upon which the system is developed, the web server, the

database management system and the scripting language used to develop the system are

described in Appendix A.

3.3.1. Kannel

Kannel is a Wireless Application Protocol (WAP) and Short Message Service (SMS)

gateway.

As a WAP gateway, Kannel is used for connecting WAP phones to the Internet. WAP is a

collection of various languages and tools and an infrastructure for implementing services for

mobile phones. WAP makes it possible to implement services similar to the WWW. A WAP

gateway is a gateway between phones and servers through which WAP provides contents to

phones using WAP protocol stack and translates the requests it receives to normal HTTP

(Fink, et al. 2010).

30

Figure 3.1: Kannel as WAP gateway

As a SMS gateway, Kannel is used to handle connections with SMS centres (SMSCs) and to

relay them onward in a unified manner. SMS is a way to send short (160 character) messages

from one Global System for Mobile (GSM) phone to another. It can also be used to send

regular text as well as advanced content like operator logos, ringing tones, business cards and

phone configurations (Fink, et al. 2010).

SMS services are content services initiated by an SMS message to a certain phone number,

which then answers with requested content, if available.

Figure 3.2: Kannel as SMS gateway (Fink, et al. 2010)

31

3.3.2. Mbuni

This is a Multimedia Message Service (MMS) gateway which implements all major MMS

interfaces such as phone-to-phone (MM1 interface), phone-to-email (MM3), inter-MMSC

(MM4) and MMS Value Added Service (VAS) (MM7) (Mbuni, 2004).

Mbuni includes a fully-fledged MMS switching centre (MMSC) for the network operator and

it also includes a MMS VAS gateway, known as the mmsbox, for the MMS content provider.

Mbuni is designed to work dependently of Kannel. Mbuni uses Kannel‟s smsbox to send a

SMS notification, whenever a MMS has been sent, to the destination number (Mbuni, 2004).

Mbuni supports current generation multimedia messaging and it can be operated in two

different modes (Mbuni, 2004):

 As a MMSC it provides the following:

o Phone-to-phone messaging.

o Automatic content adaptation: The server modifies message content depending on

the capabilities of the receiving terminal.

o Integrated Email-to-MMS and MMS-to-Email gateway.

o Support for persistent storage of messages for subscribers.

o Inter-MMSC message exchange (MM4 interface).

o Support for MMS VAS Providers using MM7 protocols (SOAP or EAIF).

o Support for integration with subscriber database to enable smart handling of

handsets that do not support MMS, handsets not provisioned, etc.

o Support for flexible billing structure through billing/CDR plug-in architecture.

o Bearer (data) technology neutral: Works with GSM/CSD or GPRS.

 As VAS Gateway it provides the following:

o Support for both SOAP and External Application Interface (EAIF) connectivity

with an operator MMSC.

o Multiple connections to different MMSC of different types can be maintained.

o MMS content can be loaded from file, URL or as the output of a program.

o MM composition from Synchronized Multimedia Integration Language (SMIL):

The gateway will automatically fetch all components referenced in the SMIL and

add them to the MM.

o A URL interface for MM dispatch.

32

Mbuni is designed and tested to conform to Open Mobile Alliance (OMA), WAP and 3rd

Generation Partnership Project (3GPP) MMS standard. Just like Kannel, Mbuni can be easily

customized to suit its user‟s requirements (Mbuni, 2004).

MMS is intended to provide users with a rich content format including pictures, audio and

games. Unlike SMS, which is transported over a traditional GSM network, MMS is designed

to be transported over WAP and is encoded using WAP Multipurpose Internet Mail

Extensions (MIME) format (Mbuni, 2004).

Figure 3.3: Mbuni as MMS gateway (Mbuni, 2004)

3.3.3. Bind9

Bind9 is a Domain Name Service (DNS). A DNS is used for name resolution. Humans work

better with names and computers work better with numbers. So a DNS translates IP addresses

(which are numbers that computers use to talk to each other over the Internet) into DNS

names and vice versa (Vugt, 2008:255).

3.3.4. Postfix

Postfix is a mail transfer agent (MTA) that routes and delivers electronic mail.

33

3.3.5. Openfire

Openfire is a XMPP server, written in java, which will be incorporated into the system for the

purpose of offering IM services to users.

Openfire is platform independent and contains the following features:

 User-friendly web interface and guided installation

 Web-based administration panel

 Plug-in interface

 Customizable

 Database connectivity

 Storing messages and user details

3.4. Libraries Required

This section discusses the various libraries required in order to develop some components of

the system.

3.4.1. NuSOAP

NuSOAP: NuSOAP is a rewrite of SOAPx4, provided by NuSphere. NuSOAP is a group of

PHP classes that allow developers to create and consume SOAP web services. NuSOAP does

not require any special PHP extensions, which makes it usable by all PHP developers,

regardless of ISP, server or platform. NuSOAP is licensed under the LGPL (Crugnalo, 2006).

NuSOAP is the technology used in this project to write both the SOAP-server and the SOAP-

clients. Initially, SOAPx4 library was used to write both the SOAP-client, the SOAP-server

and consume SOAP Web Services, but the only problem with this is that the developer had to

write the whole WSDL document, line by line, which is time consuming and may contain

errors (Richards, 2006:723). With NuSOAP, the WSDL document is automatically created

when creating the SOAP-server (This is discussed in detail in section 5.2).

3.4.2. MMSLib

This is a PHP library that enables encoding and decoding of MMSs. With this library, one can

create messages and add multimedia parts such as Joint Photographic Experts Group (JPEG),

Graphics Interchange Format (GIF), Adaptive Multi-Rate (AMR) and Musical Instrument

34

Digital Interface (MIDI). The library also contains a MMS functionality that uses HTTP

service to send SMS notifications (Craydon, 2004).

3.4.3. XMPPHP

XMPPHP is the most widely used PHP jabber library for sending and receiving chat

messages (Wassermann, 2009).

3.5. Conclusion

This chapter reviews the different technologies that are needed to develop and implement the

system. The next chapter discusses the architecture of the system.

35

CHAPTER

IV

36

4. THE SYSTEM DESIGN

4.1. Introduction

The previous chapter describes the technologies required for the development. This chapter

identifies the key requirements for the system and discusses the conceptual architecture of the

system. It defines the scope within which the system is designed and implemented and

elaborates on each component of the system.

4.2. Functional and non-functional requirements specification

This section discusses the functional and non-functional requirements specification. This is

the requirements specification the system is tested against in order to verify whether or not

the objectives are met.

4.2.1. Functional requirements

The following are the key functional requirement that have been identified:

 Provide SOA interface to SMS, MMS, Email + IM.

 Provide machine-to-machine connectivity: for example, the ability of the eCommerce

application to connect to the SOAP-server for utilizing any of the communication

channels.

 Provide machine-to-person interaction: for example, the ability of the network monitoring

system to send an SMS to its administrator whenever the network is down.

 Provide a UI that allows the user to do the following:

o Create an account

o Login

o Change password

o Recover password

o Consume Web Services

4.2.2. Non-functional requirements

The two key non-functional requirements that have been identified are as follows:

 Compatibility

37

 Usability

o effectiveness (can users successfully achieve their objectives)

o efficiency (how much effort is expended in achieving those objectives)

o satisfaction (was the experience satisfactory)

4.3. The Design Scope

The advent of new technologies, such as the Internet and mobile phones, has reshaped the

way people communicate with one another. Internet technologies, such as email, social media

and IM, have created a qualitatively different communication medium (Iskold, 2007). As

discussed under section 2.4.2, mobile phones are changing the face of the rural world because

of their low cost services.

This project is designed to take advantage of the above mentioned communication

technologies in order to provide the SLL and the Dwesa community with a modern type of

communication medium.

The following points have been considered to define the design scope:

 Due to the nature of the platform upon which this project is deployed and human resource

constraints, this project‟s implementation is limited to the use of FOSS.

 The existence of more than one network coverage (Vodacom and MTN), in Dwesa,

makes it possible to choose the most reliable network.

 The existence of Living Labs in five schools, which are wirelessly connected, sets a good

environment for the deployment of the system.

4.4. The System Architecture

The term „system architecture‟ is defined as the overall design and structure of a system or

computer network.

This section defines the manner in which the entire system is structured and it describes the

different components needed for a fully functional system.

38

Figure 4.1: System's overview

4.5. The User Interface Layer

This system is designed in a client-server environment and to meet its second objective, it

needs a UI. In order to realize a person-to-person type of communication, a user interface is

needed. This allows the user to interact with the system and consume the services available in

an easy and understandable way.

The UI layer provides interfaces that the user interacts with in order to make use of the

services the system offers. The layer consists of pages and the relationship between them. The

diagram below highlights the UI model that this layer follows.

39

Login Page

Credentials

Valids?

Registration Page
Acknowledgement

Page

Account Created?

Welcome Page

SMS UI Page

MMS UI Page

Email UI Page

Logout Page

Yes

No

Sign Up

Cancel

No

Yes

Start

Figure 4.2: UI Architecture

4.6. SOAP-Server and SOAP-Client

This system offers users SOAP-based Web Services for communication purposes. Before

discussing each Web Service, there is a need to first understand the SOAP-client and the

SOAP-server and how they work together. As stated in section 3.4.1, both the SOAP client

and server are created using NuSOAP.

40

Richards (2006:710) defines the SOAPClient class as the pillar for consuming SOAP-based

Web Services. It can make requests to a SOAP-server and can also perform tasks such as data

conversion and encoding that are needed in order to create SOAP messages using PHP

variables and types. He also defines a SOAP-server as the house of Web Services. It is based

on a WSDL document which the SOAP client makes use of in order to get detailed

descriptions of Web Services offered. The WSDL document describes how a Web Service is

accessed, what it is designed to do and how messages are passed.

The SOAP-client and SOAP-server communicate by sending and receiving SOAP messages

in a request and response format. This SOAP request-response process is done using

HTTP_RAW_POST_DATA (Richards 2006:617). This function is defined in the SOAP-

server.

4.7. SMS Web Service Architecture

Bodic (2005:47) defines the SMS as being a basic service allowing the exchange of short text

messages between subscribers.

The SMS Web Service application allows a person-to-person and a machine-to-person type of

communication in the form of SMSs. This application uses a PHP function, registered as a

method in the SOAP-server, which connects the system to the SMS gateway. The method

receives a call from the SOAP-client, requesting to send an SMS to a specified destination,

and execute it by sending the request to the gateway. The gateway sends the SMS to the

recipient‟s number via a modem which is connected to a SMSC.

This is illustrated in the two diagrams below. Figure 4.3 shows the different components

involved in sending a SMS and Figure 4.4 shows a chain of requests and responses involved in

sending a SMS.

41

Figure 4.3: SMS Web Service architecture

42

Figure 4.4: SMS Web Service sequence diagram

43

4.8. MMS Web Service Architecture

MMSs are more complex than SMSs. They involve sending multimedia messages which

range from simple text messages to more sophisticated slideshows comprising of text, image

and audio clips (Bodic, 2005:207). In order to enjoy MMSs the user must have a device that

has an MMS client installed in it and he/she must be registered for the MMS service (Bodic,

2005:218 - 220).

In this project, the MMS Web Service application involves the use of two gateways. It uses

Mbuni as the MMS gateway and the wapbox in Kannel to push notification messages to the

recipient, notifying him/her of the MMS sent. When Mbuni is configured as an MMSC, it

stores the MMS whilst waiting for the recipient to retrieve it. The notification sent to the

recipient contains the Uniform Resource Locator (URL) the recipient needs in order to

retrieve the MMS.

This is illustrated in the two diagrams below. Figure 4.5 shows the different components

involved in sending a MMS and Figure 4.6 shows a chain of requests and responses involved

in sending a MMS.

Figure 4.5: MMS Web Service architecture

44

Figure 4.6: MMS Web Service sequence diagram

45

4.9. Email Web Service Architecture

Bodic (2005:210) states that the Email has now become the universal messaging service for

Internet users. Email services have support for group sending, message attachments,

automatic message forwarding and many more.

Since Emails are a messaging service for Internet users, this Email Web Service application

involves the use of a DNS. Bind9 is the DNS in use and it is discussed under section 3.3.3.

Postfix is the SMTP server used for the sending of the emails.

Figure 4.7 shows the different components involved in sending an Email and Figure 4.8 shows

a chain of requests and responses involved in sending an Email.

Figure 4.7: Email Web Service Architecture

46

Figure 4.8: Email Web Service sequence diagram

47

4.10. IM Web Service Architecture

IM is a form of real-time direct text-based communication between two or more parties.

The IM Web Service application allows the system and/or the system administrator to send

real-time notification messages to users. This application is not meant to be used by any

system users. It is only for system administration purposes. This application is designed to

send alerts to administrators and/or users online on the system‟s XMPP server or on Google

Talk (GTalk).

This is illustrated in the two diagrams below. Figure 4.9 shows the different components

involved in sending an IM and Figure 4.10 shows a chain of requests and responses involved

in sending an IM.

Figure 4.9: IM Web Service Architecture

48

Figure 4.10: IM Web Service sequence diagram

49

4.11. System’s Users

This system has two types of consumers: a person and a machine. In addition, it has two types

of users under the category of person: the administrator and the client (referred to as user).

The administrator is responsible for managing users‟ accounts, and he/she is the only person

who can make use of the IM UI to send notification messages to users‟ IM accounts. The

administrator can also consume Web Services. Users can register, change passwords, request

new passwords (in case the old ones have been forgotten), login, view their credits and

consume Web Services.

Figure 4.11: Use Case diagram

4.12. Conclusion

This chapter defines the conceptual architecture of this system. It also discusses each

component and its architectures. The next chapter will discuss, in detail, how each component

is implemented to form the complete system.

50

CHAPTER

V

51

5. THE IMPLEMENTATION

5.1. Introduction

The previous chapter discusses the design and representation of the system. This chapter

focuses its discussion on the manner in which the different components of the system are

implemented. It discusses the SOAP-server, Web Services, SOAP-clients and the UI. In some

sections of this chapter, sample codes are shown when necessary. This chapter also discusses

the basic configurations and implementation of the SMS and MMS gateway, the DNS, the

MTA and the XMPP server.

5.2. SOAP-server

This section discusses the implementation of the SOAP-server.

Listing 5.1: Creating a SOAP-server using NuSOAP

52

The image above shows the implementation of the system‟s SOAP-server housing only the

SMS Web Service. The complete SOAP-server can be viewed in Appendix D.

The bullet points below describe the steps taken to implement the above SOAP-server.

 Line 2: The NuSOAP class, nusoap.php, is required first.

 Line 7: A soap_server instance, named $server, is created.

 Line 8: Initialization of the WSDL support.

 Lines 10 – 19: Registration of the method to expose. In this case, the SMS Web Service

is the method registered.

o Line 11: The method‟s name.

o Line 12: The type and number of input parameters expected from the SOAP-client.

This method has four input parameters and they are all strings. The parameters

under function call in the SOAP-client must correspond with these otherwise the

function call will return an error message.

o Line 13: The type and number of output parameters. In most instances, there is one

output parameter, which can either be of type Boolean, string, etc. In this case, the

method returns a string.

o Lines 14 -15: Respectively, the namespace and SOAPaction.

o Lines 16 – 17: They state that the method used to call a Web Service is a Remote

Procedure Call (rpc) which is encoded (lyingonthecovers.net, 2006).

o Line 18: The documentation. This line gives a slight description of the Web

Service.

 Lines 21 – 23: The method is now defined as a PHP function which calls another

function within it; in this case the function called within the method is sendSMS. This

function is located in a separate file known as functions.php, hence line 4 is needed.

 Lines 25 – 26: The request sent to the server is strictly raw data and it is retrieved using

HTTP_RAW_POST_DATA (Richards, 2006:617).

When the SOAP-server is completely developed using NuSOAP, a user can view and learn

about the Web Services in a browser as shown in Figure 5.1 below. The NuSOAP library

offers an interface that describes all the functions made available through the Web Services

(Nichol, 2004).

53

To view the NuSOAP interface, the user must type the following URL in his/her browser:

http://localhost/webservices/soap_server.php. Where:

 Localhost: it is running on localhost.

 Webservices: the directory in which the SOAP-server is located.

 Soap_server.php is the name of the SOAP-server.

Figure 5.1: NuSOAP interface

This NuSOAP interface shows that there are four methods registered in the SOAP-server. The

user can click on each one of them in order to get their descriptions. A screenshot showing

the sendEmails descriptions can be viewed in Appendix B.

The WSDL document can be viewed in two ways; either by clicking the link provided on the

NuSOAP interface or by typing the following URL in the browser:

 http://localhost/webservices/soap_server.php?wsdl.

http://localhost/webservices/soap_server.php

54

Listing 5.2: Part of the WSDL document

The SOAP-server is of no use if it does not contain any Web Service.

The sections which follow explore the four Web Services housed in the SOAP-server. The

registration of each method can be viewed in Appendix D.

5.3. SMS Web Service

This section explains, in detail, how the SMS Web Service is implemented. It discusses, step-

by-step, how each component involved in the SMS Web Service application is installed and

configured to meet the research objectives.

5.3.1. The Method

The SMS Web Service is registered in the SOAP-server as sendSMStoMany and it uses a PHP

function called sendSMS to connect the system to Kannel. sendSMS is the function

responsible for sending out SMSs and returning a response to the client via sendSMStoMany.

55

5.3.2. The Gateway: Kannel

Installing Kannel can be done in two different ways on an Ubuntu machine.

Using the Synaptic package manager to download and install it automatically.

Downloading Kannel from http://www.kannel.org/download.shtml and manually installing it.

There is a manual on Kannel‟s website that gives a tutorial on how to install and configure

Kannel either as a wap Gateway or a SMS gateway.

Upon successful installation, the following Kannel‟s programs are installed in /usr/local/sbin:

 Bearerbox

 Smsbox

 Wapbox

Kannel‟s package comes with a default configuration file located in the /doc/ directory. The

default configuration file is often named kannel.conf and requires only minor changes. This

file can be viewed in Appendix C.

When configuring Kannel as a SMS gateway, there are five groups that must be present in

kannel.conf. The groups are the core group, the smsc group, the smsbox group, the sendsms-

user group and the sms-service group (Wandschneider, 2007).

There is another important configuration file that is needed in order for Kannel to run

properly. The modems.conf is a default configuration file that defines all types of modems via

which Kannel can connect to a SMSC. This file is simply included at the bottom of

kannel.conf. A copy of modems.conf can be viewed in Appendix C.

It is good practice to move the configuration file to a proper directory such as /etc/kannel/.

Since Kannel‟s programs are stored in /usr/local/sbin, the following is done to test the

configuration file:

cd /usr/local/sbin/

bearerbox /etc/kannel/kannel.conf

smsbox /etc/kannel/kannel.conf.

56

The bearerbox must be started before any other application within Kannel can be started. If

the bearerbox runs correctly to the point of connection to a SMSC, this means that the basic

configurations are properly done. In the case of errors, the execution is terminated and the

error(s) are displayed on the screen.

The smsbox is only started after the bearerbox is successfully running. The smsbox

establishes connection with the bearerbox and waits for HTTP requests from users.

These two are often started manually and can be set to start automatically. To accomplish

that, cron jobs have been created to start the bearerbox and the smsbox at boot time.

Figure 5.2: bearerbox and smsbox cron jobs

5.3.3. Connecting to Kannel

Before connecting to Kannel‟s interface, the SMS push must be enabled. This is done by

setting up a sendsms-port in the smsbox group and by properly configuring the sendsms-user

group.

Listing 5.3: smsbox group.

57

Listing 5.4: sendsms-user group

There can be more than one sendsms-user group. This group defines an account which can be

used to push SMSs via an HTTP interface.

The URL used reads as follows:

http://host:port/cgi-

bin/sendsms?username=$user&password=$pass&from=$from&to=$p&text=$msg

Where:

 Host: In many instances it is set to localhost

 Port: sendsms-port registered under the smsbox group

 $user: username registered under sendsms-user group

 $pass: password registered under sendsms-user group

 $from: the number of the sender

 $to: the number of the recipient

 $text: is the message to send

A successful implementation of the SMS Web Service application is of great importance

because the MMS Web Service application, discussed in the next section, depends on it.

http://host:port/cgi-
http://host:port/cgi-

58

5.4. MMS Web Service

This section explains, in detail, how the MMS Web Service is implemented. It discusses,

step-by-step, how each component involved in the MMS Web Service application is installed

and configured to meet the research objectives.

5.4.1. The method

The MMS Web Service is registered in the SOAP-server as sendMMSs and it uses a PHP

function called sendMMS to connect the system to Mbuni. sendMMS is the function

responsible for sending out MMSs and returning a response to the client via sendMMs.

5.4.2. The gateway: Mbuni

Mbuni is not found in the synaptic package manager. So it is manually downloaded from

http://www.mbuni.org/downloads.shtml.

Mbuni comes with a user guide manual that explains the steps to follow in order to install

Mbuni.

Mbuni can be run as a MMSC or a VAS Gateway and, for this reason, it has four programs,

which are installed in /usr/local/bin and two configuration files, by default. The four

programs are mmsrealy, mmsproxy, mmsfromemail and mmsbox.

The first two programs are used to run Mbuni as a MMSC and the third one is needed to

convert an MMS from an email sender. The fourth program is used to run Mbuni as a VAS

gateway. In the case of this project, Mbuni is used as a VAS gateway and only one

configuration file is used.

Mbuni has two configuration files which are found in the /doc/examples/ directory. The first

file is named mmsc.conf and the second one is named mmsbox.conf; the latter can be viewed

in Appendix C. Since Mbuni is used as a VAS Gateway in this project, the second

configuration file is required.

The mmsbox.conf has five groups in it. These are: the core group, the mbuni group, the mmsc

group, the mms-service group and the send-mms-user group.

59

5.4.3. Connecting to Mbuni

In order to send MMSs via an HTTP interface, the send MMS service must be enabled. This

is done by setting up a sendmms-port in the mbuni group and by properly configuring the

send-mms-user group.

Listing 5.5: mbuni group.

Listing 5.6: send-mms-user group

The following is the URL used to send MMSs using an HTTP interface.

http://host:port/?username=$username&password=$pass&to=$to/TYPE=PLMN&subject=$

subject&text=$mms

Where:

 Host: localhost

 Port: sendmms-port registered under the Mbuni group.

 $username: username registered under send-mms-user group.

 $password: password registered under send-mms-user group.

60

Since Mbuni is configured as a VAS gateway, the sendmms port must be configured in order

to make use of the send MMS service. This service is called up the same way as the send

SMS service but, this time, requests are sent to the sendmms port on the VAS Gateway

interface.

A wapbox configuration has to be added to kannel.conf in order for Mbuni to send

notification messages to the MMSs recipient of the MMS.

Listing 5.7: wapbox group

5.5. Email Web Service

This section explains, in detail, how the Email Web Service is implemented. It discusses,

step-by-step, how each component involved in the Email Web Service application is installed

and configured to meet the research objectives.

5.5.1. The method

The Email Web Service is registered in the SOAP-server as sendEmails and it uses a PHP

function called sendEmail to connect the system to Postfix. This function is also responsible

for sending out Emails and returning a response to the client via sendEmails.

5.5.2. The DNS

Bind9 has been configured to run as a local DNS. There are five files that have been

configured in order for the DNS to successfully resolve names. The configuration file shown

below is the db.dwesaproject.com zone file. The other files can be viewed in Appendix C.

61

Listing 5.8: db.dwesaproject.com zone file

Now that the DNS is running properly, the next step is to configure a MTA: Postfix

5.5.3. The MTA: Postfix

The Ubuntu server edition has Postfix installed automatically when the OS is installed. The

only thing that needs to be done is to configure Postfix to fit the system‟s requirements.

There are many ways in which Postfix can be configured depending on the environment

and/or the problem to solve (Postfix, n.d.). For this system, Postfix is configured to run on a

local network.

The Postfix configuration file is named main.cf. It is situated in /etc/postfix/ and it is

configured as follows:

Listing 5.9: main.cf

62

Now that Postfix is configured to send and receive emails, its configuration file must be

tested to verify whether there are no errors. This is done by restating Postfix from the

command line, and if there are errors, it either fails to restart or it restarts and is ready to send

and receive emails.

Since this system involves remote users, there is a need to install a Post Office Protocol

(POP) or Internet Message Access Protocol (IMAP) server to allow those users to send

emails. The application chosen for this task is Dovecot.

5.5.4. POP/IMAP Server: Dovecot

Dovecot is installed from the synaptic package manager and only one line in its configuration

file, named dovecot.conf, is changed as follows:

#Open dovecot.conf using nano

nano /etc/dovecot.conf

#uncomment the following line

protocols = imap imaps pop3 pop3s

5.6. IM Web Service

This section explains, in detail, how the IM Web Service is implemented. It discusses, step-

by-step, how each component involved in the IM Web Service application is installed and

configured to meet the research objectives.

5.6.1. The Method

The SMS Web Service is registered in the SOAP-server as sendIMs and it uses a PHP

function called sendIM and the XMPPHP library to connect the system to Openfire. This

function is also responsible for sending out IM notifications and returning a response to the

client via sendIMs.

5.6.2. The XMPP Server

Openfire can be downloaded from the following URL:

63

http://www.igniterealtime.org/downloads/download-

landing.jsp?file=openfire/openfire_3_6_4.tar.gz

Once Openfire has been successfully installed, a few configurations need to take place to

meet the system‟s requirements.

5.6.3. Configuring Openfire and Apache HTTP Server

Minor configurations are done in Openfire and Apache HTTP server in order to meet the

system‟s requirements.

 Since the IM notifications are intended only for online users, on the admin screen of

Openfire, in Server settings, the Offline Message policy must be set to Drop. This

disallows the XMPP server to keep messages sent to users when they are offline

(Werdmuller, 2010).

 In order to prevent unauthorized connections from causing confusion, the Service Enabled

must be set to Disabled and Allowed to Connect to the White List. This is done in Server

settings, under Server-to-Server, (Werdmuller, 2010).

 Werdmuller (2010) states that Openfire maintains an HTTP binding URL for access over

BOSH at http://localhost:7070/http-bind. To use this on port 80, the proxy module in

Apache‟s configuration file must be enabled. This allows Apache to forward a URL to

this location. The following must be done to enable the proxy module in Apache:

o In the Apache configuration file the following lines, LoadModule

proxy_http_module modules/mod_proxy_http.so and LoadModule proxy_module

modules/mod_proxy.so, have to be located and uncommented:

Listing 5.10: Lines 116 and 121 have been uncommented in httpd.conf

64

o After uncommenting the two lines above, the following lines must be added at the

bottom of the Apache configuration file:

Listing 5.11: Setting Apache XMPP proxy rule

5.6.4. The IM Client

Now that Openfire and Apache HTTP Server are ready for the task, there is a need for an IM

client application so that users can be online and receive the notifications.

There are a number of IM client applications that can be used XMPP client but Spark is the

one that is used in this project.

Sparks screenshots can be viewed in Appendix B.

5.6.5. Connecting to the XMPP server

The SOAP-server connects to the XMPP server through a server-side application created

using XMPPHP library. In the case of sending IM notifications to a recipient‟s GTalk

account, a server application called gtalk.php is used. This application is simply a PHP file

that contains a class called GTalk. GTalk contains the following PHP functions:

 __construct(): this constructor defines the parameters needed to create a new connection

to the XMPP server (talk.google.com).

 connect(): this function is responsible for establishing a connection to the XMPP server.

 disconnect(): this function is used to disconnect from the XMPP server.

 send_message($to, $msg): this function takes two parameters and is responsible for

sending the IM notifications.

The same process is used to send IM notifications to a user on Spark except for the fact that

the values of the parameters needed in the constructor are different. As a result, there is a

second file named spark.php which contains a class called Spark.

65

The two classes can be viewed in Appendix D.

Now that the SOAP-server and the Web Services are in place, users have to be able to make

use of them. The first objective of this project focuses on machine-to-machine and machine-

to-person types of communication, whereas the second objective focuses on a person-to-

person type of communication.

In order to satisfy objective one, a SOAP-client must be implemented. Though all the Web

Services are housed in one SOAP-server, each Web Service has its own SOAP-client. And in

order to satisfy objective two, a user UI laid on top of the SOAP-client must be implemented.

The next two sections discuss the implementation of a SOAP-client and a UI.

5.7. SOAP-Client

This section discusses the implementation of the SMS Web Service SOAP-client. This

SOAP-client is called sms.php. All the other SOAP-clients can be viewed in Appendix D.

66

Listing 5.12: Creating the SMS SOAP-client using NuSOAP

The bullet points below describe the steps it takes to implement the above SOAP-server.

 Line 2: The NuSOAP class, nusoap.php, is required first.

 Line 7: A nusoap_client instance, named $client, is created. Since $clientuses WSDL, the

location of the WSDL document is specified.

 Lines 8 – 12: These lines check whether $client is properly constructed. If not, an error

message is displayed and the execution is stopped with error messages.

 Lines 20 – 23: These lines check whether the call was properly made or not. If not the

execution is stopped with error messages.

67

 Lines 25 – 29: These lines display the response from the function call.

Lines 14 – 19 are responsible for calling the Web Service that the SOAP-client is designed

for. Line 15 displays the name of the Web Service which, in this case, is sendSMStoMany.

This Web Service is defined as a PHP function that has three parameters. This is why the

SOAP-client sends out three parameters during the call. The names of these parameters must

be identically defined in the SOAP-client as they are defined in the SOAP-server; failing

which, the call returns an error message.

These parameters get their values in two different ways. A SOAP-client is involved in both

ways. This project has two objectives to meet. In the case of objective one, a UI is not

needed. So the values of the parameters are pre-set. For instance; in the case of the network

monitoring system that sends out the same message to the system administrator, who has a

permanent contact number, each time the network is down, the SOAP-client‟s call looks like

the following:

Listing 5.13: SMS SOAP-Client's call function.

The from parameter can be left empty in this case. When Kannel receives the request to send

out the SMS and realizes that the from parameter is empty, it automatically inserts the default

number recorded in kannel.conf under the smsbox group. The default number is the number of

the SIM card in use in the modem.

The second objective of this research requires a UI. The second objective caters for people

who have little or no knowledge of Web Services and how they are consumed. The UI

communicates with the SOAP-server and consumes the Web Service via a SOAP-client.

68

Figure 5.3: Interaction between the UI and SOAP-server via a SOAP-client.

The next section discusses the implementation of Dwesa‟s one-stop-shop UI components in

its entirety.

5.8. The login interface

When the user types the following URL: http://localhost/webservices/
2
 into the browser, one

would expect to navigate straight to the welcome page but he/she will be redirected to

http://localhost/webservices/login.php. This is due to the fact that the welcome page

(discussed under section 5.10) offers direct links to the Web Services, and only registered

users can access it. This happens because of a file named auth.php which is included at the

top of the welcome page, in the coding. This file ensures that only registered users can access

the system‟s web pages upon successful login.s

2
Since the welcome page is named “index.php”, typing http://localhost/webservices/ or

http://localhost/webservices/index.php gives the same result.

http://localhost/webservices/
http://localhost/webservices/login.php
http://localhost/webservices/
http://localhost/webservices/index.php

69

Listing 5.14: The auth.php code

Listing 5.15: index.php

The login page, login.php, allows users to login into the system by supplying their username

and password. In this case, the user can supply either his/her username or cellphone number.

The system verifies whether the information supplied is in the database. If the information is

found in the database, the system logs the user in. If the information is not found in the

database a warning message is returned to the user. Non-registered users can register by

clicking on the register link supplied on the login page. There are two additional links at the

bottom of the login page which are links to UIs where users can change their passwords or

recover them in the case of loss.

70

Figure 5.4: Login page UI

 Forgot password: this link directs the user to a page that allows him/her to reset the

password when he/she has forgotten it. The user is asked to supply the email address

he/she submitted upon registration and then submit the form. The system then checks the

user‟s database to verify whether the email address supplied exists in the database. This is

one of the reasons why, during registration, the system checks whether the email address

supplied is not already in use. Upon successful submission, the system generates a

random password for the user, sends the password to the user via email and updates the

user‟s password in the database. When the user receives the new password via email,

he/she can then change it to one he/she can easily remember.

Figure 5.5: Recover password UI

71

 Change password: this link directs the user to a page that allows him/her to change his/her

password. The user is asked to supply his/her username and current password, and he/she

enters the new password twice. The system then checks the database to verify whether the

username supplied actually exists and if the password is correct. Upon successful

submission, the system changes the user‟s password.

Figure 5.6: Change password UI

5.9. The registration interface

The registration page, registrationForm.php, offers users a simple interface through which

they can create new accounts. Just like the login page, the registration page runs some routine

checks when the user submits the page. The following is a list of checks that the registration

page performs:

 The name and surname must consist only of letters.

 The email address must be written in the correct format (a@b.c).

 The email address must not be in use already.

 The username may only contain letters, digits and an underscore.

 The username must not be in use already.

 Cellphone number must be exactly 10 digits.

mailto:a@b.c

72

 The password must contain letters and digits and must be 6 to 8 characters long; this is for

security reasons.

 When confirming the password, the second entry is compared to the first one to ensure

that the same password has been entered twice.

Figure 5.7: Validation of the Registration form

Upon successful submission, all the details supplied are entered and stored into a database,

called users, which is responsible for keeping users information. The user is redirected to a

page that thanks him/her for registering and is then given an option to login.

73

5.10. The welcome page

This page is displayed upon successful login. It does not do much except display a welcome

message and provides links the three of the four Web Services; namely: SMS Web Service,

MMS Web Service and Email Web Service.

Figure 5.8: Welcome page

The numbers in the figure above are explained below:

On mouse click:

1: sends the user back to the welcome page displayed above. This image appears on every

page of the one-stop-shop.

2: Displays the user‟s first name and credits.

3: Displays the title/name of the page.

4: Displays the SMS Web Service interface.

5: Displays the MMS Web Service interface.

6: Displays the Email Web Service interface.

1

2

3

4

5

6

7

74

7: This logout button appears in the footer section of all pages except for the login, logout,

registration, change password and recover password pages. This is made possible through

the use of the PHP session_start() function. In fact, this is the same function used in the

auth.php to determine whether the user is logged in or not.

5.11. The logout page

When the user clicks on the logout button, the session that started when the user logged in is

terminated and the user is redirected to a page that confirms that he/she has successfully

logged out and he/she is also given an option to login again (Re-Login). The logout button

will no longer be available in the footer section. After this operation, if the user clicks on the

back button of his/her browser, he/she will be redirected to the login page.

Listing 5.16 logout.php

75

Figure 5.9: the user has successfully logged out.

5.12. SMS Web Service UI

This UI allows the user to send out an SMS. Each field is explained below the image.

76

Figure 5.10: SMS User Interface

1: The number displayed in this text field is automatically filled in whenever the user opens

the above page. Kannel allows the sender to send his/her cellular number to the recipient if

he/she wishes to.

2: The number of the recipient must be filled in this field. It is mandatory, or else the

execution will be terminated with an error message that reads “please insert recipient‟s

number!”

3: This is the field in which the message to send is entered. The form will not be submitted if

this field is empty and a JavaScript code is attached to it with the purpose of limiting the

message to only 160 characters.

4: This field displays the number of characters the user still has left.

5: this is the send button. Once this button is pressed, the following takes place:

o The required fields are checked:

 The To field is checked to verify whether it is empty or not and, if it is not

empty, the number submitted must be digits only and not longer than 10

1

2

3

4

5

77

characters. If the field is empty, or the number submitted does not contain digits

only, or it is not 10 characters long, the execution is terminated with an error

message.

 The message field is also checked to make sure that it is not empty. The user is

not allowed to send empty messages.

o Upon successful submission, a request is sent to the SOAP-server, via a SOAP-client

named sms.php, to consume the SMS Web Service.

These fields are easy to understand and for this reason the UIs in the next sections are not

going to be discussed in detail. The focus will only be on new features and fields.

5.13. MMS Web Service UI

This UI allows the user to send out an MMS.

Figure 5.11: MMS User Interface

1

2

78

The MMS Web Service UI looks more like the one discussed in the previous section except

for the two new fields that have been added. At least one of these two fields must contain data

when the form is submitted. Should this not be the case, the application stops executing and

returns an error message notifying the sender that he/she must upload either an image file or a

sound file in order to consume the service.

When the page is submitted, the following takes place.

 When an image is uploaded, at least two things are verified when the form is submitted:

o The type of the image: only images with the following extensions are accepted:

.jpeg, .jpg and .png

o The size of the image: any image bigger than 1MB is not uploaded.

 The same validation is done for sound files.

o The type of sound file: only sound files with the following extensions are accepted:

.mid, .midi and .mp3.

o The size of the sound file: sound files with .mid/.midi extensions are generally not

big (less than 1MB). When a user wants to send an mp3 sound file, he/she must

make sure that the size of the file is less than 1MB.

 Upon successful submission of the page, the request is sent to the SOAP-Server via a

SOAP-client named mms.php.

5.14. EMAIL Web Service UI

This UI allows users to send out emails.

79

Figure 5.12: Email User Interface

There are two items to consider from this UI.

 Image 1: This field allows the user to send emails with attachments.

 Image 2: This is a WYSIWYG application that allows the user to format the text

according to his/her needs.

When this page is submitted the following takes place:

 The To field is checked to see whether it is empty and, if it is not empty, the content is

checked to verify whether it conforms to an email format. If the field is empty or the

content is not a proper email address, the execution is terminated and an error message is

displayed on the user‟s screen.

1

2

80

 The Message field is also checked to ascertain whether the field is empty. If it is empty,

the execution is terminated and an error message is displayed on the user‟s screen.

 Upon successful submission, the request is sent to the SOAP-server via a SOAP-client

called email.php.

5.15. IM Web Service UI

This UI is only available to the system administrator. It allows the system‟s administrator to

send out IM notifications to system users.

Figure 5.13: IM User Interface

This UI is simple to understand. It is mostly used to send out IM notifications to the system

XMPP server. Users receive these IM notifications when they are online.

Figure 5.14: Link to the IM UI

81

5.16. Conclusion

This chapter discusses the implementation of the system‟s components. The next chapter

discusses the system‟s testing and results.

82

CHAPTER

VI

83

6. TESTING AND RESULTS

6.1. Introduction

The previous chapter discussed how each component of the system has been implemented

and how they relate to each other. This chapter focuses on a number of tests that the system

goes through and their results.

6.2. Testing of back-end Applications

There are a number of applications that are running in the system‟s background that need to

be tested in order to verify whether they have been configured properly.

6.2.1. Kannel

Kannel is used by the SMS Web Service as a SMS gateway and by the MMS Web Service as

a WAP gateway. Consequently, the bearerbox, smsbox and wapbox need to be tested to verify

whether they are working properly.

Figure 6.1: bearerbox at work.

The last line in the image above shows that the bearerbox has successfully established a

connection with the SMSC. This is an indication that Kannel has been configured properly.

Figure 6.2: smsbox at work.

84

The third line from the bottom shows that the smsbox is successfully connected to the

bearerbox. This is an indication that Kannel is now ready to send out and receive SMSs

6.2.2. Mbuni

Mbuni is configured to run as a VAS gateway in this project. The only test that needs to be

done is to verify whether the mmsbox runs properly. This means that the mmsbox.conf has

been configured properly.

Figure 6.3: mmsbox at work

The image above shows that Mbuni‟s mmsbox is running properly and is ready to send out

MMSs.

6.2.3. Postfix

Postfix is used as the MTA. In order to test whether it has been configured properly, an email

is sent to one of the users created on localhost.

Figure 6.4: User name Jimmy has received the test email.

85

6.3. Non-functional testing

This section focuses on the non-functional testing listed in section 4.2.2. Further non-

functional testing can be viewed in Appendix E (compatibility testing).

6.3.1. Compatibility

The purpose of this testing is to determine whether this system performs according to

requirements when run in an environment different from the original.

This entire system is developed and implemented on a Linux machine. This system does run

well on a Windows machine with the exception of Kannel and Mbuni. The specific

challenges associated with running Kannel and Mbuni on a Windows machines are discussed

in section 7.3.2.

The image below shows that this system‟s SOAP-server works properly with clients from

different programming languages. This also shows that other machines/systems can

successfully plug in to this system‟s SOAP-server and request to consume its Web Services.

Figure 6.5: A java application communicating with the SOAP-server.

6.3.2. System Usability Scale.

System Usability Scale (SUS) is a simple, ten-item attitude Likert scale giving a global view

of subjective assessments of usability (Brooke, 1996).

86

The usability of a system, as defined by the ISO standard ISO 9241 Part 11, can only be

measured by taking into account the context of use of the system (Abran, et al. 2003). The

focus is on who is using the system, what they are using it for, and the environment in which

they are using it (Abran, et al. 2003).

Measurements of usability have several different attributes (Abran, et al. 2003):

 Effectiveness: Can users successfully achieve their objectives?

 Efficiency: How much effort and resource is expended in achieving those objectives?

 Satisfaction: Was the experience satisfactory?

A questionnaire is used in order to do this system usability testing. The first part of the

questionnaire focuses on the user‟s background as far as communication technologies, such as

mobile phone services and email, are concerned. The second part of the questionnaire focuses

on SUS.

6.3.2.1. Part one: User’s background

Question Yes No

Are you computer literate?,

Do you have access to the Internet?

Do you have an email address?

Do you own a cell phone?

Figure 6.6: User's background

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Are you
computer
literate?

Do you have
access to
internet?

Do you have an
email address

Do you own a
cellular phone?

No 6.6 6.2 7.6 1.8

Yes 3.4 3.8 2.4 8.2

87

The graph above shows that the majority of people involved in this system usability test are

not computer literate, they do not have access to the Internet and they do not have email

addresses. But most of them own cellular phones.

The statistics above show that people involved in this system usability test mostly use the IM

and SMS technologies for communication purposes.

The IM technology is frequently used because of a mobile application called Mxit. This

application offers a social forum and IM services to its consumers at a very low cost. Other

technologies that have contributed to the rise of IM technologies in mobile phones are

Facebook and Twitter.

The SMS technology is also used quite often because of its low cost, especially during off-

peak periods. The other factor that has contributed to an increase in the use of SMS is the

Please Call Me service. This service is free and people use it often to send out very short

messages.

10%

40%

5%

45%

Which mobile services do you use the most?

CALL

SMS

MMS

IM

Which mobile services do you use the most?

CALL SMS MMS IM

88

Calls are expensive during peak times, during the day, and are often made to people who are

far away. MMS technologies are not often used because most people involved in this survey

use GSM mobile phones.

6.3.2.2. Part two: SUS

1. Do you think that this application is easy to use? Yes No

2. How much effort did

you personally put

forth to use the

application?

Very high High Moderate Low Very Low

3. How easy is it to

understand the user

interface?

Very difficult Difficult Moderate Easy Very Easy

4. How do you rate the

entire system?

Needs

improvement

Adequate Good Very good Excellent

 Question 1: Do you think that this application is easy to use?

The pie chart above shows that even though 66% of the people involved in this survey are not

computer literate (Figure 6.6: User's background), 68% think that the system is easy to use.

 Question 2: How much effort did you personally put forth to use the application?

68%

32%

Do you think that this application is easy to use?

Yes

No

89

The pie chart above shows that more than half of the people involved in this did not have to

put in much effort to perform tasks on the system. One of the reasons for this is that the UI is

simple and easy to use. This is shown in the next question.

 Question 3: How easy is it to understand the user interface?

The pie chart above shows that more than half of the people involved in the survey find the

UI easy to use. This is due to the fact that the Web Services UI uses familiars. These icons

speak for themselves.

5%

20%

55%

20%

0%

How much effort did you personally put forth to use this

application?

Very high

High

Moderate

Low

Very low

0% 2%

64%

24%

10%

How easy is it to understand the user interface?

Very difficult

Difficult

Moderate

Easy

Very easy

90

 Question 4: How do you rate the entire system?

The pie chart above shows that there is no suggestion for improvement of the system. The

system is mostly rated to be good.

6.4. Functional Testing

Below is a list of testing conducted to verify whether the user can successfully interact with

the system‟s front-end component.

6.4.1. Registration

This component is tested to verify whether a user can successfully create a new account and

his/her details are successfully stored in the users‟ database.

0%

4%

56%

40%

0%

How do you rate the entire system?

Needs Improvement

Adequate

Good

Very good

Excellent

91

Figure 6.7: User Registering

Figure 6.8: Registration of User successful

Figure 6.8 shows a user creating a new account by filling in the registration form and the

acknowledgement message displayed upon successful registration. Figure 6.8 shows the new

user‟s details which are successfully stored in the database.

6.4.2. Login

This component is tested to verify whether a user can successfully create a new account and

the details are successfully stored in the users‟ database.

92

Figure 6.9: User logging in

Figure 6.10: User successfully logged in

Figure 6.9 shows a user signing in by supplying either a username or cell number and

password. Figure 6.10 shows that the user has successfully logged into the system.

6.4.3. Change Password

This component is tested to verify whether a user can successfully change his/her password

by replacing the old password with a new one in the users‟ database.

93

Figure 6.11: User gets a confirmation on the UI.

Figure 6.12: Password successfully changed in the users' database.

Figure 6.11 shows that the user has successfully submitted the request to change password.

Figure 6.12 shows that the new password is successfully encrypted and it is successfully

entered in the database replacing the user‟s old password.

6.4.4. Recover Password

This component is tested to verify whether the system can successfully create a temporary

password, upon the user‟s request, update the user‟s password in the users‟ database and send

the temporary password to the user‟s registered email address. The recover password function

uses a SOAP-client in order to request the email Web Service from the SOAP-server.

94

Figure 6.13: User has successfully received a temporary password via email.

This test does not only show that a user can successfully recover a password, but it also

shows that the system successfully establishes a machine-to-person type of communication.

Figure 6.13 shows that the user has successfully received an email with the temporary

password.

6.5. Conclusion

This chapter focuses on different techniques used to test different components of the system.

The next chapter concludes the study.

95

CHAPTER

VII

96

7. DISCUSSION AND CONCLUSION

7.1. Introduction

The previous chapter focuses on the different techniques used to test the system. This chapter

summarizes the work undertaken in this project. It lists the achievements and discusses the

challenges faced during the development and implementation of the system. Before giving an

overall conclusion, it outlines suggestions of further research.

7.2. Achievements

A comprehensive literature review has been conducted in order to build this system. This

culminated in defining the system objectives and methodology. In addition, it led to defining

the technologies required which, in turn, helped to design the system architecture. Parallel to

the system architecture, a prototype has been implemented in order to test and validate the

architecture.

The design of the architecture is based on the SOA approach which focuses on exposing a

service in the server-client environment. This allows more than one system/department to

make use of the same service. It helps reduce the duplication of the service and, as a result, it

helps save time and resources.

To demonstrate the feasibility and validity of the proposed design solution, a system

prototype was implemented and tested. This prototype is designed to take advantage of the

existing ICTs in the research area. This prototype features a novel communication engine

which exposes a number of SOAP-based Web Services that allows machine-to-machine,

machine-to-person and person-to-person types of communication in the SLL and within the

Dwesa community.

From the implementation perspective, the system satisfies the objectives of the project as

described in section 1.4.

A SOA system which offers its functionalities as Web Services is implemented and other

application software that forms part of the SLL middleware framework successfully

establishes machine-to-machine communication. For instance, the eHealth system

successfully connects to this system‟s SOAP-server and makes use of the Email Web Service.

This meets the first objective of the research.

97

A user interface is successfully added to the system to allow users from Dwesa to make use of

the system Web Services for communication purposes. This meets the second objective of the

research.

This research did, in fact, encounter a few challenges which are discussed in the next section.

7.3. Challenges and limitations

This section discusses the challenges and limitations encountered during the development and

implementation of the system.

7.3.1. Challenges

There were a few challenges encountered when developing and deploying the MMS Web

Services.

1. The MMS gateway: It took long to actually find an appropriate MMS gateway for the

system. The challenge came from the fact that most MMS gateways that were accessible

were mostly designed for Windows OS and not compatible with Linux OS.

2. MMS binary file: MMSs are more complex than SMSs. They involve the sending of text,

images and sound files. The MMS gateway, in use, only sends out binary files. This led to

the need to encode MMS messages into binary files. The challenge with this was that it

took long to find a compatible application or library for encoding text, images and sound

files into binary files.

7.3.2. Limitations

Kannel and Mbuni are designed to run on a Linux machine only. Due to that, the system, as a

whole, is limited to a Linux machine.

7.4. Future work

The most obvious future work is the implementation of a more secure SOAP-server. At the

moment, users only need authentication and authorization when consuming Web Services

from the user interface. But, from a machine-to-machine communication point of view, the

SOAP-server is freely accessible.

Another future work is the implementation of a 3G application that allows video streaming

through the use of Web Services.

98

7.5. Overall conclusion

This study has described the design of SOA wrappers for communication purposes at a

machine-to-machine, machine-to-person and person-to-person level. Most importantly, this

thesis outlines a system which uses modern ICTs and modern ways of communication to

provide a pool of SOAP-based Web Services which can be used in the Siyakhula Living Lab

and by the Dwesa community.

99

REFERENCES

100

8. REFERENCES

Abran, A., Khelifi, A., Suryn, W., & Seffah, A. (2003). Usability Meanings and

Interpretations in ISO Standards. Software Quality Journal, 11(4):325-338.

Alcatel-Lucent. (2006). XML Web Services & API‟s. Available from:

http://enterprise.alcatel-lucent.com/?product=XMLServices&page=overview (Accessed 12

October 2010).

Bodic, G. L. (2005). Mobile messaging technologies and services SMS, EMS and MMS.

West Sussex: John Wiley & Sons Ltd.

Brooke, J. (1996). SUS: A Quick and Dirty Usability Scale. In: P.W. Jordan, B. Thomas,

B.A. Weerdmeester & I.L. McClelland (Eds.), Usability Evaluation in Industry. London:

Taylor & Francis.

Burns, C. (2010). Mobile Development Projects: A Sampling. Available from:

http://pdf.usaid.gov/pdf_docs/PNADS558.pdf (Accessed 06 December 2010).

Coetsee, F. (2010). Why Social Media in South Africa will NOT fail. Available from:

http://www.socialmediastrategy.co.za/index.php/general/why-social-media-in-south-africa-

will-not-fail/ (Accessed 22 November 2010).

Craydon, M. (2004). MMSlib: Encode and Decode MMSes with PHP. Available from:

http://www.postneo.com/2004/08/06/mmslib-encode-and-decode-mmses-with-php (Accessed

25 January 2010).

101

Crugnalo, A. (2006). Using Web service With Flash and Nusoap. Available from:

http://www.sephiroth.it/tutorials/flashPHP/webService/ (Accessed 15 April 2010).

Curtain, R. (2004). Information and communications technologies and development:Help or

hindrance. Australian Agency for International Development. Available from:

http://www.Curtain-Consulting.net.au (Accessed 20 October 2010).

Dalvit, L., Muyingi, H., Terzoli, A. & Thinyane, M. (2007). The Deployment of an e-

Commerce Platform and Related Projects in a Rural Area in South Africa. In: Proceedings of

the International Journal of Computing and ICT Research, 1(1):3.

Eriksson, M., Niitamo, V.-P., Kulkki, S. & Hribernik, K. A. (2006): State of the Art and

Good Practice in the Field of Living Labs. In: Proceedings of the 12th International

Conference on Concurrent Enterprising: Innovative Products and Services through

Collaborative Networks. Italy: Milan.

Fink, A., Rodrigues, B., Tolj, S., Syvänen, A., Malysh, A., Wirzenius, L. & Marjola, K.

(2010). Kannel svn-r4865 User‟s Guide: Open Source WAP and SMS gateway. Available

from: http://www.kannel.org/download/kannel-userguide-snapshot/userguide.pdf. (Accessed

29 April 2010).

Flickenger, R. (2008) (2nd ed.). Wireless networking in the Developing World: A practical

guide to planning and building low-cost telecommunications infrastructure. Seattle: Hacker

Friendly LLC.

Goldsmith, A. (2005). Wireless Communications. California: Stanford University.

http://www.curtain-consulting.net.au/
http://www.kannel.org/download/kannel-userguide-snapshot/userguide.pdf

102

Hahn, R. (2008). All things Africa and ICT. Available

from:http://psdblog.worldbank.org/psdblog/2008/08/all-things-afri.html (Accessed 06

December 2010).

Heeks, R. (2009). The ICT4D 2.0 Manifesto: where next for ICTs and international

development. Development Informatics, Working Paper Series. Paper No 42. Development

Informatics Group. Manchester University, Institute for Development Policy and

Management.

Helsinki Living Lab. (2007). What is a Living Lab? Available from:

http://www.helsinkilivinglab.fi/node/162 (Accessed 20 July 2010).

Iskold, A. (2007). Evolution of Communication: From Email to Twitter and Beyond.

Available from: http://www.readwriteweb.com/archives/evolution_of_communication.php.

(Accessed 20 November 2010).

Jakachira, B.T., 2009. Implementing an integrated e-Government functionality for a

marginalized community in the Eastern Cape, South Africa. Masters dissertation. Alice:

University of Fort Hare.

Josuttis, M. N. (2007). In SOA in practice: The art of distributed system design. California:

O‟Reilly.

Kaplan, A.M. & Haenlein, M. (2010). Users of the world, unite! The challenges and

opportunities of Social Media. Business Horizons. 53(1):59-68.

http://www.readwriteweb.com/archives/evolution_of_communication.php

103

Kumar, P., Perreira, M., Vaidya, P., Vosseler, F. & Peltz, C. (2006). Moving from point-to-

point integrations to SOA-based integrations. Hewlett-Packard Technical Information.

LaFraniera, S. (2010). Expansion of the Cell Phone Network in Rural Africa. Available from:

http://www.castlelab.princeton.edu/EnergyResources/2011/Wong-Prospectus.pdf (Accessed

07 December 2010).

Living Labs in Southern Africa. Overview. Available from:

http://llisa.meraka.org.za/index.php/Overview (Accessed 20 July 2010).

lyingonthecovers.net (2006). Getting complex with PHP and NuSOAP (Part 1). Available

from: http://www.lyingonthecovers.net/?p=39 (Accessed 03 November 2010).

Mbuni. (2004). Free, Open Source MMS Gateway. Available from:

http://www.mbuni.org/userguide.shtml (Accessed 29 April 2010).

Negus, C. (2007). Linux 2007 Edition. Indianapolis: Wiley Publishing, Inc.

Nichol, S. (2004). Programming with NuSOAP Using WSDL. Available from:

http://www.scottnichol.com/nusoapprogwsdl.htm (Accessed 29 April 2010).

Oracle. (2008). Ensuring Web Service Quality for Service-Oriented Architectures. Available

from: http://www.oracle.com/technetwork/oem/grid-control/overview/wp-ensuring-1.pdf

(Accessed 22 July 2010).

104

Pade, C., Palmer, R., Kavhai, M. & Gumbo, S. (2009). Siyakhula Living Lab: Baseline Study

Report, Unpublished report.

Postfix. (n.d.). Postfix Basic Configuration. Available from:

http://www.postfix.org/BASIC_CONFIGURATION_README.html (Accessed 22 April

2010).

Pun, R., Shields, R., Poudel, R. & Mucci, P. (2006). Nepal wireless networking project.

Available from: http://nepalwireless.net/images/stories/npw.pdf (Accessed 05 December

2010).

Reitman, L., Ward, J. & Wilber, J. (2007). Service Oriented Architecture (SOA) and

Specialized Messaging Patterns. Available from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.5751&rep=rep1&type=pdf

(Accessed 10 April 2010).

Richards, R. (2006). Pro PHP, XML and Web Services. California: Apress.

Sayo, P. (Editor). (2004). Globalization and WTO: ICT, Trade and Competitiveness. In ICT

Policies and e-Strategies in the Asia-Pacific. New Delhi: Elsevier. Available from:

http://www.apdip.net/publications/ict4d/e-strategies.pdf (Accessed 23 July 2010).

Schoolnet Uganda. (2007). Uganda rural schools VSAT school-based Telecentre (SBT)

project. Available from: http://schoolnetuganda.sc.ug/projects/completed-projects/uganda-

rural-schools-vsat-sbt-project.htm (Accessed 04 December 2010).

http://www.postfix.org/BASIC_CONFIGURATION_README.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.5751&rep=rep1&type=pdf

105

Scott, M. S. (2010). Investigation and Development of an e-Judiciary Service for a Citizen-

Oriented Judiciary System in Rural Community. Masters dissertation. Alice: University of

Fort Hare.

Scott, N., Batchelor, S., Ridley, J. & Jorgensen, B. (2004). The impact of mobile phones in

Africa. Commission for Africa, London.

Smyth, G. (2005). Wireless Technologies Bridging the Digital Divide in Education.

International Journal of Emerging Technologies in Learning. 1(1):2

Srinivasan, L. & Treadwell, J. (2005). An Overview of Service-oriented Architecture, Web

Services and Grid Computing. Hewlett-Packard Technical Information. 2:2-6.

Thioune, R. M. (Editor). (2003). Opportunities and Challenges for Community Development.

Information and Communication Technologies for Development in Africa. Opportunities and

Challenges for Community Development. 1:12.

Timmermans, H. G. (2004). Rural livelihoods at dwesa/cwebe: poverty, development and

natural resource use on the wild coast. Masters dissertation. Grahamstown: Rhodes

University.

Viale, R. & Ghiglione, B. (1998). The Triple Helix model: a Tool for the Study of European

Regional Socio Economic Systems. The IPTS Report. 29:87

Vugt, S. V. (2008). Beginning Ubuntu Server Administration. From Novice to Professional.

California: Apress.

106

Wandschneider, M. (2007). Setting up, Configuring, and Using Kannel to send/receive SMS

messages. Available from: http://Setting-up-Configuring-and-Using-13@.htm (Accessed 26

November 2009).

Wassermann, T. (2009). Jabber with PHP – Part 1 (XMPPHP). Available from:

http://www.brownphp.com/2009/03/jabber-with-php-part-i-xmpphp/ (Accessed 10 July

2010).

Werdmuller, B. (2010). Build a web-based notification tool with XMPP. Available from:

http://www.ibm.com/developerworks/xml/tutorials/x-realtimeXMPPtut/section4.html

(Accessed 10 September 2010).

Wertlen, R. (2010). A Design of a Middleware Solution for Connected Rural Digital Access

Nodes Enabling a Multitude of Applications. Unpublished thesis. Alice: University of Fort

Hare.

107

APPENDICES

108

9. APPENDIX A – Basic Technologies Required

9.1. Operating system

This system can be developed on either Windows OS, or MAC OS, or Linux OS. But due to

the fact that this project is under the SLL umbrella, and all of SLL projects are developed on

Linux OS, this choice of OS for this project is limited to Linux. The Linux version used in

this project is ubuntu-10.04-server.

The reason for choosing the server edition instead of the desktop edition is simply because

during the installation of the former, the DNS server and LAMP server (Linux, Apache,

MySQL and PHP) are also installed and only need to be configured to suit the project‟s

requirements, unlike installing the desktop edition which will require installing the servers

afterwards.

9.2. Modem

The modem used in this project is the Wavecom Fastrack Supreme 10 modem. The package

comprises of an antenna, modem, power adapter, and a RS-232 cable as seen in the images

below.

109

10. APPENDIX B - System Implementation Screenshots

10.1. NuSOAP interface

The image below shows the NuSOAP interface displaying the Email Web Service

description.

10.2. The IM Client

The IM system on this project uses spark as its client interface to connect to the system‟s

XMPP server.

The images below show the IM client UI and the UI used to create account.

110

The image above is the Spark interface used to log into a XMPP server and it has a link,

named accounts, that direct the user to the „create account‟ interface. The name of the server

needs to be specified in the server field so that Spark knows which XMPP server to connect

to. In the case of this project, the server name is localhost.

The image below is the Spark interface used to create an account. Even in the case of creating

an account, the server‟s name must be specified. This is simply because the user‟s details are

saved in the XMPP server and not in Spark.

111

11. APPENDIX C - Configuration files

11.1. Kannel.conf

The following is Kannel‟s configuration file used in this project.

group = core

admin-port = 13000

admin-password = bar

status-password = foo

smsbox-port = 13001

wapbox-port = 13002

log-file = "/tmp/kannel.log"

log-level = 0

wdp-interface-name = "*"

store-location = "/var/log/kannel/kannel.store"

group = wapbox

bearerbox-host = localhost

log-file = "/tmp/wapbox.log"

syslog-level = none

access-log = "/tmp/wapaccess.log"

timer-freq = 10

map-url = "http://mmsc/* http://localhost:1981/*"

group = smsc

smsc = at

modemtype = auto

device = /dev/ttyS0

validityperiod = 167

group = smsbox

bearerbox-host = localhost

smsbox-id = box

sendsms-port = 13013

sendsms-chars = "0123456789 +-"

112

global-sender = 13013

log-file = "/var/log/kannel/smsbox.log"

log-level = 0

access-log = "/var/log/kannel/access.log"

sendsms-url = /cgi-bin/sendsms

group = sendsms-user

username = jimmy

password = junior

user-allow-ip = "*.*.*.*"

max-messages = 3

concatenation = true

group = sms-service

keyword-regex = .*

catch-all = yes

max-messages = 3

get-url = "http://localhost/sms?phone=%p&text=%a"

include = "/etc/kannel/modems.conf"

The modems.conf configuration is part of the Kannel‟s package and it does not need to be

edited. The only requirement is to move it to the same directory as the main configuration

file.

11.2. modems.conf

Modems configuration

Example and default values

group = modems

id = generic

name = "Generic Modem"

group = modems

113

id = wavecom

name = Wavecom

detect-string = "WAVECOM"

group = modems

id = premicell

name = Premicell

detect-string = "PREMICEL"

no-pin = true

no-smsc = true

group = modems

id = siemens_tc35

name = "Siemens TC35"

detect-string = "SIEMENS"

detect-string2 = "TC35"

init-string = "AT+CNMI=1,2,0,1,1"

speed = 19200

enable-hwhs = "AT\\Q3"

need-sleep = true

group = modems

id = siemens_m20

name = "Siemens M20"

detect-string = "SIEMENS"

detect-string2 = "M20"

speed = 19200

enable-hwhs = "AT\\Q3"

keepalive-cmd = "AT+CBC;+CSQ"

need-sleep = true

group = modems

id = siemens_sl45

name = "Siemens SL45"

114

detect-string = "SIEMENS"

detect-string2 = "SL45"

init-string = "AT+CNMI=1,2,2,2,1"

keepalive-cmd = "AT+CBC;+CSQ"

speed = 19200

enable-hwhs = "AT\\Q3"

need-sleep = true

message-storage = "SM"

group = modems

id = nokiaphone

name = "Nokia Phone"

detect-string = "Nokia Mobile Phone"

need-sleep = true

keepalive-cmd = "AT+CBC;+CSQ"

enable-mms = true

group = modems

id = falcom

name = "Falcom"

detect-string = "Falcom"

group = modems

id = ericsson_r520m

name = "Ericsson R520m"

detect-string = "R520m"

init-string = "AT+CNMI=3,2,0,0"

group = modems

id = ericsson_t68

name = "Ericsson T68"

detect-string = "T68"

init-string = "AT+CNMI=3,3"

keepalive-cmd = "AT+CBC;+CSQ"

115

broken = true

group = modems

id = sonyericsson_gr47

name = "Sony Ericsson GR47"

detect-string = "GR47"

message-storage = "ME"

init-string = "AT+CNMI=3,2,0,0"

reset-string = "ATZ"

broken = true

group = modems

id = alcatel

name = "Alcatel"

detect-string = "Alcatel"

init-string = "AT+CNMI=3,2,0,0"

group = modems

id = sonyericsson_T630-T628

name = "Sony Ericsson T630-T628?

init-string = "AT+CNMI=2,3,2,0,0;+CMGF=0?

keepalive-cmd = "AT+CBC;+CSQ;+CMGF=0?

broken = true

group = modems

id = sonyericsson_p1i

name = "Sony Ericsson P1i"

detect-string = "Sony Ericsson P1i"

init-string = "ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0"

message-storage = "SM"

reset-string = "ATZ"

broken = true

116

11.3. mmsbox.conf

The following is the configuration file used to set Mbuni as a VAS gateway.

group = core

log-file = /var/log/mmsbox.log

access-log = /var/log/mmsbox-access.log

log-level = 0

group = mbuni

storage-directory = /var/spool/mbuni

max-send-threads = 5

maximum-send-attempts = 50

default-message-expiry = 360000

queue-run-interval = 5

send-attempt-back-off = 300

sendmms-port = 10001

group = mmsc

id = local

mmsc-url = http://mbuni:test@localhost:1982/soap

incoming-username = jimmy

incoming-password = junior

incoming-port = 12345

type = soap

group = mms-service

name = me

post-url = http://localhost/~bagyenda/test-mbuni.php

catch-all = true

http-post-parameters = fx=true&images[]=%i&text[]=%t&skip=1

accept-x-mbuni-headers = true

pass-thro-headers = X-NOKIA-MMSC-Charging,X-NOKIA-MMSC-Charged-Party

keyword = test

omit-empty = no

117

suppress-reply = true

service-code = regular

group = mms-service

name = fullmessage

get-url = http://localhost/images/apache_pb.gif

accept-x-mbuni-headers = true

keyword = thixs

group = send-mms-user

username = jimmy

password = junior

faked-sender = 100

11.4. DNS configuration files

This section shows all the DNS configuration files except for the one displayed in section

5.5.2

 Defining the forward and reverse zones in /etc/bind/named.conf.local

zone "example.com" {

 type master;

 file "/etc/bind/db.dwesaproject.com";

};

zone "56.20.172.in-addr.arpa" {

 type master;

 file "/etc/bind/db.172";

};

 The reverse zone file named db.172

118

$TTL 604800

@ IN SOA ns.dwesaproject.com. root.dwesaproject.com. (

 2010112900 ; Serial

 604800 ; Refresh

 86400 ; Retry

 2419200 ; Expire

 604800) ; Negative Cache TTL

;

@ IN NS ns.

68 IN PTR ns.dwesaproject.com.

119

12. APPENDIX D – Code Snippets

This section shows some of the code snippets that control how the system runs. Some of the

codes snippets are displayed using more than one image because of the length of the code.

12.1. SOAP-server

The images below show how the SOAP-server is implemented in this project.

120

121

12.2. Web Services functions

This section shows all the Web Services functions that execute requests sent by the SOAP-

client and return responses.

 sendSMS

122

 sendMMS

123

 sendEmail

124

12.3. IM Web Service Classes

This section shows the different classes used in the implementation of the IM Web Service.

 Spark.php

The spark.php file includes a class named Spark which is responsible for handling

communications between the system and the Openfire XMPP server. It is used to send IM

notifications to users on Spark.

125

 gtalk.php

The gtalk.php file includes a class named GTalk which is responsible for handling the

communication between the system and Google Talk (Google XMPP server).

126

12.4. The SOAP-clients

This section shows all the SOAP-clients implemented in this project except the sms.php

which is already discussed in the implementation chapter (Chapter 5).

 email.php

127

128

129

 im.php

130

13. APPENDIX E – Further system testing and results

13.1. Backend process testing

The image below shows the testing of the Postfix configuration file. The test is done by

restarting the Postfix process, and if it restarts successfully this means that the Postfix is

properly configured.

13.2. Compatibility testing

The image below shows a Visual Basic application which connects to this system SOAP-

server and requests to make use of its web Services.

131

14. APPENDIX F – Further usability testing results

14.1. System Usability Scale: the questionnaire

14.1.1. Part one: User’s background

Question Yes No

Are you computer literate? 34% 66%

Do you have access to the Internet? 38% 62%

Do you have an email address? 24% 76%

Do you own a cell phone? 82% 18%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Are you
computer
literate?

Do you have
access to
internet?

Do you have an
email address

Do you own a
cellular phone?

No 6.6 6.2 7.6 1.8

Yes 3.4 3.8 2.4 8.2

Which mobile services do you use the most?

CALL 10% SMS 40% MMS 5% IM 45%

132

14.1.2. Part two: SUS

1. Do you think that this application easy to use? Yes No

32%

68%

2. How much effort

did you

personally put

forth to use the

application?

Very high High Moderate Low Very Low

5% 20% 55% 20% 0%

3. How easy is it to

understand the

user interface?

Very difficult Difficult Moderate Easy Very Easy

0%

2% 64% 24% 0%

4. How do you rate

the entire

system?

Needs

improvement

Adequate Good Very good Excellent

0%

4% 56% 40%

0%

 Question 1: Do you think that this application easy to use?

10%

40%
5%

45%
CALL

SMS

MMS

IM

133

 Question 2: How much effort did you personally put forth to use the application?

 Question 3: How easy is it to understand the user interface?

 Question 4: How do you rate the entire system?

68%

32%

Yes

No

5%

20%

55%

20%

0%

Very high

High

Moderate

Low

Very low

0% 2%

64%

24%

10%

Very difficult

Difficult

Moderate

Easy

Very easy

134

0%

4%

56%

40%

0%

Needs Improvement

Adequate

Good

Very good

Excellent

