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Abstract

A multi-level modular control scheme to realize integrated process monitoring, diagnoss and
control for intelligent machining is proposed and implemented. PC-based hardware architecture to
manipulate machining process cutting parameters, usng a PMAC interface card as well as sensing
processes performance parameters through sampling, and processing by means of DSP interface
cards is presented. Controller hardware, to interface the PC-based PMAC interface card to a
machining process for the direct control of speed, feed and depth of cut, is described. Sensors to
directly measure on-line process performance parameters, including cutting forces, cutting sound,
tool-workpiece vibration, cutting temperature and spindle current are described. The indirect
measurement of performance parameter surface roughness and tool wear monitoring, through the

use of NF sensor fusion modeling, is described and verified. An object based software architecture,
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with corresponding user interfaces (usng Microsoft Visual C++ Foundation Classes and
implemented C++ classes for sending motion control commands to the PMAC and receiving
processed on-line sensor data from the DSP) is explained. The software structure indicates all the
components necessary for integrating the monitoring, diagnosis and control scheme. C-based
software code executed on the DSP for real-time sampling, filtering and FFT processing of sensor

signals, is explained.

Making use of experimental data and regression analysis, analytical relationships between cutting
parameters (independent) and each of the performance parameters (dependent) are obtained and
used to simulate the machining process. A fuzzy relation that contains values determined from
statistical data (indicating the strength of connection between the independent and dependent
variables) is proposed. The fuzzy relation forms the basis of a diagnostic scheme that is able to
intelligently determine which independent variable to change when a machining performance
parameter exceeds control limits. The intelligent diagnosis scheme is extensively tested using the

machining process simulation.
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]
Chapter 1

]

] I ntroduction

There isamyriad of machines which cut, sand, drill, face, turn, bend, grind, and much more. The
underlying concept isthe same: The criteriafor optimal performance is the rate of metal removal of
material from the workpiece. In addition, international competitiveness requires high product
quality in combination with reduced throughput time at minimal cost. By making use of basic
monitoring and diagnostic systems, effective machining time has been increased from 10% to 65%
[1]. A major obstacle hampering the progress towards the development of unmanned machining
centersisthe limited use of on-line monitoring and diagnostic systemsin practice. Monitoring

and diagnostic sysems that rely on the on-line acquisition of machining process sensor data will
enhance the implementation of intelligent machining [2]. Harber et al [3] define intelligent

machining as:
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“A computationdly efficient procedure developed combining one or more intelligent techniques
(fuzzy logic, neural networks e.g.) and expert criteria (operator knowledge), with one or more
higher resolution levels (hierarchical levels), which basically manipulate cutting conditions (spindle
speed, feed) and should be monitoring tool status and finished surface quality, as well asincreasing

productivity through higher metal removal rate®

Signds from the machining process may be used in multi-sensor monitoring systems to measure
surface roughness and tool wear indirectly, using intelligent systems. Intelligent systems consist of
algorithms developed to emulate certain characteristics of the human being' s intelligent biological
sysems|[4]. Itisconddered to be a powerful way to achieve superior performance by putting
engineering expertise into products with the added advantage of making the design process faster,
easier and more transparent [5].

The successful and reliable monitoring of surface roughness and tool wear will not only play a
crucial role in achieving advanced automation, but its values may be used in controlling the quality
of the manufactured part. Machining is a complex process and cutting parameters feed, speed and
depth of cut modulate several process parameters, that in turn influence the quality of the
manufactured product. For example, excessive cutting tool-workpiece vibration levels may
negatively influence part tolerances. Similarly, excessive cutting temperature may cause damage to
amachined surface. Currently post processing quality control procedures identify product
deficiencies and after evaluating all the process parameters the process engineer may then decide
what cutting parameter to change. A high productivity at the demanded process quality requires a
process integrated quality assurance [1]. Allowable process parameter limits for tool temperature,
cutting forces, spindle current, cutting sound, tool-workpiece vibration, surface roughness and
cutting power may be set. When exceeded, an intelligent diagnostic system using on-line sensor
data may reason and decide which cutting parameter, feed, speed, depth of cut to change in order to

ensure that product quality is maintained.
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To react and implement the control action, the machine control system needs to respond within a
relatively short period of time. Therefore, advanced monitoring, intelligent diagnosis and parameter
(machine) control systems need to be integrated. Due to itstraditional closed architecture,
conventional computer numerical control (CNC) machines cannot efficiently respond to sensor data
provided by sensor based monitoring and diagnosis systems. CNC systems are machine control
oriented whilst the success of intelligent machining greatly depends on how effectively performance

parameters may be changed to ultimately produce a quality product more efficiently.

1.1 Aim

To implement intelligent machining by integrating sensor-based monitoring, intelligent diagnostic
and machine control systems that are able to flexibly maintain machining process performance

parameters within acceptable limits.

1.2  Objectives

The following objectives were accordingly specified for this project:

e To perform literature research into theoretical concepts and physical components for the
implementation of intelligent machining.

* To identify signals that characterize the machining process performance and hence develop
appropriate sensory systems to interface to computer based analog-to-digital converter
(ADC) system.

e To identify motor and control equipment to drive a spindle and x-y coordinate system from a

personal computer (PC)-based multi-axis control interface card.
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To select PC-based signal processing hardware and development software, and hence develop
code that is able to sample, filter and process the identified analog signdls.

To select PC-based multi-axis machine control hardware and development software, and hence
develop code that is able to execute motion control operations.

To propose a logical framework that shows and connects all system components for intelligent
machining.

To propose and implement hardware architecture and software components to perform multi-
axis control and signa processing.

To develop a windows based object oriented software application framework with appropriate
user and communication interfaces that integrate signal processing, monitoring, intelligent
diagnosis and machine control components.

To obtain experimental data by varying cutting parameters (input) and measure process
performance parameters (output) for different tool wear.

Make use of Statistica to anadyze the experimental data to determine which sensor data is
senditive to tool wear and surface roughness. Create multi-sensor fuson models for tool
wear and surface finish measurement, using neuro-fuzzy (NF) technology.

Make use of the experimental data and Statistica’s regresson anadysis module to determine
empirical relationships between the dependent and independent variables. Use these
relationships to model the machining process for simulation purposes.

To develop an intelligent diagnostic system that is able to maintain machining process
parameters within acceptable limits. To test the performance of the intelligent diagnostic

system using the machining process smulation.

Hypothess

PC-based digital sgna processng, multi-axis machine control and Internet system hardware may

be integrated with available motion control and sensor technology, to realize machine level open
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architecture with enhanced flexibility and modularity, which will realize an intelligent machine

controller.

Visua C++ with its rich set of Microsoft foundation classes (MFC) and object oriented language
features may be utilized to develop an object-oriented software framework to integrate and
coordinate sensor data sampling and processing, monitoring and intelligent diagnosis and machine
control functions. The application framework will further enhance flexibility, modularity, promote
user-process interaction and software re-configurability.

Multiple sensors make it possible to reflect the complex machining process. Multi-sensor fuson
sysems by means of NF (intelligent systems) technology may be used in monitoring systems to
measure tool wear and surface roughness indirectly which will enhance in-process quality control of

the machined product.

Machining process knowledge may be represented using fuzzy relation, and fuzzy inferencing may
be used to decide which cutting parameter to change in order to maintain machining performance
parameters within acceptable limits. This will redlize intelligent machining, enable quality control

based on product properties, which will ultimately lead to higher throughput and less wastage of

raw materials.

1.4  Methodological Justification

In order to accomplish the objectives, the fundamental research issues covered in this project

include:

. Statistical Analysis
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Data analysis requires the use of statistical methods, which includes curve fitting, and uses the
method of least squares for producing multiple linear/non-linear regression equations to simulate
machining process and multiple correlation coefficient, which is used to determine the degree of

relationship for constructing knowledge based systems.

. Digital Signal Processng

Signds carry information and need to be processes to extract (completely or partialy) the
information contained in them, depending on the application of interest. Signal processing is
concerned with the mathematica representation of the signad in the domain of the origina
dependent variable i.e. time domain, or in atransformed domain i.e. frequency domain, and with the
algorithmic manipulation of the signal to extract the information being carried. To implement
signal-processing techniques fundamental mathematica research into discrete domain systems

includes Finite Impulse Response Filtering (FIR) and Discrete Fourier Transform (DFT).

. Neural Network and Fuzzy Logic

Machining processes are highly complex, and precise mathematical models may not aways be the
most effective method used in monitoring systems. Neura networks (NN) provide a strong tool for
learning and, combined with multiple sensors data, result in advanced monitoring systems. Fuzzy
logic (FL) alows the representation of decision and evauation processes in an algorithmic (rule-
based) form. NF technology has the learning capability of NN and aFL based rule structure. This
increases the understanding into the working of knowledge-based systems as well as making the
modification for enhancement possible. FL is considered to be a powerful way to achieve superior

performance by putting engineering expertise into products, which may include many control
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parameters, with the added advantage of making the design process faster, easier, and more

transparent.

. Open Architecture

Open architecture is a philosophy in the design and implementation of machine tools, production
processes and control. Open architecture is a competitive area of manufacturing and it will meet
manufacturing requirements in supplying more competitive products for the globa market. Open
architecture controllers must use standard computing architectures, standard operating systems,
must be programmable in standard languages, and its application software must be open and

extendable to allow usersto integrate custom control agorithms.

1.5 Delimitations

The research will establish a sound experimental basis to serve future sensor based research projects
for indugtrial machining centers. The machining process to be used in this research project,
however, will be limited to an EMCO Compact 5 CNC training lathe. The open system architecture
controller will focus on implementation aspects of intelligent machining and will not include a

completed and operational system.

1.6  Significance of Research

Production quality and performance are concerns in machining processes. Poor production
performances in machining are often caused by product wastage incurred by the application of
excessve cutting power, torque, cutting forces, tool-workpiece vibration and high temperature.
These process parameters may also contribute to excessve tool wear and breakage. Intelligent

machining will improve production quality and performance of machining asit is able to detect and
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react to process parameters that exceed defined limits, thereby ensuring that product quality is not

compromised which will ultimately lead to less wastage.

Intelligent machining is an advanced approach in manufacturing, strongly related to the efforts in
developing re-configurable manufacturing equipment. Advances in PC-based hardware which
include digital signal processing and programmable multi axis machine-control interface cards, and
development software such as Visud C++ with MFC may be utilized to realize re-configurable
manufacturing systems. Windows based graphical software interfaces will enable advanced

machining process-human interaction.

1.7  Organization of Thess

Chapter 2 describes the relevant theoretical concepts, corresponding components and technology
relating to intelligent machining. It includes a logical framework that shows and connects al
syssem components for intelligent machining. Chapter 3 provides a detailed description of the
experimenta setup, including implementation aspects of the sensor and motor control equipment,
hardware architecture and software componentsto perform multi-axis control and signal processing,
and an object oriented software framework to integrate al the system components. Chapter 4
presents and analyses NF-based multi-sensor fusion models for on-line tool wear and surface
roughness monitoring. Chapter 5 describes an intelligent diagnostic scheme to realize intelligent
machining and includes simulation and testing. Chapter 6 is the conclusion, which includes a

discussion on future development.
Appendix A contains an example indicating the method for finding filter coefficients of a low-pass
filter (LPF) to meet the specifications as used in this project. Appendix B contains experimental of

machining process data for tool wear 0 mm and 0.2 mm. Appendix C contains source code for the
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DSP target. Appendix D contains source code for the class library created to enable motion control

commands from within a Windows application.



Chapter 2
Intelligent M achining:

Relevant Concepts, Components, Framewor k and Technology

Figure 2.1 shows that the machining process is automaticaly controlled via three independent
machine control variables, namely cutting speed, feed and depth of cut. These variables modulate
the dependent variables of the process (performance measures), such as, workpiece surface
roughness, tool-workpiece vibration, cutting power, tool temperature, cutting forces, spindle current
and cutting sound and contribute to tool wear. It shows the components and concepts researched in
implementing intelligent machining, namely. digital dgnad processing (DSP) for sensor
measurement, intelligent systems for monitoring and intelligent diagnostic, multi-axis control for

machine control capability and regression and correlation analyss for process modeling.

F MULTI-LEVEL PROCESS AUTOMATION W

LOW MEDIUM HIGH

MEASUREMENT

DIGITAL SIGNAL

PROCESSING
MACHINING PERFORMANCI
—
~

_—  tool wear

/ tool-workpiece vibration \
cutting power  tool temperature MONI TORI NG AND
surface roughness  cutting forces OPEN ARCHITECTURE DIAGNOSIS DATA MODELING
/ spindle current HARDWARE
) AND > <
cutting sound SOFTWARE INTELL | GENT SYSTEMS REGRESSION AND
COMPONENTS CORRELATION

\ depth of cut  tool feed ) / l

MACHINE CONTROL
MACHINE CONTROL

MULTI-AXIS CONTROL

Figure 2.1: Relevant components and concepts in the monitoring, diagnosis and control for
intelligent machining.
This chapter commences with a definition of intelligence and hence describes the intelligent

machining. It introduces the fundamental mathematical relationship that exists between the
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independent (input) and dependent variables (output). These relationships will be used as a
foundation for developing a steady state machining process modd for single point turning, using
experimental data (Chapter 5). The methods used to obtain the process relationships from
experimenta data are explained. The fundamentals of DSP which are used to measure and process
sensor sgnas are introduced. The fundamental concepts to realize intelligent systems, in particular
uncertainty, neural networks, fuzzy logic and NF are explained. These artificia intelligence
concepts which are explained will be used in the monitoring of tool wear and surface roughness
(Chapter 4), and in the intelligent diagnosis for machining parameter control (Chapter 5). PC-based
hardware and software technology used in this project to implement an open architecture-based
intelligent machine controller is introduced. Finally, a framework for intelligent machining is

explained.

2.1 Intelligent Machining

Intelligence is the ability of a human being to acquire knowledge and apply it by means of thinking
and reasoning [6]. Artificia intelligence is a discipline which studies how humans solve problems
intelligently, and how machines can emulate this human problem-solving ability [7]. Alternatively
stated: how to make machines smarter by investing them with human intelligence. Expert systems,
fuzzy logic and neural networks systems belong to a paradigm of so caled inteligent systems.

Harber et a [3] define intelligent machining as:

“A computationally efficient procedure developed combining one or more intelligent techniques
(fuzzy logic, neurd networks e.g.) and expert criteria (operator knowledge), with one or more
higher resolution levels (hierarchical levels), which basically manipulate cutting conditions (spindle
speed, feed) and should be monitoring tool status and finished surface quality, as well asincreasing

productivity through higher metal removal rate®
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The monitoring of tool status and surface roughness by means of intelligent systems will enhance
automated machining (Chapter 4). However, the primary difference between automated machining
and intelligent machining is that an intelligent system (applied in the latter) is capable of making
decisions based on significant information from the machining process. Intelligent control of
machining process parameters can be treated as a decison-making problem [1]. The diagnostic
process can be formulated in a manner similar to the one in which a human being would proceed,

for example:

(1) Select the alternatives a a given decision point.
(i) Select the applicable criteriato evaluate the different alternatives.
(iii) Calculate or estimate the selection parameters for each of the proposed aternatives.

(iv) Through decision rules select the best dternative.

2.2Machining Process

Figure 2.2 shows the machining process parameters, including cutting forces, cutting power, surface
roughness, tool-workpiece temperature, tool-workpiece vibration, cutting sound and cutting torque/
spindle current that characterize the systems performance. Key factors that affect the machining

performance parameters include tool wear and machine control parameters.

I's - Spindle Current Ra - Surface Roughness
(Tc- Cutying Torque) ! z - Cutting
N | y - Radial
\ |
. - : X - Feed
Pe - Cutting Power \‘ . Co-Ordinate System
|
|
|
‘ < - -~ Cutting Forces - Fz, Fx
\ A g :
Yo ‘ 7 A
> »
L y e / \\
7 ! \
d / \
s ! \
Sc - Cutting Sound ! Vy - Cutting tool-workpiece Vibration

T, - Mean Cutting Temperature

Figure 2.2: Parameter sthat characterize machining process performance.
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The following subsections show and describe the basic mathematica relationships between the
dependent performance variables and cutting parameters (independent variables) as well as describe

how the particular dependent parameter/s influence the cutting tool / product quality / machine tool.
2.2.1 Cutting Forces, Torque and Power

The cutting force, acting in the direction of the cutting speed, supplies the energy for cutting and

depends mainly on the work material, feed and depth of cut [8]:

F.=C: f1.d, [N] 2.1

Constants a and b depend on the cutting tool-workpiece combination. If Fz and diameter, Dave, is

known the cutting torque, Tc, isgiven as.

T.= Fz% [Nm] 22

The basic equation for cutting power, Pcis given as.
P.=C.F,V. [Waits] 2.3
Pc isdso caculated as:;

21N
Po=Tc gy [watts | 2.4
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The on-line measurement of cutting forces, torque/ spindle current and power will enableintelligent

machining to [8, 9, 10]:

*  Manage the supply of torque and power available from machine tool in order to meet on-line
load requirements.

* Avoid excessive damage to machine elements and maintain desired tolerances for machined
part.

* React to excessve increase of forces, torque and/or power resulting from tool wear.

» Protect the workpiece from the application of high cutting force / torque which may cause
excessive distortion.

* Reduce excessive feed force that may cause the tool to deflect and result in surface waviness
error [11].

* Reduce axid force so that it does not exceed the work holding pre-load, otherwise the

workpiece will loose its rigidity [12].
2.2.2 Cutting Temperature
The energy disspated in cutting operationsis converted into heat, which, in turnraises the

temperature in the cutting zone. The mean temperature in turning on alathe isfound to be

proportional to the cutting speed and feed asfollows [9]:

T.=CV.fL 25

Constants a and b depend on the tool-workpiece combination.
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The on-line measurement of cutting tool temperature will enable intelligent machining to [8, 9, 13,

14]:

. Reduce the rate of wear, as tool wear has been shown to be strongly temperature
dependent. It adversely affects the strength, hardness, and wear resistance of the cutting
tool.

. Increase tool life as temperature is inversely related to tool life.

. Improve accuracy as increased heat causes dimensional changes in the part being
machined, making control of dimensional accuracy difficult.

. Reduce thermal damage to the machined surface as it adversely affects properties like
fatigue life and corrosion resistance.

. Avoid the critical temperature of the tool-workpiece combination, as it will cause the two
materials to interfuse. Chip particles welded to the surface of the tool are swept away and
tear out minute chunks of tool material.

. Avoid the increase in machine tool temperature as it may cause distortion of the machine

and result in poor dimensional control of the workpiece.

2.2.3 Tool Wear

RF Taylor recognized that tool wear is dependent on the cutting velocity and developed the

following equation using data from tool life test [8]:

VT =C, 2.6
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V¢ is the cutting speed, T" the tool lifetime in minutes (the time recorded to develop a certain wear
land, VB), n is an exponent that depends on cutting tool and workpiece materials as well as cutting

conditions. Crisaconstant and represents a cutting speed for atool life of one minute.

Although cutting speed is the most significant process variable in tool life the depth of cut and feed

are dso significant, hence from Equation 2.6 Taylor’s expression is expanded as:

n ga b
V.T'd: f1 =C, 2.7
Flank wear land, as shown in Figure 2.3, has been commonly used in the measure of tool wear.

Flank wear

Depth-of-cut line

Flank face

Figure 2.3: Flank wear land of a cutting tool.

To determine Vg the tool life test must be stopped and a measurement made, using optical
instruments, like a scanning electron microscope, a suitable magnification levels. Signals from
sensed dependent variables, influenced by tool wear, may be processed into a frequency spectrum
by means of FFT. The power spectral densities that are most sensitive to tool wear are selected and
fed into a previoudly trained artificial neural network to determine the state of the cutting tool [15].

On-line monitoring of tool wear isimportant as:

. Tool wear land will reach a limit before tool breakage / chipping occur, which in turn may
cause severele damage to the machine tool and surface roughness of the workpiece.
. It increases the cutting forces, which in turn may cause plastic deformation of the

workpiece.
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. It negatively influences the dimensional accuracy of the workpiece.

. It may influence the tool-workpiece interaction which in turn may contribute to increased

vibration

2.2.4 Surface Roughness

Roughness refers to relatively finey spaced surface irregularities as produced by the action of a
cutting tool during a machining operation. Thetool leaves a spiral profile - feed marks - on the
machined surface as it moves across the workpiece, and thisis given by [16]:
2
R.=gf1 [xm 2.8

8r.
The higher the feed and the smaller the tool-nose radius (re), the more prominent the feed marks.
Feed seems to affect surface roughness much more than depth of cut. The on-line monitoring of
surface roughness will reduce part-manufacturing cost. The measurement of surface roughness is

done by manual inspections of the work surfaces using profilometers. Manual inspection is time

consuming and very costly. Furthermore the on-line measurement will in turn enable intelligent

machining to:
. Maintain the quality of the machined product [17].
. Ensure that surface residual stresses that contribute to part failure, may be kept a a

minimum. Residual stresses on the surface of a component are mainly, like surface
roughness, influenced by feed [18]. By ensuring that the surface roughness is maintained

below athreshold the residua stresses may be kept at a minimum.
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225 Mateial Removal Rate

The material remova rate (MRR) is the volume of material removed per unit time, and given as:
3
MRR =V .f1 d,[mm /sl 2.9

Knowledge of MRR is important as the main criteria for optimal performance is the rate of meta
removal of material from the work piece. The cutting time for a work piece of length L can be
calculated as:

[min] 2.10

_ L
LTFIN
2.2.6 Tool-Workpiece Vibration
Metal cutting operations is inherently cyclic and excessive vibration may be caused by a periodic
applied force, present in the machine tool (forced vibration), or by a disturbance in the cutting zone

(self-excited vibration) [8,9,19]. The basic solution in reducing forced vibrations is to isolate or

remove the forcing e ement.

A relationship exists between the fundamental frequency of a workpiece and the spindle speed [20].
The situation often occurs that the machining process is stable in the cutting zone, but once it
reaches the middle postion of the workpiece, excessive vibration (chatter) begins to deveop.
Cutting forces build up as the tool penetrates the material and deflect the tool. When shearing
occurs to form the chip, the forces momentarily drop and the tool springs back. Vibration increases
when the cutting forces get out of phase with the tool forces. The relationship between the cutting

force and the amplitude of the tool vibration is given as[21]:

A,=C,FiN" [mm] 2.11
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Where A, is the amplitude of the tool, C; isacongtant, F- is the cutting force, N is the spindle speed
and aand b are exponential constants.

The on-line measurement of tool-workpiece vibration will enable intelligent machining to:

. Improve the surface quality, dimensional accuracy, productivity and even safety [22, 23].
. Reduce damage to machine tool components that may result from excessive vibrations.
. Reduce premature tool wear and chipping.

2.2.7 Cutting Sound

Sound and vibration occur as a result of the machining process. In general, the range of frequencies
that are important in acoustics and associated vibrations, lie in the audible range of 20 to 20 000Hz.
However, disturbances above 1000 Hz are generally reduced using passive techniques, for example,
machine tool design [24]. Whereas active sound and vibration control has found its use in the 50 to
1000 Hz range [25]. The on-line measurement of sound may be used in monitoring of on-line tool

conditions: Tool wear, tool chipping and tool breakage [26] and enable intelligent machining to:

. Reduce excessive vibration in the cutting process [27].
. Reduce objectionable noise generated.

2.3Data Modeling by means of Multiple Regression and Correlation

Given experimental data regression analyss provides the basis for predicting the vaues of a
dependent variable (Y) from values of one or more other independent (X;, X, ..) variables. These
relationships are used for modeling and simulation of machining process to test intelligent decison
making (Chapter 5). Correlation analyss enables us to assess the strength or degree of the
relationships amongst the variables. It is used to find the membership of signal feature to a specific

machine control action. The subsequent signal feature-control action relation is used for intelligent



diagnosis (Chapter 5). Correlation analysis is adso used in the monitoring of tool wear and surface

roughness to determine which signa features influence theses parameters (Chapter 4).

A sample regression line describes the average relationship between X; and Y variables in the
sample data. The equation of this line, known as the sample regression equation, provides estimates
of the mean value of Y for each value of X;. Of all the curves approximating a given set of data
points, the curve having the property that: D2 + D3 +..... + D% isaminimum, is called a best fitting
curve. Where D; is the deviation from the best-fit curve to a data point. A curve having this
property is said to fit data in the least square and is called a least square curve. A multiple
regression equation is an equation for estimating a dependent variable, say Y ;, from the independent
variables X, X3 and is called a regression equation of Y1 on Xz, X3. A multiple linear regresson

eguation would be in the form:

Y1 =f(X2,X3) = b1z + b123Xo + b1z X3 2.12

If X3 is kept constant the graph of Y; versus X, is a straight line with slope by23. If we keep X,
constant the graph of Y; versus X3 is a straight line with slope biz,. The subscripts after the dot
indicate the variables held constant in each case. Due to the fact that Y, varies partially because of
variation in X, and partialy because of variation in X3, we call bi,3 and by, partial regresson
coefficients. From Equation 2.12, b;,3, bio3 and bz, are determined by solving the following

normal equations [28, 29]:

ZYlZ b1.23N +b12.32 X2+b13.zz X3
P X0 =i 2 Xt B 2 Xat b 2 X X
2 Xo=hn 2 Xt B Xo Xat bas 2 X 213

Machining relations, as seen from Equations 2.1, 2.5, 2.8 and 2.11, are non-linear and generally

expressed as.
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a b
Y =C X: X 214
Equation 2.14 may be linearized, using a functiona transformation, by taking log on both sides as

follows[30]:

Loglo(Y )= LOQO(C)+a Loglo(X)+b Log, (X.) 215

The coefficients for Equation 2.14 may then be calculated using the method described in Equation
2.13. Correlation is the degree of relationship between variables, which seeks to determine how
well alinear or other equation describes or explains the relationship between variables. The degree
of relationship that existing between three or more variables is called multiple correlations. The

ratio of the explained variation to the total variation is called the coefficient of determination, given

_ . Z(Yest_Q)

2 _ explainedvariation_
~ totalvariation -\’
(¥~v]

as!

2.16

The coefficient of determination may be interpreted as the proportion of variation in the dependent
variable Y that has been accounted for, or “explained,” by the relationship Y and X expressed in the
regression line. To determine the linear partial correlation coefficient between variables Y and X,

ignoring X3 [31]:

N 2Y. X~ 2YJE X,)
TN ZY-Eva) [N =X X))

217

2~

The coefficient of linear multiple correlation of Y; on X, and X3 may be calculated from the partia

coefficients:;
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2 2

R..= r12+r13_2r212r13r23 218
1-r2

Note that the coefficients of multiple correlations Ry 23 are larger than either of the coefficientsri or

riz. Thisis aways true since, by taking into account additional relevant independent variables, we

should arrive at a better relationship between variables.

The coefficients of partial correlation, designated ry1, would indicate the partial correlation between
Y and X, after the effect of X, on'Y had been removed. The square of this coefficient measures the
reduction in variance brought about by introducing X, after X, has aready been accounted for.
Sometimes it is difficult to compare the differences in net regresson because the independent

variables are stated in different units.

To improve comparability, we can state the regression equation in a different form, giving each of
the variables in units of its own standard deviation. The transformed regression coefficients are
called BETA coefficients. In term of BETA coefficients, the linear regression equation for three

variables would be:

i: + L+ & 219
S, a ﬁlsx1 ﬁzsxz )

Thus, the (3 coefficients are equal to [32]:

= S—X 2.20
B bs{

(¥ measures the number of standard deviations that that Y changes with each change of one standard

deviationin X;.
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2.4Digital Signal Processing

Advanced monitoring and diagnosti ¢ systems, to enhance intelligent machining, employ multiple sensors,
and the signal's from these sensors are sampled and signal processed. Signd processing is used to determine
signa features, and may include: A fast fourier transform (FFT) algorithm to produce a frequency spectrum
from where power spectra densities may be andyzed by way of cd culating its mean, root mean square etc.
Signal features that are sensitiveto tool condition, tool wear, machine state classification etc, may be
extracted as part of the particular monitoring system [15, 33]. Inthis project the primary function of DSP is
to sample and determine the rms val ue of the sensor signals for on-line monitoring (Chapter 4) and diagnosis
(Chapter 5) purposes. However, in addition the cutting forces, cutting sound, tool-workpiece vibration, tool
temperature, spindle motor current sensor signals sampled and signa processed were further analyzed to
determine which additional signd features are sensitive to tool wear (Chapter 4).

Signal processing is concerned with the mathematical representation of asigna in the domain of the origina
dependent variablei.e time domain, or in atransformed domain i.e. frequency domain, and with the
agorithmic manipulation of the signal to extract the information being carried. Figure 2.4 show a block
diagram of the signal processing functions implemented including continuous to discrete domain conversion,
Finite Impul se Response Filtering (FIR), discrete Fourier Transform (DFT), and signal data extraction.

X[n] = x(nTy) y[n] = O{x[n[} X[k] = T{y[n]}|] MEAN,
X()—> Cto-D |———> FIRFilter > DFT >| VARIANCE,
STD DEV
T AVERAGE,
T Ufg > RMS,
MAX/MIN

Figure 2.4: Signal processing functions.

The continuous domain signal x(t) is sampled, using an analog-to-digital converson, a regular
intervals of Tsto obtain discrete signal x[n]. To eiminate unwanted signa components the discrete
domain signal x[n] is passed through a low-pass FIR filter of bandwidth O to 1/(2Fs) to obtain y[n]
from where the frequency spectrum components X[k] are obtained using a DFT. Finally sgnd
features is extracted from y[n] and X[k]. The following subsections describe the mathematica

concepts of the functional blocks, whilst Chapter 3 describes the software implementation there off.

24.1 Sampling Process

If signal x(t) contains no frequencies higher than F42 hertz, where Fsis the sampling rate, it is

completely determined by the set of its values at regularly spaced intervals of period Ts = 1/F{34].
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In the sampled series x[n]: Xx[0] corresponds to the input value at t=0, x[1] isthevalueat t =T,
X[2] isthevalueat t = 2T, and so on.  The process of uniformly sampling asignal in the time
domain resultsin a periodic spectrum in the frequency domain with a period equal to the sampling

rate [35].
24.2 FIR Filter

The general definition of aFIR filter is[36]:

Vnl= >b.X{n-K] 221

The filter coefficients by in Equation 2.21 are identica to the impulse response vaues h[Kk] of the

filter, and may be written as:

yin]= g;h[k] X[n—K] 222

The operation performed in Equation 2.22 is known as a finite convolution sum and expressed as:

yin| =Xn] 0N 225
The design of adigital filter includes:. Filter specification, coefficient calculation, realization and

implementation.
2.4.2.1 Filter Specification

Filtering of the sensors in this project was limited to that of low pass filter whose tolerance

specification scheme, specified in the frequency domain, is shown in Figure 2.5. Because of the

symmetry and periodicity of the magnitude response ‘H(ejw) it is sufficient to give the

specifications only for O o [ [l
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Figure 2.5: Magnitude-frequency response specification for a low passfilter [37].

In the low pass case, the desired magnitude response is usually given by:

D(w)=1 for «O[0,e,], passband of filter
0 for wU[w,, ], stopband of filter

The specification includes a transition band (ws - @p) of nonzero width in which the filter response
changes from unity in the pass band to zero in the stop band. The amplitudes of the allowable

ripples expressed in decibel as, an [37]:

A= 2o|ogm{ii g_"]ds and
A.=-20log,, (5.)oB 2.24

2.4.2.2 Coefficient Calculation

The objective of FIR coefficient calculation methods is to obtain values of h[n] such that the
resulting filter meets the design specifications expressed in Section 2.4.2.1. A popular approach is
to use the infinite-duration response coefficients of an ided filter, hp[n], and then to truncate and
smooth the response by usng a window function (w[n]), hence h[n] =ho[n]w{n]. The impulse
response coefficients for hp[n] filter is given as[38, 39]:

sn(new,)
N cu;
hD[n] =2f, nt0 2.25

ho[n] =21, n=0
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And Hamming window coefficients as:

\Am[n]:O.54+O.46005(2|<|n) for -(N-1)/2<n<(N-1)/2 (Nodd)

-N/2<n<N/2 (Neven) 2.26
wu[n] =0 elsewhere

The transition width for a filter designed with the Hamming window and filter length N is
determined from,

Af =3.3/N 2.27
The maximum stop band attenuation possible with the Hamming window is given as about 53dB,
and the minimum peak pass band ripple is about 0.194dB, which is sufficient for this project.
APPENDIX A SHOWS AN EXAMPLE IN OBTAINING THE FILTER COEFFICIENTS OF AN
FIR LOWPASS FILTER TO MEET THE TYPICAL SPECIFICATIONS AS USED IN THIS
PROJECT:

Pass band edge frequency: 10kHz Trangition width: 420 Hz

Sampling frequency: 5.0kHz
2.4.2.3 Realization structure

From Equation 2.22 the FIR filter may also be characterized by the transfer function (H(z)), the z—
transform of the impulse response h[K], given by [36]:

H(2) = %0 h[k] 7 228

The redization structure for the FIR filter is essentially a block diagram representation of the
transfer function. Although the implementation of Equation 2.28 may lead to several variations, the
transversal structure, shown in Figure 2.6, is most often selected as it leads to the most efficient

implementation [40].
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-1 -2 X[n-(N-1)]
x[n] _ ] x[nr] > X[n-2] ]

> YN

Figure 2.6: Transversal structurefor theimplementation of a FIR filter.

The symbol Z™* represents a delay of one sample of time (T¢), also known as the unit delay. For the
transversal structure, the computation of each output sample, y[n], requires. N-1 memory locations
to store N-1 input samples, N memory locations to store the N co-efficient, N multiplications, and
N-1 additions. The FIR filter can be adapted to construct a linear phase response by mirroring the

values of the coefficients around the center tap, so that: h[O] = h[N], h[1] = h[N-1] etc.

2.4.2.4 Implementation

The find stage isto implement the filter for real-time operation, and the key issue is to produce
software code of the chosen filter structure. The Texas Instruments TM S320C30 DSP processor,
used in this project, has an architecture and instruction sets optimized for FIR filtering operations
[41]. The DSP technology used in this project isintroduced in Section 2.6 and the software

implementation of the FIR operations for this project is covered in Chapter 3.

243 Frequency Spectrum

When a signal is non-repetitive (aperiodic), it can be expressed as the infinite sum (integral) of
sinusoids, which are not harmonically related. The corresponding spectrum is continuous and is

described mathematicaly by the FT [42]. The DFT is useful for the analysis of discrete-frequency
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representation of discrete-time sequence. The FFT is an efficient algorithm that can be used to
obtain the discrete-frequency representation with fewer computations than the DFT. The DFT of

data with a finite number of nonzero sample values, x[n] defined over the range O<n<(L-1), isgiven

by [41]:
X[k] =3 x[n] " O<ks(L-1
R W\
where
th :e—i(sz) 2.29

The number of multiplications required calculating X[K] is proportional to L?. Iﬁn , also known

as twiddle factors, is a periodic function with a limited number of distinct values. A highly efficient
algorithm for computing the DFT, known as a FFT, makes use of this feature to reduce the number

of multiplications in determining X[k].

Equation 2.28, X[k], may further be decomposed as [41, 43]:
_L2a " o L2l "
X[k] = Z_:,) X[2n] W, +W( Z_}) X[2n+1] W),
= G[K] +Wi H[K]

2.30

which expresses the origina L-point DFT interms of two L/2-pointDFT, G[K] (transform of even-
numbered pointsin x[n]) and H[k] (transform of odd-numbered pointsin x[n]). The block diagram
shown in Figure 2.7 shows how each L/2-point subsequence may further be decomposed into two

shorter L/4-point subsequences.
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Figure 2.7: Block diagram of a radix-2 FFT algorithm [36].

The process can continue until, in the limit, we are left with a series of 2-point subsequences, each
requiring a very smple 2-point DFT, leading to the most commonly used radix-2, decimation-in-
time. Using adirect DFT the amount of complex multiplications isin the order L%, however, if L is
an inter power of 2, and the FFT decomposition proceeds right down to 2-popint transforms, there
are log,L stages of FFT computations giving atota of:

No of Complex multiplicationsto perform FFT = Llog,L 2.31

For L=512=2° the speed advantage is nearly 57.

244 Statigtical Processing of Signal Spectrum

Statistical properties of the signal spectrum are used in system identification, properties may include

[43, 44]:

. Mean value



U =0 2.32
n
. Variance and standard deviation

n-1
, k}_g(xk—,u)z
g =« — 2.33

The square root of the variance is called the standard deviation (O ).

2.5 Intelligent System Components

Artificial intelligence is a discipline which studies the way in which humans solve problems
intelligently, and how machines can emulate this human problem solving ability. Expert systems,
FL and NN systems belong to a new paradigm of so-caled intelligent systems. A so-called
intelligent system gives appropriate problem-solving responses to problem inputs, even if such
inputs are new and unexpected. Humans are such intelligent systems. At this moment, there is a
considerable mismatch between humans and machines, in as much as humans reason in inaccurate,
multi-valued, fuzzy ways while machines are based on bi-valent, binary reasoning. Eliminating this
mismatch would make machines more intelligent, that is, they would be enabled to reason in a
fuzzy manner, like humans. The following subsections describe the fundamental concepts of NN,
FL and NF to realize models for the indirect measurement of tool wear and surface roughness
respectively (Chapter 4). It introduces the concept of a fuzzy relation, which is used by the

intelligent diagnosis (Chapter 5).
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25.1 Uncertainty

Formulae describe deterministic processes - one where there is no uncertainty in the physics of the
process (i.e. the right formula) and there is no uncertainty in the parameters of the process (i.e. the
coefficients are known with precision. Information from physical processes virtually always
contains uncertainty. There is uncertainty that arises from imprecision, from the inability to

perform adequate measurements, from lack of knowledge or from vagueness. For example,
uncertainty may be defined as the lack of adequate information to make adecison. Uncertainty is
therefore aproblem, asit may prevent us from making the best decision and may even cause a
biased decision. A human operator might not have a deep understanding of the plant dynamics that
he is controlling, but he knows what action to take whenever he observes certain conditions, such as
combinations from instrument readings. Therefore we say that the human operator has the ability to
overcome the uncertainties of the controlled system dynamics. Certainty factors (CNF) (or
confidence factors) are one of the most common methods of dealing with uncertainty in rule-based

systems [45].

Certainty factors may be associated with facts and with rules, for example:
Fact: <condition> = TRUE CNF <vaue>
Rule: If <condition> then <action> CNF <vaue> 2.34

The condition and action is known with a degree of certainty.
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252 Fuzzy System

It is particularly noticed that expert system-based approaches for on-line machining condition
monitoring, although effective due to the ability of dealing with the uncertainties, are often
inadequate for the fast reaction requirements in a low-level machine control, especially when
involving a complex knowledge base [33]. Fuzzy logic seems to be a unique method of dealing
with uncertainties, especially in the control of physical systems. A fuzzy system consists of four
principa components as shown in Figure 2.8: A fuzzifier, rule base, inference engine and

defuzzifier [46].

Output
Input
———— 3| Fuzifier > '”é%ﬁ:ge >| Deuzifir b——>
A
Rule Base

Figure 2.8: General components of a fuzzy logic system.

25.2.1 Fuzzfier

The assignment of linguistic values, defined by membership functions, to a sensor input, which
yields “fuzzified” values of the original sgna input. Using the triangular membership function a
linguistic variable “small”, “medium” and “large” may beillustrated as:

HAM)

A

Small Medium Large

0

al a2 a3
0 X

Figure 2.9: Triangular membership function for sensor data.
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For fuzzy “small”, itsfuzzy function may be expressed as:

1 X<
X—a
Uy (X)= 2 g <x<a 2.35
Asmall a -a, 2
0 otherwise

For fuzzy “ medium”, the function isgiven as.

[ x-a
a, <x<a
a, -3, i
H amegium(X) = 4 a):__a;g a, SXsgy 2.36
0 otherwise
|

And for fuzzy “large’, thefunction isgiven as:

7% 4 <x<a,
-, ’

luAlarge(X): ) 1 aS =X 237
0 otherwise

Where a,, a,, a, are parametersto determine the positions of the membership functions, as well as

affect the shape of the membership functions. The fuzzifier computes for each sensed input,
through the above fuzzy membership functions, values indicating as to what degree the input
belongs to the “small”, “medium” and “large” linguistic terms. A fuzzy membership function

expressed generally as a fuzzy set with finite input values:

Ai :{ﬂm(xl)’ 1,0 2,0, () 11, (xn)} 238

Where paij(X;) is the membership values for all the possible sensed input values.
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2.5.2.2 Knowledge Base and Inference Engine

The knowledge base may be represented as afuzzy relation or as alinguistic fuzzy rule base with

membership functions as a database.
. Fuzzy Relation (FR)

In control systems relationships are defined between system inputs and outputs. These mappings

are between variables defined on different universes of discourse through the statement:
AT~ B
If A(x) THEN B(y) through relation R

Where the condition set A is linked to the result set B through relation R. A relation R of universe

of discourse, is defined as a subset of the Cartesian product:
RUOUAX B
and illustrated in matrix form asfollows:

Y. Y. Y,

. X ILlll /’112 /’113
RKXE =X /121 Ilez /123 239
Xs /131 /'132 /'133

Where x; is the elements of A and y; is elements of B. The ,uR(X, y) values are the membership

values for each dement in the relation R and corresponds to the strength of connection or
correlation between A and B in the mapping [47]. It isaso called mapping intensity function. The

determination of the relation R is called system identification.
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The decision-making logic is embodied by an inference structure that has the capability of
simulating human decision-making. The membership vector of B can be ca culated from the given

relation matrix R and input membership vector A, asfollows:
ey FE (%) (%, y) 240

Where [ represents the Boolean sum, where the membership vector completely defines a set,

therefore we can re-write Equation 2.39 as:

B(y)=A(X)°R(x,Y) 241
Where “°” is the compositional operator which is usually max-min or max-product. If the

compositional operator is max-min the membership of vector B(y) is calculated as.

p(¥) =max[min[ 14,9 s (%) || 242

If the compositional operator is max-product the membership of vector B(y) is caculated as:

Hg(Y) :rQDaEX[ﬂA(X) : ,UR(X,Y)} 2.43

Instead of using the max function, the output fuzzy sets are weighted and logically summed.

. Fuzzy Rule Base

A classical fuzzy logical inference may be expressed as using the following max-min rule structure:

If x,is A, and x, is A, ... and X, is A,

Then vy is B,

or 2.44
If x,is A, and x, is A, ... and X, is A,

Then vy is B
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The computation of fuzzy rules is cdled fuzzy rule inference, and consists of the aggregation and
composition of a rule’s membership factors. Aggregation determines the degree to which the If-part
of the rule is fulfilled. The sensed input values (X1, X2, Xs..) have been fuzzified by having assigned
to them vaues from their associated fuzzy membership functions (Ai1, Ai2, Ais...). The AND
connective between the If-part implies either an intersection (min function) or an agebraic
multiplication (product) between the fuzzy sets assigned to the input variables, whilst the OR

connective between the If-part implies a union to connect the individual rules, as follows:

AND: £, =min. ()
OR: 4. =max; (ﬂ) 2.45

With Fuzzy Associative Map (FAM) inference, each rule is assigned a degree of support (DoS)

representing the individual importance of the rule. The then part of afuzzy ruleis modified to:

ﬂTHEN :ﬂIF* DOS 246

If more than one rule produces the same conclusion, an operator must aggregate the results of these

rules, hence rule composition as follows:

MAX - results aggregation: 4/, = max. W, o, w.e) 2.47

2.5.2.3 Defuzzifier

Defuzzifier consists of deriving a single control action from an inferred fuzzy control action. Each
control membership function, as shown in Figure 2.9, may include more than one valid evaluated
output term. The defuzzification method is used to determine a compromise between all the

different output terms.
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The Center-of-Maximum (CoM) and Mean-of-Maximum (MOM) methods are selected for different

types of applications and are used to calculate a single control output as follows:

L Z-(IURESJLT_TERMj*YJ)
CoM —Defuzafication: Y="

% HresuLT TERM

2.48

MoM —Defuzzfication: Y=, |u 2.49

RESULTTERM _ MAX )

2.5.3 Neural Networks

Figure 2.10 shows the architecture of afeed-forward artificial ANN, in which neurons (smple
asynchronous processing elements) are configured in layers, with each neuron able to send asignal,

along weighted connections, to other neurons [48].

I nput Input layer Hidden layer Output layer Output
Pattern Pattern

. e e e

Computed Desired
AN
>

S
/4 }\
Propagation Activation
Function Function

Figure 2.10: Basic feed-forward neural network processing elements.
The propagation functions A,j, Ay combine input signals X, Y; from sending neurons, respectively.

The means of combination is a weighted sum, with the weights of nodes given by matrixes Wi[i][j]
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and Wo[i][j]. Thetota activity received by the neuron A; and A is expressed by the propagation

function:

A=XXWIll+g, A=Yy WIlll+6, 250
i=1 i=1
Where @ , is an offset added to the weighted sum. The so-called activation function computes the

output signal for probabilistic type neurons using:

Z=f j(A,-):(1+eAJ)_1 2.51
The feed-forward ANN does not have feedback connections, but errors are back-propagated during
training, an iterative process, to adjust connection weights and threshold values until the desired —
calculated output value is less than a selected threshold for a specific training data set. The ™"

component of the error at the output layer and hidden layer is:

e =P,-z, adt =Yi(1—Y{§W2[i][J]ej]

2.52
Adjustment for weight between i neuron in hidden layer and j™ output neuron:

AW.[Iil=BY.e ad AWi]=6, X,
2.53
where IBOand IBhistheIearning rate parameters.

254 Neuro-Fuzzy

In most sensor applications classification criteria are often expressed by sample data. Thisistypica
for decision support problems, diagnosis or pattern recognition examples, and data analysis.
Traditional artificial intelligence (Al) has transparent mechanisms, often expressed in terms of
logical operations and rule-based representations, that are meaningful in modeling real systems.
Although NN has exciting possibilities, it does not use structured knowledge with symbols as used
by humans to express reasoning processes [49]. NF technology allows for the automated generation
of fuzzy logic systems based on neural network trained data. NF combines the advantages of fuzzy

systems—the transparent representation of knowledge and the ability to cope with uncertainties—
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with the advantages of neural nets, the ability to learn. Figure 2.11 shows agenera 5 — layer

structure of a NF model, as well asindication of how to map an NN to afuzzy logic system [50].

FEED-FORWARD NEURAL NETWORK

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Input Linguistic Nodes Input Term Nodes Rule Nodes Output Term Nodes Output Linguistic Nodes

v W Vv W

ﬁ QTRANSFORM ﬂ

- DoC
FAM
Rule Based System
with
Fuzzification DOSs > O

Defuzzification
S ————>

FUZZY LOGIC SYSTEM

Figure2.11: Neuro-fuzzy structure.
The linguistic nodes in layers one and five represent the input (S;-S,)) and output (O;-Oy) linguistic
variables respectively. Nodesin layers two and four are term nodes acting as membership functions
(MBFs) to represent the terms of the given linguistic variable. Each neuron of the third layer
represents one fuzzy rule (rule nodes). Layer three links define the precondition of the rule and
layer-four links incorporate the rule consequences. Initially these layers are fully connected

representing al possible rules. A fuzzy system uses different units of computation for the input,
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hidden and output layers. A standard error back propagation agorithm cannot be used to calculate

suitable weights for the neural network. The nodesin layer 1 simply transmit the input values to the
next layer, O.Z = S with unity weights W1 = 1. Layer 2 nodes perform membership functions, e.g.

triangular shaped functions, as shown in Figure 2.9 (Z-Lambda..Lambda-S) and Equations 2.35-

2.37 to determine link weights.

Fuzzy rules, from Equation 2.44 are implemented in Layer 3 and Layer 4. Layer 3 performs fuzzy

AND (min) operation with initial weights Wi =1, whilst nodes in layer 4 integrate the fired rules,

having the same consequence by using the fuzzy OR (sum) operator also with Wj = 1. Rulesmay

be represented by Fuzzy-Associative Maps (FAM), which is a fuzzy logic rule with an associated

weight, known as rule firing strength (or Degree of Support DoS). Based on the rule firing strength,
output 0.3 (t) and the output from the nodes Of(t) the task is to decide the correct consequence

link of each rule by competitive learning. The following learning law is used to update weights,

where the basic is, learn if win;

ws 0)=0:Fw; o) 254
Layer 5 performs de-fuzzification using one of Equations 2.48 or 2.49. NF training modules
provide methods, based on the above description, for supervised learning. The method employed
combines error back propagation with the idea of competitive learning. After a system output is
computed by forward propagation, an error is identified by comparing the system output with the
sample data [51]. This error is then used to determine the fuzzy rules most suited for influencing

sysem behavior. Using the selected rule, the plausibility of the fuzzy rule is modified before

subsequent data sets are processed.

255 Multi-Sensor Fusion
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Figure 2.12 showstheinteraction between sensors and the direct (solid-line) and indirect (dash-

line) measur ement of machining variables.

Current ﬁ POWG'
Transformer o —

™~ e &
Accelerometer é—) Vibration
EnCOda Pulse \ﬁ Feedrate

— § Surface
Quiality

Figure2.12: Parallel sensor - measured variable interaction.

The current transformer connected in-line with one of the phases of the spindle motor can indicate
directly the spindle current and could be used to determine power consumption as well as partially
reflect the system’ s vibration and surface quality. A combination of the current transformer,
accelerometer and encoder pulse rate values, each contributing partially to the classification of
surface roughness, may be used to measure surface roughness indirectly with greater accuracy by
means of a sensor fusion model. A multi-sensor fusion modd is basically a mathematical function
developed to extract corroborative and relevant information on a particular manufacturing
operation. Inthis project NF-based multi-sensor fusion models for the indirect measurement of

surface roughness and tool wear is generated from experimenta data (Chapter 4).

2.6 Characterigicsfor Intelligent Machining Controller

Over the last 60 years the use of automatic control theory and technology has allowed many
industrial processes to operate automaticaly under certain operating conditions. Most machining

processes are stochastic, nonlinear, complex and ill-defined and are open to control by means of
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intelligent systems. Process automation tasks are performed in hierarchical levels as shown in

Figure 2.13 [52]:

. Process level: Measurement of the input variables and manipulation of the output variables
and require afad reaction time.

. Control level: Feedback and feed forward control where various variables are adjusted
according to conditions or reference variables.

. Supervision: Indicates undesired or unpredicted process states and to take appropriate
actions such as fail-safe, shutdown, or re-triggering of redundancy or reconfiguration
schemes.

. Management: Performance optimization, coordination of general management in order to
meet economic demands or scheduling and dedicated to tasks that do not require fast

responses and act

77777777777

MANAGEMENT

|
|

|

|

|

|

|
SUPERVISION | 1
|

|

|

|
CONTROL :
|

Figure 2.13: Multilevel process automation [1].

Numerica Control (NC) and CNC machine tools have been widely applied in industry. Productivity

and production quality has been increased accordingly by means of these facilities [1].
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Figure 2.14 shows the genera architecture for machine controllers, which perform process and

control level functions.

Programmed Required Programmed
Speed and Feed  Force Pasitions
CONTROL LEVEL
) Y V V Machine Temperature
Cutting Force or Machine Geometry
Power Measurement_ ) Error Tod W
>| Adaptive Control Compensation 00 .ear .
Workpiece/Tool Deflection
Feed Positions Workpiece Temperature
Y Y
Interpolator
PROCESS LEVEL
Y Y
Spindle Control Servo Control Loops
Drives Speed Drives Position
Feedback Feedback

Figure 2.14: Hierarchical levelsin CNC controllers[53].

At the process level NC and more recently CNC machine tools have been widely applied in the
machining industry to manipulate the processes machining variables, depth of cut, feed and spindle
speed. Asalogical extension to CNC systems, the control level involves Adaptive Control (AC) of

the machining process, which includes the following two major functions:

. Enhanced productivity by applying adaptive control techniques such as Adaptive Control
Optimization (ACO) and Adaptive Control Constraints (ACC). The adaptation strategy is
used to vary the machining variables in red time as cutting progresses. ACO performs
optimization with respect to maximum production rate and/or minimum cost and ACC
controls with respect to forces or with respect to vibrations [54, 55, 56, 57].

. Enhanced part precison by applying real-time geometric error compensation techniques

such as Geometric Adaptive Compensation (GAC) for imprecise machine geometry, tool
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wear etc [58]. The compensation strategy modifies the geometric data supplied by the part

program, the depth of cut.

Conventional CNC machines have the following limitations because of their closed architecture

[59, 60];

» They cannot efficiently provide red-time monitoring of a machining process by means of sensor
feedback.

* The control of the machining process is not achieved adaptively in terms of on-line sensory
data

 The integration of task planning with control activities, and optimization of system

performance, are not realized efficiently.

Furthermore, in order to deal with machining complexity an “intelligent machining controller”
should have a suitable architecture. Open architecture is a philosophy in design and implementation
of machine tool, production processes and control. It creates an open environment for
manufacturing and enables manufacturing systems to changes and reconfiguration system hardware
and software. An open architecture in the design and implementation of intelligent machine tools

needs to embrace the following characteristics [61, 62, 63, 64]:

*  Sensor based. The combination of multiple sensors makes it possible to reflect the complexity
of the manufacturing process. Sensory data are not only for control, but also for process

modeling, real-time simulation and performance monitoring and evaluation.

* Knowledge based. Human expertise, work experience, and testing experiment. Fuzzy logic is
powerful in modeling human expertise and experience knowledge, as well as the highly
non-linear manufacturing process. Since fuzzy knowledge inference is embedded within
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the modeling, monitoring and control, system flexibility and intelligence would be much
enhanced.

e Integration. System integration is realized from different points of view. The processes of
modeling, monitoring and control are integrated. On the other hand, sensory data and
knowledge inference are integrated for on-line monitoring and remote decision-making via
the Internet.

e Modular. A modular design is achieved in the interface and control of the system. It may be
extended to other parts of the system, such as the inference algorithm. The interface access
to the Internet is also designed as a module.

* Openness. Systems developed incorporating those features mentioned above would be open to
changes in respect of machine setup, machining process, and control algorithm and

operation.

2.7 PC-Based Technology for Open System Architecture

The hardware and software selected to develop an open architecture based machine tool controller

should [65, 66]:

. Make use of standard computing architectures like VME or ISA/PCI bus standard
processors like Motorola 68x0, PowerPC, or Intel 1x86/Pentuim-based systems.

. Be based on standard operating systems like Unix or Windows NT. Common operating
systems for each level of the factory facilitate communications, programming efforts, and
the protection of standardized data structures.

. Be programmable in standard languages like Microsoft Visual Basic and Visual C++ or
C/C++ and X-Windows. Object-oriented, high-level languages that are comparable to
plans and subsequent to machinery instructions are necessary requirements for the transfer

of knowledge from one level of the factory to the next. This principle includes
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standardized data structures that must pass unambiguously down through the factory
hierarchy; and

. Be open and extendable so as to let the user integrate custom control agorithms. Open-
architecture computer platforms are needed at all levels of the factory, with the key
emphasis today being on improvement of factory floor machinery such as machine tools,

robots, and common manufacturing devices.

Recent technological advancesin PC-based DSP and Programmable Multi-Axis Machine Control
(PMAC) products, aswell as software interfacing Active-X controls and dynamic link libraries
(DLL) to facilitate communication between these hardware components, and an object oriented
windows based software application, enable the redization of PC-based open system architecture to

implement the open architecture machine control as shown in Figure 2.15.

1.1 Multi-Axis Control Interface
Card

Ethernet Interface Card

Two DSP Interface To Open Machining Process for
Cardsto Sample and Internet Monitoring.
Process Sensor Signals.

Figure 2.15: PC-based PMAC, DSP and Ethernet interface cards.
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2.7.1  PCI32 a 32-bit Floating Point DSP with PCI busInterface

Two PCI32 interfaces, shown in Figure 2.16, featuring the high performance Texas Instruments
TM S320C32 32-hit floating point DSP capable of up to 60 MIPS were selected to be used in this

project to sample anaog sensor based systems.

------ T IR e Y
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Innovative Integration REV B

1.4 Analog Application .
Interface DB37 for f TMS320C32 CPU
Analog Sensor Signal 1.2 PCI ‘Bus Interface

for
PC to DSP bi-directiona

Figure 2.16: PCI32 DSP interface.

The PCI32 plugsinto astandard 32-bit PCI busdot. The PCI bus interface includes dual-ported

memory capable of burst transfers at rates to 40 Mbytes/sec on most platforms. This 8 Kbytes dua
port RAM provides asuperior interface and alows multiple cardsto be installed in systems with
full driver support under Windows 95 and NT. The PCI32 may be programmed in C or Assembler
using tools available in a Software Development Package. Components within the package,
installed and used in this project, which fully support development of custom DSP applications

include [67]:

. Texas Instruments Floating Point C Compiler/Assembler toolset
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. Codewright an integrated code generation environment.

. DSP Peripheral library that support al on-board peripherals and DSP functions.

. Custom 32-bit Windows 95/NT compatible dynamic link library, which utilizes a custom
32-bit Ring 0/Kernal-mode device driver for host PC software application development.

. Host support applets for automation program download.

The abovementioned software was utilized to develop a standalone PCI32 DSP application that is
able to sample and signal; process the analog sensor signals which in turn may be accessed by the
PC host application for advanced monitoring and decision making. The implementation aspects,

including software code, are discussed in Chapter 3.

2.7.2  PMAC-PC Programmable Multi-Axis Controller with ISA interface

The DdtaTau Data Syssems PMAC-PC, shown in Figure 2.17, is a high-performance servo motion

controller capable of commanding up to eight axes of motion simultaneously with a high level of

sophigtication [68].
Motorola DSP56001 is Servo/Motor Control
and Encoder Signal
at the heart of the CPU terface

e .. -
o W .n 1
| TTEETERE

1.51SA BusInterface
Using I/O Address

manninn

Figure 2.17. PMAC-PC multi-axis control card.
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PMAC is avery flexible controller, suitable for many different types of applications, with different
types of amplifiers, motors, encoders and sensors. The card may be configured for a specific
application, using both hardware and software features and is therefore ideally suited for performing

the multi-axis control function in open system based architecture.

Delta Tau developed PTAKDT [69], a software interface to its 32-bit software driver PComm32.
PTAkDT isin the form of an ActiveX Control, a new and upcoming form of library that is very
popular with Windows programming. It is designed to provide robust and efficient communication

to PMAC from Windows based applications.

Many of the commands given to the PMAC, using the PTTalk ActiveX control, are on-line
commands, which are executed immediately by the PMAC. There are three basic classes of on-line
commands including: M otor-Specific Commands Coordinate system-specific commands and globa

commands.

PTTdk Active X control software was installed and extensively used to develop a Windows based
software interface that is able to configure the PMAC, send motion control commands and receive
coordinate positions from the PMAC. The implementation aspects, including software code, are

discussed in Chapter 3.

2.7.3 Object Orientated Programming (OOP), Visual C++ and Visual J++

A programming language must support abstraction, encapsulation, inheritance, polymorphism and
modularity before it deserves to be called object oriented [70]. The C++ language is based in, and
extends the C programming language, by supporting OOP features [71]. By using these advanced
capabilities one may achieve self-configurable software systems [72]. Using object-oriented

techniques to develop software, helps to construct systems that closely modd reality such as
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components and functions within an open architecture based machining controller. Each object
knows how to handle its job well, and it collaborates with other objects to accomplish a common

goal.

One particularly useful use of OOP is to create reusable application frameworks. An application
framework is an integrated collection of object-oriented software components that offer all that is
needed for a generic application [73]. Microsoft Foundation Classes is an application framework
specifically tailored for creating applications for Microsoft Windows operating sysem. The
Microsoft Foundation Class Library is built on top of the Win32 application-programming interface
(API). This API is a set of functions exposed by the operating system for use by applications.
Through MFC, base classes are exposed that represent common objects in the Windows operating

system, such as windows and menus.

MFC does not encapsulate the entire API, just the main structural components and components that
are commonly used. Because MFC is written in C++, MFC programmers can easily use the Win32

APl to make native calls to the operating system. Figure 2.18 show the relationship between MFC,

the Windows Base Operating Services, and the Windows Operating System Extensions.

Figure 2.18: Reationship between MFC and Windows API [74].
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By providing this simplified interface to the Windows API, MFC offers a number of advantages
over using the Win32 API:
. MFC provides a higher-level abstraction of Windows, thus reducing complexity.

. One can learn Windows-based programming much faster than you would by working

directly with the Windows API.

. One can quickly develop an application framework from which more complex applications
are created.

. One has access to object-oriented techniques that are supported by the C++ language.

. MFC uses the more robust language features of C++, such as stronger type checking,

exception handling, and intelligent object construction and destruction.

. MFC supplies additional library support for safe dynamic memory use, type validation, and

debugging.

Microsoft Developer Studio, used in this project, is the development environment for Microsoft
Visuad C++ and MFC. In order to provide flexibility to meet various programming needs,
Developer Studio integrates several other development tools such as Microsoft Visual J++. Besdes
providing an integrated, flexible environment, Developer Studio offers class navigation tools that

are designed to simplify object-oriented programming for Windows.

Java applets are designed to work easily within the World Wide Web (WWW) of computers
through commonly available, user-friendly software caled browsers which are Java-enabled.
Although it is a rather recent addition to the host of high-level computer languages available to the
programmer it incorporates the latest in OOP features and capabilities [75]. The designers focused
on security, network-awareness, multitasking and hardware abstraction, which have brought Java
near-instant acclaim in the programming field. In this project a Java Applet will be developed and

embedded within a web page. The applet will be enabled remotely through a web browser from
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whereby a connection-oriented service will be performed with the Visual C++ application.

Implementation aspect of the remote monitoring for machining is be explained in Chapter 3.

2.8  Sysem Framework for Intelligent Machining

Figure 2.19 shows a proposed system framework for the implementation of a sensor-integrated
monitoring, intelligent diagnosis and control of the machining process. In adaptive control system
cutting force, torque and/or power sensors are used to provide the feedback information, with the
control of the cutting force being the most popular. It seems clear from the research conducted that,
at the lower level, adaptive control with self-regulating ability applied to one dependent variable Fz
is achievable by changing f1x and Vc. With a multi-input / multi-output control strategy one may
want to control more than one independent variable, say Pc and Ra. The independent variables, Vc,
f1x and dy are set in an optimal manner in order to maintain Pc and Ra set points[76]. A drawback
of these control strategiesisthat it is based on the modeling of the origina process and may only be
applied within a limited range from the set point. Theideal is, of course, to be able to maintain all
the dependent variables at variable set points. However, this has proven to be unattainable since it
implies a tremendously complicated multi-input and multi-output control system. A simplified

arrangement has been agreed upon [64]:

. Adaptive control of feed with respect to cutting force;
. Adaptive control of feed with respect to maximum productivity; and
. Advanced process monitoring and diagnosis

This is indeed what the framework proposes. Signas are sampled and processed using the DSP.
Machining process parameters Ra and Vb that the sensor system is not able to measure directly, are

determined indirectly using multi-sensor fusion modeling.
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Figure2.19: Framework for intelligent machining.
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The object oriented software application interface serves as a graphical user interface and performs
overal module integration and coordination. It sends motion and process control commands to the
multi-axis controller and provides process parameter constraints to the diagnostic system. Once a
process parameter exceeds its limit, it is up to the diagnostic systems to ensure that the specific
parameter returns to its stable state. Using a fuzzy relation the diagnostic system will decide
intelligently which one of the three process control parameters to change in order to achieve an

overal stable machining process.

2.9 Concluson

The monitoring of tool wear and surface roughness by means of intelligent systems will enhance
automated machining. Neuro-Fuzzy modeling may be used as a basis for developing fuzzy logic
models for the indirect measurement of tool wear and surface roughness. Fuzzy logic models,

based on experimental data, for this purpose is analyzed and explained in Chapter 4.

The primary difference between automated machining and intelligent machining is that an
intelligent system applied in the latter is capable of making decisions based on significant
information from the machining process. A fuzzy relation that indicates the strength of connection
between process features and process control action is used as part of a diagnostic system to decide
intelligently which decision to make when a machining process parameter is exceeded. Chapter 5
includes empirical machining process input/output relationships, obtained from regression analysis

of experimental data, for modeling and smulation in order to test the intelligent diagnostic system.

A framework for sensor-integrated monitoring, diagnosis and control for intelligent machining
process control is proposed. Chapter 3 describes the experimental set-up including all hardware and

software components to implement the proposed system framework on a PC-based system.



Chapter 3
Experimental setup:

M achine Controls, Sensors and Software Components

Intelligent machining systems with in-process quality assurance need to detect and react quickly on
measured defects, and then should have the capability to adapt to maintain desired tolerances. The
purpose of the experimenta set-up is to implement and integrate the sensors, pc-based hardware,
software components and machine controls indicated in the proposed framework for intelligent
machining, described in Section 2.8. Each software function developed to support hardware
operation and overall integration constituted a module with appropriate interfaces so that the

reconfiguration of the system may be redized in terms of the modular structure.

3.1 Experimental setup

Figure 3.1 shows the completed experimenta set-up congsting of an EMCO Compact 5 training
lathe under the control of a 1.5 kW Baldor ac servo motor [76] for spindle rotation and two
Powermax hybrid stepper motors [77] for driving the x-y coordinate system. The machine controls
include servo and stepper motor amplifiers and respective power sources. The encoder feedback for
the servo and stepper motors is returned to the PMAC. The drives are thereby directly controlled
from the PMAC enabling instantaneous reaction from software-controlled commands. This
arrangement was selected so as to minimize the amount of controls hardware. If a new drive/motor

combination is selected the system would only be required to undergo a software reconfiguration.
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Windows based user software interface Machine controls:
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11.1.1.1.1 Figure 3.1: Experimental setup: machining process, PC-based control and sensor measurement.
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3.1.1 MachineControls

Figure 3.2 show the layout of the control panel for the servo and stepper motor drives.

|

DBSC Series 100 Pacific Scientific
AC servo motor Model 6410
drive | Micro-stepping
1 drives.
| AC Mains
| LineFilters
Circuit breaker
protection
220/20V AC
Transformer
for stepper
motor drives _ S

Figure 3.2: Pand layout for the spindle and stepper motor drives.

Spindle Motor Control Circuit Description

Figure 3.3 shows the wiring diagram for the spindle motor control circuit. Power to the servo drive
is from 230V ac mains. A linefilter is incorporated to eliminate as much of the electrical noise on
the power line as possible. A circuit breaker is also incorporated into the supply line to the drive for
over current protection. The live wire is connected to termina X1:2, the neutral connection is

made to terminal X1:3 and terminal X1:1 istied to Earth.
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The control signal from the PMAC is a single-ended +-10V analogue magnitude voltage generated
on pin 43 (DAC1). Pin 45 (DACY) is left floating because the return path for the control signal is
analogue ground. Pin 47 (AENA1/DIR1) isused as an amplifier enable signal. This pinisan open
collector output and requires the use of a 1 kilo-ohm pull-up resistor. It is configured to give an
active LOW output. Pin 49 (AMP FAULT) takes an input that tells the PMAC whether the
amplifier is operating correctly. This input is supplied by the amplifier itself and is based upon the
result of the amplifier self-test routines. Pins 17, 19, 21, 23, 25 and 27 (CHC1, CHC1/, CHB1,

CHB1/, CHA1 and CHA1/ respectively) are the PMAC encoder inputs for quadrature decoding.

Terminals X3:1 (CMD+) and X3:2 (CMD-) are the velocity control inputs of the servo controller.
CMD- is tied to the PMAC's analogue ground allowing single-ended control by the PMAC. Pin
X3:6 (CIV) and pin X3:8 (CGND) are the inputs that define the voltage level at which the servo
drive communicates with its controller (in this case a PMAC-PC). All outputs to the PMAC (e.g.
encoder outputs and Drive OK output) use the voltage present on pin X3:6 and are relative to pin
X3:8. Pin X3:9 (Enable) is connected to the PMAC amplifier enable output allowing the PMAC to
"disconnect” the amplifier when control of the servomotor is not required. Pins X3:10 (CW Limit)
and X3:11 (CCW Limit) are tied to PMAC's +15V supply to enable motion in both the clockwise

and counterclockwise directions.
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Figure 3.3: Wiring diagram for the spindle motor control circuit and current transducer.
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X-Y Axis Control Circuit Description

Figure 3.4 shows the connection-wiring diagram for the x-y axis control. The velocity control
voltage is developed between pin 44 (DAC2) and pin 46 (DAC2/) of connector PMAC-J8. This
control signa is then fed to connector pins J1:1 (DAC2) and J1:2 (DAC2/) of the voltage-to-
frequency converter (V-to-F). The V-to-F then converts this unsgned magnitude voltage signal into
a pulse width modulated signa that is compatible with the stepper motor drive input. The frequency

of thissignal is proportiona to the magnitude of the velocity control voltage.

The amplifier enable bit (AENA2/DIR2) on pin PMAC-J8: 48 is used as a digital direction bit and
supplies the signal to the V-to-F direction input (DIR1) on connector J1:9. The outputs for the V-to-
F are adigital direction bit and a pulse width modulated pulse output, both a TTL levels. For this
channel the output on connector TB1: 3 (PUL1) carries the pulse output and the direction signal is
on connector TB1: 4 (DIR1). The frequency of the output pulses is directly proportiona to the
magnitude of the control voltage present between the DAC1 (J1:1) and DACL/ (J1:2) input pins.

The pulse output from PUL1 is the input to the STEP-input (connector J1: 6) of a Pacific Scientific
stepper motor drive. The STEP+ (J1: 6) input istied to +5V. When logic O is present on the STEP-
input, the opto-isolator goes ON. Every transition of the opto-isolator from OFF to ON results in
the execution of asingle step of the stepper motor. DIR1 output of V-to-F isthe input to DIR- input
(connector J1: 7) of the Pacific Scientific stepper drive. The outputs of the stepper drive are a pair
of differentia signas that provide excitation voltage to the windings of a stepper motor. Feedback
from the stepper motors is by means of an incremental encoder that is attached to the stepper motor
shaft at its rear end. This device outputs 4 pulse signals in quadrature mode. A resolution of 2048
pulses per revolution is redized in this application. Output from this device is fed directly to the
PMAC quadrature encoder inputs. The PMAC decodes these signals to determine position and

velocity of the stepper motor.
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11.1.2 Figure 3.4: Wiring diagram for the x-y axis control circuit.
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3.1.2 Sensory System

One of the basic requirements for intelligent machining is the need for sensors and measurement
systems to obtain signal features that characterize the process. In this project the sensor type and
positioning thereof is focused on the measurement of signals that are “close” to the machined
product. These signas may then be used as input to an intelligent diagnosis system to ensure the in-
process reliability and quality of the machined product (Chapter 5).  Figure 3.5 shows the cutting
tool (insert and holder) with embedded sensors for: cutting force and feed force, cutting sound,

cutting tool temperature and cutting tool-workpiece vibration measurement.

3.1.21 Tool-Workpiece Vibration

Vibration may be measured using either a dynamometer, accelerometer or displacement sensor. Lin
and Hu [78] found that, of the three, accelerometer performed better. The accelerometer may be
placed on the tailstock or on the tool as shown in Figure 3.5. A modd 3140 instrumentation grade
fully signal conditioned accelerometer is used to measure the tool-workpiece interaction [79]. The
accelerometer has arange of 0 to 10g, a build-in amplifier with an output sensitivity of 200.7 mV/g

and afrequency response of 0,7Hz t01200 Hz.

3.1.2.2 Cutting Tool Temperature

A J-type thermocouple wire with a braided tip inserted close to the tip of the cutting insert is used to

measure temperature close to the cutting zone. The thermocouple wireis fed to atype 1100 signa

converter used to linearize and amplify the temperature signal [80]. The amplifier system’s

sensitivity is 33 mV/°C with a range of 0-300 °C.
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Figure 3.5: Cutting tool, embedded microphone, thermocouple, strain gauges, accelerometer sensorsand amplifiers.
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3.1.2.3 Orthogonal Forces

The objective of strain gauging a cutting tool is to measure the orthogonal cutting forces [81] acting
on the tool and workpiece whilst machining. To be able to measure the cutting force Fz and feed
force Fx, eight 120-ohm strain gauges [82, 83] are bonded [84] to the shank of the cutting tool as
shown in Figure 3.6. The front set of gauges may be used to measure the radia force Fy.
However, it was not used in this project. The two sets (top-bottom, left-right) of four gauges are

wired into a bridge configuration [85, 86] and connected to a dynamic amplifier with a 3 kHz

frequency response range.

Top and bottom gauges wired
into a bridge for measuring Fz.

Left and right gauges wired into a
bridge for measuring Fx.

Front gauges wired into a bridge
for measuring Fy. (Not Conneted)

(a) Strain gauge positionsto measure Fx, Fy and Fz.

(b) Strain gauges bonded to shank. (c) Stain Gaugescovered with foil.
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Figure 3.6: Cutting tool with bonded strain gaugesfor orthogonal force measur ement.
Figure 3.7 (a) shows the procedure followed in calibrating the equipment with the purpose of
determining the ratio a relationship between the output voltages from the dynamic amplifier,

and the forces applied at the tip of the cutting tool (sensitivity). A beam was attached to the

G-clamp Multi-meter
Amplifier
Specimen |
with bar
Mass pieces

tool holder and weights suspended from the beam. This was done to overcome the problem
of attempting to attach large weights to the tip of the tool. Figure 3.7 (b,c) shows the resulting

cdlibration curves.



(a) Orthogonal force calibration procedure.
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(b) Fz: Applied force at tool tip in the z-axis ver sus amplifier output voltage

(Sengitivity — 23.67 mV/N).
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(c) Fz: Applied force at tool tip in the x-axis versus amplifier output voltage
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(Sendtivity — 23.62 mV/N).
Figure3.7: Calibration procedure and sensitivity for orthogonal cutting force measurement.
Whilst loading the x and z-axis respectively there is an output recorder on the unloaded axis. This
output is less than 5% of the value recorded at the loaded axis and may be the result of a small

misalignment in the strain gauges position on application.

3.1.2.4 Cutting Sound

Sound may be defined as any pressure variation that the human ear can detect. The number of
pressure variations per second is called the frequency of sound and is measured in Hertz. The
frequency of sound produces its distinctive tone. These pressure variations travel through any
elastic medium (such as air) from the source to the listener’s ears. For acoustic and sound
measurement purposes, the speed is expressed as 344 ms' at room temperature, and from this the
wavelength may be calculated as speed of sound / frequency. Most industrial noise consists of a

wide mixture of frequencies known as broadband noise.

A second main quantity used to describe a sound is the size or amplitude of the pressure
fluctuations. The decibel is not an absolute unit of measurement. It is aratio between a measured
quantity and an agreed reference level. The dB scale is logarithmic and uses the hearing threshold

of 20 pPaasthe reference level [87].

A microphone converts the sound signal into an equivaent electrical signa. The most suitable type
of microphone for sound level meters is the condenser microphone, which combines precision with
stability and reliability. A LSM900 condenser microphone, with a 20-20kHz frequency response, is
smal in size and free of *“bass boosting proximity” effect found when using most microphones
close to asound source [88]. This makes the microphone ideal for measuring cutting sound close to

the cutting zone. The dectrical signal produced by the microphones is quite small, and a
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preamplifier amplifiesit before connected to the DSP. Figure 3.8 shows the microphone connected
[89] to AD210 [90], a general-purpose amplifier, whose output is connected to one of the channels

of the PC-based DSP interface card.
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Figure 3.8: Microphone amplifier circuit diagram.
Capacitors C3 (1uF), C1, C2, C5 anC6 (100nF) are connected to filter and eliminate any unwanted
high frequency noise ripples. Zener diodes D1 and D2 provide protection against high voltage and
incorrect polarity by limiting the input AC and DC voltage amplitudes. Resistor R6 provides
current limiting. When the input signal is of DC type, jumper JP1 must be connected to provide a
DC-link. An unconnected jumper links JP1 for an AC input signal, which now passes through
capacitors C4 and C8 connected in parallel. The parallel-connected capacitors, together with

resistor R4, determine the circuit’ s low frequency response limit as:

_ 1
o~ 2 7(C4+C8) R

f

31

The signd is taken to the inverting input of the AD210 through resistor R4 with the non-inverting
input being connected via R7. A feedback path is provided from the output, viaresistor R2. This

gives a maximum voltage gain for the amplifier as.

VoltageGain = % 3.2
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The output signal from the AD210 passes through alow pass filter R1 and C7, which filter any high

frequencies. The cut-off frequency may be determined by:

1

Fe = 2 77RICT

In order to reduce background noise measurement the amplifier's gain was dtered usng R2
(392K[1) until the output was close to zero. Using this value for R2 and equation 3.2 the final gainis
calculated at 70. The LSM900 microphone has a sengitivity of 0.02238 mW/Pascal, which results
into 0.25 V/Pascal as it is feeding into a 2800[1 (R5//R6) impedance. With a gain of 70 the
resulting sengitivity for sound measurement is 17.5 V/Pascal. Although the microphone can
measure sound of up to 120dBsp. (20 Pascal), which is equivalent to ajet taking off, sound from the

cutting process used in this project does not exceed 0.05 of a Pasca (about 70 dBspy).

3.1.25 Spindle Current

The on-line measurement of spindle current is important as it may be related to cutting force as an
aternate measurement method and used to manage the supply of torque and power available for
cutting. Advantages of current sensors include: low in cost, easy to install, robust and have a fast
response time.  Furthermore, due to lower maintenance and higher performance, modern machining
centers make use of AC or DC Servo Brushless motors. It was therefore decided to make use of a

3kW AC Brushless servomotor and connect it directly to the spindle.

The spindle current is measured using an F.W.Bell current transformer Model IHA-100 [91]. It is
able to measure current in a range of 0 — 100 amps with a sensitivity of 50 mV/ampere and a +5/-5
V maximum output. However, with N turns, the current range is reduced by a factor of N divided
by the full-scale current. For the model IHA-100, 10 turns through the aperture will change the

current range from 0 — 100 ampere to O — 10 ampere, thereby increasing senstivity to 500
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mV/ampere. The current sensor is connected in one of the phases of the servomotor [92], as shown

in Figure 3.9, so asto measure load changes instantaneously.

To Dri To AC Servo

+15/-15 Power Supply 10 turnsto give
500mV/A sensitivity

Figure 3.9: IHA-100 current sensor connected into one of the phases of the ac servomotor.
Figure 3.3 shows the wiring diagram for the spindle motor control circuit and indicates how

the current transducer is connected in one of the motor’s phases and interfaced to the DSP
interface card. The —15 V supply goes to pin 1 of the current sensor, +15 V supply to pin 3
and analogue ground to pin 2. The use of a dud rail supply allows the sensor output to
swing either negative or positive to indicate negative or positive current flow. Pind
(AGND) of the current transducer is fed to pins 5 (INPUT B-) and 34 (AGND) of the DSP
interface. This means that the signal received by the DSP card will be relative to the card’s
own analogue ground. Output of the transducer on pin5 (VOut) is fed to pin 24(INPUT B+)
of the DSP card. The analog to digital converters on the DSP card then converts this value to
a sixteen bit binary value, which can be accessed by the host computer for anaysis

purposes.
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Figure 3.10 shows the relationship between the spindle current Is and the cutting force Fz

for al the measurements performed during experimenta data acquisition in Chapter 4. The

experimenta datais shown in Appendix B.
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Figure 3.10: Theexperimental relationship between the spindlecurrent Isand the

cutting force Fz.

The values for Is and Fz is obtained after sampling and calculating their rms values. The

correlation between the spindle current and cutting force is 98.47%. There is no complex

sensor calibration required and the relationship is a simple linear equation.

3.2 Software Componentsfor Experimental Set-Up

Decisons made by the intelligent controller must be made within a relatively short period of time.

An adequate response to changing system conditions and events, such as tool wear, must be made

within seconds in order to guarantee the reliability of the process [1].

Figure 3.11 shows the

hardware architecture with software components implemented to realize the intelligent controller.

The two PCI32 DSP modules, target O and target 1, continually sample sensor sgnals and perform
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real-time signal processing on each. The PMAC target module performs machine control by
executing motion control commands. Target O, 1 and 2 operate independently. The PC-based host
module executes a windows based MFC software application framework. It in turn instantiates
objects CMonitorView, CGeometricView and CServer each with an appropriate user interface.
CMonitorView uses the mailbox interfaces to request on-line process data features from target
modules 0 and 1. It may then use the data to execute advanced monitoring and intelligent
diagnostic algorithms. CGeometricView uses an Active X [69] to send motion control commands
to the PMAC. Itsuser interface is used to interact directly with the various motion controls, create

motion control programs, download motion control programs and start the execution thereof.

MULTI-VIEW
USER INTERFACE REMOTE MONITORING
USING
INTERNET BROWSER
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11.1.3 Figure 3.11: Hardware architecture and software componentsfor intelligent
machining process controller.

The host operating system is Internet enabled and therefore CServer enables remote monitoring of
machining process parameters. Figure 3.12 shows the implemented object-oriented software
framework for the intelligent machining process controller software components. It shows
interfaces to alow communication between modules, basc data structures required, events
generated and software functions implemented. The following subsections will briefly describe

implementation aspects of the software framework.
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321 Host Module CMonitorView for Machining Process Monitoring

CMonitorView object, created at runtime, by CWinApp, declares a channel_features structure that

is used to declare variables to maintain on-line data features from each sampled channel.

typedef struct
{float FREQ;
float RMS;
float MEAN;
float FFTBuUf[256];
} channd_features,

channel_features tOchan0, tOchanl, tOchan2, tOchan3;//t0 — Target O; t1 — Target 1
channel_features t1chanO, tlchanl, tlchan2, t1chan3;

On Windows WM_CREATE event the object constructor opens a device driver to enable
communications, using DLL function calls, with target O and target 1 [93]. It performs a

communication test with both targets.

//Open Target 0 and Test Target O Responce
targetO = O;
target_open(target0)
download(0);
do { count++;
read_value = 0;
read_mb_terminate(target0, TERMINAL_MBOX, &read_vaue, 0);
Sleep(100);
} while(count<50 & & read_vaue!=0xa5ab);
if (count==50)
{ MessageBox(NULL, "Target O Application did not respond”,
MB_ICONINFORMATION);}
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Figure 3.12: Object-oriented software framework for a PC-based intelligent machining process controller.
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When the target modules have successfully sampled and processed sensor data, they place the data
features into dual port ram used for the host-target interface. Interrupt service routines, EnqueueData0
and EnqueueDatal, transfer data features from the dua port ram, when it receives a hardware interrupt
from the target O or target 1, into the channel_features data structures. The following code shows how

the constructor initializes the interrupt service routines. Code is repeated for target 1.

/I Set up the Virtual ISR Enqueue0
host_interrupt_install(targetO, EnqueueData0, (PVOID)target0);
host_interrupt_enable(target0);

void EnqueueData0(void * targetO)

{unsigned int i,j,k;

CARDINFO * dsp;

dsp = (CARDINFO* )target_cardinfo((int)targetO);

float * dpram =(float *)dsp->BusMaster.Addr;

//Read Target O — Channel 0 Data Features

tOchanl.FREQ = dpram[256];

tOchanl.RMS = dpram[257];

tOchanl.MEAN = dpram[258];

for (i=0;i<256;i++) tOchanl.FFTBuf[i] = dpram[i];

//Read Target O — Channel 1 Data Features

tOchanl.FREQ = dpram[515];

tOchanl.RMS = dpram[516];

tOchanl.MEAN = dpram[517];

for (i=0, j=259;i<256;i++,j++) tOchanl.FFTBuf[i] = dpram(j];
//Read Target O — Channel 2 Data Features

TOchan2. FREQ = dpram [774];

tOchan2.RMS = dpram[775];

tOchan2.MEAN = dpram[776];

for (k=0, j=518; k<256;k++,j=j+1) tOchan2.FFTBuf[k] =dpram(j];
//Read Target O — Channel 3 Data Features

tOchan3.FREQ = dpram[1033];

tOchan3.RMS = dpram[1034];

tOchan3.MEAN = dpram[1035];

for (=0, j=777;i<256;i++,j++) tOchan3.FFTBuf[i] = dpram(j];
}

The DLL automatically calls the interrupt service routines, EnqueueData0 (shown below) or

EnqueueDatal, on receiving a hardware interrupt from target O or target 1.



The congtructor then downloads the target application file dsptarget.out (source code discussed in
Section 3.2.2) into both targets and starts the target applications as shown below. The source code is
repeated for targetl. Once dtarted the targets operate independently from the host object module

CMonitorView.

BOOL CMonitorView::download(int tar)

{

//Resets the target, starts talker, then performs atarget download
char msg[200];

if (I(tar))
{/* reset targetO */
target_reset(target0);
clear_mailboxes(target0);
target_run(target0);
[* wake up talker */
if('start_talker(target0))
{ MessageBox(NULL, "Target not responding:\ncheck installation and\nmake sure target
is\nnot held by JTAG", MB_ICONERROR);
return FALSE;
}
else
{ strcpy(msg, getenv("ii_board")); //c:\pci32cc....
strecat(msg, "\\examples\monview\\dsptarget.out");
if( licoffld(msg, targetO, NULL) )
{ I* start application */
start_app(target0);
return TRUE;
}
else
{ sprintf(msg, "COFF load failed. Check that the file to be loaded"
" exists and is a COFF file");
MessageBox(hwnd, msg, szAppName, MB_ICONINFORMATION);
return FALSE;

}
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{/IAcknowldge to the PCI32 Target Modules — Data Taken

mailbox_interrupt(targetO, 1);

mailbox_interrupt(targetl, 1);

//Process Parameters

m_DSP_Fx_RMS = float(int((tOchan3.MEAN )*423.3))/10;//Newton

m_DSP_Fz RMS = float(int((tOchan2.MEAN)*422.5))/10;//Newton

m_DSP_Is RMS= (int((tOchan1.RMS*2000))) ;//mA

m_DSP_Sc_RMS = float(int(t1chan0.RM S* 1000));//mV

m_DSP_Vy RMS = float (int(tlchan1.RMS*1000)) ; //mV

m_DSP_Tt = float(int((tlchan2.RMS) *3000))/100 ; //degreeC

//Process Control

/lrpm

m_PTakl.GetResponse(& response, "#1v");

USES CONVERSION;

strepy(buf, OLE2T (response));

float Zcount;

m_Speed RPM = int(-32.9* atof (buf));

//Feedrate mm/min

m_PTakl.GetResponse(& response, "#3f");

strepy(buf, OLE2T (response));

Zcount = atof(buf);

m_FeedRate = Zcount * 0.2585 ;

I/Feed mm/rev

m_FeedRate_ mmrev=m_FeedRate/ m_Speed RPM ;

/lInner & Outer Diameter

m_Diameter Outer = Part_Outer_Diameter;

m_Depth = Part_Depth;

m_Diameter_Inner = m_Diameter_Outer - (2*m_Depth);

//Average cutting speed m/min

m_Speed_Cut=(3.14159* ((m_Diameter_Outer + m_Diameter_Inner)/2)*

m_Speed RPM)/1000;

//Metal removal rate mm3/min

m_Mrr_ RMS=3.14159 * (m_Diameter_Outer + m_Diameter Inner)/2* m_FeedRate_ mmrev *

m_Depth* m_Speed RPM ;

/[Torque Nm

m_Torque=m_DSP_Fz RMS* (m_Diameter_Outer+ m_Diameter_|Inner)/4000;

//Power in cut - Nm/sec

m_Power RMS=m _DSP Fz RMS * m_Speed Cut/60 ;

//PROPOSED POSITION OF Ra AND Vb MONITORING FUNCTIONS

/Im_Ra=FTWINRTE("RA.FTL” ,m_Fx,m_Pcm_Vy);

/Im_Wear = FTWINRTE(*WEAR.FTL” ,m_Depth, m_FeedRate mmrev,m_Vy RMS,
m_Is RMS);

I/IPROPOSED POSITION OF INTELLIGENT DECISION MAKING SOFTWARE
//[SEND DECISION TO PMAC TARGET MODULE

Finally the constructor executes the timer (300) function. Every 300 milliseconds a WM_TIMER
event initiates a cal to the CMonitorView::OnTimer() function. The ::OnTimer() function sends a

mailbox message to the target applications indicating that the channel_data have been read. It then
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uses the sensor senditivity factors, obtained in Section 3.1.2.1-3.1.2.5, to convert the voltages to
standard values. These values are placed into variables linked to Windows dialog controls. Machine
control parameters are obtained using the PTak ActiveX discussed in Section 3.2.3. Finadly the timer
function cycle ends by executing advanced monitoring and intelligent diagnosis functions (proposed
position indicated).

Chapter 4 describes the FTWINRTE () [94] function used to call the fuzzy logic models WEAR.FTL
and RA.FTL, whilst Chapter 5 describes intelligent diagnostic scheme.  Figure 3.13 shows the user
interfaces for on-line viewing of sensor data and machining parameters. The views are updated at the
end of ::OnTimer(). The variables shown in Figure 3.13 (a) are linked to the screen’s dialog controls
and updated by calling the UpdateData(FALSE) function. DLL software functions for implementing
real-time scientific graphing and trending [95] are used to display sensor rms and normalized FFT
values, as shown in Figure 3.14 (b). To verify these views a function generator was connected to the
input of the Fz and Fx channels. Figure 3.14 (b) show the values for a signal generator output voltage
set at 3.188 volt (134.94 N) and frequency set at 142 Hz. CMonitorView has on-line recording

capability, which will be used in Chapter 4 for experimental analysis.
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Figure 3.13: Static and dynamic views of machining process parameters.

3.2.2 PCI32 Target Modulesfor Signal Sampling and Processing

CMonitorView downloads dsptarget.out into both targets and starts the execution thereof. The
executable file is created by compiling dsptarget.c, commented source code given in Appendix C, using
the Texas Instruments Floating Point C Compiler [93]. On initialization the target application creates
a queue that maintains 2048 filtered sensor samples, 512 from each of the 4 channels, and creates
sample buffers to maintain values before filtering and a software timer generated analog service

routine.

/* ISR data queue */

QUEUE queus;

[* analog sample buffers*/

extern volatilefloat sample bufferO[SAMPLE _BUF_SIZE];
extern volatilefloat sample bufferl[SAMPLE BUF_SIZE];
extern volatilefloat sample buffer2[SAMPLE BUF_SIZE];
externvolatilefloat sample buffer3[SAMPLE BUF_SIZE];
volatile int sample_buf write; /* sample buffer head pointer */
#define analog_isr c_int99

void analod isr(void):

Once started the analog service routine is interrupted every 200 microseconds. It samples the 4 analog

channels, filters each channel using fir() function [93] and enqueues the filtered data.
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void analog_isr(void)

{ int CHO_sample = read_adc(BASEBOARD, 0);
int CH1_sample = read_adc(BASEBOARD, 1) ;
int CH2_sample = read_adc(BASEBOARD, 2) ;
int CH3_sample = read_adc(BASEBOARD, 3);

[* Get sample results, store to circular sample buffers. */
sample_bufferO[sample_buf_write] = (float)CHO_sample;
sample_bufferl[sample_buf_write] = (float)CH1_sample;
sample_buffer2[sample buf write] = (float) CH2_sample;
sample_buffer3[sample buf write] = (float) CH3_sample;

if(++sample_buf_write == SAMPLE_BUF_SIZE) /* modulo for rollover */

sample_buf_write = 0; [* correction */

[*call filter routine from library. Arguments are the filter coefficient array (pointer points to the

h(n-1) term), the sample buffer pointer (points to the least recent data point sampled, i.e. the tail

of the sample circular buffer),and the filter order + 1 */

CHO_sample = (float)(fir(&filter_coeff[0], &sample bufferO[sample buf write],

FILTER_ORDER + 1));

CH1 _sample = (float)(fir(&filter_coeff[0], &sample bufferl[sample buf write],

FILTER_ORDER + 1));

CH2_sample = (float)(fir(&filter_coeff[0], &sample buffer2[sample buf write],

FILTER_ORDER + 1));

CH3_sample = (float)(fir(&filter_coeff[0], &sample buffer3[sample buf write],

FILTER_ORDER + 1));

/* Place the filtered output samples into the queue */

*((int*)enqueue_ptr(&queue)) = CHO_sample;

*((int*)enqueue_ptr(&queue)) = CH1 sample;

*((int*)enqueue_ptr(&queue)) = CH2_sample;

*((int*)enqueue_ptr(&queue)) = CH3 _sample;

}

The TMS320C30 DSP used in this project is capable of performing a 16-bit multiplication plus a 32-bit

addition in one 60-nanosecond machine cycle. For a redidtic filter of 40 taps the TMS320C30

performs the mathematics in around 2.460 microseconds, meaning that it can accept a new input

sample every 2.460 microsecond [41].

When atotal of 512 samples for each channel (i.e. 2048 samples) is sampled into the filtered queue, it

is further processed in the main() function of the program. Processing of each sensor channel includes
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functions for calculating the rms value, mean value and frequency distribution.

are placed in the dua port ram from where the host application can access it.

The resultant outputs

void main (void)

timer (0, 5000); I* Generates a 5kHz timebase for A/D */
for(;;)
{/*Wait for Analog_ISR to fill aframe of data*/
if (enqueued(&queue) >= FFT_SIZE * 4)
{/* Place datainto FFT input buffer */
for (i=0; i <FFT_SIZE; i++)
{FFTBufferInQ[i] = *(volatile int*)dequeue_ptr(&queue);
FFTBufferinl[i] = *(volatile int*)dequeue_ptr(&queue);
FFTBufferin2[i] = *(volatile int*)dequeue_ptr(&queue);
FFTBufferIn3[i] = *(volatile int*)dequeue_ptr(&queue);
}
if(data_taken==1)
{
I* Process channel 0 */
CHO_RMS = CalcRM S(FFTBufferIn0, FFT_SIZE);
CHO_AVE = CacAVE(FFTBuffern0, FFT_SIZE);
CalcFFT(FFTBufferlnO, FFTBufferOut, window, SinTable);

for(i = 0; i<256; i++)
{dpram[i] = to_ieee(FFTBufferOut[i]);
}
dpram[256] =to_ieee(CHO_FREQ);
dpram[257] =to_ieee(CHO_RMYS);
dpram[258] =to_ieee(CHO_AVE);

/* Processchannel 1, 2, 3

/*Notify host that data is ready to be read*/
mailbox_interrupt(1);

data taken =0;
[* data_taken will be set to 0 by the host after reading
the data*/
Hiend if
}lend for
}//end main

CHO_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);

3.2.3 Host Module CGeometricView Module for Multi-Axis Control
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Target 2 module is the PC-based PMAC interface card [68]. The PMAC executes a sequence of
motion control commands given to manufacture a part. Execution of the command includes
performing all the calculations required to prepare for actual execution of the move [96]. Delta Tau
developed PTakDT, an ActiveX control that is used with 32-bit versions of Visual C++, to serve as a
communications link between a Windows application and the PMAC [69]. CGeometricView uses
PTakDT to send motion control commands or a series if commands to the PMAC for execution.

Figure 3.14 shows the user interface for CGeometricView.
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Figure 3.14: User interface for machine control.
Programming and execution controls (Windows) are used to manage the execution of motion control
programs. It includes controls to prepare a set of motion control instructions for download to the
PMAC. Controls are included to jog motors whilst setting up the tool zero position.  Process
constraints are set to ensure the on-line integrity, accuracy and quality of the machined part. If a
constraint is exceeded the diagnostic system must decide intelligently on a control action that will

ensure that the process returns to areliable state of machining. CGeometricView provides the software
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interface through which to send the control action. The commands that the PMAC executes are
enclosed within classes created to facilitate the execution of on-line multi-axis control commands from
within  CGeometricView.  These classes include: CServoMotor for spindle motor control,
CStepperMotor for stepper motor movements within a coordinate system and CProgramBuffer for
maintaining a buffer within the PMAC for execution of host programming instructions.  The source
code for the classes and their member functions is presented in Appendix D. CGeometricView module
created at runtime by CWinApp issues a WM_CREATE event, which in turn calls a constructor to
perform initialization of PMAC interface card, set up of servo control loops and a coordinate systems.

It also instantiates the following machine control objects, classesin Appendix D.

CServoMotor Spindle(0,0,0);

CStepperMotor X_Axis(0,0,0, "#2");
CStepperMotor Z_Axis(0,0,0, "#3");
CProgramBuffer RotaryBuff(1,100);

It creates arotary programming buffer in the target to hold motion control instructions for execution.

void CGeometricView::OpenRotaryBuffer()

{CHAR buf[255];

BSTR response = SysAllocString(L™");

USES _CONVERSION;

m_PTalk1.SetDeviceNumber(0);

m_PTak1.SetEnabled(TRUE);

//Create Rotary Buffer - "&1 define rot 100"
m_PTakl.GetResponse(& response, Rotar yBuff.Create());
strepy(buf, OLE2T (response));

m_PTakl.GetResponse(& response, "#1j/#2j/#3j/");//close loops
strepy(buf, OLE2T (response));

//Open Rotary Buffer - "OPEN ROT"

m_PTakl1.GetResponse(& response, Rotar yBuff.Open());
strepy(buf, OLE2T (response));

/[Clear Rotary Buffer - "CLEAR"

m_PTakl1.GetResponse(& response, Rotar yBuff.Clear());
strepy(buf, OLE2T (response));

m_PTakl1.GetResponse(& response, Rotar yBuff.Execute());//Run Program - "BOR"
strepy(buf, OLE2T (response));}
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The ActiveX function m_PTakl.GetResponse() is used to communicate commands to the PMAC
target [69]. RotaryBuff object member functions return instructions to create, open, and clear a buffer
area within the PMAC. Motion control instructions sent to this buffer area will be executed by the
PMAC. When a user enterdclicks on a Windows control, as shown in Figure 3.14, an event
(ON_USER_CMD) is generated that will direct program control to an appropriate member function
within CGeometricView. These member functions make use of the machine control objects Spindle,
X_Axis and Z_Axis to control the machining process cutting speed, feed and depth of cut. For

example to jog the x-axis stepper motor the following member function is called.

void CGeometricView::OnButtonX()

{TCHAR buf[255], buf1[20];

BSTR response = SysAllocString(L™");

USES CONVERSION;

if (RotaryBuffer == 1) CloseRotaryBuffer() ;

if(X_Axis.GetOffOn() == 0)

{

SetDlgltemText(IDC_BUTTON_X, "X - ON");

if (X_Axis.GetPosNeg() == 1)
{X_Axis.SetPositive();
m_PTakl1.GetResponse(&response, X _Axis.GetJogCommand());
strepy(buf, OLE2T (response));
}

if (X_Axis.GetPosNeg() == -1){ X_Axis.SetNegative();
m_PTakl.GetResponse(&response, X_Axis.GetJogCommand());
strepy(buf,OLE2T (response));

}
X_AXis.SetOn();
}
else

{m_PTakl.GetResponse(&response, X_Axis.KillCMD());
strepy(buf, OLE2T (response));
SetDlgltemText(IDC_BUTTON_X, "OFF");

X_AXis.SetOff();

m_PTakl1.GetResponse(& response, X_Axis.Closel oopCMD());
strepy(buf, OLE2T (response));

}

}
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On WM_TIMER, the host module sends any new instructions to the target’s circular buffer for
execution as well as reads back encoder value used to determine and display motor speeds and
positions.

3.24 CServer to View Process Parameters from within a Remote Browser

Manufacturing companies are looking for ways to assess the performance of their manufacturing
equipment and plants from remote sites. World Wide Web (WWW or Web) technologies are a viable
vehicle in achieving this objective. Research has focused on multi-media interaction, Virtual Reality
modeling and reducing data for file transfer [97]. Ports and sockets are levels of connection supported
by both MFC and Java. A port is an abstraction of a physical place through which communication can
take place between a server an

d aclient [75]. The server provides the port and the client links to it. The PC used in this project is

char *bufferin = new char[RECIEVEMAXBUFF], *bufferout = new char [SENDMAXBUFF];
CSockAddr saServer;

ChttpBlockingSocket sConnect;

SaServer = CSockAddr(INADDR_ANY, 8192);//INADDR_ANY useloca IP
CBockingSocket g_sListen; //Global socket for listening, derived from CSocket
CServer::Start()

{g_sListen.Create();

g_Listen.Bind(saServer);

g_sListen.Listen();//Start Listening

AfxBeginThread(Server ThreadProc, , );

.}

UINT ServerThreadProc(LPVOID pParam)

{ sConnect.ReadSimpleM sg(bufferin, RECIEVEMAXBUFF, 10 );

..[/IDecode message stream and place process data into bufferout
..sConnect.Write(bufferout, strlen(bufferout), 10);}

Web-enabled and on start-up executes Personal Web Server (PWS). PWS listens on the Transport
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Datal nputStréam in;
DataOutputStream out;
public void net_start(String ip, int port, JSObject rF) Con
{..
//open socket to server trol
socket = new Socket (ip, port);
/lcreate input and output io steams Prot
out = new DataOutputStream (socket.getOutputStream());
in = new Datal nputStream (socket.getl nputStream()); ocol

(TC
}

P)

port 80 for a connection from the client sde web browser. The browser downloads the Hypertext
Markup Language (html) page, which contain a Java applet. The Java applet connectsto MFC CServer
object through sockets. A socket is an abstraction of the network software that enables communication
in and out of a program [75]. Once a socket has been created, the Java client and CServer may
communicate any whatever way arranged. A data buffer, that contains on-line machining process
performance and limits, is streamed to the Java applet for remote monitoring. The Java applet enables
the expert to adjust process performance limits remotely. On WM_CREATE CServer makes use of the
MFC CSocket base class to create a socket, bind a socket to a port and listen on the port address as
shown below [98]. It then creates a server thread to continually read an input stream, decode aclient’s

datarequest and send data buffer via output stream.

To establish a simple client in Java using streams requires a socket to connect to the server. The socket
methods getl nputStream and getOutputstream are used to reference the socket’ s associated InputStream
(in) and OutputStream (out). InputStream read() method is used to input sets of bytes from the server,

whilst OutputStream write() method

is used to output sets of bytesto the server.
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Figure 3.15 shows the resulting Java client executed inside an Internet browser to monitor machining
process parameters. The user has the ability to change process limits, which are updated by CServer.

The main applet calls paint () function to refresh the screen every second.
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Figure 3.15: Javaclient insde an Internet browser for remote monitoring of machining process.

3.3 Conclusion

A PC-based intelligent machining controller, with in-process quality assurance that is able to detect
exceeded tolerances, and adapt quickly (less than a second) to maintain a reliable machining process,
has been implemented. The system hardware and software architecture is based on open system
philosophy. The Pentium-based PC includes two PCI32 DSP interface cards for signal acquisition and
processing, a PMAC for multi-axis control and an Ethernet interface card for remote monitoring and
control. An object-oriented software framework for the controller is implemented. The framework
includes an MFC application framework to integrate machining process monitoring, diagnosis and

machine control. The application framework includes user interfaces to enable visualization of process
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performance. C++ classes were developed and used to support communication with PMAC interface

card.

Machine controls are connected directly to the PMAC interface card, enabling instantaneous reaction
from software commands. Sensor and measurement systems that characterize the machining process
have been embedded close to the machined product. Signals are connected to PCI32 DSP interface
cards. Software to sample and filter sensor signals, determine rms values as well as obtain a signad’s

frequency distribution, was developed and tested.

The implemented hardware architecture, as shown in Figure 3.11, provide a platform for a generic
monitoring, diagnosis and control system to realize an intelligent machining process. The implemented
object oriented software framework, as shown in Figure 3.12, enable system re-configurability
according to machining process requirements. The successful integration of embedded sensors and
machine controls, for a cutting process, with the generic hardware and software contribute to the

knowledge in the field of intelligent machining.

Chapter 4 makes use of the machining controller to obtain experimental data that is used to determine
sensor signal’ s senditivity to tool wear and surface roughness. These sensor signals are used in a multi-
sensor fusion model to measure surface roughness and tool wear indirectly. Chapter 5 uses the

experimental datato determine the influence of machining input parameter on sensor signals.
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Chapter 4
Multi-Sensor Fusion M odels for

Tool Wear Classification and Surface Roughness M easur ement

To redize advanced automation in machining sensors which will perform reliable on-line,
measurement of tool wear and surface roughness is required [1,3]. In this chapter sensor fusion
modeling, as shown in Figure 4.1, is used to indirectly measure surface finish and to classify tool wear.
Signals that characterize machining process performance (tool-workpiece vibration, tool temperature,
cutting forces etc) are processed using DSP technology to extract data features. The data features and
cutting parameters may be used as inputs to the FL mode.

Machining Cutting Parameters

L

= Measurement
Fuzzy Logic Model >

Signal Features
~.

—
I

Machining Process Parameters

Figure4.1: Sensor fuson model for tool wear classification and surface roughness measur ement.
Section 4.1 describes the methods used to date for indirect measurement of surface roughness and tool
wear classfication. Section 4.2 describes the process followed in obtaining the FL models from
experimental data. In Section 4.3 experimental data is derived by using the experimental set-up
explained in Chapter 3. In Section 4.4 and 4.5 the input signas to the multi-sensor models is

determined using statistical processing of experimental data. Once the input signal has been identified
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the experimental data is used to create FL models using FuzzyTech [94] NF-module. The effectiveness
of the FL-based sensor fusion model for tool wear and surface roughness measurement is illustrated

with numerical examples.

4.1 Introduction

Direct measuring methods for tool wear may include touch trigger probes, optical, radioactive,
proximity sensors and electrical resistance measurement techniques [99]. It is difficult to achieve the
direct measurements for on-line tool wear monitoring practically due to continuous measurement
conducted on a small wear zone. Indirect measurement senses other factors that indicate the cause of
tool wear. Indirect sensing methods that have been utilized include cutting forces, acoustic emission,
temperature, vibration, spindle motor current, torque, strain and snapshot images of the cutting tool
[99]. Most applications use only one or two sensors to detect tool conditions. Tansel and McLaughlin
[100] used the force signals for detection of tool breakage for milling process. Force signals were also
applied in turning for tool wear monitoring [101]. In the work done by Ko and Cho [102] force and
vibration signals were combined for cutting state monitoring in milling with respect to tool wear
conditions. Dornfeld [15] used three signals. acoustic emission, cutting forces and spindle motor
current for tool wear monitoring. Each signal has senditivity to tool wear in a certain range and to a
certain extent. In order to identify tool conditions and control the process of monitoring in machining,
severa strategies and techniques have been proposed. Techniques may be summarized as statistical
methods, fuzzy technology and neura networks. In statistical methods, the time series analysis
approach was applied by Tansel and McLaughlin [100] to detecting tool breakage by monitoring a
cutting force or torque signa in any direction. Du and Li [103] proposed a methodology, which uses
fuzzy set theory to build a linear fuzzy equation in terms of experimental data for description of the

relations between sensing features (monitoring indices) and tool conditions. Since they possess
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learning capabilities, neural networks have widely been applied to tool condition monitoring, including

supervised and unsupervised networks.

Sensing surface roughness may also consist of direct or indirect methods. Direct measurement of
surface roughness implies assessing the conditions of the workpiece just behind the cutting edge of the
tool. A stylus can be used, but it results in destruction of the sensor head due to high surface speeds of
the workpiece. Optica reflection methods have been restricted to measurement of relatively smooth
surfaces, but due to limitations are not applicable for use on production floor. A laser measuring
system, which employs a linear charge-coupled device sensor and a neural network to process captured
light patterns scattered from the workpiece surface, was developed to predict the maximum peak to-
valey roughness [104]. However, rather than using direct measurement, severa researchers have
derived surface roughness indirectly using vibration signals between tool and workpiece generated

during the turning process [105].

It is clear that superior performance via neural networks may be achieved if information from multiple
sensorsis fused [99]. With sensor fusion (concept explained in Section 2.5.5) an individual sensor only
senses partially and will contribute to classify the tool wear and surface roughness. However, a
combination of sensors or sensor fusion data may classify it with greater accuracy. Research in sensor
fusion has a relatively short history in machining. However, recently more attention has been directed
using and improving sensor fusion techniques [58]. Two magor difficulties are encountered when
applying the fusion of sensors. These are the adequate selection of input sensors and the establishment
of effective fusion modeling. NN architecture (explained in Section 2.5.3) may be used to learn from
data sets whilst FL solutions (architecture and concepts explained in Section 2.5.2) are easy to verify
and optimize. Combining the explicit knowledge representation of FL with the learning power of NN

result in NF systems. The combination of the NN and FL architectures are described in Section 2.5.4.
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4.2  Processfor Implementing a Multi-Sensor M odel

Figure 4.2 shows the process followed for implementing FL-based model from experimental data.
Statistical processing uses experimental data to determine parameters that may be used to classify the
tool wear (ANOVA) and for indirect measurement of surface roughness (SPEARMAN). Given the
parameters, an NF module (FuzzyTech module) is used to create an FL model in order to classify tool
wear using MoM defuzzification. Another FL model is used to measure surface roughness indirectly

using CoM defuzzification. The FL model may be edited to enhance the model.

EXPERIMENTAL DATA
i Data Features
EXPERT STATISTICAL
ANALYSIS PROCESSING
Process Process
Condition Parameter
Classificatio Measurement

CORRELATION
(SPEARMAN)

| |

NEURO-FUZZY MODELLING

ANOVA

MoM CoM
Defuzzification Defuzzification
for Classification for Measurement

Modd Modd

FUZzY LOGIC MODEL C++ Source Code
Modify/add for Implementation

to Rule Base

Figure4.2: Processfor implementing FL-based classification / measurement models from

experimental data.
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4.3Experimental Data Acquisition

Numerous factors influence surface finish during turning operations. Accordingly, as shown by the
cause-effect diagram in Figure 4.3, this study will be restricted to cutting parameters, namely: feed,
speed and depth of cut and tool wear process condition. The effect of cutting parameters and tool wear
on machining process parameters measured, include the following: two cutting forces (Fx and Fz), tool-
workpiece vibration (Vy), cutting sound (Sc), spindle current (Is), cutting tool temperature (Tt) and

power in the cut (Pc) whichis calculated from Fz and Vc.

CUTTING
PARAMETERS
fly - Feed [mm/rev]
0.01-0.24
V. - Cutting Speed [m/min] PROCESS PARAMETERS
50, 120, 190 Ra - Surface Roughness[,um]
dy: Depth of Cut [mm]
06,12 18 Pc - Power in Cut [N]
Fy - Feed/Axia Force [N]
> F, - F¢ - Cutting Force [N]
I Vy - Tool-Workpiece Vibration [mV]
V- Tool Wear [mm] I's - Spindle Current [mA]
0.0 mm, 0.2 mm .
— Sc- Cutting Sound [mV]
PROCESS T+ - Cutting Tool Temperature (°C)
CONDITIONS

Figure 4.3: Machining process cause - effect diagram.
Machining cutting parameters V¢, dy and f1x were assigned different levels, varying from 50 to 190
[M/min], 0.6-1.8 mm and 0.01 — 0.24 mm/rev, respectively in machining pure aluminum extrusions
with a Vickers hardness of 106 (10 kg load). Process conditions were fixed at two levels only, Vg =
0.0 mm and Wg = 0.2 mm, using TP200 a versatile cutting insert. Typica recommended cutting

parameters for the TP200 include: Vc = 200 m/min, f1x = 0.3 mm/rev and dy= 0.8 — 3.0 mm [16].
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Flank wear land is used as a measure of tool wear. Two TP200 inserts were machined with mild steel
at the following fixed machine settings. average cutting speed of 130 m/min, feed of 0.2 mm/rev and a
2 mm depth of cut. The inserts flank wear was monitored using a scanning electron microscope.
Figure 4.4 shows the respective wear land, Vg = 0.095 mm and Vg = 0.202 mm, for the two TP200
insets prepared for this project. The tool with Vg = 0.202 mm is used as part of the experimental
analysis as shown in Figure 4.2, whilst the tool with wear Vg = 0.096 mm will be used for verification

PUrpOSES.

(d) Wear land — Vg = 0.095 mm (b) Wear land — Vg = 0.202 mm

Figure4.4: Cutting insertswith Vg = 0.095 mm and Vg = 0.202 mm.

The experimental tests have been carried out using the open architecture machine controller, described
in Chapter 3, to control the EMCO turning center, equipped with a 1.5kW brushless AC servo spindle
motor and two Powermax stepper motors configured into a x-y coordinate system. The multi-axis
software control module, as explained in Section 3.2, was used to coordinate the x-y and spindle axis.
Fx, Fz |s, Sc and Vy signals were sampled at a frequency of 5000 Hz, with the respective RMS and
frequency spectrum of each obtained using the DSP monitoring software module as explained in
Section 3.2.1. The surface roughness (Ra) had been measured after the cutting operations using a
portable Mitutoyo Surftest profilometer. The results of the test for tool wear 0 mm and 0.202 mm is

shownin Table B.1 and B.2 in Appendix B respectively.
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4.4 Sensor Fuson Model for Tool Wear Classfication

To develop a model one first needs to decide which process parameters to use as the input. With
statistical analysis one is able to perform an analysis of variance (ANOVA) [28] that indicates which
parameter is sensitive to tool wear. After the input-output parameters are in place, a mechanism to

train the model is required, whereafter the model is able to operate independently.

4.4.1 Statistical Analysis

The analysis of variance (ANOVA) module of Statistica V6.0 [106] is used to determine which process
parameters from Table B.1 (Tool Wear 0.0 mm) and Table B.2 (Tool Wear 0.2 mm) are influenced by
tool wear. ANOVA is often used as a screening technigue to determine whether there is any probable
gualitative relationship between variables before the additional effort and resources are spent in an
attempt to develop a quantitative relationship [30]. Statistical hypotheses testing are used to indicate if
the long term average values of each data set will be equal, and hence used to reach a decision, if a
dependent variable is influenced by tool wear or not. The hypothesis for the ANOVA test is as
follows:

Ho: Momm = Ho.2mm, indicates that the long term averages are equal and

Ha: Homm # Ho2mm indicates the alternate hypothesis.
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The p-value, shown in Table 4.1, indicates the truth of the null hypothesis. Therefore a p-vaue of less

than 0.05 indicates that tool wear significantly influences the dependent variable.

Table4.1:
Resultant p-value of ANOVA hypothesistest between sensor data
and tool wear
Dependent variable p-value
Tt 0.9032
Is 0.4248
Fx 0.0035
Sc 0.8924
Fz 0.4248
Vy 0.0007

Table 4.1 indicates that tool wear influences feed force (Fx) and tool-workpiece vibration (Vy)
significantly, and that these signals may be used in an advanced multi-sensor tool wear monitoring
system.

4.4.2 Analyssof Fuzzy Logic Model

The identified signal features influenced by tool wear may serve as inputs to a FL model as shown in

Figure4.5. Pcisadded asit containsinformation on al three the cutting parameters.

Fx

é

Vy Vg
e Fuzzy Logic Model —>
Pc

é

Adapt Membership Functions and Change
Rules DoS to Match Training Data

| nput Data Output Data
Training Samples Training Samples|

FuzzyTech
Neuro-Fuzzy Module

Figure 4.5: Process parametersinfluenced by tool wear.
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FuzzyTech' NF software module [94] is a full graphical development environment that supports all
design steps for creating fuzzy logic systems from experimental data. The NF module is used to
develop an FL-based sensor fusion model for tool wear classification. Due to the completeness of the
data sets it was decided to use the RMS values for Vy, Fx and Pc from experimental data contained in
Table B1 and B2, for tool wear 0.0 mm and 0.2 mm respectively as inputs, and tool wear as the output.
The power in the cut was added as an input as it contains information regarding all three the machining
parameters, illustrated in equations 2.1 — 2.3. The learning process and knowledge representation of
the actual datais based on NF modeling described in Section 2.5.4. Table 4.2 shows the values of Vy,
Fx and Pc for an additiona two cuts taken with the cutting tool, shown in Figure 4.3 (a), having a tool

wear land of 0.098 mm. The datais added to the data set for learning and verification purposes.

Table 4.2: Fx, Pcand Vy for Vg = 0.098 mm.

Machining Parameters | Feed Force Tool-Workpiece Vibration | Power in the Cut

Ve =122 [m/min] 51.6 [N] 81.95 [mV] 282.4 [Watt]
fix = 0.2089 [mm/rev]

dy = 0.6 [mm)]

Vc=119.96 [m/min] | 83.22[N] 71.75 [mV] 291.81 [Waitt]
fix = 0.1041 [mm/rev]

dy = 1.2 [mm)]
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Figure 4.6 shows a 3D plot of Vy and Fx versustool wear for Pc in the region of 300 watts after the FL

system was created.

-0.05 -0.035 -0.01 0.0 0.03 0.04 0.06 0.05 010 012 014 016 018 020 022 023 025

Figure 4.6: 3D plot of Fx and Vy versus Vg for Pc = 280 Watts.

The 3D plot shows how, at afixed cutting power, the vibration and feed force tool wear increase as the
tool wear increases. All the input values of Fx, Vy and Pc from Table B1, B2 (Appendix B) and 4.2
were re-gpplied to the FL model after training, and the tool wear correctly identified in 90 % of the
cases. Figure 4.7 shows the generated FL model for tool wear classification, consisting of input
membership functions, a rule base showing the DoS for each rule, as well as an output function
specificaly configured to produce the MoM defuzzification. After training, the system is a pure FL
system which, unlike in the case of a trained NN, alows the addition and /or modification of the rule
based knowledge base.  To verify the model, input values for Vy = 99.75 mV, Fx =85 N and Pc =

271.23 Watt were selected using the surface plot shown in Figure 4.6. For these inputs the model
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should indicate 0.098 mm wear. The fuzzification, inferencing and defuzzification process is shown

for analysis purposes.
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Figure 4.7: Fuzzy logic model for tool wear classification.
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During fuzzification the following facts, as explained in Equation 2.34, is established:

Fx = high CNF 0.43
Fx = medium CNF 0.58
Pc = medium CNF 1.0
Vy = medium CNF 0.3
Vy = high CNF 0.7

The abovementioned facts activate rules 22, 23, 24, 25 of the fuzzy rule base and may be expressed

in a max-min rule structure, from Equation 2.44, asfollows:

RULE 22:

IF Pc = medium CNF 1.0 AND
Fx = medium CNF 0.58 AND
Vy = medium CNF 0.3

THEN Wear = very low DoS = 0.09

RULE 23:

IF Pc = medium CNF 1.0 AND
Fx = medium CNF 0.58 AND
Vy = medium CNF 0.3

THEN Wear = medium DoS = 0.10

RULE 24:

IF Pc = medium CNF 1.0 AND
Fx = high CNF 0.43 AND
Vy = medium CNF 0.3

THEN Wear = very high DoS = 0.09

RULE 25:

IF Pc = medium CNF 1.0 AND
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Fx = high CNF 0.43 AND
Vy = high CNF 0.7
THEN Wear = very _high DoS = 0.02

During the inference process the If-part of the abovementioned rules are combined using Equation 2.45:
RULE22:  min(1.0, 0.58, 0.3) = 0.3

RULE23:  min(1.0, 0.58, 0.3) = 0.3

RULE 24: min(1.0, 0.43,0.3) = 0.3

RULE 25: min(1.0, 0.43, 0.7) = 0.43

With FAM inference, the then part of the rule is modified by the DoS-factor as shown in Equation 2.46:
RULE 22: 0.3* 0.09= 0.027 RULE 23: 0.3*0.10= 0.03

RULE 24: 0.3*0.09=  0.027 RULE 25: 0.43*0.02= 0.0086

Because Rule 24 and Rule 25 have the same conclusion, they are combined applying Equation 2.47, hence
max(0.027, 0.0086) = 0.027. Using MoM defuzzification (best for method of classification applications),
Equation 2.49, RULE 23 has the largest final consequence and tool wear is correctly classified as medium

(0.2 mm) wear.
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4.4.3 Additional Signal Analysisfor Data Features Sensitiveto Tool Wear

Additional data features that are sendtive to tool wear were identified from signal analysis and include:

. Fx/Fz Ratio

Figure 4.8 show the ratio of the feed force to cutting force component for tool wear of 0 mm and 0.2 mm.

Fx/Fz versus Tool Wear

) Lo = 0.4946 Loz = 0.6931
1/\ Ooorm = 0.1059 Oo2rm = 02\2\96 !

0 0.05 0.1 0.15 0.2 0.25
mm

Figure 4.8: Fx/Fz versustool wear.

Standard deviation for tool wear 0.2 mm ([ b.2mm) iS more than double that for tool wear 0.0 mm and the

ratio of Fx/Fz may therefore serve as a good index in tool wear measurement.

. Tool-Workpiece Vibration Frequency Spectrum

Figure 4.9 shows the normalized amplitude of the vibration signals frequency components for zero tool

wear and 0.2 mm for various machining parameters (Vc, f1x, dy).
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Tool-Workpiece Vibration (Vy) Frequency Spectrum
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Tool-Workpiece Vibration (Vy) Frequency Spectrum
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Figure 4.9: Vibration frequency spectrum for tool wear 0.0 mm and 0.2 mm.

The power of the normalized amplitude in the frequency range 283-556 Hz was calculated and isindicated
in Figure 4.9. The values indicate a significance difference between the power in the spectrum for a new
tool to that of atool with wear 0.2 mm. Thereis aso a correlation between the actual sizes of the values
for different cutting conditions. Figure 4.10 shows the 283 — 556 frequency spectrum for the vibration

signal for tool wear at 0 mm, 0.1 mm and 0.2 mm for verification purposes.

Tool-Workpiece Vibration (Vy) Frequency Spectrum
Vc = 125 m/min ; dy = 0.6 mm ; f1x = 0.2052 mm/rev
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Figure 4.10: Vibration frequency spectrum for tool wear 0.0 mm, 0.1 mm and 0.2 mm.
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The power for the 0.1 mm worn tool gives a value in between that of the 0 mm and 0.2 mm tools,

indicating that this particular frequency spectrum of the vibration is sensitive to tool wear.

. Spindle current and Cutting Sound Frequency spectrum

The ANOVA test indicates, for this particular workpiece-cutting tool material combination, that the values

of the spindle current and cutting sound signals are not significantly affected by tool wear. However, for

completeness of analysis, Figure 4.11 shows the normalized amplitude of the spindle motor current and

cutting sound signals frequency components for tool wear 0.0 mm and 0.2 mm.
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(a) Spindle current frequency spectrum.
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(b) Cutting sound frequency spectrum.
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Figure4.11: Spindle current and cutting sound frequency spectrums.
The amplitude of the spindle current frequency components for tool wear 0.2 mm is dlightly larger, while

the amplitude of the lower frequency components of the cutting sound spectrum indicates an increase.

. Cutting Tool Temperature

Figure 4.12 shows time domain signals for the cutting tool temperature for tool wear 0.0 mm and 0.2 mm,

for various machining parameters (Vc, f1x, dy).
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(b)
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Figure 4.12: Cutting tool temperaturefor tool wear 0.0 mm and 0.2 mm.
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At high cutting speed there is a difference between the steady state cutting tool temperature for different
tool wear levels. More significant is the rate of change in cutting tool temperature, shown in Figure 4.12
(a) to (d), for various machining parameters. The rate of change in the cutting tool temperature may be

used as a data feature in atool wear identification system.
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A further advantage of the generated fuzzy logic based system is that it allows for the addition of rules.
Additional knowledge regarding data features as discussed may lead to the addition of rules, for example:
RULE 27: If f1x = High and Psqo-27311z = High then tool wear = High

RULE 28: If Vc = High and Tt = High then tool wear = High

RULE 29: If 8Tt /5t = High then Tool wear = High

Due to the inherent complex and closed nature of a neural network based system, an expert would not be

able to add this type of knowledge to the system.

4.5 Sensor Fusion Model for Surface Roughness M easur ement

The Spearman’'s rank correlation [107] module of Statistica V6.0 is used to find the measure of
association between surface finish and the machining cutting and process parameters, using the
experimental data in Table B.1 (Tool Wear 0.0 mm) and Table B.2 (Tool Wear 0.2 mm). Statistical
hypotheses testing are used to indicate if there exists a long-term relationship. The hypothesis for the
Spearman’ s Rank test:

HO: Rrasensor data = 0, indicates that the correlation equals zero and

Ha: Rrasensor data 7 O indicates the aternate hypothesis.
The p-value, shown in Table 4.3, indicates the truth of the null hypothesis. Therefore a p-value of less
than 0.05 indicates correlation between surface roughness and the machining parameter, i.e. aternative
hypothesis. It shows that Ra is correlated with Vz (0.3946), Is (0.5043), Fz (0.4999), dy (-0.6478) and
strongly correlates to f1x (0.91770). The parameters are used, excluding Fz as it carries the same

information as Is, as inputs to an FL based multi-sensor surface roughness monitoring system.
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Table4.3:
Resultant p-value of Spearman’srank hypothesis correlation test between surface roughness and

machining parameters

Sensor Machining Data Spearman’s R-value p-value

Tt 0114 0.507947
Pc 0.086435 0.610983
Vz 0.394604 0.015654
Is 0.504253 0.001461
Fz 0.499943 0.001629
Fx -0.30282 0.068486
Sc -0.28023 0.102987
dy 0.6478 1.46E-05
f1x 0.917731 1.34E-15
Vc -0.00565 0.973535

FuzzyTech NF module is used to generate the FL model for surface roughness measurement as shown in
Figure 4.13. It shows input membership functions, a rule base with the DoS for each rule as well as an
output function specifically configured to produce CoM defuzzification. To verify the fuzzy logic model,
input values for Vy = 81.95 mV, f1x = 0.21 mm/rev, Is= 4473.55 mA Watt and dy = 0.6 mm are selected.
Fuzzification, inferencing and defuzzification are shown below for analysis purposes. During the

fuzzification process the following facts, explained in Equation 2.34, are established:

dy = low CNF 1.0
fix = high CNF 1.0

Is = high CNF 0.842
Is = medium CNF 0.1523
Vy = high CNF 0.1121
Vy = medium CNF 0.8764
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38 |low medium medium medium

39 low high high medium

40 |low low low high

41 low medium low high O

42 |medium medium high low [Jo:13[Jnigh

43 |medium medium high medium [Jo:02[ Jhigh

44 |medium high high medium [Jo:os_Jnigh

45 low high high low [Jo:13[Jvery_high

46 |low high high medium [io.m [Jvery_nigh

47 |low high high high [Jo.82[Jvery_high

48 |medium medium medium low [Jo.05[ Jvery_high

43 |high low low high [Jo.07_Jvery_high

23

Figure 4.13: Fuzzy logic model for surface roughness measurement.
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The abovementioned facts activate rules 6, 7, 25, 26, 33, 38, 39, 46, 47 of the fuzzy rule base and

may be expressed as a max-min rule structure from Equation 2.44, asfollows:

RULE 6:
IF dy = low cnf 1.0
fix = high CNF 1.0
Is = medium CNF 0.1523
Vy = high CNF 0.1121
THEN Ra = very low DoS 0.06
RULE 7:
IF dy = low CNF 1.0
fix = high CNF 1.0
Is = high CNF 0.842
Vy = high CNF 0.1121
THEN Ra = very low DoS 05
RULE 26:
IF dy = low cnf 1.0
fix = high cnf 1.0
Is = high cnf 0.842
Vy = high cnf 0.1121
THEN Ra = low DoS 0.04
RULE 33:
IF dy = low cnf 1.0
fix = high cnf 1.0
Is = high cnf 0.842
Vy = medium cnf 0.8764
THEN Ra = meduim DoS 0.01
RULE 39:
IF dy = low cnf 1.0
fix = high cnf 1.0

Is = high cnf 0.842



THEN
RULE 46:
IF

THEN
RULE 47:
IF

THEN

Vy = medium cnf 0.8764

Ra = high DoS 0.14
dy = low cnf 1.0

fix = high cnf 1.0

Is = high cnf 0.842
Vy = medium cnf 0.8764
Ra = very high DoS 0.01
dy = low cnf 1.0

fix = high cnf 1.0

Is = high cnf 0.842
Vy = high cnf 0.1121
Ra = very high DoS 0.82

During the inference process the If-part of the abovementioned rulesis combined using Equation 2.45:

RULE 6:
RULE 7:
RULE 26:
RULE 33:
RULE 39:
RULE 46:
RULE 47:

min(1.0, 1.0, 0.1523, 0.1121) = 0.1121
min(1.0, 1.0, 0.842, 0.1121) = 0.1121
min(1.0, 1.0, 0.842, 0.1121) = 0.1121
min(1.0, 1.0, 0.842, 0.8764) = 0.842
min(1.0, 1.0, 0.842, 0.8764) = 0.842
min(1.0, 1.0, 0.842, 0.8764) = 0.842
min(1.0, 1.0, 0.842, 0.1121) = 0.1121

With FAM inference, the then part of the rule is modified by the DoS-factor as shown in Equation

2.46:

RULE 6:

RULE 26:
RULE 33:
RULE 39:
RULE 46:

0.1121* 0.06=0.0076 RULE 7: 0.1121*0.5=0.0561
0.1121*0.04 = 0.0045

0.842*.01= 0.0842

0.842*0.14 = 0.1179

0.842*.01=0.00842 RULE 47: 0.1121*0.82=0.0919
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RULE 6 and Rule 7 are combined applying Equation 2.47: max(0.0076, 0.0561) = 0.0561.

RULE 46 and Rule 47 are combined applying Equation 2.47: max(0.00842, 0.0919) = 0.0919
Applying COM defuzzification (best for method of control applications) as shown in Equation 2.48
result in:

((5.6998* .0919) + (4.4248* 0.1179) + (3.1499* .0842) + (1.8749* 0.0045) + (0.6* .0561))
a- (0.0919 + 0.1179 +0.0842 +0.0045 + 0.0561)

Ra =3.815 microns

Figure 4.14 compares the surface roughness obtained experimentally with the predicted values

determined using the FL model and a commonly used theoretical model given by Equation 2.8.

Fuzzy Logic and Theoretical Model vs Measured Ra

Ra=FL modgl

Model - Ra [microns]

0 1 2 3 4 5 6

Measured - Ra [microns]

Figure 4.14: Comparison between fuzzy logic and theoretical model vs measured surface finish.
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The comparative results indicate that the FL model (13.56%) represented an average error of at least
three times lower than the theoretical model (43.31 %). In both cases the error increased as the feed

increased.

4.6 Conclusion

A process to implement FL-based classification and measurement models from experimental data has

been identified.

ANOVA is successfully used to identify signals, Fx and Vy, used as inputs to an FL model for the
classification of tool wear. Further analysis of signals indicate that Fx/Fz, Pyyj2sa-sseitz, Pscfo-273jHz,

OTt/dt are senditive to tool wear.

Spearman’ s correlation is successfully applied to identify signdls, dy, f1x, Isand Vy, that correlate with

Ra, used as inputs to an FL model to measure surface roughness.

FuzzyTech's NF module is used to successfully create pure FL models. The models are able to
measure Ra with an accuracy of 86.44% and to classify tool wear with a 90% success rate. With the
addition of expert or sensor data the rule-based knowledge bases can be enhanced and improved, which

is not the case with a pure neural network model.

NF modeling tools, like FuzzyTech, allow for the generation of fuzzy logic systems into C code. The
resulting code can be integrated within other C source code and compiled to form a standalone

application. The proposed FL models can therefore be integrated into the experimental set-up,
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explained in Chapter 3, for on-line monitoring of tool wear and surface roughness. The online
measurement of Ra now serves as an input to an intelligent diagnostic system, explained in Chapter 5,
that will ensure that the quality of the machined product is maintained. The tool wear sensing system
feeds the controller with on-line estimates of tool wear. Based on these estimates, the controller may

adjust the depth of cut to maintain on-line dimensional accuracy.
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Chapter 5

Diagnosisfor I ntelligent M achining Process Control

Turning processes, like any single-point tool machining process, are automatically controlled via three
independent variables, namely cutting speed (Vc [m/min]), feed (fx [mm/rev]) and depth of cut (dy
[mm]). These variables modulate the process's performance parameters (dependent variables), such as,
workpiece surface roughness (Ra [microns]), workpiece-tool vibration (Vy [mV]), cutting power (Pc
[Watts]), tool temperature (Tt [°C]) , cutting forces (Fx [N] as well as Fz [N]), spindle current [Is] and
cutting sound (Sc [mV]). Appendix B contains experimental data for varying independent variables

and the effect it has on the dependent variables.

Low-level adaptive force control has been successfully applied within machining [53, 54, 55, 56, 57].
The machining process is complex, and to maintain several output parameters at variable set points has
proven unattainable since it implies a tremendously complicated, multi-input-multi-output control
algorithm [108]. In Section 5.1 an advanced strategy to compliment adaptive control and to respond to
changing system conditions, such as tool wear, in order to guarantee the reliability of machining
process parameters, is proposed. The response includes a diagnostic scheme to decide intelligently
which machine control action to perform. Typical machining situations include: if the tool wears and
causes the allowable cutting power to exceed its limit, should the cutting speed, the depth of cut or the
feed be changed in order to return to a reliable state of machining? If the surface finish of the
workpiece is poor and unacceptable, which of the independent variables should be changed? The feed,
speed or depth? If the movement between the cutting tool and workpiece vibrate excessively, what
should be done to eliminate it? The goal of the strategy is to return the process to the best reliable state

of machining. The execution of the strategy is formulated in a manner similar to one in which a human
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being would proceed [1]. Statistica [106], a statistical software tool, was used to perform multiple
regression analysis on the experimental data (Table B1 (tool wear 0 mm) and B1 (tool wear 0.2 mm) in
Appendix B) in order to obtain empirical relations relating input (independent) and output (dependent)
parameters for a machining process model. Section 5.2 shows the non-linear equations used to model
the machining process. Section 5.3 introduces a fuzzy relation used to represent the “knowledge base”
of the diagnostic scheme. Section 5.4 shows a software simulation with graphical trending of the
machining processes control and performance parameters, used to test the intelligent decison making

component of the diagnostic strategy.

5.1 Basic Structurefor Intelligent Diagnosis

Figure 5.1 shows a block diagram of the diagnostic scheme, and indicates how it is connected to the
machining process simulation, with user interface and graphical display for testing purposes. The
knowledge base of the intelligent diagnosis scheme is a fuzzy relation (concept explained in Section
2.5.2.2). The relation is in the form of a matrix that indicates the strength of connection
(Mperformence_contral), Obtained from the experimental data, between performance of the process and control
parameters. |If there is no connection then pperformance controt = 0, Whereas, a strong connection indicate

Weatures control =1. The execution of the decision-making process follows the following four steps.

(i) Determine control alternatives

The limit monitor determines when an on-line machining process parameter exceeds a machining
process constraint. The machining constraint is set for a specific part being manufactured. If a
constraint, say for example, Vy is exceeded, the limit monitor makes use of the fuzzy relation to

determine the control alternatives.
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Figure5.1: A block diagram of the diagnostic scheme.
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This is achieved by searching for a match of the exceeded machining parameter, “Vy” ,

within the row indexes of the fuzzy relation.

Control Alternatives

1 “FIX" and “Ve

dy f1x Vc

| Hsy Moo M
el Moy Mo Mo
Ra :uRa,dy ILIRa,flx :URa,vC
Wl Hye My My
Ty Mo Mo
S Uy M Mo,
el Hso Hsine Hav
Mooy Mo Mooy

5.1

“vy?

= FRI]

The connection strength (Lperformance control ) fOr each of the process control parameters is

evaluated. If pperformance contro # O the control parameter is selected as an alternative.

(i) Obtain criteria to evaluate control alternatives

The state of the machining process, which is also the criteria that will be used to evaluate

the alternatives, is determined by dividing the on-line process performance parameters

with the process congtraints.



SMPYi] = [Fz/Fc_C, Fx/Fx_C, RalRa_C, VzIVz_C, TUTt_C, Is/Is_C, Sc/Sc_C, Pc/Pc_C]
5.2

(iii) Calculate parametersfor alternatives

To make a decison as to which process control parameter to change, one needs to
perform process performance — control anaysis. This is done by calculating the
contribution each process state has on the control dternatives. The diagnosis is

performed by:

Diagnosticli][j]=SMP[i]* FR[i][j]=

lqu,dy* Fz/Fz_C Iqu,flx* Fz/Fz_C lqu,vC* Ez/ FZ_C—
M, PXIFXCC 1 *FxIFx_C [l *FxIFx_C
Ra| M RB/RE_C L4 *Ra/Ra_C [  *Ra/Ra_C
Wi My, WY _C ol WY _C L VY IVY_C 5.3
T g CTUT.C g <TUT.C g fTUTEC
s M. Fislis_C o *Islls_.C > lIslls_C
U, /% C U Sl C [ *SlSc_C
U, *PelPc_C i *Pe/Pe_C gy *Pe/Pc_C

The elements within diagnostic[i][j] are certainty factors. Diagnostic[i][j], containing
certainty factors, is used in an agorithm to determine which one of the independent

variables should be changed, hence an intelligent decision.
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(iv) Obtain best alternative

The certainty factor Control_Parameter CNF _j, to decide which one of the control

parameters to change, is found by averaging the sum of the maximum certainty factors.

o s Rl
N

Control _ Parameter _CNF _ | =

54
N is determined by finding the column with the most zeros, hence N = no of rows — no

of zeros.

5.2 Machining Process M odel

Statistica's multiple regression analysis module was used to obtain the non-linear
equations 5.5 — 5.11 (machining process model). These equations relate the dependent
with the independent variables. Appendix B contains the experimental data used in the
regression analysis. A surface plot, contour plot and graph (to indicate measured versus

model values for each of the non-linear equations) are shown in Figures 5.2 — 5.8.

0.2648 0.3085

S, =41.9171¢) "V
5.5

0.6239 f 04444

| 4=11496.2272(f;
5.6

X
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0.5305

F,=(40651+6644* V) f ;"
5.7

_ 02389 ¢ 01095, 02450
T.=241009d,” f V.
5.8

0.4029

1.04256
F ., =140.6187 f § d,

0.1525

F womn =113086 T
5.9

0.8609
d.

0.6007

0.4544.
Vo =8.3239 f . Ve

0.4762

0.2883
Voo = 17.8941 f . Ve

5.10
15866 | 0.2568
R.=530571f ",
511
P.=F:*Vc
5.12

The equations include the process condition, tool wear, and are used in modeling the

machining process as shown in Figure 5.1 for testing the intelligent diagnostic scheme.

- 119 -



194 425
Bl 152.355
Bl 124.284
= 205.714
[ 227144
Bl above

(a) Surface plot.

18
1.6 \
1.4 \

1.2

Depth (mm)

1.0

141425 08
— 162.855
184.284 R
205714 g4 ~

227.144 60 80 100 120 140 160 180
Speed (m/min)
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(c) Model versus measured values.

Figure5.2: Surface plot, contour plot and a graph of model ver sus measured values
for cutting sound.
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(c) Modd versus measured values.
Figure5.3: Surface plot, contour plot and a graph of model ver sus measured values
for spindle current.
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Figure 5.4: Surface plot, contour plot and a graph of model versus

measured values for cutting force.
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(c) Modd versus measured values.

Figure 5.5: Surface plot, contour plot and a graph of model versus

measured values for cutting temperature.
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(b) Contour plot.
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(c) Model versus measured values.
Figure5.6: Surface plot, contour plot and a graph of model ver sus measured values

for feed force.
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Figure5.7: Surface plot, contour plot and a graph of model ver sus measured values

for vibration.
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11.1.31 (b) Contour plot.

Surface Roughness
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(c) Modd versus measured values.
Figure5.8: Surface and contour plotsand measured versus model valuesfor surface

roughness.

5.3 Regresson Analysisfor Fuzzy Relation

Statistica’' s multiple regression analysis module was used to obtain BETA coefficients,

shownin Table 5.1, for linear equations written in the form (equation 2.19):

i = a +ﬁ&+ﬁ &
S "Sx, ' “Sx.
The equation relate the dependent (YY) with the independent (X1, X2) variables. Appendix

B contains the experimental data used in the linear regression analysis.

Table5.1: Linear regresson summary of BETA coefficients used to

relate independent and dependent variables.

Dependent
_ 5 11.1.3.2 BETA
Variable R p-value

- 130 -



Tool 0.73910088 | DEPTH | 0.796169 7.3E-06
FEED 0.701622 5.91E-05
SPEED | 0.868919 2.52E-10
Power in Cut | 0.81068678 | DEPTH | 0.629604 1.53E-05
FEED 0.691316 4.73E-06
SPEED | 0.946443 2.46E-13

Temperature

Tool- 0.53125349 | DEPTH | 0.177927 0.369661
Workpiece FEED 0.648731 0.002611
Vibration

SPEED | 0.652823 1.18E-05
Spindle 0.64264508 | DEPTH | 1.011078 1.22E-06
FEED 1.134478 2.09E-07
SPEED | -0.15833 0.161893
Cutting Force | 0.68728082 | DEPTH | 1.025118 2.85E-07
FEED 1.154627 3.99E-08
SPEED | -0.18772 0.078883
Feed Force | 0.55165043 | DEPTH | 0.884785 5.55E-05
FEED 0.202535 0.306088
SPEED | -0.02736 0.826679
Cutting Sound | 0.68512988 | DEPTH | 0.702251 0.000293
FEED 0.283591 0.116261
SPEED | 0.734558 1.29E-07
Surface Finish | 0.88982711 | DEPTH | 0.370669 | 0.000436041
FEED 1.198262 | 5.63796E-14
SPEED | -0.00445 | 0.942749918

Current

From Equation 2.20 the (3 coefficients are equal to [32]:

_p X
ﬁibSY

(¥ measures the number of standard deviations for changesin Y, with each change of one
standard deviation in X;. The advantage of using BETA coefficients is that it allows one

to compare the relative contribution of each independent variable in predicting the
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dependent variable. Furthermore, to determine the significance of each independent
variable, the hypothesis tested:

Ho:Bi=0

Ha: Bi # O (alternate hypothesis)
A p-vaue indicates the truth of the hypothesis. A p-value of less than 0.05 gives the
probability of Ho to be correct, else accept the aternative. Table 5.1 indicates the R
value for each equation. It is known as the coefficient of determination, a ratio of the
explained variation to the total variation (equation 2.16 and 2.17). In other words, of the
total variation measured in the dependent variable, R? indicate the percentage attributed
to the independent variables contained in the equation. This uncertainty is included when
calculating the connection strength coefficients for the fuzzy relation, FR[i][j]:
Wperformance_control = R®* BETA. For example: the connection strength for prt gy = 0.7391 *
0.7961 = 0.5884. The completed fuzzy relation:

dy fix Ve

Fz[0.7045 0.7936 0.0 |
Fx| 04881 00 0.0
Ra| 0.32908 1.0662 0.0
- V| 00 0.3446 0.3468
FROUT = Tt |0.5884 0.5186 0.6422
Is| 06498 0.7290 0.0
Sc|04811 00 05033
Pc| 05104 05604 0.7673]

5.13
The elements in the relation FRJi][j] represent the influence which the independent

variables have on the dependent variables. The elements represent process knowledge
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based on statistical modeling and may be used to decide, in collaboration with the on-line
sensor values, which one of the independent variables dy, fx, Vc to change in order to

maintain System constraints.

54 Process Simulation

Figure 5.9 shows the machining process simulation user interface. The machining
control parameters (independent) are set, whereupon Equations 5.5 to 5.12 calculate the
process performance parameters (dependent). Process constraints for the part being
manufactured, are set. Tool wear, Vb, may now be increased, which may result in a
process performance parameter exceeding a set constraint. The diagnostic scheme will
decide intelligently, which one of the three machining control parameters to change.

Thisisindicated by the highest certainty factor.
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Figure 5.9: Machining process simulation user interface.

Test cases in the following subsections make use of different input cutting parameters
and impose varying process constraints. In the first six test cases the tool wear is
increased and causes Pc or Fz to exceed its limit. In the final test case the Pc lower limit

is reached when decreasing the depth of cut.
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54.1 Test Casel: Pcexceeded with Tt and Vy constraints

Figure 5.10 shows set process parameter constraints imposed whilst machining a part.
The power in the cut is limited to 304 Waitts, the tool temperature to 70°C and vibration

level to 121 mV. The latter constraints are set to ensure accurate part tolerance.

~ Machining Parameters Process Patameters
~CONSTRAINTS————————
o MACHINING PROCESS N 04
flx INTELLIGENT DIAGNOSIS = 95648 1y i z 1400 Pc
0,105 (Shmidron J 5000 mA
~ e 39547 [ 0 —— 5000 s
=] 02 j 1w
.—J 330 Newton
B 0 i Pc Iauz.S? Watts 0 — 330
Vi
i =0z Is 34225 | mA ‘_J A
i 130 i -l B —— 5] B
Sc 1192.4? P 5 micrans
| 250 Change dy CNF l J
0 vt f 5 Fa
- Wy !?D TEE 121 mv
_ﬂ 0 i ....animeier Change f1x CHNF lD— J_
= P_ﬁ_ [ —— 170 Wy
0.7 i : Tt ]EZ.SBD Hatreat
L ChangeVooNE [0 - — — [
I ——— m Tt
7 > | mm - - .
_'_l _| Etan Smulation Ria !1 4170 microns J 280 my
. 0 280 Sc

Figure5.10: Simulation user interfacewith Pc, Tt and Vy constraints.
Machining control parameters are set so that Pc = 302.87 Watts, close to its limit. If the
tool wears it will increase Fz, which in turn causes Pc to exceed its power limit. The
intelligent diagnostic scheme needs to decide which one of V¢, f1x or dy to change.
Figure 5.11 shows the graphical ssimulation of this process. From inspection we find that
Vc is dready high (c), the cutting tool temperature is close to its limit (€) and the tool-
workpiece vibration is not too far from its limit (f). Therefore, knowing that Vc
influences Pc, Tt and Vy, (more that dy and fx1) a machining expert may suggest that Vc

should be decreased (intelligent decision).
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Figure 5.11: Graphical simulation with Pc, Tt and Vy constraints.

Applying Equation 5.2 the machining state is determined from the sampled signals:
SMP[8]={95.646/330, 39.547/160, 1.417/5, 70.788/121, 62.98/70, 3422.6/5000,
192.47/280, 304/304 }

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:
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Fz[0.2041 02299 0.0 |
Fx|0.1207 0.0 0.0
Ra|0.0935 0.3022 0.0
Diagnostic[8][3] = SMP[8]* FR[8][3] = Vy| 00 0.2016 0.2029
Tt|0.5293 0.4667 0.578
Is|0.4448 0.499 0.0
S| 0.3308 0.0 0.3459

Pc|0.5103 0.5604 0.7674

Equation 5.4 is applied to determine the certainty factors:

CNF; = Change_dy CNF = (0.5293 +0.4448+0.3308+0.5103)/4 = 0.4538

CNF, = Change f1x_CNF = (0.3022+0.4667+0.499+0.5604)/4 = 0.4570

CNF3;= Change Vc_CNF = (0.2029+0.578+0.3459+0.7673)/4=0.4735

The strategy concludes that the cutting speed should decrease. The amount it decreases
depend on the size of the certainty factor (low), therefore, Vc = Vc*0.85 = 161.5 m/min.
The value of Vcis adjusted as shown (c) and resultsin adecrease in Pc (a), Tt (e) and Vy
(f). The decision leaves the system in a more reliable state, as envisaged by the human

expertise.

54.2 Test Case2: Pc exceeded with |'s, Fx and Sc constraints

Figure 5.12 show set process parameter constraints imposed whilst machining a part.
The power in the cut is limited to 304 Watts, the spindle current to 3551 mA, the cutting
sound to 203 mV and the feed force to 81 Newton. The latter constraints are set to

ensure part surface integrity.
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Machining control parameters are set (same as in test case no 1) so that Pc = 302.87

Watts, close to its limit. If the tool wears it will increase Fz, which in turn causes Pc to
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exceed its power limit. The intelligent diagnostic scheme needs to decide which one of

V¢, f1x or dy to change. Figure 5.13 shows the graphical ssmulation of this process.

From inspection we find that the cutting sound is close to its limit (g), the feed force is

not far from its limit (j) and the spindle current is close to its limit (k).

Therefore,

knowing that dy influences Sc, Is and Fx a machining expert may suggest that dy should

be decreased.
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Figure5.13: Graphical smulation with Is, Fx and Sc constraints.
Applying Equation 5.2 machining state is determined from the sampled signals:
SMP[8] = { 95.646/330, 39.547/81, 1.417/5, 70.788/170, 62.98/100, 3422.6/3551,

192.47/203, 304/304}

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:
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Fz[0.2041 02299 0.0 |
Fx|0.2383 0.0 0.0
Ra|0.0935 0.3022 0.0
Diagnostic[8][3] = SMP[8] * FR[8][3] _VW| 00 0143501444
Tt |0.3705 0.3266 0.4046
Is|0.6263 0.7026 0.0
|04561 0.0 04772

Pc| 05103 0.5604 0.7674]

Equation 5.4 is applied to determine the certainty factors:

CNF; = Change dy CNF = (0.6263+0.3705+0.4561+0.5103)/4 = 0.4908

CNF = Change f1x_CNF = (0.7025+0.3266+0.3022+0.5604)/4=0.4729

CNF3= Change Vc_CNF = (0.7674+0.4772+0.4046+0.1444)= 0.4484

The inference strategy concludes that the depth of cut should be decreased. The amount
it decreases, depends on the size of the certainty factor (low), dy = dy * 0.85 = 0.595 mm.
Once the value is determined the value of dy is adjusted as shown in Figure 5.13 (b) and
result in a decrease in Pc (a), Is (k) and Sc (g). Again the decision leaves the system in a

more reliable state.

54.3 Test Case 3: Pc exceeded with Fz constraint

Figure 5.14 show set process parameter constraints imposed whilst machining a part.
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Figure5.14: Simulation user interface with Pc and Fz constraint.
The power in the cut is limited to 304 Watts and the cutting force to 110 Newton. The
latter congtraint is set to ensure part surface integrity. Machining control parameters are
set (same asin test cases no 1 and 2) so that Pc = 302.87 Watts, close to its limit. If the
tool wears it will increase Fz, which in turn causes Pc to exceed its power limit. The
intelligent diagnostic scheme needs to decide which one of V¢, f1x or dy to change.
Figure 5.15 shows the graphical simulation of this process. From inspection we find that
the cutting force is close to its limit (i). Therefore, knowing that f1x influences Fz (little
more than dy and much more than Vc) a machining expert may suggest that f1x should

be decreased.
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Figure5.15: Graphical smulation with Pc and Fz constraint.
Applying Equation 5.2 machining state is determined from the sampled signals.
SMP[8]={95.646/110, 39.547/160, 1.417/5, 70.788/170, 62.98/100, 3422.6/5000,
192.47/280, 304/304}

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:
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Fz[0.6126 0.6900 0.0 ]|
Fx|0.1206 0.0 0.0
Ra|0.0935 0.3022 0.0
Diagnostic[8][3] = SMP[8] * FR[8][3] _VW| 00 0143501444
Tt |0.3706 0.3266 0.4045
Is|0.4448 0.499 0.0
S| 03308 00 0.3459

Pc| 0.5103 0.5604 0.7674]

Equation 5.4 is applied to determine the certainty factors:

CNF; = Change_dy CNF = (0.6126+0.3706+0.4448+0.5103)/4 = 0.4845

CNF, = Change f1x_CNF = (0.69 + 0.3266 + 0.499 + 0.5604)/4 = 0.519

CNF3= Change Vc_CNF = (0.1444+0.4045+0.3459+0.7674)/4=0.4155

The inference strategy concludes that the feed should be decreased. The amount it
decrease, depends on the size of the certainty factor (medium), f1x = f1x * 0.8 = 0.0864
mm/rev. Once the value is determined the value of fl1x is adjusted as shown in Figure
5.15 (d) and result in adecrease in Pc (4). Again the decision leaves the system in a more

reliable state, as envisaged by the human expertise.

544 Test Case4: Pc exceeded with Ra constraint

Figure 5.16 show set process parameter constraints imposed whilst machining a part.

The power in the cut islimited to 304 Watts and the surface roughnessto 4 microns. The

latter congtraint is set to maintain part surface quality.
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Figure5.16: Simulation user interface with Pc and Ra constraint.
Machining control parameters are set so that Pc = 302.95 Watts, close to its limit. If the
tool wears it will increase Fz, which in turn causes Pc to exceed its power limit. The
intelligent diagnostic scheme needs to decide which one of V¢, f1x or dy to change.
Figure 5.17 shows the graphical ssimulation of this process. From inspection we find that
the surface roughness is close to its limit. Therefore, knowing that f1x influences Ra
(more than dy and much more than VVc) a machining expert may suggest that f1x should

be decreased. .
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Figure5.17: Graphical smulation with Pc and Ra constraint.

174.97/280, 304/304 }

Multiplying SM P[8] with Equation 5.13,

result in Diagnostic[8][3]:
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Fz[0.2984 0.3362 0.0 |
Fx| 0.1674 0.0 0.0
Ra| 0.3092 1.1373 0.0
Diagnostic[8][3] = SMP[8] * FR[8][3] _VWi 00 01501 0151
Tt 0.3678 0.3241 0.4014
Is| 04813 054 0.0
< | 0.3006 0.0 0.3145

Pc| 0.5103 0.5604 0.7674

Equation 5.4 is applied to determine the certainty factors:

CNF; = Change dy CNF = (0.5103+0.4813+0.3678+0.3092)/4 = 0.4172

CNF, = Change f1x_CNF = (1.1373+0.5604+0.3363+0.3241)/4 = 0.5895

CNF3;= Change Vc_CNF = (0.7674+0.3145+0.4014+0.151)/4=0.4086

The inference strategy concludes that the feed should be decreased. The amount it
decrease, depends on the size of the certainty factor (medium), f1x = fix * 0.8 = 0.1574
mm/rev. Once the value is determined the value of f1x is adjusted as shown in (d) and
result in a decrease in Pc (). Again the decision leaves the system in a more reliable

state, as envisaged by the human expertise.

545 Test Caseb5:Fz Exceeded

Figure 5.18 show set process parameter constraints imposed whilst machining a part.

The cutting force is limited to 120 Newton. The constraint is set to ensure part surface

integrity.
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Figure5.18: Simulation user interface with Fz constraint and a high dy.

If the tool wears it will cause Fz to exceed its limit. The intelligent diagnostic scheme
needs to decide which one of Vc, f1x or dy to change. Figure 5.19 shows the graphical
smulation of this process. From inspection we find that the cutting sound is close to its
limit, cutting temperature is not too far from its limit and spindle current is close to its

limit. These signals are mostly influenced by the depth of cut.
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Figure5.19: Graphical smulation with Fz constraint and a high dy.

Applying Equation 5.2 machining state is determined from the sampled signals:
SMP[8] = { 120/120, 73.184/160, 0.422/5, 37.165/170, 65.049/100, 4106.0/5000,
219.85/280, 257.95/1400}

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:
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Fz[0.7045 0.7936 0.0 |
Fx|0.2233 0.0 0.0
Ra| 0.0278 0.09 0.0
Diagnostic[8][3] = SMP[8] * FR[8][3] _Vy| 00 00753 0078
Tt 0.3827 0.3373 0.4177
Is|0.5336 05987 0.0
S| 03777 0.0 0.3952

Pc| 0094 01033 0.1414

Equation 5.4 is applied to determine the certainty factors

CNF: = Change_dy CNF = (0.7045+0.3827+0.5336+0.3777)/4 = 0.4996

CNF; = Change f1x_CNF = (0.7936+0.3373+0.5987+0.1033)/4 =0.4582

CNF3= Change Vc_CNF = (0.0758+0.4177+0.3952+0.1414)/4=0.2575

The inference strategy conclude that the depth of cut should be decreased. The amount it
decrease, depends on the size of the certainty factor (low), dy = dy * 0.85 = 1.53 mm.
Once the vaue is determined the value of dy is adjusted as shown (b) and result in a
decrease in Fz (a). Agan the decision leaves the system in a more reliable state, as

envisaged by the human expertise.

546 Test case6: Fz Exceeded

Figure 5.20 show set process parameter constraints imposed whilst machining a part.

The cutting force is limited to 120 Newton. The constraint is set to ensure part surface

integrity.
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Figure5.20: Simulation user interface with Fz constraint and a high f1x.
If the tool wears it will cause Fz to exceed its limit. The intelligent diagnostic scheme
needs to decide which one of Vc, f1x or dy to change. Figure 5.21 shows the graphical
smulation of this process. From inspection we find that the surface roughnessis close to

itslimit, The signal is mostly influenced by feed.
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Figure5.21: Graphical simulatior;mEV\;itH ;z constraint with a high f1x.
Applying Equation 5.2 machining state is determined from the sampled signals:
SMP[8] = { 120/120, 42.395/160, 3.843/5, 76.042/170, 58.975/100, 4079.7/5000,
162.89/280, 255.49/1400}

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:
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Fz[0.7045 0.7936 0.0 |
Fx|0.12903 0.0 0.0
Ra|0.2535 0.8195 0.0
Diagnostic[8][3] = SMP[8] * FR[8][3] _Vy| 00 0154101551
Tt| 0.347 0.3058 0.3787
Is|0.5302 0.5948 0.0
S|0.2799 0.0 0.2928
Pc|0.0931 01023 014 |

Equation 5.4 is applied to determine the certainty factors:

CNF; = Change_dy CNF = (0.7045+0.347+0.5302+0.2799)/4 = 0.4654

CNF; = Change f1x_CNF = (0.7936+0.8195+0.3058+0.5948)/4 =0.6284

CNF; = Change Vc_CNF = (0.1551+0.3787+0.2928+0.14)/4=0.2416

The inference strategy concludes that the feed should be decreased. The amount it
decrease, depends on the size of the certainty factor (medium), f1x = fix * 0.85 = 0.167
mm/rev. Once the value is determined the value of f1x is adjusted as shown in (d) it
results in a decrease in Fz (a). Again the decision leaves the system in a more reliable

state, as envisaged by the human expertise.
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546 Test case7: Pclower Limit

Figure 5.22 show set process parameter constraints imposed whilst machining a part.

The lower limit for cutting power is set at 243 Watts.

~Machining Parameters Process Parameters- —CONSTRAINTS
MACHINING PROCESS _J_ 243 ‘Walls
_:] 0 AND i 1400 P
fix INTELLIGEMT DIAGNOSIS Fz 11238
5000 mé
| P84 mmpes J
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i
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Figure5.22: Simulation user interface with Pc lower limit .
Whilst machining the depth of cut is reduced and this causes the Pc to go below its lower
limit. The intelligent diagnostic scheme needs to decide which one of Vc, f1x or dy to
change. Figure 5.23 shows the graphical simulation of this process. From inspection we
find that the spindle current is close to its limit, therefore to increase the speed is the best

choice.
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Figure5.23: Graphical smulation with Pc lower limit.

Applying Equation 5.2 machining state is determined from the sampled signals:

SMP[8] = { 112.39/330, 44.703/160, 2.2962/5, 64.713/170, 59.333/100, 3918/5000,

171.20/280, 243/1400}
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Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:

Fz[0.2399 0.2703 0.0 |
Fx|0.1364 0.0 0.0
Ra|0.1515 0.4896 0.0
Diagnostic[8][3] = SMP[8] * FR[8][3] _VW| 00 0131201520
Tt|0.3491 0.3077 0.381
Is|0.5092 05712 0.0
S| 0.2941 00 0.3077
Pc|0.0886 0.0973 0.1332

Equation 5.4 is applied to determine the certainty factors:

CNF; = 1-Change_dy CNF = 1- (0.2399+0.3491+0.5092+0.2941)/4 = 0.6519

CNF, = 1-Change f1x_CNF =1- (0.2703+0.4896+0.3077+0.5712)/4 =0.5903

CNF;= 1-Change Vc_CNF = 1- (0.1320+0.381+0.3077+0.1332)/4=0.7615

The inference strategy concludes that the cutting speed should be increased. The amount
it increases, depends on the size of the certainty factor (medium), Vc=Vc* 1.25=162.5
m/min. Once the value is determined the value of Vc is adjusted as shown in (¢) and
result in an increase in Pc (8). The decision leaves the system in the most reliable state,

as envisaged by the human expertise.

5,5 Concluson

An advanced diagnostic scheme to complement low-level adaptive control has been
proposed and implemented. The knowledge base of the diagnostic scheme consists of a
fuzzy relation. The fuzzy relation indicates the strength of connection between the
control and process parameters. It was derived from dsatistical processing of
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experimental data. A process model based on experimental data was implemented within
a smulation, created to test the diagnostic scheme. Within the simulation tool wear
process condition causes a process parameters to exceed its limit. The diagnostic scheme
Is able to reason and decide intelligently which control parameter to change to return the

machining process to its most reliable state.
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Chapter 6

Conclusion and Future Development

Conventional CNC machines have limitations because of their closed architecture [59,
60]. In order to deal with machining complexity an intelligent machining controller
should have a suitable architecture. Open architecture is a philosophy in design and
implementation of machine tool, production processes and control. It creates an open
environment for manufacturing and enables manufacturing systems to change and
reconfiguration of system hardware and software. An open architecture in the design and
implementation of intelligent machine tools is an on-going process and need to embrace
sensor integration, software and hardware integration, flexibility, openness and

knowledge based characteristics [61, 62, 63, 64].

Intelligent machining is an advanced approach in manufacturing, strongly related to the
efforts in developing re-configurable manufacturing equipment. This research project
introduces all the relevant components and concepts required in the monitoring, diagnosis
and control for intelligent machining. These include: identifying sensors to characterize
the machining process, digital signal processing for signa measurement, intelligent
systems for monitoring and intelligent diagnosis, and multi-axis control technology for
machine control. Intelligent machining systems with in-process quality assurance need to

detect and react quickly on measured defects, and have the capability to adapt to maintain
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desired tolerances. The PC-based system implemented for this purpose is one of the

major accomplishments of this project and can be summarized as follows:

. The integration of hardware architecture: DSP, PMAC and Ethernet interface
cards.
. The implementation of an embedded sensory system that characterize the

machining process.

. The implementation of software components, executed on the two PCI32 DSP
interface cards, for on-line signal acquisition, filtering and advanced processing
(including FFT).

. The implementation and interfacing of machine controls connected to a PMAC

interface card to realize multi-axis control.

. Implementation of software for remote monitoring and setting of machining
process constraints.
. The implementation of an MFC software application framework (object

oriented) to integrate al the modules, including: CMonitorView to request data
from the DSP targets, CGeometricView to send motion control commands to
the PMAC and CServer for remote monitoring. The application framework
includes user interfaces to enable the visualization of the process s performance.
C++ classes were developed and used to support communication with PMAC

interface card.
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To realize advanced automation in machining sensors that perform reliable on-line
measurement of tool condition and surface roughness, are required [1,3]. Inthisresearch
project sensors that characterize the machining process were used in multi-sensor fusion
models to indirectly measure surface finish and to classify tool wear. An experimental

procedure was completed, with the findings and accomplishments summarized as

follows:

. The implementation of a procedure to implement FL-based classification and
measurement models. The procedure includes statistical processing and FL
defuzzification techniques.

. Successful statistical processing of experimental data to identify machining
signals and parameters influenced by tool wear and that correlate with surface
roughness.

. Successful use of the experimental data and FuzzyTech’'s NF module to
implement FL models.

. The FL models are able to measure Ra with an accuracy of 86.44% and to
classify tool wear with a 90% success rate.

. Additional signal analysis found that Fx/Fz, Pyyj2s3-ssejHz, Psco-2731Hz, O T/6t

are sensitive to tool wear.

The monitoring of tool status and surface roughness by means of intelligent systems will
enhance automated machining. However, the primary difference between automated

machining and intelligent machining is that an intelligent system (applied in the latter) is
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capable of making decisions based on significant information from the machining
process. An advanced diagnostic scheme to complement low-level adaptive control has
been proposed and implemented. The findings and accomplishments of the scheme can

be summarized as follows:

. A knowledge base for the diagnostic scheme. It consists of a fuzzy relation
and is derived from the statistical processing of experimenta data.

. Implementing a machining process model (based on experimental data) and
executing it within a software simulation. Within the smulation, tool wear
process condition causes a process parameters to exceed its limit, the
diagnostic scheme is able to reason and decide intelligently which control

parameter to change to return the machining process to its most reliable state.

The main knowledge contribution to the field of intelligent machining is the PC-based
intelligent machining process controller with artificial intelligent system components to:
classify tool wear and measure surface roughness indirectly, and a diagnostic scheme
with intelligent decison-making capability. This intelligent machining process
controller is sensor based, modular, flexible and include al the components (hardware

and software) to perform in-process quality assurance on the machined product.

By using the same principles and components, as used in this project, the system can be
extended to include all aspects of advanced machine monitoring. The object oriented

software application framework can be enhanced to accommodate these extensions. The
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fuzzy relation may be viewed as an “intelligent cell” and the principle may be duplicated
into various areas of intelligent diagnosis. The following suggestions about the future

development of this specific project can be summarized as follows:

. Standardized application software framework with monitoring, diagnosis and
machine control objects.

. To increase user interaction one need to develop a standardized user
interfaces for the application framework, an area normally neglected by
engineers.

. DSP to extract features that relate the monitoring of machining states and
conditions to machine control parameters. This will expand the intelligence
of the system.

. To expand the diagnostic scheme for implementation and test the interaction

and performance with adaptive control.

The continuation of this project is strongly recommended, as it will contribute to the

implementation of re-configurable intelligent machining systems.
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Appendix A

Calculation of Filter Coefficients of an FIR Low Pass Filter
to meet the Specifications as used in this Project

Specification
Pass band edge frequency: 1.0kHz Trangition width: 420Hz
Sampling frequency: 5.0kHz
12 Solution
Normalized [ f = 420/5000 = 0.084
Using Equation 2.5, N = 3.3/0.084=40, within hardware memory restriction.

The filter coefficients are obtained from:
h[Nn] = ho[ N] wy [N] -20sn<20
Because of the smearing effect of the window on the filter response, the cutoff frequency

of the resulting filter will be different from that given in the specification. To account

for this, we will use an f. that is centered on the transition band:

f. =T+ = (1.0+42012)= 1.21kHz

Normalized f =1.21/5=0.242

Noting that h[n] is symmetrical; we need only compute values for h[0], h[1],...h[20] and
then use the symmetry property to obtain the other coefficients.
n=0:

ho[0] =2 f_=2*0.242=0.484

-192 -



wH[0] =0.54 + O.46cos(24780) =1

h[O] = ho[O] wy, [0] = 0.484

n=1:
' * * 1%
ho[1] = 2% 0.24p3M2" 77 170.242) _; 517447
2% 1* 7* 0.242
WH[1] = 0.54 + 0.46c08(> jo ) =0.994336

1] = ho[wy [1] =0.317907* 0.994336 = 0.316106 =h[—1]

n=2:
' * * *
ho[2] = 2% 0.242 32" 727 0.242) _ ) 115975
2% 2% 71* 0.242

2% 2% 1y
wH{2] = 0.54+0.46c08(~—, =)=0.977486

N[2] = ho[2]wy [2] = 0.015973* 0.977486 = 0.015613 = h[—2]

.n=20:
' * * *
ho[20] = 2% 0.24p3M2" 71207 0.242) _ _, 13459
2% 20* 71* 0.242
WH[20] = 0.54+ 0.46c08(> 20 7y = 0,08

M[20] = ho[20]wy [20] = —0.01438* 0.08 = —0.00107504 = h[—20]
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To make the filter causal (necessary for implementation) we add 20 to each index so that

theindices start at zero. Thefilter coefficients, with indices adjusted, are listed in Table

Al
TableA.1
FIR coefficients for N=41, Hamming window and fc = 1210Hz

H[O] -0.00107504 H[40]
H[1] -0.000828893 H[39]
H[2] 0.00142542 H[38]
H[3] 0.0015999 H[37]
H[4] -0.00240534 H[36]
H[5] -0.00332171 H[35]
H[ 6] 0.00396656 H[34]
H[7] 0.00643822 H[33]
H[8] -0.00598659 H[32]
H[9] -0.0115257 H[31]
H[10] 0.00828074 H[30]
H[11] 0.0194664 H[29]
H[12] -0.0106226 H[28]
H[13] -0.0319655 H[27]
H[14] 0.0127704 H[26]
H[15] 0.0533542 H[25]
H[16] -0.0144962 H[24]
H[17] -0.0996399 H[23]
H[18] 0.0156134 H[22]
H[19] 0.316106 H[21]
H[20] 0.484
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5 Appendix B

M achining Process Data for Tool Wear 0 mm and 0.2 mm
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TableB.1:
M achining Process Data for Tool Wear: 0.0 mm

12.1Cutting Parameters

12.2Process Parameters

RPM Ve f2x f1x dy MRR Diameter| T Pc Sc Fx Fz Is Vy Tt Ra
[rom] | [m/min] | [mm/min] [mm/rev] | [mm] [mm3/q] [mm] [Nm] [N] [mV] [N] [N] [mA] [mV] [°C] |[microng]
502.5 48.94 62.53 0.124446 0.4 3654.07| 316 139 7154 66.76 34.25 87.89| 2867.46 22.82| 43.69 1.5
502.15 48.84 124.29 0.247524 0.4 7253.56 31560 2.51 129.74 9439 5185 159.38 4978.7 55.72|  55.8 5.4
1259.94 122.15 129.71 0.10295 0.4 7545.2 31460 1.21) 157.05 132.08 33.09 77.14f 2668.12 38.36| 53.44 1.1
1259.55 122,11 258.39 0.20515 0.4 15030.67| 31460 2.05 265.49 158.1 434 13045 4173.53 68.35 64.28 3.9
1985.38 191.36 166.06 0.08364 0.4 9603.19 31.28 093 188.74 151.31 26.46 59.18, 2248 4355 51.19 0.9
1986.3 192.45 330.04 0.166155 0.4 19185.72, 31.44 158 322.47 199.125 33.35 10055 3474.5 79.05 56.59 2.2
503.04 48.01 41.62, 0.08275 1.2 4767.32 31.58 2.09 10578 154.05 71 132.21 4122.85 24.84 45.36 1.3
502.09 47.92 61.42 0.122332 1.2 7034.64 31.58, 2.6 13134 160.79 78.68 164.45 4973.42 28.84 46.51 1.8
1255.14 119 103.37 0.082358 1.2 11760.86 31.38 1.88 238.26 200 62.74 120.13 3775.19 39.49 56.62 1.2
1265.03 119.55 156.44 0.12366 1.2 17740 31.28 246 326.2 {4 76.37 163.72 5093.55 60.55 - 1.8
1270.7 120.32 207.9 0.16361 1.2 23623.07| 31.34 256 341.04 {4 76383 170.07 5196.8 80.9) 62.56 2.4
1987.48 189.06 102.93 0.051788 1.2 11749.49 3148 146 291.85 25235 56.36 92.62| 1182.66 48.44 65.18 0.4
1988.13 189.75 204.26 0.10274 1.2 23393.98 31.58 2.02 404.61 27813 61.87] 127.94 42224 87.33 69.69 1.7
501.73 46.97) 16.39 0.032668 1.8 2762.24 316 159 79.01] 16793 64.3 100.93 3263.08 16.77) 42.78 0.7
504.02 47.16 31.67 0.062842, 1.8 5333.74 31.58 252 12569 187.84 89.86 159.91 4817.125 27.98 53.47 1.2
1253.52 117.36 39.7 0.031672 1.8 6689.9 3160 153 189.87 179.91 61.6] 97.07| 3313.92 30.45 62.34 0.4
1258.32 117.33 78.44 0.062333 1.8 13164.19 3148 243 30177 237.32 84.47 154.32 4757.94 45,03 77.93 0.8
1987.69 186.09 62.05 0.031218 1.8 10456.3 3160 152 29743 217.47 65.46 95.9 3205.66 46.15 63.92 0.4
1989.58 185.64 123.12 0.06188 1.8 20677.99 31.5 2.3 45247 24386 779 146.24  4496.7 65.46 77.28 1.1




12.2.1 TableB.2

12.3Machining Process Data for Tool Wear: 0.2 mm

Cutting Parameters

12.4Process Parameters

12.5M

RPM Vc f2x f1x dy RR |Diameter| T Pc Sc Fx Fz Is Vy Tt Ra
[rpm] | [m/min] | [mm/min] [mm/rev] [mm] | [mm3/g] [mm] [Nm] [N] [mV] [N] [N] [MmA] [mV] [°C] |[microng]
502.03 48.89 61.3 0.1221] 0.6 3581.98 31.§ 1.6 84.64 101.09 49.68 103.49 3374.16 50.66 47.95 1.4
503.49 48.94 122.73 0.2438 0.6 7157.53 31.54 259 136.78 1005 60.72 167.69 5320.55 98.75 58.46 5.7
1256.09 122.09 127.61 0.1016 0.6 7442.44 31.54 1.365 179.87 164.48 47.09 88.4 3036.44 83.33] 55.85 1.5
1249.73  122.03 2554 0.20436 0.6 14962.03 31.68 2.24 29313 169.15 56.53 144.13 4627.3§ 117.68 61.67 3.4
1987.4  192.41 161.7 0.08136 0.6 9386.91 314 1.113 231.821 17575 43.25 72.33] 2621.2 91.54f 59.26 0.9
1989.15  193.22 321.5] 0.1618 0.6 18736.66 31.52 1.75 364.44 228.1 5042 11329 3832.45 140.1 61.45 2.0
501.11 47.98 40.7] 0.08124 1.2 4677.69 31.68§ 1.97 103.36 119.99 74.21] 129.25 4213.32 34.86) 46.73 0.9
502.9 48.03 51.18 0.10177 1.2 5865.47 31.§ 2425 127.81 163.79 93.24  159.67| 4963.28 53.26| 47.54 1.2
12537 119.89 102.38 0.08167| 1.2 11749.27 31.64 2.145 281.6 232.68 104.177 140.93 4609.06 80.09 61.01 1.1
1250.42 119.5 128.63 0.10287| 1.2 14750.97 31.62 2423 317.19 2234 107.68 159.26 5092.3 112.18 61.2 1.3
1987.58 189.7 103.15 0.0519 1.2 11813.61 31.58 1.577 327.87] 211.83 91.6] 103.7] 3692.98 85.58 70.35 0.7
1986.8 188.62 203.16 0.10226 1.2 23145.27 3142 2.263 470.91] 263.37 100.55 149.79  4912.1 95.7, 71.01 1.3
499.4 47 14.5 0.02903 1.8 2456.05 31.76 1.6525 86.45 159.31 83.37 110.35 3680.63 37.66 43.04 0.6
500.34 46.84) 29.83 0.05962 1.8 5026.46 31§ 258 13518 204.58 115.97 173.14) 5375.28 51.2 53.2 1.2
1254.07) 117.41 25.06 0.02 1.8 4223.47 316 1.47]1 193 189.98 102.14 98.63 3486.97 48.72) 58.02 0.7
1252.74) 117.44 47.12 0.03762 1.8 7951.38 31.64 2.0838 27349 19458 122.64 139.73 4555.89 69.23 65.87 1.0
1986.97 185.9 17.82 0.00896 1.8 3001.17 31.58 0.9783 203.39 200.29 103.65 65.65 2963.18 78.84  64.7 0.9
1985.57] 185.27 38.49 0.01939 1.8 6464.48 31.5 1.4475 300.77 201.48 103.03 97.38| 3376.64 78.53 68.29 0.7
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Appendix C

DSP Target Source Code

[*Sourcefilename  : dsptarget.c

Output filename . dgptarget.out
Compiler : C for TMS320C3x/4x
System : PCI32 PC-Based Interface Card
Source Library . Innovative Integration provides libraries that support an

extensive set of DSP functions.

The following code is created by adapting example code and applying the DSP functions

supplied.

Description: This program reads in analog samples from al four analog channels and
then filters them using an FIR routine. The resultant output samples are then stored, in an
interleaved fashion, in a queue. This is al done in the analog_isr (interrupt service
routine). When a total of 512 samples for each channel, i.e. 2048 samples in total, are
stored in the queue, the samples are dequeued into four individua buffers from where
they are then further processed. This is done in the main body of the program. While
the current frames of 512 samples of each channel are being processed the analog_isr
will continue writing new samples into the queue thus no dataislost. Processing is done
for each channel and it involves determining the RMS and mean value of the data

samples for each channel. An FFT is aso performed on each channel. The resultant



outputs are then placed in the dua-port RAM from where the host application can then
access them.*/

#include <values.h>

#include <math.h>

#include "c:\pci32cc\include\target\stdio.h"

#include "c:\pci32cclinclude\target\dsp.h"

#include "c:\pci32cclinclude\target\periph.h"

#define Q_SIZE 0x1000 /* Heap size for queue size */

#define FFT_SIZE 512

#define HALF_FFT_SIZE 256

#define LOG2_SIZE 9

#define BITREV 1 /*1 Bit reversa will be performed */
#define FILTER_ORDER 40 /*40 max number of filter coeffs*/

/* Remember to change the buffer sizes in "buffers.asm™ when the filter order changes*/
#define SAMPLE_BUF_SIZE FILTER _ORDER + 1 /*ADC circular buffersize/
/* Function Prototypes */

int count=1,

int busy =0;

#define andlog_isr ¢_int99

void analog_isr(void);

void CalcFFT(float *Bufferin, float *BufferOut, float *Window, float * TwiddleTable);
float CalcRM S(float *Bufferin, int BUF_SIZE);

float CalcAVE(float *Bufferln, int BUF_SIZE);
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float CalcFREQ(float *Bufferin, float BUF_SIZE, float Max_Freq);
#define command_isr ¢_int03

void command_isr(void);

[* SEE APPENDIX A FOR FILTER COEFFICIENT CALCULATIONS*/
float filter_coeff[FILTER_ORDER + 1] =

{-0.00107503,
-0.000828893,
0.00142542,
0.0015999,
-0.00240534,
-0.00332171,
0.00396656,
0.00643822,
-0.00598659,
-0.0115257,
0.00828074,
0.0194664,
-0.0106226,
-0.0319655,
0.0127704,
0.0533542,
-0.0144962,
-0.0996399,
0.0156134,
0.316107,
0.484,
0.316107,
0.0156134,
-0.0996399,
-0.0144962,
0.0533542,
0.0127704,
-0.0319655,
-0.0106226,
0.0194664,
0.00828074,
-0.0115257,
-0.00598659,
0.00643822,
0.00396656,
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-0.00332171,

-0.00240534,

0.0015999,

0.00142542,

-0.000828893,

-0.00107503} ;

/* ISR data queue */

QUEUE queus;

[* The following extern variables are defined in "buffer.asm” */
extern float coeff _buffer[SAMPLE_BUF_SIZE]; /*coefficient buffer*/
[* analog sample buffers */

extern volatilefloat sample bufferO[SAMPLE _BUF_SIZE];
extern volatilefloat sample bufferl[SAMPLE BUF_SIZE];
extern volatilefloat sample buffer2[SAMPLE BUF_SIZE];
extern volatilefloat sample buffer3[SAMPLE _BUF_SIZE];
volatile int sample_buf write; /* sample buffer head pointer */
/* Used as flag to show if host has read data from dpram */
volatile int data taken = 1,

void main()

{int1, k ,z

float max;

int CH1_Dec Count = 0;

float CHO_FREQ, CH1 FREQ, CH2_FREQ, CH3 FREQ;
float CHO_RMS, CH1_RMS, CH2_RMS, CH3_RMS;

float CHO_AVE, CH1_AVE, CH2_AVE, CH3 AVE;

float HAR, sum_of coeffs, theta;
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float window[FFT_SIZE];
float SinTablefHALF_FFT_SIZE];
float FFTBufferlnO[FFT_SIZE], FFTBufferInl[FFT_SIZE];
float FFTBuUffern2[FFT_SIZE], FFTBufferIn3[FFT_SIZE];
extern float FFTBufferOut[FFT_SIZE]; [* This buffer address MUST have at least n
LSB's set to zero (where 2°n = FFT_SIZE) */
volatile int* dpram = (volatile int*)& Periph->Dpram; /* Initialise with starting address of
duaport RAM */
enable_cache();
if ("queue_init(&queue, Q_SIZE)) /* Initidlise data queue */
while (1);
[* Synchronization - Notify Host that you are ready */
write_mailbox(OXA5A5, TERMINAL_MBOX);
* Initialize al variables and buffers for the FIR filter */
for(i = 0; i < SAMPLE_BUF_SIZE; i++)
{sample_bufferQ[i] = 0.0;
sample_bufferl[i] = 0.0;
sample_buffer2[i] = 0.0;
sample_buffer3[i] = 0.0;}
sample_buf write=0;
I* Normalize filter coefficients */
sum_of coeffs=0.0;
for(i=0; i <FILTER_ORDER + 1; i++) [* sum coeff's */
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sum_of _coeffs += filter_coeff[i];
for(i=0; i < FILTER_ORDER + 1; i++) /*divide coeff's by sum */
coeff_buffer[i] = filter_coeff[i]/sum_of coeffs;
/* Build atable with sine samples - "twiddle factors’ */
theta = 2*PI/FFT_SIZE;
for (i=0;i<HALF_FFT_SIZE;i++) /* fill sintable in memory */
SinTablgi]=sin(i*theta);
I* Create the windowing data and place inside buffer "window" */
Hamming(window, FFT_SIZE);
timer(0, 0);
enable_analog(BASEBOARD,0);
install_int_vector(analog_isr, 9); [* Install analog isr */
enable_interrupts();
mailbox_interrupt_install(command_isr);
mailbox_interrupt_enable();
/*Fina sync from host - Wait here until host signals that interruptsare active and ready to
beread */
read_mailbox(TERMINAL_MBOX);

timer(0, 5000); [* Generates a 5kHz timebase for A/D */

for(;;)
{/*Wait for Analog_ISR to fill aframe of data*/
if (enqueued(&queue) >= FFT_SIZE * 4)
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{/* Place datainto FFT input buffer */
for (i =0; i < FFT_SIZE; i++)
{FFTBufferInQ[i] = *(volatile int*)dequeue_ptr(&queue);
FFTBufferinl[i] = *(volatile int*)dequeue_ptr(&queue);
FFTBufferin2[i] = *(volatile int*)dequeue_ptr(&queue);
FFTBufferin3[i] = *(volatile int*)dequeue_ptr(&queue);
}
if(data_taken == 1)
{
* Process channel 0 */
CHO_RMS = CalcRM S(FFTBufferln0, FFT_SIZE);
CHO_AVE = CalcAVE(FFTBufferin0, FFT_SIZE);
CalcFFT(FFTBufferlnO, FFTBufferOut, window, SinTable);
CHO_FREQ = CacFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);
for(i = 0; i<256; i++)
{dpram[i] = to_ieee(FFTBufferOut[i]);
dpram[256] =to_ieee(CHO_ FREQ);
dpram[257] =to_ieee(CHO RMYS);
dpram[258] =to ieee(CHO AVE);}
* Process channel 1 */
CH1 RMS = CacRM S(FFTBufferinl, FFT_SIZE);
CH1_AVE = CacAVE(FFTBufferinl, FFT_SIZE);

CalcFFT(FFTBufferinl, FFTBufferOut, window, SinTable);

- 204 -



CH1 FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);
for (1I=0, max =0;i<255;i++)
{if(FFTBufferOut[i]> max) max = FFTBufferOut]i];
}
for(i = 259, k=0; i < 515; i++,k++)//515
{if(FFTBufferOut[k] < 1.0) FFTBufferOut[k] =O0;
FFTBufferOut[k] = ((FFTBufferOut[k])/max)*1000;
dpram[i] = to_ieee(FFTBufferOut[k]);
}
dpram[515] =to ieee(CH1 FREQ);
dram[516] =to_ieee(CH1 RMYS);
dpram[517] =to_ieee(CH1_AVE);,
* Process Channel 2 */
CH2_RMS = CalcRM S(FFTBufferIn2, FFT_SIZE);
CH2_AVE = CacAVE(FFTBufferin2, FFT_SIZE);
CacFFT(FFTBufferin2, FFTBufferOut, window, SinTable);
CH2_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);
for (i=0, max =0;i<255;i++)
{if(FFTBufferOut[i]> max) max = FFTBufferOut[i];
}
for(i =518, k =0; i < 774; i++ k++)//774
{if (FFTBufferOut[k] < 1.0) FFTBufferOut[k] =0;

FFTBufferOut[K] = (FFTBufferOut[k]/max)* 1000;
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dpram[i] = to_ieee(FFTBufferOut[k]);
}
dpram[774] =to_ieee(CH2_FREQ);
dpram[775] =to_ieee(CH2_RMYS);
dpram[776] =to_ieee(CH2_AVE);
* Process Channel 3 */
CH3_RMS = CalcRM S(FFTBufferin3, FFT_SIZE);
CH3_AVE = CacAVE(FFTBufferIn3, FFT_SIZE);
CacFFT(FFTBufferIn3, FFTBufferOut, window, SinTable);
CH3_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);
for (i=0, max =0;i<255;i++)
{if(FFTBufferOut[i]> max) max =  FFTBufferOut[i];
}
for(i= 777, k=0; i <1033; i++, k++)//1033
{FFTBufferOut[K] = ((FFTBufferOut[k])/max)* 1000;
dpram[i] = to_ieee(FFTBufferOut[k]);
}
dpram[1033] = to_ieee(CH3_FREQ);
dpram[1034] = to_ieee(CH3_RMYS);
dpram[1035] = to_ieee(CH3_AVE);
/* Notify host that datais ready to be read */
mailbox_interrupt(1);
data taken=0;
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[* data_taken will be set to 1 by the host after reading the data */
Hlend if

}lend for

}/end main

/*******************************************************************

* Define interrupt service routines

R R R R R e Y

void analog_isr(void)

{ int CHO_sample = read _adc(BASEBOARD, 0);
int CH1_sample = read adc(BASEBOARD, 1) ;
int CH2_sample = read _adc(BASEBOARD, 2) ;
int CH3_sample = read_adc(BASEBOARD, 3);

[* Get sample results, store to circular sample buffers. */
sample_bufferO[sample_buf write] = (float) CHO_sample;
sample_bufferl[sample buf write] = (float) CH1 sample;
sample_buffer2[sample_buf write] = (float) CH2_sample;
sample_buffer3[sample_buf write] = (float) CH3_sample;

if(++sample_buf write == SAMPLE_BUF_SIZE) /* modulo for rollover */

sample_buf write=0; [* correction */

[*call filter routine from library. Arguments are the filter coefficient array (pointer points

to the h(n-1) term), the sample buffer pointer (points to the least recent data point

sampled, i.e. thetail of the sample circular buffer),and the filter order + 1 */
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CHO_sample = (float)(fir(&filter_coeff[0], &sample bufferO[sample _buf write],
FILTER _ORDER + 1));

CH1 _sample = (float)(fir(&filter_coeff[0], &sample bufferl[sample buf write],
FILTER_ORDER + 1));

CH2_sample = (float)(fir(&filter_coeff[0], &sample buffer2[sample buf write],
FILTER_ORDER + 1));

CH3_sample = (float)(fir(&filter_coeff[0], &sample buffer3[sample buf write],
FILTER_ORDER + 1));

/* Place the filtered output samplesinto the queue */
*((int*)enqueue_ptr(&queue)) = CHO_sample;

*((int*)enqueue_ptr(&queue)) = CH1 sample;

*((int*)enqueue_ptr(&queue)) = CH2_sample;

*((int*)enqueue_ptr(&queue)) = CH3 _sample;

}

void command_isr(void)

{

enable_interrupts();

data_taken = mailbox_interrupt_ack(); /* read datafrom host */
}

/*******************************************************************

* Function definitions *

*******************************************************************/

/*******************************************************************
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Determine the FFT of the samples in the input buffer. The output buffer must be aligned
on an address such that the n least significant bits of the address must be zero (where
FFT_SIZE = 2"n). The Window buffer must contain the windowing samples and its size
must be the same as that of the input buffer (FFT_SIZE). The twiddle table buffer must
contain the twiddle factor samples. The resultant samples in the output buffer will be the
magnitude of the FFT, determined from the complex output of the FFT() function. Only
the positive half of the frequency spectrum is determined therefore only half of the

FFT_SIZE samples will be available in the output buffer.

*******************************************************************/

void CalcFFT (float *BufferIn, float *BufferOut, float *Window, float * TwiddleTable)
{inti;

/* Next multiply the input frame of data with the window data */

vmul(Bufferin, 1, Window, 1, Bufferin, FFT_SIZE);

I* Now determine the actual FFT of the windowed data*/

ffft_rl(FFT_SIZE, LOG2_SIZE, Bufferln, BufferOut, TwiddleTable, BITREV);

/* Determine the actual magnitude values from the complex values in FFTBufferOut */
for(i=0;i<256;i++) //HALF_FFT_SIZE

BufferOut[i] = sgrt(pow((BufferOut[i]) , 2)+ pow((BufferOutfHALF_FFT_SIZE +1]) ,
2) )

}

/**************************************************************/
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/* Determine the RM S value of the samples in the input buffer */
[k kR
float CalcRM S(float *Bufferin, int BUF_SIZE)
{ int i;

float Temp = 0;

for (i=0; i < BUF_SIZE; i++)

Temp += (Bufferin[i] * Bufferin[i]);

Temp /= BUF_SIZE;

Temp = sgrt(Temp);

return(Temp/3276.8); [* Scaling factor */

}

/*********************************************************/

/* Determine the mean value of the samplesin the buffer */
[k koo ko koo ko ko
float CalcAVE(float *Bufferln, int BUF_SIZE)
{ inti,

float Temp = 0;

for (i=0; i < BUF_SIZE; i++)

Temp += BufferIn[i];
Temp /= BUF_SIZE;
return(Temp/3276.8);

}

/******************************************************************/
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[* Determine the frequency of the maximum amplitude bin component */
R L LT T e T T e Y
float CalcFREQ(float *Bufferin, float BUF_SIZE, float Max_Freq)
{ inti;
int Max_Index;
float temp;
float Max_Amplitude = 0;
for(i=0;i<128;i++) /i<BUF_SIZE
if(Max_Amplitude < Bufferin[i])
{
Max_Amplitude = BufferIn[i];
Max_Index =1i;
}
temp = Max_Index* Max_Freq/BUF_SIZE;

return( temp);
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Appendix D

Class Library for Motion Control Commands

/* The PMAC  executes not i on contr ol commands.
Traditionally one downl oad prograns that control a specific
systemor process in full.
The follow ng source code include three class libraries:
Cpr ogranBuf f er: To control the buffer area where notion
control conmands are placed for execution.
CservoMotor: To control all aspects of the spindle notor.
CstepperMtor: To control all aspects of a stepper notor
Wi thin an axis and a coordi nate system
The code is used with PTal kDT ActiveX control, and allows
one to control all aspects of the nmachine’s controls, from
within a wi ndows based application.
*/
[l#define ON 0x01
[I#define OFF 0x00
class CProgramBuffer
{
public:

char * Create(void);

char * Open(void);

char * Clear(void);

char * Execute(void);

char * Abort(void);

char * Close(void);

char * Quit (void);

char * Step (void);

char * Halt (void);

char * Run (void);

char * Hold (void);

char * Absolute (void);

char * Delete(void);

char * DefineRotaryCMD(void);

char * CommandCMD (char []);

CProgramBuffer(int, int);

int GetOpenOrClosed(void);

int GetRunOr Stop(void);

int GetBufferEmpty(void);

void SetOpenOrClosed(int );

void SetRunOr Stop(int);

void SetBufferEmpty(int);
private:

char Command[30];

int OpenClosg; //Buffer Condition
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int RunStop; // Program execution condition
int BufferlsEmpty; //Software program

int BufferSize;

int Coordinate;

CProgramBuffer::CProgramBuffer(int Coord, int BuffSize)
{

Coordinate = Coord;

BufferSize = BuffSize;

}

char * CProgramBuffer::Delete(void)
{char buff1[5] ="&";

char buff2[5];

itoa(Coordinate, buff2, 10);
strepy(Command, buffl);
strcat(Command,buff2);
strcat(Command, " DEL ROT");
return(Command);

}

//Define a Rotary Moation Program Buffer

char * CProgramBuffer::DefineRotaryCMD(void)
{char buff1[2]="&";

char buff2[15] = "definerot ",

char buff3[5];

char buff4[5];

itoa(Coordinate,buff3,10);

itoa(BufferSize, buff4,10);

strepy(Command, buffl);

strcat(Command, buff3);

strcat(Command, buff2);

strcat(Command, buff4);

return(Command);

}

void CProgramBuffer::SetOpenOrClosed(int SetReset)
{OpenClose = SetReset;

}

void CProgramBuffer::SetRunOrStop(int SetReset)

f?unStop = SetResdt;

void CProgramBuffer::SetBufferEmpty(int SetReset)
EufferIsEmpty = SetReset;

i}nt CProgramBuffer::GetOpenOrClosed()
return(OpenClose);

i}nt CProgramBuffer::GetRunOr Stop()

return(RunStop);
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int CProgramBuffer::GetBufferEmpty()

{
return(Buffer| SEmpty);

}
char * CProgramBuffer::Create(void)

{

char buff[30]="&1 define rot 100";
strepy(Command, buff);
return(Command);

}

char * CProgramBuffer::Open(void)

{

char buff[30]="OPEN ROT";
strepy(Command, buff);
return(Command);

}

/[Erase currently opened buffer

/Usually start with OPEN, then CLEAR.
char * CProgramBuffer::Clear(void)

{

char buff[30]="CLEAR";
strepy(Command, buff);
return(Command);

}

char * CProgramBuffer::Execute(void)

{

char buff[30]="BOR";
strepy(Command, buff);
return(Command);

}

/[Abort al programs and movesin the currently
/laddressed coordinate system

/IRather use H, Q, / or \ commands

IIB1R, A, #1F#23=, R

char * CProgramBuffer::Abort(void)

{

char buff[30]="A";
strepy(Command, buff);
return(Command);

}

//Step Working Mation Programsin all coordinate Systems
/l'If aready running mode (after Run command) then

/I'S' command will place the program in a single-step mode.
char * CProgramBuffer::Step(void)

{
char buff[30]="s";
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strepy(Command, buff);
return(Command);

}

/[Causes all motion programs running in a any
/[coordinate system to stop,

//Program execution may be resumed with R (run)
I/l or S (step);

char * CProgramBuffer::Quit(void)

{

char buff[5]="Q";
strepy(Command, buff);
return(Command);

}

//Close Open Rotary Buffer
char * CProgramBuffer::Close(void)

{

char buff[30]="CLOSE";
strepy(Command, buff);
return(Command);

}

/[Halt program execution

/[Then apply J= to return

/[Then apply R command to resume
char * CProgramBuffer::Halt (void)
{char buff[30]="/";
strepy(Command, buff);
return(Command);

}
char * CProgramBuffer::CommandCMD (char Cmd[])

{

char buff1[10] ="cmd \"";
char buff3[10] ="\"";
strepy(Command, buffl);
strcat(Command,Cmd);
strcat(Command,buff3);
return(Command);

}

/[Run Motion Program
char * CProgramBuffer::Run (void)

{

char buff[30]="R";
strepy(Command, buff);
return(Command);

}

//Do a program Hold

/[Permitting jog while in hold mode
/[Execute J= to return to point prioir to jog
/[Execute R to resume prog

char * CProgramBuffer::Hold (void)
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{

char buff[30];
strepy(Command, buff);
return(Command);

}

//Select absolute position mode for axes
/lin addressed ccoordinate system

#define OFF 0x00
class CServoMotor

{public:

private:

b

int OnOff();

void Off();

void On();

CServoMotor(int , int , int);

void SetRPM(int );

char * GetSpeedCommand (void);

int GetRPM (void);

char * SetlVarCMD(int IVar, int value);

int RPM, MaxSpeed, MinSpeed;

int Position, MaxPosition, MinPosition;
int MotorOnOff;

char SpeedCommand[30] ;

CServoMotor::CServoMotor(int Rpm, int MaxSpeed, int MinSpeed)

{RPM =

Rpm;

MotorOnOff =0;

}
void CServoMotor::SetRPM (int Rpm)

{RPM =

Rpm;

}

char * CServoMotor::SetlVarCMD(int IVar, int value)
{char buff1[10];

char buff2[10];

itoa(lVar, buffl, 10);

sprintf(buff2,"%.2f" float(value * 0.0683));
strepy(SpeedCommand, "i");
strcat(SpeedCommand,buffl);
strcat(SpeedCommand, "=");
strcat(SpeedCommand, buff2);
return(SpeedCommand);

}
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char * CServoMotor::GetSpeedCommand ()
{char buff1[30] = "i122=";

char buff2[30];

//Use "cmd" when buffer is closed
[[char buff3[20] = "cmd\"j+\"";

char buff3[20] = "j+";

itoa( (int (RPM*0.1334)) ,buff2,20);
strncat(buff1, buff2, 30);
strncat(buff1, buff3, 20);
strepy(SpeedCommand, buffl );
return(SpeedCommand);

}
int CServoMotor::GetRPM (void)
{ return(RPM);

}
void CServoMotor::0On()
{MotorOnOff = 1,

}

void CServoMotor::Off()
{MotorOnOff = 0;

}

int CServoMotor::OnOff()
{return(MotorOnOff);

}
/[Direction Define
#define POSITIVE 1
#define NEGATIVE -1
#define ON 1
#define OFF O
class CStepperMator
{
/IMotor Initialization Information
public:
CStepperMotor(int , int , int, char * );

private:
char MotorNumber[10];

//Jog Related Functions
public:
void SetJogRate(int );
char * GetJogCommand (void); //Used to Send to PMAC
int GetJogRate();
char * JogCMD(int dir , int speed);
char * JogStopCM D(void);
char * JogReltoCommandCMD(int distance);
char * JogPreJogCMD(void);
char * JogPosCMD(int position);
char * JogReltoActual CMD(int distance);
private:
int JogRate, MaxJogRate, MinJogRate;
char JogRateCMDI[30];
//Utility Related Functions
public:
char * Closel oopCMD(void);
- 217 -



private:

char * KillCMD (void);

char * KillAIICMD (void);

char * JogLastCMD(void);

char * ZeroCMD(void);

void SetL.oopOC(int OC); // 0- Open, 1- Close

int GetLoopOC(void);

int GetPosNeg(void); // O - Mator Off , 1 - Motor Positive
/I -1 - Negative

int GetOffOn(void);

void SetPositive(); //

void SetNegative();

void SetOff();

void SetOn();

int OffOn; /10 - Motor Off, 1 - Motor Positive

/[ -1 - Motor Negative
int PosNeg; /1 - Positive, -1 Negative
int LoopOpenClose; // 0- Open Loop, 1 - Close Loop
char Command[10Q]; //"A" - Abort , "K" - Kill

//Positional Information

public:

private:

void SetPosition(long );
long GetPosition(void);

long Position;

//Online Motor Command While Executing a Program

public:

private:

void SetFeedRate(int );

char * GetFeedCommand (void);
int GetFeedRate(void);

int GetVeocity(void);

char * GetVeocityCMD(void);

/lint Position, MaxPosition, MinPosition;
int Feed, MaxFeed, MinFeed;

char FeedCommand[30] ;

int Velocity; //counts_per_msec

//Open Loop Functions and Commands

public:

private:

1

char * OpenLoaop(int Percentage, int Direction);

int OLoop, MaxOpenLoaop, MinOpenlL oap;
char OpenLoopCommand[30];

//ICLASS DEF - Jog Related Functions - BEGIN
int CStepperMator::GetJogRate()

{
return(JogRate);

}
void CStepperMotor:: SetJogRate(int Jog )

{

JogRate = Jog;

}
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char * CStepperMotor::GetJogCommand (void)

{

char buff1[10]
char buff2[30] ="2";

strncat(buff1, MotorNumber + 1, 20);
strncat(buff1, "22=", 20);

if ( PosNeg == POSITIVE)

{

intval = int (JogRate* 0.03435);
itoa( (int(val)) ,buff2,20);
strncat(buff1, buff2, 30);
strncat(buff1, MotorNumber, 20);
strncat(buffl, "j+", 20);
strepy(JogRateCMD, buffl );
return(JogRateCMD);

}

if (PosNeg == NEGATIVE)

{int val = int (JogRate * 0.03435);
itoa( (int(val)) ,buff2,20);
strncat(buff1, buff2, 30);
strncat(buff1, MotorNumber, 20);
strncat(buff1, "j-", 20);
strepy(JogRateCMD, buffl );
return(JogRateCMD);

}
if (OffPosNeg == OFF)

{

itoa( (int (0)) ,buff2,20);

strncat(buff1, buff2, 30);

strncat(buff1, MotorNumber, 20);

strncat(buff1, "k", 20);

strepy(JogRateCMD, buffl );

return(JogRateCMD);

3/

}

/[Thisfunction is called after an abort has occured
/land the PMAC need to completeits last positional
/I command befor completing the rest of the program
char * CStepperMotor::JogLastCMD(void )

{char buff1[20];

strepy(buff1, Motor Number);
strncat(buff1,"j=",20);
return(buffl);

}
char * CStepperMotor::JogCMD(int dir , int speed)
{/Ichar buff1[20]="#";
[/strcat(buff1,M otorNumber);
strepy(Command,MotorNumber);//buff1);
if (dir == POSITIVE)
{strncat(Command,"j+",20);
return(Command);
}
dse
{strncat(Command,"j-",20);
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return(Command);

}

}
/[This Causes the addressed motor to stop jogging

/[Also restores position contral if motor's servo loop
//has been opened

char * CStepperMotor::JogStopCMD(void)
{strcpy(Command, MotorNumber);
strncat(Command,”j/*,20);

return(Command);

}

//Jog Relative to Commanded Position
//3:2000 -> jog 2000 counts

char * CStepperMotor::JogReltoCommandCMD(int distance)
{char buff2[10];

strepy(Command, MotorNumber);
strncat(Command,”j:",20);

itoa(distance, buff2,10);
strcat(Command,buff2);

return(Command);

}

//Jog to PreJog Position

1= See Ix22 for velocity

char * CStepperMotor::JogPreJogCMD(void)
{strcpy(Command, MotorNumber);
strncat(Command,”j=",20);
return(Command);

}

//Jog to a Specific Position

11#33=5000

char * CStepperMotor::JogPosCMD(int position)
{char buff2[10];

strepy(Command, MotorNumber);
strncat(Command,”j=",20);

itoa(position, buff2,10);
strcat(Command,buff2); reurn(Command);}
[*char * JogReltoActual CMD(int distance)
{char buff2[10];

char buff1[20]="#";

strecat(buffl, MotorNumber);
strepy(Command, buffl);
strncat(Command,”j:",20);

itoa(buff2, distance);

strcat(Command,buff2);

return(Command);

}

*/

//CLASS DEF - Jog Related Functions - END
/IICLASS DEF - Utility Retated Functions - BEGIN
char * CStepperMotor::Closel oopCMD(void)
{char buff[10]="j/";

strepy(Command, MotorNumber);
strcat(Command,buff);

return(Command);

}
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/IMake commanded axis positions zero
char * CStepperMotor::ZeroCMD(void)
{strepy(Command, "z");

return (Command);

/[Kills al motor outputs by opening the servo loap,
/[Commanding Zero Output and Making the AE false.
/[All motion programs are automatically aborted.

char * CStepperMotor::KillCMD (void)

{char buff[10] = "k";

strepy(Command, MotorNumber);
strcat(Command,buff);

return(Command);

}

char * CStepperMotor::KillAIICMD (void)
{char buff[10] = "k";
strepy(Command, buff);

return(Command);

}

void CStepperMotor::Setl. oopOC(int OC)
{LoopOpenClose = OC;}

int CStepperMator::Getl oopOC(void)
{return(LoopOpenClose);}

void CStepperMotor:: SetPositive()

{PosNeg = 1,

}

void CStepperMotor:: SetOff()

{OffOn = 0;

}

void CStepperMotor:: SetNegative()

{ PosNeg = -1;

}

void CStepperMotor::SetOn()

{OffOn = 1;

}

int CStepperMator::GetPosNeg()

{return(PosNeg);

}

int CStepperMator::GetOffOn()

{return(OffOn);}

/ICLASS DEF - Utility Retated Functions - END

/ICLASS DEF - Motor Initialization Info - BEGIN

I char MotorNumber[10];

CStepperMotor::CStepperMator(int Fd, int Jog, int A, char MotorNum[10])

{

Feed = Fd;

OffOn = 0;

strepy(MotorNumber, MotorNum );

/ICLASS DEF - Motor Initialization Info - END

/ICLASS DEF - Open loop - BEGIN
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//Open loap output
/[Output as a % of 1x69

char * CStepperMotor::OpenLoop(int Percentage, int Direction)

{

char buff1[30];

char buff2[3]="0";

char buff3[4] ="-0";
itoa(Percentage, buff1,10);
if (Direction==POSITIVE)
{
strepy(Command, M otor Number);//"#3010");
strcat(Command,buff2);
strcat(Command,buffl);
return(Command);

}

dse

{
strepy(Command,Motor Number);//"#3010");

strcat(Command,buff3);
strcat(Command,buffl);
return(Command);

}

}
/ICLASS DEF - Open loop - END

/ICLASS DEF - Online Commands - BEGIN

void CStepperMotor:: SetFeedRate (int Fd)

%eed = Fd;

}

char * CStepperMotor::GetFeedCommand ()
{ char str1[20] ="F", str2[20];

int val;

val = (int) Feed/ 60;

itoa( val ,str2,20);
streat(strd,str2);
strepy(FeedCommand, strl);
return(FeedCommand);

*char buff1[30] = "i122=";
char buff2[30];
char buff3[20] = "cmd\"j+\"";
itoa( (int (RPM*10)/145)) ,buff2,20);
strncat(buff1, buff2, 30);
strncat(buff1, buff3, 20);
strepy(SpeedCommand, buffl );
return(SpeedCommand);
*/
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}

int CStepperMotor:: GetFeedRate(void)
{return(Feed);

}

char * CStepperMotor::GetV e ocityCMD(void)
f:har buff[10] = "v";

strepy(Command, MotorNumber);

strepy(Command, buff);
return(Command);

}

int CStepperMator::GetV e ocity(void)

return(Vel ocity);

/ICLASS DEF - Online Commands - END

/ICLASS DEF - Positional Information - BEGIN

void CStepperMotor:: SetPosition(long Pos)
{

Position = Pos;

}

long CStepperMotor::GetPosition(void)

return (Position);
}

/ICLASS DEF - Positional Information - END
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