
MONITORING AND DIAGNOSIS FOR CONTROL

OF AN

INTELLIGENT MACHINING PROCESS

by

Theo Ian van Niekerk

A thesis submitted in compliance with the full requirements for the

Doctor Technologiae: Engineer ing

in the

Faculty of Electrical and Mechanical Engineering

Port Elizabeth Technikon

July 2001

Promoter

Prof Zvi Katz

I wish to acknowledge the contributions by the following:

My promoter, Prof Zvi Katz, for his guidance and encouragement.

 10

All the team members in the Manufacturing Technology Research Centre; Prof Eugene du Preez
for his encouragement and support; Dr Pat McGrath and William Rall for the application of strain
gauges; Prof Hugh Jeffery for the use of the lathe and for his encouragement and support; Dr
Hattingh for the use of the strain gauge amplifier and guidance; Frank Adlam and Hannalie van
Niekerk for assistance with regard to lecturing duties. Research assistants: Grant Kruger for his
assistance with the graphical interface of the Java Applet; Howard Loftus for assembly and pcb
manufacture of microphone amplifier; Mr Brahm de Villiers for assisting in selecting and setting up
the DSP equipment.

The National Research Foundation and research committee of the Port Elizabeth Technikon for
financial assistance. This enabled the purchasing of hardware of software required for the
experimental set-up and to present various aspects of the research at two international conferences.

The library staff of the Port Elizabeth Technikon for their friendly assistance. Mr Coos Bosma for

providing assistance with statistical analysis (Statistica V6.0). Mr Piet Boonzaier for language

editing.

All members of rectorate of the Port Elizabeth Technikon for providing climate and means for
performing my research.

My family Eleanor, Ian and Emile for their love and support throughout the duration of my
research.

The Lord Jesus Christ for the persons and systems he timeously put in place, and for giving me the
strength and dedication to complete the project to the best of my ability.

I Theo van Niekerk hereby declare that:

• the work done in this thesis is my own;

• all sources used or referred to have been documented and recognized; and

• this thesis has not been previously submitted in full or partial fulfillment of the

requirements for an equivalent or higher qualification at any other educational

institution.

 11

Signature 03/07/2001

1 Date

A multi-level modular control scheme to realize integrated process monitoring, diagnosis and

control for intelligent machining is proposed and implemented. PC-based hardware architecture to

manipulate machining process cutting parameters, using a PMAC interface card as well as sensing

processes performance parameters through sampling, and processing by means of DSP interface

cards is presented. Controller hardware, to interface the PC-based PMAC interface card to a

machining process for the direct control of speed, feed and depth of cut, is described. Sensors to

directly measure on-line process performance parameters, including cutting forces, cutting sound,

tool-workpiece vibration, cutting temperature and spindle current are described. The indirect

measurement of performance parameter surface roughness and tool wear monitoring, through the

use of NF sensor fusion modeling, is described and verified. An object based software architecture,

Abstract

 12

with corresponding user interfaces (using Microsoft Visual C++ Foundation Classes and

implemented C++ classes for sending motion control commands to the PMAC and receiving

processed on-line sensor data from the DSP) is explained. The software structure indicates all the

components necessary for integrating the monitoring, diagnosis and control scheme. C-based

software code executed on the DSP for real-time sampling, filtering and FFT processing of sensor

signals, is explained.

Making use of experimental data and regression analysis, analytical relationships between cutting

parameters (independent) and each of the performance parameters (dependent) are obtained and

used to simulate the machining process. A fuzzy relation that contains values determined from

statistical data (indicating the strength of connection between the independent and dependent

variables) is proposed. The fuzzy relation forms the basis of a diagnostic scheme that is able to

intelligently determine which independent variable to change when a machining performance

parameter exceeds control limits. The intelligent diagnosis scheme is extensively tested using the

machining process simulation.

 13

List of Symbols vi

1.1.1 List of Abbreviations viii

List of Figures x

1.1.2 List of Tables xiv

2 Chapter 1 - Introduction

1.1 Aim 3

1.2 Objectives 3

1.3 Hypothesis 4

1.4 Methodological Justification 5

1.5 Delimitations 7

1.6 Significance of Research 7

1.7 Organization of Thesis 8

Chapter 2 - Intelligent Machining: Relevant Concepts, Components, Framework and

Technology

2.1 Intelligent Machining 10

2.2 Machining Process 11

2.2.1 Cutting Forces, Torque and Power 12

2.2.2 Cutting Temperature 13

2.2.3 Tool Wear 14

Table of Contents Page

 14

2.2.4 Surface Roughness 16

2.2.5 Material Removal Rate 16

2.2.6 Tool-Workpiece Vibration 17

2.2.7 Cutting Sound 18

2.3 Data Modeling by means of Multiple Regression and Correlation 18

2.4 Digital Signal Processing 22

2.4.1 Sampling Process 23

2.4.2 FIR Filter 23

2.4.2.1 Filter Specification 24

2.4.2.2 Coefficient Calculation 25

2.4.2.3 Realization Structure 26

2.4.2.4 Implementation 27

2.4.3 Frequency Spectrum 27

2.4.4 Statistical Processing of Signal Spectrum 29

2.5 Intelligent System Components 29

2.5.1 Uncertainty 30

2.5.2 Fuzzy System 31

2.5.2.1 Fuzzifier 31

2.5.2.2 Knowledge Base and Inference Engine 33

2.5.2.3 Defuzzifier 35

2.5.3 Neural Networks 36

2.5.4 Neuro-Fuzzy 37

2.5.5 Multi-Sensor Fusion 40

2.6 Characteristics for Intelligent Machining Controller 40

2.7 PC-Based Technology for Open System Architecture 44

2.7.1 PCI32 a 32-bit Floating Point DSP with PCI bus Interface 46

2.7.2 PMAC-PC Programmable Multi-Axis Controller with ISA interface 47

 15

2.7.3 Object Oriented Programming, Visual C++ and Visual J++ 48

2.8 System Framework for Intelligent Machining 51

2.9 Conclusion 53

3

4 Chapter 3 - Experimental setup: Machine Controls, Sensors and Software

Components

3.1 Experimental setup 54

3.1.1 Machine Controls 56

3.1.2 Sensory System 61

3.1.2.1 Tool-Workpiece Vibration 61

3.1.2.2 Cutting Tool Temperature 61

3.1.2.3 Orthogonal Forces 63

3.1.2.4 Cutting Sound 65

3.1.2.5 Spindle Current 67

3.2 Software Components for Experimental Set-Up 70

3.2.1 Host Module CMonitorView for Machining Process Monitoring 71

3.2.2 PCI32 Target Modules for Signal Sampling and Processing 77

3.2.3 Host Module CGeometricView Module for Multi-Axis Control 80

3.2.4 CServer to View Process Parameters from a Remote Browser 83

3.3 Conclusion 85

5 Chapter 4 – Multi-Sensor Fusion Models for Tool Wear Classification and Sur face

Roughness Measurement

4.1 Introduction 88

4.2 Process for Implementing Multi-Sensor Model 90

4.3 Experimental Data Acquisition 91

4.4 Sensor Fusion Model for Tool Wear Classification 93

4.4.1 Statistical Analysis 93

 16

4.4.2 Analysis of Fuzzy Logic Model 94

4.4.3 Additional Signal Analysis for Data Features Sensitive to Tool Wear

 100

4.5 Sensor Fusion Model for Surface Roughness Measurement 106

4.6 Conclusion 112

6 Chapter 5 – Diagnosis for Intelligent Machining Process Control

5.1 Basic Structure for Intelligent Diagnosis 114

5.2 Machining Process Model 118

5.3 Regression Analysis for Fuzzy Relation 126

5.4 Process Simulation 128

5.4.1 Test Case 1: Pc exceeded with Tt and Vy constraints 129

5.4.2 Test Case 2: Pc exceeded with Is, Fx and Sc constraints 131

5.4.3 Test Case 3: Pc exceeded with Fc constaint 134

5.4.4 Test Case 4: Pc exceeded with Ra constraint 137

5.4.5 Test Case 5: Fz exceeded with high dy 140

5.4.6 Test Case 6: Fz exceeded with high f1x 143

5.4.7 Test Case 7: Pc lower Limit 146

5.5 Conclusion 148

7 Chapter 6 Conclusion and Future Development 149

8 References 153

Appendix A - Calculation of Filter Coefficients of an FIR Low Pass Filter to meetthe

Specifications as used in this Project 166

Appendix B - Machining Process Data for Tool Wear 0.0 mm and 0.2 mm 169

Appendix C - DSP Target Source Code 171

Appendix D - Class Library for Motion Control Commands 181

 17

9

Machining Process

dy Depth of cut, [mm]

DAVE Average diameter of the workpiece, (DO-DI)/2, [mm]

DO Outer diameter of workpiece, before machined, [mm]

DI Inner diameter of workpiece, after machined, [mm]

f1X Feed/revolution of the tool, how far the tool travels per revolution of the workpiece,

[mm/rev]

f2X Feedrate of the tool, linear speed of the tool along the workpiece length, [mm/min]

FC, FZ Cutting force in the z-direction, [Newton]

FF, FX Feed force in the x-direction, [Newton]

IS Spindle current, [mA]

L Length of workpiece, [mm]

N Rotational speed of the workpiece, VC/(� DAVE), [RPM]

PC Power in cut, [Watts]

Ra Surface roughness, [� m]

re Cutting tool nose radius

List of Symbols

 18

TC Cutting torque, [Nm]

Tn Tool life, [minutes]

Tt Mean temperature in cutting tool tip, [0C]

SC Cutting sound, [mV]

VC Cutting speed, surface speed of the workpiece, [m/min]

Vy Cutting tool-workpiece vibration, [mV]

VB,Vb Tool wear land, [mm]

Statistical Analysis

r2 Coefficient of determination, the degree of relationship that exist between variables

ßi Transformed regression coefficient, in order to compare contribution of regression

coefficients on a standardized base

Digital Signal Processing

bk FIR filter coefficients

� p Peak passband deviation

� s Stopband deviation

� f Transition width, stopband edge frequency – passband edge frequency, [Hz]

fc Cut-off frequency of an ideal low pass filter, [Hz]

Fs Sampling frequency, [Hz]

L Range of discrete buffer, buffer size

N Filter length, number of filter coefficients, N = M+ 1

M Order of FIR filter, = N-1

µ Mean of a discrete set of value

Ts Sampling period, [seconds]

� p Passband edge angular frequency, [radians/sec]

� s Stopband edge angular frequency, [radians/sec]

σ Standard deviation, square root of average squared deviation from the mean

 19

10 Intelligent System Components

Ai
 Fuzzy set with a finite set of input values defined within a universe of discourse

� A(x) Degree of membership of variable (x) in fuzzy set (A)

R BXA
 Fuzzy relation used to map fuzzy sets between different universes of discourse

� R(x,y)Elements of fuzzy relation, where each element correspond to the strength of connection

AC Adaptive Control

ACC Adaptive Control Constraints

ACO Adaptive Control Optimization

ADC Analog-to-Digital Converter

Abbreviations

 20

AI Artificial Intelligence

ANOVA Analysis of Variance

API Application Program Interface

CNC Computer Numerical Control

CNF Certainty factors associated with facts and with rules

CoM Centre-of-Maximum

DFT Discrete Fourier Transform

DLL Dynamic Link Library

DoS Degree of Support

DSP Digital Signal Processing

FAM Fuzzy Associative Map

FFT Fast Fourier Transform

FIR Finite Impulse Response

FL Fuzzy Logic

FR Fuzzy Relation

GUI Graphical User Interface

LPF Low-Pass Filter

MBF Membership Function

MFC Microsoft Foundation Classes

MoM Mean-of-Maximum

NC Numerical Control

NF Neuro-Fuzzy

NN Neural Network

OOP Object Orientated Programming

PC Personal Computer

PMAC Programmable Multi-Axis Controller

PSW Personal Web Server

 21

RMS Root Mean Square

TCP Transport Control Protocol

WWW World Wide Web

Figure 2.1 Relevant components and concepts in the monitoring, diagnosis and

control for intelligent machining. 9

Figure 2.2 Parameters that characterize machining process performance. 11

Figure 2.3 Flank wear land of a cutting tool. 15

Figure 2.4 Signal processing functions. 22

Figure 2.5 Magnitude-frequency response specification for a low pass filter. 24

Figure 2.6 Transversal structure for the implementation of a FIR filter. 26

Figure 2.7 Block diagram of a radix-2 FFT algorithm. 28

Figure 2.8 General components of a fuzzy logic system. 31

Figure 2.9 Triangular membership function for sensor data. 31

Figure 2.10 Basic feed-forward neural network processing elements. 36

List of Figures

 22

Figure 2.11 Neuro-fuzzy structure. 38

Figure 2.12 Parallel sensor – measured variable interaction. 40

Figure 2.13 Multilevel process automation. 41

Figure 2.14 Hierarchical levels in CNC controllers. 42

Figure 2.15 PC-based PMAC, DSP and Ethernet interface cards. 45

Figure 2.16 PCI32 DSP interface. 46

Figure 2.17 PMAC-PC multi-axis control card. 47

Figure 2.18 Relationship between MFC and Windows API. 49

Figure 2.19 Framework for intelligent machining. 52

Figure 3.1 Experimental setup: machining process, PC-based control and sensor

measurement. 55

Figure 3.2 Panel layout for the spindle and stepper motor drives. 56

Figure 3.3 Wiring diagram for the spindle motor control circuit and current

transducer. 58

Figure 3.4 Wiring diagram for the x-y axis control circuit. 60

Figure 3.5: Cutting tool, embedded microphone, thermocouple, strain gauges,

accelerometer, sensors and amplifiers. 62

Figure 3.6 Cutting tool with bonded strain gauges for orthogonal force measurement. 63

Figure 3.7 Calibration procedure and sensitivity for orthogonal cutting force

measurement. 65

Figure 3.8 Microphone amplifier circuit diagram. 66

Figure 3.9 IHA-100 current sensor connected into one of the phases of the ac

servomotor. 68

Figure 3.10 The experimental relationship between the spindle current and cutting

force. 69

Figure 3.11 Hardware architecture and software components for intelligent machining

process controller. 70

 23

Figure 3.12 Object-oriented software framework for a PC-based intelligent machining

process controller. 72

Figure 3.13 Static and dynamic views of machining process parameters. 77

Figure 3.14 User interface for machine control. 80

Figure 3.15 Java client inside an Internet browser for remote monitoring of machining

process. 85

Figure 4.1 Sensor fusion model for tool wear classification and surface roughness

measurement. 87

Figure 4.2 Process for implementing FL-based classification / measurement models

from

 experimental data. 90

Figure 4.3 Machining process cause – effect diagram. 91

Figure 4.4 Cutting inserts with VB = 0.095 mm and VB = 0.202 mm. 92

Figure 4.5 Process parameters influenced by tool wear. 94

Figure 4.6 3D plot for Fx and Vz versus VB for Pc = 280 Watts. 96

Figure 4.7 Fuzzy logic model for tool wear classification. 97

Figure 4.8 Fx/Fz versus tool wear. 100

Figure 4.9 Vibration frequency spectrum for tool wear 0.0 and 0.2 mm. 102

Figure 4.10 Vibration frequency spectrum for tool wear 0.0, 0.1 and 0.2 mm. 102

Figure 4.11 Spindle current and cutting sound frequency spectrums. 103

Figure 4.12 Cutting tool temperature for tool wear 0.0 and 0.2 mm. 105

Figure 4.13 Fuzzy logic model for surface roughness measurement. 108

Figure 4.14 Comparison between fuzzy logic and theoretical model vs measured

surface finish. 111

Figure 5.1 A block diagram of the diagnostic scheme. 115

Figure 5.2 Surface plot, contour plot and a graph of model versus measured values for

cutting sound. 119

 24

Figure 5.3 Surface plot, contour plot and a graph of model versus measured values for

spindle current. 120

Figure 5.4 Surface plot, contour plot and a graph of model versus measured values for

cutting force. 121

Figure 5.5 Surface plot, contour plot and a graph of model versus measured values for

temperature. 122

Figure 5.6 Surface plot, contour plot and a graph of model versus measured values for

feed force. 123

Figure 5.7 Surface plot, contour plot and a graph of model versus measured values for

vibration. 124

Figure 5.8 Surface plot, contour plot and a graph of model versus measured values for

surface roughness. 125

Figure 5.9 Machining process simulation user interface. 128

Figure 5.10 Simulation user interface with Pc, Tt and Vy constraints. 129

Figure 5.11 Graphical simulation with Pc, Tt and Vy constraints. 130

Figure 5.12 Simulation user interface with Is, Fx and Sc constraints. 132

Figure 5.13 Graphical simulation with Is, Fx and Sc constraints. 133

Figure 5.14 Simulation user interface with Pc and Fz constraints. 134

Figure 5.15 Graphical simulation with Pc and Fz constraints 136

Figure 5.16 Simulation user interface with Pc and Ra constraints. 137

Figure 5.17 Graphical simulation with Pc and Ra constraints. 139

Figure 5.18 Simulation user interface with Fz constraint and a high dy. 140

Figure 5.19 Graphical simulation with Fz constraint and a high dy. 142

Figure 5.20 Simulation user interface with Fz constraint and a high f1x. 143

Figure 5.21 Graphical simulation with Fz constraint and a high f1x. 144

Figure 5.22 Simulation user interface with Pc lower limit. 146

Figure 5.23 Graphical simulation with Pc lower limit. 147

 25

Table 4.1 Resultant p-value of ANOVA hypothesis test between sensor data and

tool wear. 94

Table 4.2 Fx, Pc, Vy for VB = 0.098 mm. 95

Table 4.3 Resultant p-value of Spearman’s rank hypothesis correlation test

between surface roughness and machining parameters. 107

Table 5.1 Linear regression summary of BETA coefficients used to relate

independent and dependent variables. 126

List of Tables

 26

Table A.1 FIR Coefficients. 168

Table B.1 Machining Process Data for Tool Wear: 0 mm. 169

Table B.2 Machining Process Data for Tool Wear: 0.2 mm. 170

There is a myriad of machines which cut, sand, drill, face, turn, bend, grind, and much more. The

underlying concept is the same: The criteria for optimal performance is the rate of metal removal of

material from the workpiece. In addition, international competitiveness requires high product

quality in combination with reduced throughput time at minimal cost. By making use of basic

monitoring and diagnostic systems, effective machining time has been increased from 10% to 65%

[1]. A major obstacle hampering the progress towards the development of unmanned machining

centers is the limited use of on-line monitoring and diagnostic systems in practice. Monitoring

and diagnostic systems that rely on the on-line acquisition of machining process sensor data will

enhance the implementation of intelligent machining [2]. Harber et al [3] define intelligent

machining as:

Chapter 1

Introduction

 27

“A computationally efficient procedure developed combining one or more intelligent techniques

(fuzzy logic, neural networks e.g.) and expert criteria (operator knowledge), with one or more

higher resolution levels (hierarchical levels), which basically manipulate cutting conditions (spindle

speed, feed) and should be monitoring tool status and finished surface quality, as well as increasing

productivity through higher metal removal rate“

Signals from the machining process may be used in multi-sensor monitoring systems to measure

surface roughness and tool wear indirectly, using intelligent systems. Intelligent systems consist of

algorithms developed to emulate certain characteristics of the human being’s intelligent biological

systems [4]. It is considered to be a powerful way to achieve superior performance by putting

engineering expertise into products with the added advantage of making the design process faster,

easier and more transparent [5].

The successful and reliable monitoring of surface roughness and tool wear will not only play a

crucial role in achieving advanced automation, but its values may be used in controlling the quality

of the manufactured part. Machining is a complex process and cutting parameters feed, speed and

depth of cut modulate several process parameters, that in turn influence the quality of the

manufactured product. For example, excessive cutting tool-workpiece vibration levels may

negatively influence part tolerances. Similarly, excessive cutting temperature may cause damage to

a machined surface. Currently post processing quality control procedures identify product

deficiencies and after evaluating all the process parameters the process engineer may then decide

what cutting parameter to change. A high productivity at the demanded process quality requires a

process integrated quality assurance [1]. Allowable process parameter limits for tool temperature,

cutting forces, spindle current, cutting sound, tool-workpiece vibration, surface roughness and

cutting power may be set. When exceeded, an intelligent diagnostic system using on-line sensor

data may reason and decide which cutting parameter, feed, speed, depth of cut to change in order to

ensure that product quality is maintained.

 28

To react and implement the control action, the machine control system needs to respond within a

relatively short period of time. Therefore, advanced monitoring, intelligent diagnosis and parameter

(machine) control systems need to be integrated. Due to its traditional closed architecture,

conventional computer numerical control (CNC) machines cannot efficiently respond to sensor data

provided by sensor based monitoring and diagnosis systems. CNC systems are machine control

oriented whilst the success of intelligent machining greatly depends on how effectively performance

parameters may be changed to ultimately produce a quality product more efficiently.

1.1 Aim

To implement intelligent machining by integrating sensor-based monitoring, intelligent diagnostic

and machine control systems that are able to flexibly maintain machining process performance

parameters within acceptable limits.

1.2 Objectives

The following objectives were accordingly specified for this project:

• To perform literature research into theoretical concepts and physical components for the

implementation of intelligent machining.

• To identify signals that characterize the machining process performance and hence develop

appropriate sensory systems to interface to computer based analog-to-digital converter

(ADC) system.

• To identify motor and control equipment to drive a spindle and x-y coordinate system from a

personal computer (PC)-based multi-axis control interface card.

 29

• To select PC-based signal processing hardware and development software, and hence develop

code that is able to sample, filter and process the identified analog signals.

• To select PC-based multi-axis machine control hardware and development software, and hence

develop code that is able to execute motion control operations.

• To propose a logical framework that shows and connects all system components for intelligent

machining.

• To propose and implement hardware architecture and software components to perform multi-

axis control and signal processing.

• To develop a windows based object oriented software application framework with appropriate

user and communication interfaces that integrate signal processing, monitoring, intelligent

diagnosis and machine control components.

• To obtain experimental data by varying cutting parameters (input) and measure process

performance parameters (output) for different tool wear.

• Make use of Statistica to analyze the experimental data to determine which sensor data is

sensitive to tool wear and surface roughness. Create multi-sensor fusion models for tool

wear and surface finish measurement, using neuro-fuzzy (NF) technology.

• Make use of the experimental data and Statistica’s regression analysis module to determine

empirical relationships between the dependent and independent variables. Use these

relationships to model the machining process for simulation purposes.

• To develop an intelligent diagnostic system that is able to maintain machining process

parameters within acceptable limits. To test the performance of the intelligent diagnostic

system using the machining process simulation.

1.3 Hypothesis

PC-based digital signal processing, multi-axis machine control and Internet system hardware may

be integrated with available motion control and sensor technology, to realize machine level open

 30

architecture with enhanced flexibility and modularity, which will realize an intelligent machine

controller.

Visual C++ with its rich set of Microsoft foundation classes (MFC) and object oriented language

features may be utilized to develop an object-oriented software framework to integrate and

coordinate sensor data sampling and processing, monitoring and intelligent diagnosis and machine

control functions. The application framework will further enhance flexibility, modularity, promote

user-process interaction and software re-configurability.

Multiple sensors make it possible to reflect the complex machining process. Multi-sensor fusion

systems by means of NF (intelligent systems) technology may be used in monitoring systems to

measure tool wear and surface roughness indirectly which will enhance in-process quality control of

the machined product.

Machining process knowledge may be represented using fuzzy relation, and fuzzy inferencing may

be used to decide which cutting parameter to change in order to maintain machining performance

parameters within acceptable limits. This will realize intelligent machining, enable quality control

based on product properties, which will ultimately lead to higher throughput and less wastage of

raw materials.

1.4 Methodological Justification

In order to accomplish the objectives, the fundamental research issues covered in this project

include:

• Statistical Analysis

 31

Data analysis requires the use of statistical methods, which includes curve fitting, and uses the

method of least squares for producing multiple linear/non-linear regression equations to simulate

machining process and multiple correlation coefficient, which is used to determine the degree of

relationship for constructing knowledge based systems.

• Digital Signal Processing

Signals carry information and need to be processes to extract (completely or partially) the

information contained in them, depending on the application of interest. Signal processing is

concerned with the mathematical representation of the signal in the domain of the original

dependent variable i.e. time domain, or in a transformed domain i.e. frequency domain, and with the

algorithmic manipulation of the signal to extract the information being carried. To implement

signal-processing techniques fundamental mathematical research into discrete domain systems

includes Finite Impulse Response Filtering (FIR) and Discrete Fourier Transform (DFT).

• Neural Network and Fuzzy Logic

Machining processes are highly complex, and precise mathematical models may not always be the

most effective method used in monitoring systems. Neural networks (NN) provide a strong tool for

learning and, combined with multiple sensors data, result in advanced monitoring systems. Fuzzy

logic (FL) allows the representation of decision and evaluation processes in an algorithmic (rule-

based) form. NF technology has the learning capability of NN and a FL based rule structure. This

increases the understanding into the working of knowledge-based systems as well as making the

modification for enhancement possible. FL is considered to be a powerful way to achieve superior

performance by putting engineering expertise into products, which may include many control

 32

parameters, with the added advantage of making the design process faster, easier, and more

transparent.

• Open Architecture

Open architecture is a philosophy in the design and implementation of machine tools, production

processes and control. Open architecture is a competitive area of manufacturing and it will meet

manufacturing requirements in supplying more competitive products for the global market. Open

architecture controllers must use standard computing architectures, standard operating systems,

must be programmable in standard languages, and its application software must be open and

extendable to allow users to integrate custom control algorithms.

1.5 Delimitations

The research will establish a sound experimental basis to serve future sensor based research projects

for industrial machining centers. The machining process to be used in this research project,

however, will be limited to an EMCO Compact 5 CNC training lathe. The open system architecture

controller will focus on implementation aspects of intelligent machining and will not include a

completed and operational system.

1.6 Significance of Research

Production quality and performance are concerns in machining processes. Poor production

performances in machining are often caused by product wastage incurred by the application of

excessive cutting power, torque, cutting forces, tool-workpiece vibration and high temperature.

These process parameters may also contribute to excessive tool wear and breakage. Intelligent

machining will improve production quality and performance of machining as it is able to detect and

 33

react to process parameters that exceed defined limits, thereby ensuring that product quality is not

compromised which will ultimately lead to less wastage.

Intelligent machining is an advanced approach in manufacturing, strongly related to the efforts in

developing re-configurable manufacturing equipment. Advances in PC-based hardware which

include digital signal processing and programmable multi axis machine-control interface cards, and

development software such as Visual C++ with MFC may be utilized to realize re-configurable

manufacturing systems. Windows based graphical software interfaces will enable advanced

machining process-human interaction.

1.7 Organization of Thesis

Chapter 2 describes the relevant theoretical concepts, corresponding components and technology

relating to intelligent machining. It includes a logical framework that shows and connects all

system components for intelligent machining. Chapter 3 provides a detailed description of the

experimental setup, including implementation aspects of the sensor and motor control equipment,

hardware architecture and software components to perform multi-axis control and signal processing,

and an object oriented software framework to integrate all the system components. Chapter 4

presents and analyses NF-based multi-sensor fusion models for on-line tool wear and surface

roughness monitoring. Chapter 5 describes an intelligent diagnostic scheme to realize intelligent

machining and includes simulation and testing. Chapter 6 is the conclusion, which includes a

discussion on future development.

Appendix A contains an example indicating the method for finding filter coefficients of a low-pass

filter (LPF) to meet the specifications as used in this project. Appendix B contains experimental of

machining process data for tool wear 0 mm and 0.2 mm. Appendix C contains source code for the

 34

DSP target. Appendix D contains source code for the class library created to enable motion control

commands from within a Windows application.

 35

Figure 2.1 shows that the machining process is automatically controlled via three independent

machine control variables, namely cutting speed, feed and depth of cut. These variables modulate

the dependent variables of the process (performance measures), such as, workpiece surface

roughness, tool-workpiece vibration, cutting power, tool temperature, cutting forces, spindle current

and cutting sound and contribute to tool wear. It shows the components and concepts researched in

implementing intelligent machining, namely: digital signal processing (DSP) for sensor

measurement, intelligent systems for monitoring and intelligent diagnostic, multi-axis control for

machine control capability and regression and correlation analysis for process modeling.

MACHI NI NG PERFORMANCE

tool feeddepth of cut

tool wear
tool-workpiece vibration

tool temperature

cutting speed

DI GI TAL SI GNAL
PROCESSI NG

I NTELLI GENT SYSTEMS

 MULTI -AXI S CONTROL

REGRESSI ON AND
CORRELATI ON

OPEN ARCHI TECTURE
HARDWARE

AND
SOFTWARE

COMPONENTS

LOW MEDI UM HI GH

MULTI-LEVEL PROCESS AUTOMATION

spindle current
cutting forcessurface roughness

cutting power

MACHI NE CONTROL

cutting sound

MEASUREMENT

MONI TORI NG AND
DI AGNOSI S

MACHI NE CONTROL

DATA MODELI NG

Figure 2.1: Relevant components and concepts in the monitoring, diagnosis and control for

intelligent machining.

This chapter commences with a definition of intelligence and hence describes the intelligent

machining. It introduces the fundamental mathematical relationship that exists between the

Chapter 2

Intelligent Machining:

Relevant Concepts, Components, Framework and Technology

 36

independent (input) and dependent variables (output). These relationships will be used as a

foundation for developing a steady state machining process model for single point turning, using

experimental data (Chapter 5). The methods used to obtain the process relationships from

experimental data are explained. The fundamentals of DSP which are used to measure and process

sensor signals are introduced. The fundamental concepts to realize intelligent systems, in particular

uncertainty, neural networks, fuzzy logic and NF are explained. These artificial intelligence

concepts which are explained will be used in the monitoring of tool wear and surface roughness

(Chapter 4), and in the intelligent diagnosis for machining parameter control (Chapter 5). PC-based

hardware and software technology used in this project to implement an open architecture-based

intelligent machine controller is introduced. Finally, a framework for intelligent machining is

explained.

2.1 Intelligent Machining

Intelligence is the ability of a human being to acquire knowledge and apply it by means of thinking

and reasoning [6]. Artificial intelligence is a discipline which studies how humans solve problems

intelligently, and how machines can emulate this human problem-solving ability [7]. Alternatively

stated: how to make machines smarter by investing them with human intelligence. Expert systems,

fuzzy logic and neural networks systems belong to a paradigm of so called intelligent systems.

Harber et al [3] define intelligent machining as:

“A computationally efficient procedure developed combining one or more intelligent techniques

(fuzzy logic, neural networks e.g.) and expert criteria (operator knowledge), with one or more

higher resolution levels (hierarchical levels), which basically manipulate cutting conditions (spindle

speed, feed) and should be monitoring tool status and finished surface quality, as well as increasing

productivity through higher metal removal rate“

 37

The monitoring of tool status and surface roughness by means of intelligent systems will enhance

automated machining (Chapter 4). However, the primary difference between automated machining

and intelligent machining is that an intelligent system (applied in the latter) is capable of making

decisions based on significant information from the machining process. Intelligent control of

machining process parameters can be treated as a decision-making problem [1]. The diagnostic

process can be formulated in a manner similar to the one in which a human being would proceed,

for example:

(i) Select the alternatives at a given decision point.

(ii) Select the applicable criteria to evaluate the different alternatives.

(iii) Calculate or estimate the selection parameters for each of the proposed alternatives.

(iv) Through decision rules select the best alternative.

2.2 Machining Process

Figure 2.2 shows the machining process parameters, including cutting forces, cutting power, surface

roughness, tool-workpiece temperature, tool-workpiece vibration, cutting sound and cutting torque /

spindle current that characterize the systems performance. Key factors that affect the machining

performance parameters include tool wear and machine control parameters.

Cutting Forces - Fz, Fx

Sc - Cutting Sound

Tt - Mean Cutting Temperature

Ra - Surface Roughness

Vy - Cutting tool-workpiece Vibration

Is - Spindle Current
(Tc - Cutting Torque)

Pc - Cutting Power
x - Feed

y - Radial

z - Cutting

Co-Ordinate System

Figure 2.2: Parameters that character ize machining process performance.

 38

The following subsections show and describe the basic mathematical relationships between the

dependent performance variables and cutting parameters (independent variables) as well as describe

how the particular dependent parameter/s influence the cutting tool / product quality / machine tool.

2.2.1 Cutting Forces, Torque and Power

The cutting force, acting in the direction of the cutting speed, supplies the energy for cutting and

depends mainly on the work material, feed and depth of cut [8]:

Constants a and b depend on the cutting tool-workpiece combination. If FZ and diameter, DAVE, is

known the cutting torque, TC, is given as:

The basic equation for cutting power, PC is given as:

PC is also calculated as:

[] 1.21 Nf dfCF
b

Y

a

XZ
=

[] 3.2WattsVFCP CZPC
=

[] 2.2
2

NmDFT AVE

ZC
=

[] 4.2
60

2
Watts

N
TP CC

Π=

 39

The on-line measurement of cutting forces, torque / spindle current and power will enable intelligent

machining to [8, 9, 10]:

• Manage the supply of torque and power available from machine tool in order to meet on-line

load requirements.

• Avoid excessive damage to machine elements and maintain desired tolerances for machined

part.

• React to excessive increase of forces, torque and/or power resulting from tool wear.

• Protect the workpiece from the application of high cutting force / torque which may cause

excessive distortion.

• Reduce excessive feed force that may cause the tool to deflect and result in surface waviness

error [11].

• Reduce axial force so that it does not exceed the work holding pre-load, otherwise the

workpiece will loose its rigidity [12].

2.2.2 Cutting Temperature

The energy dissipated in cutting operations is converted into heat, which, in turn raises the

temperature in the cutting zone. The mean temperature in turning on a lathe is found to be

proportional to the cutting speed and feed as follows [9]:

Constants a and b depend on the tool-workpiece combination.

5.21fVCT
b

X

a

Ctt
=

 40

The on-line measurement of cutting tool temperature will enable intelligent machining to [8, 9, 13,

14]:

• Reduce the rate of wear, as tool wear has been shown to be strongly temperature

dependent. It adversely affects the strength, hardness, and wear resistance of the cutting

tool.

• Increase tool life as temperature is inversely related to tool life.

• Improve accuracy as increased heat causes dimensional changes in the part being

machined, making control of dimensional accuracy difficult.

• Reduce thermal damage to the machined surface as it adversely affects properties like

fatigue life and corrosion resistance.

• Avoid the critical temperature of the tool-workpiece combination, as it will cause the two

materials to interfuse. Chip particles welded to the surface of the tool are swept away and

tear out minute chunks of tool material.

• Avoid the increase in machine tool temperature as it may cause distortion of the machine

and result in poor dimensional control of the workpiece.

2.2.3 Tool Wear

RF Taylor recognized that tool wear is dependent on the cutting velocity and developed the

following equation using data from tool life test [8]:

6.2CTV T

n

C =

 41

VC is the cutting speed, Tn the tool lifetime in minutes (the time recorded to develop a certain wear

land, VB), n is an exponent that depends on cutting tool and workpiece materials as well as cutting

conditions. CT is a constant and represents a cutting speed for a tool life of one minute.

Although cutting speed is the most significant process variable in tool life the depth of cut and feed

are also significant, hence from Equation 2.6 Taylor’s expression is expanded as:

Flank wear land, as shown in Figure 2.3, has been commonly used in the measure of tool wear.

Figure 2.3: Flank wear land of a cutting tool.

To determine VB the tool life test must be stopped and a measurement made, using optical

instruments, like a scanning electron microscope, at suitable magnification levels. Signals from

sensed dependent variables, influenced by tool wear, may be processed into a frequency spectrum

by means of FFT. The power spectral densities that are most sensitive to tool wear are selected and

fed into a previously trained artificial neural network to determine the state of the cutting tool [15].

On-line monitoring of tool wear is important as:

• Tool wear land will reach a limit before tool breakage / chipping occur, which in turn may

cause severele damage to the machine tool and surface roughness of the workpiece.

• It increases the cutting forces, which in turn may cause plastic deformation of the

workpiece.

7.21 CfdTV T

b

X

a

Y

n

C
=

 42

• It negatively influences the dimensional accuracy of the workpiece.

• It may influence the tool-workpiece interaction which in turn may contribute to increased

vibration

2.2.4 Surface Roughness

Roughness refers to relatively finely spaced surface irregularities as produced by the action of a

cutting tool during a machining operation. The tool leaves a spiral profile - feed marks - on the

machined surface as it moves across the workpiece, and this is given by [16]:

The higher the feed and the smaller the tool-nose radius (re), the more prominent the feed marks.

Feed seems to affect surface roughness much more than depth of cut. The on-line monitoring of

surface roughness will reduce part-manufacturing cost. The measurement of surface roughness is

done by manual inspections of the work surfaces using profilometers. Manual inspection is time

consuming and very costly. Furthermore the on-line measurement will in turn enable intelligent

machining to:

• Maintain the quality of the machined product [17].

• Ensure that surface residual stresses that contribute to part failure, may be kept at a

minimum. Residual stresses on the surface of a component are mainly, like surface

roughness, influenced by feed [18]. By ensuring that the surface roughness is maintained

below a threshold the residual stresses may be kept at a minimum.

8.2][
1 1

8
2

mf
rR X

e
a

µ=

 43

2.2.5 Mater ial Removal Rate

The material removal rate (MRR) is the volume of material removed per unit time, and given as:

Knowledge of MRR is important as the main criteria for optimal performance is the rate of metal

removal of material from the work piece. The cutting time for a work piece of length L can be

calculated as:

2.2.6 Tool-Workpiece Vibration

Metal cutting operations is inherently cyclic and excessive vibration may be caused by a periodic

applied force, present in the machine tool (forced vibration), or by a disturbance in the cutting zone

(self-excited vibration) [8,9,19]. The basic solution in reducing forced vibrations is to isolate or

remove the forcing element.

A relationship exists between the fundamental frequency of a workpiece and the spindle speed [20].

The situation often occurs that the machining process is stable in the cutting zone, but once it

reaches the middle position of the workpiece, excessive vibration (chatter) begins to develop.

Cutting forces build up as the tool penetrates the material and deflect the tool. When shearing

occurs to form the chip, the forces momentarily drop and the tool springs back. Vibration increases

when the cutting forces get out of phase with the tool forces. The relationship between the cutting

force and the amplitude of the tool vibration is given as [21]:

9.2sec]/[
31 mmdfVMRR YXC

=

[] 11.2mmz NFCA
ba

Zz
=

10.2[min]
1 Nft

X

L=

 44

Where Az is the amplitude of the tool, CZ is a constant, FZ is the cutting force, N is the spindle speed

and a and b are exponential constants.

The on-line measurement of tool-workpiece vibration will enable intelligent machining to:

• Improve the surface quality, dimensional accuracy, productivity and even safety [22, 23].

• Reduce damage to machine tool components that may result from excessive vibrations.

• Reduce premature tool wear and chipping.

2.2.7 Cutting Sound

Sound and vibration occur as a result of the machining process. In general, the range of frequencies

that are important in acoustics and associated vibrations, lie in the audible range of 20 to 20 000Hz.

However, disturbances above 1000 Hz are generally reduced using passive techniques, for example,

machine tool design [24]. Whereas active sound and vibration control has found its use in the 50 to

1000 Hz range [25]. The on-line measurement of sound may be used in monitoring of on-line tool

conditions: Tool wear, tool chipping and tool breakage [26] and enable intelligent machining to:

• Reduce excessive vibration in the cutting process [27].

• Reduce objectionable noise generated.

2.3 Data Modeling by means of Multiple Regression and Correlation

Given experimental data regression analysis provides the basis for predicting the values of a

dependent variable (Y) from values of one or more other independent (X1, X2 ..) variables. These

relationships are used for modeling and simulation of machining process to test intelligent decision

making (Chapter 5). Correlation analysis enables us to assess the strength or degree of the

relationships amongst the variables. It is used to find the membership of signal feature to a specific

machine control action. The subsequent signal feature-control action relation is used for intelligent

 45

diagnosis (Chapter 5). Correlation analysis is also used in the monitoring of tool wear and surface

roughness to determine which signal features influence theses parameters (Chapter 4).

A sample regression line describes the average relationship between X i and Y variables in the

sample data. The equation of this line, known as the sample regression equation, provides estimates

of the mean value of Y for each value of X i. Of all the curves approximating a given set of data

points, the curve having the property that: DDD N
22

2
2
1 +++ is a minimum, is called a best fitting

curve. Where Di is the deviation from the best-fit curve to a data point. A curve having this

property is said to fit data in the least square and is called a least square curve. A multiple

regression equation is an equation for estimating a dependent variable, say Y1, from the independent

variables X2, X3 and is called a regression equation of Y1 on X2, X3. A multiple linear regression

equation would be in the form:

Y1 = f(X2,X3) = b1.23 + b12.3X2 + b13.2 X3 2.12

If X3 is kept constant the graph of Y1 versus X2 is a straight line with slope b12.3. If we keep X2

constant the graph of Y1 versus X3 is a straight line with slope b13.2. The subscripts after the dot

indicate the variables held constant in each case. Due to the fact that Y1 varies partially because of

variation in X2 and partially because of variation in X3, we call b12.3 and b13.2 partial regression

coefficients. From Equation 2.12, b1.23, b12.3 and b13.2 are determined by solving the following

normal equations [28, 29]: ���
++= XbXbbY N

32.1323.1223.11

++= XXbXbXbXY 322.13

2

23.12223.121

13.2
2

32.13323.12323.131
++= XbXXbXbXY

Machining relations, as seen from Equations 2.1, 2.5, 2.8 and 2.11, are non-linear and generally

expressed as:

 46

14.2
21 XXCY
ba=

Equation 2.14 may be linearized, using a functional transformation, by taking log on both sides as

follows [30]:

() () () () 15.2
2101101010 XLogbXLogaCLogYLog ++=

The coefficients for Equation 2.14 may then be calculated using the method described in Equation

2.13. Correlation is the degree of relationship between variables, which seeks to determine how

well a linear or other equation describes or explains the relationship between variables. The degree

of relationship that existing between three or more variables is called multiple correlations. The

ratio of the explained variation to the total variation is called the coefficient of determination, given

as:

16.2
var

varexp
2

2

2

−

−

−

−

==

YY

YY
r

est

iationtotal

iationlained

The coefficient of determination may be interpreted as the proportion of variation in the dependent

variable Y that has been accounted for, or “explained,” by the relationship Y and X expressed in the

regression line. To determine the linear partial correlation coefficient between variables Y1 and X2,

ignoring X3 [31]:

()()

() ()
17.2

21
22

2

22

1

2121

12 ������ ������ �−
������ �−

−
=

XXNYYN

XYXYN
r

The coefficient of linear multiple correlation of Y1 on X2 and X3 may be calculated from the partial

coefficients:

 47

18.2
2

2

23

231312

2

13

2

12
23.1

1 r
rrrrrR −

−+
=

Note that the coefficients of multiple correlations R1.23 are larger than either of the coefficients r12 or

r13. This is always true since, by taking into account additional relevant independent variables, we

should arrive at a better relationship between variables.

The coefficients of partial correlation, designated ry1.2 would indicate the partial correlation between

Y and X1 after the effect of X2 on Y had been removed. The square of this coefficient measures the

reduction in variance brought about by introducing X1 after X2 has already been accounted for.

Sometimes it is difficult to compare the differences in net regression because the independent

variables are stated in different units.

To improve comparability, we can state the regression equation in a different form, giving each of

the variables in units of its own standard deviation. The transformed regression coefficients are

called BETA coefficients. In term of BETA coefficients, the linear regression equation for three

variables would be:

19.2

21

2

2

1

1 s
X

s
X

s
Y

XXY

ββα ++=

Thus, the ßi coefficients are equal to [32]:

20.2
s
s

b
Y

X i

ii
=β

ßi measures the number of standard deviations that that Y changes with each change of one standard

deviation in X i.

 48

2.4 Digital Signal Processing

Advanced monitoring and diagnostic systems, to enhance intelligent machining, employ multiple sensors,
and the signals from these sensors are sampled and signal processed. Signal processing is used to determine
signal features, and may include: A fast fourier transform (FFT) algorithm to produce a frequency spectrum
from where power spectral densities may be analyzed by way of calculating its mean, root mean square etc.
Signal features that are sensitive to tool condition, tool wear, machine state classification etc, may be
extracted as part of the particular monitoring system [15, 33]. In this project the primary function of DSP is
to sample and determine the rms value of the sensor signals for on-line monitoring (Chapter 4) and diagnosis
(Chapter 5) purposes. However, in addition the cutting forces, cutting sound, tool-workpiece vibration, tool
temperature, spindle motor current sensor signals sampled and signal processed were further analyzed to
determine which additional signal features are sensitive to tool wear (Chapter 4).

Signal processing is concerned with the mathematical representation of a signal in the domain of the original
dependent variable i.e. time domain, or in a transformed domain i.e. frequency domain, and with the
algorithmic manipulation of the signal to extract the information being carried. Figure 2.4 show a block
diagram of the signal processing functions implemented including continuous to discrete domain conversion,
Finite Impulse Response Filtering (FIR), discrete Fourier Transform (DFT), and signal data extraction.

C-to-Dx(t)

Ts= 1/fs

x[n] = x(nTs)

FIR Filter

y[n] = ℑ{ x[n]}

DFT

X[k] = ℑ{ y[n]} MEAN,
VARIANCE,
STD DEV

AVERAGE,
RMS,

MAX/MIN

Figure 2.4: Signal processing functions.

The continuous domain signal x(t) is sampled, using an analog-to-digital conversion, at regular

intervals of Ts to obtain discrete signal x[n]. To eliminate unwanted signal components the discrete

domain signal x[n] is passed through a low-pass FIR filter of bandwidth 0 to 1/(2Fs) to obtain y[n]

from where the frequency spectrum components X[k] are obtained using a DFT. Finally signal

features is extracted from y[n] and X[k]. The following subsections describe the mathematical

concepts of the functional blocks, whilst Chapter 3 describes the software implementation there off.

2.4.1 Sampling Process

11 If signal x(t) contains no frequencies higher than Fs/2 hertz, where Fs is the sampling rate, it is

completely determined by the set of its values at regularly spaced intervals of period Ts = 1/Fs[34].

 49

In the sampled series x[n]: x[0] corresponds to the input value at t=0, x[1] is the value at t = Ts,

x[2] is the value at t = 2Ts, and so on. The process of uniformly sampling a signal in the time

domain results in a periodic spectrum in the frequency domain with a period equal to the sampling

rate [35].

2.4.2 FIR Filter

The general definition of a FIR filter is [36]:

21.2][][
0

knxbny
M

k
k −=

=

The filter coefficients bk in Equation 2.21 are identical to the impulse response values h[k] of the

filter, and may be written as:

22.2][][][
0

knxkhny
M

k
−=

=

The operation performed in Equation 2.22 is known as a finite convolution sum and expressed as:

23.2][][][nhnxny ⊗=

The design of a digital filter includes: Filter specification, coefficient calculation, realization and

implementation.

2.4.2.1 Filter Specification

Filtering of the sensors in this project was limited to that of low pass filter whose tolerance

specification scheme, specified in the frequency domain, is shown in Figure 2.5. Because of the

symmetry and periodicity of the magnitude response)(eH jω
, it is sufficient to give the

specifications only for 0� � � � .

 50

Figure 2.5: Magnitude-frequency response specification for a low pass filter [37].

In the low pass case, the desired magnitude response is usually given by:

filterofstopbandfor

filterofpassbandforD

p

p

,],[0

,],0[1)(

πωω
ωωω

∈
∈=

The specification includes a transition band (� s - � p) of nonzero width in which the filter response

changes from unity in the pass band to zero in the stop band. The amplitudes of the allowable

ripples expressed in decibel as, an [37]:

() 24.220

1

1
20

log

log

10

10

dB

anddB

ss

p

p

p

A

A

δ
δ
δ

−=

��	

���

−

+
=

2.4.2.2 Coefficient Calculation

The objective of FIR coefficient calculation methods is to obtain values of h[n] such that the

resulting filter meets the design specifications expressed in Section 2.4.2.1. A popular approach is

to use the infinite-duration response coefficients of an ideal filter, hD[n], and then to truncate and

smooth the response by using a window function (w[n]), hence][][][nwnhnh D= . The impulse

response coefficients for hD[n] filter is given as [38, 39]:

25.202

0
)sin(

2

][

][

=/=

==

nfh

n
n

n
fh

cD

c

c
cD

n

n
ω

ω

 51

And Hamming window coefficients as:

elsewherenw

NevenNnN

oddNNnNfor
N

n
nw

H

H

0][

)(22

)(2)1(2)1()
2

cos(46.054.0][

=
<<−

−<<−−+= π

 2.26

The transition width for a filter designed with the Hamming window and filter length N is

determined from,

Nf 3.3=∆ 2.27

 The maximum stop band attenuation possible with the Hamming window is given as about 53dB,

and the minimum peak pass band ripple is about 0.194dB, which is sufficient for this project.

APPENDIX A SHOWS AN EXAMPLE IN OBTAINING THE FILTER COEFFICIENTS OF AN

FIR LOWPASS FILTER TO MEET THE TYPICAL SPECIFICATIONS AS USED IN THIS

PROJECT:

Pass band edge frequency: 10kHz Transition width: 420 Hz

Sampling frequency: 5.0kHz

2.4.2.3 Realization structure

From Equation 2.22 the FIR filter may also be characterized by the transfer function (H(z)), the z—
transform of the impulse response h[k], given by [36]:

=
=

−
M

n

kzkhzH
0

][)(2.28

The realization structure for the FIR filter is essentially a block diagram representation of the

transfer function. Although the implementation of Equation 2.28 may lead to several variations, the

transversal structure, shown in Figure 2.6, is most often selected as it leads to the most efficient

implementation [40].

 52

z-1 z-1 z-1
x[n] x[n-1] x[n-2] x[n-(N-1)]

X X X X

+

h[N-1]h[2]h[1]h[0]

y[n]

Figure 2.6: Transversal structure for the implementation of a FIR filter.

The symbol Z-1 represents a delay of one sample of time (Ts), also known as the unit delay. For the

transversal structure, the computation of each output sample, y[n], requires: N-1 memory locations

to store N-1 input samples, N memory locations to store the N co-efficient, N multiplications, and

N-1 additions. The FIR filter can be adapted to construct a linear phase response by mirroring the

values of the coefficients around the center tap, so that: h[0] = h[N], h[1] = h[N-1] etc.

2.4.2.4 Implementation

The final stage is to implement the filter for real-time operation, and the key issue is to produce

software code of the chosen filter structure. The Texas Instruments TMS320C30 DSP processor,

used in this project, has an architecture and instruction sets optimized for FIR filtering operations

[41]. The DSP technology used in this project is introduced in Section 2.6 and the software

implementation of the FIR operations for this project is covered in Chapter 3.

2.4.3 Frequency Spectrum

When a signal is non-repetitive (aperiodic), it can be expressed as the infinite sum (integral) of

sinusoids, which are not harmonically related. The corresponding spectrum is continuous and is

described mathematically by the FT [42]. The DFT is useful for the analysis of discrete-frequency

 53

representation of discrete-time sequence. The FFT is an efficient algorithm that can be used to

obtain the discrete-frequency representation with fewer computations than the DFT. The DFT of

data with a finite number of nonzero sample values, x[n] defined over the range 0<n<(L-1), is given

by [41]:

29.2

][

)1(0

)/2(

1

0

)/2(
1

0

][][

eW

W

enxkX

Ljkn

L

kn

L

L

n

Lknj
L

n

where

nx

Lk

π

π

−

−

=

−
−

=

=

=

−≤≤=

�
�

The number of multiplications required calculating X[k] is proportional to L2. Wkn
L , also known

as twiddle factors, is a periodic function with a limited number of distinct values. A highly efficient

algorithm for computing the DFT, known as a FFT, makes use of this feature to reduce the number

of multiplications in determining X[k].

Equation 2.28, X[k], may further be decomposed as [41, 43]:

][][

]12[]2[][2/

12/

0
2/

12/

0

kHWkG

WnxWWnxkX

k
L

nk
L

L

n

k
L

nk
L

L

n

+=

++=
−

=

−

= 2.30

which expresses the original L-point DFT in terms of two L/2-pointDFT, G[k] (transform of even-

numbered points in x[n]) and H[k] (transform of odd-numbered points in x[n]). The block diagram

shown in Figure 2.7 shows how each L/2-point subsequence may further be decomposed into two

shorter L/4-point subsequences.

 54

L/8

L/8

L/4-Point

DFT

L/8

L/8

L/4-Point

DFT

X

+

e Lkj /4π−
DFT

L/2-Point

L/8

L/8

L/4-Point

DFT

L/8

L/8

L/4-Point

DFT

X

+

e Lkj /4π−
DFT

L/2-Point

e Lkj /2π−

X[k]
x[n]

Figure 2.7: Block diagram of a radix-2 FFT algor ithm [36].

The process can continue until, in the limit, we are left with a series of 2-point subsequences, each

requiring a very simple 2-point DFT, leading to the most commonly used radix-2, decimation-in-

time. Using a direct DFT the amount of complex multiplications is in the order L2, however, if L is

an inter power of 2, and the FFT decomposition proceeds right down to 2-popint transforms, there

are log2L stages of FFT computations giving a total of:

No of Complex multiplications to perform FFT = Llog2L 2.31

For L=512=29 the speed advantage is nearly 57.

2.4.4 Statistical Processing of Signal Spectrum

Statistical properties of the signal spectrum are used in system identification, properties may include

[43, 44]:

• Mean value

 55

n

x
n

k

k�
=

−

=

1

0µ 2.32

• Variance and standard deviation

1

)(
1

0

2

2

−

�
−

=

−

=

n

x
n

k
k µ

σ 2.33

The square root of the variance is called the standard deviation (σ).

2.5 Intelligent System Components

Artificial intelligence is a discipline which studies the way in which humans solve problems

intelligently, and how machines can emulate this human problem solving ability. Expert systems,

FL and NN systems belong to a new paradigm of so-called intelligent systems. A so-called

intelligent system gives appropriate problem-solving responses to problem inputs, even if such

inputs are new and unexpected. Humans are such intelligent systems. At this moment, there is a

considerable mismatch between humans and machines, in as much as humans reason in inaccurate,

multi-valued, fuzzy ways while machines are based on bi-valent, binary reasoning. Eliminating this

mismatch would make machines more intelligent, that is, they would be enabled to reason in a

fuzzy manner, like humans. The following subsections describe the fundamental concepts of NN,

FL and NF to realize models for the indirect measurement of tool wear and surface roughness

respectively (Chapter 4). It introduces the concept of a fuzzy relation, which is used by the

intelligent diagnosis (Chapter 5).

 56

2.5.1 Uncertainty

Formulae describe deterministic processes - one where there is no uncertainty in the physics of the

process (i.e. the right formula) and there is no uncertainty in the parameters of the process (i.e. the

coefficients are known with precision. Information from physical processes virtually always

contains uncertainty. There is uncertainty that arises from imprecision, from the inability to

perform adequate measurements, from lack of knowledge or from vagueness. For example,

uncertainty may be defined as the lack of adequate information to make a decision. Uncertainty is

therefore a problem, as it may prevent us from making the best decision and may even cause a

biased decision. A human operator might not have a deep understanding of the plant dynamics that

he is controlling, but he knows what action to take whenever he observes certain conditions, such as

combinations from instrument readings. Therefore we say that the human operator has the ability to

overcome the uncertainties of the controlled system dynamics. Certainty factors (CNF) (or

confidence factors) are one of the most common methods of dealing with uncertainty in rule-based

systems [45].

Certainty factors may be associated with facts and with rules, for example:

Fact: <condition> = TRUE CNF <value>

Rule: If <condition> then <action> CNF <value> 2.34

The condition and action is known with a degree of certainty.

 57

2.5.2 Fuzzy System

It is particularly noticed that expert system-based approaches for on-line machining condition

monitoring, although effective due to the ability of dealing with the uncertainties, are often

inadequate for the fast reaction requirements in a low-level machine control, especially when

involving a complex knowledge base [33]. Fuzzy logic seems to be a unique method of dealing

with uncertainties, especially in the control of physical systems. A fuzzy system consists of four

principal components as shown in Figure 2.8: A fuzzifier, rule base, inference engine and

defuzzifier [46].

Fuzzif ier
Inference

Engine
Defuzzifier

Rule Base

Input Output

Figure 2.8: General components of a fuzzy logic system.

2.5.2.1 Fuzzifier

The assignment of linguistic values, defined by membership functions, to a sensor input, which

yields “ fuzzified” values of the original signal input. Using the triangular membership function a

linguistic variable “small” , “medium” and “ large” may be illustrated as:

a1 a2 a3

0

1

� A(x)

0 X

Medium LargeSmall

Figure 2.9: Triangular membership function for sensor data.

 58

For fuzzy “ small” , its fuzzy function may be expressed as:

 ���
��

�
�

≤≤
−
−

≤

=

otherwise

axa
aa

ax

ax

xsmallA

0

1

)(21
21

2

1

µ 2.35

For fuzzy “ medium” , the function is given as:

��
�
�
��
�

�
�

≤≤
−

−

≤≤
−

−

=

otherwise

axa
aa

ax

axa
aa

ax

xmediumA

0

)(32
32

3

21
12

1

µ 2.36

And for fuzzy “ large” , the function is given as:

����
����
�

≤

≤≤
−
−

=
otherwise

xa

axa
aa

ax

xelA

0

1)(3

32
23

2

argµ 2.37

Where 1a , 2a , 3a are parameters to determine the positions of the membership functions, as well as

affect the shape of the membership functions. The fuzzifier computes for each sensed input,

through the above fuzzy membership functions, values indicating as to what degree the input

belongs to the “small” , “medium” and “ large” linguistic terms. A fuzzy membership function

expressed generally as a fuzzy set with finite input values:

() () () ()� �� ! "
= xxxxA nnAiAiAii µµµµ ,...,,,

332211
 2.38

Where � Aij(xj) is the membership values for all the possible sensed input values.

 59

2.5.2.2 Knowledge Base and Inference Engine

The knowledge base may be represented as a fuzzy relation or as a linguistic fuzzy rule base with

membership functions as a database.

• Fuzzy Relation (FR)

In control systems relationships are defined between system inputs and outputs. These mappings

are between variables defined on different universes of discourse through the statement:

BA
R→

I f A(x) THEN B(y) through relation R

Where the condition set A is linked to the result set B through relation R. A relation R of universe

of discourse, is defined as a subset of the Cartesian product:

BAR Χ⊂

and illustrated in matrix form as follows:

 yyy
321

##$
##%&

##'
##(
)

=

µµµ
µµµ
µµµ

333231

232221

131211

3

2

1

x
x
x

R BXA
 2.39

Where xi is the elements of A and yi is elements of B. The ()yx
R

,µ values are the membership

values for each element in the relation R and corresponds to the strength of connection or

correlation between A and B in the mapping [47]. It is also called mapping intensity function. The

determination of the relation R is called system identification.

 60

The decision-making logic is embodied by an inference structure that has the capability of

simulating human decision-making. The membership vector of B can be calculated from the given

relation matrix R and input membership vector A, as follows:

() () ()yxxy
RAB

,.µµµ
�

= 2.40

Where � represents the Boolean sum, where the membership vector completely defines a set,

therefore we can re-write Equation 2.39 as:

),()()(yxRxAyB ο= 2.41

Where “°” is the compositional operator which is usually max-min or max-product. If the

compositional operator is max-min the membership of vector B(y) is calculated as:

*+,-./ *+,-./= −−−

⊂
),()(minmax)(; yxxy

RAB Ex
µµµ 2.42

If the compositional operator is max-product the membership of vector B(y) is calculated as:

012345= −−−

⊂
),()(max)(* yxxy

RAB Ex
µµµ 2.43

Instead of using the max function, the output fuzzy sets are weighted and logically summed.

• Fuzzy Rule Base

A classical fuzzy logical inference may be expressed as using the following max-min rule structure:

i

mimii

i

mimii

BisyThen

AisxandAisxandAisxIf

or

BisyThen

AisxandAisxandAisxIf

,...

,...

2211

2211

 2.44

 61

The computation of fuzzy rules is called fuzzy rule inference, and consists of the aggregation and

composition of a rule’s membership factors. Aggregation determines the degree to which the If-part

of the rule is fulfilled. The sensed input values (x1, x2, x3..) have been fuzzified by having assigned

to them values from their associated fuzzy membership functions (A i1, A i2, A i3…). The AND

connective between the If-part implies either an intersection (min function) or an algebraic

multiplication (product) between the fuzzy sets assigned to the input variables, whilst the OR

connective between the If-part implies a union to connect the individual rules, as follows:

()µµ
iiIFAND min: =

()µµ
iiIFOR max: = 2.45

With Fuzzy Associative Map (FAM) inference, each rule is assigned a degree of support (DoS)

representing the individual importance of the rule. The then part of a fuzzy rule is modified to:

DoS
IFTHEN

*µµ = 2.46

If more than one rule produces the same conclusion, an operator must aggregate the results of these

rules, hence rule composition as follows:

()µµ
RULEiTHENiRESULT

naggregatioresultsMAX
,max: =− 2.47

2.5.2.3 Defuzzifier

Defuzzifier consists of deriving a single control action from an inferred fuzzy control action. Each

control membership function, as shown in Figure 2.9, may include more than one valid evaluated

output term. The defuzzification method is used to determine a compromise between all the

different output terms.

 62

The Center-of-Maximum (CoM) and Mean-of-Maximum (MOM) methods are selected for different

types of applications and are used to calculate a single control output as follows:

()

6
6

=−
j

TERMjRESULT

j
jTERMjRESULT Y

YationDefuzzificCoM
µ

µ

_

_ *
:

 2.48

()µ

MAXRESULTTERMjYYationDefuzzificMoM
_

: =− 2.49

2.5.3 Neural Networks

Figure 2.10 shows the architecture of a feed-forward artificial ANN, in which neurons (simple

asynchronous processing elements) are configured in layers, with each neuron able to send a signal,

along weighted connections, to other neurons [48].

Hidden layer Output layerInput layerInput
Pattern

S1

Si

.......

Sn

A2j

W2[i][j]W1[i][j]

Zj
YiA1j

Xi

An

Propagation
Function

Activation
Function

Output
Pattern

Pj

Computed Desired

Figure 2.10: Basic feed-forward neural network processing elements.

The propagation functions A1j, A2j combine input signals X i, Yi from sending neurons, respectively.

The means of combination is a weighted sum, with the weights of nodes given by matrixes W1[i][j]

 63

and W2[i][j]. The total activity received by the neuron A i and A j is expressed by the propagation

function:

 [][] θ j
i

ij
jiWXA 1

1
11

+= 7
=

 and [][] θ j
i

ij
jiWYA 2

1
22

+= 7
=

 2.50

 Where θ , is an offset added to the weighted sum. The so-called activation function computes the

output signal for probabilistic type neurons using:

() ()eAfZ A jj jj
+= −

= 1
1
 2.51

The feed-forward ANN does not have feedback connections, but errors are back-propagated during

training, an iterative process, to adjust connection weights and threshold values until the desired –

calculated output value is less than a selected threshold for a specific training data set. The ith

component of the error at the output layer and hidden layer is:

ZPe ii
−= and () [][] 889:;;<=−= eWYYt j

j
iii

ji
21

2.52
Adjustment for weight between ith neuron in hidden layer and jth output neuron:

[][] eYW ji
ji β

02
=∆ and [][] tXW jih

ji β=∆ 1

2.53
where β

o
and β

h
is the learning rate parameters.

2.5.4 Neuro-Fuzzy

In most sensor applications classification criteria are often expressed by sample data. This is typical

for decision support problems, diagnosis or pattern recognition examples, and data analysis.

Traditional artificial intelligence (AI) has transparent mechanisms, often expressed in terms of

logical operations and rule-based representations, that are meaningful in modeling real systems.

Although NN has exciting possibilities, it does not use structured knowledge with symbols as used

by humans to express reasoning processes [49]. NF technology allows for the automated generation

of fuzzy logic systems based on neural network trained data. NF combines the advantages of fuzzy

systems—the transparent representation of knowledge and the ability to cope with uncertainties—

 64

with the advantages of neural nets, the ability to learn. Figure 2.11 shows a general 5 – layer

structure of a NF model, as well as indication of how to map an NN to a fuzzy logic system [50].

S1

S2

 Layer 1
Input Linguistic Nodes

 Layer 2
Input Term Nodes

 Layer 3
Rule Nodes

O1

 Layer 4
Output Term Nodes

 Layer 5
Output Linguistic Nodes

FAM
Rule Based System

with
DOSFuzzification

Defuzzif ication

FUZZY LOGIC SYSTEM

FEED-FORWARD NEURAL NETWORK

S1

S2

O1

Oi OjW3
ij

NEURAL NETWORK

TRANSFORM

Figure 2.11: Neuro-fuzzy structure.

The linguistic nodes in layers one and five represent the input (S1-Sn) and output (O1-Om) linguistic

variables respectively. Nodes in layers two and four are term nodes acting as membership functions

(MBFs) to represent the terms of the given linguistic variable. Each neuron of the third layer

represents one fuzzy rule (rule nodes). Layer three links define the precondition of the rule and

layer-four links incorporate the rule consequences. Initially these layers are fully connected

representing all possible rules. A fuzzy system uses different units of computation for the input,

 65

hidden and output layers. A standard error back propagation algorithm cannot be used to calculate

suitable weights for the neural network. The nodes in layer 1 simply transmit the input values to the

next layer, Oi

2
 = Si with unity weights W1 = 1. Layer 2 nodes perform membership functions, e.g.

triangular shaped functions, as shown in Figure 2.9 (Z-Lambda..Lambda-S) and Equations 2.35-

2.37 to determine link weights.

Fuzzy rules, from Equation 2.44 are implemented in Layer 3 and Layer 4. Layer 3 performs fuzzy

AND (min) operation with initial weights Wi j

3
 =1, whilst nodes in layer 4 integrate the fired rules,

having the same consequence by using the fuzzy OR (sum) operator also with Wi j

4
 = 1. Rules may

be represented by Fuzzy-Associative Maps (FAM), which is a fuzzy logic rule with an associated

weight, known as rule firing strength (or Degree of Support DoS). Based on the rule firing strength,

output ()tOi

3
 and the output from the nodes ()tOi

4
, the task is to decide the correct consequence

link of each rule by competitive learning. The following learning law is used to update weights,

where the basic is, learn if win:

() ()OWOW ii jj
tij

3343 +−= 2.54

Layer 5 performs de-fuzzification using one of Equations 2.48 or 2.49. NF training modules

provide methods, based on the above description, for supervised learning. The method employed

combines error back propagation with the idea of competitive learning. After a system output is

computed by forward propagation, an error is identified by comparing the system output with the

sample data [51]. This error is then used to determine the fuzzy rules most suited for influencing

system behavior. Using the selected rule, the plausibility of the fuzzy rule is modified before

subsequent data sets are processed.

2.5.5 Multi-Sensor Fusion

 66

Figure 2.12 shows the interaction between sensors and the direct (solid-line) and indirect (dash-

line) measurement of machining var iables.

Current
Transformer

Power

Accelerometer

Encoder Pulse
Rate

Vibration

Feedrate

Surface
Quality

Figure 2.12: Parallel sensor - measured var iable interaction.

The current transformer connected in-line with one of the phases of the spindle motor can indicate

directly the spindle current and could be used to determine power consumption as well as partially

reflect the system’s vibration and surface quality. A combination of the current transformer,

accelerometer and encoder pulse rate values, each contributing partially to the classification of

surface roughness, may be used to measure surface roughness indirectly with greater accuracy by

means of a sensor fusion model. A multi-sensor fusion model is basically a mathematical function

developed to extract corroborative and relevant information on a particular manufacturing

operation. In this project NF-based multi-sensor fusion models for the indirect measurement of

surface roughness and tool wear is generated from experimental data (Chapter 4).

2.6 Character istics for Intelligent Machining Controller

Over the last 60 years the use of automatic control theory and technology has allowed many

industrial processes to operate automatically under certain operating conditions. Most machining

processes are stochastic, nonlinear, complex and ill-defined and are open to control by means of

 67

intelligent systems. Process automation tasks are performed in hierarchical levels as shown in

Figure 2.13 [52]:

• Process level: Measurement of the input variables and manipulation of the output variables

and require a fast reaction time.

• Control level: Feedback and feed forward control where various variables are adjusted

according to conditions or reference variables.

• Supervision: Indicates undesired or unpredicted process states and to take appropriate

actions such as fail-safe, shutdown, or re-triggering of redundancy or reconfiguration

schemes.

• Management: Performance optimization, coordination of general management in order to

meet economic demands or scheduling and dedicated to tasks that do not require fast

responses and act

PROCESS

MANAGEMENT

SUPERVISION

SENSORSACTUATOR

CONTROL

Figure 2.13: Multilevel process automation [1].

Numerical Control (NC) and CNC machine tools have been widely applied in industry. Productivity

and production quality has been increased accordingly by means of these facilities [1].

 68

Figure 2.14 shows the general architecture for machine controllers, which perform process and

control level functions.

Adaptive Control
Error

Compensation

Programmed
Positions

Machine Temperature

Machine Geometry

Tool Wear

Workpiece/Tool Deflection

Workpiece Temperature

Interpolator

Feed Positions

Servo Control Loops

Drives Position
Feedback

Spindle Control

Drives Speed
Feedback

Cutting Force or
Power Measurement

Programmed
Speed and Feed

Required
Force

PROCESS LEVEL

CONTROL LEVEL

Figure 2.14: Hierarchical levels in CNC controllers [53].

At the process level NC and more recently CNC machine tools have been widely applied in the

machining industry to manipulate the processes machining variables, depth of cut, feed and spindle

speed. As a logical extension to CNC systems, the control level involves Adaptive Control (AC) of

the machining process, which includes the following two major functions:

• Enhanced productivity by applying adaptive control techniques such as Adaptive Control

Optimization (ACO) and Adaptive Control Constraints (ACC). The adaptation strategy is

used to vary the machining variables in real time as cutting progresses. ACO performs

optimization with respect to maximum production rate and/or minimum cost and ACC

controls with respect to forces or with respect to vibrations [54, 55, 56, 57].

• Enhanced part precision by applying real-time geometric error compensation techniques

such as Geometric Adaptive Compensation (GAC) for imprecise machine geometry, tool

 69

wear etc [58]. The compensation strategy modifies the geometric data supplied by the part

program, the depth of cut.

Conventional CNC machines have the following limitations because of their closed architecture

[59, 60];

• They cannot efficiently provide real-time monitoring of a machining process by means of sensor

feedback.

• The control of the machining process is not achieved adaptively in terms of on-line sensory

data.

• The integration of task planning with control activities, and optimization of system

performance, are not realized efficiently.

Furthermore, in order to deal with machining complexity an “ intelligent machining controller”

should have a suitable architecture. Open architecture is a philosophy in design and implementation

of machine tool, production processes and control. It creates an open environment for

manufacturing and enables manufacturing systems to changes and reconfiguration system hardware

and software. An open architecture in the design and implementation of intelligent machine tools

needs to embrace the following characteristics [61, 62, 63, 64]:

• Sensor based. The combination of multiple sensors makes it possible to reflect the complexity

of the manufacturing process. Sensory data are not only for control, but also for process

modeling, real-time simulation and performance monitoring and evaluation.

• Knowledge based. Human expertise, work experience, and testing experiment. Fuzzy logic is

powerful in modeling human expertise and experience knowledge, as well as the highly

non-linear manufacturing process. Since fuzzy knowledge inference is embedded within

 70

the modeling, monitoring and control, system flexibility and intelligence would be much

enhanced.

• Integration. System integration is realized from different points of view. The processes of

modeling, monitoring and control are integrated. On the other hand, sensory data and

knowledge inference are integrated for on-line monitoring and remote decision-making via

the Internet.

• Modular. A modular design is achieved in the interface and control of the system. It may be

extended to other parts of the system, such as the inference algorithm. The interface access

to the Internet is also designed as a module.

• Openness. Systems developed incorporating those features mentioned above would be open to

changes in respect of machine setup, machining process, and control algorithm and

operation.

2.7 PC-Based Technology for Open System Architecture

The hardware and software selected to develop an open architecture based machine tool controller

should [65, 66]:

• Make use of standard computing architectures like VME or ISA/PCI bus standard

processors like Motorola 68x0, PowerPC, or Intel 1x86/Pentuim-based systems.

• Be based on standard operating systems like Unix or Windows NT. Common operating

systems for each level of the factory facilitate communications, programming efforts, and

the protection of standardized data structures.

• Be programmable in standard languages like Microsoft Visual Basic and Visual C++ or

C/C++ and X-Windows. Object-oriented, high-level languages that are comparable to

plans and subsequent to machinery instructions are necessary requirements for the transfer

of knowledge from one level of the factory to the next. This principle includes

 71

standardized data structures that must pass unambiguously down through the factory

hierarchy; and

• Be open and extendable so as to let the user integrate custom control algorithms. Open-

architecture computer platforms are needed at all levels of the factory, with the key

emphasis today being on improvement of factory floor machinery such as machine tools,

robots, and common manufacturing devices.

Recent technological advances in PC-based DSP and Programmable Multi-Axis Machine Control

(PMAC) products, as well as software interfacing Active-X controls and dynamic link libraries

(DLL) to facilitate communication between these hardware components, and an object oriented

windows based software application, enable the realization of PC-based open system architecture to

implement the open architecture machine control as shown in Figure 2.15.

Figure 2.15: PC-based PMAC, DSP and Ethernet inter face cards.

Ethernet Interface Card
To Open Machining Process for
Internet Monitoring.

Two DSP Interface
Cards to Sample and
Process Sensor Signals.

1.1 Multi-Axis Control Interface
Card

 72

2.7.1 PCI32 a 32-bit Floating Point DSP with PCI bus Inter face

Two PCI32 interfaces, shown in Figure 2.16, featuring the high performance Texas Instruments

TMS320C32 32-bit floating point DSP capable of up to 60 MIPS were selected to be used in this

project to sample analog sensor based systems.

Figure 2.16: PCI32 DSP interface.
The PCI32 plugs into a standard 32-bit PCI bus slot. The PCI bus interface includes dual-ported

memory capable of burst transfers at rates to 40 Mbytes/sec on most platforms. This 8 Kbytes dual

port RAM provides a superior interface and allows multiple cards to be installed in systems with

full driver support under Windows 95 and NT. The PCI32 may be programmed in C or Assembler

using tools available in a Software Development Package. Components within the package,

installed and used in this project, which fully support development of custom DSP applications

include [67]:

• Texas Instruments Floating Point C Compiler/Assembler toolset

1.4 Analog Application
Interface DB37 for
Analog Sensor Signal
Input

4 @ 100 kHz Analog to Digital converters

1.2 PCI Bus Interface
for

PC to DSP bi-directional
1.3 Communications

TMS320C32 CPU

 73

• Codewright an integrated code generation environment.

• DSP Peripheral library that support all on-board peripherals and DSP functions.

• Custom 32-bit Windows 95/NT compatible dynamic link library, which utilizes a custom

32-bit Ring 0/Kernal-mode device driver for host PC software application development.

• Host support applets for automation program download.

The abovementioned software was utilized to develop a standalone PCI32 DSP application that is

able to sample and signal; process the analog sensor signals which in turn may be accessed by the

PC host application for advanced monitoring and decision making. The implementation aspects,

including software code, are discussed in Chapter 3.

2.7.2 PMAC-PC Programmable Multi-Axis Controller with ISA interface

The Delta Tau Data Systems PMAC-PC, shown in Figure 2.17, is a high-performance servo motion

controller capable of commanding up to eight axes of motion simultaneously with a high level of

sophistication [68].

Figure 2.17: PMAC-PC multi-axis control card.

1.5 ISA Bus Interface
Using I/O Address
mapping

Servo/Motor Control
 and Encoder Signal
Interface

Motorola DSP56001 is
at the heart of the CPU

 74

PMAC is a very flexible controller, suitable for many different types of applications, with different

types of amplifiers, motors, encoders and sensors. The card may be configured for a specific

application, using both hardware and software features and is therefore ideally suited for performing

the multi-axis control function in open system based architecture.

Delta Tau developed PTalkDT [69], a software interface to its 32-bit software driver PComm32.

PTalkDT is in the form of an ActiveX Control, a new and upcoming form of library that is very

popular with Windows programming. It is designed to provide robust and efficient communication

to PMAC from Windows based applications.

Many of the commands given to the PMAC, using the PTTalk ActiveX control, are on-line

commands, which are executed immediately by the PMAC. There are three basic classes of on-line

commands including: Motor-Specific Commands Coordinate system-specific commands and global

commands.

PTTalk Active X control software was installed and extensively used to develop a Windows based

software interface that is able to configure the PMAC, send motion control commands and receive

coordinate positions from the PMAC. The implementation aspects, including software code, are

discussed in Chapter 3.

2.7.3 Object Or ientated Programming (OOP), Visual C++ and Visual J++

A programming language must support abstraction, encapsulation, inheritance, polymorphism and

modularity before it deserves to be called object oriented [70]. The C++ language is based in, and

extends the C programming language, by supporting OOP features [71]. By using these advanced

capabilities one may achieve self-configurable software systems [72]. Using object-oriented

techniques to develop software, helps to construct systems that closely model reality such as

 75

components and functions within an open architecture based machining controller. Each object

knows how to handle its job well, and it collaborates with other objects to accomplish a common

goal.

One particularly useful use of OOP is to create reusable application frameworks. An application

framework is an integrated collection of object-oriented software components that offer all that is

needed for a generic application [73]. Microsoft Foundation Classes is an application framework

specifically tailored for creating applications for Microsoft Windows operating system. The

Microsoft Foundation Class Library is built on top of the Win32 application-programming interface

(API). This API is a set of functions exposed by the operating system for use by applications.

Through MFC, base classes are exposed that represent common objects in the Windows operating

system, such as windows and menus.

MFC does not encapsulate the entire API, just the main structural components and components that

are commonly used. Because MFC is written in C++, MFC programmers can easily use the Win32

API to make native calls to the operating system. Figure 2.18 show the relationship between MFC,

the Windows Base Operating Services, and the Windows Operating System Extensions.

Figure 2.18: Relationship between MFC and Windows API [74].

 76

By providing this simplified interface to the Windows API, MFC offers a number of advantages

over using the Win32 API:

• MFC provides a higher-level abstraction of Windows, thus reducing complexity.

• One can learn Windows-based programming much faster than you would by working

directly with the Windows API.

• One can quickly develop an application framework from which more complex applications

are created.

• One has access to object-oriented techniques that are supported by the C++ language.

• MFC uses the more robust language features of C++, such as stronger type checking,

exception handling, and intelligent object construction and destruction.

• MFC supplies additional library support for safe dynamic memory use, type validation, and

debugging.

Microsoft Developer Studio, used in this project, is the development environment for Microsoft

Visual C++ and MFC. In order to provide flexibility to meet various programming needs,

Developer Studio integrates several other development tools such as Microsoft Visual J++. Besides

providing an integrated, flexible environment, Developer Studio offers class navigation tools that

are designed to simplify object-oriented programming for Windows.

Java applets are designed to work easily within the World Wide Web (WWW) of computers

through commonly available, user-friendly software called browsers which are Java-enabled.

Although it is a rather recent addition to the host of high-level computer languages available to the

programmer it incorporates the latest in OOP features and capabilities [75]. The designers focused

on security, network-awareness, multitasking and hardware abstraction, which have brought Java

near-instant acclaim in the programming field. In this project a Java Applet will be developed and

embedded within a web page. The applet will be enabled remotely through a web browser from

 77

whereby a connection-oriented service will be performed with the Visual C++ application.

Implementation aspect of the remote monitoring for machining is be explained in Chapter 3.

2.8 System Framework for Intelligent Machining

Figure 2.19 shows a proposed system framework for the implementation of a sensor-integrated

monitoring, intelligent diagnosis and control of the machining process. In adaptive control system

cutting force, torque and/or power sensors are used to provide the feedback information, with the

control of the cutting force being the most popular. It seems clear from the research conducted that,

at the lower level, adaptive control with self-regulating ability applied to one dependent variable Fz

is achievable by changing f1x and Vc. With a multi-input / multi-output control strategy one may

want to control more than one independent variable, say Pc and Ra. The independent variables, Vc,

f1x and dy are set in an optimal manner in order to maintain Pc and Ra set points [76]. A drawback

of these control strategies is that it is based on the modeling of the original process and may only be

applied within a limited range from the set point. The ideal is, of course, to be able to maintain all

the dependent variables at variable set points. However, this has proven to be unattainable since it

implies a tremendously complicated multi-input and multi-output control system. A simplified

arrangement has been agreed upon [64]:

• Adaptive control of feed with respect to cutting force;

• Adaptive control of feed with respect to maximum productivity; and

• Advanced process monitoring and diagnosis

This is indeed what the framework proposes. Signals are sampled and processed using the DSP.

Machining process parameters Ra and Vb that the sensor system is not able to measure directly, are

determined indirectly using multi-sensor fusion modeling.

 52

Multi-Axis
Control

PC-BASED I NTEL L IGENT MACHINI NG PROCESS CONTROL L ER

DSP

Accelerometer

Microphone
Strain Gauges

Thermocouple

SENSORS

Current
Transformer

Vy

Fx, Fz
Sc

Tt

Is

Signal Features

MONITORING

CONTROL

DI AGNOSI S

Vc

dy

f1x

Vb

Ra

Decision:
Inc/Dec - f1x/Vc/dy

Ethernet

Motion and Process Control Commands

Feedback for Adaptive Control

Max/Min Pc
Max Fc

Other
Criteria

Max Tt

Object Oriented
Software

Application
Framework

Remote Monitoring
 using WWW

Process Control

P
ro

ce
ss

 F
ea

tu
re

s
Analysis and
 Inference

Fu
zz

if
ie

r

D
ef

uz
zi

fi
er Rule

Base
Inference
Engine

X-Axis

Y-Axis
Spindle

M
ac

hi
ne

C
on

tr
ol

s

Machining
 Process

 Fuzzy
Relation

Limit Value
Checking

Figure 2.19: Framework for intell igent machining.

The object oriented software application interface serves as a graphical user interface and performs

overall module integration and coordination. It sends motion and process control commands to the

multi-axis controller and provides process parameter constraints to the diagnostic system. Once a

process parameter exceeds its limit, it is up to the diagnostic systems to ensure that the specific

parameter returns to its stable state. Using a fuzzy relation the diagnostic system will decide

intelligently which one of the three process control parameters to change in order to achieve an

overall stable machining process.

2.9 Conclusion

The monitoring of tool wear and surface roughness by means of intelligent systems will enhance

automated machining. Neuro-Fuzzy modeling may be used as a basis for developing fuzzy logic

models for the indirect measurement of tool wear and surface roughness. Fuzzy logic models,

based on experimental data, for this purpose is analyzed and explained in Chapter 4.

The primary difference between automated machining and intelligent machining is that an

intelligent system applied in the latter is capable of making decisions based on significant

information from the machining process. A fuzzy relation that indicates the strength of connection

between process features and process control action is used as part of a diagnostic system to decide

intelligently which decision to make when a machining process parameter is exceeded. Chapter 5

includes empirical machining process input/output relationships, obtained from regression analysis

of experimental data, for modeling and simulation in order to test the intelligent diagnostic system.

A framework for sensor-integrated monitoring, diagnosis and control for intelligent machining

process control is proposed. Chapter 3 describes the experimental set-up including all hardware and

software components to implement the proposed system framework on a PC-based system.

 58

Intelligent machining systems with in-process quality assurance need to detect and react quickly on

measured defects, and then should have the capability to adapt to maintain desired tolerances. The

purpose of the experimental set-up is to implement and integrate the sensors, pc-based hardware,

software components and machine controls indicated in the proposed framework for intelligent

machining, described in Section 2.8. Each software function developed to support hardware

operation and overall integration constituted a module with appropriate interfaces so that the

reconfiguration of the system may be realized in terms of the modular structure.

3.1 Exper imental setup

Figure 3.1 shows the completed experimental set-up consisting of an EMCO Compact 5 training

lathe under the control of a 1.5 kW Baldor ac servo motor [76] for spindle rotation and two

Powermax hybrid stepper motors [77] for driving the x-y coordinate system. The machine controls

include servo and stepper motor amplifiers and respective power sources. The encoder feedback for

the servo and stepper motors is returned to the PMAC. The drives are thereby directly controlled

from the PMAC enabling instantaneous reaction from software-controlled commands. This

arrangement was selected so as to minimize the amount of controls hardware. If a new drive/motor

combination is selected the system would only be required to undergo a software reconfiguration.

Chapter 3

Exper imental setup:

Machine Controls, Sensors and Software Components

 55

11.1.1.1.1 Figure 3.1: Experimental setup: machining process, PC-based control and sensor measurement.

Internet enabled PC with
PMAC, DSP and Ethernet
Hardware interfaces:

Windows based user software interface
and software communication interfaces
to integrate hardware components

Machine controls:
Servo and stepper motor
amplifiers and respective power
sources.

Wiring interfaces:
PMAC to machine controls and
motor encoder feedback.
DSP to sensors.
V-to-F for x-y axis control.

Cutting tool with embedded strain
gauges, microphone, thermocouple,
accelerometer and amplifiers.

AC Servo motor
with encoder

Stepper motors
with encoders

Dynamic strain
gauge amplifier

 56

3.1.1 Machine Controls

Figure 3.2 show the layout of the control panel for the servo and stepper motor drives.

Figure 3.2: Panel layout for the spindle and stepper motor dr ives.

Spindle Motor Control Circuit Description

Figure 3.3 shows the wiring diagram for the spindle motor control circuit. Power to the servo drive

is from 230V ac mains. A line filter is incorporated to eliminate as much of the electrical noise on

the power line as possible. A circuit breaker is also incorporated into the supply line to the drive for

over current protection. The live wire is connected to terminal X1:2, the neutral connection is

made to terminal X1:3 and terminal X1:1 is tied to Earth.

Pacific Scientific
Model 6410
Micro-stepping
drives.

AC Mains
Line Filters

220/20 V AC
Transformer
for stepper
motor drives

Circuit breaker
protection

DBSC Series 100
AC servo motor
drive

 57

The control signal from the PMAC is a single-ended +-10V analogue magnitude voltage generated

on pin 43 (DAC1). Pin 45 (DAC1/) is left floating because the return path for the control signal is

analogue ground. Pin 47 (AENA1/DIR1) is used as an amplifier enable signal. This pin is an open

collector output and requires the use of a 1 kilo-ohm pull-up resistor. It is configured to give an

active LOW output. Pin 49 (AMP FAULT) takes an input that tells the PMAC whether the

amplifier is operating correctly. This input is supplied by the amplifier itself and is based upon the

result of the amplifier self-test routines. Pins 17, 19, 21, 23, 25 and 27 (CHC1, CHC1/, CHB1,

CHB1/, CHA1 and CHA1/ respectively) are the PMAC encoder inputs for quadrature decoding.

Terminals X3:1 (CMD+) and X3:2 (CMD-) are the velocity control inputs of the servo controller.

CMD- is tied to the PMAC's analogue ground allowing single-ended control by the PMAC. Pin

X3:6 (CIV) and pin X3:8 (CGND) are the inputs that define the voltage level at which the servo

drive communicates with its controller (in this case a PMAC-PC). All outputs to the PMAC (e.g.

encoder outputs and Drive OK output) use the voltage present on pin X3:6 and are relative to pin

X3:8. Pin X3:9 (Enable) is connected to the PMAC amplifier enable output allowing the PMAC to

"disconnect" the amplifier when control of the servomotor is not required. Pins X3:10 (CW Limit)

and X3:11 (CCW Limit) are tied to PMAC's +15V supply to enable motion in both the clockwise

and counterclockwise directions.

 58

Figure 3.3: Wir ing diagram for the spindle motor control circuit and cur rent transducer.

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9 9

10
10

11 11

12
12

13 13

14
14

15
15

16
16

17
17

18
18

19
19

20 20

21
21

22 22

23
23

24 24

25
25

26
26

27
27

28
28

29
29

30
30

31 31

32
32

33 33

34
34

35 35

36
36

37 37

38
38

39
39

40
40

41
41

42
42

43
43

44 44

45
45

46 46

47
47

48 48

49
49

50
50

51
51

52
52

53
53

54
54

55 55

56
56

57 57

58
58

59 59

60
60

PMAC INTERFACE

IDC60

PE
X1-1 AC SERVO DRIVE

L1
X1-2

N
X1-3

U
X1-4

V
X1-5

W
X1-6

REF+ X8-1

REF-
X1-6

COS+ X8-2

COS-
X8-7

SIN+ X8-3

SIN-
X8-8

CHAX7-1

CHA/
X7-6

CHBX7-2

CHB/
X7-7

CHCX7-3

CHC/
X7-8

AGND
X7-5

CMD+
X3-1

CMD-X3-2

AGND
X3-3

CREF
X3-7

Enable
X3-9

CW Limit
X3-10

CCW Limit X3-11

C
IV

X
3-

6

M
ac

h
O

ut
1

X
3-

18

C
G

N
D

X
3-

8

M
ac

h
O

ut
 2

X
3-

19

D
ri

ve
 O

K
X

3-
20

DBSC105-AAA

BALDOR

DAC1

DAC1 Note 2

Note 1

CHC1

CHC1

CHB1

CHA1

CHA1

CHB1

Note 1: Control voltage +-10V, 10mA max, Reference AGND.
For Single-Ended Command leave DAC1/ pin floating.

Note 2: Leave floating if not used. AGND is return line.

Note 3: Transducer sensitivity is 250 mV/Amp.

Note 4: Direction may be enabled/disabled.

Note 5: For rotaty axis tie pins to AGND.
Must be conducting to PMAC AGND to consider itself not into this limit.
or Automatic limit function disabled with IX25 bit 17 = 1 (20000).

Note 6: Output relay contact is closed to indicate drive OK
or Auotomatic function can be disabled with Ix25 bit 20 = 1 (100000).

Note 7: Quadrature incremental encoder with 1024 PPR.
Accuracy = 4 * 1024 = 4096 pulses/rev.

Note 8: Open collector. Polarity controlled by E17.
Remove jumper for high TRUE AENA.

+5V

DGND

+15-15

Resolver
11

2
2

33

4
4

55

6
6

A?

RESOLVER

MOTOR

U - red
1

V - black4

W- white
3

PE
2

A?

MOTOR

-1
5

1

A
G

N
D

2

+
15

3

A
G

N
D

4

V
ou

t
5

A?

CURRENT SENSOR Note 3

-15 +15

+15

Note 4

1
1

22

3
3

44

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

1313

14
14

1515

16
16

1717

18
18

19
19

20
20

21
21

22
22

23
23

2424

25
25

2626

27
27

2828

29
29

30
30

31
31

32
32

33
33

34
34

3535

36
36

3737

DSP INTERFACE

IDC30

+LIM1

-LIM1

Note 5

+15 Note 62K2

Note 7

AENA1/DIR1

1K

+15

AMP FAULT

Note 8

Power Earth

Line

Neutral

15A 380 V

LINE FILTER

10A 250V 60Hz

 59

X-Y Axis Control Circuit Descr iption

Figure 3.4 shows the connection-wiring diagram for the x-y axis control. The velocity control

voltage is developed between pin 44 (DAC2) and pin 46 (DAC2/) of connector PMAC-J8. This

control signal is then fed to connector pins J1:1 (DAC2) and J1:2 (DAC2/) of the voltage-to-

frequency converter (V-to-F). The V-to-F then converts this unsigned magnitude voltage signal into

a pulse width modulated signal that is compatible with the stepper motor drive input. The frequency

of this signal is proportional to the magnitude of the velocity control voltage.

The amplifier enable bit (AENA2/DIR2) on pin PMAC-J8: 48 is used as a digital direction bit and

supplies the signal to the V-to-F direction input (DIR1) on connector J1:9. The outputs for the V-to-

F are a digital direction bit and a pulse width modulated pulse output, both at TTL levels. For this

channel the output on connector TB1: 3 (PUL1) carries the pulse output and the direction signal is

on connector TB1: 4 (DIR1). The frequency of the output pulses is directly proportional to the

magnitude of the control voltage present between the DAC1 (J1:1) and DAC1/ (J1:2) input pins.

The pulse output from PUL1 is the input to the STEP-input (connector J1: 6) of a Pacific Scientific

stepper motor drive. The STEP+ (J1: 6) input is tied to +5V. When logic 0 is present on the STEP-

input, the opto-isolator goes ON. Every transition of the opto-isolator from OFF to ON results in

the execution of a single step of the stepper motor. DIR1 output of V-to-F is the input to DIR- input

(connector J1: 7) of the Pacific Scientific stepper drive. The outputs of the stepper drive are a pair

of differential signals that provide excitation voltage to the windings of a stepper motor. Feedback

from the stepper motors is by means of an incremental encoder that is attached to the stepper motor

shaft at its rear end. This device outputs 4 pulse signals in quadrature mode. A resolution of 2048

pulses per revolution is realized in this application. Output from this device is fed directly to the

PMAC quadrature encoder inputs. The PMAC decodes these signals to determine position and

velocity of the stepper motor.

 60

11.1.2 Figure 3.4: Wir ing diagram for the x-y axis control circuit.

+
1

-
2

G
N

D
3

STEP+
1

DIR+
2

ENABLE
3

EN COL
4

N/C5

STEP-
6

DIR-
7

ENABLE-
8

EN E
9

A
1

A
2

B 3

B
4

PACIFIC SCIENTIFIC

6410

GND
5

J1 J3

J2

STEPPER DRIVE

+
1

-
2

G
N

D
3

STEP+
1

DIR+
2

ENABLE
3

EN COL
4

N/C
5

STEP-
6

DIR-
7

ENABLE-
8

EN E9

A
1

A
2

B
3

B
4

PACIFIC SCIENTIFIC

6410

GND 5

J1 J3

J2

STEPPER DRIVE

DAC1
1

DAC12

DAC2
3

DAC2
4

DAC3
5

DAC3
6

DAC4
7

DAC4
8

DIR1
9

DIR2
10

DIR3
11

DIR4
12

AGND13

+15V
14

AGND
15

-15V
16

C
H

A
2

1

+
5V

2

G
N

D
3

C
H

A
2

4

C
H

B
2

5

G
N

D
6

+
5V

7

C
H

B
2

8

+
5V

9

N
/C

10

+V
1

AGND
2

PUL1
3

DIR1
4

PUL2
5

DIR2
6

PUL3
7

DIR3
8

PUL4
9

DIR4 10

JENC2

C
H

A
1

1

+
5V

2

G
N

D
3

C
H

A
1

4

C
H

B
1

5

G
N

D
6

+
5V

7

C
H

B
1

8

+
5V

9

N
/C

10
JENC1

TB1J1

A?

VOLTAGE/FREQUENCY

1
1

2
2

3
3

4 4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15 15

16
16

17
17

18
18

19
19

20 20

21
21

22
22

23
23

24
24

25
25

26
26

27
27

28
28

29
29

30
30

31 31

32
32

33
33

34
34

35
35

36 36

37
37

38
38

39
39

40
40

41
41

42
42

43
43

44
44

45
45

46
46

47 47

48
48

49
49

50
50

51
51

52 52

53
53

54
54

55
55

56
56

57
57

58
58

59
59

60
60

PMAC-J8

IDC60

DAC2

DAC2

+5V

DGND

+15-15

AENA2/DIR2

DAC3

DAC3

AENA3/DIR3

CHA3

CHB3

CHB3

CHA3

+5V

+5V

220 AC

5A CIRCUIT BREAKER 220V/20V AC

+
-

+5V
DGND

CHC3

CHC3

BROWN

BROWN/WHITE
BLUE
BLUE/WHITE
GREEN
GREEN/WHITE

O
R

A
N

G
E

O
R

A
N

G
E

/W
H

IT
E

6
6

2
2

5
5

1
1

8
8

4
4

77

3
3

N/C
1

+5V
2

GND
3

N/C
4

A
5

A 6

B
7

B
8

Z
9

Z
10

2048 ppr

STEPPER

6
6

2
2

5
5

1
1

8
8

4
4

7
7

33

N/C
1

+5V
2

GND
3

N/C
4

A
5

A
6

B
7

B
8

Z
9

Z 10

2048 ppr

STEPPER

+5V
DGND

BROWN

BROWN/WHITE
BLUE
BLUE/WHITE
GREEN
GREEN/WHITE

O
R

A
N

G
E

O
R

A
N

G
E

/W
H

IT
E

CHC2 -GRN/WHT

CHC2 - GRN

CHB2 - BLUE/WHT

CHB2 - BLUE

CHA2 -BRW

CHA2 - BRW/WHT

2) X-AXIS / DEPTH OF CUT

3) Z-AXIS / FEED 0-10kHz
Pulse - 20microSec

Note 1

+FEED LIM

-FEED LIMIT

Note 2

DGND

DGND

PMAC GENERATED

X-AXIS / FEED

Y-AXIS /
DEPTH OF

3.1.2 Sensory System

One of the basic requirements for intelligent machining is the need for sensors and measurement

systems to obtain signal features that characterize the process. In this project the sensor type and

positioning thereof is focused on the measurement of signals that are “close” to the machined

product. These signals may then be used as input to an intelligent diagnosis system to ensure the in-

process reliability and quality of the machined product (Chapter 5). Figure 3.5 shows the cutting

tool (insert and holder) with embedded sensors for: cutting force and feed force, cutting sound,

cutting tool temperature and cutting tool-workpiece vibration measurement.

3.1.2.1 Tool-Workpiece Vibration

Vibration may be measured using either a dynamometer, accelerometer or displacement sensor. Lin

and Hu [78] found that, of the three, accelerometer performed better. The accelerometer may be

placed on the tailstock or on the tool as shown in Figure 3.5. A model 3140 instrumentation grade

fully signal conditioned accelerometer is used to measure the tool-workpiece interaction [79]. The

accelerometer has a range of 0 to 10g, a build-in amplifier with an output sensitivity of 200.7 mV/g

and a frequency response of 0,7Hz to1200 Hz.

3.1.2.2 Cutting Tool Temperature

A J-type thermocouple wire with a braided tip inserted close to the tip of the cutting insert is used to

measure temperature close to the cutting zone. The thermocouple wire is fed to a type 1100 signal

converter used to linearize and amplify the temperature signal [80]. The amplifier system’s

sensitivity is 33 mV/oC with a range of 0-300 oC.

61

 62

Figure 3.5: Cutting tool, embedded microphone, thermocouple, strain gauges, accelerometer sensors and amplifiers.

1.6 Microphone and
cable to amplifier

Accelerometer and
cable to PC interface.

Thermocouple and
cabling to amplifier

2 PC-based DSP
3 Inter face Card

Strain gauge bridge and
cable to dynamic amplifier

 63

 63

3.1.2.3 Or thogonal Forces

The objective of strain gauging a cutting tool is to measure the orthogonal cutting forces [81] acting

on the tool and workpiece whilst machining. To be able to measure the cutting force Fz and feed

force Fx, eight 120-ohm strain gauges [82, 83] are bonded [84] to the shank of the cutting tool as

shown in Figure 3.6. The front set of gauges may be used to measure the radial force Fy.

However, it was not used in this project. The two sets (top-bottom, left-right) of four gauges are

wired into a bridge configuration [85, 86] and connected to a dynamic amplifier with a 3 kHz

frequency response range.

(a) Strain gauge positions to measure Fx, Fy and Fz.

 (b) Strain gauges bonded to shank. (c) Stain Gauges covered with foil.

Fz: 2 on top and 2 at bottom

Top and bottom gauges wired
into a bridge for measuring Fz.

Left and right gauges wired into a
bridge for measuring Fx.

Front gauges wired into a bridge
for measuring Fy. (Not Conneted)

 64

Figure 3.6: Cutting tool with bonded strain gauges for or thogonal force measurement.

Figure 3.7 (a) shows the procedure followed in calibrating the equipment with the purpose of

determining the ratio a relationship between the output voltages from the dynamic amplifier,

and the forces applied at the tip of the cutting tool (sensitivity). A beam was attached to the

tool holder and weights suspended from the beam. This was done to overcome the problem

of attempting to attach large weights to the tip of the tool. Figure 3.7 (b,c) shows the resulting

calibration curves.

G-clamp

Specimen
with bar

Mass pieces

Multi-meter

Amplifier

 65

(a) Or thogonal force calibration procedure.

(b) Fz: Applied force at tool tip in the z-axis versus amplifier output voltage

(Sensitivity – 23.67 mV/N).

(c) Fz: Applied force at tool tip in the x-axis versus amplifier output voltage

Applied Force in Z-Axis versus Output Voltage

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7Volt

N
ew

to
n

Applied Force in X-Axis versus Amplifier Output Voltage

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7Volt

N
ew

to
n

Fz: Z-Axis Output

Fx: X-Axis Output

Fz: Z-Axis Output

Fx: X-Axis Output

 66

(Sensitivity – 23.62 mV/N).

Figure 3.7: Calibration procedure and sensitivity for orthogonal cutting force measurement.

Whilst loading the x and z-axis respectively there is an output recorder on the unloaded axis. This

output is less than 5% of the value recorded at the loaded axis and may be the result of a small

misalignment in the strain gauges position on application.

3.1.2.4 Cutting Sound

Sound may be defined as any pressure variation that the human ear can detect. The number of

pressure variations per second is called the frequency of sound and is measured in Hertz. The

frequency of sound produces its distinctive tone. These pressure variations travel through any

elastic medium (such as air) from the source to the listener’s ears. For acoustic and sound

measurement purposes, the speed is expressed as 344 ms-1 at room temperature, and from this the

wavelength may be calculated as speed of sound / frequency. Most industrial noise consists of a

wide mixture of frequencies known as broadband noise.

A second main quantity used to describe a sound is the size or amplitude of the pressure

fluctuations. The decibel is not an absolute unit of measurement. It is a ratio between a measured

quantity and an agreed reference level. The dB scale is logarithmic and uses the hearing threshold

of 20 µPa as the reference level [87].

A microphone converts the sound signal into an equivalent electrical signal. The most suitable type

of microphone for sound level meters is the condenser microphone, which combines precision with

stability and reliability. A LSM900 condenser microphone, with a 20-20kHz frequency response, is

small in size and free of “bass boosting proximity” effect found when using most microphones

close to a sound source [88]. This makes the microphone ideal for measuring cutting sound close to

the cutting zone. The electrical signal produced by the microphones is quite small, and a

 67

preamplifier amplifies it before connected to the DSP. Figure 3.8 shows the microphone connected

[89] to AD210 [90], a general-purpose amplifier, whose output is connected to one of the channels

of the PC-based DSP interface card.

Figure 3.8: M icrophone amplifier circuit diagram.

Capacitors C3 (1� F), C1, C2, C5 anC6 (100nF) are connected to filter and eliminate any unwanted

high frequency noise ripples. Zener diodes D1 and D2 provide protection against high voltage and

incorrect polarity by limiting the input AC and DC voltage amplitudes. Resistor R6 provides

current limiting. When the input signal is of DC type, jumper JP1 must be connected to provide a

DC-link. An unconnected jumper links JP1 for an AC input signal, which now passes through

capacitors C4 and C8 connected in parallel. The parallel-connected capacitors, together with

resistor R4, determine the circuit’ s low frequency response limit as:

4)84(2
1

RCC
f

LOW +
=

π
 3.1

The signal is taken to the inverting input of the AD210 through resistor R4 with the non-inverting

input being connected via R7. A feedback path is provided from the output, via resistor R2. This

gives a maximum voltage gain for the amplifier as:

4
2

R
RnVoltageGai = 3.2

1
J1A

CONN2

2
J1B

CONN2

1
J2A

CONN2

2
J2B

CONN2

1 2R1

4,7R

1
2

C1
1uF

1
2

C2
1uF

1
2

C7
1uF

Vo 1

Ocom
2

+Voss
3

-Voss 4

+Viss
14

-Viss15

FB16

-IN
17

+IN19

Icom18

PW
R

 C
O

M
29

PW
R

30

U1
AD210

1
2

C3
1uF

+15V

PWRCOM

PWR

C
W

C
C

W

ADJ
R2

2MPOT

C
W

C
C

W

ADJ R3
100KPOT

1 2R4

33K
1 2

C4

1uF

1 2
JP1

JMP2

1
2

JP2
JMP2

1
2

R5
5K6

+Viss
1

2

C5
1uF

1
2

C6
1uF

1
J4A

CONN3

2
J4B

CONN3

3
J4C

CONN3

1
J3A

CONN2

2
J3B

CONN2

-
+

J5

2CONN+-

+15V PWR

PWRCOM

+Viss

+Viss

Icom

-Viss

-Voss

+Voss

OUTPUT

MIC

Ocom

Offset Adj

Gain

1 2R6

0R

D1
15V-ZENER

D2
15V-ZENER

1
2

R7
220R

1
2

R8
47K

DC-LINK

1 2
C8

1uF

 68

The output signal from the AD210 passes through a low pass filter R1 and C7, which filter any high

frequencies. The cut-off frequency may be determined by:

HzCR
f

HIGH 712
1

π
= 3.3

In order to reduce background noise measurement the amplifier’s gain was altered using R2

(392k�) until the output was close to zero. Using this value for R2 and equation 3.2 the final gain is

calculated at 70. The LSM900 microphone has a sensitivity of 0.02238 mW/Pascal, which results

into 0.25 V/Pascal as it is feeding into a 2800� (R5//R6) impedance. With a gain of 70 the

resulting sensitivity for sound measurement is 17.5 V/Pascal. Although the microphone can

measure sound of up to 120dBSPL (20 Pascal), which is equivalent to a jet taking off, sound from the

cutting process used in this project does not exceed 0.05 of a Pascal (about 70 dBSPL).

3.1.2.5 Spindle Current

The on-line measurement of spindle current is important as it may be related to cutting force as an

alternate measurement method and used to manage the supply of torque and power available for

cutting. Advantages of current sensors include: low in cost, easy to install, robust and have a fast

response time. Furthermore, due to lower maintenance and higher performance, modern machining

centers make use of AC or DC Servo Brushless motors. It was therefore decided to make use of a

3kW AC Brushless servomotor and connect it directly to the spindle.

The spindle current is measured using an F.W.Bell current transformer Model IHA-100 [91]. It is

able to measure current in a range of 0 – 100 amps with a sensitivity of 50 mV/ampere and a +5/-5

V maximum output. However, with N turns, the current range is reduced by a factor of N divided

by the full-scale current. For the model IHA-100, 10 turns through the aperture will change the

current range from 0 – 100 ampere to 0 – 10 ampere, thereby increasing sensitivity to 500

 69

mV/ampere. The current sensor is connected in one of the phases of the servomotor [92], as shown

in Figure 3.9, so as to measure load changes instantaneously.

Figure 3.9: IHA-100 current sensor connected into one of the phases of the ac servomotor .
Figure 3.3 shows the wiring diagram for the spindle motor control circuit and indicates how

the current transducer is connected in one of the motor’s phases and interfaced to the DSP

interface card. The –15 V supply goes to pin 1 of the current sensor, +15 V supply to pin 3

and analogue ground to pin 2. The use of a dual rail supply allows the sensor output to

swing either negative or positive to indicate negative or positive current flow. Pin4

(AGND) of the current transducer is fed to pins 5 (INPUT B-) and 34 (AGND) of the DSP

interface. This means that the signal received by the DSP card will be relative to the card’s

own analogue ground. Output of the transducer on pin5 (VOut) is fed to pin 24(INPUT B+)

of the DSP card. The analog to digital converters on the DSP card then converts this value to

a sixteen bit binary value, which can be accessed by the host computer for analysis

purposes.

10 turns to give
500mV/A sensitivity

To DSP Channel

+15/-15 Power Supply

To Drive To AC Servo

 70

Figure 3.10 shows the relationship between the spindle current Is and the cutting force Fz

for all the measurements performed during experimental data acquisition in Chapter 4. The

experimental data is shown in Appendix B.

Fz versus Is

y = 0.0361x - 20.903
R2 = 0.9847

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000 6000

milli-Amp

N
ew

to
n

Figure 3.10: The experimental relationship between the spindle cur rent Is and the

cutting force Fz.

The values for Is and Fz is obtained after sampling and calculating their rms values. The

correlation between the spindle current and cutting force is 98.47%. There is no complex

sensor calibration required and the relationship is a simple linear equation.

3.2 Software Components for Exper imental Set-Up

Decisions made by the intelligent controller must be made within a relatively short period of time.

An adequate response to changing system conditions and events, such as tool wear, must be made

within seconds in order to guarantee the reliability of the process [1]. Figure 3.11 shows the

hardware architecture with software components implemented to realize the intelligent controller.

The two PCI32 DSP modules, target 0 and target 1, continually sample sensor signals and perform

 71

real-time signal processing on each. The PMAC target module performs machine control by

executing motion control commands. Target 0, 1 and 2 operate independently. The PC-based host

module executes a windows based MFC software application framework. It in turn instantiates

objects CMonitorView, CGeometricView and CServer each with an appropriate user interface.

CMonitorView uses the mailbox interfaces to request on-line process data features from target

modules 0 and 1. It may then use the data to execute advanced monitoring and intelligent

diagnostic algorithms. CGeometricView uses an Active X [69] to send motion control commands

to the PMAC. Its user interface is used to interact directly with the various motion controls, create

motion control programs, download motion control programs and start the execution thereof.

SUPPORTING C++ CLASSES

P
E W
N I
T - N
U 9
I 5
M

PC-BUS

CMONITOR
VIEW

Host: MFC APPLICATION FRAMEWORK

 ANALOG & DIGITAL I/O

 PROGRAMMABLE
MULTI AXIS CONTROL
 (PMAC)

MACHNING PROCESS

SPINDLE X & Y
 AXIS

 MOTOR
CONTROLS

Target 0:
PCI32

TMS320C
DSP

 MAILBOX INTERFACE

ETHERNET

 SENSOR AND
AMPLIFIERS

FORCE

VIBRATION SOUND

CURRENT

SAMPLING CHANNELS

 FIR / WINDOW / RMS / FFT

FEATURE EXTRACTION

TCP / IP

REMOTE MONITORING
 USING
INTERNET BROWSER

 ACTIVE - X INTERFACE

CGEOMETRIC
VIEW CSERVER

TEMPERATURE

 MAILBOX INTERFACE

SAMPLING CHANNELS

 FIR / WINDOW / RMS / FFT

FEATURE EXTRACTION
Target 1:
PCI32

TMS320C
DSP

Target 2:
PMAC

M56001
DSP

Target 0:
PCI32

TMS320C
DSP

MULTI-VIEW
USER INTERFACE

11.1.3 Figure 3.11: Hardware architecture and software components for intelligent
machining process controller .

The host operating system is Internet enabled and therefore CServer enables remote monitoring of

machining process parameters. Figure 3.12 shows the implemented object-oriented software

framework for the intelligent machining process controller software components. It shows

interfaces to allow communication between modules, basic data structures required, events

generated and software functions implemented. The following subsections will briefly describe

implementation aspects of the software framework.

 72

3.2.1 Host Module CMonitorView for Machining Process Monitor ing

CMonitorView object, created at runtime, by CWinApp, declares a channel_features structure that

is used to declare variables to maintain on-line data features from each sampled channel.

On Windows WM_CREATE event the object constructor opens a device driver to enable

communications, using DLL function calls, with target 0 and target 1 [93]. It performs a

communication test with both targets.

typedef struct
 { float FREQ;
 float RMS;
 float MEAN;
 float FFTBuf[256];
 } channel_features;

channel_features t0chan0, t0chan1, t0chan2, t0chan3;//t0 – Target 0; t1 – Target 1
channel_features t1chan0, t1chan1, t1chan2, t1chan3;

//Open Target 0 and Test Target 0 Responce
target0 = 0;
target_open(target0)
download(0);
do { count++;
 read_value = 0;
 read_mb_terminate(target0, TERMINAL_MBOX, &read_value, 0);
 Sleep(100);
 } while(count<50 && read_value!=0xa5a5);
if (count==50)
 { MessageBox(NULL, "Target 0 Application did not respond",
 MB_ICONINFORMATION);}

 72

CWinApp

Frame

 Send Instruction

Update View

WM_TIMER

Programmable
Multi-Axes

Control

 Read Encoder Counts Active-X

Target 2 Module:
PMAC

Host Module:
CGeometricView

Motion
Cmd

WM_CREATE
 PMAC_Setup

Rotary_Buffer
X-Y Motor Objects

Screen Controls

Servo Motor Object

Class Library
CServoMotor

CProgramBuffer

 CStepperMotor

Host Module:
CMonitorView

WM_CREATE

Open Target 0 , 1

Download Targets
Initialize Target_isr

Start Timer

DPR to
channel_features

Targer0 isr: EnqueueData0

 DPR

INITIALIZATION
Data for Channels

Command_isr

Analog_isr

Main Program

 Calc FFT, RMS, AVE

PCI32 Target 0 Module:
C-Code for TMS320C

Filter Coefficients

Analog_isr

 Sample A/D Channels

FIR Buffer
FIR Sample Buffers

 Input Sample Buffers
4 Sensor
Signals

HOST/TARGET 0,1
 INTERFACE

Data into DPR

Channel Data
FFT RMS

AVE, FREQ

Data for Target 0 & 1

 Channel Features

Data for Channels

 Sample Buf fers

QUEUE
RMS, AVE, FREQ

 Start Targets

FFT Buffers

5kHz

Command_isr

Status of Data_Taken

Enable isr

Data_Taken

Notify Host

DLL

Arrays for Data

 Data Scaling
 Advanced Monitoring
 Diagnosis Processing

Mail - Data_Taken

Update Views

WM_TIMER

Static User
Interface

Trending
and

Frequency
Distribution

300msec

Host Module:
CServer

 Data Buffers

Data

WM_CREATE

Create Socket

Port Address

Bind Socket, Port

Listen Thread

Output Data Buffer

Decode Request

Port

Listen Thread

Input Data Buffer

Client Applet

Trending and Static
View of Machining

Parameters
inside Browser

 Input Buffer
Output Buffer

Data

Init

Start Network
Thread (Socket)

Run
Re-Paint Screen

Server and Port
Init

Network Thread

Run

Socket to Input
Output Stream

Output Stream
= Output Buffer

 Input Stream
= Input Buf fer

Motion Control
User Interface

Shared
Memory:

CDocument

Socket Stream

Start Timer

ON_USER_CMD

Call Member
Function to Service

User Command

INITIALIZATION
Data for Channels

Command_isr
Analog_isr

Main Program

 Calc FFT, RMS, AVE

PCI32 Target 1 Module:
C-Code for TMS320C

Filter Coeff icients

Analog_isr

 Sample A/D Channels

FIR Buffer
FIR Sample Buffers

 Input Sample Buffers

Data into DPR

Data for Channels

 Sample Buffers

QUEUE
RMS, AVE, FREQ

FFT Buffers

5kHz

Command_isr

Status of Data_Taken

Enable isr

Data_Taken

Notify Host

Channel Data
FFT RMS

AVE, FREQ

Host : MFC Application Framework

Mailbox

 DPR

HOST/TARGET 2
 INTERFACE

DPR to
channel_features

Targer1 isr: EnqueueData1

4 Sensor
Signals

Figure 3.12: Object-oriented software framework for a PC-based intelligent machining process controller.

When the target modules have successfully sampled and processed sensor data, they place the data

features into dual port ram used for the host-target interface. Interrupt service routines, EnqueueData0

and EnqueueData1, transfer data features from the dual port ram, when it receives a hardware interrupt

from the target 0 or target 1, into the channel_features data structures. The following code shows how

the constructor initializes the interrupt service routines. Code is repeated for target 1.

The DLL automatically calls the interrupt service routines, EnqueueData0 (shown below) or

EnqueueData1, on receiving a hardware interrupt from target 0 or target 1.

// Set up the Virtual ISR Enqueue0
host_interrupt_install(target0, EnqueueData0, (PVOID)target0);
host_interrupt_enable(target0);
// Send sync to target
write_mailbox(target0, TERMINAL_MBOX, 1);

void EnqueueData0(void * target0)
{ unsigned int i,j,k;
CARDINFO * dsp;
dsp = (CARDINFO*)target_cardinfo((int)target0);
float * dpram =(float *)dsp->BusMaster.Addr;
//Read Target 0 – Channel 0 Data Features
t0chan1.FREQ = dpram[256];
t0chan1.RMS = dpram[257];
t0chan1.MEAN = dpram[258];
for (i=0;i<256;i++) t0chan1.FFTBuf[i] = dpram[i];
//Read Target 0 – Channel 1 Data Features
t0chan1.FREQ = dpram[515];
t0chan1.RMS = dpram[516];
t0chan1.MEAN = dpram[517];
for (i=0, j=259;i<256;i++,j++) t0chan1.FFTBuf[i] = dpram[j];
//Read Target 0 – Channel 2 Data Features
T0chan2. FREQ = dpram [774];
t0chan2.RMS = dpram[775];
t0chan2.MEAN = dpram[776];
for (k=0, j=518; k<256;k++,j=j+1) t0chan2.FFTBuf[k] =dpram[j];
//Read Target 0 – Channel 3 Data Features
t0chan3.FREQ = dpram[1033];
t0chan3.RMS = dpram[1034];
t0chan3.MEAN = dpram[1035];
for (i=0, j=777;i<256;i++,j++) t0chan3.FFTBuf[i] = dpram[j];
}

 88

The constructor then downloads the target application file dsptarget.out (source code discussed in

Section 3.2.2) into both targets and starts the target applications as shown below. The source code is

repeated for target1. Once started the targets operate independently from the host object module

CMonitorView.

BOOL CMonitorView::download(int tar)
{
//Resets the target, starts talker, then performs a target download
char msg[200];

 if (!(tar))
 { /* reset target0 */
 target_reset(target0);
 clear_mailboxes(target0);
 target_run(target0);
 /* wake up talker */
 if(!start_talker(target0))
 { MessageBox(NULL, "Target not responding:\ncheck installation and\nmake sure target
is\nnot held by JTAG", MB_ICONERROR);
 return FALSE;
 }
 else
 { strcpy(msg, getenv("ii_board")); //c:\pci32cc....
 strcat(msg, "\\examples\\monview\\dsptarget.out");
 if(!iicoffld(msg, target0, NULL))
 { /* start application */
 start_app(target0);
 return TRUE;
 }
 else
 { sprintf(msg, "COFF load failed. Check that the file to be loaded"
 " exists and is a COFF file");
 MessageBox(hwnd, msg, szAppName, MB_ICONINFORMATION);
 return FALSE;
 }
 }
 }
}

 89

Finally the constructor executes the timer (300) function. Every 300 milliseconds a WM_TIMER

event initiates a call to the CMonitorView::OnTimer() function. The ::OnTimer() function sends a

mailbox message to the target applications indicating that the channel_data have been read. It then

void CMonitorView::OnTimer(UINT nIDEvent)
{ //Acknowldge to the PCI32 Target Modules – Data Taken
mailbox_interrupt(target0, 1);
mailbox_interrupt(target1, 1);
//Process Parameters
m_DSP_Fx_RMS = float(int((t0chan3.MEAN)*423.3))/10;//Newton
m_DSP_Fz_RMS = float(int((t0chan2.MEAN)*422.5))/10;//Newton
m_DSP_Is_RMS= (int((t0chan1.RMS*2000))) ;//mA
m_DSP_Sc_RMS = float(int(t1chan0.RMS*1000));//mV
m_DSP_Vy_RMS = float (int(t1chan1.RMS*1000)) ; //mV
m_DSP_Tt = float(int((t1chan2.RMS) *3000))/100 ; //degreeC
//Process Control
//rpm
m_PTalk1.GetResponse(&response, "#1v");
USES_CONVERSION;
strcpy(buf,OLE2T(response));
float Zcount;
m_Speed_RPM = int(-32.9*atof(buf));
//Feedrate mm/min
m_PTalk1.GetResponse(&response, "#3f");
strcpy(buf,OLE2T(response));
Zcount = atof(buf);
m_FeedRate = Zcount * 0.2585 ;
//Feed mm/rev
m_FeedRate_mmrev= m_FeedRate / m_Speed_RPM ;
//Inner & Outer Diameter
m_Diameter_Outer = Part_Outer_Diameter;
m_Depth = Part_Depth;
m_Diameter_Inner = m_Diameter_Outer - (2*m_Depth);
//Average cutting speed m/min
m_Speed_Cut=(3.14159*((m_Diameter_Outer + m_Diameter_Inner)/2)*
 m_Speed_RPM)/1000;
//Metal removal rate mm3/min
m_Mrr_RMS = 3.14159 * (m_Diameter_Outer + m_Diameter_Inner)/2 * m_FeedRate_mmrev *
m_Depth * m_Speed_RPM ;
//Torque Nm
m_Torque = m_DSP_Fz_RMS * (m_Diameter_Outer+ m_Diameter_Inner)/4000;
//Power in cut - Nm/sec
m_Power_RMS = m_DSP_Fz_RMS * m_Speed_Cut/60 ;
//PROPOSED POSITION OF Ra AND Vb MONITORING FUNCTIONS
//m_Ra = FTWINRTE(“ RA.FTL” ,m_Fx,m_Pc,m_Vy);
//m_Wear = FTWINRTE(“ WEAR.FTL” ,m_Depth, m_FeedRate_mmrev,m_Vy_RMS,

m_Is_RMS);

//PROPOSED POSITION OF INTELLIGENT DECISION MAKING SOFTWARE
//SEND DECISION TO PMAC TARGET MODULE

 90

uses the sensor sensitivity factors, obtained in Section 3.1.2.1-3.1.2.5, to convert the voltages to

standard values. These values are placed into variables linked to Windows dialog controls. Machine

control parameters are obtained using the PTalk ActiveX discussed in Section 3.2.3. Finally the timer

function cycle ends by executing advanced monitoring and intelligent diagnosis functions (proposed

position indicated).

Chapter 4 describes the FTWINRTE () [94] function used to call the fuzzy logic models WEAR.FTL

and RA.FTL, whilst Chapter 5 describes intelligent diagnostic scheme. Figure 3.13 shows the user

interfaces for on-line viewing of sensor data and machining parameters. The views are updated at the

end of ::OnTimer(). The variables shown in Figure 3.13 (a) are linked to the screen’s dialog controls

and updated by calling the UpdateData(FALSE) function. DLL software functions for implementing

real-time scientific graphing and trending [95] are used to display sensor rms and normalized FFT

values, as shown in Figure 3.14 (b). To verify these views a function generator was connected to the

input of the Fz and Fx channels. Figure 3.14 (b) show the values for a signal generator output voltage

set at 3.188 volt (134.94 N) and frequency set at 142 Hz. CMonitorView has on-line recording

capability, which will be used in Chapter 4 for experimental analysis.

 91

(a) Static user inter face for on-line viewing of machining process parameters.

(b) On-line trending and frequency distr ibution of sensor signals.

9.765 Hz

 92

Figure 3.13: Static and dynamic views of machining process parameters.

3.2.2 PCI32 Target Modules for Signal Sampling and Processing

CMonitorView downloads dsptarget.out into both targets and starts the execution thereof. The

executable file is created by compiling dsptarget.c, commented source code given in Appendix C, using

the Texas Instruments Floating Point C Compiler [93]. On initialization the target application creates

a queue that maintains 2048 filtered sensor samples, 512 from each of the 4 channels, and creates

sample buffers to maintain values before filtering and a software timer generated analog service

routine.

Once started the analog service routine is interrupted every 200 microseconds. It samples the 4 analog

channels, filters each channel using fir() function [93] and enqueues the filtered data.

/* ISR data queue */
QUEUE queue;
/* analog sample buffers */
extern volatile float sample_buffer0[SAMPLE_BUF_SIZE];
extern volatile float sample_buffer1[SAMPLE_BUF_SIZE];
extern volatile float sample_buffer2[SAMPLE_BUF_SIZE];
extern volatile float sample_buffer3[SAMPLE_BUF_SIZE];
volatile int sample_buf_write; /* sample buffer head pointer */
#define analog_isr c_int99
void analog_isr(void);

 93

The TMS320C30 DSP used in this project is capable of performing a 16-bit multiplication plus a 32-bit

addition in one 60-nanosecond machine cycle. For a realistic filter of 40 taps the TMS320C30

performs the mathematics in around 2.460 microseconds, meaning that it can accept a new input

sample every 2.460 microsecond [41].

When a total of 512 samples for each channel (i.e. 2048 samples) is sampled into the filtered queue, it

is further processed in the main() function of the program. Processing of each sensor channel includes

void analog_isr(void)
{ int CH0_sample = read_adc(BASEBOARD, 0);
 int CH1_sample = read_adc(BASEBOARD, 1) ;
 int CH2_sample = read_adc(BASEBOARD, 2) ;
 int CH3_sample = read_adc(BASEBOARD, 3);
/* Get sample results, store to circular sample buffers. */
 sample_buffer0[sample_buf_write] = (float)CH0_sample;
 sample_buffer1[sample_buf_write] = (float)CH1_sample;
 sample_buffer2[sample_buf_write] = (float)CH2_sample;
 sample_buffer3[sample_buf_write] = (float)CH3_sample;
if(++sample_buf_write == SAMPLE_BUF_SIZE) /* modulo for rollover */
 sample_buf_write = 0; /* correction */
/*call filter routine from library. Arguments are the filter coefficient array (pointer points to the
h(n-1) term), the sample buffer pointer (points to the least recent data point sampled, i.e. the tail
of the sample circular buffer),and the filter order + 1 */
CH0_sample = (float)(fir(&filter_coeff[0], &sample_buffer0[sample_buf_write],
FILTER_ORDER + 1));
CH1_sample = (float)(fir(&filter_coeff[0], &sample_buffer1[sample_buf_write],
FILTER_ORDER + 1));
CH2_sample = (float)(fir(&filter_coeff[0], &sample_buffer2[sample_buf_write],
FILTER_ORDER + 1));
CH3_sample = (float)(fir(&filter_coeff[0], &sample_buffer3[sample_buf_write],
FILTER_ORDER + 1));
/* Place the filtered output samples into the queue */
((int)enqueue_ptr(&queue)) = CH0_sample ;
((int)enqueue_ptr(&queue)) = CH1_sample;
((int)enqueue_ptr(&queue)) = CH2_sample;
((int)enqueue_ptr(&queue)) = CH3_sample;
}

 94

functions for calculating the rms value, mean value and frequency distribution. The resultant outputs

are placed in the dual port ram from where the host application can access it.

3.2.3 Host Module CGeometr icView Module for Multi-Axis Control

void main (void)
{
……
//Intialization of data
……
timer(0, 5000); /* Generates a 5kHz timebase for A/D */
for(;;)
{ /*Wait for Analog_ISR to fill a frame of data */
if (enqueued(&queue) >= FFT_SIZE * 4)

{ /* Place data into FFT input buffer */
 for (i = 0; i < FFT_SIZE; i++)
 { FFTBufferIn0[i] = *(volatile int*)dequeue_ptr(&queue);
 FFTBufferIn1[i] = *(volatile int*)dequeue_ptr(&queue);
 FFTBufferIn2[i] = *(volatile int*)dequeue_ptr(&queue);
 FFTBufferIn3[i] = *(volatile int*)dequeue_ptr(&queue);
 }
 if(data_taken == 1)
 {
 /* Process channel 0 */
 CH0_RMS = CalcRMS(FFTBufferIn0, FFT_SIZE);
 CH0_AVE = CalcAVE(FFTBufferIn0, FFT_SIZE);
 CalcFFT(FFTBufferIn0, FFTBufferOut, window, SinTable);
 CH0_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);
 for(i = 0; i<256; i++)

{ dpram[i] = to_ieee(FFTBufferOut[i]);
}

 dpram[256] = to_ieee(CH0_FREQ);
 dpram[257] = to_ieee(CH0_RMS);
 dpram[258] = to_ieee(CH0_AVE);
 ….
 ….
 /* Process channel 1 , 2, 3
 ….
 …
 /*Notify host that data is ready to be read*/
 mailbox_interrupt(1);
 data_taken =0;

 /* data_taken will be set to 0 by the host after reading
the data*/

 } //end if
} //end for
} //end main

 95

Target 2 module is the PC-based PMAC interface card [68]. The PMAC executes a sequence of

motion control commands given to manufacture a part. Execution of the command includes

performing all the calculations required to prepare for actual execution of the move [96]. Delta Tau

developed PTalkDT, an ActiveX control that is used with 32-bit versions of Visual C++, to serve as a

communications link between a Windows application and the PMAC [69]. CGeometricView uses

PTalkDT to send motion control commands or a series if commands to the PMAC for execution.

Figure 3.14 shows the user interface for CGeometricView.

Figure 3.14: User inter face for machine control.

Programming and execution controls (Windows) are used to manage the execution of motion control

programs. It includes controls to prepare a set of motion control instructions for download to the

PMAC. Controls are included to jog motors whilst setting up the tool zero position. Process

constraints are set to ensure the on-line integrity, accuracy and quality of the machined part. If a

constraint is exceeded the diagnostic system must decide intelligently on a control action that will

ensure that the process returns to a reliable state of machining. CGeometricView provides the software

 96

interface through which to send the control action. The commands that the PMAC executes are

enclosed within classes created to facilitate the execution of on-line multi-axis control commands from

within CGeometricView. These classes include: CServoMotor for spindle motor control,

CStepperMotor for stepper motor movements within a coordinate system and CProgramBuffer for

maintaining a buffer within the PMAC for execution of host programming instructions. The source

code for the classes and their member functions is presented in Appendix D. CGeometricView module

created at runtime by CWinApp issues a WM_CREATE event, which in turn calls a constructor to

perform initialization of PMAC interface card, set up of servo control loops and a coordinate systems.

It also instantiates the following machine control objects, classes in Appendix D.

It creates a rotary programming buffer in the target to hold motion control instructions for execution.

CServoMotor Spindle(0,0,0);
CStepperMotor X_Axis(0,0,0, "#2");
CStepperMotor Z_Axis(0,0,0, "#3");
CProgramBuffer RotaryBuff(1,100);

void CGeometricView::OpenRotaryBuffer()
{ CHAR buf[255];
BSTR response = SysAllocString(L"");
USES_CONVERSION;
m_PTalk1.SetDeviceNumber(0);
m_PTalk1.SetEnabled(TRUE);
//Create Rotary Buffer - "&1 define rot 100"
m_PTalk1.GetResponse(&response, RotaryBuff.Create());
strcpy(buf,OLE2T(response));
m_PTalk1.GetResponse(&response, "#1j/#2j/#3j/");//close loops
strcpy(buf,OLE2T(response));
//Open Rotary Buffer - "OPEN ROT"
m_PTalk1.GetResponse(&response, RotaryBuff.Open());
strcpy(buf,OLE2T(response));
//Clear Rotary Buffer - "CLEAR"
m_PTalk1.GetResponse(&response, RotaryBuff.Clear());
strcpy(buf,OLE2T(response));
m_PTalk1.GetResponse(&response, RotaryBuff.Execute());//Run Program - "B0R"
strcpy(buf,OLE2T(response));}

 97

The ActiveX function m_PTalk1.GetResponse() is used to communicate commands to the PMAC

target [69]. RotaryBuff object member functions return instructions to create, open, and clear a buffer

area within the PMAC. Motion control instructions sent to this buffer area will be executed by the

PMAC. When a user enters/clicks on a Windows control, as shown in Figure 3.14, an event

(ON_USER_CMD) is generated that will direct program control to an appropriate member function

within CGeometricView. These member functions make use of the machine control objects Spindle,

X_Axis and Z_Axis to control the machining process cutting speed, feed and depth of cut. For

example to jog the x-axis stepper motor the following member function is called.

void CGeometricView::OnButtonX()
{ TCHAR buf[255], buf1[20];
BSTR response = SysAllocString(L"");
USES_CONVERSION;
if (RotaryBuffer == 1) CloseRotaryBuffer() ;
if(X_Axis.GetOffOn() == 0)
{
SetDlgItemText(IDC_BUTTON_X, "X - ON");
if (X_Axis.GetPosNeg() == 1)
 { X_Axis.SetPositive();
 m_PTalk1.GetResponse(&response, X_Axis.GetJogCommand());
 strcpy(buf,OLE2T(response));
 }
if (X_Axis.GetPosNeg() == -1){ X_Axis.SetNegative();
 m_PTalk1.GetResponse(&response, X_Axis.GetJogCommand());
 strcpy(buf,OLE2T(response));
 }
X_Axis.SetOn();
}
else
{ m_PTalk1.GetResponse(&response, X_Axis.K illCMD());
strcpy(buf,OLE2T(response));
SetDlgItemText(IDC_BUTTON_X, "OFF");
X_Axis.SetOff();
m_PTalk1.GetResponse(&response, X_Axis.CloseLoopCMD());
strcpy(buf,OLE2T(response));
}
}

 98

 On WM_TIMER, the host module sends any new instructions to the target’s circular buffer for

execution as well as reads back encoder value used to determine and display motor speeds and

positions.

3.2.4 CServer to View Process Parameters from within a Remote Browser

Manufacturing companies are looking for ways to assess the performance of their manufacturing

equipment and plants from remote sites. World Wide Web (WWW or Web) technologies are a viable

vehicle in achieving this objective. Research has focused on multi-media interaction, Virtual Reality

modeling and reducing data for file transfer [97]. Ports and sockets are levels of connection supported

by both MFC and Java. A port is an abstraction of a physical place through which communication can

take place between a server an

d a client [75]. The server provides the port and the client links to it. The PC used in this project is

Web-enabled and on start-up executes Personal Web Server (PWS). PWS listens on the Transport

char *bufferin = new char[RECIEVEMAXBUFF], *bufferout = new char [SENDMAXBUFF];

CSockAddr saServer;

ChttpBlockingSocket sConnect;

SaServer = CSockAddr(INADDR_ANY, 8192);//INADDR_ANY use local IP

CBockingSocket g_sListen; //Global socket for listening, derived from CSocket

CServer::Start()

{ g_sListen.Create();

g_Listen.Bind(saServer);

g_sListen.Listen();//Start Listening

AfxBeginThread(ServerThreadProc, ,);

..}

UINT ServerThreadProc(LPVOID pParam)

{ sConnect.ReadSimpleMsg(bufferin, RECIEVEMAXBUFF, 10);

..//Decode message stream and place process data into bufferout

..sConnect.Write(bufferout, strlen(bufferout), 10);}

 99

Con

trol

Prot

ocol

(TC

P)

port 80 for a connection from the client side web browser. The browser downloads the Hypertext

Markup Language (html) page, which contain a Java applet. The Java applet connects to MFC CServer

object through sockets. A socket is an abstraction of the network software that enables communication

in and out of a program [75]. Once a socket has been created, the Java client and CServer may

communicate any whatever way arranged. A data buffer, that contains on-line machining process

performance and limits, is streamed to the Java applet for remote monitoring. The Java applet enables

the expert to adjust process performance limits remotely. On WM_CREATE CServer makes use of the

MFC CSocket base class to create a socket, bind a socket to a port and listen on the port address as

shown below [98]. It then creates a server thread to continually read an input stream, decode a client’s

data request and send data buffer via output stream.

To establish a simple client in Java using streams requires a socket to connect to the server. The socket

methods getInputStream and getOutputstream are used to reference the socket’s associated InputStream

(in) and OutputStream (out). InputStream read() method is used to input sets of bytes from the server,

whilst OutputStream write() method

is used to output sets of bytes to the server.

Socket socket;
DataInputStream in;
DataOutputStream out;
public void net_start(String ip, int port, JSObject rF)
{ ..
//open socket to server
socket = new Socket (ip, port);
//create input and output io steams
out = new DataOutputStream (socket.getOutputStream());
in = new DataInputStream (socket.getInputStream());

..

}

 100

Figure 3.15 shows the resulting Java client executed inside an Internet browser to monitor machining

process parameters. The user has the ability to change process limits, which are updated by CServer.

The main applet calls paint () function to refresh the screen every second.

Figure 3.15: Java client inside an Internet browser for remote monitor ing of machining process.

3.3 Conclusion

A PC-based intelligent machining controller, with in-process quality assurance that is able to detect

exceeded tolerances, and adapt quickly (less than a second) to maintain a reliable machining process,

has been implemented. The system hardware and software architecture is based on open system

philosophy. The Pentium-based PC includes two PCI32 DSP interface cards for signal acquisition and

processing, a PMAC for multi-axis control and an Ethernet interface card for remote monitoring and

control. An object-oriented software framework for the controller is implemented. The framework

includes an MFC application framework to integrate machining process monitoring, diagnosis and

machine control. The application framework includes user interfaces to enable visualization of process

 101

performance. C++ classes were developed and used to support communication with PMAC interface

card.

Machine controls are connected directly to the PMAC interface card, enabling instantaneous reaction

from software commands. Sensor and measurement systems that characterize the machining process

have been embedded close to the machined product. Signals are connected to PCI32 DSP interface

cards. Software to sample and filter sensor signals, determine rms values as well as obtain a signal’s

frequency distribution, was developed and tested.

The implemented hardware architecture, as shown in Figure 3.11, provide a platform for a generic

monitoring, diagnosis and control system to realize an intelligent machining process. The implemented

object oriented software framework, as shown in Figure 3.12, enable system re-configurability

according to machining process requirements. The successful integration of embedded sensors and

machine controls, for a cutting process, with the generic hardware and software contribute to the

knowledge in the field of intelligent machining.

Chapter 4 makes use of the machining controller to obtain experimental data that is used to determine

sensor signal’s sensitivity to tool wear and surface roughness. These sensor signals are used in a multi-

sensor fusion model to measure surface roughness and tool wear indirectly. Chapter 5 uses the

experimental data to determine the influence of machining input parameter on sensor signals.

 102

To realize advanced automation in machining sensors which will perform reliable on-line,

measurement of tool wear and surface roughness is required [1,3]. In this chapter sensor fusion

modeling, as shown in Figure 4.1, is used to indirectly measure surface finish and to classify tool wear.

Signals that characterize machining process performance (tool-workpiece vibration, tool temperature,

cutting forces etc) are processed using DSP technology to extract data features. The data features and

cutting parameters may be used as inputs to the FL model.

Fuzzy Logic Model

DSP

Measurement

Machining Process Parameters

Signal Features

Machining Cutting Parameters

Figure 4.1: Sensor fusion model for tool wear classification and sur face roughness measurement.

Section 4.1 describes the methods used to date for indirect measurement of surface roughness and tool

wear classification. Section 4.2 describes the process followed in obtaining the FL models from

experimental data. In Section 4.3 experimental data is derived by using the experimental set-up

explained in Chapter 3. In Section 4.4 and 4.5 the input signals to the multi-sensor models is

determined using statistical processing of experimental data. Once the input signal has been identified

Chapter 4

Multi-Sensor Fusion Models for

 Tool Wear Classification and Sur face Roughness Measurement

 103

the experimental data is used to create FL models using FuzzyTech [94] NF-module. The effectiveness

of the FL-based sensor fusion model for tool wear and surface roughness measurement is illustrated

with numerical examples.

4.1 Introduction

Direct measuring methods for tool wear may include touch trigger probes, optical, radioactive,

proximity sensors and electrical resistance measurement techniques [99]. It is difficult to achieve the

direct measurements for on-line tool wear monitoring practically due to continuous measurement

conducted on a small wear zone. Indirect measurement senses other factors that indicate the cause of

tool wear. Indirect sensing methods that have been utilized include cutting forces, acoustic emission,

temperature, vibration, spindle motor current, torque, strain and snapshot images of the cutting tool

[99]. Most applications use only one or two sensors to detect tool conditions. Tansel and McLaughlin

[100] used the force signals for detection of tool breakage for milling process. Force signals were also

applied in turning for tool wear monitoring [101]. In the work done by Ko and Cho [102] force and

vibration signals were combined for cutting state monitoring in milling with respect to tool wear

conditions. Dornfeld [15] used three signals: acoustic emission, cutting forces and spindle motor

current for tool wear monitoring. Each signal has sensitivity to tool wear in a certain range and to a

certain extent. In order to identify tool conditions and control the process of monitoring in machining,

several strategies and techniques have been proposed. Techniques may be summarized as statistical

methods, fuzzy technology and neural networks. In statistical methods, the time series analysis

approach was applied by Tansel and McLaughlin [100] to detecting tool breakage by monitoring a

cutting force or torque signal in any direction. Du and Li [103] proposed a methodology, which uses

fuzzy set theory to build a linear fuzzy equation in terms of experimental data for description of the

relations between sensing features (monitoring indices) and tool conditions. Since they possess

 104

learning capabilities, neural networks have widely been applied to tool condition monitoring, including

supervised and unsupervised networks.

Sensing surface roughness may also consist of direct or indirect methods. Direct measurement of

surface roughness implies assessing the conditions of the workpiece just behind the cutting edge of the

tool. A stylus can be used, but it results in destruction of the sensor head due to high surface speeds of

the workpiece. Optical reflection methods have been restricted to measurement of relatively smooth

surfaces, but due to limitations are not applicable for use on production floor. A laser measuring

system, which employs a linear charge-coupled device sensor and a neural network to process captured

light patterns scattered from the workpiece surface, was developed to predict the maximum peak to-

valley roughness [104]. However, rather than using direct measurement, several researchers have

derived surface roughness indirectly using vibration signals between tool and workpiece generated

during the turning process [105].

It is clear that superior performance via neural networks may be achieved if information from multiple

sensors is fused [99]. With sensor fusion (concept explained in Section 2.5.5) an individual sensor only

senses partially and will contribute to classify the tool wear and surface roughness. However, a

combination of sensors or sensor fusion data may classify it with greater accuracy. Research in sensor

fusion has a relatively short history in machining. However, recently more attention has been directed

using and improving sensor fusion techniques [58]. Two major difficulties are encountered when

applying the fusion of sensors. These are the adequate selection of input sensors and the establishment

of effective fusion modeling. NN architecture (explained in Section 2.5.3) may be used to learn from

data sets whilst FL solutions (architecture and concepts explained in Section 2.5.2) are easy to verify

and optimize. Combining the explicit knowledge representation of FL with the learning power of NN

result in NF systems. The combination of the NN and FL architectures are described in Section 2.5.4.

 105

4.2 Process for Implementing a Multi-Sensor Model

Figure 4.2 shows the process followed for implementing FL-based model from experimental data.

Statistical processing uses experimental data to determine parameters that may be used to classify the

tool wear (ANOVA) and for indirect measurement of surface roughness (SPEARMAN). Given the

parameters, an NF module (FuzzyTech module) is used to create an FL model in order to classify tool

wear using MoM defuzzification. Another FL model is used to measure surface roughness indirectly

using CoM defuzzification. The FL model may be edited to enhance the model.

EXPERIMENTAL DATA

ANOVA
CORRELATION
(SPEARMAN)

STATISTICAL
PROCESSING

Process
Condition
Classification

Process
Parameter
Measurement

NEURO-FUZZY MODELLING

 MoM
Defuzzification
for Classification
 Model

 CoM
Defuzzification
for Measurement
 Model

FUZZY LOGIC MODEL

Data Features

Modify/add
to Rule Base

EXPERT
ANALYSIS

C++ Source Code
for Implementation

Figure 4.2: Process for implementing FL-based classification / measurement models from

exper imental data.

 106

4.3 Exper imental Data Acquisition

Numerous factors influence surface finish during turning operations. Accordingly, as shown by the

cause-effect diagram in Figure 4.3, this study will be restricted to cutting parameters, namely: feed,

speed and depth of cut and tool wear process condition. The effect of cutting parameters and tool wear

on machining process parameters measured, include the following: two cutting forces (Fx and Fz), tool-

workpiece vibration (Vy), cutting sound (Sc), spindle current (Is), cutting tool temperature (Tt) and

power in the cut (Pc) which is calculated from Fz and Vc.

Figure 4.3: Machining process cause - effect diagram.

Machining cutting parameters Vc, dy and f1x were assigned different levels, varying from 50 to 190

[m/min], 0.6-1.8 mm and 0.01 – 0.24 mm/rev, respectively in machining pure aluminum extrusions

with a Vickers hardness of 106 (10 kg load). Process conditions were fixed at two levels only, VB =

0.0 mm and WB = 0.2 mm, using TP200 a versatile cutting insert. Typical recommended cutting

parameters for the TP200 include: Vc = 200 m/min, f1x = 0.3 mm/rev and dy= 0.8 – 3.0 mm [16].

CUTTING
PARAMETERS

f1X - Feed [mm/rev]
 0.01 - 0.24

VC - Cutting Speed [m/min]
 50, 120, 190

dY: Depth of Cut [mm]
 0.6, 1.2, 1.8

PROCESS
CONDITIONS

 VB- Tool Wear [mm]
0.0 mm, 0.2 mm

PROCESS PARAMETERS

PC - Power in Cut [N]

SC- Cutting Sound [mV]

FX - Feed/Axial Force [N]

FZ - FC - Cutting Force [N]

Is - Spindle Current [mA]

VY - Tool-Workpiece Vibration [mV]

TT - Cutting Tool Temperature (0C)

Ra - Surface Roughness[]mµ

 107

Flank wear land is used as a measure of tool wear. Two TP200 inserts were machined with mild steel

at the following fixed machine settings: average cutting speed of 130 m/min, feed of 0.2 mm/rev and a

2 mm depth of cut. The inserts flank wear was monitored using a scanning electron microscope.

Figure 4.4 shows the respective wear land, VB = 0.095 mm and VB = 0.202 mm, for the two TP200

insets prepared for this project. The tool with VB = 0.202 mm is used as part of the experimental

analysis as shown in Figure 4.2, whilst the tool with wear VB = 0.096 mm will be used for verification

purposes.

 (a) Wear land – VB = 0.095 mm (b) Wear land – VB = 0.202 mm

Figure 4.4: Cutting inser ts with VB = 0.095 mm and VB = 0.202 mm.

The experimental tests have been carried out using the open architecture machine controller, described

in Chapter 3, to control the EMCO turning center, equipped with a 1.5kW brushless AC servo spindle

motor and two Powermax stepper motors configured into a x-y coordinate system. The multi-axis

software control module, as explained in Section 3.2, was used to coordinate the x-y and spindle axis.

FX, FZ, IS, SC and Vy signals were sampled at a frequency of 5000 Hz, with the respective RMS and

frequency spectrum of each obtained using the DSP monitoring software module as explained in

Section 3.2.1. The surface roughness (Ra) had been measured after the cutting operations using a

portable Mitutoyo Surftest profilometer. The results of the test for tool wear 0 mm and 0.202 mm is

shown in Table B.1 and B.2 in Appendix B respectively.

 108

4.4 Sensor Fusion Model for Tool Wear Classification

To develop a model one first needs to decide which process parameters to use as the input. With

statistical analysis one is able to perform an analysis of variance (ANOVA) [28] that indicates which

parameter is sensitive to tool wear. After the input-output parameters are in place, a mechanism to

train the model is required, whereafter the model is able to operate independently.

4.4.1 Statistical Analysis

The analysis of variance (ANOVA) module of Statistica V6.0 [106] is used to determine which process

parameters from Table B.1 (Tool Wear 0.0 mm) and Table B.2 (Tool Wear 0.2 mm) are influenced by

tool wear. ANOVA is often used as a screening technique to determine whether there is any probable

qualitative relationship between variables before the additional effort and resources are spent in an

attempt to develop a quantitative relationship [30]. Statistical hypotheses testing are used to indicate if

the long term average values of each data set will be equal, and hence used to reach a decision, if a

dependent variable is influenced by tool wear or not. The hypothesis for the ANOVA test is as

follows:

Ho: µ0mm = µ0.2mm, indicates that the long term averages are equal and

HA: µ0mm ≠ µ0.2mm indicates the alternate hypothesis.

 109

The p-value, shown in Table 4.1, indicates the truth of the null hypothesis. Therefore a p-value of less

than 0.05 indicates that tool wear significantly influences the dependent variable.

Table 4.1:

Resultant p-value of ANOVA hypothesis test between sensor data

and tool wear

Dependent var iable p-value

Tt 0.9032

Is 0.4248

Fx 0.0035

Sc 0.8924

Fz 0.4248

Vy 0.0007

Table 4.1 indicates that tool wear influences feed force (Fx) and tool-workpiece vibration (Vy)

significantly, and that these signals may be used in an advanced multi-sensor tool wear monitoring

system.

4.4.2 Analysis of Fuzzy Logic Model

The identified signal features influenced by tool wear may serve as inputs to a FL model as shown in

Figure 4.5. Pc is added as it contains information on all three the cutting parameters.

Fuzzy Logic Model
Vy

Fx

Pc

VB

FuzzyTech
Neuro-Fuzzy Module

 Input Data
 Training Samples

 Output Data
 Training Samples

Adapt Membership Functions and Change
 Rules DoS to Match Training Data

Figure 4.5: Process parameters influenced by tool wear.

 110

FuzzyTech’ NF software module [94] is a full graphical development environment that supports all

design steps for creating fuzzy logic systems from experimental data. The NF module is used to

develop an FL-based sensor fusion model for tool wear classification. Due to the completeness of the

data sets it was decided to use the RMS values for Vy, Fx and Pc from experimental data contained in

Table B1 and B2, for tool wear 0.0 mm and 0.2 mm respectively as inputs, and tool wear as the output.

The power in the cut was added as an input as it contains information regarding all three the machining

parameters, illustrated in equations 2.1 – 2.3. The learning process and knowledge representation of

the actual data is based on NF modeling described in Section 2.5.4. Table 4.2 shows the values of Vy,

Fx and Pc for an additional two cuts taken with the cutting tool, shown in Figure 4.3 (a), having a tool

wear land of 0.098 mm. The data is added to the data set for learning and verification purposes.

Table 4.2: Fx, Pc and Vy for VB = 0.098 mm.

Machining Parameters Feed Force Tool-Workpiece Vibration Power in the Cut

Vc = 122 [m/min]

f1x = 0.2089 [mm/rev]

dy = 0.6 [mm]

51.6 [N] 81.95 [mV] 282.4 [Watt]

Vc = 119.96 [m/min]

f1x = 0.1041 [mm/rev]

dy = 1.2 [mm]

83.22 [N] 71.75 [mV] 291.81 [Watt]

 111

Figure 4.6 shows a 3D plot of Vy and Fx versus tool wear for Pc in the region of 300 watts after the FL

system was created.

Figure 4.6: 3D plot of Fx and Vy versus VB for Pc = 280 Watts.

The 3D plot shows how, at a fixed cutting power, the vibration and feed force tool wear increase as the

tool wear increases. All the input values of Fx, Vy and Pc from Table B1, B2 (Appendix B) and 4.2

were re-applied to the FL model after training, and the tool wear correctly identified in 90 % of the

cases. Figure 4.7 shows the generated FL model for tool wear classification, consisting of input

membership functions, a rule base showing the DoS for each rule, as well as an output function

specifically configured to produce the MoM defuzzification. After training, the system is a pure FL

system which, unlike in the case of a trained NN, allows the addition and /or modification of the rule

based knowledge base. To verify the model, input values for Vy = 99.75 mV, Fx = 85 N and Pc =

271.23 Watt were selected using the surface plot shown in Figure 4.6. For these inputs the model

 112

should indicate 0.098 mm wear. The fuzzification, inferencing and defuzzification process is shown

for analysis purposes.

 113

RULE BASE

 MoM
DEFUZZIFICATION

 FUZZIFICATION

Fx- 85 Newton

Pc- 271.23 Watts

Vy - 99.75 mV

Tool Wear = 0.1 mm

Vy

0.43

0.58

0.7

0.3

ACTI VE RULES

Figure 4.7: Fuzzy logic model for tool wear classification.

 114

During fuzzification the following facts, as explained in Equation 2.34, is established:

Fx = high CNF 0.43

Fx = medium CNF 0.58

Pc = medium CNF 1.0

Vy = medium CNF 0.3

Vy = high CNF 0.7

The abovementioned facts activate rules 22, 23, 24, 25 of the fuzzy rule base and may be expressed

in a max-min rule structure, from Equation 2.44, as follows:

RULE 22:

IF Pc = medium CNF 1.0 AND

Fx = medium CNF 0.58 AND

Vy = medium CNF 0.3

THEN Wear = very_low DoS = 0.09

RULE 23:

IF Pc = medium CNF 1.0 AND

Fx = medium CNF 0.58 AND

Vy = medium CNF 0.3

THEN Wear = medium DoS = 0.10

RULE 24:

IF Pc = medium CNF 1.0 AND

Fx = high CNF 0.43 AND

Vy = medium CNF 0.3

THEN Wear = very_high DoS = 0.09

RULE 25:

IF Pc = medium CNF 1.0 AND

 115

Fx = high CNF 0.43 AND

Vy = high CNF 0.7

THEN Wear = very_high DoS = 0.02

During the inference process the If-part of the abovementioned rules are combined using Equation 2.45:

RULE 22: min(1.0, 0.58, 0.3) = 0.3

RULE 23: min(1.0, 0.58, 0.3) = 0.3

RULE 24: min(1.0, 0.43, 0.3) = 0.3

RULE 25: min(1.0, 0.43, 0.7) = 0.43

With FAM inference, the then part of the rule is modified by the DoS-factor as shown in Equation 2.46:

RULE 22: 0.3 * 0.09 = 0.027 RULE 23: 0.3 * 0.10 = 0.03

RULE 24: 0.3*0.09 = 0.027 RULE 25: 0.43*0.02= 0.0086

Because Rule 24 and Rule 25 have the same conclusion, they are combined applying Equation 2.47, hence

max(0.027, 0.0086) = 0.027. Using MoM defuzzification (best for method of classification applications),

Equation 2.49, RULE 23 has the largest final consequence and tool wear is correctly classified as medium

(0.1 mm) wear.

 116

4.4.3 Additional Signal Analysis for Data Features Sensitive to Tool Wear

Additional data features that are sensitive to tool wear were identified from signal analysis and include:

• Fx/Fz Ratio

Figure 4.8 show the ratio of the feed force to cutting force component for tool wear of 0 mm and 0.2 mm.

Fx/Fz versus Tool Wear

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2 0.25
mm

1059.0

4946.0

0.0

0.0

=
=

mm

mm

σ
µ

2296.0

6931.0

2.0

2.0

=
=

mm

mm

σ
µ

Figure 4.8: Fx/Fz versus tool wear.

Standard deviation for tool wear 0.2 mm (0.2mm) is more than double that for tool wear 0.0 mm and the

ratio of Fx/Fz may therefore serve as a good index in tool wear measurement.

• Tool-Workpiece Vibration Frequency Spectrum

Figure 4.9 shows the normalized amplitude of the vibration signals frequency components for zero tool

wear and 0.2 mm for various machining parameters (Vc, f1x, dy).

 117

Tool-Workpiece Vibration (Vy) Frequency Spectrum
Vc = 50 m/min ; dy = 1.2 mm ; f1x = 0.1221 mm/rev

0

100

200

300

400

500

600

700

800

900

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

*9.7656 Hz

N
o

rm
al

iz
ed

 A
m

p
li

tu
d

e

Tool Wear - 0 mm

Tool Wear - 0.2 mm
279]556283[

178]556283[

2.0_

0_

=−

=−

HzV

HzV

mmY

mmY

P

P

(a)

Tool-Workpiece Vibration (Vy) Frequency Spectrum
Vc = 125 m/min ; dy = 0.6mm ; f1x = 0.2052 mm/rev

0

100

200

300

400

500

600

700

800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

*9.7656 Hz

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e

Tool Wear - 0 mm

Tool Wear - 0.2 mm
293]556283[

186]556283[

2.0_

0_

=−

=−

HzV

HzV

mmY

mmY

P

P

(b)

 118

Tool-Workpiece Vibration (Vy) Frequency Spectrum
Vc = 117 m/min ; dy = 1.8 mm ; f1x = 0.0317

0

100

200

300

400

500

600

700

800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

*9.7656 Hz

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e
Tool Wear - 0 mm

Tool Wear - 0.2 mm
239]556283[

89]556283[

2.0_

0_

=−

=−

HzV

HzV

mmY

mmY

P

P

(c)

Figure 4.9: Vibration frequency spectrum for tool wear 0.0 mm and 0.2 mm.

The power of the normalized amplitude in the frequency range 283-556 Hz was calculated and is indicated

in Figure 4.9. The values indicate a significance difference between the power in the spectrum for a new

tool to that of a tool with wear 0.2 mm. There is also a correlation between the actual sizes of the values

for different cutting conditions. Figure 4.10 shows the 283 – 556 frequency spectrum for the vibration

signal for tool wear at 0 mm, 0.1 mm and 0.2 mm for verification purposes.

Tool-Workpiece Vibration (Vy) Frequency Spectrum
Vc = 125 m/min ; dy = 0.6 mm ; f1x = 0.2052 mm/rev

0

50

100

150

200

250

300

350

400

450

500

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

*9.7656

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e

Tool Wear - 0.0 mm

Tool Wear - 0.1 mm

Tool Wear - 0.2 mm

293]556283[

214]556283[

186]556283[

2.0_

1.0_

0_

=−

=−

=−

HzV

HzV

HzV

mmY

mmY

mmY

P

P

P

Figure 4.10: Vibration frequency spectrum for tool wear 0.0 mm, 0.1 mm and 0.2 mm.

 119

The power for the 0.1 mm worn tool gives a value in between that of the 0 mm and 0.2 mm tools,

indicating that this particular frequency spectrum of the vibration is sensitive to tool wear.

• Spindle current and Cutting Sound Frequency spectrum

The ANOVA test indicates, for this particular workpiece-cutting tool material combination, that the values

of the spindle current and cutting sound signals are not significantly affected by tool wear. However, for

completeness of analysis, Figure 4.11 shows the normalized amplitude of the spindle motor current and

cutting sound signals frequency components for tool wear 0.0 mm and 0.2 mm.

Spindle Motor Current (Is) Frequency Spectrum
Vc = 125 m/min ; dy = 0.6 mm ; f1x = 0.2052 mm/rev

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

*9.7656 Hz

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e Tool Wear - 0 mm

Tool Wear - 0.2 mm

(a) Spindle current frequency spectrum.

Cutting Sound (Sc) Frequency Spectrum
Vc = 125 m/min ; dy = 0.6 mm ; f1x = 0.2052 mm/rev

0

100

200

300

400

500

600

700

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

*9.7656 Hz

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e

Tool Wear - 0 mm

Tool Wear - 0.2 mm

306]2730[

275]2730[

2.0_

0_

=−

=−

HzS

HzS

mmC

mmC

P

P

(b) Cutting sound frequency spectrum.

 120

Figure 4.11: Spindle current and cutting sound frequency spectrums.

The amplitude of the spindle current frequency components for tool wear 0.2 mm is slightly larger, while

the amplitude of the lower frequency components of the cutting sound spectrum indicates an increase.

• Cutting Tool Temperature

Figure 4.12 shows time domain signals for the cutting tool temperature for tool wear 0.0 mm and 0.2 mm,

for various machining parameters (Vc, f1x, dy).

Tool Temperature (Tt) versus Time
Vc = 192 m/min ; dy = 0.6 mm ; f1x = 0.16 mm/rev

0

10

20

30

40

50

60

70

0 0 6 12 18 24 30

Seconds

d
eg

re
eC

Tool Wear - 0.0 mm

Tool Wear - 0.2 mm

>>?
@

AABC=∆

>>?
@

AABC=∆

s

C
T

s

C
T

mmt

mmt

0
26.2

0
58.1

2.0_

0_

(a)

Tool Temperature (Tt) versus Time
Vc = 190 m/min ; dy = 1.2 mm ; f1x = 0.102 mm/rev

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Seconds

d
eg

re
eC

Tool Wear - 0.0 mm

Tool Wear - 0.2 mm

DDE
F

GGHI=∆

DDE
F

GGHI=∆

s

C
T

s

C
T

mmt

mmt

0
25.2

0
49.1

2.0_

0_

 121

(b)

Tool Temperature (Tt) versus Time
Vc = 120 m/min ; d = 1.8 mm ; f1x = 0.03 mm/rev

0

10

20

30

40

50

60

70

80

0 0 6 12 18 36 42

Seconds

d
eg

re
e

C

Tool Wear - 0 mm

Tool Wear - 0.2 mm

JJK
L

MMNO=∆

JJK
L

MMNO=∆

s

C
T

s

C
T

mmt

mmt

0
30.2

0
16.1

2.0_

0_

(c)

Tool Temperature (Tt) versus Time
Vc = 185 m/min ; dy = 1.8 mm

0

10

20

30

40

50

60

70

80

0 0 6 12 18 24 30 36 42

Seconds

d
eg

re
e

C

Tool Wear - 0 mm

Tool Wear - 0.2 mm

PPQ
R

SSTU=∆

PPQ
R

SSTU=∆

s

C
T

s

C
T

mmt

mmt

0
31.2

0
96.1

2.0_

0_

(d)

Figure 4.12: Cutting tool temperature for tool wear 0.0 mm and 0.2 mm.

At high cutting speed there is a difference between the steady state cutting tool temperature for different

tool wear levels. More significant is the rate of change in cutting tool temperature, shown in Figure 4.12

(a) to (d), for various machining parameters. The rate of change in the cutting tool temperature may be

used as a data feature in a tool wear identification system.

 122

A further advantage of the generated fuzzy logic based system is that it allows for the addition of rules.

Additional knowledge regarding data features as discussed may lead to the addition of rules, for example:

RULE 27: If f1x = High and PSc[0-273]Hz = High then tool wear = High

RULE 28: If Vc = High and Tt = High then tool wear = High

RULE 29: If � Tt / � t = High then Tool wear = High

Due to the inherent complex and closed nature of a neural network based system, an expert would not be

able to add this type of knowledge to the system.

4.5 Sensor Fusion Model for Sur face Roughness Measurement

The Spearman’s rank correlation [107] module of Statistica V6.0 is used to find the measure of

association between surface finish and the machining cutting and process parameters, using the

experimental data in Table B.1 (Tool Wear 0.0 mm) and Table B.2 (Tool Wear 0.2 mm). Statistical

hypotheses testing are used to indicate if there exists a long-term relationship. The hypothesis for the

Spearman’s Rank test:

Ho: RRa-Sensor_data = 0, indicates that the correlation equals zero and

HA: RRa-Sensor_data ≠ 0 indicates the alternate hypothesis.

The p-value, shown in Table 4.3, indicates the truth of the null hypothesis. Therefore a p-value of less

than 0.05 indicates correlation between surface roughness and the machining parameter, i.e. alternative

hypothesis. It shows that Ra is correlated with Vz (0.3946), Is (0.5043), Fz (0.4999), dy (-0.6478) and

strongly correlates to f1x (0.91770). The parameters are used, excluding Fz as it carries the same

information as Is, as inputs to an FL based multi-sensor surface roughness monitoring system.

 123

Table 4.3:

Resultant p-value of Spearman’s rank hypothesis correlation test between sur face roughness and

machining parameters

Sensor Machining Data Spearman’s R-value p-value

Tt
-0.114

0.507947

Pc
0.086435

0.610983

Vz 0.394604 0.015654

Is 0.504253 0.001461

Fz 0.499943 0.001629

Fx
-0.30282

0.068486

Sc
-0.28023

0.102987

dy -0.6478 1.46E-05

f1x 0.917731 1.34E-15

Vc
-0.00565

0.973535

FuzzyTech NF module is used to generate the FL model for surface roughness measurement as shown in

Figure 4.13. It shows input membership functions, a rule base with the DoS for each rule as well as an

output function specifically configured to produce CoM defuzzification. To verify the fuzzy logic model,

input values for Vy = 81.95 mV, f1x = 0.21 mm/rev, Is = 4473.55 mA Watt and dy = 0.6 mm are selected.

Fuzzification, inferencing and defuzzification are shown below for analysis purposes. During the

fuzzification process the following facts, explained in Equation 2.34, are established:

dy = low CNF 1.0

f1x = high CNF 1.0

Is = high CNF 0.842

Is = medium CNF 0.1523

Vy = high CNF 0.1121

Vy = medium CNF 0.8764

 124

F1x = 21 mm/rev

Is = 4473.55 mA

 dy = 0.6 mm

Vy = 81.95 mV

Ra = 4.0 microns

COM - DEFUZZIFICATION

RULE BASE

FUZZIFICATION

0.1523

0.8420

0.1121

0.8764

0.6 1.8749 3.1499 4.4248 5.6998

Figure 4.13: Fuzzy logic model for sur face roughness measurement.

The abovementioned facts activate rules 6, 7, 25, 26, 33, 38, 39, 46, 47 of the fuzzy rule base and

may be expressed as a max-min rule structure from Equation 2.44, as follows:

RULE 6:

IF dy = low cnf 1.0

f1x = high CNF 1.0

Is = medium CNF 0.1523

Vy = high CNF 0.1121

THEN Ra = very_low DoS 0.06

RULE 7:

IF dy = low CNF 1.0

f1x = high CNF 1.0

Is = high CNF 0.842

Vy = high CNF 0.1121

THEN Ra = very_low DoS 0.5

RULE 26:

IF dy = low cnf 1.0

f1x = high cnf 1.0

Is = high cnf 0.842

Vy = high cnf 0.1121

THEN Ra = low DoS 0.04

RULE 33:

IF dy = low cnf 1.0

f1x = high cnf 1.0

Is = high cnf 0.842

Vy = medium cnf 0.8764

THEN Ra = meduim DoS 0.01

RULE 39:

IF dy = low cnf 1.0

f1x = high cnf 1.0

Is = high cnf 0.842

 114

Vy = medium cnf 0.8764

THEN Ra = high DoS 0.14

RULE 46:

IF dy = low cnf 1.0

f1x = high cnf 1.0

Is = high cnf 0.842

Vy = medium cnf 0.8764

THEN Ra = very_high DoS 0.01

RULE 47:

IF dy = low cnf 1.0

f1x = high cnf 1.0

Is = high cnf 0.842

Vy = high cnf 0.1121

THEN Ra = very_high DoS 0.82

During the inference process the If-part of the abovementioned rules is combined using Equation 2.45:

RULE 6: min(1.0, 1.0, 0.1523, 0.1121) = 0.1121

RULE 7: min(1.0, 1.0, 0.842, 0.1121) = 0.1121

RULE 26: min(1.0, 1.0, 0.842, 0.1121) = 0.1121

RULE 33: min(1.0, 1.0, 0.842, 0.8764) = 0.842

RULE 39: min(1.0, 1.0, 0.842, 0.8764) = 0.842

RULE 46: min(1.0, 1.0, 0.842, 0.8764) = 0.842

RULE 47: min(1.0, 1.0, 0.842, 0.1121) = 0.1121

With FAM inference, the then part of the rule is modified by the DoS-factor as shown in Equation

2.46:

RULE 6: 0.1121* 0.06=0.0076 RULE 7: 0.1121*0.5=0.0561

RULE 26: 0.1121*0.04 = 0.0045

RULE 33: 0.842*.01= 0.0842

RULE 39: 0.842*0.14 = 0.1179

RULE 46: 0.842*.01=0.00842 RULE 47: 0.1121*0.82=0.0919

 115

RULE 6 and Rule 7 are combined applying Equation 2.47: max(0.0076, 0.0561) = 0.0561.

RULE 46 and Rule 47 are combined applying Equation 2.47: max(0.00842, 0.0919) = 0.0919

Applying COM defuzzification (best for method of control applications) as shown in Equation 2.48

result in:

micronsRa

Ra

815.3

0.0561) 0.0045 0.0842 0.11790.0919 (

) .0561)*(0.60.0045)*(1.8749.0842)*(3.14990.1179)*(4.4248.0919)*(5.6998 (

=

++++

++++
=

Figure 4.14 compares the surface roughness obtained experimentally with the predicted values

determined using the FL model and a commonly used theoretical model given by Equation 2.8.

Fuzzy Logic and Theoretical Model vs Measured Ra

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

Measured - Ra [microns]

M
o

d
el

 -
 R

a
[m

ic
ro

n
s]

Ideal Ra

Ra = f(feed)

Ra = FL model

Figure 4.14: Compar ison between fuzzy logic and theoretical model vs measured sur face finish.

 116

The comparative results indicate that the FL model (13.56%) represented an average error of at least

three times lower than the theoretical model (43.31 %). In both cases the error increased as the feed

increased.

4.6 Conclusion

A process to implement FL-based classification and measurement models from experimental data has

been identified.

ANOVA is successfully used to identify signals, Fx and Vy, used as inputs to an FL model for the

classification of tool wear. Further analysis of signals indicate that Fx/Fz, PVy[283-556]Hz, PSc[0-273]Hz,

� Tt/ � t are sensitive to tool wear.

Spearman’s correlation is successfully applied to identify signals, dy, f1x, Is and Vy, that correlate with

Ra, used as inputs to an FL model to measure surface roughness.

FuzzyTech’s NF module is used to successfully create pure FL models. The models are able to

measure Ra with an accuracy of 86.44% and to classify tool wear with a 90% success rate. With the

addition of expert or sensor data the rule-based knowledge bases can be enhanced and improved, which

is not the case with a pure neural network model.

NF modeling tools, like FuzzyTech, allow for the generation of fuzzy logic systems into C code. The

resulting code can be integrated within other C source code and compiled to form a standalone

application. The proposed FL models can therefore be integrated into the experimental set-up,

 117

explained in Chapter 3, for on-line monitoring of tool wear and surface roughness. The online

measurement of Ra now serves as an input to an intelligent diagnostic system, explained in Chapter 5,

that will ensure that the quality of the machined product is maintained. The tool wear sensing system

feeds the controller with on-line estimates of tool wear. Based on these estimates, the controller may

adjust the depth of cut to maintain on-line dimensional accuracy.

 118

Turning processes, like any single-point tool machining process, are automatically controlled via three

independent variables, namely cutting speed (Vc [m/min]), feed (fx [mm/rev]) and depth of cut (dy

[mm]). These variables modulate the process’s performance parameters (dependent variables), such as,

workpiece surface roughness (Ra [microns]), workpiece-tool vibration (Vy [mV]), cutting power (Pc

[Watts]), tool temperature (Tt [0C]) , cutting forces (Fx [N] as well as Fz [N]), spindle current [Is] and

cutting sound (Sc [mV]). Appendix B contains experimental data for varying independent variables

and the effect it has on the dependent variables.

Low-level adaptive force control has been successfully applied within machining [53, 54, 55, 56, 57].

The machining process is complex, and to maintain several output parameters at variable set points has

proven unattainable since it implies a tremendously complicated, multi-input-multi-output control

algorithm [108]. In Section 5.1 an advanced strategy to compliment adaptive control and to respond to

changing system conditions, such as tool wear, in order to guarantee the reliability of machining

process parameters, is proposed. The response includes a diagnostic scheme to decide intelligently

which machine control action to perform. Typical machining situations include: if the tool wears and

causes the allowable cutting power to exceed its limit, should the cutting speed, the depth of cut or the

feed be changed in order to return to a reliable state of machining? If the surface finish of the

workpiece is poor and unacceptable, which of the independent variables should be changed? The feed,

speed or depth? If the movement between the cutting tool and workpiece vibrate excessively, what

should be done to eliminate it? The goal of the strategy is to return the process to the best reliable state

of machining. The execution of the strategy is formulated in a manner similar to one in which a human

Chapter 5

Diagnosis for Intelligent Machining Process Control

 119

being would proceed [1]. Statistica [106], a statistical software tool, was used to perform multiple

regression analysis on the experimental data (Table B1 (tool wear 0 mm) and B1 (tool wear 0.2 mm) in

Appendix B) in order to obtain empirical relations relating input (independent) and output (dependent)

parameters for a machining process model. Section 5.2 shows the non-linear equations used to model

the machining process. Section 5.3 introduces a fuzzy relation used to represent the “knowledge base”

of the diagnostic scheme. Section 5.4 shows a software simulation with graphical trending of the

machining processes control and performance parameters, used to test the intelligent decision making

component of the diagnostic strategy.

5.1 Basic Structure for Intelligent Diagnosis

Figure 5.1 shows a block diagram of the diagnostic scheme, and indicates how it is connected to the

machining process simulation, with user interface and graphical display for testing purposes. The

knowledge base of the intelligent diagnosis scheme is a fuzzy relation (concept explained in Section

2.5.2.2). The relation is in the form of a matrix that indicates the strength of connection

(� performence_control), obtained from the experimental data, between performance of the process and control

parameters. If there is no connection then � performance_control = 0, whereas, a strong connection indicate

� features_control =1. The execution of the decision-making process follows the following four steps.

(i) Determine control alternatives

The limit monitor determines when an on-line machining process parameter exceeds a machining

process constraint. The machining constraint is set for a specific part being manufactured. If a

constraint, say for example, Vy is exceeded, the limit monitor makes use of the fuzzy relation to

determine the control alternatives.

 115

Machining Process
Simulation

Simulation User Interface
and

Graphical Display

Process Conditions
 Tool Wear

Machining Process Control/Cutting
 Parameters

Machining Process Performance
 Parameters

MAX Pc
MIN Pc
MAX Fz
MAX Tt
Other

Limit Monitor

MACHINE CONTROL
 ALTERNATIVES

CRITERIA OF DIAGNOSTIC SCHEME:
 MACHINING PROCESS RELIABILITY

1

4

 BEST
 ALTERNATIVE

Process Control

P

ro
ce

ss
P

er
fo

rm
an

ce

 Fuzzy
Relation

Determine
Machining

Process State

Performance-Control
Analysis

Determine
M achine Control

Parameter to
Change

Machining Process
 Constraint

Fuzzy Reasoning

23

 CRITERIA
 TO EVALUATE
 ALTERNATIVES

 CALCULATED
PARAMETERS FOR
 ALTERNATIVES

Vc
f1x

dy

VyFz Fx Ra Tt Is Sc Pc

Figure 5.1: A block diagram of the diagnostic scheme.

This is achieved by searching for a match of the exceeded machining parameter, “Vy” ,

within the row indexes of the fuzzy relation.

 Vcxfdy 1

VV
VV
VV
VV
VV
VV
V

W

X

YY
YY
YY
YY
YY
YY
Y

Z

[

µµµ
µµµ
µµµ
µµµ
µµµ
µµµ
µµµ
µµµ

VcPcxfPcdyPc

VcScxfScdySc

VcIsxfIsdyIs

VcTtxfTtdyTt

VcVyxfVydyVy

VcRaxfRadyRa

VcFxxfFxdyFx

VcFzxfFzdyFz

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

,1,,

,1,,

,1,,

,1,,

,1,,

,1,,

,1,,

,1,,

 = FR[i][j]

 5.1

The connection strength (� performance_control) for each of the process control parameters is

evaluated. If � performance_control ≠ 0 the control parameter is selected as an alternative.

(ii) Obtain cr iter ia to evaluate control alternatives

The state of the machining process, which is also the criteria that will be used to evaluate

the alternatives, is determined by dividing the on-line process performance parameters

with the process constraints.

“Vy”

Control Alternatives
 “ f1x” and “Vc”

 - 117 -

SMP[i] = [Fz/Fc_C, Fx/Fx_C, Ra/Ra_C, Vz/Vz_C, Tt/Tt_C, Is /Is_C, Sc/Sc_C, Pc/Pc_C]

 5.2

(iii) Calculate parameters for alternatives

To make a decision as to which process control parameter to change, one needs to

perform process performance – control analysis. This is done by calculating the

contribution each process state has on the control alternatives. The diagnosis is

performed by:

Diagnostic[i][j]=SMP[i]*FR[i][j]=

\\\
\\
\\\
\\
\\\

]

^

__

__

`

a

CPcPcCPcPcCPcPc

CScScCScScCScSc

CIsIsCIsIsCIsIs

CTtTtCTtTtCTtTt

CVyVyCVyVyCVyVy

CRaRaCRaRaCRaRa

CFxFxCFxFxCFxFx

CFzFzCFzFzCFzFz

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

VcPcxfPcdyPc

VcScxfScdySc

VcIsxfIsdyIs

VcTtxfTtdyTt

VcVyxfVydyVy

VcRaxfRadyRa

VcFxxfFxdyFx

VcFzxfFzdyFz

/*/*_/*

/*/*_/*

/*/*_/*

/*/*_/*

/*/*_/*

/*/*_/*

/*/*_/*

/*/*_/*

,1,,

,1,,

,1,,

,1,,

,1,,

,1,,

,1,,

,1,,

µµµ
µµµ
µµµ
µµµ
µµµ
µµµ
µµµ
µµµ

 5.3

The elements within diagnostic[i][j] are certainty factors. Diagnostic[i][j], containing

certainty factors, is used in an algorithm to determine which one of the independent

variables should be changed, hence an intelligent decision.

 - 118 -

(iv) Obtain best alternative

The certainty factor Control_Parameter_CNF_j, to decide which one of the control

parameters to change, is found by averaging the sum of the maximum certainty factors.

N

jiRiS
N

i N
jCNFParameterControl

b −

=
=

1

0

max

]][[*][
c

 5.4

N is determined by finding the column with the most zeros, hence N = no of rows – no

of zeros.

5.2 Machining Process Model

Statistica’s multiple regression analysis module was used to obtain the non-linear

equations 5.5 – 5.11 (machining process model). These equations relate the dependent

with the independent variables. Appendix B contains the experimental data used in the

regression analysis. A surface plot, contour plot and graph (to indicate measured versus

model values for each of the non-linear equations) are shown in Figures 5.2 – 5.8.

VdS CyC

0.30850.2648
9171.41=

 5.5

fI xS

0.44440.6239

yd11496.2272=

 5.6

 - 119 -

dfF YXZ

0.74650.5305
Vb)*66.44406.51(+=

 5.7

VfdT CXYt

0.24500.10950.2389
1969.24=

 5.8

dfF YXWX

1.042560.4029

0
140.6187=−

dfF YXmmWX

0.86090.1525

2
113.086=−

 5.9

VfV CXWY

0.60070.4544

0
8.3239=−

VfV CXmmWY

0.47620.2883

2
17.8941=−

 5.10

dfR yXa

0.25681.5866
0571.53=

 5.11

VFP CZC
*=

 5.12

The equations include the process condition, tool wear, and are used in modeling the

machining process as shown in Figure 5.1 for testing the intelligent diagnostic scheme.

 - 120 -

(a) Surface plot.

 141.425
 162.855
 184.284
 205.714
 227.144

Speed (m/min)

D
ep

th
 (

m
m

)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

60 80 100 120 140 160 180

(b) Contour plot.

 - 121 -

Cutting Sound [mV]

y = 0.6298x + 67.865

R2 = 0.6559

50

100

150

200

250

300

50 100 150 200 250 300

Measured Values

M
o

d
el

 V
al

u
es

(c) Model versus measured values.

Figure 5.2: Surface plot, contour plot and a graph of model versus measured values

for cutting sound.

(a) Surface plot.

 - 122 -

 2343.155
 3658.29
 4973.425
 6288.56
 7603.695

Feed (mm/rev)

D
ep

th
 (

m
m

)

0.75

1.00

1.25

1.50

1.75

0.05 0.10 0.15 0.20

(b) Contour plot.

Spindle Current [mA]

y = 0.831x + 622.16

R2 = 0.7863

2000

2500

3000

3500

4000

4500

5000

5500

6000

2000 2500 3000 3500 4000 4500 5000 5500 6000

Measured Values

M
o

d
el

 V
al

u
es

(c) Model versus measured values.
Figure 5.3: Surface plot, contour plot and a graph of model versus measured values

for spindle current.

 - 123 -

(a) Surface plot.

 74.323
 124.158
 173.993
 223.828
 273.663

Feed (mm/rev)

D
ep

th
 (

m
m

)

0.75

1.00

1.25

1.50

1.75

0.05 0.10 0.15 0.20

(b) Contour plot.

 - 124 -

Cutting Force [N]

y = 0.8505x + 18.46

R2 = 0.856

50
70
90

110
130
150
170
190
210

50 70 90 110 130 150 170 190

Measured Values

M
o

d
el

 V
al

u
es

(c) Model versus measured values.

Figure 5.4: Surface plot, contour plot and a graph of model versus

measured values for cutting force.

(a) Surface plot.

 - 125 -

 52.077
 54.946
 57.815
 60.685
 63.554

Feed (mm/rev)

S
pe

ed
 (

m
/m

in
)

50

100

150

0.05 0.10 0.15 0.20

(b) Contour plot.

Temperature [degreeC]

y = 0.7405x + 15.16

R2 = 0.7367

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

40 45 50 55 60 65 70 75 80

Measured Values

M
o

d
el

 V
al

u
es

(c) Model versus measured values.

Figure 5.5: Surface plot, contour plot and a graph of model versus

measured values for cutting temperature.

 - 126 -

(a) Surface plot.

 54.771
 74.064
 93.357
 112.65
 131.943

Feed (mm/rev)

D
ep

th
 (

m
m

)

0.75

1.00

1.25

1.50

1.75

0.05 0.10 0.15 0.20

 - 127 -

(b) Contour plot.

Feed Force [N]

y = 0.8949x + 7.66

R2 = 0.9068

20

40

60

80

100

120

140

20 40 60 80 100 120 140

Measured Values

M
o

d
el

 V
al

u
es

(c) Model versus measured values.

Figure 5.6: Surface plot, contour plot and a graph of model versus measured values

for feed force.

(a) Surface plot.

 - 128 -

 48.267
 67.834
 87.4
 106.966
 126.532

Feed (mm)

S
pe

ed
 (

m
/m

in
)

50

100

150

0.05 0.10 0.15 0.20

(b) Contour plot.

Vibration [mV]

y = 0.8241x + 10.371

R2 = 0.8342

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160

Measured Value

M
o

d
el

 V
al

u
e

(c) Model versus measured values.

Figure 5.7: Surface plot, contour plot and a graph of model versus measured values

for vibration.

 - 129 -

(a) Surface plot.

 1.368
 2.709
 4.05
 5.392

Feed (mm/rev)

D
ep

th
 (

m
m

)

0.75

1.00

1.25

1.50

1.75

0.05 0.10 0.15 0.20

 - 130 -

11.1.3.1 (b) Contour plot.

Surface Roughness

y = 0.7808x + 0.2216

R2 = 0.8986

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Measured - Ra [microns]

M
o

d
el

 -
 R

a
[m

ic
ro

n
s]

(c) Model versus measured values.

Figure 5.8: Surface and contour plots and measured versus model values for sur face

roughness.

5.3 Regression Analysis for Fuzzy Relation

Statistica’s multiple regression analysis module was used to obtain BETA coefficients,

shown in Table 5.1, for linear equations written in the form (equation 2.19):

s
X

s
X

s
Y

XXY
21

2

2

1

1
ββα ++=

The equation relate the dependent (Y) with the independent (X1, X2) variables. Appendix

B contains the experimental data used in the linear regression analysis.

Table 5.1: L inear regression summary of BETA coefficients used to

relate independent and dependent var iables.

Dependent

Variable

R2
11.1.3.2 BETA

p-value

 - 131 -

DEPTH 0.796169 7.3E-06
FEED 0.701622 5.91E-05

Tool

Temperature

0.73910088

SPEED 0.868919 2.52E-10
DEPTH 0.629604 1.53E-05
FEED 0.691316 4.73E-06

Power in Cut 0.81068678

SPEED 0.946443 2.46E-13
DEPTH 0.177927 0.369661

FEED 0.648731 0.002611

Tool-

Workpiece

Vibration

0.53125349

SPEED 0.652823 1.18E-05
DEPTH 1.011078 1.22E-06
FEED 1.134478 2.09E-07

Spindle

Current

0.64264508

SPEED -0.15833 0.161893
DEPTH 1.025118 2.85E-07
FEED 1.154627 3.99E-08

Cutting Force 0.68728082

SPEED -0.18772 0.078883
DEPTH 0.884785 5.55E-05
FEED 0.202535 0.306088

Feed Force 0.55165043

SPEED -0.02736 0.826679
DEPTH 0.702251 0.000293
FEED 0.283591 0.116261

Cutting Sound 0.68512988

SPEED 0.734558 1.29E-07
DEPTH 0.370669 0.000436041
FEED 1.198262 5.63796E-14

Surface Finish 0.88982711

SPEED -0.00445 0.942749918

From Equation 2.20 the ßi coefficients are equal to [32]:

s
s

b
Y

X i

ii
=β

ßi measures the number of standard deviations for changes in Y, with each change of one

standard deviation in X i. The advantage of using BETA coefficients is that it allows one

to compare the relative contribution of each independent variable in predicting the

 - 132 -

dependent variable. Furthermore, to determine the significance of each independent

variable, the hypothesis tested:

Ho: βi = 0

HA: βi ≠ 0 (alternate hypothesis)

A p-value indicates the truth of the hypothesis. A p-value of less than 0.05 gives the

probability of Ho to be correct, else accept the alternative. Table 5.1 indicates the R2

value for each equation. It is known as the coefficient of determination, a ratio of the

explained variation to the total variation (equation 2.16 and 2.17). In other words, of the

total variation measured in the dependent variable, R2 indicate the percentage attributed

to the independent variables contained in the equation. This uncertainty is included when

calculating the connection strength coefficients for the fuzzy relation, FR[i][j]:

� performance_control = R2 * BETA. For example: the connection strength for � Tt_dy = 0.7391 *

0.7961 = 0.5884. The completed fuzzy relation:

 Vcxfdy 1

=]][[jiFR

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

7673.05604.05104.0

5033.00.04811.0

0.07290.06498.0

6422.05186.05884.0

3468.03446.00.0

0.00662.13298.0

0.00.00.4881

0.07936.07045.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

5.13

The elements in the relation FR[i][j] represent the influence which the independent

variables have on the dependent variables. The elements represent process knowledge

 - 133 -

based on statistical modeling and may be used to decide, in collaboration with the on-line

sensor values, which one of the independent variables dy, fx, Vc to change in order to

maintain system constraints.

5.4 Process Simulation

Figure 5.9 shows the machining process simulation user interface. The machining

control parameters (independent) are set, whereupon Equations 5.5 to 5.12 calculate the

process performance parameters (dependent). Process constraints for the part being

manufactured, are set. Tool wear, Vb, may now be increased, which may result in a

process performance parameter exceeding a set constraint. The diagnostic scheme will

decide intelligently, which one of the three machining control parameters to change.

This is indicated by the highest certainty factor.

 - 134 -

Figure 5.9: Machining process simulation user inter face.

Test cases in the following subsections make use of different input cutting parameters

and impose varying process constraints. In the first six test cases the tool wear is

increased and causes Pc or Fz to exceed its limit. In the final test case the Pc lower limit

is reached when decreasing the depth of cut.

 - 135 -

5.4.1 Test Case 1: Pc exceeded with Tt and Vy constraints

Figure 5.10 shows set process parameter constraints imposed whilst machining a part.

The power in the cut is limited to 304 Watts, the tool temperature to 70oC and vibration

level to 121 mV. The latter constraints are set to ensure accurate part tolerance.

Figure 5.10: Simulation user inter face with Pc, Tt and Vy constraints.

Machining control parameters are set so that Pc = 302.87 Watts, close to its limit. If the

tool wears it will increase Fz, which in turn causes Pc to exceed its power limit. The

intelligent diagnostic scheme needs to decide which one of Vc, f1x or dy to change.

Figure 5.11 shows the graphical simulation of this process. From inspection we find that

Vc is already high (c), the cutting tool temperature is close to its limit (e) and the tool-

workpiece vibration is not too far from its limit (f). Therefore, knowing that Vc

influences Pc, Tt and Vy, (more that dy and fx1) a machining expert may suggest that Vc

should be decreased (intelligent decision).

 - 136 -

(a) (b)

(c) (d)

(e) (f)

 - 137 -

 (g) (h)

 - 138 -

(i) (j)

(k)

Figure 5.11: Graphical simulation with Pc, Tt and Vy constraints.

Applying Equation 5.2 the machining state is determined from the sampled signals:

SMP[8]={ 95.646/330, 39.547/160, 1.417/5, 70.788/121, 62.98/70, 3422.6/5000,

192.47/280, 304/304 }

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:

 - 139 -

Diagnostic[8][3] = SMP[8]* FR[8][3] =

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

7674.05604.05103.0

3459.00.03308.0

0.0499.04448.0

578.04667.05293.0

2029.02016.00.0

0.03022.00935.0

0.00.01207.0

0.02299.02041.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

Equation 5.4 is applied to determine the certainty factors:

CNF1 = Change_dy_CNF = (0.5293 +0.4448+0.3308+0.5103)/4 = 0.4538

CNF2 = Change_f1x_CNF = (0.3022+0.4667+0.499+0.5604)/4 = 0.4570

CNF3 = Change_Vc_CNF = (0.2029+0.578+0.3459+0.7673)/4=0.4735

The strategy concludes that the cutting speed should decrease. The amount it decreases

depend on the size of the certainty factor (low), therefore, Vc = Vc*0.85 = 161.5 m/min.

The value of Vc is adjusted as shown (c) and results in a decrease in Pc (a), Tt (e) and Vy

(f). The decision leaves the system in a more reliable state, as envisaged by the human

expertise.

5.4.2 Test Case 2: Pc exceeded with Is, Fx and Sc constraints

Figure 5.12 show set process parameter constraints imposed whilst machining a part.

The power in the cut is limited to 304 Watts, the spindle current to 3551 mA, the cutting

sound to 203 mV and the feed force to 81 Newton. The latter constraints are set to

ensure part surface integrity.

 - 140 -

Figure 5.12: Simulation user inter face with Is, Fx and Sc constraints.

Machining control parameters are set (same as in test case no 1) so that Pc = 302.87

Watts, close to its limit. If the tool wears it will increase Fz, which in turn causes Pc to

exceed its power limit. The intelligent diagnostic scheme needs to decide which one of

Vc, f1x or dy to change. Figure 5.13 shows the graphical simulation of this process.

From inspection we find that the cutting sound is close to its limit (g), the feed force is

not far from its limit (j) and the spindle current is close to its limit (k). Therefore,

knowing that dy influences Sc, Is and Fx a machining expert may suggest that dy should

be decreased.

(a) (b)

 - 141 -

(c) (d)

(e) (f)

 - 142 -

 (g) (h)

(i) (j)

 - 143 -

(k)

Figure 5.13: Graphical simulation with Is, Fx and Sc constraints.

Applying Equation 5.2 machining state is determined from the sampled signals:

SMP[8] = { 95.646/330, 39.547/81, 1.417/5, 70.788/170, 62.98/100, 3422.6/3551,

192.47/203, 304/304}

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:

 - 144 -

Diagnostic[8][3] = SMP[8] * FR[8][3] =

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

7674.05604.05103.0

4772.00.04561.0

0.07026.06263.0

4046.03266.03705.0

1444.01435.00.0

0.03022.00935.0

0.00.02383.0

0.02299.02041.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

Equation 5.4 is applied to determine the certainty factors:

CNF1 = Change_dy_CNF = (0.6263+0.3705+0.4561+0.5103)/4 = 0.4908

CNF2 = Change_f1x_CNF = (0.7025+0.3266+0.3022+0.5604)/4=0.4729

CNF3 = Change_Vc_CNF = (0.7674+0.4772+0.4046+0.1444)= 0.4484

The inference strategy concludes that the depth of cut should be decreased. The amount

it decreases, depends on the size of the certainty factor (low), dy = dy * 0.85 = 0.595 mm.

Once the value is determined the value of dy is adjusted as shown in Figure 5.13 (b) and

result in a decrease in Pc (a), Is (k) and Sc (g). Again the decision leaves the system in a

more reliable state.

5.4.3 Test Case 3: Pc exceeded with Fz constraint

Figure 5.14 show set process parameter constraints imposed whilst machining a part.

 - 145 -

Figure 5.14: Simulation user inter face with Pc and Fz constraint.

The power in the cut is limited to 304 Watts and the cutting force to 110 Newton. The

latter constraint is set to ensure part surface integrity. Machining control parameters are

set (same as in test cases no 1 and 2) so that Pc = 302.87 Watts, close to its limit. If the

tool wears it will increase Fz, which in turn causes Pc to exceed its power limit. The

intelligent diagnostic scheme needs to decide which one of Vc, f1x or dy to change.

Figure 5.15 shows the graphical simulation of this process. From inspection we find that

the cutting force is close to its limit (i). Therefore, knowing that f1x influences Fz (little

more than dy and much more than Vc) a machining expert may suggest that f1x should

be decreased.

 - 146 -

(a) (b)

(c) (d)

(e) (f)

 - 147 -

 (g) (h)

 - 148 -

(i) (j)

(k)

Figure 5.15: Graphical simulation with Pc and Fz constraint.

Applying Equation 5.2 machining state is determined from the sampled signals:

SMP[8]={ 95.646/110, 39.547/160, 1.417/5, 70.788/170, 62.98/100, 3422.6/5000,

192.47/280, 304/304}

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:

 - 149 -

Diagnostic[8][3] = SMP[8] * FR[8][3] =

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

7674.05604.05103.0

3459.00.03308.0

0.0499.04448.0

4045.03266.03706.0

1444.01435.00.0

0.03022.00935.0

0.00.01206.0

0.06900.06126.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

Equation 5.4 is applied to determine the certainty factors:

CNF1 = Change_dy_CNF = (0.6126+0.3706+0.4448+0.5103)/4 = 0.4845

CNF2 = Change_f1x_CNF = (0.69 + 0.3266 + 0.499 + 0.5604)/4 = 0.519

CNF3 = Change_Vc_CNF = (0.1444+0.4045+0.3459+0.7674)/4=0.4155

The inference strategy concludes that the feed should be decreased. The amount it

decrease, depends on the size of the certainty factor (medium), f1x = f1x * 0.8 = 0.0864

mm/rev. Once the value is determined the value of f1x is adjusted as shown in Figure

5.15 (d) and result in a decrease in Pc (a). Again the decision leaves the system in a more

reliable state, as envisaged by the human expertise.

5.4.4 Test Case 4: Pc exceeded with Ra constraint

Figure 5.16 show set process parameter constraints imposed whilst machining a part.

The power in the cut is limited to 304 Watts and the surface roughness to 4 microns. The

latter constraint is set to maintain part surface quality.

 - 150 -

Figure 5.16: Simulation user inter face with Pc and Ra constraint.

Machining control parameters are set so that Pc = 302.95 Watts, close to its limit. If the

tool wears it will increase Fz, which in turn causes Pc to exceed its power limit. The

intelligent diagnostic scheme needs to decide which one of Vc, f1x or dy to change.

Figure 5.17 shows the graphical simulation of this process. From inspection we find that

the surface roughness is close to its limit. Therefore, knowing that f1x influences Ra

(more than dy and much more than Vc) a machining expert may suggest that f1x should

be decreased. .

 - 151 -

(a) (b)

(c) (d)

(e) (f)

 - 152 -

 (g) (h)

 - 153 -

(i) (j)

Figure 5.17: Graphical simulation with Pc and Ra constraint.

Applying Equation 5.2 machining state is determined from the sampled signals:

SMP[8] = { 139.82/330, 54.871/160, 3.75/4, 74.024/170, 62.502/100, 3703.8/5000,

174.97/280, 304/304 }

Multiplying SMP[8] with Equation 5.13,

result in Diagnostic[8][3]:

 - 154 -

Diagnostic[8][3] = SMP[8] * FR[8][3] =

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

7674.05604.05103.0

3145.00.03006.0

0.054.04813.0

4014.03241.03678.0

151.01501.00.0

0.01373.13092.0

0.00.01674.0

0.03362.02984.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

Equation 5.4 is applied to determine the certainty factors:

CNF1 = Change_dy_CNF = (0.5103+0.4813+0.3678+0.3092)/4 = 0.4172

CNF2 = Change_f1x_CNF = (1.1373+0.5604+0.3363+0.3241)/4 = 0.5895

CNF3 = Change_Vc_CNF = (0.7674+0.3145+0.4014+0.151)/4=0.4086

The inference strategy concludes that the feed should be decreased. The amount it

decrease, depends on the size of the certainty factor (medium), f1x = f1x * 0.8 = 0.1574

mm/rev. Once the value is determined the value of f1x is adjusted as shown in (d) and

result in a decrease in Pc (a). Again the decision leaves the system in a more reliable

state, as envisaged by the human expertise.

5.4.5 Test Case 5:Fz Exceeded

Figure 5.18 show set process parameter constraints imposed whilst machining a part.

The cutting force is limited to 120 Newton. The constraint is set to ensure part surface

integrity.

 - 155 -

Figure 5.18: Simulation user inter face with Fz constraint and a high dy.

If the tool wears it will cause Fz to exceed its limit. The intelligent diagnostic scheme

needs to decide which one of Vc, f1x or dy to change. Figure 5.19 shows the graphical

simulation of this process. From inspection we find that the cutting sound is close to its

limit, cutting temperature is not too far from its limit and spindle current is close to its

limit. These signals are mostly influenced by the depth of cut.

 - 156 -

(a) (b)

(c) (d)

(e) (f)

 - 157 -

 (g) (h)

 - 158 -

(i) (j)

(k)

Figure 5.19: Graphical simulation with Fz constraint and a high dy.

Applying Equation 5.2 machining state is determined from the sampled signals:

SMP[8] = { 120/120, 73.184/160, 0.422/5, 37.165/170, 65.049/100, 4106.0/5000,

219.85/280, 257.95/1400}

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:

 - 159 -

Diagnostic[8][3] = SMP[8] * FR[8][3] =

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

1414.01033.0094.0

3952.00.03777.0

0.05987.05336.0

4177.03373.03827.0

0758.00753.00.0

0.009.00278.0

0.00.02233.0

0.07936.07045.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

Equation 5.4 is applied to determine the certainty factors

CNF1 = Change_dy_CNF = (0.7045+0.3827+0.5336+0.3777)/4 = 0.4996

CNF2 = Change_f1x_CNF = (0.7936+0.3373+0.5987+0.1033)/4 =0.4582

CNF3 = Change_Vc_CNF = (0.0758+0.4177+0.3952+0.1414)/4=0.2575

The inference strategy conclude that the depth of cut should be decreased. The amount it

decrease, depends on the size of the certainty factor (low), dy = dy * 0.85 = 1.53 mm.

Once the value is determined the value of dy is adjusted as shown (b) and result in a

decrease in Fz (a). Again the decision leaves the system in a more reliable state, as

envisaged by the human expertise.

5.4.6 Test case 6: Fz Exceeded

Figure 5.20 show set process parameter constraints imposed whilst machining a part.

The cutting force is limited to 120 Newton. The constraint is set to ensure part surface

integrity.

 - 160 -

Figure 5.20: Simulation user inter face with Fz constraint and a high f1x.

If the tool wears it will cause Fz to exceed its limit. The intelligent diagnostic scheme

needs to decide which one of Vc, f1x or dy to change. Figure 5.21 shows the graphical

simulation of this process. From inspection we find that the surface roughness is close to

its limit, The signal is mostly influenced by feed.

 - 161 -

(a) (b)

(c) (d)

 - 162 -

(e) (f)

 (g) (h)

 - 163 -

(i) (j)

(k)

Figure 5.21: Graphical simulation with Fz constraint with a high f1x.

Applying Equation 5.2 machining state is determined from the sampled signals:

SMP[8] = { 120/120, 42.395/160, 3.843/5, 76.042/170, 58.975/100, 4079.7/5000,

162.89/280, 255.49/1400}

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:

 - 164 -

Diagnostic[8][3] = SMP[8] * FR[8][3] =

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

14.01023.00931.0

2928.00.02799.0

0.05948.05302.0

3787.03058.0347.0

1551.01541.00.0

0.08195.02535.0

0.00.01293.0

0.07936.07045.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

Equation 5.4 is applied to determine the certainty factors:

CNF1 = Change_dy_CNF = (0.7045+0.347+0.5302+0.2799)/4 = 0.4654

CNF2 = Change_f1x_CNF = (0.7936+0.8195+0.3058+0.5948)/4 =0.6284

CNF3 = Change_Vc_CNF = (0.1551+0.3787+0.2928+0.14)/4=0.2416

The inference strategy concludes that the feed should be decreased. The amount it

decrease, depends on the size of the certainty factor (medium), f1x = f1x * 0.85 = 0.167

mm/rev. Once the value is determined the value of f1x is adjusted as shown in (d) it

results in a decrease in Fz (a). Again the decision leaves the system in a more reliable

state, as envisaged by the human expertise.

 - 165 -

5.4.6 Test case 7: Pc lower L imit

Figure 5.22 show set process parameter constraints imposed whilst machining a part.

The lower limit for cutting power is set at 243 Watts.

Figure 5.22: Simulation user inter face with Pc lower limit .

Whilst machining the depth of cut is reduced and this causes the Pc to go below its lower

limit. The intelligent diagnostic scheme needs to decide which one of Vc, f1x or dy to

change. Figure 5.23 shows the graphical simulation of this process. From inspection we

find that the spindle current is close to its limit, therefore to increase the speed is the best

choice.

 - 166 -

(a) (b)

(c) (d)

 - 167 -

(e) (f)

 (g) (h)

 - 168 -

(ii) (j)

(k)

Figure 5.23: Graphical simulation with Pc lower limit.

Applying Equation 5.2 machining state is determined from the sampled signals:

SMP[8] = { 112.39/330, 44.703/160, 2.2962/5, 64.713/170, 59.333/100, 3918/5000,

171.20/280, 243/1400}

 - 169 -

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:

Diagnostic[8][3] = SMP[8] * FR[8][3] =

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

1332.00973.00886.0

3077.00.02941.0

0.05712.05092.0

381.03077.03491.0

1320.01312.00.0

0.04896.01515.0

0.00.01364.0

0.02703.02399.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

Equation 5.4 is applied to determine the certainty factors:

CNF1 = 1-Change_dy_CNF = 1- (0.2399+0.3491+0.5092+0.2941)/4 = 0.6519

CNF2 = 1-Change_f1x_CNF =1- (0.2703+0.4896+0.3077+0.5712)/4 =0.5903

CNF3 = 1-Change_Vc_CNF = 1- (0.1320+0.381+0.3077+0.1332)/4=0.7615

The inference strategy concludes that the cutting speed should be increased. The amount

it increases, depends on the size of the certainty factor (medium), Vc = Vc * 1.25 = 162.5

m/min. Once the value is determined the value of Vc is adjusted as shown in (c) and

result in an increase in Pc (a). The decision leaves the system in the most reliable state,

as envisaged by the human expertise.

5.5 Conclusion

An advanced diagnostic scheme to complement low-level adaptive control has been

proposed and implemented. The knowledge base of the diagnostic scheme consists of a

fuzzy relation. The fuzzy relation indicates the strength of connection between the

control and process parameters. It was derived from statistical processing of

 - 170 -

experimental data. A process model based on experimental data was implemented within

a simulation, created to test the diagnostic scheme. Within the simulation tool wear

process condition causes a process parameters to exceed its limit. The diagnostic scheme

is able to reason and decide intelligently which control parameter to change to return the

machining process to its most reliable state.

 - 171 -

Conventional CNC machines have limitations because of their closed architecture [59,

60]. In order to deal with machining complexity an intelligent machining controller

should have a suitable architecture. Open architecture is a philosophy in design and

implementation of machine tool, production processes and control. It creates an open

environment for manufacturing and enables manufacturing systems to change and

reconfiguration of system hardware and software. An open architecture in the design and

implementation of intelligent machine tools is an on-going process and need to embrace

sensor integration, software and hardware integration, flexibility, openness and

knowledge based characteristics [61, 62, 63, 64].

Intelligent machining is an advanced approach in manufacturing, strongly related to the

efforts in developing re-configurable manufacturing equipment. This research project

introduces all the relevant components and concepts required in the monitoring, diagnosis

and control for intelligent machining. These include: identifying sensors to characterize

the machining process, digital signal processing for signal measurement, intelligent

systems for monitoring and intelligent diagnosis, and multi-axis control technology for

machine control. Intelligent machining systems with in-process quality assurance need to

detect and react quickly on measured defects, and have the capability to adapt to maintain

Chapter 6

Conclusion and Future Development

 - 172 -

desired tolerances. The PC-based system implemented for this purpose is one of the

major accomplishments of this project and can be summarized as follows:

• The integration of hardware architecture: DSP, PMAC and Ethernet interface

cards.

• The implementation of an embedded sensory system that characterize the

machining process.

• The implementation of software components, executed on the two PCI32 DSP

interface cards, for on-line signal acquisition, filtering and advanced processing

(including FFT).

• The implementation and interfacing of machine controls connected to a PMAC

interface card to realize multi-axis control.

• Implementation of software for remote monitoring and setting of machining

process constraints.

• The implementation of an MFC software application framework (object

oriented) to integrate all the modules, including: CMonitorView to request data

from the DSP targets, CGeometricView to send motion control commands to

the PMAC and CServer for remote monitoring. The application framework

includes user interfaces to enable the visualization of the process‘s performance.

C++ classes were developed and used to support communication with PMAC

interface card.

 - 173 -

To realize advanced automation in machining sensors that perform reliable on-line

measurement of tool condition and surface roughness, are required [1,3]. In this research

project sensors that characterize the machining process were used in multi-sensor fusion

models to indirectly measure surface finish and to classify tool wear. An experimental

procedure was completed, with the findings and accomplishments summarized as

follows:

• The implementation of a procedure to implement FL-based classification and

measurement models. The procedure includes statistical processing and FL

defuzzification techniques.

• Successful statistical processing of experimental data to identify machining

signals and parameters influenced by tool wear and that correlate with surface

roughness.

• Successful use of the experimental data and FuzzyTech’s NF module to

implement FL models.

• The FL models are able to measure Ra with an accuracy of 86.44% and to

classify tool wear with a 90% success rate.

• Additional signal analysis found that Fx/Fz, PVy[283-556]Hz, PSc[0-273]Hz, � Tt/ � t

are sensitive to tool wear.

The monitoring of tool status and surface roughness by means of intelligent systems will

enhance automated machining. However, the primary difference between automated

machining and intelligent machining is that an intelligent system (applied in the latter) is

 - 174 -

capable of making decisions based on significant information from the machining

process. An advanced diagnostic scheme to complement low-level adaptive control has

been proposed and implemented. The findings and accomplishments of the scheme can

be summarized as follows:

• A knowledge base for the diagnostic scheme. It consists of a fuzzy relation

and is derived from the statistical processing of experimental data.

• Implementing a machining process model (based on experimental data) and

executing it within a software simulation. Within the simulation, tool wear

process condition causes a process parameters to exceed its limit, the

diagnostic scheme is able to reason and decide intelligently which control

parameter to change to return the machining process to its most reliable state.

The main knowledge contribution to the field of intelligent machining is the PC-based

intelligent machining process controller with artificial intelligent system components to:

classify tool wear and measure surface roughness indirectly, and a diagnostic scheme

with intelligent decision-making capability. This intelligent machining process

controller is sensor based, modular, flexible and include all the components (hardware

and software) to perform in-process quality assurance on the machined product.

By using the same principles and components, as used in this project, the system can be

extended to include all aspects of advanced machine monitoring. The object oriented

software application framework can be enhanced to accommodate these extensions. The

 - 175 -

fuzzy relation may be viewed as an “ intelligent cell” and the principle may be duplicated

into various areas of intelligent diagnosis. The following suggestions about the future

development of this specific project can be summarized as follows:

• Standardized application software framework with monitoring, diagnosis and

machine control objects.

• To increase user interaction one need to develop a standardized user

interfaces for the application framework, an area normally neglected by

engineers.

• DSP to extract features that relate the monitoring of machining states and

conditions to machine control parameters. This will expand the intelligence

of the system.

• To expand the diagnostic scheme for implementation and test the interaction

and performance with adaptive control.

The continuation of this project is strongly recommended, as it will contribute to the

implementation of re-configurable intelligent machining systems.

 - 176 -

[1] Tonshoff H. K., Wulfsberg J. P., Kals H. J. J., Konig W., Aachen R. W., van

Luttervelt C. A., 1988, Developments and Trends in Monitoring and Control of

Machining Processes, Annals of the CIRP, Vol. 37, No. 2, pp. 611-619.

[2] Koelsch J. R., 1995, NAMRC XXIII Report: A Deeper Understanding of

Machining, Manufacturing Engineering, July, Vol. 115, No.1, pp. 57-61.

[3] Haber R. E., Peres C. R., Alique A., Ros S., Gonzalez C., Alique J. R., 1998,

Towards Intelligent Machining: Hierarchical Fuzzy Control for End Milling

Process, IEEE Transactions on Control Systems Technology, Vol. 6, No. 2.

[4] Passino K. M., 1995, Intelligent Control for Autonomous Systems, IEEE

Spectrum, Vol. 36, No. 6, pp. 55-62.

[5] Von Altrock C., 1997, Fuzzy Logic in Automotive Engineering, Circuit Cellar,

November Issue.

[6] Frenzel E. F., 1987, Crash Course in Artificial Intelligence and Expert Systems,

Howard W. Sams & Co.

References

 - 177 -

[7] Mirzai A. R., 1990, Artificial Intelligence: Concepts and Applications in

Engineering, Chapman and Hall Computing.

[8] Doyle L. E., Keyser C. A., Leach J. L., Schrader G. F., Singer M. B., 1985,

Manufacturing Processes and Material for Engineers, Prentice-Hall.

[9] Kalpakjian C., 1995, Manufacturing Engineering and Technology, Addison

Wesley, USA.

[10] Tlusty J. Andrews G. C., 1983, A Critical Review of Sensors for Unmanned

Machining, Annals of the CIRP, Vol. 32, No. 2, pp. 563-573.

[11] Jung C., Oh J., 1990, Improvement of Surface Waviness by Cutting Force

Control in Milling, International Journal for Machine Tool Manufacture, Vol.

31, No.1, pp. 9-21, Great Britain.

[12] Cakir M. C., Gurarda A., 1998, Optimization and Graphical representation of

Machining conditions in Multi-Pass Turning Operation, Computer Integrated

Manufacturing Systems, Vol. 11, No. 3, pp.157-170, Elsevier.

 - 178 -

[13] Ay H., Yang W., Yang J., 1995, Dynamics of Cutting Tool Temperatures

During Cutting Process, Experimental Heat Transfer, July-September, Vol. 7,

No. 3, pp. 203-216.

[14] Young H., 1996, Cutting Temperature Responses to Flank Wear, Wear, Vol.

201, No. 1, pp.117-120, Elsevier Science.

[15] Dornfeld D. A., 1990, Neural Network Sensor Fusion for Tool Condition

Monitoring, Annals of the CIRP, Vol. 39, No. 1, pp. 101-105.

[16] SECO TOOLS, 1996, Secolor Guide Turning Inserts.

[17] Yang K., 1998, Empirical Surface Roughness Monitoring and Cutting Tool

Change Procedure, Key Engineering Materials, Vol. 138-140, pp. 593-608,

Trans Tech Publications, Switzerland.

[18] Capello E., Davoli P., Bisi G., 1999, Residual Stresses and Surface Roughness

in Turning, Transactions of the ASME, Journal of Engineering Materials, Vol.

121, pp.346-351.

[19] Shiraishi M., Yamanaka K., Fujita H., 1990, Optimal Control of Chatter in

Turning, International Journal of Machine Tools Manufacture, Vol. 31, No. 1,

pp. 31-43, Great Britain.

 - 179 -

[20] Lee A., Liu C., Chiang S., 1991, Analysis of Chatter Vibration in a Cutter-

Workpiece System, International Journal of Machine Tools Manufacture, Vol.

31, No. 2, pp. 221-234, Great Britain.

[21] Kim J., Lee E., Hyun D., 1994, A Study on the Modeling of Tool Motion and

High-Accuracy Surface Generation by the use of Cutting-Force Signals, Journal

of Materials Processing Technology, Vol. 47, No. 2, pp. 45-62.

[22] Wiercigroch M., 1997, Chaotic Vibration of a Simple Model of the Machine

Tool-Cutting Process System, Transactions of the ASME, July, Vol. 119, Part

3., pp. 468-475.

[23] Tarng Y. S., Young H. T., Lee B. Y., 1992, An Analytical Model of Chatter

Vibration in Metal Cutting, International Journal of Machine Tool Manufacture,

Vol. 34, No. 2, pp. 183-197, Printed in Great Britain.

[24] Stone B. J., 1990 Suppression of Self-Excited Chatter, Invitation Lecture to

Japan Machine Tool Builders Association, Australia.

[25] Fuller C. R., von Flotow A. H., 1995, Active Control of Sound and Vibration,

IEEE Control Systems, December, pp. 9-19.

 - 180 -

[26] Saini D. P., Park Y. J., 1996, A Quantitative Model of Acoustic Emissions in

Orthogonal Cutting Operations, Journal of Materials Processing Technology,

April, Vol. 58, No. 4., pp.343 –350.

[27] Smith S. , Tlusty J., 1992, Stabilizing Chatter by Automatic Spindle Speed

Regulation, Annals of the CIRP, Vol. 41, No. 1, pp. 433-436.

[28] Spiegel M. R., 1972, Theory and Problems of Statistics in SI Units, McGraw-

Hill International, pp. 217-284.

[29] Wylie C. R., Barrett L. C., 1985, Advanced Engineering Mathematics,

McGraw-Hill, pp.179-204.

[30] Bethea R. M., Rhinehart R., 1991, Applied Engineering Statistics, Marcel

Dekker.

[31] Weiss N. A., Hassett M. J., 1991, Introductory Statistics, Addison-Wesley.

[32] Hamburg M., Young P., 1994, Statistical Analysis for Decision Making,

Duxbury Press.

 - 181 -

[33] Fang X. D., 1995, Expert System-Supported Fuzzy Diagnosis of Finish-Turning

Process States, International Journal of Machine Tools Manufacturing, Vol. 35,

No. 6, pp. 913-924, Elsevier Science.

[34] Bellanger M., 2000, Digital Processing of Signals: Theory and Practice, 3rd

Edition, p.20, John Wiley & Sons Ltd.

[35] Haykin S., 1988, Digital Communications, p.136, John Wiley and Sons.

[36] McClellan J. H., Schafer R. W., Yoder M. A., DSP First: A Multimedia

Approach, pp.119-152, Prentice-Hall.

[37] Kaiser J. F., Mitra S. K., 1993, Handbook for Digital Signal Processing, p.157,

2nd Edition, John Wiley and Sons.

[38] Ifeachor E. C., Jervis B. W., 1993, Digital Signal Processing: A Practical

Approach, p.287, Addison-Wesley.

[39] Thede L., 1996, Analog and Digital Filter Design Using C, pp.261-268, Prentice

Hall.

[40] Lam H. Y., 1979, Analog and Digital Filters: Design and Realization, p.615-

618, Prentice-Hall.

 - 182 -

[41] Chassaing R., 1992, Digital Signal Processing with C and the TMS320C30,

Wiley-Interscience.

[42] Lynn P. A., Fuerst W., 1997, Introductory Digital Signal Processing with

Computer Applications, p.66, 2nd Edition, John Wiley and Sons.

[43] Marven C., Ewers G., 1996, A Simple Approach to Digital Signal Processing,

pp.135-139, Wiley Interscience.

[44] Etter D. M., Ingber J. A., Engineering Problem Solving with C, pp. 234-245, 2nd

Edition, Prentice Hall.

[45] Marshall G., 1990, Student’s Guide To Expert Systems, pp. 143-156,

Heinemann Newnes Professional Publishing Ltd.

[46] Mendel J. M., 1995, Fuzzy Logic Systems for Engineering: A Tutorial,

Proceedings of the IEEE, Vol. 83, No. 3, March, pp.345-377.

[47] Shaw I. S., 1997, The Theory and Application of Fuzzy Logic to Industrial

Process Control, p. 45, RAU Press.

[48] Landau L. J., Taylor J. G., 1998, Concepts for Neural Networks: A Survey,

pp.3-11, Springer.

 - 183 -

[49] Medsker L. R., 1994, Hybrid Neural Network and Expert Systems, Kluwer

Academic Publishers, London.

[50] Monostori L., Egresits C., 1997, On Hybrid Learning and its Application in

Intelligent Manufacturing, Computers in Industry, Vol. 33, pp. 111-117,

Elsevier Science.

[51] Von Altrock C., 1997, Fuzzy Logic and NeuroFuzzy Applications in Business

and Finance, pp. 141-171, Prentice Hall.

[52] Isermann R., 1998, On Fuzzy Logic Applications for Automatic Control,

Supervision, and Fault Diagnosis, IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, Vol. 28, No.2.

[53] Koren Y., 1997, Control of Machine Tools, Journal of Manufacturing Science

and Engineering, November, Vol. 119, pp. 749-755.

[54] Hsu P., Fann W., 1996, Fuzzy Adaptive Control of Machining Processes with

Self-Learning Algorithm, Transactions of the ASME, Vol. 118.

[55] Trang Y., Yen Z., Nian C., 1996, Genetic Synthesis of Fuzzy Logic Controllers

in Turning, Fuzzy Sets and Systems, pp. 301-310, Elsevier Science.

 - 184 -

[56] Masory O., Koren Y., Adaptive Control System for Turning, Annals of the

CIRP, Vol. 29, No. 1, 1980.

[57] Elbestawi M. A., Mohamed Y., Liu L., 1990, Application of Some Parameter

Adaptive Control Algorithms in Machining, Journal of Dynamic Systems,

Measurement and Control, Vol. 112, pp. 611-617.

[58] Azouzi R., Guillot M., 1997, On-Line Prediction of Surface Finish and

Dimensional Deviation in Turning using Neural Network Based Sensor Fusion,

Vol. 37, No. 9, pp.1201-1217.

[59] Altintas Y., Newell N., Ito M., 1996, Modular CNC Design for Intelligent

Machining, Part 1: Design of a Hierarchical Motion Control Module for CNC

Machine Tools, ASME Journal of Manufacturing Science and Engineering,

Vol. 118, No. 4, pp. 506-513.

[60] Altintas, Y. and Munasinghe, W. K., 1996, Modular CNC Design for Intelligent

Machining, Part 2: Modular Integration of Sensor Based Milling Process

monitoring and Control Tasks, ASME Journal of Manufacturing Science and

Engineering, Vol. 118, No. 4, pp. 514-521.

 - 185 -

[61] Schofield, S. and Wright, P., 1998, Open Architecture Controllers for Machine

Tools, Part 1: Design Principles, ASME Journal of Manufacturing Science and

Engineering, Vol. 120, No. 2, pp. 417-424.

[62] Altintas W., 1994, A Hierarchical Open-Architecture CNC System for Machine

Tools, Annals of the CIRP, Vol. 43, No. 1, pp. 349-354.

[63] Yellowley I., Pottier P. R., 1992, The Integration of Process and Geometry

within an Open Architecture Machine Tool Controller, International Journal of

Machine Tool Manufacture, pp. 277-293.

[64] Lundholm T., 1991, A Flexible Real-Time Adaptive Control System for

Turning, Annals of the CIRP, Vol. 40, No. 1, pp. 441-444.

[65] Wright P. K., 1995, Principles of Open-Architecture Manufacturing, Journal of

Manufacturing Systems, Vol. 14, No. 3, pp. 187-201.

[66] Owen J. V., 1995, Opening up Controls Architecture: Plug-and-Play systems

are in, and high-priced boxes filled with secret ingredients are out,

Manufacturing Engineering, November, pp. 53-60

[67] Innovation Integration, Products specifications available from Internet URL

http://www.innovative-dsp.com.

 - 186 -

[68] Olsen W.R., Dimitri D.S., 1989, Control for Eight Axes by DSP, Intelligent

Motion, Delta Tau Data Systems, Home Page available from Internet URL

http://www.deltatau.com.

[69] Delta Tau, 1998, User’s Guide for PTalkDT ActiveX, Delta Tau Data Systems.

[70] Hunting B., 1996, Object-Oriented Abstraction through Polymorphism and

Virtual Functions, Embedded Systems Programming, July, pp. 49-62.

[71] Deitel H. M., Deitel P. J., 1994, C++ How to Program, Prentice Hall.

[72] Chagnot G., 1996, Flexibility by Design, Embedded Systems Programming,

April, pp. 32-54.

[73] Kruglinski D. J., 1996, Inside Visual C++: The Standard Reference for

Programming with Microsoft Visual C++, Microsoft Press, Washington.

[74] CD, 1997, Mastering MFC Development, Microsoft training, Microsoft Press,

Washington.

[75] Bishop J., 2001, Java Gently 3rd Edition, Addison Wesley.

 - 187 -

[76] Installation and Instruction Manual, Baldor Motors and Drives, Baldor

Germany.

[77] Data sheet, Pacific Scientific Motor and Controls: Powermax hybrid step motor.

[78] Lin S. C., Hu M. R., 1992, Low Vibration Control System in Turning,

International Journal of Machine Tools Manufacture, Vol. 32, No. 5, pp.629-

640, Pergamon Press Ltd, Great Britain.

[79] Datasheet, Model 3140 accelerometer, ICSensors, California.

[80] Data sheet, Model 1100 Signal Converter, Measurement Control and

Instrumentation, Port Elizabeth, South Africa.

[81] Hoffmann K., 1986, Measuring Elementary Load Cases with Strain Gauges,

Hottinger Baldwin Messtechnik GmbH, Darmstadt, West Germany.

[82] Data sheet, Strain Gauge 0.6/120LY11, Hottinger Baldwin Messtechnik GmbH,

Darmstadt, West Germany.

[83] Hottinger Baldwin Messtechnik GmbH, Darmstadt, West Germany, Articles

available from Internet URL http://www.hbmwt.com.

 - 188 -

[84] Hoffmann K., 1984, Practical Hints for the Application of Strain Gauges,

Hottinger Baldwin Messtechnik GmbH, Darmstadt, West Germany.

[85] Hoffmann K., 1986, Applying the Wheatstone Bridge Circuit, Hottinger

Baldwin Messtechnik GmbH, Darmstadt, West Germany.

[86] Bolton W., 2000, Mechatronics: Electronic Control Systems in Mechanical and

Electrical Engineering 2nd Edition, Addison Wesley Longman, New York.

[87] Measuring Sound, Bruel & Kjaer, North America, Application note available

from URL www.bkhome.com.

[88] LSM900 Professional Omni-directional Instrument Microphone, Leon Audio,

Application note available from URL, http://www.LeonAudio.com.au

[89] Engdahl T., 2000, Powering Microphones, Application note available from

URL http://www.hut.fi/Misc/Electronics/Circuits/microphone_powering.html.

[90] Data sheet, AD210 Precision Wide Bandwidth 3-Port Isolation Amplifier,

Analog Devices.

[91] Models IHA-25/IHA-100, F.W. Bell, USA, Data sheet available from URL

http://fwbell.com/html/cs_intro.html.

 - 189 -

[92] Drafts B., 1998, A tutorial on Current Measurement Methods, Application note

available from URL http://fwbell.com/html/cs_intro.html.

[93] PCI32 Development Package Software Manual, 1997, Innovative Integration,

California.

[94] FuzzyTech 4.2 Reference Manual, Inform Software Corporation, Germany.

[95] ProEssentials, 1997, GigaSoft Inc., Software application note available from

URL http://www.gigasoft.com

[96] PMAC User’s Manual, 1998, Delta Tau Data Systems, California.

[97] Goncharenko I. A., Kimura F., Mori K., 1998, Web-Based User Interfaces for

Machine Tool Monitoring and Control, Proceedings of the 31st CIR

International Seminar on Networked: Integrated Design Prototyping and Rapid

Prototyping, Berkeley, USA, pp. 448-453.

[98] Kruglinski D. J., 1997, Inside Visual C++: The Standard Reference for

Programming with Microsoft Visual C++ Version 5, Microsoft Press,

Washington.

 - 190 -

[99] Dimla D. E., Lister P. M., Lighton N. J., 1997, Neural Network Solutions to the

Tool Condition Monitoring Problem in Metal Cutting, Int. J. Mach. Tools

Manufacture, Vol. 37, No. 9, pp. 1219-1241.

[100] Tansel, I. N., Mclaughlin, C., 1993, Detection of Tool Breakage in Milling

Operation. The Time Series Analysis Approach, International Journal for

Machine Tools Manufacture, Vol. 33, No. 4, pp. 531-544.

[101] Purushothaman S., Srinivasa Y. G., 1994, A Back-Propagation Algorithm

Applied to Tool Wear Monitoring, International Journal for Machine Tools

Manufacture, Vol. 34, No. 5, pp. 625-631.

[102] Ko, T. J., Cho D. W., 1994, Cutting State Monitoring in Milling By a Neural

Network, International Journal for Machine Tools Manufacture. Vol. 34, No. 5,

pp. 659-676.

[103] Du, R. X., Li, S., 1992, Tool Condition Monitoring in Turning Using Fuzzy Set

Technology, International Journal for Machine Tools Manufacture. Vol. 32, No.

6, pp.781-796.

[104] Yan D., Cheng M., Popplewell N., Balakrishnan S., 1995, Application of neural

networks for surface roughness measurement in finish turning, International

Journal of Production Research, Vol. 83, No. 12, pp.3425-3438.

 - 191 -

[105] Jang D. Y., Choi Y., Kim H., Hsiao A., 1996, Study of the Correlation between

Surface Roughness and Cutting Vibrations to Develop an On-Line Roughness

Measuring Technique in Hard Turning, International Journal of Machine Tools

Manufacturing, Vol. 36, No. 4, pp. 453-464, Elsevier Science Ltd, Great

Britain.

[106] Statistica V6.0, 1994, User Manual, Copyright StatSoft.

[107] Wegner T., 1993, Applied Business Statistics: Methods and Applications, Juta

& Co.

[108] Suliman S.M.A., Hassan G. A., 1992, Turning process model for steady state

optimal control. International Journal for Production Research, Vol. 30, No.2,

pp.383-394.

 - 192 -

 Specification

Pass band edge frequency: 1.0kHz Transition width: 420Hz

Sampling frequency: 5.0kHz

12 Solution

Normalized
 f = 420/5000 = 0.084

Using Equation 2.5, N = 3.3/0.084=40, within hardware memory restriction.

The filter coefficients are obtained from:

 2020][][][≤≤−= nnwnhnh HD

Because of the smearing effect of the window on the filter response, the cutoff frequency

of the resulting filter will be different from that given in the specification. To account

for this, we will use an fc that is centered on the transition band:

δ fcc ff +='
 = (1.0+420/2)= 1.21kHz

Normalized f c

'
= 1.21/5 = 0.242

Noting that h[n] is symmetrical; we need only compute values for h[0], h[1],…h[20] and
then use the symmetry property to obtain the other coefficients.

n=0:

484.0242.0*22]0[=== fh cD

Appendix A

Calculation of Filter Coefficients of an FIR Low Pass Filter
to meet the Specifications as used in this Project

 - 193 -

1)
40

02
cos(46.054.0]0[=+= π

Hw

484.0]0[]0[]0[== whh HD

n=1:

317907.0
242.0**1*2

)242.0*1**2sin(
242.0*2]1[==

π
π

Dh

994336.0)
40

*1*2
cos(46.054.0]1[=+= π

Hw

]1[316106.0994336.0*317907.0]1[]1[]1[−==== hwhh HD

n=2:

015973.0
242.0**2*2

)242.0*2**2sin(
242.0*2]2[==

π
π

Dh

977486.0)
40

*2*2
cos(46.054.0]2[=+= π

Hw

]2[015613.0977486.0*015973.0]2[]2[]2[−==== hwhh HD

.

.

.n=20:

013438.0
242.0**20*2

)242.0*20**2sin(
242.0*2]20[−==

π
π

Dh

08.0)
40

*20*2
cos(46.054.0]20[=+= π

Hw

]20[00107504.008.0*01438.0]20[]20[]20[−=−=−== hwhh HD

 - 194 -

To make the filter causal (necessary for implementation) we add 20 to each index so that

the indices start at zero. The filter coefficients, with indices adjusted, are listed in Table

A.1.

Table A.1
FIR coefficients for N=41, Hamming window and fc = 1210Hz

H[0] -0.00107504 H[40]
H[1] -0.000828893 H[39]
H[2] 0.00142542 H[38]
H[3] 0.0015999 H[37]
H[4] -0.00240534 H[36]
H[5] -0.00332171 H[35]
H[6] 0.00396656 H[34]
H[7] 0.00643822 H[33]
H[8] -0.00598659 H[32]
H[9] -0.0115257 H[31]
H[10] 0.00828074 H[30]
H[11] 0.0194664 H[29]
H[12] -0.0106226 H[28]
H[13] -0.0319655 H[27]
H[14] 0.0127704 H[26]
H[15] 0.0533542 H[25]
H[16] -0.0144962 H[24]
H[17] -0.0996399 H[23]
H[18] 0.0156134 H[22]
H[19] 0.316106 H[21]
H[20] 0.484

 - 195 -

5 Appendix B

Machining Process Data for Tool Wear 0 mm and 0.2 mm

Table B.1:
M achining Process Data for Tool Wear : 0.0 mm

12.1 Cutting Parameters 12.2 Process Parameters
RPM Vc f2x f1x dy MRR Diameter T Pc Sc Fx Fz Is Vy Tt Ra
[rpm] [m/min] [mm/min] [mm/rev] [mm] [mm3/s] [mm] [Nm] [N] [mV] [N] [N] [mA] [mV] [oC] [microns]

502.5 48.94 62.53 0.124446 0.6 3654.07 31.6 1.39 71.54 66.76 34.25 87.89 2867.46 22.82 43.69 1.5
502.15 48.84 124.29 0.247524 0.6 7253.56 31.56 2.51 129.74 94.39 51.85 159.38 4978.7 55.72 55.8 5.4

1259.94 122.15 129.71 0.10295 0.6 7545.2 31.46 1.21 157.05 132.08 33.09 77.14 2668.12 38.36 53.44 1.1
1259.55 122.11 258.39 0.20515 0.6 15030.67 31.46 2.05 265.49 158.1 43.4 130.45 4173.53 68.35 64.28 3.9
1985.38 191.36 166.06 0.08364 0.6 9603.19 31.28 0.93 188.74 151.31 26.46 59.18 2248 43.55 51.19 0.9

1986.3 192.45 330.04 0.166155 0.6 19185.72 31.44 1.58 322.47 199.125 33.35 100.55 3474.5 79.05 56.59 2.2
503.04 48.01 41.62 0.08275 1.2 4767.32 31.58 2.09 105.78 154.05 71 132.2 4122.85 24.84 45.36 1.3
502.09 47.92 61.42 0.122332 1.2 7034.64 31.58 2.6 131.34 160.78 78.68 164.45 4973.42 28.84 46.51 1.8

1255.14 119 103.37 0.082358 1.2 11760.86 31.38 1.88 238.26 200 62.74 120.13 3775.19 39.49 56.62 1.2
1265.05 119.55 156.44 0.12366 1.2 17740 31.28 2.46 326.2 - 76.37 163.72 5093.55 60.55 - 1.8

1270.7 120.32 207.9 0.16361 1.2 23623.07 31.34 2.56 341.04 - 76.38 170.07 5196.8 80.9 62.56 2.6
1987.48 189.06 102.93 0.051788 1.2 11749.49 31.48 1.46 291.85 252.35 56.36 92.62 1182.66 48.44 65.18 0.6
1988.13 189.75 204.26 0.10274 1.2 23393.98 31.58 2.02 404.61 278.13 61.87 127.94 4222.4 87.33 69.69 1.7

501.73 46.97 16.39 0.032668 1.8 2762.24 31.6 1.59 79.01 167.93 64.3 100.93 3263.08 16.77 42.78 0.7
504.02 47.16 31.67 0.062842 1.8 5333.74 31.58 2.52 125.69 187.84 89.86 159.91 4817.125 27.98 53.47 1.2

1253.52 117.36 39.7 0.031672 1.8 6689.9 31.6 1.53 189.87 179.91 61.61 97.07 3313.92 30.45 62.34 0.6
1258.32 117.33 78.44 0.062333 1.8 13164.19 31.48 2.43 301.77 237.32 84.47 154.32 4757.94 45.03 77.93 0.8
1987.69 186.09 62.05 0.031218 1.8 10456.3 31.6 1.52 297.43 217.47 65.46 95.9 3205.66 46.15 63.92 0.6
1989.58 185.64 123.12 0.06188 1.8 20677.99 31.5 2.3 452.47 243.86 77.9 146.24 4496.7 65.46 77.28 1.1

 - 197 -

12.2.1 Table B.2
12.3 Machining Process Data for Tool Wear: 0.2 mm

Cutting Parameters 12.4 Process Parameters

RPM Vc f2x f1x dy
12.5 M
RR Diameter T Pc Sc Fx Fz Is Vy Tt Ra

[rpm] [m/min] [mm/min] [mm/rev] [mm] [mm3/s] [mm] [Nm] [N] [mV] [N] [N] [mA] [mV] [oC] [microns]
502.03 48.89 61.3 0.1221 0.6 3581.98 31.6 1.6 84.64 101.09 49.68 103.49 3374.16 50.66 47.95 1.4
503.49 48.94 122.73 0.2438 0.6 7157.53 31.54 2.59 136.78 100.5 60.72 167.69 5320.55 98.75 58.46 5.7

1256.09 122.09 127.61 0.1016 0.6 7442.44 31.54 1.365 179.87 164.48 47.09 88.4 3036.44 83.33 55.85 1.5
1249.73 122.03 255.4 0.20436 0.6 14962.03 31.68 2.24 293.13 169.15 56.53 144.13 4627.38 117.68 61.67 3.4

1987.4 192.41 161.7 0.08136 0.6 9386.91 31.4 1.113 231.82 175.75 43.25 72.33 2621.2 91.54 59.26 0.9
1989.15 193.22 321.51 0.1618 0.6 18736.66 31.52 1.75 364.44 228.1 50.42 113.29 3832.45 140.1 61.45 2.0

501.11 47.98 40.71 0.08124 1.2 4677.69 31.68 1.97 103.36 119.98 74.21 129.25 4213.32 34.86 46.73 0.9
502.9 48.03 51.18 0.10177 1.2 5865.47 31.6 2.425 127.81 163.75 93.24 159.67 4963.28 53.26 47.54 1.2

1253.7 119.89 102.38 0.08167 1.2 11749.27 31.64 2.145 281.6 232.68 104.17 140.93 4609.06 80.09 61.01 1.1
1250.42 119.5 128.63 0.10287 1.2 14750.97 31.62 2.423 317.19 223.4 107.68 159.26 5092.3 112.18 61.2 1.3
1987.58 189.7 103.15 0.0519 1.2 11813.61 31.58 1.577 327.87 211.83 91.61 103.7 3692.98 85.58 70.35 0.7

1986.8 188.62 203.16 0.10226 1.2 23145.27 31.42 2.263 470.91 263.37 100.55 149.79 4912.1 95.7 71.01 1.3
499.4 47 14.5 0.02903 1.8 2456.05 31.76 1.6525 86.45 159.31 83.37 110.35 3680.63 37.66 43.04 0.6

500.34 46.84 29.83 0.05962 1.8 5026.46 31.6 2.58 135.18 204.58 115.97 173.14 5375.28 51.2 53.2 1.2
1254.07 117.41 25.06 0.02 1.8 4223.47 31.6 1.471 193 189.98 102.14 98.63 3486.97 48.72 58.02 0.7
1252.74 117.44 47.12 0.03762 1.8 7951.38 31.64 2.0838 273.49 194.58 122.64 139.73 4555.89 69.23 65.87 1.0
1986.97 185.9 17.82 0.00896 1.8 3001.17 31.58 0.9783 203.39 200.29 103.65 65.65 2963.18 78.84 64.7 0.9
1985.57 185.27 38.49 0.01939 1.8 6464.48 31.5 1.4475 300.7 201.48 103.03 97.38 3376.64 78.53 68.29 0.7

/*Source filename : dsptarget.c

 Output filename : dsptarget.out

 Compiler : C for TMS320C3x/4x

 System : PCI32 PC-Based Interface Card

Source Library : Innovative Integration provides libraries that support an

extensive set of DSP functions.

The following code is created by adapting example code and applying the DSP functions

supplied.

Description: This program reads in analog samples from all four analog channels and

then filters them using an FIR routine. The resultant output samples are then stored, in an

interleaved fashion, in a queue. This is all done in the analog_isr (interrupt service

routine). When a total of 512 samples for each channel, i.e. 2048 samples in total, are

stored in the queue, the samples are dequeued into four individual buffers from where

they are then further processed. This is done in the main body of the program. While

the current frames of 512 samples of each channel are being processed the analog_isr

will continue writing new samples into the queue thus no data is lost. Processing is done

for each channel and it involves determining the RMS and mean value of the data

samples for each channel. An FFT is also performed on each channel. The resultant

Appendix C

DSP Target Source Code

 - 199 -

outputs are then placed in the dual-port RAM from where the host application can then

access them.*/

#include <values.h>

#include <math.h>

#include "c:\pci32cc\include\target\stdio.h"

#include "c:\pci32cc\include\target\dsp.h"

#include "c:\pci32cc\include\target\periph.h"

#define Q_SIZE 0x1000 /* Heap size for queue size */

#define FFT_SIZE 512

#define HALF_FFT_SIZE 256

#define LOG2_SIZE 9

#define BITREV 1 /*1 Bit reversal will be performed */

#define FILTER_ORDER 40 /*40 max number of filter coeffs */

/* Remember to change the buffer sizes in "buffers.asm" when the filter order changes*/

#define SAMPLE_BUF_SIZE FILTER_ORDER + 1 /*ADC circular buffersize/

/* Function Prototypes */

int count=1;

int busy =0;

#define analog_isr c_int99

void analog_isr(void);

void CalcFFT(float *BufferIn, float *BufferOut, float *Window, float *TwiddleTable);

float CalcRMS(float *BufferIn, int BUF_SIZE);

float CalcAVE(float *BufferIn, int BUF_SIZE);

 - 200 -

float CalcFREQ(float *BufferIn, float BUF_SIZE, float Max_Freq);

#define command_isr c_int03

void command_isr(void);

/* SEE APPENDIX A FOR FILTER COEFFICIENT CALCULATIONS*/

float filter_coeff[FILTER_ORDER + 1] =

{ -0.00107503,
-0.000828893,
0.00142542,
0.0015999,
-0.00240534,
-0.00332171,
0.00396656,
0.00643822,
-0.00598659,
-0.0115257,
0.00828074,
0.0194664,
-0.0106226,
-0.0319655,
0.0127704,
0.0533542,
-0.0144962,
-0.0996399,
0.0156134,
0.316107,
0.484,
0.316107,
0.0156134,
-0.0996399,
-0.0144962,
0.0533542,
0.0127704,
-0.0319655,
-0.0106226,
0.0194664,
0.00828074,
-0.0115257,
-0.00598659,
0.00643822,
0.00396656,

 - 201 -

-0.00332171,
-0.00240534,
0.0015999,
0.00142542,
-0.000828893,
-0.00107503} ;
/* ISR data queue */

QUEUE queue;

/* The following extern variables are defined in "buffer.asm" */

extern float coeff_buffer[SAMPLE_BUF_SIZE]; /*coefficient buffer*/

/* analog sample buffers */

extern volatile float sample_buffer0[SAMPLE_BUF_SIZE];

extern volatile float sample_buffer1[SAMPLE_BUF_SIZE];

extern volatile float sample_buffer2[SAMPLE_BUF_SIZE];

extern volatile float sample_buffer3[SAMPLE_BUF_SIZE];

volatile int sample_buf_write; /* sample buffer head pointer */

/* Used as flag to show if host has read data from dpram */

volatile int data_taken = 1;

void main()

{ int I, k ,z;

float max;

int CH1_Dec_Count = 0;

float CH0_FREQ, CH1_FREQ, CH2_FREQ, CH3_FREQ;

float CH0_RMS, CH1_RMS, CH2_RMS, CH3_RMS;

float CH0_AVE, CH1_AVE, CH2_AVE, CH3_AVE;

float HAR, sum_of_coeffs, theta;

 - 202 -

float window[FFT_SIZE];

float SinTable[HALF_FFT_SIZE];

float FFTBufferIn0[FFT_SIZE], FFTBufferIn1[FFT_SIZE];

float FFTBufferIn2[FFT_SIZE], FFTBufferIn3[FFT_SIZE];

extern float FFTBufferOut[FFT_SIZE]; /* This buffer address MUST have at least n

LSB's set to zero (where 2^n = FFT_SIZE) */

volatile int* dpram = (volatile int*)&Periph->Dpram; /* Initialise with starting address of

dualport RAM */

enable_cache();

if (!queue_init(&queue, Q_SIZE)) /* Initialise data queue */

 while (1);

/* Synchronization - Notify Host that you are ready */

write_mailbox(0xA5A5, TERMINAL_MBOX);

/* Initialize all variables and buffers for the FIR filter */

for(i = 0; i < SAMPLE_BUF_SIZE; i++)

 { sample_buffer0[i] = 0.0;

 sample_buffer1[i] = 0.0;

 sample_buffer2[i] = 0.0;

 sample_buffer3[i] = 0.0;}

sample_buf_write = 0;

/* Normalize filter coefficients */

sum_of_coeffs = 0.0;

for(i = 0; i < FILTER_ORDER + 1; i++) /* sum coeff's */

 - 203 -

 sum_of_coeffs += filter_coeff[i];

for(i = 0; i < FILTER_ORDER + 1; i++) /*divide coeff's by sum */

 coeff_buffer[i] = filter_coeff[i]/sum_of_coeffs;

/* Build a table with sine samples - "twiddle factors" */

theta = 2*PI/FFT_SIZE;

for (i=0;i<HALF_FFT_SIZE;i++) /* fill sin table in memory */

 SinTable[i]=sin(i*theta);

/* Create the windowing data and place inside buffer "window" */

Hamming(window, FFT_SIZE);

timer(0, 0);

enable_analog(BASEBOARD,0);

install_int_vector(analog_isr, 9); /* Install analog isr */

enable_interrupts();

mailbox_interrupt_install(command_isr);

mailbox_interrupt_enable();

/*Final sync from host - Wait here until host signals that interruptsare active and ready to

be read */

read_mailbox(TERMINAL_MBOX);

timer(0, 5000); /* Generates a 5kHz timebase for A/D */

for(;;)

{ /*Wait for Analog_ISR to fill a frame of data */

if (enqueued(&queue) >= FFT_SIZE * 4)

 - 204 -

{ /* Place data into FFT input buffer */

 for (i = 0; i < FFT_SIZE; i++)

 { FFTBufferIn0[i] = *(volatile int*)dequeue_ptr(&queue);

 FFTBufferIn1[i] = *(volatile int*)dequeue_ptr(&queue);

 FFTBufferIn2[i] = *(volatile int*)dequeue_ptr(&queue);

 FFTBufferIn3[i] = *(volatile int*)dequeue_ptr(&queue);

 }

 if(data_taken == 1)

 {

 /* Process channel 0 */

 CH0_RMS = CalcRMS(FFTBufferIn0, FFT_SIZE);

 CH0_AVE = CalcAVE(FFTBufferIn0, FFT_SIZE);

 CalcFFT(FFTBufferIn0, FFTBufferOut, window, SinTable);

 CH0_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);

 for(i = 0; i<256; i++)

{ dpram[i] = to_ieee(FFTBufferOut[i]);

 dpram[256] = to_ieee(CH0_FREQ);

 dpram[257] = to_ieee(CH0_RMS);

 dpram[258] = to_ieee(CH0_AVE);}

 /* Process channel 1 */

 CH1_RMS = CalcRMS(FFTBufferIn1, FFT_SIZE);

 CH1_AVE = CalcAVE(FFTBufferIn1, FFT_SIZE);

 CalcFFT(FFTBufferIn1, FFTBufferOut, window, SinTable);

 - 205 -

 CH1_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);

 for (i=0, max =0;i<255;i++)

 { if(FFTBufferOut[i]> max) max = FFTBufferOut[i];

 }

for(i = 259, k=0; i < 515; i++,k++)//515

{ if(FFTBufferOut[k] < 1.0) FFTBufferOut[k] =0;

 FFTBufferOut[k] = ((FFTBufferOut[k])/max)*1000;

 dpram[i] = to_ieee(FFTBufferOut[k]);

 }

 dpram[515] = to_ieee(CH1_FREQ);

 dram[516] = to_ieee(CH1_RMS);

 dpram[517] = to_ieee(CH1_AVE);

 /* Process Channel 2 */

 CH2_RMS = CalcRMS(FFTBufferIn2, FFT_SIZE);

 CH2_AVE = CalcAVE(FFTBufferIn2, FFT_SIZE);

 CalcFFT(FFTBufferIn2, FFTBufferOut, window, SinTable);

 CH2_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);

 for (i=0, max =0;i<255;i++)

 { if(FFTBufferOut[i]> max) max = FFTBufferOut[i];

 }

 for(i = 518, k =0; i < 774; i++,k++)//774

 { if (FFTBufferOut[k] < 1.0) FFTBufferOut[k] =0;

 FFTBufferOut[k] = (FFTBufferOut[k]/max)*1000;

 - 206 -

 dpram[i] = to_ieee(FFTBufferOut[k]);

 }

 dpram[774] = to_ieee(CH2_FREQ);

 dpram[775] = to_ieee(CH2_RMS);

 dpram[776] = to_ieee(CH2_AVE);

 /* Process Channel 3 */

 CH3_RMS = CalcRMS(FFTBufferIn3, FFT_SIZE);

 CH3_AVE = CalcAVE(FFTBufferIn3, FFT_SIZE);

 CalcFFT(FFTBufferIn3, FFTBufferOut, window, SinTable);

 CH3_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0);

 for (i=0, max =0;i<255;i++)

 { if(FFTBufferOut[i]> max) max = FFTBufferOut[i];

 }

 for(i = 777, k= 0; i < 1033; i++, k++)//1033

 { FFTBufferOut[k] = ((FFTBufferOut[k])/max)*1000;

 dpram[i] = to_ieee(FFTBufferOut[k]);

 }

 dpram[1033] = to_ieee(CH3_FREQ);

 dpram[1034] = to_ieee(CH3_RMS);

 dpram[1035] = to_ieee(CH3_AVE);

 /* Notify host that data is ready to be read */

 mailbox_interrupt(1);

 data_taken = 0;

 - 207 -

/* data_taken will be set to 1 by the host after reading the data */

 } //end if

} //end for

} //end main

/***

* Define interrupt service routines

***/

void analog_isr(void)

{ int CH0_sample = read_adc(BASEBOARD, 0);

 int CH1_sample = read_adc(BASEBOARD, 1) ;

 int CH2_sample = read_adc(BASEBOARD, 2) ;

 int CH3_sample = read_adc(BASEBOARD, 3);

/* Get sample results, store to circular sample buffers. */

 sample_buffer0[sample_buf_write] = (float)CH0_sample;

 sample_buffer1[sample_buf_write] = (float)CH1_sample;

 sample_buffer2[sample_buf_write] = (float)CH2_sample;

 sample_buffer3[sample_buf_write] = (float)CH3_sample;

if(++sample_buf_write == SAMPLE_BUF_SIZE) /* modulo for rollover */

 sample_buf_write = 0; /* correction */

/*call filter routine from library. Arguments are the filter coefficient array (pointer points

to the h(n-1) term), the sample buffer pointer (points to the least recent data point

sampled, i.e. the tail of the sample circular buffer),and the filter order + 1 */

 - 208 -

CH0_sample = (float)(fir(&filter_coeff[0], &sample_buffer0[sample_buf_write],

FILTER_ORDER + 1));

CH1_sample = (float)(fir(&filter_coeff[0], &sample_buffer1[sample_buf_write],

FILTER_ORDER + 1));

CH2_sample = (float)(fir(&filter_coeff[0], &sample_buffer2[sample_buf_write],

FILTER_ORDER + 1));

CH3_sample = (float)(fir(&filter_coeff[0], &sample_buffer3[sample_buf_write],

FILTER_ORDER + 1));

/* Place the filtered output samples into the queue */

((int)enqueue_ptr(&queue)) = CH0_sample ;

((int)enqueue_ptr(&queue)) = CH1_sample;

((int)enqueue_ptr(&queue)) = CH2_sample;

((int)enqueue_ptr(&queue)) = CH3_sample;

}

void command_isr(void)

{

enable_interrupts();

data_taken = mailbox_interrupt_ack(); /* read data from host */

}

/***

* Function definitions *

***/

/***

 - 209 -

Determine the FFT of the samples in the input buffer. The output buffer must be aligned

on an address such that the n least significant bits of the address must be zero (where

FFT_SIZE = 2^n). The Window buffer must contain the windowing samples and its size

must be the same as that of the input buffer (FFT_SIZE). The twiddle table buffer must

contain the twiddle factor samples. The resultant samples in the output buffer will be the

magnitude of the FFT, determined from the complex output of the FFT() function. Only

the positive half of the frequency spectrum is determined therefore only half of the

FFT_SIZE samples will be available in the output buffer.

***/

void CalcFFT(float *BufferIn, float *BufferOut, float *Window, float *TwiddleTable)

{ int i;

/* Next multiply the input frame of data with the window data */

vmul(BufferIn, 1, Window, 1, BufferIn, FFT_SIZE);

/* Now determine the actual FFT of the windowed data*/

ffft_rl(FFT_SIZE, LOG2_SIZE, BufferIn, BufferOut, TwiddleTable, BITREV);

/* Determine the actual magnitude values from the complex values in FFTBufferOut */

for(i=0;i<256;i++) //HALF_FFT_SIZE

BufferOut[i] = sqrt(pow((BufferOut[i]) , 2)+ pow((BufferOut[HALF_FFT_SIZE + i]) ,

2));

}

/**/

 - 210 -

/* Determine the RMS value of the samples in the input buffer */

/**/

float CalcRMS(float *BufferIn, int BUF_SIZE)

{ int i;

 float Temp = 0;

 for (i = 0; i < BUF_SIZE; i++)

 Temp += (BufferIn[i] * BufferIn[i]);

 Temp /= BUF_SIZE;

 Temp = sqrt(Temp);

 return(Temp/3276.8); /* Scaling factor */

}

/***/

/* Determine the mean value of the samples in the buffer */

/***/

float CalcAVE(float *BufferIn, int BUF_SIZE)

{ int i;

 float Temp = 0;

 for (i = 0; i < BUF_SIZE; i++)

 Temp += BufferIn[i];

 Temp /= BUF_SIZE;

 return(Temp/3276.8);

}

/**/

 - 211 -

/* Determine the frequency of the maximum amplitude bin component */

/**/

float CalcFREQ(float *BufferIn, float BUF_SIZE, float Max_Freq)

{ int i;

 int Max_Index;

 float temp;

 float Max_Amplitude = 0;

 for(i=0;i<128;i++) //i<BUF_SIZE

 if(Max_Amplitude < BufferIn[i])

 {

 Max_Amplitude = BufferIn[i];

 Max_Index = i;

 }

 temp = Max_Index* Max_Freq/BUF_SIZE;

 return(temp);

}

 - 212 -

/ * The PMAC execut es mot i on cont r ol commands.
Tr adi t i onal l y one downl oad pr ogr ams t hat cont r ol a speci f i c
syst em or pr ocess i n f ul l .
The f ol l owi ng sour ce code i ncl ude t hr ee cl ass l i br ar i es:
CprogramBuffer: To cont r ol t he buf f er ar ea wher e mot i on
cont r ol commands ar e pl aced f or execut i on.
CservoMotor: To cont r ol al l aspect s of t he spi ndl e mot or .
CstepperMotor: To cont r ol al l aspect s of a st epper mot or
wi t hi n an axi s and a coor di nat e syst em.
The code i s used wi t h PTal kDT Act i veX cont r ol , and al l ows
one t o cont r ol al l aspect s of t he machi ne’ s cont r ol s, f r om
wi t hi n a wi ndows based appl i cat i on.
* /
//#define ON 0x01
//#define OFF 0x00
class CProgramBuffer
{
public:
 char * Create(void);
 char * Open(void);
 char * Clear(void);
 char * Execute(void);
 char * Abort(void);
 char * Close(void);
 char * Quit (void);
 char * Step (void);
 char * Halt (void);
 char * Run (void);
 char * Hold (void);
 char * Absolute (void);
 char * Delete(void);
 char * DefineRotaryCMD(void);
 char * CommandCMD (char []);
 CProgramBuffer(int, int);
 int GetOpenOrClosed(void);
 int GetRunOrStop(void);
 int GetBufferEmpty(void);
 void SetOpenOrClosed(int);
 void SetRunOrStop(int);
 void SetBufferEmpty(int);
private:
 char Command[30];
 int OpenClose; //Buffer Condition

Appendix D

Class L ibrary for Motion Control Commands

 - 213 -

 int RunStop; // Program execution condition
 int BufferIsEmpty; //Software program
 int BufferSize;
 int Coordinate;
} ;

CProgramBuffer::CProgramBuffer(int Coord, int BuffSize)
{
Coordinate = Coord;
BufferSize = BuffSize;
}
char * CProgramBuffer::Delete(void)
{ char buff1[5] = "&";
char buff2[5];
itoa(Coordinate, buff2, 10);
strcpy(Command,buff1);
strcat(Command,buff2);
strcat(Command, " DEL ROT");
return(Command);
}
//Define a Rotary Motion Program Buffer
char * CProgramBuffer::DefineRotaryCMD(void)
{ char buff1[2]="&";
char buff2[15] = "define rot ";
char buff3[5];
char buff4[5];
itoa(Coordinate,buff3,10);
itoa(BufferSize, buff4,10);
strcpy(Command,buff1);
strcat(Command, buff3);
strcat(Command, buff2);
strcat(Command, buff4);
return(Command);
}
void CProgramBuffer::SetOpenOrClosed(int SetReset)
{ OpenClose = SetReset;
}
void CProgramBuffer::SetRunOrStop(int SetReset)
{
RunStop = SetReset;
}
void CProgramBuffer::SetBufferEmpty(int SetReset)
{
BufferIsEmpty = SetReset;
}
int CProgramBuffer::GetOpenOrClosed()
{
return(OpenClose);
}
int CProgramBuffer::GetRunOrStop()
{
return(RunStop);
}

 - 214 -

int CProgramBuffer::GetBufferEmpty()
{
return(BufferIsEmpty);
}
char * CProgramBuffer::Create(void)
{
char buff[30]="&1 define rot 100";
strcpy(Command,buff);
return(Command);
}

char * CProgramBuffer::Open(void)
{
char buff[30]="OPEN ROT";
strcpy(Command,buff);
return(Command);
}
//Erase currently opened buffer
//Usually start with OPEN, then CLEAR.
char * CProgramBuffer::Clear(void)
{
char buff[30]="CLEAR";
strcpy(Command,buff);
return(Command);
}

char * CProgramBuffer::Execute(void)
{
char buff[30]="B0R";
strcpy(Command,buff);
return(Command);
}

//Abort all programs and moves in the currently
//addressed coordinate system
//Rather use H, Q , / or \ commands
//B1R, A, #1J=#2J=, R
char * CProgramBuffer::Abort(void)
{
char buff[30]="A";
strcpy(Command,buff);
return(Command);
}

//Step Working Motion Programs in all coordinate Systems
// If already running mode (after Run command) then
//"S" command will place the program in a single-step mode.
char * CProgramBuffer::Step(void)
{
char buff[30]="s";

 - 215 -

strcpy(Command,buff);
return(Command);
}

//Causes all motion programs running in a any
//coordinate system to stop,
//Program execution may be resumed with R (run)
// or S (step);
char * CProgramBuffer::Quit(void)
{
char buff[5]="Q";
strcpy(Command,buff);
return(Command);
}

//Close Open Rotary Buffer
char * CProgramBuffer::Close(void)
{
char buff[30]="CLOSE";
strcpy(Command,buff);
return(Command);
}

//Halt program execution
//Then apply J= to return
//Then apply R command to resume
char * CProgramBuffer::Halt (void)
{ char buff[30]="/";
strcpy(Command,buff);
return(Command);
}
char * CProgramBuffer::CommandCMD (char Cmd[])
{
char buff1[10] = "cmd \"";
char buff3[10] = "\"";
strcpy(Command,buff1);
strcat(Command,Cmd);
strcat(Command,buff3);
return(Command);
}

//Run Motion Program
char * CProgramBuffer::Run (void)
{
char buff[30]="R";
strcpy(Command,buff);
return(Command);
}

//Do a program Hold
//Permitting jog while in hold mode
//Execute J= to return to point prioir to jog
//Execute R to resume prog
char * CProgramBuffer::Hold (void)

 - 216 -

{
char buff[30];
strcpy(Command,buff);
return(Command);
}

//Select absolute position mode for axes
//in addressed ccoordinate system

#define OFF 0x00
class CServoMotor
{ public:
 int OnOff();
 void Off();
 void On();
 CServoMotor(int , int , int);
 void SetRPM(int);
 char * GetSpeedCommand (void);
 int GetRPM(void);
 char * SetIVarCMD(int IVar, int value);
private:
 int RPM, MaxSpeed, MinSpeed;
 int Position, MaxPosition, MinPosition;
 int MotorOnOff;
 char SpeedCommand[30] ;
} ;
CServoMotor::CServoMotor(int Rpm, int MaxSpeed, int MinSpeed)
{ RPM = Rpm;
MotorOnOff =0;
}
void CServoMotor::SetRPM (int Rpm)
{ RPM = Rpm;
}
char * CServoMotor::SetIVarCMD(int IVar, int value)
{ char buff1[10];
char buff2[10];
itoa(IVar, buff1, 10);
sprintf(buff2,"%.2f",float(value * 0.0683));
strcpy(SpeedCommand, "i");
strcat(SpeedCommand,buff1);
strcat(SpeedCommand, "=");
strcat(SpeedCommand, buff2);
return(SpeedCommand);
}

 - 217 -

char *CServoMotor::GetSpeedCommand ()
{ char buff1[30] = "i122=";
char buff2[30];
//Use "cmd" when buffer is closed
//char buff3[20] = "cmd\"j+\"";
char buff3[20] = "j+";
itoa((int (RPM*0.1334)) ,buff2,20);
strncat(buff1, buff2, 30);
strncat(buff1, buff3, 20);
strcpy(SpeedCommand, buff1);
return(SpeedCommand);
}
int CServoMotor::GetRPM(void)
{ return(RPM);
}
void CServoMotor::On()
{ MotorOnOff = 1;
}
void CServoMotor::Off()
{ MotorOnOff = 0;
}
int CServoMotor::OnOff()
{ return(MotorOnOff);
}
//Direction Define
#define POSITIVE 1
#define NEGATIVE -1
#define ON 1
#define OFF 0
class CStepperMotor
{
//Motor Initialization Information
public:
 CStepperMotor(int , int , int , char *);

private:
 char MotorNumber[10];

//Jog Related Functions
public:
 void SetJogRate(int);
 char * GetJogCommand (void); //Used to Send to PMAC
 int GetJogRate();
 char * JogCMD(int dir , int speed);
 char * JogStopCMD(void);
 char * JogReltoCommandCMD(int distance);
 char * JogPreJogCMD(void);
 char * JogPosCMD(int position);
 char * JogReltoActualCMD(int distance);
private:
 int JogRate, MaxJogRate, MinJogRate;
 char JogRateCMD[30];
//Utility Related Functions
public:
 char * CloseLoopCMD(void);

 - 218 -

 char * KillCMD (void);
 char * KillAllCMD (void);
 char * JogLastCMD(void);
 char * ZeroCMD(void);
 void SetLoopOC(int OC); // 0 - Open , 1 - Close
 int GetLoopOC(void);
 int GetPosNeg(void); // 0 - Motor Off , 1 - Motor Positive
 // -1 - Negative
 int GetOffOn(void);
 void SetPositive(); //
 void SetNegative();
 void SetOff();
 void SetOn();
private:
 int OffOn; //0 - Motor Off, 1 - Motor Positive
 // -1 - Motor Negative
 int PosNeg; //1 - Positive , -1 Negative
 int LoopOpenClose; // 0 - Open Loop , 1 - Close Loop
 char Command[10]; // "A" - Abort , "K" - Kill
//Positional Information
public:
 void SetPosition(long);
 long GetPosition(void);
private:
 long Position;
//Online Motor Command While Executing a Program
public:
 void SetFeedRate(int);
 char * GetFeedCommand (void);
 int GetFeedRate(void);
 int GetVelocity(void);
 char * GetVelocityCMD(void);
private:
 //int Position, MaxPosition, MinPosition;
 int Feed, MaxFeed, MinFeed;
 char FeedCommand[30] ;
 int Velocity; //counts_per_msec
//Open Loop Functions and Commands

public:
 char * OpenLoop(int Percentage, int Direction);
private:
 int OLoop, MaxOpenLoop, MinOpenLoop;
 char OpenLoopCommand[30];
} ;

//CLASS DEF - Jog Related Functions - BEGIN
int CStepperMotor::GetJogRate()
{
return(JogRate);
}
void CStepperMotor::SetJogRate(int Jog)
{
JogRate = Jog;
}

 - 219 -

char * CStepperMotor::GetJogCommand (void)
{
char buff1[10] = "i";
char buff2[30] = "2";
strncat(buff1, MotorNumber + 1, 20);
strncat(buff1, "22=", 20);

if (PosNeg == POSITIVE)
{
int val = int (JogRate * 0.03435);
itoa((int(val)) ,buff2,20);
strncat(buff1, buff2, 30);
strncat(buff1, MotorNumber, 20);
strncat(buff1, "j+", 20);
strcpy(JogRateCMD, buff1);
return(JogRateCMD);
}
if (PosNeg == NEGATIVE)
{ int val = int (JogRate * 0.03435);
itoa((int(val)) ,buff2,20);
strncat(buff1, buff2, 30);
strncat(buff1, MotorNumber, 20);
strncat(buff1, "j-", 20);
strcpy(JogRateCMD, buff1);
return(JogRateCMD);
}
if (OffPosNeg == OFF)
{
itoa((int (0)) ,buff2,20);
strncat(buff1, buff2, 30);
strncat(buff1, MotorNumber, 20);
strncat(buff1, "k", 20);
strcpy(JogRateCMD, buff1);
return(JogRateCMD);
} * /
}
//This function is called after an abort has occured
//and the PMAC need to complete its last positional
// command befor completing the rest of the program
char * CStepperMotor::JogLastCMD(void)
{ char buff1[20];
strcpy(buff1,MotorNumber);
strncat(buff1,"j=",20);
return(buff1);
}
char * CStepperMotor::JogCMD(int dir , int speed)
{ //char buff1[20]="#";
//strcat(buff1,MotorNumber);
strcpy(Command,MotorNumber);//buff1);
if (dir == POSITIVE)
{ strncat(Command,"j+",20);
return(Command);
}
else
{ strncat(Command,"j-",20);

 - 220 -

return(Command);
}
}
//This Causes the addressed motor to stop jogging
//Also restores position control if motor's servo loop
//has been opened
char * CStepperMotor::JogStopCMD(void)
{ strcpy(Command, MotorNumber);
strncat(Command,"j/",20);
return(Command);
}
//Jog Relative to Commanded Position
//J:2000 -> jog 2000 counts
char * CStepperMotor::JogReltoCommandCMD(int distance)
{ char buff2[10];
strcpy(Command, MotorNumber);
strncat(Command,"j:",20);
itoa(distance, buff2,10);
strcat(Command,buff2);
return(Command);
}
//Jog to PreJog Position
//J= See Ix22 for velocity
char * CStepperMotor::JogPreJogCMD(void)
{ strcpy(Command, MotorNumber);
strncat(Command,"j=",20);
return(Command);
}
//Jog to a Specific Position
//#3J=5000
char * CStepperMotor::JogPosCMD(int position)
{ char buff2[10];
strcpy(Command, MotorNumber);
strncat(Command,"j=",20);
itoa(position, buff2,10);
strcat(Command,buff2); reurn(Command);}
/*char * JogReltoActualCMD(int distance)
{ char buff2[10];
char buff1[20]="#";
strcat(buff1,MotorNumber);
strcpy(Command, buff1);
strncat(Command,"j:",20);
itoa(buff2, distance);
strcat(Command,buff2);
return(Command);
}
* /
//CLASS DEF - Jog Related Functions - END
///CLASS DEF - Utility Retated Functions - BEGIN
char * CStepperMotor::CloseLoopCMD(void)
{ char buff[10]="j/";
strcpy(Command, MotorNumber);
strcat(Command,buff);
return(Command);
}

 - 221 -

//Make commanded axis positions zero
char * CStepperMotor::ZeroCMD(void)
{ strcpy(Command, "z");
return (Command);
}
//Kills all motor outputs by opening the servo loop,
//Commanding Zero Output and Making the AE false.
//All motion programs are automatically aborted.
char * CStepperMotor::KillCMD (void)
{ char buff[10] = "k";
strcpy(Command, MotorNumber);
strcat(Command,buff);
return(Command);
}
char * CStepperMotor::KillAllCMD (void)
{ char buff[10] = "k";
strcpy(Command,buff);
return(Command);
}
void CStepperMotor::SetLoopOC(int OC)
 { LoopOpenClose = OC;}
int CStepperMotor::GetLoopOC(void)
 { return(LoopOpenClose);}
void CStepperMotor::SetPositive()
{ PosNeg = 1;
}
void CStepperMotor::SetOff()
{ OffOn = 0;
}
void CStepperMotor::SetNegative()
{ PosNeg = -1;
}
void CStepperMotor::SetOn()
{ OffOn = 1;
}
int CStepperMotor::GetPosNeg()
{ return(PosNeg);
}
int CStepperMotor::GetOffOn()
{ return(OffOn);}
//CLASS DEF - Utility Retated Functions - END
//CLASS DEF - Motor Initialization Info - BEGIN
// char MotorNumber[10];
CStepperMotor::CStepperMotor(int Fd, int Jog, int A, char MotorNum[10])
{
Feed = Fd;
OffOn = 0;
strcpy(MotorNumber, MotorNum);
}

//CLASS DEF - Motor Initialization Info - END

//CLASS DEF - Open loop - BEGIN

 - 222 -

//Open loop output
//Output as a % of Ix69

char * CStepperMotor::OpenLoop(int Percentage, int Direction)
{
char buff1[30];
char buff2[3]= "o";
char buff3[4] ="-o";
itoa(Percentage, buff1,10);
if (Direction==POSITIVE)
{
strcpy(Command,MotorNumber);//"#3o10");
strcat(Command,buff2);
strcat(Command,buff1);
return(Command);
}
else
{
strcpy(Command,MotorNumber);//"#3o10");
strcat(Command,buff3);
strcat(Command,buff1);
return(Command);
}

}

//CLASS DEF - Open loop - END

//CLASS DEF - Online Commands - BEGIN

void CStepperMotor::SetFeedRate (int Fd)
{
Feed = Fd;
}

char *CStepperMotor::GetFeedCommand ()
{
 char str1[20] = "F", str2[20];

int val;
val = (int) Feed / 60;
itoa(val ,str2,20);
strcat(str1,str2);
strcpy(FeedCommand, str1);
return(FeedCommand);

/*char buff1[30] = "i122=";
char buff2[30];
char buff3[20] = "cmd\"j+\"";
itoa((int ((RPM*10)/145)) ,buff2,20);
strncat(buff1, buff2, 30);
strncat(buff1, buff3, 20);
strcpy(SpeedCommand, buff1);
return(SpeedCommand);
* /

 - 223 -

}

int CStepperMotor::GetFeedRate(void)
{
 return(Feed);

}

char * CStepperMotor::GetVelocityCMD(void)
{
char buff[10] = "v";
strcpy(Command, MotorNumber);
strcpy(Command,buff);
return(Command);
}

int CStepperMotor::GetVelocity(void)
{
return(Velocity);
}

//CLASS DEF - Online Commands - END

//CLASS DEF - Positional Information - BEGIN
void CStepperMotor::SetPosition(long Pos)
{
Position = Pos;
}
long CStepperMotor::GetPosition(void)
{
return (Position);
}

//CLASS DEF - Positional Information - END

