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A multi-level modular control scheme to realize integrated process monitoring, diagnosis and 

control for intelligent machining is proposed and implemented.  PC-based hardware architecture to 

manipulate machining process cutting parameters, using a PMAC interface card as well as sensing 

processes performance parameters through sampling, and processing by means of DSP interface 

cards is presented.  Controller hardware, to interface the PC-based PMAC interface card to a 

machining process for the direct control of speed, feed and depth of cut, is described.  Sensors to 

directly measure on-line process performance parameters, including cutting forces, cutting sound, 

tool-workpiece vibration, cutting temperature and spindle current are described.  The indirect 

measurement of performance parameter surface roughness and tool wear monitoring, through the 

use of NF sensor fusion modeling, is described and verified.  An object based software architecture, 

Abstract 
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with corresponding user interfaces (using Microsoft Visual C++ Foundation Classes and 

implemented C++ classes for sending motion control commands to the PMAC and receiving 

processed on-line sensor data from the DSP) is explained.  The software structure indicates all the 

components necessary for integrating the monitoring, diagnosis and control scheme.  C-based 

software code executed on the DSP for real-time sampling, filtering and FFT processing of sensor 

signals, is explained. 

 

Making use of experimental data and regression analysis, analytical relationships between cutting 

parameters (independent) and each of the performance parameters (dependent) are obtained and 

used to simulate the machining process.  A fuzzy relation that contains values determined from 

statistical data (indicating the strength of connection between the independent and dependent 

variables) is proposed.  The fuzzy relation forms the basis of a diagnostic scheme that is able to 

intelligently determine which independent variable to change when a machining performance 

parameter exceeds control limits.  The intelligent diagnosis scheme is extensively tested using the 

machining process simulation.   
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Machining Process 

dy Depth of cut, [mm] 

DAVE Average diameter of the workpiece, (DO-DI)/2, [mm] 

DO Outer diameter of workpiece, before machined, [mm] 

DI Inner diameter of workpiece, after machined, [mm] 

f1X Feed/revolution of the tool, how far the tool travels per revolution of the workpiece, 

[mm/rev] 

f2X Feedrate of the tool, linear speed of the tool along the workpiece length, [mm/min] 

FC, FZ Cutting force in the z-direction, [Newton] 

FF, FX Feed force in the x-direction, [Newton] 

IS Spindle current, [mA] 
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N Rotational speed of the workpiece, VC/(� DAVE), [RPM] 
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TC Cutting torque, [Nm] 
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There is a myriad of machines which cut, sand, drill, face, turn, bend, grind, and much more.  The 

underlying concept is the same:  The criteria for optimal performance is the rate of metal removal of 

material from the workpiece.  In addition, international competitiveness requires high product 

quality in combination with reduced throughput time at minimal cost.  By making use of basic 

monitoring and diagnostic systems, effective machining time has been increased from 10% to 65% 

[1].  A major obstacle hampering the progress towards the development of unmanned machining 

centers is the limited use of on-line monitoring and diagnostic systems in practice.    Monitoring 

and diagnostic systems that rely on the on-line acquisition of machining process sensor data will 

enhance the implementation of intelligent machining [2].  Harber et al [3] define intelligent 

machining as: 

 

Chapter  1 
 

Introduction 
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“A computationally efficient procedure developed combining one or more intelligent techniques 

(fuzzy logic, neural networks e.g.) and expert criteria (operator knowledge), with one or more 

higher resolution levels (hierarchical levels), which basically manipulate cutting conditions (spindle 

speed, feed) and should be monitoring tool status and finished surface quality, as well as increasing 

productivity through higher metal removal rate“   

 

Signals from the machining process may be used in multi-sensor monitoring systems to measure 

surface roughness and tool wear indirectly, using intelligent systems.  Intelligent systems consist of 

algorithms developed to emulate certain characteristics of the human being’s intelligent biological 

systems [4].  It is considered to be a powerful way to achieve superior performance by putting 

engineering expertise into products with the added advantage of making the design process faster, 

easier and more transparent [5]. 

The successful and reliable monitoring of surface roughness and tool wear will not only play a 

crucial role in achieving advanced automation, but its values may be used in controlling the quality 

of the manufactured part.   Machining is a complex process and cutting parameters feed, speed and 

depth of cut modulate several process parameters, that in turn influence the quality of the 

manufactured product.  For example, excessive cutting tool-workpiece vibration levels may 

negatively influence part tolerances.  Similarly, excessive cutting temperature may cause damage to 

a machined surface.  Currently post processing quality control procedures identify product 

deficiencies and after evaluating all the process parameters the process engineer may then decide 

what cutting parameter to change.   A high productivity at the demanded process quality requires a 

process integrated quality assurance [1].  Allowable process parameter limits for tool temperature, 

cutting forces, spindle current, cutting sound, tool-workpiece vibration, surface roughness and 

cutting power may be set.  When exceeded, an intelligent diagnostic system using on-line sensor 

data may reason and decide which cutting parameter, feed, speed, depth of cut to change in order to 

ensure that product quality is maintained.        
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To react and implement the control action, the machine control system needs to respond within a 

relatively short period of time.  Therefore, advanced monitoring, intelligent diagnosis and parameter 

(machine) control systems need to be integrated.  Due to its traditional closed architecture, 

conventional computer numerical control (CNC) machines cannot efficiently respond to sensor data 

provided by sensor based monitoring and diagnosis systems.  CNC systems are machine control 

oriented whilst the success of intelligent machining greatly depends on how effectively performance 

parameters may be changed to ultimately produce a quality product more efficiently.   

 
 
 

1.1 Aim  

 

To implement intelligent machining by integrating sensor-based monitoring, intelligent diagnostic 

and machine control systems that are able to flexibly maintain machining process performance 

parameters within acceptable limits.   

 

1.2 Objectives 

 

The following objectives were accordingly specified for this project: 

 

• To perform literature research into theoretical concepts and physical components for the 

implementation of intelligent machining. 

• To identify signals that characterize the machining process performance and hence develop 

appropriate sensory systems to interface to computer based analog-to-digital converter 

(ADC) system. 

• To identify motor and control equipment to drive a spindle and x-y coordinate system from a 

personal computer (PC)-based multi-axis control interface card. 
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• To select PC-based signal processing hardware and development software, and hence develop 

code that is able to sample, filter and process the identified analog signals. 

• To select PC-based multi-axis machine control hardware and development software, and hence 

develop code that is able to execute motion control operations. 

• To propose a logical framework that shows and connects all system components for intelligent 

machining. 

• To propose and implement hardware architecture and software components to perform multi-

axis control and signal processing. 

• To develop a windows based object oriented software application framework with appropriate 

user and communication interfaces that integrate signal processing, monitoring, intelligent 

diagnosis and machine control components. 

• To obtain experimental data by varying cutting parameters (input) and measure process 

performance parameters (output) for different tool wear. 

• Make use of Statistica to analyze the experimental data to determine which sensor data is 

sensitive to tool wear and surface roughness.  Create multi-sensor fusion models for tool 

wear and surface finish measurement, using neuro-fuzzy (NF) technology. 

• Make use of the experimental data and Statistica’s regression analysis module to determine 

empirical relationships between the dependent and independent variables. Use these 

relationships to model the machining process for simulation purposes. 

• To develop an intelligent diagnostic system that is able to maintain machining process 

parameters within acceptable limits.  To test the performance of the intelligent diagnostic 

system using the machining process simulation. 

 

1.3 Hypothesis 

 
PC-based digital signal processing, multi-axis machine control and Internet system hardware may 

be integrated with available motion control and sensor technology, to realize machine level open 
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architecture with enhanced flexibility and modularity, which will realize an intelligent machine 

controller.   

 

Visual C++ with its rich set of Microsoft foundation classes (MFC) and object oriented language 

features may be utilized to develop an object-oriented software framework to integrate and 

coordinate sensor data sampling and processing, monitoring and intelligent diagnosis and machine 

control functions.   The application framework will further enhance flexibility, modularity, promote 

user-process interaction and software re-configurability. 

Multiple sensors make it possible to reflect the complex machining process.  Multi-sensor fusion 

systems by means of NF (intelligent systems) technology may be used in monitoring systems to 

measure tool wear and surface roughness indirectly which will enhance in-process quality control of 

the machined product. 

 

Machining process knowledge may be represented using fuzzy relation, and fuzzy inferencing may 

be used to decide which cutting parameter to change in order to maintain machining performance 

parameters within acceptable limits.  This will realize intelligent machining, enable quality control 

based on product properties, which will ultimately lead to higher throughput and less wastage of 

raw materials. 

 

1.4 Methodological Justification 

 

In order to accomplish the objectives, the fundamental research issues covered in this project 

include: 

 

• Statistical Analysis 
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Data analysis requires the use of statistical methods, which includes curve fitting, and uses the 

method of least squares for producing multiple linear/non-linear regression equations to simulate 

machining process and multiple correlation coefficient, which is used to determine the degree of 

relationship for constructing knowledge based systems. 

 

 

 

• Digital Signal Processing  

 
Signals carry information and need to be processes to extract (completely or partially) the 

information contained in them, depending on the application of interest.  Signal processing is 

concerned with the mathematical representation of the signal in the domain of the original 

dependent variable i.e. time domain, or in a transformed domain i.e. frequency domain, and with the 

algorithmic manipulation of the signal to extract the information being carried.  To implement 

signal-processing techniques fundamental mathematical research into discrete domain systems 

includes Finite Impulse Response Filtering (FIR) and Discrete Fourier Transform (DFT). 

 

• Neural Network and Fuzzy Logic 

 

Machining processes are highly complex, and precise mathematical models may not always be the 

most effective method used in monitoring systems.  Neural networks (NN) provide a strong tool for 

learning and, combined with multiple sensors data, result in advanced monitoring systems.  Fuzzy 

logic (FL) allows the representation of decision and evaluation processes in an algorithmic (rule-

based) form.  NF technology has the learning capability of NN and a FL based rule structure.  This 

increases the understanding into the working of knowledge-based systems as well as making the 

modification for enhancement possible.  FL is considered to be a powerful way to achieve superior 

performance by putting engineering expertise into products, which may include many control 
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parameters, with the added advantage of making the design process faster, easier, and more 

transparent.   

 

• Open Architecture  

 

Open architecture is a philosophy in the design and implementation of machine tools, production 

processes and control.  Open architecture is a competitive area of manufacturing and it will meet 

manufacturing requirements in supplying more competitive products for the global market. Open 

architecture controllers must use standard computing architectures, standard operating systems, 

must be programmable in standard languages, and its application software must be open and 

extendable to allow users to integrate custom control algorithms.   

1.5 Delimitations 

 

The research will establish a sound experimental basis to serve future sensor based research projects 

for industrial machining centers.  The machining process to be used in this research project, 

however, will be limited to an EMCO Compact 5 CNC training lathe.  The open system architecture 

controller will focus on implementation aspects of intelligent machining and will not include a 

completed and operational system.   

 

1.6 Significance of Research 

 
Production quality and performance are concerns in machining processes.  Poor production 

performances in machining are often caused by product wastage incurred by the application of 

excessive cutting power, torque, cutting forces, tool-workpiece vibration and high temperature.  

These process parameters may also contribute to excessive tool wear and breakage.  Intelligent 

machining will improve production quality and performance of machining as it is able to detect and 
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react to process parameters that exceed defined limits, thereby ensuring that product quality is not 

compromised which will ultimately lead to less wastage.   

 

Intelligent machining is an advanced approach in manufacturing, strongly related to the efforts in 

developing re-configurable manufacturing equipment.  Advances in PC-based hardware which 

include digital signal processing and programmable multi axis machine-control interface cards, and 

development software such as Visual C++ with MFC may be utilized to realize re-configurable 

manufacturing systems.  Windows based graphical software interfaces will enable advanced 

machining process-human interaction. 

 
1.7 Organization of Thesis 

 

Chapter 2 describes the relevant theoretical concepts, corresponding components and technology 

relating to intelligent machining.  It includes a logical framework that shows and connects all 

system components for intelligent machining.   Chapter 3 provides a detailed description of the 

experimental setup, including implementation aspects of the sensor and motor control equipment, 

hardware architecture and software components to perform multi-axis control and signal processing, 

and an object oriented software framework to integrate all the system components.  Chapter 4 

presents and analyses NF-based multi-sensor fusion models for on-line tool wear and surface 

roughness monitoring.  Chapter 5 describes an intelligent diagnostic scheme to realize intelligent 

machining and includes simulation and testing.  Chapter 6 is the conclusion, which includes a 

discussion on future development. 

 

Appendix A contains an example indicating the method for finding filter coefficients of a low-pass 

filter (LPF) to meet the specifications as used in this project.  Appendix B contains experimental of 

machining process data for tool wear 0 mm and 0.2 mm.   Appendix C contains source code for the 
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DSP target.  Appendix D contains source code for the class library created to enable motion control 

commands from within a Windows application. 
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Figure 2.1 shows that the machining process is automatically controlled via three independent 

machine control variables, namely cutting speed, feed and depth of cut.  These variables modulate 

the dependent variables of the process (performance measures), such as, workpiece surface 

roughness, tool-workpiece vibration, cutting power, tool temperature, cutting forces, spindle current 

and cutting sound and contribute to tool wear.   It shows the components and concepts researched in 

implementing intelligent machining, namely: digital signal processing (DSP) for sensor 

measurement, intelligent systems for monitoring and intelligent diagnostic, multi-axis control for 

machine control capability and regression and correlation analysis for process modeling. 
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Figure 2.1: Relevant components and concepts in the monitoring, diagnosis and control for 

intelligent machining. 

This chapter commences with a definition of intelligence and hence describes the intelligent 

machining.  It introduces the fundamental mathematical relationship that exists between the 

Chapter  2 

Intelligent Machining: 

Relevant Concepts, Components, Framework and Technology 
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independent (input) and dependent variables (output).  These relationships will be used as a 

foundation for developing a steady state machining process model for single point turning, using 

experimental data (Chapter 5).  The methods used to obtain the process relationships from 

experimental data are explained. The fundamentals of DSP which are used to measure and process 

sensor signals are introduced.  The fundamental concepts to realize intelligent systems, in particular 

uncertainty, neural networks, fuzzy logic and NF are explained.  These artificial intelligence 

concepts which are explained will be used in the monitoring of tool wear and surface roughness 

(Chapter 4), and in the intelligent diagnosis for machining parameter control (Chapter 5).  PC-based 

hardware and software technology used in this project to implement an open architecture-based 

intelligent machine controller is introduced.  Finally, a framework for intelligent machining is 

explained. 

 
2.1 Intelligent Machining 

 

Intelligence is the ability of a human being to acquire knowledge and apply it by means of thinking 

and reasoning [6].  Artificial intelligence is a discipline which studies how humans solve problems 

intelligently, and how machines can emulate this human problem-solving ability [7].  Alternatively 

stated: how to make machines smarter by investing them with human intelligence.  Expert systems, 

fuzzy logic and neural networks systems belong to a paradigm of so called intelligent systems.  

Harber et al [3] define intelligent machining as: 

 

“A computationally efficient procedure developed combining one or more intelligent techniques 

(fuzzy logic, neural networks e.g.) and expert criteria (operator knowledge), with one or more 

higher resolution levels (hierarchical levels), which basically manipulate cutting conditions (spindle 

speed, feed) and should be monitoring tool status and finished surface quality, as well as increasing 

productivity through higher metal removal rate“   
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The monitoring of tool status and surface roughness by means of intelligent systems will enhance 

automated machining (Chapter 4).  However, the primary difference between automated machining 

and intelligent machining is that an intelligent system (applied in the latter) is capable of making 

decisions based on significant information from the machining process.  Intelligent control of 

machining process parameters can be treated as a decision-making problem [1].  The diagnostic 

process can be formulated in a manner similar to the one in which a human being would proceed, 

for example: 

 

(i) Select the alternatives at a given decision point.  

(ii) Select the applicable criteria to evaluate the different alternatives. 

(iii) Calculate or estimate the selection parameters for each of the proposed alternatives. 

(iv) Through decision rules select the best alternative.    

 

2.2 Machining Process  

 
Figure 2.2 shows the machining process parameters, including cutting forces, cutting power, surface 

roughness, tool-workpiece temperature, tool-workpiece vibration, cutting sound and cutting torque / 

spindle current that characterize the systems performance.  Key factors that affect the machining 

performance parameters include tool wear and machine control parameters. 

Cutting Forces - Fz, Fx

Sc - Cutting Sound

Tt - Mean Cutting Temperature

Ra - Surface Roughness

Vy - Cutting tool-workpiece Vibration

Is - Spindle Current
(Tc - Cutting Torque)

Pc - Cutting Power
x - Feed

y - Radial

z - Cutting

Co-Ordinate System

 

Figure 2.2: Parameters that character ize machining process performance. 
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The following subsections show and describe the basic mathematical relationships between the 

dependent performance variables and cutting parameters (independent variables) as well as describe 

how the particular dependent parameter/s influence the cutting tool / product quality / machine tool. 

 

2.2.1 Cutting Forces, Torque and Power 

 

The cutting force, acting in the direction of the cutting speed, supplies the energy for cutting and 

depends mainly on the work material, feed and depth of cut [8]: 

 

 

Constants a and b depend on the cutting tool-workpiece combination.  If FZ and diameter, DAVE, is 

known the cutting torque, TC, is given as: 

 

The basic equation for cutting power, PC is given as: 

 

PC is also calculated as: 
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The on-line measurement of cutting forces, torque / spindle current and power will enable intelligent 

machining to [8, 9, 10]: 

 
• Manage the supply of torque and power available from machine tool in order to meet on-line 

load requirements. 

• Avoid excessive damage to machine elements and maintain desired tolerances for machined 

part. 

• React to excessive increase of forces, torque and/or power resulting from tool wear. 

• Protect the workpiece from the application of high cutting force / torque which may cause 

excessive distortion. 

• Reduce excessive feed force that may cause the tool to deflect and result in surface waviness 

error  [11]. 

• Reduce axial force so that it does not exceed the work holding pre-load, otherwise the 

workpiece will loose its rigidity [12]. 

 

2.2.2 Cutting Temperature  

 

The energy dissipated in cutting operations is converted into heat, which, in turn raises the 

temperature in the cutting zone.  The mean temperature in turning on a lathe is found to be 

proportional to the cutting speed and feed as follows  [9]: 

 

Constants a and b depend on the tool-workpiece combination.   
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The on-line measurement of cutting tool temperature will enable intelligent machining to [8, 9, 13, 

14]: 

 

• Reduce the rate of wear, as tool wear has been shown to be strongly temperature 

dependent. It adversely affects the strength, hardness, and wear resistance of the cutting 

tool. 

• Increase tool life as temperature is inversely related to tool life. 

• Improve accuracy as increased heat causes dimensional changes in the part being 

machined, making control of dimensional accuracy difficult. 

• Reduce thermal damage to the machined surface as it adversely affects properties like 

fatigue life and corrosion resistance. 

• Avoid the critical temperature of the tool-workpiece combination, as it will cause the two 

materials to interfuse.  Chip particles welded to the surface of the tool are swept away and 

tear out minute chunks of tool material. 

• Avoid the increase in machine tool temperature as it may cause distortion of the machine 

and result in poor dimensional control of the workpiece. 

 

2.2.3 Tool Wear   

 

RF Taylor recognized that tool wear is dependent on the cutting velocity and developed the 

following equation using data from tool life test [8]: 

 

6.2CTV T

n

C =
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VC is the cutting speed, Tn the tool lifetime in minutes (the time recorded to develop a certain wear 

land, VB), n is an exponent that depends on cutting tool and workpiece materials as well as cutting 

conditions.  CT is a constant and represents a cutting speed for a tool life of one minute.   

 

Although cutting speed is the most significant process variable in tool life the depth of cut and feed 

are also significant, hence from Equation 2.6 Taylor’s expression is expanded as: 

 

Flank wear land, as shown in Figure 2.3, has been commonly used in the measure of tool wear. 

 

Figure 2.3: Flank wear land of a cutting tool. 

To determine VB the tool life test must be stopped and a measurement made, using optical 

instruments, like a scanning electron microscope, at suitable magnification levels.  Signals from 

sensed dependent variables, influenced by tool wear, may be processed into a frequency spectrum 

by means of FFT.  The power spectral densities that are most sensitive to tool wear are selected and 

fed into a previously trained artificial neural network to determine the state of the cutting tool [15].  

On-line monitoring of tool wear is important as: 

 

• Tool wear land will reach a limit before tool breakage / chipping occur, which in turn may 

cause severele damage to the machine tool and surface roughness of the workpiece. 

• It increases the cutting forces, which in turn may cause plastic deformation of the 

workpiece. 
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• It negatively influences the dimensional accuracy of the workpiece.  

• It may influence the tool-workpiece interaction which in turn may contribute to increased 

vibration 

 

2.2.4 Surface Roughness 

 

Roughness refers to relatively finely spaced surface irregularities as produced by the action of a 

cutting tool during a machining operation.  The tool leaves a spiral profile - feed marks - on the 

machined surface as it moves across the workpiece, and this is given by [16]:   

 

The higher the feed and the smaller the tool-nose radius (re), the more prominent the feed marks.  

Feed seems to affect surface roughness much more than depth of cut.  The on-line monitoring of 

surface roughness will reduce part-manufacturing cost. The measurement of surface roughness is 

done by manual inspections of the work surfaces using profilometers.  Manual inspection is time 

consuming and very costly.  Furthermore the on-line measurement will in turn enable intelligent 

machining to: 

 

• Maintain the quality of the machined product [17]. 

• Ensure that surface residual stresses that contribute to part failure, may be kept at a 

minimum. Residual stresses on the surface of a component are mainly, like surface 

roughness, influenced by feed [18].  By ensuring that the surface roughness is maintained 

below a threshold the residual stresses may be kept at a minimum. 
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2.2.5 Mater ial Removal Rate 

 

The material removal rate (MRR) is the volume of material removed per unit time, and given as: 

 

Knowledge of MRR is important as the main criteria for optimal performance is the rate of metal 

removal of material from the work piece.  The cutting time for a work piece of length L can be 

calculated as: 

 
2.2.6 Tool-Workpiece Vibration  

 
Metal cutting operations is inherently cyclic and excessive vibration may be caused by a periodic 

applied force, present in the machine tool (forced vibration), or by a disturbance in the cutting zone 

(self-excited vibration) [8,9,19].  The basic solution in reducing forced vibrations is to isolate or 

remove the forcing element.   

 

A relationship exists between the fundamental frequency of a workpiece and the spindle speed [20].  

The situation often occurs that the machining process is stable in the cutting zone, but once it 

reaches the middle position of the workpiece, excessive vibration (chatter) begins to develop.  

Cutting forces build up as the tool penetrates the material and deflect the tool.  When shearing 

occurs to form the chip, the forces momentarily drop and the tool springs back.  Vibration increases 

when the cutting forces get out of phase with the tool forces.  The relationship between the cutting 

force and the amplitude of the tool vibration is given as [21]: 
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Where Az is the amplitude of the tool, CZ is a constant, FZ is the cutting force, N is the spindle speed 

and a and b are exponential constants.   

The on-line measurement of tool-workpiece vibration will enable intelligent machining to: 

 

• Improve the surface quality, dimensional accuracy, productivity and even safety [22, 23]. 

• Reduce damage to machine tool components that may result from excessive vibrations. 

• Reduce premature tool wear and chipping. 

 
2.2.7 Cutting Sound 
 
Sound and vibration occur as a result of the machining process.  In general, the range of frequencies 

that are important in acoustics and associated vibrations, lie in the audible range of 20 to 20 000Hz.  

However, disturbances above 1000 Hz are generally reduced using passive techniques, for example, 

machine tool design [24].  Whereas active sound and vibration control has found its use in the 50 to 

1000 Hz range [25].   The on-line measurement of sound may be used in monitoring of on-line tool 

conditions: Tool wear, tool chipping and tool breakage [26] and enable intelligent machining to: 

 

• Reduce excessive vibration in the cutting process [27]. 

• Reduce objectionable noise generated. 

 

2.3 Data Modeling by means of Multiple Regression and Correlation 
 

Given experimental data regression analysis provides the basis for predicting the values of a 

dependent variable (Y) from values of one or more other independent (X1, X2 ..) variables.  These 

relationships are used for modeling and simulation of machining process to test intelligent decision 

making (Chapter 5).  Correlation analysis enables us to assess the strength or degree of the 

relationships amongst the variables.  It is used to find the membership of signal feature to a specific 

machine control action.  The subsequent signal feature-control action relation is used for intelligent 
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diagnosis (Chapter 5).  Correlation analysis is also used in the monitoring of tool wear and surface 

roughness to determine which signal features influence theses parameters (Chapter 4).   

 

A sample regression line describes the average relationship between X i and Y variables in the 

sample data.  The equation of this line, known as the sample regression equation, provides estimates 

of the mean value of Y for each value of X i.  Of all the curves approximating a given set of data 

points, the curve having the property that: DDD N
22

2
2
1 ..... +++  is a minimum, is called a best fitting 

curve.  Where Di is the deviation from the best-fit curve to a data point.  A curve having this 

property is said to fit data in the least square and is called a least square curve.   A multiple 

regression equation is an equation for estimating a dependent variable, say Y1, from the independent 

variables X2, X3 and is called a regression equation of Y1 on X2, X3.  A multiple linear regression 

equation would be in the form:   

 

Y1 = f(X2,X3) = b1.23 + b12.3X2 + b13.2 X3              2.12 

 

If X3 is kept constant the graph of Y1 versus X2 is a straight line with slope b12.3.  If we keep X2 

constant the graph of Y1 versus X3 is a straight line with slope b13.2.  The subscripts after the dot 

indicate the variables held constant in each case.  Due to the fact that Y1 varies partially because of 

variation in X2 and partially because of variation in X3, we call b12.3 and b13.2 partial regression 

coefficients. From Equation 2.12, b1.23, b12.3 and b13.2 are determined by solving the following 

normal equations [28, 29]: ���
++= XbXbbY N

32.1323.1223.11
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Machining relations, as seen from Equations 2.1, 2.5, 2.8 and 2.11, are non-linear and generally 

expressed as: 
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14.2
21 XXCY
ba=  

Equation 2.14 may be linearized, using a functional transformation, by taking log on both sides as 

follows [30]: 

( ) ( ) ( ) ( ) 15.2
2101101010 XLogbXLogaCLogYLog ++=

 

The coefficients for Equation 2.14 may then be calculated using the method described in Equation 

2.13. Correlation is the degree of relationship between variables, which seeks to determine how 

well a linear or other equation describes or explains the relationship between variables.  The degree 

of relationship that existing between three or more variables is called multiple correlations.  The 

ratio of the explained variation to the total variation is called the coefficient of determination, given 

as: 
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The coefficient of determination may be interpreted as the proportion of variation in the dependent 

variable Y that has been accounted for, or “explained,”  by the relationship Y and X expressed in the 

regression line.  To determine the linear partial correlation coefficient between variables Y1 and X2, 

ignoring X3 [31]: 
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The coefficient of linear multiple correlation of Y1 on X2 and X3 may be calculated from the partial 

coefficients: 
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Note that the coefficients of multiple correlations R1.23 are larger than either of the coefficients r12 or 

r13.  This is always true since, by taking into account additional relevant independent variables, we 

should arrive at a better relationship between variables. 

 

The coefficients of partial correlation, designated ry1.2 would indicate the partial correlation between 

Y and X1 after the effect of X2 on Y had been removed.  The square of this coefficient measures the 

reduction in variance brought about by introducing X1 after X2 has already been accounted for.  

Sometimes it is difficult to compare the differences in net regression because the independent 

variables are stated in different units. 

 

To improve comparability, we can state the regression equation in a different form, giving each of 

the variables in units of its own standard deviation.  The transformed regression coefficients are 

called BETA coefficients.  In term of  BETA coefficients, the linear regression equation for three 

variables would be: 
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Thus, the ßi coefficients are equal to [32]: 
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ßi measures the number of standard deviations that that Y changes with each change of one standard 

deviation in X i.   
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2.4 Digital Signal Processing 

 

Advanced monitoring and diagnostic systems, to enhance intelligent machining, employ multiple sensors, 
and the signals from these sensors are sampled and signal processed.  Signal processing is used to determine 
signal features, and may include: A fast fourier transform (FFT) algorithm to produce a frequency spectrum 
from where power spectral densities may be analyzed by way of calculating its mean,  root mean square etc.  
Signal features that are sensitive to tool condition, tool wear, machine state classification etc, may be 
extracted as part of the particular monitoring system [15, 33].  In this project the primary function of DSP is 
to sample and determine the rms value of the sensor signals for on-line monitoring (Chapter 4) and diagnosis 
(Chapter 5) purposes.  However, in addition the cutting forces, cutting sound, tool-workpiece vibration, tool 
temperature, spindle motor current sensor signals sampled and signal processed were further analyzed to 
determine which additional signal features are sensitive to tool wear (Chapter 4).      
 
Signal processing is concerned with the mathematical representation of a signal in the domain of the original 
dependent variable i.e. time domain, or in a transformed domain i.e. frequency domain, and with the 
algorithmic manipulation of the signal to extract the information being carried.  Figure 2.4 show a block 
diagram of the signal processing functions implemented including continuous to discrete domain conversion, 
Finite Impulse Response Filtering (FIR), discrete Fourier Transform (DFT), and signal data extraction. 
 

C-to-Dx(t)

Ts= 1/fs

x[n] = x(nTs)

FIR Filter

y[n] = ℑ{ x[n]}

DFT

X[k] = ℑ{ y[n]}    MEAN,
VARIANCE,
STD DEV

AVERAGE,
RMS,

MAX/MIN
 

Figure 2.4: Signal processing functions. 

The continuous domain signal x(t) is sampled, using an analog-to-digital conversion, at regular 

intervals of Ts to obtain discrete signal x[n].  To eliminate unwanted signal components the discrete 

domain signal x[n] is passed through a low-pass FIR filter of bandwidth 0 to 1/(2Fs) to obtain y[n] 

from where the frequency spectrum components X[k] are obtained using a DFT.  Finally signal 

features is extracted from y[n] and X[k].  The following subsections describe the mathematical 

concepts of the functional blocks, whilst Chapter 3 describes the software implementation there off. 

 

2.4.1 Sampling Process 

 

11 If signal x(t) contains no frequencies higher than Fs/2 hertz, where Fs is the sampling rate, it is 

completely determined by the set of its values at regularly spaced intervals of period Ts = 1/Fs[34].  
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In the sampled series x[n]:  x[0] corresponds to the input value at t=0, x[1] is the value at t = Ts, 

x[2] is the value at t = 2Ts, and so on.    The process of uniformly sampling a signal in the time 

domain results in a periodic spectrum in the frequency domain with a period equal to the sampling 

rate [35]. 

 

2.4.2 FIR Filter   

 

The general definition of a FIR filter is [36]: 
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The filter coefficients bk in Equation 2.21 are identical to the impulse response values h[k] of the 

filter, and may be written as: 
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The operation performed in Equation 2.22 is known as a finite convolution sum and expressed as: 

23.2][][][ nhnxny ⊗=  

The design of a digital filter includes: Filter specification, coefficient calculation, realization and 

implementation. 

 

2.4.2.1 Filter Specification 

 

Filtering of the sensors in this project was limited to that of low pass filter whose tolerance 

specification scheme, specified in the frequency domain, is shown in Figure 2.5.  Because of the 

symmetry and periodicity of the magnitude response )(eH jω
, it is sufficient to give the 

specifications only for 0�   �  �  � . 
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Figure 2.5: Magnitude-frequency response specification for  a low pass filter [37]. 

 

In the low pass case, the desired magnitude response is usually given by: 
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The specification includes a transition band ( � s - � p) of nonzero width in which the filter response 

changes from unity in the pass band to zero in the stop band. The amplitudes of the allowable 

ripples expressed in decibel as, an [37]: 
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2.4.2.2 Coefficient Calculation 

 

The objective of FIR coefficient calculation methods is to obtain values of h[n] such that the 

resulting filter meets the design specifications expressed in Section 2.4.2.1.  A popular approach is 

to use the infinite-duration response coefficients of an ideal filter, hD[n], and then to truncate and 

smooth the response by using a window function (w[n]), hence ][][][ nwnhnh D= .  The impulse 

response coefficients for hD[n] filter is given as [38, 39]: 
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And Hamming window coefficients as: 
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The transition width for a filter designed with the Hamming window and filter length N is 

determined from,  

Nf 3.3=∆        2.27 

 The maximum stop band attenuation possible with the Hamming window is given as about 53dB, 

and the minimum peak pass band ripple is about 0.194dB, which is sufficient for this project. 

APPENDIX A SHOWS AN EXAMPLE IN OBTAINING THE FILTER COEFFICIENTS OF AN 

FIR LOWPASS FILTER TO MEET THE TYPICAL SPECIFICATIONS AS USED IN THIS 

PROJECT: 

Pass band edge frequency: 10kHz                                 Transition width:  420 Hz 

Sampling frequency: 5.0kHz 

 

2.4.2.3 Realization structure 

 

From Equation 2.22 the FIR filter may also be characterized by the transfer function  (H(z)), the z—
transform of the impulse response h[k], given by [36]: 

=
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M

n

kzkhzH
0

][)(                   2.28 

The realization structure for the FIR filter is essentially a block diagram representation of the 

transfer function.  Although the implementation of Equation 2.28 may lead to several variations, the 

transversal structure, shown in Figure 2.6, is most often selected as it leads to the most efficient 

implementation [40].  
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z-1 z-1 z-1
x[n] x[n-1] x[n-2] x[n-(N-1)]

X X X X

+

h[N-1]h[2]h[1]h[0]

y[n]
 

Figure 2.6: Transversal structure for  the implementation of a FIR filter. 

The symbol Z-1 represents a delay of one sample of time (Ts), also known as the unit delay.  For the 

transversal structure, the computation of each output sample, y[n], requires: N-1 memory locations 

to store N-1 input samples, N memory locations to store the N co-efficient, N multiplications, and 

N-1 additions.  The FIR filter can be adapted to construct a linear phase response by mirroring the 

values of the coefficients around the center tap, so that: h[0] =  h[N], h[1] = h[N-1] etc.  

 

2.4.2.4 Implementation 

 

The final stage is to implement the filter for real-time operation, and the key issue is to produce 

software code of the chosen filter structure.  The Texas Instruments TMS320C30 DSP processor, 

used in this project, has an architecture and instruction sets optimized for FIR filtering operations 

[41].  The DSP technology used in this project is introduced in Section 2.6 and the software 

implementation of the FIR operations for this project is covered in Chapter 3.  

 

2.4.3 Frequency Spectrum 

 

When a signal is non-repetitive (aperiodic), it can be expressed as the infinite sum (integral) of 

sinusoids, which are not harmonically related.  The corresponding spectrum is continuous and is 

described mathematically by the FT [42].  The DFT is useful for the analysis of discrete-frequency 
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representation of discrete-time sequence.  The FFT is an efficient algorithm that can be used to 

obtain the discrete-frequency representation with fewer computations than the DFT.  The DFT of 

data with a finite number of nonzero sample values, x[n] defined over the range 0<n<(L-1), is given 

by [41]: 
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The number of multiplications required calculating X[k] is proportional to L2.  Wkn
L  , also known 

as twiddle factors, is a periodic function with a limited number of distinct values.  A highly efficient 

algorithm for computing the DFT, known as a FFT, makes use of this feature to reduce the number 

of multiplications in determining X[k].    

 

Equation 2.28, X[k], may further be decomposed as [41, 43]: 

][][

]12[]2[][ 2/

12/

0
2/

12/

0

kHWkG

WnxWWnxkX

k
L

nk
L

L

n

k
L

nk
L

L

n

+=

++=
−

=

−

=            2.30 

which expresses the original L-point DFT in terms of two L/2-pointDFT, G[k] (transform of even-

numbered points in x[n]) and H[k] (transform of odd-numbered points in x[n]).  The block diagram 

shown in Figure 2.7 shows how each L/2-point subsequence may further be decomposed into two 

shorter L/4-point subsequences.   
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Figure 2.7: Block diagram of a radix-2 FFT algor ithm [36]. 

 

The process can continue until, in the limit, we are left with a series of 2-point subsequences, each 

requiring a very simple 2-point DFT, leading to the most commonly used radix-2, decimation-in-

time.  Using a direct DFT the amount of complex multiplications is in the order L2, however, if L is 

an inter power of 2, and the FFT decomposition proceeds right down to 2-popint transforms, there 

are log2L stages of FFT computations giving a total of: 

No of Complex multiplications to perform FFT = Llog2L               2.31 

For L=512=29 the speed advantage is nearly 57.  

  

2.4.4 Statistical Processing of Signal Spectrum 

 

Statistical properties of the signal spectrum are used in system identification, properties may include 

[43, 44]: 

• Mean value 
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The square root of the variance is called the standard deviation (σ ). 

  

2.5 Intelligent System Components 

 

Artificial intelligence is a discipline which studies the way in which humans solve problems 

intelligently, and how machines can emulate this human problem solving ability.  Expert systems, 

FL and NN systems belong to a new paradigm of so-called intelligent systems.  A so-called 

intelligent system gives appropriate problem-solving responses to problem inputs, even if such 

inputs are new and unexpected.  Humans are such intelligent systems.  At this moment, there is a 

considerable mismatch between humans and machines, in as much as humans reason in inaccurate, 

multi-valued, fuzzy ways while machines are based on bi-valent, binary reasoning.  Eliminating this 

mismatch would make machines more intelligent, that is, they would be enabled to reason in a 

fuzzy manner, like humans.  The following subsections describe the fundamental concepts of NN, 

FL and NF to realize models for the indirect measurement of tool wear and surface roughness 

respectively (Chapter 4).  It introduces the concept of a fuzzy relation, which is used by the 

intelligent diagnosis (Chapter 5).    
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2.5.1 Uncertainty  

 

Formulae describe deterministic processes  - one where there is no uncertainty in the physics of the 

process (i.e. the right formula) and there is no uncertainty in the parameters of the process (i.e. the 

coefficients are known with precision.  Information from physical processes virtually always 

contains uncertainty.  There is uncertainty that arises from imprecision, from the inability to 

perform adequate measurements, from lack of knowledge or from vagueness.  For example, 

uncertainty may be defined as the lack of adequate information to make a decision.  Uncertainty is 

therefore a problem, as it may prevent us from making the best decision and may even cause a 

biased decision.  A human operator might not have a deep understanding of the plant dynamics that 

he is controlling, but he knows what action to take whenever he observes certain conditions, such as 

combinations from instrument readings.  Therefore we say that the human operator has the ability to 

overcome the uncertainties of the controlled system dynamics.  Certainty factors (CNF) (or 

confidence factors) are one of the most common methods of dealing with uncertainty in rule-based 

systems [45].  

 

Certainty factors may be associated with facts and with rules, for example: 

Fact:   <condition> = TRUE CNF <value> 

Rule:  If <condition> then <action> CNF <value>            2.34 

The condition and action is known with a degree of certainty.  
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2.5.2 Fuzzy System 

 

It is particularly noticed that expert system-based approaches for on-line machining condition 

monitoring, although effective due to the ability of dealing with the uncertainties, are often 

inadequate for the fast reaction requirements in a low-level machine control, especially when 

involving a complex knowledge base [33].  Fuzzy logic seems to be a unique method of dealing 

with uncertainties, especially in the control of physical systems. A fuzzy system consists of four 

principal components as shown in Figure 2.8:  A fuzzifier, rule base, inference engine and 

defuzzifier [46]. 

Fuzzif ier
Inference

Engine
Defuzzifier

Rule Base

Input Output

 

Figure 2.8: General components of a fuzzy logic system. 

2.5.2.1 Fuzzifier   

 

The assignment of linguistic values, defined by membership functions, to a sensor input, which 

yields “ fuzzified” values of the original signal input.  Using the triangular membership function a 

linguistic variable “small” , “medium”  and “ large”  may be illustrated as: 

a1 a2 a3

0

1

� A(x) 

0 X

Medium LargeSmall

 
Figure 2.9: Triangular membership function for sensor data. 
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For fuzzy “ small” , its fuzzy function may be expressed as: 

 

                                 ���
��

�
�

≤≤
−
−

≤

=

otherwise

axa
aa

ax

ax

xsmallA

0

1

)( 21
21

2

1

µ                    2.35  

 

 

For fuzzy “ medium” , the function is given as: 
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And for  fuzzy “ large” , the function is given as: 
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Where 1a , 2a , 3a  are parameters to determine the positions of the membership functions, as well as 

affect the shape of the membership functions.  The fuzzifier computes for each sensed input, 

through the above fuzzy membership functions, values indicating as to what degree the input 

belongs to the “small” , “medium” and “ large”  linguistic terms.   A fuzzy membership function 

expressed generally as a fuzzy set with finite input values: 

( ) ( ) ( ) ( )� �� ! "
= xxxxA nnAiAiAii µµµµ ,...,,,

332211
               2.38 

Where � Aij(xj) is the membership values for all the possible sensed input values. 
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2.5.2.2 Knowledge Base and Inference Engine   

 

The knowledge base may be represented as a fuzzy relation or as a linguistic fuzzy rule base with 

membership functions as a database. 

 

• Fuzzy Relation (FR) 

 

In control systems relationships are defined between system inputs and outputs.  These mappings 

are between variables defined on different universes of discourse through the statement: 

BA
R→  

I f A(x) THEN B(y) through relation R 

Where the condition set A is linked to the result set B through relation R.  A relation R of universe 

of discourse, is defined as a subset of the Cartesian product: 

BAR Χ⊂  

and illustrated in matrix form as follows: 

                yyy
321
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R BXA
                 2.39 

 

Where xi is the elements of A and yi is elements of B.  The ( )yx
R

,µ  values are the membership 

values for each element in the relation R and corresponds to the strength of connection or 

correlation between A and B in the mapping [47].  It is also called mapping intensity function. The 

determination of the relation R is called system identification. 
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The decision-making logic is embodied by an inference structure that has the capability of 

simulating human decision-making.  The membership vector of B can be calculated from the given 

relation matrix R and input membership vector A, as follows: 

( ) ( ) ( )yxxy
RAB

,.µµµ
�

=                           2.40 

Where �  represents the Boolean sum, where the membership vector completely defines a set, 

therefore we can re-write Equation 2.39 as: 

),()()( yxRxAyB ο=                   2.41 

Where “°”  is the compositional operator which is usually max-min or max-product.  If the 

compositional operator is max-min the membership of vector B(y) is calculated as: 

*+,-./ *+,-./= −−−

⊂
),()(minmax)( ; yxxy

RAB Ex
µµµ               2.42 

If the compositional operator is max-product the membership of vector B(y) is calculated as: 

012345= −−−

⊂
),()(max)( * yxxy

RAB Ex
µµµ                2.43 

Instead of using the max function, the output fuzzy sets are weighted and logically summed. 

 

• Fuzzy Rule Base 

 

A classical fuzzy logical inference may be expressed as using the following max-min rule structure: 

 

                          

i

mimii
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BisyThen
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                    2.44     
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The computation of fuzzy rules is called fuzzy rule inference, and consists of the aggregation and 

composition of a rule’s membership factors. Aggregation determines the degree to which the If-part 

of the rule is fulfilled.  The sensed input values (x1, x2, x3..) have been fuzzified by having assigned 

to them values from their associated fuzzy membership functions (A i1, A i2, A i3…).  The AND 

connective between the If-part implies either an intersection (min function) or an algebraic 

multiplication (product) between the fuzzy sets assigned to the input variables, whilst the OR 

connective between the If-part implies a union to connect the individual rules, as follows: 

 

( )µµ
iiIFAND min: =  

( )µµ
iiIFOR max: =                   2.45 

 

With Fuzzy Associative Map (FAM) inference, each rule is assigned a degree of support (DoS) 

representing the individual importance of the rule. The then part of a fuzzy rule is modified to: 

DoS
IFTHEN

*µµ =                    2.46 

If more than one rule produces the same conclusion, an operator must aggregate the results of these 

rules, hence rule composition as follows: 

( )µµ
RULEiTHENiRESULT

naggregatioresultsMAX
,max: =−             2.47 

 

2.5.2.3 Defuzzifier 

 
Defuzzifier consists of deriving a single control action from an inferred fuzzy control action.  Each 

control membership function, as shown in Figure 2.9, may include more than one valid evaluated 

output term.  The defuzzification method is used to determine a compromise between all the 

different output terms.   
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The Center-of-Maximum (CoM) and Mean-of-Maximum (MOM) methods are selected for different 

types of applications and are used to calculate a single control output as follows: 

 
( )
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            2.48 

 
( )µ

MAXRESULTTERMjYYationDefuzzificMoM
_
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2.5.3 Neural Networks 

 

Figure 2.10 shows the architecture of a feed-forward artificial ANN, in which neurons (simple 

asynchronous processing elements) are configured in layers, with each neuron able to send a signal, 

along weighted connections, to other neurons [48]. 

Hidden layer Output layerInput layerInput
Pattern

S1

Si

.......

Sn

A2j

W2[ i][j]W1[ i][ j]

Zj
YiA1j

Xi

An

Propagation
Function

Activation
Function

Output
Pattern

Pj

Computed Desired

 

Figure 2.10: Basic feed-forward neural network processing elements. 

The propagation functions A1j, A2j combine input signals X i, Yi  from sending neurons, respectively.    

The means of combination is a weighted sum, with the weights of nodes given by matrixes W1[i][j] 
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and W2[i][j].  The total activity received by the neuron A i and A j is expressed by the propagation 

function: 

 [ ][ ] θ j
i

ij
jiWXA 1

1
11

+= 7
=

  and [ ][ ] θ j
i

ij
jiWYA 2

1
22

+= 7
=

                    2.50 

 Where θ , is an offset added to the weighted sum.  The so-called activation function computes the 

output signal for probabilistic type neurons using: 

( ) ( )eAfZ A jj jj
+= −

= 1
1
                      2.51 

The feed-forward ANN does not have feedback connections, but errors are back-propagated during 

training, an iterative process, to adjust connection weights and threshold values until the desired – 

calculated output value is less than a selected threshold for a specific training data set.  The ith 

component of the error at the output layer and hidden layer is: 

ZPe ii
−=  and ( ) [ ][ ] 889:;;<=−= eWYYt j

j
iii

ji
21               

2.52 
Adjustment for weight between ith neuron in hidden layer and jth output neuron: 

[ ][ ] eYW ji
ji β

02
=∆   and [ ][ ] tXW jih

ji β=∆ 1
              

2.53 
where β

o
and β

h
is the learning rate parameters. 

 
2.5.4 Neuro-Fuzzy  

 
In most sensor applications classification criteria are often expressed by sample data.  This is typical 

for decision support problems, diagnosis or pattern recognition examples, and data analysis. 

Traditional artificial intelligence (AI) has transparent mechanisms, often expressed in terms of 

logical operations and rule-based representations, that are meaningful in modeling real systems.  

Although NN has exciting possibilities, it does not use structured knowledge with symbols as used 

by humans to express reasoning processes [49].  NF technology allows for the automated generation 

of fuzzy logic systems based on neural network trained data.  NF combines the advantages of fuzzy 

systems—the transparent representation of knowledge and the ability to cope with uncertainties—
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with the advantages of neural nets, the ability to learn.  Figure 2.11 shows a general 5 – layer 

structure of a NF model, as well as indication of how to map an NN to a fuzzy logic system [50]. 
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         Layer 2
Input Term Nodes

   Layer 3
Rule Nodes
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       Layer 4
Output Term Nodes

         Layer 5
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Defuzzif ication

FUZZY LOGIC SYSTEM

FEED-FORWARD NEURAL NETWORK

S1

S2
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Oi OjW3
ij

NEURAL NETWORK

TRANSFORM

 

Figure 2.11: Neuro-fuzzy structure. 

The linguistic nodes in layers one and five represent the input (S1-Sn) and output (O1-Om) linguistic 

variables respectively.  Nodes in layers two and four are term nodes acting as membership functions 

(MBFs) to represent the terms of the given linguistic variable.  Each neuron of the third layer 

represents one fuzzy rule (rule nodes).  Layer three links define the precondition of the rule and 

layer-four links incorporate the rule consequences.  Initially these layers are fully connected 

representing all possible rules.  A fuzzy system uses different units of computation for the input, 
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hidden and output layers.  A standard error back propagation algorithm cannot be used to calculate 

suitable weights for the neural network.  The nodes in layer 1 simply transmit the input values to the 

next layer, Oi

2
 = Si with unity weights W1 = 1.   Layer 2 nodes perform membership functions, e.g. 

triangular shaped functions, as shown in Figure 2.9 (Z-Lambda..Lambda-S) and Equations 2.35-

2.37 to determine link weights. 

 

Fuzzy rules, from Equation 2.44 are implemented in Layer 3 and Layer 4.  Layer 3 performs fuzzy 

AND (min) operation with initial weights Wi j

3
 =1, whilst nodes in layer 4 integrate the fired rules, 

having the same consequence by using the fuzzy OR (sum) operator also with Wi j

4
 = 1.  Rules may 

be represented by Fuzzy-Associative Maps (FAM), which is a fuzzy logic rule with an associated 

weight, known as rule firing strength (or Degree of Support DoS).  Based on the rule firing strength, 

output ( )tOi

3
 and the output from the nodes ( )tOi

4
, the task is to decide the correct consequence 

link of each rule by competitive learning.  The following learning law is used to update weights, 

where the basic is, learn if win: 

( ) ( )OWOW ii jj
tij

3343 +−=                   2.54 

Layer 5 performs de-fuzzification using one of Equations 2.48 or 2.49.  NF training modules 

provide methods, based on the above description, for supervised learning.  The method employed 

combines error back propagation with the idea of competitive learning.  After a system output is 

computed by forward propagation, an error is identified by comparing the system output with the 

sample data [51].  This error is then used to determine the fuzzy rules most suited for influencing 

system behavior.  Using the selected rule, the plausibility of the fuzzy rule is modified before 

subsequent data sets are processed. 

 

 

2.5.5 Multi-Sensor Fusion  
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Figure 2.12  shows the interaction between sensors and the direct (solid-line) and indirect (dash-

line) measurement of machining var iables.   
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Figure 2.12: Parallel sensor - measured var iable interaction. 

 
The current transformer connected in-line with one of the phases of the spindle motor can indicate 

directly the spindle current and could be used to determine power consumption as well as partially 

reflect the system’s vibration and surface quality.  A combination of the current transformer, 

accelerometer and encoder pulse rate values, each contributing partially to the classification of 

surface roughness, may be used to measure surface roughness indirectly with greater accuracy by 

means of a sensor fusion model.  A multi-sensor fusion model is basically a mathematical function 

developed to extract corroborative and relevant information on a particular manufacturing 

operation.   In this project NF-based multi-sensor fusion models for the indirect measurement of 

surface roughness and tool wear is generated from experimental data (Chapter 4). 

 

2.6 Character istics for  Intelligent Machining Controller     

 

Over the last 60 years the use of automatic control theory and technology has allowed many 

industrial processes to operate automatically under certain operating conditions.  Most machining 

processes are stochastic, nonlinear, complex and ill-defined and are open to control by means of 
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intelligent systems.  Process automation tasks are performed in hierarchical levels as shown in 

Figure 2.13 [52]: 

 

• Process level: Measurement of the input variables and manipulation of the output variables 

and require a fast reaction time. 

•  Control level: Feedback and feed forward control where various variables are adjusted 

according to conditions or reference variables. 

•  Supervision: Indicates undesired or unpredicted process states and to take appropriate 

actions such as fail-safe, shutdown, or re-triggering of redundancy or reconfiguration 

schemes. 

•  Management:  Performance optimization, coordination of general management in order to 

meet economic demands or scheduling and dedicated to tasks that do not require fast 

responses and act  

PROCESS

MANAGEMENT

SUPERVISION

SENSORSACTUATOR

CONTROL

 

Figure 2.13: Multilevel process automation [1]. 

 

Numerical Control (NC) and CNC machine tools have been widely applied in industry. Productivity 

and production quality has been increased accordingly by means of these facilities [1].   
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Figure 2.14 shows the general architecture for machine controllers, which perform process and 

control level functions. 
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Figure 2.14: Hierarchical levels in CNC controllers [53]. 

At the process level NC and more recently CNC machine tools have been widely applied in the 

machining industry to manipulate the processes machining variables, depth of cut, feed and spindle 

speed.  As a logical extension to CNC systems, the control level involves Adaptive Control (AC) of 

the machining process, which includes the following two major functions: 

 

• Enhanced productivity by applying adaptive control techniques such as Adaptive Control 

Optimization (ACO) and Adaptive Control Constraints (ACC).  The adaptation strategy is 

used to vary the machining variables in real time as cutting progresses.  ACO performs 

optimization with respect to maximum production rate and/or minimum cost and ACC 

controls with respect to forces or with respect to vibrations [54, 55, 56, 57]. 

• Enhanced part precision by applying real-time geometric error compensation techniques 

such as Geometric Adaptive Compensation (GAC) for imprecise machine geometry, tool 
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wear etc [58].  The compensation strategy modifies the geometric data supplied by the part 

program, the depth of cut. 

 

Conventional CNC machines have the following limitations because of their closed architecture 

[59, 60];  

 

• They cannot efficiently provide real-time monitoring of a machining process by means of sensor 

feedback. 

• The control of the machining process is not achieved adaptively in terms of on-line sensory 

data. 

• The integration of task planning with control activities, and optimization of system 

performance, are not realized efficiently. 

 

Furthermore, in order to deal with machining complexity an “ intelligent machining controller”  

should have a suitable architecture.  Open architecture is a philosophy in design and implementation 

of machine tool, production processes and control.  It creates an open environment for 

manufacturing and enables manufacturing systems to changes and reconfiguration system hardware 

and software.  An open architecture in the design and implementation of intelligent machine tools 

needs to embrace the following characteristics [61, 62, 63, 64]: 

 

• Sensor based. The combination of multiple sensors makes it possible to reflect the complexity 

of the manufacturing process. Sensory data are not only for control, but also for process 

modeling, real-time simulation and performance monitoring and evaluation.   

 

• Knowledge based. Human expertise, work experience, and testing experiment. Fuzzy logic is 

powerful in modeling human expertise and experience knowledge, as well as the highly 

non-linear manufacturing process. Since fuzzy knowledge inference is embedded within 
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the modeling, monitoring and control, system flexibility and intelligence would be much 

enhanced. 

• Integration. System integration is realized from different points of view.  The processes of 

modeling, monitoring and control are integrated. On the other hand, sensory data and 

knowledge inference are integrated for on-line monitoring and remote decision-making via 

the Internet. 

• Modular. A modular design is achieved in the interface and control of the system. It may be 

extended to other parts of the system, such as the inference algorithm. The interface access 

to the Internet is also designed as a module. 

• Openness. Systems developed incorporating those features mentioned above would be open to 

changes in respect of machine setup, machining process, and control algorithm and 

operation.  

 

2.7 PC-Based Technology for  Open System Architecture 

 

The hardware and software selected to develop an open architecture based machine tool controller 

should [65, 66]: 

 

• Make use of standard computing architectures like VME or ISA/PCI bus standard 

processors like Motorola 68x0, PowerPC, or Intel 1x86/Pentuim-based systems. 

• Be based on standard operating systems like Unix or Windows NT.   Common operating 

systems for each level of the factory facilitate communications, programming efforts, and 

the protection of standardized data structures. 

• Be programmable in standard languages like Microsoft Visual Basic and Visual C++ or 

C/C++ and X-Windows. Object-oriented, high-level languages that are comparable to 

plans and subsequent to machinery instructions are necessary requirements for the transfer 

of knowledge from one level of the factory to the next.  This principle includes 
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standardized data structures that must pass unambiguously down through the factory 

hierarchy; and 

• Be open and extendable so as to let the user integrate custom control algorithms. Open-

architecture computer platforms are needed at all levels of the factory, with the key 

emphasis today being on improvement of factory floor machinery such as machine tools, 

robots, and common manufacturing devices. 

 
Recent technological advances in PC-based DSP and Programmable Multi-Axis Machine Control 

(PMAC) products, as well as software interfacing Active-X controls and dynamic link libraries 

(DLL) to facilitate communication between these hardware components, and an object oriented 

windows based software application, enable the realization of PC-based open system architecture to 

implement the open architecture machine control as shown in Figure 2.15.    

 
 

 

 

 

 

Figure 2.15: PC-based PMAC, DSP and Ethernet inter face cards. 
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2.7.1    PCI32 a 32-bit Floating Point DSP with PCI bus Inter face 

 
Two PCI32 interfaces, shown in Figure 2.16, featuring the high performance Texas Instruments 

TMS320C32 32-bit floating point DSP capable of up to 60 MIPS were selected to be used in this 

project to sample analog sensor based systems. 

 
 

Figure 2.16: PCI32 DSP interface. 
The PCI32 plugs into a standard 32-bit PCI bus slot.  The PCI bus interface includes dual-ported 

memory capable of burst transfers at rates to 40 Mbytes/sec on most platforms.  This 8 Kbytes dual 

port RAM provides a superior interface and allows multiple cards to be installed in systems with 

full driver support under Windows 95 and NT.  The PCI32 may be programmed in C or Assembler 

using tools available in a Software Development Package.  Components within the package, 

installed and used in this project, which fully support development of custom DSP applications 

include [67]: 

 

• Texas Instruments Floating Point C Compiler/Assembler toolset 
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• Codewright an integrated code generation environment. 

• DSP Peripheral library that support all on-board peripherals and DSP functions. 

• Custom 32-bit Windows 95/NT compatible dynamic link library, which utilizes a custom 

32-bit Ring 0/Kernal-mode device driver for host PC software application development. 

• Host support applets for automation program download. 

 

The abovementioned software was utilized to develop a standalone PCI32 DSP application that is 

able to sample and signal; process the analog sensor signals which in turn may be accessed by the 

PC host application for advanced monitoring and decision making.  The implementation aspects, 

including software code, are discussed in Chapter 3. 

 

2.7.2    PMAC-PC Programmable Multi-Axis Controller with ISA interface 

 

The Delta Tau Data Systems PMAC-PC, shown in Figure 2.17, is a high-performance servo motion 

controller capable of commanding up to eight axes of motion simultaneously with a high level of 

sophistication [68].   

 

 
 
 

Figure 2.17: PMAC-PC multi-axis control card. 
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PMAC is a very flexible controller, suitable for many different types of applications, with different 

types of amplifiers, motors, encoders and sensors.  The card may be configured for a specific 

application, using both hardware and software features and is therefore ideally suited for performing 

the multi-axis control function in open system based architecture. 

 

Delta Tau developed PTalkDT [69], a software interface to its 32-bit software driver PComm32.  

PTalkDT is in the form of an ActiveX Control, a new and upcoming form of library that is very 

popular with Windows programming.  It is designed to provide robust and efficient communication 

to PMAC from Windows based applications.     

 

Many of the commands given to the PMAC, using the PTTalk ActiveX control, are on-line 

commands, which are executed immediately by the PMAC.  There are three basic classes of on-line 

commands including: Motor-Specific Commands Coordinate system-specific commands and global 

commands.  

 

PTTalk Active X control software was installed and extensively used to develop a Windows based 

software interface that is able to configure the PMAC, send motion control commands and receive 

coordinate positions from the PMAC.  The implementation aspects, including software code, are 

discussed in Chapter 3. 

 
2.7.3 Object Or ientated Programming (OOP), Visual C++ and Visual J++ 

 

A programming language must support abstraction, encapsulation, inheritance, polymorphism and 

modularity before it deserves to be called object oriented [70].  The C++ language is based in, and 

extends the C programming language, by supporting OOP features [71].  By using these advanced 

capabilities one may achieve self-configurable software systems [72].  Using object-oriented 

techniques to develop software, helps to construct systems that closely model reality such as 
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components and functions within an open architecture based machining controller.  Each object 

knows how to handle its job well, and it collaborates with other objects to accomplish a common 

goal.   

 

One particularly useful use of OOP is to create reusable application frameworks.  An application 

framework is an integrated collection of object-oriented software components that offer all that is 

needed for a generic application [73].   Microsoft Foundation Classes is an application framework 

specifically tailored for creating applications for Microsoft Windows operating system. The 

Microsoft Foundation Class Library is built on top of the Win32 application-programming interface 

(API). This API is a set of functions exposed by the operating system for use by applications. 

Through MFC, base classes are exposed that represent common objects in the Windows operating 

system, such as windows and menus. 

 

MFC does not encapsulate the entire API, just the main structural components and components that 

are commonly used. Because MFC is written in C++, MFC programmers can easily use the Win32 

API to make native calls to the operating system.  Figure 2.18 show the relationship between MFC, 

the Windows Base Operating Services, and the Windows Operating System Extensions. 

 

Figure 2.18: Relationship between MFC and Windows API  [74]. 
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By providing this simplified interface to the Windows API, MFC offers a number of advantages 

over using the Win32 API: 

• MFC provides a higher-level abstraction of Windows, thus reducing complexity. 

• One can learn Windows-based programming much faster than you would by working 

directly with the Windows API. 

• One can quickly develop an application framework from which more complex applications 

are created. 

•  One has access to object-oriented techniques that are supported by the C++ language. 

•  MFC uses the more robust language features of C++, such as stronger type checking, 

exception handling, and intelligent object construction and destruction. 

•  MFC supplies additional library support for safe dynamic memory use, type validation, and 

debugging. 

 

Microsoft Developer Studio, used in this project, is the development environment for Microsoft 

Visual C++ and MFC.  In order to provide flexibility to meet various programming needs, 

Developer Studio integrates several other development tools such as Microsoft Visual J++. Besides 

providing an integrated, flexible environment, Developer Studio offers class navigation tools that 

are designed to simplify object-oriented programming for Windows. 

 

Java applets are designed to work easily within the World Wide Web (WWW) of computers 

through commonly available, user-friendly software called browsers which are Java-enabled.  

Although it is a rather recent addition to the host of high-level computer languages available to the 

programmer it incorporates the latest in OOP features and capabilities [75]. The designers focused 

on security, network-awareness, multitasking and hardware abstraction, which have brought Java 

near-instant acclaim in the programming field.   In this project a Java Applet will be developed and 

embedded within a web page.  The applet will be enabled remotely through a web browser from 
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whereby a connection-oriented service will be performed with the Visual C++ application.  

Implementation aspect of the remote monitoring for machining is be explained in Chapter 3. 

 
2.8 System Framework for  Intelligent Machining  
 
Figure 2.19 shows a proposed system framework for the implementation of a sensor-integrated 

monitoring, intelligent diagnosis and control of the machining process.  In adaptive control system 

cutting force, torque and/or power sensors are used to provide the feedback information, with the 

control of the cutting force being the most popular.  It seems clear from the research conducted that, 

at the lower level, adaptive control with self-regulating ability applied to one dependent variable Fz 

is achievable by changing f1x and Vc. With a multi-input / multi-output control strategy one may 

want to control more than one independent variable, say Pc and Ra.  The independent variables, Vc, 

f1x and dy are set in an optimal manner in order to maintain Pc and Ra set points [76].  A drawback 

of these control strategies is that it is based on the modeling of the original process and may only be 

applied within a limited range from the set point.   The ideal is, of course, to be able to maintain all 

the dependent variables at variable set points.  However, this has proven to be unattainable since it 

implies a tremendously complicated multi-input and multi-output control system.  A simplified 

arrangement has been agreed upon [64]:   

 

• Adaptive control of feed with respect to cutting force; 

• Adaptive control of feed with respect to maximum productivity; and 

• Advanced process monitoring and diagnosis 

 

This is indeed what the framework proposes.  Signals are sampled and processed using the DSP.  

Machining process parameters Ra and Vb that the sensor system is not able to measure directly, are 

determined indirectly using multi-sensor fusion modeling.        
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Figure 2.19:  Framework for  intell igent machining.   



 

The object oriented software application interface serves as a graphical user interface and performs 

overall module integration and coordination.  It sends motion and process control commands to the 

multi-axis controller and provides process parameter constraints to the diagnostic system.  Once a 

process parameter exceeds its limit, it is up to the diagnostic systems to ensure that the specific 

parameter returns to its stable state.  Using a fuzzy relation the diagnostic system will decide 

intelligently which one of the three process control parameters to change in order to achieve an 

overall stable machining process. 

 

2.9 Conclusion 

 

The monitoring of tool wear and surface roughness by means of intelligent systems will enhance 

automated machining.  Neuro-Fuzzy modeling may be used as a basis for developing fuzzy logic 

models for the indirect measurement of tool wear and surface roughness.  Fuzzy logic models, 

based on experimental data, for this purpose is analyzed and explained in Chapter 4.   

 

The primary difference between automated machining and intelligent machining is that an 

intelligent system applied in the latter is capable of making decisions based on significant 

information from the machining process. A fuzzy relation that indicates the strength of connection 

between process features and process control action is used as part of a diagnostic system to decide 

intelligently which decision to make when a machining process parameter is exceeded.  Chapter 5 

includes empirical machining process input/output relationships, obtained from regression analysis 

of experimental data, for modeling and simulation in order to test the intelligent diagnostic system.   

 
A framework for sensor-integrated monitoring, diagnosis and control for intelligent machining 

process control is proposed.  Chapter 3 describes the experimental set-up including all hardware and 

software components to implement the proposed system framework on a PC-based system.   
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Intelligent machining systems with in-process quality assurance need to detect and react quickly on 

measured defects, and then should have the capability to adapt to maintain desired tolerances. The 

purpose of the experimental set-up is to implement and integrate the sensors, pc-based hardware, 

software components and machine controls indicated in the proposed framework for intelligent 

machining, described in Section 2.8.  Each software function developed to support hardware 

operation and overall integration constituted a module with appropriate interfaces so that the 

reconfiguration of the system may be realized in terms of the modular structure.      

 

3.1  Exper imental setup 

 

Figure 3.1 shows the completed experimental set-up consisting of an EMCO Compact 5 training 

lathe under the control of a 1.5 kW Baldor ac servo motor  [76] for spindle rotation and two 

Powermax hybrid stepper motors [77] for driving the x-y coordinate system.  The machine controls 

include servo and stepper motor amplifiers and respective power sources.  The encoder feedback for 

the servo and stepper motors is returned to the PMAC.  The drives are thereby directly controlled 

from the PMAC enabling instantaneous reaction from software-controlled commands.  This 

arrangement was selected so as to minimize the amount of controls hardware.  If a new drive/motor 

combination is selected the system would only be required to undergo a software reconfiguration. 

 

Chapter  3 

Exper imental setup: 

Machine Controls, Sensors and Software Components 
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11.1.1.1.1 Figure 3.1: Experimental setup: machining process, PC-based control and sensor measurement. 
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3.1.1 Machine Controls 

 
Figure 3.2 show the layout of the control panel for the servo and stepper motor drives.   
 

 
 

Figure 3.2:  Panel layout for  the spindle and stepper  motor  dr ives. 
 

 
Spindle Motor Control Circuit Description 
 
 
Figure 3.3 shows the wiring diagram for the spindle motor control circuit.  Power to the servo drive 

is from 230V ac mains.  A line filter is incorporated to eliminate as much of the electrical noise on 

the power line as possible.  A circuit breaker is also incorporated into the supply line to the drive for 

over current protection.  The live wire is connected to terminal X1:2,  the neutral connection is 

made to terminal X1:3 and terminal X1:1 is tied to Earth. 

 

Pacific Scientific 
Model 6410  
Micro-stepping 
drives. 

AC Mains 
Line Filters 

220/20 V AC 
Transformer 
for stepper 
motor drives 

Circuit breaker 
protection 

DBSC Series 100 
AC servo motor 
drive 
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The control signal from the PMAC is a single-ended +-10V analogue magnitude voltage generated 

on pin 43 (DAC1).  Pin 45 (DAC1/) is left floating because the return path for the control signal is 

analogue ground.  Pin 47 (AENA1/DIR1) is used as an amplifier enable signal.  This pin is an open 

collector output and requires the use of a 1 kilo-ohm pull-up resistor.  It is configured to give an 

active LOW output. Pin 49 (AMP FAULT) takes an input that tells the PMAC whether the 

amplifier is operating correctly.  This input is supplied by the amplifier itself and is based upon the 

result of the amplifier self-test routines.  Pins 17, 19, 21, 23, 25 and 27 (CHC1, CHC1/, CHB1, 

CHB1/, CHA1 and CHA1/ respectively) are the PMAC encoder inputs for quadrature decoding. 

  

Terminals X3:1 (CMD+) and X3:2 (CMD-) are the velocity control inputs of the servo controller.  

CMD- is tied to the PMAC's analogue ground allowing single-ended control by the PMAC.  Pin 

X3:6 (CIV) and pin X3:8 (CGND) are the inputs that define the voltage level at which the servo 

drive communicates with its controller (in this case a PMAC-PC).  All outputs to the PMAC (e.g. 

encoder outputs and Drive OK output) use the voltage present on pin X3:6 and are relative to pin 

X3:8.  Pin X3:9 (Enable) is connected to the PMAC amplifier enable output allowing the PMAC to 

"disconnect" the amplifier when control of the servomotor is not required. Pins X3:10 (CW Limit) 

and X3:11 (CCW Limit) are tied to PMAC's +15V supply to enable motion in both the clockwise 

and counterclockwise directions.  
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Figure 3.3:  Wir ing diagram for  the spindle motor  control circuit and cur rent transducer. 
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X-Y Axis Control Circuit Descr iption 
 

 
 

Figure 3.4 shows the connection-wiring diagram for the x-y axis control.  The velocity control 

voltage is developed between pin 44 (DAC2) and pin 46 (DAC2/) of connector PMAC-J8. This 

control signal is then fed to connector pins J1:1 (DAC2) and J1:2 (DAC2/) of the voltage-to-

frequency converter (V-to-F). The V-to-F then converts this unsigned magnitude voltage signal into 

a pulse width modulated signal that is compatible with the stepper motor drive input. The frequency 

of this signal is proportional to the magnitude of the velocity control voltage.  

 

The amplifier enable bit (AENA2/DIR2) on pin PMAC-J8: 48 is used as a digital direction bit and 

supplies the signal to the V-to-F direction input (DIR1) on connector J1:9. The outputs for the V-to-

F are a digital direction bit and a pulse width modulated pulse output, both at TTL levels.  For this 

channel the output on connector TB1: 3 (PUL1) carries the pulse output and the direction signal is 

on connector TB1: 4 (DIR1). The frequency of the output pulses is directly proportional to the 

magnitude of the control voltage present between the DAC1 (J1:1) and DAC1/ (J1:2) input pins. 

The pulse output from PUL1 is the input to the STEP-input (connector J1: 6) of a Pacific Scientific 

stepper motor drive.  The STEP+ (J1: 6) input is tied to +5V.  When logic 0 is present on the STEP- 

input, the opto-isolator goes ON.  Every transition of the opto-isolator from OFF to ON results in 

the execution of a single step of the stepper motor. DIR1 output of V-to-F is the input to DIR- input 

(connector J1: 7) of the Pacific Scientific stepper drive. The outputs of the stepper drive are a pair 

of differential signals that provide excitation voltage to the windings of a stepper motor. Feedback 

from the stepper motors is by means of an incremental encoder that is attached to the stepper motor 

shaft at its rear end. This device outputs 4 pulse signals in quadrature mode.  A resolution of 2048 

pulses per revolution is realized in this application. Output from this device is fed directly to the 

PMAC quadrature encoder inputs. The PMAC decodes these signals to determine position and 

velocity of the stepper motor. 
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11.1.2 Figure 3.4: Wir ing diagram for  the x-y axis control circuit. 
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3.1.2 Sensory System 

 
One of the basic requirements for intelligent machining is the need for sensors and measurement 

systems to obtain signal features that characterize the process.  In this project the sensor type and 

positioning thereof is focused on the measurement of signals that are “close” to the machined 

product.  These signals may then be used as input to an intelligent diagnosis system to ensure the in-

process reliability and quality of the machined product (Chapter 5).    Figure 3.5 shows the cutting 

tool (insert and holder) with embedded sensors for: cutting force and feed force, cutting sound, 

cutting tool temperature and cutting tool-workpiece vibration measurement. 

 
3.1.2.1 Tool-Workpiece Vibration 
 
Vibration may be measured using either a dynamometer, accelerometer or displacement sensor.  Lin 

and Hu [78] found that, of the three, accelerometer performed better.  The accelerometer may be 

placed on the tailstock or on the tool as shown in Figure 3.5.  A model 3140 instrumentation grade 

fully signal conditioned accelerometer is used to measure the tool-workpiece interaction [79].  The 

accelerometer has a range of 0 to 10g, a build-in amplifier with an output sensitivity of 200.7 mV/g 

and a frequency response of 0,7Hz to1200 Hz.   

 

3.1.2.2 Cutting Tool Temperature  
 

 
A J-type thermocouple wire with a braided tip inserted close to the tip of the cutting insert is used to 

measure temperature close to the cutting zone.  The thermocouple wire is fed to a type 1100 signal 

converter used to linearize and amplify the temperature signal [80].  The amplifier system’s 

sensitivity is 33 mV/oC with a range of 0-300 oC. 
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Figure 3.5: Cutting tool, embedded microphone, thermocouple, strain gauges, accelerometer sensors and amplifiers. 
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3.1.2.3 Or thogonal Forces  
 
The objective of strain gauging a cutting tool is to measure the orthogonal cutting forces [81] acting 

on the tool and workpiece whilst machining.  To be able to measure the cutting force Fz and feed 

force Fx, eight 120-ohm strain gauges [82, 83] are bonded [84] to the shank of the cutting tool as 

shown in Figure 3.6.   The front set of gauges may be used to measure the radial force Fy.  

However, it was not used in this project.  The two sets (top-bottom, left-right) of four gauges are 

wired into a bridge configuration [85, 86] and connected to a dynamic amplifier with a 3 kHz 

frequency response range. 

 

 

 

 

 

 

 

(a) Strain gauge positions to measure Fx, Fy and Fz. 

 

 
 
 
 
 
 
 
 
 
 
 

 (b) Strain gauges bonded to shank.                    (c) Stain Gauges covered with foil. 

 

Fz: 2 on top and 2 at bottom 

Top and bottom  gauges wired 
into a bridge for measuring Fz. 

Left and right gauges wired into a 
bridge for measuring Fx. 

Front gauges wired into a bridge 
for measuring Fy. (Not Conneted) 
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Figure 3.6: Cutting tool with bonded strain gauges for  or thogonal force measurement. 

Figure 3.7 (a) shows the procedure followed in calibrating the equipment with the purpose of 

determining the ratio a relationship between the output voltages from the dynamic amplifier, 

and the forces applied at the tip of the cutting tool (sensitivity).  A beam was attached to the 

tool holder and weights suspended from the beam.  This was done to overcome the problem 

of attempting to attach large weights to the tip of the tool.  Figure 3.7 (b,c) shows the resulting 

calibration curves. 
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(a) Or thogonal force calibration procedure. 

 

(b) Fz: Applied force at tool tip in the z-axis versus amplifier  output voltage  

(Sensitivity – 23.67 mV/N). 

 

 

(c) Fz: Applied force at tool tip in the x-axis versus amplifier  output voltage 
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(Sensitivity – 23.62 mV/N). 

Figure 3.7:  Calibration procedure and sensitivity for  orthogonal cutting force measurement. 

Whilst loading the x and z-axis respectively there is an output recorder on the unloaded axis.  This 

output is less than 5% of the value recorded at the loaded axis and may be the result of a small 

misalignment in the strain gauges position on application.   

 

3.1.2.4 Cutting Sound 
 

 
Sound may be defined as any pressure variation that the human ear can detect.  The number of 

pressure variations per second is called the frequency of sound and is measured in Hertz.  The 

frequency of sound produces its distinctive tone.  These pressure variations travel through any 

elastic medium (such as air) from the source to the listener’s ears.  For acoustic and sound 

measurement purposes, the speed is expressed as 344 ms-1 at room temperature, and from this the 

wavelength may be calculated as speed of sound / frequency.  Most industrial noise consists of a 

wide mixture of frequencies known as broadband noise.   

 

A second main quantity used to describe a sound is the size or amplitude of the pressure 

fluctuations.  The decibel is not an absolute unit of measurement.  It is a ratio between a measured 

quantity and an agreed reference level.  The dB scale is logarithmic and uses the hearing threshold 

of 20 µPa as the reference level [87].   

 

A microphone converts the sound signal into an equivalent electrical signal.  The most suitable type 

of microphone for sound level meters is the condenser microphone, which combines precision with 

stability and reliability.  A LSM900 condenser microphone, with a 20-20kHz frequency response, is 

small in size and free of  “bass boosting proximity”  effect found when using most microphones 

close to a sound source [88].  This makes the microphone ideal for measuring cutting sound close to 

the cutting zone.  The electrical signal produced by the microphones is quite small, and a 
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preamplifier amplifies it before connected to the DSP.   Figure 3.8 shows the microphone connected 

[89] to AD210 [90], a general-purpose amplifier, whose output is connected to one of the channels 

of the PC-based DSP interface card. 

Figure 3.8: M icrophone amplifier  circuit diagram. 

Capacitors C3 (1� F), C1, C2, C5 anC6 (100nF) are connected to filter and eliminate any unwanted 

high frequency noise ripples.  Zener diodes D1 and D2 provide protection against high voltage and 

incorrect polarity by limiting the input AC and DC voltage amplitudes.  Resistor R6 provides 

current limiting.  When the input signal is of DC type, jumper JP1 must be connected to provide a 

DC-link.  An unconnected jumper links JP1 for an AC input signal, which now passes through 

capacitors C4 and C8 connected in parallel.  The parallel-connected capacitors, together with 

resistor R4, determine the circuit’ s low frequency response limit as: 
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The signal is taken to the inverting input of the AD210 through resistor R4 with the non-inverting 

input being connected via R7.  A feedback path is provided from the output, via resistor R2.  This 

gives a maximum voltage gain for the amplifier as: 
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The output signal from the AD210 passes through a low pass filter R1 and C7, which filter any high 

frequencies.  The cut-off frequency may be determined by: 

HzCR
f

HIGH 712
1

π
=                                                                                                           3.3 

In order to reduce background noise measurement the amplifier’s gain was altered using R2 

(392k� ) until the output was close to zero. Using this value for R2 and equation 3.2 the final gain is 

calculated at 70.  The LSM900 microphone has a sensitivity of 0.02238 mW/Pascal, which results 

into 0.25 V/Pascal as it is feeding into a 2800�  (R5//R6) impedance.  With a gain of 70 the 

resulting sensitivity for sound measurement is 17.5 V/Pascal.  Although the microphone can 

measure sound of up to 120dBSPL (20 Pascal), which is equivalent to a jet taking off, sound from the 

cutting process used in this project does not exceed 0.05 of a Pascal (about 70 dBSPL). 

 
3.1.2.5 Spindle Current 
 
 

The on-line measurement of spindle current is important as it may be related to cutting force as an 

alternate measurement method and used to manage the supply of torque and power available for 

cutting.  Advantages of current sensors include: low in cost, easy to install, robust and have a fast 

response time.   Furthermore, due to lower maintenance and higher performance, modern machining 

centers make use of AC or DC Servo Brushless motors.  It was therefore decided to make use of a 

3kW AC Brushless servomotor and connect it directly to the spindle. 

 

The spindle current is measured using an F.W.Bell current transformer Model IHA-100 [91].  It is 

able to measure current in a range of 0 – 100 amps with a sensitivity of 50 mV/ampere and a +5/-5 

V maximum output.  However, with N turns, the current range is reduced by a factor of N divided 

by the full-scale current.  For the model IHA-100, 10 turns through the aperture will change the 

current range from 0 – 100 ampere to 0 – 10 ampere, thereby increasing sensitivity to 500 
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mV/ampere.  The current sensor is connected in one of the phases of the servomotor [92], as shown 

in Figure 3.9, so as to measure load changes instantaneously. 

 

 

 

Figure 3.9: IHA-100 current sensor connected into one of the phases of the ac servomotor . 
Figure 3.3 shows the wiring diagram for the spindle motor control circuit and indicates how 

the current transducer is connected in one of the motor’s phases and interfaced to the DSP 

interface card.  The –15 V supply goes to pin 1 of the current sensor, +15 V supply to pin 3 

and analogue ground to pin 2.  The use of a dual rail supply allows the sensor output to 

swing either negative or positive to indicate negative or positive current flow.  Pin4 

(AGND) of the current transducer is fed to pins 5 (INPUT B-) and 34 (AGND) of the DSP 

interface. This means that the signal received by the DSP card will be relative to the card’s 

own analogue ground. Output of the transducer on pin5 (VOut) is fed to pin 24(INPUT B+) 

of the DSP card. The analog to digital converters on the DSP card then converts this value to 

a sixteen bit binary value, which can be accessed by the host computer for analysis 

purposes. 

 

10 turns to give 
500mV/A sensitivity 

To DSP Channel 

+15/-15 Power Supply 

To Drive  To AC Servo 
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Figure 3.10 shows the relationship between the spindle current Is and the cutting force Fz 

for all the measurements performed during experimental data acquisition in Chapter 4.  The 

experimental data is shown in Appendix B. 

Fz versus Is
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Figure 3.10:  The experimental relationship between the spindle cur rent Is and the 

cutting force Fz. 

The values for Is and Fz is obtained after sampling and calculating their rms values.  The 

correlation between the spindle current and cutting force is 98.47%.  There is no complex 

sensor calibration required and the relationship is a simple linear equation.   

3.2 Software Components for  Exper imental Set-Up 
 
 
Decisions made by the intelligent controller must be made within a relatively short period of time.  

An adequate response to changing system conditions and events, such as tool wear, must be made 

within seconds in order to guarantee the reliability of the process [1].  Figure 3.11 shows the 

hardware architecture with software components implemented to realize the intelligent controller.  

The two PCI32 DSP modules, target 0 and target 1, continually sample sensor signals and perform 
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real-time signal processing on each.     The PMAC target module performs machine control by 

executing motion control commands.  Target 0, 1 and 2 operate independently.  The PC-based host 

module executes a windows based MFC software application framework.  It in turn instantiates 

objects CMonitorView, CGeometricView and CServer each with an appropriate user interface.  

CMonitorView uses the mailbox interfaces to request on-line process data features from target 

modules 0 and 1.  It may then use the data to execute advanced monitoring and intelligent 

diagnostic algorithms.  CGeometricView uses an Active X  [69] to send motion control commands 

to the PMAC.  Its user interface is used to interact directly with the various motion controls, create 

motion control programs, download motion control programs and start the execution thereof.     
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11.1.3 Figure 3.11: Hardware architecture and software components for intelligent 
machining process controller . 

 
The host operating system is Internet enabled and therefore CServer enables remote monitoring of 

machining process parameters.  Figure 3.12 shows the implemented object-oriented software 

framework for the intelligent machining process controller software components.  It shows 

interfaces to allow communication between modules, basic data structures required, events 

generated and software functions implemented.  The following subsections will briefly describe 

implementation aspects of the software framework.    
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3.2.1 Host Module CMonitorView for  Machining Process Monitor ing 

 

CMonitorView object, created at runtime, by CWinApp, declares a channel_features structure that 

is used to declare variables to maintain on-line data features from each sampled channel. 

 

On Windows WM_CREATE event the object constructor opens a device driver to enable 

communications, using DLL function calls, with target 0 and target 1 [93].  It performs a 

communication test with both targets.    

typedef struct 
    { float FREQ; 
      float RMS; 
      float MEAN; 
      float FFTBuf[256]; 
    }  channel_features; 
     
channel_features t0chan0, t0chan1, t0chan2, t0chan3;//t0 – Target 0; t1 – Target 1 
channel_features t1chan0, t1chan1, t1chan2, t1chan3; 

//Open Target 0 and Test Target 0 Responce 
target0 = 0; 
target_open(target0) 
download(0); 
do  {  count++; 
     read_value = 0; 
    read_mb_terminate(target0, TERMINAL_MBOX, &read_value, 0); 
    Sleep(100); 
       }   while(count<50 && read_value!=0xa5a5); 
if  (count==50) 
       {  MessageBox(NULL, "Target 0 Application did not respond",  
                                MB_ICONINFORMATION);}  
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Figure 3.12: Object-oriented software framework for a PC-based intelligent machining process controller. 



When the target modules have successfully sampled and processed sensor data, they place the data 

features into dual port ram used for the host-target interface.   Interrupt service routines, EnqueueData0 

and EnqueueData1, transfer data features from the dual port ram, when it receives a hardware interrupt 

from the target 0 or target 1, into the channel_features data structures.  The following code shows how 

the constructor initializes the interrupt service routines. Code is repeated for target 1.   

 
 

The DLL automatically calls the interrupt service routines, EnqueueData0 (shown below) or 

EnqueueData1, on receiving a hardware interrupt from target 0 or target 1.  

//  Set up the Virtual ISR Enqueue0 
host_interrupt_install(target0, EnqueueData0, (PVOID)target0); 
host_interrupt_enable(target0);     
//  Send sync to target  
write_mailbox(target0, TERMINAL_MBOX, 1); 
 

void EnqueueData0(void * target0) 
{ unsigned int i,j,k;  
CARDINFO * dsp; 
dsp = (CARDINFO* )target_cardinfo((int)target0);       
float * dpram =(float *)dsp->BusMaster.Addr; 
//Read Target 0 – Channel 0 Data Features 
t0chan1.FREQ = dpram[256]; 
t0chan1.RMS  = dpram[257]; 
t0chan1.MEAN = dpram[258]; 
for (i=0;i<256;i++)    t0chan1.FFTBuf[i] = dpram[i]; 
//Read Target 0 – Channel 1 Data Features 
t0chan1.FREQ = dpram[515]; 
t0chan1.RMS  = dpram[516]; 
t0chan1.MEAN = dpram[517]; 
for (i=0, j=259;i<256;i++,j++)  t0chan1.FFTBuf[i] = dpram[j]; 
//Read Target 0 – Channel 2 Data Features 
T0chan2. FREQ = dpram [774]; 
t0chan2.RMS  = dpram[775]; 
t0chan2.MEAN = dpram[776]; 
for (k=0, j=518; k<256;k++,j=j+1)  t0chan2.FFTBuf[k] =dpram[j];  
//Read Target 0 – Channel 3 Data Features 
t0chan3.FREQ = dpram[1033]; 
t0chan3.RMS  = dpram[1034]; 
t0chan3.MEAN = dpram[1035]; 
for (i=0, j=777;i<256;i++,j++)  t0chan3.FFTBuf[i] = dpram[j];  
}  
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The constructor then downloads the target application file dsptarget.out (source code discussed in 

Section 3.2.2) into both targets and starts the target applications as shown below.  The source code is 

repeated for target1.  Once started the targets operate independently from the host object module 

CMonitorView.   

 

 

BOOL CMonitorView::download(int tar) 
{  
//Resets the target, starts talker, then performs a target download 
char msg[200]; 
 
 if (!(tar)) 
 { /*  reset target0 */ 
  target_reset(target0); 
  clear_mailboxes(target0); 
  target_run(target0); 
  /*  wake up talker */ 
    if(!start_talker(target0)) 
    {   MessageBox(NULL, "Target not responding:\ncheck installation and\nmake  sure target   
is\nnot held by JTAG", MB_ICONERROR); 
    return FALSE; 
    }  
    else 
    {   strcpy(msg, getenv("ii_board")); //c:\pci32cc.... 
        strcat(msg, "\\examples\\monview\\dsptarget.out"); 
        if( !iicoffld(msg, target0, NULL) )  
            {  /*  start application */ 
             start_app(target0); 
             return TRUE; 
             }  
        else 
             { sprintf(msg, "COFF load failed. Check that the file to be loaded" 
                         " exists and is a COFF file"); 
              MessageBox(hwnd, msg, szAppName, MB_ICONINFORMATION); 
              return FALSE; 
             }  
    }  
 }  
}  
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Finally the constructor executes the timer (300) function.  Every 300 milliseconds a WM_TIMER 

event initiates a call to the CMonitorView::OnTimer() function. The ::OnTimer() function sends a 

mailbox message to the target applications indicating that the channel_data have been read.  It then 

void CMonitorView::OnTimer(UINT nIDEvent) 
{ //Acknowldge to the PCI32 Target Modules – Data Taken 
mailbox_interrupt(target0, 1); 
mailbox_interrupt(target1, 1); 
//Process Parameters 
m_DSP_Fx_RMS = float(int((t0chan3.MEAN )*423.3))/10;//Newton 
m_DSP_Fz_RMS =  float(int((t0chan2.MEAN)*422.5))/10;//Newton 
m_DSP_Is_RMS= (int((t0chan1.RMS*2000))) ;//mA 
m_DSP_Sc_RMS = float(int(t1chan0.RMS*1000));//mV 
m_DSP_Vy_RMS = float (int(t1chan1.RMS*1000)) ; //mV 
m_DSP_Tt = float(int((t1chan2.RMS) *3000))/100 ; //degreeC 
//Process Control  
//rpm 
m_PTalk1.GetResponse(&response, "#1v"); 
USES_CONVERSION; 
strcpy(buf,OLE2T(response)); 
float Zcount; 
m_Speed_RPM = int(-32.9*atof(buf)); 
//Feedrate mm/min 
m_PTalk1.GetResponse(&response, "#3f"); 
strcpy(buf,OLE2T(response)); 
Zcount = atof(buf); 
m_FeedRate = Zcount * 0.2585 ; 
//Feed mm/rev 
m_FeedRate_mmrev= m_FeedRate / m_Speed_RPM ; 
//Inner & Outer Diameter 
m_Diameter_Outer = Part_Outer_Diameter; 
m_Depth =  Part_Depth; 
m_Diameter_Inner = m_Diameter_Outer - (2*m_Depth); 
//Average cutting speed  m/min 
m_Speed_Cut=(3.14159*((m_Diameter_Outer + m_Diameter_Inner)/2)* 
                                             m_Speed_RPM)/1000; 
//Metal removal rate  mm3/min 
m_Mrr_RMS = 3.14159 * (m_Diameter_Outer + m_Diameter_Inner)/2 * m_FeedRate_mmrev * 
m_Depth * m_Speed_RPM ; 
//Torque Nm 
m_Torque = m_DSP_Fz_RMS * (m_Diameter_Outer+ m_Diameter_Inner)/4000; 
//Power in cut - Nm/sec 
m_Power_RMS = m_DSP_Fz_RMS  * m_Speed_Cut/60 ; 
//PROPOSED POSITION OF Ra AND Vb MONITORING FUNCTIONS 
//m_Ra = FTWINRTE(“ RA.FTL” ,m_Fx,m_Pc,m_Vy );  
//m_Wear = FTWINRTE(“ WEAR.FTL” ,m_Depth, m_FeedRate_mmrev,m_Vy_RMS,  

m_Is_RMS ); 
 
//PROPOSED POSITION OF INTELLIGENT DECISION MAKING SOFTWARE  
//SEND DECISION TO PMAC TARGET MODULE 



 90

uses the sensor sensitivity factors, obtained in Section 3.1.2.1-3.1.2.5, to convert the voltages to 

standard values.  These values are placed into variables linked to Windows dialog controls.  Machine 

control parameters are obtained using the PTalk ActiveX discussed in Section 3.2.3.  Finally the timer 

function cycle ends by executing advanced monitoring and intelligent diagnosis functions (proposed 

position indicated). 

Chapter 4 describes the FTWINRTE () [94] function used to call the fuzzy logic models WEAR.FTL 

and RA.FTL, whilst Chapter 5 describes intelligent diagnostic scheme.   Figure 3.13 shows the user 

interfaces for on-line viewing of sensor data and machining parameters.  The views are updated at the 

end of  ::OnTimer().  The variables shown in Figure 3.13 (a) are linked to the screen’s dialog controls 

and updated by calling the UpdateData(FALSE) function.  DLL software functions for implementing 

real-time scientific graphing and trending [95] are used to display sensor rms and normalized FFT 

values, as shown in Figure 3.14 (b).  To verify these views a function generator was connected to the 

input of the Fz and Fx channels.  Figure 3.14 (b) show the values for a signal generator output voltage 

set at 3.188 volt (134.94 N) and frequency set at 142 Hz.   CMonitorView has on-line recording 

capability, which will be used in Chapter 4 for experimental analysis.  
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(a) Static user  inter face for  on-line viewing of machining process parameters. 

 

 

 

 

(b) On-line trending and frequency distr ibution of sensor  signals. 
 

9.765 Hz   
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Figure 3.13:  Static and dynamic views of machining process parameters. 
 

3.2.2 PCI32 Target Modules for  Signal Sampling and Processing 

CMonitorView downloads dsptarget.out into both targets and starts the execution thereof.  The 

executable file is created by compiling dsptarget.c, commented source code given in Appendix C, using 

the Texas Instruments Floating Point C Compiler [93].   On initialization the target application creates 

a queue that maintains 2048 filtered sensor samples, 512 from each of the 4 channels, and creates 

sample buffers to maintain values before filtering and a software timer generated analog service 

routine. 

 

Once started the analog service routine is interrupted every 200 microseconds.  It samples the 4 analog 

channels, filters each channel using fir() function [93] and enqueues the filtered data.     

/*  ISR data queue */ 
QUEUE queue; 
/* analog sample buffers */ 
extern volatile float  sample_buffer0[SAMPLE_BUF_SIZE]; 
extern volatile float  sample_buffer1[SAMPLE_BUF_SIZE];  
extern volatile float  sample_buffer2[SAMPLE_BUF_SIZE]; 
extern volatile float  sample_buffer3[SAMPLE_BUF_SIZE]; 
volatile int sample_buf_write; /*  sample buffer head pointer */ 
#define analog_isr c_int99 
void analog_isr(void);     
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The TMS320C30 DSP used in this project is capable of performing a 16-bit multiplication plus a 32-bit 

addition in one 60-nanosecond machine cycle.    For a realistic filter of 40 taps the TMS320C30 

performs the mathematics in around 2.460 microseconds, meaning that it can accept a new input 

sample every 2.460 microsecond [41].   

When a total of 512 samples for each channel (i.e. 2048 samples) is sampled into the filtered queue, it 

is further processed in the main() function of the program.  Processing of each sensor channel includes 

void analog_isr(void)  
{   int CH0_sample = read_adc(BASEBOARD, 0); 
  int CH1_sample = read_adc(BASEBOARD, 1) ; 
 int CH2_sample = read_adc(BASEBOARD, 2) ; 
 int CH3_sample = read_adc(BASEBOARD, 3);  
/*  Get sample results, store to circular sample buffers. */ 
  sample_buffer0[sample_buf_write] = (float)CH0_sample; 
 sample_buffer1[sample_buf_write] = (float)CH1_sample; 
   sample_buffer2[sample_buf_write] = (float)CH2_sample; 
    sample_buffer3[sample_buf_write] = (float)CH3_sample; 
if(++sample_buf_write == SAMPLE_BUF_SIZE) /* modulo for rollover */ 
    sample_buf_write = 0;                /*  correction */  
/*call filter routine from library. Arguments are the filter coefficient array (pointer points to the 
h(n-1) term), the sample buffer pointer (points to the least recent data point sampled, i.e. the tail 
of the sample circular buffer),and the filter order + 1 */ 
CH0_sample = (float)(fir(&filter_coeff[0], &sample_buffer0[sample_buf_write], 
FILTER_ORDER + 1)); 
CH1_sample = (float)(fir(&filter_coeff[0], &sample_buffer1[sample_buf_write], 
FILTER_ORDER + 1)); 
CH2_sample = (float)(fir(&filter_coeff[0], &sample_buffer2[sample_buf_write], 
FILTER_ORDER + 1)); 
CH3_sample = (float)(fir(&filter_coeff[0], &sample_buffer3[sample_buf_write], 
FILTER_ORDER + 1)); 
/*  Place the filtered output samples into the queue */ 
*((int*)enqueue_ptr(&queue)) = CH0_sample ; 
*((int*)enqueue_ptr(&queue)) = CH1_sample; 
*((int*)enqueue_ptr(&queue)) = CH2_sample; 
*((int*)enqueue_ptr(&queue)) = CH3_sample; 
}  
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functions for calculating the rms value, mean value and frequency distribution.  The resultant outputs 

are placed in the dual port ram from where the host application can access it. 

 

3.2.3 Host Module CGeometr icView Module for  Multi-Axis Control 

void main (void) 
{  
…… 
//Intialization of data 
…… 
timer(0, 5000); /*  Generates a 5kHz timebase for A/D */ 
for( ;;) 
{ /*Wait for Analog_ISR to fill a frame of data */ 
if (enqueued(&queue) >= FFT_SIZE * 4)  

{ /*  Place data into FFT input buffer */ 
 for (i = 0; i < FFT_SIZE; i++) 
  { FFTBufferIn0[i] =   *(volatile int*)dequeue_ptr(&queue); 
  FFTBufferIn1[i] =  *(volatile int*)dequeue_ptr(&queue); 
  FFTBufferIn2[i] =  *(volatile int*)dequeue_ptr(&queue); 
  FFTBufferIn3[i] =  *(volatile int*)dequeue_ptr(&queue); 
  }  
 if(data_taken == 1) 
  {  
  /*  Process channel 0 */ 
     CH0_RMS = CalcRMS(FFTBufferIn0, FFT_SIZE); 
     CH0_AVE = CalcAVE(FFTBufferIn0, FFT_SIZE); 
     CalcFFT(FFTBufferIn0, FFTBufferOut, window, SinTable); 
     CH0_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0); 
       for(i = 0; i<256; i++) 

{ dpram[i] = to_ieee(FFTBufferOut[i]); 
}  

   dpram[256]  = to_ieee(CH0_FREQ); 
     dpram[257]  = to_ieee(CH0_RMS); 
      dpram[258]  = to_ieee(CH0_AVE); 
  …. 
  …. 
  /*  Process channel 1 , 2, 3  
  …. 
  … 
  /*Notify host that data is ready to be read*/ 
  mailbox_interrupt(1); 
  data_taken =0; 

 /*  data_taken will be set to 0 by the host after reading  
the data*/ 

    } //end  if 
} //end for 
} //end main 
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Target 2 module is the PC-based PMAC interface card [68].  The PMAC executes a sequence of 

motion control commands given to manufacture a part.  Execution of the command includes 

performing all the calculations required to prepare for actual execution of the move [96].  Delta Tau 

developed PTalkDT, an ActiveX control that is used with 32-bit versions of Visual C++, to serve as a 

communications link between a Windows application and the PMAC [69].   CGeometricView uses 

PTalkDT to send motion control commands or a series if commands to the PMAC for execution.  

Figure 3.14 shows the user interface for CGeometricView.   

 

Figure 3.14: User  inter face for  machine control. 

Programming and execution controls (Windows) are used to manage the execution of motion control 

programs.  It includes controls to prepare a set of motion control instructions for download to the 

PMAC.  Controls are included to jog motors whilst setting up the tool zero position.   Process 

constraints are set to ensure the on-line integrity, accuracy and quality of the machined part.  If a 

constraint is exceeded the diagnostic system must decide intelligently on a control action that will 

ensure that the process returns to a reliable state of machining.  CGeometricView provides the software 
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interface through which to send the control action.  The commands that the PMAC executes are 

enclosed within classes created to facilitate the execution of on-line multi-axis control commands from 

within CGeometricView.  These classes include: CServoMotor for spindle motor control, 

CStepperMotor for stepper motor movements within a coordinate system and CProgramBuffer for 

maintaining a buffer within the PMAC for execution of host programming instructions.    The source 

code for the classes and their member functions is presented in Appendix D.  CGeometricView module 

created at runtime by CWinApp issues a WM_CREATE event, which in turn calls a constructor to 

perform initialization of PMAC interface card, set up of servo control loops and a coordinate systems.  

It also instantiates the following machine control objects, classes in Appendix D.   

 

It creates a rotary programming buffer in the target to hold motion control instructions for execution. 

CServoMotor Spindle(0,0,0); 
CStepperMotor X_Axis(0,0,0, "#2"); 
CStepperMotor Z_Axis(0,0,0, "#3"); 
CProgramBuffer RotaryBuff(1,100); 
 

void CGeometricView::OpenRotaryBuffer() 
{ CHAR buf[255]; 
BSTR response = SysAllocString(L""); 
USES_CONVERSION; 
m_PTalk1.SetDeviceNumber(0); 
m_PTalk1.SetEnabled(TRUE);  
//Create Rotary Buffer - "&1 define rot 100" 
m_PTalk1.GetResponse(&response, RotaryBuff.Create()); 
strcpy(buf,OLE2T(response)); 
m_PTalk1.GetResponse(&response, "#1j/#2j/#3j/");//close loops 
strcpy(buf,OLE2T(response)); 
//Open Rotary Buffer - "OPEN ROT" 
m_PTalk1.GetResponse(&response, RotaryBuff.Open()); 
strcpy(buf,OLE2T(response)); 
//Clear Rotary Buffer - "CLEAR" 
m_PTalk1.GetResponse(&response, RotaryBuff.Clear()); 
strcpy(buf,OLE2T(response)); 
m_PTalk1.GetResponse(&response, RotaryBuff.Execute());//Run Program  - "B0R" 
strcpy(buf,OLE2T(response));}  
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The ActiveX function m_PTalk1.GetResponse() is used to communicate commands to the PMAC 

target [69].  RotaryBuff object member functions return instructions to create, open, and clear a buffer 

area within the PMAC.  Motion control instructions sent to this buffer area will be executed by the 

PMAC.  When a user enters/clicks on a Windows control, as shown in Figure 3.14, an event 

(ON_USER_CMD) is generated that will direct program control to an appropriate member function 

within CGeometricView.  These member functions make use of the machine control objects Spindle, 

X_Axis and Z_Axis to control the machining process cutting speed, feed and depth of cut.  For 

example to jog the x-axis stepper motor the following member function is called. 

 

void CGeometricView::OnButtonX()  
{ TCHAR buf[255], buf1[20]; 
BSTR response = SysAllocString(L""); 
USES_CONVERSION;  
if (RotaryBuffer == 1) CloseRotaryBuffer() ; 
if(X_Axis.GetOffOn() == 0) 
{  
SetDlgItemText(IDC_BUTTON_X, "X - ON"); 
if (X_Axis.GetPosNeg() == 1) 
 { X_Axis.SetPositive(); 
 m_PTalk1.GetResponse(&response, X_Axis.GetJogCommand()); 
 strcpy(buf,OLE2T(response)); 
 }  
if (X_Axis.GetPosNeg() == -1){  X_Axis.SetNegative(); 
 m_PTalk1.GetResponse(&response, X_Axis.GetJogCommand()); 
 strcpy(buf,OLE2T(response)); 
 }  
X_Axis.SetOn(); 
}  
else  
{ m_PTalk1.GetResponse(&response, X_Axis.K illCMD()); 
strcpy(buf,OLE2T(response)); 
SetDlgItemText(IDC_BUTTON_X, "OFF"); 
X_Axis.SetOff(); 
m_PTalk1.GetResponse(&response, X_Axis.CloseLoopCMD()); 
strcpy(buf,OLE2T(response)); 
}  
}  
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 On WM_TIMER, the host module sends any new instructions to the target’s circular buffer for 

execution as well as reads back encoder value used to determine and display motor speeds and 

positions.   

3.2.4 CServer  to View Process Parameters from within a Remote Browser  

 

Manufacturing companies are looking for ways to assess the performance of their manufacturing 

equipment and plants from remote sites.  World Wide Web (WWW or Web) technologies are a viable 

vehicle in achieving this objective.  Research has focused on multi-media interaction, Virtual Reality 

modeling and reducing data for file transfer [97].    Ports and sockets are levels of connection supported 

by both MFC and Java.  A port is an abstraction of a physical place through which communication can 

take place between a server an 

d a client [75].  The server provides the port and the client links to it. The PC used in this project is 

Web-enabled and on start-up executes Personal Web Server (PWS).  PWS listens on the Transport 

char *bufferin = new char[RECIEVEMAXBUFF], *bufferout = new char [SENDMAXBUFF]; 

CSockAddr saServer; 

ChttpBlockingSocket sConnect; 

SaServer = CSockAddr(INADDR_ANY, 8192);//INADDR_ANY use local IP 

CBockingSocket g_sListen;  //Global socket for listening, derived from CSocket 

CServer::Start() 

{ g_sListen.Create(); 

g_Listen.Bind(saServer); 

g_sListen.Listen();//Start Listening 

AfxBeginThread(ServerThreadProc, , ); 

..}  

UINT ServerThreadProc(LPVOID pParam) 

{ sConnect.ReadSimpleMsg(bufferin, RECIEVEMAXBUFF, 10 ); 

..//Decode message stream and place process data into bufferout 

..sConnect.Write(bufferout, strlen(bufferout), 10);}  
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port 80 for a connection from the client side web browser.  The browser downloads the Hypertext 

Markup Language (html) page, which contain a Java applet.  The Java applet connects to MFC CServer 

object through sockets.   A socket is an abstraction of the network software that enables communication 

in and out of a program [75].  Once a socket has been created, the Java client and CServer may 

communicate any whatever way arranged.  A data buffer, that contains on-line machining process 

performance and limits, is streamed to the Java applet for remote monitoring.  The Java applet enables 

the expert to adjust process performance limits remotely.  On WM_CREATE CServer makes use of the 

MFC CSocket base class to create a socket, bind a socket to a port and listen on the port address as 

shown below [98].  It then creates a server thread to continually read an input stream, decode a client’s 

data request and send data buffer via output stream. 

 

To establish a simple client in Java using streams requires a socket to connect to the server.  The socket 

methods getInputStream and getOutputstream are used to reference the socket’s associated InputStream 

(in) and OutputStream (out).  InputStream read() method is used to input sets of bytes from the server, 

whilst OutputStream write() method  

 

is used to output sets of bytes to the server. 

 

Socket socket; 
DataInputStream in; 
DataOutputStream out; 
public void net_start(String ip, int port, JSObject rF) 
{ .. 
//open socket to server 
socket = new Socket (ip, port);   
//create input and output io steams 
out = new DataOutputStream (socket.getOutputStream()); 
in = new DataInputStream (socket.getInputStream()); 

.. 

}  
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Figure 3.15 shows the resulting Java client executed inside an Internet browser to monitor machining 

process parameters. The user has the ability to change process limits, which are updated by CServer.  

The main applet calls paint () function to refresh the screen every second. 

 

Figure 3.15:  Java client inside an Internet browser  for  remote monitor ing of machining process. 
 

3.3 Conclusion 

 
A PC-based intelligent machining controller, with in-process quality assurance that is able to detect 

exceeded tolerances, and adapt quickly (less than a second) to maintain a reliable machining process, 

has been implemented.  The system hardware and software architecture is based on open system 

philosophy.  The Pentium-based PC includes two PCI32 DSP interface cards for signal acquisition and 

processing, a PMAC for multi-axis control and an Ethernet interface card for remote monitoring and 

control.  An object-oriented software framework for the controller is implemented.  The framework 

includes an MFC application framework to integrate machining process monitoring, diagnosis and 

machine control.  The application framework includes user interfaces to enable visualization of process 
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performance.  C++ classes were developed and used to support communication with PMAC interface 

card. 

 

Machine controls are connected directly to the PMAC interface card, enabling instantaneous reaction 

from software commands.  Sensor and measurement systems that characterize the machining process 

have been embedded close to the machined product.  Signals are connected to PCI32 DSP interface 

cards.  Software to sample and filter sensor signals, determine rms values as well as obtain a signal’s 

frequency distribution, was developed and tested. 

 

The implemented hardware architecture, as shown in Figure 3.11, provide a platform for a generic 

monitoring, diagnosis and control system to realize an intelligent machining process.  The implemented 

object oriented software framework, as shown in Figure 3.12, enable system re-configurability 

according to machining process requirements. The successful integration of embedded sensors and 

machine controls, for a cutting process, with the generic hardware and software contribute to the 

knowledge in the field of intelligent machining. 

 

Chapter 4 makes use of the machining controller to obtain experimental data that is used to determine  

sensor signal’s sensitivity to tool wear and surface roughness.  These sensor signals are used in a multi-

sensor fusion model to measure surface roughness and tool wear indirectly.  Chapter 5 uses the 

experimental data to determine the influence of machining input parameter on sensor signals.   
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To realize advanced automation in machining sensors which will perform reliable on-line, 

measurement of tool wear and surface roughness is required [1,3].  In this chapter sensor fusion 

modeling, as shown in Figure 4.1, is used to indirectly measure surface finish and to classify tool wear.  

Signals that characterize machining process performance (tool-workpiece vibration, tool temperature, 

cutting forces etc) are processed using DSP technology to extract data features.   The data features and 

cutting parameters may be used as inputs to the FL model.   

Fuzzy Logic Model

DSP

Measurement

Machining Process Parameters

Signal Features

Machining Cutting Parameters

 

Figure 4.1: Sensor  fusion model for  tool wear  classification and sur face roughness measurement. 

Section 4.1 describes the methods used to date for indirect measurement of surface roughness and tool 

wear classification.  Section 4.2 describes the process followed in obtaining the FL models from 

experimental data.  In Section 4.3 experimental data is derived by using the experimental set-up 

explained in Chapter 3.  In Section 4.4 and 4.5 the input signals to the multi-sensor models is 

determined using statistical processing of experimental data.  Once the input signal has been identified 

Chapter  4  

Multi-Sensor  Fusion Models for   

 Tool Wear  Classification and Sur face Roughness Measurement  
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the experimental data is used to create FL models using FuzzyTech [94] NF-module.  The effectiveness 

of the FL-based sensor fusion model for tool wear and surface roughness measurement is illustrated 

with numerical examples. 

 

4.1 Introduction 

 

Direct measuring methods for tool wear may include touch trigger probes, optical, radioactive, 

proximity sensors and electrical resistance measurement techniques [99].  It is difficult to achieve the 

direct measurements for on-line tool wear monitoring practically due to continuous measurement 

conducted on a small wear zone. Indirect measurement senses other factors that indicate the cause of 

tool wear.  Indirect sensing methods that have been utilized include cutting forces, acoustic emission, 

temperature, vibration, spindle motor current, torque, strain and snapshot images of the cutting tool 

[99].  Most applications use only one or two sensors to detect tool conditions.  Tansel and McLaughlin 

[100] used the force signals for detection of tool breakage for milling process.  Force signals were also 

applied in turning for tool wear monitoring [101].  In the work done by Ko and Cho [102] force and 

vibration signals were combined for cutting state monitoring in milling with respect to tool wear 

conditions.  Dornfeld [15] used three signals: acoustic emission, cutting forces and spindle motor 

current for tool wear monitoring.  Each signal has sensitivity to tool wear in a certain range and to a 

certain extent.  In order to identify tool conditions and control the process of monitoring in machining, 

several strategies and techniques have been proposed.  Techniques may be summarized as statistical 

methods, fuzzy technology and neural networks. In statistical methods, the time series analysis 

approach was applied by Tansel and McLaughlin [100] to detecting tool breakage by monitoring a 

cutting force or torque signal in any direction. Du and Li [103] proposed a methodology, which uses 

fuzzy set theory to build a linear fuzzy equation in terms of experimental data for description of the 

relations between sensing features (monitoring indices) and tool conditions.  Since they possess 
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learning capabilities, neural networks have widely been applied to tool condition monitoring, including 

supervised and unsupervised networks.  

 

Sensing surface roughness may also consist of direct or indirect methods.  Direct measurement of 

surface roughness implies assessing the conditions of the workpiece just behind the cutting edge of the 

tool.  A stylus can be used, but it results in destruction of the sensor head due to high surface speeds of 

the workpiece.  Optical reflection methods have been restricted to measurement of relatively smooth 

surfaces, but due to limitations are not applicable for use on production floor.  A laser measuring 

system, which employs a linear charge-coupled device sensor and a neural network to process captured 

light patterns scattered from the workpiece surface, was developed to predict the maximum peak to-

valley roughness [104].  However, rather than using direct measurement, several researchers have 

derived surface roughness indirectly using vibration signals between tool and workpiece generated 

during the turning process [105].   

 

It is clear that superior performance via neural networks may be achieved if information from multiple 

sensors is fused [99].  With sensor fusion (concept explained in Section 2.5.5) an individual sensor only 

senses partially and will contribute to classify the tool wear and surface roughness.  However, a 

combination of sensors or sensor fusion data may classify it with greater accuracy.    Research in sensor 

fusion has a relatively short history in machining.  However, recently more attention has been directed 

using and improving sensor fusion techniques [58].  Two major difficulties are encountered when 

applying the fusion of sensors.  These are the adequate selection of input sensors and the establishment 

of effective fusion modeling.  NN architecture (explained in Section 2.5.3) may be used to learn from 

data sets whilst FL solutions (architecture and concepts explained in Section 2.5.2) are easy to verify 

and optimize.  Combining the explicit knowledge representation of FL with the learning power of NN 

result in NF systems.  The combination of the NN and FL architectures are described in Section 2.5.4.   
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4.2 Process for  Implementing a Multi-Sensor  Model 

 

Figure 4.2 shows the process followed for implementing FL-based model from experimental data.   

Statistical processing uses experimental data to determine parameters that may be used to classify the 

tool wear (ANOVA) and for indirect measurement of surface roughness  (SPEARMAN).  Given the 

parameters, an NF module (FuzzyTech module) is used to create an FL model in order to classify tool 

wear using MoM defuzzification.   Another FL model is used to measure surface roughness indirectly 

using CoM defuzzification.  The FL model may be edited to enhance the model.   

EXPERIMENTAL DATA

ANOVA
CORRELATION
(SPEARMAN)

STATISTICAL
PROCESSING

Process
Condition
Classification

Process
Parameter
Measurement

NEURO-FUZZY MODELLING

   MoM
Defuzzification
for Classification
     Model

   CoM
Defuzzification
for Measurement
      Model

FUZZY LOGIC MODEL

Data Features

Modify/add
to Rule Base

EXPERT
ANALYSIS

C++ Source Code
for Implementation

 

 

Figure 4.2: Process for  implementing FL-based classification / measurement models from 

exper imental data. 
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4.3 Exper imental Data Acquisition  

 

Numerous factors influence surface finish during turning operations.  Accordingly, as shown by the 

cause-effect diagram in Figure 4.3, this study will be restricted to cutting parameters, namely: feed, 

speed and depth of cut and tool wear process condition.  The effect of cutting parameters and tool wear 

on machining process parameters measured, include the following: two cutting forces (Fx and Fz), tool-

workpiece vibration (Vy), cutting sound (Sc), spindle current  (Is), cutting tool temperature (Tt) and 

power in the cut (Pc) which is calculated from Fz and Vc.  

 

Figure 4.3: Machining process cause - effect diagram. 

Machining cutting parameters Vc, dy and f1x were assigned different levels, varying from 50 to 190 

[m/min], 0.6-1.8 mm and 0.01 – 0.24 mm/rev, respectively in machining pure aluminum extrusions 

with a Vickers hardness of 106 (10 kg load).  Process conditions were fixed at two levels only, VB = 

0.0 mm and WB = 0.2 mm, using TP200 a versatile cutting insert.  Typical recommended cutting 

parameters for the TP200 include: Vc = 200 m/min, f1x = 0.3 mm/rev and dy= 0.8 – 3.0 mm [16].  

CUTTING
PARAMETERS

f1X - Feed [mm/rev]
       0.01 - 0.24

VC - Cutting Speed [m/min]
          50, 120, 190

dY: Depth of Cut [mm]
        0.6, 1.2, 1.8

PROCESS
CONDITIONS

 VB- Tool Wear [mm]
0.0 mm, 0.2 mm

PROCESS PARAMETERS

PC - Power in Cut [N]

SC- Cutting Sound [mV]

FX - Feed/Axial Force [N]

FZ - FC - Cutting Force [N]

Is - Spindle Current [mA]

VY - Tool-Workpiece Vibration [mV]

TT  - Cutting Tool Temperature (0C)

Ra - Surface Roughness[ ]mµ
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Flank wear land is used as a measure of tool wear.  Two TP200 inserts were machined with mild steel 

at the following fixed machine settings: average cutting speed of 130 m/min, feed of 0.2 mm/rev and a 

2 mm depth of cut.  The inserts flank wear was monitored using a scanning electron microscope.  

Figure 4.4 shows the respective wear land, VB = 0.095 mm and VB = 0.202 mm, for the two TP200 

insets prepared for this project.   The tool with VB = 0.202 mm is used as part of the experimental 

analysis as shown in Figure 4.2, whilst the tool with wear VB = 0.096 mm will be used for verification 

purposes. 

 
 

        (a) Wear land – VB = 0.095 mm   (b) Wear land – VB = 0.202 mm 
 

Figure 4.4: Cutting inser ts with VB = 0.095 mm and VB = 0.202 mm. 
 

The experimental tests have been carried out using the open architecture machine controller, described 

in Chapter 3, to control the EMCO turning center, equipped with a 1.5kW brushless AC servo spindle 

motor and two Powermax stepper motors configured into a x-y coordinate system.  The multi-axis 

software control module, as explained in Section 3.2, was used to coordinate the x-y and spindle axis.   

FX, FZ, IS, SC and Vy signals were sampled at a frequency of 5000 Hz, with the respective RMS and 

frequency spectrum of each obtained using the DSP monitoring software module as explained in 

Section 3.2.1. The surface roughness (Ra) had been measured after the cutting operations using a 

portable Mitutoyo Surftest profilometer.  The results of the test for tool wear 0 mm and 0.202 mm is 

shown in Table B.1 and B.2 in Appendix B respectively. 
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4.4 Sensor  Fusion Model for  Tool Wear  Classification 

 

To develop a model one first needs to decide which process parameters to use as the input.  With 

statistical analysis one is able to perform an analysis of variance (ANOVA) [28] that indicates which 

parameter is sensitive to tool wear.  After the input-output parameters are in place, a mechanism to 

train the model is required, whereafter the model is able to operate independently. 

 

4.4.1 Statistical Analysis 

 

The analysis of variance (ANOVA) module of Statistica V6.0 [106] is used to determine which process 

parameters from Table B.1 (Tool Wear 0.0 mm) and Table B.2 (Tool Wear 0.2 mm) are influenced by 

tool wear.  ANOVA is often used as a screening technique to determine whether there is any probable 

qualitative relationship between variables before the additional effort and resources are spent in an 

attempt to develop a quantitative relationship [30].  Statistical hypotheses testing are used to indicate if 

the long term average values of each data set will be equal, and hence used to reach a decision, if a 

dependent variable is influenced by tool wear or not.  The hypothesis for the ANOVA test is as 

follows: 

Ho: µ0mm = µ0.2mm, indicates that the long term averages are equal and 

HA: µ0mm ≠ µ0.2mm   indicates the alternate hypothesis. 
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The p-value, shown in Table 4.1, indicates the truth of the null hypothesis.  Therefore a p-value of less 

than 0.05 indicates that tool wear significantly influences the dependent variable.   

Table 4.1: 

Resultant p-value of ANOVA hypothesis test between sensor  data 

and tool wear  

Dependent var iable p-value 

Tt 0.9032 

Is 0.4248 

Fx 0.0035 

Sc 0.8924 

Fz 0.4248 

Vy 0.0007 

 

Table 4.1 indicates that tool wear influences feed force (Fx) and tool-workpiece vibration (Vy) 

significantly, and that these signals may be used in an advanced multi-sensor tool wear monitoring 

system.    

4.4.2 Analysis of Fuzzy Logic Model 

 

The identified signal features influenced by tool wear may serve as inputs to a FL model as shown in 

Figure 4.5.  Pc is added as it contains information on all three the cutting parameters. 

Fuzzy Logic Model
Vy

Fx

Pc

VB

FuzzyTech
Neuro-Fuzzy Module

 Input Data
 Training Samples

 Output Data
 Training Samples

Adapt Membership Functions and Change
    Rules DoS to Match Training Data

 

Figure 4.5: Process parameters influenced by tool wear. 
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FuzzyTech’  NF software module [94] is a full graphical development environment that supports all 

design steps for creating fuzzy logic systems from experimental data.  The NF module is used to 

develop an FL-based sensor fusion model for tool wear classification.  Due to the completeness of the 

data sets it was decided to use the RMS values for Vy, Fx and Pc from experimental data contained in 

Table B1 and B2, for tool wear 0.0 mm and 0.2 mm respectively as inputs, and tool wear as the output.   

The power in the cut was added as an input as it contains information regarding all three the machining 

parameters, illustrated in equations 2.1 – 2.3.  The learning process and knowledge representation of 

the actual data is based on NF modeling described in Section 2.5.4.  Table 4.2 shows the values of Vy, 

Fx and Pc for an additional two cuts taken with the cutting tool, shown in Figure 4.3 (a), having a tool 

wear land of 0.098 mm.  The data is added to the data set for learning and verification purposes. 

 

Table 4.2: Fx, Pc and Vy for  VB = 0.098 mm. 

Machining Parameters Feed Force  Tool-Workpiece Vibration Power in the Cut 

Vc = 122 [m/min] 

f1x = 0.2089 [mm/rev] 

dy = 0.6 [mm] 

51.6 [N] 81.95 [mV] 282.4 [Watt] 

Vc = 119.96 [m/min] 

f1x = 0.1041 [mm/rev] 

dy = 1.2 [mm] 

83.22 [N] 71.75 [mV] 291.81 [Watt] 
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Figure 4.6 shows a 3D plot of Vy and Fx versus tool wear for Pc in the region of 300 watts after the FL 

system was created. 

 

 

 

Figure 4.6: 3D plot of Fx and Vy versus VB for  Pc = 280 Watts. 

 

The 3D plot shows how, at a fixed cutting power, the vibration and feed force tool wear increase as the 

tool wear increases.  All the input values of Fx, Vy and Pc from Table B1, B2 (Appendix B) and 4.2 

were re-applied to the FL model after training, and the tool wear correctly identified in 90 % of the 

cases.  Figure 4.7 shows the generated FL model for tool wear classification, consisting of input 

membership functions, a rule base showing the DoS for each rule, as well as an output function 

specifically configured to produce the MoM defuzzification.  After training, the system is a pure FL 

system which, unlike in the case of a trained NN, allows the addition and /or modification of the rule 

based knowledge base.    To verify the model, input values for Vy = 99.75 mV, Fx = 85 N and Pc = 

271.23 Watt were selected using the surface plot shown in Figure 4.6.  For these inputs the model 
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should indicate 0.098 mm wear.  The fuzzification, inferencing and defuzzification process is shown 

for analysis purposes. 
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RULE BASE

       MoM
DEFUZZIFICATION

       FUZZIFICATION

Fx- 85 Newton

Pc- 271.23 Watts

Vy - 99.75 mV

Tool Wear = 0.1 mm

Vy
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0.7

0.3

ACTI VE RULES

 
Figure 4.7: Fuzzy logic model for  tool wear  classification. 
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During fuzzification the following facts, as explained in Equation 2.34, is established: 

Fx =  high   CNF   0.43    

Fx  =  medium  CNF  0.58 

Pc = medium CNF 1.0  

Vy = medium CNF 0.3 

Vy = high  CNF 0.7 

The abovementioned facts activate rules 22, 23, 24, 25 of the fuzzy rule base and may be expressed 

in a max-min rule structure, from Equation 2.44, as follows: 

RULE 22: 

IF  Pc = medium CNF  1.0  AND 

Fx  =  medium  CNF   0.58  AND 

Vy = medium CNF  0.3 

THEN  Wear  = very_low DoS  = 0.09 

RULE 23: 

IF  Pc = medium CNF  1.0  AND 

Fx  =  medium  CNF   0.58  AND 

Vy = medium CNF  0.3 

THEN  Wear  = medium DoS  = 0.10 

RULE 24: 

IF  Pc = medium CNF  1.0  AND 

Fx =  high   CNF    0.43  AND 

Vy = medium CNF  0.3 

THEN  Wear  = very_high DoS  = 0.09 

RULE 25: 

IF  Pc = medium CNF  1.0  AND 
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Fx =  high   CNF    0.43  AND 

Vy = high  CNF  0.7 

THEN  Wear  = very_high DoS  = 0.02 

During the inference process the If-part of the abovementioned rules are combined using Equation 2.45: 

RULE 22: min(1.0, 0.58, 0.3) = 0.3 

RULE 23: min(1.0, 0.58, 0.3) = 0.3 

RULE 24: min(1.0, 0.43, 0.3) = 0.3 

RULE 25: min(1.0, 0.43, 0.7) = 0.43 

With FAM inference, the then part of the rule is modified by the DoS-factor as shown in Equation 2.46: 

RULE 22: 0.3 * 0.09 = 0.027   RULE 23: 0.3 * 0.10 = 0.03 

RULE 24: 0.3*0.09 = 0.027   RULE 25: 0.43*0.02=  0.0086 

Because Rule 24 and Rule 25 have the same conclusion, they are combined applying Equation 2.47, hence 

max(0.027, 0.0086) = 0.027.  Using MoM defuzzification (best for method of classification applications), 

Equation 2.49, RULE 23 has the largest final consequence and tool wear is correctly classified as medium 

(0.1 mm) wear. 
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4.4.3 Additional Signal Analysis for  Data Features Sensitive to Tool Wear  

 

Additional data features that are sensitive to tool wear were identified from signal analysis and include:  

 

• Fx/Fz  Ratio 

 

Figure 4.8 show the ratio of the feed force to cutting force component for tool wear of 0 mm and 0.2 mm. 
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Figure 4.8: Fx/Fz versus tool wear. 

Standard deviation for tool wear 0.2 mm ( 	 0.2mm) is more than double that for tool wear 0.0 mm and the 

ratio of Fx/Fz may therefore serve as a good index in tool wear measurement. 

 

• Tool-Workpiece Vibration Frequency Spectrum  

 

Figure 4.9 shows the normalized amplitude of the vibration signals frequency components for zero tool 

wear and 0.2 mm for various machining parameters (Vc, f1x, dy). 
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Tool-Workpiece Vibration (Vy) Frequency Spectrum 
Vc = 50 m/min ; dy = 1.2 mm ; f1x = 0.1221 mm/rev
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(a) 

Tool-Workpiece Vibration  (Vy) Frequency Spectrum
Vc = 125 m/min  ;  dy = 0.6mm  ;  f1x = 0.2052 mm/rev
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(b) 
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Tool-Workpiece Vibration (Vy) Frequency Spectrum
Vc = 117 m/min ; dy = 1.8 mm ; f1x = 0.0317

0

100

200

300

400

500

600

700

800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

*9.7656 Hz

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e
Tool Wear - 0 mm

Tool Wear - 0.2 mm
239]556283[

89]556283[

2.0_

0_

=−

=−

HzV

HzV

mmY

mmY

P

P

 

(c) 

Figure 4.9: Vibration frequency spectrum for  tool wear  0.0 mm and 0.2 mm. 

The power of the normalized amplitude in the frequency range 283-556 Hz was calculated and is indicated 

in Figure 4.9.  The values indicate a significance difference between the power in the spectrum for a new 

tool to that of a tool with wear 0.2 mm.  There is also a correlation between the actual sizes of the values 

for different cutting conditions.  Figure 4.10 shows the 283 – 556 frequency spectrum for the vibration 

signal for tool wear at 0 mm, 0.1 mm and 0.2 mm for verification purposes.   

Tool-Workpiece Vibration (Vy) Frequency Spectrum
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Figure 4.10: Vibration frequency spectrum for  tool wear  0.0 mm, 0.1 mm and 0.2 mm. 
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The power for the 0.1 mm worn tool gives a value in between that of the 0 mm and 0.2 mm tools, 

indicating that this particular frequency spectrum of the vibration is sensitive to tool wear. 

 
• Spindle current and Cutting Sound Frequency spectrum 

 

The ANOVA test indicates, for this particular workpiece-cutting tool material combination, that the values 

of the spindle current and cutting sound signals are not significantly affected by tool wear.  However, for 

completeness of analysis, Figure 4.11 shows the normalized amplitude of the spindle motor current and 

cutting sound signals frequency components for tool wear 0.0 mm and 0.2 mm. 

Spindle Motor Current (Is) Frequency Spectrum
Vc = 125 m/min ; dy = 0.6 mm ; f1x = 0.2052 mm/rev
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(a) Spindle current frequency spectrum. 

Cutting Sound (Sc) Frequency Spectrum
Vc = 125 m/min ; dy = 0.6 mm ; f1x = 0.2052 mm/rev
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(b) Cutting sound frequency spectrum. 
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Figure 4.11: Spindle current and cutting sound frequency spectrums. 

The amplitude of the spindle current frequency components for tool wear 0.2 mm is slightly larger, while 

the amplitude of the lower frequency components of the cutting sound spectrum indicates an increase. 

 

• Cutting Tool Temperature 

 

Figure 4.12 shows time domain signals for the cutting tool temperature for tool wear 0.0 mm and 0.2 mm, 

for various machining parameters (Vc, f1x, dy). 

Tool Temperature (Tt) versus Time
Vc = 192 m/min ; dy = 0.6 mm ; f1x = 0.16 mm/rev
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(a) 

Tool Temperature (Tt) versus Time
Vc = 190 m/min ; dy = 1.2 mm ; f1x = 0.102 mm/rev 
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(b) 

Tool Temperature (Tt) versus Time
Vc = 120 m/min ; d = 1.8 mm ; f1x = 0.03 mm/rev

0

10

20

30

40

50

60

70

80

0 0 6 12 18 36 42

Seconds

d
eg

re
e 

C

Tool Wear - 0 mm

Tool Wear - 0.2 mm

JJK
L

MMNO=∆

JJK
L

MMNO=∆

s

C
T

s

C
T

mmt

mmt

0
30.2

0
16.1

2.0_

0_

 

(c) 

Tool Temperature (Tt) versus Time
Vc = 185 m/min ; dy = 1.8 mm  
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(d) 

Figure 4.12: Cutting tool temperature for  tool wear  0.0 mm and 0.2 mm. 

At high cutting speed there is a difference between the steady state cutting tool temperature for different 

tool wear levels.  More significant is the rate of change in cutting tool temperature, shown in Figure 4.12 

(a) to (d), for various machining parameters.  The rate of change in the cutting tool temperature may be 

used as a data feature in a tool wear identification system. 
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A further advantage of the generated fuzzy logic based system is that it allows for the addition of rules.  

Additional knowledge regarding data features as discussed may lead to the addition of rules, for example: 

RULE 27: If f1x = High and PSc[0-273]Hz = High then tool wear = High 

RULE 28: If Vc = High and Tt = High then tool wear = High 

RULE 29: If � Tt / � t = High then Tool wear = High 

Due to the inherent complex and closed nature of a neural network based system, an expert would not be 

able to add this type of knowledge to the system. 

 
4.5 Sensor  Fusion Model for  Sur face Roughness Measurement 
 

The Spearman’s rank correlation [107] module of Statistica V6.0 is used to find the measure of 

association between surface finish and the machining cutting and process parameters, using the 

experimental data in Table B.1 (Tool Wear 0.0 mm) and Table B.2 (Tool Wear 0.2 mm).  Statistical 

hypotheses testing are used to indicate if there exists a long-term relationship.  The hypothesis for the 

Spearman’s Rank test: 

Ho: RRa-Sensor_data =  0, indicates that the correlation equals zero and 

HA: RRa-Sensor_data ≠  0   indicates the alternate hypothesis. 

The p-value, shown in Table 4.3, indicates the truth of the null hypothesis.  Therefore a p-value of less 

than 0.05 indicates correlation between surface roughness and the machining parameter, i.e. alternative 

hypothesis.  It shows that Ra is correlated with Vz (0.3946), Is (0.5043), Fz (0.4999), dy (-0.6478) and 

strongly correlates to f1x (0.91770).  The parameters are used, excluding Fz as it carries the same 

information as Is, as inputs to an FL based multi-sensor surface roughness monitoring system.    
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Table 4.3: 

Resultant p-value of Spearman’s rank hypothesis correlation test between sur face roughness and  

machining parameters 

Sensor  Machining Data Spearman’s R-value p-value 

Tt 
-0.114 

0.507947 

Pc 
0.086435 

0.610983 

Vz 0.394604 0.015654 

Is 0.504253 0.001461 

Fz 0.499943 0.001629 

Fx 
-0.30282 

0.068486 

Sc 
-0.28023 

0.102987 

dy -0.6478 1.46E-05 

f1x 0.917731 1.34E-15 

Vc 
-0.00565 

0.973535 

 

FuzzyTech NF module is used to generate the FL model for surface roughness measurement as shown in 

Figure 4.13.  It shows input membership functions, a rule base with the DoS for each rule as well as an 

output function specifically configured to produce CoM defuzzification.  To verify the fuzzy logic model, 

input values for Vy = 81.95 mV, f1x = 0.21 mm/rev, Is = 4473.55 mA Watt and dy = 0.6 mm are selected. 

Fuzzification, inferencing and defuzzification are shown below for analysis purposes. During the 

fuzzification process the following facts, explained in Equation 2.34, are established: 

dy = low  CNF  1.0 

f1x = high  CNF  1.0 

Is = high  CNF  0.842 

Is = medium CNF  0.1523 

Vy = high  CNF  0.1121 

Vy = medium CNF  0.8764 
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F1x = 21 mm/rev

Is = 4473.55 mA

 dy = 0.6 mm

Vy  = 81.95 mV

Ra = 4.0 microns

COM - DEFUZZIFICATION

RULE BASE

FUZZIFICATION

0.1523

0.8420

0.1121

0.8764

0.6 1.8749 3.1499 4.4248 5.6998

 
Figure 4.13: Fuzzy logic model for  sur face roughness measurement.



The abovementioned facts activate rules 6, 7,  25, 26, 33,  38, 39, 46, 47  of the fuzzy rule base and 

may be expressed as a max-min rule structure from Equation 2.44, as follows: 

RULE 6: 

IF  dy = low   cnf  1.0 

f1x = high  CNF  1.0 

Is = medium CNF  0.1523 

Vy = high  CNF  0.1121 

THEN  Ra = very_low DoS  0.06  

RULE 7: 

IF  dy = low   CNF  1.0 

f1x = high  CNF  1.0 

Is = high  CNF  0.842 

Vy = high  CNF  0.1121 

THEN  Ra = very_low DoS  0.5 

RULE 26: 

IF  dy = low   cnf  1.0 

f1x = high  cnf  1.0 

Is = high  cnf  0.842 

Vy = high  cnf  0.1121 

THEN  Ra = low  DoS  0.04  

RULE 33: 

IF  dy = low   cnf  1.0 

f1x = high  cnf  1.0 

Is = high  cnf  0.842 

Vy = medium cnf  0.8764 

THEN  Ra = meduim DoS  0.01  

RULE 39: 

IF  dy = low   cnf  1.0 

f1x = high  cnf  1.0 

Is = high  cnf  0.842 
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Vy = medium cnf  0.8764 

THEN  Ra = high  DoS  0.14 

RULE 46: 

IF  dy = low   cnf  1.0 

f1x = high  cnf  1.0 

Is = high  cnf  0.842 

Vy = medium cnf  0.8764 

THEN  Ra = very_high DoS  0.01  

RULE 47: 

IF  dy = low   cnf  1.0 

f1x = high  cnf  1.0 

Is = high  cnf  0.842 

Vy = high  cnf  0.1121 

THEN  Ra = very_high DoS  0.82  

 
During the inference process the If-part of the abovementioned rules is combined using Equation 2.45: 

RULE 6: min(1.0, 1.0, 0.1523, 0.1121) = 0.1121 

RULE 7: min(1.0, 1.0, 0.842, 0.1121) = 0.1121 

RULE 26: min(1.0, 1.0, 0.842, 0.1121) = 0.1121 

RULE 33: min(1.0, 1.0, 0.842, 0.8764) = 0.842 

RULE 39: min(1.0, 1.0, 0.842, 0.8764) = 0.842 

RULE 46: min(1.0, 1.0, 0.842, 0.8764) = 0.842 

RULE 47: min(1.0, 1.0, 0.842, 0.1121) = 0.1121 

 

With FAM inference, the then part of the rule is modified by the DoS-factor as shown in Equation 

2.46: 

 

RULE 6: 0.1121* 0.06=0.0076   RULE 7: 0.1121*0.5=0.0561 

RULE 26: 0.1121*0.04 = 0.0045   

RULE 33: 0.842*.01= 0.0842 

RULE 39: 0.842*0.14 = 0.1179    

RULE 46: 0.842*.01=0.00842   RULE 47: 0.1121*0.82=0.0919 
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RULE 6 and Rule 7 are combined applying Equation 2.47:  max(0.0076, 0.0561) = 0.0561.  

RULE 46 and Rule 47 are combined applying Equation 2.47:  max(0.00842, 0.0919) = 0.0919 

Applying COM defuzzification (best for method of control applications) as shown in Equation 2.48 

result in: 

micronsRa

Ra

815.3

0.0561)  0.0045  0.0842  0.11790.0919 (

 ) .0561)*(0.60.0045)*(1.8749.0842)*(3.14990.1179)*(4.4248.0919)*(5.6998 (

=

++++

++++
=

 

Figure 4.14 compares the surface roughness obtained experimentally with the predicted values 

determined using the FL model and a commonly used theoretical model given by Equation 2.8. 

Fuzzy Logic and Theoretical Model vs Measured Ra 
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Figure 4.14: Compar ison between fuzzy logic and theoretical model vs measured sur face finish. 
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The comparative results indicate that the FL model (13.56%) represented an average error of at least 

three times lower than the theoretical model (43.31 %).  In both cases the error increased as the feed 

increased. 

 
4.6 Conclusion 

 

A process to implement FL-based classification and measurement models from experimental data has 

been identified. 

 

ANOVA is successfully used to identify signals, Fx and Vy, used as inputs to an FL model for the 

classification of tool wear.  Further analysis of signals indicate that Fx/Fz, PVy[283-556]Hz, PSc[0-273]Hz, 

� Tt/ � t are sensitive to tool wear. 

 

Spearman’s correlation is successfully applied to identify signals, dy, f1x, Is and Vy, that correlate with 

Ra, used as inputs to an FL model to measure surface roughness. 

 

FuzzyTech’s NF module is used to successfully create pure FL models.  The models are able to 

measure Ra with an accuracy of 86.44% and to classify tool wear with a 90% success rate.  With the 

addition of expert or sensor data the rule-based knowledge bases can be enhanced and improved, which 

is not the case with a pure neural network model. 

 

NF modeling tools, like FuzzyTech, allow for the generation of fuzzy logic systems into C code.  The 

resulting code can be integrated within other C source code and compiled to form a standalone 

application.  The proposed FL models can therefore be integrated into the experimental set-up, 
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explained in Chapter 3, for on-line monitoring of tool wear and surface roughness.  The online 

measurement of Ra now serves as an input to an intelligent diagnostic system, explained in Chapter 5, 

that will ensure that the quality of the machined product is maintained. The tool wear sensing system 

feeds the controller with on-line estimates of tool wear.  Based on these estimates, the controller may 

adjust the depth of cut to maintain on-line dimensional accuracy. 
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Turning processes, like any single-point tool machining process, are automatically controlled via three 

independent variables, namely cutting speed (Vc [m/min]), feed (fx [mm/rev]) and depth of cut (dy 

[mm]).  These variables modulate the process’s performance parameters (dependent variables), such as, 

workpiece surface roughness (Ra [microns]), workpiece-tool vibration (Vy [mV]), cutting power  (Pc 

[Watts]), tool temperature (Tt [0C]) , cutting forces (Fx [N] as well as Fz [N]), spindle current [Is] and 

cutting sound (Sc [mV]).  Appendix B contains experimental data for varying independent variables 

and the effect it has on the dependent variables.   

 

Low-level adaptive force control has been successfully applied within machining [53, 54, 55, 56, 57].  

The machining process is complex, and to maintain several output parameters at variable set points has 

proven unattainable since it implies a tremendously complicated, multi-input-multi-output control 

algorithm [108]. In Section 5.1 an advanced strategy to compliment adaptive control and to respond to 

changing system conditions, such as tool wear, in order to guarantee the reliability of machining 

process parameters, is proposed. The response includes a diagnostic scheme to decide intelligently 

which machine control action to perform.  Typical machining situations include: if the tool wears and 

causes the allowable cutting power to exceed its limit, should the cutting speed, the depth of cut or the 

feed be changed in order to return to a reliable state of machining?  If the surface finish of the 

workpiece is poor and unacceptable, which of the independent variables should be changed?  The feed, 

speed or depth?  If the movement between the cutting tool and workpiece vibrate excessively, what 

should be done to eliminate it?  The goal of the strategy is to return the process to the best reliable state 

of machining.  The execution of the strategy is formulated in a manner similar to one in which a human 

Chapter  5   
  

Diagnosis for  Intelligent Machining Process Control 
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being would proceed [1].  Statistica [106], a statistical software tool, was used to perform multiple 

regression analysis on the experimental data (Table B1 (tool wear 0 mm) and B1 (tool wear 0.2 mm) in 

Appendix B) in order to obtain empirical relations relating input (independent) and output (dependent) 

parameters for a machining process model. Section 5.2 shows the non-linear equations used to model 

the machining process.  Section 5.3 introduces a fuzzy relation used to represent the  “knowledge base”  

of the diagnostic scheme.  Section 5.4 shows a software simulation with graphical trending of the 

machining processes control and performance parameters, used to test the intelligent decision making 

component of the diagnostic strategy.   

 

5.1 Basic Structure for  Intelligent Diagnosis 

 

Figure 5.1 shows a block diagram of the diagnostic scheme, and indicates how it is connected to the 

machining process simulation, with user interface and graphical display for testing purposes.  The 

knowledge base of the intelligent diagnosis scheme is a fuzzy relation (concept explained in Section 

2.5.2.2).  The relation is in the form of a matrix that indicates the strength of connection 

( � performence_control), obtained from the experimental data, between performance of the process and control 

parameters.  If there is no connection then � performance_control = 0, whereas, a strong connection indicate 

� features_control =1.  The execution of the decision-making process follows the following four steps. 

 

(i) Determine control alternatives 

 

The limit monitor determines when an on-line machining process parameter exceeds a machining 

process constraint.  The machining constraint is set for a specific part being manufactured.  If a 

constraint, say for example, Vy is exceeded, the limit monitor makes use of the fuzzy relation to 

determine the control alternatives. 
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Figure 5.1:  A block diagram of the diagnostic scheme. 

 



This is achieved by searching for a match of the exceeded machining parameter, “Vy”  , 

within the row indexes of the fuzzy relation. 
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The connection strength ( � performance_control ) for each of the process control parameters is 

evaluated.  If  � performance_control  ≠  0 the control parameter is selected as an alternative. 

    

(ii) Obtain cr iter ia to evaluate control alternatives 

 

The state of the machining process, which is also the criteria that will be used to evaluate 

the alternatives, is determined by dividing the on-line process performance parameters 

with the process constraints.   

 

“Vy”  

Control Alternatives 
   “ f1x”   and “Vc”  



 - 117 - 

SMP[i] = [Fz/Fc_C, Fx/Fx_C, Ra/Ra_C, Vz/Vz_C, Tt/Tt_C, Is /Is_C, Sc/Sc_C, Pc/Pc_C]

            5.2 

(iii) Calculate parameters for  alternatives 

 

To make a decision as to which process control parameter to change, one needs to 

perform process performance – control analysis.  This is done by calculating the 

contribution each process state has on the control alternatives. The diagnosis is 

performed by:  
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  5.3 

      

The elements within diagnostic[i][j] are certainty factors.  Diagnostic[i][j], containing 

certainty factors, is used in an algorithm to determine which one of the independent 

variables should be changed, hence an intelligent decision.  
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(iv) Obtain best alternative 

 

The certainty factor Control_Parameter_CNF_j, to decide which one of the control 

parameters to change, is found by averaging the sum of the maximum certainty factors.   

N

jiRiS
N

i N
jCNFParameterControl

b −

=
=

1

0

max

___

]][[*][
c

  

           5.4 

N is determined by finding the column with the most zeros, hence N = no of rows – no 

of zeros. 

 

5.2 Machining Process Model 

Statistica’s multiple regression analysis module was used to obtain the non-linear 

equations 5.5 – 5.11 (machining process model).  These equations relate the dependent 

with the independent variables.  Appendix B contains the experimental data used in the 

regression analysis.  A surface plot, contour plot and graph (to indicate measured versus 

model values for each of the non-linear equations) are shown in Figures 5.2 – 5.8. 

 

VdS CyC

0.30850.2648
9171.41=         

     5.5 
 

fI xS

0.44440.6239

yd11496.2272=        

      5.6 
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dfF YXZ

0.74650.5305
Vb)*66.44406.51( +=       

      5.7 
 

VfdT CXYt

0.24500.10950.2389
1969.24=        

      5.8 
 

dfF YXWX

1.042560.4029

0
140.6187=−

 

 

dfF YXmmWX

0.86090.1525

2
113.086=−

       

      5.9 
 

VfV CXWY

0.60070.4544

0
8.3239=−

 

 

VfV CXmmWY

0.47620.2883

2
17.8941=−

       

    5.10 
 

dfR yXa

0.25681.5866
0571.53=             

    5.11    
 

VFP CZC
*=                                     

    5.12                             
 
The equations include the process condition, tool wear, and are used in modeling the 

machining process as shown in Figure 5.1 for testing the intelligent diagnostic scheme. 
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(a) Surface plot. 
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(b) Contour  plot. 
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(c) Model versus measured values. 

 
Figure 5.2: Surface plot, contour  plot and a graph of model versus measured values 

for  cutting sound. 
 

 
(a) Surface plot. 
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(b) Contour  plot. 
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(c) Model versus measured values. 
Figure 5.3: Surface plot, contour  plot and a graph of model versus measured values 

for  spindle current. 
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(a) Surface plot. 
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(b) Contour  plot. 
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(c) Model versus measured values. 

 

Figure 5.4: Surface plot, contour plot and a graph of model versus 

measured values for cutting force. 

 

 
(a) Surface plot. 
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(b) Contour  plot. 
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(c) Model versus measured values. 

 

Figure 5.5: Surface plot, contour plot and a graph of model versus 

measured values for cutting temperature. 
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(a) Surface plot. 
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(b) Contour plot. 
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(c) Model versus measured values. 

Figure 5.6: Surface plot, contour  plot and a graph of model versus measured values 

for  feed force. 

 
(a) Surface plot. 
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(b) Contour plot. 

Vibration [mV]

y = 0.8241x + 10.371

R2 = 0.8342

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160

Measured Value

M
o

d
el

 V
al

u
e

 
(c) Model versus measured values. 

Figure 5.7: Surface plot, contour  plot and a graph of model versus measured values 

for  vibration. 
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(a) Surface plot. 
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11.1.3.1 (b) Contour plot. 
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(c) Model versus measured values. 

Figure 5.8: Surface and contour  plots and measured versus model values for  sur face 

roughness. 

5.3 Regression Analysis for  Fuzzy Relation 
 
 
Statistica’s multiple regression analysis module was used to obtain BETA coefficients, 

shown in Table 5.1,  for linear equations written in the form (equation 2.19): 

s
X

s
X

s
Y

XXY
21

2

2

1

1
ββα ++=

 

The equation relate the dependent (Y) with the independent (X1, X2) variables.  Appendix 

B contains the experimental data used in the linear regression analysis.  

 
Table 5.1: L inear  regression summary of BETA coefficients used to 

relate independent and dependent var iables. 

Dependent 

Variable 

 

R2 
11.1.3.2 BETA 

 

p-value 
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DEPTH 0.796169 7.3E-06 
FEED 0.701622 5.91E-05 

Tool 

Temperature 

0.73910088 

SPEED 0.868919 2.52E-10 
DEPTH 0.629604 1.53E-05 
FEED 0.691316 4.73E-06 

Power in Cut 0.81068678 

SPEED 0.946443 2.46E-13 
DEPTH 0.177927 0.369661 

FEED 0.648731 0.002611 

Tool-

Workpiece 

Vibration 

0.53125349 

SPEED 0.652823 1.18E-05 
DEPTH 1.011078 1.22E-06 
FEED 1.134478 2.09E-07 

Spindle 

Current 

0.64264508 

SPEED -0.15833 0.161893 
DEPTH 1.025118 2.85E-07 
FEED 1.154627 3.99E-08 

Cutting Force 0.68728082 

SPEED -0.18772 0.078883 
DEPTH 0.884785 5.55E-05 
FEED 0.202535 0.306088 

Feed Force 0.55165043 

SPEED -0.02736 0.826679 
DEPTH 0.702251 0.000293 
FEED 0.283591 0.116261 

Cutting Sound 0.68512988 

SPEED 0.734558 1.29E-07 
DEPTH 0.370669 0.000436041 
FEED 1.198262 5.63796E-14 

Surface Finish 0.88982711 

SPEED -0.00445 0.942749918 
 

 

 

From Equation 2.20 the ßi  coefficients are equal to [32]: 

s
s

b
Y

X i

ii
=β  

ßi measures the number of standard deviations for changes in Y, with each change of one 

standard deviation in X i.  The advantage of using BETA coefficients is that it allows one 

to compare the relative contribution of each independent variable in predicting the 
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dependent variable. Furthermore, to determine the significance of each independent 

variable, the hypothesis tested: 

Ho: βi  = 0 

HA: βi ≠ 0 (alternate hypothesis) 

A p-value indicates the truth of the hypothesis.  A p-value of less than 0.05 gives the 

probability of Ho to be correct, else accept the alternative.  Table 5.1 indicates the R2 

value for each equation.  It is known as the coefficient of determination, a ratio of the 

explained variation to the total variation (equation 2.16 and 2.17).  In other words, of the 

total variation measured in the dependent variable, R2 indicate the percentage attributed 

to the independent variables contained in the equation.  This uncertainty is included when 

calculating the connection strength coefficients for the fuzzy relation, FR[i][j]:  

� performance_control = R2 *  BETA.  For example: the connection strength for � Tt_dy = 0.7391 * 

0.7961 = 0.5884.  The completed fuzzy relation: 

                                           Vcxfdy 1  

=]][[ jiFR

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

7673.05604.05104.0

5033.00.04811.0

0.07290.06498.0

6422.05186.05884.0

3468.03446.00.0

0.00662.13298.0

0.00.00.4881

0.07936.07045.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

                                                        

5.13 

The elements in the relation FR[i][j] represent the influence which the independent 

variables have on the dependent variables.  The elements represent process knowledge 
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based on statistical modeling and may be used to decide, in collaboration with the on-line 

sensor values, which one of the independent variables dy, fx, Vc to change in order to 

maintain system constraints. 

 

5.4 Process Simulation 

 

Figure 5.9 shows the machining process simulation user interface.  The machining 

control parameters (independent) are set, whereupon Equations 5.5 to 5.12 calculate the 

process performance parameters (dependent).  Process constraints for the part being 

manufactured, are set.  Tool wear, Vb, may now be increased, which may result in a 

process performance parameter exceeding a set constraint.  The diagnostic scheme will 

decide intelligently, which one of the three machining control parameters to change.  

This is indicated by the highest certainty factor. 
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Figure 5.9: Machining process simulation user  inter face. 

Test cases in the following subsections make use of different input cutting parameters 

and impose varying process constraints.  In the first six test cases the tool wear is 

increased and causes Pc or Fz to exceed its limit.  In the final test case the Pc lower limit 

is reached when decreasing the depth of cut. 
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5.4.1  Test Case 1: Pc exceeded with Tt and Vy constraints 

 

Figure 5.10 shows set process parameter constraints imposed whilst machining a part.  

The power in the cut is limited to 304 Watts, the tool temperature to 70oC and vibration 

level to 121 mV.  The latter constraints are set to ensure accurate part tolerance.    

  

Figure 5.10: Simulation user  inter face with Pc, Tt and Vy constraints. 

Machining control parameters are set so that Pc = 302.87 Watts, close to its limit.  If the 

tool wears it will increase Fz, which in turn causes Pc to exceed its power limit.  The 

intelligent diagnostic scheme needs to decide which one of Vc, f1x or dy to change.  

Figure 5.11 shows the graphical simulation of this process.  From inspection we find that 

Vc is already high (c), the cutting tool temperature is close to its limit (e) and the tool-

workpiece vibration is not too far from its limit (f).  Therefore, knowing that Vc 

influences Pc, Tt and Vy, (more that dy and fx1) a machining expert may suggest that Vc 

should be decreased (intelligent decision).  
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(a)       (b) 

  

 
 
 
(c)       (d) 

 

 
(e)      (f) 
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   (g)       (h) 
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(i) (j) 

 
(k) 

 
 

Figure 5.11: Graphical simulation with Pc, Tt and Vy constraints. 
 

Applying Equation 5.2 the machining state is determined from the sampled signals:  

SMP[8]={ 95.646/330, 39.547/160, 1.417/5, 70.788/121, 62.98/70, 3422.6/5000, 

192.47/280, 304/304 }  

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]: 
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Diagnostic[8][3] = SMP[8]* FR[8][3] = 

dd
dd
dd
dd
dd

e

f

gg
gg
gg
gg
gg

h

i

7674.05604.05103.0

3459.00.03308.0

0.0499.04448.0

578.04667.05293.0

2029.02016.00.0

0.03022.00935.0

0.00.01207.0

0.02299.02041.0

Pc

Sc

Is

Tt

Vy

Ra

Fx

Fz

  

           

Equation 5.4 is applied to determine the certainty factors: 

CNF1 = Change_dy_CNF = (0.5293 +0.4448+0.3308+0.5103)/4 = 0.4538 

CNF2 = Change_f1x_CNF = (0.3022+0.4667+0.499+0.5604)/4 = 0.4570 

CNF3 = Change_Vc_CNF = (0.2029+0.578+0.3459+0.7673)/4=0.4735 

The strategy concludes that the cutting speed should decrease.  The amount it decreases 

depend on the size of the certainty factor (low), therefore, Vc = Vc*0.85 = 161.5 m/min.  

The value of Vc is adjusted as shown (c) and results in a decrease in Pc (a), Tt (e) and Vy 

(f).  The decision leaves the system in a more reliable state, as envisaged by the human 

expertise. 

 

5.4.2 Test Case 2: Pc exceeded with Is, Fx and Sc constraints 

 

Figure 5.12 show set process parameter constraints imposed whilst machining a part.  

The power in the cut is limited to 304 Watts, the spindle current to 3551 mA, the cutting 

sound to 203 mV and the feed force to 81 Newton.  The latter constraints are set to 

ensure part surface integrity.  
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Figure 5.12: Simulation user  inter face with Is, Fx and Sc constraints. 

 

Machining control parameters are set (same as in test case no 1) so that Pc = 302.87 

Watts, close to its limit.  If the tool wears it will increase Fz, which in turn causes Pc to 

exceed its power limit.  The intelligent diagnostic scheme needs to decide which one of 

Vc, f1x or dy to change.  Figure 5.13 shows the graphical simulation of this process.  

From inspection we find that the cutting sound is close to its limit (g), the feed force is 

not far from its limit (j) and the spindle current is close to its limit (k).  Therefore, 

knowing that dy influences Sc, Is and Fx  a machining expert may suggest that dy should 

be decreased.  

(a)       (b) 
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(c)       (d) 

 

 
 
(e)       (f) 
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   (g)       (h) 

      

 
(i)       (j) 
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(k) 

 

 
 

Figure 5.13: Graphical simulation with Is, Fx and Sc constraints. 

Applying Equation 5.2 machining state is determined from the sampled signals:  

SMP[8] = {  95.646/330, 39.547/81, 1.417/5, 70.788/170, 62.98/100, 3422.6/3551, 

192.47/203, 304/304}  

 

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:  
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Diagnostic[8][3] = SMP[8] *  FR[8][3] =

dd
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Equation 5.4 is applied to determine the certainty factors: 

CNF1 = Change_dy_CNF = (0.6263+0.3705+0.4561+0.5103)/4 = 0.4908 

CNF2 = Change_f1x_CNF = (0.7025+0.3266+0.3022+0.5604)/4=0.4729 

CNF3 = Change_Vc_CNF = (0.7674+0.4772+0.4046+0.1444)= 0.4484 

The inference strategy concludes that the depth of cut should be decreased.  The amount 

it decreases, depends on the size of the certainty factor (low), dy = dy * 0.85 = 0.595 mm.  

Once the value is determined the value of dy is adjusted as shown in Figure 5.13 (b) and 

result in a decrease in Pc (a), Is (k) and Sc (g).  Again the decision leaves the system in a 

more reliable state. 

 

5.4.3 Test Case 3: Pc exceeded with Fz constraint 

 

Figure 5.14 show set process parameter constraints imposed whilst machining a part.   
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Figure 5.14: Simulation user  inter face with Pc and Fz constraint. 

The power in the cut is limited to 304 Watts and the cutting force to 110 Newton.  The 

latter constraint is set to ensure part surface integrity. Machining control parameters are 

set (same as in test cases no 1 and 2) so that Pc = 302.87 Watts, close to its limit.  If the 

tool wears it will increase Fz, which in turn causes Pc to exceed its power limit.  The 

intelligent diagnostic scheme needs to decide which one of Vc, f1x or dy to change.  

Figure 5.15 shows the graphical simulation of this process.  From inspection we find that 

the cutting force is close to its limit (i).  Therefore, knowing that f1x influences Fz (little 

more than dy and much more than Vc) a machining expert may suggest that f1x should 

be decreased.   
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(a)       (b) 

  

 
(c)       (d) 

 

 
(e)       (f) 
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(i)       (j) 

 
(k) 

 
 

Figure 5.15: Graphical simulation with Pc and Fz constraint. 

Applying Equation 5.2 machining state is determined from the sampled signals:  

SMP[8]={ 95.646/110, 39.547/160, 1.417/5, 70.788/170, 62.98/100, 3422.6/5000, 

192.47/280, 304/304}   

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]:  
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Diagnostic[8][3] = SMP[8] *  FR[8][3] =
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Equation 5.4 is applied to determine the certainty factors: 

CNF1 = Change_dy_CNF = (0.6126+0.3706+0.4448+0.5103)/4 = 0.4845 

CNF2 = Change_f1x_CNF = (0.69 + 0.3266 + 0.499 + 0.5604)/4 = 0.519 

CNF3 = Change_Vc_CNF = (0.1444+0.4045+0.3459+0.7674)/4=0.4155 

The inference strategy concludes that the feed should be decreased.  The amount it 

decrease, depends on the size of the certainty factor (medium), f1x = f1x * 0.8 = 0.0864 

mm/rev.  Once the value is determined the value of f1x is adjusted as shown in Figure 

5.15 (d) and result in a decrease in Pc (a).  Again the decision leaves the system in a more 

reliable state, as envisaged by the human expertise. 

 

5.4.4 Test Case 4: Pc exceeded with Ra constraint 

 

Figure 5.16 show set process parameter constraints imposed whilst machining a part.  

The power in the cut is limited to 304 Watts and the surface roughness to 4 microns.  The 

latter constraint is set to maintain part surface quality.    
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Figure 5.16: Simulation user  inter face with Pc and Ra constraint. 

Machining control parameters are set so that Pc = 302.95 Watts, close to its limit.  If the 

tool wears it will increase Fz, which in turn causes Pc to exceed its power limit.  The 

intelligent diagnostic scheme needs to decide which one of Vc, f1x or dy to change.  

Figure 5.17 shows the graphical simulation of this process.  From inspection we find that 

the surface roughness is close to its limit.  Therefore, knowing that f1x influences Ra  

(more than dy and much more than Vc)  a machining expert may suggest that f1x should 

be decreased.  .     
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(a)       (b) 
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Figure 5.17: Graphical simulation with Pc and Ra constraint. 

Applying Equation 5.2 machining state is determined from the sampled signals:  

SMP[8] = {  139.82/330, 54.871/160, 3.75/4, 74.024/170, 62.502/100, 3703.8/5000, 

174.97/280, 304/304   }  

Multiplying SMP[8] with Equation 5.13, 

result in Diagnostic[8][3]: 
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Diagnostic[8][3] = SMP[8] *  FR[8][3] =
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Equation 5.4 is applied to determine the certainty factors: 

CNF1 = Change_dy_CNF = (0.5103+0.4813+0.3678+0.3092)/4 = 0.4172 

CNF2 = Change_f1x_CNF = (1.1373+0.5604+0.3363+0.3241)/4 = 0.5895 

CNF3 = Change_Vc_CNF = (0.7674+0.3145+0.4014+0.151)/4=0.4086 

The inference strategy concludes that the feed should be decreased.  The amount it 

decrease, depends on the size of the certainty factor (medium), f1x = f1x * 0.8 = 0.1574 

mm/rev.  Once the value is determined the value of f1x is adjusted as shown in (d) and 

result in a decrease in Pc (a).  Again the decision leaves the system in a more reliable 

state, as envisaged by the human expertise. 

 

5.4.5 Test Case 5:Fz Exceeded 

 

Figure 5.18 show set process parameter constraints imposed whilst machining a part.  

The cutting force is limited to 120 Newton.  The constraint is set to ensure part surface 

integrity. 
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Figure 5.18: Simulation user  inter face with Fz constraint and a high dy. 

If the tool wears it will cause Fz to exceed its limit.  The intelligent diagnostic scheme 

needs to decide which one of Vc, f1x or dy to change.  Figure 5.19 shows the graphical 

simulation of this process.  From inspection we find that the cutting sound is close to its 

limit, cutting temperature is not too far from its limit and spindle current is close to its 

limit.  These signals are mostly influenced by the depth of cut. 
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Figure 5.19: Graphical simulation with Fz constraint and a high dy. 

Applying Equation 5.2 machining state is determined from the sampled signals:  

SMP[8] = {  120/120, 73.184/160, 0.422/5, 37.165/170, 65.049/100, 4106.0/5000, 

219.85/280, 257.95/1400}  

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]: 
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Diagnostic[8][3] = SMP[8] *  FR[8][3] =

dd
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Equation 5.4 is applied to determine the certainty factors  

CNF1 = Change_dy_CNF = (0.7045+0.3827+0.5336+0.3777)/4 = 0.4996 

CNF2 = Change_f1x_CNF = (0.7936+0.3373+0.5987+0.1033)/4 =0.4582 

CNF3 = Change_Vc_CNF = (0.0758+0.4177+0.3952+0.1414)/4=0.2575 

The inference strategy conclude that the depth of cut should be decreased.  The amount it 

decrease, depends on the size of the certainty factor (low), dy = dy * 0.85 = 1.53 mm.  

Once the value is determined the value of dy is adjusted as shown (b) and result in a 

decrease in Fz (a).  Again the decision leaves the system in a more reliable state, as 

envisaged by the human expertise. 

 

5.4.6 Test case 6: Fz Exceeded 

 

Figure 5.20 show set process parameter constraints imposed whilst machining a part.  

The cutting force is limited to 120 Newton.  The constraint is set to ensure part surface 

integrity. 
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Figure 5.20: Simulation user  inter face with Fz constraint and a high f1x. 

If the tool wears it will cause Fz to exceed its limit.  The intelligent diagnostic scheme 

needs to decide which one of Vc, f1x or dy to change.  Figure 5.21 shows the graphical 

simulation of this process.  From inspection we find that the surface roughness is close to 

its limit,    The signal is mostly influenced by feed. 
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(e)       (f) 

     

 
   (g)       (h) 
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(i)       (j) 
 

 
(k) 

 
Figure 5.21: Graphical simulation with Fz constraint with a high f1x. 

Applying Equation 5.2 machining state is determined from the sampled signals:  

SMP[8] = {  120/120, 42.395/160, 3.843/5, 76.042/170, 58.975/100, 4079.7/5000, 

162.89/280, 255.49/1400}  

Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]: 



 - 164 - 

Diagnostic[8][3] = SMP[8] *  FR[8][3] =
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Equation 5.4 is applied to determine the certainty factors: 

CNF1 = Change_dy_CNF = (0.7045+0.347+0.5302+0.2799)/4 = 0.4654 

CNF2 = Change_f1x_CNF = (0.7936+0.8195+0.3058+0.5948)/4 =0.6284 

CNF3 = Change_Vc_CNF = (0.1551+0.3787+0.2928+0.14)/4=0.2416 

The inference strategy concludes that the feed should be decreased.  The amount it 

decrease, depends on the size of the certainty factor (medium), f1x = f1x * 0.85 = 0.167 

mm/rev.  Once the value is determined the value of f1x is adjusted as shown in (d) it 

results in a decrease in Fz (a).  Again the decision leaves the system in a more reliable 

state, as envisaged by the human expertise. 
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5.4.6 Test case 7: Pc lower  L imit 

 

Figure 5.22 show set process parameter constraints imposed whilst machining a part.  

The lower limit for cutting power is set at 243 Watts. 

 

Figure 5.22: Simulation user  inter face with Pc lower  limit . 

Whilst machining the depth of cut is reduced and this causes the Pc to go below its lower 

limit.  The intelligent diagnostic scheme needs to decide which one of Vc, f1x or dy to 

change.  Figure 5.23 shows the graphical simulation of this process.  From inspection we 

find that the spindle current is close to its limit,  therefore to increase the speed is the best 

choice.     
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(e)       (f) 
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(ii) (j) 
 

 
 

(k) 

 
 

Figure 5.23: Graphical simulation with Pc lower  limit. 

Applying Equation 5.2 machining state is determined from the sampled signals:  

 

SMP[8] = {  112.39/330, 44.703/160, 2.2962/5, 64.713/170, 59.333/100, 3918/5000, 

171.20/280, 243/1400}  
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Multiplying SMP[8] with Equation 5.13, result in Diagnostic[8][3]: 

Diagnostic[8][3] = SMP[8] *  FR[8][3] =
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Equation 5.4 is applied to determine the certainty factors:  

CNF1 = 1-Change_dy_CNF = 1- (0.2399+0.3491+0.5092+0.2941)/4 = 0.6519 

CNF2 = 1-Change_f1x_CNF =1- (0.2703+0.4896+0.3077+0.5712)/4 =0.5903 

CNF3 = 1-Change_Vc_CNF = 1- (0.1320+0.381+0.3077+0.1332)/4=0.7615 

The inference strategy concludes that the cutting speed should be increased.  The amount 

it increases, depends on the size of the certainty factor (medium), Vc = Vc * 1.25 = 162.5 

m/min.  Once the value is determined the value of Vc is adjusted as shown in (c) and 

result in an increase in Pc (a).  The decision leaves the system in the most reliable state, 

as envisaged by the human expertise. 

 

5.5 Conclusion 

 

An advanced diagnostic scheme to complement low-level adaptive control has been 

proposed and implemented.  The knowledge base of the diagnostic scheme consists of a 

fuzzy relation.  The fuzzy relation indicates the strength of connection between the 

control and process parameters.  It was derived from statistical processing of 
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experimental data.  A process model based on experimental data was implemented within 

a simulation, created to test the diagnostic scheme.  Within the simulation tool wear 

process condition causes a process parameters to exceed its limit.  The diagnostic scheme 

is able to reason and decide intelligently which control parameter to change to return the 

machining process to its most reliable state. 
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Conventional CNC machines have limitations because of their closed architecture [59, 

60].  In order to deal with machining complexity an intelligent machining controller 

should have a suitable architecture.  Open architecture is a philosophy in design and 

implementation of machine tool, production processes and control.  It creates an open 

environment for manufacturing and enables manufacturing systems to change and 

reconfiguration of system hardware and software.  An open architecture in the design and 

implementation of intelligent machine tools is an on-going process and need to embrace 

sensor integration, software and hardware integration, flexibility, openness and 

knowledge based characteristics [61, 62, 63, 64].   

 

Intelligent machining is an advanced approach in manufacturing, strongly related to the 

efforts in developing re-configurable manufacturing equipment.  This research project 

introduces all the relevant components and concepts required in the monitoring, diagnosis 

and control for intelligent machining.  These include: identifying sensors to characterize 

the machining process, digital signal processing for signal measurement, intelligent 

systems for monitoring and intelligent diagnosis, and multi-axis control technology for 

machine control.  Intelligent machining systems with in-process quality assurance need to 

detect and react quickly on measured defects, and have the capability to adapt to maintain 

Chapter  6 

Conclusion and Future Development 
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desired tolerances.  The PC-based system implemented for this purpose is one of the 

major accomplishments of this project and can be summarized as follows: 

 

• The integration of hardware architecture: DSP, PMAC and Ethernet interface 

cards. 

• The implementation of an embedded sensory system that characterize the 

machining process.   

• The implementation of software components, executed on the two PCI32 DSP 

interface cards, for on-line signal acquisition, filtering and advanced processing 

(including FFT). 

• The implementation and interfacing of machine controls connected to a PMAC 

interface card to realize multi-axis control. 

• Implementation of software for remote monitoring and setting of machining 

process constraints.   

• The implementation of an MFC software application framework (object 

oriented) to integrate all the modules, including: CMonitorView to request data 

from the DSP targets, CGeometricView to send motion control commands to 

the PMAC and CServer for remote monitoring.  The application framework 

includes user interfaces to enable the visualization of the process‘s performance.  

C++ classes were developed and used to support communication with PMAC 

interface card.   
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To realize advanced automation in machining sensors that perform reliable on-line 

measurement of tool condition and surface roughness, are required [1,3].  In this research 

project sensors that characterize the machining process were used in multi-sensor fusion 

models to indirectly measure surface finish and to classify tool wear.  An experimental 

procedure was completed, with the findings and accomplishments summarized as 

follows: 

 

• The implementation of a procedure to implement FL-based classification and 

measurement models.  The procedure includes statistical processing and FL 

defuzzification techniques. 

• Successful statistical processing of experimental data to identify machining 

signals and parameters influenced by tool wear and that correlate with surface 

roughness.   

• Successful use of the experimental data and FuzzyTech’s NF module to 

implement FL models. 

• The FL models are able to measure Ra with an accuracy of 86.44% and to 

classify tool wear with a 90% success rate.   

• Additional signal analysis found that Fx/Fz, PVy[283-556]Hz, PSc[0-273]Hz, � Tt/ � t 

are sensitive to tool wear. 

 

The monitoring of tool status and surface roughness by means of intelligent systems will 

enhance automated machining.  However, the primary difference between automated 

machining and intelligent machining is that an intelligent system (applied in the latter) is 
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capable of making decisions based on significant information from the machining 

process.  An advanced diagnostic scheme to complement low-level adaptive control has 

been proposed and implemented.  The findings and accomplishments of the scheme can 

be summarized as follows: 

 

• A knowledge base for the diagnostic scheme.  It consists of a fuzzy relation 

and is derived from the statistical processing of experimental data.   

• Implementing a machining process model (based on experimental data) and 

executing it within a software simulation.  Within the simulation, tool wear 

process condition causes a process parameters to exceed its limit, the 

diagnostic scheme is able to reason and decide intelligently which control 

parameter to change to return the machining process to its most reliable state. 

 

The main knowledge contribution to the field of intelligent machining is the PC-based 

intelligent machining process controller with artificial intelligent system components to: 

classify tool wear and measure surface roughness indirectly, and a diagnostic scheme 

with intelligent decision-making capability.   This intelligent machining process 

controller is sensor based, modular, flexible and include all the components (hardware 

and software) to perform in-process quality assurance on the machined product. 

 

By using the same principles and components, as used in this project, the system can be 

extended to include all aspects of advanced machine monitoring.  The object oriented 

software application framework can be enhanced to accommodate these extensions. The 
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fuzzy relation may be viewed as an “ intelligent cell”  and the principle may be duplicated 

into various areas of intelligent diagnosis.  The following suggestions about the future 

development of this specific project can be summarized as follows: 

 

• Standardized application software framework with monitoring, diagnosis and 

machine control objects.  

• To increase user interaction one need to develop a standardized user 

interfaces for the application framework, an area normally neglected by 

engineers. 

• DSP to extract features that relate the monitoring of machining states and 

conditions to machine control parameters.  This will expand the intelligence 

of the system. 

• To expand the diagnostic scheme for implementation and test the interaction 

and performance with adaptive control. 

 

The continuation of this project is strongly recommended, as it will contribute to the 

implementation of re-configurable intelligent machining systems. 
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      Specification 

Pass band edge frequency: 1.0kHz    Transition width: 420Hz 

Sampling frequency: 5.0kHz 

12 Solution 

Normalized 
 f = 420/5000 = 0.084 

Using Equation 2.5, N = 3.3/0.084=40, within hardware memory restriction. 

The filter coefficients are obtained from: 

 2020][][][ ≤≤−= nnwnhnh HD  

Because of the smearing effect of the window on the filter response, the cutoff frequency 

of the resulting filter will be different from that given in the specification.  To account 

for this, we will use an fc that is centered on the transition band: 

δ fcc ff +='
 = (1.0+420/2)= 1.21kHz 

Normalized f c

'
= 1.21/5 = 0.242 

Noting that h[n] is symmetrical; we need only compute values for h[0], h[1],…h[20] and 
then use the symmetry property to obtain the other coefficients. 

n=0:  

484.0242.0*22]0[ === fh cD  

Appendix A 

Calculation of Filter  Coefficients of an FIR Low Pass Filter  
to meet the Specifications as used in this Project 
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1)
40

02
cos(46.054.0]0[ =+= π

Hw  

484.0]0[]0[]0[ == whh HD  

n=1: 

317907.0
242.0**1*2

)242.0*1**2sin(
242.0*2]1[ ==

π
π

Dh  

994336.0)
40

*1*2
cos(46.054.0]1[ =+= π

Hw  
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n=2: 

015973.0
242.0**2*2

)242.0*2**2sin(
242.0*2]2[ ==

π
π

Dh  
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40
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]20[00107504.008.0*01438.0]20[]20[]20[ −=−=−== hwhh HD

 



 - 194 - 

To make the filter causal (necessary for implementation) we add 20 to each index so that 

the indices start at zero.  The filter coefficients, with indices adjusted, are listed in Table 

A.1.   

Table A.1 
FIR coefficients for N=41, Hamming window and fc = 1210Hz 

H[0] -0.00107504 H[40] 
H[1] -0.000828893 H[39] 
H[2] 0.00142542 H[38] 
H[3] 0.0015999 H[37] 
H[4] -0.00240534 H[36] 
H[5] -0.00332171 H[35] 
H[6] 0.00396656 H[34] 
H[7] 0.00643822 H[33] 
H[8] -0.00598659 H[32] 
H[9] -0.0115257 H[31] 
H[10] 0.00828074 H[30] 
H[11] 0.0194664 H[29] 
H[12] -0.0106226 H[28] 
H[13] -0.0319655 H[27] 
H[14] 0.0127704 H[26] 
H[15] 0.0533542 H[25] 
H[16] -0.0144962 H[24] 
H[17] -0.0996399 H[23] 
H[18] 0.0156134 H[22] 
H[19] 0.316106 H[21] 
H[20] 0.484  
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5 Appendix B 
 

Machining Process Data for  Tool Wear  0 mm and 0.2 mm 



Table B.1: 
M achining Process Data for  Tool Wear : 0.0 mm 

12.1 Cutting Parameters 12.2 Process Parameters 
RPM Vc f2x f1x dy MRR Diameter  T Pc Sc Fx Fz Is Vy Tt Ra 
[rpm] [m/min] [mm/min] [mm/rev] [mm] [mm3/s] [mm] [Nm] [N] [mV] [N] [N] [mA] [mV] [oC] [microns] 

502.5 48.94 62.53 0.124446 0.6 3654.07 31.6 1.39 71.54 66.76 34.25 87.89 2867.46 22.82 43.69 1.5
502.15 48.84 124.29 0.247524 0.6 7253.56 31.56 2.51 129.74 94.39 51.85 159.38 4978.7 55.72 55.8 5.4

1259.94 122.15 129.71 0.10295 0.6 7545.2 31.46 1.21 157.05 132.08 33.09 77.14 2668.12 38.36 53.44 1.1
1259.55 122.11 258.39 0.20515 0.6 15030.67 31.46 2.05 265.49 158.1 43.4 130.45 4173.53 68.35 64.28 3.9
1985.38 191.36 166.06 0.08364 0.6 9603.19 31.28 0.93 188.74 151.31 26.46 59.18 2248 43.55 51.19 0.9

1986.3 192.45 330.04 0.166155 0.6 19185.72 31.44 1.58 322.47 199.125 33.35 100.55 3474.5 79.05 56.59 2.2
503.04 48.01 41.62 0.08275 1.2 4767.32 31.58 2.09 105.78 154.05 71 132.2 4122.85 24.84 45.36 1.3
502.09 47.92 61.42 0.122332 1.2 7034.64 31.58 2.6 131.34 160.78 78.68 164.45 4973.42 28.84 46.51 1.8

1255.14 119 103.37 0.082358 1.2 11760.86 31.38 1.88 238.26 200 62.74 120.13 3775.19 39.49 56.62 1.2
1265.05 119.55 156.44 0.12366 1.2 17740 31.28 2.46 326.2 - 76.37 163.72 5093.55 60.55 - 1.8

1270.7 120.32 207.9 0.16361 1.2 23623.07 31.34 2.56 341.04 - 76.38 170.07 5196.8 80.9 62.56 2.6
1987.48 189.06 102.93 0.051788 1.2 11749.49 31.48 1.46 291.85 252.35 56.36 92.62 1182.66 48.44 65.18 0.6
1988.13 189.75 204.26 0.10274 1.2 23393.98 31.58 2.02 404.61 278.13 61.87 127.94 4222.4 87.33 69.69 1.7

501.73 46.97 16.39 0.032668 1.8 2762.24 31.6 1.59 79.01 167.93 64.3 100.93 3263.08 16.77 42.78 0.7
504.02 47.16 31.67 0.062842 1.8 5333.74 31.58 2.52 125.69 187.84 89.86 159.91 4817.125 27.98 53.47 1.2

1253.52 117.36 39.7 0.031672 1.8 6689.9 31.6 1.53 189.87 179.91 61.61 97.07 3313.92 30.45 62.34 0.6
1258.32 117.33 78.44 0.062333 1.8 13164.19 31.48 2.43 301.77 237.32 84.47 154.32 4757.94 45.03 77.93 0.8
1987.69 186.09 62.05 0.031218 1.8 10456.3 31.6 1.52 297.43 217.47 65.46 95.9 3205.66 46.15 63.92 0.6
1989.58 185.64 123.12 0.06188 1.8 20677.99 31.5 2.3 452.47 243.86 77.9 146.24 4496.7 65.46 77.28 1.1
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12.2.1 Table B.2 
12.3 Machining Process Data for Tool Wear: 0.2 mm 

Cutting Parameters 12.4 Process Parameters 

RPM Vc f2x f1x dy 
12.5 M
RR Diameter  T Pc Sc Fx Fz Is Vy Tt Ra 

[rpm] [m/min] [mm/min] [mm/rev] [mm] [mm3/s] [mm] [Nm] [N] [mV] [N] [N] [mA] [mV] [oC] [microns] 
502.03 48.89 61.3 0.1221 0.6 3581.98 31.6 1.6 84.64 101.09 49.68 103.49 3374.16 50.66 47.95 1.4
503.49 48.94 122.73 0.2438 0.6 7157.53 31.54 2.59 136.78 100.5 60.72 167.69 5320.55 98.75 58.46 5.7

1256.09 122.09 127.61 0.1016 0.6 7442.44 31.54 1.365 179.87 164.48 47.09 88.4 3036.44 83.33 55.85 1.5
1249.73 122.03 255.4 0.20436 0.6 14962.03 31.68 2.24 293.13 169.15 56.53 144.13 4627.38 117.68 61.67 3.4

1987.4 192.41 161.7 0.08136 0.6 9386.91 31.4 1.113 231.82 175.75 43.25 72.33 2621.2 91.54 59.26 0.9
1989.15 193.22 321.51 0.1618 0.6 18736.66 31.52 1.75 364.44 228.1 50.42 113.29 3832.45 140.1 61.45 2.0

501.11 47.98 40.71 0.08124 1.2 4677.69 31.68 1.97 103.36 119.98 74.21 129.25 4213.32 34.86 46.73 0.9
502.9 48.03 51.18 0.10177 1.2 5865.47 31.6 2.425 127.81 163.75 93.24 159.67 4963.28 53.26 47.54 1.2

1253.7 119.89 102.38 0.08167 1.2 11749.27 31.64 2.145 281.6 232.68 104.17 140.93 4609.06 80.09 61.01 1.1
1250.42 119.5 128.63 0.10287 1.2 14750.97 31.62 2.423 317.19 223.4 107.68 159.26 5092.3 112.18 61.2 1.3
1987.58 189.7 103.15 0.0519 1.2 11813.61 31.58 1.577 327.87 211.83 91.61 103.7 3692.98 85.58 70.35 0.7

1986.8 188.62 203.16 0.10226 1.2 23145.27 31.42 2.263 470.91 263.37 100.55 149.79 4912.1 95.7 71.01 1.3
499.4 47 14.5 0.02903 1.8 2456.05 31.76 1.6525 86.45 159.31 83.37 110.35 3680.63 37.66 43.04 0.6

500.34 46.84 29.83 0.05962 1.8 5026.46 31.6 2.58 135.18 204.58 115.97 173.14 5375.28 51.2 53.2 1.2
1254.07 117.41 25.06 0.02 1.8 4223.47 31.6 1.471 193 189.98 102.14 98.63 3486.97 48.72 58.02 0.7
1252.74 117.44 47.12 0.03762 1.8 7951.38 31.64 2.0838 273.49 194.58 122.64 139.73 4555.89 69.23 65.87 1.0
1986.97 185.9 17.82 0.00896 1.8 3001.17 31.58 0.9783 203.39 200.29 103.65 65.65 2963.18 78.84 64.7 0.9
1985.57 185.27 38.49 0.01939 1.8 6464.48 31.5 1.4475 300.7 201.48 103.03 97.38 3376.64 78.53 68.29 0.7

 



 
 

 

 

 

 

/*Source filename : dsptarget.c 

  Output filename  : dsptarget.out 

  Compiler         : C for TMS320C3x/4x 

  System   : PCI32 PC-Based Interface Card 

Source Library  : Innovative Integration provides libraries that support an 

extensive set of DSP functions. 

The following code is created by adapting example code and applying the DSP functions 

supplied. 

Description: This program reads in analog samples from all four analog channels and 

then filters them using an FIR routine.  The resultant output samples are then stored, in an 

interleaved fashion, in a queue.  This is all done in the analog_isr  (interrupt service 

routine).  When a total of 512 samples for each channel, i.e. 2048 samples in total, are 

stored in the queue, the samples are dequeued into four individual buffers from where 

they are then further processed.  This is done in the main body of the program.  While 

the current frames of 512 samples of each channel are being processed the analog_isr  

will continue writing new samples into the queue thus no data is lost.  Processing is done 

for each channel and it involves determining the RMS and mean value of the data 

samples for each channel. An FFT is also performed on each channel. The resultant 

Appendix C 
 

DSP Target Source Code 
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outputs are then placed in the dual-port RAM from where the host application can then 

access them.*/ 

#include <values.h> 

#include <math.h> 

#include "c:\pci32cc\include\target\stdio.h" 

#include "c:\pci32cc\include\target\dsp.h" 

#include "c:\pci32cc\include\target\periph.h" 

#define Q_SIZE   0x1000 /* Heap size for queue size */ 

#define FFT_SIZE          512 

#define HALF_FFT_SIZE    256 

#define LOG2_SIZE         9 

#define BITREV            1     /*1 Bit reversal will be performed */ 

#define FILTER_ORDER   40 /*40 max number of filter coeffs */ 

/*  Remember to change the buffer sizes in "buffers.asm" when the filter order changes*/ 

#define SAMPLE_BUF_SIZE  FILTER_ORDER + 1 /*ADC circular buffersize/ 

/*  Function Prototypes */ 

int count=1; 

int busy =0; 

#define analog_isr c_int99 

void analog_isr(void);     

void  CalcFFT(float *BufferIn, float *BufferOut, float *Window, float *TwiddleTable); 

float CalcRMS(float *BufferIn, int BUF_SIZE); 

float CalcAVE(float *BufferIn, int BUF_SIZE); 
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float CalcFREQ(float *BufferIn, float   BUF_SIZE, float Max_Freq); 

#define command_isr c_int03 

void command_isr(void); 

/*  SEE APPENDIX A FOR FILTER COEFFICIENT CALCULATIONS*/ 

float filter_coeff[FILTER_ORDER + 1] =  

{ -0.00107503, 
-0.000828893, 
0.00142542, 
0.0015999, 
-0.00240534, 
-0.00332171, 
0.00396656, 
0.00643822, 
-0.00598659, 
-0.0115257, 
0.00828074, 
0.0194664, 
-0.0106226, 
-0.0319655, 
0.0127704, 
0.0533542, 
-0.0144962, 
-0.0996399, 
0.0156134, 
0.316107, 
0.484, 
0.316107, 
0.0156134, 
-0.0996399, 
-0.0144962, 
0.0533542, 
0.0127704, 
-0.0319655, 
-0.0106226, 
0.0194664, 
0.00828074, 
-0.0115257, 
-0.00598659, 
0.00643822, 
0.00396656, 
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-0.00332171, 
-0.00240534, 
0.0015999, 
0.00142542, 
-0.000828893, 
-0.00107503} ;  
/*  ISR data queue */ 

QUEUE queue; 

/*  The following extern variables are defined in "buffer.asm" */ 

extern float coeff_buffer[SAMPLE_BUF_SIZE]; /*coefficient buffer*/ 

/*  analog sample buffers */ 

extern volatile float  sample_buffer0[SAMPLE_BUF_SIZE]; 

extern volatile float  sample_buffer1[SAMPLE_BUF_SIZE];  

extern volatile float  sample_buffer2[SAMPLE_BUF_SIZE]; 

extern volatile float  sample_buffer3[SAMPLE_BUF_SIZE]; 

volatile int sample_buf_write; /*  sample buffer head pointer */ 

/*  Used as flag to show if host has read data from dpram */ 

volatile int data_taken = 1;  

void main() 

{ int I, k ,z; 

float max; 

int CH1_Dec_Count = 0; 

float CH0_FREQ, CH1_FREQ, CH2_FREQ, CH3_FREQ; 

float CH0_RMS, CH1_RMS, CH2_RMS, CH3_RMS; 

float CH0_AVE, CH1_AVE, CH2_AVE, CH3_AVE; 

float HAR, sum_of_coeffs, theta; 
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float window[FFT_SIZE]; 

float SinTable[HALF_FFT_SIZE]; 

float FFTBufferIn0[FFT_SIZE], FFTBufferIn1[FFT_SIZE]; 

float FFTBufferIn2[FFT_SIZE], FFTBufferIn3[FFT_SIZE]; 

extern float FFTBufferOut[FFT_SIZE]; /*  This buffer address MUST have at least n 

LSB's set to zero (where 2^n = FFT_SIZE) */ 

volatile int* dpram = (volatile int*)&Periph->Dpram; /* Initialise with starting address of 

dualport RAM */ 

enable_cache();  

if (!queue_init(&queue, Q_SIZE)) /*  Initialise data queue */ 

  while (1); 

/*  Synchronization - Notify Host that you are ready */ 

write_mailbox(0xA5A5, TERMINAL_MBOX); 

/*  Initialize all variables and buffers for the FIR filter */ 

for(i = 0; i < SAMPLE_BUF_SIZE; i++) 

  { sample_buffer0[i] = 0.0; 

  sample_buffer1[i] = 0.0; 

  sample_buffer2[i] = 0.0; 

  sample_buffer3[i] = 0.0;}  

sample_buf_write = 0;       

/*  Normalize filter coefficients */ 

sum_of_coeffs = 0.0; 

for(i = 0; i < FILTER_ORDER + 1; i++)             /*  sum coeff's */ 



 - 203 - 

        sum_of_coeffs += filter_coeff[i]; 

for(i = 0; i < FILTER_ORDER + 1; i++) /*divide coeff's by sum */ 

      coeff_buffer[i] = filter_coeff[i]/sum_of_coeffs;  

/*  Build a table with sine samples - "twiddle factors" */ 

theta = 2*PI/FFT_SIZE; 

for (i=0;i<HALF_FFT_SIZE;i++)   /*  fill sin table in memory */ 

 SinTable[i]=sin(i*theta); 

/*   Create the windowing data and place inside buffer "window" */ 

Hamming(window, FFT_SIZE);   

timer(0, 0); 

enable_analog(BASEBOARD,0); 

install_int_vector(analog_isr, 9); /*  Install analog isr */ 

enable_interrupts();  

mailbox_interrupt_install(command_isr); 

mailbox_interrupt_enable();    

/*Final sync from host - Wait here until host signals that interruptsare active and ready to 

be read */ 

read_mailbox(TERMINAL_MBOX); 

timer(0, 5000); /*  Generates a 5kHz timebase for A/D */ 

 

for( ;;) 

{ /*Wait for Analog_ISR to fill a frame of data */ 

if (enqueued(&queue) >= FFT_SIZE * 4)  
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{ /*  Place data into FFT input buffer */ 

 for (i = 0; i < FFT_SIZE; i++) 

  { FFTBufferIn0[i] =   *(volatile int*)dequeue_ptr(&queue); 

  FFTBufferIn1[i] =  *(volatile int*)dequeue_ptr(&queue); 

  FFTBufferIn2[i] =  *(volatile int*)dequeue_ptr(&queue); 

  FFTBufferIn3[i] =  *(volatile int*)dequeue_ptr(&queue); 

  }  

 if(data_taken == 1) 

  {  

  /*  Process channel 0 */ 

     CH0_RMS = CalcRMS(FFTBufferIn0, FFT_SIZE); 

     CH0_AVE = CalcAVE(FFTBufferIn0, FFT_SIZE); 

     CalcFFT(FFTBufferIn0, FFTBufferOut, window, SinTable); 

     CH0_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0); 

       for(i = 0; i<256; i++) 

{ dpram[i] = to_ieee(FFTBufferOut[i]); 

   dpram[256]  = to_ieee(CH0_FREQ); 

     dpram[257]  = to_ieee(CH0_RMS); 

      dpram[258]  = to_ieee(CH0_AVE);}  

  /*  Process channel 1 */ 

  CH1_RMS = CalcRMS(FFTBufferIn1, FFT_SIZE); 

  CH1_AVE = CalcAVE(FFTBufferIn1, FFT_SIZE); 

     CalcFFT(FFTBufferIn1, FFTBufferOut, window, SinTable); 
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      CH1_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0); 

  for (i=0, max =0;i<255;i++) 

   { if(FFTBufferOut[i]> max) max = FFTBufferOut[i]; 

   }  

for(i = 259, k=0; i < 515; i++,k++)//515 

{ if(FFTBufferOut[k] < 1.0) FFTBufferOut[k] =0;    

  FFTBufferOut[k] = ((FFTBufferOut[k])/max)*1000; 

   dpram[i] = to_ieee(FFTBufferOut[k]); 

   }  

   dpram[515]  = to_ieee(CH1_FREQ); 

     dram[516]  = to_ieee(CH1_RMS); 

     dpram[517]  = to_ieee(CH1_AVE); 

  /*  Process Channel 2 */ 

     CH2_RMS = CalcRMS(FFTBufferIn2, FFT_SIZE); 

     CH2_AVE = CalcAVE(FFTBufferIn2, FFT_SIZE); 

       CalcFFT(FFTBufferIn2, FFTBufferOut, window, SinTable); 

         CH2_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0); 

    for (i=0, max =0;i<255;i++) 

   { if(FFTBufferOut[i]> max) max = FFTBufferOut[i]; 

   }  

      for(i = 518, k =0; i < 774; i++,k++)//774 

   { if (FFTBufferOut[k] < 1.0) FFTBufferOut[k] =0; 

        FFTBufferOut[k] = (FFTBufferOut[k]/max)*1000; 
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  dpram[i] = to_ieee(FFTBufferOut[k]); 

   }  

  dpram[774]  = to_ieee(CH2_FREQ); 

  dpram[775]  = to_ieee(CH2_RMS); 

  dpram[776]  = to_ieee(CH2_AVE); 

   /*  Process Channel 3 */  

   CH3_RMS = CalcRMS(FFTBufferIn3, FFT_SIZE); 

    CH3_AVE = CalcAVE(FFTBufferIn3, FFT_SIZE); 

      CalcFFT(FFTBufferIn3, FFTBufferOut, window, SinTable); 

    CH3_FREQ = CalcFREQ(FFTBufferOut, HALF_FFT_SIZE, 2500.0); 

   for (i=0, max =0;i<255;i++) 

   { if(FFTBufferOut[i]> max) max =  FFTBufferOut[i]; 

   }  

        for(i = 777, k= 0; i < 1033; i++, k++)//1033 

   { FFTBufferOut[k] =  ((FFTBufferOut[k])/max)*1000; 

   dpram[i] = to_ieee(FFTBufferOut[k]); 

   }  

   dpram[1033] = to_ieee(CH3_FREQ); 

   dpram[1034] = to_ieee(CH3_RMS); 

   dpram[1035] = to_ieee(CH3_AVE); 

 /*  Notify host that data is ready to be read */ 

 mailbox_interrupt(1); 

 data_taken = 0;  
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/*  data_taken will be set to 1 by the host after reading the data */ 

 } //end if 

} //end for 

} //end main 

/******************************************************************* 

*     Define interrupt service routines        

*******************************************************************/ 

void analog_isr(void)  

{   int CH0_sample = read_adc(BASEBOARD, 0); 

  int CH1_sample = read_adc(BASEBOARD, 1) ; 

 int CH2_sample = read_adc(BASEBOARD, 2) ; 

 int CH3_sample = read_adc(BASEBOARD, 3);  

/*  Get sample results, store to circular sample buffers. */ 

  sample_buffer0[sample_buf_write] = (float)CH0_sample; 

 sample_buffer1[sample_buf_write] = (float)CH1_sample; 

   sample_buffer2[sample_buf_write] = (float)CH2_sample; 

    sample_buffer3[sample_buf_write] = (float)CH3_sample; 

if(++sample_buf_write == SAMPLE_BUF_SIZE) /* modulo for rollover */ 

    sample_buf_write = 0;                /*  correction */  

/*call filter routine from library. Arguments are the filter coefficient array (pointer points 

to the h(n-1) term), the sample buffer pointer (points to the least recent data point 

sampled, i.e. the tail of the sample circular buffer),and the filter order + 1 */ 
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CH0_sample = (float)(fir(&filter_coeff[0], &sample_buffer0[sample_buf_write], 

FILTER_ORDER + 1)); 

CH1_sample = (float)(fir(&filter_coeff[0], &sample_buffer1[sample_buf_write], 

FILTER_ORDER + 1)); 

CH2_sample = (float)(fir(&filter_coeff[0], &sample_buffer2[sample_buf_write], 

FILTER_ORDER + 1)); 

CH3_sample = (float)(fir(&filter_coeff[0], &sample_buffer3[sample_buf_write], 

FILTER_ORDER + 1)); 

/*  Place the filtered output samples into the queue */ 

*((int*)enqueue_ptr(&queue)) = CH0_sample ; 

*((int*)enqueue_ptr(&queue)) = CH1_sample; 

*((int*)enqueue_ptr(&queue)) = CH2_sample; 

*((int*)enqueue_ptr(&queue)) = CH3_sample; 

}  

void command_isr(void) 

{  

enable_interrupts(); 

data_taken = mailbox_interrupt_ack(); /*  read data from host */ 

}  

/******************************************************************* 

*   Function definitions        *  

*******************************************************************/ 

/*******************************************************************  
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Determine the FFT of the samples in the input buffer. The output buffer must be aligned 

on an address such that the n least significant bits of the address must be zero (where 

FFT_SIZE = 2^n). The Window buffer must contain the windowing samples and its size 

must be the same as that of the input buffer (FFT_SIZE). The twiddle table buffer must 

contain the twiddle factor samples. The resultant samples in the output buffer will be the 

magnitude of the FFT, determined from the complex output of the FFT() function. Only 

the positive half of the frequency spectrum is determined therefore only half of the 

FFT_SIZE samples will be available in the output buffer. 

*******************************************************************/ 

 

 

void CalcFFT(float *BufferIn, float *BufferOut, float *Window, float *TwiddleTable) 

{ int i; 

/*  Next multiply the input frame of data with the window data */     

vmul(BufferIn, 1, Window, 1, BufferIn, FFT_SIZE); 

/*  Now determine the actual FFT of the windowed data*/ 

ffft_rl(FFT_SIZE, LOG2_SIZE, BufferIn, BufferOut, TwiddleTable, BITREV); 

/*  Determine the actual magnitude values from the complex values in FFTBufferOut */ 

for(i=0;i<256;i++) //HALF_FFT_SIZE 

BufferOut[i] = sqrt(pow((BufferOut[i]) , 2)+ pow((BufferOut[HALF_FFT_SIZE + i]) , 

2)   ); 

}  

/**************************************************************/ 
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/*  Determine the RMS value of the samples in the input buffer */ 

/**************************************************************/ 

float CalcRMS(float *BufferIn, int BUF_SIZE) 

{  int i; 

 float Temp = 0; 

 for (i = 0; i < BUF_SIZE; i++) 

  Temp += (BufferIn[i] *  BufferIn[i]); 

 Temp /= BUF_SIZE; 

 Temp = sqrt(Temp); 

 return(Temp/3276.8);  /*  Scaling factor */ 

}  

/*********************************************************/ 

/*  Determine the mean value of the samples in the buffer */ 

/*********************************************************/ 

float CalcAVE(float *BufferIn, int BUF_SIZE) 

{  int i; 

 float Temp = 0;  

 for (i = 0; i < BUF_SIZE; i++) 

   Temp += BufferIn[i]; 

 Temp /= BUF_SIZE; 

 return(Temp/3276.8); 

}  

/******************************************************************/ 
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/*  Determine the frequency of the maximum amplitude bin component */ 

/******************************************************************/ 

float CalcFREQ(float *BufferIn, float BUF_SIZE, float Max_Freq) 

{  int i; 

 int Max_Index; 

 float temp; 

 float Max_Amplitude = 0; 

 for(i=0;i<128;i++)   //i<BUF_SIZE 

  if(Max_Amplitude < BufferIn[i]) 

   {  

   Max_Amplitude = BufferIn[i]; 

   Max_Index = i; 

   }  

   temp = Max_Index* Max_Freq/BUF_SIZE; 

 return( temp); 

}   
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/ *   The PMAC execut es mot i on cont r ol  commands.   
Tr adi t i onal l y  one downl oad pr ogr ams t hat  cont r ol  a speci f i c  
syst em or  pr ocess i n f ul l .  
The f ol l owi ng sour ce code i ncl ude t hr ee cl ass l i br ar i es:  
CprogramBuffer:   To cont r ol  t he buf f er  ar ea wher e mot i on 
cont r ol  commands ar e pl aced f or  execut i on.  
CservoMotor:  To cont r ol  al l  aspect s of  t he spi ndl e mot or .  
CstepperMotor:  To cont r ol  al l  aspect s of  a st epper  mot or  
wi t hi n an axi s and a coor di nat e syst em.  
The code i s  used wi t h PTal kDT Act i veX cont r ol ,  and al l ows 
one t o cont r ol  al l  aspect s of  t he machi ne’ s cont r ol s,  f r om 
wi t hi n a wi ndows based appl i cat i on.  
* /  
//#define ON  0x01 
//#define OFF 0x00 
class CProgramBuffer 
{  
public: 
 char *  Create(void); 
 char *  Open(void); 
 char *  Clear(void); 
 char *  Execute(void); 
 char *  Abort(void); 
 char *  Close(void); 
 char *  Quit (void); 
 char *  Step (void); 
 char *  Halt (void); 
 char *  Run (void); 
 char *  Hold (void); 
 char *  Absolute (void); 
 char *  Delete(void); 
 char *  DefineRotaryCMD(void); 
 char *  CommandCMD (char []); 
 CProgramBuffer(int, int); 
 int GetOpenOrClosed(void); 
 int GetRunOrStop(void); 
 int GetBufferEmpty(void); 
 void SetOpenOrClosed(int ); 
 void SetRunOrStop(int); 
 void SetBufferEmpty(int); 
private: 
 char Command[30]; 
 int OpenClose; //Buffer Condition 

Appendix D 
 

Class L ibrary for  Motion Control Commands 
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 int RunStop;   // Program execution condition 
 int BufferIsEmpty; //Software program  
 int BufferSize; 
 int Coordinate; 
} ; 
 
 
 
CProgramBuffer::CProgramBuffer(int Coord, int BuffSize) 
{  
Coordinate = Coord; 
BufferSize = BuffSize; 
}  
char *  CProgramBuffer::Delete(void) 
{ char buff1[5] = "&"; 
char buff2[5]; 
itoa(Coordinate, buff2, 10); 
strcpy(Command,buff1); 
strcat(Command,buff2); 
strcat(Command, " DEL ROT"); 
return(Command); 
}  
//Define a Rotary Motion Program Buffer 
char *  CProgramBuffer::DefineRotaryCMD(void) 
{ char buff1[2]="&"; 
char buff2[15] = "define rot "; 
char buff3[5]; 
char buff4[5]; 
itoa(Coordinate,buff3,10); 
itoa(BufferSize, buff4,10); 
strcpy(Command,buff1); 
strcat(Command, buff3); 
strcat(Command, buff2); 
strcat(Command, buff4); 
return(Command); 
}  
void CProgramBuffer::SetOpenOrClosed(int SetReset) 
{ OpenClose = SetReset; 
}  
void CProgramBuffer::SetRunOrStop(int SetReset) 
{  
RunStop = SetReset; 
}  
void CProgramBuffer::SetBufferEmpty(int SetReset) 
{  
BufferIsEmpty = SetReset; 
}  
int  CProgramBuffer::GetOpenOrClosed() 
{  
return(OpenClose); 
}  
int CProgramBuffer::GetRunOrStop() 
{  
return(RunStop); 
}  
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int CProgramBuffer::GetBufferEmpty() 
{  
return(BufferIsEmpty); 
}  
char *  CProgramBuffer::Create(void) 
{  
char buff[30]="&1 define rot 100"; 
strcpy(Command,buff); 
return(Command); 
}  
 
 
char *  CProgramBuffer::Open(void) 
{  
char buff[30]="OPEN ROT"; 
strcpy(Command,buff); 
return(Command); 
}  
//Erase currently opened buffer 
//Usually start with OPEN, then CLEAR. 
char *  CProgramBuffer::Clear(void) 
{  
char buff[30]="CLEAR"; 
strcpy(Command,buff); 
return(Command); 
}  
 
 
char *  CProgramBuffer::Execute(void) 
{  
char buff[30]="B0R"; 
strcpy(Command,buff); 
return(Command); 
}  
 
 
 
 
//Abort all programs and moves in the currently 
//addressed coordinate system 
//Rather use H, Q , / or \ commands 
//B1R, A, #1J=#2J=, R 
char *  CProgramBuffer::Abort(void) 
{  
char buff[30]="A"; 
strcpy(Command,buff); 
return(Command); 
}  
 
//Step Working Motion Programs in all coordinate Systems 
// If already running mode (after Run command) then 
//"S" command will place the program in a single-step mode. 
char *  CProgramBuffer::Step(void) 
{  
char buff[30]="s"; 
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strcpy(Command,buff); 
return(Command); 
}  
 
//Causes all motion programs running in a any 
//coordinate system to stop, 
//Program execution may be resumed with R (run)  
// or S (step); 
char *  CProgramBuffer::Quit(void) 
{  
char buff[5]="Q"; 
strcpy(Command,buff); 
return(Command); 
}  
 
 
//Close Open Rotary Buffer 
char *  CProgramBuffer::Close(void) 
{  
char buff[30]="CLOSE"; 
strcpy(Command,buff); 
return(Command); 
}  
 
//Halt program execution 
//Then apply J= to return  
//Then apply R command to resume 
char *  CProgramBuffer::Halt (void) 
{ char buff[30]="/"; 
strcpy(Command,buff); 
return(Command); 
}  
char *  CProgramBuffer::CommandCMD (char Cmd[]) 
{  
char buff1[10] = "cmd \""; 
char buff3[10] = "\""; 
strcpy(Command,buff1); 
strcat(Command,Cmd); 
strcat(Command,buff3); 
return(Command); 
}  
 
//Run Motion Program 
char *  CProgramBuffer::Run (void) 
{  
char buff[30]="R"; 
strcpy(Command,buff); 
return(Command); 
}  
 
//Do a program Hold 
//Permitting jog while in hold mode 
//Execute J= to return to point prioir to jog 
//Execute R to resume prog 
char *   CProgramBuffer::Hold (void) 
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{  
char buff[30]; 
strcpy(Command,buff); 
return(Command); 
}  
 
//Select absolute position mode for axes 
//in addressed ccoordinate system 
 
 
 
 
 
 
 
 
 
 
 
 
#define OFF 0x00 
class CServoMotor 
{ public: 
 int OnOff(); 
 void Off(); 
 void On(); 
 CServoMotor(int , int , int ); 
 void SetRPM(int ); 
 char *  GetSpeedCommand (void); 
 int GetRPM(void); 
 char *  SetIVarCMD(int IVar, int value); 
private: 
 int RPM, MaxSpeed, MinSpeed; 
 int Position, MaxPosition, MinPosition; 
 int MotorOnOff; 
 char SpeedCommand[30]  ; 
} ; 
CServoMotor::CServoMotor(int Rpm, int MaxSpeed, int MinSpeed) 
{ RPM = Rpm; 
MotorOnOff =0; 
}  
void CServoMotor::SetRPM (int Rpm) 
{ RPM = Rpm;  
}  
char *  CServoMotor::SetIVarCMD(int IVar, int value) 
{ char buff1[10]; 
char buff2[10]; 
itoa(IVar, buff1, 10); 
sprintf(buff2,"%.2f",float(value *  0.0683)); 
strcpy(SpeedCommand, "i"); 
strcat(SpeedCommand,buff1); 
strcat(SpeedCommand, "="); 
strcat(SpeedCommand, buff2); 
return(SpeedCommand); 
}  
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char *CServoMotor::GetSpeedCommand () 
{ char buff1[30] = "i122="; 
char buff2[30]; 
//Use "cmd" when buffer is closed 
//char buff3[20] = "cmd\"j+\""; 
char buff3[20] = "j+"; 
itoa(  (int (RPM*0.1334))  ,buff2,20); 
strncat(buff1, buff2, 30); 
strncat(buff1, buff3, 20); 
strcpy(SpeedCommand, buff1 ); 
return(SpeedCommand); 
}  
int CServoMotor::GetRPM(void) 
{  return(RPM); 
}  
void CServoMotor::On() 
{ MotorOnOff = 1; 
}  
void CServoMotor::Off() 
{ MotorOnOff = 0; 
}  
int CServoMotor::OnOff() 
{ return(MotorOnOff); 
}  
//Direction Define 
#define POSITIVE 1 
#define NEGATIVE -1 
#define ON 1 
#define OFF 0 
class CStepperMotor 
{  
//Motor Initialization Information 
public: 
 CStepperMotor(int , int , int , char *  ); 
 
private: 
 char MotorNumber[10]; 
  
//Jog Related Functions 
public: 
 void SetJogRate(int ); 
 char *  GetJogCommand (void); //Used to Send to PMAC 
 int GetJogRate(); 
 char *  JogCMD(int dir , int speed); 
 char *  JogStopCMD(void); 
 char *  JogReltoCommandCMD(int distance); 
 char *  JogPreJogCMD(void); 
 char *  JogPosCMD(int position); 
 char *  JogReltoActualCMD(int distance); 
private: 
 int  JogRate, MaxJogRate, MinJogRate; 
 char JogRateCMD[30]; 
//Utility Related Functions 
public: 
 char *  CloseLoopCMD(void); 
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 char *  KillCMD (void); 
 char *  KillAllCMD (void); 
 char *  JogLastCMD(void); 
 char *  ZeroCMD(void); 
 void SetLoopOC(int OC); // 0 - Open , 1 - Close 
 int GetLoopOC(void); 
 int GetPosNeg(void);  // 0 - Motor Off , 1 - Motor Positive 
    //  -1 - Negative 
 int GetOffOn(void); 
 void SetPositive();   //  
 void SetNegative(); 
 void SetOff(); 
 void SetOn(); 
private: 
 int OffOn;        //0 - Motor Off, 1 - Motor Positive  
    // -1 - Motor Negative 
 int PosNeg;  //1 - Positive , -1 Negative 
 int LoopOpenClose;  // 0 - Open Loop , 1 - Close Loop 
 char Command[10];  // "A" - Abort , "K" - Kill 
//Positional Information 
public: 
 void SetPosition(long ); 
 long GetPosition(void); 
private: 
 long Position; 
//Online Motor Command While Executing a Program 
public: 
 void SetFeedRate(int ); 
 char *  GetFeedCommand (void); 
 int GetFeedRate(void); 
 int GetVelocity(void);  
 char *  GetVelocityCMD(void); 
private: 
 //int Position, MaxPosition, MinPosition; 
 int Feed, MaxFeed, MinFeed; 
 char FeedCommand[30]  ; 
 int Velocity; //counts_per_msec 
//Open Loop Functions and Commands 
 
public: 
 char *  OpenLoop(int Percentage, int Direction); 
private: 
 int   OLoop, MaxOpenLoop, MinOpenLoop; 
 char OpenLoopCommand[30]; 
} ; 
 
//CLASS DEF - Jog Related Functions - BEGIN 
int CStepperMotor::GetJogRate() 
{  
return(JogRate); 
}  
void CStepperMotor::SetJogRate(int Jog ) 
{  
JogRate = Jog; 
}  
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char *  CStepperMotor::GetJogCommand (void) 
{  
char buff1[10] = "i"; 
char buff2[30] = "2"; 
strncat(buff1, MotorNumber + 1, 20); 
strncat(buff1, "22=", 20); 
 
if ( PosNeg == POSITIVE) 
{  
int val =  int (JogRate *  0.03435); 
itoa(  (int(val))  ,buff2,20); 
strncat(buff1, buff2, 30); 
strncat(buff1, MotorNumber, 20); 
strncat(buff1, "j+", 20); 
strcpy(JogRateCMD, buff1 ); 
return(JogRateCMD); 
}  
if (PosNeg == NEGATIVE) 
{ int val =  int (JogRate *  0.03435); 
itoa(  (int(val))  ,buff2,20); 
strncat(buff1, buff2, 30); 
strncat(buff1, MotorNumber, 20); 
strncat(buff1, "j-", 20); 
strcpy(JogRateCMD, buff1 ); 
return(JogRateCMD); 
}  
if (OffPosNeg == OFF) 
{  
itoa(  (int (0))  ,buff2,20); 
strncat(buff1, buff2, 30); 
strncat(buff1, MotorNumber, 20); 
strncat(buff1, "k", 20); 
strcpy(JogRateCMD, buff1 ); 
return(JogRateCMD); 
} * / 
}  
//This function is called after an abort has occured 
//and the PMAC need to complete its last positional 
// command befor completing the rest of the program 
char *  CStepperMotor::JogLastCMD(void ) 
{ char buff1[20]; 
strcpy(buff1,MotorNumber); 
strncat(buff1,"j=",20); 
return(buff1); 
}  
char *  CStepperMotor::JogCMD(int dir , int speed) 
{ //char buff1[20]="#"; 
//strcat(buff1,MotorNumber); 
strcpy(Command,MotorNumber);//buff1); 
if (dir == POSITIVE) 
{ strncat(Command,"j+",20); 
return(Command); 
}  
else 
{ strncat(Command,"j-",20); 



 - 220 - 

return(Command); 
}  
}  
//This Causes the addressed motor to stop jogging 
//Also restores position control if motor's servo loop 
//has been opened 
char *  CStepperMotor::JogStopCMD(void) 
{ strcpy(Command, MotorNumber); 
strncat(Command,"j/",20); 
return(Command); 
}  
//Jog Relative to Commanded Position 
//J:2000 -> jog 2000 counts 
char *   CStepperMotor::JogReltoCommandCMD(int distance) 
{ char buff2[10]; 
strcpy(Command, MotorNumber); 
strncat(Command,"j:",20); 
itoa(distance, buff2,10); 
strcat(Command,buff2); 
return(Command); 
}  
//Jog to PreJog Position 
//J= See Ix22 for velocity 
char *   CStepperMotor::JogPreJogCMD(void) 
{ strcpy(Command, MotorNumber); 
strncat(Command,"j=",20); 
return(Command); 
}  
//Jog to a Specific Position 
//#3J=5000 
char *   CStepperMotor::JogPosCMD(int position) 
{ char buff2[10]; 
strcpy(Command, MotorNumber); 
strncat(Command,"j=",20); 
itoa(position, buff2,10); 
strcat(Command,buff2); reurn(Command);}  
/*char *  JogReltoActualCMD(int distance) 
{ char buff2[10]; 
char buff1[20]="#"; 
strcat(buff1,MotorNumber); 
strcpy(Command, buff1); 
strncat(Command,"j:",20); 
itoa(buff2, distance); 
strcat(Command,buff2); 
return(Command); 
}  
* / 
//CLASS DEF - Jog Related Functions - END 
///CLASS DEF - Utility Retated Functions - BEGIN 
char *  CStepperMotor::CloseLoopCMD(void) 
{ char buff[10]="j/"; 
strcpy(Command, MotorNumber); 
strcat(Command,buff); 
return(Command); 
}  
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//Make commanded axis positions zero 
char *  CStepperMotor::ZeroCMD(void) 
{ strcpy(Command, "z"); 
return (Command); 
}  
//Kills all motor outputs by opening the servo loop, 
//Commanding Zero Output and Making the AE false. 
//All motion programs are automatically aborted. 
char *   CStepperMotor::KillCMD (void) 
{ char buff[10] = "k"; 
strcpy(Command, MotorNumber); 
strcat(Command,buff); 
return(Command); 
}  
char *  CStepperMotor::KillAllCMD (void) 
{ char buff[10] = "k"; 
strcpy(Command,buff); 
return(Command); 
}  
void CStepperMotor::SetLoopOC(int OC) 
 { LoopOpenClose = OC;}  
int CStepperMotor::GetLoopOC(void) 
 { return(LoopOpenClose);}  
void CStepperMotor::SetPositive() 
{ PosNeg = 1; 
}  
void CStepperMotor::SetOff() 
{ OffOn = 0; 
}  
void CStepperMotor::SetNegative() 
{  PosNeg = -1; 
}  
void CStepperMotor::SetOn() 
{ OffOn = 1; 
}  
int CStepperMotor::GetPosNeg() 
{ return(PosNeg); 
}  
int CStepperMotor::GetOffOn() 
{ return(OffOn);}  
//CLASS DEF - Utility Retated Functions - END 
//CLASS DEF - Motor Initialization Info - BEGIN 
// char MotorNumber[10]; 
CStepperMotor::CStepperMotor(int Fd, int Jog, int A, char MotorNum[10]) 
{  
Feed = Fd; 
OffOn = 0; 
strcpy(MotorNumber, MotorNum ); 
}  
 
//CLASS DEF - Motor Initialization Info - END 
 
 
//CLASS DEF - Open loop - BEGIN 
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//Open loop output 
//Output as a % of Ix69 
 
char *  CStepperMotor::OpenLoop(int Percentage, int Direction) 
{  
char buff1[30]; 
char buff2[3]= "o"; 
char buff3[4] ="-o"; 
itoa(Percentage, buff1,10); 
if (Direction==POSITIVE) 
{  
strcpy(Command,MotorNumber);//"#3o10"); 
strcat(Command,buff2); 
strcat(Command,buff1); 
return(Command); 
}  
else 
{  
strcpy(Command,MotorNumber);//"#3o10"); 
strcat(Command,buff3); 
strcat(Command,buff1); 
return(Command); 
}  
 
}  
 
//CLASS DEF - Open loop - END 
 
//CLASS DEF - Online Commands - BEGIN 
 
void CStepperMotor::SetFeedRate (int Fd) 
{  
Feed = Fd;  
}  
 
char *CStepperMotor::GetFeedCommand () 
{  
 char str1[20] = "F", str2[20]; 
 
int val; 
val = (int ) Feed / 60; 
itoa(  val  ,str2,20); 
strcat(str1,str2); 
strcpy(FeedCommand, str1); 
return(FeedCommand); 
 
/*char buff1[30] = "i122="; 
char buff2[30]; 
char buff3[20] = "cmd\"j+\""; 
itoa(  (int ((RPM*10)/145))  ,buff2,20); 
strncat(buff1, buff2, 30); 
strncat(buff1, buff3, 20); 
strcpy(SpeedCommand, buff1 ); 
return(SpeedCommand); 
* / 
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}  
 
int CStepperMotor::GetFeedRate(void) 
{  
 return(Feed); 
 
}  
 
char *  CStepperMotor::GetVelocityCMD(void) 
{  
char buff[10] = "v"; 
strcpy(Command, MotorNumber);  
strcpy(Command,buff); 
return(Command); 
}   
 
int CStepperMotor::GetVelocity(void) 
{  
return(Velocity); 
}   
 
//CLASS DEF  - Online Commands - END 
 
//CLASS DEF  - Positional Information - BEGIN 
void CStepperMotor::SetPosition(long Pos) 
{  
Position = Pos; 
}  
long CStepperMotor::GetPosition(void) 
{  
return (Position); 
}  
 
//CLASS DEF - Positional Information - END 
 

 


