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Abstract

This study considers the dynamical interaction of two predatory carnivores (Lions (Panthera leo) and Spotted Hyae-

nas (Crocuta crocuta)) and three of their common prey (Buffalo (Syncerus caffer), Warthog (Phacochoerus africanus)

and Kudu (Tragelaphus strepsiceros)). The dependence on spatial structure of species’ interaction stimulated the

author to formulate reaction-diffusion models to explain the dynamics of predator-prey relationships in ecology. These

models were used to predict and explain the effect of threshold populations, predator additional food and prey refuge

on the general species’ dynamics. Vital parameters that model additional food to predators, prey refuge and population

thresholds were given due attention in the analyses.

The stability of a predator-prey model for an ecosystem faced with a prey out-flux which is analogous to and

modelled as an Allee effect was investigated. The results highlight the bounds for the conversion efficiency of prey

biomass to predator biomass (fertility gain) for which stability of the three species ecosystem model can be attained.

Global stability analysis results showed that the prey (warthog) population density should exceed the sum of its

carrying capacity and threshold value minus its equilibrium value i.e., W > (Kw + $) − W ∗. This result shows that

the warthog’s equilibrium population density is bounded above by population thresholds, i.e., W ∗ < (Kw +$). Besides

showing the occurrence under parameter space of the so-called paradox of enrichment, early indicators of chaos can

also be deduced. In addition, numerical results revealed stable oscillatory behaviour and stable spirals of the species

as predator fertility rate, mortality rate and prey threshold were varied. The stabilising effect of prey refuge due to

variations in predator fertility and proportion of prey in the refuge was studied.

Formulation and analysis of a robust mathematical model for two predators having an overlapping dietary niche

were also done. The Beddington-DeAngelis functional and numerical responses which are relevant in addressing

the Principle of Competitive Exclusion as species interact were incorporated in the model. The stabilizing effect of

additional food in relation to the relative diffusivity D, and wave number k, was investigated. Stability, dissipativity,

permanence, persistence and periodicity of the model were studied using the routine and limit cycle perturbation

methods. The periodic solutions (Φ̂1 and Φ̂3), which influence the dispersal rate (ϕ) of the interacting species, have

been shown to be controlled by the wave number. For stability, and in order to overcome predator natural mortality,

the nutritional value of predator additional food has been shown to be of high quality that can enhance predator

fertility gain. The threshold relationships between various ecosystem parameters and the carrying capacity of the

game park for the prey species were also deduced to ensure ecosystem persistence. Besides revealing irregular periodic

travelling wave behaviour due to predator interference, numerical results also show oscillatory temporal dynamics

resulting from additional food supplements combined with high predation rates.

xv



Key words: Allee effect, dilution effect, out-flux, threshold, fitness, conspecifics, Brusselator, permanence, persistence,

Burgers equation, dissipativity, dispersal, wave number.

xvi



Chapter 1

Introduction

1.1 Motivation and background to the study

In ecosystems, the fabric of habitats is like a patchwork quilt with a wide variety of local conditions,

some favouring one species and some favouring another (Keshet-Edelstein, 2005). Thus, real natural

systems behave in a way that reflects an underlying spatial variation, and the effect of such a spatial

organisation influences the way individual species interact in an ecosystem (Bazykin, 1998). The fine

balance that exists between interdependent species and the spatial diversity of the system can have

subtle but important effects (Murray, 1989; Holt, 1984). Conversely, the interactions of different

species can result in spatial heterogeneity which leads to changes in stability of steady states and

eventually the appearance of wavelike patterns within the ecological predator-prey model (Pearce et

al., 2006; Peng & Wang 2005; Murray, 1993). The concepts underlying spatially dependent processes

can be described by use of various partial differential equations (Murray, 1993). Owing to its universal

existence and importance, the dynamical relationship between predators and their prey has been and

will continue to be one of the dominant themes to both empirical and theoretical conservationists

(Bazykin, 1998; Starfield & Bleloch 1986; Okubo, 1980).
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1.1.1 Interaction of species

It is well known that many species have already become extinct and many others are on the verge

of extinction due to several natural and man-made reasons, such as over-exploitation, indiscriminate

harvesting, over-predation, environmental pollution, loss of habitat and mismanagement of natural

resources (Srinivasu & Gayatri, 2005). For example, the vulnerable roan antelope (Hippotragus

equines) almost declined to extinction in the Kruger National Park after aerial censuses revealed that

the man-made waterholes had opened up the habitat for zebra (Equus burchelli) and blue wildebeest

(Connochaetus taurinus) (Hayward, 2011; Hayward et al., 2007a; Harrington et al., 1999).

Despite the lion (Panthera leo) having a profound impact on a wide range of prey species, there

are various predator species present in various South African game reserves that help in maintaining

a natural balance and provision of ecotourism (Hayward et al., 2007a; Hayward et al., 2007b; Fay &

Greef, 2006; Tambling & Du Toit, 2005; Mills & Shenk, 1992; van Orsdol, 1984). The leopard (Pan-

thera pardus), spotted hyaena (Crocuta crocuta) and cheetah (Acinonyx jubatus) have been ranked

high among the efficient predators within these various game parks (Hayward et al., 2006). Preda-

tors capture and feed on the prey that get exposed, especially during species’ dispersal. Through

mathematical modelling, we can establish how such species’ dispersal can take place or be avoided at

minimum risk to the prey (Dao-Duc et al., 2008; Tyutyunov et al., 2007; Fryxell et al., 1988; Okubo,

1980).

In any community, there is always interaction between species, and it is through such interaction

that species survive, co-exist, multiply or become extinct. Such dynamics of interacting species have

been given considerable attention and have been studied from various perspectives down through

the ages (Srinivasu & Gayatri, 2005). For example, during the last three decades of the twentieth

century, most studies investigated the effect of prey-density-dependent predator migration on the

stability of a predator-prey system (Bhatt et al., 1999; Afolayan & Ajayi, 1980). The variety and

complexity of the intricate systems which constitute the fabric of both animal species and the en-

vironment in which they live and interact was and still remains a topic that puzzles both empirical

and theoretical conservationists (Keshet-Edelstein, 2005; Berryman, 1992; Brown, 1975). There-

fore, the characterisation of ecological interactions provides one of the most venerable of venues for
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mathematical biology, dating back at least as far as Volterra‘s consideration of the fluctuations of

the Adriatic fisheries and since then, many mathematical methods of optimal control and adaptive

management have been developed to solve problems in ecological management (Ruan & Freedman,

1991; Freedman & Wolkowicz, 1986).

A quantitative and qualitative understanding of the interaction of different species is crucial for

the management of wildlife resources (Azar et al., 1993). Therefore, the challenge is to adapt general

theoretical models for multiple species in order to postulate and investigate mathematically the

effect of introducing terms that represent various phenomena, such as mutualism, seasonal calving,

refugia, additional predator food and functional response (Srinivasu et al., 2007; Fay & Greef, 2006;

van Baalen et al., 2001; Krivan, 1998; Sih, 1987; McNair, 1986).

1.1.2 Mathematical modelling in ecology

Mathematical models which are broadly of two types; (i) educational (simple and analytically

tractable) and (ii) practical (complex and in many cases analytically intractable), have existed and

have puzzled researchers in various scientific disciplines throughout many decades (Berryman, 1992;

Maynard, 1974). For example, population models are said to have originated from the Malthus model,

formulated in the early nineteenth century, and then corrected by Verhulst about 50 years later to

compensate for the prediction that either a population grows or dies out exponentially (Murray, 1993;

Berryman, 1992; Starfield & Bleloch, 1986). The logistic correction by Verhulst allows instead for a

horizontal asymptote to which the population tends as time flows, the value of which expresses the

carrying capacity of the environment for the population under scrutiny. This notion of mathematical

modelling took a new twist when Volterra and Lotka released their independent but similar research

findings, and this stimulated more and more research in mathematical modelling that has branded

the discipline with yet a new flavour. Predator-prey models that evolved from logistic theory or that

incorporate ratio-dependent functional responses have been found not to have problems such as the

paradox of enrichment and biological control and seem to be more biologically plausible (Khan et

al., 2004; Berryman, 1992).
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With various assumptions, Volterra (1926) first proposed a simple model for the predation of one

species by another to explain the oscillatory levels of certain fish catches in the Adriatic sea. Though

Volterra’s model was proposed in fisheries management, it has been useful to researchers in ecology,

epidemiology and other areas. The challenge facing humans today, is the consideration of global

change, loss of biodiversity, and achieving a sustainable future. This elevates the complexity to new

levels of scientific and technological research.

1.1.3 Migration and switching in ecosystems

In a predator-prey environment, the predator and prey prefer feeding in a habitat for some

duration before changing preference to another habitat (Hayward et al., 2006; Khan et al., 2004;

Bhatt et al., 1999). This phenomenon of changing habitats is called switching and is due to various

reasons which can be explained by using relevant mathematical models (Khan et al., 2004; van Baalen

et al., 2001). Despite unclear reasons, Tambling & Du Toit (2005) and Fryxell et al. (1988) proposed

that migratory populations benefit from (i) escaping year-round predation by migrating out of the

territories of large resident predators and (ii) responding to seasonal and spatial heterogeneity in

food quality.

Switching may result in routine migration of prey species at regular periods of the year that

may lead to the repulsive-attractive effects of predator-prey systems (Tyutyunov et al., 2007). For

example, blue wildebeest migrate in large herds across the Serengeti Park in search of resources

and predator avoidance (Tambling & Du Toit, 2005; Bhatt et al., 1999). Preventing migratory

movements, while in closed reserves, potentially allows predators to benefit from a “captive” prey

resource. This has led to wildebeest’s fragmented distribution together with isolated populations in

many game reserves such as Pilanesberg National Park (Tambling & Du Toit, 2005).

1.2 Spatial distribution of species

Underlying all social behaviour of a species is the distribution in space of its members (Liu,

2010; Pearce et al., 2006; Renshaw, 1991; Holt, 1984). This distribution is determined mainly by the
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behaviour of individuals towards one another. The distribution of animals is important because it

places restrictions on the opportunities for social interaction of various types, and it plays an integral

role in the population dynamics of the species (Brown 1975).

A population grows slower in some years than in others and in some places better than in others,

leading to a temporal and spatial variation that results in variable population growth rates. Fur-

thermore, since real populations occupy physical space and individuals move across it, the ultimate

interest is the rate at which the population spreads and disperses in such environments (Petrovskii

& Li, 2006; Case, 2000; Okubo, 1980).

1.3 Addo Elephant National Park: Fauna and Flora

Addo Elephant National Park (AENP), which is approximately 1650 km2, located 70 km north

of Port Elizabeth in South Africa’s Eastern Cape Province (Addo town), was proclaimed in 1931 to

protect and save the remaining 11 Addo elephants (Loxodonta africana) from extinction (Hayward

& Hayward, 2006; Urquhart et al., 1997). Although originally proclaimed to protect a single species,

priorities have now changed to conserve the rich biological diversity found in the area and is currently

being expanded to form the Greater Addo Elephant National Park (GAENP) (SANParks, 2006;

Kerley & Boshoff, 1997).

AENP encompasses five of South Africa’s nine biomes, namely: forest, subtropical thicket (val-

ley bushveld), grassland, fynbos and nama karoo (SANParks, 2006; Urquhart et al., 1997). Today,

this finely tuned fenced ecosystem is sanctuary to over 450 elephants, 400 Cape buffaloes (Syncerus

caffer), black rhinoceros (Diceros bicornis), a variety of antelope species (red hartebeest (Alcephalus

buselaphus), eland (Tragelaphus oryx), kudu (Tragelaphus strepsiceros) and bushbuck (Tragelaphus

scriptus)), abundant warthogs (Phacochoerus africanus), various native predators (lions, spotted

hyaenas, wild dogs (Lycaon pictus), leopards (Panthera pardus)), a variety of birds and reptiles all

under conservation management (Mgqatsa, 2010; Hayward et al., 2007a, b; Hayward, 2006; SAN-

Parks, 2006; Hayward & Hayward, 2006).
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Over the years, most species have suffered extensive range loss within the Eastern Cape Province,

with some now extinct in many areas where they formerly occurred, and a wide range of conservation

projects within AENP are being implemented (Mgqatsa, 2010; Nyafu, 2009; Hayward & Kerley, 2008;

Hayward et al., 2007b; Franklin, 2005). This makes AENP one of the best examples of how important

these remaining areas are as reserves for species’ management, movement and survival.

1.3.1 Predator-prey interaction within AENP

Although warthogs are normally diurnal species, they may switch to a nocturnal lifestyle in areas

where they are disturbed by humans (Mgqatsa, 2010; Nyafu, 2009; Somers & Penzhorn, 1992). They

sleep and rear young ones in abandoned aardvark (Orycteropus afer) burrows and when threatened

by predators, run and take refuge in the nearest vacant burrow. Such burrows can act as a refuge

and may have numerous effects on species dynamics (Mgqatsa, 2010; Nyafu, 2009). On the other

hand, buffaloes like any other mammalian herbivores feed for a high proportion of the time i.e., day

and night, and form cohesive groups as a defensive mechanism against predators (especially lions)

(Tambling et al., 2011; Prins, 1996).

The lion is the largest African carnivore and a principal predator of various herbivore species

(Lehmann et al., 2008; Hayward et al., 2007a; Hayward & Kerley, 2005). Adult males are larger

(average weight of 230 kg) than adult females (average weight of 160 kg) and are distinguishable by

manes of long hair. Lions are distinctly sociable, living in prides of 6 to 12 individuals which are

powerful and capable of pulling down prey the size of buffalo and giraffe (Giraffa cameleopardis). The

size of the lion’s territory, whose boundaries are marked regularly with urine and faeces, depends on

prey availability (Ravnsborg, 2004; Scheel, 1993; Schaller, 1972). Roaring advertises a lion’s presence

within territories ranging between 20−400 km2 (Schaller, 1972). Lions hunt particularly in the early

morning, late afternoon and during the night. Despite sleeping for most of the time, a lion spends its

active time on two kinds of activities: searching for prey and prey handling which involves stalking,

attacking, capturing and subduing/digesting (Lehmann, 2008). The consumption rate of a lion is

limited in such a way that even if prey are so abundant that no time is needed for searching, a lion

still needs to spend time on prey handling (Lehmann, 2008). On a full stomach, a lion can go 4 days
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quite comfortably without having to hunt again (Lehmann, 2008; Mills & Shenk, 1992).

The lions and spotted hyaenas are the largest members of Africa’s predator guild that competes

for a limited food resource base within most game parks. Their high degree of preferred and dietary

overlap has led their competition to be termed as “the battle of the giants” (Hayward, 2006; Hayward

& Kerley, 2005). However, at very low densities, competition may be minimal as the probability of

encountering a competitor also becomes very small. As a common strategy to minimise kleptopar-

asitic and agonistic interactions from competitively dominant conspecifics, lions opt for differing

favourable activity patterns (Hayward & Hayward, 2006).

Six lions and eight unrelated spotted hyaenas from two separate clans were introduced to AENP

in late 2003 to fulfill the role of restoring the natural balance (ecological integrity) to the ecosystems

in the park by controlling the numbers of herbivores (Wentworth et al., 2011; Hayward & Hayward,

2006) and maximizing ecotourism (Hayward et al., 2007b). For quite a long period, this role had

been ecologically compromised due to the absence of a large predator other than the leopard. Basing

on predation increase, it was hypothesized that the post-lion/hyaena warthog population in AENP

main camp would differ from the pre-lion/hyaena introductions (Mgqatsa, 2010).

Prey is hunted by stalking until the lions are close enough to pounce without it being able to

get far by running. Female lions hunt more than the males and they are more successful at hunting,

partly due to their better camouflage and patience. The full dark manes expose mature male lions

and are often seen by their prey from long distances (Schaller, 1972). Despite this limitation, males

are very capable of hunting and often join the hunt that involves large prey such as buffalo, rhinoceros

and young elephant where extra weight and power is needed to pull down such prey species (Packer

et al., 2001; Scheel, 1993; van Orsdol, 1984; Schaller, 1972).

Though lions eat any mammal they come across, the majority of a lion’s diet comes from medium-

to large-sized herbivorous mammals (Hayward & Kerley, 2005; Ravnsborg, 2004; van Orsdol, 1984).

A big male lion will very easily eat 20 kg (10% of its own body mass) of meat. The most common

prey include: buffalo, zebra (Equus burchelli), blue wildebeest, gemsbok (Oryx gazelle), hartebeest,
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warthog, kob (Kobus kob), impala (Aepyceros melampus) and Thomsons gazelle (Gazella thomsoni)

(Hayward et al., 2007a; Lehmann et al., 2008; Mills & Shenk, 1992). The choice of preferred prey

species depends on their nutritional value besides other ecological constraints, such as prey density

(abundance), temporal and spatial distribution, defenses and anti-predator tactics, size, vigilance and

habitat cover which differ throughout the predator’s geographical distribution (Hayward & Kerley,

2005). As long as a predator can increase its survival chances or reproductive success by hunting

more efficiently, natural selection will always favour efficient, optimally foraging predators.

The lion preferentially prey upon species within a weight range of 190 − 550 kg but the most

preferred weight of lion prey being 350 kg (Hayward & Kerley, 2008; Hayward et al., 2007a). The

mean mass of significantly preferred prey species is 290 kg and of all preferred species is 201 kg

(Hayward & Kerley, 2005). Gemsbok, buffalo, blue wildebeest, giraffe and zebra are significantly

preferred. Species outside the preferred weight range are generally hunted less than predicted. Species

within the preferred weight range that are not significantly preferred (such as eland, roan and sable

antelope) generally have features that reduce predation either morphologically (e.g., sable horns),

ecologically (e.g., roan antelope and sable occurring at low density), or behaviourally (e.g., the large

herd size and increased vigilance of eland) (Hayward, 2011; Hayward & Kerley, 2005). Warthog

are below the preferred weight range yet are taken in accordance with their availability and this is

probably due to their sympatry with the lion, their relatively slow evasion speed and their lower level

of vigilance (Hayward & Kerley, 2005).

1.4 Statement of the problem

Historically, many grassland regions and African savanna biome supported a great number of wild

animal species. The populations of most of these species have over the past years suffered tremendous

declines because of human settlement and activities (Mgqatsa, 2010; Nyafu, 2009; Harrington et

al., 1999). As a remedy, species have been confined in closed systems (fenced game reserves) for

their management (SANParks, 2006; Urquhart et al., 1997). This prevents migratory movements

of herbivore and ungulate species and potentially allows predators to benefit from a “captive” prey

resource (Fryxell et al., 1988).
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Threatened prey species have been placed at risk through inadequate knowledge of predator-

prey relationships within game reserves (Lehmann et al., 2008; Hayward et al., 2007b; Hayward

& Hayward, 2006; Hayward & Kerley, 2005; Harrington et al., 1999). For example, within the

closed system of AENP, despite the availability of hypothetical guidelines, species are managed

with uncertainty of their threshold populations and the carrying capacity of the park (Hayward et

al., 2007d; SANParks, 2006; Kerley & Boshoff, 1997).

Understanding the population dynamics of predator-prey interaction involving dispersal of species

in game parks is paramount in order to avoid extinction of vulnerable species. In this study, models

representing the dynamics of a population and how it reacts to various predation scenarios combined

with functional responses have been formulated and analysed. Population thresholds have been

considered in order to determine the necessary conditions for maintaining populations at low densities

without extinction. Establishment of predation thresholds for survival of endangered prey species

in parameter space has been carried out. Such information is essential for the development of

management strategies aimed at averting population declines and/or extinction.

1.5 Objectives of the study

1.5.1 General aim

Formulating ecologically plausible mathematical models that establish management strategies of

the principal predators and their prey.

1.5.2 Specific objectives

(a) To determine appropriate conditions necessary for maintaining populations of interacting species

at low density without extinction.

(b) To determine the impact of prey reserve capacity on the predator-prey dynamics.
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(c) To analyse the dynamics of the predator-prey model when additional food is provided to preda-

tors.

(d) To establish the effect of predator density-dependent dispersal of prey on stability of a predator-

prey system.

1.6 Justification for the study

The problem of declining populations of wild animal species without clearly explained scientific

causes is a major concern to managers in most game reserves. There is a need to assess the potential

factors that may play a role in the decline of the populations within game parks (Tambling & Du Toit,

2005). In their study, Tambling & Du Toit (2005) acknowledge that by excluding the interacting

influences of drought, disease and competition, they might have missed some additional factors

contributing to the wildebeest population decline. For sustainable management, species introduction

in AENP needs to be carefully studied and evaluated.

1.7 Scope of the study

Models that mimic, predict and explain mathematically the feeding dynamics between two preda-

tors (lions (Panthera leo) and spotted hyaenas (Crocuta crocuta)) and three of their common prey

(buffalo (Syncerus caffer), warthog (Phacochoerus africanus) and kudu (Tragelaphus strepsiceros))

are formulated. These species are available in varying densities in most of African savannas and in

many grassland regions (Hayward et al., 2007a; Hayward et al., 2007b; Fay & Greef, 2006; Tambling

& Du Toit, 2005; Harrington et al., 1999; Mills & Shenk, 1992).

Data about predation and other dynamics concerning the selected species has been obtained from

literature and through direct discussions/interviews with various researchers in AENP. The obtained

data have been used to refine the model and to estimate the range of crucial parameters. This has

been achieved through computer simulations and qualitative analyses of the formulated mathematical

models.

10



1.7.1 A schematic diagram for the study

The schematic model of Figure 1.1 shows the mental map that is used as a guide through the

different model formulations. Additional food to predators, prey refuge, species dispersal (diffusion)

and other vital dynamics are motivated in the respective formulated models.

1.8 Methodology

Density-dependent deterministic models with prey refuge and additional food provided to the

predators have been formulated and analysed. The formulated models which were calibrated using

the obtained data, involve reaction-diffusion partial differential equations (PDEs), and autonomous

and non-autonomous systems of ordinary differential equations (ODEs).

Computer simulations using software packages (MatLab, Maple, Scientific Workplace and Math-

ematica) and qualitative analyses have been used in analysing the models so as to determine equi-

librium points, analytic solutions, periodicity and to quantify the stability conditions for the steady

states of the ecosystem containing the modelled interacting species. Applying the techniques of

nonlinear dynamics in analysing stability and using computer simulations have enabled the author

to determine vital parameters that play a major role in the dynamics of the formulated models

(sensitivity analysis).

1.9 Structure and format of the presentation

This thesis is presented in six chapters as follows: In Chapter 1, the background to the study,

statement of the problem, objectives, justification and scope of the study are presented. A literature

review is carried out in Chapter 2 where the importance of wildlife management and modelling in

ecosystem management are highlighted. In Chapter 3, derivation of a model that involves a prey

out-flux dilution effect and group defense is done, and this model is qualitatively and numerically

analyzed to study the dynamics of one predator against two prey. Additional food to predators and

prey refuge are incorporated in the model of Chapter 3 and numerically studied further in Chapter 4
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Figure 1.1: A compartmentalised model for the predator-prey dynamics of this study.
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for more dynamics. In Chapter 5, a one prey-two predators’ model that involves predator interference

with additional food to both predators is studied. Stability analysis of the reaction-diffusion model

is carried out employing the approach used when analysing a generic reaction-diffusion model (the

Brusselator) for a tri-molecular chemical reaction, morphogenesis and pattern formation. Numerical

simulations of the models are generally carried out using the fourth-order Runge-Kutta method

supported by Matlab programming language in Chapters 3, 4 and 5. Though each chapter has a

section of discussion and conclusion of results, in the final chapter, the author presents the general

concluding remarks about the findings of the study.
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Chapter 2

Literature Review/Modelling Motivation

2.1 Introduction

Wildlife management, which is achievable through a thorough understanding of species’ dynamics,

is an important strategy of averting the continued decline and/or extinction of endangered species.

Predator-prey interactions among species has direct and indirect effects on prey population size and

distribution (Helfman et al., 1997). Direct effects include immediate mortality or delayed mortality

due to injury, whereas indirect effects involve habitat shifts caused by a predator’s presence, forcing

potential prey to use suboptimal habitats, which affects individual growth and reproduction. In

suboptimal habitats, population-level responses that arise from functional and numerical responses

become part of the dynamics of the species’ interaction. Such population-level responses associated

with predation are usually density dependent and vary with the population size of the prey, i.e.,

density-dependent changes occur when the size of the prey population determines the impact of the

predator (Haque, 2009; Seo & Kot, 2008; Hsu et al., 2001).

2.1.1 Predator-prey preferences, intelligence and decision-making

Concern over predation, harvesting and competition of species in ecology has stimulated the

development of several mathematical models to help in understanding and explaining the popula-

tion dynamics of the interacting species (Khan et al., 2004; Berryman, 1992). Gaucel et al. (2005)
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developed mathematical models to explain invading introduced species in insular heterogeneous en-

vironments. In their model, they emphasize the importance of accurate estimates of the predation

rate on the different age and sex classes, as well as on demographic parameters of prey populations

in determining those species that need to be protected.

Gaucel and Pontier (2005) used mathematical models to explain how predator food preference

can change the destiny of native prey in predator-prey systems. The predator-prey system behaviour

when the predator population has a strong preference for one of the two age stages of the prey

population was described in their model in which they showed how the age structure in the prey

population can modify the dynamics of the population under study. The prey preference of the alien

predator on either juvenile or adult stages of the native prey population was shown to affect the

dynamical behaviour of both native and introduced population densities (Gaucel & Pontier 2005).

Such ecological interactions of alien and native species are a common phenomena in areas of species

reintroduction, necessitating studies in that regard.

2.2 Mathematical modelling in wildlife management

Though given little attention by mathematical modellers partly due to increased complexity of

the mathematical analysis and intractable nature of the solutions, multi-species wildlife ecosystems

modelling is increasingly becoming a subject of significant interest in ecological research. The for-

mulation and use of reaction-diffusion, deterministic and stochastic models and their qualitative

analyses has been a rich area of research in population biology since the famous Lotka-Volterra

model (Haque, 2009). The most crucial components in most recent models have been the spatial

distribution (spread) of species and the “functional response” (the function that describes the num-

ber of prey consumed by a single predator per unit time as a function of prey density) (Liu, 2010;

Petrovskii & Li, 2006; Ahn, 2003; Abrams et al., 2000; Holt, 1984; Okubo, 1980; Holling, 1965).

Lotka (1925) and Volterra (1926) independently first proposed a simple deterministic model for

the predation of one species by another to explain the oscillatory levels of certain fish catches in the

Adriatic (Renshaw, 1991). Their model was built around the simple principle of mass action i.e.,
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conversion of energy from one source to another, plus many other elementary assumptions that were

later found to be unrealistic (Murray, 1989).

Despite being unrealistic, the Lotka-Volterra model was able to reveal that simple predator-

prey interactions can result in oscillatory behaviour of the populations (Murray, 1989). This is not

unexpected because as the population of a prey increases, it encourages growth in its predator. The

presence of many predators leads to the consumption of many prey causing the population of the

latter to decline and with less food around, starvation dominates the predator. The prey population

increases when the population of the predator gets low enough, and such a population cycle pattern

of the interacting predator-prey species starts over again (Lotka, 1925). Depending on the studied

ecosystem, such oscillations can grow or decay or go into a stable limit cycle oscillation or even

exhibit chaotic behaviour, although in the latter case there must be at least three interacting species

or the model has to have some decay terms (Volterra, 1926).

Since Lotka-Volterra’s famous model of 1926, mathematical models have continued to provide basic

insights into predator-prey interactions (Khan et al., 2004; Murray, 1993; Berryman, 1992). Fay and

Greef (2006), proposed a model to capture the dynamics of the lion-wildebeest-zebra interaction

in Kruger National Park (South Africa) in which the lion predated on the wildebeest and zebras.

Starting with a simple model, they showed that by carefully incorporating terms to represent plausible

biological aspects such as logistic growth with mutualism among wildebeest and zebras, Holling Type

II functional response for the lions, seasonal calving of zebras and culling of lions, a model which

comes close to fitting available empirical data can be formulated. Despite Fay and Greef (2006)

leaving out other possible processes and dynamics of the ecosystem in the formulated model, their

approach showed how well formulated mathematical concepts should be incorporated in a model.

From the biological perspective, it may not be easy to find any pair of populations that demon-

strate the characteristic properties of Lotka-Volterra prey-predator model, minus basic ecological

attributes such as predator saturation, limited predator and prey resources and competition even if

the prey is so abundant (Berryman, 1992). In addition, lack of essential growth characteristics such

as logistic growth in the prey in the absence of the predator renders the model simplistic (Bazykin,
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1998; Takeuchi, 1996). As a result, a wide range of modifications of the original model have been

presented by researchers, including a diversity of additional factors and relationships described by

explicitly assigned functions (Seo & Kot, 2008; Petrovskii & Li, 2006; Hsu, 2005; Khan et al., 2004;

Holling, 1965). Some of the additional factors that have been given reasonable attention include:

trophic predation function, also known as the functional reaction (response) of the predator to the

prey population density (Holling Types of response-Holling (1965) and Beddington-DeAngelis), non-

linear (quadratic) dependence of the growth rate of the prey population, competition among prey,

mortality of the prey, predator saturation, predator competition for prey, predator competition for

other resources other than prey, prey refuge, seasonal variation and dispersal of prey or provision

of additional food to predator (Srinivasu et al., 2007; Srinivasu & Gayatri, 2005; Cantrel & Cosner,

2001).

2.2.1 Population threshold phenomena in species: Allee effects

The growth and decline of populations in ecosystems and the struggle of species to predominate

over each other has been a subject of interest through the ages. While there is still much to be stud-

ied in the field of over-crowding, there is more to be demonstrated in the area of under-crowding,

its mechanisms and its implications (Courchamp et al., 2008; Courchamp et al., 1999a). Though

its importance in ecology has been under-appreciated (Kent et al., 2003; Courchamp et al., 1999a),

knowledge of critical population threshold mechanisms is very relevant to many conservation pro-

grammes, where scientists and managers are often seen working with populations that have been

reduced to low densities or small numbers. The Allee effect describes a scenario in which populations

at low densities are affected by a positive relationship between population growth and density, which

increases their likelihood of extinction (Dennis, 1989).

The Allee effect which is widely considered to be an intraspecific phenomenon can be generated

by a shortage of interactions (ranging from strict cooperation to unconscious facilitation) among

conspecifics at low density. Such effects occur whenever fitness of an individual in a small or sparse

population decreases as the population size or density decreases to very low levels (Courchamp et
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al., 1999a). Thus, the Allee effect results into a critical population threshold below which pop-

ulations can become extinct. Predation, mating systems, environmental modifications and social

interactions of species are some of the mechanisms hypothesised to cause critical thresholds amongst

species (Courchamp et al., 2008; Petrovskii et al., 2005; McCarthy, 1997). Various theoretical studies

(Stephens et al., 1999; Courchamp et al., 1999b; McCarthy, 1997; Dennis, 1989) have been put up

for the purpose of motivating the modelling of weak and strong (demographic and component) pop-

ulation threshold phenomena in ecological interactions, and it is imperative to develop and analyse

such models further. This is because, an in-depth understanding of ecological interactions, especially

in this era of technological advancement, is essential for species management.

Individuals of many prey species use cooperative strategies to evade or fool predators; they forage

together, they join forces to survive unfavourable abiotic conditions and they seek sexual reproduction

at the same moment and/or place (Courchamp et al., 2008). When the species are too few or many but

sparsely distributed, they suffer from a lack of conspecifics which compromises their fitness. Various

studies (Courchamp et al., 2008; Courchamp et al., 1999b; Stephens et al., 1999) suggest numerous

benefits due to presence of conspecifics which include: predator dilution or saturation, anti-predator

vigilance or aggression, cooperative predation or resource defense, social thermoregulation, collective

modification or amelioration of the environment, increased availability of mates, increased pollination

or fertilisation success, conspecific enhancement of reproduction, and reduction of inbreeding, genetic

drift or loss of integrity by hybridisation (Courchamp et al., 2008). The advance knowledge of critical

threshold threats in a given population permits the redirection of harvesting pressure towards less

threatened populations (Courchamp et al., 2008; Dennis, 1989). Similarly, protection efforts for

an endangered species, if proven sensitive to Allee effects, should be redefined accordingly. As

the causes of decline of many populations still remain a puzzle, a more systematic investigation of

potential population thresholds in endangered species is crucial to improve our understanding of

their dynamics, as well as efficiently protecting them against formally identified threats (Courchamp

et al., 1999b).

For a population that grows in accordance with the logistic law of population growth, the per

capita growth rate is negative above and positive below the carrying capacity, κ. However, in the
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presence of an Allee effect, the species’ per capita growth rate decreases below a given population size

and becomes negative below a critical population threshold, L0. When a population displaying this

type of population dynamics is driven below the critical threshold, sometimes the low negative per

capita growth rate leads to extinction (Dennis, 1989). The Allee effect usually saturates or disappears

as populations get larger. As observed earlier, low population threshold effects arise from a number

of sources such as difficulties in finding mates, social dysfunction and inbreeding depression at low

population densities (McCarthy, 1997; Kunin, 1993; Landen, 1987). Thus, Allee effects are at the

heart of the issues which conservationists and managers have to deal with, not only because they are

a potential cause of extinction, but also because they are most likely to occur in populations which

have suffered a decline from human activity.

Various studies that incorporate an Allee effect, depicting a single population that goes extinct

when rare, have been conducted. For example, dx
dt

= rx
(
1 − x

κ

) (
x
κ
− A

κ

)
, where A i.e., 0 < A < κ, is

the threshold population size below which dx
dt
< 0 due to Allee effects (Lewis & Kareiva 1993; Dennis,

1989). Generally, if the growth rate function f(x), in the logistic growth model dx
dt

= xf(x), is

non-negative and increasing for 0 ≤ x(t) ≤ κ, then it is called a compensation model. On the other

hand, if the growth rate function, f(x), is decreasing for small x(t), then the model is depensation.

The model is a critical depensation type if the growth rate function, f(x), is negative for small x(t).

The occurrence of compensation, depensation and critical depensation growth models in ecological

studies necessitates the following condition in determining and distinguishing them: for compensation

f(x) ≥ 0, f ′(x) ≤ 0 for 0 ≤ x ≤ κ; for depensation f(x) ≥ 0, f ′′(x) ≤ 0 for 0 ≤ x ≤ κ, f ′′(x) > 0

for 0 ≤ x ≤ κ∗ and f ′(x) < 0 for κ∗ < x < κ, which shows that f(x) achieves a maximum at κ∗.

On the other hand, the growth curve for critical depensation, g(x) = xf(x) is such that g(x) < 0

for 0 < x < L0, and g(x) ≥ 0, for L0 ≤ x ≤ κ, and this results in a decrease of reproduction and

survival of smaller populations of species. Such effects usually saturate or disappear as populations

get larger i.e., through enhancement of conspecifics (Courchamp et al., 2008; Dennis, 1989). Many

causes of such population growth effects, ranging from increasing difficulty of reproduction due to

lack of mates to reduced anti-predator vigilance, have been studied and modelled for various species

as their population density decreases (Courchamp et al., 2008).
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2.2.2 Modelling additional food to predators

Scientific findings reveal that there is an apparent contradiction between empirical observations

and theoretical results regarding the role of additional food to predators. Several theoretical models

(Harmon, 2003; van Rijn et al., 2002; van Baalen et al., 2001; Holt, 1984) conclude that adding a

non-pest alternative prey to a predator-prey system lowers the density of the target prey, and this has

been found to contradict empirical data (Harwood & Obrycki, 2005; Holt & Lawton, 1994; Murdoch

et al., 1985). For example, the effect of consuming non-pest species on rates of pest predation by a

generalist predator is twofold: feeding upon the nutritious food items generally enhances fecundity

which leads to their population growth, while on the other hand the presence of alternative prey,

especially during times when pest regulation is required, results in reduced levels of pest consumption

per individual predator (Harwood & Obrycki, 2005).

The above conflict and counter arguments between theory and empirical results necessitates the

development of explicit models that can link theoretical studies and empirical results for a better

understanding of the predator-prey dynamics that emanates from providing additional food to a

predator (Srinivasu et al., 2007; Gaucel & Pontier, 2005). Such models should address the nature

i.e., in terms of nutritional quality, quantity/availability, handling time, of additional food that would

yield the required equilibrium levels of the predator-prey system for sustainable management. Since

providing additional food is not a stand-alone intervention, but a supplement to the strategy of other

measures in ecological management, the practice of feeding predators with food supplements presents

a very interesting conundrum for conservation and reserve management (Sabelis & van Rijn, 2005;

Harwood & Obrycki, 2005; van Baalen et al., 2001).

2.2.3 Optimizing predator energy intake: The optimal foraging theory

Switching prey types as a function of relative prey density is a common phenomenon in ecological

studies that has received considerable attention (Khan et al., 2004; van Baalen et al., 2001; Bhatt

et al., 1999; Khan et al., 1998). Different prey occupy different micro-habitats, or require different

hunting methods (e.g., solitary or group hunting). This necessitates the predator to focus on a single

prey/habitat per unit time. Besides, because the predator forages in a micro-habitat that is most
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profitable, it suggests that for a rare prey species, a predator does better by foraging in another

micro-habitat (or with another method), and hence completely ignoring the rare prey, and as prey

becomes more common, then it eventually becomes profitable for the predator to switch and hunt

them (Bhatt et al., 1999; Khan et al., 1998; Scheel, 1993).

Owing to habitat and predator/prey size constraints, predators eat only a proportion of what

is available and such predator behaviour is best explained and motivated by the optimal foraging

theory (Toft, 2005; Krivan, 1998). Animal species feed in a manner that is most efficient in terms

of their survival and reproductive success, and because many organisms forage in a way so as to

maximize their energy intake per unit time (optimal foraging theory), it shows that foraging is in

terms of benefits and costs, i.e., natural selection acts to maximize an individual’s benefits relative

to costs (Hayward, 2011; Hayward & Kerley, 2005). Predatory species, such as lions, behave in a

way that enables them to find, capture and consume food items (prey species) containing the most

calories while expending the least amount of time possible in doing so (Hayward, 2011; Hayward et

al., 2006).

Many studies have been conducted to model prey preferences for different predators (Wentworth

et al., 2011; Hayward & Kerley, 2008; 2005; Hayward, 2006; Scheel, 1993). Considering e as the

amount of energy (calories) gained from a prey (food) item, h as the handling time which includes

capture, killing, eating and digesting i.e., handling time starts once the prey is spotted, and defining s

as the search time for the prey (food) item. Then ψ = e
h+s

models the profitability of the prey (food)

item. Predators typically eat the most profitable prey (food) types more than would be expected by

chance since most profitable prey types always appear in the diet more often than it is encountered

in the environment (Wentworth et al., 2011; Scheel, 1993). However, because other prey types exist

and may be easier to find and besides, e is not the only nutritional requirement, predators do not

eat only the most profitable prey types (Maynard, 1974). Toxin levels in a prey and other essential

nutrients in the organism’s diets are always important components of a plausible ecological model.
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2.2.4 Behavioural response of species: Functional and Numerical re-

sponses

While carrying out the central goal of understanding the relationship between predators and their

prey, it is imperative for both empirical and theoretical ecologists to examine and investigate the

predator’s functional responses that have been found to be among the significant components of

the predator-prey behavioural responses (Seo & Kot, 2008; Abrams et al., 2000; Berryman, 1992).

Studies of population growth or decline and the dynamics of these processes are fundamental for the

understanding of the survival or extinction of animal species through time (Fay & Greeff, 2006).

In population dynamics, a functional response of the predator to prey density refers to the change

in the density of prey attacked per unit time per predator as the prey density changes (Li et al.,

2010; Seo & Kot, 2008). The change in the density of prey attacked and captured per unit time

per predator depends on the prey density, prey behaviour and the predator’s capability and tactics

(Haque, 2009; Beddington, 1975; DeAngelis et al., 1975). Various functional responses are widely

used when modelling predator-prey dynamics in ecology (i.e., Holling Type I, II, III and IV, ratio

dependent, Beddington-DeAngelis, Michaelis-Menten, Monod-Haldane, Hassell-Varley Type I and

II, Watts and Crowley-Martin functional responses) whose choice depends on a variety of factors,

among which include, feeding behaviour of the predator, aggressive character of the prey and density

of species (Chen et al., 2010; 2008; Cantrell & Cosner, 2001; Hsu et al., 2001; Holling, 1965).

According to Courchamp et al. (1999b), predators respond behaviourally to the size and density of

prey populations in various ways. For example, individual predators move around in search of denser

aggregations or larger populations of prey (aggregative response), predators also eat more if more

prey are available to be eaten (functional response) up to a limit, and the predator population too

respond to changes in the prey population size or density through changes in their own population

size and growth rate (numerical response) (Maynard, 1974). As the prey density decreases, there

are fewer prey individuals per predator attack, and this suggests that, each prey individual has a

higher probability of being eaten (dilution effect), leading to a component Allee effect in predation

mortality (Courchamp et al., 2008).
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For each prey species, as modelled in accordance to the optimal foraging theory, there is always a

search time that is independent of predator density (Jeschke et al., 2008). But rather, this predator

search time depends on prey density, i.e., at low prey densities, the predator spends most of the time

searching and eats every prey it encounters, whereas, at high prey densities, each new prey item is

caught almost immediately, necessitating the predator to spend almost all of its time catching, eating

or digesting the prey (Jeschke et al., 2008; Scheel, 1993). The predator chooses those prey species

with the highest profitability ( e
h+s

, where e is the amount of energy (calories) gained from each prey

item, h being the handling time which includes subduing (capturing, killing, eating and digesting),

and searching time, s = 0 at high prey density) (Scheel, 1993).

A lion, for example, spends its time on two kinds of activities: searching for prey and prey

handling which involves chasing, killing, eating and digesting (Jeschke et al., 2008; Hunter, 1998;

Schaller, 1972). The consumption rate of a lion is limited in such a way that even if the prey are

so abundant that no time is needed for searching, a lion still needs to spend time on prey handling

(Lehmann et al., 2008). According to Holling (1965), the total time, T, spent by a lion searching,

s, and handling, h, its prey is modelled as: T = τs + τh, whereas the number of prey encountered,

Na=(detectability,%)×(area searched)×(prey density,N) i.e., Na = %×(area searched)×N where, area

searched=(predator speed)×(sensory diameter)×(time spent searching) i.e., area searched = sdτs,

which implies that Na = %× (sdτs)×N. Furthermore, suppose the prey encounter rate per predator,

m = %sd, then Na = mτsN, and the time spent searching, τs, is found by considering the difference

of total time and the total handling time, i.e., τs = T − τhNa, τh being the handling time per prey.

Combining these models and simplifying yields the prototype Holling Type II behavioural response

function, Na = mTN
1+mτhN

, and the rate at which the prey is consumed by the predator is modelled by

Na

T
= mN

1+hN
; h = mτh (Inchausti & Ballesteros, 2008; Holling, 1965).

The slope of the response curve tends to zero, as t→ ∞, because of the “confusion” effects that

occur at very high prey density and the variable handling time between individual prey (Seo & Kot,

2008; Fenlon & Faddy, 2006). Furthermore, for a Holling Type II functional response, the curve levels

off at high prey densities due to satiation effects i.e., when the predator has simply eaten enough

(Maynard, 1974). On the other hand, Holling Type III functional response justifies the existence
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of a “search image”, whereby the predator switches to a prey type when it becomes abundant and

thus, at high prey densities, each new prey item is caught almost immediately. According to Holling

Type III response function, the predator spends most of the time catching, eating or digesting the

prey (Jeschke et al., 2008; Inchausti & Ballesteros, 2008; Fenlon & Faddy, 2006).

2.2.5 The role of prey mimicry: Vigilance and predator detection

Group defense mechanisms amongst prey species which have a tendency of feeding and aggregating

in herds is a fascinating ecological behaviour that has been given some attention in ecological research

(Fryxell et al., 2007; Khan et al., 1998; Prins, 1996). Various studies show that prey defensive

mechanisms help in the following way: predators fear attacking big prey groups and/or prey groups

devise patterns of running away from the enemy because a predator gets confused as to which prey

to concentrate on while chasing (Prins, 1996). Some prey populations tend to aggregate together to

benefit from early warning signs i.e., those which are short tend to forage closer to the tall-sized herds

to benefit from the height, while others get warnings from birds since birds are always up in trees

(Courchamp et al., 2008). Some get associates or feed closer to the tree-climbers like monkeys, to

gain from tree height (far sight) and warnings from the climbers (Amakobe et al., 2006). Depending

on the availability of empirical data, the above highlighted prey defensive techniques are among the

ecological scenarios necessitating mathematical modelling.

Many studies have considered modelling anti-predator behaviour and group defense mechanisms

of numerous prey species (Hsu et al., 2001; Khan et al., 1998; Holling, 1965). The response function

used depends on the vigilance, mobility and intensity of prey species in relation to its predators.

For example, the group defense of a prey (e.g., buffalo) may be modelled using a response function

f(x) = αx
a+xn , where n is a positive integer whose value determines the degree of anti-predator

behaviour and group defense. In situations of small prey groups (herds) that are non-migratory

in nature due to a fenced ecosystem (e.g., AENP), vigilance, mobility and anti-predator behaviour

are lowered. This necessitates modelling group defense using a simplified Monod-Haldane response

function, f(x) = αx
a+x2 , for which n ≤ 2 (Cantrell & Cosner, 2001; Holling, 1965).
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2.3 Diffusion and species’ dispersal: Advection-Reaction dif-

fusion models

Species’ dispersal is of twofold, namely: self- and cross-dispersal. During self-dispersal, species

tend to move from regions of high concentration of their species, e.g., prey (predators) moving away

from patches with abundant prey (predators). On the other hand, during cross-dispersal, prey move

away from regions with abundant predators (repulsion effect), while predators move towards regions

with abundant prey (attraction effect) (Tyutyunov et al., 2007; Amakobe et al., 2006).

The basic Lotka-Volterra model which investigated the temporal variation of groups of individ-

uals of various species, quantifies the interaction within and between species together with their

inorganic environment. However, despite time and space being inseparable coordinates, this model

does not take into consideration the spatial variations for the interacting animal species (Okubo,

1980). Most of the studies in mathematical ecology that follow consider only time-dependent scalar

models partly due to their ever increasing complexity. Mathematical computations become increas-

ingly more difficult when both space and time are incorporated in the modelled scenarios (Ahn, 2003;

Renshaw, 1991). Recent developments in mathematical ecology however show a deviation from the

time-dependent ordinary differential equation to partial differential equation models which are handy

in understanding ecological situations when population dynamics of organisms are considered in both

space and time (Liu, 2010; Pearce et al., 2006; Petrovskii & Li, 2006).

2.3.1 Reaction-Diffusion modelling

As motivated before, there are situations where grappling with the detail of dispersal and spatial

distribution cannot be avoided. The use of partial differential equations, which describe the changes

in population density with respect to both space and time, has found a wide application in such

situations (Ahn, 2003; Zauderer, 1989; Okubo, 1980). The classical approach to modelling ecological

systems is oversimplified by ignoring space, yet space and time are inseparable “sister” coordinates

(Okubo, 1980; Renshaw, 1991).
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Among the first models to consider both space and time to describe movement of organisms is the

Fisher’s prototype reaction-diffusion equation (Fisher, 1937), which is a one-dimensional version as a

model for the spread of an advantageous gene in a population, ∂u
∂t

= D ∂2u
∂x2 +ku(1− u

K
), where u(t, x) is

the vector of population densities at spatial position, x ∈ Ω ⊂ R, in time t, and f(x, t) = ku(1− u
K

)

is a function representing logistic growth of population u. The term, D ∂2u
∂x2 , defines the random

diffusion of the gene within the population u and D, is the diffusion coefficient which in practice is

measured in laboratories using some fairly simple experiments (Okubo, 1980). Fisher’s equation is

an initial-boundary value problem requiring both an initial population density u(x, 0), together with

boundary conditions.

2.3.2 Initial-boundary value problems in closed regions

Temporal population size variations are basically influenced by two different mechanisms: (i) one

associated with local processes such as birth, death, predation etc, and (ii) the other associated with

the redistribution of the population in space due to random motion of its individuals. Without loss

of generality, various studies describe the rate of change of population size using the following model

equation (Petrovskii & Li, 2006):

∂

∂t

∫

Ω

u(x̄, t)dΩ = −
∫

Γ

J · n̂dΓ +

∫

Ω

F (u(x̄, t))dΩ (2.1)

where J is the population flux density through the boundary Γ ⊂ Rn−1 enclosed by an arbitrary

region Ω ⊂ Rn, n̂ is the outward-pointed unit vector normal to the boundary and J · n̂ is the scalar

product. The second term on the right-hand side allows for the local processes, F (u) = f(u)u, where

f(u) is the per capita growth rate of the species’ population (Murray, 1993; Okubo, 1980).

Using the Divergence theorem (Petrovskii & Li, 2006; Murray, 1993; Okubo, 1980), the flux term

is replaced as follows: ∫

Γ

J · n̂dΓ =

∫

Ω

∇ · JdΩ

then equation (2.1) reduces to

∫

Ω

[
∂

∂t
u(x̄, t) + ∇ · J − F (u(x̄, t))

]
dΩ = 0 (2.2)
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Since the region Ω is arbitrary, and assuming that the integrand is continuous, the integrand vanishes

resulting in the inhomogeneous parabolic equation:

∂

∂t
u(x̄, t) = −∇ · J + F (u(x̄, t)) (2.3)

in two or more dimensions that are generally solved numerically or

∂

∂t
u(x, t) = −∂J

∂x
+ F (u(x, t)) (2.4)

in one dimension that could be analytically tractable.

The flux J is modelled as (cf. Kot, 2001):

• Advection/Migration

J = v(x̄, t)u

where v(x̄, t) represents a velocity.

• Diffusion/Dispersal

J = −D∇u

is a diffusive flux with D, the diffusion coefficient, also known as Fick’s second law.

In the case where F (u(x̄, t)) = 0, the equation represents the heat or diffusion equation, namely;

∂u

∂t
= −∇ · J = ∇ ·D∇u

and if the diffusion coefficient is constant, then for a single species model in three dimensions;

∂u

∂t
= D∇2u

Without loss of generality, the corresponding model for any two interacting species is as follows;

∂u

∂t
= Du∇2u+ Fu(u, v)

∂v

∂t
= Dv∇2v + Fv(u, v)

where Du and Dv are the diffusion coefficients for each species and Fu and Fv, the species interaction

terms. If there is both random movement (animal dispersal) and advection (species invasion) then
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the flux could be modelled as a combination of the above equations resulting in a Burger’s type

equation. Finally, in order to obtain a unique solution, both initial and boundary conditions must

be applied to the partial differential equations above.

Despite the profound impact existing studies have had in the discipline of mathematical modelling

as eulogised in the literature, there are still more and more challenges in ecosystem ecology. For

example, mechanisms for threshold populations, diffusion due to migration and dispersal of species,

effectiveness of species’ refuges and biological control through provision of additional food are some of

the anticipated challenges in predator-prey systems that necessitate extension of existing findings to

new levels (Courchamp et al., 2008; Srinivasu et al., 2007; Srinivasu & Gayatri, 2005). This may even

be more fascinating due to the current advances in computer software and technology. Therefore,

there is a need for one to conceive, formulate and analyse mathematical models that incorporate

such pertinent issues.
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Chapter 3

Modelling predator fertility, prey

threshold and out-flux dilution effect

3.1 Introduction

In this chapter, the interaction of two common prey species (Cape buffalo and warthog) and their

common predator (lion), within AENP in the Eastern Cape Province of South Africa, is considered

(Hayward et al., 2007a; Hayward & Kerley, 2005). Although buffalo and warthog are the potential

prey species with different defensive mechanisms, they are equally likely to be preyed upon by the

lion within AENP (Hayward et al., 2007a). This renders effective comparison of their dynamical

behaviour. AENP is a relatively small, approximately 1650 km2, managed ecosystem containing

species at low population densities which makes population threshold, predator fertility rate and

carrying capacity vital parameters for this study. Besides other sources, Addo’s main camp section,

which is approximately 132 km2 and containing the lions, is the main source of the data for model

validation (Wentworth et al., 2011; Hayward et al., 2007c).

The desert warthog, also known as the Cape warthog (Phacochoerus aethiopicus) once existed

and thrived in the Eastern Cape but rapidly disappeared and eventually became extinct during the

mid 1800s (Mgqatsa, 2010). Despite unclear and considerable speculated reasons for its extinction,

the warthog is an obligate cooperative breeder which is subject to a critical group size below which
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the group would very likely go extinct. The common warthog species (Phacochoerus africanus) was

introduced by conservation managers to Eastern Cape game parks (Andries Vosloo Kudu Reserve

in 1976 and AENP in 1995) (Nyafu, 2009). Due to a very high fecundity capacity and resistance

to African swine fever, warthogs have been able to recover from all population regulation attempts

(Mgqatsa, 2010; Nyafu, 2009; Somers & Penzhorn 1992). Besides living a diurnal life: promiscuity,

allomothering, possession of functional incisor teeth in the upper jaw and living in self-excavated or

disused aardvark burrows, are some of the other factors that have helped the common warthog to

expand both its population and range (White & Cameron, 2009; Nyafu, 2009). The salient factors

that influence the warthog’s population fluctuations have not been adequately elucidated in different

environments (Somers & Penzhorn 1992).

The common warthog, which is the most wide-spread extant wild pig species in Africa, occurs

practically everywhere in Africa, except in arid regions and in tropical forests (Muwanika et al., 2003).

The spread of warthogs in the Eastern Cape exhibits characteristics of an invasive species. They are

perceived as a pest by many farmers due to the severe impact they have on grass cover, soil and

fences (Nyafu, 2009; Somers & Penzhorn 1992). Warthogs open holes in fences through which they

escape along with other game. Landowners and stock farmers within the Eastern Cape Province

shoot on sight most warthogs that frequently escape through fences of their confinements (Mgqatsa,

2010) and yet for many warthogs, individual survival is enhanced by a propensity for cooperation,

warthogs being facultative cooperative breeders, which outweighs competition and aggression (White

& Cameron, 2009; Courchamp et al., 1999b). This continued high desire to spread out and expand

its range creates an out-flux in the warthog population which can lead to an Allee effect (Sherratt

et al., 1997). Such population out-fluxes and emigration, if not well studied and reduced, create a

sparsely distributed large population which becomes vulnerable and susceptible to critical population

threshold threats (Courchamp et al., 2008; Dennis, 1989).

Activities, behaviour and movement of prey species lead to their encounters with numerous

predators within the ecosystem. Buffaloes, for example, when encountering lions adopt a variety of

anti-predator responses (Tambling et al., 2011; Prins, 1996). Being formidable animals, buffaloes are

able to protect themselves against large cats, much better than for example bisons (Prins, 1996).
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Lions and buffalo interactions often result in the buffalo chasing lions into deep cover or even up the

trees. Sometimes lions are even killed or get severely wounded only to die a few days later (Prins,

1996). Most individual lions refrain from contributing to group hunts except when pursuing buffaloes,

which are inaccessible to solitary individual lions (Fryxell et al., 2007; Hayward et al., 2007a, b;

Hayward & Kerley, 2005). Besides a variety of autecological features, the hunting success of lions is

also affected by both biotic and abiotic factors (Hayward et al., 2007a). Studies have considered a

variety of approaches to model anti-predator behaviour and group defense mechanisms of numerous

prey species (Seo & Kot, 2008; Khan et al., 2004; Cantrell & Cosner, 2001). The response function

used generally depends on the vigilance, mobility and intensity of prey species in relation to the

predators.

Despite buffalo herd formation being generally influenced by predation risk (Tambling et al., 2011),

habitat, season and food availability also have a significant effect on buffalo herd size formation (Vale,

2007). For example, in dense thicket and forest vegetation, buffaloes split into small family groups

of 6-15 individuals, whereas in open savannah woodland, family groups converge into mass herds

(Vale, 2007). Furthermore, during the dry season, buffaloes disperse to look for scarce food items

and during wet season form massive cohesive herds, suggesting that most lion predation on buffalo

takes place during the dry season (Tambling et al., 2011; Prins, 1996). In this study, the buffalo

group defense was modelled using a response function f(B) = αB
1+hBn , where n is a positive integer

whose value determines the degree of anti-predator behaviour and group defense. The small buffalo

herds and the non-migratory nature of the buffalo due to a fenced ecosystem of AENP lead to low

vigilance, mobility and anti-predator behaviour i.e., predation is more likely to occur to a “captive”

prey resource (Fryxell et al., 1988) and as a result, n ≤ 2 (Holling Type II response function) was

considered.

Threatened prey species are always placed at risk through inadequate knowledge of predator-

prey relationships within game reserves (Lehmann et al., 2008; Hayward et al., 2007b; Hayward &

Hayward, 2006; Hayward & Kerley, 2005; Harrington et al., 1999). For example, within the closed

system of AENP, despite the availability of hypothetical guidelines, species are still being managed at

low population levels with uncertainty of the threshold populations of various species and carrying
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capacity of the park (Hayward et al., 2007c; Hayward et al., 2007d). A mathematical model for

analysing the prey threshold density within AENP has been formulated.

The rest of this chapter constitutes: an explanation of the meaning of variables, constants and pa-

rameters, and the underlying assumptions. Model formulation together with non-dimensionalisation

is provided. In addition, existence and stability of the steady states of the model are analysed by

exploring local asymptotic stability of all steady states using the method of linearisation. Global sta-

bility of the interior equilibrium is investigated via a suitable Lyapunov function. Numerical results

are given followed by a brief discussion and conclusion of results.

3.2 Description and formulation of the model

A mathematical model that incorporates logistic growth of one prey and Allee effect in the other

is formulated. The model considers the two common prey species (Cape buffalo (Syncerus caffer)

and the common warthog (Phacochoerus africanus)) and one predator (lion (Panthera leo)) within

AENP. In the model, the variables B(t),W (t) and L(t) represent the population biomass of the

buffalo, the warthog (first and second prey) and the lion (predator), respectively, at time t.

The carrying capacity of the ecosystem for buffalo and warthog are Kb and Kw, respectively,

while $ is the sparsity constant which models the threshold (critical) population density below

which warthog population declines. In the absence of predation, buffalo and warthog populations

grow with intrinsic rates r1 and r2, respectively. Naturally the predator dies at a rate µ1 (natural

mortality rate), αi is the rate at which the predator attacks and consumes the prey, β1 is the

efficiency of converting warthog biomass into lion biomass and εu being the efficiency of converting

buffalo biomass into lion biomass (β1 and εu are fertility constants). Finally, 1
h

is the half saturation

(satiation) constant of the predator.

Though sparsely distributed because of their expanded range, warthogs are abundant and can

easily be captured and eaten by a single lion without too much searching, stalking and with less

handling time. In the case of buffaloes, however, besides the handling time per species killed, it
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requires at least three to four lions to search, stalk and bring down a buffalo (Hayward & Hayward,

2006; Packer et al., 2001; Hunter, 1998). Thus, the predation behaviour of the predator was modelled

using a Holling Type I and II response functions for warthog and buffalo, respectively.

The Main Camp section, 132 km2, of AENP has a substantial number of the species considered

for this study (Tambling et al., 2011; Mgqatsa, 2010; Hayward & Hayward, 2006). Most of these

species were reintroduced to AENP through game translocation programmes which were aimed at

restoring ecological integrity, conserving threatened species and maximising tourism (Wentworth

et al., 2011; Hayward et al., 2007c). Low population densities of these species render their social

group behaviour (buffalo herds, lion prides and warthog sounders are all very small) negligible. The

choice of the prey species for this study is due to predator’s preferential causes like: herding, easy to

capture, abundance, biomass gain per prey killed, taste, hunting risks involved, total handling time

and searching effort (Hayward et al., 2007a; Hayward & Kerley, 2005; Khan et al., 2004).

According to Hayward et al. (2007a), it is energetically inefficient for lions to prey upon rare

and/or small species compared to abundant and/or larger prey. Based on the “preference index”

i.e., ρ = 0.94 in 1960s and ρ = 0.91 in 1980s for Lake Manyara National Park, which is calculated

as the proportion of a species being killed divided by the proportion of the same species in the

population, lions appear to prey on buffalo in accordance with the relative abundance of the latter

in an area (Prins, 1996). The non-exceptional conditions under which buffaloes in AENP live imply

that they experience approximately the same risk as those in other populations in Africa. Since the

lion population is sufficiently small within AENP (Hayward & Hayward, 2006), predator intraspecific

interference does not arise. Despite wildlife managers being sensitive to the sex ratios of the species,

studies on solitary predators or groups or sex of animals are still scanty (Hayward, 2006; Hayward

& Kerley, 2005).

Using the definitions of the variables and parameters together with the assumptions and man-

agement approaches, the temporal dynamics of a predator-prey system is described by the following

system of coupled differential equations in which the hard-to-capture prey (buffalo) is “damped” by

a logistic effect while the easy-to-capture prey (warthog) is “damped” by an Allee effect. In both
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cases, prototype per capita growth rates of the prey are assumed. The equations of the system are:

dB

dτ
= r1B

(
1 − B

Kb

)
− α1

BL

1 + hB
(3.1)

dW

dτ
= r2W

(
1 − W

Kw

)(
W

$
− 1

)
− α2WL (3.2)

dL

dτ
= β1WL+ εu

α1BL

1 + hB
− µ1L (3.3)

where;

• All parameters are positive constants and the searching efficiency for the predator is embedded

in predation rate, α1.

• In general, for any warthog critical threshold population values, 0 < $ < Kw (i.e., strong and

weak critical thresholds). In the presence of Allee effect mechanisms, some of the threshold

parameters are off-set to extremely low values that cause the per capita growth rate, dW
dτ
,

to decrease below a given population size, and can even become negative below a critical

population threshold ($). When a population displaying this type of population dynamics is

driven below the critical threshold, the low, sometimes negative, per capita growth rate may

lead it to extinction (Courchamp et al., 1999a; Courchamp et al., 2008).

• B(0) ≥ 0, W (0) ≥ 0 and L(0) ≥ 0.

3.3 Qualitative analysis of the model

3.3.1 Non-dimensionalisation of the model

In order to avoid mathematical complexity and for easy analysis of the model, reduction of the

number of parameters is achieved by introducing the following dimensionless variables:

x =
B

Kb
, y =

W

Kw
, z =

α1

µ1
L, t = µ1τ
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resulting in the following non-dimensionalised model:

dx

dt
= rx (1 − x) − xz

1 + φx
≡ f̂(x, z) (3.4)

dy

dt
= λy (1 − y) (ky − 1) − αyz ≡ ĝ(y, z) (3.5)

dz

dt
= βyz + γ

xz

1 + φx
− z ≡ ĥ(x, y, z) (3.6)

whose behaviour is controlled by the following dimensionless parameters:

r =
r1
µ1
, λ =

r2
µ1
, φ = hKb, k =

Kw

$
, α =

α2

α1
, β =

β1Kw

µ1
, γ =

εuα1Kb

µ1

Since the variables x, y and z define population densities, only non-negative solutions make

biological sense. It can be verified that the region Υ̃ = {(x, y, z) ∈ R3
+ : x ≥ 0, y ≥ 0, and z ≥ 0} is

positively invariant with respect to system (3.4-3.6), where R3
+ denotes the non-negative cone of R3

including its lower dimensional faces. Thus, system (3.4-3.6) is bounded.

A qualitative analysis of the model which is crucial in understanding the underlying interac-

tion dynamics of different species for their management is explored. This is carried out by con-

sidering the simplified non-dimensionalised system (3.4-3.6), whose steady states are given by;

E0(0, 0, 0), E1(1, 0, 0), E2(0, 1, 0), E3(1, 1, 0), E4

(
0, 1

k
, 0

)
, E5

(
1, 1

k
, 0

)
, E6

(
0, 1

β
, λ(1−β)(β−k)

αβ2

)
,

E7

(
1
Φ
, 0, rγ(Φ−1)

Φ2

)
and E8(x

∗, y∗, z∗) where Φ = γ−φ. It should be noted that when k = 1 (Kw = $);

E2, E3, E4 and E5 reduce to only two steady states. Such a peculiar occurrence of equilibrium points

is investigated further and explicitly explained in the analysis.

3.3.2 Conditions for non-negativeness and existence

Since interest is in the growth of biological species, the equilibrium points of the system must sat-

isfy non-negativity conditions. It should also be noted that the predator cannot survive in the absence

of its prey. The unconditional existence of equilibrium states E0(0, 0, 0), E1(1, 0, 0), E2(0, 1, 0),

E3(1, 1, 0), E4

(
0, 1

k
, 0

)
and E5

(
1, 1

k
, 0

)
necessitates the establishment of the existence of the rest.
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Non-negativity and existence of E6

(
0, 1

β
, λ(1−β)(β−k)

αβ2

)
and E7

(
1
Φ
, 0, rγ(Φ−1)

Φ2

)

For the existence of E6, either β < 1 and k < β or β > 1 and k > β, where β = β1Kw

µ1
and k = Kw

$

is the ratio of warthog’s carrying capacity to its critical threshold density. Different interpretations

of the parameter β have been identified (cf. Bazykin, 1998; Takeuchi, 1996): first 1
β

is the stationary

population density of the warthog population co-existing with the lion, it is also natural to define 1
β

as a measure of how well the lion adapt to the warthog. The lower the density of warthog that should

ensure an equilibrium existence of the lion, the better the lion gets adapted to the warthog. Further,

1
β

should be interpreted as a measure of the lion’s mortality, i.e., 1
β

is a quantity that decreases when

the lion becomes more adapted. Both k and β are vital parameters for the warthog-lion co-existence

equilibrium. Existence of E6 shows that either Kw <
µ1

β1
< $ for which the warthog threshold density

is maintained above the carrying capacity, or $ < µ1

β1
< Kw that depicts a riskier situation (when

$ � Kw) for the warthog species. The ratio, µ1

β1
, which should be ecologically interpreted as the

effective mortality per capita of lions, is critical for the warthog-lion co-existence equilibrium. The

effective mortality per capita ratio for the lions is vital for the model equilibrium E6, because it

regulates both the carrying capacity and lower critical population density for the warthog.

The existence of E7 is governed by the inequality, εu >
(hKb+1)µ1

α1Kb
, since it controls the conversion

efficiency of buffalo biomass to lion biomass (fertility factor). It should be noted that the lion fertility

biomass gain from buffalo is regulated by the lion’s mortality which is also evident from Φ = γ − φ,

which shows that for Φ > 0, εu >
hµ1

α1
. Furthermore, the inequality εu >

(hKb+1)µ1

α1Kb
reveals that as

the buffalo carrying capacity, Kb → ∞, εu → hµ1

α1
. This shows that an increase or decrease in the

lion’s natural mortality µ1 results in a greater than proportionate increase or decrease in the fertility

factor εu, for the lion-buffalo co-existence to be maintained at equilibrium.

Non-negativity and existence of E8(x
∗, y∗, z∗)

The positive equilibrium point E8(x
∗, y∗, z∗) exists if there is a positive solution to the following

set of nonlinear equations obtained from system (3.4-3.6):

r (1 − x) − z

1 + φx
= 0 (3.7)
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λ (1 − y) (ky − 1) − αz = 0 (3.8)

βy + γ
x

1 + φx
− 1 = 0 (3.9)

Theorem 3.3.1 For some y-intercepts yf and yg in the xy-plane, the positive equilibrium point

E8(x
∗, y∗, z∗) exists in Υ̃ and is unique for system (3.4-3.6) if and only if (k+1)2

k
> 4(αr+λ)

λ
is satisfied

and in addition, the following conditions hold;

0 < x < Min

(
1,
φ− 1

2φ

)
, φ > 1, 0 < y < Min

(
k + 1

2k
,
1

β

)
and yf < yg.

Proof: Using the approach of Dubey and Upadhyay (2004), two functions f(x, y) and g(x, y) which

intersect at the equilibrium point E8(x
∗, y∗, z∗), need to be identified. Equations (3.7) and (3.8),

respectively, lead to:

z = r (1 − x) (1 + φx) (3.10)

z =
λ

α
(1 − y) (ky − 1) (3.11)

and equations (3.7) and (3.9) give;

z =
rγx(1 − x)

1 − βy
(3.12)

From equations (3.10) and (3.11), we obtain:

f(x, y) = r (1 − x) (1 + φx) − λ

α
(1 − y) (ky − 1) = 0 (3.13)

while equations (3.10) and (3.12) yield the second function:

g(x, y) = r (1 − x) (1 + φx) − rγx(1 − x)

1 − βy
= 0 (3.14)

Both equations (3.13) and (3.14) are two functions of x and y. To prove the existence of E8(x
∗, y∗, z∗),

requires conditions under which f(x, y) and g(x, y) intersect in the interior of the positive quadrant at

a point (x∗, y∗). Knowledge of (x∗, y∗) implies knowing z∗ from equations (3.10-3.12). From equation

(3.13), as x→ 0, y → yf , which is defined in the quadratic form:

λky2
f − λ(k + 1)yf + αr + λ = 0
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⇒ yf =
−Q +

√
Q2 − 4PR

2P
(3.15)

where P = λk, Q = −λ(k + 1) and R = αr + λ. If (k+1)2

k
> 4(αr+λ)

λ
, then yf is real and always

positive. Similarly, as x→ 0, equation (3.14) shows that y → yg given by:

yg =
1

β
. (3.16)

Clearly yg is always positive and real. The functions yf and yg are the points at which the functions

f(x, y) and g(x, y) would cut the y-axis in the (x, y) plane, respectively. From equation (3.13), we

also obtain:

dy

dx
= −∂f

∂x
/
∂f

∂y
where

∂f

∂x
= 2φr

(
(φ− 1)

2φ
− x

)
and

∂f

∂y
= −2kλ

α

(
k + 1

2k
− y

)

It is noted that dy
dx
> 0 if either (i) ∂f

∂x
> 0 and ∂f

∂y
< 0, which requires; x < φ−1

2φ
, φ > 1 and y < k+1

2k
,

or (ii) ∂f
∂x
< 0 and ∂f

∂y
> 0, which similarly requires the converse, i.e., x > φ−1

2φ
, φ > 1 and y > k+1

2k
.

Since φ = hKb, for the co-existence equilibrium, the buffalo carrying capacity should be greater than

the half saturation value for lions i.e., Kb >
1
h
. Similarly, equation (3.14) gives:

dy

dx
= −∂g

∂x
/
∂g

∂y
where

∂g

∂x
=

r

(1 − βy)
[(φ+ φβxy + 2γx) − (φβy + γ + φx+ 1 + (1 − βy)(φ+ x))]

and
∂g

∂y
= −rγβx(1 − x)

(1 − βy)2

It is further, similarly noted that dy
dx
< 0 if either (i) ∂g

∂x
< 0 and ∂g

∂y
< 0, which requires; φβy+ γ +

φx + 1 + (1 − βy)(φ+ x) > φ+ φβxy + 2γx provided y < 1
β

and x < 1, or (ii) ∂g
∂x
> 0 and ∂g

∂y
> 0,

which similarly requires the converse, i.e., φβy + γ + φx + 1 + (1 − βy)(φ+ x) < φ + φβxy + 2γx,

y < 1
β

and x > 1. Ecologically, since x = B
Kb
, the buffalo population density should be less than its

ecosystem carrying capacity i.e., B < Kb, and with a reverse in the theorem conditions, the converse

also holds.

Since for f(x, y), we have dy
dx

> 0 and for g(x, y), we have dy
dx

< 0, then f(x, y) and g(x, y)

will intersect in the positive quadrant if yf < yg, and this completes the proof. The existence
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of an interior equilibrium E8(x
∗, y∗, z∗), implies that the Model system (3.4-3.6) is dissipative and

uniformly persistent (Takeuchi, 1996; Butler et al., 1986). The ecological implications of Theo-

rem 3.3.1 in terms of the dimensional parameters of Model system (3.1-3.3) leads to the inequality

$ >

[√
4Kw(α1r2+α2r1)

α1r2

]
−Kw, which gives a lower bound for the warthog’s critical population density

if an interior equilibrium for all the three species is to be attained. It is not accidental or surprising,

but rather an ecological reality to have both birth rate of buffalo, predation rates of lion on both

buffalo and warthog combined with carrying capacity of warthog as control parameters for threshold

density, $ for the co-existence of the three species. Such a scenario could arise due to encounters and

interactions with numerous species and other environmental constraints as a result of the warthog’s

high desire to expand its range (White & Cameron, 2009; Nyafu, 2009; Somers & Penzhorn, 1992).

3.3.3 Local stability analysis of steady states

Local stability analysis is considered first due to its explicit nature. Linearisation leads to the

following variational/community matrix for system (3.4-3.6):

JEi
=




f̂x∗ 0 f̂z∗

0 ĝy∗ ĝz∗

ĥx∗ ĥy∗ ĥz∗




where;

f̂x∗ = r(1 − 2x∗) − z∗

(1 + φx∗)2
, f̂z∗ = − x∗

1 + φx∗
, ĝy∗ = λ[(ky∗ − 1)(1 − 2y∗) + ky∗(1 − y∗)] − αz∗,

ĝz∗ = −αy∗, ĥx∗ =
γz∗

(1 + φx∗)2
, ĥy∗ = βz∗, ĥz∗ = βy∗ +

γx∗

1 + φx∗
− 1

Substituting the equilibrium E0(0, 0, 0), E1(1, 0, 0), E2(0, 1, 0), E3(1, 1, 0), E4(0,
1
k
, 0), E5(1,

1
k
, 0)

and E7

(
1
Φ
, 0, rγ(Φ−1)

Φ2

)
into the community matrix, leads to the following characteristic equations:
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E0;

|JE0 − ΛI| =

∣∣∣∣∣∣∣∣∣

r − Λ 0 0

0 −λ− Λ 0

0 0 −1 − Λ

∣∣∣∣∣∣∣∣∣
= 0

⇒ (r − Λ)(λ+ Λ)(1 + Λ) = 0

E1;

|JE1 − ΛI| =

∣∣∣∣∣∣∣∣∣

−r − Λ 0 − 1
1+φ

0 −λ− Λ 0

0 0
(

γ
1+φ

− 1
)
− Λ

∣∣∣∣∣∣∣∣∣
= 0

⇒ (r + Λ)(λ+ Λ)

(
γ

1 + φ
− 1 − Λ

)
= 0

E2;

|JE2 − ΛI| =

∣∣∣∣∣∣∣∣∣

r − Λ 0 0

0 λ(1 − k) − Λ −α

0 0 (β − 1) − Λ

∣∣∣∣∣∣∣∣∣
= 0

⇒ (r − Λ)(λ(1 − k) − Λ)((β − 1) − Λ) = 0

E3;

|JE3 − ΛI| =

∣∣∣∣∣∣∣∣∣

−r − Λ 0 − 1
1+φ

0 λ(1 − k) − Λ −α

0 0
(
β + γ

1+φ
− 1

)
− Λ

∣∣∣∣∣∣∣∣∣
= 0

⇒ (r + Λ) (λ(1 − k) − Λ)

((
β +

γ

1 + φ
− 1

)
− Λ

)
= 0
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E4;

|JE4 − ΛI| =

∣∣∣∣∣∣∣∣∣

r − Λ 0 0

0 λ
k
(k − 1) − Λ −α

k

0 0
(
β
k
− 1

)
− Λ

∣∣∣∣∣∣∣∣∣
= 0

⇒ (r − Λ)

(
λ

k
(k − 1) − Λ

) ((
β

k
− 1

)
− Λ

)
= 0

E5;

|JE5 − ΛI| =

∣∣∣∣∣∣∣∣∣

−r − Λ 0 − 1
1+φ

0 λ
k
(k − 1) − Λ −α

k

0 0
(
β
k

+ γ
1+φ

− 1
)
− Λ

∣∣∣∣∣∣∣∣∣
= 0

⇒ (r + Λ)

(
λ

k
(k − 1) − Λ

) ((
β

k
+

γ

1 + φ
− 1

)
− Λ

)
= 0

E7;

|JE7 − ΛI| =

∣∣∣∣∣∣∣∣∣

A1 − Λ 0 −A2

0 −λ− αA3 − Λ 0

γA4 βA3 γA2 − 1 − Λ

∣∣∣∣∣∣∣∣∣
= 0

⇒ Λ3 + a1Λ
2 + a2Λ + a3 = 0

for some computed a′is and A′
js which are defined later. Local stability of equilibrium point E6 is

handled separately due to the complexity of its analysis.

It is well known, through linearisation, that an equilibrium solution is asymptotically stable if all

the eigenvalues of the community matrix have negative or zero real parts and are unstable otherwise

(Jordan & Smith, 2007; Hsu et al., 2001; Bazykin, 1998; Hsu & Huang, 1995). The stability analysis

of the equilibrium solutions, E0-E7 excluding E6, for system (3.4-3.6) whose community matrix is

defined above follows. One of the eigenvalues of the following set of characteristic equations {(r −
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Λ)(λ+Λ)(1+Λ) = 0, (r−Λ)(λ(1−k)−Λ)((β−1)−Λ) = 0 and (r−Λ)
(
λ
k
(k − 1) − Λ

) (
(β
k
− 1) − Λ

)
}

computed for E0, E2 and E4, respectively, is always positive from which it follows that E0, E2 and E4

are locally unstable equilibria. Instability of such equilibria arises due to lack of conspecifics for a

species whose population density is below the threshold levels. This causes the population to move

away from equilibrium steady states into other states (extinction region) (Tyutyunov et al., 2007;

Bazykin, 1998; Takeuchi, 1996). The characteristic equation (r + Λ)(λ + Λ)
(

γ
1+φ

− 1 − Λ
)

= 0 of

equilibrium E1(1, 0, 0) shows that E1 is stable when γ
1+φ

< 1 and unstable if γ
1+φ

> 1. This implies

that E1(1, 0, 0) is stable when εu <
(hKb+1)µ1

α1Kb
and unstable when εu >

(hKb+1)µ1

α1Kb
.

The local stability of E3(1, 1, 0) is attained if k > 1 and β + γ
1+φ

< 1, which is equivalent to

Kw > $ and εu <
∣∣∣ (hKb+1)(µ1−β1Kw)

α1Kb

∣∣∣ . This reveals that for equilibrium to be locally asymptotically

stable, the fertility factor εu for buffalo-alone equilibrium must be greater than the fertility factor εu

for buffalo-warthog equilibrium. This result provides sufficient evidence for the so-called paradox of

enrichment. It coincides with numerous hypotheses (Fryxell et al., 2007; Hsu & Huang, 1995; Butler

et al., 1986), which assert that population sizes in many interacting communities are stabilized by

predation. Many studies (Tyutyunov et al., 2007; Petrovskii et al., 2005; Bazykin, 1998; Sherratt

et al., 1997; Takeuchi, 1996) have hypothesised that predation acts to prevent large oscillations or

extinction of prey populations. This is evident from and confirmed by the inequalities regarding the

lion-buffalo fertility factor εu. Furthermore, Kw > $ shows that local asymptotic stability of E3 can

still be attained and maintained in the presence of low warthog population densities. This can be

achieved through advance knowledge of potential causes of population extinction which can help in

setting up good protection and other management policies.

The local stability of E5(1,
1
k
, 0), which is also a buffalo-warthog equilibrium state, is similar to that

of E3(1, 1, 0). Here local stability is possible and attained when the warthog threshold population

density is above its carrying capacity i.e., Kw < $, and the upper bound for the fertility factor

εu <
∣∣∣ (hKb+1)(µ1−β1$)

α1Kb

∣∣∣ is “damped” by β1$. In comparison, for the local asymptotic stability of E3,

the “damping” factor, β1Kw, is applicable to εu <
∣∣∣ (hKb+1)(µ1−β1Kw)

α1Kb

∣∣∣ . In both cases i.e., E3 and E5,

the “damping” terms depend on the carrying capacity and the threshold population values of the

warthog species.
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The variational matrix JE6 = [aij] for the equilibrium E6

(
0, 1

β
, λ(1−β)(β−k)

αβ2

)
yields a characteristic

equation Λ3 + a1Λ
2 + a2Λ + a3 = 0, where a1 = −(a11 + a22), a2 = a11a22 − a23a32 and a3 =

a11a23a32 with a11 = r − λ(1−β)(β−k)
αβ2 , a12 = 0, a13 = 0, a21 = 0, a22 = λ

β2 [β(1 + k) − 2k], a23 =

−α
β
, a31 = γλ(1−β)(β−k)

αβ2 , a32 = λ(1−β)(β−k)
αβ

and a33 = 0. The necessary conditions, using the Routh-

Hurwitz stability criterion, for local asymptotic stability of equilibrium point E6 are ai > 0; i =

1, 2, 3 and a1a2 − a3 > 0.

Proposition 3.3.1 The equilibrium point E6 is locally asymptotically stable whenever a11 < 0 and

a22 < 0.

Proof: From the signs of the aij; i, j = 1, 2, 3, it can easily be verified that a1 > 0, a2 > 0 and

a3 > 0. Thus, by mathematical computation:

a1a2 − a3 = −(a11)
2a22 + a22a23a32 − a11(a22)

2

Clearly a1a2 − a3 > 0 whenever a11 < 0 and a22 < 0.

Lemma 3.3.1 The warthog’s critical threshold stabilizes E6 and local stability is possible provided

the following conditions are satisfied.

(i) For stabilisation by a weak warthog critical threshold component, either β1Kw < µ1 and µ1 >

β1Kw(α1r2+α2r1)
α1r2

or β1Kw > µ1 and µ1 <
β1Kw(α1r2+α2r1)

α1r2
.

(ii) Stabilisation by a strong warthog critical threshold component is attained when either β1Kw <

µ1 and µ1 <
β1Kw(α1r2+α2r1)

α1r2
or β1Kw > µ1 and µ1 >

β1Kw(α1r2+α2r1)
α1r2

.

Proof: Using Proposition 3.3.1, it is easy to deduce that rαβ2

λ(1−β)(β−k) < 1 and β(1+k)
2k

< 1. In terms of

dimensional model parameters, these results simplify to$ <
Kw−µ1

β1
β1Kw(α1r2+α2r1)

α1r2
−µ1

provided 1
$
< β1 <

µ1

Kw

and $+Kw <
2µ1

β1
, respectively. The proof of Lemma 3.3.1 is concluded from $ <

Kw−µ1
β1

β1Kw(α1r2+α2r1)
α1r2

−µ1

by using the condition, 0 < $ < Kw, for strong and weak critical thresholds. Further, $+Kw <
2µ1

β1

means that the warthog-lion equilibrium is stabilized by the lion natural mortality to its predation

ratio provided the sum of both the lower critical density and carrying capacity for the warthog does

not exceed this ratio. The ratio 2µ1

β1
, is ecologically defined and interpreted as the lion’s (predator’s)

limiting stabilisation factor for the warthog-lion equilibrium E6.
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The associated eigenvalues for the equilibrium E7

(
1
Φ
, 0, rγ(Φ−1)

Φ2

)
are analysed from the charac-

teristic equation Λ3 + a1Λ
2 + a2Λ + a3 = 0, where:

a1 = αA3 + λ+ 1 − A1 − γA2

a2 = γA1A2 + αA3 + γA3A4 + λ− λA1 − αA1A3 − A1 − γλA2 − αγA2A3

a3 = λγA1A2 + αγA1A2A3 − λA1 − αA1A3 − λγA3A4 −−αγA2
3A4

for

A1 = r

(
1 − 2

Φ

)
− rγ(Φ − 1)

(Φ + φ)2
, A2 =

1

Φ + φ
, A3 =

rγ(Φ − 1)

Φ2
, A4 =

rγ(Φ − 1)

(Φ + φ)2

Once again employing the Routh-Hurwitz conditions, the author notes that E7

(
1
Φ
, 0, rγ(Φ−1)

Φ2

)
is

locally asymptotically stable provided a1 > 0, a3 > 0 and a1a2 > a3 are satisfied and for this to

occur, Φ > 2 ⇒ 2+φ
γ

< 1. In terms of the dimensional parameters for the Model system (3.1-3.3),

local stability condition on E7 reduces to εu >
(hKb+2)µ1

α1Kb
which is compared and related to the non-

negativity and existence condition εu >
(hKb+1)µ1

α1Kb
of E7. Thus, for the existence and local asymptotic

stability of E7, the lower bounds of the lion fertility factors (biomass gain) from the buffalo population

for both situations must differ by a factor µ1

α1Kb
. This difference ( µ1

α1Kb
), is ecologically interpreted as

the lion’s per capita saturation ratio, as a result of feeding on a single “average” buffalo.

3.3.4 Local stability of the co-existence equilibrium solution

The predator-prey system admits a unique positive co-existence equilibrium E8(x
∗, y∗, z∗), with

a characteristic polynomial Λ3 + a1Λ
2 + a2Λ+ a3 = 0, where; a1 = −(P̃ + Q̃+ R̃), a2 = P̃ Q̃+ P̃ R̃+

Q̃R̃ + S̃ + Ũ and a3 = −(P̃ Q̃R̃ + P̃ S̃ + T̃ ) with:

P̃ = r(1 − 2x∗) − z∗

(1 + φx∗)2

Q̃ = βy∗ +
γx∗

1 + φx∗
− 1

R̃ = λ[(ky∗ − 1)(1 − 2y∗) + ky∗(1 − y∗)] − αz∗

S̃ = βαz∗y∗
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T̃ =
γx∗z∗

(1 + φx∗)3
R̃

Ũ =
γx∗z∗

(1 + φx∗)3

Since Q̃ = 0 (cf. equation (3.9)), the coefficients of the eigenvalues in the characteristic equation are

simplified to the following forms:

a1 = −(P̃ + R̃), a2 = P̃ R̃ + S̃ + Ũ and a3 = −(P̃ S̃ + T̃ )

Theorem 3.3.2 If x∗ > 1
2

and 2λy∗(k+1)
λ(3ky∗2+1)+αz∗

< 1, then the interior equilibrium E8(x
∗, y∗, z∗) is

locally asymptotically stable.

Proof: If the eigenvalues (characteristic roots) have negative real parts, then the positive equilibrium,

E8(x
∗, y∗, z∗), is stable. By carrying out mathematical analysis, it can easily be shown that:

a1 = −(P̃ + R̃) =

[
2rx∗ +

z∗

(1 + φx∗)2
+ 3λky∗2 + λ+ αz∗

]
− [r + 2λky∗ + 2λy∗]

It follows that a1 > 0 if x∗ >
1

2
and

2λy∗(k + 1)

λ(3ky∗2 + 1) + αz∗
< 1

Further analysis yields:

a2 = P̃ R̃ + S̃ + Ũ

= 2rkλαβy∗z∗ − 3rkλαβy∗3z∗ − rλαβy∗z∗ + 2rλαβy∗2z∗ − rα2βy∗z∗2 −

4rkλαβx∗y∗2z∗ + 6rkλαβx∗y∗3z∗ + 2rλαβx∗y∗z∗ − 4rλαβx∗y∗2z∗ +

2rα2βx∗y∗z∗2 + αβy∗z∗ +
γx∗z∗

(1 + φx∗)3
−

[2kλαβy∗2z∗2 + 3kλαβy∗3z∗2 + λαβy∗z∗2 − 2λαβy∗2z∗2 + α2βy∗2z∗3]

(1 + φx∗)2

=
αβy∗z∗[2rx∗ + 4rφx∗2 − rφ2x∗2 + z∗ + 2rφ2x∗2 − r − 2rφx∗]

(1 + φx∗)
×

[αz∗ + λ− 2λky∗ + 3λky∗2 − 2λy∗]

(1 + φx∗)
+ αβy∗z∗ +

γx∗z∗

(1 + φx∗)3
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and

a3 = −(P̃ S̃ + T̃ )

= 2rαβx∗y∗z∗ − rαβy∗z∗ +
αβy∗z∗2

(1 + φx∗)2
+

γx∗z∗

(1 + φx∗)3

[
3λky∗2 + αz∗ + λ− 2λky∗ − 2λy∗

]

= αβy∗z∗
[
r(2x∗ − 1) +

z∗

(1 + φx∗)2

]
+

γx∗z∗

(1 + φx∗)3

[
λ(3ky∗2 + 1) + αz∗ − 2λy∗(k + 1)

]

a3 > 0 ⇔ x∗ >
1

2
and

2λy∗(k + 1)

λ(3ky∗2 + 1) + αz∗
< 1

It follows that a1a2 > a3 is also satisfied and hence, Theorem 3.3.2 follows.

The condition x∗ > 1
2

implies B∗ > 1
2
Kb and indicates that for a locally asymptotically stable posi-

tive steady state, the buffalo population has to be maintained at a population level above half its car-

rying capacity. Further, the second inequality of Theorem 3.3.2 implies that $ < r2W ∗(3W ∗−2Kw)
2r2W ∗−Kw(r2+α2L∗)

,

provided Kw < 2r2W ∗

r2+α2L∗ , and this means that the local stability of the interior equilibrium should

always be attained by regulating the upper bounds of $ (lower critical density) and Kw (warthog

carrying capacity). Moreover, Kw >
3
2
W ∗ leads to a weak critical threshold and Kw <

3
2
W ∗ yields a

strong critical threshold in the warthog species. In terms of ecological reality, Kw <
2r2W ∗

r2+α2L∗ shows

that if warthog equilibrium density W ∗ decreases due to species’ out-flux as a result of emigration,

then the possible maximum value of warthog carrying capacity reduces further.

3.3.5 Global stability of the interior equilibrium

In this subsection, a condition for the global asymptotic stability of the co-existence (interior)

equilibrium point is established. Some definitions and a lemma that are useful for finding a Lyapunov

function and proving the global stability of the equilibrium follow:
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Definition 3.3.1 (i) Consider the dynamical system ẋ = f(x), then V : M −→ R is called a

Lyapunov function for f(x) if V ∈ C1(M,R), V ≥ 0 and (gradV (x))f(x) ≤ 0 for all x ∈M

(ii) Suppose x∗ ∈ Rn is a fixed (equilibrium) point for the dynamical system ẋ = f(x), x ∈ Rn, f :

U −→ Rn, U ⊆ Rn. If x∗ possesses a candidate Lyapunov function V in W, then x∗ is stable.

Further, if V is a strong Lyapunov function in W, then x∗ is globally asymptotically stable.

Lemma 3.3.2 Lasalle’s invariance principle: Suppose V is a Lyapunov function for f(x) in the

sense of Definition 3.3.1(i), and that for every solution of Model system (3.4-3.6) that tends to

the maximal invariant set M, called a Lasalle’s invariant set of the system, containing ω(p), then

ω(p) ⊆ {y ∈ M : (gradV (y))f(y) = 0} =: ν0 for each p ∈ M. In addition, ω(p) is contained in the

largest invariant subset of ν0.

To prove global stability of E8(x
∗, y∗, z∗), it is sufficient to show that M = {x∗, y∗, z∗}. The proof of

Lemma 3.3.2 has been carried out in many studies (Hsu, 2005; Takeuchi, 1996; Hsu & Huang, 1995)

and is therefore used without proof when deriving the following theorem.

Theorem 3.3.3 The co-existence interior steady state E8(x
∗, y∗, z∗) is globally asymptotically stable

if and only if y + y∗ > k+1
k
, where y = W

Kw
.

Proof: A widely preferred candidate Lyapunov function (Hsu, 2005; Dubey & Upadhyay, 2004;

Cantrell et al., 2004; Cantrell & Cosner, 2001; Takeuchi, 1996; Hsu & Huang, 1995), is chosen as

follows:

V (x, y, z) = π1

∫ x

x∗

ξ − x∗

ξ
dξ + π2

∫ y

y∗

η − y∗

η
dη + π3

∫ z

z∗

ζ − z∗

ζ
dζ

where π1, π2, and π3 are positive constants to be determined. Clearly (true because lnx ≤ x− 1),

V (x, y, z) is a positive definite function for all πi > 0; i = 1, 2, 3. Therefore, symmetrical functions

can now be defined:

V1 = x− x∗ − x∗ln
( x

x∗

)
, V2 = y − y∗ − y∗ln

(
y

y∗

)
& V3 = z − z∗ − z∗ln

( z

z∗

)

so that V (x, y, z) = π1V1(x) + π2V2(y) + π3V3(z)
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Clearly ∂V1

∂x
< 0 when 0 < x < x∗ and ∂V1

∂x
> 0 when x > x∗, and from symmetry, the results are true

for ∂V2

∂y
and ∂V3

∂z
. Now computing dV

dt
along the solutions of system (3.4-3.6) gives:

dV

dt
= π1

(
1 − x∗

x

)
dx

dt
+ π2

(
1 − y∗

y

)
dy

dt
+ π3

(
1 − z∗

z

)
dz

dt

Using the linearisation theorem and the corresponding linear approximations x−x∗ ∼= 1+φx and z−

z∗ ∼= z, computation of dV1(x(t))
dt

, dV2(y(t))
dt

and dV3(z(t))
dt

via system (3.4-3.6) yields:

dV1(x)

dt
=

(
1 − x∗

x

) [
r(1 − x) − z

1 + φx

]
x

= (x− x∗)

[
−r(x− x∗) +

z∗

1 + φx∗
− z

1 + φx

]

= −r(x− x∗)2 −
[
(1 + φx∗)(x− x∗)(z − z∗) − z∗(x− x∗)2

(1 + φx∗)(1 + φx)

]

Similarly:

dV2(y)

dt
=

(
1 − y∗

y

)
[λ (1 − y) (ky − 1) − αz] y

= (y − y∗) [λ (1 − y) (ky − 1) − αz − λ (1 − y∗) (ky∗ − 1) + αz∗]

= (y − y∗) [{λ+ λk[1 − (y + y∗)]}(y − y∗) − α(z − z∗)]

= λ [1 + k[1 − (y + y∗)]] (y − y∗)2 − α(z − z∗)(y − y∗)

and:

dV3(z)

dt
=

(
1 − z∗

z

) [
βy +

γx

1 + φx
− 1

]
z

= (z − z∗)

[
βy +

γx

1 + φx
− βy∗ − γx∗

1 + φx∗

]

= β(y − y∗)(z − z∗) +
γ(x− x∗)(z − z∗)

(1 + φx∗)(1 + φx)

Mathematical computation of dV
dt
, using dV1(x)

dt
, dV2(y)

dt
and dV3(z)

dt
as obtained above yields:

dV

dt
= −r(x− x∗)2 +

z∗(x− x∗)2

(1 + φx∗)(1 + φx)
− (1 + φx∗)(x− x∗)(z − z∗)

(1 + φx∗)(1 + φx)
+
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λ [1 + k[1 − (y + y∗)]] (y − y∗)2 − α(z − z∗)(y − y∗) + β(z − z∗)(y − y∗)

+
γ(x− x∗)(z − z∗)

(1 + φx∗)(1 + φx)

By choosing π1 = 1, π2 = β(1+φx∗)
αγ

and π3 = (1+φx∗)
γ

, where all πi > 0 for i = 1, 2, 3, a positive

definite function V (x, y, z) = V1(x)+ β(1+φx∗)
αγ

V2(y)+ (1+φx∗)
γ

V3(z), is defined as the suitable candidate

Lyapunov function. Given the choices for π1, π2 and π3,
dV
dt

simplifies to:

dV

dt
= −r(x− x∗)2 +

z∗(x− x∗)2

(1 + φx∗)(1 + φx)
− (1 + φx∗)(x− x∗)(z − z∗)

(1 + φx∗)(1 + φx)
+

λβ(1 + φx∗)

αγ
[1 + k[1 − (y + y∗)]] (y − y∗)2 − β(1 + φx∗)

γ
(z − z∗)(y − y∗) +

β(1 + φx∗)

γ
(z − z∗)(y − y∗) +

(1 + φx∗)(x− x∗)(z − z∗)

(1 + φx∗)(1 + φx)

=

[
−r +

z∗

(1 + φx∗)(1 + φx)

]
(x− x∗)2 +

λβ(1 + φx∗)

αγ
[1 + k[1 − (y + y∗)]] (y − y∗)2

Analysing the coefficients of (x− x∗)2 and (y − y∗)2 reveals that:

[
−r +

z∗

(1 + φx∗)(1 + φx)

]
≤

[
−r +

z∗

(1 + φx∗)

]

= −rx∗

This shows that the coefficient of (x − x∗)2 is unconditionally negative. It can easily be seen that

the coefficient of (y− y∗)2 is negative if and only if y + y∗ > k+1
k
, and this completes the proof of the

theorem.

Using Theorem 3.3.3, dV
dt

< 0 along any trajectory of system (3.4-3.6) and dV
dt

= 0 if and only

if x = x∗ and y = y∗. In accordance to LaSalle’s invariance principle, the largest invariant subset

of points where dV
dt

= 0 is M = {(x∗, y∗, z∗)}. Thus, E8(x
∗, y∗, z∗) is globally stable as asserted in

Theorem 3.3.3. Thus, Theorem 3.3.3 implies that W > (Kw +$)−W ∗, which is used to detect and

explain the future ecosystem trends as a result of warthog out-flux/emigration.
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A summary of some of the results from this analysis are now presented in Table 3.1.

3.4 Numerical analysis and model simulation

In this section, numerical simulations of the dynamics and species patterns hidden in the three

dimensional Model system (3.1-3.3) are provided. The model equations are numerically integrated

using the Runge-Kutta 4th Order algorithm supported by MatLab. Parameters such as mortality

rate, predation rate, intrinsic growth rate and carrying capacity are readily available in the research

work cited in the introduction and other ecological studies on predator-prey dynamics. Initial pop-

ulation density for each species is chosen to be positive at B(0) = 4.5, W (0) = 15.0 and L(0) = 3.0.

Mathematical computations, in accordance with the stability and existence dynamics, of some bio-

logical parameters such as predator fertility rate, threshold and satiation, not readily available were

carried out.

3.4.1 Parameter estimates

(i) Carrying Capacity

AENP is a managed reserve and the actual number of prey species that will be present when

density dependence becomes important is not yet known. Currently, unpublished data from

AENP reveals that warthog numbers seem to have stabilised at around 1000 (observations),

although the correct value may be in the region of 2500. This stabilisation may however be

due to the culling of some 200 and 400 warthogs in the 2008 and 2009 seasons, respectively

(Mgqatsa, 2010). Buffalo are considered large stock unit (LSU) and, according to Vale (2007),

the agricultural carrying capacity for the area is 20 hectares per LSU. Within AENP, the

buffalo have stabilised around 330 (observations), although actual estimate is 350-375 (South

African National Parks, SANParks, unpublished data). This is partly due to, according to

AENP conservation managers, lion predation and juvenile survival.
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Table 3.1: Existence and stability conditions (parameter bounds) for non-negative equilibrium points

of the Model system (3.1-3.3).

Equilibrium Existence Stability

E0(0, 0, 0) always exist unstable

E1(1, 0, 0) always exist εu <
(hKb+1)µ1

α1Kb

E2(0, 1, 0) always exist unstable

E3(1, 1, 0) always exist Kw > $ and

εu <
∣∣∣ (hKb+1)(µ1−β1Kw)

α1Kb

∣∣∣
E4

(
0, 1

k
, 0

)
always exist unstable

E5

(
1, 1

k
, 0

)
always exist εu <

∣∣∣ (hKb+1)(µ1−β1$)
α1Kb

∣∣∣
E6

(
0, 1

β
, λ(1−β)(β−k)

αβ2

)
Kw <

µ1

β1
< $ no Allee effect β1Kw < µ1 & µ1 >

β1Kw(α1r2+α2r1)
α1r2

$ < µ1

β1
< Kw for Allee effect or β1Kw > µ1 & µ1 <

β1Kw(α1r2+α2r1)
α1r2

By weak Allee effect component

E6

(
0, 1

β
, λ(1−β)(β−k)

αβ2

)
$ +Kw <

2µ1

β1
β1Kw < µ1 & µ1 <

β1Kw(α1r2+α2r1)
α1r2

1
$
< β1 <

µ1

Kw
or β1Kw > µ1 & µ1 >

β1Kw(α1r2+α2r1)
α1r2

$ <
Kw−µ1

β1
β1Kw(α1r2+α2r1)

α1r2
−µ1

By strong Allee effect component

E7

(
1
Φ
, 0, rγ(Φ−1)

Φ2

)
εu >

(hKb+1)µ1

α1Kb
& εu >

hµ1

α1
εu >

(hKb+2)µ1

α1Kb

E8(x
∗, y∗, z∗) $ >

[√
4Kw(α1r2+α2r1)

α1r2

]
−Kw B∗ > 1

2
Kb & $ < r2W ∗(3W ∗−2Kw)

2r2W ∗−Kw(r2+α2L∗)

provided Kw <
2r2W ∗

r2+α2L∗

E8(x
∗, y∗, z∗) W > (Kw +$) −W ∗

for global stability
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During simulations, the carrying capacities of warthog and buffalo are rescaled 1 to Kw = 25

and Kb = 10, respectively.

(ii) Fecundity and mortality rates

On average, due to less stress in defending their territories and hunting, female lions in the

wild live up to 17 years, while the males live up to 15 years (Packer et al., 1998; Hunter, 1998).

Basing on similar reasons, lions living in captivity have longer life spans (25 years) than those

in the wild (game parks) (van Orsdol, 1984; Schaller, 1972). Only a small percentage of lions

die of natural causes, whereas 75% of lions die by being caught in snares, shot by poachers,

or killed in fights with rival lions (Woodroffe & Frank, 2005; Hunter, 1998). Various studies

show that females give birth to litters of 1-6 cubs (average 3 cubs) after a gestation period

of 110-120 days (approximately 4 months) (Packer et al., 2001; Packer et al., 1998; Hunter,

1998). According to Packer et al. (2001) and Hunter (1998), the mortality rate of lion cubs

is high (more than half do not survive the first year) and only 20% of cubs reach the age of 2

years. In this study the mortality rate of lions was estimated as the reciprocal of the average

life expectancy, thus, µ1 = 1
16

= 0.0625.

The data on the calving interval for the buffalo in Lake Manyara National Park resulted

in an estimated pregnancy rate of 0.523, and a production of 0.56 calves per female per year

(Sinclair, 1977). However, given the average number of calves in the herd (6 − 12%), and

considering the early calf mortality of 41.6%, the pregnancy rate estimate of 0.523 seems to be

too high. Thus, a more realistic calving interval would be 3 years for most females that live in

the large herds (Prins, 1996). Using the formula for calculating compound interest, annual calf

mortality was calculated to be 42.9% in 1983 and 55.3% in 1991 (Prins, 1996). The rather high

calf mortality combined with the low fecundity, results in a very low population growth. With

supplementary feeding to keep the cow and bull in optimum breeding condition, a reproductive

rate of 1 calf every year can be attained (Tambling et al., 2009; Packer et al., 1998; Sinclair,

1Scaling of parameters is carried out to overcome the challenge of multiple data sets that explain the variability of

model parameters at different scales. Various methods of parameter scaling are readily used.
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1977). A conservative reproductive rate of 2 calves in 3 years was considered during model

simulations, effectively introducing a mortality factor of 1 calf in three years.

Warthogs on the other hand have a litter size of 1-8 piglets but often only 2-3 babies survive

because the female is able to nurse only 4 young ones at a time (Mgqatsa, 2010; Nyafu, 2009).

Considering other parameter values, the intrinsic growth rates of both the buffalo (r1) and the

warthog (r2) are computed basing on $ >

[√
4Kw(α1r2+α2r1)

α1r2

]
−Kw and Kw <

2r2W ∗

r2+α2L∗ which

are the existence and stability conditions for the co-existence equilibrium. Thus, intrinsic

growth rates, r1 = 0.84 and r2 = 2.53 are considered base values in this study.

(iii) Predation rates and conversion efficiency

In the absence of epidemics (e.g., rinderpest), lion predation accounts for nearly all known

buffalo deaths in African game parks, and is the chief cause of death (Prins, 1996). The

formation of large groups enables the fight response observed in buffaloes in the AENP and this

makes them relatively immune to predation from most large predators (Tambling et al., 2011).

Despite being below the ideal prey weight range (suboptimal prey) for lions, warthogs

are amongst the most common prey species for the lions in the AENP (Hayward & Kerley,

2005). This is attributed to their abundance, relatively slow evasion speed and apparent lack

of vigilance (Hayward et al., 2007a; Scheel, 1993). Warthogs can thus, easily be captured by

single subadult or nomadic lions, where cooperative group hunting of larger species is less likely

to occur (Scheel, 1993). Literature quantifying the extent of predation on warthogs by lions

and spotted hyaenas in the AENP is readily available (Mgqatsa, 2010; Tambling et al., 2009;

Franklin, 2005; Ravnsborg, 2004). Warthogs contributed between 5.8% (Mgqatsa, 2010 from

Ravnsborg, 2004) and 14% (Mgqatsa, 2010 from Tambling et al., 2009) to the diet of the lions

in the AENP main camp, revealing an increase in the predation rate by lions. This could be

attributed to an increase in warthog numbers in the AENP main camp (Wentworth et al.,

2011).
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Between 2003-2004, it was observed that the six AENP lions killed 16 buffaloes and 23

warthogs (Hayward et al., 2007a), while the following year, 18 buffaloes and 20 warthogs were

killed. Using these observations, on average a lion kills 2.833 buffaloes and 3.583 warthogs per

year. Furthermore, unpublished data from AENP (Franklin, 2005; Ravnsborg, 2004) shows

that on average a female lion eats 5 kg, whereas a male lion consumes 7.5 kg, of prey biomass

per day. This gives 6.25 kg as the average lion’s daily prey biomass requirement which closely

approximates Prins’ lion consumption estimate of 5.8 kg of biomass per day (Prins, 1996). The

Cape buffalo has an average adult body mass of 680 kg. Thus, on average a lion eats 3.3547

adult buffaloes per year. Considering predation as the number (biomass) of prey killed/eaten

per predator per year and after rescaling, α1 = 0.2833yr−1 and α2 = 0.3583yr−1 are estimated

by the author as the base values for lion predation rates. The fertility factor gains (εu and β1),

and the sparsity constant ($), are estimated in accordance with the stability and existence

intervals and bounds i.e., $ >

[√
4Kw(α1r2+α2r1)

α1r2

]
−Kw for co-existence of all the species and

εu >
(hKb+2)µ1

α1Kb
for local asymptotic stability of E7

(
1
Φ
, 0, rγ(Φ−1)

Φ2

)
. For stability of E6, either

β1 <
µ1

Kw
or β1 >

µ1

Kw
depending on the bounds for lion’s natural mortality rate, as defined

in Lemma 3.3.1. Basing on unpublished data of AENP which shows that a few offspring are

registered per year after consuming a great number and quantity of prey biomass per female

lion, a value of β1 = α2

100
is considered for the numerical results of the model. Last, but not

least, a computational value of buffalo-lion fertility factor is obtained from the analytical result,

εu = (hKb+2)µ1

α1Kb
.

The estimated parameter values and their sources are as summarised in Table 3.2.

3.4.2 The effect of prey biomass conversion efficiency to predator off-

spring (fertility factor)

Numerical results reveal that stable co-existence of the three species is only possible when the

predator fertility rate is slightly greater than (hKb+2)µ1

α1Kb
, i.e., εu = 0.7, as shown in Figure 3.1(a), and

that when the fertility rate is low, i.e., εu � (hKb+2)µ1

α1Kb
, the predator goes to extinction. Increase
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Table 3.2: Parameter descriptions and their base value estimates.

Symbol Description Numerical Value Ref.

µ1 natural mortality rate of lion 0.0625 [14][20],AENP*

α1 & α2 predation rates for prey 0.2833 & 0.3583 [10],AENP*

r1 & r2 intrinsic growth rate for prey species 0.84 & 2.53 [17],[18],[23],AENP*

Kb & Kw carrying capacity for prey species 10 & 25 [17],[24],AENP*

β1 prey biomass conversion rate 0.003583 estimate

εu prey biomass conversion efficiency 0.7 (εu > 0.5736) computed

$ warthog threshold density 8 ($ > 5.15) computed

h 1
h

the half saturation (satiation) 2.5 estimate

*Unpublished data

in lion fertility rate (Figure 3.1) helps in the rejuvenation of the predator’s population growth at

the expense of the warthog population without any significant variation in the buffalo’s population.

However, stable oscillations are observed between the buffalo and lion as the fertility rate is gradually

increased (Figure 3.2). Four parameters namely, predation rate, predator handling time per prey

item, predator mortality rate and prey carrying capacity, are found to be very important in controlling

the predator fertility as depicted in qualitative analyses. High predation rate and lower values for

predator handling time per prey decrease the bounds of predator fertility rate. This in reality, arises

as a result of poor quality prey of low nutritional value (low predator fertility gain) to the predator

(Srinivasu et al., 2007; van Baalen et al., 2001). However, model analyses show that the prey carrying

capacity has a minimum effect on the numerical value of predator fertility rate.

Figures 3.1 and 3.2 reveal that the dynamics of the Model system can change dramatically with

slight variations in the lion fertility rate. It is observed that increasing the predator fertility rate

leads to extinction of the easy-to-capture prey, the warthogs. This is accompanied by periodic

oscillations between the predator (lion) and the hard-to-capture prey (buffalo) (Figures 3.1 and 3.2).

Stability analysis of the steady state E3(1, 1, 0) reveals the so-called paradox of enrichment which, as
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Figure 3.1: The dynamical effect is shown as the predator fertility rate εu >
(hKb+2)µ1

α1Kb
is varied from

(a) 0.7, (b) 0.8, (c) 0.9 and (d) 1.0, while other model parameters are maintained at their base values

as depicted in Table 3.2 and the initial population density for each species is chosen to be positive at

B(0) = 4.5, W (0) = 15.0 and L(0) = 3.0.

hypothesised by various studies, shows that predation acts to prevent large oscillations or extinction

of prey population (Fryxell et al., 2007; Sherratt et al., 1997). Figure 3.3 (εu = 0.8) and Figure

3.4 (εu = 2.4) show that large oscillations are indeed reduced in the hard-to-capture prey despite

the easy-to-capture prey slipping into extinction. However, existence of a variety of potential prey

species amidst other large predators shows that prey switching is likely to occur before any prey

species becomes extinct (Khan et al., 2004).

The predator oscillations become more spikelike (depicted in Figures 3.2(g) and (h)) as its fertility

rate increases further which is often an early indication of chaos (Gakkhar & Naji, 2003; Hsu et

al., 2001; Bazykin, 1998; Sherratt et al., 1997). Anti-predator behaviour (group defense and alertness)
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Figure 3.2: A continuation of Figure 3.1 in which the dynamical effect is shown as the predator

fertility rate εu > (hKb+2)µ1

α1Kb
is varied from (e) 1.1, (f) 1.4, (g) 1.8 and (h) 2.4. Typical chaotic

periodic oscillations arise for higher predator fertility rates.

of prey (buffalo) helps it to co-exist with its predator with periodic oscillations even at high predator

fertility rates (Figures 3.1 and 3.2). On the other hand the absence of group defense techniques

justifies the decline of warthog population, as predator fertility rate increases.

3.4.3 The effect of threshold (critical) population variability on prey

sparsity and general dynamics

Stable spirals and limit cycles arise (Figures 3.5 and 3.6) as the predator handling time per prey

(h) is reduced with increasing predator mortality at high predator fertility rates (εu = 2.4). For lower

values of the warthog threshold density, $, asymptotic stability of the system is observed (Figure

3.3). Indeed, as asserted in Theorem 3.3.2, Figures 3.3, 3.4 and 3.7 show that the co-existence
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Figure 3.3: The dynamical effect is shown as the threshold $ >

[√
4Kw(α1r2+α2r1)

α1r2

]
− Kw is varied

from (a) 1.0, (b) 3.0, (c) 6.0 and (d) 10.0, for a fixed low value of predator fertility rate (εu = 0.8).

equilibrium is locally asymptotically stable for lower values of $, i.e., $ < r2W ∗(3W ∗−2Kw)
2r2W ∗−Kw(r2+α2L∗)

. Local

asymptotic stability of the co-existence equilibrium is maintained further for lower values of predator

handling time (Figure 3.5). Though each threshold value exhibits deterministic chaos (Figure 3.4),

predator chaotic smoothing is greater for lower prey threshold.

For a two-prey, one-predator system (3.1-3.3), oscillatory co-existence of the three species is

possible only when both the predator fertility gain from the hard-to-capture prey and threshold

values of the easy-to-capture prey are as low as possible (Figures 3.3 and 3.7). However, it should

be noted that in general predator-mediated co-existence does not imply survival of all species in the

system for any positive initial value (permanence) (Takeuchi, 1996).
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Figure 3.4: The dynamical effect is shown as the threshold $ >

[√
4Kw(α1r2+α2r1)

α1r2

]
− Kw is varied

from (e) 1.0, (f) 3.0, (g) 8.0 and (h) 10.0, for a fixed high value of predator fertility rate (εu = 2.4).

3.5 Discussion

Analysing qualitatively and quantitatively the dynamical properties of a two-prey one predator

system with a prey threshold, it is found that the predator fertility rate and prey population threshold

bounds are crucial in determining the ecological trend of the system. As reported by Srinivasu et al.

(2007) and van Baalen et al. (2001), this study also shows that the conversion efficiency (fertility

rate, εu) of the buffalo biomass into lion offspring is vital in controlling the dynamics (existence

and stability) of the steady states. The bounds of εu have been shown to depend on various factors

among which include: carrying capacities of the ecosystem for buffalo and warthog (Kb and Kw),

the sparsity constant ($), natural mortality rate (µ1), predation rate (α1), efficiency of converting

warthog biomass into lion biomass (β1) and half saturation value
(

1
h

)
.
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Figure 3.5: Three dimensional typical closed predator-prey trajectories depicting spirals when h =

2.5 × 10−5, εu = 2.4, µ being varied from (a) 0.825, (b) 1.525, (c) 2.525 and (d) 3.525. Any initial

population and perturbations about the steady state tends to the steady state asymptotically.
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Figure 3.6: The effect of half saturation value ( 1
h
) and predator mortality rate for a high predator

fertility value (εu = 2.4) i.e., h & µ are varied from (a) h = 2.5 × 10−5, µ = 0.225 (b) h =

2.5× 10−7, µ = 0.425 (c) h = 2.5× 10−9, µ = 0.625 and (d) h = 2.5× 10−12, µ = 0.825, while other

model parameters are kept at their base values.

Within the model framework, the author showed that the warthog-lion co-existence may always

be attained by monitoring and varying the lion adaptation to warthog ratio
(

1
β

= µ1

β1Kw

)
. This can be

carried out through enhancement of warthog carrying capacity and lion fertility rate while ensuring

that lion natural mortality is as low as possible. Furthermore, warthog-lion equilibrium existence

reveals that critical threshold threats in warthog can be eliminated by controlling and regulating

the effective mortality per capita ratio,
(
µ1

β1

)
, for the lions, such that Kw < µ1

β1
< $. This can be

achieved after the warthog carrying capacity is well established and after focusing most conservation

policies in the direction of the reversal of prey population declines (Mgqatsa, 2010; Nyafu, 2009).

It is necessary to highlight here that the lion’s limiting stabilisation factor, 2µ1

β1
, which regulates the

stability of warthog-lion equilibrium, and the effective mortality per capita ratio, µ1

β1
, which governs
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Figure 3.7: The dynamical effect is shown as the threshold $ >

[√
4Kw(α1r2+α2r1)

α1r2

]
− Kw when

εu = 2.4, is varied further to higher values, i.e., $ is varied from (a) 14, (b) 18, (c) 24 and (d) 50.

the warthog-lion equilibrium existence with or without critical population thresholds, are ecologically

equivalent.

The buffalo-lion existence equilibrium has been shown to be controlled by the lower bound on the

lion fertility rate i.e., εu >
(hKb+1)µ1

α1Kb
. An increase in lion natural mortality leads to a higher lower

bound, whereas an increase in predation rate decreases this lower bound. This result also indicates

that the lion fertility lower bound could be increased through conservation policies that should be

geared towards decreasing the lion half saturation value 1
h
, increasing predator handling time h, per

prey. Using well known methods (Lehmann et al., 2008; Packer et al., 2001; Hunter, 1998), it may

not be difficult to regulate and tune these parameters to the required levels for desirable positive

outcomes of the ecosystem. For example, the natural mortality of lions may be increased by exposing

them to vigilant prey, i.e., prey that form cohesive herds and exhibit group defense techniques, e.g.,
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buffaloes. This could be done through game translocation programmes and/or controlled predator

starvation policies such as creation of prey refugia within the game park (Srinivasu & Gayatri, 2005;

Krivan, 1998; Sih, 1987; McNair, 1986). Predator handling time per prey may be regulated by

controlling the quantity of prey: culling of warthogs in AENP is being carried out (Mgqatsa, 2010).

Finally, providing the predator with prey of both high quality (nutritious) and quantity may help

to enhance predator fertility rates. The results for the buffalo-lion equilibrium co-existence show

that the carrying capacity of the buffalo has a passive effect on the predator lion fertility rate lower

bound.

Results about the positive co-existence of the three species show that the lower bound of the

warthog threshold value, $ >

[√
4Kw(α1r2+α2r1)

α1r2

]
−Kw, which depends on the predation rates, prey

growth rates and warthog carrying capacity, plays a vital role. It should be observed that the lower

bound for $ is much sensitive i.e., responds to variations, to lion predation rate (α2) on the easy-to-

capture prey (warthog) and intrinsic growth rate (r1) of the hard-to-capture prey (buffalo), while an

increase in warthog carrying capacity results in an overall relative decrease of the warthog threshold

lower bound.

Stability and/or instability of equilibria has been shown to be controlled by bounds of the lion

fertility rate and the warthog threshold constant. This has assisted to clearly link this study with

the so-called paradox of enrichment which asserts that predation stabilizes predator-prey systems

(Freedman & Wolkowicz, 1986; Rosenzweig, 1971). In parameter space, it has been shown that

the paradox of enrichment can occur in the system (3.4-3.6) and subsequently in the system (3.1-

3.3). Results from the buffalo-lion existence show that if the equilibrium existence is guaranteed, its

stability follows by carefully controlling the lion’s per capita saturation ratio as a result of feeding on

a single “average” buffalo
(

µ1

α1Kb

)
. Through conservation policies geared towards regulating buffalo

carrying capacity, lion mortality and the reduction in its predation rate, the stability of the buffalo-

lion co-existence could be achieved (Tambling et al., 2011; Tambling et al., 2009; Vale, 2007; Prins,

1996; Sinclair, 1977).

63



Local asymptotic stability of the positive co-existence equilibrium could be attained by maintain-

ing the buffalo population density above half of its carrying capacity i.e., B∗ > 1
2
Kb, while taking

care of the upper bounds of Kw and $ as stated in Theorem 3.3.2. Furthermore, the warthog

population density W ∗ = 2
3
Kw, has been shown to be a critical threshold value that maintains

the system with either a weak critical threshold i.e., W ∗ < 2
3
Kw, or a strong critical threshold

i.e., W ∗ > 2
3
Kw. On the other hand, global stability analysis results show that the warthog popula-

tion density should exceed the sum of its carrying capacity and threshold value minus its equilibrium

value i.e., W > (Kw + $) −W ∗. This result which was proved in Theorem 3.3.3 about the global

stability of the co-existence steady state shows that the warthog’s equilibrium population density is

bound above, i.e., W ∗ < (Kw+$). Despite its high fecundity, the warthog’s natural desire to expand

its range (Nyafu, 2009) may lead to very low values of its threshold density and this leads to the

so-called prey out-flux dilution effect (Sherratt et al., 1997). Thus, if such species’ range expansion

tendencies are not controlled (regulated), their equilibrium population value will always be below the

carrying capacity which ultimately implies that further population out-fluxes/emigration may cause

the species’ population to slip to extinction sooner or later. The strong electric fencing that is closely

monitored daily by AENP game rangers does not provide any escape route for warthogs, as is the

case for other game reserves (Mgqatsa, 2010; Urquhart et al., 1997). Thus, a random culling policy

of warthog is being done within the park (Mgqatsa, 2010). Currently, unpublished AENP data show

that between 20% − 40% of warthogs are being culled per year to keep the population fairly stable.

Warthog culling policies in AENP which may lead to the out-flux dilution effect should take into

consideration the species’ threshold densities (depending on various parameters) if stability is to be

realised. Based on the model analysis results, the reproduction and predation rates together with

the warthog carrying capacity should be well established before carrying out any culling programme.

Numerical results show that Model system (3.1-3.3) is highly sensitive to predator fertility rate,

especially when its lower bound is relatively high. Such high predator fertility lower bounds have

depicted results (Figures 3.2, 3.4 and 3.7) of chaotic oscillations that lead to eventual extinction of

the easy-to-capture prey. Both numerical and analytical results seem to concur about the bounds of

the predator fertility rates and sparsity constant. In this study, as reported by Bazykin (1998) and

Takeuchi (1996), it has been shown (Theorem 3.3.1) that the formulated model is dissipative and

uniformly persistent; early indicators of chaos, as a result of high predator fertility rates, have been
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deduced from the spikelike predator oscillations (Figures 3.2(g) and (h), 3.4 and 3.7).

The practical management of population numbers, whether aiming to increase or reduce them,

is strongly affected by threshold values (Courchamp et al., 2008). Even those species displaying no

obvious population depensation can be affected by others that do, which means that most species are

probably influenced, either directly or indirectly by the dynamics of other species in an ecosystem.

Biodiversity preservation and population management at ecosystem level have much to gain from

acknowledging vital processes, mechanisms and factors controlling species interaction (Courchamp et

al., 2008; Petrovskii et al., 2005; McCarthy, 1997; Dennis, 1989). Such mechanisms can be mimicked

and calls for basic robust population dynamic models that are comparable to the classical Verhulst-

Pearl logistic model (Berryman, 1992).

Under stochastic events, providing additional food and prey refuge are some of the popular

remedies being speculated on to yield an ultimate solution to predator-prey ecosystem challenges by

some empirical conservationists. The effects of additional food to a predator, prey refuge, culling

of prey, spatial distribution of species and incorporation of another predator in the model remain

naturally interesting scenarios to be pursued in future for new and rich ecosystem dynamical trends

to be generated. In the absence of the aforementioned dynamics, the theoretical mathematical model

in this study/chapter acts as a buffer that may be used to understand the dynamical behaviour of a

two-prey one-predator system. In the next chapter, a numerical excursion of the dynamical effects of

incorporating a prey refuge and providing additional food to the predator of Model system (3.1-3.3)

is carried out.
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Chapter 4

Modelling additional food to predator

and prey refuge

4.1 Introduction

The aim of this chapter is to numerically bring more dynamics to the fore, and this is done by

performing numerical simulations to analyse the effect of prey refuge for the easy-to-capture prey

(warthog) and additional food to the predator. The diurnal activities of warthog species exposes

them to many predation risks, and as a way of hiding from predators, the warthog live in self-

excavated or disused aardvark burrows (Mgqatsa, 2010; Somers & Penzhorn, 1992; cf. Section 3.1).

While buffaloes depend on group defense, group vigilance and group alertness as ways of minimizing

predation risks, moving to the burrows is among the common anti-predator behaviour exhibited by

warthogs (Tambling et al., 2011; Nyafu, 2009; White & Cameron, 2009; Prins, 1996). Thus, warthogs

are either in the burrows (refuge patch) or in the open habitat. With the assumption that warthog

species use the refugia (burrows) in order to maximize their fitness, measured by instantaneous

per capita growth rate, the effect of such warthog burrows as a prey refuge patch is modelled and

numerically studied.

According to Krivan (1998), prey move to a patch where their mortality rate to energy intake rate

ratio is minimized, the minimize death per unit energy rule. Since refugia, the warthog burrows, are
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safe but do not offer feeding or mating opportunities, prey must balance energy gain against the risk

of predation in deciding where and when to feed (White & Cameron, 2009; Dao-Duc et al., 2008).

One of the major components of risk is the time spent in the open habitat where the probability

of an encounter with a predator is high. Furthermore, if the per capita intrinsic growth rate in the

refuge is lower than in the open habitat, then this leads to a classic trade-off dilemma for prey: stay

in a safer but less profitable refuge or move to a more profitable but riskier open habitat (Krivan,

1998; Lima & Dill, 1990; Sih, 1987; McNair, 1986).

A refuge is characterised by its protectiveness which is inversely related to the product of the

attack rate of predators in the refuge and the probability that a predator will access it (Krivan,

1998). Sih (1987) showed that if the proportion of prey in the refuge is decreasing with increasing

prey abundance, or increasing with both increasing predator density or increasing predation pressure,

then the corresponding ecological equilibrium is locally stable.

Two types of refugia are commonly modelled (Krivan, 1998; Sih, 1987; McNair, 1986): those that

protect a constant fraction and those that protect a constant number of prey. In this study, ωr was

considered as a constant fraction of warthog that gets into the burrows (refugia) while 1 − ωr is the

fraction in the open patch that is vulnerable to predation. Though the consequences of refuge type

for stability of predator-prey interactions depends on the underlying model (Krivan, 1998; McNair,

1986), the general conclusion from such studies is that refugia which protect a constant number of

prey lead to a stable equilibrium and have a stronger stabilizing effect on population dynamics than

refugia which protect a constant proportion of prey. This sounds like a hypothesis that should be

explored in detail.

In the study of biological control through provision of additional food to predators, Srinivasu et

al. (2007) addressed the consequences of providing additional food to predators on the predator-prey

system dynamics. They showed that varying the quality and quantity of additional food not only

controlled and limited the prey, but could also limit or eradicate the predator. Thus, the predator

population can be reduced or eliminated by providing it with some additional food of scientifically

proven quality and quantity. Such qualitative and quantitative attributes of additional food are
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modelled with various parameters ranging from the handling time of the predator per unit quantity

of added food biomass, to predator fertility. This is because, the ratio of predator handling times for

the additional food and prey was observed to play a key role in the controllability of the ecosystem

(Srinivasu et al., 2007; van Baalen et al., 2001). Thus, any arbitrary choice of additional food to the

predator-prey system may have a negative influence on the now destabilised ecosystem.

The Model system (3.1-3.3) is considered except that ωr is the proportion of prey species that goes

to refugia (burrows burrows for the warthog species) at time τ has been incorporated. Suppose that Fl

is the ratio of additional food biomass to normal prey biomass required for predators (lion) survival

and that εfl is the efficiency with which the additional food biomass is converted into predators’

biomass, energy or fertility gain of predator. Maintaining the remaining parameters and variables’

descriptions as defined in Section 3.2, the Model system (3.1-3.3) is extended to obtain the following:

dB

dτ
= r1B

(
1 − B

Kb

)
− α1

(1 − Fl)BL

1 + hB
(4.1)

dW

dτ
= r2W

(
1 − W

Kw

) (
W

$
− 1

)
− α2(1 − Fl)(1 − ωr)WL (4.2)

dL

dτ
= β1(1 − Fl)(1 − ωr)WL+ εu

α1(1 − Fl)BL

1 + hB
+ εflFlL− µ1L (4.3)

where; 0 < ωr < 1 and 0 < Fl < 1

Qualitative analysis of the Model system (4.1-4.3) can be carried out easily, by once again reducing

the number of parameters. By introducing the following dimensionless variables:

x =
B

Kb

, y =
W

Kw

, z =
α1

µ1

L, t = µ1τ

to equations (4.1-4.3), the following non-dimensional model is obtained:

dx

dt
= rx (1 − x) − (1 − Fl)xz

1 + φx
(4.4)

dy

dt
= λy (1 − y) (ky − 1) − α(1 − Fl)(1 − ωr)yz (4.5)

dz

dt
= β(1 − Fl)(1 − ωr)yz + γ

(1 − Fl)xz

1 + φx
+ (θ − 1)z (4.6)
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The model behaviour is now controlled by the following dimensionless parameters:

r =
r1
µ1
, λ =

r2
µ1
, φ = hKb, k =

Kw

$
, α =

α2

α1
, β =

β1Kw

µ1
, γ =

εuα1Kb

µ1
, θ =

εflFl
µ1

As studied in Chapter 3 (Model (3.4-3.6)), a similar qualitative analysis of the Model system

(4.4-4.6) is anticipated to yield similar results. In this chapter however, only numerical simulations

of Model (4.1-4.3) are explored. Apart from parameters to cater for predator additional food and

prey refuge, the rest of other parameter value sources are as summarised in Table 3.2.

4.1.1 How prey refuge effectiveness responds to predator fertility gain

from additional food

In spite of providing additional food to the predator, the three species’ system is not sustainable

at very low proportion of warthog in burrows (Figure 4.1(a)). This shows that the refuge is beneficial

to both predator and prey. Oscillatory behaviour are observed (Figures 4.1(b) and (c)) for all the

three species when intermediate proportions of prey (warthog) get into the refuge. As motivated

earlier, by and large, the warthog’s trade-off dilemma of safety versus energy intake and population

growth lead to such oscillatory pulses in the species ecosystem. Due to the protectiveness nature

of the refuge, these oscillations are higher for the prey that goes to the refuge. When the value of

ωr (proportion of prey that goes to refugia) is reasonably high (Figure 4.1(d)), the predator-prey

system stabilizes. Despite considering a constant fraction of prey to refugia as opposed to a constant

number, as in Chen et al. (2010), Srinivasu and Gayatri (2005) and McNair (1986), the prey refuge

causes a stabilizing effect on the predator-prey system.

4.1.2 The effect of additional food: The paradox of biological control

and the species’ pathological behaviour

The value of predator fertility i.e., offspring production as a result of energy gained and converted

into predator reproduction, is used as a measure of the quality of predator additional food and/or

prey. The high quality of supplementary food in the model eliminates the observed oscillations

(Figure 4.1) for intermediate values of ωr. Figure 4.2(d), as noted in Srinivasu et al. (2007), Sabelis
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Figure 4.1: The dynamical effect of a constant proportion prey refuge when additional food ratio

Fl = 0.195 with a predator fertility gain εfl = 0.6. The proportion of prey that goes to refugia (ωr)

is varied from (a) 0.06, (b) 0.2, (c) 0.3 and (d) 0.4, while other model parameters are maintained at

their base values as depicted in Table 3.2 and the initial population density for each species is chosen

to be positive at: B(0) = 4.5, W (0) = 15.0 and L(0) = 3.0.

and van Rijn (2005) and Murdoch et al. (1985), shows that the biological control theory gets evoked

at high fertility gain. This figure shows that too much consumption of both added food and prey by

a predator causes a decline in the species’ population. Despite such population declines, the presence

of a prey refuge helps to maintain its population above extinction zones.

4.2 Discussion

The number of prey in a refugia being a constant fraction of the total prey population makes the

nature of the equilibrium of the Model system (4.1-4.3) to be preserved. The refugia has a stabilizing
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Figure 4.2: The dynamical effect of a constant proportion prey refuge when additional food ratio

Fl = 0.195, refuge proportion ωr = 0.2 and predator fertility gain εfl, being varied from (a) 0.0006,

(b) 0.125, (c) 0.25 and (d) 0.9, while other model parameters are maintained at their base values as

depicted in Table 3.2 and the initial population density for each species is chosen to be positive at:

B(0) = 4.5, W (0) = 15.0 and L(0) = 3.0.

71



effect, since it changes a conservative oscillation into a convergent oscillation. The importance of a

refuge in regulating predation rates has been observed (Figures 4.1). This follows from the observed

decline, Figure 4.1(a), in populations of the interacting species at low proportion, depending on

burrow availability, of warthog in refuge.
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Chapter 5

Predator Interference, Additional Food:

Lions and Spotted hyaenas

5.1 Introduction

During conservation and management of predator-prey ecosystems, the provision of additional

food to predators is one of the options available (Srinivasu et al., 2007; van Baalen et al., 2001). Such

additional food is provided for several reasons, among which include the distraction of predators from

over-consuming the prey (short term) or increasing the rate of predation (long term), for example,

during biological control of pests (Srinivasu et al., 2007). Thus, it turns out that providing additional

food to predators must be well formulated for, if unplanned, it may lead to many unexpected and

undesired effects on the ecosystem. This calls for careful analysis of the various possible outcomes

by both theoretical and empirical conservationists, before providing predators with any form of

additional food. The use of ecologically plausible mathematical models has been identified as an

efficient way to predict future ecosystem trends (Sabelis & van Rijn, 2005; van Baalen et al., 2001;

Murdoch et al., 1985).

Various theoretical studies have shown that it is possible to control the dynamics of an ecosystem

by manipulating the quality and supply level (quantity) of additional food to the predators (Srini-

vasu et al., 2007; Sabelis & van Rijn, 2005; van Baalen et al., 2001). These studies also showed
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that additional food can drive the prey and predators to desired population levels within specified

limits. For example, oscillations can be introduced into the ecosystem or they can be controlled

and eliminated by an appropriate choice of additional food (Srinivasu et al., 2007). The paradox of

enrichment, permanence and persistence of a system can always be achieved via a suitable choice

(depending on numerous parameters of the ecosystem) of additional food (Gaucel & Pontier, 2005;

Freedman & Wolkowicz 1986). The type of additional food provided to predators can help eliminate

the prey (right food provided to predators), or eliminate the predators by distracting them with a

supply of low-quality additional food at high density, which decreases the per capita growth rate of

the predator below its starvation rate and this relieves the prey from predation pressure (Srinivasu

et al., 2007).

As mentioned in Chapter 1, six lions and eight spotted hyaenas were introduced into Addo

Elephant National Park’s main camp section in late 2003 to fulfill the role of restoring the natural

balance to the ecosystems in the park by controlling the numbers of herbivores (Hayward & Hayward,

2006). Though hyaenas scavenge and steal carrion from other predators (e.g., lions), detailed research

reveals that spotted hyaenas are not mere scavengers but are also efficient predators (Wentworth et

al., 2011; Hayward, 2006; Hayward & Hayward, 2006; Kruuk, 1972). Within AENP, lion and spotted

hyaena activity patterns overlap 75.1% of the time and this is attributed to the low density of each

species (0.04 lions km−2 and 0.07 spotted hyaenas km−2) (Hayward & Hayward, 2006). As a result

of high level of aggression toward each other and having the same activity pattern i.e., killing similar

prey at similar times of the day, lions and spotted hyaenas have been identified as the most intense

competitors (Hayward & Kerley 2008).

Lions and spotted hyaenas, which are generalist predators that attack multiple prey species with

no significant differences between their prey preferences, have been studied assiduously throughout

Africa. “The ecology and dietary niche breadth of the spotted hyaena is similar to that of the lion.

The two species have a 58.6% actual prey species overlap and a 68.8% preferred prey species overlap”

(Hayward, 2006). Despite a large degree of dietary overlap with lions, the spotted hyaena’s dietary

flexibility and mobility make it one of the most successful predators throughout Africa (Hayward,

2006). Due to their size and team work, the spotted hyaena is capable of taking kills from other
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carnivores including lions. This incites a competitive relationship between the two species for the

available prey (Wentworth et al., 2011). Spotted hyaenas are opportunistic and hunt a wide variety

of prey ranging from small mammals to large ungulates; having a preferred body mass range of

56 − 182 kg (Hayward, 2006). On the other hand, the lion, being the largest African carnivore and

distinctly social, living in prides of 6 to 12 individuals, is the principal predator of various herbivore

species. The lion is capable of pulling down prey the size of a mature buffalo and/or a fully grown

giraffe (Lehmann et al., 2008). However, on several occasions lions steal spotted hyaena’s kills and

carrion, and this results into fierce competition that often results into death (Hayward & Kerley,

2008; Hayward & Hayward, 2006; Hayward, 2006).

The predator’s preferences for various prey species has been attributed to various reasons such

as herding, easy to capture, abundance, biomass gain per prey killed, taste, hunting risks involved,

total handling time and searching effort (Hayward et al., 2007a; Hayward & Kerley, 2005; Khan et

al., 2004). Within AENP, the buffalo and kudu are highly preferred by both lion and hyaena due to

their yield in terms of biomass per killed prey (Hayward, 2006; Hayward & Hayward, 2006; Hayward

& Kerley, 2005). However, because of high predation/hunting risks involved as a result of its strength

and group vigilance, the buffalo is often avoided by both predators in favour of the kudu which is

largely abundant (Hayward, 2011; Prins, 1996; Sinclair, 1977). Thus, lions and spotted hyaenas have

a competitive feeding pattern on the kudu that results in interspecific species’ interference (Hayward,

2006; Hayward and Hayward, 2006; Franklin, 2005).

On the small private game reserves: Shamwari and Kwandwe, within the vicinity of AENP,

predators are provided with supplementary feeding (Hayward et al., 2007c). The private farmers buy

game for their predators. Due to a limited number of prey species within AENP, providing additional

food to predators is one of the conservation principles that would reduce predation pressure. This

has been done on various neighbouring private game reserves. Supplementary feeding was among the

occasional management interventions that followed species’ translocation and reintroduction within

the Eastern Cape Province (Hayward et al., 2007c). The weak, malnourished and struggling predators

would occasionally be provided with additional food. For example, the lionesses at AENP were

provided with culled warthog carcasses as they were struggling to keep young cubs alive (Hayward
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et al., 2007c).

This chapter considers the interaction and dynamics of two predatory carnivores, lions (Panthera

leo) and spotted hyaenas (Crocuta crocuta) feeding on a common prey resource, kudu (Tragelaphus

strepsiceros) which is one of the most preyed upon species and highly preferred by both lions and

spotted hyaenas in AENP (Hayward et al., 2007a; Hayward & Kerley, 2005). Being one of the

most abundant prey species in South Africa’s Eastern Cape Province, kudus are killed by lions more

frequently as shown by the Jacob’s index computations (Hayward et al., 2007a; Hayward & Kerley,

2005). According to Hayward et al. (2007a), the relative abundance of kudus within the Eastern

Cape Province makes it an optimal strategy to be preferentially hunted by lions.

Encounters between lions and hyaenas and large prey species, in this instance, kudus, involve a

lot of dynamics due to adopted anti-predator techniques. As discussed earlier, most individual lions

refrain from contributing to group hunts except when pursuing buffaloes, which are inaccessible to

solitary individual lions (Hayward et al., 2007a, b; Fryxell et al., 2007; Hayward & Kerley, 2005).

However, the abundant and conspicuous kudus within AENP are vigilant and depend on the group

alertness for early warning in case of any sighted predator (Hayward & Kerley, 2005). Despite being

ambushed and subdued most often by stalking predators, kudus basically depend on crypsis and

their high cruising speed to escape from any predator (Owen-Smith, 1990; Holling, 1965).

The first mathematical studies, after 1970, to reveal the principle of competitive exclusion consid-

ered models based upon a combination of the principle of mass action and Holling Type II functional

and numerical responses (Muratori & Rinaldi 1989; Armstrong & McGehee 1980; Hsu et al., 1978a, b).

Despite the predominance of strictly prey-dependent functional responses (e.g., Holling family types)

in the literature, recent studies (Chen et al., 2008; Inchausti & Ballesteros, 2008; Cantrell et al., 2004;

Hsu et al., 2001; Cantrell & Cosner, 2001; Cantrell et al., 1998) have suggested the ratio-dependent,

Beddington-DeAngelis functional response (i.e., cxy
1+ax+by

) and reaction-diffusion to explain the spatial-

temporal variations in species. Many studies have considered various approaches when modelling

anti-predator behaviour of the numerous prey species (Seo & Kot, 2008; Khan et al., 2004; Cantrell

& Cosner, 2001). The response function used depends on the vigilance, mobility and intensity of prey
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species in relation to its predators. In this chapter, predator-prey dynamics is modelled using the

Beddington-DeAngelis functional response that considers: additional food, interspecific interference

of predators and group vigilance behaviour of the prey (Cantrell & Cosner, 2001).

This chapter is organised as follows; In Section 5.2 an explanation of the meaning of variables,

constants and parameters, and the assumptions they satisfy and model formulation together with

non-dimensionalisation were done. In Section 5.3, analysis of the existence and stability of the

steady states of the model was carried out. Local stability of all steady states and global stability

of the interior equilibrium were investigated in this section. Biological interpretation of the results

is presented in Section 5.4. Numerical results are given in Section 5.5 and in the last section, a brief

discussion and conclusion of results is provided.

In this chapter, a mathematical model used to understand the predation behaviour of two preda-

tors (lion and spotted hyaena) versus one prey (kudu) without a prey refuge but with additional

food to predators was formulated and analysed.

5.2 Description and formulation of the model

A mathematical model for two predators (lions, L(τ) and spotted hyaenas, H(τ)) that experience

interspecific interference as they feed on a common prey resource (kudu, B(τ)) at any time τ, is

formulated. The underlying cost-benefit that arises as a result of additional food to predators is

crucial in this study. Spatial heterogeneity of species is incorporated via a reaction-diffusion model

in which a one dimensional situation is assumed that could be extended to the usual two dimensional

domain of the game park.

Through this section, the parameter subscripts b, h and l refer to kudu, hyaena and lion dynamics,

respectively. Thus, the author defines: predation rates αh and αl, interspecific interference coefficients

ψh and ψl, additional food, which we define as the ratio of added food biomass to normal prey biomass

required for predator survival and reproduction, Fh and Fl, fertility factors, as a result of newly born

predators due to predation, and consumption of additional food, εh, εl, εfh
and εfl

, mortality rates
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µh and µl, and half saturation constants 1
ah

and 1
al

of predators are defined accordingly. Further, the

kudu population density grows with intrinsic growth rate rb and has Kb as its ecosystem carrying

capacity.

Using definitions of the variables and parameters as described in the paragraph above, together

with the assumptions and management approaches, the temporal dynamics of the predator-prey

system is explicitly described by the following coupled system of differential equations in which

the functional and numerical responses for both consumers and the resource are taken to have

Beddington-DeAngelis forms:

dB

dτ
= rbB

(
1 − B

Kb

)
− αh(1 − Fh)BH

1 + ahB + ψlL
− αl(1 − Fl)BL

1 + alB + ψhH
(5.1)

dH

dτ
=

εhαh(1 − Fh)BH

1 + ahB + ψlL
− µhH + εfh

FhH (5.2)

dL

dτ
=

εlαl(1 − Fl)BL

1 + alB + ψhH
− µlL+ εfl

FlL (5.3)

where all parameters and constants are positive, 0 ≤ Fh ∼= Fl ≤ 1 and the underlying initial

conditions B(0) = B0 ≥ 0, H(0) = H0 ≥ 0 and L(0) = L0 ≥ 0 are satisfied.

5.3 Analysis of the model

5.3.1 Non-dimensionalisation of the model

To give an insight into the relative magnitudes of the parameters required to yield biologically

realistic behaviour and to ease comparison between disparate quantities and analogous parameters

and to avoid mathematical complexity, the number of parameters was reduced by introducing the

following dimensionless variables (cf. Table 5.1):

u =
B

Kb

, v =
αh
µh
H, w =

αl
µl
L, t = µlτ

Introducing the following chain rule expressions for the temporal variations:

dB

dτ
=
dB

du
× du

dt
× dt

dτ
,

dH

dτ
=
dH

dv
× dv

dt
× dt

dτ
&

dL

dτ
=
dL

dw
× dw

dt
× dt

dτ
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Table 5.1: Dimensions of variables and parameters; ρ & T defining the dimensions of population

density and time respectively.

Variables Dimension Parameters Dimension

B, H, L ρ rb, µh, µl, εfh
, εfl

T−1

τ T Kb ρ

αh, αl ρ−1T−1

ah, al, ψh, ψl ρ−1

Fh, Fl, εh, εl dimensionless

results in
dB

dt
= Kbµl

du

dt
,
dH

dt
=
µhµl
αh

dv

dt
&

dL

dt
=
µl

2

αl

dw

dt

Substituting these results into the model equations for the dimensionalised system (5.1-5.3) yields

du

dt
= ru (1 − u) − µηhuv

1 + φ1u+ ψ2w
− ηluw

1 + φ2u+ ψ1v
≡ f̂(u, v, w) (5.4)

dv

dt
=

γ1ηhuv

1 + φ1u+ ψ2w
− µv + β1v ≡ ĝ(u, v, w) (5.5)

dw

dt
=

γ2ηluw

1 + φ2u+ ψ1v
− w + β2w ≡ ĥ(u, v, w) (5.6)

whose behaviour is controlled by the dimensionless parameters

r =
rb
µl
, µ =

µh
µl
, ηh = 1 − Fh, ηl = 1 − Fl, φ1 = ahKb, φ2 = alKb, ψ1 =

ψhµh
αh

, ψ2 =
ψlµl
αl

γ1 =
εlαlKb

µl
, γ2 =

εhαhKb

µl
, β1 =

εfh
Fh
µl

, β2 =
εfl
Fl
µl

A glance at the dimensionless parameters above reveals similar pairs. And therefore, considering this

symmetry, some dimensionless parameters and constants are clearly products and/or quotients of

approximately analogous dimensional parameters/constants leading to the following approximations:

ηh ' ηl = η, φ1 ' φ2 = φ, ψ1 ' ψ2 = ψ, γ1 ' γ2 = γ, β1 ' β2 = β
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Employing the above approximations reduces the non-dimensionalised model to

du

dt
= ru (1 − u) − µηuv

1 + φu+ ψw
− ηuw

1 + φu+ ψv
≡ f̂(u, v, w) (5.7)

dv

dt
=

γηuv

1 + φu+ ψw
− µv + βv ≡ ĝ(u, v, w) (5.8)

dw

dt
=

γηuw

1 + φu+ ψv
− w + βw ≡ ĥ(u, v, w) (5.9)

Since u, v and w define population densities, only non-negative solutions make biological sense.

The functions of system (5.7-5.9) are Lipschitzian and continuous on the positive octant R3
+ =

{(B,H, L) ∈ R3 : B(0) ≥ 0, W (0) ≥ 0 & L(0) ≥ 0} and therefore, only positive solutions of the

model on the invariant interior of R3
+ are considered.

5.3.2 Steady states of the model

The steady states of the non-dimensionalised Model system (5.7-5.9) are solutions for the following

equations:

ru∗ (1 − u∗) − µηu∗v∗

1 + φu∗ + ψw∗ − ηu∗w∗

1 + φu∗ + ψv∗
= 0 (5.10)

γηu∗v∗

1 + φu∗ + ψw∗ − µv∗ + βv∗ = 0 (5.11)

γηu∗w∗

1 + φu∗ + ψv∗
− w∗ + βw∗ = 0 (5.12)

which allow five equilibrium points of the Model system under this study, E0 (0, 0, 0) , E1 (1, 0, 0) ,

E2

(
Φ

ηγ − φΦ
,

rγ(ηγ − Φ(1 + φ))

µ[ηγ(ηγ − 2φΦ) + φ2Φ2]
, 0

)
, E3

(
Ψ

ηγ − φΨ
, 0,

rγ(ηγ − Ψ(1 + φ))

[ηγ(ηγ − 2φΨ) + φ2Ψ2]

)
and

E4 (u∗, v∗, w∗) , where Φ = µ− β and Ψ = 1 − β.

Proposition 5.3.1 Model system (5.7-5.9) is dissipative, uniformly persistent and hence permanent.
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Before proving the proposition, the following preliminary definitions, which ensure the survival of

the interacting biological species, for an ordinary differential equation model ẋ = xf(x), where x(t)

is a vector that denotes the density/biomass of n interacting species are stated first (Takeuchi, 1996).

Suppose x(t) = (x1(t), x2(t), ..., xn(t)) is a solution of the model with component-wise positive initial

values, then the system is said to be:

(i) weakly persistent if lim
t→∞

Sup xi(t) > 0 for all i = 1, 2, ..., n

(ii) persistent if lim
t→∞

Inf xi(t) > 0 for all i = 1, 2, ..., n

(iii) uniformly persistent if there exists an ε > 0 such that lim
t→∞

Inf xi(t) ≥ 0 for all i = 1, 2, ..., n

(iv) permanent if 0 < ε ≤ lim
t→∞

Inf xi(t) ≤ lim
t→∞

Sup xi(t) ≤ U for all i = 1, 2, ..., n and some

constants ε and U.

Definition 5.3.1 (Permanence): (Takeuchi, 1996) The system is said to be permanent if there is

a compact set in the interior of the state space, Rn
+, such that all orbits initiating at points in the

interior end up in the compact set. Equivalently, permanence means that there exists an ~ > 0 such

that whenever xi(0) > 0 for all i, lim
t→+∞

Inf xi(t) > ~ and lim
t→+∞

Sup xi(t) <
1
~ i.e., all the orbits are

uniformly bounded. In ecological context, permanence implies the survival of all species which exist

initially.

Definition 5.3.2 (Persistence): (Takeuchi, 1996) Whereas lim
t→+∞

Sup xi(t) < 0 implies permanence,

the system is said to be persistent if for all i, lim
t→+∞

Inf xi(t) > 0 i.e., persistence is a weaker concept

than permanence. For this case, the system always has a positive globally stable equilibrium point for

any ε > 0.

Definition 5.3.3 (ω-limit set): (Takeuchi, 1996) For an autonomous ordinary differential equation

model, ẋ = f(x); x(0) = x0, in some region of Rn, suppose x(t) is a solution defined for all t ≥ 0

initiating x at t = 0. The ω-limit set of x, ω(x), is the set of points, y ∈ Rn, such that x(tk) → y as

k → ∞ for some sequence tk > 0; tk → ∞.

Remark 5.3.1 From the definitions above, a permanent system is uniformly persistent and thus,

persistent, and hence weakly persistent. Therefore, a permanent system is dissipative and uniformly

persistent.
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Remark 5.3.2 A persistence with initial conditions in the positive cone will persist if there are no

ω-limit set of points of the solution on the boundary of the positive cone. This means that if Υ(X)

is the orbit through the point X = (x, y, z) with x > 0, y > 0, z > 0, and if Ω(X) is the ω-limit set

of Υ(X), then Ω(X) is the interior to the positive cone.

Proof of Proposition 5.3.1: From equation (5.7); du
dt

≤ ru (1 − u) and the Comparison Principle

(cf. Takeuchi, 1996), leads to lim
t→∞

Sup u(t) ≤ 1. Thus, u(t) ≤ 1 + ε when t is sufficiently large, for

any ε > 0 however small. Denoting β0 = min{(µ− β), (1 − β)}, then from Model system (5.7-5.9),

it follows that:

du

dt
+
µ

γ

dv

dt
+

1

γ

dw

dt
= ru (1 − u) − µ(µ− β)

γ
v − (1 − β)

γ
w

≤ ru− β0

(
µ

γ
v +

1

γ
w

)

⇒ d

dt

(
u+

µ

γ
v +

1

γ
w

)
≤ (r + β0)(1 + ε) − β0

(
u+

µ

γ
v +

1

γ
w

)

Again, the Comparison Principle leads to lim
t→∞

Sup
(
u+ µ

γ
v + 1

γ
w

)
≤ (r+β0)(1+ε)

β0
. This completes the

proof and thus, Model system (5.7-5.9) is dissipative and hence permanent. In biological terms, per-

sistence means that the population biomass of each species remains asymptotically above a positive

bound independent of the initial conditions.

Non-negativeness and existence of equilibria

Since we are interested in the growth of biological populations of species, the equilibrium points

of the system must satisfy the non-negative conditions. It should be noted that the predator cannot

survive in the absence of its prey, i.e., the equilibrium points Ẽ∗(0, 0, ξ), Ê∗(0, ζ, 0) and Ê∗(0, ζ, ξ)

with ζ, ξ > 0 do not suffice. The unconditional existence of E0(0, 0, 0) and E1(1, 0, 0) prioritises

the establishment of the existence of the situation where one predator out-competes the other. By

defining ̂̃Θ = {ε̃f , F̃ , ε̃, α̃, ψ̃, ã} as the set of “pooled parameters” and since φ > 1, existence of E2

implies that Φ > 0 and ηγ > 2φΨ. In terms of the “pooled parameters” of the dimensional model,
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this gives the conditions µh > ε̃f F̃ and µh <
(1−F̃ )ε̃α̃2

2ãµ̃ψ̃
, which reveal that without additional food, one

of the interfering predators is always out-competed. Similarly, existence of E3 leads to the conditions

Ψ > 0 and ηγ > 2φΨ; µl > ε̃F̃ and µl >
(1−F̃ )ε̃α̃2

2ãµ̃ψ̃
, which shows that additional food, of good quantity

and quality, has to be well established to ensure that the lion’s mortality is as low as possible.

Classical ordinary differential equation models prove to be useful when populations of species are

assumed to be uniformly distributed over the spatial region of interest. Within AENP, there is a

heterogeneity in species distribution due to random movements in search of food items and predator

avoidance (Hayward & Hayward, 2006; Franklin, 2005). Naturally higher or lower concentrations of

species occur at different locations within the ecosystems. This is due to variations in both biotic

and abiotic resources (Ahn, 2003). Hence, the ecological niche is always patchy due to species disper-

sal/movements. Thus, reaction-diffusion predator-prey models are becoming increasingly favoured

by both empirical and theoretical ecologists as a more suitable and relevant approach to describe

predator-prey spatial-temporal interactions.

In the next subsection, incorporating species heterogeneity to Model system (5.7-5.9) via a

reaction-diffusion model is reconsidered.

5.3.3 Species’ dispersal

By setting one of the dispersal coefficients to unity, and ignoring the implicit assumption of

homogeneity of species with respect to space, and taking the spatial structure (heterogeneity) into

account by incorporating the spatial variations of species through addition of dispersal terms to the

non-dimensionalised Model (5.7-5.9), directly leads to the following dimensionless form:

∂u

∂t
= D

∂2u

∂x2
+

f̂(u,v,w)︷ ︸︸ ︷
ru (1 − u) − µηuv

1 + φu+ ψw
− ηuw

1 + φu+ ψv
x ∈ [a, b] (5.13)

∂v

∂t
=

∂2v

∂x2
+

ĝ(u,v,w)︷ ︸︸ ︷
γηuv

1 + φu+ ψw
− µv + βv x ∈ [a, b] (5.14)
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∂w

∂t
=

∂2w

∂x2
+

ĥ(u,v,w)︷ ︸︸ ︷
γηuw

1 + φu+ ψv
− w + βw x ∈ [a, b] (5.15)

∂u

∂x
=

∂v

∂x
=
∂w

∂x
= 0 x ∈ Γ = {a, b} (5.16)

where Ω ⊂ R is a bounded domain with smooth boundary Γ, and because of a closed species

ecosystem, zero-flux Neumann boundaries conditions are assumed. Furthermore, x is the spatial

variable and D is the relative dispersal coefficient of prey to predators, i.e., D = Db

Dp
where Db is the

dispersal rate of prey and Dp is the synchronized dispersal rate of the predators.

It is noted that the steady states of the well mixed model are also steady states of the reaction-

diffusion model. Thus, at the homogeneous steady state solution (u, v, w) = (u∗, v∗, w∗), both the

reaction terms and the spatial derivatives are zero and this leads to zero time derivatives. Using the

approach developed by Roussel (2004), a linearisation of the reaction-diffusion system (5.13-5.16) is

carried out by defining:

u = δu+ u∗, v = δv + v∗ and w = δw + w∗

where δu, δv and δw are all space and time dependent perturbations about equilibrium points. The

important dynamics of the system can always be studied by analysing the limiting situations of these

perturbations about the equilibrium points. Due to linearity in perturbations, it should be noted

that:

∂u

∂t
=
∂(δu)

∂t
,
∂2u

∂x2
=
∂2(δu)

∂x2
,
∂v

∂t
=
∂(δv)

∂t
,
∂2v

∂x2
=
∂2(δv)

∂x2
,
∂w

∂t
=
∂(δw)

∂t
,
∂2w

∂x2
=
∂2(δw)

∂x2

Linearisation of the reaction terms is simply J∗ [δu δv δw]T , where J∗ is the reaction variational/

community matrix evaluated at the steady states and T denotes the usual matrix transpose operation.

The following linearized equation is obtained:

∂

∂t




δu

δv

δw


 = D

∂2

∂x2




δu

δv

δw


 + J∗




δu

δv

δw



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where

D =




D 0 0

0 1 0

0 0 1




is the diagonal dispersal matrix and

J∗ =




f̂u∗ f̂v∗ f̂w∗

ĝu∗ ĝv∗ ĝw∗

ĥu∗ ĥv∗ ĥw∗




is the reaction variational matrix whose entries are given as follows:

J∗
11 = f̂u∗ =

[
r(1 − u∗) − µηv∗

1 + φu∗ + ψw∗ − ηw∗

1 + φu∗ + ψv∗

]
+

u∗
[
−r +

µηφv∗

(1 + φu∗ + ψw∗)2
+

ηφw∗

(1 + φu∗ + ψv∗)2

]
,

J∗
12 = f̂v∗ = ηu∗

[
ψw∗

(1 + φu∗ + ψv∗)2
− µ

(1 + φu∗ + ψw∗)

]
,

J∗
13 = f̂w∗ = ηu∗

[
µψv∗

(1 + φu∗ + ψw∗)2
− 1

(1 + φu∗ + ψv∗)

]
,

J∗
21 = ĝu∗ =

γηv∗(1 + ψw∗)

(1 + φu∗ + ψw∗)2
,

J∗
22 = ĝv∗ =

γηu∗

(1 + φu∗ + ψw∗)
+ (β − µ),

J∗
23 = ĝw∗ =

−γηψu∗v∗

(1 + φu∗ + ψw∗)2
,

J∗
31 = ĥu∗ =

γηw∗(1 + ψv∗)

(1 + φu∗ + ψv∗)2
,
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J∗
32 = ĥv∗ =

−γηψu∗w∗

(1 + φu∗ + ψv∗)2
,

J∗
33 = ĥw∗ =

γηu∗

(1 + φu∗ + ψv∗)
+ (β − 1).

It should be clearly noted that, at the co-existence equilibrium, the first term of f̂u∗ vanishes, ĝv∗ =

0 and ĥw∗ = 0. Stability of the steady states under spatial and temporal variations can easily

be established by assuming small heterogeneous spatial perturbations. A widely preferred form

(Kolokolnikov et al., 2006; Peng & Wang, 2005); [δu δv δw]T = [δu0 δv0 δw0]
T eλteikx, that is used

in analysing a generic reaction-diffusion model (the Brusselator) for a tri-molecular chemical reaction,

morphogenesis and pattern formation is used. The complex exponential, eikx = cos kx + i sin kx is

a simplified way of representing the spatial wave having a wave number k. For stability of a steady

state under any arbitrary small perturbation, Re(λ) < 0 and instability otherwise. The sine waves

are common sources of such arbitrary noise and hence stability of the reaction-diffusion system can

be deduced with ease. Substituting the defined perturbation form into the linearized equation and

simplifying yields:

λ




δu0

δv0

δw0


 = −k2D




δu0

δv0

δw0


 + J∗




δu0

δv0

δw0




which gives the homogeneous equation:

(
λI + k2D − J∗)




δu0

δv0

δw0


 = 0
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where I is an identity matrix. For a non-trivial solution, det (λI + k2D − J∗) = 0, which is a general

characteristic equation for reaction-diffusion equations in one spatial dimension (Roussel, 2004).

⇒

∣∣∣∣∣∣∣∣∣

λ+ P −f̂v∗ −f̂w∗

−ĝu∗ λ+Q −ĝw∗

−ĥu∗ −ĥv∗ λ+R

∣∣∣∣∣∣∣∣∣
= 0

where P = k2D − f̂u∗, Q = k2 − ĝv∗ and R = k2 − ĥw∗. Further simplification yields:

λ3 + a1λ
3 + a2λ+ a3 = 0

where:

a1 = P +Q+R

a2 = PQ+ PR +QR−
(
ĝw∗ĥv∗ + f̂v∗ ĝu∗ + f̂w∗ĥu∗

)

a3 = PQR−
(
P ĝw∗ĥv∗ +Qf̂w∗ĥu∗ +Rf̂v∗ ĝu∗ + f̂v∗ ĝw∗ĥu∗ + f̂w∗ ĝu∗ĥv∗

)

Using the general results obtained about local stability, the stability of the equilibrium points of

the reaction-diffusion system (5.13-5.16) then follows. The steady state (u∗, v∗, w∗) is locally asymp-

totically stable to small perturbations if the parameter values satisfy all conditions, a1 > 0, a3 >

0 and a1a2 − a3 > 0, that arise from the Routh-Hurwitz stability criterion for a given characteristic

polynomial.

At the extinction equilibrium point E0 (0, 0, 0) : f̂u∗ = r, ĝv∗ = β−µ, ĥw∗ = β− 1 and the rest of

the partial derivatives are annihilated. Thus, P = k2D−r, Q = k2− (β−µ) and R = k2− (β−1),

and the coefficients of the characteristic equation become:

a1 = k2(2 +D) + (µ+ 1) − (2β + r)

a2 = π̃1k
4 + π̃2k

2 + π̃3 where π̃1 = 2D + 1, π̃2 = (D + 1)(µ+ 1) − 2(β(D + 1) + r)

and π̃3 = r(β − µ) + r(β − 1) + (β − 1)(β − µ)

a3 = (k2D − r)(k2 + µ− β)(k2 + 1 − β)
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It is clear that if a3 > 0, then a1 > 0 and a1a2 − a3 > 0 follows. Thus the stability condition for

extinction steady state is k2(2+D) >
(2εfF+rb)−(µh+µl)

µl
for which a1 > 0, k >

√(
−π̃2±

√
π̃2
2−4π̃1π̃3

2π̃1

)
for

a2 > 0 and when a3 > 0, k2 > max
{
r
D
, (β − µ), (β − 1)

}
= max

{
rbDp

µlDb
,
εfF−µh

µl
,
εfF−µl

µl

}
. Since, for

stability of E0 :

a1a2 − a3 =
[
2k2 + µ+ 1 − 2β

] [
k2(D + 1) + 1 − β − r

] [
k2(D + 1) + µ− β − r

]
,

k2 > max

{
β − (µ+ 1)

2
,
(β + r − µ)

D + 1
,
(β + r − 1)

D + 1

}

= max

{
2εfF − (µh + µl)

2µl
,
Dp(εfF + rb − µh)

µl(Db +Dp)
,
Dp(εfF + rb − µl)

µl(Db +Dp)

}
.

Stability of the extinction steady state depends largely on the wave number k and dispersal of the

interacting prey and predator species. At a high relative dispersal rate i.e., prey dispersing faster

than the interfering predators, the extinction equilibrium is stable and unstable otherwise. A relative

diffusivity D 6= 1, i.e., either D < 1 or D > 1 implies that one of the species disperses faster than

the other. This is one of the requirements of Turing bifurcation in the absence of other complex

ecosystem dynamics. A high gain from additional food to predators at low predator mortality rates

appears to be a realistic trade-off strategy that raises both the wave number and relative dispersal

of species. Turing instability arises if the probability of dispersal i.e., Pr = Dp

Db+Dp
, of the interfering

predators is as low as possible i.e., Pr −→ 0. Such dispersal driven ecosystem instability can be

introduced to such a predator-prey system through the provision of additional food to predators.

The nutritional value (predator fertility) gained from such additional food should be high enough to

overcome predator natural mortality and this result seems to contradict the notion of “meat is meat”

to a predator. Hence the importance of considering predator preference for prey in a predator-prey

ecosystem for sustainable wildlife management (Wentworth et al., 2011; Hayward & Kerley, 2008;

Hayward et al., 2007a; Franklin, 2005).

The predator-free equilibrium point E1 (1, 0, 0) gives f̂u∗ = −r, 1
µ
f̂v∗ = f̂w∗ = η

1+φ
, ĝv∗ = γη

1+φ
+

β − µ, ĥw∗ = γη
1+φ

+ β − 1 and the other partial derivatives vanish. Thus, P = k2D + r, Q =

k2 + $ + µ and R = k2 + $ + 1, where $ = −( γη
1+φ

+ β) for which the coefficients of the
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characteristic equation reduce to:

a1 = k2(2 +D) + 2$ + r + µ+ 1

a2 = ˆ̃π1k
4 + ˆ̃π2k

2 + ˆ̃π3 where ˆ̃π1 = 2D + 1, ˆ̃π2 = (D + 1)(µ+ 1) + 2($(D + 1) + r)

& ˆ̃π3 = r($ + µ) + r($ + 1) + ($ + 1)($ + µ)

a3 =
(
k2D + r

) (
k2 + µ+$

) (
k2 + 1 +$

)

The Routh-Hurwitz criteria are satisfied if k2(2 + D) > −$ − (µ + r + 1) under which positive

wave numbers and relative diffusivity are guaranteed since −$ > 0 which further implies that

| −$| > (µ+ r + 1). This condition about a1 is equivalent to;

k2(2 +D) >
εαKb(1 − F ) + [εfF − (rb + µh + µl)][1 + aKb]

µl(1 + aKb)
,

which holds provided εfa > εα and εfF > (rb +µh +µl)(1+ aKb). Since εf is a measure of quality of

additional food as a result of predator fertility gain, this indicates that quality of additional food to

predators as compared to prey quality can always relieve predation pressure from prey. Though, as

most theories of biological control results reveal (Srinivasu et al., 2007; Sabelis & van Rijn, 2005; van

Baalen et al., 2001; Murdoch et al., 1985; Rosenzweig, 1971), this might not be a trade-off strategy

since it might result in excessive predation sooner or later. Furthermore,

k >

√√√√√

−ˆ̃π2 ±

√
ˆ̃π

2

2 − 4ˆ̃π1
ˆ̃π3

2ˆ̃π1




and

k2 > max {| −$| − µ, | −$| − 1}

= max

{
εαKb(1 − F ) + [εfF − µh][1 + aKb]

µl(1 + aKb)
,
εαKb(1 − F ) + [εfF − µl][1 + aKb]

µl(1 + aKb)

}

show that the diffusive stability and/or instability occurs for an infinite range of wavenumber k. The

instability that occurs has been observed to form spatial patterns which arise from a combination

of various sine waves within a finite range of wavelengths resulting into a non-trivial wave pattern

(Kolokolnikov et al., 2006; Peng & Wang, 2005; Holt, 1984). Further computations leads to;

a1a2 − a3 =
[
2k2 + µ+ 1 + 2$

] [
k2(D + 1) + r + 1 +$

] [
k2(D + 1) + µ+ r +$

]
,
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which is reminiscent of the Routh-Hurwitz condition for the extinction equilibrium. Hence, similar

stability results are deduced which suggests the feasibility of a wave number k > 0 for which the

species’ dispersal can be controlled. The positive value of the required wave number is assured

since −$ > 0. Permanence (Proposition 5.3.1) of Model system (5.7-5.9) leads to Theorem 5.3.1

(Takeuchi, 1996) that ensures local stability of the co-existence equilibrium under species’ interference

and competitive exclusion.

Stability of the remaining steady states can be established although mathematically more complex.

Though computation of the coefficients, ai’s was possible, reducing the Routh-Hurwitz quantity a1a2−

a3, to a mathematically tractable form is not possible. It will now be proved that, for the Model

system (5.7-5.9), the prey population has a finite upper-limit resulting in the fact that it is impossible

for prey populations to become infinite.

Preliminaries

Before extending the limit cycle perturbations method to analyse a three species population advection-

reaction-diffusion system (5.19-5.21), the following preliminary motivating definitions are stated first.

Definition 5.3.4 {χA(t) : −∞ < t < ∞ with χA(0) = A} defines any orbit Υ of any phase curve

through any arbitrary point A. Similarly, {χA(t) : t ∈ R− with χA(0) = A} and {χA(t) : t ∈

R+ with χA(0) = A} define positive and negative (Υ+ and Υ−) semi-orbits, respectively.

Definition 5.3.5 (Takeuchi, 1996) The set of points in R2 which are approached along an orbit Υ

with increasing time i.e., t → +∞, is the ω-limit set of the orbit. The α-limit set of Υ is similarly

defined as the set of points approached with decreasing time i.e., t→ −∞.

Definition 5.3.6 (Takeuchi, 1996) A periodic orbit Υ0, that is the ω-limit set or the α-limit set for

all other orbits in some neighbourhood of Υ0 is called a limit cycle.

Theorem 5.3.1 For the three dimensional competitive and permanent system (5.7-5.9), let E4 (u∗, v∗, w∗)

be hyperbolic. Then the stable manifold Υ̂ of E4, is one dimensional, and for any α ∈ Υ̂, the ω-limit

set ω(α) is a non-trivial periodic orbit in Ω.
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Theorem 5.3.2 Any solution of system (5.7-5.9) is bounded.

Lemma 5.3.1 Suppose that (u(t), v(t), w(t)) is a solution to system (5.7-5.9). In addition, assuming

that for some ε > 0, u(t0) = u, v(t0) = v, w(t0) = w with v ≥ −2r
β−µ + ε

β−µ , w ≥ −2r
β−1

+ ε
β−1

and u > u∗.

Then there exists t∗ > t0 such that u(t∗) = u∗.

Proof of Lemma 5.3.1: The lemma above is proved and used later to prove Theorem 5.3.2.

Since f̂(u∗, v, w) = 0 and γηu
1+φu+ψw

, γηu
1+φu+ψv

are increasing, then u > u∗ leads to f̂(u, v, w) > 0.

Without loss of generality, it follows that:

f̂(u, v, w) < f̂(u, v, w) +
[
ĝ(u, v, w) + ĥ(u, v, w)

]
= ru(1 − u) + (β − µ)v + (β − 1)w

< −2r + (β − µ)v + (β − 1)w,

(
since; max{ru(1 − u)} =

1

4
r ∼ 〈1

2
,−2r〉

)

< −ε
(

since v ≥ −2r

β − µ
+

ε

β − µ
, w ≥ −2r

β − 1
+

ε

β − 1

)

Therefore, f̂(u, v, w)|t≥t0 < −ε and that the line B = −εt + (u+ u∗) defines the upper bound of the

u(t). Furthermore, the line B = −εt + (u + u∗) contains the points (t0, u), (t1 = u
ε
, u∗) and has a

slope −ε. Hence, there exists t∗ > t0 < t1 such that u(t∗) = u∗.

Proof of Theorem 5.3.2: Since Theorem 5.3.2 implies Theorem 5.3.1, it suffices to prove

the former. The positive octant R3
+ = {(u, v, w) ∈ R3 : u(0) ≥ 0, v(0) ≥ 0 & w(0) ≥ 0} is invariant

under the dynamical system. The solution never leaves R3
+ since du

dt
= 0 when u ≡ 0, dv

dt
= 0 when

v ≡ 0 and dw
dt

= 0 when w ≡ 0. If 0 ≤ u ≤ 1, then for every u ≤ 1, − µηuv
1+φu+ψw

− ηuw
1+φu+ψv

≤ 0 and

ru(1 − u) ≥ 0 which implies that f̂(u, v, w) ≥ 0. In addition, if u ≤ u∗ (equilibrium solution), then

µ ≥ γηu
1+φu+ψw

+ β and 1 ≥ γηu
1+φu+ψv

+ β. Consequently γηu
1+φu+ψw

− µ+ β ≤ 0 and γηu
1+φu+ψv

− 1 + β ≤ 0.

Therefore, ĝ(u, v, w) = v
(

γηu
1+φu+ψw

− µ+ β
)
≤ 0 and ĥ(u, v, w) = w

(
γηu

1+φu+ψv
− 1 + β

)
≤ 0.

Furthermore, for every solution such that v(0) > −2r
β−µ , w(0) > −2r

β−1
and u(0) > u∗, there exists

some v2, w2 such that v(t) ≤ v2, w(t) ≤ w2 for all t ≥ 0. Applying Lemma 5.3.1, there is some t∗

such that u(t∗) = u∗. Let v1 = v(t∗), w1 = w(t∗) and then applying Lemma 5.3.1 once more, it is
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concluded that there is an orbit Υ(t) joining the point (2, v1, w1) and the line u = u∗, in the point

(u∗, v2, w2). Since for u ≤ w∗, v(t) and w(t) are decreasing, and the orbit [u(t), v(t), w(t)]T cannot

cross the orbit Υ(t), then v(t) ≤ v2, w(t) ≤ w2 for all t ≥ 0. The proof of the theorem is concluded

by noting that v(0) < −2r
β−µ , w(0) < −2r

β−1
or u(0) < u∗ lead to the previous scenarios.

Corollary 5.3.1 Suppose µl > ε̃F̃ and µl >
(1−F̃ )ε̃α̃2

2ãµ̃ψ̃
, then system (5.7-5.9) has periodic solutions.

Proof: From Theorem 5.3.2, all interior solutions are bounded.

The qualitative analysis in Subsection 5.3.3 shows that under the hypotheses of the corollary,

equilibrium point E3 is a stable steady state. Then by the Poincaré-Bendixson Theorem (Boyce &

DiPrima, 2001; Takeuchi, 1996), an interior solution is either a closed periodic orbit or approaches a

closed periodic orbit as t→ ∞.

5.3.4 On the principle of competitive exclusion

The ecological principle of competitive exclusion asserts that, multiple species cannot indefinitely

occupy the same niche. If there are n populations that depend linearly on m resources (m < n),

then at least one population will vanish and hence, in the long run, only at most m population can

survive (Takeuchi, 1996; Armstrong & McGehee, 1980). The equilibria E2 (u∗, v∗, 0) and E3 (u∗, 0, w∗)

define scenarios where one predator out-competes the other as a result of interspecific interference.

Therefore, global stability for the case when one of the predators is out-competed is investigated in

this subsection.

The functions f(u) = r(1 − u), p(u, w) = µηu
1+φu+ψw

, q(u, v) = ηu
1+φu+ψv

, g(v) = β − µ and h(w) =

β − 1, are defined as the specific growth rate of prey, functional responses and predator controlled

death rates due to presence of additional food. It is noted that the above functions have been

non-dimensionalised and satisfy the usual default conditions for predator-prey systems (Hsu, 2005;

Takeuchi, 1996). The following is a preliminary motivating theorem for the global stability of the

out-competition result of the two predators.
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Theorem 5.3.3 (Lyapunov’s Stability Theorem): (Takeuchi, 1996) Consider the dynamical system

ẋ = f(x) on some region Ω ⊆ Rn and define the ω-limit of x as the set ω(x) of points y ∈ Rn, such

that x(tk) −→ y as k −→ ∞ for some sequence tk > 0; tk −→ ∞ and V : Ω ⊆ Rn −→ R be continu-

ously differentiable. If for some solution V (t) −→ x(t), the derivative V̇ satisfies V̇ ≥ or ≤ 0, then

ω(x) ∩ Ω is contained in the set {x ∈ Ω|V̇ (x) = 0}. Suppose that there exists a Lyapunov function

V (x) such that V̇ (x) < 0 for all x ∈ Rn except at equilibrium solutions (x∗), then the equilibrium

point x∗ is globally stable.

Remark 5.3.3 The maximal invariant set contained in {x ∈ Ω|V̇ (x) = 0} is a LaSalle’s invariant

set. In addition, since any solution starting in ω(x) remains there indefinitely, then ω(x) is invariant.

Remark 5.3.4 In Theorem 5.3.3 above, V is the Lyapunov function and V̇ (x) =
n∑
i=1

∂V (x)
∂xi

ẋi is the

time derivative of V along the solutions of the dynamical system ẋ = f(x).

Theorem 5.3.3 and similar Lyapunov stability theorems have been stated and proved elsewhere

(Hsu, 2005; Takeuchi, 1996; Hsu & Huang, 1995), thus, it is justifiable to proceed by using them in

establishing the out-competition results. As shown by Cantrell & Cosner (2001), Takeuchi (1996)

and Hsu & Huang (1995), a candidate Lyapunov function V (u, v, w) can be defined such that

V (u, v, w) =

∫ u

u∗

[
π11

(
1 − p(u∗, w∗)

p(x)

)
+ π12

(
1 − q(u∗, v∗)

q(x)

)]
dx+

∫ v

v∗

(
x− v∗

x

)
dx+ w

For E2 (u∗, v∗, 0) ∈ R3
+, with suitable choices for the constants π11 = π12 = γ, and because of well

known conditions and properties of the functional responses and specific growth rate functions (Seo

& Kot, 2008; Hsu, 2005; Takeuchi, 1996), (u, v, w) is positive in the region defined by; 0 < u < u∗ <

Kb, 0 < v∗ < v < ξ1, 0 < w < ξ2, where ξ1 and ξ2 are positive constants. Thus, the Lyapunov

function reduces to:

V (u, v, w) = [γ (p(u, w)− p(u∗, w∗)) + γ (q(u, v) − q(u∗, v∗))]

[
uf(u)

q(u, v)
− vp(u, w)

q(u, v)
− w

]
+

(v − v∗) [−g(v) + γp(u, w)] + w [−h(w) + γq(u, v)]

At E2 (u∗, v∗, 0), the system (5.13-5.15) reduces to:

u∗f(u∗) − v∗p(u∗) = 0 (5.17)

v∗p(u∗) + g(v∗) = 0 (5.18)
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Using the system above and with lim
t→∞

Sup q(u, v) ∼ lim
t→∞

Sup p(u, w) ∼ p(u), direct algebraic

computation yields:

dV

dt
=

[
γ (p(u, w) − p(u∗)) + γ

p(u, w)

q(u, v)
(q(u, v) − q(u∗))

] [
uf(u)

p(u, w)
− u∗f(u∗)

p(u∗)

]
+

(v − v∗)

[
(g(v∗) − g(v)) + γ

p(u, w)

q(u, v)
(q(u∗, v∗) − q(u, v))

]
+

w

[
γ
q(u, v)

p(u, w)
(p(u∗) − p(u, w)) + (h(0) − h(w))

]
< 0

Hence, asymptotic stability of E2 (u∗, v∗, 0) follows if and only if dV
dt

< 0, and this leads to the

following lemma.

Lemma 5.3.2 If in the neighbourhood of E2 (u∗, v∗, 0) in the positive cone, the function uf(u)
p(u,w)

is

strictly decreasing, then the equilibrium point E2 (u∗, v∗, 0) is globally asymptotically stable.

Lemma 5.3.3 Without loss of generality, the global asymptotic stability of E3 (u∗, 0, w∗) follows in

a similar fashion.

The proof is similarly done using a candidate Lyapunov function defined as:

V (u, v, w) =

∫ u

u∗

[
π21

(
1 − p(u∗, w∗)

p(x)

)
+ π22

(
1 − q(u∗, v∗)

q(x)

)]
dx+ v +

∫ w

w∗

(
x− w∗

x

)
dx

The permanence and global stability of the Model (5.7-5.9) depends essentially on local stability,

i.e., on the eigenvalues of the variational/community matrix evaluated at a steady state, of the

coexistence equilibrium E4 (u∗, v∗, w∗) . The variational matrices evaluated at all equilibrium points

give eigenvalues with non-zero real parts i.e., hyperbolic solutions.

5.3.5 Periodicity and species’ dispersal

Within the game park, prey and predator species diffuse (random movements) and disperse

(synchronised motion in defined direction destined to known locations). For example, dispersal rates

between female social units of kudus were studied and averaged to 0.5% per individual per year
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(Owen-Smith, 2000). Thus, a dimensionless migration coefficient m = mb

mp
, where mb and mp are

migration coefficients of prey and predators, respectively, is incorporated to the reaction-diffusion

system (5.13-5.15), and as defined earlier, D = Db

Dp
remains the relative dispersal coefficient of prey

to predators where Db is the dispersal rate of prey and Dp is the synchronized dispersal rate of the

predators. This leads to the advection-reaction-diffusion system:

∂u

∂t
= D∇2u−m∇u+ f̂(u, v, w) (5.19)

∂v

∂t
= ∇2v −∇v + ĝ(u, v, w) (5.20)

∂w

∂t
= ∇2w −∇w + ĥ(u, v, w) (5.21)

where ∇2 = ∂2

∂x2 or ∇2 = ∂2

∂x2 + ∂2

∂y2
is the usual Laplacian operator in one or two-dimensional space

and ∇ = ∂2

∂x
.

Using the methods of limit cycle perturbations on Burgers equation ( ∂
∂t
u(x, t)+u(x, t) ∂

∂x
u(x, t) =

σ ∂2

∂x2u(x, t) + F (x, t)), the dynamical properties of phase waves in reaction-diffusion equations have

been assiduously studied (Liu, 2010; Zola et al., 2008; Petrovskii & Li, 2006; Peng & Wang, 2005;

Petrovskii, 1999; Burns et al., 1998; Sachdev, 1987). In the sampled literature, the limit cycle per-

turbation method has been predominantly used in the analysis of one or two interacting quantities

(chemicals and/or populations) in which one or two equation mathematical models have been studied.

A variety of qualitative dynamics have been deduced from the generic reaction-diffusion Brusselator

model using such limit cycle perturbation methods (cf. Subsection 5.3.3). Other approaches, for

example, the time-dependent wave packet approach used (Luan & Tang, 2005) for analysing qualita-

tively the quantum dynamics of the Schrödinger equation (i~ ∂
∂t

Ψ = ĤΨ) may also apply to a variety

of ecological predator-prey models.

A limit cycle solution is a closed trajectory in the predator-prey space which is not a member of

a continuous family of closed trajectories (Takeuchi, 1996). A stable limit cycle trajectory is such

that any small perturbation from the trajectory decays to zero. Both prey and predator populations

undergo constant oscillations whose amplitudes bear no relationship to the biology of the species
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involved but only to the initial sizes of their populations, which is quite arbitrary (Bazykin, 1998;

Takeuchi, 1996). Since periodic orbits are compact limit sets, the Poincaré-Bendixson Theorem could

be extended to a competitive or cooperative system in three dimensions (Idema, 2005).

Theorem 5.3.4 (Poincaré-Bendixson Theorem (i)): (Idema, 2005) A compact limit set of a com-

petitive or cooperative system in R3 that contains no equilibrium points is a periodic orbit.

Theorem 5.3.5 (Poincaré-Bendixson Theorem (ii)): Let the reaction (external force) functions

f̂(u, v, w), ĝ(u, v, w) and ĥ(u, v, w) have continuous first partial derivatives in a domain Ω of the

uvw−space. Further, let Ω̂ be a bounded sub-domain in Ω, and let = be the region that consists of Ω̂ to-

gether with its boundary, i.e., all points of = are in Ω. In addition, suppose that = contains no critical

point for system (5.19-5.21). If there exists a constant τ0 such that u = ϕ(τ), v = ψ(τ) and w = φ(τ)

is a solution to system (5.19-5.21) that exists and stays in = for all τ ≥ τ0, then system (5.19-5.21)

allows a periodic solution in =; i.e., either u = ϕ(τ), v = ψ(τ) and w = φ(τ) is a periodic solu-

tion (closed trajectory), or u = ϕ(τ), v = ψ(τ) and w = φ(τ) spirals toward a closed trajectory as

τ −→ ∞.

Theorem 5.3.6 (Poincaré-Bendixson Theorem (iii)): (Takeuchi, 1996) A bounded semi-orbit that

does not approach any singular point is either a closed periodic orbit or approaches a closed periodic

orbit.

Theorem 5.3.7 (Consequence to Green’s Theorem): (Boyce & DiPrima, 2001) Let f̂(u, v) and ĝ(u, v)

be any two reaction (external force) functions for a two equation framework model. Suppose further

that f̂(u, v) and ĝ(u, v) have continuous first partial derivatives in a simply connected domain Ω of

the uv−plane. If f̂u(u, v)+ ĝv(u, v) has the same sign throughout Ω, then there is no closed trajectory

lying entirely in Ω for the model system of the interacting variables.

By assuming that the advection-reaction-diffusion Model (5.19-5.21) admits a limit cycle with fre-

quency ϕ0, and employing vector notation, the vector of species’ reaction (external force for Burgers’

equation) f̂(u0) =
[
f̂ , ĝ, ĥ

]T
, vector of interacting species u0 = [u0, v0, w0]

T such that for an initial

periodic solution u = u0(τ) where τ = ϕ0t for some periods T ∗
b and T ∗

p . These descriptions yield:

ϕ0
∂u0

∂τ
= f̂(u0) for u0(τ) = ∂u0(τ ± T ∗

b , T
∗
p ) (5.22)
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As shown by Liu (2010), Zola et al. (2008), Petrovskii (1999) and Burns et al. (1998), with θ =

θ(G,Ø) and any small parameter ε, with the introduction of the following multiple scales; G =
√
εxexp(ϕ0

√
εx), Ø = εtexp(ϕ0εt), τ = ν0texp(ϕ0εν0t) and the asymptotic expansion:

u = u0(τ + θ) + εui(τ + θ)exp(ϕ0ετ); i ∈ N; ε, ϕ0 > 0

into the advection-reaction-diffusion system (5.19-5.21) leads to the following linear equations:

ϕ0
∂u0

∂τ
= f̂(u0) (5.23)

and [
aij

] [
uj

]T
=

[
Pin

]T
; for i, j = 1, 2, 3

where a11 = ϕ0
∂
∂τ
−∂f̂
∂u

(u0, v0, w0), a12 = −∂f̂
∂v

(u0, v0, w0), a13 = − ∂f̂
∂w

(u0, v0, w0), a21 = − ∂ĝ
∂u

(u0, v0, w0),

a22 = ϕ0
∂
∂τ

− ∂ĝ
∂v

(u0, v0, w0), a23 = − ∂ĝ
∂w

(u0, v0, w0), a31 = −∂ĥ
∂u

(u0, v0, w0), a32 = −∂ĥ
∂v

(u0, v0, w0) and

a33 = ϕ0
∂
∂τ

− ∂ĥ
∂w

(u0, v0, w0) are the entries of the non-adiabatic potential matrix, the superscript

T denotes the usual transpose operation and Pin ’s are the heterogeneous terms of the nth order

equation. By considering a first order situation, i.e., n = 1:

Pi1 = −u′
0

∂θ

∂Ø
−mχu

′
0∇θ +Dχ

(
u′′

0|∇θ|2 + u′
0∇2θ

)
; i = 1, 2, 3; χ = b for u′0, otherwise χ = p

Furthermore, as shown by Zola et al. (2008) and Burns et al. (1998), we define the direct tensor

(outer) products; ζ0 ⊗ ς0 = [u0, v0, w0]
T , ζ1 ⊗ ς1 = [u1, v1, w1]

T , ζ2 ⊗ ς2 = [u2, v2, w2]
T , while ζ̃ ⊗ ς̂ =

[ũ, ṽ, w̃]T is the non-trivial periodic solution to the adjoint differential equation Γ̃ζ̃0⊗ς̂0 = 0, where Γ̃ =[
ãij

]
for which; ã11 = −ϕ0

∂
∂τ

− ∂f̂
∂u

(u0, v0, w0), ã12 = −∂f̂
∂v

(u0, v0, w0), ã13 = − ∂f̂
∂w

(u0, v0, w0), ã21 =

− ∂ĝ
∂u

(u0, v0, w0), ã22 = −ϕ0
∂
∂τ

− ∂ĝ
∂v

(u0, v0, w0), ã23 = − ∂ĝ
∂w

(u0, v0, w0), ã31 = −∂ĥ
∂u

(u0, v0, w0), ã32 =

−∂ĥ
∂v

(u0, v0, w0) and ã33 = −ϕ0
∂
∂τ

− ∂ĥ
∂w

(u0, v0, w0).

The phase wave periodic solvability condition for ζi and ςi as used by Liu (2010) and Zola et al.

(2008), gives:

〈ζ̃, ς̂ , ζ ′0〉
∂θ

∂Ø
= 〈ζ̃, ς̂ , ξ1〉∇θ + 〈ζ̃, ς̂ , ξ2〉∇2θ + 〈ζ̃, ς̂ , ξ3〉|∇θ|2

=⇒ ∂θ

∂Ø
= Φ̂1

∂θ

∂G
+ Φ̂2

∂2θ

∂G2
+ Φ̂3

∣∣∣∣
∂θ

∂G

∣∣∣∣
2

(5.24)

97



where Φ̂i =
∣∣∣ 〈ζ̃ ,ς̂,ξi〉〈ζ̃,ς̂,ζ′0〉

∣∣∣
=
, Φ̂i being evaluated in accordance to the Poincaré-Bendixson Theorem (Boyce

& DiPrima, 2001; Takeuchi, 1996) over the composite region =; ξ1 = [−mbu
′
0,−mpv

′
0,−mpw

′
0]
T , ξ2 =

[Dbu
′
0, Dpv

′
0, Dpw

′
0]
T and ξ3 = [Dbu

′′
0, Dpv

′′
0 , Dpw

′′
0 ]
T and the periodic solvability condition of ζi and ςi

as suggested by Petrovskii & Li (2006) and motivated by Liu (2010):

〈ζ̃, ς̂ , ξi〉 =

∫ T ∗
p

0

∫ T ∗
b

0

(ζ̃, ς̂ , ξi)dτbdτp (5.25)

leads to:

∑

χ=b,p

∫ T ∗
p

0

∫ T ∗
b

0

ũ

[
−u′

0

∂θ

∂Ø
−mχu

′
0∇θ +Dχ

(
u′′

0|∇θ|2 + u′
0∇2θ

)]
dτbdτp = 0; χ = b for u′0,

otherwise χ = p, where:

ϕ0
∂ũ

∂τ
=

[
âij

]
ũ; ũ = [ũ, ṽ, w̃]T

for which; â11 = −∂f̂
∂u

(u0, v0, w0), â12 = − ∂ĝ
∂u

(u0, v0, w0), â13 = −∂ĥ
∂u

(u0, v0, w0), â21 = −∂f̂
∂v

(u0, v0, w0),

â22 = −∂ĝ
∂v

(u0, v0, w0), â23 = −∂ĥ
∂v

(u0, v0, w0), â31 = − ∂f̂
∂w

(u0, v0, w0), â32 = − ∂ĝ
∂w

(u0, v0, w0), & â33 =

− ∂ĥ
∂w

(u0, v0, w0) and T being the matrix/vector transpose. With Θ = ϕ0t+θ, equation (5.24) becomes:

∂Θ

∂t
= ϕ0 + Φ̂1∇Θ + Φ̂2∇2Θ + Φ̂3 |∇Θ|2 (5.26)

The species’ dispersal relationships are determined from equations (5.25) and (5.26) by using the

standard wave characteristics (Liu, 2010; Petrovskii & Li, 2006; Petrovskii, 1999), ϕ = ∂Θ
∂t

and κ =

∇Θ:

ϕ = ϕ0 + Φ̂1κ + Φ̂3κ
2 (5.27)

Using equations (5.24) and (5.25), and defining:

ÎMigration =

∫ T ∗
p

0

∫ T ∗
b

0

[ũ(−mbu
′
0) + ṽ(−mpv

′
0) + w̃(−mpw

′
0)]dτbdτp

ÎDiffusion =

∫ T ∗
p

0

∫ T ∗
b

0

[ũDbu
′′
0 + ṽDpv

′′
0 + w̃Dpw

′′
0 ]dτbdτp
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ÎPeriodicity =

∫ T ∗
p

0

∫ T ∗
b

0

[ũu′0 + ṽv′0 + w̃w′
0]dτbdτp

and for computational simplicity and mathematical tractability of results, we consider T ∗
p = T ∗

b = 2π

for which the smooth and positive periodic solutions are defined by the following relationships:

Φ̂1 =
ÎMigration

ÎPeriodicity
and Φ̂3 =

ÎDiffusion

ÎPeriodicity

5.4 Biological interpretation

Due to an overlap in dietary niche, models for the dynamics of interspecific interference of two

predators whose activity feeding patterns are regulated by additional food have been analytically

analysed for stability, dissipativity, permanence, periodicity and persistence. Group vigilance of the

prey and predator interference have been modelled by the so-called Beddington-DeAngelis functional

and numerical responses. The effect of additional food on the dispersal trends of the dynamics of

the model has been shown to be of some significance. In particular, the wave number k, and relative

diffusion of the species D, whose magnitudes are determined by the nutritional value of additional

food, have been shown to provide the necessary stability conditions for analysed equilibrium points.

The analytical results show that avoidance of out-competition of one of the interfering predators can

be achieved via a given choice of additional predator food. The positivity conditions on the wave

number κ, is in agreement with prey preference of most predators and hence a deviation from the

notion of “meat is meat” to a predator (Hayward & Kerley, 2008; Hayward, et al., 2006; Hayward &

Kerley, 2005).

The dispersal properties of the species can be tracked from a clear knowledge of the dispersal

rate (ϕ), which is determined from values of periodic solutions (Φ̂1 and Φ̂3) for various estimates of

the wave numbers (κ). Furthermore, erratic dynamics and more conspicuous heterogeneous patterns

arise as a result of an increase in the wave number (amplitude of underlying oscillations) which in turn

leads to unstable periodic solutions. Such heterogeneities, as observed by Pearce et al. (2006), often

result in constant regions of the “boom-and-bust type” in predator-prey ecosystems. The results of the

phase wave dynamics that have been deduced from equation (5.24) are related to the Schrödinger
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equation results (Luan & Tang, 2005) for a particle moving in any potential gradient, where the

velocity (frequency) of such a particle is assumed to be proportional to the potential gradient.

The periodic solutions Φ̂1 and Φ̂3, which regulate the species dispersal frequency can be controlled

when the right choice of additional food to the interfering predators is established. Basing on the

formulated model, the underlying governing principle to the right quality and/or quantity of such

additional predator food are the ÎMigration and ÎDiffusion results. Limited movement of species due

to additional food to predators can regulate the populations and prevent population annihilation.

Hence, this result helps in resolving the Rosenzweig’s paradox of enrichment within species’ spatial

interactions. Furthermore, as noted by Owen-Smith (1990), perturbations in kudu populations due

to predation, disease and extreme weather depress populations below half of the mean density set

by food limitations. Such perturbations can be regulated by the dispersal rate ϕ i.e., limit-cycle

frequency ϕ0, periodic solutions Φ̂1 and Φ̂3, and wave numbers κ, which has been shown to depend

implicitly on both migration and diffusion rates of the interacting species. Besides other parameters,

it has been shown (see Subsection 5.3.3) that diffusion of the interacting species is regulated by

quality of additional food to predators and this gives a basis in dictating species’ dispersal trends.

Despite initially being proposed as a model of turbulent flow analysis and later becoming well

known in nonlinear studies (Zola et al., 2008; Burns et al., 1998; Petrovskii, 1999), we have carried out

a study by formulating a mathematically plausible ecological model equivalent to Burger’s equation to

account for both density-dependent migrations and diffusion. Burger’s equation being an advection-

reaction-diffusion type, indeed accounts for the species’ dispersal (Tyutyunov et al., 2007). Solutions

of traveling wave fronts that arise from biological invasion have been deduced from the large-time

asymptotic results. Advection-reaction-diffusion equations have been identified as efficient tools for

addressing questions relating to species’ dispersal, spatial patterning and biological invasions (Liu,

2010; Zola et al., 2008; Tyutyunov et al., 2007; Pearce et al., 2006; Petrovskii, 1999; Burns et

al., 1998). This study has addressed the challenges that come along with predator interference and

additional food which has led to both unstable and stable equilibria, periodicity and species’ dispersal

patterns. This suggests that any attempt by man to enrich the ecosystem aimed at increasing food

yield should be well formulated, otherwise it may result into the so-called paradox of enrichment.
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Such results ecologically suggest that mathematical modelling provides a useful tool to investigate the

consequences for a particular ecological system. As observed by Liu (2010), Petrovskii & Li (2006),

Peng & Wang (2005), Petrovskii (1999), Burns et al. (1998) and Sachdev (1987), since analytical

methods seem to be rather tedious in solving the advection-reaction-diffusion partial differential

type of models, a great deal of analysis of such models has been carried out (Liu, 2010; Zola et

al., 2008; Petrovskii & Li, 2006; Petrovskii, 1999; Burns et al., 1998 and references in them) using

numerical methods which are somehow handy per se. Indeed as revealed by Liu (2010), the theoretical

(qualitative/analytical analyses) results concur with the numerically quantitative results.

A relationship between model parameters and solutions regardless of the actual parameter values

(data) has been identified. We hope that this will provide impetus in the research of the usual com-

plex ecosystems involving multi-species interactions under numerous dynamical behaviour. Finally,

despite extensive volumes of work that involved modelling of biological population dynamics, spa-

tial modelling and biological invasions, there has been substantial attempts to model multi-species

predator-prey dispersal systems in a spatial ecological setting. We anticipate that chaotic behaviour

which could be investigated through a thorough bifurcation and numerical analyses of the model

may yield further ecosystem dynamical trends.

5.5 Numerical Simulation/Quantitative Results

Reliability and resolution of demographic and environmental data involves quite some challenges

making it difficult to numerically integrate and accommodate most of the influencing factors in

population models. In this section, we give numerical demonstrations for the dynamics and pattern

of the species by numerically integrating Model systems (5.13-5.15) and (5.19-5.21) using the solver,

pdepe, that uses both finite difference and finite element methods (Skeel & Berzins, 1990). The

Matlab solver, pdepe, is efficient for solving systems of non-linear partial differential equations and

solves initial-boundary value problems for systems of parabolic-elliptic PDEs in the one space variable

x and time t (Holzbecher, 2007; Skeel & Berzins, 1990).
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While using the Matlab solver, pdepe, the ordinary differential equations resulting from discretisa-

tion in space are integrated to obtain approximate solutions at times specified in a time vector. The

time vector specifies the points at which a solution is requested for every value in distance vector.

The pdepe function returns values of the solution on a mesh provided in a distance vector. In return,

the distance vector specifies the points at which a numerical solution is requested for every value in

time vector. It should be pointed out that the discretised system satisfies the positivity property

i.e., for any positive initial data, the model system gives positive solutions which are located in the

feasible region of the positive octant.

5.5.1 Parameter estimates

Density-dependent changes in both adult kudu survival and juvenile kudu recruitment come into

effect when kudu populations exceed about half of the mean density which is dictated by resource

(food) limitations (Owen-Smith, 1990). Annual survival rates of particular age classes (social units) of

the kudu species depend on resource availability (annual rainfall). The effective carrying capacity Kb

is therefore a dynamic variable that depends on rainfall (Owen-Smith, 2000). Using a rainfall-driven

model, Owen-Smith (2000) predicted a density of 2.4 kudus per square kilometer which appeared to

be higher than the observed density of 1.5 kudus per square kilometer. Basing on the size of AENP’s

main camp (approximately 134km2) and the predicted population density of kudu (i.e., 2.4 kudus

per square kilometer), the effective carrying capacity Kb is numerically varied at 320.

On average, female lions in the wild live up to 17 years and the males live up to 15 years (Packer

et al., 1998; Hunter, 1998). Due to less stress of defending their territories and hunting, lions living

in captivity have longer life spans (25 years) than when in the wild (game parks). Beyond the first

few years of life, mortality threats for lions appear due to fighting amongst males, starvation, and

poaching/killing by humans (Hunter, 1998; Woodroffe & Frank, 2005). Less than 10% of male lions

reach old-age as a result of these factors. Only a small percentage of lions die of natural causes,

whereas 75% of lions die by being caught in snares, shot by poachers, or killed in fights with rival

lions (Hunter, 1998; Woodroffe & Frank, 2005). Various studies show that females give birth to a

litter of 1-6 cubs (average 3 cubs) after a gestation period of 110-120 days (approximately 4 months)
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(Packer et al., 1998; Hunter, 1998; Packer et al., 2001). According to Hunter (1998) and Packer et al.

(2001), the mortality rate of lions is high (more than half do not survive the first year) and only 20%

of cubs reach the age of 2 years. Demographic computation of life expectancy of a species being µ−1,

we estimate mortality rates µl = 1
16

= 0.0625 for lions and µh = 1
12

= 0.0833 for spotted hyaenas.

Based on regression analysis results, various functional forms of annual survival rates (i.e., S =

f(R/H)) that are related to the law of diminishing returns and the satiation effects have been

proposed and studied (Owen-Smith, 2000). Kudu mortality which involves both pre- and post-natal

losses combined with female infertility, is estimated from the calf to cow ratio and normally about

half of the annual calf mortality occurs shortly after birth (Owen-Smith, 1990; Owen-Smith, 2000).

Despite evidence of fluctuations in mortality that depend on nutritional well-being as influenced

by rainfall relative to kudu density, predation is responsible for a background mortality level of

5 − 10% per annum in most animals (Owen-Smith, 1990). Rarely do 2-year old female kudus give

birth to calves that survive for more than a few weeks (Owen-Smith, 1990). Therefore, in kudus,

juvenile survival is determined from the ratio of calves to mature females aged three or more years.

Besides postnatal mortality, juvenile survival estimates incorporate conception failures and prenatal

mortality. Although infertility cases occur, adult female kudus can give birth annually (Owen-Smith,

1990). Newly born kudus lie out and only move with groups after 2-3 months of age. This makes it

difficult to determine kudu natality rates (Owen-Smith, 1990). Annual rainfall dictates the survival

rates of the various social units of kudus (Owen-Smith, 1990). With a sex ratio of 0.5, an adult

female kudu (aged more than 3 years) gives birth to 1 calf per year (Owen-Smith, 2000).

Being alternative prey to lions and spotted hyaenas, kudus are vulnerable to prey switching. In

the absence of predation, and at high population density, malnutrition, disease outbreaks, habitat

conditions and other weather effects become the major cause of kudu’s mortality (Owen-Smith, 2000).

Unpublished data of AENP show that on average a female lion eats 5kg whereas a male lion consumes

7.5kg of prey biomass per day. This gives 6.25kg as the average lion’s daily prey biomass requirement.

A spotted hyaena need 3.8−4.0 kg of meat daily to maintain its conditions (Hayward, 2006). Basing

on the kudu’s average adult body mass of 135kg, it is estimated that on average a lion predates
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upon 16.90 adult kudus’ biomass per year and a spotted hyaena consumes approximately 10.54 adult

kudus’ biomass per year. Considering predation as the number (biomass) of prey killed/eaten per

predator per year (unit time) and after rescaling, we estimate αl = 0.1690yr−1 and αh = 0.1054yr−1

as base values. Basing on the offspring production per year after prey biomass consumption, the

fertility factors are estimated as a percentage of the respective predation rates and additional food

biomass consumption (i.e., εh = αh

100
, εl = αl

100
, εfh

= Fh

100
& εfl

= Fl

100
).

As in Shatalov et al., (2008), using the “inverse method,” we compute/estimate some of the

biological parameters that could not be estimated in accordance with the stability analysis and/or

from ecological literature on predator-prey dynamics. Approximations on fine meshes and small

time steps are compared for Model system (5.13-5.15) i.e., ∆t = 0.02, ∆h = 0.01, x = 2 and t = 3

whereas for Model system (5.19-5.21); ∆t = 0.5, ∆h = 0.005, x = 1 and t = 4 are considered. With

the initial set of data and parameter values as summarised in Table 5.2, numerical simulations are

carried out to examine the behaviour of the model systems due to variations in predator additional

food, interspecific interference coefficients, predator fertility rate as a result of predation and feeding

on additional food.

5.6 Discussion

The primary interest, from an ecological point of view, is the situation that involves oscillatory

densities of predators and prey. In the numerical experiments, we chose parameter sets that guarantee

stable oscillatory dynamics of the system i.e., stable limit cycles, spirals and nodes in the reaction

kinetics surrounding an unstable steady state (u∗, v∗, w∗) . The numerical solutions reflect the intrinsic

properties of the system. Such properties are important in revealing how the system responds

to parameter variations. In Figures 5.1-5.3, surface numerical results of Model system (5.13-5.15)

alongside their analogous contour snapshots (Figures 5.4-5.6) are presented. In Figures 5.7-5.9, we

present the surface plots for Model system (5.19-5.21) that correspond to the parameter values of

Figures 5.1-5.3, respectively.
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Figure 5.1: Approximate species densities with temporal and spatial discretization of parameters

of Model (5.13-5.15). Parameter values are as described in Table 5.2. Dispersal rates: Db =

4 × 10−1, Dp = 9 × 10−1. The initial population density chosen as: B(0) = 19.0, H(0) = 6.0

and L(0) = 3.0.
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Figure 5.2: Space-time evolution of species density for Model system (5.13-5.15) when predators

face a high interspecific interference as a result of overlap of activity patterns (i.e., ψh = 0.02365 ×

103 and ψl = 0.0153 × 103).
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Figure 5.3: The effect of high predation rates (i.e., αh = 0.1054× 103 and αl = 0.1690× 103) at high

fertility gain (i.e., εh = 0.001054×103 and εl = 0.001690×103) when a steady additional food input is

maintained. Perturbations have both positive and negative small values around the equilibrium state.
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Figure 5.4: Contour snapshots of approximate species densities corresponding to parameter values

for the respective surface plots in Figure 5.1 for Model system (5.13-5.15) where in all plots; ∆t =

0.02, ∆h = 0.01, x = 2 and t = 3. Any initial population and perturbations about the steady state

tends to the steady state asymptotically.
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Figure 5.5: Snapshots of approximate species densities corresponding to parameter values for the

respective surface plots in Figure 5.2 i.e., when predators face a high interspecific interference. Any

initial population and perturbations about the steady state tends to the steady state asymptotically.
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Figure 5.6: Snapshots of approximate species densities corresponding to parameter values for the

respective surface plots in Figure 5.3 i.e., high predation rates that results in high fertility gain. Any

initial population and perturbations about the steady state tends to the steady state asymptotically.
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Figure 5.7: Approximate species densities with temporal and spatial discretization of parameters for

Model system (5.19-5.21). Parameter values are as described in Table 5.2 (same as Figure 5.1).

Dispersal rates: Db = 4 × 10−1, Dp = 9 × 10−1, mb = 6.5 × 10−1 and mp = 3.5 × 10−1. Like for

Model system (5.13-5.15), the initial population density for each species is chosen to be positive at

B(0) = 19.0, H(0) = 6.0 and L(0) = 3.0.
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Figure 5.8: Space-time evolution of species density for Model system (5.19-5.21) when predators face

a high interspecific interference as a result of overlap of activity patterns, same as Figure 5.2 (i.e.,

ψh = 0.02365 × 103 and ψl = 0.0153 × 103).
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Figure 5.9: The effect of high predation rates (i.e., αh = 0.1054 × 103 and αl = 0.1690 × 103) at

high fertility gain, same as Figure 5.3 (i.e., εh = 0.001054 × 103 and εl = 0.001690 × 103) when a

steady additional food input is maintained. Perturbations have both positive and negative small values

around the equilibrium state.
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Table 5.2: Parameter descriptions and their base value estimates

Symbol Description Numerical Value Ref.

µh & µl natural mortality rate 0.0833 & 0.0625 [32,45,46,64]

αh & αl predation rates 0.1054 & 0.1690 [16],AENP*

ψh & ψl interspecific interference coefficients 0.02365 & 0.0153 [16,17,22]

Fh & Fl additional food biomass 0.2500 & 0.5000 estimate

rb intrinsic growth rate 0.84 [43,44],AENP*

Kb carrying capacity for prey species 320 [43,44]

εh & εl fertility factors due to predation 0.001054 & 0.001690 estimate

εfh
& εfl

fertility factors due to added food 0.002500 & 0.005000 estimate

1
ah

& 1
al

half saturation constants 10.54 & 16.90 [16]

*Unpublished data

A typical response resulting from a steady food input is observed in Figures 5.3,5.6 and 5.9. In

the absence of additional food supply, starvation gives rise to an unstable stationary state. Thus,

a stationary and uniform source of food input leads to a stationary steady state of the system.

However, as shown in Figures 5.2,5.5 and 5.8, at high interspecific interference as a result of overlap

of activity patterns, predators nearly obtain a saturation value under minimal starvation conditions.

Availability of food leads to the ordered component of food intake to give a saturation shift towards

a saturation level (Figures 5.3 and 5.6). This can arise from neglecting the saturation decline force

that emanates from high predator fertility factors. The saturation spread is smaller for high food

concentrations and high predation rates than for low cases. This spread as shown in Figures 5.4-5.6

eventually reduce as species dispersal rates are increased further. When the food supply is constant in

both space and time, the high predator fertility factor arising from the food intake at high predation

rates evokes both the “linear conjecture” and the ecological principle of competitive exclusion among

the interfering predators (Figures 5.2,5.8 and 5.9).
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Comparing Figures 5.4 and 5.6, a longer period of damped oscillations behind the invasion front

are observed in Figure 5.6. High predation rates that results in high fertility gain coupled with

high interspecific interference among predators lead to longer temporal dynamical convergence to

the stable equilibrium state resulting into longer period of damped oscillations (Figures 5.5 and 5.6).

Spatio-temporal heterogeneity is temporarily observed within the interfering predators, however, this

does not persist at later times. The stability of the positive steady state has a fundamental impact

on the spatio-temporal dynamics of the interacting species (Figures 5.4-5.6). Stable travelling waves

of the interfering predators exhibit increasingly irregular periodic travelling wave behaviour when

key parameter values are increased beyond their baseline values. Such irregular periodic travelling

waves, as observed by Pearce et al. (2006), often result in heterogeneous spatio-temporal patterns

of prey (host) and predator (parasitoid) abundance. The generation of such heterogeneous patterns

has various ecological implications (Pearce et al., 2006).

From the numerical experimental results, it is noted that spatial dispersal of the predators does

not damp out population fluctuations in predator-prey systems involving additional food supply. The

heterogeneous patterns continue to evolve over time and a fixed spatial distribution does not arise.

This suggests that temporally and spatially fixed niches will not arise in dispersive predator-prey

systems that are provided with additional food. Thus, dispersal amplifies the impact of temporal

oscillations on the population dynamics leading to the quasi-chaotic heterogeneous spatio-temporal

patterns as observed by Pearce et al. (2006). The results of this study highlight the value of fur-

ther investigation of predator-prey interactions that are; provided with additional food, involving

predator interference and modelled by reaction-diffusion equations. Furthermore, the results reveal

the behaviour of such interactions, while also suggesting ways of improving the models under this

study. The many open questions regarding multi-species predator-prey interactions in a spatial set-

ting which have remained unanswered call for more similar/related studies.
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Chapter 6

Discussion, Conclusions and

Recommendations

6.1 Scope and methods used

Even though by no means can this project be considered exhaustive, a brief excursion into

mathematical techniques used in the modelling of biological species’ interaction has been undertaken.

It has greatly depended on explanations of the complexity of ecosystem dynamics together with

recent developments in applied mathematics and computer science, the tools of which are used

in contemporary mathematical ecology. In an attempt to provide some clarity to the basic ideas of

migration and dispersal (diffusion), prey refuge, species’ interference, biological control via additional

food, species’ mimicry and group defense in complex ecosystem, mathematical models mimicking

these concepts have been formulated and analysed. It should be mentioned that, although a large

number of available mathematical tools is certainly a positive factor enhancing theoretical studies, a

question about consistency of the different approaches often arises.

6.1.1 Supporting theorems and basic principles

To comply with the notion of scientific studies being conducted alongside sounding laws and

theorems, as in Hsu (2005), Bazykin (1998) and Takeuchi (1996), the linearisation theorem, Lyapunov
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stability theory, Fick’s law, Fisher’s hypothetical formulations, the competitive exclusion principle,

limit cycle perturbation theory and the Poincaré-Bendixson theorem are among the fundamental

applied mathematical theories that have been used in the formulations and analyses of the models

studied. The common challenge of spatial modelling that often elevates the discrepancy/inconsistency

of different modelling approaches has been resolved and addressed, as in Pearce et al. (2006) and Holt

(1984), by incorporating spatial heterogeneity into the reaction-diffusion models via explicit space-

dependence of corresponding parameters. The modified models then exhibit properties qualitatively

similar to those described by the space discrete approach, in particular; travelling waves, periodicity

and limit cycle solutions (Kolokolnikov et al., 2006; Petrovskii & Li, 2006; Petrovskii et al., 2005;

Murray, 1993). Similar arguments apply to the relationship between the advection-reaction-diffusion

models and integral-difference models (Tyutyunov et al., 2007). In particular, as used by Liu (2010),

Petrovskii & Li (2006) and Roussel (2004), accelerating population waves of invasive species has

been described by the reaction-diffusion models by taking into account the scale-dependence of the

diffusion coefficient, relative diffusivity, as well as the wave number. Irrespective of the species’

habitat, such scale-dependence was shown to be a common property of the models of biological

invasion in turbulence-driven dispersal (Okubo, 1980).

6.2 Results of the study

6.2.1 On the qualitative and quantitative analyses

In exploring how the model parameters affect the behaviour of the various systems, reasonable

attention has been focused on specifically identified sensitive parameters in the formulated models

of Chapters 3, 4 and 5. In Chapter 3, the predator fertility rate, εu, and the threshold/critical prey

population, $, were given special attention and their results were presented in Sections 3.3-3.4 and

discussed in Section 3.5. Various stability and existence conditions were derived. Global stability

analysis results showed that the warthog population density should exceed the sum of its carrying

capacity and threshold value minus its equilibrium value i.e., W > (Kw+$)−W ∗. This result which

was proved in Theorem 3.3.3, about the global stability of the co-existence steady state, shows that

the warthog’s equilibrium population density is bound above, i.e., W ∗ < (Kw +$). Prey refuge, ωr,
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and predator additional food, Fl, are numerically varied in Chapter 4, while in Chapter 5, the effect

of predator interference has been studied. Stability of the systems steady states have been studied

for the various models using linearisation techniques, the Routh-Hurwitz stability criterion and the

Lyapunov stability theorem. The obtained results are mathematically intriguing and their ecological

implications were discussed/presented in Sections 3.5, 4.2 and 5.4.

The conditions that guarantee purely imaginary roots for the nonlinear predator-prey Model

systems (3.1-3.3) and (5.1-5.3), do not necessarily guarantee the existence of simple periodic solutions

as is the case for the linearised predator-prey systems (cf. Petrovskii & Li, 2006; Petrovskii et al.,

2005; Takeuchi, 1996). The structurally unstable nature of the nonlinear systems studied has been

deduced based on the fact that some perturbations near a centre can sometimes lead to unstable

behaviour. Such unnatural structural instability in the neighbourhood of the steady states leads to

limitations in the applications of the Lotka-Volterra predator-prey model. Furthermore, as mentioned

in Bazykin (1998), the nonlinear systems are conservative so that any additional factors put into the

models qualitatively change their behaviour.

Despite the deviation from the paradox of enrichment as observed by numerous field studies

(Khan et al., 2004; Sherratt et al., 1997; Berryman, 1992), it was shown that system (3.4-3.6)

exhibits this paradox. The paradox of enrichment asserts that enriching a predator-prey system

causes an increase in the steady state density of the predator but not that of the prey. As observed

by Freedman & Wolkowicz (1986), this destabilizes the positive steady state leading to a higher

probability of predator extinction. Neutrally stable periodic solutions in system (5.1-5.3) have been

deduced, with oscillatory amplitudes that depend on many factors such as, wave number, dispersal

behaviour, relative diffusivity and migration coefficients. It was shown (see Subsection 5.3.5) that

the periodic solutions (Φ̂1 and Φ̂3), which influence the dispersal frequency (ϕ) of the interacting

species, are controlled by the wave number. In addition, the wave number was shown to depend

on various parameters among which include additional food and species’ diffusion (see Subsection

5.3.3). For stability, and in order to overcome predator natural mortality, the nutritional value of

such additional food has to be high enough i.e., high predator fertility gain.
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Although the origin of the Allee effect is rather poorly understood, spatio-temporal dynamics

of populations with such threshold mechanisms have attracted reasonable attention recently (Cour-

champ et al., 2008; Stephens et al., 1999; McCarthy, 1997). Despite the many biological and en-

vironmental factors which have been identified as its possible cause (cf. Courchamp et al., 2008;

Dennis, 1989), mechanistic theories are often lacking resulting in many open questions. The choice

of growth rate parameterisation, and hence the general properties of the formulated model are af-

fected due to the uncertain profound impact exhibited by threshold population among interacting

species. For example, Allee effect exhibits itself in intermediate and large values of the population

density where the effect of intraspecific competition is essential. For instance, the cubic polynomial

of the chosen growth rate function for Model system (3.1-3.3), which is one of the usual parameter-

isation assumes implicitly that the impact of the Allee effect and that of intraspecific competition

interfere for intermediate values of the population density.

6.2.2 Principle of Competitive Exclusion

If two competitors co-exist, there must be a reason for them to do so, and the principle of

competitive exclusion focuses attention on this situation (Armstrong & McGehee, 1980; Hsu et al.,

1978a, b). For any two species occupying the same ecological niche at the same time, interacting in

the same way, and requiring the same nutrients i.e., same food type, the principle of competitive

exclusion prevails (Takeuchi, 1996; Muratori & Rinaldi, 1989). Considerable effort has been invested

in mitigating the competitive exclusion dilemma through evoking the competitive exclusion principle

on the predator (lion-spotted hyaena) interference Model system (5.1-5.3) in order to establish the

out-competition conditions. Species interaction at different trophic levels can sometimes lead to a

stable co-existence, which renders the competitive exclusion principle not to be satisfied at all times.

6.3 Recommendations and Further development of the study

The situation that involves/relates the duality of ecosystem dynamics emanating from the inter-

play between deterministic and stochastic factors poses seemingly challenging and more complicated

119



open questions. As revealed by Berryman (1992), the simple misunderstanding of the origin of deter-

ministic models seems to be one of the major causes of this mathematical modelling dilemma. Due

to the intrinsic stochasticity of ecosystem dynamics as a result of irregular fluctuations in ecological

data, stochastic processes are often described by deterministic equations which are either integral in

nature or of partial differential type involving varying assumptions (Bazykin, 1998; Takeuchi, 1996;

Murray, 1993).

In spite of the predictive power provided by deterministic models, a lot of limitations of pre-

dictability in ecosystem dynamics for particular stochastic fluctuations often arise and this renders

the question of reproducing exact simulations somehow challenging. For example, predicting the

exact time and magnitude of a particular stochastic fluctuation in an ecological process may be

as challenging as predicting the exact position of a quantum particle using the Schrödinger theory

(Luan & Tang, 2005). It should also be mentioned that the advection-reaction-diffusion equations do

not necessarily exhaust the deterministic models, hence a need to integrate other modelling theories

and approaches. For example, ignoring the species’ random walk within an ecosystem paves way

for the development of other explicit reaction-diffusion partial differential equation type of models

(Petrovskii & Li, 2006; Okubo, 1980).

Besides the model’s capacity to describe a given ecological phenomenon, another important feature

is its solvability. Taking into consideration that population dynamical models are usually nonlinear

and can usually only be solved by means of computer simulations because existing analytical meth-

ods are often inadequate. Since numerical studies require particular parameter values, the lack of

analytical methods and relevant analytical solutions decrease the generality of results and so reduce

their reliability. Ideal theoretical studies combine both analytical and numerical methods, a more

in-depth qualitative analyses of the Model system (4.4-4.6) need to be undertaken in future studies.

For co-existence and stability of equilibria of the species interaction in Model system (3.1-3.3),

the prey carrying capacities were shown to play a pivotal role (see Theorems 3.3.1 and 3.3.3). Thus,

establishment of the carrying capacity of the game park and its threshold relationships with other

ecosystem parameters (see Chapters 3 and 5) for each prey species should be one of the management
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considerations.

The stabilising effect of prey refuge due to variations in predator fertility and proportion of

prey that access the refuge (see Chapter 4) suggest that expansion/provision of warthog burrows

should be considered a management programme rather than leaving the warthog to depend on the

abandoned/disused aardvark (Orycteropus afer) burrows.

Finally, despite the supplementary feeding rendered to predators, as motivated earlier, empirical

data and methods used in carrying out this activity are still scanty. Thus, matching the importance

of additional food to predator-prey systems with empirical data of game parks within the Eastern

Cape province e.g., Shamwari and Kwandwe, remains an open challenge. This could be tested by

carrying out numerical simulations on Model systems (5.1-5.3), (5.13-5.16) and (5.19-5.21). The

results could then be used as a basis for recommendation of supplementary feeding in other game

parks.
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Appendix B

MatLab computer programs used for

numerical simulation of the models

! ******************************************************************

! The MatLab Codes for Numerically Integrating the Ordinary Differential *

! Equations Model For Prey out-flux dilution effect *

!********************************************************************

clear

clc

disp(’Predator -Prey simulation using Runge-Kutta 4th order’);

disp(’’);

disp(’Enter the following constants of the dynamical system consisting of 2 prey

and 1 predator (Lion)’);

r1 = input(’Enter (r1) buffalo intr birth rate : ’);

Kb = input(’Enter (Kb) : ’);

Fl = input(’Enter (Fl) : ’);

h = input(’Enter (h) : ’);

alpha_1 = input(’Enter (alpha_1) : ’);

r2 = input(’Enter (r2) : ’);

Kw = input(’Enter (Kw) : ’);
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Lo = input(’Enter (Lo) : ’);

alpha_3 = input(’Enter (alpha_3) : ’);

Wr = input(’Enter (Wr) : ’);

beta_1 = input(’Enter (beta_1) : ’);

epsi_u = input(’Enter epsiplon_u : ’);

epsi_fl = input(’Enter epsiplon_fl : ’);

mu = input(’Enter (mu) : ’);

disp(’Time data’);

dt = input(’Enter steplength in time (delta t) : ’);

Tf = input(’Enter final time (Tf) : ’);

T = (0:dt:Tf);

it = length(T);

B = zeros(1,it); % Buffalo

W = zeros(1,it); % Warthog

L = zeros(1,it); % Lion

disp(’Initial populations’);

B(1) = input(’Enter initial population of prey 1 [N1(0)] : ’);

W(1) = input(’Enter initial population of prey 2 [N2(0)] : ’);

L(1) = input(’Enter initial population of predator 1 [P1(0)] : ’);

Bdot = inline(’r1*n1*(1-n1/Kb)-alpha_1*(1-Fl)*n1*p/(1+h*n1)’,’r1’,’Kb’,’alpha_1’,

’Fl’,’h’,’n1’,’p’);

Wdot = inline(’r2*n2*(1-n2/Kw)*((n2/Lo)-1)-alpha_3*(1-Fl)*(1-Wr)*n2*p’,’r2’,’Kw’,

’Lo’,’alpha_3’,’Fl’,’Wr’,’n2’,’p’);

Ldot = inline(’beta_1*(1-Fl)*(1-Wr)*n2*p+(epsi_u*alpha_1*(1-Fl)*n1*p/(1+h*n1))+

(epsi_fl*Fl-mu)*p’,’beta_1’,’Fl’,’Wr’,’epsi_u’,’alpha_1’,’h’,’mu’,’epsi_fl’,’p’,

’n1’,’n2’);

for j = 2:it

%disp(j);

k1 = dt*Bdot(r1,Kb,alpha_1,Fl,h,B(j-1),L(j-1));

k2 = dt*Bdot(r1,Kb,alpha_1,Fl,h,(B(j-1)+0.5*k1),L(j-1));
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k3 = dt*Bdot(r1,Kb,alpha_1,Fl,h,(B(j-1)+0.5*k2),L(j-1));

k4 = dt*Bdot(r1,Kb,alpha_1,Fl,h,(B(j-1)+k3),L(j-1));

B(j) = B(j-1)+((k1+2*k2+2*k3+k4)/6);

k1 = dt*Wdot(r2,Kw,Lo,alpha_3,Fl,Wr,W(j-1),L(j-1));

k2 = dt*Wdot(r2,Kw,Lo,alpha_3,Fl,Wr,(W(j-1)+0.5*k1),L(j-1));

k3 = dt*Wdot(r2,Kw,Lo,alpha_3,Fl,Wr,(W(j-1)+0.5*k2),L(j-1));

k4 = dt*Wdot(r2,Kw,Lo,alpha_3,Fl,Wr,(W(j-1)+k3),L(j-1));

W(j) = W(j-1)+((k1+2*k2+2*k3+k4)/6);

k1 = dt*Ldot(beta_1,Fl,Wr,epsi_u,alpha_1,h,mu,epsi_fl,L(j-1),B(j-1),

W(j-1));

k2 = dt*Ldot(beta_1,Fl,Wr,epsi_u,alpha_1,h,mu,epsi_fl,(L(j-1)+0.5*k1),

B(j-1),W(j-1));

k3 = dt*Ldot(beta_1,Fl,Wr,epsi_u,alpha_1,h,mu,epsi_fl,(L(j-1)+0.5*k2),

B(j-1),W(j-1));

k4 = dt*Ldot(beta_1,Fl,Wr,epsi_u,alpha_1,h,mu,epsi_fl,(L(j-1)+k3),

B(j-1),W(j-1));

L(j) = L(j-1)+((k1+2*k2+2*k3+k4)/6);

end

ipop = sprintf(’Initial values for Buffalo: %2.3f, Warthog: %2.3f and Lion:

%2.3f’,B(1),W(1),L(1));

plot(T,B,’r-.’,T,W,’b:’,T,L,’c-’);

%title({’One Predator Two Prey Population Dynamics’,ipop});

xlabel(’Time in years’);

ylabel(’Population density’);

legend(’Buffalo’,’Warthog’,’Lion’,’Location’,’Best’);

! ----------------------------------------------------------

! THESE CODES PRODUCE 4 PLOTS PER PAGE OF THE MODEL SYSTEM (3.1-3.3) FOR VARIOUS

PARAMETER VALUES

%program plots

clear;clc;
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fig_count=0;

for M=1:4

disp(M);

Time=[0.01,1000];

Initlpop=[4.5,15,3];

if M==1

PMU=[0.84,10,0,2.5,0.2833,2.53,25,14.0,0.11283,0,0.002583,2.4,0,0.125];

elseif M==2

PMU=[0.84,10,0,2.5,0.2833,2.53,25,18.0,0.11283,0,0.002583,2.4,0,0.125];

elseif M==3

PMU=[0.84,10,0,2.5,0.2833,2.53,25,24.0,0.11283,0,0.002583,2.4,0,0.125];

else

PMU=[0.84,10,0,2.5,0.2833,2.53,25,50.0,0.11283,0,0.002583,2.4,0,0.125];

end

fig_count=fig_count+1;

subplot(2,2,fig_count);

[t,x,y,z]=fourplotsdata(PMU,Time,Initlpop);

plot(t,x,t,y,t,z,’k-’,’LineWidth’,2);

axis([0 1000 0 50]);

ipop = sprintf(’Initial values for Buffalo: %2.3f, Warthog: %2.3f and Lion:

%2.3f’,Initlpop(1),Initlpop(2),Initlpop(3));

title({’One Predator Two Prey Population Dynamics’,ipop});

xlabel(’Time in years’);

ylabel(’Population density’);

legend(’Buffalo’,’Warthog’,’Lion’,’Location’,’Best’);

end

!********************************************************************

! ******************************************************************

! The MatLab Codes for Numerically Integrating the Reaction-Diffusion *

! Model System 5.13-5.15 *
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!********************************************************************

function pdex4

m = 0;

%x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];

%t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

x = [0:0.01:2];

t = [0:0.02:3];

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

u1 = sol(:,:,1);

subplot(2,2,1);

surf(x,t,u1)

camlight left;

lighting phong

title(’Du/Dt’)

xlabel(’Distance x’)

ylabel(’Time t’)

colormap hsv;

colorbar

sol = pdepe(m,@pdex4pdev,@pdex4ic,@pdex4bc,x,t);

u2 = sol(:,:,1);

subplot(2,2,2);

surf(x,t,u2)

camlight left;

lighting phong

title(’Dv/Dt’)

xlabel(’Distance x’)

ylabel(’Time t’)

colormap hsv;

colorbar

sol = pdepe(m,@pdex4pdew,@pdex4ic,@pdex4bc,x,t);
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u3 = sol(:,:,1);

subplot(2,2,3);

surf(x,t,u3)

camlight left;

lighting phong

title(’Dw/Dt’)

xlabel(’Distance x’)

ylabel(’Time t’)

colormap hsv;

colorbar

% --------------------------------------------------------------

function [c,f,s] = pdex4pde(x,t,u,DuDx)

edata = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23];

rb = edata(1);

kb = edata(2);

Db = edata(3);

Dp = edata(4);

mb = edata(5);

mp = edata(6);

Fl = edata(7);

Fh = edata(8);

ah = edata(9);

al = edata(10);

psi_h = edata(11);

psi_l = edata(12);

alpha_h = edata(13);

alpha_l = edata(14);

epsi_h = edata(15);

epsi_l = edata(16);

epsi_fh = edata(17);
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epsi_fl = edata(18);

muh = edata(19);

mul = edata(20);

B = edata(21);

H = edata(22)

L = edata(23)

udot = (rb/mul)*(B/kb)*(1-(B/kb)) - (muh/mul)*(1 - Fl)*(B/kb)*((alpha_h/muh)*H) -

((1 - Fl)*(B/kb)*((alpha_l*L)/mul))/(1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_h/muh)*H));

vdot = ((epsi_l*alpha_l*kb/mul)* (muh/mul)*(B/kb)*((alpha_h/muh)*H))/(1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_l*L)/mul)) - ((muh/mul)*((alpha_h/muh)*H) +

((alpha_h/muh)*H) * (epsi_fh*Fh/mul));

wdot = ((epsi_l*alpha_l*kb/mul)* (muh/mul)*(B/kb)*((alpha_h/muh)*H))/((1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_h/muh)*H))) - ((alpha_l*L)/mul) +

(epsi_fh*Fh/mul)*((alpha_l*L)/mul);

c = 1;

f = DuDx*(Db/Dp);

s = udot;

% --------------------------------------------------------------

function u0 = pdex4ic(x);

u0 = 1;

% --------------------------------------------------------------

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)

pl = ul;

ql = 0;

pr = ur;

qr = 0;

function [c,f,s] = pdex4pdev(x,t,u,DvDx) %Dv/dx

edata = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23];

rb = edata(1);
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kb = edata(2);

Db = edata(3);

Dp = edata(4);

mb = edata(5);

mp = edata(6);

Fl = edata(7);

Fh = edata(8);

ah = edata(9);

al = edata(10);

psi_h = edata(11);

psi_l = edata(12);

alpha_h = edata(13);

alpha_l = edata(14);

epsi_h = edata(15);

epsi_l = edata(16);

epsi_fh = edata(17);

epsi_fl = edata(18);

muh = edata(19);

mul = edata(20);

B = edata(21);

H = edata(22)

L = edata(23)

udot = (rb/mul)*(B/kb)*(1-(B/kb)) - (muh/mul)*(1 - Fl)*(B/kb)*((alpha_h/muh)*H) -

((1 - Fl)*(B/kb)*((alpha_l*L)/mul))/(1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_h/muh)*H));

vdot = ((epsi_l*alpha_l*kb/mul)* (muh/mul)*(B/kb)*((alpha_h/muh)*H))/(1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_l*L)/mul)) - ((muh/mul)*((alpha_h/muh)*H) +

((alpha_h/muh)*H) * (epsi_fh*Fh/mul));

wdot = ((epsi_l*alpha_l*kb/mul)* (muh/mul)*(B/kb)*((alpha_h/muh)*H))/((1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_h/muh)*H))) - ((alpha_l*L)/mul) +
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(epsi_fh*Fh/mul)*((alpha_l*L)/mul);

c = 1;

f = DvDx;

s = vdot;

%--------------------------------------------------------------------------

%-----------

function [c,f,s] = pdex4pdew(x,t,u,DwDx) %Dv/dx

edata = [.1 .002 .0053 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23];

rb = edata(1);

kb = edata(2);

Db = edata(3);

Dp = edata(4);

mb = edata(5);

mp = edata(6);

Fl = edata(7);

Fh = edata(8);

ah = edata(9);

al = edata(10);

psi_h = edata(11);

psi_l = edata(12);

alpha_h = edata(13);

alpha_l = edata(14);

epsi_h = edata(15);

epsi_l = edata(16);

epsi_fh = edata(17);

epsi_fl = edata(18);

muh = edata(19);

mul = edata(20);

B = edata(21);

H = edata(22)
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L = edata(23)

udot = (rb/mul)*(B/kb)*(1-(B/kb)) - (muh/mul)*(1 - Fl)*(B/kb)*((alpha_h/muh)*H) -

((1 - Fl)*(B/kb)*((alpha_l*L)/mul))/(1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_h/muh)*H));

vdot = ((epsi_l*alpha_l*kb/mul)* (muh/mul)*(B/kb)*((alpha_h/muh)*H))/(1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_l*L)/mul)) - ((muh/mul)*((alpha_h/muh)*H) +

((alpha_h/muh)*H) * (epsi_fh*Fh/mul));

wdot = ((epsi_l*alpha_l*kb/mul)* (muh/mul)*(B/kb)*((alpha_h/muh)*H))/((1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_h/muh)*H))) - ((alpha_l*L)/mul) +

(epsi_fh*Fh/mul)*((alpha_l*L)/mul);

c = 1;

f = DwDx;

s = wdot;

! ******************************************************************

! The MatLab Codes for Numerically Integrating the Advection-Reaction-Diffusion *

! Model System 5.19-5.21 *

!********************************************************************

function pdex4

m = 0;

x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];

t = 0:0.5:4;

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

u1 = sol(:,:,1);

subplot(2,2,1);

contourf(x,t,u1)

camlight left;

lighting phong

title(’Du/Dt’)

xlabel(’Distance x’)

ylabel(’Time t’)
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colormap hsv;

colorbar

sol = pdepe(m,@pdex4pdev,@pdex4ic,@pdex4bc,x,t);

u2 = sol(:,:,1);

subplot(2,2,2);

contourf(x,t,u2)

camlight left;

lighting phong

title(’Dv/Dt’)

xlabel(’Distance x’)

ylabel(’Time t’)

colormap hsv;

colorbar

sol = pdepe(m,@pdex4pdew,@pdex4ic,@pdex4bc,x,t);

u3 = sol(:,:,1);

subplot(2,2,3);

contourf(x,t,u3)

camlight left;

lighting phong

title(’Dw/Dt’)

xlabel(’Distance x’)

ylabel(’Time t’)

colormap hsv;

colorbar

% --------------------------------------------------------------

function [udot,vdot,wdot,Db,Dp,mp,mb] = returndot()

%line = input(’Enter me’);

edata = [.2 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23];

rb = edata(1);

kb = edata(2);
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Db = edata(3);

Dp = edata(4);

mb = edata(5);

mp = edata(6);

Fl = edata(7);

Fh = edata(8);

ah = edata(9);

al = edata(10);

psi_h = edata(11);

psi_l = edata(12);

alpha_h = edata(13);

alpha_l = edata(14);

epsi_h = edata(15);

epsi_l = edata(16);

epsi_fh = edata(17);

epsi_fl = edata(18);

muh = edata(19);

mul = edata(20);

B = edata(21);

H = edata(22)

L = edata(23)

udot = (rb/mul)*(B/kb)*(1-(B/kb)) - (muh/mul)*(1 - Fl)*(B/kb)*((alpha_h/muh)*H) -

((1 - Fl)*(B/kb)*((alpha_l*L)/mul))/(1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_h/muh)*H));

vdot = ((epsi_l*alpha_l*kb/mul)* (muh/mul)*(B/kb)*((alpha_h/muh)*H))/(1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_l*L)/mul)) - ((muh/mul)*((alpha_h/muh)*H) +

((alpha_h/muh)*H) * (epsi_fh*Fh/mul));

wdot = ((epsi_l*alpha_l*kb/mul)* (muh/mul)*(B/kb)*((alpha_h/muh)*H))/((1 + (ah/kb)*(B/kb) +

((psi_h*muh)/alpha_h)*((alpha_h/muh)*H))) - ((alpha_l*L)/mul) +

(epsi_fh*Fh/mul)*((alpha_l*L)/mul);
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function [c,f,s] = pdex4pde(x,t,u,DuDx)%DuDt

[udot,vdot,wdot,Db,Dp,mp,mb] = returndot();

c = 1;

f = DuDx*(Db/Dp);

s = -(mb/mp)*DuDx + udot;

% --------------------------------------------------------------

function u0 = pdex4ic(x);

u0 = 1;

% --------------------------------------------------------------

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)

pl = ul;

ql = 0;

pr = ur;

qr = 0;

function [c,f,s] = pdex4pdev(x,t,u,DvDx) %Dv/dt

[udot,vdot,wdot,Db,Dp,mp,mb] = returndot();

c = 1;

f = DvDx;

s = -(DvDx) + vdot;

%--------------------------------------------------------------------------

%-----------

function [c,f,s] = pdex4pdew(x,t,u,DwDx) %Dv/dt

[udot,vdot,wdot,Db,Dp,mp,mb] = returndot();

c = 1;

f = DwDx;

s = -(DwDx) + wdot;
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How it was

“Riding The Tiger”
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Last citation (Psalms)

In the name of God, the Most Beneficent, the Most Merciful.

“Lord, you have assigned me my portion and my cup,

You have made my lot secure.

The boundary lines have fallen for me

in pleasant places;

surely I have a delightful inheritance.”

(Psalm 16:5,6)
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