
THE
DESIGN AND IMPLEMENTATION

OFA

1''" ",, -; ' -,1

V

FOURTH GENERATION PROGRAMMING LANGUAGE

submitted in partial fulfilment of the requirements for the degree

Master of Science

by

Cam Martin Iverson
Department of Computer Science

Rhodes University

ABSTRACT

IV is a very high level language designed for use in a real time production control

environment. While most fourth generation languages are intended for use by end

users, IV is more suitable for skilled professional programmers.

One of the major design objectives of IV is a dramatic improvement in programmer

efficiency during application program development. Non-procedural constructs

provided by the language and the use of a number of interactive development tools

provide an environment for achieving this goal.

This report presents a language proposal for IV, and addresses related design and

implementation issues.

ACKNOWLEDGEMENTS

My thanks to the staff of Steel Information Systems at Middelburg Steel and
Alloys, particularly Rob Tennant, Klaus Schwarborn and Marion Bothma, who
made this project possible.

Thanks also to my supervisor, Peter Clayton, and colleagues at Rhodes
University for their assistance and encouragement this year.

TABLE OF CONTENTS

L Introduction 1
2. Definitions and Concepts 4
3. Overview of IV 8
4. The Design of IV 11

4.1. IV Application Components 12
42. Data Types, Data Objects, Declarations and Scope 15

42.1. Elementary Data Types 15
422. Composed Data Types 15
423. Data Object Declaration 16
42.4. Scope 18

43. Expressions 18
4.4. Statements 19

4.4.I. Non-procedural statements 20
4.4.1.1. Screen management 21
4.4.12. Database management 23
4.4.13. Database access 26
4.4.1.4. . Assignment statements 30

4.42. Procedural statements 33
45 Transactions and Database Consistency 34
4.6. Error Handling 36
4.7. Comments 38

5. Implementation 39
5.1. IV Compiler Components 40
52. IV Compilation Strategies 42

52.I. The data dictionary 42
52.2. Code generation 43

52.2.I. Data object declaration 44
52.2.2. Procedural statements 45
52.2.3. Non-procedural statements 47
5.22.4. Error handling 54
5225. Housekeeping 55

53. Related Implementation Issues 56
6. Conclusion 57

Bibliography
Appendices

1. INTRODUCTION

The rapid advance of computer technology is prompting basic changes in the nature of

programming. Several factors are responsible for this. Traditional programming languages

require skilled programmers of which there has always been a scarcity. Additionally, this

demand has led to spiralling labor costs in the data processing industry, compelling

corporations to seek alternatives for developing application systems. Demand for application

programming work has also increased consistently over the years with existing systems

requiring ongoing maintenance, and users requiring the development of new systems as a result

of the proliferation of computers. Finally, the system development life cycle approach to

software development is no longer adequate to meet users' growing needs in terms of the time

taken to develop such systems, the quality of the delivered system, and the degree to which

the system conforms to the user's specifications.

Just as the advent of high level languages enabled the programmer to escape from the

intricacies of machine code, allowing him to concentrate more on the problem on hand, higher

level programming systems provide an environment that is easier to use and is more productive

than that of preceding,. software generations. Such tools, collectively called fourth generation

environments, shift attention away from the detailed specification of algorithms, towards the

expressing and manipulating descriptions of computational processes and the objects on which

they are carried out [51].

This report describes one component of such an environment - a fourth generation

programming language called IVI . IV was developed specifically for Steel Information Systems

of Middelburg Steel & Alloys (Pty) Ltd. (MS&A), who run a number of Data General MV20000

super-minicomputers, as an eventual functional replacement of COBOL and FORTRAN for

application programming. Initial design specifications required the system to interface to a

database management system (DG/DBMS2) and an in-house designed screen manager where

existing interface techniques yielded numerous programming bottlenecks. Report generation

1 pronounced I'vee - after the Roman numeral for four

2 product of Data General Corporation.

1

would be provided by a separate system called PRESENT3. Several other tools provided by

MS&A, such as a screen formatter and a query language (IDML 4), complete the environment.

IV endeavors to promote programmer efficiency, whilst maintaining the run-time efficiency and

programming functionality of application programs written in third generation languages to as

large an extent as possible. A variety of programming paradigms, including imperative,

functional and set theoretic, were considered as a basis of the language. Although functional

and set theoretic programming languages provide many powerful, sophisticated abstraction

mechanisms, this is often achieved at the expense of machine efficiency. Therefore, IV is

primarily imperative, although, like most commercial fourth generation programming languages,

several declarative facilities are offered. These facilities are available in the high level

interfaces to the database and screen managers, and in tools allowing the programmer to

defme screen layouts and database components.

The language described in this report represents just the flIst stage in the life cycle of such

a system. It is foreseen that existing constructs will be improved or adapted for changing

circumstances, new constructs added to increase the power and sophistication of the language,

and new tools added to the environment to promote further productivity increases.

A desirable prerequisite for reading this text is a working knowledge of FORTRAN, DML5,

NATURAL and SQL, as many of the examples of IV's constructs are compared against similar

constructs provided by these languages.

Section 2 discusses the problems of defining a fourth generation language as well as some of

the concepts that are commonly found in such systems.

3 PRESENT presentation facility - product of Data General Corp.

4 Interactive Data Manipulation Language - product of Data General Corp.

5 Database Manipulation Language, defmed by the Database Task Group of the
Conference on Data System Languages.

2

Section 3 briefly describes the various components that comprise the IV fourth generation

environment.

Section 4 introduces the constructs provided in IV. Much of this work has been presented in a

paper entitled IV: A Fourth Generation Language, published in the proceedings of the second

Conference of M.Sc and Ph.D Research Students [25]. Design aspects of the more interesting

constructs are analyzed with reference to similar constructs available in current commercially

available fourth generation languages as well as several experimental languages.

Implementation issues are dealt with in section 5, which provides numerous examples of the

FORTRAN and DML code6 generated for particular problems.

6 Design specifications required that IV statements would compile into
77 code with embedded DML commands.

3

FORTRAN

2. DEFINITIONS AND CONCEPTS

"There is no fomIaI definition of a fourth generation language"

• D.Utwack [40]

"The only characteristics that fourth generation languages have in

common is that they are not COBOL"

- S.Gerrard [40]

" ... no single phrase in the software world is as ambiguous and lacking in

Ime meaning as the phrase fourth generation language"

- T.Capers Jones [26]

A decade ago, data processing managers became concerned about their departments' increasing

inability to service the computer processing requirements of their users. The software

industry's response was to design a wide variety of productivity enhancing tools which were

marketed as fourth generation languages. This term was used, and continues to be used, to

categorize any new product aimed at improving productivity. As a result there is a great deal

of disagreement, aptly described by the above comments, as to what constitutes a fourth

generation language.

In order to prevent the continued misuse and abuse of terminology, the following definition,

attributed to James Martin, has been adopted by the DP industry: [29,30]

"Any software product used to create applications exhibiting the following
two characteristics can be termed a fourth generation language

(1) A ten-fold productivity increase over traditional methods

(2) a knowledgeable user ought to be able to pe10rm useful work after
two days training. It

Unfortunately, these characteristics cannot be used to objectively define a fourth generation

language.

4

Firstly, productivity is notoriously difficult to measure. The frequently used lines-oj-code

measurement is clearly inadequate as it does not take into account all the factors influencing

productivity. It has also been shown that such measures penalize high-level languages,

indicating a reduction in productivity, when productivity has actually increased [26]. In

addition, if the reduction in time and effort required to code an application requires a

concomitant increase in the utilization of storage and CPU resources, it could be argued that

productivity has not increased at all [19] .

The second problem is also one of measurement, namely the degree of involvement by the user

in application system design. It is argued that not all environments are conducive to end-user

computing [6,11,20,24,39], particularly where central database control is required, or where the

functions to be coded are complex. An information center, where processing requirements

consist of ad hoc reports and queries or simple stand-alone information systems, is an

environment where end-user computing is feasible. Most current fourth generation languages

are ideally suited for such an environment, as they use powerful commands for information

retrieval, hiding virtually all procedural processes. As a result, the involvement of the end­

user in application development has been observed as a feature of current fourth generation

systems and it has, unfortunately, been proposed as a defining characteristic.

Applications falling in the operational or production environment tend to be rather complex.

This complexity requires a degree of formality and procedure not easily expressible in many

fourth generation languages. When such languages are used in this environment, the resultant

application is difficult to read and maintain. This implies that the involvement of the end user

in applications development in this type of environment is limited.

In response to urgent requests, made by the United States Federal government and various

private sector organizations, for information and guidance on fourth generation languages, the

Institute for Computer Sciences and Technology [12] prepared a report intended to solidify the

concept of such languages into an objectively definable entity.

5

The report, a special publication of the U.S. National Bureau of Standards, proposes a

functional model for fourth generation languages. The model serves as a basis for defining

terminology, and for describing the services that these languages should offer their users. The

report does not claim to be defining a standard, but that it rather presents a framework for

possible future standards research [12J.

The functional model specifies the capabilities that should be present in a fourth generation

language. These capabilities are grouped into three main areas of similar functionality : user

functions, data management functions, and system functions [12J.

USER

f1)NCI10NAL MODEL
OF A 4TI1 GENERATION ENVIRONMENT

4GB

OPERATING
SYSTEM

figure 2.1 functional model of a 4GL

DATA

User functions are those capabilities necessary to provide a high level dialogue between the

language and the users of that language. These users may be human, both technical data

processing specialists and non-technical end users, or other application systems. Examples of

such functions are screen and menu formatting, screen and menu management, message

prompting and logical device management.

Data management functions provide logical data structure management, storage and retrieval of

data, archiving and restoration, auditing, and data security. These capabilities are usually

provideCfby an·integratei:! database management system.

6

System functions provide a means of accessing capabilities not available as part of the

language, but which may be provided by the environment in which the language operates.

Typical examples of these functions include file handling, job control, and communications.

The term language should not be used in the classical programming sense. It is a mechanism

for expressing problem solutions, be it in terms of graphics, speech, or written instructions.

Therefore, a programming language is but one component of a fourth generation language

which may also include an interactive query language, screen generator, report generator, data

dictionary, and database management system [5,12,24,29,30]. The functions specified by the

model are thus implemented as a system of integrated tools with one or more components

providing the services of each of the three major functional areas.

7

3. OVERVIEW OF IV

IV is essentially a programming language that forms an integral part of an applications

development environment. This environment comprises six interacting systems: a data

dictionary, a screen manager, a screen formatter, a database management system, a data

deflnition facility, and a very high level language • IV. The interfaces between these

components fall into two categories: meta data flies, and IV data objects.

I Data DicdouJy j
I

l Ow I (Full

1 Definition Meta Data Files Sae~
Fadlity J \. ""''''' I

I I J

1
Database }- I=~ rl Sao •• ,,-,,'1 ~cmc!lt
S>=m

UWA 1- -i ~~ """"" Dam Objects

figure 3.1 The Wfourth generation environment

The data dictionary supervises the storage and retrieval of information to and from the meta

data meso Meta data mes provide deflnitions of the data objects used by the screen manager,

database manager, and IV. Data objects are structures for storing application data. These

defwitions are described using the screen formatter and data deflnition facility.

The screen formatter, FSED (Full Screen EDitor [16]), uses full-screen cursor positioning to

describe a screen. For each screen that is described, FSED generates two deflnitioDS : a

screen map containing the physical image that is to be displayed, and a logical defwition of

that screen containing information such as the co-ordinates, validation criteria, and data entry

requirements of each data item.

8

These definitions are used by the screen manager (FSM - Full Screen Manager [17]) which

generates the screen and handles all I/O between the terminal and the IV application. Data is

passed between FSM and the application in data objects called display records whose structure

is described in the logical definition of the screen.

The Data Definition Facility (DDF) is an interactive, menu-driven tool, which enables a

database administrator to specify the structure of a database. The administrator can describe

the logical structure of the database by using the Data Definition Language (DOL), and the

physical aspects of the database by employing the Data Storage Definition Language (DSDL)

[9,39]. The database management system (DBMS) uses these descriptions for the transfer of

data between the application and the database. Data is passed between the DBMS and the

application in user work area records, data structures which are representations of the

database file components that are internal to the application.

A CODASYL7 compliant network database management system, (DG/DBMS) [9], is employed.

Most current fourth generation systems use relational database management systems (such as

DG/SQL [10]) which provide the data structure independence needed to make them flexible

and easy to use. However, current industry perception is that relational database management

systems do not reliably and efficiently handle large numbers of transactions, therefore

impeding their use in operational environments where efficiency and security is required.

Inverted file (e.g. ADABAS [33,34,38,39,41]), hierarchical (e.g. IBM's IMS [23]) and network

database management systems are capable of processing the transaction volumes generated by

an operational environment such as the one for which IV was designed.

Access to the data managed by this DBMS is achieved by using Data Manipulation Language

(DML [9,15,39]) command statements which allow basic record upkeep operations. These DML

statements have to be embedded in a third generation lang~age such as COBOL or FORTRAN

77. A preprocessor is then used to generate the correct calls to the DBMS.

7 Conference on Data Systems Languages

9

IV presents high level non-procedural programming constructs for interfacing with the screen

manager and the database management system, while retaining programming functionality by

the use of Pascal-like procedural constructs and structures, such as procedures, while loops

and if statements. The compiler for IV will translate these constructs into FORTRAN 77 code

with embedded DML code for the DGIDBMS interface.

10

4. THE DESIGN OF IV

One of the major design objectives for IV, was to provide language constructs that facilitate a

dramatic increase in programmer efficiency by transferring much of the program development

workload from the programmer to the compiler. The resultant increase in the utilization of

computer resources is considered acceptable in the light of increasing software costs and

decreasing hardware costs [30] .

The term, programmer efficiency, is defined as "the effort involved in coding, testing and

maintaining application programs". The term is broadly defined and can, for tbe purposes of

this report, be measured according to subjective criteria, so as to avoid the problems of

productivity measurement that were discussed in section 2.

Languages providing high degrees of productivity use constructs that exhibit a great deal of

abstraction. The greater the degree of abstraction in such a language, the less the amount of

detail, or procedural information, that is visible to the user of that language.

Levent Orman's Familial Specification Language (FSL [37]) is one such procedure independent

language that influenced initial design considerations for IV. It is a set theoretic and

functional language that can be used both as a database language and as an application

specification language. FSL allows data independent design of database application systems,

providing constructs to accommodate the aggregation and classification problems commonly

found in business data processing, and to handle looping implicitly. However, the nature of

such constructs requires run-time support tbat make tbem unsuitable in operational

environments where the machine efficiency of executing applications is of paramount concern.

Several commercially available fourth generation languages were then examined in order to

provide less radical constructs. Languages such as Ramis, QBE8 and ADF n9, although

8 Query By Example

11

providing a great deal of abstraction, do not afford much program functionality. Since an

operational environment dictates a large degree of program functionality, the scope of

application programs written using these languages are limited. Natural, Ideal and Mantis on

the other hand ex!tibit more proceduralism, thus making them more general purpose. These

procedural fourth generation languages therefore serve as a basis for IV. It should be noted

that a language such as Natural has been developed over a number of years. Consequently, it

is a large language providing a lot of functionality and sophistication. The purpose of IV is

not to emulate such a language, but rather to provide constructs which improve on those

available in these languages.

An application written in IV comprises a number of modular components, each specifying a set

of operations to be performed on a set of data objects.

4.1. IV Application Components

Stevens et at [45] discuss considerations and tecJmjques for modularising programs. They point

out that dividing programs into smaller pieces, without increasing complexity and hence

maintenance effort, is difficult due to the overlapping of code and various other

interrelationships that usually exist. These difficulties can be largely overcome by the use of

good structured design techniques [45] supported by language constructs that serve to reduce

program complexity.

IV program components, called modules (which are similar in syntax and semantics to the

Pascal procedure), are pieces of program text which group logically related operations and

data objects, and which are referred to by a unique identifier.

The program text consists of two sections: a declaration section followed by an executable

section. The executable section specifies the operations to be carried out by a module. Every

9 Application Development Facility Version 2

12

data object referred to by these operations must be named and declared to be of some flxed

type in the declaration section.

A module therefore has the following format:

MODULE module name
declaration_section
executable_section
END MODULE

Each module, which may be compiled separately, has its own set of data objects called

program variables. Values for these variables may be passed to other modules via a parameter

passing mechanism. The declaration section must specify both the local variables and those

that serve as formal parameters.

These intra-application module interactions are termed module coupling, a concept that arose

from the 1960's structured design revolution [29,30,32,43,44,45]. Several authors [43,45]

conclude that a program design objective is to minimize the connections between modules

since this will minimize the paths along which changes and errors can propagate to other

modules in the system. The widely used technique of using common data areas (required for

NATURAL 2 subroutines called with the PERFORM statement10) and global variables, can

result in an enormous number of connections between modules. The scheme adopted m IV,

called data coupling, reflects the above goal. The language forces the programmer to clearly

specify the data objects to be used by each module, and the interfaces between those modules,

thus minimizing possible side effects resulting from erroneous coding.

This scheme supports yet another structured design principle, that of information hiding

[43,45]. After the function and interface of a module has been completely specified and

implemented, the internal details of that module need no longer be considered by the

programmer. Therefore, the information required by the programmer for applications

development becomes more manageable, resulting in an increase in programmer efficiency.

10 NATURAL Version 2 provides three different modes of subroutine processing [34].
Each mode differs in the way that parameters are passed and the way the subroutine is implemented.

13

All module calls observe the VS/ECS (Virtual System!External Calling Sequence [15])

convention which allows inter-application module calls and calls to modules written in any of

the AOSNSll languages: Pascal; FORTRAN 77, COBOL, BASIC, C, and PL/1. IV also allows

other programs to be executed from within the IV application. Here the calling application is

suspended until the called program has completed execution.

The above features of IV modules are included in Spector's (42) list of language features that

are required to support reusability, which is considered to be one of the solutions to the

problem of application backlogs. Many of the other language constructs found in IV, including

those powerful commands whose procedural operations are hidden from the user, also fall

within the definition of reusability [27,42).

Several organizations have shown that the use of reusable modules greatly increase

productivity. Hartford Insurance Company of Connecticut in the United States reported a 7%

increase, and programmer productivity rates in excess of twenty thousand source code lines

per person year were achieved by Toshiba of Japan [27].

Figure 4.1.1 illustrate the interactions between the various IV application components .
tV A~"LlCAT'ON

IUCT."NAL
,."OO"",M .

.... A"~L.ICA TION

.OL
"OUTINce "OUTIN ••

figure 4.1.1 Interaction between W application components

11 Advanced Operating SystemNirtual System; product of Data General Corp.

14

4.2. Data Types, Data Objects, Declarations and Scope

Data objects used by programs written in IV contain values of fixed type. The data types are

integer, real, logical and character. A data object may also be composed of several values,

resulting in a structured type. Structured types include arrays, records and sub·schemas.

4.2.1. Elementary Data Types

Elementary types are based on DGIFOR TRAN 77 elementary data types. The following table

lists the elementary types available to the IV programmer.

'·V~': O •• C"'~T'ON aTO"A.OIi
(D". •••)

,,..t_v· .. INTltO':,,"2 2

INTEO."-" •
,. "IiAL-" •

"!tAL-. •
logic.' LOOtCAL •

figure 4.2.1.1. IV elementary data types

The binary arithmetic operators exponentiation COO), multiplication CO), division CI), addition

C +) and subtraction C -), are available for integer and real operands. The operations of negation

CNOT), disjunction COR) and conjunction CAND) can be applied to operands of type Boolean.

Negation is a unary operation while disjunction and conjunction are binary operations.

Character values must be enclosed by quotation marks. Non-printable characters are obtained

by enclosing their octal ordinal value in angle brackets. For example, "< 015 >" returns the

ASCII carriage return character.

42.2. Composed Data Types

Data objects of an elementary data type may be composed into complex data objects of type

array, record, or sub-schema.

15

An array is a sequence of data objects (elements) of an elementary data type. A data object

of type array may have up to seven dimensions, the elements of which are stored in column

major order. Elements are accessed by the use of FORTRAN subscript notation.

A record is composed of a finite set of fields (named data objects). Each field may be of

elementary or array type and may be accessed by specifying the name of that field. Therefore,

names given to record fields must be unique. Arrays of records may not be composed.

Sub-schemas are composed of a finite set of logically related record types.

4.23 Data Object Declaration

There are three types of data objects: program variables, display records, and user work area

(UW A) records. Every data object that is to be used in an application must be named and

declared to be of some fixed type.

Program variable declarations are explicitly made within the IV source program text. They

follow the FORTRAN format and may be of either elementary or array type. For example, the

statements:

INTEGER*4 EXECUTIVE_SALARY, TOTAL_SALARIES
JNTEGER*2 LITTLE_GREY_MAN_SALARY

declare variables of elementary integer type. A variable of array type is declared as above,

but with the size of each dimension following the variable name in parentheses. For example:

Formal parameter declarations must follow the module name and must be enclosed in

parentheses. The example below illustrates a module with parameters A,B and C, and local

16

variables D,E and F.

MODUlE 100 (INTEGER*4A,B
REAL*S C)

WGICALE
INTEGER*2D,F
executable_section
END MODUlE

Display records and UWA records must be named, and are declared of elementary or array

data type, with the aid of menu-driven software tools, namely the Full Screen EDitor (FSED)

and the Data Definition Facility (DDF). It is in this phase of program development that

participation by the end-user is possible. These declarations are made external to the program

text, with the definitions stored in a data dictionary. This enables several applications to use

the same definitions without having to redeclare those objects.

These tools also allow the programmer to attach attributes to each field of the record.

Examples of these attributes include validation processing rules and help files [16], for display

record fields, and data protection functions [9,39] for UW A records.

Modules that reference display records, or their components, must name those display records

in the declaration section of that module as follows:

SCREEN displaYJecord_name, ... , ...

If a module references any of the components of a sub-schema, then the following declaration

must be included in the declaration section of that module:

SUBSCHEMA name _oLsub-schema

This declaration makes all the records of that sub-schema visible to the module In which the

declaration was made.

17

4.2.4. Scope

The scope of a data object is that part of the program text in which the data object (or one

of its components) may be referenced. The scope is defIned by the bounds of the module

construct. The scope of any data object is limited to the module in which it has been

declared.

Those program variables declared as formal parameters provide dummy names for variables

declared in other modules, so that these variables may be referenced, using the dummy name,

outside the module in which they were declared.

The SCREEN and SUBSCHEMA declarations specify that all the components of those display

records and sub·schemas that are declared \vithin the program text of a module fall within the

scope of that module.

These Pascal· like scope rules, although very simple, provide a powerful mechanism for ensuring

reliable application development. This mechanism is arguably superior to that which is available

in NATURAL where variable defInitions, indicated by using special characters (+ ,& and #), can

occur anywhere in the program text. These characters also determine the scope of those

variables [33]. This allows unstructured, undisciplined coding, resulting In increased

maintenance effort.

4.3. Expressions

Program variables, numeric literals, UW A record fIelds, and display record fIelds may be used

in expressions to compute new values. Mixing operands of different elementary data types in

an expression IS allowed. The types of these operands are converted according to the

FORTRAN conversion rules as defmed in the Data General FORTRAN 77 reference manual [14].

Programmer defmed conversion is specified using type transfer functions as in Modula 2:

18

TRANSFER. FUNCTION

INTEGER *2(nul"'r"I.rlo)
INTEGER *4 (nurn.,-Io)
fit EAL* (lnt.g .,.)
R.EAL*S(nU,..,.,.,.IO)
CH AfI\ACTE"'(ln t.g.,.)

figure 4.3.1. IV type transfer functions.

4.4. Statements

RESULT TVPE

INTEOER,*2
INTEOER*
REAL*4
REAL-.
CHARACTEII\. 1

A statement specifies one or more operations to be carried out. IV statements fall into either

one of two categories, procedural Or non·procedural. Proceduralism is defined as the explicit

description of an algorithm for the solution of a problem in a finite number of steps. Fischer

[12] defines non-proceduralism rigorously as "non-order dependent problem solving". However,

no language claiming to be non-procedural strictly satisfies this definition, as the order in

which the problem is stated is sigoificant. For instance, database management systems require

knowledge of the structure of the database before data can be stored or retrieved.

If we regard a non-procedural statement as an abstraction of a sequence of procedural

operations then, limiting Fischer's defmition to a single non-procedural statement, the order

of these operations need not be specified by the programmer.

These definitions reduce to the following:

procedural statements specifying how something is accomplished.

Non-proceduralism specifies what is to be accomplished without describing how it IS

to be accomplished [6,12,24].

The executable sections of IV modules are composed from non-procedural statements, using

procedural statements, nesting and sequencing to eonstruct a module. An analogy can be drawn

19

with constructing expressions, which are composed from numeric literals and variables with

arithmetic operators, nesting (by using parentheses), and sequencing of operations serving as

expression constructors. Figure 4.4.1 illustrates an IV module composition where the boxes

represent the non-procedural statements.

_ ACe,

OT W' •• I I
~=:::::

.......... coT
.... _OOU".

figure 4.4.1 W module composition.

4.4.L Non-procedural Statements

The non-procedural statements facilitate high level interaction with the database management

system and the screen manager. These statements describe the nature of the interaction rather

than the details of how that interaction is accomplished. They also define the operations to be

performed on the elements of the UW A and display records.

These statements follow a simple, consistent syntax based on the SELECf ... FROM ... WHERE

format found in SQL [10,39]. This syntax also provides a suitable structuse for localizing side

effects. Ideally side effects should be avoided completely as in assignment-free applicative

languages [21]. However, as explained at the start of section 4, such languages are costly in

terms of machine efficiency, making them unsuitable for an operational environment.

An IV non-procedural statement has a mandatory header clause, followed by an optional where

clause, followed by an optional statement clause.

20

4.4.1.1. Screen management

The DISPLAY statement denotes the set of operations required to perform screen management.

The header clause defines the name of the display record to be used by the screen manager,

and determines whether the screen map for that screen record is to be repeatedly displayed.

The where clause specifies the operations required to initialize the display record's fields

before they are displayed. The statement clause defines the operations to be performed on

those fields after that record has been displayed. These latter two clauses provide a clean

interface mechanism to the screen manager. Operations that are pertinent to the screen

manager are textually localized, consequently aiding maintenance and improving program

stucturation. NATURAL's INPUT ... MAP statement, although conceptually similar to the

DISPLAY statement described below, does not compel the programmer reflect these logical

groupings of operations in the program's structure.

The format of the DISPLAY statement, expressed in EBNF, is as follows:

DISPLAY [EACH 1 [MENU 1 screen_name [(fieldJor_cursor "'position) 1
where_clause
: statement_clause
END DISPLAY

Inclusion of the key word MENU, informs the compiler to generate extra code to handle menu

management. To the user menu management appears identical to screen management.

Display records are used to convey data entered by a data capture clerk or a computer

operator, to the application program. All terminal I/O is handled by a FORTRAN library

routine called FSM. The specification for FSM is as follows: [17]

SUBROUTINE FFSM(ISTK,FKY,MODE,NAME,IARR,CARR,RARR,IPOS,IERR)
INTEGER *4 ISTK(*),FKY,MODE,IARR(*),IPOS,IERR
CHARACTER *(*) NAME,CARR(*)
REAL*8 RARR(*)

21

The variable length arrays !ARR,CARR and RARR correspond to the display record. The

parameter NAME provides FSM with the name of the screen map and its associated display

record. The other parameters serve as control variables for FSM (see section 5.2.3.3).

Each screen I/O field is assigned a unique position in one of the arrays !ARR,CARR or RARR,

depending on that field's data type. Calling FSM from an application written in FORTRAN

requires the programmer to assign these positions. For example, a screen with four fields, as

illustrated in figure 4.2.2, where the first two fields are of type CHARACTER, the third of

type INTEGER, and the fourth of type REAL would require a programmer to remember that

they are associated with CARR(l) and CARR(2), !ARR(l), and RARR(l) respectively. When the

screen has a large number of fields this method becomes cumbersome and can lead to

numerous coding errors.

figure 4.4.1.1.1 A_SCREEN screen map - I/O fields are indicated by brackets.

Using the screen formatter, FSED, the programmer can assign a unique name to each screen

field. These names can then be used in the program text of an IV application. The compiler

will then associate these names to the array elements in the parameter specification of the

call to FSM. In addition, the control variables are also managed by the compiler whilst

allowing the programmer to access them from within the IV application if so required.

If the screen map illustrated in figure 4.4.1.1.1 is named A_SCREEN and its I/O fields named

A,B,C and D respectively, then

DISPLAY EACH A_SCREEN (C)
WHERE A = 'N"
:IFA='Y'

THEND = 4.3
EXIT

END IF
END DISPLAY

22

will repeatedly display the screen map associated with the A_SCREEN display record. On each

display, the cursor will be positioned in the screen field corresponding to C. The variable A­

a field of A_SCREEN - is initialized to "N" prior to each display. The screen input/output

field corresponding to A will then display a value of "N". The user may type in a new value

which is returned by the screen manager to the IV application in A. Execution of the

DISPLAY statement will terminate when the screen manager returns the value "Y" in the field

corresponding to A, 4.3 in the field corresponding to D, and default values (blanks for

character fields and zeros for integer and real fields) in the remaining screen I/O fields. The

above statement is thus represented by the following FORTRAN code:

10 CARR(I) ~ ' N"
call SCREEN MANAGER(A_SCREEN)
if CARR (1) ~ "Y" go to 20
go to 10

20 continue

The key word EACH, establishes an implicit loop. Omission of the key word EACH, would have

resulted in only one call to the screen manager (i.e. the "go to 10" FORTRAN statement above

would be omitted).

4.4.1.2. Database management

Christoff asserts that when managing the fourth generation environment " .. . most attention

must be given to (the) creation and care of data, for data is the cornerstone of all fourth

generation languages [6]." A language must therefore provide facilities that result in the

reliable upkeep of data. These facilities are provided in IV through a set of basic storage and

retrieval functions, common to most data manipulation languages, that serve as an interface to

the database manager.

Database management statements denote the operations required to move data to and from the

database (transfer function), and describe the set of operations to be performed on that data.

The header clause specifies the transfer function and the target record type. The where clause

delineates the route through the network to a particular instance of the target record type

23

which is described by a list of conditions (qualification expression). The transfer function can

then be applied to the located record instance. Finally, the statement clause specifies the

operations to be performed on the values of the located record.

Data is transferred between the application program and the network database management

system, DG/DBMS, in structures called UWA records. In the network model, data items are

grouped together to form record types of which there can be several instances. Record types

are associated in pairs by named links, called sets and may participate in an unlimited number

of such sets, thus forming a network. These associations reflect a parent-child relationship.

One instance of a named parent record type may be associated with several instances of its

corresponding named child record type, presenting a one-to-many relationship.

Each database record type corresponds to a unique UW A record. As there can be more than

one instance of a record type, the UW A record serves as a window onto those instances. That

instance of the record type reflected in the UW A record is termed the current record.

The database management statements listed below, specify the transfer of data between the
application and the DBMS as well as describing the nature of the interaction with the DBMS.

1. STORErecard_name
where_clause
: statement clause
END STORE

creates a new instance of the target record type, storing the current values of the
UW A record corresponding to the target record type in it.

2. MODIFYrecord_name
where clause
: statement_clause
END MODIFY

copies the current values of the UW A record corresponding to the target record
type to the located instance of that type.

24

3. ERASE record_name
where clause
END ERASE

removes the located instance of the target record from the database.

4. GET record_name
where_clause
: statement clause
END GET

copies the values of the located instance of the target record type from the
database to its corresponding UW A record.

5. RECONNECT record_name
where_clause
TO record_name
where_clause
FROM record_name
where clause
use clause

CONNECT record_name
where_clause
TO record_name
where_clause
use_clause

DISCONNECT record name
where clause
FROM record name
where clause
use_clause

establishes logical links between located parent and child record types. The use
clause indicates into which set the target record type is to be included.

6: READY
statement clause
END READY

Informs the DBMS that a client wishes to make use of the database manager.

25

7: AVERAGE, COUNT, MAX, MIN, TOTAL: are special statistical utility functions
with the general syntax:

utility Junction record_name
where_clause
END utility Junction

The statement clauses of these data management statements may only specify screen

management commands, procedural statements, or simple assignment statements. Thus, the

nesting of data management statements is not allowed.

4.4.1.3. Database access

Access to the data stored in a database involves the mapping of the application program's

view (external schema) of the database structure, to the logical view (conceptual schema) as

discerned by the DBMS.

EXrERNAL

Application pro&nm'S view of the database
SCHEMA

CONcrPTIJAL

Globlll ol:PJllzadonal view mOle database
SCHEMA

figure 4.4.1.3.1 mapping of external schema to conceptual schema

The relationship between these two views is of paramount importance in the issue of

maintenance. ·Cobb states that " ... structure-independent databases are a prerequisite for the

successful implementation of fourth generation languages [7]." Structure independence, or

logical data independence, insulates the application program from changes made to the

conceptual schema. Because of their navigational nature, virtually all non-relational systems

fall considerably short of this goal. Pratt & Adamski [39] discuss several relational and non­

relational DBMSs' and claim that "while relational systems are better about handling changes,

26

there is still room for improvement [39]." In view of the above assertion, Cobb's statement

should be considered a goal rather than a reality.

In the network database model employed by IV, the programmer is required to remember all

the path names (sets) in order to navigate from the current position in the network (current

root record) to the desired destination. Access to the data is provided by DML, a low level

language that operates on single records at a time. Simple relational qualification expressions

are used to select the appropriate record. Only one relational operator can be used in a

qualification expression. Further relational conditions need to be tested by separate

statements, thereby adversely impacting on the expressibility of the application.

Several high level language interfaces for network databases have been developed. An example

of such a language is Shneiderman's Pure Data Manipulation Language (PDML [31]) . These

languages all, however, require the programmer to specify enough set names so that all data

items in the qualification expression are connected. Appendix A provides examples of DML,

PDML and IV code illustrating record selection methods.

One of the aims of IV is to present a simpler, more usable conceptual view of the network, in

which the applications programmer need only know the logical relationships between record

types, rather than the physical links associating those types. Full boolean and relational

qualification expressions are used for single or multiple record selection thus making database

access less restrictive, approaching the relational data model's ease of use.

As mentioned in section 4.4.1.2, the where clause of a data management statement specifies a

route through the network from an occurrence of the current root record to an occurrence of

the record type targeted in the header clause. The default root record of any database is a

system record type, SYSTEM, of which there is only one occurrence. This record serves as an

entry point into the network and cannot be accessed by an application program. Thus,

initially, the current root record is set to this instance of the system record type. All

navigation through the network starts at the current root record. Consider a database

represented by the following Bachmann [9,39] diagram:

27

SYSTEM

SHAREHOLDERS COMPANIES

PORTFOilOS

figure 4.3.1.4.1 Logical description of network database

If an instance of the COMPANIES record is to he located, it is necessary to describe a route

to that record. This route is as follows: from the SYSTEM record move to an instance of the

SHAREHOLDERS record type, then move to an instance of the PORTFOLIOS record type, and

finally move to the PORTFOLIOS record parent. For example, the statement

GET COMPANIES
WHERE EACH SHAREHOLDERS

EACH PORTFOLIOS
OWNER COMPANIES(NAME = 'Barlow Rand Corporation")

END GET

will retrieve the COMPANIES record for Barlow Rand Corporation. It is necessary to specify

that the route to Barlow Rand's record can be via any occurrence (EACH) of the

SHAREHOLDER and PORTFOLIOS record types. The where clause in the preceding example can

be likened to the relational JOIN operation, except that record types (equivalent to tables in

the relational model) are not joined on common fields (attributes) but that all combinations of

record instances (tuples) are join~d until the required record is located or until there are no

further combinations. If a record occurrence is not located, a special system variable is set.

28

Thus, the preceding example could be followed by the following statement:

IF NOT FOUND(COMPANIES)
THEN report_message

END IF

to inform the user that no record for Barlow Rand is available.

The current root record can also be changed by the FIND command.

FIND SHAREHOLDERS
WHERE SHAREHOLDERS(NAME = "H. Oppenheimer")
: statement clause
END FIND

The above statement will set the current root record to H.Oppenheimer's record. This means

that the statements in the statement clause are restricted to accessing only Mr Oppenheimer's

portfolios (PORTFOLIOS) and the companies belonging to him (COMPANIES). Upon execution

of the END FIND statement, the previous current root record is restored (i.e. SYSTEM). FIND

statements may be nested, thus further restricting access of the database by the statement

clauses of the nested FIND statements.

Using the DML interface to the database management system, the programmer would have to

specify the physical links (sets) required to navigate the database [9,39]. This, together with

the simple syntactic and semantic nature of these statements, make complex record location

considerably difficult. In IV this task is transferred from the programmer to the compiler. This

not only leads to improved programmer efficiency, especially as the programmer need not know

the physical structure of the database [7], but the compiler can also generate optimal code for

record location. Appendix B provides examples of DML record location and equivalent IV,

NATURAL and SQL code.

By preventing the programmer from explicitly naming the sets to be used in database

navigation, leaving the compiler to determine which links are to be traversed, IV allows for a

degree of logical data independence. This, of course, is not the case when all links between

29

two record types are broken. Access in IV could be improved considerably by using

mechanisms similar to IDMS/R's12 Logical Record Facility and Automated System Facility [39]

which present relational-like views of a network database, allowing them to be manipulated as

tables using select, project and join operations, and providing improved automatic database

navigation.

4.4.1.4. Assignment statements

A common feature of imperative type languages such as NATURAL, is that the scope of

variables are determined by a module or some similar construct. This means that the

assignment of expression results to an assignment variable may occur anywhere within the

bounds of such a construct. Assignments lead to side effects which may adversely affect the

debugging and maintenance of application systems. Attempts less radical than those of

functional programming languages [21] (which don't allow any explicit assignments) to minimize

this problem have been made in SQL and its predecessor, SEQUEL 2 [50]. Update values must

be specified by a SET clause which forms part of the UPDATE command. This means that

assignments are localized to a piece of . program text which is associated to a database

management command. However, due to the limited functionality provided by these languages

in a stand-alone mode, they have been embedded in third generation languages such as PL/1

and COBOL. As a result of this, the additional scope rule can be circumvented.

IV provides additional scope rules for assignment variables based on those of the stand-alone

SEQUEL 2 and SQL languages. These scope rules apply only to assignment variables and not to

variables referenced in expressions. All variables, however, are still subject to the scope rules

stated in section 4.2.4.

A program variable of either an elementary or array type, may be assigned an expression

result by any statement that is within the scope of that variable. If that variable was used as

12 IDMS developed by the Goodrich Tire Co; acquired by Cullinane Corp in 1971
IDMS/R developed by Cullinet Software, Inc.

30

an actual argument in a call to a module, then any assignment in the called module to that

variable's dummy name assigns the expression result to the actual argument. In the following

example, the assignment statement, Y = 1, in MODULE 2 assigns the value 1 to variable X.

The same statement in MODULE 1 is, however, illegal as Y is not in MODULE 1's scope.

MODULE 1
INTEGER*2X
2(X)
Y=l

END MODULE

MODULE 2 (INTEGER*2 Y)
INTEGER*4X
X = Y
Y = 1

END MODULE

Fields of a display record may only be assigned values by assignment statements specified in

either the where clause or the statement clause of a screen management statement that

references the display record in its header clause. For example:

MODULE demo

DISPLAY a screen
WHERE valid _a_screen _assignment_statements
: valid _a_screen _assignment_statements

END DISPLAY

END MODULE

A UW A record field may only be assigned values by statements specified in the statement

clause of a data management statement that references the record in its header clause as the

31

target record type. For example:

MODULE demo

MODIFY a record
WHERE locate_an_instance_of_aJecord

valid _ a Jecord _assignment_statements
END DISPLAY

END MODULE

This additional scope rule provides further protection against erroneous coding. Names of

fields belonging to records must be prefixed by the names of those records, if referenced by

statements falling in the where clause or statement clause of a non-procedural statement that

does not name those records in its header clause. For example:

Consider record A with fields Al and A2, and record B with fields Bl and B2

MODIFY A
WHERE EACH A (A2 > B.B2)
: A2 = Al + B.Bl
END MODIFY

These additional scope rules provide a significant departure from the freedom afforded the

programmer in fourth generation languages such as NATURAL. The resultant flexibility enjoyed

by these languages is often at the expense of program maintainability.

32

4.4.2. Procedural Statements

Many current non-procedural languages cannot be used for serious application development due

to limited programming functionality. This problem is overcome by embedding such languages

(e.g. SQL,QUEL13 [39]) in a third generation host language such as COBOL or FORTRAN.

Although providing complete programming functionality, this solution results in an awkward

two tier programming environment. The programmer is required to differentiate the host

language from the embedded language . SQL commands are identified by embracing them with

EXEC SQL and END·EXEC statements, whereas QUEL commands are identified by placing '##'

on those lines containing a QUEL statement. In IV, as in NATURAL, no distinction is made

between procedural commands and commands that result in calls to external systems such as a

DBMS or screen manager, thus providing a single uniform programming environment.

These procedural statements are used for explicit looping, conditional branching, and

unconditional branching thus affording the application programmer a large degree of

functionality. Looping is achieved with the Pascal·like WHILE and REPEAT loops. The

semantics of these statements are similar to their Pascal counterparts. As there is no

compound statement in IV, an explicit termination statement must be provided for the WHILE

loop. This is achieved by delimiting the statements contained in the loop with an END WHILE

statement as follows:

WHILE a_condition DO
any_number _of_statements

END WHILE

Unconditional branching is achieved by calling either a module or external program, or by

using the EXIT statement.

A module call is specified in the same manner as a Pascal procedure calL A module call

invokes and passes control to the module named in the program text in the same manner as

the Pascal procedure call, except that parameters are always passed by reference. External

programs are called by specifying the following statement:

13 QUEL is the data manipulation language used by the Ingres DBMS

33

XEQ "extemal yrogram _name"

Control is passed to the next statement upon completion of the external program.

The EXIT statement allows an unconditional branch to the end of the most nested non­

procedural statement in which the EXIT statement was defIned.

The SELECT and IF statements permit conditional branching. The dangling-else problem is

solved by terminating an IF statement with an END IF statement, illustrated by the following

example:

IF a Jondition
TIffiN any_number _ oLstatements
ELSE any _ nllmber _oLstatements

END IF

The SELECT statement provides a more powerful mUltiple selection construct than the Pascal

case statement. Rather than determining selection on the basis of comparing a single

expression against a set of constants, the SELECT statement allows selection according to the

results of a set of conditional expressions. The statements associated with the ftrst conditional

expression (textually) that evaluates to true, are executed. For example:

SELECT
WHEN FALSE: 1= 0
WHEN TRUE:I = 1
WHEN TRUE:I = 2

END SELECT

will always result in variable I having the value one.

4.5. Transactions and Database Consistency

The database may be accessed and modified by several concurrent programs. This can lead to

conflicting actions on the same data. "A DBMS must furnish a mechanism to ensure that the

34

...

database is updated correctly when multiple users are updating the database concurrently"

[13,39]. In order to solve these conflicts, transaction boundaries defining transactions are

introduced. These boundaries are used by the DBMS to manage concurrent updates.

The format for a transaction is as follows:

TRANSACTION
statements "'performing_transaction

END TRANSACTION

A transaction is a logical unit of work that performs all the operations of the transaction

successfully, or none of them if one is unsuccessful. For example, a typical banking

transaction could debit money from one account and credit it to another. If one update

occurred without the other, the bauk would be either creating or destroying money.

When a transaction starts, the database management system assigns a view of the database to

that transaction. A view is a record of all successful transactions completed up to the start of

the current transaction. Upon completion of the current transaction, the DBMS checks whether

any other transaction has since been completed by comparing the view assigned to the just

completed transaction with the current view. If any other transaction was completed, then an

update conflict occurred and the DBMS returns an error code to the application. The longer

the transaction (in terms of the number of operations to be performed), the greater the

likelihood of update conflicts arising.

... '·~I..ICATION .,.

,. I • I c

A,.·~LtCA TIC ... e .
o

figure 4.5.1 flIustrotion of database views

35

YI."" " • •• ONKD
TO T"'-"'N CTIO ... 0
_ A • • 0 C, p'. 0

"

D I
. YIE W AT II: NO 0 '"

yft"' CTIO ... 0
_A • • • c a . "

The construct outlined above can be used to clearly demarcate the start and end of a logical

unit of work. It provides greater program clarity than either SOL14 or NATURALI5, and in

the case of SOL, provides greater efficiency as well.

In SOL the start of the program marks the start of the first transaction. The COMMIT

command indicates the end of that transaction and the start of the next one. The programmer,

contrary to the above defmition of a transaction, may be required to include unrelated

operations in a transaction since no piece of program text can fall outside a transaction

boundary. Therefore, this construct must also have an adverse impact on efficiency,

particularly in a large multiple user environment.

NATURAL does not provide an explicit start-of-transaction command. The first database

management command following an END TRANSACTION command, or the start of a module,

designates the start of a transaction with an ensuing END TRANSACTION command denoting

the end of that transaction. Although probably as efficient as IV, the lack of an explicit

start-of-transaction statement restricts the clarity and stucturation of the application program.

4.6. Error handling

Cocco and Dulli [8] discuss language features for dealing with exception conditions. In keeping

with the tenets of structured programming and the design objectives of IV, such features

should clearly distinguish between normal control flow and the exception handler.

IV provides a structured construct for dealing with errors generated by non-procedural

statements, based on the Ada exception handler construct. It allows the programmer to deal

with escape, notify and signal exceptions as classified by Goodenough [18].

14 Using IBM's DB2 DBMS running under MVS/370 or MVS/XA

15 Using The ADABAS DBMS

36

An error generated by a non-procedural statement results in control being passed to an error­

handler for that statement. Error-handlers are statements defined immediately prior to the

END statement of either a non-procedural statement, or a transaction statement. If the error

is not dealt with immediately, control passes to the error-handler of the next outermost non­

procedural or transaction statement. This is illustrated by the following example:

MODIFY EMPLOYEE
WHERE FIRST DEPT(NO = 301)
: SALARY = SALARY' 1.16

WHEN DBSTATUS = some_integer: do_something
END MODIFY

If DBMS should return an error when modifying the employee record, then control passes to

the WHEN statements declared prior to the END statement of the MODIFY command. If the

value of DBSTATUS corresponds to some)nteger, then do_something is executed instead of

the previous statements defined in the statement clause of the MODIFY command. If

DBSTATUS is not equal to some-integer then control will pass to the WHEN statements of the

command in which this MODIFY was defined, as shown below:

DISPLAYS01
: peiform _modification Jpecified _above

some _other_statements
WHEN DBSTATUS = another)nteger: do _something_else

END DISPLAY

More than one WHEN statement may be defined in a statemellt clause of either a non­

procedural or transaction statement, provided they are consecutive statements. The WHEN

statements form alternatives to the other statements in a statement clause. After control has

been passed to them, execution proceeds normally. The following example code text illustrates

this point.

37

MODULE 000

INTEGER '2 FLAG

REPEAT
TRANSACTION

FLAG ~ 0
DISPLAY EACH SOl
WHERE some-initial-statements
: IF QUIT ~ "Y" THEN EXIT

perfann-modification
END DISPLAY
WHEN DB STATUS ~ 17202: MESSAGE ~ "UPDATE CONFLICT-REENTER DATA"

FLAG ~ 1

END TRANSACTION
UNTIL FLAG ~ 0

END MODULE

EXIT

If the EXIT statement defined in the WHEN statement had been omitted, the END

TRANSACTION would have been executed. Since this statement results in a COMMIT DML

command being executed, another error would have been generated because the initial error

has not been cleared. In order to clear an error it is necessary to restart the transaction. The

EXIT statement would cause control to pass to the statement immediately following the END

TRANSACTION statement. Since FLAG has been set to one, the statements in the REPEAT

loop will be executed again, thus restarting the transaction.

4.7. Comments

All comments in IV, which may be located anywhere in the program text, are enclosed by "{"

and IT', For example:

{ this is an example of a comment}

Comments may not be embedded in other comments.

38

5. IMPLEMENTATION

IV was implemented for a DP department as a commercially viable system. The situation,

unfortunately, provided little opportunity for research into aspects of implementation, resulting

in standard, well-known techniques of implementation being employed. This section, rather

than discuss what is already familiar to the reader, concentrates on presenting several

interesting aspects of FORTRAN and DML code generation. A conceptual description of the

compiler is also provided, as well as a brief evaluation of the languages that were available

for implementing the compiler (AOSNS COBOL16, AOSNS FORTRAN 7717, AOSNS PascaI18).

The choice of a programming language to implement a system must be based on criteria which

reflect the fundamental concepts of good systems desigu as well as the language's suitability

for the particular problem to be solved [2,28].

Modularity is one of the most important criteria required for programming III the large [28].

To satisfy this criterion, it must be possible to develop independent sub-systems and compile

them separately. Facilities for developing subroutines are poor in COBOL, making program

modularity almost impossible. Consequently, this language received no further consideration.

Both AOSNS FORTRAN 77 and AOSNS Pascal provide recursive sub-program facilities .

However, these facilities are more limited in FORTRAN - parameters are only passed by

reference and sub-programs may not be nested. Separate compilation is also provided by both

of these languages. A module construct similar to that provided in Modula-2, is supported in

AOSNS Pascal. Explicit export and import of variables, procedures and functions make this

facility far more powerful than the FORTRAN facility [14,15].

16 based on ANSI Standard Cobol (X3.23-1974)

17 conforms to ANSI Standard FORTRAN (X3.9-1978)

18 conforms to Draft Proposed American National Standard Pascal(ANSI X3J9-IEEE)

39

Anotber important criterion is tbat of reliability. Altbough the reliability of a system IS highly

dependent on tbe prograntmers of tbat system, it bas been sbown [28,29,30] tbat tbe use of

structured programming languages bave a considerable impact on programmer reliability19. A

related issue is tbat of a language's ability to bandle modifications and extensions. This also

requires modularity, clarity and structuration [28,45,49,52,54]. All of tbese features are well

supported in Pascal. FORTRAN 77, altbough introducing structured constructs, is still ratber

weak in this area.

Therefore, despite poor text processing facilities, AOSNS Pascal was the obvious cboice of

language in whicb to implement the IV compiJer.

5.1. IV Compiler Components

The IV compiJer comprises seven integrated modules, each providing a set of related services.

Appenclix C provides a listing of these services. The complete program listings are found in

separate Appenclix J. Figure 5.1.1 illustrates the interactions of these modules.

""LtI:
HANDL.E'"

figure 5.1.1 IV compiler components

,: Inltloll •• ,.bl •• of d ord •• ta.
a: Opon _nd 01010 ••• 11 fll •• r.,qulred by IV
~: Toke ... oo pondlng to our,. _ord
14; 'n k ... go ... o,..'"" oor pondlnCl to 'ok
• : ~u • nd pap ."pr ••• I." 0'0",0 ... '. o",'off 10,

.: En'.r ell.,. cobJ ... ' la ... ,lo ,,,,t .. l1li'0'10 ... 0 ..)0'

y, , ... , Info,."",o"o", fr dl.tlonar:lo' on .. dot. cobJ •• 1-

AO.,Y •
... O"T"'AN 77

• DML
eODa

19 Dijkstra, E.W. (1972) Notes on StTUctured Programming.
Wirth, N. (1974) On the Composition of Well-structured Programs.
Comput. Surv. 6(4)
Referenced by [28]

40

The main module performs initialization of all tables required by the parser. The values

recorded in these tables are the tokens that the lexical analyzer associates with each word

that it reads, This module also provides routines for reporting syntactic and semantic errors,

and aborting compilation if necessary.

The compiler needs to read and write information from and to various flIes, The me handler

provides routines for opening and closing these mes,

The code generator provides basic code generation services routines for constructing strings

of characters, storing them in sequence in a dynamic list structure and finally writing these

strings to a me,

A stack handler provides routines for managing a simple LIFO (Last In First Out) stack.

Routines for handling information on data object declarations that are relevant to the compiler

are provided by a data dictionary manager.

The lexical analyzer performs lexical analysis on an input string of IV source code, The input

string comprises a number of consecutive ordered words, each separated by spaces, The lexical

analyzer assigns an unique token to each word as it is read,

The semantic analyzer receives the tokens from the lexical analyzer, checking whether they

are in a valid sequence, If the sequence is invalid then an appropriate error message IS

reported, If the order is valid, then either a call to the relevant code generator is made, or

code generation is deferred until some further condition is met, in which case the tokens must

be stored on the stack.

41

5.2. IV Compilation Strategies

The IV compiler employs the LL(l) top·down parsing by recursive descent method. Althougb

not as powerful as some other parsing methods (for example LR parsing) LL parsing is simpler

to implement, is more efficient, and allows modifications and extensions to made with relative

ease. A parser-generator was not used, althougb such a tool would have eased implementation

effort considerably, due to no suitable system being available on-site, and the semantic

complexity of the language.

Since the purpose of this report is not to discuss parsing strategies, the rest of this section

is devoted to elaborating on specific features of the implementation.

5.2.1. The data dictionary [39,47)

The data dictionary serves as a symbol table handler for the compiler, and provides the

compiler with access to the meta data fIles produced by the DDF and FSED. Unfortunately,

the packed meta data (PMD) files, which describe the structure of a database, cannot be

accessed directly since information concerning their internal structure is unavailable. See

[9,15] for further information.

Instead, the source code listing fIle (see Appendix F), produced by the DDF [9], is read by the

data dictionary which constructs a table internally, recording all the record names, record

field names, set names, owner and member record names of each set, set sorting criteria, and

the names of sort keys. A similar structure for screen definitions is constructed to record

relevant information - field names, field types, field co-ordinates - obtained from the screen

defmition fIles.

This information is required by the compiler in order to check that the user has named

variables that have been declared, and to determine database navigation through the use of

42

valid set names.

The PMD and screen defmition files are used by the DBMS and FSM respectively at run-time

for accessing and managing data fLIes and terminaVuser interactions.

Figure 5.2.1.1 illustrates the interactions described above.

cp OATADICT

M.t.~.t •

..r_.n fer _' ... fln,t, ••. ".

..... b •• "

------ --- -----~ .,..- ----8
.. u':o_":..: ____ -

00/0....... ...-)C.-------------

figure 5.2.2.1 IV environment components

5.2.2. Code generation

For most IV·statements, FORTRAN code is generated on a token-by-token basis. As a token is

received by the syntax/semantic analyzer, an appropriate generator is called which generates

the required string of characters. In some cases, however, code generation must be deferred

until the semantic analyzer has gleaned further information from the program text. This is

particularly relevant when DML statements for record location need to be generated-

43

Unlike FORTRAN, IV is insensitive to the textual location of IV statements Or components of

statements. The key word signifying the start of a statement (e.g. IF, DISPLAY) or executable

code section (e.g. MODULE), and their corresponding END statements serve as delimiters,

separating one statement - or executable code section - from another. Spaces and line feeds

serve as separators, which are used to distinguish between identifiers, key words and numeric

literals. These features greatly improve program clarity, thus having a beneficial impact on

maintenance.

5.2.2.1. Data object declaration.

Declaration of local program variables follow the format of AOSNS FORTRAN 77 declarations.

This results in a simple one-to-one mapping from IV to FORTRAN.

Unlike FORTRAN, IV parameter declarations must specify the parameter's type making it

unnecessary to redeclare those parameters. Thus, the following IV text:

MODULE 120 (INTEGER'2 A,B REAL'8 C)
CHARACfER'25 D(10)

END MODULE

maps to the following AOSNS FORTRAN 77 code:

SUBROUTINE SXSYS12020 (A, B, C)
INTEGER*2A
INTEGER*2B
REAL*8 C
CHARACTER *25 D(lO)

Parameters A and Bare redeclared separately rather than as "INTEGER *2 A,B", for ease of

implementation.

20 All identifiers follow strict naming conventions laid down by Steel Information
Systems at MS&A. These conventions are listed in the document Standards for Steel Systems
Development (internal document, MS&A).

44

The declaration "SUBSCHEMA subschema-name" maps to the DML statement "INVOKE

(Sllbschema-name)". This non-executable statement caples the subschema source code listing

code into the program, thus declaring the UWA records used by the application and the DBMS

for data transfers [9,15].

The following FORTRAN declarations are generated for each module that declares at least one

screen.

REAL *8 RARR(151)
INTEGER '4 FKY,MODE,IPOS,ISTK,IERR,IARR(151)
CHARACTER'50 NAME
CHARACTER'n CARR (151)

where n is the field width of the widest character screen I/O field.

These are the parameters used by the screen manager. The number of elements in each of the

FSM data buffers (IARR, CARR and RARR) is 151 - which is the largest number that FSED

caters for. All real and integer values transferred between the application and FSM require

eight and four bytes of storage respectively.

5.2.2.2. Procedural statements

All IV procedural statements can be described in terms of FORTRAN IF ... THEN ... ELSE .. .ENDIF

and GO TO ... statements. The following examples illustrate how these procedural statements

map into FORTRAN.

1: IV WHILE statement:

WHILE a condition DO

END WHILE

45

FORTRAN equivalent:

Ll: IF .NOT. a_condition GO TO L2

GO TO Ll
L2: CONTINUE

2: IV REPEAT statement

REPEAT

UNTIL a condition

FORTRAN equivalent

Ll: CONTINUE

IF .NOT. a_condition GO TO Ll

3: IV SELECT statement

SELECT
WHEN a_condition: statement_clause
WHEN a Jondition : statement_clause

END SELECT

FORTRAN equivalent

IF a condition TIffiN
statement ciause

ElSE
GO TO Ll

IF a Jondition TIffiN
statement_clause

ELSE
GOTOLl

Ll CONTINUE

4: IV IF statements map directly into FORTRAN IF statements, each statement conforming
to the FORTRAN requirement of one FORTRAN statement per line.

46

At the start of generating code for an IV procedural construct, the compiler can determine all

the unique labels required for that construct. This is achieved by use of a simple counter

which is incremented after each label has been generated. Thus, there is no need for

backpatching in the case of forward references.

5.2.2.3. Non-procedural statements

An IV non-procedural statement maps down into several FORTRAN statements. Some of these

statements perform the command specified by the IV statement, while others, unbeknown to

the user, perform basic housekeeping tasks.

Screen management is initiated with the following subroutine call:

CALL FFSM(ISTK,FKY,MODE,NAME,IARR,CARR,RARR,IPOS,IERR)

where

ISTK
FKY
MODE

IPOS

IERR

is a record of positions of those fields which have had their contents changed.
records the value of the function key pressed by the user.
instructs the screen manager how to perform terminal I/O. Appendix G
provides further information on screen modes.
informs the screen manager on the field position of the cursor when the
screen specified in NAME is first presented.
is the error code returned by FSM. This parameter will have the value zero if
the call to FSM completed successfully.

The IV statement

DISPLAY [EACH 1 [MENU 1 Snn (name _ oLscreen Jield _in yosition J)
where_clause
: statement clause
END DISPLAY

will map into the following equivalent FORTRAN code: [17]

47

IPOS = poslllOI!_x
MODE = 2

Ll: CONTINUE
where_clause

{ see Appendix G }

CALL FFSM(ISTK,FKY,MODE,NAME,IARR,CARR,RARR,IPOS,IERR)
IF IERR .GT. 0 GO TO /abe/_oLerror_hand/er
[calUogging_ subroutine { see Appendix H }
check_valid_menu _option { see Appendix H }
IF VALID .EO. "N" GO TO /abel_of_error_handler J

{ [..J above included only if MENU specified in
header clause}

MODE = 8 {see Appendix G)
statement_clause
error handler
[GO TO Ll] { included if EACH specified in header}

Appendix G illustrates the standard screen layout. Note that the first two screen fields must

display the name of the program and the date (see Appendix H) respectively.

Transforming IV transfer functions to their FORTRAN equivalents is rather straightforward, as

depicted by the following examples:

STOREaJecord_name, or
RECONNECT a record name - -

map respectively into the following FORTRAN code: [9,15]

D STORE(RECORD = a Jecord _ name,IERR =label_oLerror _ handler), and
D RECONNECT(SET =set_name,IERR =/abe/_of_error _handler).

The process of translating IV record location qualification expressions into their DML

equivalents is beset with problems. Unlike IV and most other modern data manipulation

languages, DML does not specify any boolean operators and only one relational operator may

be used per qualification expression. DML uses simple relational expressions which are

specified as a set of· record field names related, via a single relational operator, to a set of

corresponding values. If V was the target record type with fields V.l to V.n, the DML

48

qualification expression has the following format:

V.~ ... ,V.k EQ.I.NE.I .LE.I.LT.I.GT.I.GE. UWA where 1 < i,k < n

The search list V.~ ... ,V.k can be replaced by SORT KEY, to
indicate that the qualification expression involves only those
fields defined (by the DDF) to be keys of a sorted set.

UW A indicates that the values to which the search list is being
related to, are stored in the UWA fields corresponding to those
named in the search list.

Note that an empty search list can be specified, in which case
the position specifiers FIRST, NEXT, LAST, OWNER, PRIOR, or
CURRENT will determine which occurrence to locate.

The IV where clause also delineates the path to be taken through the database. This is done

by specifying a list of qualification expressions, each of which defines the occurrence of the

next record type in the network.

The format of the where clause's qualification expressions is as follows:

WHERE
FIRST I EACH record_namel(qualification-,xpressionl)

FIRST I EACH record_nameK(qualification-,xpressionK)

FIRST I EACH record_nameN(qualification_expressionN)

The key word FIRST indicates that only a single occurrence is located; EACH indicates a

processing loop where all occurrences satisfying the search criteria defined in the qualification

expression are retrieved.

The general form of the code generated from an IV data management where clause can be

expressed as follows: (Appendix 0 provides a complete example)

49

Ll

L4

L5

L6

L3

FIND FIRST record _ name1 satisfying qualification Jxpressionl
IF NOT found GO TO L2

*

FIND FIRST record _ nameK satisfying qualification _ expressionK
IF NOT found GO TO L3

*

FIND FIRST record _ nameN satisfying qualification _ expressionN
IF NOT found GO TO L6

perform transfer function on target record

FIND NEXT record _ nameN satisfying qualification _ expressionN
IF NOT found GO TO L6
GOTOLS
CONTINUE

FIND NEXT record _ nameK satisfying qualification _ expressionK + 1
IF NOT found GO TO L3
GOTOL4
CONTINUE

FIND NEXT record_nameI satisfying qualification_expression 1
* IF NOT found GO TO L2

GOTOLl
L2 CONTINUE

* Included only if key word EACH is specified in IV qualification expression.

The IF NOT found GO TO Li clause is replaced by the END clause of a DML statement. i.e.

FIND (FIRST,RECORD =record_nameK,SET = set_ name,qualification_expressionK + I,END = L3)

Navigation in DML requires explicit naming of the sets participating in the search. Since set

names are not specified in IV qualification expressions, the compiler must determine which set

is to be used from the operands denoted in those expressions. This means that the entire

qualification expression must be parsed, each token and identifier name being stored on a

stack in reverse order, before the DML statements can be generated.

50

For example, the qualification expression condition (a>6 OR b< c) AND d=5), is stored as

follows:

a 6 > b c < OR d 5

\
Top-of-Stack

While constructing the stack, the compiler checks whether one, and only one, of the operands

of each relational expression references a database record field. If so, then that operand can

be used in the DML search list. A count is kept of the usage of each relational operator.

Those record fields participating in relational expressions using the relational operator with

the highest usage count will be named in the search list. The search list will be replaced by

SORT KEY if all the record field operands named. in the relational expressions using the "="

operator are defined as keys of a sorted set.

The set will have the record type, whose fields are defmed as its keys, as its member, and

the record type of interest in the previous qualification expression as its owner. If there is no

previous qualification expression then the owner must be the SYSTEM record. This set is

then named in the DML statement.

If SORT KEY is not to be used for locating a record then any set can be named provided that

that record is defmed as the member of the set, and the owner record of that set corresponds

to the record named in the previous qualification expression.

Note that in the case of set connection commands (CONNECT, DISCONNECT and

RECONNECT), the sort keyes) of the set to which a record is being connected to, or

disconnected from, must be explicitly stated in an additional clause to the connection command

(see section 4.4.1.2).

The DML search list may not be able to specify all the conditions defmed in the IV where

clause due to the limited expressibility of DML. In those cases where search criteria could not

51

be specified in the DML qualification expression, additional checks would have to be carried

out in the host language. Here, the record would have to be retrieved from the database

before these checks could be carried out. The following examples illustrate those instances

when additional tests are necessary:

Problem: Use of more than one relational operator.

English: locate the first employee whose salary lies between R10000 and R10100.

IV qualification expression:21

FIRST EMP-REC(SALARY > 10000 AND SALARY < 10100)

DML and FORTRAN record location:

SALARY = 10000 ! ASSIGN VALUE TO UW A FIELD
D FETCH(FIRST,RECORD = EMP-REC,SET = SOME-SET-NAME,SALAR Y.GT.UW A)
10 IF SALARY.GT.10100 THEN
D FETCH(NEXT,RECORD = EMP-REC,SET = SOME-SET -NAME,SALAR Y.GT.10000)

GO TO 10
ENDIF

Problem: Comparison of two fields of the record that is the subject of the search

English: Find the first employee whose pension fund contribution exceeds his U .1.F.
contribution.

W qualification expression:

FIRST EMP-REC (PENSION> UIF)

21 Note that this qualification expression will form part of a data management statement

52

DML and FORTRAN record location:

D FETCH(FIRST,RECORD =EMP-REC,SET = SOME-SET-NAME)
10 IF UIF.GT.PENSION THEN
D FETCH(NEXT,RECORD = EMP-REC,SET =SOME-SET-NAME)

GO TO 10
END IF

Problem: Use of boolean operators.

English: Find the first employee whose pension fund contribution exceeds R1750 or whose
U .J.F. contribution exceeds R2400.

W qualification expression:

FIRST EMP-REC (PENSION> 1750 OR UIF > 2400)

DML and FORTRAN record location:

D FETCH(FIRST,RECORD = EMP-REC,SET = SOME-SET-NAME)
10 IF UIF.GT.1750 .OR. PENSION.GT.2400 THEN
D FETCH(NEXT,RECORD = EMP-REC,SET = SOME-SET-NAME)

GOTO 10
ENDIF

Problem: a positional search that must satisfy a condition.

English: Find the manager, whose grade is less than 5, of the first employee whose pension
fund contribution exceeds R1750 or whose U.J.F. contribution exceeds R2400. Assume that the
MANAGER record is an owner of the EMP-REC record and they participate in the set
MANAGER-EMP-SET.

53

W qualification expression:

EACH EMP-REC (PENSION> 1750 OR UIF > 2400)
OWNER MANAGER (GRADE < 5)

DML and FORTRAN record location:

D FETCH(FIRST,RECORD = EMP-REC,SET =SOME-SET-NAME,END = 20)
10 IF UIF.GT.1750 .OR. PENSION.GT.2400 THEN
D FETCH(NEXT,RECORD = EMP-REC,SET = SOME-SET-NAME,END = 20)

GOTO 10
ENDIF

15 CONTINUE
D FETCH(OWNER,RECORD = MANAGER,SET = MANAGER-EMP-SET)

IF GRADE.LT.5 GO TO 20
FETCH(NEXT,RECORD = EMP-REC,SET = SOME-SET-NAME,END = 20)
GOTO 15

20 CONTINUE

5.2.2.4. Error handling

Calls to the error handler are made only if screen or database management was unsuccessful.

In the case of screen management, FSM returns an error code (see Appendix G) in the

parameter IERR. Code to test the value of this parameter can be generated immediately after

the FSM call has been generated as depicted below:

CALL screen_manager
IF !ERR .NE. 0 GO TO label_of_error_handler

All DML statements have an ERR clause with format [9,15]:

ERR = error Jabel

For example,

STORE(REC = EMP-REC,ERR = 999)

54

If the database manager should signal an error22, control is immediately passed to error jabe/.

The database manager also returns an error code in the system variable DBSTATUS, which can

then be checked to determine the course of action.

Appendix E illustrates the code produced for an IV error handler that deals with both screen

management and database management errors. Appendix D depicts the case where an error

handler has not been specified for a particular non-procedural command and control must then

pass to the next error handler.

5.2.2.5. Housekeeping

Several routines (listed in Appendix H) exist for the purposes of basic housekeeping. These

routines are usually called from a FORTRAN application before or after specific events occur.

Certain housekeeping tasks have been automated, consequently making applications more

reliable and consistent.

The following table defines which events require calls to the housekeeping routines to be

generated:

EVENT

Display a screen or menu

Display a menu

Display a menu,
database update

HOUSEKEEPING

Assign the program name to the first screen field.
Assign the current date to the second screen field.

Upon return from FSM, check the current user's
privileges on the selected option.

Upon successful completion of operation, call the
system logging routine.

22 AOSNS FORTRAN 77 environment manual

55

Since housekeeping code is generally included only after a system has been fully tested, these

calls are only generated for production systems.

5.3 Related Implementation Issues

Although not included in the specification, portability is an issue to be considered. The

database that is supported (DG/DBMS) and the Data Definition (DDL) and Data Manipulation

(DML) languages employed by DG/DBMS are based On the 1978 CODASYL specifications. The

FORTRAN code produced by the compiler conforms to the full ANSI standard (X3.9-1978),

albeit with a few extensions which are well-documented in [14]. The screen generator was

developed in-house23, [16] and [17] providing the interface specifications. IV programs are

thus portable (with minor alterations indicated in the system documentation) amongst common

systems using CODASYL DBMSs, X3.9-1978 FORTRAN 77 and a stand-alone screen generator.

Currently, no performance evaluation on the compiler, or the code that it produces, has been

carried out. Compilation time could, however, be greatly reduced by generating Assembler

rather than FORTRAN. It is felt tbat there is little room for improving application run-time.

Most IV procedural statements map directly into equivalent FORTRAN code. IV non-procedural

statements are also merely higher level abstractions of blocks of FORTRAN code which occur

frequently in existing FORTRAN application programs. Further critical analysis still needs to

be performed in view of the performance requirements of the operational environment for

which the system was designed.

23 By Steel Information Systems - Middelburg Steel and Alloys

56

6. CONCLUSION

The rationale for fourth generation environments is simple and easy to explain: skilled

computer professionals are becoming increasingly expensive. In order to save on such costs it

has become necessary to automate several aspects of programming, making the actual writing

of programs a smaller portion of the overall development time of applications.

It has been frequently asserted that analysis work, rather than coding, takes the bulk of the

time needed to develop a system (70%-30% [19]), making the claims of huge productivity gains

illusory. However, if maintenance effort were also to be considered then the above ratio would

change considerably, making analysis relatively less important.

The use of proto typing tools could also be used to reduce analysis time. Such a tool, a

graphics language for specifying screen calls, is being considered as an enhancement to the IV

environment. The user would be able to see immediately if the system meets his requirements.

The IV code generated by the graphics language would also provide the programmer with a

skeleton program to which other functions could then be added, thus further reducing overall

development time.

Although the work presented in this text represents just the start of an ongoing project, it is

felt that the language introduces several elegant programming concepts that offer some

improvement over commercial fourth generation languages such as NATURAL and SQL, and

certainly considerable advancement over FORTRAN and DML.

Quantitative statistics of IV's impact on programmer efficiency are not yet available, however,

favorable reaction has been received from application programmers who have been presented

with the proposal. Not only are IV programs considered far more readable than corresponding

COBOL or FORTRAN applications, thus having a beneficial effect on maintenance, but it is

also felt that the non·procedural statements improve on current methods. The use of

declarative facilities will also contribute to system quality through improved reliability attained

57

from the automatic generation of code.

The IV interface to DBMS allows substantially more flexibility than DML in expressing search

criteria in the qualification expressions (Appendix D provides a comparative example).

McDonald and McNally [31] point out that the usability of a language is proportional to the

level of qualification complexity. Since future requirements entail extending the database

interface to include relational database managers, a more relational-like view of DBMS will

have to be conceived, making the language even more flexible whilst maintaining the run-time

performance advantage of the network model.

IV also offers greater symmetry than either NATURAL or embedded SQL. It presents a uniform

progra=ing environment rather than the two tiered one found in embedded SQL. It also

improves on NATURAL by introducing further restrictions on the scope of variables, forcing

the programmer to group logically related operations. For example, those operations that affect

data in the database are communicated to the database manager by textually localized code

the statement clause of a database management function. The greater freedom afforded the

programmer in NATURAL (and other similar languages) is often detrimental to the debugging

and maintenance of application programs where data recorded in the database could be

affected by assignments occurring in different textual locations in a program, or in several

different programs. The IV data dictionary could also provide further help to the progra=er

by recording the textual location of code that affects database records. Thus, if a particular

record indicates incorrect data, the data dictionary provides a convenient debugging facility to

trace where in the program text a possible coded error occurred.

In conclusion, this report presents a simple yet effective fourth generation programming

language providing the full programming functionality of a procedural third generation

language, and supported by a number of tools allowing database manipulation, user interfaces

(through terminals), and declarative facilities for describing the objects on which the

operations, specified by the language, are performed.

58

BIBLIOGRAPHY

1. Alberyu, C, Brown, A., et al (1984) A Program Development Tool. IBM Journal of
Research and Development 28(1) 60-73.

2. Berry, R.E. (1981) Programming Language Translation. Ellis Horwood.

3. Bishop,J (1985) Ada - A Hands On Experience. University of the Witwatersrand.

4. Carpenter, M., Hallman, H. (1985) Quality Emphasis at IBM's Software Engineering
Institute. IBM Systems Journal24(2) 121-133

5. Chorafas, D.N. (1986) Fowth and Fifth Generation Languages Vol I. McGraw-Hill.

6. Christoff, K. (1985) Building a 4GL Environment. Datamation. 31(8) 118-124

7. Cobb, D.H. (1985) In praise of 4GL. Datamation. 31(13) 90·96

8. Cocco, N. & Dulli, S. (1982) A Mechanism for Exception Handling and its Verification
Rules. Computer Languages. 7(2) 89-101.

9. Data General/DBMS reference manual (1984) Data General Corporation.

10. Data GeneraVSQL User's Manual (1986) Data General Corporation.

11. Duffy, N. (1982) 4GLs : The Quiet Revolution in Information Systems. Fact & Opinion
Paper, Graduate School of Business Administration, University of the Witwatersrand. No.
16.

12. Fischer, G.E. (1986) Functional Model for Fourth Generation Languages. Report NBS-SP-
500-130 National Bureau of Standards Special Report.

13. Flores,!. (1981) Database Architecture. Van Nostrand Reinhold.

14. Fortran 77 Reference Manual (1981) Data General Corporation.

15. Fortran 77 Environment Manual (AOSNS) (1984) Data General Corporation.

16. Full Screen Editor. Internal document · Middelburg Steel and Alloys (Pty) Ltd.

17. Full Screen Manager. Internal document - Middelburg Steel and Alloys (Pty) Ltd.

18. Goodenough, J.B. (1975) Exception Handling: Issues and a proposed notation. CACM. 18
683-696

19. Grant, FJ. (1985) The Downside of 4GLs. Datamation. 31(13) 99·104.

20. Hammond, L.W. (1982) Management Considerations for an Information Center. IBM
Systems Journal. 21(2) 131-162.

21. Henderson, P. (1980) Functional Programming: Application and Implementation.
Prentice-Hall.

22. IM/DM Fourth Generation Information Management/Data Management (1985) Control Data

23. IMS Application Development Facility II Version 2 (1985). IBM Programming Information.

24. Inmon, W.H. (1986) Fourth Generation Languages : A Management Survey. Information
Strategy Executives' Journal. 2(4) 4-7

25. Iverson, e.M. (1987) IV: A Fourth Generation Language. Proceedings 2nd Conference of
M.Sc and Ph.D Research Students.

26. Jones, T.e. (1986) Programming Productivity. McGraw-Hill.

27. Kendall, R. (1984) Reusability in Programming - A Survey of the State of the Art. IEEE
Transactions on Software Engineering. SE-10(5) 488-493

28. Magnenat-Thalmann, N (1982) Choosing an Implementation Language for Automatic
Translation. Computer Languages. 7(4) 161-170.

29. Martin, J. & McLure, e. (1983) Software Maintenance. Englewood Cliffs, Prentice-Hall.

30. Martin, J. (1985) Fourth Generation Languages Vol 1: Principles. Prentice-Hall.

31. McDonald, N.H. & McNally, J.P. (1982) Query Languages Feature Analysis by Usability.
Computer Languages 7 103-124.

32. Myers, G.T. (1976) Composite Design Facilities of Six Programming Languages. IBM
Systems Journal. 15(3) 212-225.

33. Natural (VMS) Programmers Guide (19) Software AG.

34. Natural Version 2 Planning Guide (1985) Software AG.

35. Natural Version 2 Concepts & Facilities (1985) Software A.G.

36. Naylor, e. (1983) Programs that write programs. Sigma Technical Press.

37. Orman, L. (1983) A Familial Specification Language for Database Application Systems.
Computer Languages 8(4) 113-124

38. Pazel, e., Malhotra, A, Markowitz, H. (1983) The System Architecture of EASE-E: An
Integrated Programming and Database Language. IBM Systems Journal 22(3) 188-198

39. Pratt, P.J. & Adamski, J.J. (1987) Database Systems: Management and DeSign. Boyd and
Fraser, Boston.

40. Snyders, J. (1984) In Search of a 4GL. Infosystems. 31(10) 28-32.

41. Software AG. Information supplied by SPL Ltd. System Architecture, ADABAS - Advanced
Information Management, Predict - The Dictionary, ADABAS Effective Database
Management for the Growing Corporate Environment, Natural - Fourth Generation
Application Development System, Natural - Expanding Fourth Generation Technology.

42. Specter, D. (1985) Language Features to Support Re-usability. ACM Sigplan Notices 18(9)
59-61

43. Stay, J.F. (1976) HIPO and Integrated Program Design. IBM Systems Joumal. 15(2) 143-154

44. Stevens, W. (1982) How Dataflow can Improve Application Development Productivity. IBM
Systems JOllmaI21(2) 162-178

45. Stevens, W., Myers, G., Constantine, L. (1974) Structured Design. IBM Systems Joumal.
13(2)

46. Tennant, R (1987) Data General as a Corporate Solution. Proceedings North American
Data General User's Group - Oct 1987 Las Vegas.

47. Ubrowczik, P. (1973) Data Dictionary/Directories. IBM Systems Joumal. 12(4)

48. Ungar, E. ,Fischer, P. & Slonim,J. (1984) Advances in Data Base Management Vol II.
John Wiley & sons.

49. Van Leer, P. (1976) Top Down Development Using a Program Design Language. IBM
Systems Joumal15(2) 155-170

50. Wade, B.w. et al (1976) SEQUEL 2: A Unified Approach to Data Definition, Man.ipulation
and Control. IBM Journal of Research and Development. 20(6) 560-575

51. Winograd, T. (1979) Beyond Programming Languages. CACM. 'l2{7) 391-401

51. Yeh, R. (Ed) (1977) Current Trends in Programming Methodology Vol I
Specification and Design. Prentice-Hall.

Software

52. Yeb, R. (Ed) (1977) Current Trends in Programming Methodology Vol II : Data Structuring
Prentice-Hall.

53. Yourdan, E. (1975) Techniques of Program Structure and Design. Prentice-Hall.

APPENDIX A

Consider the following logic:aJ description of an academie database for the network data model

..... T _TItAC "

T CM."
. V.T -CO"'" ••

Ta",c ... "-c:ou,,, • •

Selecting the names of all tcaehc:rs who teach at least one COllISe in the engineering building.
can be a=mpJished as follows: 0

Using DML cmheddcil in COBOL

FIND FIRST TEACHER WlTHIN SYSTEM-TEACHER.
PERFORM TEACHER-sEARCH

UNTILDBSTATIJS NOT EQUAL TO ZERO.

TEACHER-SEARCH.
MOVE SPACES TO BUll.DING OF COURSE.
FIND FIRST COURSE WITHIN TEACHER- COURSE.
PERFORM COURSE-EVAL

UNI1LDB-STATUS NOT EQUAL TO ZERO OR
BUll.DING OF COURSE EQUAL TO "ENG'.

IF BUll.DING OF COURSE EQUAL TO 'ENG'
GET TEACHER
DISPLAY NAME OF TEACHER..

FIND NEXT TEACHER WITHIN SYSTEM-TEACHER.
COURSE-EVA!..

GET COURSE.
FIND NEXT COURSE WlTHINTEACHER-COURSE.

UsingPDML

FIND tcacher. SYSTEM,SYSTEM-TEACHER,TEACHER-COURSE,
tcacher,collISe(building - "ENG').

A-1

Using IV

GET TEACHER
WHERE EACH TEACHER

FIRST COURSE(BUILDING ~ "ENG")
END GET

A-2

APPENDlXB

Given the following logical descriptions of a network database and an equivalent relational
database:

.lTIp.J ... - ••••

KM~LOVIl:~.lTIp.Job-d •••)

L ."O.'CT;'~P"P"".'.".""DI

select all employees with a job description code of three whose average project rating exceeds
six. The following equivalent solutions are implemented in DML embedded in DGIFORTRAN 77,
SOL, IV, and NATURAL Version 1.

Using NATURAL Version 1:

FIND EMPLOYEE WITH JOB·DESC = 3
FIND PROJECT WHERE EMP# = EMP#

AT END OF DATA MOVE AVER(RATING) TO AV(N2)
LOOP
IFAV>6 DO

ADD 1000 TO SALARY
UPDATE SAME RECORD
END TRANSACTION

DO END
LOOP
END

B-1

Using DML embedded in DG/FORTRAN 71:

D INITIATE(ID = IDTX,UPDATE)
D FETCH(FIRST,REC = EMPLOYEE,SET= SYSTEM-EMPLOYEE,JOB­

DESC.EO.3,END = 50)
10 SALARY = SALARY + 1000

TOTAL = 0.0
COUNT = 0

D FETCH(FIRST,REC = PROJECT,SET= EMPLOYEE-PROJECT,END = 40)
20 TOTAL=TOTAL + RATING

COUNT = COUNT + 1
D FETCH(NEXT,REC= PROJECT,SET= EMPLOYEE-PROJECT,END = 30)

GOT020
30 IF (TOTAl../COUNT.GT.6) MODlFY(EMPLOYEE)
40 CONTINUE
D FETCH(NEXT,REC = EMPLOYEE,SET = SYSTEM-EMPLOYEE,JOB­

DESC.EO.3,END = 50)
GO TO 10

50 CONTINUE
D COMMIT

Using IV:

TRANSACTION

FIND EMPLOYEE
WHERE EACH EMPLOYEE(JOB-DESC=3)
: AVERAGE PROJECT(RATING)

WHERE EACH PROJECT
END AVERAGE
IF AVERAGE >6

THEN MODIFY EMPLOYEE
: SALARY = SALARY + 1000
END MODIFY

END IF
END FIND

END TRANSACTION

Using SQL in a stand-alone mode:

UPDATE EMPLOYEE
SET SALARY = SALARY + 1000
WHERE JOB-DESC = 3 AND

6 < (SELECT AVG(RATING)
FROM PROJECT
WHERE EMPLOYEE.EMP = PROJECT.PROJECT#)

B-2

APPENDlXC

Main module: MAIN.MOD

ENTRY PROCEDURE Error (Error_No : Integer) ;
(*

Report an error message corresponding to the value of Error N
Sets a flag to prevent further generation of FORTRAN 77 code .

*)

ENTRY PROCEDURE Quit (Quit_No : Integer) ;
(*

Abort compilation with a message corresponding to the value 0
Quit No

*) -

File handler : FILER. MOD

ENTRY PROCEDURE Open_File (File_Type : Integer) ;
(*

Open the file corresponding to the value of File_Type
*)

ENTRY PROCEDURE Close_File (File_Type : Integer) ;
(*

Close the file corresponding to the value of File_Type
*)

Stack handler : STACK. MOD

ENTRY PROCEDURE Pop (VAR An_Element : Pointerto_Stack) ;
(*

Retreive the element at Top Of Stack. Set stack pointer to
point to 2TOS

*)

ENTRY PROCEDURE PUsh (A_Tag: Tokens .; An_Element: Ident_String
(*

PUt an element on top of stack. Set stack pointer to point t
this element

*)

ENTRY PROCEDURE Reset_Stack ;
(*

Delete all entries from the stack
*)

ENTRY PROCEDURE Init_Stack ;
(*

Create a dummy stack element that serves as Bottom Of Stack .
*)

Data dictionary : DATADICT.MOD

C-1

ENTRY PROCEDURE Init_Schema ;
(*

Set up the database schema structure for the data dictionary
*)

ENTRY PROCEDURE Determine Set ;
(*

*)

Determines which set to use for record location on the basis
of the qualification expression defined in the where clause
of a data management statement .
Determines also whether the search should be based on the so
keys of the determined set, or on search keys, or positional

ENTRY PROCEDURE Init_Find ;
(*

Set default current root record to "SYSTEM"
*)

ENTRY PROCEDURE Set_Root_Record (Root_Record : Ident_String)
(*

Record a new current root record specified by the FIND comma
*)

ENTRY PROCEDURE Unset_current_Find ;
(*

*)

Return to the previous current root record. This occurs when
an END FIND command is encountered

ENTRY PROCEDURE Set_Target_Record (Target : Ident_string) ;
(*

*)

Record the target record specified in the header clause of a
data management statement

ENTRY PROCEDURE Insert Program Var (The Identifier : Ident strin
; current_Type : Tokens ; storage : Char)

(*
Record the declaration of parameters and other program variabl
Information recorded is:

*)

Name of declared variable,
Type of declared variable, and
the number of bytes required to store a value of this type

ENTRY PROCEDURE Reset Declarations ;
(*

*)

Delete all previous entries in the list of declared program
variables.

ENTRY FUNCTION Have Declared (VAR A Name : Ident String ; VAR
Of_Type: Tokens ; N= Bytes : Char-) : Boolean

(*
Used to generate FORTRAN parameter declarations. When pars in
the IV parameter list, the correct FORTRAN parameter list is
generated.
The pameters are inserted in the list which r ecords program . . .
declarat10ns. upon complet1on of the parse o f the I V
parameter list, these entries provide the necessary
information to declare them

C-2

*)

ENTRY PROCEDURE Init_Program_Variables ;
(*

*)

Initialise the dynamic list used to record program variable
declarations

ENTRY PROCEDURE start_Field_Search (A_Screen_Name)
(*

*)

Initialises pointers to the structures containing informatio
on screen fields - names, types, FSM buffer indexes

ENTRY FUNCTION Retrieve Field(VAR Field Name ; VAR F Type,

(*

*)

- F_Positlon : Integer-: Boolean

Returns the information, in the parameters, on the next fiel
in the list structure containing this information if their i
such an entry in the structure. If there is no such entry th
values of the parameters are undefined and the value FALSE i
returned, else the value TRUE is returned.

ENTRY FUNCTION Corresponds to(A UWA Name, A Field Name
- Ident=string T : Boolean

(*

*)

Returns the value TRUE if the value of A Field Name - -
corresponds to any of the attributes of the record
specified in the parameter A UWA Name ; else FALSE
is returned

ENTRY PROCEDURE New_Screen (A_Screen_Name Ident_String)
(*

*)

Record the declaration of a screen
Information generated by FSED is read into a dynamic list
This information includes:

The IV screen name,
the number of named screen names,
the total number of screen I/O fields defined,
the name of each field,
the type of each field variable,
the position in the FSM buffer arrays for each field

ENTRY PROCEDURE Reset_Screen ;
(*

delete all entries in the list of declared screens
*)

ENTRY PROCEDURE Init_Screen ;
(*

*)

Initialise the list used to record screen declarations.
The list is a simple dynamic list with a dummy head. The mos
recent declared screen is the first one encountered in the I

ENTRY FUNCTION Check Id (Prefix, Variable : Ident String ;
Expected Id : Typeof-Ident ; Non Procedural : Typeof Block)
: Typeof=Ident; - - -
(*

Checks the contextual validity of the variable Prefix .Variab
Contextual validity is whether the variable conforms to the

C-3

*)

scope rules of assignmentand reference .
If the validity check succeeds a check is performed to
determine whether it has been declared.
The type of variable - or unknown if checks fail - is return
Types are:

Record Name,
Record=Field,
Screen Name,
Screen-Field,
Variable Name,
Unknown Id

ENTRY PROCEDURE set_current_screen (Screen_Name: Ident_String)
(*

*)

records the screen named in the header clause of a DISPLAY
statement

ENTRY PROCEDURE Screen Field Details (Prefix, Variable
Ident_String ; VAR F_Type , F_Position : Integer

(*
retreive details on screen I/O fields

*)

Code generator: CODGEN.MOD

ENTRY PROCEDURE Write_Lines ;
(*

write generated FORTRAN 77 code to a file
*)

ENTRY PROCEDURE Grabba_ Line ;
(*

*)

gets a new line onto which to write a FORTRAN 77 statement.
These lines are kept in a simple FIFO dynamic list. After th
module has been parsed,
the code written to these lines is then written to a file on
secondary storage (Write_Lines)

ENTRY PROCEDURE Generate (A_String : Ident_String) ;
(*

*)

writes a single word - identifier or numeric literal - to th
current line in the FIFO line queue
Ampersands are interpreted as blanks. If the word is followe
by "A" then a trailing blank is written

ENTRY PROCEDURE Generate_String (A String, Append String :
- Line_String) ;

(*

*)

generates a series of words.The end of the string is indicat
by a ItAII.

Append String is used to generate end of string markers as
required by AOS/VS

ENTRY PROCEDURE Generate Labl (The Labl Integer)
C-4

(*
writes a numeric literal in columns 1 to 5 of a new line

*)

ENTRY PROCEDURE Generate_Jump (To_Lab I : Integer)
(*

writes a numeric literal to the current line
*)

ENTRY PROCEDURE Generate_Continue ;
(*

generates a FORTRAN CONTINUE statement on a new line
*)

ENTRY PROCEDURE Gen_Cond_Exp (A_Tag : Tokens ; A String :
Ident_string

(*
generates a conditional expression of a procedural statement

*)

ENTRY PROCEDURE Generate_Mode (Mode_Number : Integer)
(*

*)

generates code to set the screen mode to the value of
Mode Number

ENTRY PROCEDURE Generate_Screen_Name (Name : Ident_String)
(*

*)

generates the FORTRAN 77 application name corresponding to t
IV name stored in Name

ENTRY PROCEDURE Generate_Ipos (A_String : Ident_String ;
(*

generates code to set the cursor position in the call to FSM
*)

ENTRY PROCEDURE Generate_FSM_Call ;
(*

generates the FORTRAN call to FSM
*)

ENTRY FUNCTION Called Module (A String : Ident String) :
- - Ident_string ;

(*

*)

generates the FORTRAN application module name corresponding
the value of A_string - the IV module name

ENTRY PROCEDURE Generate Screen Field (F_Type, F_Position :
Integer)

(*

*)

Generates the buffer name and index corresponding to an IV
screen field name

ENTRY PROCEDURE Generate Record to Screen (A Screen Name,
- -A_UwA_Name : Ident_String)

(*
Given the IV name of a screen in the parameter A Screen Name
code is generated to make assignments
from the FSM buffers IARR,RARR and CARR to the corresponding
UWA record fields specified by A UWA Name

*) C~

APPENDIX D

The example below involves updating
subject to a qualification expression
different records and attributes.

multiple records
involving several

The compiler will generate the DG/FORTRAN 77 source
code with embedded DML commands (indicated by a 0
in column 7) listed on page 0-2

SYSTEM

B-C-8ET1
KEVS AP\E: 0',02

C

aV8TIllEM-A-eET
kEY' '8: _,

A-B-SET
KEV IB: b2

8-C-SET2
KIEV 18: 0'"

figure 0-1 Logical structure of network database

The following IV code section specifies a multiple record
location and update operation

MODIFY C
WHERE EACH A ((AI> 3) AND (A3 < 5.7))

FIRST B ((Bl = 3) OR (B2=3))
EACH C ((Cl = 4) AND (C2 = B.Bl) AND (C3 < 4))

C2 = S01.NAME
END MODIFY

D-1

7
A1 = 3

D FETCH(FIRST,REC=A,SET=SYSTEM-A-SET,SORT KEY .GT. UWA,
END=2,ERR=99000)

IF .NOT. (A3 .LT. 5.7) GO TO 2
1 CONTINUE

D FETCH(FIRST,REC=B,A-B-SET,END=4,ERR=99000)
IF .NOT. (B1 .EQ. 3 .OR. B2 .EQ. 3) GO TO 4

3 C1 = 4
C2 = B1

D FETCH (FIRST,REC=C, SET=B-C-SET1,
SORT KEY .EQ. UWA,END=6,ERR=99000)

IF .NOT. (C3 .LT. 4) GO TO 6
5 C2 = CARR(l) ! ASSUME NAME=CARR(l)

6

2
99000
7

D MODIFY (REC=C,ERR=99000)
C1 = 4
C2 = B1

D FETCH (NEXT,REC=C,SET=B-C-SET1,
SORT KEY .EQ. UWA,END=6,ERR=99000)

IF .NOT. (C3 .LT. 4) GO TO 6
GO TO 5

GO TO 3
A1 = 3

D FETCH(NEXT,REC=A,SET=SYSTEM-A-SET,SORT KEY .GT. UWA,
END=2,ERR=99000)

IF .NOT. (A3 .LT. 5.7) GO TO 2
GO TO 1
GO TO 7
GO TO 99001 EXIT TO NEXT ERROR HANDLER LOCATED 99001
CONTINUE

0-2

4 : IV source code listing in file IVCRQOOOP

MODULE 010

DISPLAY EACH SOl(CRQOl-REQNO)
WHERE CRQOl-CC = "XXX"

IF CRQOl-CC = "XXX"
THEN EXIT

END IF
MODIFY CRQOl-CHANGE-REC
WHERE FIRST(CRQOl-REQNO = SOl.CRQOl-REQNO)

CRQOl-CHANGE-REC = SOl
END MODIFY

WHEN IERR = 4 MESSAGE = "Invalid Format file"
EXIT

WHEN DBSTATUS = 17202 : MESSAGE = "Reenter data-Update
Conflict"

END DISPLAY

END MODULE

The following FORTRAN 77 code will be generated from the above:

1

2

SUBROUTINE SXCRQOlO

IPOS = 3
NAME = "CRQOlOS01"
IMODE = 2
CONTINUE
CARR(3) = "XXX"
CALL FFSM(ISTK,FKEY,IMODE,NAME,IARR,CARR,RARR,IPOS,IERR)
IMODE = 8
IF IERR <> 0 GO TO 2
IF CARR(3) = "XXX" THEN

GO TO 3
ENDIF
CRQOl-REQNO = IARR(l)
FIND(FIRST,REC=CRQOl-CHANGE-REC,SET=CRQ-SYS-OlCHANGE-RQSET,

* END=4,ERR=2)
CRQOl-CC=CARR(3)
CRQOl-NAME=CARR(4)
CRQOl-REQNO=IARR(l)
CRQOl-SYSNAM=CARR(5)
CRQOl-DESC=CARR(6)
CRQOl-STATUS=CARR(7)
CRQOI-TARGET-DATE=CARR(8)
CRQOl-RESP-SUP=CARR(9)
CRQOl-RESP-PROG=CARR(lO)
CRQOI- REJECT-DESC=CARR(ll)
MODIFY (CRQOl-CHANGE-REC)
IF IERR = 4 THEN

MSSG = "Invalid format file"
CALL FSMMSG(NAME)

ENDIF
IF DBSTATUS = 17202 THEN

E-2

MSSG = "Reenter data-Update Conflict"
CALL FSMMSG(NAME)

ENDIF
GO TO 1

3 CONTINUE

END

Naming conventions

All application systems follow strict standard namjng conventions, laid down by Steel
Information Systems, to aid reliable system documentation. These conventions provide a set of
simple transformation rules for automatically translating IV identifiers into their equivalent
FORTRAN counterparts.

IV modules are kept in files with the following name format

IVsysnnnP for production systems
IVsysnnnT for test systems
IVsysnnnN for new development

where
sys is the system name
non is a unique three digit number assigned to each file

All IV modules within a single file must be assigned unique three digit names - mmm. These
module names map down into the following equivalent FORTRAN subroutine names: SXsysmmm.
For example, MODUlE 010 stored in file IVMCSOOOP will map into SUBROUI1NE SXMCSOlO,
which will be stored in the file SXMCSOIO.F77, and its object file in the production directory.

Display record ' names have the following format: Stt, where tt is a unique two digit name
assigned to the display record. The equivalent FORTRAN name is sysmmmStt. Thus display
record S03 declared in the above module has the equivalent FORTRAN name MCS01OS03.

E-3

APPENDIX F

DB.DDF
SCHEMA SOURCE LISTING

SCHEMA NAME IS ":DISK5:DBT:SXABC:SXABC DBT"

RECORD NAME IS X
02 Xl PICTURE IS X(3)
02 X2 PICTURE IS 99

RECORD NAME IS Y
02 YI PICTURE IS 99
02 Y2 PICTURE IS X(4)
02 Y3 PICTURE IS 9

**

SET NAME IS ABC-SYS-X-SET
OWNER IS SYSTEM
MEMBER IS X

INSERTION IS AUTOMATIC
RETENTION IS MANDATORY
MEMBER LIMIT IS NONE
ORDER IS SORTED BY KEY ASCENDING

SORT KEY IS : X2
DUPLICATES ALLOWED

SET NAME IS ABC-X-Y-SET
OWNER IS X
MEMBER IS Y

INSERTION IS AUTOMATIC
RETENTION IS MANDATORY
MEMBER LIMIT IS NONE
ORDER IS SORTED BY KEY ASCENDING

SORT KEYS ARE :
YI
Y3 '

DUPLICATES NOT ALLOWED

** END OF SCHEMA SOURCE LISTING **

F-1

APPENDIXG

~"'OO"A""[~r_.r.," ft , DAT&(_k-,,· . "l

r------------------~
I 110 .,1.14 •••••• ..- I
L ___________________ I
r------------~------, L.. __ =~ . .!...=_ • .!!I~ ____ J ~ ~~'~ !!..~ ...

flew,,_ 0." .t ... 4_r~

1: MODE

2: IPOS

VALUE

:I. (7)

2 (8)

3 (9)
4

5
6

DESCRIPTION

Generate a new screen, all alphanumeric field
are set to spaces and numeric fields set to zeros
The cursor is placed at the first input field an
field control is enforced.
Generate a screen. The values in all arrays ar
displayed, the cursor is placed according to th
value of IPOS. Field control is enforced.
As for MODE=2,except field control is not enforce
writes the value of NAME to status field if IPO
is zero, otherwise a standard system message i
written.
writes the value of NAME to the message field
Initialize the status and message fields.

The values in
corresponding
redrawn.

brackets operat"e in the same way as the
modes except that the screen is not

For 'MODES 2,3,8 and 9, this should contain the field
number where the cursor is to be positioned when the
screen is displayed.
For MODES 1,2,6 and 7 it should contain zero.
For MODE 4 it should contain zero to display the value
of NAME in the status field, or 1-6 for the following
standard system messages:

1 SYSTEM READY
2 *PLEASE WAIT*
3 *COMPUTING*
4 *ACCESSING DATABASE*
5 *PRINTING*
6 *SORTING*

G·1

3: NAME

For MODES 1,2,3,7,8 and 9, it should contain the name of the
screen to be displayed.
For MODE 4 the value is displayed in the status field .
For MODES 5 and 6 the value is displayed in the message field

4: IERR

o No errors
1 MODE not in range 1 to 9
2 Message in NAME too long
3 IPOS not in range 0 to 6 for MODE 4
4 Screen definition file specified in NAME invalid
5 Help was requested
6 Format file in NAME was not created by FSED
7 IPOS out of range for MODES 2,3,8,9

G-2

APPENDIX H

Calls to these subroutines are automatically generated by the
IV compiler in order to perform housekeeping tasks.

MCPLOG:

Creates a record in the system log file

CALL MCPLOG(SYS,MODNO,DESC,MESS,TYPE)

SYS - system name, e.g. MCS
MODNO - module number, e.g. 010
DESC summary description, generally IV key word,

e.g. "DISPLAY","MODIFY" etc
MESS - message description,typically the name of record being

manipulated - MCS010S01,MCS01-PRINT-REC. Alternatively
any comment immediately following the record name in a
header clause will be used for the message description.

TYPE - second letter of system name used for identification
purposes.

GETUSAD:

Obtains the ID code of the user of the system

CALL GETUSAD(PGM,USER,ADID,IERR)

PGM - program name
USER - user name
ADID - user identification code
IERR - error code

CHECKMEN:

Checks user privileges on a selected menu option.

CALL CHECKMEN(ADID,SCRN,IARR,VALID)

,

ADID user identification code obtained from call to GETUSAD
SCRN' - screen name
IARR - selected menu option
VALID - "Y" is a valid option, "N" is not a valid option

WEEKYEAR:

Gets the current week and year to be displayed in the second
field of each screen

CALL WEEKYEAR(CARR)

CARR - week/year

H-1

APPENDIX I

The following is an abbreviated list of the syntactic forms of the language expressed in EBNF
notation.

< PROGRAM> :: =

<MODULE> { <MODULE> }
< MODULE> :: =

MODULE <ID> [(<DECLARATION_LIST>) 1
[<DECLARATION_LIST> 1
[<STATEMENT_SEQUENCE> 1
END MODULE

<DECLARATION LIST> ::=
<DECLARATION> { <DECLARATION> }

< DECLARATION> :: =
<TYPE_ID > <NAMED_ID> L <NAMED_ID> }

<NAMED_ID> ::=
<ID> [i <INTEGER» 1

<STATEMENT_SEQUENCE> ::=
<TRANSACTIONS> I <NON_DATA_MANAGEMENT_STATEMENTS>
{ <TRANSACTIONS> I <NON_DATA_MANAGEMENT_STATEMENTS> }

<TRANSACTIONS> ::=
TRANSACTION <STATEMENT_LIST> ENDTRANSACTION

<STATEMENT_LIST>
<NON_DATA_MANAGEMENT_STATEMENT> I <DATA_MANAGEMENT_STATEMENT
{ <NON_DATA_MANAGEMENT_STATEMENT > I <DATA_MANAGEMENT_STATEMENT J

<UPDATE_RETREIVE_STATEMENT_LIST> ::=
<NON_DATA_MANAGEMENT_STATEMENT> { <NON_DATA_MANAGEMENT_STATEME

<NON_DATA_MANAGEMENT_STATEMENT> ::=
<ASSIGNMENT> I <SCREEN_MANAGEMENT> I <PROCEDURAL>

<ASSIGNMENT> ::=
<ID> -=- <EXPRESSION>

<SCREEN_MANAGEMENT> ::=
DISPLAY [EACH J'<ID> [! <ID» 1 [WHERE <STATEMENT_SEQUENCE>

<RESTOF_SCREEN> 1
<RESTOF_SCREEN> ::=

END DISPLAY I ~ <STATEMENT_SEQUENCE> END DISPLAY
<PROCEDURAL> ::=

<IF_STATEMENT> <SELECT_STATEMENT> <WHILE_STATEMENT>
<UNTIL STATEMENT> . - .
<IF_STATEMENT> ::=

IF <CONDITION> THEN <STATEMENT_SEQUENCE>
[ELSE STATEME~_SEQUENCE 1 END IF

<SELECT_STATEMENT> :: =
SELECT <WHEN CLAUSE> [EI SE <STATEMENT_SEQUENCE> 1 END SELECT

<WHILE_STATEMENT> ::= .
WHILE <CONDITION> DO <STATEMENT SEQUENCE> END WHILE . - -

<UNTIL_STATEMENT> ::=
REPEAT <STATEMENT_SEQUENCE> UNTIL <CONDrTION>

<DATA MANAGEMENT> ::=
- <UPDATE_RETREIVE> I <CONNECTION> I <LOCATION> I <DELETION> I <UTILlT

<VPDATE_RETREIVE> :: =
<TRANSFER_FUNCTION> <ID> <WHERE_CLAUSE> [<RESTOF_VPDATE_RETREIVE

1-1

<RESTOF_UPDATE_RETREIVE> :: =
END <TRANSFER]UNCTION> I
~ <UPDATE_RETREIVE_STATEMENT_UST> END <TRANSFER_FUNCTION>

<CONNECTION> ::=
(RECONNECT <ID> <WHERE_CLAUSE> <FROM_CLAUSE> <TO_CLAUSE» I
(DISCONNECT <ID> <WHERE_CLAUSE> <FROM_CLAUSE>) I
(CONNECT <ID > <WHERE_CLAUSE> <TO_CLAUSE>)
USE KEY <ID>

<LOCATION> ::=
FIND <ID> <WHERE_CLAUSE> ~ <STATEMENT_SEQUENCE> END FIND

<DELETION> ::=
ERASE <ID> <WHERE_CLAUSE> END ERASE

<UTIUTY> ::=
<UTIUTY_FUNCTlON> <ID> 1 <ID» <WHERE_CLAUSE> END <UTILITY_FUNCTI

<FROM_CLAUSE> ::=
FROM <ID> <WHERE_CLAUSE>

<TO_CLAUSE> ::=
TO <ID> <WHERE_CLAUSE>

<WHERE CLAUSE> ::=
WHERE < WHERE_SEQUENCE>

<WHERE_SEQUENCE> ::=
<WHERE_STATEMENT> { <WHERE_STATEMENT> }

<WHERE_STATEMENT> ::=
<SELECTOR> [<RESTOF_WHERE> 1

<RESTOF WHERE> ::=
<ID> 1 <CONDITION_EXPRESSION»

<WHEN_CLAUSE> ::=
<WHEN> { <WHEN> }

<WHEN> ::=
WHEN <CONDITION>: <STATEMENT_SEQUENCE>

<TRANSFER_FUNCTION> ::=
GET I MODIFY I STORE

<UTILITY_FUNCTION> :: =

AVERAGE I COUNTIMAXI~ITOTAL
< SELECTOR> :: =

EACH I FIRST I OWNER

• If a sentence generated by these productions is derived from the < TRANSACTIONS>
production (i.e. a procedural statement is textually located within a transaction
statement) then the <STATEMENT_SEQUENCE> non-terminal is restricted to generating
< NON_DATA_MANAGEMENT_STATEMENTS> non-terminals.

\-2

APPENDIXJ

This appendix is provided under a seperate cover. It presents source code listings of the seven
IV compiler modules, the screen formatter (FSED, and the screen manager (FSM). This
appendix is available from:

The Department of Computer Science
Rhodes University

P.O.Box94
Grahamstown

Republic of South Africa

J-1

