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MORESANE deconvolution algorithm
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The inadequacies of the current generation of deconvolution algorithms are rapidly be-

coming apparent as new, more sensitive radio interferometers are constructed. In light

of these inadequacies, there is renewed interest in the field of deconvolution. Many new

algorithms are being developed using the mathematical framework of compressed sens-

ing. One such technique, MORESANE, has recently been shown to be a powerful tool

for the recovery of faint diffuse emission from synthetic and simulated data. However,

the original implementation is not well-suited to large problem sizes due to its compu-

tational complexity. Additionally, its use of proprietary software prevents it from being

freely distributed and used. This has motivated the development of a freely available

Python implementation, PyMORESANE. This thesis describes the implementation of

PyMORESANE as well as its subsequent augmentation with MPU and GPGPU code.

These additions accelerate the algorithm and thus make it competitive with its legacy

counterparts. The acceleration of the algorithm is verified by means of benchmarking

tests for varying image size and complexity. Additionally, PyMORESANE is shown to

work not only on synthetic data, but on real observational data. This verification means

that the MORESANE algorithm, and consequently the PyMORESANE implementa-

tion, can be added to the current arsenal of deconvolution tools.
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Chapter 1

Introduction

The necessity of deconvolution in the context of radio astronomy has a long history. As

such, there have been numerous attempts, some more successful than others, to construct

efficient deconvolution algorithms. Recently, great improvements have been made and

the development of compressed sensing and its associated techniques has produced a

whole new family of algorithms.

One such algorithm, MORESANE (MOdel REconstruction by Synthesis-ANalysis Esti-

mators), has recently been shown to be remarkably capable at the restoration of faint

diffuse emission (see [1] and [2]). While the details of its operation are the subject of

subsequent chapters, it is important to note that one of its critical weaknesses is its

computational complexity. That is, for images of sizes between 2048-by-2048 and 8192-

by-8192 pixels, the computation time may be completely unfeasible. Additionally there

is no real upper bound on problem size, and new interferometers with large fields of view

and high spatial resolution will require even larger images. Addressing this weakness in

conjunction with a desire to turn the algorithm into a freely available tool motivated

the development of PyMORESANE.

PyMORESANE itself an implementation of the MORESANE algorithm coded in Python.

There are arguments against the use of Python in high-performance computing, partic-

ularly due to the difficulties introduced by the global interpreter lock and just-in-time

compilation. These both limit the maximum achievable performance. However, it re-

mains both remarkably convenient and very familiar to most astronomers. Additionally,

due to its popularity and support, it can be adapted to incorporate a wide range of

functionality, some of which overcomes its inherent drawbacks.

In order to combat the computational complexity of the algorithm, the aim is to incorpo-

rate GPGPU (General-Purpose computing on Graphics Processing Units) functionality

1



Chapter 1. Introduction 2

into PyMORESANE. GPUs offer massive parallel computing power. Thus, when deal-

ing with large array-based calculations they are incredibly efficient. This efficiency does

not reduce the computational complexity of the algorithm, but means that far more

complex calculations may be performed in a comparatively small amount of time.

Subsequent to the inclusion of GPU functionality, a secondary aim is the verification

of the algorithms’ efficacy both on synthetic data and real observational data. This

verification is intended to establish whether or not MORESANE survives the transition

from the ideal synthetic case to the less perfect real-world data.

The details of MORESANE as well as its competitors, both old and new, appear in

chapter 2. Once the theoretical framework has been established, the details of the

actual implementation appear in chapter 3.

The results are grouped into three distinct chapters. The first, chapter 4, presents

the results of accelerating the algorithm. This establishes both where the bottlenecks

were and how they have been dealt with by the inclusion of GPU code. Chapter 5

then presents the results of applying PyMORESANE to synthetic data. This serves

as a check between PyMORESANE and the original implementation. The final results

chapter, chapter 6, demonstrates the efficacy of PyMORESANE when applied to real

data. MORESANE was previously untested on real observational data.

The final chapter concludes with the findings of the thesis and suggests the further

improvements and additional directions in which the algorithm may develop.



Chapter 2

Context and Theory

This chapter explores the necessity of deconvolution and its myriad approaches, old and

new. The parallel capabilities of graphics hardware is also briefly discussed. Note, all

colour-map images (radio images) in this and subsequent chapters have scales in units

of Jansky (1Jy = 10−26W.m−2.Hz−1). This corresponds to the spectral flux density.

2.1 Interferometry

In order to fully explain deconvolution in the context of radio astronomy, it is important

to understand interferometry and how it necessitates deconvolution. This brief expla-

nation will follow the RIME (Radio Interferometer Measurement Equation) formalism,

as presented first in [3] and later elaborated upon in [4].

Single dish radio telescopes, in general, have very poor angular resolution. This is due

to the fact that angular resolution (θ) is directly proportional to wavelength (λ) and

inversely proportional to aperture diameter (D), as show in equation 2.1 [5].

θ ≈ λ

D
(2.1)

Radio waves have wavelengths several orders of magnitude greater than visible light.

Thus, for single-dish radio telescopes, the only way to improve angular resolution is

to increase the aperture diameter by building bigger dishes. However, the dish size

rapidly becomes impractical. In order to overcome this limitation, the study of radio

interferometry and aperture synthesis was born.

3



Chapter 2. Context and Theory 4

Physically, a radio interferometer consists of two or more radio telescopes. It is analogous

to its optical counterpart - by examining the interference pattern between electromag-

netic waves at spatially separated points, additional information about the source of the

emission can be extracted. In particular, an interferometer may be used to synthesise a

far larger aperture than would be feasible for a single dish radio telescope; an interfer-

ometer has the angular resolution of a single dish with a diameter equal to the greatest

separation between the interferometer’s constituent telescopes.

The smallest possible radio interferometer consists of only two dishes. This pair is

referred to as a baseline. A large interferometer, consisting of many dishes, can be

treated as a number of two-element interferometers or baselines. Each dish measures

a voltage which corresponds to the received radio emission. For each unique baseline,

these voltages are correlated to produce a single complex value at a given instant. This

value is termed a visibility. It is convenient at this point to introduce the following

relationship [6]:

Vν(u, v, w) =

∫∫
A(l,m)Iν(l,m)e−2πi(ul+vm+wn)dldm

n
(2.2)

In the above equation, Vν(u, v, w) is the measured visibilities, Iν(l,m) is the true bright-

ness distribution of the sky, and the exponential term contains the phase information.

A(l,m) is the primary beam pattern which is treated as unity for the remainder of this

discussion, as it does not contribute to the formulation of the problem.

Before proceeding, the above coordinate systems require some explanation. The (u,v,w)

coordinates, measured in units of wavelength, give position in the Earth’s frame. The

w -axis is chosen to be perpendicular to the central point (phase-centre) of the field which

is under observation. The u and v axes then correspond to East and North respectively

in the plane which is normal to w at the surface of the Earth. This is commonly referred

to as the uv-plane.

The coordinates of a point in the sky are given by (l,m,n). They are the direction cosines

of a point relative to the u, v and w axes. A more thorough, pictographic explanation

is available in [7].

For various technical reasons - see [8] - it is desirable to have zero fringe frequency at the

phase centre. Incorporating this into equation 2.2 results in the subtly modified form of

equation 2.3.

Vν(u, v, w) =

∫∫
Iν(l,m)e−2πi(ul+vm+w(n−1))dldm

n
(2.3)
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Equation 2.3 is very similar to a two dimensional Fourier transform between (l,m) and

(u,v). It is only the presence of the w -term which prevents it from being precisely that.

Fortunately, this term may be omitted under certain conditions [8].

The first such condition is true only for co-planar interferometers; the baselines have no

w -component and thus the term in w disappears. The second such condition is referred

to as the small-field approximation. The approximation is valid when |l| and |m| are

sufficiently small for equation 2.5 to hold, noting that the direction cosines l, m and n

are related by equation 2.4:

l2 +m2 + n2 = 1 (2.4)

(n− 1)w = (
√

1− l2 −m2 − 1)w ≈ −1

2
(l2 +m2)w ≈ 0 (2.5)

In the second of the above cases, the following form of 2.2 is applicable, noting here that

n ≈ 1:

Vν(u, v) =

∫∫
Iν(l,m)e−2πi(ul+vm)dldm (2.6)

Equation 2.6 shows that the visibilities are, in fact, just the two dimensional Fourier

transform of the sky brightness distribution. It is this remarkable property that allows

radio astronomers to construct images of the sky from the measured visibilities; the

above equation may be inverted to give equation 2.7.

Iν(l,m) =

∫∫
Vν(u, v)e2πi(ul+vm)dudv (2.7)

This suggests that recovering the sky brightness distribution is as simple as performing

an inverse Fourier transform on the measured visibilities. Unfortunately, as previously

stated, equation 2.6, and consequently equation 2.7, is an idealisation. If Vν(u, v) was

known at every point in the uv-plane, then Iν(l,m) could be perfectly calculated. How-

ever, an interferometer only measures visibilities at finite number of discrete points in

the uv-plane.

These points are described by a sampling function S(u, v), which is non-zero only at

the sampled points and their negatives. This “two-for-one” property arises from the

fact that the sky is real; its Fourier transform is Hermitian, so sampling one point in
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the transform also gives information about a second point. Specifically, the visibility at

point (−u,−v) is equal to the complex conjugate of the visibility at the point (u, v) [8] .

For notational simplicity, F will be used to notate a two-dimensional Fourier transform

and F−1 shall denote its inverse. Equation 2.6 and 2.7 may be recast as 2.8 and 2.9

respectively.

Vν(u, v) = F(Iν(l,m)) (2.8)

Iν(l,m) = F−1(Vν(u, v)) (2.9)

The actual visibilities V
′
ν (u, v) measured by an interferometer are S(u, v) multiplied by

Vν(u, v), which can be expressed as follows:

V
′
ν (u, v) = S(u, v)Vν(u, v) (2.10)

By replacing Vν(u, v) with V
′
ν (u, v) in equation 2.9, a new expression for the modified sky

brightness distribution, I
′
ν(l,m), is obtained in equation 2.11. By invoking the properties

of the Fourier transform, this equation may be further manipulated to give equation

2.12 which expresses I
′
ν(l,m) as the convolution of the true sky brightness distribution,

Iν(l,m), with the Fourier transform of the sampling function. This quantity is referred

to as the point spread function (PSF) or dirty beam and is notated as P (l,m).

I
′
ν(u, v) = F−1(V ′

ν (u, v)) (2.11)

= F−1(S(u, v)Vν(u, v))

= F−1(S(u, v)) ∗ F−1(Vν(u, v))

= P (l,m) ∗ Iν(l,m) (2.12)

Conceptually, equation 2.12 shows that the information captured by an interferometer

cannot be used to perfectly reconstruct the true sky brightness distribution. Instead,

when constructing an image from the visibilities a “dirty” result - henceforth referred

to as the dirty image - is obtained; the sky has been corrupted by convolution with

the PSF. The desire to reverse the effects of this convolution makes deconvolution a

necessary procedure.

The difficulty with deconvolution arises from the uncertainty which the convolution with

the PSF introduces. As information is not available at every point in the uv-plane, a
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dirty image does not correspond to a unique sky. There is a continuum of skies which

could produce equivalent visibilities. It is the aim of deconvolution to produce an image

which best represents the reality. In order to do this, prior assumptions have to be made

and the missing data interpolated or inferred.

Before discussing deconvolution any further, there are a few aspects of interferometry

which are commonly employed to improve the reconstruction of the sky brightness distri-

bution. Due to the relationship between the sampling function and the PSF, improving

the number of sampled points or uv-coverage also improves the PSF. This in turn reduces

the negative effects of convolution.

The simplest approach to improving the sampling function is to add additional telescopes

to the interferometer. Each additional baseline corresponds to an additional pair of

sampled points but, as with increasing the size of a single dish, this approach rapidly

becomes impractical and cost-prohibitive.

The second, ubiquitous, approach is to exploit the Earth’s rotation. As the earth rotates,

each baseline measures the visibility at a slightly different pair of points in the uv-plane.

Thus, by taking measurements at regular time intervals, a series of visibilities and their

associated sampling functions can be obtained.

The visibilities from every time interval can be combined when making an image and

the total sampling function becomes the summation of the sampling functions of each

time interval. This procedure is known as Earth-rotation aperture synthesis [9]. It

dramatically improves the sampling function and, consequently, the PSF. However, even

with the best sampling function possible, it is impossible to completely remove the PSF,

reaffirming the need for an efficient means of deconvolution.

Examples of the sampling function, PSF and a simulated synthetic dirty image for the

KAT7 array appear in figures 2.1, 2.2, and 2.3.
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Figure 2.1: Coverage of the uv-plane for a simulated KAT7 observation.

Figure 2.2: PSF of KAT7 for the uv-coverage in figure 2.1.
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Figure 2.3: Dirty image of a simulated KAT7 observation.

2.2 Deconvolution

Deconvolution is ultimately an inverse problem - given the results of an operation, the

aim is to recover the input to that operation. For the purposes of this explanation,

deconvolution will be treated in the image plane. To clarify, rather than treating the true

sky brightness distribution and visibilities as the input and output of the convolution,

the images thereof will be used instead. Thus, the goal of deconvolution is to reclaim an

image of the true sky brightness distribution from the dirty image constructed from the

visibilities. This can be more elegantly expressed in the notation of linear algebra. Note

that a noise term is included as data obtained from an interferometer contains noise.

In image space, the noise is both additive Gaussian and correlated due the incomplete

sampling of the uv-plane [10]. The forward operation may be written as follows:

y = Px + n (2.13)

In equation 2.13, y is a vector containing the pixel values of the dirty image, x is a

vector containing the pixel values of the true sky image, n is a vector containing the

noise per pixel, and P is a matrix which, when applied to x, amounts to a convolution

with the PSF. This is the image-space equivalent of equation 2.12.
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However, while equation 2.13 is very intuitive in one dimension, it is less so for two. In

two dimensions, x and y are vectors constructed by stacking the columns of the input

and output images respectively and P is a large, difficult to construct matrix.

This notation is an improvement over that presented in section 2.1, as expressing the

reverse operation is much simpler. Deconvolution may be naively expressed as the matrix

inverse of P applied to y.

Unfortunately, it is not possible to perform this operation, even if P is known exactly.

In general P is under-determined; it is rank deficient (has zero eigenvalues) and conse-

quently it is non-invertible. It is for this reason that inverse problems are one of the

most exhaustively studied problems in mathematics. Solving inverse problems usually

amounts to an optimisation problem in which an objective function (usually the l2 norm)

is minimised.

This minimisation problem in non-trivial in radio images - the presence of noise further

complicates matters. Thus, additional criteria, such as regularisation constraints, are

imposed to emphasise certain features of the recovered model image. Section 2.3.4

explores this notion more thoroughly.

Deconvolution is not restricted to the radio regime; optical instruments suffer from

similar problems. However, as most optical instruments are not interferometric in nature,

their PSFs tend to be better behaved and thus do not impact the entire image. This does

not reduce the necessity of deconvolution as fine structure can be blurred by instrumental

effects such as diffraction. Whilst a discussion of optical techniques is not within the

purview of this thesis, it is interesting to note the parallels between the techniques of

optical and radio astronomy.
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2.3 Current Techniques

Due to the presence of convolution in all interferometric measurements, several ap-

proaches to deconvolution have already been explored. This section offers a brief overview

of some of the most well-known techniques.

2.3.1 CLEAN

The CLEAN procedure is the original deconvolution algorithm, presented by J. A.

Högbom in [11]. It remains one of the most successful and powerful algorithms for

deconvolution. This is particularly note-worthy as it is elegant in its simplicity.

CLEAN’s approach to deconvolution is reliant on the fact that the PSF has a known

structure. A point source will produce an impulse response in the image corresponding

to the PSF and an extended source will produce a superposition of such responses.

Thus, the PSF can be regarded as being correlated to the dirty image. This correlation

is inherent - the point of maximum correlation is the maximum point in the image.

Simply put, the brighter a source, the greater its correlation with the PSF.

CLEAN exploits this correlation to remove the PSF. It selects the pixel with the maxi-

mum intensity as being a source. It then takes the source pixel and adds some fraction

of it to a new, model image of the sky. It simultaneously subtracts the same fraction of

the PSF, scaled and centred at the location of the source pixel, from the dirty image.

This process is iterative; on each iteration the dirty image, commonly referred to as the

residual, is updated in the same way until a stopping criterion is reached. The stopping

criterion is usually based on the noise level of the residual.

The net effect of CLEAN is the removal of the contribution of the brightest sources from

the dirty image and the creation of a model image containing the true sky, uncontami-

nated by the PSF.

In general, the model produced by CLEAN is convolved with a Gaussian restoring beam

(often called the clean beam) which usually corresponds to the central lobe of the PSF.

This is then added to the final residual. It is this combination of residual and convolved

CLEAN components - referred to as the restored image - which presents the best version

of the information hidden in the original dirty image.

The original CLEAN algorithm proposed by Högbom has been improved upon by several

other authors. The most notable improvements include those of Clark in [12] and Schwab

in [13].
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Clark’s improvements to the algorithm were designed to accelerate it. At the time, the

processing power and memory available for computation was far more limited. Clark

identified the successive subtraction of the PSF from the dirty image as being the same

as convolving the model image with the PSF and subtracting the result from the dirty

image. This realisation motivated him to split the CLEAN algorithm into a major and

minor loop.

Clark’s minor loop makes use of a so-called beam patch - the PSF’s central region. The

beam patch is used to identify a limiting flux for the dirty image. All points below the

flux of the brightest pixel’s largest side-lobe outside the beam patch are not considered

during the current major loop iteration.

The remainder of the minor loop behaves much like Högbom’s CLEAN. It identifies

the brightest pixel in its thresholded dirty map and removes some fraction of the beam

patch at its location. The flux removed from the brightest pixel is placed into the model

image. This is done iteratively until no components lie above the original threshold.

Conceptually, this can be regarded as localised deconvolution - the minor loop does

not attempt to remove the effects of the PSF in its entirety. Instead, it simply creates

a model of all the source pixels above the flux limit by removing the PSF’s brightest

contributions.

The major loop completes the CLEAN operation by convolving the model image pro-

duced by the minor loop with the entire PSF. The result is then subtracted from the

dirty image. This can be considered as the aggregation of several iterations of Högbom’s

original implementation.

Each major loop uses the updated dirty image to redetermine the flux threshold and the

major loop iterates until such time as a stopping criterion is reached. This criterion is

often heuristic and determines how close to the noise the algorithm will clean. As with

Högbom’s CLEAN, the final model image is usually convolved with a Gaussian restoring

beam and added to the residual.

Computationally, Clark’s CLEAN is a substantial improvement. Using the beam patch

massively reduces the problem size in the minor loop and the convolution is done in a

single step on each major loop iteration. The convolution is performed using an FFT

(Fast Fourier Transform), which scales well with problem size (O(Nlog2(N)).

Schwab adapted Clark’s CLEAN [13] to make use of the visibilities in the major loop.

The model image is used to compute a set of visibilities which are subtracted from the

measurement set. A new image is then computed, which becomes the input to the

subsequent major loop.
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This approach has several advantages over its predecessors. Both Högbom and Clark’s

implementations are limited to the central quadrant of the dirty image. This is due to

the fact that, for an image and PSF of the same size, convolution with the PSF produces

edge effects outside of the central region. By removing the model from the visibilities, the

PSF is effectively removed everywhere, allowing the algorithm to operate on the whole

dirty image. This approach also reduces the errors introduced by convolution with the

PSF, allowing the algorithm to clean more deeply and with fewer false detections.

Unfortunately, while CLEAN is still a remarkable algorithm, it is not without its flaws.

In particular, there is an implicit assumption that all sources, point or otherwise, can

be modelled as a discrete number of delta functions. This assumption arises from the

selection of one pixel on each iteration. As the sky is principally filled with point sources,

this is often irrelevant. However, it means that CLEAN does not produce an accurate

model when applied to diffuse emission. At best, it will distribute delta functions over

the source’s extent. At worst, particularly when the diffuse emission is close to the noise

level, the removal of the first delta function from the diffuse emission will render the

remainder of the emission unrecoverable.

2.3.2 Multiscale CLEAN

As mentioned in section 2.3.1, the CLEAN algorithm does not model diffuse emission

realistically. Thus, in order to mitigate this weakness, multi-scale CLEAN, as proposed

in [14], has been developed. It improves substantially on the basic CLEAN approach

whilst maintaining its predecessors simplicity.

The multi-scale approach is relatively easy to explain. Where the basic CLEAN algo-

rithm limits itself to using delta functions to model sources, multi-scale CLEAN com-

bines both delta functions and extended components. These extended components are

chosen to be tapered, truncated parabolas which are similar to Gaussians, but avoid the

difficulties the long, non-zero tails of Gaussians introduce. The quantity and extent of

these components is a user-specified parameter.

In order to make use of the extended components, multi-scale CLEAN constructs mul-

tiple versions of the dirty image. Each version is smoothed by convolution with the

extended component of interest. The result of this smoothing operation is an image

cube, with each image plane corresponding to a particular resolution or scale. A similar

smoothing procedure is applied to the PSF. Thus, for every plane in the image cube,

there is a smoothed version of the PSF; the PSF at that scale.
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The algorithm then proceeds in a fashion analogous to the basic CLEAN algorithm.

The maximum pixel across all scales is found, subject to the application of a scaling

parameter. The scaling parameter is somewhat arbitrary, but in practice is related to

the ratio of the current scale to the maximum scale. However, the parameter is vital,

as it biases the algorithm towards smaller scales. This prevents point sources couched

in diffuse emission from being modelled with large scale components. Failure to do this

often results in undesirable negative values around point sources in the residual.

Once the maximum pixel has been found, the model is updated with some fraction of

the corresponding multi-scale component. The PSF associated with that scale is then

subtracted from the residual at the location of the maximum pixel. The other planes

in the image cube are also updated by exploiting the relationship between the various

scales - the PSF for the current maximum scale is convolved with the component of each

other scale. This essentially gives the maximum component as it would appear in the

other scales.

This process is repeated until such time as a predefined threshold is reached, or the

maximum number of components is identified. The final step, as with CLEAN, is the

convolution of the model with a restoring beam and the addition of the residuals to form

the restored image.

Multi-scale CLEAN has been shown (see [14]) to be more effective at recovering diffuse

emission than conventional CLEAN. However, it too has its flaws. In particular, the

various component scales are user-specified - there is no way to know in advance which

scales should be chosen to produce the best results. This free-parameter is undesirable

as it precludes automation. Additionally, the scaling or biasing factor introduced when

determining the maximum across all the scales is wholly arbitrary. A relationship which

works was derived empirically, but it is unlikely to be the only or the best solution.

One final thing to note is that multi-scale CLEAN does restrict the morphology of the

resulting model image. Even though the extended components can model diffuse sources,

ultimately the algorithm still searches for the maximum single pixel across scales. Even

if this pixel appears in a high-scale plane, it is ultimately still a blurred delta function

which means that the components which will appear in the model will all be circular for

a parabolic component approach.
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2.3.3 Bayesian Approaches

Recent work has proposed the use of Bayesian inference to construct a model of the

true sky. These approaches are particularly appealing as they are the most statistically

accurate of the current techniques and quantify the error in the reconstructed image.

Prior to these Bayesian approaches, such uncertainties were beyond the conventional

algorithms.

Presenting the Bayesian framework is beyond the scope of this work, but it is nevertheless

interesting to gloss over its current presence in the literature. The MEM (Maximum

Entropy Method) [15] is a precursor to the more recent Bayesian approaches. It attempts

to find a model sky by maximising the relative entropy between the dirty image and

the model sky. However, this alone is insufficient and so the objective function which

is ultimately maximised contains measures of the relative entropy, the χ2 value and

the total power of the expected MEM image. This approach works remarkably well,

particularly on diffuse emission. However, it is more computationally intensive than

CLEAN and is very dependent on the correct specification of its various constraints.

Additionally, it has been know to incorrectly estimate source flux. One final thing to

note is that this version of the MEM algorithm, unlike the original presented in [16], is

not truly Bayesian due to the inclusion of total power in the objective function. The

total power term is a form of regularisation.

Regularisation refers to the inclusion of some additional factor when determining the

solution to an ill-posed problem. This factor can be regarded as a penalty which induces

desirable behaviour in a solution.

A more recent approach appears in [17]. Known as RESOLVE, this approach is more

explicitly Bayesian. That is, given data d and a true signal s, RESOLVE attempts to

construct what is known as the posterior distribution which is written as P (s|d). This

can be though of as the probability of signal s given data d. Bayesian methods, however,

require a prior. That is, they require additional information in the form of a model which

is thought to represent the probability distribution of the signal s.

RESOLVE makes use of a prior which focusses on diffuse, extended emission and achieves

high-quality reconstruction of such emission, particularly for low-noise data. However,

as with all Bayesian methods, the computational cost is large. This is due to fact that

Bayesian methods have to find the most probable solution in a very large parameter

space. RESOLVE does provide a good uncertainty estimator but it is unclear whether

or not it is suited to real data.
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Another Bayesian approach is Gibbs Sampling, as introduced in [18]. It is similar to

RESOLVE, although it uses a different prior. What makes this approach particularly

interesting is that is can be automated. The data drives the solution procedure, so there

is no need for user input. With the data rate of the next-generation interferometers,

automation will be vital. The presented results are also quite impressive. Once again,

it is important to note that the test cases were relatively small and it remains unclear

whether the approach is suited to real data. The current implementation does feature

multiprocessing support, though no timing results are available.

2.3.4 Compressed Sensing and Sparsity

Compressed sensing refers to a family of techniques which are employed in signal pro-

cessing, as explored in [19]. Fundamentally, they address the problem of signal recon-

struction in the presence of an under-determined linear system. Conceptually, this can

be regarded as an approach which allows the best reconstruction of a signal from the

minimum number of measurements.

y = Ax (2.14)

Equation 2.14 is linear measurement equation where y is M-dimensional vector contain-

ing samples or measurements, x is an N-dimensional vector corresponding to the signal

of interest, and A is the M-by-N measurement matrix which describes how the signal is

sampled. Usually, in order to perfectly reconstruct the signal, it is necessary to have M

and N equal. Compressed sensing has shown [19] that M may be substantially less than

N provided that the signal x is sufficiently sparse.

This notion of sparsity describes a signal which, in some representation, consists mainly

of zeroes. This is not to be confused with matrix sparsity which is a measure of how

many entries of a matrix are zero.

While many signals may not be strictly sparse (containing mainly zero coefficients), they

are often compressible. A signal is compressible if, in some basis, the majority of its

coefficients are close to zero but not necessarily zero. That is, for a signal x of size

(N, 1), equation 2.15 holds.

x = Sγ (2.15)

In the above equation, x is as previously defined, S is a dictionary of size (N,M) and γ

is a sparse vector of size (M, 1). This is known as synthesis. Conceptually, this means
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that the linear combination of only a few columns (often referred to as atoms) of the full

dictionary S are needed to synthesise x. γ picks out the atoms in question. In general,

the dimensions of the dictionary S are such that N > M .

The second, slightly different, approach is known as analysis. In this case sparsity is

derived from an operator, say AT, such that the product ATx is sparse. Conceptually,

this differs from the synthesis approach as, unlike γ, neither AT or x need be sparse.

From this perspective, analysis can be regarded as the correlation between a dictionary

A of size (N,M) and the signal vector x, the result of which is sparse, as only a few

atoms of A will be well correlated with x.

The notions of synthesis and analysis are simply different means by which a signal can

be represented as sparse and they are in fact identical when an orthonormal basis is

used. This is vital, as compressed sensing relies on the fact that the sparsest solution

to an under-determined system is the best one. This can be applied to solutions in the

form of a regularisation factor; a sparsity measure can be used to regularise the solution

of a linear system. This encourages the solution towards sparsity.

Several new deconvolution algorithms make use of sparsity in some basis. This includes

both LOFAR-CS [20], a CS-based deconvolution algorithm for the LOFAR array, and

the PURIFY library [21] which includes routines implementing the SARA (Sparsity

Averaging Reweighted Analysis) imaging algorithm.

PURIFY/SARA makes use of sparsity by exploiting wavelet decompositions. Unique to

SARA is the concatenation of both wavelet dictionaries and the Dirac basis. These are

used to extablish the average sparisty of an image across multiple representations. The

resulting sparsified coefficients are used to reconstruct the signal of interest using the

SDMM (simultaneous-direction method of multipliers). PURIFY/SARA works directly

on the visibilities, which improves signal reconstruction and has been shown to produce

excellent results on synthetic data. Unfortunately, it is currently untested on real data.

LOFAR-CS is of more interest in the context of this thesis, due to the similarities

between it and MORESANE. In particular, they both make use of the same wavelet

decomposition and noise estimator. However, LOFAR-CS makes use of FISTA (Fast

Iterative Shrinking Threshold Algorithm), whereas MORESANE uses a conjugate gra-

dient method. LOFAR-CS also has several similarities with PURIFY/SARA, as they

are both examples of standard constrained/unconstrained problems often seen in com-

pressed sensing. LOFAR-CS, like PURIFY/SARA, works directly on the visibilities.

LOFAR-CS has been shown to produce superior results to more traditional deconvolu-

tion algorithms, and has been tested in a more realistic setting than PURIFY/SARA.

Information on the computational performance of the algorithm is not readily available.
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2.4 MORESANE

MORESANE (MOdel REconstruction by Synthesis-ANalysis Estimators) is recently de-

veloped algorithm proposed by Dabbech et al. [2]. This section attempts to explain

MORESANE as simply as possible. However, a rigorous mathematical approach ap-

pears in [2].

2.4.1 Compressed Sensing and Sparsity in MORESANE

Armed with the introductory outline of sparsity as presented in section 2.3.4 it is possible

to further elaborate on sparsity in the context of MORESANE and the deconvolution

problem.

Returning to the notation of section 2.2, with y = Px providing a model of the dirty

image (y) and its relation to the true sky (x) by convolution with the PSF (P), it is

possible to write the form of the solutions for both synthesis and analysis.

xS = S · {arg min
γ

1

2
‖PSγ − y‖2 + µp ‖γ‖pp} (2.16)

The synthesis equation (2.16) describes a solution using a synthesis dictionary, as pre-

sented in equation 2.15. To clarify, xS corresponds to the synthesis solution, ‖·‖p is

the lp norm, and µp is a tuning parameter which adjusts the weighting of regularisation

factor, ‖γ‖pp. The remaining symbols retain their previous definitions.

The first term of the expression to be minimised is not wholly unfamiliar, as it is ul-

timately a measure of the distance between the measured values, y, and the values

predicted by the model, x = Sγ. This is referred to as the data fidelity term.

The second term of the minimisation expression is a measure of the sparsity of the

solution. p corresponds to the degree of the norm. The most obvious choice for a norm

which is indicative of a system’s sparsity is the l0 pseudo-norm, which is simply a count

of the non-zero entries in the given matrix. However, the l0 pseudo-norm is non-convex;

the resulting optimisation problem is not readily solvable. As a result, it is usually

replaced with the l1 norm which is convex and remains an excellent measure of sparsity.

The l1 norm is a summation of all the elements in a given matrix. The additional factor

of µp weights the sparsity measure and determines the degree of sparsity required.

The whole of the minimisation expression is minimised with respect to γ. Conceptually,

this describes a search procedure for an optimal vector γ which minimises the objective
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(minimisation) function. The final product with the dictionary S is necessary to return

from a sparse representation to the actual solution vector xS.

xA = {arg min
x

1

2
‖Px− y‖2 + µp

∥∥ATx
∥∥p
p
} (2.17)

The analysis equation (2.17) is very similar to its synthesis counterpart, with the anal-

ysis solution vector represented by xA. The factor µp and ‖·‖p retain their previous

definitions.

The principle difference between the approaches appears in the regularisation factor,∥∥ATx
∥∥p
p
, although its function remains the same; it is a regularisation factor which

promotes sparsity. However, unlike the synthesis case for which γ contained all the

sparsity information, the objective function must be minimised with respect to x such

that ATx is sufficiently sparse.

2.4.2 The Isotropic Undecimated Wavelet Transform

The IUWT (Isotropic Undecimated Wavelet Transform) is used to construct the analysis

dictionary for the MORESANE algorithm. A full mathematical explanation of the

IUWT is presented in [22], and an elaboration on its use in MORESANE appears in

[23].

First, a brief introduction to wavelet transforms in general is necessary ([24] is an au-

thoritative reference). Conceptually, they are similar to a Fourier transform, as they

transform a signal from one basis to another. However, unlike a Fourier transform,

which decomposes signals into sines and cosines which are localised only in Fourier space,

wavelet transforms make use of functions which are localised to some degree in both real

and Fourier space. This is vital when the signal in question is non-stationary and the

location (whether in time or space) of the components of the signal are important. The

general form of a wavelet transform appears in equation 2.18.

Wf(u, s) = 〈f, ψu,s〉 =

∫ +∞

−∞
f(t)

1√
s
ψ∗
( t− u

s

)
dt (2.18)

This is simply the inner product (correlation) between a function f(t) and some wavelet

function ψu,s(t) where u and s correspond to translation and dilatation of ψ respectively.

There are a multitude of different wavelet transforms, each one corresponding to a

different choice for ψ. Writing an analytic function for ψ may be difficult, as it is
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determined by a series of filter banks. Suffice it to say that the IUWT and its associated

ψ is particularly well suited to astrophysical applications.

The first reason for this is its isotropy, as many astronomical objects are isotropic. The

second is that it is simple to implement and the transform itself is relatively fast. The

third is that, due to the lack of decimation (sub-sampling), it is translation invariant

and highly redundant. Thus, morphological features can be accurately modelled.

Returning to the problem which MORESANE is attempting to solve, it is possible to

write the following:

α = ATy (2.19)

In the above equation, y is the vectorised dirty image, AT is an operator with A

corresponding to the IUWT decomposition and α is the matrix containing the analysis

(wavelet) coefficients. This, as described in subsection 2.3.4, is an analysis operation

which produces a coefficient set showing the correlation between A and y.

The IUWT decomposes y into a set of (J + 1)N coefficients where J is the number of

wavelet scales and N is the number of pixels in the dirty image. Here, scale refers to

the extent of the wavelet with which the signal is correlated. Low scale values corre-

spond to high-frequency components, which in turn correspond to the fine details of the

image, such as point sources and edges. High scale values correspond to low-frequency

components which tend to correlate well with extended emission. Thus, α may be more

formally written as α = [wT
1 , ...,w

T
J , c

T
J ]T where each wj is the detail coefficients at

scale j and cJ is the smoothest approximation of the original image.

The IUWT is also well suited to the application as it allows for perfect reconstruction

of a decomposed signal. Thus, the following equation holds:

y = Sα (2.20)

In the above equation, y is the dirty image, S is a synthesis dictionary which corresponds

to the analysis dictionary A and α is as defined above. This is a very important property,

as otherwise it would not be possible to return from wavelet space to the original signal.

The IUWT can be implemented using the “à trous” algorithm (translates as “with

holes”) [24]. This approach allows for the decomposition to be rapidly determined in

accordance with equations 2.21 and 2.22, with c0 = y.
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cj+1[k] =
∑
m

h[m]cj [k +m2j ] = (h(j) ∗ cj)[k] (2.21)

wj+1[k] =
∑
m

g[m]cj [k +m2j ] = (g(j) ∗ cj)[k] (2.22)

In the left-hand equality of the equations above, cj and wj , both of which are indexed

by k, correspond to the approximation and detail coefficients at scale j. h and g are

the filters corresponding to the IUWT which are indexed by m. These equations are

equivalent, as shown in the right-hand equality, to a convolution between the filters h(j)

or g(j) with the approximation coefficients cj where the filters are dilated for increasing

j. That is, the filters have a finite number of non-zero entries which at each scale are

separated by 2j − 1 zeroes. It is this property which makes the “à trous” rapid, as the

convolution may be reduced to a sum over the non-zero products of the filter with the

approximation coefficients.

The corresponding reconstruction algorithm has the following form:

cj [k] = (h̃(j) ∗ cj+1)[k] + (g̃(j) ∗wj+1)[k] (2.23)

All symbols retain their previous definitions; the only change appears in h̃(j) and g̃(j)

which are the filters used for reconstructing the signal.

MORSEANE makes use of the second generation IUWT which has associated filters (h,

g, h̃, g̃). A rigorous explanation of the choice filter banks will not be presented here,

though it is thoroughly covered in [22]. However, it is useful to note that for this version

of the IUWT, h = h̃, g = δ − h ∗ h and g̃ = δ, where the Dirac function δk,l = 1 if

k, l = 0 and is zero otherwise. Incorporating this knowledge into equations 2.21 and 2.22

yields a simplified decomposition scheme which can be easily implemented.

cj+1[k] = (h(j) ∗ cj)[k] (2.24)

wj+1[k] = cj [k]− (h(j) ∗ h(j) ∗ cj)[k] = cj [k]− (h(j) ∗ cj+1)[k] (2.25)

Likewise, the reconstruction scheme of equation 2.23 is also simplified:

cj [k] = (h(j) ∗ cj+1)[k] + wj+1[k] (2.26)
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The discussion thus far has only dealt with the one dimensional case of the “à trous”

algorithm. However, as shown in [24], the extension to two dimensions is fairly trivial,

particularly for the case of separable filters such as in the IUWT.

Figure 2.4: Six plane IUWT second-generation decomposition of synthetic data. The
images are in order of ascending scale from top left to bottom right.

An example of the IUWT decomposition appears above. The smoothest approximation

of the initial image, cj , has been omitted as it is of little interest. As is clear in the

image, the compact sources (smallest details) appear in the low scale planes, whereas

extended emission appears at the high scales. To be clear, the high scale planes in this

case are not necessarily only diffuse emission - the point sources are also smeared out.

Thus, for very bright point sources couched in diffuse emission, it is necessary to remove

the brightest compact sources before the signature of the diffuse emission becomes clear.
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2.4.3 The Algorithm

Thus armed with the knowledge of the previous sections, it is possible to outline the

MORESANE algorithm [2]. The details of its implementation will be the subject of the

following chapter, but an understanding the of the aim and operation of the algorithm

is beneficial. It is important to note that, like CLEAN, the algorithm is iterative.

The starting point of the algorithm is the IUWT (see subsection 2.4.2). The dirty

input image is decomposed up to a specified scale. This yields an array of analysis

coefficients from which the maximum analysis coefficient and its associated scale are

determined. The wavelet coefficients at scales greater than the maximum are discarded

for the iteration.

Due to the redundancy of the transform, there too many (non-zero) coefficients in the

decomposition to be useful. Thus, a thesholding procedure is used to remove the smallest

coefficients.

MORESANE makes use of the MAD (Median Absolute Deviation) [25] estimator when

determining the noise level at a given scale. This scale dependent estimation is necessary

as noise is more prominent at the lower scales. A multiplicative constant is usually

attached to the MAD estimator and the result is used as the threshold or detection

limiting value.

MORESANE currently uses a hard threshold; all coefficients below the threshold are

set to zero and those above are unaltered. The result of the thresholding procedure, the

de-noised analysis coefficients, consist of islands of analysis coefficients which lie above

the threshold value. The following procedure, termed object identification, is carried

out these values.

Object identification consists of a masking procedure, followed by a second thresholding

operation and then a pursuit of scale-connected structures. For clarity, structures are

connected, non-zero components at a given scale, and objects are connected structures,

where connectivity is determined by whether or not the structures overlap. MORESANE

identifies structures at all scales using a simple test for connected components. However,

not all structures correspond to real sources, and a second thresholding procedure is

required.

The thresholding procedure is based on the scale containing the maximum coefficient.

A user-specified tuning parameter, τ , is used to limit which structures are considered

significant for a given iteration. Thus, objects at the maximum scale which contain a

coefficient within some percentage, given by τ , of the maximum coefficient, are regarded

as significant. All the insignificant structures are zeroed out. A similar procedure
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is applied on the lower scales too, however the threshold is based on the maximum

coefficient at that scale, rather than the overall maximum.

The remaining structures then undergo a process which connects them to the structures

at lower scales. This process is simple, as structures are said to be connected if they

overlap. Thus, if a structure at scale j has non-zero coefficients above it at scale j − 1,

the structures are connected and form an object. This process connects structures from

the maximum scale up, and any structures which remain unconnected to the maximum

scale are also removed.

The result of the object identification is a binary mask which determines where the

coefficients of interest are. Multiplication of this mask with the analysis coefficients

yields a sparse version of the analysis coefficients. On each iteration only a relatively

low number of objects will be found, so there will be relatively few non-zero coefficients.

This sparse set of coefficients, which corresponds to the significant objects (the sources

in the input image) is then used to determine the true sky which corresponds to those

coefficients. This is done by means of a conjugate gradient descent procedure. While

the mathematics behind the conjugate gradient descent method will not be presented

here, it is pertinent to express its objective.

xsig = arg min
x̂

∥∥αsig −MATPx̂
∥∥2
2

s.t. x̂ ≥ 0 (2.27)

In the above equation, αsig corresponds to the identified significant analysis coefficients,

x̂ is an approximation of the sky which would give rise to those coefficients following a

convolution with the PSF, P, an IUWT decomposition, AT , and a multiplication with

the significant object mask, M. The result of minimising with respect to x̂, xsig, is the

closest approximation to the sky consisting of only the significant objects.

Only a fraction of the partial sky model, xsig, is added to the true sky model. The true

sky model may then be convolved with the PSF and subtracted from the dirty image.

The process, as mentioned at the beginning of the subsection, is iterative. Thus, on each

iteration the true sky model is updated and the result is used to further deconvolve the

dirty image.

The SNR (signal-to-noise ratio) is used to asses whether the algorithm is successfully

approximating the objects of interest. The algorithm iterates until such time as a tol-

erance or detection limit is reached, or until the algorithm can no longer identify any

significant objects.
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In practice, instead of running the algorithm once by specifying an initial number of

decomposition scales, it is run iteratively for increasing scales. Thus, MORESANE

attempts to identify sources at small scales before moving on to the diffuse emission.

The pseudo-code for the algorithms is given below. Note, however, that PyMORESANE

has substantially more options than presented here, though the basic functionality re-

mains the same. This pseudo-code, whilst nearly identical to the original presented in

[2], has been adapted in an attempt to simplify it and also to make comparison with the

operation of PyMORESANE simpler.

The symbols presented in the pseudo-code correspond to the quantities already described

in this section. Those which have been omitted are briefly described here. The indices

k and n refer to scale. Thus, the weighting vector wk, contains the weights for the

various scales. These weights serve to ensure that the maximum is identified at the

correct scale. A thresholding operation, Tx(·), thresholds (·) with respect to x. That

is, coefficients in (·) less than x are set to zero. K refers to the maximum scale of the

IUWT decomposition. r is the residual. On the first iteration, the residual and the dirty

image are equivalent. As the algorithm iterates the residual replaces the original dirty

image - it is what remains after the deconvolution step.
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Algorithm 1 MORESANE

Inputs: y,P
J ← 1
Jmax ← log2(size(y))− 1
r0 ← y
xmodel ← 0
while J < Jmax do

xJ ← Algorithm 2
if xJ = 0 then

return xmodel, rJ
end if
xmodel ← xmodel + xJ
rJ ← y −P ∗ xmodel
J ← J + 1

end while
return xmodel, rJ

Algorithm 2 Sky estimation - major loop.

Inputs: r,P, γ,Nitr

i← 0
x(i=0) ← 0
r(i=0) ← r
while αi 6= 0 and i < Nitr do

Msig,αsig ← Algorithm 3.
Calculate xsig using the Conjugate Gradient Descent algorithm - minor loop.
xi+1 ← xi + γxsig
ri+1 ← ri − γP ∗ xsig
i← i+ 1

end while
return xi

Algorithm 3 Object extraction.

Inputs: r,P,K, τ
M← 0
α← AT

Kr
α← TMAD(α)
wk ←

∥∥AT
kP
∥∥
2

αmax ← max(αk
wk

)
kmax ← kαmax

for n = kmax, kmax−1, . . . , 0 do
αmax ← max(αn)
Remove structures from αn containing no coefficients greater than ταmax
if n 6= kmax then

Remove structures from αn for which αn+1 = 0
end if
Mn ← 1 where αn > 0

end for
return M,Mα
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2.5 CPUs, GPUs, CUDA, and PyCUDA

As previously mentioned, the next generation of radio interferometers will produce

tremendous amounts of data. As a result, the rate at which the data can be pro-

cessed into a form which is suitable for extracting science is of vital importance. Thus,

any new algorithm needs to perform at least relatively quickly. This section discusses,

albeit very briefly and without excessive detail, how hardware can be used to accelerate

an algorithm. This can be considered a theoretical preview into how PyMORESANE

has been accelerated.

In general, when producing computer code, the first goal is a working CPU-based (Cen-

tral Processing Unit) implementation. A very basic, single-core CPU performs instruc-

tions, whether they are arithmetic or logical, sequentially. This is a bit of an over-

simplification, as modern CPUs are far more sophisticated than can be described here.

However, for the purpose of understanding the importance of parallelism, this simplifi-

cation has no ramifications.

Thus, when computing something like (a+b)+1, a CPU does each operation separately

and stores the intermediate results. To a user, an operation this simple will appear

instant - even though the operations are performed one after the other, the answer will

be calculated so quickly that it won’t take a perceptible amount of time. However, if

the previous expression was instead performed over and over again, there would be a

noticeable delay before the result became available. This is referred to as a compute-

bound process. The CPU utilisation will be at one hundred percent and the computation

will take time. CPU-bound processes can naively be thought of a process that would

complete faster if the CPU was faster.

The first alternative to compute-bound processes are I/O-bound processes. These pro-

cesses are limited by the speed at which the data can be accessed. Typically, this will

be a problem if large quantities of data are being read from disk. The data can only be

copied into memory at a certain speed.

The second alternative to compute-bound processes are memory-bound processes. These

processes are limited by either the quantity or speed of the memory involved. A fre-

quently given example is the multiplication of large matrices as each entry has to be

fetched from memory, operated upon and then stored in memory again. The speed at

which a CPU can access memory is finite.

The principle problem encountered in MORESANE was with compute-bound processes.

Working with large images means that there are several million pixels to deal with, even

when performing a simple addition. This problem motivated the search for alternate
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approaches to mitigating the effects of the compute-bound tasks which were slowing

down the algorithm.

The first approach when faced with a such a problem is to investigate multiprocessing -

using multiple CPU cores to perform more operations simultaneously, thus reducing the

time taken. However, while such an approach seems simple, it can also bring with it a

host of other problems (see Chapter 3).

Fortunately, there is an alternative to CPU-based multiprocessing - the GPU (Graphics

Processing Unit). Modern GPUs are becoming more and more focussed on GPGPU

programming and optimisation [26]. This turns a tool which was focussed primarily on

graphics based calculations into a general purpose computing resource. The result is a

massively parallel environment, which is conducive to computations on large problem

sizes.

There are two primary GPU manufacturers, however, the following discussion will focus

on Nvidia GPUs and their associated language - CUDA - which is an extension to C.

The most modern of Nvidia’s GPUs are very complicated pieces of hardware. However,

it is possible to explain their operation relatively simply. High-end GPUs have multiple

SMs (Streaming Multiprocessors) each of which is made up SPs (Streaming Processors).

This essentially allows them to be used as massively multi-core CPUs. There is some

important jargon below which provides insight into GPU operation and its hierarchy.

When a function, usually referred to as a kernel, is executed on a GPU, it is executed

on a grid. This grid is made up of a number of blocks, which are in turn made up of

threads [27]. This hierarchy may seem confusing at first, but it provides a solid platform

on which to build.

The lowest level of the hierarchy is the thread. Each thread can be thought of as a single

tiny program or the body of a loop; one thread operates in much the same way as a

single core CPU would. However, the latest Nvidia GPUs can handle several thousand

such threads simultaneously; threads are grouped into blocks, the size of which is based

on the GPU in question, in order to make manipulating them simpler.

Each thread block is assigned to a single SM and the threads within the block are

executed concurrently. Blocks are scheduled in warps, which consist of 32 threads.

Instructions are performed per warp, which gives rise to a very important property of

GPU optimisation - warp divergence. If threads within a thread block would follow

different execution paths, as a result of an if statement for example, in reality all the

threads follow both execution paths. While this does not alter the results - the threads
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executing in the wrong path are disabled - it can have a large impact on performance if

the divergent execution paths are long.

Blocks are logically ordered into a grid. Thus, when a given SM concludes execution on

its current thread block, the GPU allocates the next block in the grid to the now-free

SM. An SM can actually process multiple thread blocks simultaneously if they have

sufficient available resources.

The latest Nvidia Tesla GPUs have up to 15 SMs and an associated 2880 CUDA cores.

Each SM can handle 64 warps, which amounts to 2048 concurrent threads. This level

of parallel processing power can be used to produce a massive speed-up in certain ap-

plications.

Fortunately for the development of PyMORESANE, a Python wrapper for CUDA rou-

tines exists - PyCUDA [28]. This handy module removes a great deal of the technical

difficulties involved when producing code for the GPU and allows for CUDA C code to

be written directly into Python.

Kernels written in C are compiled at runtime and cached so that subsequent uses or calls

do not require additional compilation. Thus, while PyCUDA is not quite as fast as code

written in C/C++, it is convenient and still offers the substantial speed-up available on

GPUs.
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Implementation Details

The following chapter discusses the details of implementing the MORESANE algorithm

in Python and its subsequent acceleration. It is presented as a series of sections, each of

which explains the implementation of a component of the overall algorithm. The final

section details the manner in which the components fit together. PyMORESANE is

freely available from GitHub (https://github.com/ratt-ru/PyMORESANE) and should

be regarded as a digital appendix to this section. The details presented here will not be

exhaustive, but should be reviewed in conjunction with the code itself; it is thoroughly

commented.

Before embarking on an explanation of the individual components, it is first necessary to

make some comments about the overall layout of PyMORESANE. The program is broken

up into modules, each of which contains a set of specific tools. This is a particularly

useful property of Python as it allows for logical chunking of functionality. Thus, the

IUWT decomposition, recomposition and the “á trous” algorithm they require appear

in a separate module from that which handles source extraction.

3.1 Implementing the IUWT

The IUWT is one of the fundamental building blocks of the MORESANE algorithm

and, due to the iterative nature of the algorithm, it is invoked many times. Additionally,

although the computational complexity of the IUWT may be reduced by the “á trous”

algorithm, when operating on large N-by-N arrays it is still a relatively time-consuming

process. As problem sizes are restricted to being powers of two in order to ensure that

the FFT operates at maximum efficiency, doubling the array dimensions quadruples the

number of mathematical operations required to arrive at the solution.

30

https://github.com/ratt-ru/PyMORESANE
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With the above factors in mind, the first step in developing PyMORESANE was a

rudimentary CPU-based implementation of the IUWT using fairly standard Python

modules. The original MATLAB implementation provided an excellent starting point.

However, the original was implemented using explicit loops. While this approach works

and is relatively fast in MATLAB, it necessitates the evaluation of multiple if statements

in order to handle edge effects.

Edge effects arise from the convolution of the finite length IUWT filter-banks with

the signal. When the filter is applied sufficiently close to the edges of the signal, it

is necessary to apply some sort of border condition. In MORESANE, the edges are

treated by mirroring the signal data. This approach can produce unwanted effects and

does require additional computation.

Fortunately, NumPy [29], a Python module which handles array-based mathematics, is

particularly well suited to the problem. It allows for arrays to be indexed with negative

values, such that items may be accessed relative to the final element in a dimension as

opposed to the first. Additionally, it is very simple to slice arrays using this indexing.

These factors make dealing with edge effects substantially simpler, as pieces of the signal

may be treated in different ways without needing to assess whether an individual entry

falls on the edge.

To this end, the “á trous” algorithm has been re-implemented using NumPy. This

performs what amounts to a convolution of the signal and is an important piece of

the overall IUWT. The implementation requires a two-dimensional input array, a scale

and an appropriate filter. The scale, as explained in subsection 2.4.2, determines the

number of zeroes between the non-zero entries of the filter. However, it is not necessary

to explicitly dilate the filter, as doing so would massively increase the computational

cost. The beauty of the “á trous” algorithm is that since the filter has only a finite

number of non-zero entries, convolution may be performed by summation over only the

non-zero elements in the filter.

In practice, the one-dimensional IUWT filter-bank has five non-zero elements. In two-

dimensions, due to the separability of the filter, the one-dimensional filter can be applied

first along one axis, and then the other. Thus, in the absence of edge effects, the

implementation consists of selecting each entry in the input and summing the products

of the filter with the input. The resut is stored at the position of the selected entry. The

incorporation of mirroring at the edges does not massively alter the computational cost

but does introduce an additional degree of complexity.

This complexity arises from the need to slice the input into two sections for each product

- one section is unaffected by edge effects while the other takes the mirroring into account.
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The position at which the input is sliced is determined by the scale and each product

corresponds to one element of the filter. Thus, there are five products per element, four

of which need to account for edge effects. The central element of the filter can never fall

outside the input.

In order to obtain a set of detail coefficients for a given scale, the decomposition requires

two successive applications of the “á trous” algorithm. The detail coefficients are ob-

tained from the difference between the two results. To clarify, the detail coefficients are

obtained from the difference in the approximation coefficients at two successive scales.

Additionally, determination of the detail coefficients at a given scale is dependant on

the approximation coefficients (cj) of all the scales preceding it.

Therefore, an additional option has been incorporated into the IUWT: scale-adjustment.

This option omits the calculation of detail coefficients which are not of interest. To elabo-

rate, if certain scales are to be ignored during an iteration, there is no reason to calculate

more than their approximation coefficients. This means that only one application of the

“á trous” algorithm is required at those scales.

The above description corresponds to the ser iuwt decomposition and ser a trous func-

tions in the code. However, after implementing these functions, it was of interest to see

whether or not their performance could be improved. Some rudimentary tests showed

that for larger problems and higher scale decompositions (e.g. 4096-by-4096 pixel image,

8 scales), a single decomposition was taking several seconds to execute. Several hundred

decompositions are required over the course of MORESANE, and as such the IUWT

decomposition becomes a computational bottle-neck.

It was with this in mind that the second approach to the IUWT decomposition was

implemented. These functions - mp iuwt decomposition and mp a trous in the code -

were adapted to make use of the Python multiprocessing module.

Adapting code for multiple CPUs or CPU cores is not a straightforward process. How-

ever, due to the aforementioned separability of the IUWT filter-bank, when using the

“á trous” algorithm each element depends only on elements which share its row and col-

umn. Additionally, all calculations along one axis are performed prior to computations

along the second axis.

Thus, a logical approach is to break the input into strips; first along one axis and

then the other. Each CPU can then be allocated a strip on which it can perform the

necessary computations. Once all the calculations for one axis have been completed, the

intermediate result can be assembled and split up again along the second axis. There

is, however, a problem with this approach.
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The problem stems from the splitting of the input. This operation is relatively time-

consuming, but recombining both the intermediary and final results is even more so.

In order to mitigate this issue, a slightly different approach has been adopted, which

makes use of shared memory to prevent the difficulties introduced by genuinely slicing

the input.

Thus, before slicing the input and allocating it to the CPUs, it is first instantiated as a

shared memory object. This means that multiple processes can access it simultaneously

and all such processes can see its current contents. Thus, slicing no longer requires an

explicit memory copy. Instead, each CPU operates only on its allocated piece of shared

memory. This makes reassembling the output unnecessary, as the result will be correctly

stored in shared memory.

This approach has been successful. However, it has several downsides. In particular,

spawning the additional processes proves to be a relatively expensive task. Thus, the

multiprocessing approach is of limited use for small- and mid-sized problems. However,

as will be investigated in the results chapter, it may be more viable for very large

problems.

Noting both the successes and failures of implementing the IUWT decomposition and “á

trous” algorithm using CPU-based multiprocessing, a GPU-based solution was the next

obvious step. Given no prior knowledge of GPU computing, implementing the above is

by no means trivial, and the implementation has been through several evolutions. The

code - gpu iuwt decomposition and gpu a trous - differs vastly from either the serial or

multiprocessing approaches.

The first major difference is the additional work that goes into ensuring that the input

arrays are of the correct data type. GPUs and PyCUDA are far more stringent regarding

both type and size. In this respect, PyCUDA differs vastly from ordinary Python.

For the purposes of PyMORESANE, all GPU calculations were performed at 32-bit

precision. While 64-bit is preferable for accuracy, GPUs are far less efficient for 64-bit

floats than for 32-bit floats. Thus, in order to guarantee a speed-up, the all inputs were

cast as 32-bit floats.

Another major consideration when employing GPUs is the expense of memory copies.

In order to get the maximum speed-up using GPUs, data needs to be moved to the

GPU’s RAM. In fact, this is usually the most prohibitive aspect of using GPUs. If the

memory copies are too frequent or too large, more time is wasted on moving the data

than is saved by the processing power of the GPU. Many of the revisions to the GPU

implementation have been motivated by a desire to reduce the number and frequency of

memory copies.
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In order to make the IUWT as lightweight as possible, there is a degree of obfuscation in

the code. Due to the manner in which GPUs operate, the row and column convolutions

which are used by the “á trous” algorithm had to be separated. This is due to the

fact that every column convolution must be performed before every row convolution or

vice-versa. Once a GPU kernel is launched, there is no guarantee of which threads will

finish first. Thus, it is necessary to have two distinct kernels which can be executed

successively, rather than one.

In fact, the “á trous” code for the GPU implementation does not actually perform any

calculations. Instead, in order to preserve the implementation structure present in the

single-core and multiprocessing code, it contains the kernels corresponding to the row

and column convolutions. Thus, the GPU implementation performs the convolutions in

the body of the IUWT code, rather than running the “á trous” function directly.

A side effect of this approach is the need for an array in which the intermediate values can

be stored. Fortunately, such an array can be created on the GPU, which is considerably

less expensive than creating an empty array and transferring it. However, as the IUWT

requires the results of two successive convolutions, additional arrays are also necessary

to store those outputs. To this end, several arrays are created and reused to reduce the

memory requirements of the algorithm. This does, however, make the code a little less

readable.

Whilst improving the most computationally expensive portion of the IUWT for GPUs

- the “á trous” algorithm - it became apparent that the entirety of the IUWT could be

performed on the GPU. This realisation has repercussions which will be discussed in

section 3.4. In the short term, however, the realisation motivated further work on the

IUWT decomposition. The result is code which will accept either GPU arrays (PyCUDA

array which efficiently handles memory copies) or NumPy arrays from main memory and

performs the IUWT decomposition upon them.

Once the initial array is on the GPU, the result is computed entirely on the GPU,

employing an additional kernel for storing the detail coefficients.

The final GPU implementation has been found to be substantially faster than either the

single-core or multiprocessing cases, and retains all of their features, including the ability

to disregard uninteresting detail coefficients by means of a scale-adjustment parameter.

The discussion thus far has been concerned primarily with the IUWT decomposition.

The IUWT recomposition has been implemented in an analogous fashion, starting from a

serial approach and building up towards an efficient GPU implementation. The “á trous”

algorithm is also employed in the recomposition algorithm and the implementations

already described remain perfectly applicable.
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A lengthy explanation of the IUWT recomposition implementation is not informative.

It is simply the addition of the detail coefficients at each scale convolved with the ap-

propriate filter-bank. In this case, as mentioned in the theory sections, the filter bank

is the same for the decomposition and recomposition, hence the use of the “á trous”

algorithm in the reconstruction.

The single-core and multiprocessing IUWT recomposition implementations suffer from

the same bottle-necks and problems as their decomposition counterparts. However, once

again the GPU implementation proves to be efficient and, following the same evolution

as the decomposition, it ultimately occurs entirely on the GPU subsequent to the initial

memory copy. Results appear in chapter 4.

The IUWT recomposition incorporates the same scale-adjusting behaviour as its coun-

terpart, which allows the reconstruction of signals using only the detail coefficients be-

longing to the scales of interest.

One additional feature, unique to GPU-based implementations is the ability to leave

their output on the GPU and return a handle to the GPU array rather than the explicit

values which could be stored in main memory. This option, has further significance in

section 3.4.

The final version of the IUWT implementations can be found in the iuwt.py module at

https://github.com/ratt-ru/PyMORESANE/blob/master/iuwt.py.

3.2 Implementing Object Extraction

Object extraction is a multi-stage process, the aim of which is the construction of a

set of significant coefficients. The first step in pursuit of these coefficients is an IUWT

decomposition of a dirty image. The decomposition is stored as a three-dimensional

array, for which the third dimension corresponds to the scale of the decomposition. As

explained in section 2.4.3, object extraction consists of a de-noising operation, followed

by a search for significant structures and, subsequently, objects.

The de-noising operation is performed in the main body of the PyMORESANE code by

a function called threshold from the IUWT toolbox module. This module contains the

majority of the non-IUWT, non-FFT functions required by PyMORESANE.

The thresholding operation is trivial to implement. Given a three-dimensional input, the

implementation simply iterates over the number of scales, calculates the MAD estimator

for each scale and then zeros out the values below the MAD estimator multiplied by

https://github.com/ratt-ru/PyMORESANE/blob/master/iuwt.py
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a specified sigma level. This sigma level adjusts how close to the estimated noise the

algorithm will attempt to detect structures.

Little was done to alter this thresholding procedure. However, it is interesting to note

that the thresholding operation is by no means lightweight or efficient. Specifically, com-

puting the MAD estimator is expensive. Is based on a median value, and computation of

a median value amounts to a sorting procedure. On large problem sizes with high scale

counts each scale might require sorting, by means of an example, 16777216 pixels (for a

4096-by-4096 pixel image) at up to 10 or possibly more scales. A simple test shows that

even sorting a 16777216 entry list takes over a second on ordinary hardware. Multiplied

by the number of scales or an even larger problem size, this can be prohibitive.

However, whilst GPU sorting algorithms exist, they are not easily available in Python

and are not included in the basic PyCUDA functionality. As a result, the calculation

of the MAD estimator and the subsequent thresholding procedure have been left un-

accelerated.

The thresholding procedure takes place outside of the actual object extraction function

as some additional operations are performed prior to the invocation of source extraction.

The source extraction (equivalent to object extraction) procedure was recursive in the

original MATLAB implementation, as was the initial Python implementation. However,

it scaled very poorly with the number of objects in the image. Another approach has

been devised which differs in some respects but which has been shown empirically to

give identical results but at a far lower computational cost.

The basic source extraction algorithm only requires the thresholded coefficient set and

a tolerance value, τ , as explained in section 2.4.3. Inside the source extraction code, the

first step is the determination of connected pixels (structures) at each scale. For this

purpose, the ndimage module from the SciPy package [29] was exceptionally convenient.

It has inbuilt functionality for constructing label images.

A label image is constructed by determining which adjacent pixels are non-zero and then

assigning an integer index to the structures discovered in this fashion. Thus each integer

up to the number of structures identifies a single group of connected pixels.

The subsequent step is a second thresholding procedure which removes all of the coef-

ficients below some tolerance τ of the maximum coefficient at the current scale. The

remaining coefficients belong to the structures of interest.

However, the aim is the recovery of all coefficients belonging to the significant structures

rather than only those left by the second thresholding procedure. This is achieved by

finding the unique indices of the structures left after the second thresholding procedure.
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This list of unique coefficients is used, in conjunction with the original labelled array to

create a binary mask for the coefficients of interest.

The process is performed iteratively, starting from the largest scale. This is necessary

as there is an additional consideration. Ultimately, the goal is the extraction of objects

or sources which are comprised of connected structures. In order to determine the

vertical (inter-scale) connections between structures, at each iteration after the first, the

significant structures are both thresholded and multiplied by the mask for structures

at the previous (higher) scale. This removes the need for a recursive procedure as

connections are formed to lower scales only if they have significant coefficients which fall

inside the boundaries of the structures at the higher scale.

The function returns the final binary mask for significant sources as well as the the

product of the mask with the detail coefficients - the coefficients belonging to the sources.

The source extraction procedure has an erratic execution time due to its dependence

on the number of significant structures in the wavelet coefficients. For large images of

complex fields, the number of structures may be prohibitively high. Fortunately, the

problem is also readily adapted to the GPU.

The approach is virtually identical to the CPU case as the initial masking and thresh-

olding procedures are still performed by the CPU. However, there is the usual additional

setup and type-casting necessary for the GPU.

The GPU is used, following the determination of the unique labels belonging to the

significant structures, to construct the binary mask for the significant structures at each

scale. To this end, the implementation iterates over the unique labels and the GPU is

used to locate the structures corresponding to the labels. Structures thus located appear

in the binary mask.

Unfortunately, due to the computational cost incurred in transferring data to the GPU,

the GPU implementation is not substantially faster for low object counts. This is ex-

acerbated by the fact that the number of computations per data transfer is low, and

the implementation becomes memory-bound rather than compute-bound. However, it

scales much better with object count than the CPU implementation.

Additional functionality is included in order to retain a copy of the final binary mask

on the GPU. This is used to accelerate the main body of PyMORESANE.

The object extraction implementations form part of the iuwt toolbox.py module (https:

//github.com/ratt-ru/PyMORESANE/blob/master/iuwt_toolbox.py).

https://github.com/ratt-ru/PyMORESANE/blob/master/iuwt_toolbox.py
https://github.com/ratt-ru/PyMORESANE/blob/master/iuwt_toolbox.py
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3.3 Implementing the FFT and Convolution

The FFT is used frequently during the MORESANE algorithm, particularly for perform-

ing the large convolutions which are necessary to deconvolve the image. While neither

the FFT nor convolution are unique to MORESANE, they are both computationally ex-

pensive operations. Due to their impact on performance, several steps have been taken

to accelerate them.

For the basic CPU-based implementation of PyMORESANE, both the FFT and con-

volution are trivial to implement, as they are both built-in NumPy functions. These

implementations are by no means poor, however they are ill-suited to large problem

sizes. In order to mitigate this problem and accelerate the algorithm, a GPU-based

solution has been devised.

In truth, this was the first portion of PyMORESANE to be accelerated by GPU. Imple-

menting the FFT from scratch is in itself a considerable task. Fortunately, the CUDA

SciKit [30] Python package contains GPU implementations of the FFT which can be

used from Python. These FFT functions require more setup than the conventional

NumPy FFT, but do perform substantially faster.

In order to make using the GPU FFT as simple as possible, an additional module has

been written to handle all FFT functionality. The most basic functions, gpu r2c fft

and gpu c2r ifft, which correspond to the forward real-to-complex transform and the

inverse complex-to-real transform simply perform the necessary setup before invoking

the CUDA code via the SciKit interface.

A note on setup is necessary here, as it is illustrative of the behaviour of the GPU. In

order to carry out the FFT, the output array needs to be pre-allocated on the GPU.

Thus, prior to calling the FFT code, the size of the output has to be determined. As

the input is strictly real, the real-to-complex transform can be used. This is slightly

faster than the alternative complex-to-complex transform, as the Fourier transform of

a real-valued signal is hermitian. Thus, only half the resulting values and the constant

term needs to be stored. This reduces the problem size, which of course increases its

speed. The same is true of the inverse transform; given an array with only half the size

of the original image, it is necessary to preallocate a full size array to accommodate the

result of the inverse transform.

Although the FFT is of importance in its own right, its principal use for for carrying

out convolution by performing a multiplication in the Fourier domain as opposed to the

prohibitively expensive task of performing explicit convolution. In order to achieve this,

a special convolution function - fft convolve in the code - has been written.
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This convolution function incorporates both CPU and GPU functionality, allowing either

mode to be used interchangeably with the specification of some optional parameters.

This is crucial, as otherwise it would not be possible to run PyMORESANE on a variety

of platforms. Additionally, the function allows for both linear and circular convolution.

The distinction here is in how edge effects are handled.

In the case of linear convolution, which is more computationally expensive, the inputs

are padded so that the edge effects do not appear within the final result. Circular

convolution does not pad the inputs, which can lead to odd behaviour along image

borders.

Many implementations of the Fourier transform produce output with the quadrants

shifted. In order turn the shifted output into what is expected, most implementations

make use of a fftshift operation, which swaps the offending quadrants around. There is

no inbuilt method for this in the CUDA SciKit. Thus, in the initial implementation,

the NumPy fftshift method was used to correct the output. However, this operation is

relatively expensive and requires that the array be transferred back to main memory.

An additional problem had to be addressed when making use of padded arrays. When

the final answer is obtained from the FFT, only the central region is of interest. As such,

it is desirable to store only the region of interest in main memory. However, memory

copies have to be performed on contiguous data: that is, the all elements of the data

have to be adjacent in memory. Slicing an array violates this property, and thus any

array which has been sliced cannot be retrieved from the GPU.

The above motivated the development of additional GPU kernels to handle both the

fftshift operation and the second problem introduced by slicing the output.

The fft shift function in the code is relatively rudimentary. Given an input array, it

determines the length of the array axes, and consequently identifies the quadrants. The

elements of the diagonally opposite quadrants are then swapped in order to produce the

correct output.

The contiguous slice function slices the central region out of a GPU array, but also

proceeds to make it contiguous. This is achieved by creating a new array on the GPU

and copying the elements of interest directly into the new array. The new array is

allocated in a contiguous memory block, and thus copying to it element by element

preserves its contiguity. This ensures that the result can be copied from the GPU and

into main memory.
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All the functionality required for performing the tranforms and convolution appear

in the iuwt convolution.py module (https://github.com/ratt-ru/PyMORESANE/blob/

master/iuwt_convolution.py).

3.4 Implementing PyMORESANE

The following section details the implementation of the main body of PyMORESANE.

The previous sections all form part of this larger whole. Figure 3.1 provides an overview

of the operation of PyMORESANE. The assosicated code appears in pymoresane.py

(https://github.com/ratt-ru/PyMORESANE/blob/master/pymoresane.py).

3.4.1 Setup

The main body of PyMORESANE is couched in object oriented environment. This

means that a custom FitsImage class has been implemented to hold the dirty image and

the PSF, and the MORESANE algorithm is simply a method of a FitsImage object.

The object-based approach does offer some useful features. In particular, having at-

tributes (object level variables) means that once the object is instantiated, it is very

simple for its associated methods to modify those attributes. Thus, attributes can be

seen as global variables with respect to the object. This is helpful, as it provides a simple

method for storing results without having to explicitly handle return statements.

Several attributes are associated with FitsImage objects. However, most are simply

used for handling the FITS (Flexible Image Transport System) format in which the

input images are stored. To this end, the PyFITS module [31] is the go-to tool. It

allows for FITS files to be handled with ease. Thus, many of the attributes are portions

of the FITS file, such as the data or its associated descriptive header. The outputs are

also instantiated as attributes of the object to ensure that all results are stored once the

moresane method has been called.

It should be noted that moresane accepts many parameters, all of which are explained

within the help function. This help function forms part of the pymoresane parser module

which handles command line input to algorithm. Additionally, many of the parameters

are optional, and the defaults will be fine in most cases. However, all GPU functionality

is controlled by means of these parameters and is disabled by default.

Additional setup is performed inside the moresane method, including the assignment of

default values which are dependant on the non-optional input (dirty image, PSF, output

location).

https://github.com/ratt-ru/PyMORESANE/blob/master/iuwt_convolution.py
https://github.com/ratt-ru/PyMORESANE/blob/master/iuwt_convolution.py
https://github.com/ratt-ru/PyMORESANE/blob/master/pymoresane.py
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Figure 3.1: Simplified flowchart which details the operation of PyMORESANE.
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An important inclusion in PyMORESANE is a user parameter which allows specification

of a subregion of the dirty image which is to be deconvolved. PyMORESANE constructs

a Python slice object which corresponds to the region of interest, and uses it to select

the relevant area of the dirty image. Deconvolution may thus be restricted to a limited

area. This is helpful when running the algorithm on systems with limited RAM, or when

the signal of interest is known to be very localised within the image.

One piece of the additional setup is of vital importance to the acceleration of PyMORE-

SANE; the pre-computation of the Fourier transform of the PSF. This quantity does

not vary and as it is used regularly throughout the algorithm. Thus, there is no need

to recalculate it and large amount of time can be saved. However, PyMORESANE goes

one step further and exploits the GPU in its pre-computation.

Given the specification of some optional parameters, not only does the pre-computation

take into account whether or not the PSF should be padded, but also determines whether

the transform should be computed and stored on the GPU. Whilst this naturally means

a portion of the GPU’s memory is perpetually occupied by the result, it massively

accelerates the convolution step of the algorithm as no additional memory copies or

calculation are required for the PSF.

In fact, PyMORESANE improves on the original MATLAB implementation even further

by allowing the use of a PSF which is double the size of the dirty image. This completely

removes the convolution artefacts which usually accrue around the edges of deconvolved

images. These artefacts are the products of incomplete convolution.

Unfortunately, doubling the dimensions of the PSF increases the computational expense

of calculating its transform. However, it does mean that PyMORESANE may deconvolve

full dirty images, rather than restricting itself to the central quadrant.

The final piece of setup is the pre-computation of the weighting factors for each scale,

based on the IUWT decomposition of the PSF. These weighting factors are used to

ensure that the maximum detail coefficient is correctly located. Prior to weighting, it is

not possible to objectively locate the maximum.

3.4.2 The Major Loop - Part 1

The major loop of PyMORESANE consists of a while loop which iterates until such time

as a stopping criterion has been reached. There are several criteria for the major loop,

two of which are based on user-specified values; the maximum number of permissible

iterations and the accuracy of the result. The final criterion terminates the while loop

if analysis of the detail coefficients produces no structures.
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The purpose of the main loop can be broken down into steps, the first of which is the

IUWT decomposition of the dirty image, using the previously described implementation

(section 3.1). This decomposition produces the set of detail coefficients which are of

interest for the current iteration. The de-noising procedure, as mentioned in section 3.2,

is carried out immediately after the calculation of the detail coefficients.

Additional edge suppression functionality, unique to PyMORESANE, is also included

in the initial stages of the major loop. Edge suppression has been implemented in two

ways. The first allows user specification of a number of pixels to ignore at each edge.

This parameter allows users to tune how close to the edge of the dirty image they wish

the algorithm to deconvolve. As a result, even in the absence of a double PSF, edge

effects can be reduced.

The second edge suppression technique zeroes out all coefficients in the decomposition

which are subject to edge effects. Thus, low scales are barely affected, but high scales

will lose many coefficients. This is necessary as the mirroring border condition can create

fictitious diffuse emission at the image edges. This is exacerbated, in the absence of a

double-size PSF, by border artefacts from the convolution.

Both edge suppression techniques have been implemented by multiplying the de-noised

coefficients by a binary mask. The binary mask is constructed based on either the static

offset value or the calculated value for edge-corrupted coefficients. Both techniques have

been shown to reduce the number of false detections in images for which a double-size

PSF is unavailable.

Regardless of whether or not the de-noised coefficients have edge suppression applied,

the location of the maximum coefficient is determined following a weighting procedure

of the maxima at each scale. If the maximum coefficient is found at a scale lower than

the total number of scales, scales above that of the maximum coefficient are ignored for

the current iteration.

An analogous procedure has been implemented for determining the scale-adjustment

parameter as described in section 3.1. However, instead of locating and removing scales

above the maximum, the scale-adjust parameter is determined from the scales below the

maximum. A scale, and all scales below it, is ignored if it is found to have no non-zero

components after the de-noising operation.

Thus, only coefficients which lie at scales between the scale-adjustment value and the

scale of the maximum coefficient are considered in the object extraction procedure. In

fact, it is at this point in the implementation that the object extraction function from

the iuwt toolbox module is used, as described in section 3.2.
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It is at this juncture in the implementation that the minor loop occurs. However,

prior to its execution, the output from the object extraction procedure, the significant

coefficients, is recomposed into a single image using the IUWT recomposition. The

result is important in the minor loop.

3.4.3 The Minor Loop

In order to preserve the logical flow of this discussion, the minor loop must be discussed

prior to concluding the discussion of the major loop.

The minor loop corresponds to the conjugate gradient descent method, as mentioned in

section 2.4.3. This portion of the algorithm is responsible for constructing an approxi-

mation of the true sky brightness distribution by minimising the objective function in

equation 2.27.

The initial implementation was identical to that of the original MATLAB version. Thus,

starting from the recomposition of the significant objects in the dirty image, the method

attempts to solve for the sky brightness iteratively. This is implemented in accordance

with generic pseudo-code in [32]. The only major difference is the addition of a step to

ensure the positivity of the solution.

In order to achieve this, during each iteration the computed approximation has all

negative values removed, if such values exist. Then the descent direction is recomputed

such that the modified non-negative solution is consistent.

A line-by-line discussion of the conjugate gradient descent method is unnecessary, as it

is a fairly common numeric solution method. However, one of the most crucial improve-

ments of PyMORESANE actually appears in the conjugate gradient descent implemen-

tation.

Several of the previous implementation sections, particularly sections 3.1, 3.2 and 3.3,

have alluded to the fact that PyMORESANE includes functionality to retain the results

of many of the GPU-based implementations on the GPU itself, rather than returning the

results to main memory. All this functionality has been building towards this portion of

the minor loop.

The conjugate gradient descent method, and in particular the successive application of

the above operations, is the single most computationally expensive portion of PyMORE-

SANE as it is an expensive iterative procedure that is nested inside a loop. The GPU

implementations massively reduce that cost.
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Specifically, the conjugate gradient descent method requires a convolution between the

approximate solution and the PSF, an IUWT decomposition, a multiplication by the

significant objects mask and finally an IUWT recomposition. All of these functions have

GPU implementations and all of them may retain their results on the GPU.

This allows the above sequence of operations to be performed entirely on the GPU. In

the event that PyMORESANE is run in this mode, only after the IUWT recomposition

in the result returned to main memory. This massively reduces the number of memory

copies required, thus accelerating PyMORESANE even further.

As the conjugate gradient descent method is iterative, it iterates until such time as

one of multiple stopping criteria is reached. These criteria have been implemented in

accordance with the original. They are based on the SNR between sources extracted

from the dirty image and the associated sources derived from the approximation of

the sky brightness. A simple convenience function for computing the SNR has been

implemented, however it is of little interest.

Depending on the value of the SNR, the minor loop determines whether the approxima-

tion has been successful, whether it needs to continue iterating or whether it is necessary

to try again. In the event that the SNR becomes either too high too quickly or too low,

the major loop will be rerun using one fewer of the low scales. This often ensures better

behaviour, as noise and false detections tend to exist at the lower scales.

If the SNR begins decreasing, but prior to the decrease it was sufficiently high, or exceeds

an upper limit, the approximation is deemed successful and the minor loop is terminated.

3.4.4 The Major Loop - Part 2

Once the minor loop has terminated, PyMORESANE returns to the major loop, the

second half of which is responsible for updating the attributes of the FitsImage object.

To this end, the model image is updated with some percentage of the sky model approx-

imated at the current iteration. This is analogous to the loop gain of the traditional

CLEAN algorithm. The percentage which is added on each iteration is a user-specified

parameter. Once the model has been updated, it is possible to perform the actual

deconvolution step.

In order to achieve this, the model image is convolved with the PSF. The result is then

subtracted from the original dirty image to produce the residual. As PyMORESANE

iterates, the model image grows more complete and as such the residual improves.
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Some additional stopping criteria are handled towards the end of the main loop. In

particular, if the minor loop doesn’t manage to produce an accurate approximation

at any scale, PyMORESANE terminates. Additionally, although the SNR is a decent

measure of the accuracy of the model, it doesn’t necessarily mean that the residual will

improve after the deconvolution step.

Thus, the major loop also determines whether or not the standard deviation of the

residual is decreasing. In the event that deconvolving the contribution of the clean

image from the dirty image does not improve the standard deviation of the residual,

PyMORESANE reverts the last update to both the model image and the residual.

These updates are the last step in the original implementation of MORESANE, bar the

subsequent saving of the resulting residual and model images as separate FITS files.

3.4.5 Updating PyMORESANE

Whilst PyMORESANE was in development, the original algorithm was updated, thus

altering its functionality. PyMORESANE retains the original version but also includes

the changes in the second method to the FitsImage class - moresane by scale.

This approach is slightly different as instead of running the algorithm once, allowing

all scales up to some user specified value to be considered, MORESANE is applied

iteratively. Each iteration allows the inclusion of one additional high scale.

Implementing this after developing the basic functionality of PyMORESANE was rela-

tively simple. The moresane by scale method simply invokes the moresane method and

adjusts the relevant scale parameters. Only a few additional changes to the original

moresane method were required.

The first was the inclusion of a flag as an attribute of a FitsImage class. This flag allows

the moresane method to terminate the execution of moresane by scale in the event that

a single iteration of moresane does not achieve anything.

The second change is very minor but entails altering the manner in which the moresane

method updates the model and residual. This is both necessary and important as the

the result from each iteration of the moresane method must be available at subsequent

iterations. Additionally, it is vital that iterations which perform no changes do not

overwrite the existing data.



Chapter 3. Implementation Details 47

3.4.6 Additional Features

Some additional features which are not part of the algorithm itself but which are never-

theless important to PyMORESANE are detailed here.

Firstly, PyMORESANE does have a logger, thus allowing it to save its terminal output

to a log file. The log level may be set from the command line. The output contains

useful values and will show errors in the event of unexpected operation.

More important that the logger is the restore method. This method constructs and

saves the restored image by making use of the beam fit module. The module contains

functions which fit an elliptical Gaussian to the central region of the PSF. The resulting

Gaussian is convolved with the model image and added to the residual to produce the

restored image. This image is then saved in its own FITS file with the addition of the

so-called clean-beam parameters to its header.



Chapter 4

Results: Acceleration

This chapter presents the results of accelerating the various pieces of the MORESANE

algorithm. The initial sections show the improvements to the individual implementations

while the final section deals with the acceleration of PyMORESANE as whole. For the

purposes of benchmarking the performance of the algorithm, the code was executed on

a server running two Intel Xeon E5-2690 CPUs (8 physical cores per CPU, 16 threads

per CPU) at 2.90GHz, 512GB of DDR3-1333 RAM and an Nvidia Tesla K10 GPU. The

results were obtained using cProfile which is a low-overhead C extension for profiling

Python code.

A brief introduction on the use of PyMORESANE appears in Appendix A.

4.1 The IUWT

The various implementations of the IUWT decomposition have been tested on random

data of varying size. Each array was populated with radomly positioned delta functions.

For the purpose of this test, the input array dimensions were chosen to be increasing

powers of two; the case for which the implementation was designed. Additionally, all

decompositions were performed up to eight scales.

In order to obtain relatively accurate results, each implementation was run ten times

for each data size. The average of the execution time was calculated from the resulting

values. Whilst averaging over more results would have been better, it was not practical.

In particular, the single-core implementation is very slow for large problem sizes and,

in order to retain consistency, the sample size was restricted so that results could be

obtained in a reasonable amount of time.

48
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Implementation Image Dimensions (N,N) Average Execution Time (s)

Single-core (512,512) 0.1092 ± 0.0057
(1024,1024) 0.5713 ± 0.0117
(2048,2048) 2.7129 ± 0.0199
(4096,4096) 19.1231 ± 0.4860
(8192,8192) 73.3205 ± 2.0039

Multi-core (512,512) 0.3004 ± 0.0082
(4 cores) (1024,1024) 0.8171 ± 0.1320

(2048,2048) 3.1909 ± 0.5309
(4096,4096) 13.5226 ± 2.4594
(8192,8192) 41.0192 ± 3.7574

GPU (512,512) 0.0627 ± 0.1582
(1024,1024) 0.0424 ± 0.0010
(2048,2048) 0.1667 ± 0.0048
(4096,4096) 0.6702 ± 0.0170
(8192,8192) 2.5965 ± 0.0339

Table 4.1: Comparison of the average execution times with problem size for the
various IUWT decomposition implementations.
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Figure 4.1: Plot of average execution time against data dimensions for the various
IUWT decomposition implementations. The average execution times have been plotted

on a logarithmic scale to allow comparison across orders of magnitude.
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The standard deviations of the execution times have been included, although they are

relatively low in almost all cases. This in itself is an important result as there is not

a great deal of scatter associated with the implementations. One overarching point is

that the multi-processing implementations tend to have a larger scatter due to their

dependence on CPU scheduling.

Table 4.1 shows the numeric results of profiling the IUWT decomposition and figure 4.1

is a plot of the same information. Both the table and the figure provide some interesting

insight into the behaviour of the various implementations.

The first and most obvious improvement is the massive speed increase of the GPU

implementation relative to both the single- and multi-core implementations. It is, how-

ever, important to the note that there is no reference implementation - the single-core

implementation is not perfectly optimised. Regardless, the improvement in the GPU

implementation is sufficiently large - more than an order of magnitude at all but the

smallest problem size - that even perfectly optimised single-core CPU code would be

unlikely to outperform it.

The single-core implementation is relatively slow, particularly for large problem sizes.

For smaller problem sizes, the execution times scale as expected - quadrupling the prob-

lem size by doubling the data dimensions quadruples the execution time. However,

between problems of dimensions (2048, 2048) and (4096, 4096), there is a discrepancy in

the scaling and a corresponding increase in execution time. This suggests that once the

problem exceeds a certain size, additional overhead is incurred. This is likely to be the

result of fetching values from RAM.

The multi-core implementation has the most variation of the implementations. Initially,

it is slower than the single-core implementation. This is the result of the overhead ac-

crued in spawning the additional processes, which seems to be large in Python. However,

there is a point at which the overhead is outweighed by the improvement in calculation

speed. This point occurs between problems of dimensions (2048, 2048) and (4096, 4096),

after which the multi-core implementation is faster than the single-core implementation.

The scaling of the GPU implementation is somewhat strange. It is difficult to draw a

comparison for the smaller problem sizes as the execution time in dominated by overhead.

However, for problems of size (1024, 1024) and larger the GPU has near-perfect one-to-

one scaling; quadrupling the problem size quadruples the execution time. This is ideal

and matches up with expected gradient presented in figure 4.1. The wavelet transform

should scale asO(N) for a problem ofN pixels. Careful inspection of the data does reveal

that, for the largest tested problem size, the scaling of the multi-core implementation

seems to improve.
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Returning to the GPU implementation, there are a few features which are of interest.

The first is the erratic behaviour for the smallest problem size. The exact cause of this

behaviour is unclear as, even with overhead, a smaller problem size is not expected to be

slower than a larger one. It is, however, highly likely that this is a peculiarity of the GPU,

which is poorly suited to small problem sizes. As one of the aims of PyMORESANE is

adapting MORESANE to work on larger images, issues at the low-end of the problem

sizes are largely irrelevant. It is, however, interesting that the GPU implementation is

still the fastest, even for the smallest problem sizes. This may not be true for small

problems in general, but certainly is for sufficiently high scales.

The final feature of interest is the scaling of the GPU implementation. The data points

for problems of size (1024, 1024) and larger fall on a straight line; the execution time

scales precisely as expected. This is particularly impressive for the large problem sizes,

at which the GPU implementation is approximately 28 times faster than the single-core

implementation and approximately 16 times faster than the multi-core implementation.

The results for the IUWT recomposition implementations are presented in table 4.2

and figure 4.2 respectively. Many of the features of the recomposition are the same as

their decomposition counterparts, including the crossover point of the single-core and

multi-core implementations and the various comments on scaling.

Overall execution times are lower because the recomposition operation is more light-

weight and only requires one application of the “á trous” code. This also explains why

the GPU implementation is not as much faster as in the decomposition case as it gets

less done per memory copy.

Additionally, the GPU implementation does not have stable scaling for the (1024, 1024)

problem size, and the data only reflects a straight line from (2048, 2048) onwards. How-

ever, the same reasoning as for the decomposition applies - the large problem sizes are

more important.

For the largest tested problem size, the GPU is approximately 14 times faster than the

single-core case and approximately 6 times faster than the multi-core implementation.
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Implementation Image Dimensions (N,N) Average Execution Time (s)

Single-core (512,512) 0.0883 ± 0.0476
(1024,1024) 0.3048 ± 0.0284
(2048,2048) 1.3694 ± 0.0925
(4096,4096) 8.4700 ± 0.0426
(8192,8192) 32.8955 ± 0.7885

Multi-core (512,512) 0.2941 ± 0.0292
(4 cores) (1024,1024) 0.5609 ± 0.0018

(2048,2048) 1.6328 ± 0.1828
(4096,4096) 6.1068 ± 0.2200
(8192,8192) 15.4529 ± 0.8306

GPU (512,512) 0.0575 ± 0.1098
(1024,1024) 0.0657 ± 0.0218
(2048,2048) 0.1503 ± 0.0024
(4096,4096) 0.5932 ± 0.0017
(8192,8192) 2.3781 ± 0.0370

Table 4.2: Comparison of the average execution times with problem size for the
various IUWT recomposition implementations.
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Figure 4.2: Plot of average execution time against data dimensions for the various
IUWT recomposition implementations. The average execution times have been plotted

on a logarithmic scale to allow comparison across orders of magnitude.
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4.2 Object Extraction

The object extraction procedure has been tested both by varying the data dimensions

and by varying the number of objects in the data. This was achieved by populating

arrays with increasing numbers of randomly poitioned delta functions. Unfortunately,

the results presented here cannot give a complete picture of the improvement in the

object extraction code as it has been altered substantially from the original. Thus, both

implementations are a great deal faster than the original recursive approach.

The first set of results, which appear in table 4.3 and figure 4.3, were obtained by vary-

ing the number of objects in the data. In order to accomplish this in a realistic way,

delta functions were added to an empty array. The IUWT was applied to the resulting

array in order to obtain a four scale decomposition. Thus, each delta function corre-

sponds to one object, or set of connected wavelet coefficients, in the decomposition. No

restrictions were placed on the delta functions, so highly populated data may have over-

lapping structures. This is realistic as it emulates reality - sources may have overlapping

signatures.

In order to obtain a decent estimate of the execution time for the object extraction

procedure, it was run ten times per object count and the average of the individual

execution times was computed. Both the CPU (single-core) and GPU implementations

were profiled.

Both implementations are relatively fast. However, is worth noting the GPU imple-

mentation is faster for all object counts and has substantially better scalability. This is

evident in the relatively slow increase in execution time with object count.

The second set of results, which are included in table 4.4 and figure 4.4, show the

variation of execution time with data dimensions for the object extraction procedure.

These results were obtained in a similar fashion to those for the IUWT decomposition

and recomposition. However, the object count was fixed to ten to ensure that behaviour

was consistent across data dimensions.

This particular set of results requires very little explanation. The GPU implementation

is faster than the single-core implementation by approximately a factor of two. Addi-

tionally, both implementations scale closely with the problem size for data dimensions

of (1024, 1024) and above. The slight discrepancy for the (512, 512) case is a result of

the constant overhead incurred regardless of problem size, both for the CPU and GPU

code.
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Implementation Number of Objects (n) Average Execution Time (s)

CPU 5 0.7964 ± 0.1308
10 0.9593 ± 0.0036
15 1.2714 ± 0.0029
20 1.4712 ± 0.0050
25 1.7310 ± 0.0023
30 1.9673 ± 0.0019
35 2.1891 ± 0.0038
40 2.3995 ± 0.0029
45 2.6340 ± 0.0088
50 2.8934 ± 0.0026

GPU 5 0.4585 ± 0.0028
10 0.4566 ± 0.0039
15 0.4764 ± 0.0043
20 0.4842 ± 0.0051
25 0.4902 ± 0.0015
30 0.4982 ± 0.0016
35 0.5251 ± 0.0025
40 0.5349 ± 0.0029
45 0.5323 ± 0.0032
50 0.5530 ± 0.0027

Table 4.3: Comparison of the average execution times with object count for the object
extraction implementations.
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Figure 4.3: Plot of execution time against object count for the object extraction
implementations. The average execution times have been plotted on a logarithmic

scale to allow comparison across orders of magnitude.
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Implementation Image Dimensions (N,N) Average Execution Time (s)

CPU (512,512) 0.1020 ± 0.0480
(1024,1024) 0.2331 ± 0.0034
(2048,2048) 0.9725 ± 0.0018
(4096,4096) 4.4024 ± 0.0159
(8192,8192) 18.9054 ± 0.0519

GPU (512,512) 0.0526 ± 0.0293
(1024,1024) 0.1188 ± 0.0046
(2048,2048) 0.4990 ± 0.0012
(4096,4096) 2.4511 ± 0.0013
(8192,8192) 9.7733 ± 0.0106

Table 4.4: Comparison of the average execution times with data dimensions for the
object extraction implementations.
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Figure 4.4: Plot of execution time against data dimensions for the object extraction
implementations. The average execution times have been plotted on a logarithmic scale

to allow comparison across orders of magnitude.
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4.3 Convolution and the FFT

For the sake of completeness, the results of performing the FFTs and convolution on

both the CPU and the GPU are presented here. The FFT and IFFT used for the GPU

implementation form part of the CUDA Scikit, and thus are not original code. However,

setting up and executing the transforms is an important task, and one which accelerates

PyMORESANE a great deal. The results appear in table 4.5 and figure 4.5.

The table presents the data explicitly with exact timings for each problem size. The

data was obtained by timing each implementation twenty times per problem size and

taking the average of the results. The input to the convolution was the PSF for the real

observation used in chapter 6 and an array filled with a random distribution of point

sources.

Several features are of interest in the figure. The first is the fact that the CPU imple-

mentation exceeds the GPU for the smallest data dimensions tested. This, however, is

not particularly surprising, as convolution requires several memory copies on top of the

actual computation. As such, for relatively small problem sizes, the expense of moving

the data around far outweighs the gains made in the computation of the multiple FFTs

and IFFTs. However, on larger problem sizes, the GPU comes into its own and is a full

order of magnitude faster.

In terms of scaling, the behaviour of both implementations is somewhat erratic for small

problem sizes. For the GPU, this is likely for the same reasons as discussed above;

memory copies. They are less efficient for small amounts of data. The CPU is less

erratic but the cause is also less certain. However, the variation is not sufficient to

warrant concern as only the data for (1024, 1024) seems inconsistent and may be a

product of randomness in the execution. This is supported by the larger error bar.

The larger problem sizes reveal the more stable scaling properties of both implementa-

tions. For the CPU-based implementation, for problems of size (2048, 2048) and greater,

the scaling becomes one-to-one, as seen by the slope of the line from that point onwards.

The GPU implementation does not present ideal scaling for small problem sizes. How-

ever, it does appear to exhibit the desireable one-to-one property for the largest problem

sizes. This makes sense, as the operation of both implementations is the same. The GPU

implementation is expected to continue scaling in the same fashion for even larger prob-

lems and remain at a least a full order of magnitude faster than CPU-based convolution.
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Implementation Image Dimensions (N,N) Average Execution Time (s)

CPU (512,512) 0.0625 ± 0.0132
(1024,1024) 0.3444 ± 0.0164
(2048,2048) 0.8109 ± 0.1870
(4096,4096) 3.0488 ± 0.1543
(8192,8192) 12.4459 ± 0.1785

GPU (512,512) 0.2120 ± 0.0524
(1024,1024) 0.2285 ± 0.0089
(2048,2048) 0.1510 ± 0.0500
(4096,4096) 0.3232 ± 0.0396
(8192,8192) 1.0875 ± 0.1951

Table 4.5: Comparison of the average execution times with data dimensions for the
convolution implementations.
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Figure 4.5: Plot of execution time against data dimensions for the convolution im-
plementations. The average execution times have been plotted on a logarithmic scale

to allow comparison across orders of magnitude.



Chapter 4. Results: Acceleration 58

4.4 PyMORESANE

The overall acceleration of MORESANE, in the form of PyMORESANE, was the pri-

mary goal of this project. The following section presents the results pertinent to de-

termining the degree of success in this regard. The subsequent chapters will present

examples of running PyMORESANE on both real and synthetic data.

The results of this section were obtained by running PyMORESANE in both CPU mode

(no multi-processing) and GPU mode. Both approaches were applied to the same data,

and the region of interest (deconvolution region) was varied. The approaches were timed

once for each problem size. The results appear in table 4.6 and figure 4.6. The data

used for this test was the same as the real data used in chapter 6.

The table gives the numeric total execution times for each run of the two approaches.

With the exception of the smallest problem size, the GPU-accelerated implementation

is vastly superior to the CPU implementation. Even for the second smallest problems

size, the GPU is around three times faster. For the largest problem size tested, the GPU

is more than an order of magnitude faster. This is a striking example of the benefits

offered by GPU-based implementations.

Figure 4.6 serves to emphasise the degree of improvement in the GPU-accelerated im-

plementation over the basic CPU approach. It clearly shows that, while the imple-

mentations have virtually the same execution speed for data of dimensions (512, 512),

thereafter they are divergent - the GPU implementation is more than merely faster, it

also scales considerably better with problem size. Thus, the factor of ten speed up seen

in the (4096.4096) case might increase even further as the problem size is increased.

However, hardware does impose limitations. In particular, the amount of RAM on an

individual GPU places a limit on the maximum problem size. Additionally, CUDA cur-

rently does not allow allocation of arrays which are individually larger than two gigabytes

in size.

There is additional evidence of the previously mentioned improvement concealed in the

slope of the two curves. For the CPU case, each execution time is substantially more than

quadruple than that of previous problem size. Thus, the one-to-one scaling previously

seen in the individual sections seems absent here. This is unfortunate as it means that

the CPU implementation rapidly becomes prohibitively slow for large problems. This

loss of perfect scaling is due to overhead in the main body of the PyMORESANE code,

which varies greatly with problem size. In particular, for large problems, operations

such as sorting or multiplying large arrays become very expensive.
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However, the GPU implementation exhibits completely different behaviour, and the

data for each problem size reveals that the GPU implementation scales at substantially

better than one-to-one with problem size. This is remarkable, and ensures that the GPU

implementation remains feasible on far larger problems than the CPU. The overhead

costs are mitigated for the GPU implementation, as a large number of the expensive

multiplications are performed on the GPU, which almost removes their contribution.

In order to provide a clearer picture of how the improvement of the individual pieces of

the implementation contributed to the overall acceleration of PyMORESANE, the tests

were also performed using a profiler. The profiler provided a detailed breakdown of the

time spent in each function inside the implementation. For the purposes of visualising

the results, the bar graphs which appear in figure 4.7 and 4.8 were created.

Each bar graph shows the overall execution time of PyMORESANE, in addition to the

individual contributions of the IUWT decomposition and recomposition (combined),

convolution, and the remaining operations. These remaining operations include the

object extraction procedure. The times are plotted on a logarithmic axis which unfor-

tunately hides the fact that the individual timings add up to the total. However, it is

necessary to allow comparison between problems of such vastly differing sizes.

The first of the bar graphs, figure 4.7, shows the breakdown for the CPU-based imple-

mentation. The plot reveals quite clearly that the majority of the CPU-based imple-

mentation is spent in computing the the IUWT decomposition and recomposition. The

convolution contributes substantially less than that for all problem sizes. The remaining

functionality of PyMORESANE does not even contribute as much as the convolutions.

One feature of interest is the way in which the problem scales. Each group of bars is

nearly a perfectly scaled version of the others. The only exception is for the smallest

problem size, for which the IUWT decompositions and recompositions are faster. This

is simply because the problem is sufficiently tiny to avoid additional memory access

overhead.

The second bar graph, figure 4.8, corresponds to the GPU-accelerated implementation.

It has substantially more interesting features. The first and most readily apparent

feature is the massive drop in the execution time of the IUWT decompositions and

recompositions. Its execution time is roughly an order of magnitude below that of the

total, revealing how much less of an impact it has in the GPU case.

The second noticeable feature is that there is that the contributions of the individual

functions vary from problem size to problem size. In particular, the convolution op-

eration grows more and more efficient whilst the IUWT operations are slightly slower

on the larger problems. However, for the largest problems it is actually the remaining
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functionality, that which doesn’t belong to either the IUWT or the convolutions, that

takes the most time. This suggests that further optimisation may be possible.

Further investigation of the profiler output reveals that certain operations which seemed

minor when determining bottlenecks in the CPU implementation are actually quite

problematic once the GPU-acceleration has mitigated the effects of the IUWT and con-

volution. In particular, computation of the median becomes very expensive when the

data dimensions N are large as the data then contains N2 elements to sort.
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Implementation Image Dimensions (N,N) Execution Time (h:m:s)

CPU (512,512) 00:01:57
(1024,1024) 00:29:34
(2048,2048) 02:43:08
(4096,4096) 16:12:19

GPU (512,512) 00:02:08
(1024,1024) 00:10:02
(2048,2048) 00:28:05
(4096,4096) 01:17:06

Table 4.6: Comparison of the execution times with data dimensions for PyMORE-
SANE in CPU and GPU mode.
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Figure 4.6: Plot showing the execution times of PyMORESANE in CPU and GPU
mode with varying data dimensions. The average execution times have been plotted

on a logarithmic scale to allow comparison across orders of magnitude.
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Figure 4.7: Histogram showing the execution times for the component functions of
PyMORESANE in CPU mode. The average execution times have been plotted on a

logarithmic scale to allow comparison across orders of magnitude.
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Figure 4.8: Histogram showing the execution times for the component functions of
PyMORESANE in GPU mode. The average execution times have been plotted on a

logarithmic scale to allow comparison across orders of magnitude.
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Results - Synthetic Data

This chapter presents and analyses the results of running PyMORESANE on synthetic

data. A far more exhaustive comparison appears in [2], but this serves a check of Py-

MORESANE’s functionality. The following results are merely a representative example

showing that PyMORESANE produces comparable output to that obtained in [2]. That

is, for the same synthetic field, similar reconstruction quality is obtained.

The test data in question is a simulation of a field containing both a faint, diffuse

radio halo and bright, compact sources. The input model appears in figure 5.1. The

simulation was performed for the JVLA (Jansky Very Large Array) in A configuration

at a frequency of 1.4GHz. The integration time was chosen as 60 seconds with a total

observation time of 8 hours. The details of the original field simulation appear in [1].

Imaging was performed using Briggs weighting with a robustness of -2 (approximately

uniform weighting) and a cell size of 0.4 arcseconds. The resulting dirty image and its

associated PSF appear in figures 5.2 and 5.3 respectively. The size of the dirty image is

(2048,2048) pixels.

These images were used as the input to PyMORESANE. For comparison, both Cotton-

Schwab CLEAN (CS-CLEAN) and multi-scale CLEAN (MS-CLEAN) were run on the

same data. The implementations used for comparison were those of lwimager. Both

of these algorithms make use of the visibilities to avoid the errors introduced by edge

effects in image-space only deconvolution.

Objective comparison of the various algorithms is challenging as both CS-CLEAN and

MS-CLEAN do not evaluate the residual or noise in the same way as MORESANE.

However, for the simulation, the noise level was known. Thus, the limiting flux was set to

be four times the standard deviation of the noise across all the deconvolution algorithms.
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The number of iterations for CS-CLEAN and MS-CLEAN were made arbitrarily high

to ensure that the threshold was reached.

As MS-CLEAN restricts itself to modelling only the inner quadrant of the dirty image,

PyMORESANE was also confined to the same region to ensure that the problem was

of the same size and complexity. Additionally, all metrics were calculated for the same

region. This advantages PyMORESANE slightly, as it prevents any remaining edge

effects from corrupting the results.

The scales required by MS-CLEAN were chosen as [0,1,2,4,8,16,32,64,128]. There was

no particular motivation for this choice other than a sort of parallel between these scales

and those used by PyMORESANE.

The results of running the various deconvolution algorithms are presented in figures 5.4,

5.5 and 5.6. Each set of figures corresponds to one of the interesting outputs of the

deconvolution for each algorithm.

Importantly, these results are untuned; no parameters were chosen to advantage or dis-

advantage a particular algorithm. The defaults of each algorithm were made consistent

and only the limiting flux was adjusted.

The model images are immediately interesting, simply because they differ so greatly

from algorithm to algorithm. The CS-CLEAN model is as expected, with the diffuse

emission being poorly approximated by a collection of delta functions. This means the

model provides very little information about the extended emission, and convolution

with a restoring beam is necessary to get an idea of the source structure. This is not the

case for either MS-CLEAN or MORESANE, both of which recover substantially more

realistic models.

The MS-CLEAN model is a better representation of the truth and does resemble the

input sky. However, as is obvious from the figure, there is a substantial number of

artefacts. Some of these are spurious detections whilst others, in particular the negative

regions, reflect the absence of a positivity constraint in MS-CLEAN. Thus, negative

components may be added to the model.

Another, less obvious, feature is the way in which the morphology of the model is affected

by the manner in which MS-CLEAN operates. This is evident in the distinct roundness

of the features in the model. This is the result of using extended components which are

inherently round.

PyMORESANE produces a model superior to both CS-CLEAN and MS-CLEAN. There

is sufficient proof of this in the model image itself. The presence of a positivity constraint

ensures that the model is smooth. Whilst there are are a few spurious detections, they
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are minor and strictly positive. Additionally, the morphology of the source is very well

modelled. The distinct roundness evident in MS-CLEAN is absent and the feature on

the left of the figure is much closer to that of the original image.

The residual images give further information about the performance of the algorithms.

The failings of CS-CLEAN are readily apparent - a large amount of the diffuse emission

is left in the residual. This is due to the fact the CS-CLEAN is implicitly restricted to

using only a delta function basis, which is not well-adapted to the recovery of extended

emission. This well-known failing of CLEAN, and one of the driving forces behind the

search for better deconvolution techniques.

In stark contrast to CS-CLEAN, MS-CLEAN does a good job of recovering the diffuse

emission. In fact, the residual is distinctly noise-like. The only problem is the presence

of morphologically identifiable features at the level of the noise. These correspond to the

brightest compact sources in the field. This problem is likely the result of the slightly

arbitrary weighting scheme applied when identifying the scale of the maximum pixel. In

this case, the scale of the compact sources seems to have been overestimated at some

point. This is supported by the bowls formed around the structures left in the residual;

oversized components are deconvolved removing both a portion of the actual source and

the region around it.

PyMORESANE succeeds where MS-CLEAN fails and its residual appears to be com-

pletely noise-like. There is no obvious structure in the residual and only very close

inspection may reveal the location of the compact sources, but their flux is at the noise

level. This is quite an achievement, and is indicative of MORESANE’s success as a

deconvolution algorithm.

The restored images are presented here although they do not provide as clear an indi-

cation of the performance of the algorithms. CS-CLEAN clearly retains PSF structure

which is visible in the structured dark regions on the upper right and lower left of the

image. The restored maps for MS-CLEAN and PyMORESANE are basically visually

indistinguishable, due to the fact that the improvements to the model concern features

close to the noise level. As the noise is added to the restored image, many of the im-

provements are masked. Quantification of the restored images’ dynamic ranges reveals

the slightly superior performance of PyMORESANE. These numerical results appear in

table 5.1 along with the time taken for each algorithm to run and the RMS (root mean

square) of the residuals.

PyMORESANE was used in GPU mode - naturally, as was shown in chapter 4, non-

GPU operation would have been prohibitively slow. To this end, PyMORESANE has a

comparable execution time to its strongest competitor in this setting. Whilst it is a factor
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of two slower than MS-CLEAN, that is not so large are to prevent its consideration as

a mainstream deconvolution algorithm. Of course, CS-CLEAN is far faster than either

MS-CLEAN or PyMORESANE, but offers correspondingly worse results.

The dynamic range - ratio of the brightest pixel in the restored image to the standard

deviation of the residual - is indicative of how successful a deconvolution procedure is.

However, it is not a perfect metric as it can be biased. Regardless, in this instance it

does agree with the visual results.

The RMS of the residual is a measure of how much signal is left in the residual. Again,

this is not a perfect metric, and it can be misleading. What is interesting in this

instance is that all the algorithms produce a residual with the same RMS, even though

they are visually different. This emphasises the difficulty in quantifying the success of a

deconvolution algorithm.
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Algorithm Execution Time (h:m:s) Dynamic Range Residual RMS (Jy)

CS-CLEAN 00:00:27 186.41 0.000002
MS-CLEAN 00:07:25 191.64 0.000002

PyMORESANE 00:15:02 212.12 0.000002

Table 5.1: Comparison of the algorithm execution times, dynamic ranges and residual
RMS as applied on synthetic data. PyMORESANE was run using GPU functionality.
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Figure 5.1: The sky model on which the simulation was based.
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Chapter 6

Results - Real Data

The following chapter presents and analyses the results of running PyMORESANE on

real data. The data in question is an ATCA (Australia Telescope Compact Array)

observation of a field containing diffuse radio emission at frequencies between 1.96Ghz

and 2.20Ghz. The integration time was 5.27 seconds and the total observation time

was 04:36:38. The dirty image of the field and its associated PSF appear in figures 6.1

and 6.2 respectively. The size of the dirty image is (4096,4096) pixels. The data was

provided by C. Trigilio (INAF-OACT, Catania, Italy) and F. Cavallaro (UNICT/CASS,

Catania, Italy).

As in the case for synthetic data, both CS-CLEAN and MS-CLEAN were run for com-

parison with PyMORESANE. However, unlike in the synthetic data case, the noise level

in the real image was unknown and could only be estimated. This is beyond the basic

functionality of either MS-CLEAN or CS-CLEAN. In order to circumvent this problem,

PyMORESANE was run using only the default parameters. The resulting residual was

used to estimate a limiting flux for the other algorithms.

Unfortunately, whilst the above approach did yield comparable results in the case of CS-

CLEAN, a large flaw in MS-CLEAN became apparent. That is, the slightly arbitrary

way in which the various scales are weighted in MS-CLEAN causes erratic behaviour

for this particular field, where the diffuse emission is of comparable intensity to that

of the point sources. The only way to produce results in this instance was to tune the

MS-CLEAN parameters. Ultimately, this resulted in upping the limiting flux threshold

a great deal to around 0.04Jy as opposed to the 0.002Jy used for CS-CLEAN. This

massive discrepancy works in MORESANE’s favour, as it reveals a set of circumstances

in which MS-CLEAN does not work but MORESANE does.
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To clarify the above, both PyMORESANE and CS-CLEAN were run using their de-

fault parameters, bar the threshold value in the CS-CLEAN case. Only MS-CLEAN

was altered so that its results were at the very least comparable to those of the other

algorithms.

The results of the deconvolution are presented in figures 6.3, 6.5 and 6.6. Each set

of figures corresponds to one of the interesting outputs of the deconvolution for each

algorithm.

The model images follow the same trend as in the synthetic data case. Naturally,

CS-CLEAN’s model is non-physical in appearance due to the previously mentioned

restriction to a delta function basis. MS-CLEAN’s model is limited by the depth to

which it was allowed to clean, though the diffuse emission is reasonably well modelled.

It is PyMORESANE for which the results are truly impressive. Both the diffuse emission

and the bright compact source embedded in it are well modelled. Additionally, a classical

looking radio galaxy is beautifully modelled in the lower left quadrant of the image.

A zoomed version of this source appears in figure 6.4. It is worth noting that the

PyMORESANE model does not appear to be corrupted by false detections at this flux

threshold.

The residual images are far more interesting in this case due to the major visual differ-

ences between them. CS-CLEAN does remarkably well given its simplicity, although it

clearly struggles so close to the noise. This is evident in the negative values which appear

within signature of the diffuse emission. This is roughly the best that CS-CLEAN can

do, as even at this flux threshold, various artefacts began corrupting the residual.

MS-CLEAN produces a rather poor residual. Once again, this is due to the high flux

threshold. Even at this level, it is clear that the compact source couched in the dif-

fuse emission is being poorly approximated, and a negative bowl has formed around

it. Allowing the deconvolution to proceed to the same flux threshold as CS-CLEAN

yielded a map dominated by this negative hole. The majority of the field has not been

deconvolved.

PyMORESANE has a very structured residual, and the diffuse emission is still relatively

apparent. However, this emission is all at or below the limiting flux value. Allowing

the algorithm to go deeper into the noise would naturally recover more of this emission,

but incur additional false detections. Regardless, the residual is still fairly good, as it

has not been marred by the overestimation of sources. Close inspection reveals a poorly

deconvolved source in the top left of the image. This is likely due to calibration effects

- the data used was not fully calibrated. Additionally, some direction dependent effects
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are still present. However, it may be possible to improve PyMORESANE to be more

capable of handling of such problems.

Whilst the various problems faced by the algorithms have already been discussed, in the

restored images it is clear that MORESANE produces a better result. The deconvolved

emission is quite clear and, unlike CS-CLEAN, there are fewer visible discrepancies

around the diffuse emission.

The metrics and execution times of the algorithms appear in table 6.1. Here the metrics

are a little confusing, as they suggest that CS-CLEAN in outperforming PyMORESANE

in terms of accuracy, even though the results are visually better for PyMORESANE.

However, as previously discussed, these metrics are not flawless, and sometimes overesti-

mation can introduce bias. Regardless, PyMORESANE and CS-CLEAN are sufficiently

similar to claim that they both do a good job, even though PyMORESANE seems to

model the diffuse emission more accurately. Unfortunately, there is no simple metric for

morphological recovery.

In terms of execution speed, CS-CLEAN is the obvious leader. MS-CLEAN appears

to outperform PyMORESANE in this regard, but the value is misleading; the higher

flux threshold used for MS-CLEAN also means it does not require as many iterations.

Whilst attempting to produce adequate results for MS-CLEAN, a test with a threshold

of 0.002Jy took longer to complete using MS-CLEAN than it did with PyMORESANE

in GPU mode.

Algorithm Execution Time (h:m:s) Dynamic Range Residual RMS (Jy)

CS-CLEAN 00:01:48 165.43 0.000420
MS-CLEAN 00:11:50 110.95 0.000621

PyMORESANE 00:25:43 165.14 0.000449

Table 6.1: Comparison of the algorithm execution times, dynamic ranges and residual
RMS as applied on real data. PyMORESANE was run using GPU functionality.
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Figure 6.1: The dirty image derived from the observational data. Imaging was per-
formed using multi-frequency synthesis and uniform weighting.
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Figure 6.4: A zoomed image of the well-recovered radio galaxy.
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Figure 6.5: The residuals produced by CS-CLEAN, MS-CLEAN and PyMORESANE
respectively.
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Figure 6.6: The restored maps produced by CS-CLEAN, MS-CLEAN and PyMORE-
SANE respectively.



Chapter 7

Conclusion

MORESANE, as discussed in chapter 2, has been shown to be a novel, powerful de-

convolution technique. However, it is a very computationally expensive algorithm. The

newest and next-generation interferometers will produce larger, more detailed images

than ever before. This requires any new deconvolution approach to be not only accurate

and sensitive to complex morphologies but also computationally feasible.

Fortunately, with the advent of GPGPU programming, massive parallel environments

mean that it is possible to perform more complex calculations in far less time. Thus,

algorithms which can be adapted to the hardware environment are far more likely to

become successors to CLEAN and its ilk.

As with any tool, an implementation’s success is based on its use. Thus, it is important

that new algorithms do not require proprietary software and are freely available. The

original implementation of MORESANE was hampered by its use of proprietary software

which consequently motivated the development of PyMORESANE.

PyMORESANE, the implementation details of which appear in chapter 3, is a Pythonic

implementation of MORESANE. By making use of freely available Python packages

to exploit the GPU, it has been accelerated to the point that its execution time is

comparable with the current-generation multi-scale algorithm, MS-CLEAN. The results

supporting this appear in chapter 4.

Additionally, PyMORESANE has been shown in chapter 5 and 6 to be successful not

only in reproducing MORESANE’s results on synthetic data but also in working on

real observational data. This is a triumph for both MORESANE and PyMORESANE

as it verifies that the algorithm still functions in the absence of the ideal conditions

associated with synthetic data. This is important as many of MORESANE’s competitors

are untested on real data.
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A further advantage of PyMORESANE is that it functions well without having its

parameters fine tuned to the data in question. This means it can be run without user

input; allowing it to be used in automated applications such as data reduction.

The successes of PyMORESANE in recovering diffuse emission in large images will allow

for more in-depth study of related astrophysical phenomena than is currently possible

with existing techniques such as CLEAN.

Whilst it is true that there are further improvements and optimisations to be made,

PyMORESANE is already a fully functional piece of software which can be used by

radio astronomers with relatively little difficulty. Such improvements would need to

be directed equally at the mathematics of the original algorithm and at the code of

PyMORESANE in order to speed up the algorithm further.

There are many directions in which both the algorithm, and consequently PyMORE-

SANE, may develop. These directions include the use of a major loop which converts

the model image to visibilities and subtracts it from the residual visibilities in the

uv-plane, much like CS-CLEAN (https://github.com/ratt-ru/PyMORESANE/tree/

vissub - currently in development). Other possible developments include an exten-

sion to multi-frequency image cubes and deconvolution of images with spatially varying

PSFs.

In summary, PyMORESANE is a successfully implemented and accelerated version of a

next-generation deconvolution algorithm. It is freely available and can easily be added

to the arsenal of deconvolution tools used by radio astronomers. It is well suited to

the deconvolution of extended emission, but is also just as capable of recovering point

sources. This makes it ideal for observations of real, complex fields with unknown

morphology and ensures that it will find use in the hands of the astronomy community

at large.

https://github.com/ratt-ru/PyMORESANE/tree/vissub
https://github.com/ratt-ru/PyMORESANE/tree/vissub


Appendix A

PyMORESANE: Instructions

The following appendix serves as a very brief introduction to the use of PyMORESANE.

Whilst it may seem that there are many parameters, most of them are related to op-

timisation, and very few of them will need to be changed for normal usage. Note, the

PyMORESANE help command will present all these options in the terminal.

Following installation, and assuming that PyMORESANE has been aliased as runsane,

the standard input is as follows:

runsane dirty psf outputname

These are the non-optional parameters which are specified by position - order matters.

The first positional argument, dirty, should be the name and address of the dirty .fits

image in question. The second, psf, is the same as dirty but for the PSF assosciated

with the dirty image. The final positional argument, outputname, is a string on which

the names of the output will be based.

There are many optional arguments, all of which can be exposed with the runsane

--help command. The most important optional parameters are as follows, and take the

format of --argumentname ARGUMENTVALUE:

82



Appendix A. PyMORESANE: Instructions 83

Argument Long Argument Functionality

-ep --enforcepositivity Forces output model to be positive. Yields a

smoother, more realistic model at the expense

of computation time. Note, this is boolean and

does not accept a value.

-sbr --subregion Selects the central N-by-N pixels to deconvolve.

Restrict this to powers of 2 for optimal function-

ality.

-sl --sigmalevel Specifies how close to the estimated noise the

algorithm will deconvolve. This is a multiplier

with a default value of 4 - deconvolves to 4

sigma.

-lg --loopgain The gain factor analogous to that of CLEAN.

-tol --tolerance The tolerance factor for object extration. May

usually be left as the default.

The arguments explained thus far may all alter the results and are also the only paramters

which may be tuned. The remaining paramters, omitted here, but documented in the

help function, are pricipally flags for enhanced operation modes. These include enabling

and disabling GPU functionality, changing the way in which convolution is performed,

and incorporating edge suppression.

A basic test problem would be to take an image of size (1024, 1024), along with its PSF,

and run the following command:

runsane dirty.fits psf.fits test output --enforcepositivity

This command will work in most cases without any further input or tuning and concludes

these basic instructions. For more advanced functionality, refer to the help functions or

the code at (https://github.com/ratt-ru/PyMORESANE).

https://github.com/ratt-ru/PyMORESANE
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