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Abstract 

A multi-input multi-output system to implement on-line process monitoring and 

intelligent control of complex curvature friction stir welding was proposed. An extra 

rotation axis was added to the existing three translation axes to perform friction stir 

welding of complex curvature other than straight welding line. A clamping system was 

designed for locating and holding the workpieces to bear the large force involved in the 

process between the welding tool and workpieces. Process parameters (feed rate, spindle 

speed, tilt angle and plunge depth), and process conditions (parent material and 

curvature), were used as factors for the orthogonal array experiments to collect sensor 

data of force, torque and tool temperature using multiple sensors and telemetry system.  

Using statistic analysis of the experimental data, sensitive signal features were selected to 

train the feed-forward neural networks, which were used for mapping the relationships 

between process parameters, process conditions and sensor data. A fuzzy controller with 

initial input/output membership functions and fuzzy rules generated on-line from the 

trained neural network was applied to perceive process condition changes and make 

adjustment of process parameters to maintain tool/workpiece contact and energy input. 

Input/output scaling factors of the fuzzy controller were tuned on-line to improve output 

response to the amount and trend of control variable deviation from the reference value. 

Simulation results showed that the presented neuro-fuzzy control scheme has adaptability 

to process conditions such as parent material and curvature changes, and that the control 

variables were well regulated. The presented neuro-fuzzy control scheme can be also 

expected to be applied in other multi-input multi-output machining processes.  



 i 
 

Table of Contents 

Abbreviations.. .................................................................................................................. vii 

List of Figures ……………………………………………………………………….…..viii 

List of Tables… ................................................................................................................ xii 

Glossary…….. .................................................................................................................xiii 

Chapter 1   Introduction .............................................................................. 1 

1.1 Aim ........................................................................................................................... 2 

1.2 Objectives................................................................................................................. 2 

1.3 Hypodissertation ..................................................................................................... 3 

1.4 Methodological Justification .................................................................................. 3 

1.5 Delimitations............................................................................................................ 5 

1.6 Significance of Research......................................................................................... 5 

1.7 Organization of Dissertation.................................................................................. 6 

Chapter 2   Relevant Concepts of Monitoring and Intelligent Control for 

Complex Curvature FSW ........................................................ 8 

2.1 Complex Curvature FSW....................................................................................... 9 

2.1.1 Process Parameters........................................................................................... 11 

2.1.2 Process Condition ............................................................................................ 12 

2.1.3 Force, Torque and Temperature....................................................................... 14 

2.1.4 FSW Machine Tool.......................................................................................... 17 

2.2 Intelligent Control overview ................................................................................ 18 

2.2.1 Fuzzy Logic Control ........................................................................................ 19 

2.2.1.1 Fuzzifier .................................................................................................... 20 



 ii 
 

2.2.1.2 Fuzzy Rule Base and Inference Engine .................................................... 21 

2.2.1.3 Defuzzifier ................................................................................................ 23 

2.2.1.4 Adaptive Fuzzy Control ............................................................................ 24 

2.2.2 Neural network................................................................................................. 24 

2.2.3 Neuro-fuzzy Control ........................................................................................ 27 

2.3 On-line Monitoring ............................................................................................... 29 

2.3.1 Multi-sensor System ........................................................................................ 30 

2.3.2 Sensor Fusion................................................................................................... 31 

2.3.2.1 Statistical Analysis.................................................................................... 33 

2.3.2.2 Feature Selection and NN Sensor Fusion ................................................. 34 

2.3.3 Multi-sensor System for FSW Monitoring ...................................................... 35 

2.4 Intelligent Control for Complex Curvature FSW.............................................. 37 

2.4.1 Control Level ................................................................................................... 39 

2.4.2 Process Level ................................................................................................... 39 

2.5 Proposed System Framework for Advanced Monitoring and Intelligent 

Control of Complex Curvature FSW ................................................................. 43 

2.6 Summary................................................................................................................ 47 

Chapter 3 Experimental Setup: Multi-axis Control, Fixture Design, 

Sensors, Experimental Design and Software Components 49 

3.1 FSW System Hardware Description: Machine Tool, Multi-axis Control and 

Sensors................................................................................................................... 50 

3.1.1 Brief Description of the FSW Machine ........................................................... 50 

3.1.2 Multi-axis Control and the Client-Server Computer System........................... 51 

3.1.3 Sensors and the Telemetry Monitoring System............................................... 52 



 iii 
 

3.2 Experiment Design for the On-line Monitoring and Intelligent Control System 

for Complex Curvature FSW.............................................................................. 55 

3.2.1 Definition of the Complex Curvature .............................................................. 56 

3.2.2 Tool/workpiece Contact Condition.................................................................. 57 

3.2.3 Process of System Setup .................................................................................. 59 

3.3 Fixture Design for Flat Plate, Pipe and Complex Curvature Workpieces ...... 61 

3.3.1 Clamping System for Flat Plate FSW.............................................................. 61 

3.3.2 Clamping System for Pipe Welding ................................................................ 62 

3.3.3 Clamping System for Complex Curvature Workpieces................................... 64 

3.3.4 Tool Design...................................................................................................... 64 

3.4 Software Components for Complex Curvature FSW........................................ 68 

3.4.1 Brief Description of the Existing FSW Software Architecture ....................... 69 

3.4.2 On-line Monitoring and Intelligent Control Module ....................................... 70 

3.4.3 Process Modelling and Simulation .................................................................. 73 

3.4.3.1 Fuzzy Control Subsystem ......................................................................... 76 

3.4.3.2 Subsystem of Rule Create......................................................................... 79 

3.5 Summary................................................................................................................ 79 

Chapter 4 Multi-sensor Fusion Model for Tool/workpiece Contact and 

Energy Input Monitoring during Complex Curvature FSW

................................................................................................... 81 

4.1 Introduction........................................................................................................... 82 

4.2 Process of Multi-sensor Modelling ...................................................................... 85 

4.3 Experimental Data Acquisition ........................................................................... 87 

4.3.1 Material ............................................................................................................ 87 

4.3.2 FSW Condition ................................................................................................ 88 



 iv 
 

4.4 Sensor Fusion Modelling for Tool/workpiece Contact and Energy Input....... 90 

4.4.1 Statistics Analysis ............................................................................................ 91 

4.4.2 Multi-sensor Modelling ................................................................................. 100 

4.4.2.1 NN Training for Curvature Prediction.................................................... 102 

4.4.2.2 NN Training for Material Detection ....................................................... 104 

4.4.2.3 NN Training for Mapping Sensor Data/Process Parameter Relationships

................................................................................................................ 105 

4.4.2.4 NN Training for Mapping Process Parameter/Sensor Data Relationships

................................................................................................................ 108 

4.5 Summary.............................................................................................................. 110 

Chapter 5 Neural-fuzzy Control Scheme during Complex Curvature 

FSW........................................................................................ 113 

5.1 Introduction......................................................................................................... 113 

5.2 Proposed System Structure................................................................................ 115 

5.3 The Neuro-fuzzy Control Scheme ..................................................................... 116 

5.3.1 The Basic Fuzzy Controller ........................................................................... 116 

5.3.1.1 Inputs and Normalising........................................................................... 116 

5.3.1.2 Membership Functions............................................................................ 119 

5.3.2 Tuning Mechanism ........................................................................................ 120 

5.3.2.1 Performance Index and Input Scale Factor ............................................. 120 

5.3.2.2 Output Scale Factors and Coefficient ..................................................... 122 

5.3.3 Fuzzy Rule Generation .................................................................................. 125 

5.3.3.1 Trained NN ............................................................................................. 125 

5.3.3.2 Fuzzify Input........................................................................................... 127 

5.3.3.3 Fuzzify Output ........................................................................................ 129 



 v 
 

5.3.3.4 Rule Generation ...................................................................................... 130 

5.4 Simulations .......................................................................................................... 132 

5.4.1 FSW of Al 6061 Flat Plate............................................................................. 133 

5.4.2 FSW of Al 6061 Round Tube with Constant Curvature................................ 136 

5.4.3 Workpieces with Changing Material ............................................................. 139 

5.4.4 Workpieces with Changing Curvature........................................................... 141 

5.5 Discussion............................................................................................................. 145 

5.6 Summary.............................................................................................................. 148 

Chapter 6 Conclusion and Future Development ................................... 150 

References………………………….………………………………………….…….….154 

Appendix A Experimental Data of FSW ........................................................................ 170 

Appendix B Fuzzy rules, M functions and Scripts ......................................................... 173 

B.1: Linguistic Fuzzy Rules Generated for Tool/workipece Contact................. 173 

B.2: Linguistic Fuzzy Rules Generated for Tool/workipece Energy Input ........ 174 

B.3: Visualised On-line Fuzzy Rules and Primary Fuzzy Outputs for 

Tool/workipece Contact Condition.......................................................... 175 

B.4: Visualised On-line Fuzzy Rules and Primary Fuzzy Outputs for 

Tool/workipece Energy Input .................................................................. 176 

B.5: M Script for NN Training for Al 6061 Alloy Changing Curvature ............ 177 

B.6: M Function for Tuning Fuzzy Output Scale Factor .................................... 178 

B.7: M Function for Fuzzy Rule Generation ...................................................... 179 

Appendix C Mechanical Designs for Experimental Setup ............................................. 181 

Appendix D Publications ................................................................................................ 199 



 vi 
 

A Neuro-fuzzy Scheme for Process Control During Complex Curvature Friction Stir 

Welding (Approved: 12th International Federation of Automatic Control 

Symposium on Control Problems in Manufacturing) .......................................... 200 

Experimental Implementation of Complex Curvature Friction Stir Welding (Submitted: 

R & D Journal) ..................................................................................................... 206 

Monitoring and Intelligent Control for Complex Curvature Friction Stir Welding 

(Submitted: Journal of Engineering Manufacture) .............................................. 212 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



 vii 
 

Abbreviations 

ACC  Adaptive Control Constraints 

ACO  Adaptive Control Optimization 

AE  Acoustic Emission 

AI  Artificial Intelligence 

ANN  Artificial Neural Network 

ANOVA Analysis of Variance 

CC  Cutter Contact Points 

CL  Cutter Location Points 

EC   Evolutionary Computation  

ES    Expert Systems 

FL  Fuzzy Logic 

FLC  Fuzzy Logic Controller 

FI  Fuzzy Inference 

FSW  Friction Stir Welding 

GA  Genetic Algorithms  

GUI  Graphic User Interface 

GUIDE Graphical User Interface Development Environment 

MIMO  Multi-input and Multi-output 

MSE  Mean Sum of Squares 

NMMU Nelson Mandela Metropolitan University



 viii 
 

List of Figures 

Figure 2.1: Friction stir welding principle and microstructure (Nicholas and Kallee, 2000)

.......................................................................................................................... 8 

Figure 2.2: FSW of workpiece with complex curvature..................................................... 9 

Figure 2.3: Process inputs and outputs of complex curvature FSW................................. 10 

Figure 2.4: Typical welding defects of excessive side flash and void formation ............. 11 

Figure 2.5: Sensor data of different materials welded with same process parameters ..... 13 

Figure 2.6: TWI’s WhorlTM type FSW tools for welding thick workpieces (Nicholas and 

Kallee, 2000).................................................................................................. 13 

Figure 2.7: Multi-axis structure for complex curvature FSW (Satoshi, et al., 2001) ....... 17 

Figure 2.8: Structure of a typical fuzzy logic controller (Carvajal, et al., 2000).............. 19 

Figure 2.9: Triangular membership functions for fuzzy input.......................................... 20 

Figure 2.10: Fuzzified values of numerical input ............................................................. 21 

Figure 2.11: Interpreting diagram of fuzzy inference process (The MathWorks, 2004a) 22 

Figure 2.12: FL controller with input/output tuning mechanism (Liang, et al. (2002) .... 24 

Figure 2.13: Architecture of a three layer feed-forward ANN ......................................... 25 

Figure 2.14: Transfer functions and bias of feed-forward ANN (The MathWorks, 2004b)

........................................................................................................................ 25 

Figure 2.15: Flow diagram of neuro-fuzzy controller (Lau et al., 2001).......................... 28 

Figure 2.16: Procedure of fuzzy rule generation with NN approach................................ 29 

Figure 2.17: Procedure of sensor fusion with statistical analysis and NN........................ 32 

Figure 2.18: OA experiment for sensitive feature and NN structure selection................. 34 

Figure 2.19: Interaction of intelligent FSW system with its environment........................ 38 

Figure 2.20: Hierarchical levels in the proposed intelligent FSW control system ........... 38 



 ix 
 

Figure 2.21: Tool position for table-tilting machine (Hwang, 2000) ............................... 41 

Figure 2.22: Errors in linear interpolation of tool path (Yeh and Hsu, 2002) .................. 42 

Figure 2.23: Framework for monitoring and intelligent control of complex curvature 

FSW ............................................................................................................... 45 

Figure 3.1: FSW machine with additional rotation axis implemented for this project..... 50 

Figure 3.2: Telemetry monitoring system used in study................................................... 53 

Figure 3.3: Principal dimensions of the elastic element and axial positioning of the strain 

gauge elements (Blignault, 2005) .................................................................. 54 

Figure 3.4: Tool and thermocouple assembly................................................................... 55 

Figure 3.5: Workpieces of different curvature. (a) Flat (b) Circular (c) Complex curvature

........................................................................................................................ 56 

Figure 3.6: Tool/workpiece contact when moving at the corner. ..................................... 57 

Figure 3.7: Examples of faulty tool/workpiece contact. (a) Insufficient contact due to tool 

tilt (b) Insufficient contact due to insufficient plunge depth (c) Excessive 

contact due to tool tilt (d) Excessive contact due to excessive plunge .......... 59 

Figure 3.8: Clamping of flat plate workpieces.................................................................. 62 

Figure 3.9: Rotational system for pipe welding................................................................ 63 

Figure 3.10: Clamping system for circular workpieces .................................................... 63 

Figure 3.11 Workpieces with complex curvature ............................................................. 64 

Figure 3.12: Relative position between tool and curving workpiece................................ 66 

Figure 3.13: Tool designed for 3mm plates ...................................................................... 67 

Figure 3.14: Data flow in the proposed intelligent controller for complex FSW............. 69 

Figure 3.15: Proposed neural-fuzzy controller and its interface to existing FSW system 72 

Figure 3.16: Graphical user interface for on-line FSW process simulation ..................... 74 

Figure 3.17: Simulink block diagram for on-line process simulation .............................. 76 



 x 
 

Figure 3.18: Simulink block diagram and M-file for fuzzy control subsystem................ 77 

Figure 3.19: Simulink block diagram and M-file for fuzzy rule generation subsytem..... 78 

Figure 4.1: Sensor fusion model for tool/workpiece contact and energy input monitoring.

........................................................................................................................ 81 

Figure 4.2: Incorrect tool/workpiece contact due to (a) incorrect plunge depth, (b) 

incorrect tilt angle and (c) changing curvature .............................................. 85 

Figure 4.3: Process of sensor fusion modelling ................................................................ 86 

Figure 4.4: Cause-effect diagram of FSW ........................................................................ 87 

Figure 4.5: Aluminium flat plate and round tube welded at NMMU ............................... 89 

Figure 4.6: Diagrams of (a) original torque data and (b) preprocessed torque data ......... 91 

Figure 4.7: Effects of process parameters on sensor measurements of flat bar friction stir 

welds .............................................................................................................. 92 

Figure 4.8: Effects of process parameters on sensor measurements of round tube friction 

stir welds ........................................................................................................ 93 

Figure 4.9: Procedure of process monitoring with trained NNs. .................................... 101 

Figure 4.10: Training of NN for workpiece curvature prediction. (a) NN outputs vs 

targets, (b) NN performance function, and (c) NN structure ....................... 103 

Figure 4.11: Training of NN for parent material detecting. (a) NN structure, (b) NN 

outputs vs targets and (c) NN performance function ................................... 105 

Figure 4.12: Training of NN for process parameter deriving.  (a) NN architecture, (b) 

performance function ................................................................................... 106 

Figure 4.12 (cont): Training of NN for process parameter deriving.  Comparison of NN 

outputs to target values of (c) feed rate, (d) spindle speed, (e) tilt angle and (f) 

plunge depth................................................................................................. 107 

Figure 4.13: Training of NN for sensor data modelling.  (a) Performance function ...... 108 



 xi 
 

Figure 4.13 (cont): Training of NN for sensor data modelling.  (b) NN structure, and 

comparison of NN outputs to target values of (c) toruqe, (d) temperature and 

(e) Fz ............................................................................................................ 109 

Figure 5.1: Structure of the proposed neuro-fuzzy scheme for process control ............. 115 

Figure 5.2 Membership functions of fuzzy input errTemp................................................ 120 

Figure 5.3: Membership function name and value of fuzzified input: (a) error of 

temperature, (b) error of Fz, (c) error of temperature/Fz, (d) error of torque/Fz, 

and (e) error of temperature/torque.............................................................. 128 

Figure 5.4: Membership function name and value of fuzzified outputs: (a) feed 

adjustment, (b) speed adjustment, (c) tilt adjustment, and (d) plunge 

adjustment .................................................................................................... 130 

Figure 5.5: FSW workpieces of (a) Al 6061 flat plate weld, (b) Al 6061 round tube weld, 

(c) flat plate with changing material and (d) Al 6061 plate with changing 

curvature....................................................................................................... 133 

Figure 5.6: Comparison of (a) bending force and (b) torque between sample weld and 

simulation results of Al 6061 flat plate. ....................................................... 134 

Figure 5.6 (cont): Comparison of (c) temperature, and (d) Fz between sample weld and 

simulation results of Al 6061 flat plate. ....................................................... 135 

Figure 5.7: Comparison of (a) torque between sample weld and simulation results of Al 

6061 round tube ........................................................................................... 137 

Figure 5.7 (cont): Comparison of (b) temperature, and (c) Fz between sample weld and 

simulation results of Al 6061 round tube..................................................... 138 

Figure 5.8: Comparison of (a) torque, and (b) temperature between sample weld and 

simulation results of workpieces with changing materials .......................... 140 

Figure 5.9: Comparison of (a) torque, (b) temperature between sample weld and 

simulation results of workpiece with changing curvature ........................... 143 

Figure 5.9 (cont): Comparison of (c) Fz between sample weld and simulation results of 

workpiece with changing curvature ............................................................. 144



 xii 
 

List of Tables 

Table 4.1: Chemical composition limits of alloy Al 5251 and Al 6061(wt %) ................ 88 

Table 4.2: Mechanical properties of alloy Al 5251 and Al 6061...................................... 88 

Table 4.3: Process parameter factor-level table for FSW experiment .............................. 89 

Table 4.4: Variance analysis of Al 6061 and Al 5251 alloy plate welds.......................... 94 

Table 4.5: Variance analysis of Al 6061 alloy round tube welds ..................................... 95 

Table 4.6: Correlation coefficients of sensor signals to process parameters of Al 6061 flat 

plate and Al 5251 flat plate ............................................................................ 97 

Table 4.7: Correlation coefficients of expanded sensor signals to process parameters of Al 

6061 flat weld................................................................................................. 98 

Table 4.8: Correlation coefficients of expanded sensor signals to process parameters of Al 

5251 flat welds ............................................................................................... 99 

Table 4.9: Correlation coefficients of sensor signals to process parameters of Al 6061 flat 

plate and Al 6061 round tube....................................................................... 100 

Table 5.1: On-line sensor signal and reference values, instant process parameters and 

preset values................................................................................................. 126 

Table 5.2: Errors and normalized values of control variables ........................................ 127 

Table 5.3: Errors and normalized values of process parameters .................................... 129 

Table 5.4: Fuzzy rule antecedents and consequents ....................................................... 131 

Table A.1: Experimental data of Al 5251 alloy flat plate welding................................. 170 

Table A.2: Experimental data of Al 6061 alloy flat plate welding................................. 171 

Table A.3: Experimental data of Al 6061 round tube welding....................................... 172



 xiii 
 

Glossary 

A 

Adaptive Control: When the parameters of a system are slowly time-varying or 

uncertain, adaptive control is used to sense such conditions and adjust control signals to 

give reliable performance. It does not need prior information about the bounds on the 

uncertain or time-varying parameters. 

Artificial Intelligence: Artificial intelligence is defined as intelligence exhibited by an 

artificial entity. Artificial intelligence forms a vital branch of computer science, dealing 

with intelligent behavior (control, planning and scheduling), learning and adaptation in 

machines. 

B 

Back-propagation Learning: A learning rule in which weights and biases are adjusted 

by error-derivative vectors back-propagated through the network. Back-propagation is 

commonly applied to feed-forward multi-layer networks.  

C 

Centre of Area: The point in an area where the entire area could be concentrated and 

produce the same density resultant as for the area itself. 

Clamping System: The device used to hold, locate and prevent the workpiece from 

moving during the large force involved in the FSW process. 
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Correlation Coefficient: A numeric measure of the strength of linear relationship 

between two random variables. In general statistical usage, correlation refers to the 

departure of two variables from independence.  

D 

Defuzzification: The process of transforming a fuzzy output of a fuzzy inference system 

into a crisp output. 

Degree of Membership: The output of a membership function, this value is always 

limited to between 0 and 1. 

E 

Encoder: A transducer used to convert linear or rotary position to digital data. 

Expert System: System in which human expertise is held in the form of rules, which 

enable the system to diagnose situations without the human expert being present. 

F 

Feed-forward Network: A layered network in which each layer only receives inputs 

from previous layers. 

Feedback: The signal or data sent to the control system from a controlled machine or 

process to denote its response to the command signal. 

Friction Stir Welding: A process utilises frictional heating and a stirring motion to break 

down the interface between two workpieces yielding a solid, fully consolidated 

weldment. A rotating tool with a protruding pin is forced into the joint until a larger 

concentric shoulder rests on the surface. The spinning tool is advanced along the joint 
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line providing frictional heating which softens the material. The spinning pin and 

shoulder help mix and reconsolidate the material, respectively. 

Fuzzification: The process of generating membership values for a fuzzy variable using 

membership functions. 

Fuzzy Logic: Fuzzy logic is an extension of Boolean logic dealing with the concept of 

partial truth. Whereas classical logic holds that everything (statements) can be expressed 

in binary terms (0 or 1, black or white, yes or no), fuzzy logic replaces Boolean truth 

values with degrees of truth.  

Fuzzy Rule Base: A group of fuzzy ‘if-then’ rules using linguistic variables for 

representing the knowledge of a system. 

Fuzzy Set: Fuzzy sets are an extension of classical set theory. In classical set theory the 

membership of elements in relation to a set is assessed in binary terms according to a 

crisp condition (either belongs or does not belong to the set). Fuzzy set permits the 

gradual assessment of the membership of elements in relation to a set; this is described 

with the aid of membership function.  

G 

Generalization: An attribute of a network whose output for a new input vector tends to 

be close to outputs for similar input vectors in its training set. 

Genetic Algorithms: A search technique used to find approximate solutions to 

optimization and search problems. Genetic algorithms are a particular class of 

evolutionary algorithms that use techniques inspired by evolutionary biology such as 

inheritance, mutation, natural selection and recombination. 
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Graphical User Interface: A type of user interface where the user controls the operation 

of a piece of software by interacting with graphical elements on the display. 

H 

Hierarchical system: A system of ranking and organizing things, where each element of 

the system (except for the top element) is subordinate to a single other element.  

I 

Implication: The process of shaping the fuzzy set in the consequent based on the results 

of the antecedent in a Mamdani-type fuzzy inference system. 

Intelligent Control: All control techniques that use various soft computing approaches 

such as neural networks, Bayesian probability, fuzzy logic, machine learning, 

evolutionary computation and genetic algorithms can be put into the class of intelligent 

control. 

Intelligent System: A system designed with the capabilities for evolution, adaptation, 

and learning to recognize the environment, make decisions and take action.  

Interface: A shared boundary which might be a mechanical or electrical connection 

between two devices; it might be a portion of computer storage accessed by two or more 

programs; or it might be a device for communication with a human operator. 

Inverter: A term commonly used for an AC adjustable frequency drives. An inverter is 

also a term used to describe a particular section of an AC drive.  
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K 

Knowledge: Knowledge is information combined with experience, context, interpretation, 

and reflection. It is a high-value form of information that is ready to apply to decisions 

and actions. 

L 

Learning: Learning is a process of autonomous acquisition and integration of knowledge 

from experience, analytical observation, and other means, that results in a system that can 

continuously self-improve and thereby offer increased efficiency and effectiveness. 

Linear Interpolation: A computer function automatically performed in the control that 

defines the continuum of points in a straight line based on only two taught coordinate 

positions. All calculated points are automatically inserted between the taught coordinate 

positions upon playback. 

M 

Machine Intelligence: The study of how to make machines learn and reason to make 

decisions, as humans do. 

Mamdani-type inference: A type of fuzzy inference in which the fuzzy sets from the 

consequent of each rule are combined through the aggregation operator and the resulting 

fuzzy set is defuzzified to yield the output of the system. 

Membership Function: A function that specifies the degree to which a given input 

belongs to a set or is related to a concept. 
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Multi-axis Machining: Two or more axes on a single machine work independently or 

move simultaneously to allow machining of multiple sides in one setup. Multi-axis 

machining is used more often for complex contour work.  

N 

Neural Network: An artificial neural network  is an interconnected group of artificial 

neurons that uses a mathematical or computational model for information processing 

based on a connectionist approach to computation.  

Neuro-fuzzy: Neuro-fuzzy refers to hybrids of artificial neural network and fuzzy logic. 

It is used to describe configurations such as realization of a fuzzy system through 

connectionist networks, fuzzy logic based tuning of neural network training parameters, 

fuzzy logic criteria for increasing a network size, representing fuzzy inference through 

multi-layered feed-forward connectionist networks, realizing fuzzy membership through 

clustering algorithms in neural networks and deriving fuzzy rules from trained RBF 

networks. 

Non-linear System: A system whose behavior is not expressible as a sum of the 

behaviors of its descriptors.  

O 

Orientation: The consistent movement or manipulation of an object into a controlled 

position and attitude in space. 

Orthogonal Array: The efficient experimental method developed by Taguchi minimizes 

the number of tests, represents all factors equally and investigates some combinations of 
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factors and factor levels. Influence of each experimental factor on experimental results is 

investigated in an orthogonal array experiment. 

P 

Path: A series of positions in space that a object moves through. 

Path Interpolation: The process of converting tool paths obtained from a tool path 

planning system into time-dependent commands for driving the servo control system of a 

multi-axis machine. 

R 

Real-time: An operation within a larger dynamic system is called a real-time operation if 

the combined reaction and operation time of a task is shorter than the maximum delay 

that is allowed, in view of circumstances outside the operation. The task must also occur 

before the system to be controlled becomes unstable. 

Reasoning: A process of applying general rules, equations and relationships to an initial 

collection of data, facts, and so on, to deduce a result or decision. 

Recognition: The act of taking in raw data and classifying data based on either a priori 

knowledge or on statistical information extracted from the patterns. 

Regularization: It involves modifying the performance function, which is normally 

chosen to be the sum of squares of the network errors on the training set, by adding some 

fraction of the squares of the network weights. 

Robotics: The science of designing, building, and applying robots. 
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S 

Sensing: The feedback from the environment of the robot which enables the robot to 

react to its environment. Sensory inputs may come from a variety of sensor types 

including proximity switches, force sensors, tactile sensors, and machine vision systems. 

Sensitive Feature: Features extracted from sensor signals which are sensitive to variables 

selected as control targets. 

Sensor: A device such as a transducer that detects a physical phenomenon and relays 

information to a control device. 

Sensor Fusion: Sensor fusion is a method of integrating signals from multiple sources. It 

allows extracting information from several different sources to integrate them into a single 

signal or information. 

Servo-Control: An actuator which is equipped with a control system, in which the 

control computer issues motion commands to the actuators, internal measurement devices 

measure the motion and signal the results back to the computer. The process continues 

until the actuator reaches the desired position. 

Signal Processing: Signal processing is the processing, amplification and interpretation of 

signals and deals with the analysis and manipulation of signals. 

T 

Table-tilting: In a multi-axis machine, the workpiece is mounted on the table that is 

rotated about the rotational axis during machining.  
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Tool Path Planning: In multi-axis machining, both the tool position and tool orientation 

need to be determined in tool path generation. Hence the task of tool path planning is 

twofold, namely tool position path planning and tool orientation path planning.  

Translation: A movement such that all axes remain parallel to where they were (i.e. 

without rotation). 

V 

Variance: In probability theory and statistics, the variance of a random variable is a 

measure of its statistical dispersion, indicating how far from the expected value its values 

typically are. The variance of a real-valued random variable is its second central moment. 

The variance of a random variable is the square of its standard deviation. 

Void Formation: In FSW areas where improper consolidation of the plasticized material 

occurred, cavities can be left along the surface of the weld.  
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Chapter 1   Introduction 

Friction Stir Welding (FSW) has recently emerged as a solid-joining technology for 

welding of high strength aluminium alloys (Thomas, et al., 1991). Currently, industrial 

application of FSW is mostly limited to straight seam welding. When welding workpieces 

with complex curvature (circle, triangle, square, etc.), a robotic or multi-axis system for 

complex shaped weld is needed. One of the difficulties for robotic FSW is the large force 

involved in the welding process and thus the large spindle drive motor size (Hirano, et 

al., 2001).  

FSW involves large forces between the welding head and workpiece. For complex shape 

FSW, the maintenance of correct contact between the tool and workpiece and energy into 

the welding is a requirement to perform a quality weld. A multi-axis welding system must 

provide large mechanical stiffness and precision positioning needs to be developed and 

applied to complex shape joints welding. 

When welding workpieces with complex curvature, the process conditions may change 

dynamically, thus it is necessary to maintain process performance during the welding. 

The on-line process status must be transferred to the control system, and the control 

system must make decisions and act to adapt to the changing environment in real-time.  

The welding quality of FSW is determined by material properties, tool design and the 

synthesized effect of the process parameters. The proper description of welding quality, 

the selection of control variables characterizing process conditions, and the relation 

between control variables and process parameters must be established. 
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1.1 Aim 

To perform FSW joints of complex shapes with good weld quality and surface integrity, a 

multi-axis system with the ability of sensor-based monitoring and intelligent process 

control must be established.  

1.2 Objectives 

The following objectives were accordingly specified for this project: 

• To design a multi-axis mechanical system providing large force and precise 

orientation and position control on the platform of a three-axis milling machine to 

perform complex curvature FSW. 

• To develop interpolation algorithms to generate the speed, direction, and distance 

of each axis from programmed positions, error compensation, and preset process 

parameters. Encoders are needed to provide position feedback. 

• To perform experiment design and obtain experimental data by varying welding 

parameters and to evaluate weld performance (weldability, tensile strength, 

bending strength, and fatigue) by relevant measurement.  

• To identify signals characterizing tool/workpiece contact condition and welding 

quality from the multi-sensor data, and hence to select control variables for 

process monitoring. 

• To develop an intelligent welding system that is able to control the process 

parameters for maintaining the control variables within acceptable limits. 
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• To propose and implement hardware architecture and software components to 

perform multi-axis control and multi-sensor data processing.  

• To test the performance of the intelligent control system using welding process 

simulation and experiments. 

1.3 Hypodissertation 

An extra rotary axis can be added to the three-axis milling machine tool to implement 

FSW for complex curvature such as a circle, triangle, or square.  Based on the present 

control system for plate FSW, the intelligent monitoring and control for complex 

curvature may be achieved through the integration of multi-sensor data processing and 

multi-axis machine control with available sensor technology and motion control. 

Computational intelligent methods such as fuzzy logic (FL) and neural networks (NN) 

can be applied to realize the intelligence (Fukuda and Kubota, 1997).  

1.4 Methodological Justification  

In order to accomplish the research, a study will be done on the methods used for 

monitoring and intelligent control for complex curvature FSW: 

• Table-tilting Multi-axis Machining 

In a typical table-tilting type multi-axis machine, there are several translational axes and 

one rotational axis, and the part is mounted on the table that rotates about the rotational 

axis during machining. In complex curvature FSW, the workpiece is mounted on the 

rotating worktable. At each welding segment through two consecutive CC (cutter contact) 
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points, motions of welding tool and worktable vary linearly from the start to the end 

positions. The workpiece is rotated linearly from the start to the end orientations. Hence, 

the complex curvature FSW can be achieved through the simultaneous motion control of 

the translational axes and the rotational axis (Hwang, 2000). 

• Fuzzy Logic Control 

Fuzzy logic (FL) is a powerful tool for control of mathematically complex, uncertain 

systems. Performance of a FL controller is a function of the quality of its embedded 

expert knowledge rather than a highly accurate mathematical model (Akbarzadeh-T, 

2000). For complex shape FSW that is non-linear and involves multiple input and output 

parameters, FL reasoning can be applied to generate suggestion for modifying the weld 

parameters in order to maintain weld performance parameters within acceptable limits. 

The deployment of fuzzy rules can be set based on past experience and trial result of 

operations. This will realize intelligent machining and enable quality control.  

• Neural Network 

The main characteristic of neural network (NN) is to recognize patterns and to adapt 

themselves to dynamic environments by learning. NN can be applied to learn the 

relationship among input and output data sets through training process. When welding a 

workpiece with complex curvature, trained NN can be used to induce the modification of 

process parameters (feed rate, spindle speed, and plunge depth) if a new set of control 

variables (force, torque, temperature, etc.) is available. The induced information can be 

used to generate ‘if-then’ fuzzy rules for fuzzy inferencing process, which results in the 

generation of new process parameters for enhancing machine intelligence of a parameter-
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based control situation.  Thus, NN can be used to recognize process status and predict 

process parameter modification from a prior knowledge and sensory information. 

1.5 Delimitations 

This research will focus on monitoring and intelligent control of FSW for 2-dimensional 

complex curvature. An additional axis will be added to the present three-axis machine for 

plate FSW. The intelligent algorithms with which intelligent control can be carried out 

will be developed. The intelligent monitoring and control system will be limited to the 

process of FSW.  

1.6 Significance of Research 

Within the University 

• Expanding the research of FSW in NMMU based on the former research of 

Friction Stir Welding for straight line, this project will initiate the research of 

FSW for complex curvature. 

General  

• Complex curvature FSW will greatly expand the industrial application of FSW.  

• The intelligent monitoring and control system can realize on-line quality control 

and flexible automation of FSW.  
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1.7 Organization of Dissertation 

Chapter 1 introduces the objective, hypodissertation, delimitations, and significance of 

this research project. 

Chapter 2 presents the relevant theoretical concepts, corresponding components, related 

technologies, and the state-of-the-art in the field of FSW, FL, NN, monitoring, and 

intelligent machining. It also proposes a logical framework that shows and connects all 

system components for monitoring and intelligent control for complex curvature FSW. 

Chapter 3 describes the overall system setup and experimental design, including 

mechanical device design, implementation of sensor and motor control equipment, 

hardware and software architecture to perform on-line monitoring and control for 

complex curvature FSW. Process simulation is also implemented to demonstrate the on-

line intelligent control algorithms. 

Chapter 4 provides a detailed description of experimental data analyzing, weld quality 

characterising, NN building and training for on-line process monitoring, and fuzzy rule 

generation. 

Chapter 5 provides a detailed explanation of the structure of the neuro-fuzzy based 

intelligent control scheme for complex curvature FSW. Process simulations are also 

carried out to demonstrate the performance of the intelligent monitoring and control 

system, and discuss its adaptability to process condition (parent material and curvature) 

changes.  
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Chapter 6 is the conclusion, which includes a discussion on future research and 

development. 

Appendix A provides the experimental data recorded during experiments of flat plate and 

round tube FSW. 

Appendix B provides some MATLAB M functions, M scripts and figures referenced in 

the chapters of the dissertation. 

Appendix C provides design drawings of mechanical equipment, which was used for 

experiment implementation. 
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Chapter 2   Relevant Concepts of Monitoring and Intelligent 

Control for Complex Curvature FSW 

FSW is a technique developed by TWI in 1991 joining aluminium and aluminium alloys 

(Thomas, et al., 1991). In FSW, a cylindrical tool which consists of a profiled pin under a 

wider shoulder rotates about its own axis and the pin is slowly plunged into the joint of 

the sheets or plates. Material in the joint is plasticized by frictional heating between the 

tool and the workpiece. The welding head is moved along the weld joint when the 

material has been sufficiently plasticized. The plasticized material is transported around 

the rotating pin and is pressed together, forming a solid joint on cooling. To provide a 

stable welding process the presence of a backing plate and side clamping forces are 

essential. Figure 2.1 shows the principle and microstructure of FSW.  

 

Figure 2.1: Friction stir welding principle and microstructure (Nicholas and Kallee, 

2000) 
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In the microstructure of FSW plate, a well-developed nugget is visible at the centre of the 

weld, as schematically shown in Figure 2.1. Outside the nugget there is a 

thermomechanically affected zone, which has been severely plastically deformed and 

shows some areas of partial grain refinement (Threadgill, 1997). 

The process advantages result from the fact that FSW process takes place in the solid 

phase below the melting point of the materials to be joined. The benefits therefore include 

low distortion, excellent mechanical properties, environmentally friendly, etc. The main 

limitations of FSW are the moderately slow welding speed, rigid clamping device and 

backing bar needed because of the large force involved and  keyhole at the end of the 

welds. 

2.1 Complex Curvature FSW 

 

Figure 2.2: FSW of workpiece with complex curvature 

Figure 2.2 shows a typical workpiece with complex curvature for FSW. Using existing 

and readily available machine tool technology, FSW is suitable for automation and 

adaptable for robot use. A robotic or multi-axis system can be applied to complex 

curvature FSW.  A multi-axis system is preferred due to the large force involved in the 

process for which a large size spindle motor is needed (Hirano, et al., 2001; Arbegast and 

Skinner, 2002).  
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FSW involves multi-input and multi-output (MIMO). Inputs of FSW include process 

parameters (feed rate, spindle speed, plunge depth and tilt angle), and process conditions 

(tool geometry, parent material and thickness). Outputs generated from FSW process 

include downward force Fz, forward force Fx, side force Fy, spindle torque, temperature, 

tool power, etc.. During complex curvature FSW, the relative motion between tool and 

workpiece causes sufficient forces and torque for cutting, stirring and pressing the 

material to generate material flow and friction heat. Figure 2.3 shows the process 

parameters, process conditions, process outputs and the coordinate system of complex 

curvature FSW.  

 

Figure 2.3: Process inputs and outputs of complex curvature FSW 

During complex curvature FSW, many variables must be controlled in order to avoid 

welding defects such as void formation and excessive flashes, which are often combined 

with microstructural changes and even tool breakage, as shown in Figure 2.4.  In order to 

properly control the process, the influences of process parameters, process conditions and 

process outputs on weld quality and their relationships need to be investigated.    
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Figure 2.4: Typical welding defects of excessive side flash and void formation 

2.1.1 Process Parameters 

• Feed Rate    

It has been reported that the mechanical and fatigue properties of FSW decrease as feed 

rate of welding increase in a specific range (Ericsson and Sandström, 2003; James, et al., 

2003). It has been also observed that the maximum Fx and Fy in one tool revolution and 

vertical force Fz increase as feed rate increases.  

• Spindle Speed   

The rotation speed must be large enough to generate sufficient heat to soften the material 

to prevent void formation and tool fracture. For a thicker material, the rotation speed has 

to be increased to match the increased heat conduction away from the weld zone. It had 

been shown that there are few voids in the weld zone if the rotational speed and welding 

speed are optimised (Liu, et al., 1997). The rotation speed is considered as a most 

significant process parameter (North, et al., 2000). 

 

Side flash Void formation 
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• Tilt Angle 

Tool tilt angle is used to improve the forging of the back edge of the tool shoulder. In this 

way, it may be possible to eliminate sub-surface voids. It has been shown that in 

aluminium welds, a tilt angle from 0° to 2° gives a dramatic change in the microstructure 

development and material flow. A larger tilt angle gives a tighter weld, and a more 

uniform material flow (Shinoda, et al., 2001).  

• Plunge Depth  

A plunge depth of tool shoulder into parent material is necessary to obtain tool/workpiece 

contact and thus generate sufficient friction heat and vertical force for plasticizing and 

pressing the material. With other process parameters and conditions constant, deeper 

plunge results in higher forces, torque and temperature. Excessive plunge depth can cause 

lower tensile- and bend strength due to excessive side flashes.  

2.1.2 Process Condition  

• Parent material   

Different parent materials result in different welding performance due to their difference 

in chemical composition and mechanical properties. Figure 2.5 shows the torque, 

temperature, and Fz of 3mm Al 6061 and Al 5251 aluminium alloy welded with the same 

process parameters: feed rate 100 mm/min, spindle speed 500 rpm, tilt angle 1° and 

plunge depth 0.2 mm. It shows that when welded with the same process parameters and 

thickness, the sensor data of bending force, which characterizes co-effect of Fx and Fy, 

torque, temperature and Fz of Al 6061, are higher than those of Al 5251.  
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Figure 2.5: Sensor data of different materials welded with same process parameters 

• Tool Geometry  

The tool geometry influences the heat generation, plastic flow and the stirring action in 

the weld. It had been tested that with a spiral scroll on the underside of the shoulder, the 

material flow can be improved with reduced extruded surface flash. Threads are often 

machined on tool pin to force down the stirred material and assist material rotation. The 

purpose of the intense stirring action is to close voids and provide a large rubbing surface 

to generate heat rapidly (Midling, et al., 1994). Figure 2.6 shows TWI’s new generation 

of WhorlTM type FSW tools designed with specific shape to provide enhanced flow and 

adequate stirring action, and thereby reduce or eliminate the presence of voids.  

 

Figure 2.6: TWI’s WhorlTM type FSW tools for welding thick workpieces (Nicholas 

and Kallee, 2000) 
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2.1.3 Force, Torque and Temperature 

• Fz   

The downward force Fz significantly depends on the tool penetration depth (Satoshi, et 

al., 2001). It has been observed that insufficient downward force Fz generates insufficient 

heat at the tool/workpiec interface, while excessive Fz results in excessive shoulder 

penetration into the material, which causes excessive flash at the edges of the shoulder 

(Midling, et al., 1994). The influence of Fz on surface texture and fatigue performance of 

FSW was also reported in (Haagensen, et al., 1995). 

• Fy   

The side force Fy from the clamping system holds and prevents workpieces from being 

pushed apart by the force generated by the rotating tool. The force Fy increases with the 

thickness of the plates because the dimensions of the tool pin increases at the same time. 

It has been observed that insufficient Fy causes void formation below the surface on the 

advancing side of the weld (Andrews, 1999). 

• Heat input and Temperature 

The energy input during FSW is generally considered to be from the friction heat 

between the rotating tool and workpieces, and the “cold work” during plastic deformation 

of material in the vicinity of the tool (Chen and Kovacevic, 2003).  A certain fraction of 

the heat is dissipated through the backing plate and through the tool.  
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According to Song and Kovacevic (2003), the heat generated at the tool 

shoulder/workpiece interface is assumed frictional work, and can be calculated as: 

∫= S
P

r
r drrFq zshoulder ωπμ2                                                       (2.1) 

Where r is the distance from the calculated point to the axis of the rotating tool, ω is the 

rotational speed of the tool, Fz is the downward force, rp is pin radius, rs is shoulder 

radius, and μ is local friction coefficient. 

The heat generated by the tool pin, consisting of heat generated by shearing of the 

material and friction on threaded surface and vertical surface of the pin, can be express by 

the following equation (Colegrove, 2000): 
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Where rp is the radius of the tool pin, h is the thickness of the workpiece, τ is the average 

shear stress of the material, Fp is the translation force during the welding, and λ is the 

helix angle of the thread. 

Deformation together with high temperature generates re-crystallization which results in 

a complex microstructure in the weld zone. The temperature decreases as a function of 

the distance from the centre of the weld. Based on Fourlier’s equation, the temperature 

can be calculated from the generated heat between tool and parent material (Chen and 

Kovacevic, 2003): 

qgradTkdiv
dt
dTc +⋅= )(ρ         )(Ω                                          (2.7) 

Where q is the heat generated by friction between the tool and the top of the workpiece 

and by the plastic deformation work of the central weld zone, T is the temperature, k is 

the conductivity, ρ is the material density, and c is the heat capacity. 

• Tool Torque 

Tool torque is mainly dependent on tool rotation speed and tool/workpiece contact area, 

which is governed more by the size of the tool’s shoulder. Its value is almost constant at a 

particular rotation speed with specific tool size. Khandkar, et al. (2003) presented that the 

input torque measured during FSW of aluminium plates is correlated with the heat input 

at interfaces, and the total torque including interfaces at tool shoulder, pin bottom, and 

vertical pin surface was given as: 
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Where r is the radial distance from the tool centre, rp is the pin radius, rs is the shoulder 

radius, h  is the pin length, and τ is the assumed uniform shear stress. 

2.1.4 FSW Machine Tool  

For complex curvature FSW, the changing curvature of the joint requires the multi-axis 

mechatronic system to provide large force, precise orientation and position control. The 

workpiece should be firmly held, located and supported by the fixture to prevent it from 

collapsing or undergoing undesired changes in shape, as shown in Figure 2.7. 

 

Figure 2.7: Multi-axis structure for complex curvature FSW (Satoshi, et al., 2001) 

Complex curvature FSW is a non-linear process involving multi-input and multi-output 

(MIMO). Due to the changing process condition of workpiece curvature, process outputs 

of forces, torque and temperature may change more frequently in complex curvature 

FSW than in straight line welding. Except for workpiece curvature, other process 

conditions such as parent material, tool geometry and thickness also play an important 
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role in weld quality. To perform reconfigurable manufacturing of non-linear process such 

as complex curvature FSW, it is necessary for the system to recognize process condition 

changes and make decision to effectively control process outputs towards desired 

reference values for maintaining constant weld quality. 

2.2 Intelligent Control overview 

Intelligence of a control system is the integration of knowledge and feedback into a 

sensory-interactive goal-directed control system that can make plans, and generate 

effective, purposeful action directed toward achieving the goal (Antsaklis, 1993). 

Intelligent control systems require capabilities for evolution, adaptation, and learning. 

Artificial intelligence (AI) is to describe and build an intelligent agent, which has the 

ability to sense the environment, to make decisions and to take action (Fukuda and 

Kubota, 1997; Brezocnika et al., 2003).  

AI techniques such as genetic algorithms (GA), evolutionary computation (EC), expert 

systems (ES), FL and NN have been widely applied to control systems, especially in 

milling and turning (Haber et al., 2002; Liu et al., 1999; Liu and Wang, 1999; Lin and 

Lee, 1999). They provide the controller with the following features (Stephanopoulos and 

Han, 1996): 

• Using logic, sequencing, and reasoning in addition to numerical algorithms; 

• Dealing with non-linear process autonomy; and 

• Emulating paradigms assumed to be in action of human/biological systems in 

representational forms and decision-making procedures.  
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2.2.1 Fuzzy Logic Control 

Its tolerance for imprecision, uncertainty and partial truth, and its ability to model non-

linear functions of arbitrary complexity, make FL control an ideal tool for machining 

process control (Liang, et al, 2003). FL is aimed at treating problems affected by 

imprecision due to lack of sharp criteria for deciding set membership, rather than to the 

presence of random variables and stochastic processes. In fuzzy process control, expertise 

is encapsulated into a system in terms of linguistic descriptions of knowledge, and 

knowledge about the process states and input-output relationships (D'Errico, 2001). 

 

Figure 2.8: Structure of a typical fuzzy logic controller (Carvajal, et al., 2000) 

Figure 2.8 shows a typical FL controller and its interface to machining process. A FL 

controller mainly consists of four components: a fuzzy rule base built on general 

observations and knowledge of the problem, a fuzzifier transforming a numerical input 

signal into some fuzzy values, a defuzzifier transforming final fuzzy value into an output 

signal, and a fuzzy inference engine performing decision-making (Carvajal, et al., 2000).   
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2.2.1.1 Fuzzifier 

The fuzzifier is used to take numerical inputs and determine the degree to which they 

belong to each of the appropriate fuzzy sets via membership functions (MFs). A MF is a 

curve that defines how each point in the input discourse is mapped to a degree of 

membership between 0 and 1 (The MathWorks, 2004a). Figure 2.9 illustrates the 

linguistic terms “small”, “middle” and “large” of an input with typical triangular MFs. 

 

Figure 2.9: Triangular membership functions for fuzzy input 

The mathematical computation for fuzzy term “small” is given as follows. The similar 

computation applies to the other two linguistic terms “middle” and “large”. 

                                    

Where μsmall is the membership value for the fuzzy term “small”; xmin, x1, x2 parameters 

determine the MF shape, and x is the numerical value of input. 
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Using equation (2.9), the fuzzifier computes to what degree the input belongs to the three 

linguistic terms. The fuzzified values for the numerical input x are thus computed as μ1, 

μ2 and 0 for “small”, “middle” and “large” respectively, as shown in Figure 2.10.  

 

Figure 2.10: Fuzzified values of numerical input 

For a FL controller with m inputs, the fuzzified results of the ith input with n MFs can 

also be expressed with following fuzzy set: 

{ })(),...,(),( 2211 nAinAiAii xxxA μμμ=                                       (2.10) 

Where Ai is the fuzzy set for fuzzified ith input, and μAin the value illustrating to what 

degree the ith input belongs to the nth linguistic term.  

2.2.1.2 Fuzzy Rule Base and Inference Engine 

Mamdani’s fuzzy inference method is the most commonly used fuzzy methodology. 

Mamdani-type inference expects the output membership functions to be fuzzy sets. A 

fuzzy base consists of multiple fuzzy rules based on knowledge of the control problem. 

For a typical MIMO FL system, the linguistic expression of a fuzzy rule is given: 

                   

If  input1 is A1 AND input2 is A2 … AND inputm is Am, 

Then  output1 is B1 AND output2 is B2 … AND outputn is Bn 
(2.11)

μ2

μ1
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Where Ai (i=1 to m) and Bj (j=1 to n) are linguistic values defined by fuzzy sets on the 

discourse of inputs and outputs, respectively. 

Fuzzy inference (FI) is the process of formulating the mapping, which provides a basis 

for decision-making or pattern-discerning, from a given input to an output using FL. The 

FI process performs applying fuzzy operator and implication methods, and aggregating 

all outputs. The entire FI process mapping inputs to output, including fuzzification, fuzzy 

operator, implication, aggregation and defuzzification, is illustrated in Figure 2.11: 

 

Figure 2.11: Interpreting diagram of fuzzy inference process (The MathWorks, 

2004a) 

Once the degree to which each part of the ‘if-then’ antecedent has been satisfied for each 

rule, and the antecedent of a given rule has more than one part, the fuzzy operator is 

applied to obtain one number that represents the result of the antecedent for that rule. In 

this study, the AND and OR operations for ‘if-then’ antecedents are given as: 

],...,min[)( 21 AmAAA AND μμμμ =                                                (2.12) 

1. If and then
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],...,max[)( 21 AmAAA OR μμμμ =                                                 (2.13) 

Where μA is the value representing the result of the antecedent for the rule, μAi (i = 1 to m) 

value of the MF for the ith part of antecedent. 

The input for the implication process is a single number given by the antecedent, and the 

output is a fuzzy set representing consequent of each ‘if-then’ rule. In this study, the 

implication is performed by truncating the output fuzzy set: 

[ ]BnBBB μμμμ ,...,min 21=                                              (2.14) 

Input of aggregation process is the list of truncated output functions returned by the 

implication process for each rule. Output of the aggregation process is one fuzzy set for 

each output variable. In this study, the aggregation method is given: 

],...,max[ )(,)1(,)1(, qRuleBRuleBRuleBOUT μμμμ =                                     (2.15) 

Where μAB,Rule(j) (j = 1 to q) is the jth complication result for output variable, μOUT 

aggregation result of the output variable. 

2.2.1.3 Defuzzifier 

The defuzzifier resolves a single output value from the aggregate output fuzzy set. The 

centre of area defuzzification method is used in this study. The final crisp value for an 

output is given as follows: 
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Where VOUT is the final output value, x the output discourse, and μOUT(x) the MF value at 

point x. 

2.2.1.4 Adaptive Fuzzy Control 

To adjust control action with respect to the process environment changing, adaptation 

techniques, including MF tuning, fuzzy rule tuning and input/output tuning, have been 

applied in adaptive fuzzy control. Liang, et al. (2002) proposed an input/output scale 

factor tuning mechanism for fuzzy power control in end milling, as shown in Figure 2.12. 

The tuning mechanism is based on the idea that process parameters of feed rate and 

spindle speed are adaptively adjusted in response to both the amount and the trend of 

deviation from the control target. The results show that the system was adaptive to 

workpiece and tool changes, and cutting power was well regulated.  

 

Figure 2.12: FL controller with input/output tuning mechanism (Liang, et al. (2002) 

2.2.2 Neural network 

Artificial Neural Networks (ANNs) are generally composed of numerous processing 

elements, termed nodes, which weight input signals and sum them together with a bias 
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through a non-linear transfer function, arranged in layers to form a network (Lennox, et 

al., 2001; Lisboa, 1992). Feed-forward ANN architecture consists of an input layer, one 

or more hidden layer(s) and an output layer. Figure 2.13 shows a feed-forward ANN with 

three layers connected by input weight matrix IW and layer weight matrix LW.  

 

Figure 2.13: Architecture of a three layer feed-forward ANN 

Figure 2.14 shows the classical transfer functions and bias for above ANN:   

 

Figure 2.14: Transfer functions and bias of feed-forward ANN (The MathWorks, 

2004b) 

The final relationship between inputs and outputs can be expressed as: 

)2))1((( bbPIWtansigLWpurelineO ++××=                              (2.17) 

Where the transfer functions in the above equation are given as: 
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                12)( 2 −= − ne
ntansig         and      nnpurelin =)(                            (2.18) 

Back-propagation is a learning method to train networks by iteratively adjusting the 

weights and biases of the network to minimize network performance function. 

Levenberg-Marquardt algorithm is a back-propagation training method designed for fast 

training. One iteration of this algorithm can be written as (The MathWorks, 2004b; 

Funahashi, 1989): 

[ ] eJIJJWW TTkk 11 −+ +−= μ                                             (2.19) 

Where Wk is a vector of current weights and biases, J is the Jacobian matrix that contains 

first derivatives of the network errors with respect to the weights and biases, e is a vector 

of network errors, I is unit matrix, and μ is constant. 

In order to prevent overfitting during NN training, Automated Regularization is often 

used to improve NN’s generalization ability to new situations. This method modifies the 

performance function and automatically sets optimal regularization parameters to achieve 

the best generalization. The typical performance function used for training feed-forward 

NNs is the mean sum of squares of the network errors (MSE) (The MathWorks, 2004b). 
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Where Ti is the ith element of target output, Oi is the ith element of NN output, and N is 

the size of NN output. 
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The performance function is modified by adding a term consisting of MSE of the network 

weights and biases. The modified performance function will cause the network to have 

smaller weights and biases, and thus force the network response to be smoother and less 

likely to overfit. The modified performance function is given as (The MathWorks, 2004b): 

∑
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Where W is a matrix of connection weights and biases, and γ is the performance ratio 

which is automatically estimated using statistical techniques with the distributions of the 

random NN weights and biases (MacKay, 1992). 

Owing to its ability to learn and generalize from examples and experience, ANN has been 

applied to perform many different tasks, such as filtering, identification, process 

modelling, monitoring and control. Applications of NN in manufacturing areas in milling, 

turning, metal cutting, injection modelling, arc welding and spray painting were cited (Li, 

et al., 2003; Hoo, et al., 2002; Rafiq, et al., 2001; Zhang and Huang, 1995).  

2.2.3 Neuro-fuzzy Control 

The capabilities of NN and FL can be synergized through the formation of an integrated 

neuro-fuzzy model, which is useful in MIMO control situations with complex 

interactions among the input and output variables. In a neuro-fuzzy control system, FL 

inference is employed to deal with the complex control issues, while NN is used to 

generate ‘if-then’ fuzzy rules by learning input/output relationship through training and 

thus eliminate the knowledge acquisition bottleneck of FL (Ma, et al., 2001). Lau et al. 
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(2001) presented a neuro-fuzzy model consisting of a NN for acquiring the knowledge 

between input/output, and a FL reasoning mechanism for generating a more reliable 

suggestion to modify the induced output values from the trained NN. Figure 2.15 shows 

the flow diagram of the neuro-fuzzy model. 

 

Figure 2.15: Flow diagram of neuro-fuzzy controller (Lau et al., 2001) 

Much research has been done on different neuro-fuzzy hybrid systems and fuzzy rule 

extraction (Sun and Deng, 1996; Jin and Sendhoff, 2003; Kasabov, 1996; Suh and Kim, 

1994; Suh and Kim, 2000; Kim and Yuh, 2002). Figure 2.16 shows the procedure of on-

line fuzzy rule generation proposed by Lau et al. (2001). The rule generation is based on 

the idea that there should be no changes of control variables Tref if process parameters Pref 

remain unchanged. Thus if any changes of control variables occurred, the new values T of 

control variables are mapped into the input nodes of the trained NN. The outputs P from 

the trained NN suggest the deviations of process parameters that cause the changes of 

control variables.        
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Figure 2.16: Procedure of fuzzy rule generation with NN approach 

2.3 On-line Monitoring  

The ultimate objective of monitoring systems for machining operations is to enhance the 

quality of manufactured products via detection of process state. The problem with 

machining processes is that they are complex, and create a unique design problem in 

every case. The main obstacles facing the designers of monitoring systems for machining 

operations are (Al-Habaibeh, et al., 2002): 
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processing methods which give an improved performance); 
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• Reduction in cost of machine and process monitoring systems without affecting 

the system’s performance; and 

• Automation of the design process. 

Using on-line sensors in automatic process control is attractive mainly in that the 

manufacturing process can be monitored continually without interruption.   Process 

monitoring has been widely researched for the theoretical development and industrial 

deployment of intelligent systems. Integration methods of AI tools (expert system, FL, 

NN, etc.) with statistical methods (hypodissertation testing, principal component analysis, 

etc.) have been utilised in process monitoring and analysis. A formal induction from 

measured sensor data to process conditions consists of the following three tasks 

(Stephanopoulos and Han, 1996):  

• Extraction of pivotal, temporal features of process trends from sensory data; 

• Learning of the relationship between the features and process parameters; and 

• Adaptation of the relationship utilizing future operating data. 

2.3.1 Multi-sensor System 

An important capability of a multi-sensor system is the selection of a few reliable 

characteristic features from the large amount of signal data, which could be used for 

learning and decision making to implement a suitable monitoring and control 

methodology (Chung and Geddam, 2003). The application of multi-sensor systems for 

the monitoring of machining processes is becoming more common-place to improve 
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machining precision, productivity, automation and reliability (Dornfeld, et al., 1993; 

Noori-Khajavi and Komanduri, 1993).  

The objectives of process monitoring are usually related to the performance of the 

machine tool, progression of tool wear, dimensional tolerances, surface roughness and 

other features of the workpiece. Measuring force, torque, power, temperature, and 

acoustic emission (AE) signals has been commonly used for the monitoring of turning, 

drilling and milling operations. Different types of sensors such as dynamometers, AE 

transducers, accelerometers and thermocouples have been commonly applied to sense a 

particular characteristic or a combination of characteristics such as tool wear, tool 

fracture, machine vibration, etc. (Chung and Geddam, 2003; Kang, et al., 2001). 

2.3.2 Sensor Fusion 

Sensor fusion is a method of integrating signals from multiple sources. Sensor fusion 

algorithms can be classified into three different groups (Sasiadek, 2002): 

• Fusion based on probabilistic model methods such as Bayesian reasoning, 

evidence theory, robust statistics and recursive operators; 

• Fusion based on least-squares techniques such as Kalman filtering, optimal theory, 

regularization and uncertainty ellipsoids;  and 

• Intelligent fusion methods such as FL and NN.  
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Research has been done in such areas as introducing NN and FL to intelligent monitoring 

of tool condition from signals of spindle power, spindle torque, and spindle current 

during processing (Tseng and Chou, 2002).  

Azouzi and Guillot (1997) presented a systematic sensor selection and fusion method for 

surface finish and dimensional deviation prediction in turning. Shown in Figure 2.17 is 

the proposed procedure of sensor fusion. Statistical methods including orthogonal arrays 

(OAs), correlation and analysis of variance (ANOVA) were used to select the sensitive 

features to state variables, and   NN was used to build a sensor model which represents 

the relationship between state variables and selected sensitive features.  

 

 

Figure 2.17: Procedure of sensor fusion with statistical analysis and NN 
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2.3.2.1 Statistical Analysis 

Using an efficient testing strategy such as OA, process conditions and process parameters 

were designed for different levels of experiment action. Sensor data and state variables 

were recorded and measured for statistical analysis in order to select sensitive features. 

The percentage contribution, which reflects the portion of the total variation observed in 

the experiment attributed to a factor. A factor (process parameter, process condition, or 

sensor data) with higher percentage contribution to a state variable indicates that this 

factor is more sensitive to that state variable. The calculation of percentage contribution 

of a factor is given as (Ross, 1995): 
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Where: 

vF degree of freedom 
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KF number of levels for the factor 

nFi number of observations under level i of the factor 

T sum of all observations 

N total number of observations 

Fi sum of observations under ith level of factor 

Using additional repetition tests, factors with relative high percentage contribution and 

repeatability were used as candidates for further selection and expected to be used in 

sensor fusion.  

2.3.2.2 Feature Selection and NN Sensor Fusion 

Features selected from above statistical analyses were used together with different NN 

structures as further OA experimental factors for final feature selecting and sensor fusion. 

Each feature has two levels: level “0” indicates the feature is not used in the NN model; 

while level “1” indicates its presentation in NN model.  The factors and levels for the OA 

experiment are shown in Figure 2.18 (Azouzi and Guillot, 1997). 

 

Figure 2.18: OA experiment for sensitive feature and NN structure selection 
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Correlation analysis is used to study the statistical relationship between the outputs of a 

model and experimental data. The correlation coefficient of the modeled values of a state 

variable to its measured values is given as follows (Azouzi and Guillot, 1997): 
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Where: 

Y model  value of state variable Y from the NN model 

Ymean  measured value of state variable Y  

Y measure average value of state variable Y 

With the correlation coefficients calculated, the features and NN architecture in the 

trained NN model, which provides the best correlation with measured values, are selected 

as final sensitive features and NN architecture for process monitoring. 

2.3.3 Multi-sensor System for FSW Monitoring 

A variety of intelligent monitoring systems based on multi-sensor have been presented 

for manufacturing processes of milling, turning, grinding, forging, etc. (Van Niekerk, 

2001; Lezanski, 2001; Axinte and Gindy, 2003; Tseng and Chou, 2002; Kong and 

Nahavandi, 2002). Sensory systems, data mining, integrated media, AI (NN, FL, neuro-

fuzzy, etc.), real-time control and signal processing were integrated to establish 

intelligent monitoring systems which perform data acquisition,  feature extraction, pattern 
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recognition, multi-sensor integration and decision making (Kuo, 2000; HOU, et al., 2003; 

Al-Habaibeh, et al., 2002; Chang and Jiang, 2002; Lee, et al., 2003). 

Currently, the research of monitoring and control of FSW is mainly focused on straight 

welds. Effects of process parameters such as feed rate, spindle speed and tool size on 

fatigue life, tensile strength, weld crack and residual stress of FSW welds have been 

investigated (James, et al., 2003; Reynolds, et al., 2003; Nakata, et al., 2001; Ericsson 

and Sandström, 2003). It was also presented that the weld properties were dominated by 

the thermal input rather than the mechanical deformation by the tool, and the relationship 

between tensile strength and weld crack, and traverse speed and tool size is mentioned 

(Peel, et al., 2003). Khandkar et al. (2003) introduced an input torque based model of 

temperature distribution and thermal history prediction. Chen et al. (2003) presented a 

monitoring system using wavelet transform analysis of acoustic emission for Al 6061 

aluminium FSW.  

FSW involves in complex material flow and temperature distribution, together with a 

large force involved. Multiple process parameters and control variables need to be 

monitored during the process. Accurate mathematical or FEM models of FSW are 

difficult to acquire to describe the relationship among the multiple variables.  

For complex curvature FSW monitoring, the signals acquired from multiple sensors 

contain many of the informative features related to the welding state. Sensor data of force, 

torque, temperature, position, temperature, etc., should be collected and processed in real-

time. To integrate the information received from multi-sensor into meaningful signal or 

information that can be used in control systems, sensor fusion must investigate the non-
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linear relationship between measurable variables (forces, torque, temperature, etc.) and 

process parameters (spindle speed, feed rate, tilt angle, plunge depth, etc.). ANN, together 

with statistical analysis can be employed to perform sensor fusion.  

2.4 Intelligent Control for Complex Curvature FSW 

Like other friction welding techniques, FSW has the advantage that many of the welding 

parameters, e.g. tool design, feed rate, spindle speed, tilt angle and plunge depth, can be 

controlled in a precise manner (Peel, et al., 2003). However, except the large force and 

complex material flow involved, the changing curvature introduces more uncertainty 

during complex curvature FSW. It is difficult to establish an accurate kinematic and 

dynamic model. Conventional control methods, including computed torque technique and 

non-linear feedback control, resort to non-linear compensation to eliminate the 

interactions. These methods are based on having full knowledge of the dynamic model. In 

the practice of complex curvature FSW, process conditions of the welding vary from a 

task to another, and hence, may not be precisely known in advance (Chan, 2003; Haber et 

al., 2003). 

The complexity and non-linearity of processes like complex curvature FSW make 

intelligent systems technology a feasible option to classical control strategies. Intelligent 

methods such as NN and FL can be applied to control the non-linear and dynamically 

changing process. To be intelligent, the FSW system requires the ability of learning and 

planning. During complex curvature FSW, deviation of process status may occur due to 

the changes of process condition and process parameters. The intelligent control system 

must be able to perceive the changes, make decisions and act to adapt to the changing 
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process environment. During the perception→decision→action process, the intelligent 

system also learns from the sensing and command experience to updates the knowledge 

base inside (Fukuda and Kubota, 1997). Figure 2.19 shows the interaction of the 

proposed intelligent FSW system with its environment. 

 

Figure 2.19: Interaction of intelligent FSW system with its environment  

 

Figure 2.20: Hierarchical levels in the proposed intelligent FSW control system 
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levels: a control level which performs learning and decision making, and a process level 

which implements the control commands from the upper level (Fukuda and Kubota, 1997; 

Koren, 1997). 

2.4.1 Control Level 

Weld quality of FSW is determined by the combination of process condition and process 

parameters. To maintain weld quality in changing process conditions, the intelligent 

neuro-fuzzy controller at control level can be used to adapt to process condition changes. 

Sensitive features characterizing process conditions are selected from process outputs (e.g. 

temperature, torque, forces, etc.) and process parameters (e.g. feed rate, spindle speed, tilt 

angle, plunge depth, etc.). ANN can be used to learn the non-linear relationship between 

process condition and the selected sensitive features owing to its ability of approximating 

a random complex mathematical model. 

FL control is feasible for the MIMO process of complex curvature FSW owing to its 

tolerance for imprecision, uncertainty and non-linearity. Tuning mechanism is used to 

tune the outputs from the FL controller to adapt to the dynamic machining conditions. 

Also, NN can be used to learn from previous knowledge to generate fuzzy rules for the 

FL controller (Liang, et al., 2003). 

2.4.2 Process Level 

In complex curvature FSW, the precise contact between the tool and workpiece is needed 

to maintain the energy into the workpiece, thus the system needs to provide large force 

and accurate orientation and position control. The fundamental issues of multi-axis 
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surface machining include tool path planning, optimization of machining process 

parameters, path interpolation and servo control (Xua, et al., 2003a). 

• Tool Path Planning  

In multi-axis machining, due to the additional rotation axes, both the cutter contact points 

(CC points) and cutter location points (CL points) need to be determined in tool path 

generation. Hence the task of tool path planning is twofold, namely tool position path 

planning and tool orientation path planning. Much contribution (Dragomatz and Mann, 

1997; Choi and Jerard, 1998) has been made on tool position path planning. The methods 

of iso-planar curve (Bobrow, 1985), iso-parametric curve (Elber and Cohen, 1994), iso-

scallop curve (Lin and Koren, 1996) and iso-phote curve (Han and Yang, 1999) are 

examples of such methods. Meanwhile there is an increasing focus (Lee, 1998; Lo, 1999; 

Rao, et al., 1997; Warkentin, 2000) on tool positioning strategies able to produce tool 

orientation paths, where an orientation path is constructed based on a planned position 

path.  

Figure 2.21 shows the tool position in one cutting step for a table-tilting four-axis 

machine. During each cutting step, the cutting tool and the machined part are translated 

along three translational axes (from C1 to C2) and the part is rotated about the rotational 

axis (from β+φ1 to β+φ2). The corresponding position for arc centre Op2 and the tool 

corner centre A2 (with tool corner radius ρ) are given as (Hwang, 2000):  

                                

xm 
Rocos(β + φ2) 
Rosin(β + φ2) 

Op2 =   and   A2 = Op2 + (Rc+ ρ)
xm 

cos(π/2 + α2) 
sin(π/2 + α2) 

(2.26)
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Figure 2.21: Tool position for table-tilting machine (Hwang, 2000) 

• Path Interpolation 
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multi-axis machine (Xua, et al., 2003a). CNC interpolation is to convert the prescribed 
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motors of a CNC machine (Xua, et al., 2003b). 

Linear interpolation is widely used for path interpolation in CNC systems. Once the 

machining tool paths are generated, line approximation schemes are used to discretize the 

tool paths into line segments for the generation of NC codes, as shown in Figure 2.22. 
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Biarcs were used to approximate complex tool paths in which line and arc segments were 

special cases of biarcs (Tseng and Chen, 2000).  

 

Figure 2.22: Errors in linear interpolation of tool path (Yeh and Hsu, 2002) 
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important approach to tool path planning and has been well investigated (Choi and Jerard, 

1998). Tool paths can be generated by intersecting a part surface in a parametric form 

with a family of drive planes. A new method, called the bi-parameter curve method was 

also proposed (Xua, et al., 2003b). With the proposed bi-parameter curve method, the 

tool path is obtained by intersecting a parametric surface with an implicitly defined drive 

surface. 

• Servo Control 

To realize a specified tool path, a multi-axes machine uses independent motors to drive 

several translational and/or rotational axes in a coordinated manner. In multi-axis 

machining, the cutting tool not only translates along a curve with respect to a workpiece, 

but also rotates about a specific axis. Consequently, there exists two kinds of feedrates, 

namely linear feedrate (mm/min) and angular feedrate (rev/min) (Sarma and Rao, 2000; 

Xu, 2003). An angular feedrate defines the speed of rotational movement of the cutting 

tool while a linear feedrate defines the speed of its translation movement with respect to 

the workpiece. In fact, the angular feedrate also affects the dynamics of the machine tool 

and the quality of the machined product just as the linear feedrate (Xua, et al., 2003b).   

2.5 Proposed System Framework for Advanced Monitoring and 

Intelligent Control of Complex Curvature FSW  

Figure 2.23 shows a proposed system framework for the implementation of a sensor-

based monitoring and intelligent control for complex curvature FSW. The overall system 
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implementation include multi-axis system setup, experimental work, NN training and FL 

controller configuration.  

• Multi-axis System 

To maintain correct tool/workpiece contact, an additional rotation axis, including 

electrical motor, motor driver and gearbox, is integrated into the existing three translation 

axes to provide a large force and precise orientation and position control. The clamping 

system is designed for workpiece locating and holding. Sensors for measuring tool force, 

torque and temperature, and encoders for axis position and speed are utilised to provide 

feedback information. The process information is fed into the intelligent controller 

through the DAQ card. Based on feedback information, the intelligent controller senses 

the environment, makes decisions and control actions to maintain certain variables within 

a limited range from the set point in order to maintain correct tool/workpiece contact and 

energy input.  

• Experimental Work 

Experiments are set up to acquire the data for NN training. The experiment factors 

include feed rate, spindle speed, plunge depth, tilt angle, parent material and curvature. 

Sensor data of torque, temperature, Fx, Fy and Fz are recorded in the welding process. 

From the experiments, the optimized process parameters related to the best weld quality 

and the corresponding reference value of sensor data, which are chosen as control 

variables, can be derived. The most sensitive sensor signals, which characterize 

tool/workpiece contact condition, can also be deduced using statistical analysis and 

selected as the control variables for tool/workiece contact condition monitoring.  
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Figure 2.23: Framework for monitoring and intelligent control of complex 
curvature FSW 
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• Trained Neural Networks 

Two kinds of MIMO NNs are trained for process condition detecting and process 

parameter deriving, respectively. Inputs to the NN for process condition detecting (or 

process parameter deriving) are selected sensor features and process parameters (or 

process conditions). Outputs from the NN are process conditions (or process parameters). 

The trained NNs have the ability to learn the relationship among sensor data, process 

parameters and process conditions. The training data and checking data for training are 

chosen that they can cover the ranges of process parameters in FSW process. 

With on-line sensor data and current process parameters, the NN for process condition 

detecting is used to perceive process conditions such as material and curvature changes. 

With sensitive sensor features and detected process conditions, the NN for process 

parameter deriving recalls the relationship acquired during data training for 'inducing' the 

process parameters. When the new set of sensor data are fed into the NN, the outputs 

from the trained NN suggest the deviations of the process parameters that subsequently 

cause the inconsistency of the sensor data. This suggestion can be used to derive on-line 

fuzzy rules for further fuzzy control. The detailed description of NN training and on-line 

fuzzy rule generation can be seen in Chapters 4 and 5, respectively. 

• Fuzzy Controller 

The initial FL controller is built by presetting MFs for each input and output without 

fuzzy rules, which are generated on-line with the trained NNs. Inputs of the FL controller 

are errors between real sensor data and reference values. Outputs of the FLC are primary 

adjustments of process parameters.  
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Input and output scaling factors are adaptively tuned to suggest more reasonable 

adjustments of process parameters. Output scaling factors of the FLC are also set and on-

line tuned in response to the changes in the welding process. With the tuning mechanism, 

the process parameters are adjusted not only on the amount of deviation of control 

variables from the target value, but also on the trend of the deviation. If the current 

condition is worse than before, namely, the trend is away from the reference level, more 

adjustment should be made. If the condition is better than before and the changing rate of 

deviation is high, then less adjustment of process parameter is preferred.   

2.6 Summary  

Backgrounds of FSW and complex curvature FSW, including process parameters, 

process conditions and process outputs and their influence on weld quality, were 

described in this chapter. A multi-axis system is preferred to a robotic system for 

complex curvature FSW due to the large force involved in the process.  A table-tilting 

multi-axis system was selected to provide large force, and precise orientation and position 

control. 

The MIMO process of FSW involves complex material flow and temperature distribution, 

which are determined by tool/workpiece contact conditions, material properties, and the 

interaction of process parameters. Thus it is difficult to establish accurate mathematical 

model for conventional model-based control methods. It is feasible to control the non-

linear FSW process using an intelligent system owing to its ability to sense the 

environment; learn from the process; and make decisions based on the significant 

information from the process. The state-of-the-art AI methods such as NN, FL, neuro-
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fuzzy and their application in on-line monitoring and intelligent control have been 

reviewed in this chapter.  

A framework of multi-sensor based monitoring and intelligent control for complex 

curvature FSW is proposed. The detailed description of the proposed neuro-fuzzy 

monitoring and control scheme can be seen in Chapter 4 and Chapter 5. 
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Chapter 3 Experimental Setup: Multi-axis Control, Fixture 

Design, Sensors, Experimental Design and 

Software Components  

The FSW system for workpieces with complex curvature was based on the existing FSW 

system for flat plate welding. To perform on-line monitoring and intelligent control, the 

system provides the ability to acquire measured sensory information and make on-line 

decisions and act quickly to maintain the desired process status and product quality.  

To set up the system for complex curvature FSW described in the proposed framework in 

Section 2.6, system hardware components such as machine tool, sensors, fixtures and 

software components need to be seamlessly integrated to implement complex curvature 

FSW. This was implemented by adding new hardware such as the rotation axis and 

clamping system, additional software components for on-line monitoring and intelligent 

control to the existing FSW machine.  

Experiments were designed to investigate the relationships among process parameters, 

sensor data, tool/workpiece contact condition and weld quality. Data obtained from the 

experiments were then used to train and configure the intelligent controller for process 

condition detecting and weld quality prediction.  

To implement and simulate the performance of the intelligent system, software 

components were composed using MATLAB language with its graphical user interface 

(GUI), NN and FL toolboxes. 
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3.1 FSW System Hardware Description: Machine Tool, Multi-axis 

Control and Sensors 

3.1.1 Brief Description of the FSW Machine  

The FSW machine was converted from a conventional 3-axis F3UE milling machine built 

by NICOLAS CORREA SA. Three translational axes (X, Y and Z) for bed movements, 

one spindle axis and one rotational axis (R) for workpieces rotation were all driven by 

three-phase induction motors, which were controlled by inverters. The clamping system 

was designed for orientating and locating the workpieces on the machine worktable. 

Figure 3.1 shows a picture of the FSW machine used in this project. 

 

Figure 3.1: FSW machine with additional rotation axis implemented for this project 
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The hardware of the FSW machine provides the following functionalities for process 

monitoring and control (Kruger, 2003): 

• Pre-setting the process parameters such as spindle speed, feed rate, tilt angle and 

plunge depth before the process, and adjusting them on-line without interrupting 

the machining process. 

• Detecting and controlling the distance and speed of each axis, and thus providing 

commanded relative positions of tool and workpieces with required accuracy.  

• Providing soft- and hard stop, home position, and position holding by clutches, 

brakes and limit switches, and interfacing them to computer. 

• Recording and transferring process data including vertical force, horizontal force 

footprint, torque and temperature from the tool to the computer for further 

processing. 

3.1.2 Multi-axis Control and the Client-Server Computer System 

To realize a specified welding path for complex curvature workpieces, a multi-axis FSW 

machine uses independent motors to drive three translational axes, one spindle axis and 

one rotational axis in a coordinated manner (Hwang, 2000). Restricted by the response 

time and control accuracy of motors on the FSW machine, the weld path was interpolated 

before the welding process to convert the complex welding path into a series of time-

dependent commands of distances and velocities for all motors, which were controlled by 

the corresponding inverters to operate simultaneously.  



 52

Each of the four motors is controlled by a Siemens Micromaster 440 inverter, which is 

used to protect, monitor and control the motor’s operation to a user specified set point. 

The inverters use RS485 communication to interface to the computer system. RS485 

allows multiple motor/inverter parameters to be written and read directly form the 

inverter by the computer. PCI RS485 4 Port Interface Card, and a 16550 USART chip on 

the computer connects each inverter with a dedicated RS485 cable to the computer 

(Siemens, 2001; Kruger, 2003).  

The FSW machine was controlled by a client computer which is connected to the server 

computer using Ethernet. TCP/IP protocol was used in the communication between client 

computer and FSW machine server. When a client connects to the machine's server using 

a web browser, the server sends the GUI to the client. Requests for information and 

control messages are then continually sent between the client and server, until the client 

breaks the connection (Kruger, 2003). 

3.1.3 Sensors and the Telemetry Monitoring System 

To maintain the desired contact and energy into the tool/workpieces, the feedback from 

the multiple axes and the information of process variables need to be continuously 

recorded and fed into the controller for on-line decision-making when the tool is busy 

traversing along the weld path. Thus different types of sensors and sensor data 

transmitting system were installed on the FSW machine.   

The spindle motor, feed motors (X and Z feed), and the motor for workpiece rotation 

were fitted with Leine and Linde 610/632 industrial incremental optical encoders with a 

resolution of 512 pulses per revolution. The feed motor encoders provide feedback 
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related to bed position and the spindle motor encoder allows more accurate spindle speed 

control by the inverter. A standard low backlash coupling was used to link the encoder 

shaft to the motor's rotor. The encoder is interfaced to the machine server through a 

PCI730 data acquisition card (Leine and Linde, 2002; Kruger, 2003).  

 

Figure 3.2: Telemetry monitoring system used in study 

A telemetry system instrumented on the tool chuck was built to obtain on-line detailed 

information about process variables, as shown in Figure 3.2. The electronics mounted on 

the chuck were used to sample the required process variables. Raw sensor data was signal 

conditioned and then passed to a microprocessor, where it was prepared for transmission 

to the TS1000 interface. Electrical power is transferred to the chuck using induction and 

the sampled data is sent off the chuck in digital form using a capacitive technique. Strain 

gauges and thermal couple were fitted on the chuck and tool to detect horizontal forces, 

vertical force, torque exerted on the tool and the tool's pin temperature. When the 
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interface unit receives a request for data, it transfers the information via the RS232 serial 

interface to the computer (Blignault, 2005; Kruger, 2003).  

Specifically arranged precision foil-type strain gauges were attached to a thin shell 

cylindrical element to measure forces and moment acting on the tool assembly. The 

sensing system was capable of measuring loads up to 60kN on z-axis, 8kN on x and y-

axis and a torque of 400N.m. The strain gauges were applied on the outer surface of the 

elastic element and on a common centre line in full bridge configurations to compensate 

for unwanted superimposed stresses. Figure 3.3 shows the principal dimensions of the 

elastic element as well as the axial positioning and channel number of the strain gauge 

elements are illustrated in. The two bending channels Channel 1 and 2 measure bending 

in the x & y direction. Channel 3 measures the compression or tensile force in the axial 

direction while Channel 4 measures the shear load (Blignault, 2005).  

 

Figure 3.3: Principal dimensions of the elastic element and axial positioning of the 

strain gauge elements (Blignault, 2005) 

A 0.5mm diameter embedded thermocouple probe (type K) was fitted into the 0.7mm 

diameter hole inside welding tool for measuring the interface temperature between the 
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tool pin and shoulder. Thermal paste with a high thermal conductivity was also applied 

on the probe to ensure good contact between the probe and tool interface (Blignault, 

2005). The tool and thermocouple assembly was illustrated by Figure 3.4. 

 

Figure 3.4: Tool and thermocouple assembly 

 The telemetry system and encoders provide real-time welding process information, 

which can be used to train and build the on-line monitoring and intelligent control system. 

The sufficiently high sample rate of process variables from the telemetry system and 

encoders allows acceptable response time for on-line monitoring and intelligent control of 

complex curvature FSW.  

3.2 Experiment Design for the On-line Monitoring and Intelligent 

Control System for Complex Curvature FSW 

To build a neuro-fuzzy controller for complex curvature FSW, an initial rule base was 

established by investigating the relationships among process parameters, sensor data and 

mechanical test. These relationships were revealed through NN training using the 

experimental data from flat and circular workpiece welding. The performance of the 

neuro-fuzzy controller was then evaluated through the welding of workpieces consisting 

of complex curves. A detailed description of NN training and FLC building is in Chapters 

Thermocouple
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4 and 5. 

The purpose of experiment design for complex curvature FSW was to select the 

appropriate experimental method, set up the necessary system hardware and analyse the 

experimental results.  The detailed description of system hardware implementation is 

given in Section 3.3 and the software implementation is given in Section 3.4. The 

principles of the experimental design and method selection for complex curvature FSW 

are discussed in the following subsections.   

3.2.1 Definition of the Complex Curvature 

Due to the hardware limitation of the existing FSW machine, the complex curvature in 

this study is defined as two-dimensional convex curve representing the joint of two 

workpieces with the same dimension of vertical section, as shown in Figure 3.5 (c). In 

this study, this complex curvature can be considered as the connection of a series of 

simple curvatures such as straight line and circular arc, as shown in Figure 3.5 (a) and 

Figure 3.5 (b) respectively.  

 

Figure 3.5: Workpieces of different curvature. (a) Flat (b) Circular (c) Complex 

curvature 
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At the connection of two segments in a complex welding curve, although full contact 

between tool shoulder and parent material can be obtained at each segment, it is 

impractical to maintain full contact when the tool is moving to the intersection corner of a 

sharp angle. The tool either inevitably loses part of contact with the workpieces or 

plunges into the backing piece in order to obtain full tool/workpiece contact, as shown in 

Figure 3.6 (a). The excessive plunging may cause tool and backing piece damage. On the 

contrary, when welding a round intersection corner with the same tool and material, full 

tool/workpiece contact can be obtained without damaging the tool and back piece, as 

shown in Figure 3.6 (b). Thus in this study, complex curvature can be further represented 

as a series of straight lines connected by round intersection corners of different radii. 

 

 Figure 3.6: Tool/workpiece contact when moving at the corner.  

3.2.2 Tool/workpiece Contact Condition  

For complex curvature FSW, except the process parameters (such as spindle speed, feed 

rate and plunge depth), the tool/workpiece contact condition also largely influences the 

quality of the welds. When the tool shoulder partly loses contact with the parent material, 
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the material stirred and extruded by the rotation pin may flow out and can not be pressed 

together by the shoulder, thus cause non-integrity in the welds. Whereas, if the tool 

plunges too deep into the material, not only excessive force and torque will be exerted to 

tool and workpiece, but also too much heat may be generated with the same feed rate and 

spindle speed. This may cause residual stress and distortion (Chen and Kovacevic, 2003). 

Thus it is critical to maintain full shoulder/material contact and the plunge depth within a 

certain range.  

The tool/workpiece contact condition changes along with the changing curvature of the 

workpiece with the same plunge depth and tilt angle, especially on the connection corner 

of two segments. As can be seen in Figure 3.4, tool/workpiece contact is influenced by 

workpiece curvature and tool size. With larger curvature radius and smaller tool shoulder 

size, it is easier to maintain full tool/workpiece contact without plunging into the backing 

piece. The curvature radius of the workpiece other than flat plate in this study is restricted 

to the range of 15 to 47.5mm, and the design of tool size is discussed in detail in Section 

3.3.4.  

Even if the tool/workpiece positions have been well pre-planned to obtain contact adapt 

to changing curvatures, the predefined positions may be not maintained due to a 

disturbance during the process. Basically, the wrong contact condition, including 

excessive and insufficient contact may be caused by the wrong plunge depth, tilt angle of 

tool axis to workpiece surface normal, or the combination of these two, as shown in 

Figure 3.7.  
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Figure 3.7: Examples of faulty tool/workpiece contact. (a) Insufficient contact due to 

tool tilt (b) Insufficient contact due to insufficient plunge depth (c) Excessive contact 

due to tool tilt (d) Excessive contact due to excessive plunge 

The tool/workpiece contact condition has a direct relation to the sensor data such as force, 

torque and temperature. In order to detect the contact condition from the on-line sensor 

data, a rule base which represents the relationship between sensor data and 

tool/workpiece contact conditions was established. The establishing of this rule base is 

mentioned in section 3.4 and a detailed description is given in Chapter 4. 

3.2.3 Process of System Setup 

The following steps were followed setting up the on-line monitoring and intelligent 

control for complex curvature FSW: 

(a) (b)

(c) (d)
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• Mechanical design including the design of rotary axis, fixture and tool for 

workpieces with flat, circular and complex curvature. Detailed discussion can be 

seen in Section 3.3. 

• Experiments of flat and circular samples for welding. Using OA analysis to find 

the most sensitive sensor signals, together with the mathematical relation of the 

sensor signals to tool/workpiece contact and welding quality, and develop 

experiments for these sensitive features to get more data.  Initial optimised range 

of process parameters and corresponding sensor data are also derived for 

maintaining correct contact and high quality. 

• Using the sensitive features derived from above experiments and corresponding 

process parameters to train and test NNs with different architecture. Using the 

best NN architecture to perform sensor fusion.  Find out to what extend sensor 

fusions may be applied to predict mechanical quality within changes in curvature. 

Select appropriate sensor signals as control variables. Train and test the NN using 

the experimental data to find the relationship among process parameters, sensor 

data and weld quality. A detailed description can be seen in Chapter 4. 

• Based on the information from experimental data and the trained NN, design 

initial structure of the FL controller. Establish performance criterion for 

tool/workpiece contact and welding quality. Use the trained NN and on-line 

sensor data to derive fuzzy rules for the FL controller, which is used to maintain 

preset control variables within dynamic changes in curvature by adjusting the 

process parameters. Detailed description can be seen in Chapter 5. 
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• Test the performance of the on-line monitoring and intelligent control system 

with workpieces with complex curvature. If possible, check the adaptability of 

the monitoring and control system to different tool, parent material and thickness.  

3.3 Fixture Design for Flat Plate, Pipe and Complex Curvature 

Workpieces 

To investigate the relationships among process parameters, sensor data and weld quality, 

experiments for flat plates, circular plates and plates with changing curvature were 

carried out to obtain necessary data for further building of the intelligent monitoring and 

control system. Basically, the two joint workpieces need to be firmly held, located, and 

supported by the fixture to prevent it collapsing or undergoing undesired changes in 

shape during the process of FSW. When welding workpieces with curvatures other than 

straight line, backing plates with the same shape as the workpieces and a clamping 

system for loading and unloading the workpieces are required. For this purpose, different 

fixtures were designed for workpieces with different curvatures.  

3.3.1 Clamping System for Flat Plate FSW 

Alminium 6061 and Al 5251 were selected as the material for FSW experiments. 

Workpieces with thickness of 3mm were used in straight line FSW. All workpieces were 

precisely cut into rectangular shape with three aligning holes, which were used to locate 

and mount the workpieces on the backing plate. A backing plate was also cut into the 

required shape to support and locate the two workpieces for straight line FSW. Six 

threaded holes and four through holes were used to fit the workpieces on the backing 
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plate and to mount the backing plate itself on the FSW machine worktable respectively, 

as shown in Figure 3.8. 

 

  Figure 3.8: Clamping of flat plate workpieces 

 

3.3.2 Clamping System for Pipe Welding 

Aluminium pipes and circular arc segments with different radii were used in FSW 

experiments to study the effects of different curvature on the sensor data and mechanical 

tests. To perform pipe welding, an extra rotational axis was added to the existing three 

translational axes (X, Y and Z). A motor plus inverter and gearboxes were used to 

provide adjustable rotation speed of the workpieces.  

Figure 3.9 shows the whole rotational system for pipe welding. To prevent the pipe from 

moving and deforming from radial and axial direction during welding, a clamping system 

including shaft, tapering collect, tapering bushing, locking nuts and bearings were 

installed on the machine worktable and connected to the output shaft of the gearbox. An 
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auxiliary supporting system including height adjusting screws and supporting rollers was 

also designed to bear the large Z force during welding.  

 

Figure 3.9: Rotational system for pipe welding 

Similar clamping systems were also designed to support and hold the circular workpieces 

other than pipe with different radii. The clamping system consists of a central shaft, a 

coupling connected to the gearbox output shaft and axial bushings of different radii. 

Figure 3.10 shows the clamping system for the circular workpieces with an inside 

diameter of 70mm. The detailed design drawings of the clamping systems mentioned 

above can be seen in Appendix C. 

 

Figure 3.10: Clamping system for circular workpieces 
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3.3.3 Clamping System for Complex Curvature Workpieces 

To check the performance of the intelligent monitoring and control system, experiments 

with workpieces of changing curvatures was carried out. A specific backing piece, which 

is locked onto the central shaft by a tapering bushing and nuts, was built to support 

workpieces with the same complex curvature during welding. The complex curvature 

workpieces and corresponding backing piece are shown in Figure 3.11. The detailed 

design drawings can be seen in Appendix C.  

 

Figure 3.11 Workpieces with complex curvature 

3.3.4 Tool Design  

It was reported that during the FSW of thin sheets, the friction between the rotating tool 

shoulder and the material generates most of the heat, and the main function of the pin is 

to stir and control material flow around the tool at the weld joint to form a quality weld 

(Tomas et al., 2001).  

Workpiece 

Backing Piece 

Locking Nut 

Central Shaft 
Joint  

Bolt 



 65

Johnson indicated that heat input to the process is proportional to the tool area and tool 

rotation speed. He also concluded that shoulder diameter is proportional to the torque at a 

constant tool rotational speed, and that different pin diameters have virtually no effect on 

torque values (Johnson, 2001).  

An adequate tool pin length was suggested for stirring up the oxide layers in the welds to 

prevent potential flaws (Kallee and Nicholas, 2002). Tool pin with a profiled surface was 

usually used to facilitate a downward auguring effect, which can be described as the tool 

gripping the plasticized material and pulling it in a downward direction (Blignault, 2005). 

In practical tool design for complex curvature FSW, the size of the tool was also 

restricted by the following factors: 

• Material thickness of the workpieces, which restricts the pin length, and  

• The range of workpiece curvature radii, which restricts tool shoulder diameter in 

order to obtain full shoulder/workpiece contact. 

Figure 3.12 shows the relative tool/workpiece position when the tool plunges into the 

material along the normal direction to the workpiece surface and full tool/workpiece 

contact is obtained. If the tool plunges into the material off the surface normal with the 

same plunge depth, reduced tool/workpiece contact can be expected.  
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Figure 3.12: Relative position between tool and curving workpiece 
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Given the material thickness T, workpiece curvature radius Ri, clearance δ and pin length 

Lp, the maximum tool shoulder diameter with full tool/workpiece contact can be 

represented as  

)(2)(2 22 δδ −−++−= PiPs LTRLTD                                     (3.2) 

As can be seen, the tool shoulder diameter Ds increases with workpiece thickness T and 

curvature radius Ri, and decreases with clearance δ and pin length Lp. As mentioned in 

Chapter 2, if the tool pin is too short, insufficient material flow will be caused. The 

clearance δ is always held at a certain value to allow adequate plunge depth and prevent 

the tool from plunging into the back piece. Thus maximum tool shoulder diameter is 

mainly determined by the workpiece thickness and curvature radius.   

 

  Figure 3.13: Tool designed for 3mm plates 

Figure 3.13 shows the welding tool designed for 3mm thickness FSW. In this study, the 

material thickness is 3.18mm and 4.5mm and the range of workpiece curvature radii is 

from 15 to 47.5mm. When welding a workpiece with complex curvatures, the same tool 

was used to avoid tool changing. To make the effect of tool size and shape on weld 

quality consistent, the same tool was used in the experiment of workpieces with the same 



 68

thickness, but different curvature. Thus the smallest curvature radius of 15mm was used 

to determine the tool shoulder diameter for each workpiece thickness.  

For 3.18mm thick material, the clearance δ and pin length Lp were chosen as 0.25mm and 

2.3mm respectively. Using expression 3.2, the tool shoulder diameter was calculated as 

10.73mm, which was rounded to 10mm.  For 4.5mm material, the clearance δ and pin 

length Lp were chosen as 0.35mm and 3.5mm, thus the tool shoulder diameter was 

calculated as 10mm using equation (3.2). Thus 10mm was chosen as tool shoulder 

diameter for both material thicknesses. The ratio of shoulder diameter to pin diameter 

was chosen as 2.5, thus both pin diameters are 4 mm. Anti-clockwise threads was cut on 

the tool pin to enhance material flow during welding. The detailed tool drawings can be 

seen in Appendix C. Both of the tools were machined from W302 tool steel bar and then 

heat-treated according to certain procedures (Blignault, 2005).  

3.4 Software Components for Complex Curvature FSW 

In the real process of complex curvature FSW, the intelligent control system must 

respond quickly to the changing process conditions such as contact and energy into the 

tool/material. Additional software modules need to be integrated into the existing FSW 

software architecture. 

Figure 3.14 shows the data flow in the proposed neuro-fuzzy controller for on-line 

monitoring and intelligent control. The on-line value of control variables YS(t) at time t 

from the telemetry system and encoders are fed back and compared to the preset 

reference value RS(t). The error ES(t) were then mapped into the trained NN which presents 

the relationship between control variables and process parameters. The derived process 
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parameters were then compared to the preset process parameters RU(t), and the deviation 

of control variables and process parameters were then fuzzified into the FLC input and 

output MFs respectively to generate on-line fuzzy rules. The outputs from FLC were then 

scaled adapting to the trend of control variable deviation from the reference value to 

suggest a more reliable adjustment ∆U(t) of process parameters. The sum of RU(t) and ∆U(t) 

was used as the desired process parameters for the next time step. The whole neuro-fuzzy 

controller was integrated into the existing program to maintain the desired contact 

condition and energy into the tool/workpiece responding to the changing process 

environment.  Chapters 4 and 5 describe the details of the implementation of the NN and 

FLC components. 

 

Figure 3.14: Data flow in the proposed intelligent controller for complex FSW 
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System Architecture principles. The QNX operating system supports the POSIX standard 

and allows each of the FSW software modules to be memory protected and scaleable. It 

provides various services for implementing the FSW software, including thread, signal, 

message-passing, synchronization, scheduling, timer, interrupt and process management. 

These advantages enable the existing FSW system to record process variables, obtain 

good response time, access recorded data, allow software modification and expansion, 

and be reliable (Kruger, 2003).  

The existing FSW systems software is organized into a series of layers, each of which 

provides a set of services. Each layer defines an abstract machine whose machine 

language (services) is used to implement the next level of abstract machine. The layered 

architecture is changeable and portable, and supports incremental system development 

(Sommerville, 2001). The existing FSW system includes following layers (Kruger, 

2003): 

Layer 0: hardware Interface 

Layer 1: Machine Level Control and Monitoring 

Layer 2: Process Level Control and Monitoring 

Layer 3: Network Distributed User Interface 

3.4.2 On-line Monitoring and Intelligent Control Module 

The proposed on-line monitoring and intelligent controller was developed using 

MATLAB together with its neural network, fuzzy logic and simulation toolboxes. 
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MATLAB was chosen as the developing environment for the following reasons (The 

MathWorks, 2004c): 

• It is a powerful mathematical computing engine that includes an extensive 

catalogue of functions and toolboxes, an environment in which to develop 

customer functions and scripts, and the ability to import and export to many types 

of data files. 

• MATLAB provides interfaces to external routines written in other programming 

languages such as C and Fortran, and for data that needs to be shared with 

external routines.  

• MATLAB engine library is a set of C or Fortran routines that can be used to start 

or end the MATLAB process, send data to or from MATLAB and send 

commands to be processed in MATLAB. Instead of requiring that all of 

MATLAB be linked to a customer program, only a small engine communication 

library is needed. 

The proposed software implementation of the on-line monitoring and intelligent 

controller and its interface to the existing FSW software are shown in Figure 3.15. The 

existing software coded in C and C++ was installed on the machine server on the QNX 

platform. The neuro-fuzzy intelligent controller was installed on the client on a Windows 

operation system. The FSW machine server was connected to and communicates with 

the client using Ethernet and the TCP/IP protocol.  On-line sensor data from the welding 

process was sent from server to client for process status recognition; decisions made by 
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the neuro-fuzzy controller are called back to C programs in the FSW software of the 

server.  

 

 

 

 

 

 

Figure 3.15: Proposed neural-fuzzy controller and its interface to existing FSW 

system 

The intelligent neuro-fuzzy controller was developed with MATLAB 7 and 

corresponding toolboxes. M-File functions and M-File scripts were coded to implement 

the controller. Basic Simulink blocks, together with the Fuzzy Logic Toolbox and Neural 

Network blockset were used to model, simulate and analyse the dynamic process of 

complex curvature FSW.  

MATLAB engine library was used to start and stop the MATLAB process, and send on-
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tool/workpiece are then fed back to C & C++ programs in the FSW software with 

MATLAB engine library. The recommended process parameters adjustments were 

implemented by sending commands to the corresponding inverters and motors from the 

FSW software system. The information to and from the neuro-fuzzy controller was also 

sent to the Simulink model for simulating and displaying the FSW process for complex 

curvature. 

3.4.3 Process Modelling and Simulation 

To visualise and simulate the process of complex curvature FSW, a graphic user interface 

with process simulation was composed. MATLAB GUIDE, Simulink blocks and 

corresponding M functions and scripts were used to simulate the intelligent neuro-fuzzy 

controller and process condition. GUIDE, the MATLAB Graphical User Interface 

development environment, provided a set of tools for creating GUIs.  GUIDE also 

automatically generated an M-file that controled how the GUI operated. The M-file 

initialised the GUI and contained a framework for all the GUI callbacks -- the commands 

that were executed when a user clicked a GUI component.  

Figure 3.16 shows the GUI and its M-file created for starting process simulation of 

intelligent complex curvature FSW. The desired process parameters were preset in 

textbox of the GUI. In this example, the preset parameters are 600 rpm, 100 mm/min, 

0.2mm and 0.5° for spindle speed, feed rate, plunge depth and tilt angle respectively. The 

reference values of sensor data are derived as 275 °C, 20 Nm, 1.75 kN and 335 N for 

temperature, torque, Fz and bending force respectively with NN mapping. Sensor data 
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acquired from manual input, recorded data or on-line process are then input into the 

model and compared to reference values for simulating and plotting the simulation result. 

 

 

Figure 3.16: Graphical user interface for on-line FSW process simulation 

Simulink is a software package for modelling, simulating, and analyzing dynamic 

systems. It supports linear and non-linear systems, modelled in continuous time, sampled 

(a)   

(b)   
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time, or a hybrid of the two. The simulation of FSW in this study is implemented with 

Simulink due to the following reasons (The MathWorks, 2004d): 

• It is integrated with MATLAB, thus the model built can be interactively 

simulated, analysed, revised and visualised in either environment at any point; 

• It provides a comprehensive block library of commonly used sinks, sources, and 

mathematic functions. Furthermore, it provides blocks in the Fuzzy Logic 

Toolbox and Neural Network Blockset to simplify the building of the neuro-fuzzy 

controller. Customized blocks can also be built to realize specific functions. 

• The Simulink model is hierarchical, thus it can be built using both top-down and 

bottom-up approaches. This approach provides insight into how a model is 

organised and how its parts interact. 

• Using scopes and other display blocks in the Simulink library, the simulation 

results can be visualised while the simulation is running. In addition, model and 

block parameters can be interactively changed to see the effects immediately. 

Figure 3.17 shows the overall Simulink block diagram for FSW process simulation. The 

hierarchical model is composed of Simulink blocks and subsystems. Starting the 

simulation is controlled in the GUI shown in Figure 3.14. This model was built with 

Simulink blocks, Neural Network Blockset and Fuzzy Logic Toolbox. Two NN blocksets 

were used in process simulation: one for setting reference values of sensor data; the other 

for deriving fuzzy rules for the initialized FLCs. Data generated during simulating can be 

recorded in the workspace and used to implement process animation and result plotting. 
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Figure 3.17: Simulink block diagram for on-line process simulation 

3.4.3.1 Fuzzy Control Subsystem  

The fuzzy control subsystem consists of two parallel-working FLCs, input normalising 

blocks and output scale tuning blocks. The two FLC blocks load the fuzzy inference 

systems from the workspace. The fuzzy inference systems in the workspace were updated 

on-line with new fuzzy rules which were generated from the fuzzy rule generation 

subsystem. Inputs to the FLCs were normalized into [-1 1] before being fed into the FLCs. 

Outputs from the FLCs were tuned on-line by the output scale tuning blocks adapted to 
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process trends. Figure 3.18 (a) and (b) shows the SIMULINK block diagram of the fuzzy 

control subsystem and the embedded M function for output tuning. 

 
(a) 

 

 
(b) 

Figure 3.18: Simulink block diagram and M-file for fuzzy control subsystem 
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(a) 

 
(b) 

Figure 3.19: Simulink block diagram and M-file for fuzzy rule generation subsytem 
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3.4.3.2 Subsystem of Rule Create  

Figure 3.19 shows the SIMULINK blocks (a) and the embedded M function (b) of the 

fuzzy rule generation subsystem. With the error of input on-line sensor data to their 

reference values and the difference between NN derived instant process parameters and 

preset process parameters, the subsystem is used to recommend ‘if-then’ fuzzy rules for 

the FLC blocks in fuzzy control subsystem.   

3.5 Summary   

The overall system hardware and software setup needed for the establishment of the 

proposed intelligent monitoring and control system for complex curvature FSW was 

described in this chapter. An additional rotational axis and clamping systems are designed 

for workpiece locating and holding. Software module for process monitoring and control 

and its interface to existing FSW software architecture is proposed.  

A table-tilting multi-axis system for complex curvature FSW was established by 

integrating an additional rotation axis including electric motor, speed reducer, main shaft 

and encoder to the existing FSW machine. Clamping systems for flat plate, round tube 

and complex curvature workpiece were designed for holding and locating different 

curvature workpieces. A special tool and workpiece were also machined with analysis of 

complex curvature for experiments.  

A neuro-fuzzy controller integrating non-linear fuzzy control, on-line rule generation and 

adaptive tuning mechanism for complex curvature FSW was proposed. MATLAB 

language was chosen as programming tool for the intelligent controller owing to its 
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powerful computing ability, external interface to external routines and availability of 

multiple toolboxes such as NN and FL. The MATLAB engine library was used to 

communicate between the intelligent neuro-fuzzy controller and C programs in the 

multi-layered FSW software architecture. 

The GUI, SIMULINK model library, Fuzzy Logic Toolbox, Neural Network Blockset 

and M-files of MATLAB were integrated to perform simulation of the proposed neuro-

fuzzy controller for complex curvature FSW.   
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Chapter 4 Multi-sensor Fusion Model for Tool/workpiece 

Contact and Energy Input Monitoring during 

Complex Curvature FSW 

To measure and estimate process variables, a broad spectrum of on-line sensors, signal 

processing schemes and various model-based calculations have been proposed to retrieve 

information relevant to machining process conditions (Liang et al., 2004). During 

complex curvature FSW, process parameters and sensor signals may deviate from 

reference values due to curvature changing and other reasons. To maintain 

tool/workpiece contact and energy input, which dominates the weld properties (Peel, et 

al., 2003; Chen and Kovacevic, 2003), a multi-sensor fusion model is proposed for 

tool/workpiece contact condition and energy input monitoring, as shown in Figure 4.1. 

Using statistical analysis of experimental results, sensitive features that characterizing 

tool/workpiece contact and energy input were selected as NN training data for sensor 

fusion modelling and on-line fuzzy rule generation. Sensor features and process 

parameters may be also used as process control variable for FL controlling. The details of 

fuzzy rule generation and FL control are described in Chapter 5.   

 

                  Figure 4.1: Sensor fusion model for tool/workpiece contact and energy 

input monitoring. 
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Section 4.1 introduces the methods used in FSW process monitoring and sensor fusion. 

Section 4.2 describes the process to perform sensor fusion by statistical analysis and NN 

training with experimental data. Section 4.3 explains the experimental design and data 

acquisition methods. Section 4.4 provides the details of sensor fusion modelling including 

sensitive feature selection and NN training with the MATLAB language (The 

MathWorks, 2004c). A summary  of this chapter is given in section 4.5. 

4.1 Introduction  

Currently, the research of monitoring and control of FSW is mainly focused on straight 

welds. Effects of process parameters such as feed rate, spindle speed and tool size on 

fatigue life, tensile strength, weld crack and residual stress of FS welds in aluminum and 

other materials have been investigated (James, et al., 2003; Reynolds, et al., 2003; Nakata, 

et al., 2001; Ericsson and Sandström, 2003). An input torque based model of temperature 

distribution and thermal history prediction is introduced by Khandkar et al. (2003). Chen 

and Kovacevic (2003) presented both a heat transfer model and a mechanical model using 

a finite element method. Song and Kovacevic (2003) proposed a heat transfer model of 

FSW in a moving coordinate system. Chen et al. (2003) used wavelet transform analysis 

of acoustic emission in monitoring FSW of Al 6061 aluminium.  

Tool/workpiece contact conditions play a critical role in thermal input between tool and 

workpiece, which dominates weld properties (Peel, et al., 2003; Chen and Kovacevic, 

2003). During complex curvature FSW, physical condition changes dynamically due to 

complexity. The optimised process parameters for certain material and thickness need to 

be adaptable for different curvature. The relationship between sensor signals and 
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tool/workpiece contact and thermal input must be investigated, and a multi-sensor fusion 

model for tool/workpiece contact and energy input prediction needs to be built. 

During FSW processing, various signals are emitted from the machine tool. Although 

these signals can provide useful information for process monitoring, some of them may 

include a significant amount of noise and are thus unsuitable for monitoring purposes 

(AI-Habaibeh, et al., 2002). In order to extract useful information from process sensor 

data, several stages of signal processing and data analysis are normally needed.  

The measurement of tool/workpiece contact condition and energy input can be done by 

direct or indirect methods. Direct sensing method using contacting sensors are usually not 

effective due to wear, vibration and chip evacuation problems, while non-contacting 

direct sensing are impractical mainly due to the interference of chips and noise (Birla, 

1980). Indirect sensing methods can use a mathematical model to estimate the value of 

investigated characteristics with on-line measured physical quantities. Sensor signals 

such as force, torque, temperature, power and vibrations etc., have been successfully 

applied in indirect sensing (Van Niekerk, 2001; Liang et al., 2004; O’Donnel et al., 2001; 

Chittayil et al., 1992; Jiaa and Dornfeld, 1998; Kuo, 2000; Rangwala and Dornfeld, 

1987;Azouzi and Guillot, 1997).  

Sensor fusion is a method of integrating signals from multiple sources to provide a robust 

prediction of one or more machining attributes with a fusion model (Sasiadek, 2002; 

Guillot, et al., 1994). Sensor fusion mainly consists of two components: selecting 

sensitive signals as good candidates and establishing proper relationships between the 

sensed variables and the investigated features. With sensor fusion, only basic sensors, 
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which reliably measure different variables in an industrial environment, are selected for 

on-line process monitoring (Azouzi and Guillot, 1997).  

Azouzi and Guillot (1997) presented an exhaustive analysis to determine the most 

sensitive process parameters (feed, depth of cut, cutting velocity) and signals (AE, forces, 

vibration) to predict the surface roughness and the final diameter error in machining. In 

this study, on-line sensor signals of Fz, temperature, torque, bending force and the ratios 

between them were investigated to select candidates for sensor fusion modelling.  

To establish the relationship between sensed variables and the investigated features, two 

distinct methods were used: theoretical and empirical. Theoretical techniques normally 

include a great deal of simplification because of the poor understanding of fundamental 

behavior of machining processes, which makes them difficult to implement in real 

industrial environments. Empirical modelling uses experimental work to evaluate process 

performance (Ulsoy and Koren, 1993; Mashimoto, et al., 1996). As recommended by 

Rangwala and Dornfeld (1987), easily available information during the operation of the 

process can be used to build the empirical fusion model. Various techniques such as 

multiple regression, the group method of data handling or neural networks are 

implemented in building sensor fusion models (Liang et al., 2004; Azouzi and Guillot, 

1997). Neural network (NN), which has the ability to learn relationships among input and 

output data sets through a training process, was chosen in this study to ‘induce’ the 

investigated features if a new set of sensed variables were made available (The 

MathWorks, 2004b).  



 85

4.2 Process of Multi-sensor Modelling 

Plunge depth and tilt angle of welding tool to workpieces co-operate to determine 

tool/workpiece contact conditions. For workpieces with uniform curvature, the well pre-

planned tilt angle and plunge depth may not be maintained due to process disturbances. 

Figure 4.2 (a) shows that either insufficient or excessive plunge depth can cause either 

insufficient or excessive tool/workpiece contact. Figure 4.2 (b) shows that excessive tilt 

angle can cause either insufficient or excessive tool/workpiece contact. During complex 

curvature FSW, tilt angle and plunge depth need to be adaptive to changing curvature in 

order to maintain tool/workpiece contact. Figure 4.2 (c) shows that with the same tilt 

angle and plunge depth, tool/workpiece contact is partly lost when the tool is moving 

from a larger curvature radius zone towards a smaller curvature radius zone of a complex 

curvature workpiece.  

 

Figure 4.2: Incorrect tool/workpiece contact due to (a) incorrect plunge depth, (b) 

incorrect tilt angle and (c) changing curvature  

Except plunge depth and tilt angle, spindle speed and feed rate have significant effects on 

tool/workpiece thermal input, which is manifested in the resulting temperature observed 

during welding (Nakata et al., 2001; Reynolds et al., 2003). Thus to monitor and maintain 

(a) (c) (b) 
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tool/workpiece contact and energy input, a sensor fusion model which represents sensed 

variables and process parameters must be established.  

Statistical tools and NN modelling techniques were used to select sensors and build a 

fusion model for on-line monitoring of complex curvature FSW. Experimental data 

including force, torque, bending force and temperature obtained under a variety of 

machining parameters and conditions were first used to  select sensors with high 

sensitivity to tool/workpiece contact and energy input (Kuo, 2000). NNs with different 

structures with different training algorithms were trained and compared to select the one 

with smallest error between NN outputs and target values.  Inputs for NN training are 

selected based on the orthogonal array (OA) experimental results. Both the statistical 

analysis and NN training were implemented in a MATLAB program. Figure 4.3 shows 

the proposed procedure for sensor selection and fusion.  

 

Figure 4.3: Process of sensor fusion modelling 

 

Fusion model

OA Experiment 

Statistical Analysis 

NN trainingControl Variable 
Selection 

MATLAB 
ImplementNeural-fuzzy Controller 



 87

4.3 Experimental Data Acquisition  

Based on the existing FSW system, experiments of aluminium samples with flat bars and 

round tubes of different curvature were conducted to acquire sufficient information for 

sensitive feature selection and sensor fusion. Under different process conditions such as 

material, thickness, and curvature, various process parameters of feed rate, spindle speed, 

plunge depth and tilt angle were used to record on-line sensor data of torque, bending 

force, Fz and temperature. Tensile, bending and fatigue tests were usually used to 

evaluate the mechanical properties of weld samples. In this study only tensile test was 

carried out for flat bar samples. Figure 4.4 shows the welding cause-effect diagram.  

 

Figure 4.4: Cause-effect diagram of FSW 

4.3.1 Material  

Al 6061 flat bars and round tubes, and Al 5251 sheets were used for FSW. The 

thicknesses of Al 6061 flat bars and round tubes were both 3.18mm. The thicknesses of 

Sensor data 

Process parameters

Feed rate (50→200 mm/min) 
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Al 5251 flat bars were 3mm and 4.5mm respectively. The flat bars and tubes were 

commercially available, and their chemical compositions and mechanical properties are 

shown in Table 4.1 (Aluminium City, 1999) and Table 4.2 respectively (Malan and 

Paterson, 1987). 

Table 4.1: Chemical composition limits of alloy Al 5251 and Al 6061(wt %) 

Table 4.2: Mechanical properties of alloy Al 5251 and Al 6061 

4.3.2 FSW Condition 

Efficient experimental method Orthogonal arrays (OAs) developed by Taguchi (Ross, 

1995) was chosen to minimize the number of tests. Another advantage of OA design is its 

equal representation of all factors. Some combinations of factors and factor levels were 

also investigated. Influence of each experimental factor on experimental results, or in 

other words dependency of a result on an experimental factor, was investigated in OA 

design. In this study, L16_4_5 and L18_3_7 OA experiments were chosen for flat bars of 

Element Si Fe Cu Mn Mg Cr Zn Ti Others 

5251 0.40 0.50 0.15 0.1-0.5 1.7-2.4 0.15 0.15 0.15 0.15 

6061 0.4-0.8 0.7 0.15-0.4 0.15 0.8-1.2 0.04-0.35 0.25 0.15 0.15 

Property 0.02% Proof 
Stress 
MPa 

Ultimate Tensile 
Strength 

MPa 

Elongation 
 A5 
% 

Brinell  
Hardness 

HB 

Thermal Conductivity 
At 100 ˚C 
W/m˚C 

Formability 

5251 60 (100) 170(195) 14(20) (40) 134 very good 

6061 160 (250) 185(245) 7(13) (63) 180-218 severe 



 89

Al 5251 and Al 6061 alloy and round tubes of Al 6061 alloy respectively. The process 

parameter factor-level table for flat bars and round tubes is shown in Table 4.3.   

Table 4.3: Process parameter factor-level table for FSW experiment 

 

Figure 4.5: Aluminium flat plate and round tube welded at NMMU 

Figure 4.5 shows the experimental samples welded in this study at NMMU. Sensor 

signals of temperature, torque, bending force, and Fz were acquired from the telemetry 

system with a sampling time of 0.001 second and then processed so that only the steady-

state portions were kept and averaged. The sensor data of Al 5251 and Al 6061 alloy flat 

Factor & level Feed rate 

(mm/min) 

Spindle Speed 

(rpm) 

Tilt angle 

(º) 

Plunge depth 

(mm) 

Tube diameter 

(mm) 
Level 1 50 300 0 0.1  

Level 2 100 400 0.5 0.2  

Level 3 150 500 1 0.3  
Flat 
Bar 

Level 4 200 600 2 0.4  

Level 1 50 400 0 0.1 40 

Level 2 100 500 1 0.2 70 Round 
Tube 

Level 3 200 600 2 0.4 95 

(a) Flat plate (b) Round tube 
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bar welds is shown in Table A.1 and Table A.2 respectively in Appendix A. The 

processed sensor data of round tube is shown in Table A.3 in Appendix A.  

4.4 Sensor Fusion Modelling for Tool/workpiece Contact and Energy 

Input   

Sensor data acquired during OA experiments were first preprocessed to obtain the steady-

state portion. The processed data were then analyzed with OA and additional statistical 

methods to select proper candidates which are sensitive to tool/workpiece contact and 

energy input. With NN training, the selected sensor features were finally used to establish 

the tool/workpiece contact and energy input fusion models, which were later used to 

generate on-line decision, in other words, on-line fuzzy rules of the FL controller.  

Sensor data acquired during OA experiments include the complete welding period of 

plunging, dwelling, feeding and extracting. To obtain reliable sensor values under certain 

process parameters and condition, data recorded during plunging, dwelling, withdrawing, 

and the starting and ending portions of the feeding period were first eliminated from the 

data set. The rest of the data were then preprocessed by removing outliers greater than 

three standard deviations of the rest of the data. The average of the preprocessed data set 

was used as final sensor values for further sensitive feature selection.   

Figure 4.6 shows the original and preprocessed torque data of one sample obtained under 

process parameters: feed 150mm/min, speed 400 rpm, tilt angle 0°, and plunge depth 

0.3mm. The final value of torque for this sample is thus the average of preprocessed data 

29.18 Nm.  
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Figure 4.6: Diagrams of (a) original torque data and (b) preprocessed torque data 

4.4.1 Statistics Analysis  

Data from OA experiments were analyzed using the following statistical tools: (1) the 

average effect of each factor level on sensor measurements, (2) the significance 

estimation of each factor under certain confidence levels and (3) the correlation between 

process parameters and sensor measurements.  

Figure 4.7 shows the average effect of each factor level on sensor measurements with the 

data obtained from 3.18mm Al 6061 and Al 5251 alloy flat bar welds. The plotted points 

correspond simply to the average of all observations under each factor level. It can be 

concluded that all the sensor data are affected at different degrees by each process 

parameter. Temperature seems to be more sensitive to process parameter changes. In the 

process parameters, spindle speed seems to have stronger influence on sensor data than 

the other parameters.  It also shows that for Al 6061 and Al 5251 alloy, most of the 

sensor measurements have the same changing trend with process parameter changes, 

while the averages bending force, torque, temperature and Fz from each factor level of Al 

5251 alloy are significantly lower than Al 6061 alloy. This can be explained by their 

mechanical properties as shown in Table 4.2. Al 5251 alloy is a softer material with better 

(b) (a) 
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formability, thus lower force is caused during welding using the same process parameters, 

while Al 6061 alloy has better thermal conductivity. More heat is propagated from 

tool/workpiece contact area to the area to be welded whilst higher temperature is 

generated.  

 

Figure 4.7: Effects of process parameters on sensor measurements of flat bar 

friction stir welds 
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Figure 4.8: Effects of process parameters on sensor measurements of round tube 

friction stir welds 

Figure 4.8 shows the average effect of each factor level on sensor measurements with the 

data from 3.18mm Al 6061 round tube welding. From the figure, it can be concluded that 

besides process parameters of feed, speed, tilt and plunge, the process condition of 

curvature radius also significantly affects sensor data. It is also shown that the 

temperature and all the forces increase with curvature diameter. This can be explained by 

Bending 
(N) 

Torque 
(Nm) 

Temperature 
(˚C) 

Fz 
(kN) 

    Feed rate   Spindle speed     Tilt angle     Plunge depth      Diameter 
   (mm/min)         (rpm)              (˚)               (mm)               (mm) 
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the tool/workpiece contact condition: with smaller curvature radius, less tool/workpiece 

contact is obtained, and thus less force and temperature are generated due to less friction 

between tool and workpieces during welding.  

Using ANOVA of the OA experiment, the percentage contribution of each factor to each 

experimental measurement variance is calculated. F ratio is used to determine the 

significance level of a factor to an experimental measurement under a certain confidence 

level. The F ratio is the ratio of squares of deviation obtained from a factor to the squares 

of deviation generated from random error. Table 4.4 shows the percentage contribution 

and significance level of each process parameter on experimental measurements with F 

critical ratio 9.28 (α= 0.05) of data collected from the OA experiments of Al 6061 and 

Al 5251 plate welds.  

Table 4.4: Variance analysis of Al 6061 and Al 5251 alloy plate welds 

Factors Bending force Torque Temperature Fz 

 Percentage significance Percentage significance Percentage significance Percentage significance

Feed 20.11%  38.50%  4.56%  35.05% * 

Speed 69.46% * 35.80%  55.05% * 56.55% * 

Tilt 4.29%  4.13%  30.85% * 2.93%  

Plunge 2.93%  11.89%  8.75% * 3.17%  

6061 

error 3.22%  9.68%  0.79%  2.29%  

Feed 28.10% * 20.27%  0.22%  25.86% * 

Speed 56.23% * 6.41%  64.74% * 38.06% * 

Tilt 5.57%  21.69%  12.22%  31.81% * 

Plunge 7.19%  34.77%  16.39%  2.06%  

5251 

error 2.91%  16.86%  6.42%  2.20%  
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It can be seen from the table that Al 6061 and Al 5251 have similar variance distribution. 

Spindle speed is the most significant factor on all the sensor signals except torque. 

Temperature is the most sensitive signal to process parameters of Al 6061 plate welding, 

as it is significantly affected by spindle speed, tilt angle and plunge depth. Fz is the most 

sensitive signal to process parameters in Al 5251 plate welding, as it is significantly 

affected by feed rate, spindle speed and tilt angle in Al 5251 plate welding. It can be 

concluded that both temperature and Fz are good candidates for FSW process monitoring. 

Table 4.5: Variance analysis of Al 6061 alloy round tube welds 

Table 4.5 shows the percentage contribution and significance level of the process 

parameters (feed, speed, tilt angle and plunge depth) and the process condition (curvature 

diameter) on sensor data obtained in Al 6061 round tube welding experiments. It also 

shows that temperature is the most sensitive signal to spindle speed, tilt angle, and plunge 

depth. Thus temperature is chosen as the sensor signal for process monitoring.   

Both the flat plate and round tube experimental data show that the error contributions 

associated with sensor signals are acceptable (less than 8%). This implies that the most 

important process conditions and parameters that influence these characteristics were 

included in the experiment (Azouzi and Guillot, 1997).  

Bending force Torque Temperature Fz Factors 
Percentage significance Percentage significance Percentage significance Percentage significance

Feed 71.42% * 16.61%  7.79%  68.52%  
Speed 3.18%  13.69%  21.09% * 11.34%  

Tilt 1.58%  7.76%  30.16% * 1.57%  
Plunge 8.24%  22.67%  33.08% * 0.89%  

Curvature 14.10%  30.88%  7.38%  12.07%  
error 1.48%  8.39%  0.50%  5.61%  
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In order to further investigate relationships between process parameter and sensor data, 

correlation coefficient, a normalized measure of the strength of the linear relationship 

between two variables, was used in this study to investigate the dependency of a sensor 

signal, or the ratio of two sensor signals, on a process parameter (The MathWorks, 

2004c). The correlation efficient r(x, y) of variable y to variable x is calculated as:  

( )( )
( , )

2 2( ) ( )

x x y yi ir x y
x x y yi i

− −∑
=

− −∑ ∑
                                   (4.1) 

Where: 

ix   the ith element of variable x  

x    the mean value of variable x  

iy   the ith element of variable y  

y    the mean value of variable y  

Table 4.6 shows the correlation coefficients of process parameters (e.g. feed, speed, tilt 

and plunge) and process condition (e.g. material) to sensor data obtained from Al 5251 

flat plate and Al 6061 flat plate welds. To develop an intelligent monitoring and control 

system for FSW process, it is necessary to investigate the adaptability of the controller to 

material changes. Thus besides investigating correlation coefficients of sensor signals to 

process parameters of Al 5251 and Al 6061 plate respectively, additional correlation 

analysis was carried out by incorporating the data from two independent OA experiments 

of the two materials to investigate the influence of material on sensor data.  
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Table 4.6: Correlation coefficients of sensor signals to process parameters of Al 6061 

flat plate and Al 5251 flat plate 

In this study, the tool/workpiece contact is supposed to be controlled by means of tilt 

angle and plunge depth, thus it is important to select sensor signals with high correlation 

to tilt angle and plunge depth as control variables for tool/workpiece contact maintenance. 

It can be seen from table 4.6 that the sensor signal for torque has larger absolute sum of 

correlation coefficients to tilt angle and plunge depth in both Al 5251 and Al 6061 plates, 

thus was selected as a control variable for tool/workpiece contact control. It can be also 

seen temperature has larger absolute sum of correlation coefficients to tilt angle and 

plunge depth in the Al 6061 flat welding experiment, and combined experiment of Al 

5251 and Al 6061, thus it was also selected as a control variable for tool/workpiece 

contact in the welding of Al 5251 and Al 6061 flat plate, as well as the flat plate with the 

combination of the two materials. The same conclusion can be drawn that bending force 

and Fz can be chosen as control variables for tool/workpiece energy input as they have 

larger absolute sum of correlation coefficients to feed rate and spindle speed. 

experiment Sensor signal Co_tilt Co_plunge Absolute sum Co_feed Co_speed Absolute sum Co_material 

bending force (N) -0.0596 0.0315 0.0911 0.3875 -0.7994 1.1869  

torque (Nm) -0.0623 0.3279 0.3902 0.5084 -0.5234 1.0318  

temperature (˚C) -0.5382 0.2932 0.8314 -0.1984 0.7202 0.9186  6061 plate 

Fz (kN) 0.0479 0.1582 0.2061 0.5512 -0.7471 1.2983  

bending force (N) -0.2076 0.2127 0.4203 0.5117 -0.6244 1.1361  

torque (Nm) 0.3343 0.3629 0.6972 0.3002 -0.1895 0.4897  

temperature (˚C) -0.1160 0.3707 0.4867 -0.0453 0.7794 0.8247  5251 plate 

Fz (kN) 0.5580 -0.1135 0.6715 0.4164 -0.5878 1.0042  

bending force (N) -0.09 0.08 0.17 0.35 -0.60 0.95 0.08 

torque (Nm) 0.09 0.28 0.37 0.35 -0.31 0.66 0.28 

temperature (˚C) -0.27 0.30 0.57 -0.10 0.67 0.77 0.30 5251 & 6061 plate 

Fz (kN) 0.09 0.05 0.14 0.28 -0.38 0.66 0.05 
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To further study the sensitivity of sensor signals to process parameters, the ratios between 

the sensor signals were also investigated in correlation analysis.  Table 4.7 shows the 

correlation coefficients of expanded sensor data to process parameters for Al 6061 flat 

plate welds. It can be seen that sensor signals of temperature, the ratio of temperature to 

Fz, and the ratio of torque to Fz, have larger correlation coefficients to tilt angle and 

plunge depth. Therefore, they were chosen as the control variables for tool/workpiece 

contact of Al 6061 alloy flat welds. Fz, the ratio of temperature to torque, and the ratio of 

torque to Fz were chosen as control variables for tool/workpiece energy input as they 

have larger absolute sum of correlation coefficients to feed rate and spindle speed.  

Table 4.7: Correlation coefficients of expanded sensor signals to process parameters 

of Al 6061 flat weld 

Similarly, Table 4.8 shows the correlation coefficients of expanded sensor data to process 

parameters for Al 5251 flat welds. It can be concluded that torque, the ratio of bending 

force to Fz, and the ratio of torque to Fz have the larger correlation coefficient absolute 

sum to tilt angle and plunge depth, and were thus chosen as the control variables for 

tool/workpiece contact of Al 5251 flat weld. It can also be seen that bending force, the 

Sensor signal Co_tilt Co_plunge Absolute sum Co_feed Co_speed Absolute sum 

bending force (N) -0.0596 0.0315 0.0911 0.3875 -0.7994 1.1869 

torque (Nm) -0.0623 0.3279 0.3902 0.5084 -0.5234 1.0318 

temperature (˚C) -0.5382 0.2932 0.8314 -0.1984 0.7202 0.9186 

Fz (KN) 0.0479 0.1582 0.2061 0.5512 -0.7471 1.2983 

bending/torque 0.0974 -0.1559 0.2533 0.1506 -0.6877 0.8383 

bending/temperature 0.0728 -0.0772 0.1500 0.2787 -0.8179 1.0966 

bending/Fz -0.0350 -0.0421 0.0771 -0.0865 -0.4362 0.5227 

temperature/torque -0.2789 0.0400 0.3189 -0.5024 0.7109 1.2133 

temperature/Fz -0.3322 0.1486 0.4808 -0.5208 0.6870 1.2078 

torque/Fz -0.3074 0.1546 0.4620 -0.4966 0.7180 1.2146 
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ratio of bending force to temperature, and the ratio of temperature to Fz, have larger 

correlation coefficient absolute sum to feed and speed, and were thus selected as control 

variables for tool/workpiece energy input. 

Table 4.8: Correlation coefficients of expanded sensor signals to process parameters 

of Al 5251 flat welds 

 

 

 

 

 

 

To develop an intelligent monitoring and control system for complex curvature FSW, 

relationships between sensor signals and different workpiece curvature radii is required to 

be investigated. Table 4.9 shows the correlation coefficients of process parameters and 

process condition curvature diameter to sensor signals of different diameter Al 6061 alloy 

round tube welds. It can be seen that torque and temperature were chosen as control 

variables for tool/workpiece contact, while bending force and Fz were selected as control 

variables for tool/workpiece energy input. The detailed description of tool/workpiece 

contact and energy input control can be found in Chapter 5.  

Sensor signal Co_tilt Co_plunge Absolute sum Co_feed Co_speed Absolute sum 

bending force (N) -0.2076 0.2127 0.4203 0.5117 -0.6244 1.1361 

torque (Nm) 0.3343 0.3629 0.6972 0.3002 -0.1895 0.4897 

temperature (˚C) -0.1160 0.3707 0.4867 -0.0453 0.7794 0.8247 

Fz (kN) 0.5580 -0.1135 0.6715 0.4164 -0.5878 1.0042 

bending/torque -0.2106 0.0787 0.2893 0.4179 -0.6241 1.0420 

bending/temperature -0.1361 0.0453 0.1814 0.3842 -0.7285 1.1127 

bending/Fz -0.4835 0.3743 0.8578 0.3535 -0.4079 0.7614 

temperature/torque -0.3998 0.0864 0.4862 -0.3089 0.7789 1.0878 

temperature/Fz -0.4277 0.2437 0.6714 -0.4352 0.6874 1.1226 

torque/Fz -0.3679 0.3266 0.6945 -0.3898 0.5396 0.9294 
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Table 4.9: Correlation coefficients of sensor signals to process parameters of Al 6061 

flat plate and Al 6061 round tube 

4.4.2 Multi-sensor Modelling 

A process condition monitoring system consists of three main elements: sensors for 

capturing process signals, signal processing methods to extract important information 

(sensory characteristic features (SCFs)) about the process, and a pattern recognition stage 

to interpret the sensory information for process condition classification (Al-Habaibeh and 

Gindy, 2001). Owing to the limitations of single sensor instrumentation, there is an 

increasing effort to use combinations of different sensors or transducers to monitor 

various variables. It has been proven that the three layer network with a sufficient number 

of nodes in the hidden layer is able to model any mathematical function (Rafalowicz, et 

al., 1998; Rowe, 1994). In this study, NN was used as a modelling tool for sensor fusion 

due to its ability to approximate random complex mathematical functions.  

The experiment with Al 5251 round rube was not conducted in this study, therefore, 

experiment Sensor signal Co_tilt Co_plunge Absolute sum Co_feed Co_speed Absolute sum Co_curvature 

bending force (N) -0.0596 0.0315 0.0911 0.3875 -0.7994 1.1869  

torque (Nm) -0.0623 0.3279 0.3902 0.5084 -0.5234 1.0318  

temperature (˚C) -0.5382 0.2932 0.8314 -0.1984 0.7202 0.9186  
6061 plate 

Fz (kN) 0.0479 0.1582 0.2061 0.5512 -0.7471 1.2983  

bending force (N) 0.16 -0.24 0.40 0.72 -0.22 0.940 0.40 

torque (Nm) -0.22 0.41 0.63 0.38 -0.32 0.70 0.47 

temperature (˚C) -0.51 0.52 1.03 -0.28 0.48 0.76 0.27 
6061 tube 

Fz (kN) -0.05 0.03 0.08 0.73 -0.38 1.11 0.35 

bending force (N) 0.11 -0.17 0.28 0.47 -0.15 0.62 0.30 

torque (Nm) -0.13 0.28 0.41 0.33 -0.45 0.78 -0.75 

temperature (˚C) -0.52 0.42 0.94 -0.24 0.56 0.80 -0.17 
6061 plate &  tube 

Fz (kN) -0.02 0.09 0.11 0.66 -0.55 1.21 -0.26 



 101

monitoring for process condition changing does not include curvature changing of Al 

5251 plate. Thus, process condition changing was restricted to flat plate welding with 

changing material, and Al 6061 alloy welding with changing curvature.  Figure 4.9 shows 

the procedure of process monitoring proposed in this study. 

 

Figure 4.9: Procedure of process monitoring with trained NNs. 

The sensor fusion work was done through application of different feed-forward back-

propagation NNs. In this study, a control scheme with the adaptability to complex 

curvature needs to be established, thus different NNs for mapping the relationships of 

material changing, curvature changing and process parameters changing to sensor data 

changing were trained. The training and simulation results of the NNs are described in the 

following subsections. 
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4.4.2.1 NN Training for Curvature Prediction 

In complex curvature FSW, process parameters of feed rate, spindle speed, tilt angle and 

plunge depth cooperate with workpiece curvature to determine the condition of 

tool/workpiece contact and energy input. To make correct decisions for process 

parameter adjustment, the changing of workpiece curvature radius needs to be detected 

from on-line sensor data. In this study, only Al 6061 material is investigated with 

complex curvature. Using the data obtained in previous Al 6061 flat plate and round tube 

experiments, a feed-forward back-propagation NN was trained. The NN architecture is 

shown as follows: 

NN inputs: torque, temperature and Fz. 

NN outputs: workpiece curvature (e.g. 1/20 for curvature radius of 20 mm). 

NN structure: 3-6-1. 

The Levenberg-Marquardt algorithm was used as a fast training method. The 16 flat plate 

welds and 18 round tube welds from the OA experiments, together with another five 

additional round tube welds were used as training and checking data. The M script for 

NN training can be seen in Appendix B.5. The comparison of NN outputs to experimental 

data, the final value of training performance function and the final NN architecture are 

shown in Figure 4.10 (a) to (c) respectively. The training result shows that good 

performance was achieved and that the NN can be used to predict workpiece curvature 

given on-line sensor data. The performance function mse was 0.0153772 after training 50 

epochs and the error of NN outputs to target was restricted within a small band.  
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Figure 4.10: Training of NN for workpiece curvature prediction. (a) NN outputs vs 

targets, (b) NN performance function, and (c) NN structure  

(b) 

(a) 

(c) 
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4.4.2.2 NN Training for Material Detection 

When welding plates of different materials, different sensor data were obtained using the 

same process parameters, as can be seen in the factor-effect curve in Figure 4.7. Thus the 

intelligent monitoring system must ‘tell’ what kind of material is being welded before 

process adjustments for tool/workpiece energy input maintenance. In this study, the 

changing of material is limited in flat plates of Al 5251 and Al 6061 alloy. Using the data 

from the two OA experiment and additional test data, a 4-4-1 back-propagation NN was 

trained with the reduced memory Levenberg-Marquardt algorithm. After training, the 

system can ‘tell’ whether the material being welded was ‘0’ (for Al 6061 alloy) or ‘1’ (for 

Al 5251 alloy). The architecture of the NN is shown as follows: 

NN inputs: tilt angle, plunge depth, torque and temperature. 

NN outputs: parent material (“0” for Al 6061 alloy, “1” for Al 5251 alloy). 

NN structure: 4-5-1. 

The Levenberg-Marquardt algorithm was used as the training method. 16 flat welds of 

both Al 5251 and Al 6061 alloy plate welded from the OA experiments were used as 

training data. Another six additional flat welds were used as checking data. The final 

architecture, comparison of NN outputs to experimental data and final value of training 

performance function are shown in Figure 4.11 (a) to (c) respectively. The training result 

shows good performance with mse value 0.0874027 after 300 training epochs. It can be 

seen that the trained NN can be used to predict workpiece curvature given on-line sensor 

data and process parameters. 
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Figure 4.11: Training of NN for parent material detecting. (a) NN structure, (b) NN 

outputs vs targets and (c) NN performance function   

4.4.2.3 NN Training for Mapping Sensor Data/Process Parameter Relationships 

With the previous two NNs, when on-line sensor data was read, and the material and 

(c) 

(a) 

(b) 
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curvature were recognized, the intelligent control system was able to derive on-line 

control decisions by recalling the relationships between process parameters and sensor 

data. This is achieved through two NN training: one for changing curvature Al 6061 

workpiece welding, the other for changing material flat plate welding. Figures 4.12 (a) to 

(f) show the final architecture, value of training performance function and the comparison 

of NN outputs to experimental data of the trained NN for complex curvature FSW of Al 

6061. The architecture of the trained NN is shown as follows: 

NN inputs: curvature, torque, temperature and Fz. 

NN outputs: feed rate, spindle speed, tilt angle and plunge depth. 

NN structure: 4-9-4.  

 

 

Figure 4.12: Training of NN for process parameter deriving.  (a) NN architecture, 

(b) performance function 

(a) 

(b) 
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Figure 4.12 (cont): Training of NN for process parameter deriving.  Comparison of 

NN outputs to target values of (c) feed rate, (d) spindle speed, (e) tilt angle and (f) 

plunge depth 

The NN trained with the Levenberg-Marquardt algorithm training resulted in a mse value 

(c) 

(d) 

(e) 

(f) 
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of 0.0571601 after 200 training epochs. It can be used to derive instant process 

parameters given on-line sensor data and process conditions. The derived process 

parameters can be used for on-line fuzzy rule generating as described in Chapter 5.  

4.4.2.4 NN Training for Mapping Process Parameter/Sensor Data Relationships 

The non-linear relationships of sensor data to process parameters and process conditions 

can also be modeled by NN training for process simulation. Figures 4.13 (a) to (e) show 

the final value of the training performance function, the final architecture and comparison 

of NN outputs to experimental data of the trained NN for complex curvature FSW of Al 

6061 alloy. The architecture of the trained NN is shown as follows: 

NN inputs: feed rate, spindle speed, tilt angle, plunge depth and curvature.  

NN outputs: torque, temperature and Fz. 

NN structure: 5-7-3.  

 

Figure 4.13: Training of NN for sensor data modelling.  (a) Performance function 

(a) 
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Figure 4.13 (cont): Training of NN for sensor data modelling.  (b) NN structure, and 

comparison of NN outputs to target values of (c) toruqe, (d) temperature and (e) Fz 

Automated Regularization was used as the training method as it can prevent the NN from 

overfitting and improve generalisation. One feature of this algorithm is that it provides a 

(b) 

(c) 

(d) 

(e) 
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measure of how many network parameters (weights and biases) are being effectively used 

by the network. In this case, the final trained network used approximately 20 parameters 

in the 5-7-3 network after approximately 40 training epochs. This effective number of 

parameters remained approximately the same during the rest of the 200 total epochs. This 

indicates that the network has been trained for a sufficient number of iterations to ensure 

convergence. The inputs and outputs of the training data were scaled in the range [-1 1] to 

obtain the best performance of the Automated Regularization algorithm (The MathWorks, 

2004b). From the comparison of NN outputs to target values, it can be seen that the 

trained NN has a good ability to predict the expected sensor data given a set of process 

parameters and process conditions.   

4.5 Summary  

This chapter provides a systematic method for multi-sensor based sensitive feature 

selection and sensor fusion. OA experiment, statistical tools and NNs were used in 

experimental data acquisition, sensitive feature selection and sensor fusion.  

OA experimental method was chosen to minimize the number of tests due to its ability to 

represents all factors equally and investigate some combinations of factors and factor 

levels. OA experiments were conducted by varying process parameters (feed rate, spindle 

speed, tilts angle and plunge depth) and process conditions (parent material and curvature) 

to acquire sensor data of bending force, torque, temperature and Fz.  

The ANOVA, correlation analysis and percentage contributions were used to select 

sensitive sensor features as candidates for NN training and control variables for 
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intelligent system control. The average effect of each factor on sensor data (bending force, 

torque, temperature and Fz) was investigated. Both temperature and Fz showed high 

sensitivity to process parameter and process condition changes. Bending force was found 

to be the least sensitive. With further ANOVA, percentage contribution and correlation 

analysis, sensitive sensor features to tool/workpiec contact and energy input were 

selected for further sensor fusion.  

Feed-forward back-propagation NNs were trained to perform sensor fusion for process 

condition detecting, tool/workpiece contact and energy input monitoring. Different inputs 

and outputs were designed for different NNs with a specific modelling target. All the 

simulation results showed that the errors of NN outputs to target values were well 

controlled within a limited range after NN training. Using the trained NNs, the intelligent 

system can detect curvature and material changes during complex curvature FSW of Al 

5251 and Al 6061. The trained NNs can be also used to generate on-line ‘if-then’ fuzzy 

rules. The details of on-line fuzzy rule generation with trained NN can be seen in Chapter 

5. All the NN training and statistical analyses were performed with MATLAB and related 

toolboxes. 

The systematic method of statistical analysis and NN training for sensitive feature 

selection and sensor fusion can be expanded to new inputs and outputs. Given new 

process condition (e.g. tool geometry, etc.) and sensor signal (e.g. power, AE, etc.), the 

sensitive feature selection and NN training can be easily upgraded.   

The statistical analysis and NN models are useful in describing a steady-state response 

given certain input parameters. Because only steady-state values were utilised in the 
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analysis, these models do not describe the transient portions of welds. Additional signal 

processing methods, both in the time domain and frequency domain would be required 

for further testing and analysis.   

Process parameters for the OA experiments were selected within a certain range of the 

FSW machine. Further experiments with process parameters outside the selected range, 

different workpiece thickness, and more material types should be carried out to expand 

the range of the monitoring system applications.  
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Chapter 5 Neural-fuzzy Control Scheme during Complex 

Curvature FSW 

Complex curvature FSW is a dynamic process which is controlled via multiple process 

parameters of feed rate, spindle speed, tilt angle and plunge depth. These variables 

cooperate to determine the dependent variables such as tool temperature, torque, and Fz. 

To obtain constant values of such dependent variables, it is desirable to maintain well-

matched feed rate, spindle speed, plunge depth and tilt angle. However, during complex 

curvature, process condition such as workpiece curvature changes dynamically. To 

maintain tool/workpiece contact and energy input, it is inevitable to have to consistently 

adjust process parameters adapting to the changing environment. An intelligent control 

system which has the ability to detect process condition changes and make on-line 

response to the environment is needed.   

5.1 Introduction 

To machine parts with complex geometry which involves multi-inputs and multi-outputs, 

a wide spectrum of on-line controllers have been developed in the manufacturing industry. 

AI techniques have roused great interest in the scientific community and have been 

applied to machining, especially in milling and turning. Tarng and Cheng (1993) 

presented a fuzzy control of feed rate in end milling. Neural networks have been used in 

process control of turning and milling (Tarng, et al., 1994; Chiang, et al., 1995; Haber, et 

al., 2002; Liu and Wang, 1999). Direct intelligent adaptive control was applied in a 

milling process (Altintas, 1994; Liu et al., 1999).  
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Fuzzy logic control is an ideal tool for multi-input multi-output machining process 

control due to its tolerance of imprecise data and ability to model non-linear functions of 

arbitrary complexity. It can also be blended with conventional control techniques (The 

MathWorks, 2004a). Liang et al., (2003) presented a tuning mechanism, including an 

input scale factor tuned with the integration of torque error and an output scale factor 

tuned by the change of torque error, to strengthen or weaken the fuzzy control of CNC 

machine spindle torque by adjusting spindle speed and feed rate.  

The fuzzy rules of most fuzzy controllers are set based on past experience. However, 

when facing a complex MIMO process which involves non-linear relationships between 

inputs and outputs, a more efficient fuzzy rule generating method is needed for the fuzzy 

controller to make instant decisions with on-line sensor signals. In this respect, NN has 

the ability to learn relationships among input and output data sets through a training 

process, thus is able to ‘induce’ output data if a new set of input data is made available 

(Zahedi, 1991). This can be utilised to solve the ‘bottleneck’ problem of rule extraction of 

a fuzzy controller. Sun and Deng, (1996) presented a control structure with fuzzy neural 

network which is composed of an antecedent network to match the premises of the fuzzy 

rules, and a consequent network to implement the consequences of the rules. Lau et al. 

(2001) proposed an integrated neural-fuzzy model using neural network to generate ‘if-

then’ fuzzy rules.  

The MIMO and non-linear process of FSW makes intelligent systems technology a 

feasible option to classical control strategies. A neuro-fuzzy control scheme was 

proposed in this study for tool/workpiece contact control of complex curvature FSW. The 
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proposed controller incorporates the advantages of neural network and fuzzy logic, and 

utilises a tuning mechanism for adapting the control action to process condition changes.  

5.2 Proposed System Structure  

Figure 5.1 shows the overall structure of the proposed neuro-fuzzy control scheme. Inputs 

ES(t) to the control system are errors of on-line  control variables YS(t) to their reference 

values RS(t). Outputs from the control system are proposed process parameter adjustments 

∆U(t). Two trained NNs were used to detect process condition changes and derive instant 

process parameters YU(t). A rule-generating module for fuzzy rule generation used control 

variable errors ES(t), and process parameter error EU(t) between preset value RU(t) and 

derived instant value YU(t) to generate on-line fuzzy rules. A fuzzy controller with 

predefined input/output membership functions was used to generate primary commands 

for process parameters adjustment, which are further tuned by a tuning module to 

strengthen or weaken control actions in response of the dynamic process changes. The 

design details and simulation are described in the following sections.  

 

Figure 5.1: Structure of the proposed neuro-fuzzy scheme for process control 
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5.3 The Neuro-fuzzy Control Scheme 

The neuro-fuzzy control scheme is mainly composed of a basic FLC, a fuzzy rule 

generating module, and a fuzzy input/output tuning mechanism. The integrated neuro-

fuzzy control scheme performs the intelligent monitoring and control of tool/workpiece 

contact and energy input for complex curvature FSW.  

5.3.1 The Basic Fuzzy Controller 

The main part of the control system consists of two parallel-working FLCs, which 

perform the basic fuzzy control of tool/workpiece contact and energy input respectively. 

The basic Mamdani type fuzzy controller consists of a fuzzifier, a fuzzy inference engine, 

a defuzzifier and membership functions. The fuzzy rules are however not preset, but 

generated on-line for the controller in this study. Using the example of neuro-fuzzy 

control of Al 6061 alloy flat plate FSW, the details of the basic fuzzy controller are 

described in the following subsections.   

5.3.1.1 Inputs and Normalising 

The control variables of the tool/workpiece contact FLC, which recommends on-line 

adjustments of tilt angle and plunge depth, are temperature, the ratio of temperature to Fz, 

and the ratio of torque to Fz. The control variables of the tool/workpiece energy input 

FLC, which recommends on-line adjustments of feed rate and spindle speed, are Fz, the 

ratio of temperature to torque, and the ratio of torque to Fz. The statistical analysis of 

control variable selection was covered in Chapter 4. Each of the control variables is 

compared to a reference value. This yields three inputs to the tool/workpiece contact FLC, 
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the temperature error (ERRTemp), the temperature/Fz error (ERRTemp/Fz) and the torque/Fz 

error (ERRTorq/Fz). At the same time, besides the same control variable ERRTorq/Fz, two 

new inputs to the tool/workpiece energy input FLC are obtained as the Fz error (ERRFz) 

and the temperature/torque error (ERRTemp/Torq). At each sampling time i, all the five 

errors are respectively calculated as: 

( ) ( )ERR i Temp Temp iTemp ref= −                                          (5.1) 

( )( )/ ( )

Tempref Temp iERR i FzTemp Fz Fz iref
= −                                      (5.2) 

( )( )/ ( )

Torqref Torq iERR i FzTorq Fz Fz iref
= −                                     (5.3) 

( ) ( )ERR i Fz Fz iFz ref= −                                               (5.4) 

  ( )( )/ ( )

Tempref Temp iERR i TorqTemp Torq Torq iref
= −                                (5.5) 

Where, 

Tempref  Reference value of temperature; 

Torqref  Reference value of torque; 

Fzref   Reference value of Fz; 
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( )Temp i  Temperature value at sample time i;  

( )Torq i  Torque value at sample time i;  

)(iFz   Fz value at sample time i. 

Each of the errors is normalised into [-1 1] before being fed into the controller by 

multiplying the corresponding normalising coefficient (Liang et al., 2003).  

( ) ( ) ( )err i ERR i K iTemp Temp Temp= ×                                            (5.6) 

( ) ( ) ( )err i ERR i K iFz Fz Fz= ×                                                   (5.7) 

( ) ( ) ( )/ / /err i ERR i K iTemp Fz Temp Fz Temp Fz= ×                                    (5.8) 

( ) ( ) ( )/ / /err i ERR i K iTorq Fz Torq Fz Torq Fz= ×                                       (5.9) 

( ) ( ) ( )/ / /err i ERR i K iTemp Torq Temp Torq Temp Torq= ×                            (5.10) 

The normalising coefficient for input normalising is separately considered in the zones 

above and below the reference value to ensure both sides from the reference value (zero 

error point) have the same number and shapes of membership functions.  

The normalising coefficient for error of temperature is calculated as follows. The same 

rule is applied for the other errors. 
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If   ( )Temp i Tempref≥   

  ( ) 1/( )maxK i Temp TempTemp ref= −  

Else  ( ) 1/( )minK i Temp TempTemp ref= −   

Where, 

( )K iTemp    Temperature normalising coefficient; 

maxTemp     Maximum temperature; 

minTemp      Minimum temperature. 

5.3.1.2 Membership Functions 

All the inputs and outputs of the fuzzy controller use the same triangular membership 

function due to its computation efficiency. Each fuzzy input or output has nine MFs: NX 

(extra negative), NL (negative large), NM (negative middle), NS (negative small), ZE 

(zero error), PS (positive small), PM (positive middle), PL (positive large), and PX (extra 

positive). In order to regulate the system output to a desired output, more accurate control 

actions are taken near the reference value (Kim and Yuh, 2002). Therefore, finer fuzzy 

sets are placed near the reference value. Figure 5.2 shows the membership functions of 

input errTemp. It can be seen that the fuzzy values are dense when near zero but sparse 

when far from zero. 
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Figure 5.2 Membership functions of fuzzy input errTemp 

5.3.2 Tuning Mechanism 

Three parts of a fuzzy controller including membership functions, fuzzy rule and 

input/output scale factors can be tuned to make the controller adaptable. In this study, the 

membership functions are preset, and the fuzzy rules are generated on-line. Thus to 

enhance the control actions, inputs and outputs of the controller are tuned by changing the 

gain of input and output scale factors.   

5.3.2.1 Performance Index and Input Scale Factor 

As can be seen in Figure 5.1, the integration of errors of control variables to their 

reference values are used for input tuning. A performance index is also established to 

evaluate process quality using integration of the error of control variable to its reference 

value. The error of a control variable to its reference value in current and the last two 

sample times are used to calculate the performance index.  

Equation (5.11) calculates the performance index for temperature. The calculation 

method applies for the other inputs as well. 

errTemp 
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2( ( ))2( )
3

i err ii TempPerform iTemp
∑ −=                                         (5.11) 

A small value of performance index indicates that a control variable is well controlled by 

the fuzzy controller. In practice, it is expected to maintain a performance value within a 

narrow tolerance zone. To adaptively strengthen or weaken control actions in response to 

on-line signals, the performance index value is used to tune the input scale factor.  The 

tuneable input scale factor for temperature error at sampling time i is calculated as shown 

in equation (5.12). The other two fuzzy inputs are also tuned by similar input scale factors 

(Liang et al., 2003). 

0.16( )
( )

Perform iTempKin iTemp Tempε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                 (5.12) 

where, 

 εTemp  Bandwidth of the tolerance zone; 

KinTemp(i) Temperature error scale factor.  

Thus the final inputs to the FLCs are calculated as follows:   

( ) ( ) ( )err i err i Kin iTemp Temp Temp= ×                                             (5.13) 

( ) ( )err err i Kin iFz Fz Fz= ×                                                  (5.14) 

( ) ( )/ / /err err i Kin iTorq Fz Torq Fz Torq Fz= ×                                      (5.15) 
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( ) ( )/ / /err err i Kin iTemp Fz Temp Fz Temp Fz= ×                                    (5.16) 

( ) ( )/ / /err err i Kin iTemp Torq Temp Torq Temp Torq= ×                             (5.17) 

5.3.2.2 Output Scale Factors and Coefficient 

Defuzzified outputs from the tool/workpiece contact FLC are recommended changes of 

tilt angle Fuzzyouttilt and plunge depth Fuzzyoutplunge. Defuzzified outputs from the 

tool/workpiece energy input FLC are recommended changes of feed rate Fuzzyoutfeed and 

spindle speed Fuzzyoutspeed. Each output variable falls in the preset input range [-1 1]. 

They need to be multiplied by an adjustment step to obtain primary adjustment. The 

primary adjustments of tilt angle ∆tilt, plunge depth ∆plunge, feed rate ∆feed and spindle 

speed ∆speed are calculated as follows with the adjustment steps selected from simulation. 

1( )Fuzzyouttilt tiltΔ = × °                                            (5.18) 

0.2( )Fuzzyout mmplunge plungeΔ = ×                                 (5.19) 

50( / min)Fuzzyout mmfeed feedΔ = ×                                 (5.20) 

100( )Fuzzyout rpmspeed speedΔ = ×                                 (5.21) 

The primary adjustments of tilt angle, plunge depth, feed rate and spindle speed are 

further tuned by corresponding output scale factors according to the trend of control 

variable deviation from its reference value. Thus the derivatives of deviations, or in other 

words the change of the errors are used to calculate the output scale factor. 
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 As all three fuzzy inputs have influence on each fuzzy output in one FLC, the output 

scale factor for each output is calculated by taking the correlation coefficients of the three 

inputs to the output into account. The following shows the equation for tilt angle 

adjustment scale factor. The same equation is applied to the other three output scale 

factors. 

3 2( ) ( ( ))
1

3
( )

1

Co i K iTilt Tilt
iKoutTilt

Co iTilt
i

×∑
==

∑
=

                                      (5.22) 

Where, 

 CoTilt(i) Correlation efficient of the ith control variable to tilt angle. The coefficient 

of temperature, temperature/Fz, and torque/Fz to tilt angle is 0.8314, 0.4808, 

and 0.4620 respectively, as can be seen in Table 4.7 of Chapter 4. 

KTilt(i)           Scale factor calculated from the ith control variable.  

The calculation of the scale factor from the first control variable deviation (temperature 

error) is shown as follows (Liang et al., 2003). The same calculation applies to the other 

control variable errors: 

If   
( )

0
( 1)

iTemp
iTemp

∇
<

∇ −
  &&  

( )
1

( 1)

iTemp
iTemp

∇
>

∇ −
 

If   
( )

1
( 1)

ERR iTemp
ERR iTemp

>
−

,  
( )

(1)
( 1)

iTempKTilt iTemp

α
∇

=
∇ −

; 
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If   
( )

0 1
( 1)

ERR iTemp
ERR iTemp

< <
−

, 
( 1)

(1)
( )

iTempKTilt iTemp

α
∇ −

=
∇

; 

If    
( )

0
( 1)

iTemp
iTemp

∇
>

∇ −
  &&  

( )
1

( 1)

iTemp
iTemp

∇
>

∇ −
  

If    ( ) 1( 1)
ERR iTemp

ERR iTemp
>− ,  

( )
(1)

( 1)

iTempKTilt iTemp

α
∇

=
∇ −

; 

If    ( ) 1( 1)
ERR iTemp

ERR iTemp
<− ,  

( 1)
(1)

( )

iTempKTilt iTemp

α
∇ −

=
∇

; 

Else  (1) 1KTilt =  

Where, 

(1)KTilt  Output scale factor for tilt angle from the first input temperature error. 

α  Constant in [-1 1]. In this study it was chosen as 0.1 through simulation. 

( ) ( ) ( 1)i ERR i ERR iTemp Temp Temp∇ = − −                                        (5.23) 

( 1) ( 1) ( 2)i ERR i ERR iTemp Temp Temp∇ − = − − −                                  (5.24) 

The output scale factor utilises the value of error and its change trend to tune the 

controller. If the absolute value of current error is bigger, in other words the process 

condition is worse, and the change of error is faster than before, then a larger adjustment 
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of the process parameter is desired. Accordingly, the output scale factor should be set 

larger than 1. Whereas if the absolute value of error is smaller, in other words the process 

condition is better, and the change of error is slower than before, then a smaller 

adjustment of the process parameter is preferred, accordingly the output scale factor 

should be set smaller than 1. Appendix B.6 shows the M function for output scaling.  

With the output scale factors and coefficients, the final adjustment of tilt angle, plunge 

depth, feed rate, and spindle speed from the two parallel-working FLCs are given: 

1Fuzzyout Kouttilt tilt TiltΔ = × ×       )(°                                     (5.25) 

0.2C Koutplunge plunge PlungeΔ = × ×      )(mm                                (5.26) 

50C Koutfeed feed feedΔ = × ×        ( / min)mm                         (5.27) 

 100C Koutspeed speed speedΔ = × ×     ( )rpm                                (5.28) 

5.3.3 Fuzzy Rule Generation    

As mentioned earlier, the rule base for the initial fuzzy controller is generated on-line 

using on-line signals of control variables and the trained neural network. The details of 

the fuzzy rule generating are described in the following procedure (Lau et al. 2001).  

5.3.3.1 Trained NN 

Technically, for FSW with the same process condition (material, curvature, tool, etc.), if 

the predefined process parameters are well maintained during welding, there should not 
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be big changes in the sensor signal. In reality, there can be many reasons for process 

parameters and sensor signals changing. The trained NNs were used to detect process 

conditions and derive the instant process parameters from the on-line sensor signals, 

using the relationships established during training. With new inputs of bending force, 

torque, temperature and Fz, the process conditions can be detected first for FSW with 

changing process condition. Using the detected process condition, together with on-line 

sensor data, instant values of process parameters can be derived. Similarly, given 

reference values of sensor signals and original process conditions, the desired process 

parameters can be derived and used as preferred values at the start of the process. The 

preset and instant tilt angle, plunge depth, feed rate and spindle speed derived from the 

NN with the original process conditions (material Al 6061) are shown in Table 5.1. 

Table 5.1: On-line sensor signal and reference values, instant process parameters 

and preset values  

The difference between on-line process parameters derived from NN and preferred 

process parameters suggests that the deviations of tilt angle, plunge depth, feed rate and 

Sensor signal & process parameter Reference value On-line value

NN inputs Bending force (N) 1070 980 
 Torque (Nm) 27 20 

 Temperature (°C) 230 200 

 Fz (kN) 3.6 3 

NN outputs Feed rate (mm/min) 191.41 77.613 

 Spindle Speed (rpm) 398.56 323.91 

 Tilt angle (°) 0.55472 0.83998 

 Plunge depth (mm) 0.17666 0.10163 
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spindle speed from their preferred values cause the deviation of sensor signals from their 

reference values. It also indicates to what extend the sensor signals and process 

parameters have deviated from their reference and preferred values. 

5.3.3.2 Fuzzify Input   

Each error between reference value and on-line value of sensor signals is fuzzified with 

the preset membership functions of corresponding fuzzy input of the two basic FLCs. The 

inputs to the fuzzy controller are the errors of temperature, Fz, temperature/Fz and 

torque/Fz, temperature/torque compared to their reference values. The five errors are then 

normalized into [-1 1] with equations (5.6) to (5.10) as the five inputs of the two FLCs. 

Using the reference and on-line sensor signal values listed in Table 5.1, the five errors 

and their normalized value are given in Table 5.2: 

Table 5.2: Errors and normalized values of control variables 

The normalized values are then mapped into the basic FLCs for fuzzification. Each input 

is fuzzified with predefined fuzzy input membership functions to acquire the name and 

value of the membership functions it falls into. Figure 5.3 shows the fuzzification results 

of the five inputs.  

Control variable Reference value On-line value Error Normalized value

Temperature 230 200 30 0.5403 
Fz 3.6 3 0.6 0.2532 

Temperature/Fz 63.89 66.67 -2.78 -0.0153 

Torque/Fz 7.5 6.67 0.83 0.2402 

Temperature/Torque 8.52 10 -1.48 -0.1621 
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Figure 5.3: Membership function name and value of fuzzified input: (a) error of 

temperature, (b) error of Fz, (c) error of temperature/Fz, (d) error of torque/Fz, and 

(e) error of temperature/torque 

(a) 

(b) 

(c) 

(d) 

(e) 
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5.3.3.3 Fuzzify Output   

The errors between the preferred and instantly derived values of process parameters are 

also fuzzified with the preset membership functions of the basic FLCs.  

Using the same normalization method, the errors of tilt angle, plunge depth, feed rate and 

spindle speed are normalized into [-1 1].  Using the reference and on-line values of feed 

rate, spindle speed, tilt angle and plunge depth listed in Table 5.1, the four errors and 

their normalized values are given in Table 5.3:  

Table 5.3: Errors and normalized values of process parameters 

 

The normalized values are also mapped into the basic FLCs. Each of the normalized 

values is fuzzified with the predefined output membership functions to acquire the name 

and value of the membership functions it falls into. Figure 5.4 shows the fuzzification 

results of (a) adjustment of feed rate, (b) adjustment of spindle, (c) adjustment of tilt 

angle, and (d) adjustment of plunge depth. 

Process Preferred value On-line value Error Normalized value

Feed rate 191.41 77.613 113.897 0.8047 
Spindle speed 398.56 323.91 74.650 0.7574 

Tilt angle 0.55472 0.83998 -0.285 -0.1974 

Plunge depth 0.17666 0.10163 0.075 0.9787 
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Figure 5.4: Membership function name and value of fuzzified outputs: (a) feed 

adjustment, (b) speed adjustment, (c) tilt adjustment, and (d) plunge adjustment 

5.3.3.4 Rule Generation   

The fuzzified inputs and outputs from previous procedures are used to generate on-line 

fuzzy rules for the FLCs. Membership function names of the fuzzified inputs are used as 

fuzzy rule antecedents; while the membership function names of fuzzified outputs are 

(a) 

(b) 

(c) 

(d) 
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used as fuzzy rule consequents. The antecedents and consequents of the on-line fuzzy 

rules generated from the example are shown in Table 5.4. 

Table 5.4: Fuzzy rule antecedents and consequents 

The on-line fuzzy rule is thus generated from the full combination of the antecedents and 

consequents. For this example, there are 2x2x2x2x2 = 32 fuzzy rules generated on-line 

for the tool/workpiece contact FLC, and 2x2x2x2x2 = 32 fuzzy rules generated on-line 

for the tool/workpiece energy input FLC respectively. The linguistic expression of the 32 

fuzzy rules for the tool/workpiece contact FLC is listed in Appendix B.1. The first rule is 

shown as follows: 

IF  error of temperature is PM && error of temperature/Fz is NS 

  && error of torque/Fz is PS,  

THEN  tilt angle adjustment is NM && plunge depth adjustment is PL. 

Fuzzy rule antecedents & consequents Membership function

Antecedents errTemp PM, PL 
 errTemp/Fz NS, ZE 

 errTorq/Fz PS, PM 

Consequents ΔTilt NM, NS 

Tool/workpiece contact 

FLC 

 ΔPlunge PL, PX 

Antecedents errFz PS, PM 

 errTemp/Torq NM, NS 

 errTorq/Fz PS, PM 

Consequents ΔFeed PL, PX 

Tool/workpiece energy 

input FLC 

 ΔSpeed PL, PX 
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The linguistic expression of the 32 fuzzy rules for the tool/workpiece energy input FLC 

can be seen in Appendix B.2. The first rule is listed as follows: 

IF  error of Fz is PS && error of temperature/torque is NM &&  

  error of torque/Fz is PS,  

THEN  feed rate adjustment is PL && spindle speed adjustment is PL. 

With this method, when each set of on-line sensor data is collected from the welding 

process, the rule generation module automatically generates the on-line fuzzy rules. The 

two basic FLCs are then updated with the fuzzy rules and perform fuzzy inference. The 

MATLAB for rule generation can be seen in Appendix B.7. The visualised fuzzy rules 

for tool/workiece contact and energy input are shown in Appendix B.3 and B.4 

respectively, using the MATLAB fuzzy rule viewer.   

5.4 Simulations  

To test the performance and adaptability of the proposed neuro-fuzzy control scheme, 

four examples need to be demonstrated: (1) 3mm Al 6061 flat plate weld, (2) 3mm Al 

6061 round tube weld, (3) 3mm flat plate with material changing from Al 6061 to Al 

5251 and (4) 3mm thickness Al 6061 alloy with curvature changing from a diameter of 

70mm to flat and a diameter of 40mm. The simulation results were compared to the data 

recorded in the experiments of the old welding system.  Figure 5.5 shows the workpieces 

to be welded in the four demonstrations. 
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Figure 5.5: FSW workpieces of (a) Al 6061 flat plate weld, (b) Al 6061 round tube 

weld, (c) flat plate with changing material and (d) Al 6061 plate with changing 

curvature. 

5.4.1 FSW of Al 6061 Flat Plate 

 The recorded sensor data of a sample welded with process parameters: feed rate 100 

mm/min, spindle speed 600 rpm, tilt angle 0.5° and plunge depth 0.2 mm, in the OA 

experiment were compared to the simulation results from the proposed neuro-fuzzy 

controller. The average value of the recorded sensor data: bending force 335.95 N, torque 

20.33 Nm, temperature 275.2 ˚C, and Fz 1.74 kN were used as the reference value for the 

neuro-fuzzy controller. Using the trained NN, the preferred process parameters of the 

weld were derived as: feed rate 103.53 mm/min, spindle speed 595.4 rpm, tilt angle 0.52˚ 

and plunge depth 0.19 mm.  

Figure 5.6 shows the comparison of bending force, torque, temperature, and Fz between 

recorded value of the welded sample and the simulation results from the proposed 

controller. The simulated process parameter adjustments by the controller were also 

shown in Figures 5.6 (a) to (d).   

Al 6061 Al 5251 

R47.5

(a) 

(c) 

(b) 

(d) 

R35 R20 Flat 
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Figure 5.6: Comparison of (a) bending force and (b) torque between sample weld 

and simulation results of Al 6061 flat plate. 

(a) 

(b) 
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Figure 5.6 (cont): Comparison of (c) temperature, and (d) Fz between sample weld 

and simulation results of Al 6061 flat plate. 

(c) 

(d) 
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It can be seen that sensor data of the experimental sample were well controlled, as in flat 

plate welding of uniform material, process condition and parameters can be well 

maintained. It also shows that even the process parameters were well predefined; there 

are still small deviations of sensor data from their reference values in the sample welding. 

The simulation results of bending force, torque, temperature and Fz from the neuro-fuzzy 

controller are better maintained toward their reference value than the sample weld, except 

that torque and Fz of the simulation results are a little bit higher than their reference 

values. This can be explained by the training error of the NNs representing the 

relationship between process parameters and sensor data. It can be also seen that process 

parameters of tilt angle and plunge depth are adjusted on-line by analyzing on-line sensor 

data to maintain tool/workpiece contact.  

5.4.2 FSW of Al 6061 Round Tube with Constant Curvature 

During welding of round tubes with constant curvature, the real tool/workpiece contact 

changed due to the deviations of tilt angle and plunge depth from the predetermined 

condition, which were caused by workpiece and clamping system machining errors 

together with process disturbance by the large force involved. Thus, to maintain the 

desired tool/workpiece contact and energy input, on-line sensor data of temperature, 

torque and Fz are fed back to the control system for analyzing and making on-line 

process parameter adjustments.  

Using the proposed neuro-fuzzy control scheme, on-line value of control variables 

(torque, temperature, and Fz) are fed into the controller as inputs, while feed rate, spindle 

speed and plunge depth are adjusted on-line by the controller.  
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Figures 5.7 (a) to (c) show the comparisons of sensor data between a sample round tube 

weld and simulation results of the controller. The sample was welded on the machine 

with process parameters: feed rate 100 mm/min, spindle speed 500 rpm, tilt angle 1 ° and 

plunge depth 0.2 mm. The four process parameters and the process condition curvature 

radius of 47.5 mm were used as inputs of the trained NN to derive reference values of 

torque, temperature and Fz; which are 15 Nm, 240 °C and 3.34 kN. The tilt angle was 

considered as constant, as it changes very little during welding once the workpiece was 

firmly clamped. The curvature radius, tilt angle, reference values of torque, temperature 

and Fz were fed into another trained NN to derive the preferred process parameters of 

feed rate (101.47 mm/min), spindle speed (500.98 rpm) and plunge depth (0.20mm).  

 

Figure 5.7: Comparison of (a) torque between sample weld and simulation results of 

Al 6061 round tube 

(a) 
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Figure 5.7 (cont): Comparison of (b) temperature, and (c) Fz between sample weld 

and simulation results of Al 6061 round tube 

(c) 

(b) 
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It can be seen that torque, temperature and Fz of the sample weld are not well controlled 

during welding with fixed process parameters. This can be explained mainly by the 

plunge depth. The sample was not actually welded with the expected constant plunge 

depth, as the workpiece rotating around the axis of the fixture is not perfectly ‘round’ due 

to the machining error of workpiece and fixture. This cause the tool/workpiece contact 

conditions to change during welding. However, with the neuro-fuzzy control scheme, on-

line sensor data of torque, temperature, and Fz were analyzed to find out the reason for 

the deviation of sensor data from their reference values, and corresponding process 

parameter adjustments were made to maintain correct tool/workpiece contact and energy 

input. The simulation results of temperature and Fz are maintained much better towards 

the reference level than the sample welded on the old system, while torque is almost 33% 

higher than the reference value. This also comes from the error of the NN model used in 

simulation. It can be expected that with more samples used in OA experiments, a more 

accurate NN model and better simulation results can be achieved.  

5.4.3 Workpieces with Changing Material 

Fig.5.8 shows the comparison of torque and temperature between the experimental 

sample and neuro-fuzzy controller simulation results of flat plate with material changing 

from Al 6061 alloy to Al 5251 alloy. The sample was welded with fixed process 

parameters: feed rate 50mm/min, spindle speed 400 rpm, tilt angle 1 ° and plunge depth 

0.2 mm for both materials. The trained NN, which maps the relationship between process 

conditions and parameters (material, feed, speed, tilt and plunge), and sensor data (torque 

and temperature), were used to derive the reference value of torque (24.25 Nm) and 

temperature (249.56 °C).  
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Figure 5.8: Comparison of (a) torque, and (b) temperature between sample weld 

and simulation results of workpieces with changing materials 

(b) 

(a) 
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During simulating, the same constant tilt angle and plunge depth were used, as they can 

be well maintained during flat plate welding. The feed rate and spindle speed were 

adjusted by the controller to maintain torque and temperature towards their reference 

value for the two materials. A trained NN, which maps the relationship between process 

parameters and sensor data (e.g. tilt angle, plunge depth, torque, and temperature), and 

material (‘0’ for Al 6061 and ‘1’ for Al 5251), was used for material detecting. When the 

tool moved from Al 6061 to Al 5251 alloy plate, the on-line sensor data of torque and 

temperature, together with process parameter tilt angle and plunge depth, were used to 

determine what kind of material it was welding, and thus the controller was able to use 

the material type and on-line sensor data to perform neuro-fuzzy control.  

It can be seen that with fixed process parameters, considerable decrease in torque and 

temperature was observed in the data of the sample welded on the old system due to a 

material change. However, with the neuro-fuzzy controller, torque and temperature were 

much better maintained towards their reference values by adjusting feed rate and spindle 

speed on-line, although small deviations were still observed. This indicated that the 

proposed neuro-fuzzy control scheme has adaptability to material changes.  

5.4.4 Workpieces with Changing Curvature 

To test the adaptability of the proposed neuro-fuzzy control scheme to complex curvature, 

the welding process of workpiece with changing curvature was simulated and compared 

to the sample welded without the proposed neuro-fuzzy controller.  

The curvature of the sample workpiece starts with a curvature radius of 35 mm, which is 

connected to a flat plate and ends with a curvature radius of 20mm, as shown in Figure 



 142

5.5 (d). The sample was welded with fixed process parameters: feed rate 100mm/min, 

spindle speed 500 rpm, tilt angle 1 ° and plunge depth 0.2 mm. The reference sensor 

values for torque, temperature and Fz for simulation were thus derived from the trained 

NN, which mapped the relationship between process conditions and parameters 

(curvature, feed, speed, tilt, and plunge), and sensor data (torque, temperature and Fz), as 

15.08 Nm, 240.71 °C and 3.34 kN with the fixed process parameters and a curvature 

radius of 35 mm.   

During simulating, the same constant tilt angle as the welded sample was used. The feed 

rate, spindle speed and plunge depth were adjusted by the controller to maintain torque, 

temperature and Fz towards their reference values. A trained NN mapping the 

relationship between process parameters and sensor data, and a curvature radius was used 

for curvature detecting. When the tool moved from one curvature to another, on-line 

sensor data of torque, temperature, Fz and process parameters were used to predict the 

curvature being welded. The controller used the predicted workpiece curvature and on-

line sensor data to perform neuro-fuzzy control.  

Figures 5.9 (a) to (c) show the comparison of control variables between a welded sample 

without the neuro-fuzzy controller and simulation results with the controller, as well as 

process parameter adjustments by the controller. The results show that in the data of the 

sample welded with fixed process parameters, large deviations of the three control 

variables from their reference values were observed for all the three different curvatures. 

It was also observed that large difference in torque, temperature and Fz existed between 

the three curvatures. 
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Figure 5.9: Comparison of (a) torque, (b) temperature between sample weld and 

simulation results of workpiece with changing curvature 

(a) 

(b) 
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Figure 5.9 (cont): Comparison of (c) Fz between sample weld and simulation results 

of workpiece with changing curvature 

However, with the neuro-fuzzy control scheme, torque, temperature and Fz were much 

better maintained towards their reference values than the welded sample by adjusting 

feed rate, spindle speed and plunge depth on-line. This indicated that the proposed neuro-

fuzzy control scheme has good adaptability to curvature changing, and thus it is 

applicable for complex curvature FSW. Among the three control variables of the 

simulation results, temperature seems to have the least deviation from its reference value 

and the smallest change range; while torque shows the most deviation from its reference 

value and the largest change range. This suggests that sensor values are limited to 

different ranges for different workpiece curvatures; or in other words, for complex 

curvature FSW, some but not all of the control variables can be well maintained.   

(c) 
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5.5 Discussion 

FSW is a non-linear process which involves multiple variables of process parameter, 

process condition and process outputs. During complex curvature FSW, process 

condition such as workpiece curvature change diversely. Even for workpiece with 

uniform curvature, the slight machining error of the workpiece and the disturbance from 

the machine cause the deviation of the control variables from reference value, and results 

in unstable weld quality.  To maintain tool/workpiece contact and energy input, which 

dominate the weld quality, the neuro-fuzzy control scheme is characterised by the ability 

of detecting the change of process condition and making on-line decision of process 

parameter adjustments to maintain control variables towards their reference value. 

For flat plate welds, the sensor data of the weld sample show good stability. They were 

generally well maintained towards their reference value owing to the well controlled 

process parameters. It also shows small deviations of sensor data (e.g., torque and Fz) 

from their reference values in the sample welding. This can be explained by the non-

uniformity of material. Even the slightest change of workpiece material thickness has 

influence on the sensor data. The sample was welded without adjusting process 

parameters in response of the changing of sensor data. However, using the neuro-fuzzy 

control scheme, the deviations of sensor data to their reference value were fed into the 

fuzzy controller. With the fuzzy rules generated with the trained NN which maps the 

relationship between process parameters and sensor data established during training, 

process parameters were on-line adjusted to maintain the control variables towards their 
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reference value. It can be seen in Figure 5.6 that the stability of sensor data from 

simulation results was improved compared to the data from the welded sample.  

When welding workpiece of round tube, sensor data (torque, temperature and Fz) from 

the sample welded with unadjusted process parameters showed large deviation from their 

reference value, as shown in Figure 5.7.  The sample was not really welded with the 

preset process parameters due to the weld trajectory fluctuation caused by machining 

error of workipece and clamping system. With the neuro-fuzzy controller, the real 

process parameters, especially the plunge depth, were derived with on-line sensor data by 

the trained NN. The difference between real value and preferred value of process 

parameters suggested the reason for the deviation of sensor data, and accordingly the 

fuzzy rules were on-line generated to update the basic FLCs. The tuning mechanism of 

the controller further strengthen or weaken the process parameter adjustments adapt to 

the accumulation and change trend of sensor data error. By on-line adjusting process 

parameters towards preferred value, the sensor data were maintained stable towards their 

reference value. However, it was also shown in Figure 5.7 that the torque of simulation 

results was maintained towards a stable value higher than the reference value (20 N.m to 

15N.m); this can be explained by the training error of the NN model. The real 

relationship between process parameters and sensor data was not perfectly reflected by 

the NN model. This also indicated that with updated NN model, the control variables can 

be better maintained towards their reference value for round tube FSW.  

The welding of workpieces with changing material and curvature were also demonstrated 

to test the adaptability of the neuro-fuzzy control scheme to process condition (e.g., 

material and curvature) changes. When the sample with changing material (or curvature) 
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was welded with fixed process parameters, the sensor data (torque, temperature and Fz) 

from the sample weld showed big fluctuation when the tool moved from one material (or 

curvature) to another. The difference of sensor data for different material was cause by 

different material properties such as formability and thermal conductivity, while the 

difference of sensor data for different curvature was mainly caused by tool/workpiece 

contact condition, as shown in Chapter 4 and 3 respectively. However, using the trained 

NN for material (or curvature) detecting, the difference of sensor data between different 

materials (or curvatures) was used to detect material (or curvature) change. With the 

detected material (or curvature), the preferred and instant process parameters were 

derived from the reference and on-line value of sensor data respectively. The error of 

sensor data were fed into the FLCs updated with on-line generated fuzzy rules for making 

process parameter adjustments. The same preferred process parameters were used during 

welding until another material (or curvature) was detected. As shown in Figure 5.8 and 

Figure 5.9, the simulation results of sensor data were much better maintained towards 

reference value compared to the sample weld data, and this indicates that the neuro-fuzzy 

controller has good adaptability to material (or curvature) change.  

It was also shown in the simulation results that among the sensor signals, torque exhibited 

larger deviation from reference value than the other sensor signals. Even with the neuro-

fuzzy control scheme, it was impossible to well maintain all of the sensor data towards 

their reference value during complex curvature FSW. This can be explained by the 

limitation of the process parameters and welding tool used in this project. Process 

parameters such as spindle speed were limited within certain ranges by the FSW machine, 

and the same tool was used in all tests. Therefore, for certain material (or curvature), only 
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limited range of sensor value can be achieved. To further improve the performance and 

adaptability of the neuro-fuzzy control scheme, the NN models used for material 

(curvature) detecting and fuzzy rule generating need to be updated with training data 

outside the selected range and weld tools of different geometries. 

5.6 Summary    

A neuro-fuzzy control scheme integrating AIs such as NN and FLC for solving MIMO 

system such as FSW process was presented. The proposed neuro-fuzzy control system 

consists of several trained NNs for detecting process condition changes and deriving 

instant process parameters, a rule-generating module for fuzzy rule generation using 

control variable errors, and process parameter errors between preferred values and 

derived instant values, a basic fuzzy controller with predefined input/output membership 

functions to generate primary command for process parameters adjustment, and a tuning 

module to strengthen or weaken control actions by tuning input and output scale factors 

in response of the dynamic process changing.  

The proposed neuro-fuzzy control scheme for maintaining contact and energy input 

between tool and workpiece during complex curvature FSW was demonstrated. The 

simulation results of workpieces with changing process conditions such as material and 

curvature indicate that with the algorithms of input/output scale factor tuning and on-line 

fuzzy rule generating, the maintenance of tool/workpiece contact and energy input 

represented by control variables such as torque, temperature and Fz, can be greatly 

improved. The simulation results also indicated that the proposed neuro-fuzzy control 

scheme has good adaptability to process condition (e.g. material and curvature) changes.   
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It can also be observed from the simulation results and the welded samples that among 

the control variables of torque, temperature, and Fz, the deviation from reference values 

and the changing ranges are different with the same changing of process condition (e.g. 

material and curvature). This indicates that sensor values are limited to different ranges 

for different process condition (e.g. material and curvature); that is to say, for complex 

curvature FSW, not all of the control variables can be well maintained with changing 

process condition. By using different trained NNs, the proposed neuro-fuzzy control 

scheme also shows good flexibility to change its control variables for different 

requirements.   

Further research on increasing NN model accuracy by investigating wider range of 

process condition and process parameters is needed in order to improve the performance 

of the proposed intelligent neuro-fuzzy control scheme for complex curvature FSW. The 

application of the proposed intelligent control scheme is also expected to be extended to 

dynamic processes other than FSW.  
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Chapter 6 Conclusion and Future Development 

FSW is a relative new technique that has shown much promise and potential. Much 

research has been done on mechanical properties, monitoring, and control of FSW; 

however, most of the research into monitoring and control of FSW are mainly focused on 

straight welds. In addition, most of the conclusions have been qualitative and have been 

based largely on observation. Little documentation could be found on control and 

monitoring of complex curvature FSW.  

Artificial intelligence is to describe and build an intelligent agent, which has the ability to 

sense the environment, to make decisions and to control action. The relative concepts of 

intelligent control and on-line monitoring, including sensitive feature selection, multi-

sensor fusion, machine learning and adaptive control were introduced in this research 

project.  In the establishment of the neuro-fuzzy control scheme proposed in this study, 

AI algorithms such as NN and FL were applied to monitoring and control complex 

curvature FSW to solve the non-linearity and uncertainty problems of the process.  

The accomplishments and contributions of this study for the particular machine, tool and 

materials are summarized as follows:  

• An adaptive neuro-fuzzy control scheme which integrates process condition 

sensing, on-line fuzzy rule generation, fuzzy inference and input/output tuning 

was implemented successfully for non-linear FSW process control. 

• Hardware architecture and software components for a table-tilting multi-axis 

system providing large force and precise orientation and position control were 
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proposed and implemented to perform complex curvature FSW on the platform of 

the existing FSW machine for flat plate welding. 

• OA experiments of Al 5251 and Al 6061 alloy FSW were carried out to obtain 

experimental data by varying process parameters (feed rate, spindle speed, tilt 

angle and plunge depth), and process conditions (parent material and curvature). 

The effects of process conditions and process parameters on sensor data were 

investigated. 

• Statistical analysis and feed-forward back-propagation NNs were applied to 

perform sensor fusion. The feed-forward back-propagation NNs, which map the 

non-linear relationship between process conditions, process parameters and sensor 

data, were trained with selected sensitive features for process condition 

monitoring and on-line fuzzy rule generation.   

• The uncertainty and non-linearity in complex curvature FSW makes it difficult to 

establish am accurate kinematic and dynamic model. Owing to its ability to model 

non-linear functions of arbitrary complexity, FL was integrated with NN to realize 

intelligent control of the MIMO FSW process. The tuning mechanism, which 

tuned input/output scale factors on-line in response of both the amount, and the 

trend of control variable deviations from their reference values, provide the FL 

control with adaptability to process changes.  

• Simulations were conducted to test the performance of the intelligent nero-fuzzy 

control scheme during complex curvature FSW. Simulation results showed that 

the presented neuro-fuzzy control scheme has adaptability to process condition 



 152

such as parent material and curvature changes and that the control variables were 

well maintained.  

Intelligent control and monitoring system is an advanced approach in manufacturing. 

Further development may enhance the performance and intelligence of the system. Future 

development may be summarized as follows: 

• To investigate mechanical and thermal properties such as fatigue life, 

microstructure and temperature distribution of friction stir welds and take these 

factors into the monitoring and intelligent control system.    

• To integrate other AIs such as GA and EC to enhance the learning and optimizing 

abilities of the neuro-fuzzy control scheme. 

• To implement the neuro-fuzzy controller in a C program and integrate it into the 

real-time QNX operation system. GUI for monitoring and process simulation can 

be upgraded with visualised process animation. 

• To explore more variables used in sensor fusion and fuzzy control such as spindle 

power, Fx and Fy. Using other variables as inputs for controlling outputs may add 

the intelligence of the neuro-fuzzy control scheme for complex curvature FSW. 

• To perform additional testing and analysis for the creation of transient models 

which include both the steady-state and transient portion of the FSW process. 

More features are to be extracted from the sensor signals by additional signal 

processing and analysis methods such as power, kurtosis value and skew value in 

the time domain and Fast Fourier Transformation in frequency domain.  
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• To enhance the adaptability of the monitoring and control system by investigating 

process parameters outside the selected range for this study and new tool, material 

and workiece thickness.  

• To extend the application of the presented neuro-fuzzy control scheme in other 

MIMO machining processes. 
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Appendix A Experimental Data of FSW 

Table A.1: Experimental data of Al 5251 alloy flat plate welding 

Experiment 1: 3mm Al 5251 flat plates 

Exp 
number 

feed 
mm/min 

speed 
rpm 

tilt 
˚ 

plunge 
mm 

dwell
s 

Bend1
N 

Torq
Nm 

Temp
˚C 

Comp
KN 

Bend
/Torq

Bend 
/Temp 

Bend 
/Comp

Temp
/Torq

Temp
/Comp

Torq
/Comp GUI

value
actual 

sequence

1 50 300 2 0.1 10 373.46012.818115.019 1.573 29.136 3.247 237.419 8.973 73.121 8.149 17.2 1 
2 50 400 1 0.2 10 134.00822.770224.451 1.089 5.885 0.597 123.056 9.857 206.107 20.909 17.2 6 
3 50 500 0.5 0.3 10 231.28017.414255.405 0.663 13.281 0.906 348.83914.667385.226 26.265 17.2 11 
4 50 600 0 0.4 10 226.34215.516251.466 0.572 14.588 0.900 395.70316.207439.626 27.126 17.2 13 
5 100 300 1 0.3 10 460.44624.341186.464 1.372 18.916 2.469 335.602 7.660 135.907 17.741 17.3 5 
6 100 400 2 0.4 10 292.24823.737219.183 1.261 12.312 1.333 231.759 9.234 173.817 18.824 17.5 2 
7 100 500 0 0.1 10 149.98415.416191.594 0.904 9.729 0.783 165.91212.428211.940 17.053 16.9 14 
8 100 600 0.5 0.2 10 187.31219.244246.317 0.744 9.734 0.760 251.76312.800331.071 25.866 17.1 9 
9 150 300 0.5 0.4 10 812.69122.375192.983 1.214 36.321 4.211 669.432 8.625 158.965 18.431 17.3 12 
10 150 400 0 0.3 10 281.85117.821190.032 0.867 15.816 1.483 325.08810.663219.183 20.555 17.1 16 
11 150 500 2 0.2 10 179.12723.334212.609 1.084 7.677 0.843 165.246 9.112 196.134 21.526 17.3 3 
12 150 600 1 0.1 10 260.20918.703237.290 0.905 13.913 1.097 287.52412.687262.199 20.666 17.1 7 
13 200 300 0 0.2 10 892.90320.363167.181 1.386 43.849 5.341 644.230 8.210 120.621 14.692 17.0 15 
14 200 400 0.5 0.1 10 447.73418.737200.030 1.313 23.896 2.238 341.00110.676152.346 14.270 17.0 10 
15 200 500 1 0.4 10 483.54019.478230.240 1.221 24.825 2.100 396.02011.821188.567 15.952 17.4 8 
16 200 600 2 0.3 10 303.58121.632233.519 1.497 14.034 1.300 202.79310.795155.991 14.450 17.4 4 
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Table A.2: Experimental data of Al 6061 alloy flat plate welding 

 

OA Experiment 2: 3mm Al 6061 flat plates 

Exp 
number 

feed 
mm/min 

speed 
rpm 

tilt 
˚ 

plunge 
mm 

dwell
s 

Bend1
N 

Torq
Nm 

Temp
˚C 

Comp
KN 

Bend
/Torq

Bend 
/Temp

Bend
/Comp

Temp
/Torq

Temp
/Comp

Torq
/Comp GUI 

value
actual 

sequence

1 50 300 2 0.1 10 1271.63 18.52 174.48 2.45 68.66 7.29 519.03 9.42 71.22 7.56 17.2 16 
2 50 400 1 0.2 10 373.84 24.25 249.56 2.81 15.42 1.50 133.04 10.29 88.81 8.63 17.2 11 
3 50 500 0.5 0.3 10 439.37 20.39 282.99 1.52 21.55 1.55 289.06 13.88 186.18 13.41 17.2 6 
4 50 600 0 0.4 10 411.44 17.09 301.81 1.23 24.07 1.36 334.50 17.66 245.37 13.89 17.2 4 
5 100 300 1 0.3 10 856.27 27.91 211.89 4.00 30.68 4.04 214.07 7.59 52.97 6.98 17.3 12 
6 100 400 2 0.4 10 593.28 31.37 228.78 3.67 18.91 2.59 161.66 7.29 62.34 8.55 17.5 13 
7 100 500 0 0.1 10 410.56 22.85 252.95 2.45 17.97 1.62 167.58 11.07 103.24 9.33 16.9 3 
8 100 600 0.5 0.2 10 335.95 20.33 275.20 1.74 16.52 1.22 193.07 13.54 158.16 11.68 17.1 8 
9 150 300 0.5 0.4 10 1468.24 32.55 232.88 4.20 45.11 6.30 349.58 7.15 55.45 7.75 17.3 5 
10 150 400 0 0.3 10 949.51 29.18 256.72 3.03 32.54 3.70 313.37 8.80 84.73 9.63 17.1 1 
11 150 500 2 0.2 10 709.56 20.71 222.82 2.49 34.26 3.18 284.96 10.76 89.49 8.32 17.3 15 
12 150 600 1 0.1 10 408.91 25.24 260.16 2.28 16.20 1.57 179.35 10.31 114.11 11.07 17.1 10 
13 200 300 0 0.2 10 1374.17 28.07 215.43 4.24 48.96 6.38 324.10 7.67 50.81 6.62 17.0 2 
14 200 400 0.5 0.1 10 1069.28 26.57 232.57 3.60 40.24 4.60 297.02 8.75 64.60 7.38 17.0 7 
15 200 500 1 0.4 10 854.07 26.73 251.53 3.41 31.95 3.40 250.46 9.41 73.76 7.84 17.4 9 
16 200 600 2 0.3 10 466.99 23.82 237.90 2.66 19.60 1.96 175.56 9.99 89.44 8.95 17.4 14 
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Table A.3: Experimental data of Al 6061 round tube welding 

OA Experiment 3: 3mm Al 6061 round tubes 

Exp 
number 

feed 
mm/min 

speed 
rpm 

tilt 
˚ 

plunge 
mm 

Diameter
mm 

Bend1
N 

Torq
Nm 

Temp
˚C 

Fz 
KN 

Bend 
/Torq 

Bend
/Temp

Bend 
/Fz 

Temp
/Torq

Temp
/Fz 

Torq 
/Fz actual 

sequence

exp1 50 400 2 0.1 40 771.90 11.25 187.56 1.90 68.63 4.12 406.69 16.67 98.82 5.93 5 
exp2 50 500 1 0.2 70 1207.93 12.88 256.72 1.18 93.78 4.71 1025.94 19.93 218.05 10.94 10 
exp3 50 600 0 0.4 95 467.26 19.83 315.00 1.88 23.57 1.48 248.24 15.89 167.35 10.53 14 
exp4 100 400 2 0.2 95 1660.01 17.49 206.70 3.24 94.94 8.03 512.64 11.82 63.83 5.40 18 
exp5 100 500 1 0.4 40 269.46 20.93 269.40 2.31 12.88 1.00 116.41 12.87 116.39 9.04 4 
exp6 100 600 0 0.1 70 1197.22 12.79 249.48 1.82 93.62 4.80 659.58 19.51 137.45 7.05 11 
exp7 200 400 1 0.1 70 2473.22 18.06 207.10 3.80 136.95 11.94 650.00 11.47 54.43 4.75 9 
exp8 200 500 0 0.2 95 2198.77 26.35 251.56 4.74 83.43 8.74 463.39 9.55 53.02 5.55 13 
exp9 200 600 2 0.4 40 1380.90 11.62 235.30 2.00 118.81 5.87 690.41 20.25 117.64 5.81 6 
exp10 50 400 0 0.4 70 715.99 16.22 268.09 2.53 44.14 2.67 283.24 16.53 106.05 6.42 12 
exp11 50 500 2 0.1 95 1405.21 11.85 204.70 1.57 118.63 6.86 892.84 17.28 130.06 7.53 17 
exp12 50 600 1 0.2 40 706.26 7.98 245.50 1.86 88.55 2.88 379.50 30.78 131.92 4.29 3 
exp13 100 400 1 0.4 95 1913.16 20.39 256.07 3.13 93.85 7.47 611.57 12.56 81.86 6.52 16 
exp14 100 500 0 0.1 40 1531.09 8.49 222.16 1.98 180.27 6.89 772.41 26.16 112.08 4.28 1 
exp15 100 600 2 0.2 70 1441.68 11.54 237.13 1.72 124.97 6.08 836.40 20.55 137.57 6.69 7 
exp16 200 400 0 0.2 40 2204.96 15.79 202.49 3.56 139.66 10.89 619.37 12.83 56.88 4.43 2 
exp17 200 500 2 0.4 70 2676.80 18.81 217.83 4.42 142.27 12.29 605.90 11.58 49.31 4.26 8 
exp18 200 600 1 0.1 95 2668.33 15.18 244.94 4.03 175.83 10.89 662.84 16.14 60.85 3.77 15 
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Appendix B Fuzzy rules, M functions and Scripts 

B.1: Linguistic Fuzzy Rules Generated for Tool/workipece Contact 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 >> showrule(fismat) 
ans = 
 
1. If (Temperature is PM) and (Temperature/Fz is NS) and (Torque/Fz is PS) then (Tilt is NM) (Plunge is PL) (1)  

2. If (Temperature is PL) and (Temperature/Fz is NS) and (Torque/Fz is PS) then (Tilt is NM) (Plunge is PL) (1)  

3. If (Temperature is PM) and (Temperature/Fz is ZE) and (Torque/Fz is PS) then (Tilt is NM) (Plunge is PL) (1)  

4. If (Temperature is PL) and (Temperature/Fz is ZE) and (Torque/Fz is PS) then (Tilt is NM) (Plunge is PL) (1)  

5. If (Temperature is PM) and (Temperature/Fz is NS) and (Torque/Fz is PM) then (Tilt is NM) (Plunge is PL) (1)  

6. If (Temperature is PL) and (Temperature/Fz is NS) and (Torque/Fz is PM) then (Tilt is NM) (Plunge is PL) (1)  

7. If (Temperature is PM) and (Temperature/Fz is ZE) and (Torque/Fz is PM) then (Tilt is NM) (Plunge is PL) (1)  

8. If (Temperature is PL) and (Temperature/Fz is ZE) and (Torque/Fz is PM) then (Tilt is NM) (Plunge is PL) (1)  

9. If (Temperature is PM) and (Temperature/Fz is NS) and (Torque/Fz is PS) then (Tilt is NS) (Plunge is PL) (1)  

10. If (Temperature is PL) and (Temperature/Fz is NS) and (Torque/Fz is PS) then (Tilt is NS) (Plunge is PL) (1) 

11. If (Temperature is PM) and (Temperature/Fz is ZE) and (Torque/Fz is PS) then (Tilt is NS) (Plunge is PL) (1) 

12. If (Temperature is PL) and (Temperature/Fz is ZE) and (Torque/Fz is PS) then (Tilt is NS) (Plunge is PL) (1) 

13. If (Temperature is PM) and (Temperature/Fz is NS) and (Torque/Fz is PM) then (Tilt is NS) (Plunge is PL) (1) 

14. If (Temperature is PL) and (Temperature/Fz is NS) and (Torque/Fz is PM) then (Tilt is NS) (Plunge is PL) (1) 

15. If (Temperature is PM) and (Temperature/Fz is ZE) and (Torque/Fz is PM) then (Tilt is NS) (Plunge is PL) (1) 

16. If (Temperature is PL) and (Temperature/Fz is ZE) and (Torque/Fz is PM) then (Tilt is NS) (Plunge is PL) (1) 

17. If (Temperature is PM) and (Temperature/Fz is NS) and (Torque/Fz is PS) then (Tilt is NM) (Plunge is PX) (1) 

18. If (Temperature is PL) and (Temperature/Fz is NS) and (Torque/Fz is PS) then (Tilt is NM) (Plunge is PX) (1) 

19. If (Temperature is PM) and (Temperature/Fz is ZE) and (Torque/Fz is PS) then (Tilt is NM) (Plunge is PX) (1) 

20. If (Temperature is PL) and (Temperature/Fz is ZE) and (Torque/Fz is PS) then (Tilt is NM) (Plunge is PX) (1) 

21. If (Temperature is PM) and (Temperature/Fz is NS) and (Torque/Fz is PM) then (Tilt is NM) (Plunge is PX) (1) 

22. If (Temperature is PL) and (Temperature/Fz is NS) and (Torque/Fz is PM) then (Tilt is NM) (Plunge is PX) (1) 

23. If (Temperature is PM) and (Temperature/Fz is ZE) and (Torque/Fz is PM) then (Tilt is NM) (Plunge is PX) (1) 

24. If (Temperature is PL) and (Temperature/Fz is ZE) and (Torque/Fz is PM) then (Tilt is NM) (Plunge is PX) (1) 

25. If (Temperature is PM) and (Temperature/Fz is NS) and (Torque/Fz is PS) then (Tilt is NS) (Plunge is PX) (1) 

26. If (Temperature is PL) and (Temperature/Fz is NS) and (Torque/Fz is PS) then (Tilt is NS) (Plunge is PX) (1) 

27. If (Temperature is PM) and (Temperature/Fz is ZE) and (Torque/Fz is PS) then (Tilt is NS) (Plunge is PX) (1) 

28. If (Temperature is PL) and (Temperature/Fz is ZE) and (Torque/Fz is PS) then (Tilt is NS) (Plunge is PX) (1) 

29. If (Temperature is PM) and (Temperature/Fz is NS) and (Torque/Fz is PM) then (Tilt is NS) (Plunge is PX) (1) 

30. If (Temperature is PL) and (Temperature/Fz is NS) and (Torque/Fz is PM) then (Tilt is NS) (Plunge is PX) (1) 

31. If (Temperature is PM) and (Temperature/Fz is ZE) and (Torque/Fz is PM) then (Tilt is NS) (Plunge is PX) (1) 

32. If (Temperature is PL) and (Temperature/Fz is ZE) and (Torque/Fz is PM) then (Tilt is NS) (Plunge is PX) (1) 
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B.2: Linguistic Fuzzy Rules Generated for Tool/workipece Energy Input 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 >> showrule(fismat) 

ans = 

1. If (err_Fz is PS) and (err_Temp2Torq is NM) and (err_Torq2Fz is PS) then (adjust_feed is PL)(adjust_speed is PL) (1)  

2. If (err_Fz is PM) and (err_Temp2Torq is NM) and (err_Torq2Fz is PS) then (adjust_feed is PL)(adjust_speed is PL) (1)  

3. If (err_Fz is PS) and (err_Temp2Torq is NS) and (err_Torq2Fz is PS) then (adjust_feed is PL)(adjust_speed is PL) (1)  

4. If (err_Fz is PM) and (err_Temp2Torq is NS) and (err_Torq2Fz is PS) then (adjust_feed is PL)(adjust_speed is PL) (1)  

5. If (err_Fz is PS) and (err_Temp2Torq is NM) and (err_Torq2Fz is PM) then (adjust_feed is PL)(adjust_speed is PL) (1)  

6. If (err_Fz is PM) and (err_Temp2Torq is NM) and (err_Torq2Fz is PM) then (adjust_feed is PL)(adjust_speed is PL) (1)  

7. If (err_Fz is PS) and (err_Temp2Torq is NS) and (err_Torq2Fz is PM) then (adjust_feed is PL)(adjust_speed is PL) (1)  

8. If (err_Fz is PM) and (err_Temp2Torq is NS) and (err_Torq2Fz is PM) then (adjust_feed is PL)(adjust_speed is PL) (1)  

9. If (err_Fz is PS) and (err_Temp2Torq is NM) and (err_Torq2Fz is PS) then (adjust_feed is PX)(adjust_speed is PL) (1)  

10. If (err_Fz is PM) and (err_Temp2Torq is NM) and (err_Torq2Fz is PS) then (adjust_feed is PX)(adjust_speed is PL) (1) 

11. If (err_Fz is PS) and (err_Temp2Torq is NS) and (err_Torq2Fz is PS) then (adjust_feed is PX)(adjust_speed is PL) (1) 

12. If (err_Fz is PM) and (err_Temp2Torq is NS) and (err_Torq2Fz is PS) then (adjust_feed is PX)(adjust_speed is PL) (1) 

13. If (err_Fz is PS) and (err_Temp2Torq is NM) and (err_Torq2Fz is PM) then (adjust_feed is PX)(adjust_speed is PL) (1) 

14. If (err_Fz is PM) and (err_Temp2Torq is NM) and (err_Torq2Fz is PM) then (adjust_feed is PX)(adjust_speed is PL) (1)

15. If (err_Fz is PS) and (err_Temp2Torq is NS) and (err_Torq2Fz is PM) then (adjust_feed is PX)(adjust_speed is PL) (1) 

16. If (err_Fz is PM) and (err_Temp2Torq is NS) and (err_Torq2Fz is PM) then (adjust_feed is PX)(adjust_speed is PL) (1) 

17. If (err_Fz is PS) and (err_Temp2Torq is NM) and (err_Torq2Fz is PS) then (adjust_feed is PL)(adjust_speed is PX) (1) 

18. If (err_Fz is PM) and (err_Temp2Torq is NM) and (err_Torq2Fz is PS) then (adjust_feed is PL)(adjust_speed is PX) (1) 

19. If (err_Fz is PS) and (err_Temp2Torq is NS) and (err_Torq2Fz is PS) then (adjust_feed is PL)(adjust_speed is PX) (1) 

20. If (err_Fz is PM) and (err_Temp2Torq is NS) and (err_Torq2Fz is PS) then (adjust_feed is PL)(adjust_speed is PX) (1) 

21. If (err_Fz is PS) and (err_Temp2Torq is NM) and (err_Torq2Fz is PM) then (adjust_feed is PL)(adjust_speed is PX) (1) 

22. If (err_Fz is PM) and (err_Temp2Torq is NM) and (err_Torq2Fz is PM) then (adjust_feed is PL)(adjust_speed is PX) (1)

23. If (err_Fz is PS) and (err_Temp2Torq is NS) and (err_Torq2Fz is PM) then (adjust_feed is PL)(adjust_speed is PX) (1) 

24. If (err_Fz is PM) and (err_Temp2Torq is NS) and (err_Torq2Fz is PM) then (adjust_feed is PL)(adjust_speed is PX) (1) 

25. If (err_Fz is PS) and (err_Temp2Torq is NM) and (err_Torq2Fz is PS) then (adjust_feed is PX)(adjust_speed is PX) (1) 

26. If (err_Fz is PM) and (err_Temp2Torq is NM) and (err_Torq2Fz is PS) then (adjust_feed is PX)(adjust_speed is PX) (1) 

27. If (err_Fz is PS) and (err_Temp2Torq is NS) and (err_Torq2Fz is PS) then (adjust_feed is PX)(adjust_speed is PX) (1) 

28. If (err_Fz is PM) and (err_Temp2Torq is NS) and (err_Torq2Fz is PS) then (adjust_feed is PX)(adjust_speed is PX) (1) 

29. If (err_Fz is PS) and (err_Temp2Torq is NM) and (err_Torq2Fz is PM) then (adjust_feed is PX)(adjust_speed is PX) (1) 

30. If (err_Fz is PM) and (err_Temp2Torq is NM) and (err_Torq2Fz is PM) then (adjust_feed is PX)(adjust_speed is PX) (1)

31. If (err_Fz is PS) and (err_Temp2Torq is NS) and (err_Torq2Fz is PM) then (adjust_feed is PX)(adjust_speed is PX) (1) 

32. If (err_Fz is PM) and (err_Temp2Torq is NS) and (err_Torq2Fz is PM) then (adjust_feed is PX)(adjust_speed is PX) (1) 
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B.3: Visualised On-line Fuzzy Rules and Primary Fuzzy Outputs for Tool/workipece 

Contact Condition  
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B.4: Visualised On-line Fuzzy Rules and Primary Fuzzy Outputs for Tool/workipece 

Energy Input 
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B.5: M Script for NN Training for Al 6061 Alloy Changing Curvature  

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

% load the data including 6061 flat plate and round tube into workspace 
Data6061flat = load('3mm6061FlatPlatesData.dat'); 
Data6061flat = [Data6061flat(:,1:4) zeros(16,1) Data6061flat(:,5:8)]; 
Data_extraflat = load('6061flat_extraWeld.dat')'; 
Data6061tube = load('sens_param_6061Tube.dat'); 
Data6061tube(:,5) = 2./Data6061tube(:,5); %change tube diameter to curvature 
Data6061 = [Data6061flat;Data6061tube(:,1:9);Data_extraflat]; 
  
% ************************************************************************* 
% NN training for deriving sensor data from process parameter and condition 
% inputs of the NN: feed,speed,tilt,plunge, curvature  
% outputs of the NN: torq, temp, Fz 
% ************************************************************************* 
P = Data6061(:,1:5)'; 
T = Data6061(:,7:9)'; 
 [PN,minp_para2sens_6061complex,maxp_para2sens_6061complex,... 
    TN,mint_para2sens_6061complex,maxt_para2sens_6061complex] = premnmx(P,T); 
 
nn_para2sens_6061complex = newff(minmax(PN),[7,3],{'tansig','purelin'},'trainbr'); 
nn_para2sens_6061complex.trainParam.show = 10; 
nn_para2sens_6061complex.trainParam.epochs = 200; 
randn('seed',192736); 
nn_para2sens_6061complex = init(nn_para2sens_6061complex); 
[nn_para2sens_6061complex,tr_para2sens]=train(nn_para2sens_6061complex,PN,TN); 
gensim(nn_para2sens_6061complex); 
save nn_para2sens_6061complex.mat nn_para2sens_6061complex; 
     
% ************************************************************************* 
% NN training for process parameter from sensor data and condition 
% inputs of the NN: curvature, torq, temp, Fz  
% outputs of the NN: feed,speed,tilt,plunge. 
% ************************************************************************* 
T = Data6061(:,1:4)'; 
P = Data6061(:,[5 7 8 9])'; 
% normalize input/output into [-1 1] 
[PN,minp_sens2para_6061complex,maxp_sens2para_6061complex,... 
    TN,mint_sens2para_6061complex, maxt_sens2para_6061complex] = premnmx(P,T); 
% nn_sens2para=newff(minmax(PN),[9,4],{'tansig','purelin'},'trainbr'); 
nn_sens2para_6061complex=newff(minmax(PN),[9,4],{'tansig','purelin'},'trainlm'); 
nn_sens2para_6061complex.trainParam.show = 10; 
nn_sens2para_6061complex.trainParam.epochs = 200; 
randn('seed',192736); 
nn_sens2para_6061complex = init(nn_sens2para_6061complex); 
[nn_sens2para_6061complex,tr_sens2para]=train(nn_sens2para_6061complex,PN,TN); 
gensim(nn_sens2para_6061complex); 
save nn_sens2para_6061complex.mat nn_sens2para_6061complex; 
% ************************************************************************* 
% NN training for process condition from sensor data 
% inputs of the NN: torq, temp, Fz  
% outputs of the NN:curvature 
% ************************************************************************* 
T = Data6061(:,5)'; 
P = Data6061(:,[7 8 9])'; 
% normalize input/output into [-1 1] 
[PN,minp_sens2curv_6061complex,maxp_sens2curv_6061complex,... 
    TN,mint_sens2curv_6061complex,maxt_sens2curv_6061complex] = premnmx(P,T); 
nn_sens2curv_6061complex=newff(minmax(PN),[6,1],{'tansig','purelin'},'trainlm'); 
nn_sens2curv_6061complex.trainParam.show = 5; 
nn_sens2curv_6061complex.trainParam.epochs = 50; 
nn_sens2curv_6061complex.trainParam.goal = 1e-2;  
randn('seed',192736); 
nn_sens2curv_6061complex = init(nn_sens2curv_6061complex); 
[nn_sens2curv_6061complex,tr_sens2curv]=train(nn_sens2curv_6061complex,PN,TN); 
gensim(nn_sens2curv_6061complex); 
save nn_sens2curv_6061complex.mat nn_sens2curv_6061complex; 
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B.6: M Function for Tuning Fuzzy Output Scale Factor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

function [Kout_tilt,Kout_plunge] = scaleOutContact(Err_new,Err_old,Dev_new,Dev_old) 
% Err: error of sensor data to reference value     % Dev: the change of error  
% $ Author: TAO Date: 2005 
  
co_tilt = [0.54;0.33;0.31];   % use the correlation analysis result 
co_plunge = [0.29;0.15;0.15]; 
ScaleMat_con = zeros(3,1); % calculate coefficient for each sensory signal 
ScaleMat_con = ScaleMat(Err_new,Err_old,Dev_new,Dev_old); 
Kout_tilt = MSE(co_tilt,ScaleMat_con); % compute final scale factor for feed and speed 
adjustment 
Kout_plunge = MSE(co_plunge,ScaleMat_con); 
  
% **************************************************** 
function coMat = ScaleMat(E_new,E_old,C_new,C_old) 
% **************************************************** 
[R,C] = size(E_new); 
coMat = zeros(R,1); 
for i = 1:R 
    coMat(i) = Scale(E_new(i),E_old(i),C_new(i),C_old(i)); 
end 
  
% **************************************************** 
function MeanVal = MSE(CoeMat,InputMat) 
% **************************************************** 
[R,Q] = size(CoeMat); 
PowInput = power(InputMat,2); 
MeanVal = 0; 
for i = 1:Q 
    MeanVal = MeanVal + PowInput(i)*CoeMat(i); 
end 
MeanVal = MeanVal/(sum(CoeMat)); 
MeanVal = sqrt(MeanVal); 
  
% **************************************************** 
function Kout = Scale(Err0,Err1,Change0,Change1) 
% **************************************************** 
if Change0*Change1 < 0    
    if (abs(Err0)>abs(Err1)) && (abs(Change0)/(abs(Change1)+0.00001) > 1) && (Err0*Err1>0) 
        Kout = power(abs(Change0)/(abs(Change1)+0.00001),0.1); 
    elseif (abs(Err0)<abs(Err1)) && ((abs(Change0)/(abs(Change1)+0.00001)) > 1) && 
(Err0*Err1>0)  
        Kout = power(abs(Change1)/(abs(Change0)+0.00001),0.1); 
    else  
        Kout = 1; 
    end 
  elseif  abs(Change0)/(abs(Change1)+0.00001) > 1 
    if abs(Err0)>abs(Err1) 
        Kout = power(abs(Change0)/(abs(Change1)+0.00001),0.1); 
              
    else  
        Kout = power(abs(Change1)/(abs(Change0)+0.00001),0.1); 
    end 
else 
    Kout = 1; 
end  
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B.7: M Function for Fuzzy Rule Generation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

function RuleList = RuleCreate(fis_name,input,output) 
% INPUTS:     fisname: variable in the workspace which a FIS structure was assigned to 
%             inputVec: vector which is normalized as FIS input 
%             outputVec: vector which is normalized as FIS output 
% OUTPUTS:   RULELIST: rule list created for the initial non-rule FIS 
% CREATED BY TAO 2005,SEPTEMBER 
   
[inMat outMat]=fuzzifyInOut(fis_name,input,output); 
[inMfList outMfList]=MfComb(inMat,outMat); 
[rowInList colInlist]=size(inMfList); 
A=ones(rowInList,1); 
RuleList=[inMfList outMfList A A]; 
  
 % ************************************************************************** 
function [inMfCell outMfCell]= fuzzifyInOut(fis_name,vecInput,vecOutput) 
% ************************************************************************* 
% FUZZIFY: fuzzify inputs&outputs for a FLC, deduce the fuzzy rules 
 
% find out how many membership functions for each input, normally this 
% is a mxn vector, where m is the number of inputs, and n is the number of 
% membership functions for each input 
[rowIn,numInput]=size(fis_name.input); 
inMfCell=cell(numInput,1);  %  suppose the crisp input number is the same as the FL input  
 
for i = 1:numInput 
    [row_i NumMf_i] = size(fis_name.input(i).mf);   
    inMfCell{i} = zeros(NumMf_i,2);  % initial matrix for storing number&value  
     for j = 1:NumMf_i  % find out type, and parameter of each MF 
         type_in = fis_name.input(i).mf(j).type; 
         param_in = fis_name.input(i).mf(j).params; 
         MfValue_in = evalmf(vecInput(i),param_in,type_in); 
         inMfCell{i}(j,:)=[j MfValue_in];      
     end 
     indexMat_in=find(inMfCell{i}<=0.005); % find out which MF to be fired 
     [rowZero_in colZero_in]=ind2sub(size(inMfCell{i}),indexMat_in);  
     inMfCell{i}(rowZero_in,:)=[];     % delete the rows with membership <= 0.05 
end 
  
% find out fuzzified MFs for each output 
[rowOut,numOutput]=size(fis_name.output); 
outMfCell=cell(numOutput,1); 
for i = 1:numOutput 
     [row_o NumMf_o] = size(fis_name.output(i).mf);   
     outMfCell{i} = zeros(NumMf_o,2); 
     for j = 1:NumMf_o   
         type_out = fis_name.output(i).mf(j).type; 
         param_out = fis_name.output(i).mf(j).params; 
         MfValue_out = evalmf(vecOutput(i),param_out,type_out); 
         outMfCell{i}(j,:)=[j MfValue_out];      
     end 
     indexMat_out=find(outMfCell{i}<=0.005); 
     [rowZero_out colZero_out]=ind2sub(size(outMfCell{i}),indexMat_out); 
     outMfCell{i}(rowZero_out,:)=[]; 
end 
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B.7 continue 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

% ************************************************************************* 
function [inMfList outMfList] = MfComb (InMfCell, OutMfCell) 
% ************************************************************************* 
numInput = max(size(InMfCell)); 
numOutput = max(size(OutMfCell)); 
  
inMfLevel = zeros(1,numInput); 
for i = 1:numInput  % calculate how many rows of MemFcnComb 
    [numMfIn colMfIn] = size(InMfCell{i}); 
    inMfLevel(i) = numMfIn;   
end 
outMfLevel = zeros(1,numOutput); 
for j = 1:numOutput 
    [numMfOut colMfOut] = size(OutMfCell{j}); 
    outMfLevel(j) = numMfOut; 
end 
MfLevelIO = [inMfLevel, outMfLevel];  % concatenate the two vectors into one 
CombMat = fullComb(MfLevelIO); % calculate all the possible MF level combinations 
 [totalRow, totalCol] = size(CombMat); % substitute each variable with MF number 
 
for k = 1:numInput % for input variables 
    for l = 1:totalRow 
        CombMat(l,k) = InMfCell{k}(CombMat(l,k),1); 
    end 
end 
for m = (numInput + 1):totalCol % for output variables 
    for n = 1:totalRow 
        CombMat(n,m) = OutMfCell{m-numInput}(CombMat(n,m),1); 
    end 
end 
inMfList = CombMat(:,1:numInput); % divide CombMat into input MF list and output MF list 
outMfList = CombMat(:,(numInput + 1):totalCol); 
  
% ************************************************************************** 
function MfCombMat = fullComb(numMfVec) 
% ************************************************************************* 
%FULLCOMB full combinations of membership functions of fuzzified variable. 
 [row,col] = size(numMfVec); 
rowLength = prod(numMfVec); 
ncycles = rowLength; 
cols = max(row,col); 
MfCombMat = zeros(rowLength,cols);  % initialize a ZEROS matrix  
for k = 1:cols 
    if numMfVec(k) == 1 
         MfCombMat(:,k) = ones(rowLength,1); 
    else 
        settings = (1:numMfVec(k)); 
        ncycles = ncycles./numMfVec(k); 
        nreps = rowLength./(ncycles*numMfVec(k)); 
        settings = settings(ones(1,nreps),:); 
        settings = settings(:); 
        settings = settings(:,ones(1,ncycles)); 
        MfCombMat(:,k) = settings(:); 
    end 
end    
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Appendix C Mechanical Designs for Experimental Setup 

Drawing List: 

• FSW Device Assembly 

• Shaft Clamping Sub Assembly 

• Supporting Sub Assembly 

• Shaft 

• Coupler 

• Complex Curvature Backing Piece 

• Dia95 Circular Backing 

• Dia70 Circular Backing 

• Dia60 Circular Backing 

• Dia40 Circular Backing 

• Flat Backing Plate 

• Complex Curvature Workpiece 

• Dia95 Round Workpiece 

• Dia70 Round Workpiece 

• Dia40 Round Workpiece 

• Flat Plate Workpiece 

• Grooved Tool 3 m 
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Paper 1: A Neuro-fuzzy Scheme for Process Control during Complex Curvature Friction 

Stir Welding FSW (Approved: 12th International Federation of Automatic 

Control Symposium on Control Problems in Manufacturing) 

Paper 2: Experimental Implementation of Complex Curvature Friction Stir Welding 

(Submitted: R & D Journal) 

Paper 3: Monitoring and Intelligent Control for Complex Curvature Friction Stir Welding 
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A NEURO-FUZZY SCHEME FOR PROCESS CONTROL DURING 
COMPLEX CURVATURE FRICTION STIR WELDING 

 
 

T.I. van Niekerk, T. Hua, D.G. Hattingh 
theo.vanniekerk@nmmu.ac.za 

 
Faculty of Engineering, Nelson Mandela Metropolitan University, 

Port Elizabeth, 6031, South Africa 
 
 
 
 

Abstract: This paper presents a neuro-fuzzy control scheme for the nonlinear process 
of complex curvature Friction Stir Welding with multi-input-multi-output parameters. 
The proposed scheme consists of integrated sensor monitoring, fuzzy logic controller 
with basic membership functions, a trained back-propagation feed-forward neural 
network used to generate on-line fuzzy rules, and an input/output scale tuning system 
used to improve output response to process changes. To validate the feasibility of the 
neuro-fuzzy controller, simulations have been conducted with the objective to 
maintain tool/workpiece contact during complex curvature FSW. The simulation 
results show that the control variables were well maintained within limited ranges 
from reference values.  Copyright © 2006 IFAC 
 
Keywords: Neural network, fuzzy logic, on-line monitoring, intelligent control, 
friction stir welding. 

 
 
 
 

1. INTRODUCTION  
 
Friction Stir Welding (FSW) is a joining technique 
developed by TWI in 1991 (Thomas, et al., 1991). In 
FSW, a cylindrical tool consisting of a profiled pin 
under a wider shoulder rotates about its own axis and 
the pin is slowly plunged into the joint of the 
workpieces. Material in the joint is plasticized by 
frictional heating between the tool and the 
workpieces. The welding tool moves along the weld 
joint when the material has been sufficiently 
plasticized. The plasticized material is transported 
about the rotating pin and is pressed together, 
forming a solid joint on cooling. The tool is extracted 
from the workpieces when required weld length is 
finished. The process schematic of FSW is shown in 
Fig. 1. 
 

 
 
Fig. 1. Process of Friction Stir Welding 

 
Currently, the research of monitoring and control of 
FSW is mainly focused on straight welds. Effects of 
process parameters such as feed rate, spindle speed 
and tool size on fatigue life, tensile strength, weld 
crack and residual stress of FSW welds have been 
investigated (James, et al., 2003; Reynolds, et al., 

2003; NAKATA, et al., 2001; Ericsson and 
Sandström, 2003). Khandkar et al. (2003) introduced 
an input torque based model of temperature 
distribution and thermal history prediction. Chen et 
al. (2003) presented a monitoring system using 
wavelet transform analysis of acoustic emission for 
aluminium 6061 FSW.  
 
To machine parts with complex geometry which 
involves multi-input-multi-outputs (MIMO), fuzzy 
logic is an ideal tool for process control due to its 
tolerance of imprecise data and ability to model 
nonlinear functions of arbitrary complexity. It can 
also be blended with conventional control techniques 
(The MathWorks, 2004a). Liang et al. (2003) 
presented a tuning mechanism, including an input 
scale factor tuned with the integration of torque error 
and an output scale factor tuned by the change of 
torque error, to strengthen or weaken the fuzzy 
control of CNC machine spindle torque by adjusting 
spindle speed and feed rate. 
 
The fuzzy rules of most fuzzy controllers are set 
based on past experience. However, when facing a 
complex MIMO process involving nonlinear 
relationship between inputs and outputs, a more 
efficient fuzzy rule generating method is needed. 
Neural network (NN), which has the ability to learn 
relationships among input and output data sets 
through a training process, is able to ‘induce’ output 
data if a new set of input data is made available (The 
MathWorks, 2004b). This can be utilized to solve the 
‘bottleneck’ problem of fuzzy rule extracting. Sun 
and Deng (1996) presented a fuzzy NN control 
structure which is composed of an antecedent NN to 
match fuzzy rule premises, and a consequent NN to 

Plunge 

Extract

Sufficient 
Downward force 

Pin 

Shoulder

Traverse Workpieces 
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implement fuzzy rule consequences. Lau et al. (2001) 
proposed an integrated neural-fuzzy model using NN 
to generate ‘If-Then’ fuzzy rule.  
 
The MIMO and nonlinear FSW process makes the 
intelligent technologies fuzzy logic and NN feasible 
control strategies. A neuro-fuzzy control scheme 
incorporating the advantages of NN and fuzzy logic, 
together with an input/output tuning mechanism, is 
proposed in this paper for tool/workpiece contact 
control during complex curvature FSW.  
 
   

2. SYSTEM STURCTURE 
 

Fig. 2 shows the overall structure of the proposed 
neuro-fuzzy control scheme. Inputs ES(t) to the control 
system are the errors of on-line  control variables YS(t) 
to their reference value RS(t), and outputs from the 
control system are proposed process parameter 
adjustments ∆U(t). The main part of the control 
scheme consists of a trained NN for deriving instant 
process parameters YU(t), a rule-generating module for 
fuzzy rule generation using control variable errors 
ES(t) and process parameter errors EU(t) of derived 
instant value YU(t) to preset value RU(t), an fuzzy 
controller with predefined input/output membership 
functions to generate primary command for process 
parameters adjustment, and a tuning module to 
strengthen or weaken control actions by tuning input 
and output scale factors in response of the dynamic 
process changing. The design details and simulation 
results are described in following sections. 
 
 
3. IMPLIMENTATION OF THE NEURO-FUZZY 

CONTROL SCHEME  
 

Tool/workpiece contact condition plays a critical role 
in thermal input between tool and workpiece, which 
dominates weld properties (Peel, et al., 2003; Chen 
and Kovacevic, 2003). Plunge depth and tilt angle of 
welding tool to workpieces co-operate to determine 
tool/workipiece contact condition. During complex 
curvature FSW, tilt angle and plunge depth need to 
be adaptive to changing curvature. Even for uniform 
curvature workpieces, the well pre-planned tilt angle 
and plunge depth may be not maintained due to 

process disturbance. Fig.3 shows the incorrect 
tool/workpiece contact due to incorrect tilt angle, 
incorrect plunge depth, and changing curvature. Thus 
the proposed neuro-fuzzy control scheme is used to 
adjust tilt angle and plunge depth for maintaining 
tool/workpiece contact adapting to the changing 
process condition. 

 
Fig. 3. Incorrect tool/workpiece contact due to (a) 

incorrect plunge depth, (b) incorrect tilt angle, 
and (c) changing curvature.  

 
3.1 Sensor fusion 

To on-line monitor tool/workpiece contact condition, 
sensor fusion is used to establish tool/workpiece 
contact model. Sensitive features with higher 
sensitivity to tilt angle and plunge depth are selected 
from sensor signals and process parameters as control 
variables. NN is trained to map the relationship 
between tilt angle, plunge depth and the selected 
sensitive features (Azouzi and Guillot, 1997).  

Experiment design.   Orthogonal arrays developed by 
Taguchi (Ross, 1988) was used in experiment design 
due to its capabilities of minimizing test number and 
representing all factors equally. Process parameters 
were used as experimental factors to investigate their 
effects on sensor signals. L16_4_5 factor-level table 
is selected for orthogonal experiment of aluminium 
6061 T6 plates, as shown in Table 1.  

Table 1 Process parameters and their levels  

Sensor feature selection.  Table 2 shows the 
correlation coefficients of each sensor signal to tilt 
angle (Co_tilt) and plunge depth (Co_plunge).  It can 
be seen from Table 2 that signals of temperature, 

level Feed rate 
mm/min 

Spindle speed 
RPM 

Tilt angle 
˚ 

Plunge depth
mm 

1 50 300 2 0.1 
2 100 400 1 0.2 
3 150 500 0.5 0.3 
4 200 600 0 0.4 

Fig. 2. Structure of the proposed neuro-fuzzy scheme for process control.
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temperature/Fz, and torque/Fz have larger absolute 
sum of correlation coefficients to tilt angle and 
plunge depth, and were thus selected as the control 
variables for fuzzy control of tool/workpiece contact.  

Table 2 Correlation coefficients of sensor signals to 
tilt angle and plunge depth  

 
NN training.  A 5-8-2 back-propagation feed-
forward NN is trained to map the relationship 
between inputs and outputs. Three sensor signals: 
torque, temperature, and Fz, and two process 
parameters: feed rate and spindle speed, are selected 
as inputs for network training. Structure of the 
trained NN is shown in Fig. 4. 

  
Fig. 4. Structure of the trained neural network. 
 
Fig. 5 shows the comparison of NN output to target 
values for plunge depth, similar results was obtained 
for tilt angle.  

 
Fig. 5. NN output Vs target value for plunge depth. 
 
3.2 Basic structure of initial fuzzy logic controller 
 
The initial Mamdani type fuzzy controller consists of 
a fuzzifier, a fuzzy inference engine, a defuzzifier, 
and membership functions (MFs). The fuzzy rules 
were however not preset for the controller in this 
study. The on-line generating of fuzzy rules is 
described in Section 3.4. 

Inputs and normalizing. Each of the three sensitive 
features selected in sensor fusion was compared to a 
reference value, and the error was used as an input to 
the fuzzy controller. At each sampling time i, the 
three errors were respectively calculated as: 

)()( iTemprefTempiTempERR −=              (1) 

)(
)(

)(/ iFz
iTemp

refFz
refTemp

iFzTempERR −=            (2) 

)(
)(

)(/ iFz
iTorq

refFz
refTorq

iFzTorqERR −=            (3) 

Each of the errors was normalized into [-1, 1] before 
fed into the controller by multiplying corresponding 
normalizing coefficient (Liang et al., 2003).  

)()()( iTempKiTempERRiTemperr ×=             (4) 

)(/)(/)(/ iFzTorqKiFzTorqERRiFzTorqerr ×=      (5) 

)(/)(/)(/ iFzTempKiFzTempERRiFzTemperr ×=     (6) 

The input normalizing coefficient was separately 
considered in the zones above and below the 
reference value to ensure that both sides from the 
reference value (zero error point) have the same 
membership functions. The normalizing coefficient 
for temperature error was calculated as follows. The 
same rule was applied for the other inputs. 

If refTempiTemp ≥)(  

)max/(1)( refTempTempiTempK −=  

Else )min/(1)( TemprefTempiTempK −=   

Where KTemp(i) is temperature normalizing coefficient, 
Tempmax maximum temperature, and Tempmin 
minimum temperature. 
 
Membership functions. In this paper, all the inputs 
and outputs of the fuzzy controller used the same 
triangular membership functions due to its 
computation efficiency. In order to regulate the 
system output to a desired output, more accurate 
control actions were taken near the reference value 
(Kim and Yuh, 2002). Therefore, finer fuzzy sets 
were placed near the reference value.   
 
3.3 Tuning mechanism 
 
Three parts of a fuzzy controller including 
membership functions, fuzzy rules and inputs/outputs 
can be tuned to make the fuzzy controller adaptable. 
In this study, the membership functions were 
predefined, and the fuzzy rules were generated on-
line. Thus to enhance control actions, fuzzy inputs 
and outputs were tuned with corresponding scale 
factors.  
 
Performance index and input scale factors. 
Performance index was used to evaluate process 
quality using current and delayed control variable 
errors. The performance index of temperature was 
given as follows. The algorithm applied to the other 
two inputs. 

3

2
2

))((
)(

∑ −
=

i
i iTemperr

iTempPerform          (7) 

To adaptively strengthen or weaken control actions in 
response to on-line signals, the performance index 
was used for tuning input scale factor.  The scale 
factor for temperature error was calculated as follows. 
The same algorithm applies to the other two fuzzy 
inputs (Liang et al., 2003). 

16.0
)(

)(

Temp

i
Temp

Perform
i

Temp
Kin

ε
=          (8) 

Sensor signal Co_tilt Co_plunge Absolute sum
bending (N) -0.0596 0.0315 0.0911 
torque (N.m) -0.0623 0.3279 0.3902 
temperature (˚C) -0.5382 0.2932 0.8314 
Fz (KN) 0.0479 0.1582 0.2061 
bending/torque 0.0974 -0.1559 0.2533 
bending/temperature 0.0728 -0.0772 0.1500 
bending/Fz -0.0350 -0.0421 0.0771 
temperature/torque -0.2789 0.0400 0.3189 
temperature/Fz -0.3322 0.1486 0.4808 
torque/Fz -0.3074 0.1546 0.4620 
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where εTemp is the bandwidth of tolerance zone, 
KinTemp(i) temperature error scale factor at time i.   

The final input of temperature error to the fuzzy 
controller was:  

)()()( i
Temp

KiniTemperriTemperr ×=              (9)     

Output scale factors.   Outputs from fuzzy controller 
are primary adjustments of tilt angle ∆tilt and plunge 
depth ∆plunge.  Output scale factor for each output was 
calculated by taking into account the correlation 
coefficients of the three control variable to tilt angle 
and plunge depth. The algorithm for calculating scale 
factor of tilt angle adjustment was given:  
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∑ = ×
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The algorithm for calculating the output scale factor 
from the first fuzzy input temperature error is shown 
as follows (Liang et al., 2003). The same rule applies 
to the other two fuzzy input temperature/Fz error and 
torque/Fz error. 
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Else  1)1( =TiltK  

With the output scale factors and adjustment steps, 
final tilt angle adjustment ∆tilt and plunge depth 
adjustment ∆plunge from the fuzzy controller are given: 

1××=Δ
Tilt

KouttiltFuzzyouttilt   )(°         (11) 

2.0××=Δ
Plunge

KoutplungeFuzzyoutplunge )(mm (12) 

 
3.4 Fuzzy rule generation    
 
The rule base for the initial fuzzy controller was on-
line generated using signals of control variables and 
the trained neural network. The on-line generation of 
fuzzy rules are described in following procedure (Lau 
et al. 2001).  

NN mapping.  With new inputs of torque, 
temperature, Fz, feed rate and spindle speed, the 
trained NN generates instant tilt angle and plunge 
depth. Examples shown in Table 3 are reference and 
instant value of tilt angle and plunge depth derived 
from reference NN inputs and on-line NN inputs 
respectively. 
 

Table 3 On-line sensor signal and reference values; 
instant process parameters and preset value  

 

 
The difference between reference value and on-line 
value of both NN inputs and outputs suggests that the 
deviation of tilt angle and plunge depth from 
reference value cause the deviation of torque, 
temperature, and Fz from reference value.  
 
Fuzzify inputs.   Errors of the three control variables 
to their reference value are normalized into [-1 1] 
with equations (4), (5) and (6) as crisp value of fuzzy 
inputs. Using the example data in Table 3, error of 
control variable to its reference value and the 
normalized crisp value is given in Table 4:  

Table 4 control variable error and normalized value 

 
Each crisp input value is then fuzzified by mapping it 
into the predefined fuzzy input membership functions 
to acquire the name and value of the membership 
function it falls in. Fig. 6 shows the fuzzified 
membership function names and value for 
temperature error: PS (0.0045) and PM (0.9964). The 
names of fuzzy membership functions for the three 
crisp input values can be seen in Table 4. 

 

 
 
Fig. 6. Membership function name and value of Error 

of temperature fuzzified input. 
 
Fuzzify output   Using the example data in Table 3 
and the normalizing algorithm, the errors of tilt angle 
and plunge depth to their reference values and their 
normalized crisp values are given in Table 5. 

Sensor signal & 
process parameter 

Reference 
value 

On-line 
value 

NN INPUTS Torque 20.33 15 
 Temperature 275.20 235 
 Fz (KN) 1.74  2.2 
 Feed 100 100 
 Speed 600 600 
NN OUTPUTS Tilt  0.5 1.6390 
 Plunge 0.2   0.1300 

Control variable Temperature Temperature 
/Fz Torque/Fz 

Reference value 275.20 158.16 11.68 
On-line value 235 106.82 6.82 
Error 40.20 51.34 4.86 
Crisp input value 0.3991 0.4783 0.9609 
Fuzzy input MFs PS, PM  PM, PL  PL,  PX  

NX       NL     NM    NS   ZE   PS    PM       PL        PX 
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Table 5 Error and normalized value of tilt angle and 
plunge depth 

 
Each normalized crisp output value is fuzzified with 
predefined output MFs. Fig. 7 shows the fuzzifed 
membership function name and value of tilt angle 
adjustment. The fuzzified membership function 
names of the two outputs can be seen in Table 5. 
 

 
 
Fig. 7. Tilt angle adjustment fuzzified output 
 
Rule generating. The fuzzified membership 
function names from previous steps for inputs and 
outputs are used as fuzzy rule antecedents and 
consequents, respectively. Fuzzy rule antecedents 
and consequents from the example data are shown in 
Table 6. 

Table 6 Fuzzy rule antecedents and consequents 

The 32 on-line fuzzy rules are thus generated from 
the full combination of the antecedents and 
consequents. Linguistic expression of rule 1 is given: 

IF error of temperature is positive small (PS) && 
error of temperature/Fz is positive middle (PM) 
&& error of torque/Fz is positive large (PL), 

THEN tilt angle adjust is extra negative (NX) && 
plunge depth adjust is positive large (PL); 

With this algorithm, when each set of on-line sensor 
data is fed back from the welding process, the rule 
generation module automatically generates the on-
line ‘if-then’ rules for fuzzy inference. 

 
 
 

4. SIMULATION RESULTS  

To test the performance of the proposed neuro-fuzzy 
control scheme, a simulation model was built with 
MATLAB, SIMULINK, neural network and fuzzy 
logic toolboxes (The MathWorks, 2004c). An 
experiment of Al 6061 round tube (diameter 95mm 
and thickness 3mm) was carried out with process 
parameters: feed rate 100 mm/min, spindle speed 500 
rpm, tilt angle 1°, and plunge depth 0.2mm. A 
simulation was conducted with the reference sensor 

value: torque 15 N.m, temperature 240 °C, and Fz 
3.34 kN. The reference value was calculated from the 
multi-regression model with process parameters used 
in the experiment. Fig. 8 and 9 show the comparison 
of process parameters and sensor value between 
recorded experimental data and simulation results 
from the neuro-fuzzy controller. 
 

 
Fig.8. Comparison of process parameters between 

simulation results and experimental data. 

 

 
 
Fig. 9. Comparison of control variable status between 

simulation results and experimental data. 
 
During the experiment and simulation, tilt angle was 
considered as constant as it changes very little during 
welding once the workpiece was firmly clamped. It 
can be observed in Fig.8 that all three parameters, 
which were derived from trained NN with recorded 
experimental sensor data, deviated from their preset 
value. This can be explained by the machining error 
of workpiece and fixture, which significantly 
influence the real plunge depth, and the fluctuation of 
the feed rate and spindle due to mechatronic error. 
Tool/workpiece contact was not well maintained due 
to plunge depth error. However, with the neuro-fuzzy 
controller, the three parameters were on-line adjusted 
according to the error of on-line sensor value to their 

Process parameter Tilt angle Plunge depth 
Reference value 0.5 0.2 
On-line value 1.6390 0.1300 
Error -1.139  0.07 
Crisp output value -0.76 0.70 
Fuzzy output MFs NX, NL PL, PX 

Fuzzy rule 
Antecedents & consequents 

Membership 
function 

ANTECEDENTS Temperature error PS, PM 
 Temperature/Fz error PM, PL 
 Torque/Fz error PL, PX 
CONSEQUENTS Tilt angle adjustment NX, NL 
 Plunge depth adjustment PL, PX 

NX       NL     NM   NS   ZE    PS   PM      PL       PX 
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reference value. Therefore, the three process 
parameters were well controlled, and stable 
tool/workpiece contact condition was maintained.  
 
From Fig. 9, it can be seen that torque, temperature 
and Fz of the experimental sample were not well 
controlled. The experimental sample was not actually 
welded with the expected perfect ‘round’ trajectory 
due to aforementioned reason for process parameter 
deviation. However, with the neuro-fuzzy controller, 
online sensor data of torque, temperature, and Fz 
were analyzed to find out the reason for the deviation 
of sensor data from their reference values, and 
corresponding process parameter adjustments were 
made to maintain correct tool/workpiece contact and 
energy input. The simulation results of temperature 
and Fz are maintained much better towards the 
reference level, while torque is almost 33% higher 
than the reference value. This possibly comes from 
the error of the NN model used in simulation. It can 
be expected that with more samples used in OA 
experiments, a more accurate NN model and better 
simulation results can be achieved. 

 

5. CONCULSION 

A neuro-fuzzy control scheme integrating NN and 
fuzzy logic algorithms for solving MIMO system has 
been presented in this paper. The implementation of 
the neuro-fuzzy control scheme for maintaining 
tool/workpiece contact during complex curvature 
FSW is demonstrated. Further research on improving 
NN training and configuring the control scheme for 
different curvature, material and tool is needed in 
order to enhance the feasibility of the scheme. 
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Experimental Implementation of Complex Curvature Friction Stir Welding 
 

T.I. van Niekerk1, T. Hua2 and D.G. Hattingh1 

 

This paper presents the experimental set-up for 

complex curvature friction stir welding. By adding 

an extra rotation axis to the existing three 

translation axes and clamping system, a table-tilting 

multi-axis system was implemented to perform 

complex curvature friction stir welding. Orthogonal 

array experiments and statistical analyses were 

carried out to investigate the relationship between 

sensor data, process parameters and process 

conditions with multi-sensor and telemetry system.  

NOMENCLATURE 
ANOVA Analysis of variance  
FSW  Friction stir welding 

OA  Orthogonal array 

Introduction  

 

Figure 1: Process of Friction Stir Welding. 

Friction Stir Welding (FSW) is a joining technique 

developed by TWI in 19911. In FSW, a cylindrical 

tool consisting of a profiled pin under a wider 

shoulder rotates about its own axis and the pin is 

slowly plunged into the joint of the workpieces. 

Material in the joint is plasticized by frictional 

heating between the tool and the workpieces. The 

welding tool moves along the weld joint when the 

material has been sufficiently plasticized. The 

plasticized material is transported about the rotating 

pin and is pressed together, forming a solid joint on 

cooling. The tool is extracted from the workpieces 

when required weld length is finished. The process 

schematic of FSW is shown in Figure 1. 

Currently, the research of monitoring and control of 

FSW is mainly focused on straight welds. Effects of 

process parameters such as feed rate, spindle speed 

and tool size on fatigue life, tensile strength, weld 

crack and residual stress of FSW have been presented 

by many researchers2,3,4,5. Except for process 

parameters, process conditions such as workpiece 

curvature also play a critical role in weld quality 

during complex curvature FSW. This paper describes 

the experimental setup for complex curvature FSW 

and the investigation of the relationship between 

sensor data, process parameters and process 

conditions. 

Complex curvature FSW 
Due to the hardware limitation of the existing FSW 

machine, the complex curvature in this project is 

defined as the connection of a series of simple 

curvatures such as straight line and circular arc, as 

shown in Figure 2. 

 

Figure 2: Workpieces curvature: (a) straight line, (b) 

circular arc, and (c) complex curvature. 
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System setup  
To perform complex curvature FSW, a multi-axis or 

robotic system is needed to provide mechanical 

stiffness and precise orientation/position control. 

Multi-axis is preferred due to the large force involved 

in the welding process for complex curvature 

workpieces6. Therefore, an extra rotation axis was 

added to the existing three translation axes to form a 

table-tilting multi-axis system. A Renold motor with 

rating power 0.37kw and full speed 1390rpm was 

used to provide output torque. Siemens Micromaster 

440 inverter and CoreTech DRS 1440 incremental 

encoder were used to control motor operation and 

provide feedback from the motor. Workpiece fixture 

was also designed for locating and holding the 

workpieces to bear the large involved force. Figure 2 

shows the multi-axis FSW machine used in this 

project.  

 

Figure 3: FSW machine with additional rotation axis 

implemented for this project 

Experiment results and discussion  
Experiments of aluminium flat plates and round tubes 

were conducted to acquire sensor data with the 

telemetry system. Different process conditions and 

various process parameters were used in the 

experiments to record on-line sensor data of bending 

force, torque, Fz and temperature. Figure 4 shows the 

welding cause-effect diagram.  

 

Figure 4: Cause-effect diagram of FSW 

Orthogonal array experiment 

Orthogonal arrays (OAs) developed by Taguchi was 

used in experiment design due to its capabilities of 

minimizing test number and representing all factors 

equally7. L16_4_5 and L18_3_7 OA experiments 

were chosen for FSW of flat plates (Al 5251 and Al 

6061) and round tubes (Al 6061) respectively. The 

factor-level table for flat plate and round tube FSW is 

shown in Table 1.   

Table 1: Factor-level table for FSW experiment 

Factor & level Feed 

(mm/min)

Speed 

(rpm) 

Tilt  

(º) 

Plunge  

(mm) 

Diameter

(mm) 

Level 1 50 300 0 0.1  

Level 2 100 400 0.5 0.2  

Level 3 150 500 1 0.3  
Flat 

Level 4 200 600 2 0.4  

Level 1 50 400 0 0.1 40 

Level 2 100 500 1 0.2 70 Round 

Level 3 200 600 2 0.4 95 

Figure 5 shows the experimental samples welded at 

NMMU.  

 

Figure 5: Aluminium flat plate and round tube 

welded at NMMU 

Sensor data 

Process parameters

Feed rate (50→200mm/min) 

Spindle Speed (300→600rpm) 

Plunge depth (0.1→0.4mm) 

Tilt angle (0→2º) 

Process conditions

Curvature radius (20→47.5 mm) 

Material (Al 6061, Al 5251) 

Fz (kN)

Torque (N.m)

Temperature (℃) 

Bending force 

Tool chuck 

Telemetry system 

Spindle 

Tool 

Server 
Client

Gearbox 
Rotation motor

Encoder 

Workpiece & fixture 

Translation worktable 

(a) Flat plate (b) Round tube 
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Average effect of factor level  

In OA experiment, effects of experiment factors and 

their levels on state variable measurements are 

calculated as the average of all observations under 

that factor level.  

 

Figure 6: Effects of process parameters on sensor 

measurements of flat plate FSW 

Figure 6 shows the average effect of each factor level 

on sensor measurements with the data obtained from 

3 mm Al 6061 and Al 5251 flat plate welds. It can be 

concluded that all the sensor data are affected at 

different degrees by each process parameter. 

Temperature seems to be more sensitive to process 

parameter changes. In the process parameters, 

spindle speed seems to have stronger influence on 

sensor data than the other parameters.  It also shows 

that for Al 6061 and Al 5251 alloy, most of the 

sensor measurements have the same changing trend 

with process parameter changes, while the averages 

bending force, torque, temperature and Fz from each 

factor level of Al 5251 alloy are significantly lower 

than Al 6061 alloy. This can be explained by their 

mechanical properties: Al 5251 is a softer material 

with better formability, thus lower force is caused 

during welding using the same process parameters, 

while Al 6061 has better thermal conductivity. More 

heat is propagated from tool/workpiece contact area 

to the area to be welded whilst higher temperature is 

generated.  

 

Figure 7: Effects of process parameters on sensor 

measurements of round tube friction stir welds 

Figure 7 shows the average effect of each factor level 

on sensor measurements with the data from 3 mm Al 

6061 round tube welding. From the figure, it can be 

concluded that besides process parameters of feed, 

speed, tilt and plunge, the process condition of 

curvature radius also significantly affects sensor data. 

It also shows that temperature and all the forces 

increase with curvature diameter. This can be 

explained by the tool/workpiece contact condition: 

with smaller curvature radius, less tool/workpiece 

contact is obtained, and thus less force and 
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temperature are generated due to less friction 

between tool and workpieces during welding.  

Variance percentage contribution 

The percentage contribution, which reflects the 

portion of the total variation observed in the 

experiment attributed to a factor. A factor with higher 

percentage contribution to a state variable indicates 

that the state variable is more sensitive to that factor. 

The calculation of percentage contribution of a factor 

is given as7: 

100×
−

=
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FveVFSS
FP                 (1)                                     
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Ve is the variance due to the error and is given as: 

∑−−

∑−

=

F FvN
F FSSTSS

eV
1

                  (4) 

Where vF is degree of freedom; KF is number of 

levels for the factor; nFi is number of observations 

under level i of the factor; T is sum of all 

observations; N is total number of observations; and 

Fi is sum of observations under ith level of factor. 

Using analysis of variance (ANOVA) of the OA 

experiment, the percentage contribution of each 

factor to each state variable variance was calculated. 

Table 4.4 shows the percentage contribution of each 

process parameter (feed, speed, tilt and plunge) on 

sensor measurements of data collected from the OA 

experiments of Al 6061 and Al 5251 plate welds.  

 

 

Table 2: Variance percentage contribution of Al6061 

and Al5251 flat plate welds 

Factors & 
percentage 

Bending 
force 

Torque Temperature Fz 

Feed 20.11% 38.50% 4.56% 35.05%

Speed 69.46% 35.80% 55.05% 56.55%

Tilt 4.29% 4.13% 30.85% 2.93% 

Plunge 2.93% 11.89% 8.75% 3.17% 

Al6061

error 3.22% 9.68% 0.79% 2.29% 

Feed 28.10% 20.27% 0.22% 25.86%

Speed 56.23% 6.41% 64.74% 38.06%

Tilt 5.57% 21.69% 12.22% 31.81%

Plunge 7.19% 34.77% 16.39% 2.06% 

Al5251

error 2.91% 16.86% 6.42% 2.20% 

Table 3 shows the percentage contribution of process 

parameters (feed, speed, tilt and plunge) and process 

condition (curvature) on sensor measurements from 

the data of Al6061 round tube welds. 

Table 3: Variance percentage contribution of Al6061 

round tube welds 

Factors & 
percentage Bending force Torque Temperature Fz 

Feed 71.42% 16.61% 7.79% 68.52%

Speed 3.18% 13.69% 21.09% 11.34%

Tilt 1.58% 7.76% 30.16% 1.57%

Plunge 8.24% 22.67% 33.08% 0.89%

Curvature 14.10% 30.88% 7.38% 12.07%

error 1.48% 8.39% 0.50% 5.61%

It can be seen from Table 2 and Table 3 that 

temperature is the most sensitive signal to spindle 

speed, tilt angle, and plunge depth. Fz has a higher 

sensitivity to feed and speed than plunge and tilt. 

Torque is more sensitive to plunge depth and tilt 

angle than the other sensor signals. Both the flat plate 

and round tube experimental data show that the error 

contributions associated with sensor signals are 

acceptable (less than 8%). This implies that the most 

important process conditions and parameters that 

influence these characteristics were included in the 

experiment8.  
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Correlation analysis 

Correlation coefficient, a normalized measure of the 

strength of the linear relationship between two 

variables, is used in this study to investigate the 

dependency of a sensor signal on a process 

parameter9. The correlation efficient r(x, y) of 

variable y to variable x is calculated as:  

2)(2)(

))((
),(

yiyxix

yiyxix
yxr

−∑∑ −

∑ −−
=             (5) 

 
Where ix  is the ith element of variable x ; x  is the 

mean value of variable x ; iy  is the ith element of 
variable y ; and y  is the mean value of variable y . 

Table 4 shows the correlation coefficients of sensor 

measurements to process parameters of Al6061 and 

Al5251 flat plate welds. It shows that all sensor 

measurements have high correlation to feed and 

speed; while torque and temperature show higher 

correlation to plunge and tilt than the other two 

sensor measurements.  

Table 4: Correlation coefficients of sensor 

measurements to process parameters 

Correlation 
coefficient 

Bending 
force 

torque temperature Fz 

feed Al6061 0.3875 0.5084 -0.1984 0.5512 

 Al5251 0.5117 0.3002 -0.0453 0.4164 

speed Al6061 -0.7994 -0.5234 0.7202 -0.7471 

 Al5251 -0.6244 -0.1895 0.7794 -0.5878 

tilt Al6061 -0.0596 -0.0623 -0.5382 0.0479 

 Al5251 -0.2076 0.3343 -0.1160 0.5580 

plunge Al6061 0.0315 0.3279 0.2932 0.1582 

 Al5251 0.2127 0.3629 0.3707 -0.1135 

 

Conclusion 
A table-tilting multi-axis system consisting of three 

translational axes and one rotation axis was 

implemented to perform complex curvature FSW. 

Process parameters (feed, speed, tilt and plunge) and 

process condition (material and curvature) were used 

as experiment factors in OA experiments to acquire 

sensor measurements (force, torque and tool 

temperature) with multi-sensor and telemetry system. 

The average effect and variance percentage 

contribution of each factor level on sensor 

measurements were analysed. Correlations of sensor 

measurements to process parameters were also used 

to investigate the relationship between process 

parameters, process conditions and sensor data 

during complex curvature FSW.  Further research on 

sensor fusion and intelligent process control is 

needed in order to establish the on-line monitoring 

and control system for the nonlinear process of 

complex curvature FSW. 
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Monitoring and intelligent control for complex curvature friction 
stir welding 

 

T.I. van Niekerk1*, T. Hua1 and D.G. Hattingh1 
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Abstract: This paper presents the implementation of sensor fusion and intelligent control for 
multi-input-multi-output process. Based on the telemetry sensory system, orthogonal array 
experiments and statistical analysis were used to select sensitive sensor features as process control 
variables. Feed-forward back-propagation neural networks were used in sensor fusion to 
investigate the relationship between process parameters, process conditions and sensor data. A 
neuro-fuzzy control scheme consists of fuzzy logic controller with basic membership functions, 
on-line fuzzy rule generation module using trained neural networks, and an input/output scale 
factor tuning system used to improve output response to process changes. To validate the 
performance and feasibility of the neuro-fuzzy controller, simulations of FSW for workpieces with 
changing material and curvature were conducted.  The simulation results show that the control 
variables were well maintained within limited ranges from reference values. The proposed neuro-
fuzzy control scheme also exhibits good adaptability to process condition changes such as 
workpiece material and curvature changes.    

Keywords 

Friction stir welding, neural network, fuzzy logic, on-line monitoring, intelligent control 

 
1 INTRODUCTION 
 Friction Stir Welding (FSW) is a joining technique 
developed by TWI in 19911. In FSW, a cylindrical tool 
consisting of a profiled pin under a wider shoulder rotates 
about its own axis and the pin is slowly plunged into the joint 
of the workpieces. Material in the joint is plasticized by 
frictional heating between the tool and the workpieces. The 
welding tool moves along the weld joint when the material 
has been sufficiently plasticized. The plasticized material is 
transported about the rotating pin and is pressed together, 
forming a solid joint on cooling. The tool is extracted from 
the workpieces when required weld length is finished. The 
process schematic of FSW is shown in Fig. 1.  

 
Figure 1: Process of friction stir welding 

A broad spectrum of on-line sensors, signal processing 
schemes and various model-based calculations have been 
proposed to retrieve information relevant to machining 
process conditions. Sensor signals such as force, torque, 
temperature, power and vibrations etc., have been 
successfully applied in indirect sensing2, 3, 4. Sensor fusion is 
a method of integrating signals from multiple sources to 
provide a robust prediction of one or more machining 
attributes with a fusion model5, 6. Sensor fusion mainly 
consists of two components: selecting sensitive signals as 
good candidates and establishing proper relationships 
between the sensed variables and the investigated features4. 
An exhaustive analysis with statistical tools to determine the 
most sensitive process parameters and sensor signals for 
predicting the surface roughness and diameter error in 
machining was presented by Azouzi and Guillot4. Various 
techniques such as multiple regression, the group method of 
data handling or neural networks are implemented in 
building sensor fusion models3, 4.  

Fuzzy logic is an ideal tool for multi-input-multi-output 
(MIMO) process control due to its tolerance of imprecise 
data and ability to model nonlinear functions of arbitrary 
complexity7. Liang8 et al. presented a tuning mechanism, 
including an input scale factor tuned with the integration of 
torque error and an output scale factor tuned by the change of 
torque error, to strengthen or weaken the fuzzy control of 
CNC machine spindle torque by adjusting spindle speed and 
feed rate. The fuzzy rules of most fuzzy controllers are set 
based on past experience. However, when facing a complex 
MIMO process involving nonlinear relationship between 
inputs and outputs, a more efficient fuzzy rule generating 
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thermomechanically 
affected zone) 

Profiled pin 

Backing bar 

Workpiece 
Tool shoulder 

*Corresponding author: Faculty of Engineering, the Built Environment and
Information Technology, Nelson Mandela Metropolitan University, Private
Bag X6011, Port Elizabeth, South Africa. 



     213

method is needed. Neural network (NN), which has the 
ability to learn relationships among input and output data sets 
through a training process, is able to ‘induce’ output data if a 
new set of input data is made available9. This can be utilized 
to solve the ‘bottleneck’ problem of fuzzy rule extracting. 
Sun and Deng10 presented a fuzzy NN control structure 
which is composed of an antecedent NN to match fuzzy rule 
premises, and a consequent NN to implement fuzzy rule 
consequences. Lau11 et al. proposed an integrated neural-
fuzzy model using NN to generate ‘If-Then’ fuzzy rule.  

The MIMO and nonlinear FSW process makes the intelligent 
technologies fuzzy logic and NN feasible monitoring and 
control strategies. A systematic multi-sensor fusion method 
and neuro-fuzzy control scheme for complex curvature FSW 
is presented in this paper.    

 
2 EXPERIMENTAL SETUP  

(a) 

 
(b) 

 
Fig. 2 Experimental setup for FSW: (a) multi-axis system; 

(b) telemetry sensory system 
The FSW machine was converted from a conventional 3-axis 
milling machine. Three translational axes for bed movements, 
one spindle axis for tool rotation and one rotational axis (R) 
for workpieces rotation were driven by three-phase induction 
motors. Clamping system was designed for orientating and 
locating the workpieces on the machine worktable. Strain 
gauges and thermocouple were fitted on the chuck and tool to 

detect horizontal forces, vertical force, torque exerted on the 
tool and the tool's pin temperature.  Electrical power is 
transferred to the chuck using induction and the sampled data 
is sent off the chuck in digital form using a capacitive 
technique with the annular stator coil and pickup rotor coil. 
The telemetry receiver receives the transmitted measurement 
data, demodulates the signals and outputs filtered and 
amplified signals. The signals and from telemetry system and 
encoders were connected to computer through PCI730 data 
acquisition card12, 13. Fig. 2 shows experimental setup of the 
multi-axis FSW machine and telemetry sensory system. 

Based on the FSW system, experiments of aluminium flat 
plates and round tubes of different curvature were conducted 
to acquire sufficient information for sensitive feature 
selection and sensor fusion. Efficient experimental method 
Orthogonal arrays (OAs) developed by Taguchi was chosen 
to minimize the number of tests14. Under different process 
conditions (material and curvature), various process 
parameters (feed rate, spindle speed, plunge depth and tilt 
angle) were used to record on-line sensor data of torque, 
bending force, Fz and temperature. L16_4_5 and L18_3_7 
OA experiments were chosen for flat plates of Al5251 and 
Al6061 and round tubes of Al6061 respectively. Fig. 3 shows 
the welding cause-effect diagram with factor-level range of 
process parameters and conditions.   

 
Fig.3 Cause-effect diagram and factor levels 

 

3 SENSOR FUSION 
This section describes the statistical analysis and NN 
modelling used to select sensors and build a fusion model for 
on-line monitoring of complex curvature FSW.  

3.1 Statistical analysis 

Data from OA experiments were analysed with statistical 
method to investigate relationships between process 
parameter and sensor data. Correlation coefficient, a 
normalized measure of the strength of the linear relationship 
between two variables, was used to investigate the 
dependency of a sensor signal, or the ratio of two sensor 
signals, on a process parameter15. The correlation efficient 
r(x, y) of variable y to variable x is calculated as: 
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Where ix  is the ith element of variable x ; x  is the mean 

value of variable x ; iy  is the ith element of variable y ; and 
y  is the mean value of variable y . 

Table 1 shows the correlation coefficients of sensor data to 
process parameters for Al6061 and Al5251 flat plate welds. 
It can be seen that sensor signals of temperature, the ratio of 
temperature to Fz, and the ratio of torque to Fz, have larger 
correlation coefficients to tilt angle and plunge depth for 
Al6061 welds. Therefore, they were chosen as the control 
variables for tool/workpiece contact condition, which is 
dominated by tilt angle and plunge depth, for Al6061 flat 
welds. Fz, the ratio of temperature to torque, and the ratio of 
torque to Fz were chosen as control variables of 
tool/workpiece energy input, which is dominated by feed rate 
and spindle speed, for Al6061 flat plate as they have larger 
absolute sum of correlation coefficients to feed rate and 
spindle speed. Similarly, Torque, the ratio of bending force 
to Fz, and the ratio of torque to Fz have the larger correlation 
coefficient absolute sum to tilt angle and plunge depth, and 
were thus chosen as the control variables for tool/workpiece 

contact of Al 5251 flat weld. It can also be seen that bending 
force, the ratio of bending force to temperature, and the ratio 
of temperature to Fz, have larger correlation coefficient 
absolute sum to feed and speed, and were thus selected as 
control variables for tool/workpiece energy input for Al5251 
flat plate welds. 

To develop an intelligent monitoring and control system for 
complex curvature FSW, relationships between sensor 
signals and different workpiece curvature radii is required to 
be investigated. Table 2 shows the correlation coefficients of 
process parameters and process condition curvature diameter 
to sensor signals of different diameter Al 6061 alloy round 
tube welds. It can be seen that torque and temperature were 
chosen as control variables for tool/workpiece contact, while 
bending force and Fz were selected as control variables for 
tool/workpiece energy input. The detailed description of 
tool/workpiece contact and energy input control is described 
in the following section.   

3.2 Multi-sensor modelling 

To establish the relationship between sensed variables and 
the investigated features, two distinct methods were used: 
theoretical and empirical. Theoretical techniques normally 
include a great deal of simplification because of the poor 
understanding of fundamental behavior of machining 
processes, which makes them difficult to implement in real 

Table 1 Correlation coefficients of sensor signals to process parameters of  Al6061 and Al5251 flat plate welds 

material Al6061 Al5251 
Correlation 
coefficient 

Co_tilt Co_plunge Absolute 
sum 

Co_feed Co_speed Absolute 
sum 

Co_tilt Co_plunge Absolute 
sum 

Co_feed Co_speed Absolute 
sum 

bending force (N) -0.0596 0.0315 0.0911 0.3875 -0.7994 1.1869 -0.2076 0.2127 0.4203 0.5117 -0.6244 1.1361 

torque (Nm) -0.0623 0.3279 0.3902 0.5084 -0.5234 1.0318 0.3343 0.3629 0.6972 0.3002 -0.1895 0.4897 

temperature (˚C) -0.5382 0.2932 0.8314 -0.1984 0.7202 0.9186 -0.1160 0.3707 0.4867 -0.0453 0.7794 0.8247 

Fz (kN) 0.0479 0.1582 0.2061 0.5512 -0.7471 1.2983 0.5580 -0.1135 0.6715 0.4164 -0.5878 1.0042 

bending/torque 0.0974 -0.1559 0.2533 0.1506 -0.6877 0.8383 -0.2106 0.0787 0.2893 0.4179 -0.6241 1.0420 

bending/temperature 0.0728 -0.0772 0.1500 0.2787 -0.8179 1.0966 -0.1361 0.0453 0.1814 0.3842 -0.7285 1.1127 

bending/Fz -0.0350 -0.0421 0.0771 -0.0865 -0.4362 0.5227 -0.4835 0.3743 0.8578 0.3535 -0.4079 0.7614 

temperature/torque -0.2789 0.0400 0.3189 -0.5024 0.7109 1.2133 -0.3998 0.0864 0.4862 -0.3089 0.7789 1.0878 

temperature/Fz -0.3322 0.1486 0.4808 -0.5208 0.6870 1.2078 -0.4277 0.2437 0.6714 -0.4352 0.6874 1.1226 

torque/Fz -0.3074 0.1546 0.4620 -0.4966 0.7180 1.2146 -0.3679 0.3266 0.6945 -0.3898 0.5396 0.9294 

Table 2 Correlation coefficients of sensor signals to process parameters of Al 6061 flat plate and Al 6061 round tube 

experiment Sensor signal Co_tilt Co_plunge Absolute sum Co_feed Co_speed Absolute sum Co_curvature 

bending force (N) 0.16 -0.24 0.40 0.72 -0.22 0.940 0.40 

torque (Nm) -0.22 0.41 0.63 0.38 -0.32 0.70 0.47 

temperature (˚C) -0.51 0.52 1.03 -0.28 0.48 0.76 0.27 
6061 tube 

Fz (kN) -0.05 0.03 0.08 0.73 -0.38 1.11 0.35 

bending force (N) 0.11 -0.17 0.28 0.47 -0.15 0.62 0.30 

torque (Nm) -0.13 0.28 0.41 0.33 -0.45 0.78 -0.75 

temperature (˚C) -0.52 0.42 0.94 -0.24 0.56 0.80 -0.17 
6061 plate &  tube 

Fz (kN) -0.02 0.09 0.11 0.66 -0.55 1.21 -0.26 
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industrial environments. Empirical modelling uses 
experimental work to evaluate process performance16, 17. NN 
was chosen to perform sensor modelling owing to its ability 
to learn relationships among input and output data sets 
through a training process.  
NN training for curvature detection  In complex 
curvature FSW, process parameters of feed rate, spindle 
speed, tilt angle and plunge depth cooperate with workpiece 
curvature to determine the condition of tool/workpiece 
contact and energy input. To make correct decisions for 
process parameter adjustment, the changing of workpiece 
curvature radius needs to be detected from on-line sensor 
data. Using the data obtained in previous Al 6061 flat plate 
and round tube experiments, a 6-9-1 feed-forward back-
propagation NN with  6 inputs (torque, temperature, Fz, feed, 
speed, and plunge) and 1 output (workpiece curvature) was 
trained with the fast training method Levenberg-Marquardt 
algorithm. The 16 Al6061 flat plate welds and 18 round tube 
welds from the OA experiments, together with another five 
additional round tube welds were used as training and 
checking data. The comparison of NN outputs to 
experimental data is shown in Fig. 4. The training result 
showed that good performance was achieved with a mean 
sum of squares of network errors (MSE) value 0.0153772 
after training 50 epochs.  

 
     Fig. 4 NN output Vs target value for workpiece curvature 

 

 
     Fig. 5 NN output Vs target value for workpiece material 

NN training for material detection   When welding 
plates of different materials, different sensor data were 

obtained using the same process parameters. Thus the 
intelligent monitoring system must ‘tell’ what kind of 
material is being welded before making decision of process 
adjustments. In this study, the changing of material is limited 
in flat plates of Al 5251 and Al 6061 alloy. Using the data 
from the two OA experiment and additional test data, a 4-4-1 
back-propagation NN with 4 inputs (tilt angle, plunge depth, 
torque and temperature) and 1 output (parent material) was 
trained with Levenberg-Marquardt algorithm. After training, 
the system can ‘tell’ whether the material being welded was 
‘0’ (for Al 6061 alloy) or ‘1’ (for Al 5251 alloy). The 
training result shows good performance with MSE value 
0.0874027 after 300 training epochs. The comparison of NN 
outputs to experimental data is shown in Fig. 5. 

NN training for process parameter prediction  To make 
control decisions with the detected parent material, 
workpiece curvature and on-line sensor data, a 4-9-4 NN 
with 4 inputs (curvature, torque, temperature and Fz) and 4 
outputs (feed rate, spindle speed, tilt angle and plunge depth) 
was trained to map the relationship between sensor data, 
process condition and process parameters. Fig. 6 shows the 
comparison of NN outputs to experimental data of the trained 
NN for complex curvature FSW of Al 6061.  The NN trained 
with the Levenberg-Marquardt algorithm training resulted in 
a MSE value of 0.0571601 after 200 training epochs. It can 
be used to derive instant process parameters given on-line 
sensor data and process conditions. The derived process 
parameters can be used for on-line fuzzy rule generating as 
described in following section.  

 
Fig. 6 Comparison of NN outputs to target values of process 

parameters  
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4 NEURAL-FUZZY PROCESS CONTROL  
Fig. 7 shows the overall structure of the intelligent neuro-
fuzzy control scheme for complex curvature FSW. Inputs ES(t) 
to the control system are the errors of on-line  control 
variables YS(t) to their reference value RS(t), and outputs from 
the control system are proposed process parameter 
adjustments ∆U(t). The main part of the control scheme 
consists of a trained NN for deriving instant process 
parameters YU(t), a rule-generating module for fuzzy rule 
generation using control variable errors ES(t) and process 
parameter errors EU(t) of derived instant value YU(t) to preset 
value RU(t), an fuzzy controller with predefined input/output 
membership functions to generate primary command for 
process parameters adjustment, and a tuning module to 
strengthen or weaken control actions by tuning input and 
output scale factors in response of the dynamic process 
changing. The design details and simulation results are 
described in following sections. 

The initial Mamdani type fuzzy controller consists of a 
fuzzifier, a fuzzy inference engine, a defuzzifier, and 
membership functions (MFs). The fuzzy rules were however 
not preset for the controller in this study. The on-line 
generating of fuzzy rules is described in Section 4.3. 

4.1 Inputs and normalizing 

Each of the three sensitive features selected in sensor fusion 
is compared to a reference value, and the error was used as 
an input to the fuzzy controller. At each sampling time i, the 
three errors were respectively calculated as: 

)()( iTemprefTempiTempERR −=                (2) 

)(
)(

)(/ iFz
iTemp

refFz
refTemp

iFzTempERR −=              (3) 

)(
)(

)(/ iFz
iTorq

refFz
refTorq

iFzTorqERR −=             (4) 

Each of the errors was normalized into [-1, 1] before fed into 
the controller by multiplying corresponding normalizing 
coefficient8.  

)()()( iTempKiTempERRiTemperr ×=                  (5) 

)(/)(/)(/ iFzTorqKiFzTorqERRiFzTorqerr ×=            (6) 

)(/)(/)(/ iFzTempKiFzTempERRiFzTemperr ×=          (7) 

The input normalizing coefficient was separately considered 
in the zones above and below the reference value to ensure 
that both sides from the reference value (zero error point) 
have the same membership functions. The normalizing 
coefficient for temperature error was calculated as follows. 
The same rule was applied for the other inputs. 

If refTempiTemp ≥)(  

)max/(1)( refTempTempiTempK −=  

Else )min/(1)( TemprefTempiTempK −=   

Where KTemp(i) is temperature normalizing coefficient, 
Tempmax maximum temperature, and Tempmin minimum 
temperature. 

All the inputs and outputs of the fuzzy controller use the 
same triangular membership function due to its computation 
efficiency. Each fuzzy input or output has nine MFs: NX 
(extra negative), NL (negative large), NM (negative middle), 
NS (negative small), ZE (zero error), PS (positive small), PM 
(positive middle), PL (positive large), and PX (extra 
positive). In order to regulate the system output to a desired 
output, more accurate control actions are taken near the 
reference value18. Therefore, finer fuzzy sets are placed near 
the reference value, that is to say, fuzzy values are dense 
when near zero but sparse when far from zero. 

4.2 Tuning mechanism 

Three parts of a fuzzy controller including membership 
functions, fuzzy rules and inputs/outputs can be tuned to 
make the fuzzy controller adaptable. In this study, the 
membership functions were predefined, and the fuzzy rules 
were generated on-line. Thus to enhance control actions, 

Fig. 7 Structure of the proposed neuro-fuzzy scheme for process control. 

Tuning functions for input/output

Error change Performance index

RS(t) ES(t) 

FLC
Process 

YS(t)∆U(t)

Drivers Output 
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Input 
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Delay

YU(t) 

If…Then Trained NN
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fuzzy inputs and outputs were tuned with corresponding 
scale factors.  

Performance index and input scale factors. Performance 
index was used to evaluate process quality using current and 
delayed control variable errors. The performance index of 
temperature was given as follows. The algorithm applied to 
the other two inputs. 

3

2
2

))((
)(

∑ −
=

i
i iTemperr

iTempPerform              (8) 

To adaptively strengthen or weaken control actions in 
response to on-line signals, the performance index was used 
for tuning input scale factor.  The scale factor for 
temperature error was calculated as follows. The same 
algorithm applies to the other two fuzzy inputs8. 

16.0
)(

)(

Temp

i
Temp

Perform
i

Temp
Kin

ε
=              (9) 

where εTemp is the bandwidth of tolerance zone, KinTemp(i) 
temperature error scale factor at time i.   

The final input of temperature error to the fuzzy controller 
was:  

)()()( i
Temp

KiniTemperriTemperr ×=              (10)     

Output scale factors.   Outputs from fuzzy controller are 
primary adjustments of tilt angle ∆tilt and plunge depth ∆plunge.  
Output scale factor for each output was calculated by taking 
into account the correlation coefficients of the three control 
variable to tilt angle and plunge depth. The algorithm for 
calculating scale factor of tilt angle adjustment was given:  
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The algorithm for calculating the output scale factor from the 
first fuzzy input temperature error is shown as follows8. The 
same rule applies to the other two fuzzy input temperature/Fz 
error and torque/Fz error. 
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Where, 

KTilt(1) Output scale factor for tilt angle from 
the first input temperature error. 

α Constant in [-1 1]. In this study it was 
chosen as 0.1 through simulation. 

( ) ( ) ( 1)i ERR i ERR iTemp Temp Temp∇ = − −              (12)            

( 1) ( 1) ( 2)i ERR i ERR iTemp Temp Temp∇ − = − − −         (13)            

With the output scale factors and adjustment steps, final tilt 
angle adjustment ∆tilt and plunge depth adjustment ∆plunge 
from the fuzzy controller are given: 

1××=Δ
Tilt

KouttiltFuzzyouttilt   )(°           (14) 

2.0××=Δ
Plunge

KoutplungeFuzzyoutplunge )(mm    (15) 

4.3 Fuzzy rule generation    

The rule base for the initial fuzzy controller was on-line 
generated using signals of control variables and the trained 
neural network. The on-line generation of fuzzy rules are 
described in following procedure.  
Recalling trained NN Technically, for FSW with the 
same process condition (material, curvature, tool, etc.), if the 
predefined process parameters are well maintained during 
welding, there should not be big changes in the sensor signal. 
In reality, there can be many reasons for process parameters 
and sensor signals changing. The trained NNs were used to 
detect process conditions and derive the instant process 
parameters from the on-line sensor signals, using the 
relationships established during training. With new inputs of 
bending force, torque, temperature and Fz, the process 
conditions can be detected first for FSW with changing 
process condition. Using the detected process condition, 
together with on-line sensor data, instant values of process 
parameters can be derived. Similarly, given reference values 
of sensor signals and original process conditions, the desired 
process parameters can be derived and used as preferred 
values at the start of the process. The preset and instant tilt 
angle, plunge depth, feed rate and spindle speed derived from 
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the NN with the original process conditions (material Al 
6061) are shown in Table 3. 

 The difference between on-line process parameters derived 
from NN and preferred process parameters suggests that the 
deviations of tilt angle, plunge depth, feed rate and spindle 
speed from their preferred values cause the deviation of 
sensor signals from their reference values. It also indicates to 
what extend the sensor signals and process parameters have 
deviated from their reference and preferred values. 

Fuzzify inputs.   Errors of the three control variables to their 
reference value are normalized into [-1 1] with equations (4), 
(5) and (6) as crisp value of fuzzy inputs. Using the example 
data in Table 3, error of control variable to its reference value 
and the normalized crisp value is given in Table 4:  

Each crisp input value is then fuzzified by mapping it into 
the predefined fuzzy input membership functions to acquire 
the name and value of the membership function it falls in. 
Fig. 6 shows the fuzzified membership function names and 
value for temperature error. The fuzzy membership function 
names for the three crisp input values can be seen in Table 4. 

Fuzzify output   Using the example data in Table 3 and the 
normalizing algorithm, the errors of tilt angle and plunge 
depth to their reference values and their normalized crisp 
values are given in Table 5. 

Each normalized crisp output value is fuzzified with 
predefined output MFs. Fig. 7 shows the fuzzifed 

membership function name and value of tilt angle adjustment. 
The fuzzified membership function names of the two outputs 
can be seen in Table 5. 

 

Fig. 6 Membership function name and value of fuzzified 
input: (a) error of temperature, (b) error of Fz, (c) error of 

temperature/Fz, (d) error of torque/Fz, and (e) error of 
temperature/torque 

Rule generating. The fuzzified membership 
function names from previous steps for inputs and outputs 
are used as fuzzy rule antecedents and consequents, 
respectively. Fuzzy rule antecedents and consequents from 
the example data are shown in Table 6. 

 

Table 3 On-line sensorgnal and reference values, instant 
process parameters and preset values  

Sensor signal & process parameter Reference value On-line value 
NN inputs Bending force (N) 1070 980 

 Torque (Nm) 27 20 
 Temperature (°C) 230 200 
 Fz (kN) 3.6 3 

NN outputs Feed rate (mm/min) 191.41 77.613 
 Spindle Speed (rpm) 398.56 323.91 
 Tilt angle (°) 0.55472 0.83998 
 Plunge depth (mm) 0.17666 0.10163 

Table 4 Errors and normalized values of control variables

Control variable Reference 
value 

On-line 
value 

Error Normalized 
value 

Temperature 230 200 30 0.5403 
Fz 3.6 3 0.6 0.2532 

Temperature/Fz 63.89 66.67 -2.78 -0.0153 
Torque/Fz 7.5 6.67 0.83 0.2402 

Temperature/Torque 8.52 10 -1.48 -0.1621 

Table 5 Errors and normalized values of process parameters

Process 
parameter 

Preferred 
value 

On-line 
value 

Error Normalized value

Feed rate 191.41 77.613 113.897 0.8047 
Spindle speed 398.56 323.91 74.650 0.7574 

Tilt angle 0.55472 0.83998 -0.285 -0.1974 
Plunge depth 0.17666 0.10163 0.075 0.9787 

Table 6 Fuzzy rule antecedents and consequents 

Fuzzy rule antecedents & consequents Membership function

Antecedents errTemp PM, PL 
 errTemp/Fz NS, ZE 
 errTorq/Fz PS, PM 

Consequents ΔTilt NM, NS 

Tool/workpiece 
contact FLC 

 ΔPlunge PL, PX 
Antecedents errFz PS, PM 

 errTemp/Torq NM, NS 
 errTorq/Fz PS, PM 

Consequents ΔFeed PL, PX 

Tool/workpiece 
energy input FLC

 ΔSpeed PL, PX 
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Fig 7 Membership function name and value of fuzzified 

outputs: (a) feed adjustment, (b) speed adjustment, (c) tilt 
adjustment, and (d) plunge adjustment 

The on-line fuzzy rule is thus generated from the full 
combination of the antecedents and consequents. For this 
example, there are 2x2x2x2x2 = 32 fuzzy rules generated on-
line for the tool/workpiece contact FLC, and 2x2x2x2x2 = 32 
fuzzy rules generated on-line for the tool/workpiece energy 
input FLC respectively. The linguistic expression of the first 
fuzzy rule for the tool/workpiece contact FLC is shown as 
follows: 

IF    error of temperature is PM && error of 
temperature/Fz is NS && error of torque/Fz is PS,  

THEN    tilt angle adjustment is NM && plunge depth 
adjustment is PL.   

The linguistic expression of the 32 fuzzy rules for the 
tool/workpiece energy input FLC can be seen in Appendix 
B.2. The first rule is listed as follows: 

IF    error of Fz is PS && error of temperature/torque is 
NM && error of torque/Fz is PS,  

THEN    feed rate adjustment is PL && spindle speed 
adjustment is PL.   

With this algorithm, when each set of on-line sensor data is 
fed back from the welding process, the rule generation 
module automatically generates the on-line ‘if-then’ rules for 
fuzzy inference. The two basic FLCs are then updated with 
the fuzzy rules and perform fuzzy inference. 

5 SIMULATION RESULTS  
To test the performance and adaptability of the proposed 
neuro-fuzzy control scheme, a simulation model was built 
with MATLAB, SIMULINK, neural network and fuzzy logic 
toolboxes (The MathWorks, 2004d). Two examples were 
demonstrated: (1) 3mm flat plate with material changing 
from Al6061 to Al5251, and (2) 3mm thickness Al6061 alloy 
with curvature changing from a diameter of 70mm to flat and 
a diameter of 40mm. The simulation results were compared 
to the data recorded from experiments performed without the 
proposed controller. Fig. 8 shows the workpieces to be 
welded in the two demonstrations. 

 
Fig.8 FSW workpieces of (a) flat plate with changing 

material and (b) Al 6061 plate with changing curvature. 

Fig. 9 shows the comparison of feed rate and spindle speed 
between the neuro-fuzzy controller simulation results and 
preset value of flat plate weld with material changing from 
Al6061 to Al5251. Fig.10 shows the comparison of torque 
and temperature between simulation results and experimental 
data recorded without the proposed controller. The sample 
was welded with fixed process parameters: feed rate 
50mm/min, spindle speed 400 rpm, tilt angle 1 ° and plunge 
depth 0.2 mm for both materials. The trained NN, which 
maps the relationship between process conditions and 
parameters (material, feed, speed, tilt and plunge), and sensor 
data (torque and temperature), were used to derive the 
reference value of torque (24.25 Nm) and temperature 
(249.56 °C).  

During simulating, the same constant tilt angle and plunge 
depth were used, as they can be well maintained during flat 
plate welding. The feed rate and spindle speed were adjusted 
by the controller to maintain torque and temperature towards 
their reference value for the two materials. A trained NN, 
which maps the relationship between process parameters and 
sensor data (e.g. tilt angle, plunge depth, torque, and 
temperature), and material (‘0’ for Al 6061 and ‘1’ for Al 
5251), was used for material detecting. When the tool moved 
from Al 6061 to Al 5251 alloy plate, the on-line sensor data 
of torque and temperature, together with process parameter 
tilt angle and plunge depth, were used to determine what 
kind of material it was welding, and thus the controller was 
able to use the material type and on-line sensor data to 
perform neuro-fuzzy control.  

It can be seen that with fixed process parameters, 
considerable decrease in torque and temperature was 
observed in the data of the sample welded on the old system 
due to a material change. However, with the neuro-fuzzy 
controller, torque and temperature were much better 
maintained towards their reference values by adjusting feed 
rate and spindle speed on-line, although small deviations 

Al 6061 Al 5251 

(a) (b) 
R35 R20Flat
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were still observed. This indicated that the proposed neuro-
fuzzy control scheme has adaptability to material changes.  

 
Fig. 9 Comparison of (a) feed rate (mm/min), and (b) spindle 
speed (rpm) between preset value and simulation results of 

workpieces with changing materials 

 

 
Fig. 10 Comparison of (a) torque, and (b) temperature 

between sample weld and simulation results of workpieces 
with changing materials 

 
Fig. 11 and Fig. 12 show the comparison of process 
parameters and sensor data of workpiece with changing 
curvature between controller simulation results and 
experimental data respectively. The curvature of the complex 
shape workpiece starts with a curvature radius of 35 mm, 
which is connected to a flat plate and ends with a curvature 
radius of 20mm, as shown in Fig. 8 (b). The sample was 
welded with fixed process parameters: feed rate 100mm/min, 
spindle speed 500 rpm, tilt angle 1 ° and plunge depth 0.2 
mm. The reference sensor values for torque, temperature and 
Fz for simulation were thus derived from the trained NN, 
which mapped the relationship between process conditions 
and parameters (curvature, feed, speed, tilt, and plunge), and 
sensor data (torque, temperature and Fz), as 15.08 Nm, 
240.71 °C and 3.34 kN with the fixed process parameters and 
a curvature radius of 35 mm.  

 

 

Fig. 11 Comparison of (a) feed rate (mm/min), (b) spindle 
speed (rpm), and (c) plunge depth (mm) between preset value 
and simulation results of workpiece with changing curvature 

 

 
Fig. 12 Comparison of (a) torque (N.m), (b) temperature (˚C), 
and (c) Fz (kN) between sample weld and simulation results 

of workpiece with changing curvature 

During simulating, the same constant tilt angle as the welded 
sample was used. The feed rate, spindle speed and plunge 
depth were adjusted by the controller to maintain torque, 
temperature and Fz towards their reference values. A trained 
NN mapping the relationship between process parameters 
and sensor data, and a curvature radius was used for 
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curvature detecting. When the tool moved from one 
curvature to another, on-line sensor data of torque, 
temperature, Fz and process parameters were used to predict 
the curvature being welded. The controller used the predicted 
workpiece curvature and on-line sensor data to perform 
neuro-fuzzy control.  

Fig. 12 (a) to (c) show the comparison of control variables 
between a welded sample without the neuro-fuzzy controller 
and simulation results with the controller. The results show 
that in the data of the sample welded with fixed process 
parameters, large deviations of the three control variables 
from their reference values were observed for all the three 
different curvatures. It was also observed that large 
difference in torque, temperature and Fz existed between the 
three curvatures. However, with the neuro-fuzzy control 
scheme, torque, temperature and Fz were much better 
maintained towards their reference values than the welded 
sample by adjusting feed rate, spindle speed and plunge 
depth on-line. This indicated that the proposed neuro-fuzzy 
control scheme has good adaptability to curvature changing, 
and thus it is applicable for complex curvature FSW. Among 
the three control variables of the simulation results, 
temperature seems to have the least deviation from its 
reference value and the smallest change range; while torque 
shows the most deviation from its reference value and the 
largest change range. This suggests that sensor values are 
limited to different ranges for different workpiece curvatures; 
or in other words, for complex curvature FSW, some but not 
all of the control variables can be well maintained.   

 
6 CONCLUSION 
Based on the multi-axis FSW machine and telemetry sensory 
system, OA experiment, statistical tools and NNs were used 
in experimental data acquisition, sensitive feature selection 
and sensor fusion. OA experiments were conducted by 
varying process parameters (feed rate, spindle speed, tilts 
angle and plunge depth) and process conditions (parent 
material and curvature) to acquire sensor data of bending 
force, torque, temperature and Fz. Correlation analysis was 
used to select sensitive sensor features as candidates for NN 
training and control variables for intelligent system control. 
Feed-forward back-propagation NNs were trained to perform 
sensor fusion for process condition detecting, tool/workpiece 
contact and energy input monitoring. Different inputs and 
outputs were designed for different NNs with a specific 
modelling target. All the simulation results showed that the 
errors of NN outputs to target values were well controlled 
within a limited range after NN training. Using the trained 
NNs, the intelligent system can detect curvature and material 
changes during complex curvature FSW of Al 5251 and Al 
6061. The trained NNs can be also used to generate on-line 
‘if-then’ fuzzy rules.  

A neuro-fuzzy control scheme integrating AIs such as NN 
and FLC for solving MIMO system such as FSW process 
was presented. The proposed neuro-fuzzy control scheme 
consists of several trained NNs for detecting process 
condition changes and deriving instant process parameters, a 

rule-generating module for fuzzy rule generation with the 
trained NNs, a basic fuzzy controller with predefined 
input/output membership functions to generate primary 
command for process parameters adjustment, and a tuning 
module to strengthen or weaken control actions by tuning 
input and output scale factors in response of the dynamic 
process changing. To test the performance and adaptability 
of the proposed neuro-fuzzy control scheme, simulations of 
workpiece with changing material and curvature were 
demonstrated. The simulation results show that the 
maintenance of the control variables such as torque, 
temperature and Fz, can be greatly improved. The simulation 
results also indicated that the proposed neuro-fuzzy control 
scheme has good adaptability to process condition (e.g. 
material and curvature) changes.  By using different trained 
NNs, the proposed neuro-fuzzy control scheme also shows 
good flexibility to change its control variables for different 
requirements.   

Further research on increasing NN model accuracy by 
investigating wider range of process condition and process 
parameters is needed in order to improve the performance of 
the proposed intelligent neuro-fuzzy control scheme for 
complex curvature FSW. The application of the proposed 
intelligent control scheme is also expected to be extended to 
dynamic processes other than FSW. 
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