CHEMICAL AND SPECTROSCOPIC STUDIES OF CHROMONE DERIVATIVES

THESIS

Submitted in fulfilment of the Requirements for the degree of DOCTOR OF PHILOSOPHY

 of Rhodes Universityby

DEBORAH NICOLE DAVIDSON

January 1992

Department of Chemistry
Rhodes University
Grahams town

Abstract

Various chromone derivatives have been used in asthma therapy, and their biological activity is apparently related to certain chemical features which include conformation and acidity. In the present study, substituent effects on conformation and acidity have been explored in chromone systems with potential biological activity. A range of variously substituted symmetrical chromone-2-carboxamides (including a series of N, N-dimethylchromone-2-carboxamides) have been prepared via chromone-2-carboxylic acids, which, in turn, were prepared from the corresponding o-hydroxyacetophenones. The N, N-dimethylchromone-2carboxamides were prepared by reacting the appropriate chromone-2carbonyl chlorides with dimethylammonium chloride in pyridine, in an approach which resolved various problems encountered in the preparation of these compounds. Substituent effects on the conformation of chromone-2-carboxamides have been explored using dynamic NMR spectroscopy, and the observed splitting of the N-alkyl signals has been attributed to slow site-exchange of the N-alkyl substituents. Dynamic NMR frequency separations and coalescence temperatures have been used to calculate rotational energy barriers, and substituent effects on these rotational energy barriers have been analysed.

The possible implication of ring-opening of chromones in chromone pharmacology has also been examined. A range of 3-(2-hydroxybenzoyl)acrylamides has been prepared via the dimethylamine-mediated ringopening of N, N-dimethylchromone-2-carboxamides and the E-double-bond configuration of the ring-opened products has been unambiguously established by single crystal analysis of the parent system. The configuration and conformation of the crystal structure of the parent
system have been shown, using $I R$ and $N M R$ spectroscopic, and molecular graphics techniques, to be maintained in solution and to characterise the whole series. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy have also been used to study the dimethylamine-mediated ring-opening of disodium cromoglycate.

The kinetics of the dimethylamine-mediated ring-opening of N, N-dimethylchromone-2-carboxamides have been studied using UV spectroscopy. These reactions have been shown to follow third-order kinetics overall and a mechanism accommodating the observed third-order kinetics has been proposed.

Substituent effects have been further investigated by the potentiometric determination of the pK_{a} values for a series of chromone-2-carboxylic acids. The relationship between acidity and the observed rate constants has been explored and has verified that the observed rate constants are sensitive to the influence of meta-substituents on the stability of the phenoxide ion "leaving group" rather than $\mathrm{C}-2$ electrophilicity.

CONTENTS

Page

1. INTRODUCTION 1
1.1 Chromone chemistry 2
1.1.1 Properties of the chromone nucleus 2
1.1.1.1 Physical and spectral properties 2
1.1.1.2 Chemical properties 4
(i) Salt formation 4
(ii) Ring-opening reactions 5
(iii) Electrophilic addition and substitution reactions 13
(iv) Other reactions of chromones 15
1.1.1.2 Synthesis of chromones 16
1.2 Conformational analysis 21
1.2.1 NMR spectroscopic studies of amides 21
1.2.2 IR spectroscopic studies of chromone-2-carboxylate esters 24
1.3 Biologically active chromones 26
1.3.1 Naturally occurring chromones 26
1.3.2 Synthetic chromone derivatives 28
1.3.3 The mode of action of anti-allergic chromones 31
(i) Structure-activity relationships of anti-allergic chromones 31
(ii) Mechanisms of anti-asthmatic drugs 36
(iii) Mast cell activation and histamine secretion 40
(iv) A molecular basis for the mode of action of disodium cromoglycate 43
1.4 Aims of the investigation 50
2. DISCUSSION 52
2.1 Preparation of chromone derivatives 52
(i) Preparation of o-hydroxyacetophenones 54
(ii) Preparation of chromone-2-carboxylate esters and chromone-2-carboxylic acids 55
(iii) Preparation of chromone-2-carboxamides 60
(iv) Preparation of 2-amino-3-(2-hydroxybenzoyl)- acrylamides 68
(v) Preparation of disodium cromoglycate 78
2.2 NMR analysis of rotational isomerism in chromone-2-carboxamides 84
2.3 Structural analysis of chromone-derived 2-amino-3-
(2-hydroxybenzoyl)acrylamides 94
2.4 NMR analysis of the reaction of DSCG with dimethylamine 104
2.5 Kinetics and mechanism of reaction of chromone-2-carboxamides with dimethylamine 108
2.6 Potentiometric determination of dissociation constants of chromone-2-carboxylic acids 120
2.7 Conclusion 127
3. EXPERIMENTAL 128
3.1 General 128
3.2 Preparation of chromone derivatives 131
3.3 NMR conformational studies 176
3.4 Crystal sructure determination of 2-dimethylamino-3- (2-hydroxybenzoyl)-N,N-dimethylacrylamide 182
3.5 Kinetic studies 184
3.6 Potentiometric determination of dissociation constants of chromone-2-carboxylic acids 218
4. REFERENCES 228
5. APPENDICES 237
5.1 Spectral data 237
5.2 X-ray crystallographic data 249
5.3 Publications 257

ACKNOWLEDGEMENTS

Firstly, I would like to thank Prof. P.T. Kaye for his continuous assistance and guidance throughout this investigation. I found the numerous, stimulating discusions invaluable and always a source of encouragement and motivation. The assistance of Prof. D.J. Eve throughout the kinetic and pK_{a} studies, and Dr . R.B. English for the crystallographic studies was also appreciated. The variable-temperature NMR data were obtained with the assistance of Prof. V. Brandt (University of the Orange Free State).

I would also like to express my thanks to the technical staff, especially Mr. Aubrey Sonneman and Mr. A. Soper, for their efficient and prompt assistance.

A special thanks to Dr. R.L. Learmonth, Rory Whittal and Mike Skinner for their friendly advice and moral support, and to Carlson Galebe and Swarna Ravindran for proof-reading the manuscript.

Finally, I would like to thank A.E.C.I. limited and the F.R.D for their generous financial support.

ABBREVIATIONS

$t-\mathrm{BuMe}_{2} \mathrm{OTf}$	-	tert-butyldimethylsilyl triflate
COSY	-	$1_{\mathrm{H}}-1_{\mathrm{H}}$ correlated experiment
DBN	-	1,5-diazabicyclo[4,3,0]non-5-ene
DBU	-	1,8-diazabicyclo [5,4,0]undec-7-ene
DMF	-	dimethylformamide
GLC	-	gas-liquid chromatography
HETCOR	-	${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlated experiment
IR	-	infrared spectroscopy
NMR	-	nuclear magnetic resonance spectroscopy
OTf ${ }^{-}$	-	triflate
THF	-	tetrahydrofuran
TLC	-	thin layer chromatography
UV	-	ultraviolet spectroscopy

To my Parents, for their encouragement and support throughout my studies.

1. INTRODUCTION

The name "chromone", first used by Bloch and Kostanecki in 1900, was chosen to describe coloured, naturally occurring compounds known to contain the benzo-4H-pyran-4-one structure 1.1 The chemistry of chromones has been extensively reviewed. ${ }^{1-3}$ Chromones are benzanulated analogues of γ-pyrone $\mathbf{2 a}$ and their systematic nomenclature originates from the pyran analogues 3 and 4.4 The chromone structure will be denoted simply as chromone rather than 4-oxo-4 H-chromene. Many chromones occur naturally in plants and exhibit biological activity. ${ }^{5}$ Potentially active structural chromone analogues have been synthesised in attempts to improve potency or reduce unwanted side effects. Another related family of compounds are the flavanoids, which are derivatives of the 2- and 3 -arylchromones respectively ${ }^{4}$ and which are widely distributed in plants. ${ }^{6}$

1
Chromone (Benzo-4 H-pyran-4-one) (4-0xo-4 H -1-benzopyran)
(4-0x0-4 H -chromene)

3
4H-Pyran

$2 a$
2b
y-Pyrone (4H-Pyran-4-one)

4
4H-1-Benzopyran (4 H -Chromene) (γ-Chromone)

1.1 CHROMONE CHEMISTRY

1.1.1 PROPERTIES OF THE CHROMONE NUCLEUS.

Most properties of γ-pyrones, and hence chromones, are attributable to the aliphatic dienone system 2 a , although some properties, such as the lack of normal ketonic activity and the exceptional reactivity of the carbonyl oxygen, may be attributed to substantial π-electron delocalization consistent with the aromatic pyrylium betaine structure 2b. The electronic interaction of the ether oxygen with the carbonyl group was first proposed by Arndt in $1924 .{ }^{4}$

1.1.1.1 PHYSICAL AND SPECTRAL PROPERTIES.

The great propensity of γ-pyrone and chromone to form salts with acids results from their observed basicity, which has been rationalised in terms of the betaine structure $2 \mathrm{~b} .{ }^{7}$ Although the pK_{a} value of γ-pyrone (0.1) is comparable to nitrogen bases with very low basic strength, e.g. urea ($\mathrm{pK}_{\mathrm{a}} 0.1$) and p-nitroaniline ($\mathrm{pK}_{\mathrm{a}} 1.0$), it is nevertheless remarkably high compared to other oxygen bases, e.g. acetone ($\mathrm{pK}_{\mathrm{a}}-7.2$). The pK_{a} of chromone (2.0) is significantly higher than γ-pyrone. ${ }^{7}$

Spectroscopic properties are rationalised in terms of an aliphatic dienone system 2a. The IR carbonyl stretching frequency of chromone occurs at ca. $1660 \mathrm{~cm}^{-1}$, the exact value depending on the solvent used. 4,8 This value is lower than the carbonyl stretching frequency of
coumarin $5\left(v_{\max } 1710 \mathrm{~cm}^{-1}\right)$ and IR spectroscopy may thus be used to distinguish chromones from coumarins. The UV spectra of chromone ${ }^{9}$ and many of its derivatives are characterised by four bands centred at. 205, 225, 240 and 300 nm , the last two being major absorption peaks. Solvent studies have shown that the lowest wavelength band is probably a $\pi \rightarrow \sigma^{*}$ transition involving the heteroatom lone-pair electrons, while the three higher wavelength bands arise from $\pi \rightarrow \pi^{*}$ transitions. The latter wavelength bands are generally red-shifted by C-2 electron withdrawing groups or blue-shifted by a C-2 methyl group. Introduction

5

6
of $\mathrm{NHCO}_{2} \mathrm{Et}$ at $\mathrm{C}-2$ causes pronounced spectral changes which are associated with the charge transfer species 6. In mass spectrometric analysis, ${ }^{10}$ the chromone molecular ion fragments via two pathways involving either the loss of carbon monoxide or ring cleavage by a retro-Diels-Alder reaction (Scheme 1).

A detailed ${ }^{1} \mathrm{H}$ NMR study of chromone has been published by Mathis and Goldstein. ${ }^{11}$ The benzenoid proton signals in chromone are shifted downfield, relative to those of the isomeric coumarin, as a result of the close proximity of the carbonyl group to the benzene ring. This effect is greatest at C-5 and the separation of this signal from the other benzenoid signals is characteristic of chromones and is not shown in coumarins. The ${ }^{13} \mathrm{C}$ NMR spectra of chromones ${ }^{11}$ are characterised by a number of general features : (i) the carbonyl carbon signal is always at the lowest field and is essentially unaffected by substitution in the system; (ii) the $\mathbf{C - 3}$ signal is at a higher frequency than all the other methine carbon signals; and (iii) the ring junction signals are largely unaffected by substitution in either ring.

1.1.1.2 CHEMICAL PROPERTIES.

(i) Salt Formation.

Both γ-pyrone and chromone form oxonium or benzopyrylium salts, e.g.
chromone forms the hydrochloride 7, methoxonium 8, or 4-siloxybenzopyrylium salt 9 when treated with hydrochloric acid, methyl o-nitrobenzenesulphonate, or t-butyldimethylsilyl triflate respectively. ${ }^{4,12,13}$ These reactions all reflect the latent aromaticity of the heterocyclic ring. ${ }^{4}$

$$
\begin{aligned}
& 7 \quad(R=H) \\
& 8 \quad(R=M e) \\
& 9 \quad\left[R=S i(\mathrm{Me})_{2} \mathrm{Bu}^{t}\right]
\end{aligned}
$$

(ii) Ring-opening Reactions.

Chromones readily undergo C-2 nucleophilic cleavage of the heterocyclic ring. ${ }^{4}$ Consequently, there are few synthetic methods for introducing nucleophiles at this position without ring-opening or ringtransformation. ${ }^{13}$ A variety of nitrogen, oxygen and carbon nucleophiles have been used in the ring-opening of chromones, and only selected examples will be discussed.
(a) Reactions with nitrogen nucleophiles.

Kostka ${ }^{14}$ showed that chromones react with primary and secondary amines to produce β-aminovinylketones 10 having either E - or Z-double-bond configurations (Scheme 2). Zagorevskii et al. ${ }^{15,16}$ used ${ }^{1} H N_{R}$ spectroscopy to study the detailed structure of the β-aminovinylketone products (Section 2.3) and proposed a feasible reaction mechanism using ${ }^{1} \mathrm{H}$ NMR spectroscopic and deuterium labelling techniques (Section 2.5).

SCHEME 2
Reagents : i) $R^{1} R^{2} \mathrm{NH}, 80-85^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Chromone-2-carboxylate esters (e.g. 11) react with amine or ammonia to give different products occording to the nature and quantity of the amine, and the reaction conditions (Scheme 3); secondary and tertiary carboxamides (e.g. 12) are produced under very mild, anhydrous conditions while an excess of amine or prolonged reaction affords coloured acrylamides $13 \cdot 15,17-20$ The latter reaction is presumed to proceed via the carboxamide with a second mole of amine cleaving the ring, since treatment of the preformed carboxamide (12; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$) with benzylamine afforded the corresponding acrylamide. ${ }^{21}$

SCHEME 3
Reagents : i) $\mathrm{RNH}_{2}(1 \mathrm{Molar}$ eq.);
ii) RNH_{2} (2 Molar eq.);
iii) RNH_{2} (1 Molar eq.).

Reaction of chromones with ambident nucleophiles or those containing an N-C-N group results in ring cleavage and subsequent cyclization to other heterocyclic systems. Reactions with hydroxylamine, for example, afford isomeric isoxazole derivatives 14 and 15 , and the oxime derivative 16 is only obtained under anhydrous conditions (Scheme 4). 22 Base catalysed reaction of 3 -nitrochromone 17 with a series of nucleophiles affords heteroaromatic nitro compounds, ${ }^{23}$ e.g. reaction with glycine ethyl ester hydrochloride or benzamidine affords the pyrrolyl- or pyrimidylderivatives 18 and 19 respectively (Scheme 5). Analogous reactions occur with 2-carbonyloxychromones, e.g. ethyl chromone-2-carboxylate has been cleaved by hydrazine, diaminoethane and 1,2-diaminobenzene, 24,25 while chromone-2-carboxylic acid reacts with hydrazine to produce pyrazole derivatives. ${ }^{20}$

(b) Reactions with oxygen nucleophiles.

Chromones undergo ring opening when treated with aqueous alkali; ${ }^{4}$ cyclization of the resultant salt of the β-diketone 20 to the chromone on acidification often prevents isolation of the free β-diketone 20 (Scheme 6). Hydrolytic carbon-carbon cleavage of the β-diketone 20 occiurs under vigorous, prolonged treatment with aqueous alkali to afford a mixture of products and this reaction has been widely used in chromone structural analysis. Szabo et al. have studied the kinetics of this reaction of chromones ${ }^{26}$ and isoflavanoids ${ }^{27,28}$ and have proposed a mechanism in which C-2 nucleophilic attack occurs in the ratedetermining step whose rate constant varies with electron density at C-2 (Section 2.5). Treatment of chromones with sodium alkoxide may also result in ring cleavage, e.g. 2 -methylchromone 21 affords the dimeric product 22 which, on treatment with acid, is reconverted to 2-methylchromone (Scheme 7). 22

16

SCHEME 4

Reagents : i) $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$; ii) anhydrous $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$.

17

19

18

SCHEME 6

Reagents : i) OH^{-}; ii) H^{+}.

SCHEME 7

Reagents : i) $0 \mathrm{OEt}^{-}, 18^{\circ} \mathrm{C}$; ii) H^{+}.

(c) Reactions with carbon nucleophiles.

Carbon nucleophiles attack either the C-2 or C-4 positions of chromones resulting in ring cleavage or ring transformation. Ring-opening reactions of chromones with an active methylene species, ${ }^{29}$ in the presence of DBN or DBU, occur at room temperature, e.g. reaction of 3-bromochromone 23 affords the furan derivative 24 (Scheme 8). Some heterocyclic quaternary compounds (e.g. N-ethyl-2-methylbenzothiazolium tosylate 25) cleave chromones to form compounds (e.g. 26) which are potentially useful as dyes (Scheme 9). 30 Nucleophilic attack on the carbonyl group of chromones by Grignard reagents followed by acidification affords benzopyrylium salts (e.g. 27) (Scheme 10), although the Grignard reaction of isoflavone 28 in the presence of copper (I) chloride, affords the ring-opened product 29.29

C-2 Nucleophilic attack may not always result in ring cleavage. The reaction of 3-nitrochromone 30 with diazomethane or diazopropane affords a cyclopropabenzopyran 31 or the homologous dimethylcyclopropane 32 respectively (Scheme 11). 29 Akiba et al. 13 recently reported reactions of the siloxybenzopyrylium salts 33 (generated from chromone using t-butyldimethylsilyl triflate) with silyl enol ethers or alkyl organometallic reagents in the presence of $2,6-1 u t i d i n e . ~ F o r ~ e x a m p l e, ~$ reaction with the ketene silyl acetyl 34 affords 4 -siloxybenzopyran 35 , while reaction with 3 -(trimethylsilyl)-1-butene 36 affords the unexpected cyclopentane annulation product 37 (Scheme 12). A second substituent may be introduced at the $C-3$ position of the 2 -substituted 4-siloxybenzopyrans via reaction with electrophiles, e.g. reaction of compound 35 with the appropriate iminium salt affords the 3-methylenechromone derivative 38.

SCHEME 8
Reagents : i) $\mathrm{CH}_{2} \mathrm{Ac}_{2}, \mathrm{DBN}, 18^{\circ} \mathrm{C}$.

SCHEME 9

Reagents : i) AcONa, EtOH.

SCHEME 10
Reagents : i) PhMgBr ; ii) $\mathrm{HCl}, \mathrm{FeCl}_{3}$; iii) $\mathrm{MeMgI}, \mathrm{Cu}_{2} \mathrm{Cl}_{2}$.

SCHEME 11
Reagents : i) $\mathrm{R}_{2} \mathrm{CN}_{2}$.

37

38

SCHEME 12
Reagents : 1) $\mathrm{Bu}^{t}(\mathrm{Me})_{2} S i O T f, 80^{\circ} \mathrm{C}, 1 \mathrm{~h}$;
ii) 2,6-1utidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, r t, 1 \mathrm{~h}$;
iii) $E t_{2} \mathrm{~N}=\mathrm{CH}_{2} . \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 5 \mathrm{~h} ; \mathrm{Na}_{2} \mathrm{CO}_{3}$;
iv) 2,6-1utidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $4.5 \mathrm{~h} ; \mathrm{Na}_{2} \mathrm{CO}_{3}$.

iii) Electrophilic Addition and Substitution Reactions.

Both chromone rings are relatively resistant to electrophilic attack ${ }^{31}$ since strongly acidic electrophilic reagents (e.g. sulphuric acid or nitric-sulphuric acid mixtures) or strong acids (i.e. halogen acids) produced during the reaction, may result in protonation of the pyran ring thus inhibiting further electrophilic attack. ${ }^{29}$ Nitration, 31,32 under forcing conditions, is the most readily achieved electrophilic substitution reaction and affords mainly the 6-nitrochromone derivative, while bromination, ${ }^{29,32}$ using bromine in carbon disulphide, affords a 2,3-dibromo adduct which on treatment with a secondary amine gives 3-bromochromone. The less acidic conditions of the Mannich reaction afford salts of 3 -aminomethylchromone 39 (Scheme 13), the reaction probably proceding via electrophilic attack on a β-diketone intermediate produced by heterolytic cleavage of the chromone system. ${ }^{29,31}$

Treatment of hydroxylated or methylated chromones with hydroiodic acid induces an interesting and occasionally useful rearrangement (Scheme 14). 29 Demethylation of the flavone dimethyl ether 40 with hydroiodic acid proceeds via the Wessely-Moser rearrangement of the ring-opened diketone 41 which cyclises to the flavone scutellarein 42 which has a different trihydroxy substitution pattern.

SCHEME 13
Reagents : i) $\mathrm{H}_{2} \mathrm{CO}, \mathrm{Me}_{2} \mathrm{NH}, \mathrm{AcOH}$.

SCHEME 14
Reagents : i) HI.

(iv) Other Reactions of Chromones.

The oxidation of chromones using permanganate or dichromate results in ring-opening and the formation of salicylic acid. ${ }^{29}$ Catalytic reduction of chromones, on the other hand, may produce several products. Thus conditions favourable for the production of a specific product from a particular substrate may be selected. For example, hydrogenation of 6-chlorochromone-2-carboxylic acid with palladium-charcoal in acetic acid at $70^{\circ} \mathrm{C}$ at low pressure results in the loss of the 2,3 -double bond, ketone carbonyl and chlorine functions, while the use of Raney nickel at low pressure, or at high pressure and temperature over copper chromate, failed to effect reduction. ${ }^{22}$ Chromones also react with free radicals, and undergo thermal and photochemical reactions. 22,31

1.1.2. SYNTHESIS OF CHROMONES.

Preparative methods for chromones have been extensively reviewed. ${ }^{1-3}$ Although chromones may be synthesised from a variety of substrates, the two most common precursors are o-hydroxyacetophenones and phenols. In both instances, a side-chain is linked to the substrate, followed by cyclisation. The source of the side-chain differentiates each synthetic route ${ }^{33}$ and aromatic substituents may be introduced without any substantial changes in synthetic methodology. ${ }^{34}$

The Claisen condensation ${ }^{34}$ of an o-hydroxyacetophenone with an ester (Scheme 15) is one of most frequently used synthetic methods, and was first described by Kostanecki et al. in 1901. Condensation with an ester, e.g. diethyl oxalate $\left(R=\mathrm{CO}_{2} \mathrm{Et}\right)$, in the presence of strong base, usually sodium ethoxide, affords a 1,3 -diketone 43 which readily cyclises in acidic solution.

An alternative route to the 1,3-diketones involves the O-acylation of an o-hydroxyacetophenone to afford an acyloxybenzene 44 which, on treatment with potassium carbonate, undergoes an intramolecular Baker-Venkataraman rearrangement to the 1,3 -diketone 45 (Scheme 16). 33 In the KostaneckiRobinson ${ }^{35}$ synthesis of chromones an o-hydroxyacetophenone is reacted with an aliphatic anhydride and the sodium salt of the corresponding acid (Scheme 17). This reaction may produce a mixture of products and alkaline cleavage of the 3-acyl group may occur during isolation of the product.

SCHEME 15

Reagents : i) base (NaOEt); ii) $\mathrm{RCO}_{2} \mathrm{Et}$; iii) H^{+}.

SCHEME 16

Reagents : i) MeCOCl, pyridine; ii) KOH , pyridine or $\mathrm{K}_{2} \mathrm{CO}_{3}$; iii) H^{+}.

SCHEME 17
Reagents : i) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{NaOAc}$; ii) aq. NaHCO_{3}.

The reaction of an o-hydroxyacetophenone with dimethylformamide (DMF) under Vilsmeier conditions is used for the synthesis of 2 -unsubstituted chromones (Scheme 18). ${ }^{36,37}$ Reactions with DMF or its dimethyl acetal in the absence of phosphorous oxychloride afford chromone itself via cyclization of the β-aminovinylketone 46.

The simonis reaction 31,38 is also widely used and involves the condensation of a phenol with a β-keto ester 47 (Scheme 19). The reaction may produce a chromone 48 , or a coumarin 49 (the Pechmann reaction), or a mixture of both. Chromone formation predominates with the use of phosphorous pentoxide while sulphuric acid effects cyclisation to the coumarin; complete selectivity is, however, not always observed.

The reaction of a phenol with an unsaturated ester, e.g. diethyl acetylene dicarboxylate 50 or diethyl chlorofumarate ${ }^{38}$ is widely used in the synthesis of chromone-2-carboxylic acids 53 (Scheme 20) and was developed by Ruhemann et al. between 1900 and 1921. 39 Readily available substituted phenols may be used, and yields are reasonable, e.g. o-iodophenol is converted into 8-iodochromone-2-carboxylic acid in about 33\% yield. 40 Cyclization of the aryloxyalkenoic acid 51 or ester 52 intermediates is effected by treatment with a mineral acid or acetyl chloride.

SCHEME 18

$$
\begin{aligned}
& \text { Reagents : i) } \mathrm{R}=\mathrm{H}, \mathrm{Me} \mathrm{~N}_{2} \mathrm{NCH}(\mathrm{OMe})_{2} \text {; ii) } \mathrm{H}_{2} \mathrm{SO}_{4}, 100^{\circ} \mathrm{C} ; \\
& \text { iii) } \mathrm{R}=\mathrm{H}, \mathrm{DMF}, \mathrm{POCl}_{3} \text {; iv) } \mathrm{R}=\mathrm{Me}, \mathrm{DMF}, \mathrm{POCl}_{3} .
\end{aligned}
$$

SCHEME 19

Reagents : i) $\mathrm{H}^{+}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ or $\left.\mathrm{P}_{2} \mathrm{O}_{5}\right)$.

SCHEME 20

Reagents : i) base; ii) $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$, MeCOCl , or $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{H}_{2} \mathrm{SO}_{4}$.

Chroman-4-ones are also used in chromone synthesis although their poor availability and low yields reduce their preparative value. ${ }^{41}$ Conversion to chromones is effected by dehydrogenation or oxidation using selenium dioxide or palladium on charcoal. A more reliable conversion is the dehydrobromination of 3-bromochroman-4-one 55 using an amine (Scheme 21). The β-aminovinylketone 56 , isolated in some instances, is subsequently cyclized on acidification to chromone. The 2,3-dibromochroman-4-one 57 affords chromone on treatment with zinc dust and is dehydrobrominated to 3 -bromochromone 58 in pyridine. ${ }^{38}$

Chromones are also synthesised from salicylic acid derivatives, ${ }^{36}$ enamines, ${ }^{42}$ coumarins, benzopyrylium salts, chroman-4-ols, furans, and benzofurans. 38

SCHEME 21

Reagents : i) $\mathrm{R}_{2} \mathrm{NH}, 20^{\circ} \mathrm{C}$; ii) H^{+}; iii) $\mathrm{Me}_{2} \mathrm{NPh}$;
iv) Zn ; v) Br_{2}; vi) pyridine.

1.2 CONFORMATIONAL ANALYSIS

The energetics and origins of conformational preferences may be studied using various techniques ${ }^{43}$ including (i) IR, NMR, Raman, and microwave spectroscopy; (ii) dipole moment measurements; and (iii) electron diffraction and x-ray diffraction studies. Isomeric, stable conformers in dynamic equilibrium may be separately observed provided the timescale of the spectroscopic detection method is sufficiently fast relative to the interconversion rate of the isomers, i.e. the average lifetime of the species must be greater than the (inverse) frequency of the absorbed radiation. ${ }^{44}$ Each isomer must also possess different absorption characteristics and be present within the concentration detection limits.

1.2.1 NMR SPECTROSCOPIC STUDIES OF AMIDES.

Rotational isomerism of amides has largely been studied using variabletemperature dynamic NMR spectroscopy. 44,45 The partial double-bond character of the amide N-CO bond arising from nitrogen lone-pair delocalization (Figure 1) has the following consequences :
(i) a large rotational barrier about the amide $N-C O$ bond ranging between $50-100 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}{ }^{44}$
(ii) a rigid planar amide framework;
(iii) the non-equivalence of the nitrogen substituents, even when $\mathrm{R}^{1}=\mathrm{R}^{2}$; and
(iv) the possibility of long-range spin-coupling from R to R^{1} and R^{2}.

FIGURE 1.

Since the rotational barriers of amides are large, N, N-dialkyl amides often show splitting of the ${ }^{1_{H}} N$-alkyl signals at ambient temperature. The separate chemical shifts for identical N-alkyl protons of N, N-dialkyl amides (under conditions of slow site-exchange relative to the $N M R$ time-scale) have been attributed to the anisotropy of the diamagnetic susceptibility of the amide carbonyl group. ${ }^{45}$

The heights of rotational barriers are measured using various methods, 44,45 which include lineshape analysis, approximate methods, and the spin-echo method. For example, using approximate methods, the siteexchange rate constant (k; Equation 1) for equivalent populations at coalescence temperature (T_{c}) may be calculated from the chemical shift difference at infinitely slow site-exchange (δv_{∞}). 44,45 Alternatively, the energy of activation (ΔG^{*}; Equation 2) and hence the first-order rate constant (k; Equation 3) may be calculated from the coalescence temperature (T_{c}) and the chemical shift difference at coalescence $\left(\Delta \nu_{c}\right) .{ }^{46}$

$$
\begin{aligned}
& k=\pi \delta \nu_{\infty} / \sqrt{2} \\
& \Delta G^{*}=R T_{\mathrm{C}}\left(22.96+\ln T_{\mathrm{C}} / \Delta \nu_{\mathrm{c}}\right) \\
& \ln k=\ln \left(\mathrm{k}_{\mathrm{b}} \mathrm{~T} / \mathrm{h}\right)-\Delta \mathrm{G}^{*} / \mathrm{RT} \\
& \text { where } \mathrm{R}=\text { Gas constant } \\
& \mathrm{k}_{\mathrm{b}}=\text { Boltzmann constant } \\
& \mathrm{h}=\text { Planck constant } \\
& \mathrm{T}=298 \mathrm{~K}
\end{aligned}
$$

Interpretation of variable-temperature spectra may be complicated by factors such as the non-equivalence of conformers which may require application of the Winstein-Holness principle. ${ }^{44}$ Simultaneous rotation may also occur about two separate bonds, and individual rotational
barriers may be determined provided that both site-exchange processes are sufficiently slow, as shown in two recent dynamic NMR studies. 46,47 In heterocyclic amides, nitrogen inversion and ring reversal conformational changes may also establish additional rotational equilibria, although these processes are considered to be faster than N-CO rotation. ${ }^{48}$ For example, ${ }^{48}$ rotational barriers about the N - $C 0$ bond of N-substituted benzamides are generally larger than $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Ring-reversal rotational barriers of piperidines are smaller (40-44 $\mathrm{kJ} \mathrm{mol}^{-1}$) and those of pyrrolidines are expected to be even lower. Rotational barriers due to nitrogen inversion in heterocyclic amides are generally too small to be detected by NMR spectroscopy.

The energy minima of amides correspond to conformations which favour a planar amide function. ${ }^{44}$ In symmetrically substituted N, N-dialkylbenzamides, steric interactions between the o-hydrogen and the N-alkyl substituents apparently disrupt the co-planarity of the N-alkyl substituents in the near planar amide group, and may increase the torsion angle between the planar amide and aromatic functions. ${ }^{49}$ (In the crystal structure of p-bromo- N, N-dimethylbenzamide, the N-methyl substituents are twisted out of plane by 9° and the torsion angle between the amide and aromatic planes is 45°.) Site-exchange of the N-alkyl substituents apparently involves a rotational equilibrium between two quasi-planar conformers. ${ }^{49}$ Rotational barriers of N, N-dialkylbenzamides are reduced relative to N, N-dialkylacetamides, for example, since competitive delocalization stabilises the activated state (Figure 2), thus reducing the rotational barriers. ${ }^{45}$ The lower

FIGURE 2.
rotational barriers obtained in piperidides ${ }^{50}$ relative to N, N-dimethylamides ${ }^{50}$ have been attributed to repulsions, between the N-acyl group and the vicinal equatorial hydrogens, which impart more sp ${ }^{3}$ character to the nitrogen in piperidines than in acyclic analogues. In simple piperidine and pyrrolidine amides, 45 rotational barriers for the five-membered ring systems have been shown to be consistently larger (8-12 $\mathrm{kJ} \mathrm{mol}^{-1}$) than those of the six-membered ring systems. In general, larger N-alkyl groups tend to result in smaller rotational energy barriers. ${ }^{45}$ However, reasons for this trend are not clearly understood and there are exceptions to the trend.

The rigidity of the planar (or near planar) amide framework may also result in additional slow rotations about bonds other than the N-CO amide bond. 45 For example, in o-substituted benzamides, rotation about the $C(1)-C O$ bond involves site-exchange between conformers in which the aromatic group is rotated out-of-plane relative to the planar amide group. Such rotational barriers range between $32-56 \mathrm{~kJ} \mathrm{~mol}^{-1} .45$

1.2.2 IR SPECTROSCOPIC STUDIES OF CHROMONE-2-CARBOXYLATE ESTERS.

Rapid internal rotations involving carbonyl systems may be studied using IR spectroscopy since IR carbonyl absorption bands are sensitive to conformational change and this detection method has a much shorter timescale than that required for $N M R$ spectroscopic detection. In an $I R$ study of solvent, substituent and temperature effects on rotational
isomerism in a series of chromone-2-carboxylate esters, Drews and Kaye ${ }^{51}$ rationalised the observed doubling of the carboxylate carbonyl absorption bands in terms of a rotational equilibrium between syn-s-trans II and anti-s-trans I conformers (Scheme 22). The absence of splitting of the carboxylate carbonyl bands for the 3-methyl-, 3-chloro-, and 3-bromochromone-2-carboxylate esters was rationalised in terms of unfavourable steric and dipolar interactions which disrupted the co-planarity of the chromone and carboxylate functions.

SCHEME 22

1.3 BIOLOGICALLY ACTIVE CHROMONES

1.3.1 NATURALLY OCCURRING CHROMONES

By 1975, the number of isolated naturally occurring chromones exceeded fifty five. 52 The present discussion, however, will be confined to a limited number of examples which illustrate their diversity of location, structure, and biological or pharmacological activity.

Many natural chromones contain hydroxy, methyl and/or prenyl substituents. ${ }^{53}$ Thus, eugenin 59, one of the simplest chromones, and eugenitin 60 are both constituents of the Javan wild clove Eugenia caryophyllata L. Thunbg., while peucenin 61 is found in the rhizome of the masterwort Imperatoria ostruthium and the South African sneezewood tree. 54 The halogenated hydroxychromone rupicolon 62 has been isolated from extracts of lichens, while siphulin 63, the only natural chromone carboxylic acid, occurs in a Scandinavian lichen, Siphula ceretites. A

62

63
rare C-glycosylchromone, aloesin 64, has been identified in several species of bitter aloes. 55 Natural 3-methylchromones are also rare and hormothamnione 65, isolated by Gerwick et.a156,57 in small quantities from the marine cyanophyte Hormothamnion enteromorphoides or from the marine cryptophyte Chrysophaeum taylori, was the first reported styrylchromone. Hormothamnione is a potent cytotoxin to cancer cells in vitro and, although the mechanism for its cytotoxic activity has not been completely established, it appears to selectively inhibit RNA synthesis. ${ }^{56}$

64

65

The natural furochromone, khellin $66,58,59$ was isolated by Mustapha in 1897 from the seeds and fruit of a Middle Eastern plant Ammi Visnaga. Khellin induces relaxation of the bronchial musculature (anti-spasmodic activity) thereby alleviating the symptoms of bronchial asthma; a direct action on heart muscle causes vasodilation thus offering relief for angina pains. Khellin also exhibits lipid-altering, antiatherosclerotic activity ${ }^{60}$ and may thus provide a valuable therapy for reducing the risk of cardiovascular disease. Extracts of this plant have been used since ancient times for the treatment of colics, and more recently, in asthma therapy but unpleasant side effects, such as nausea and vomiting, have limited its clinical use.

The flavanoid, baicalein $67,61,59$ a constituent of the dried radix of Scutellaria baicalensis Georg which was used in ancient Chinese medicine as a diuretic and anti-allergic drug, has been shown by Koda et al to exhibit anti-allergic activity.

66

67

1.3.2 SYNTHETIC CHROMONE DERIVATIVES

Some chromonecarboxamides have an effect on the central nervous system ${ }^{62}$ (e.g. N, N-diethylchromone-2-carboxamide exhibits sedative and hypnotic activity) while analgesic properties are exhibited by several N arylamides of which the sulphonamide 68 was found to be the most potent. The amide 69 exibits anti-histaminic activity and N-arylchromone-3carboxamides 70 show anti-bacterial activity. 62 Anti-inflammatory

68

69

70
activity is exhibited by the substituted chromone-2- or 3-carboxamides of which the flavone 71 was found to be the most potent. ${ }^{63}$ Several chromonecarboxamides ${ }^{64}$ [e.g. substituted N-(tetrazol-5-yl)chromone-2carboxamides 72] also exhibit anti-allergic activity and will be discussed in Section 1.3 .3 (i).

71
 72

The biological properties of various chromone-2-carboxylic acids ${ }^{58}$ have been explored in the search for a khellin (66) replacement which is more soluble and which has improved muscle relaxing properties, but none of the unwanted side-effects of khellin. The search for a more specific treatment for bronchial asthma began in 1956 with the synthesis of the hydrophylic 2-carboxychromones by Cox et al. ${ }^{58}$ They established that these compounds exhibit anti-allergic activity rather than the antispasmodic activity of khellin. However, since the duration of their prophylactic action was short, it was concluded that mono-chromone-2carboxylic acids were unlikely to be of any clinical use. Consequently, research was directed towards the synthesis of novel bischromones.

The discovery of disodium cromoglycate (DSCG) 73^{58} in 1965 undoubtedly provided a major advance in the treatment and prophylaxis of bronchial asthma and other allergic diseases. ${ }^{65}$ DSCG is widely used in asthma therapy ${ }^{66}$ under commercial names of Intal or Lomudal. ${ }^{40}$ In 1967, Altouyan ${ }^{58}$ showed that DSCG exhibits anti-allergic activity. This
protective effect lasts several hours and long-term use of the drug can reduce the number and frequency of exacerbations in the clinical course of asthma. ${ }^{66}$ Partly due to its size and the acidity of the two carboxylic acid groups, DSCG is poorly absorbed and is thus administered by inhalation as a fine powder or as an aqueous aerosol. 59 Many other anti-allergic compounds, ${ }^{67}$ such as ketotifen 74 and doxantrazole 75 , have subsequently been developed in the search for an orally active successor to DSCG with an improved clinical profile. 59 By 1985 , little success had been achieved and tranilast ($\mathrm{N}-\mathrm{F}^{\prime}$) 76, an orally active oxanilic acid derivative, was the only such drug to have been marketed. 59

73

75

74

A novel pyranoquinoline dicarboxylic acid, nedocromil sodium (Tilade ${ }^{(1)}$) 77, has recently been used as an anti-inflammatory, effective in the treatment of mild asthma. 68,69 It is also interesting to note that cromakalim BRL 34915,78 is an effective bronchodilator. 70,71 The mechanism of this action involves the opening and activation of potassium channels in the cytosol of the smooth muscle cells. The potential of such potassium channel activators in asthma therapy is currently being investigated.

78

77

1.3.3 THE MODE OF ACTION OF ANTI-ALLERGIC CHROMONES

(i) Structure-activity Relationships of Anti-allergic Chromones.

The chemical structure of a drug determines its affinity for a specific receptor and hence the intrinsic activity of the drug. The correlation of the action of drugs with their chemical structure is an integral link in the analysis of drug action, and an exploitation of these relationships has often resulted in the development of better drugs. ${ }^{72}$

Common structural features of anti-allergic compounds include
(Figure 3.) ${ }^{73}$:
(i) a planar system with extended π-bonding;
(ii) a benzene ring;
(iii) an attached oxygen or nitrogen atom; and
(iv) an s^{2}-hybridised carbon atom (designated by the incomplete double bond) separating the heteroatom and the carboxylic acid, or its equivalent.

Charge delocalisation and acidity may thus be important contributing features for significant activity.

$\mathrm{X}=\mathrm{O}$ or NH
FIGURE 3. Structural requirements for anti-allergic activity.

Structure-activity studies ${ }^{40}$ of a number of bischromone DSCG analogues 79 suggest that co-planarity of the two chromone rings is an important property as shown :
(i) by the higher activity of the planar compound 80 and
(ii) by the reduced potency of compounds (79; $R=H$) with a bridging alkylenedioxy chain [79; $X=5,5 \prime-\left(\mathrm{CH}_{2}\right)_{n} \mathrm{O}$] comprising more than six atoms or a single methylene bridging group (79; $X=6,6^{\prime}-\mathrm{CH}_{2}$) which, in either case, reduces co-planarity of the two nuclei. The presence of terminal oxygen atoms in the bridging chain is not essential for activity, and the position of attachment of the chromone rings to the bridging chain [79; $\mathrm{X}=\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{O}$ or $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{O}$] is unimportant, with the exception of the $8,8^{\prime}$ positions which produce compounds with little or no activity. Introduction of alkoxy groups
generally maintains or enhances activity, although the disubstituted methoxy analogue (79; $R=7,7$ di-OMe, $X=\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{O}$) is less active than DSCG.

80

Many mono-chromones have proven to be orally active, a result partly due to increased lipophilicity and decreased polarity. 59 Proxicromil 81 (FPL-57787) ${ }^{59}$ was, perhaps, the most promising orally active chromone in clinical trials but toxicity prevented further development. Chromone-3carboxylic acid 82 is inactive, perhaps due to the loss of acidity resulting from intra-molecular hydrogen bonding. Structure-activity

81
studies of chromone-3-acrylic acids 83,61 in which intra-molecular hydrogen bonding between the carboxylic acid and the carbonyl oxygen is sterically impossible, have established that :
(i) only the trans isomers are active;
(ii) introduction of an alkyl or alkoxy group at C-6 or C-8 leads to the greatest enhancement of activity; and
(iii) activity is destroyed by moving the acrylic group to C-2, or by modifying it by introducing an α-substituent or saturating the double bond.

83

The carboxylic acid group of biologically active chromones has often been replaced by the $1 H$-tetrazole moiety, which exhibits comparable acidity ${ }^{74}\left(\mathrm{pK}_{\mathrm{a}}\right.$ ca. 3$) .{ }^{75}$ Such replacement has often resulted in compounds with increased activity. 64 Structure-activity studies ${ }^{74}$ of 3-(1H-tetrazol-5-yl)chromone AA-344 (84; $R=6-E t$), modelled on the antiallergic flavanoid baicalein (67), ${ }^{59}$ have established that :
(i) the analogues (84; $R=6-E t, 6-C 1,6,8-d i-M e, 6-\mathrm{NO}_{2}$, and $6-0 H$) are all ca. 4-10 times more active then DSCG; and
(ii) the parent compound is at least 2.5 times as active as the isomeric 2-(1H-tetrazol-5-yl)chromone.

The N-(tetrazol-5-yl)chromone-2-carboxamides 72 are ca. 80 times more active than DSCG with a longer duration of action ${ }^{75}$ and structureactivity studies ${ }^{64}$ have established that :
(i) a source of acidity near the pyran ring is desirable;
(ii) the analogues (72; $R=7-0 M e$ or $6-M e$) are more potent than the parent compound;
(iii) introduction of a C-3 chloro or methyl group lowers the activity, although a basic $\mathrm{C}-3$ side chain [e.g. $3-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ or 3 -NHMe] retained high activity; and
(iv) replacement of either hydrogen of the N-tetrazolylcarboxamido group by a methyl group resulted in loss of activity.

(ii) Mechanisms of Anti-asthmatic Drugs.

The word asthma was derived from a Greek word which means "to pant. "76 In 1984, Scanlon" described bronchial asthma as "a generalised condition of the lung characterised by bronchospasm, mucosal edema" (an abnormal accummulation of fluid in the tissues causing puffiness), "and thick mucus that can lead to ventilatory insufficiency." A cyclic nucleotide imbalance in airway smooth muscle appears to modulate bronchospasm. Factors causing this imbalance include nervous system imbalances, diminished response(s) of beta-receptors located in the lung, or the effects of histamine. Involvement of the nervous system, including beta receptor malfunction, is referred to as the "intrinsic defect", while external influence, especially allergy, is referred to as the "extrinsic component" of bronchial asthma.

When considering the mechanisms of asthma salter ${ }^{78}$ wrote in 1868 , "... it is clear that the vice of asthma is not in the production of any special irritant, but in the irritability of the part irritated." Persson ${ }^{80}$ relates this to the present "difficulty in finding a mediator that is peculiar to asthma or a type of cell of the airway in asthma that is abnormally prone to release mediators." There is a resurging interest in the inflammation aspects of asthma ${ }^{68,80}$ with a major emphasis on:
(i) plasma exudation;
(ii) the nerve axon mechanism (a neural locus);
(iii) primary effector cells (e.g. epithelial cells, mast cells, macrophages, eosinophils, neutrophils, and platelets); or (iv) mediators from these sources.

Most asthmatic patients suffer with allergy; the allergen may vary but common ones include pollen, feathers and house dust mites (Figure 4). ${ }^{81}$ The allergic reaction, or so-called anaphylactic reaction, is mediated by the binding of IgE-antibodies ${ }^{\text {a }}$ to receptors on the surface of mast cells. ${ }^{82}$ Mast cells are located within the muscular wall of the lower airways or bronchioles, among other places, and they contain granules which store a number of potent mediators, including histamine. ${ }^{81}$ Mast cell activation is initiated by the bridging of two IgE-molecules by the inhaled allergen or antigen. ${ }^{83}$ Activation of mast cells causes degranulation and the release of mediators into the surrounding smooth

FIGURE 4. A schematic representation of the 'asthmatic response' in humans. 81

[^0]muscle. This initiates an inflammatory response which causes bronchial smooth muscle contraction, thereby inducing an asthmatic attack. ${ }^{84}$

Consideration of these events suggests three possible mechanisms for an anti-asthmatic drug (Figure 4). ${ }^{81}$ (i) The drug should stabilise mast cells and prevent mediator release after allergen challenge. (ii) The drug should block the action of the released mediators thereby functioning as antagonists, or alternatively, it should act as an antiinflammatory. [Anti-inflammatory steroids introduced directly into the lung using inhalers are an accepted first-line treatment.] (iii) The drug should relax the contracted airway's smooth muscle thus functioning as a bronchodilator.

Disodium cromolycate (DSCG 73) is generally believed to act on pulmonary mast cells to suppress the secretory response, thus stabilising the membrane. ${ }^{77}$ It is used prophylactically as a preventative drug which over time preserves mast cell membrane integrity. ${ }^{77}$ DSCG has also been shown to block the late asthmatic response which occurs $3-4$ hours after mast cell degranulation and lasts for 10 hours. This response may be caused by mast cell degranulation and increased inflammation, and subsequent non-allergic bronchial hyper-responsiveness lasting up to 10 days can also occur. (This action explains the use of DSCG by seasonal asthmatics). Two additional actions include the ability to modulate

[^1]bronchoconstrictor response to cooling and the inhibition of irritant receptors; DSCG is thus effective in exercise-induced asthma and in periods of high air pollution. 77 DSCG does not, however, relax bronchial smooth muscle or antagonise any of the known mediators, e.g. histamine. 65,72 Since the mode of action of DSCG appears to be limited to mast cell stabilisation and anti-inflammation, only these two aspects will be discussed shortly in detail.

The prophylactic action of DSCG and consideration of the events outlined in Figure 4, both suggest the use of a combination of anti-asthmatic drugs, either including or excluding DSCG. Alternative asthma therapy involves the use of effective bronchodilators e.g. glucocorticoids, sympathomimetic drugs, and xanthines. 77 Glucocorticoids (e.g. cortisol 85) often reverse a difficult asthmatic condition when other medications fail and are thus, in a sense, the ultimate drug for bronchial asthma. Peak action only occurs 4-6 hours after administration and adverse side effects have limited their use to the difficult-to-control patients with chronic asthma. Glucocorticoids also function às anti-inflammatories. The fundamental structure of sympathomimetic drugs is derived from adrenaline, the body's natural bronchodilator, and salbutamol 86 is the most widely used bronchodilator in the world. 81 Theophylline 87, a xanthene, is generally considered to be the first line of defence in the United States. ${ }^{77}$

85

86

87

(iii) Mast Cell Activation and Histamine Secretion.

The biochemical changes accompanying mast cell activation and the subsquent secretion of histamine were reviewed by Siraganian ${ }^{83}$ in 1983. These changes include : (i) receptor cross-linking; (ii) proteolytic enzyme activation; (iii) increased phospholipid methylation; (iv) increased intracellular cAMP ${ }^{\text {a }}$ levels; (v) increased phosphorylation of membrane lipids; (vi) Ca^{2+} influx; (vii) phospholipase activation and release of arachidonic acid; (viii) protein phosphorylation; and finally, (ix) secretion of histamine. However, molecular events that terminate the secretory response are not well defined and an understanding of the mode of action of DSCG may provide some of the answers. ${ }^{86}$ In the following survey attention will be drawn to those molecular events implicated in the mode of action of DSCG, viz., the increased intracellular cAMP levels, protein phosophorylation, and calcium influx. The role of the mediators of mast cell secretion will then be discussed.

Mast cell activation results in changes in intracellular camp levels. ${ }^{83}$ The generation of cAMP in localised intracellular compartments ${ }^{67}$ by the activation of specific adenylate cyclase complexes or the inhibition of particular phosphodiesterases (enzymes converting cAMP to AMP) may lead

[^2]to preferential activation of protein kinases and subsequent phosphorylation of proteins involved in either the activation or inhibition of the release mechanism. The former kinases may facilitate calcium influx and/or the mobilization of intracellular stores of calcium, the latter activating the calcium pumps leading to the extrusion of calcium from the cytosol. Selective phosphorylation of three proteins ${ }^{83}$ with molecular weights of 42000,59000 , and 68000 occurs rapidly after mast cell activation with Ca^{2+} ionophore. DSCG apparently enhances the selective phosphorylation of a molecular weight. 78000 protein, thus terminating or inhibiting secretion.

The role of Ca^{2+} in the secretory process was reviewed by Pearce ${ }^{89}$ in 1982. Although the precise role of Ca^{2+} in histamine secretion is still unclear, several possibilities have been proposed. Mast cell secretion is triggered by an increase in the level of Ca^{2+} ions in the cytosol and this event links the activation to the secretion process. Ca^{2+} ions are obtained from the external environment or by the mobilization of intracellular or membranous stores. The former route may involve the binding of calcium ions to superficial membrane receptors. The polypeptide, calmodulin, has been proposed as a universal receptor for calcium and the major physiological effector for a wide range of cellular responses evoked by the cation. The disodium cromoglycate binding protein [discussed later in Section 1.3 .3 (iv)] is a possible site of action for calcium channel antagonists. 90 Several receptormediated changes in membrane metabolism have been implicated in the regulation of Ca^{2+} channels and Ca^{2+} mobilization, although their specific roles have not yet been determined.

Calcium influx into the mast cell also activates phospholipase A_{2}, an enzyme which cleaves phosphatidylcholine to produce arachidonic acid. ${ }^{83}$ Released arachidonic acid is metabolised by either the cyclo-oxygenase or the lipoxygenase pathways. The former pathway results in the production of prostaglandins and thromboxanes, while leucotrienes, commonly referred to as the slow reacting substance of anaphylaxis (SRS-A), are produced via the latter pathway.

The final steps of secretion are regulated by the influx of calcium and changes in cAMP and cGMP, a while phosphorylation of proteins may be important at this stage. Aggregation of microtubules then occurs, allowing granules to open to the extracellular space, resulting in mediator release. ${ }^{83}$ Important biogenetic substances or mediators released ${ }^{77}$ include vasoactive amines (e.g. leukotrienes and histamine), prostaglandins and thromboxanes. The leukotrienes, thromboxanes and some of the prostaglandins $\left(P G F_{2}\right.$ and $\left.P G D_{2}\right)$ are potent bronchoconstrictors. However, some of the prostaglandins (PGE_{2} and PGI_{2}) are bronchodilators. Other important mediators released include heparin, platelet activating factor (PAF), enzymes and chemotactic factors. ${ }^{91}$ Triptic enzymes activate the kinogenase responsible for the release of bradykinin, an extremely potent vasoactive mediator. Chemotactic factors attract eosinophils which modulate the reactions consequent to mast cell activation by neutralising the effects of the released mediators.

[^3]
(iv) A Molecular Basis for the Mode of Action of Disodium Cromoglycate.

Abstract

An understanding of the mode of action of DSCG at a molecular level would not only facilitate the rational development of new and more potent anti-allergic drugs, ${ }^{92}$ but would also provide some of the answers to the molecular events that terminate the secretory response. ${ }^{86}$ The pharmacological implications of DSCG action have, in fact, prompted extensive research, but still remain the subject of debate and controversy. $66,68,93,94$

An initially proposed, clearly defined and novel mode of action for DSCG involves direct action on mast cells, thereby supressing the secretion process. This mechanism has received the most attention but is not directly involved in many aspects of asthma, e.g. exercise induced asthma or that induced by pollution. The drug exhibits additional antiinflammatory action, involving multiple sites of action 65,93 and other additional cells. ${ }^{94}$ In the following survey attention will be drawn to (a) mast cell stabilization and (b) the alternative modes of action of DSCG.

(a) Mast cell stabilization.

DSCG does not inhibit the binding of the IgE molecules or their interaction and crosslinking with specific antigens; it rather supresses the response to this reaction, although how it does so is uncertain. 72 It has become evident that there are either two receptors for DSCG, or the receptor is multifunctional. ${ }^{94}$ Three major explanations include :
(i) phosphodiesterase inhibition which affects cyclic nucleotide levels;
(ii) the blocking of calcium channels; and
(iii) the promotion of the phosphorylation of a single mast cell protein.

Initial studies indicated that DSCG inhibited cAMP phosphodiesterase ${ }^{67}$ and, considering the importance of this nucleotide (cAMP) in the modulation of histamine secretion, seemed to thus provide an explanation for the drug's activity. Studies discrediting this activity established that, among other things, DSCG concentrations required to inhibit mast cell phosphodiesterase were considerably greater than those required to prevent secretion, and there was no correllation between secretion supression and phosphodiesterase inhibition in a variety of other antiallergic drugs.

Foreman et al. ${ }^{93}$ showed that the uptake of radioactive Ca^{2+} by, and histamine secretion of mast cells were both inhibited by DSCG in those cells activated by antigen or similar agonists; neither parameter was affected when the cells were activated by calcium ionophore A23187. It was thus argued that DSCG inhibited the opening of calcium channels since this was the only difference between the two processes. (Ca^{2+} ionophores ${ }^{89}$ are organic compounds which activate mast cells by complexing with Ca^{2+} and transfering the cation across the cell membrane, hence bypassing the receptor gating mechanism). Studies ${ }^{93}$ contradicting this hypothesis have shown that (i) secretion is inhibited by DSCG in the absence of calcium and that DSCG is at least equipotent and generally more active under conditions of calcium deprivation. The drug also blocks the mobilization of internal stores and inhibits the secretion induced by a diversity of other ionophores. (iii) The uptake of radioactive Ca^{2+} may also be a consequence and not a cause of the release process since the isotope may possibly bind to new membrane sites which are revealed during the degranulation process.

Despite these problems, Pecht et al.95 have shown, using fluorescence microscopy, that the chromone binds to a specific binding protein, located on the mast cell membrane, which constitutes the Ca^{2+} channel and that it acts by blocking simulated Ca^{2+} fluxes. The drug was coupled or covalently conjugated to an insoluble support of fluorescent polyacrylamide and glutaraldehyde beads, which prevented the penetration of the drug into the cell without reducing its ability to inhibit secretion. This specific DSGG-binding protein was then isolated from rat basophil leukaemic cells using affinity chromatography. ${ }^{96}$ IgE mediated challenge of varients of this cell-line lacking in the bindingprotein did not result in Ca^{2+} influx or degranulation; however, the action of Ca^{2+} ionophore A 23187 lead to histamine secretion, which indicated that the secretory process distal to Ca^{2+} influx was uneffected. These two findings suggested the involvement of the DSCGbinding protein in transmembrane calcium influx. The responsitivity to immunologic challenge was restored with the implantation of binding proteins into the cells. Moreover, exogenous DSCG blocked the Ca^{2+} influx induced by monoclonal antibodies to the binding protein in synthetic planar lipid bilayers.

The relevance of this work to the mode of action of DSCG^{93} has been questioned since interaction of the drug and binding protein is absolutely Ca^{2+} dependent and contradicts the enhanced inhibitory effect of the drug in the absence of Ca^{2+}. In addition, rat basophil leukaemic cells are considered to be resistant to the inhibitory effects of DCSG. It was concluded that the work needed to be confirmed and extended to cells fully active to the drug, since this would prevent the isolation of the binding protein under conditions different from those required to demonstrate the drugs functional activity. Other agents, e.g. doxantrazole, claimed to function by inhibition of Ca^{2+} gating,
presumably could not interact with the binding protein, unless it showed remarkable specificity.

The phosphorylation of a specific protein (mol. wt. 78000) occurs in the final stages of secretion and has been associated with the natural termination of the process. 93 DSCG induces the phosphorylation of this protein and may thus have the unique action of stimulating an endogenous control mechanism. The detailed basis for this effect remains obscure but could involve an interaction with protein kinase C, as suggested by Sagi-Eisenberg. ${ }^{94}$ This interaction was proposed since protein kinase C requires Ca^{2+} and phosphatidylserine for optimum activity, and DSCG binding is associated with Ca^{2+}, phosphatidylserine and a membrane protein. The mechanism whereby phosphorylation modulates secretion remains open and could involve an effect on Ca^{2+} gating, i.e. they may be regulated by the degree of their phosphorylation, which is controlled by protein kinase C. However, Foreman et al. ${ }^{93}$ demonstrated that the Ca^{2+} gates remain open for a considerable period after the termination of secretion.

Sagi-Eisenberg ${ }^{94}$ also demonstrated that this protein kinase C has an additional role in the activation of secretion and involves the mechanism of secretion distal to Ca^{2+} influx. Additional interaction of DSCG with this protein kinase C would then account for its dual inhibition action, although this hypothesis requires verification. They thus proposed the existence of two forms of protein kinase C, one responsible for Ca^{2+} regulation, the other involved in the activation of secretion. Activation of protein kinase C by itself was insufficient to cause secretion, and they concluded that "receptor aggregation elicits an aditional, as yet unknown, signal, which together with kinase C activation, yields a cellular response." Inhibition activity of DSCG
thus requires the interaction with kinase C which (i) promotes phosphorylation in Ca^{2+} gating, and (ii) inhibits the phosphorylation that stimulates secretion.

(b) Alternative modes of action of DSCG.

In 1985, Pearce ${ }^{93}$ concluded, however, that the mode of action of DSCG was still an enigma since not all the effects of DSCG can be explained by its mast cell stabilizing activity ${ }^{65}$ and premedication with the drug inhibits bronchospasm produced by a diversity of stimuli, including histamine, cold air, aspirin, fog, and exercise, thus implicating at least two different receptors in the lung for the drug. Pretreatment with the drug, in a variety of models of mediator release, has been shown to abolish the inhibitory effect of subsequent doses i.e. DSCG exhibits tachyphylaxis ${ }^{92}$ which completely contrasts with its regular and prophylactic clinical use in asthma therapy. The drug also shows a high degree of tissue and species selectivity in its action. 65 Many other novel anti-allergic drugs are far more potent than DSCG in mast cellmediated animal models but have demonstrated little or no efficacy when clinically tested. ${ }^{97}$ A more detailed mode of action is thus required. 65

In 1987 Persson ${ }^{98}$ reviewed three alternative modes of action for DSCG which include :
(i) an anti-plasma leakage effect;
(ii) inhibition of an axon reflex mechanism (a neural locus effect); and
(iii) PAF-acether ${ }^{\text {a }}$ inhibition.

[^4]DSCG is now also thought to affect a variety of inflammatory cells, such as platelets and macrophages.

In inflamed airways, plasma molecules may readily pass through a microvascular or epithelial barrier. 80,98 Plasma exudation in the lumen and airway wall from tracheobronchial microvessels is regulated by the venular endothelium. This process is induced by many cellular and humoral mediators including bronchoconstrictory mediators (amines, peptides, lipid products, e.g. PAF-acether, etc.). Exudation in the airway wall contributes to bronchial hyper-responsiveness and damage of airway epithelium, while activation of potent mediators and chemoattractants for effector cells may amplify the inflammatory process. DSCG has a potent ability to reduce and normalise mediatorinduced plasma leakage or exudation. It is also "effective against agents such as histamine that increase endothelial-epithelial permeability to macromolecules by direct action without the involvement of neurogenic or mast cell mechanisms."

Asthma provoked by non pharmacological stimulus such as exercise (inhaling dry air) may be associated with plasma exudation in asthmatic airways, the characteristic feature of which, may be vascular leakiness. ${ }^{98}$ In inflamed airways it is vessel fluid that humidifies incoming air whereas other sources are used under normal conditions. Thus the effectiveness of DSCG in exercise-induced asthma could be attributed to its anti-plasma-leakage effect.

Damage of the airway epithelium exposes C-fibre afferent nerve endings, ${ }^{79}$ and the stimulation of these superficial nerve endings by inflammatory mediators (e.g. bradykinin) may result in an axon (local) reflex and the release of sensory neuropeptides which induce
bronchoconstriction, edema, plasma exudation, mucus hypersecretion, and possible inflammatory cell infiltration and secretion. DSCG inhibits bronchial C-fibre reflex activity ${ }^{98}$ and preliminary studies show that it reduces bradykinin-induced bronchoconstriction. However this has only been shown in animal models and requires further elucidation. Several factors opposing a neural locus for the drug's effect have also been presented.

The ether-linked phospholipid, PAF-acether, ${ }^{84}$ is released from a number of inflammatory cells in the lung (e.g. alveolar macrophages) and induces plasma exudation and the activation of platelets. Both the production and action of PAF-acether could be inhibited by DSCG since it also inhibits the late response to PAF-acether in human skin and the IgE activation of human macrophages. 99 Recent work, however, has not provided confirmation of these findings. 98

The involvement of platlets in inflammation and allergen-induced asthma was reviewed by Page ${ }^{84}$ in 1988. Platelets are the smallest blood element and, despite being devoid of a nucleus, they still possess many features of classical inflammatory cells. Their biological activities include chemotaxis, i.e. the release of a variety of mediators which augment inflamatory cell recruitment. Furthermore, they possess IgE receptors and their activation, by PAF-acether, results in the generation of free radical species, Platelet aggregation and platelet activation have different pharmacological profiles and this distinction is important in the search for new anti-allergic drugs, e.g. DSCG can inhibit $I g E$ dependent release of free radicals, but has no effect on platelet aggregation.

1.4 AIMS OF THE INVESTIGATION

The preceding introduction illustrates the various properties of the chromone nucleus, preparative methods used in chromone synthesis, and the susceptibility of chromones to C-2 nucleophilic attack, with consequent ring opening, by nitrogen and oxygen nucleophiles (Section 1.1). The conformational analysis of amides and chromone-2carboxylate esters, using variable temperature dynamic NMR and IR spectroscopic techniques respectively, were also presented (Section 1.2). Furthermore, the well established potential of chromone systems in asthma therapy has been discussed, with particular emphasis on two chromone derivatives, viz., the naturally occuring furochromone, khellin 66 (Section 1.3.1), and the widely used anti-allergic drug disodium cromoglycate (DSCG) 73 (Section 1.3.2). While chromonecarboxamides exhibit a wide diversity of biological activities, their anti-allergic activity [e.g exhibited by N-(tetrazol-5-yl)chromone-2-carboxamides 72] is of particular interest
(Section 1.3.2). The essential structural features apparently required for anti-allergic activity include a planar conformation with extended π-bonding and a source of acidity near the heteroatom attached to the benzene ring. Thus, biological activity is enhanced in rigid planar structures and inhibited by a loss of acidity, while electronic effects of ring substituents and the effect of their positions appear to vary according to the nature of the parent structure [Section 1.3 .3 (i)]. In asthma therapy, DSCG stabilises mast cells in the bronchial mucosa, thereby preventing the secretion of histamine and other inflammatory mediators. Furthermore, this action may be associated with the binding of DSCG to a specific protein located on the mast cell membrane [Section 1.3 .3 (iv)].

In anti-allergic chromones, biological activity is thus influenced by conformation, acidity, steric effects, and substituent effects. Consequently, similar electronic and steric effects on the conformation and acidity in chromone systems with medicinal potential were investigated. The mode of action of DSCG may involve an in vivo interaction with various biological amines or proteins. Furthermore, since ring-opening reactions of chomones may well be implicated in molecular-level chromone pharmacology, the ring-opening of variously substituted chromone-2-carboxamides with dimethylamine was also investigated, and extended to include DSCG. The investigation thus involved the following :
(i) The synthesis of conformationally-mobile, substituted, symmetrical chromone-2-carboxamides with potential anti-allergic activity.
(ii) The conformational analysis of these chromone-2-carboxamides using ${ }^{1} H$ dynamic $N M R$ spectroscopic and molecular graphics techniques.
(iii) A structural analysis of the ring-opened products of reactions of N, N-dimethylchromone-2-carboxamides with dimethylamine.
(iv) An extension of these studies to DSCG.
(v) A kinetic study of substituent effects on the ring-opening reactions and a determination of the mechanism.
(vi) A potentiometric study of substituent effects on the dissociation constants of substituted chromone-2-carboxylic acids.

2. DISCUSSION

2.1 PREPARATION OF CHROMONE DERIVATIVES

An investigation of conformation in chromone-2-carboxamides IIl required the preparation of two major intermediates, viz., the substituted o-hydroxyacetophenones I and chromone-2-carboxylic acids II, while structural and kinetic studies required the preparation of acrylamides IV from the respective chromone-2-carboxamides III (Scheme 23 p.53). Thus, the o-hydroxyacetophenones $93-98$, required for the synthesis of the chromone-2-carboxylic acids $112-118$, were prepared from the corresponding phenyl acetates $88 \mathbf{- 9 2}$, which, in turn, were prepared from m-phenols or p-chlorophenol; or in the case of the methoxy analogue 93 , via methylation of resacetophenone (Schemes 24 and 25 p. 54 and p.55). The chromone-2-carboxylic acids $112-118$ were prepared from the respective o-hydroxyacetophenones 93-98 via, in some cases, chromone-2-carboxylate esters 110 and 111 (Schemes 26 and 27 p.56). 3-Methylchromone-2carboxylic acid 120 was similarly prepared from o-hydroxypropiophenone via the ethyl carboxylate ester 119 (Scheme 28 p.57). The chromone-2carboxamides 129-139 were prepared from the corresponding chromone-2carboxylic acids $112-117$ and 120 via the chromone-2-carbonyl chloride intermediates 121-127 (Scheme 29 p. 61). The acrylamides 140,142-151, and 153 were prepared via amine-mediated ring-opening of the chromone-2carboxamides 129-134 (Schemes 30-33 p. 69 and p.73) or, in some cases (140 and 141), of chromone-2-carbonyl chloride 121 (Scheme 29 p.61).

iii, iv

$\downarrow v$

IV

SCHEME 23

```
Reagents : i) NaOEt - EtOH, (CO2Et)
    ii) HCl - AcOH (I:I), \Delta;
    iii) }\mp@subsup{\textrm{SOCl}}{2}{}-\textrm{DMF}-\mp@subsup{\textrm{ClCH}}{2}{}\mp@subsup{\textrm{CH}}{2}{}\textrm{Cl},\Delta\mathrm{ ;
    iv) Me2NH2Cl - pyridine, 0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ or
        R3H - aq. NaHCO_ or
        R}\mp@subsup{}{}{3}H - pyridine; 
    v) Ethanolic Me2NH - EtOH, 35 % C.
```


2.1 (i). Preparation of o-hydroxyacetophenones.

2-Hydroxy-4-methoxyacetophenone 93 was prepared via methylation of resacetophenone (Scheme 24). 100 The series of o-hydroxyacetophenones $94-97$ were prepared using standard literature procedures ${ }^{101}$ involving Fries rearrangement ${ }^{102}$ of the corresponding pheny 1 acetates 88-91, generated, in turn, by acetylation of the respective m-phenols (Scheme 24), as described by Bryan et al. 103 The acetates were heated with aluminium trichloride at high temperatures (ca. $175^{\circ} \mathrm{C}$) which favour o-substitution. 101,102 The Fries rearrangement of 3-nitrophenylacetate 88, using nitrobenzene as a solvent, 101,104 afforded moderate yields (ca. 40\%) of 2-hydroxy-4-nitroacetophenone 94. Extended steam distillation was necessary, since the initial fractions were predominantly solvent.

$\downarrow_{i}, R^{1}=\mathrm{NO}_{2}, F, \mathrm{Cl}, \mathrm{Br}$.
iii

ii

F^{1}

-	OMe	93
88	NO_{2}	94
89	F	95
90	Cl	96
91	Br	97

SCHEME 24
Reagents : i) Aq. $\mathrm{NaOH}-\mathrm{Ac}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; ii) $\mathrm{AlCl}_{3}, \Delta$;
iii) $\mathrm{Me}_{2} \mathrm{SO}_{4}-$ Acetone $-\mathrm{K}_{2} \mathrm{CO}_{3}, \Delta$.

5-Chloro-2-hydroxyacetophenone 98 was similarly prepared from 4-chlorophenyl acetate 92 which, in turn, was prepared from 4-chlorophenol (Scheme 25).

SCHEME 25

Reagents : i) Aq. $\mathrm{NaOH}-\mathrm{Ac}_{2} \mathrm{O}, \mathrm{O}^{\circ} \mathrm{C}$; ii) $\mathrm{AlCl}_{3}, \Delta$.
2.2 (ii). Preparation of chromone-2-carboxylate esters and chromone-2carboxylic acids.

The chromone-2-carboxylic acids 112-117 and 120 (Schemes 26 and 28) were required for the preparation of the chromone-2-carboxamides 129-139, while, in an investigation of the acidity in the chromone-2-carboxylic acids 112-118 (Schemes 26 and 27), the $C-7$ and 6 -chloro ring substituents (R^{1}) were chosen to illustrate substituent effects on acidity. The chromone-2-carboxylate esters 110 and 111 and chromone-2-carboxylic acids 112-117 were prepared via Claisen acylation of the o-hydroxyacetophenones 93-97 with diethyl oxalate in the presence of sodium ethoxide, as described by Fitton and Smalley, 105 and Bryan et al. 103 (Scheme 26). Cyclization of the resultant diketo esters using traces of hydrochloric acid in acetic acid afforded the chromone-2-carboxylate esters 110 and 111,106,107 while chromone-2-carboxylic acids $112-117$ were obtained by using a mixture (1:1) of hydrochloric acid and acetic acid. In both approaches, two reaction intermediates were generally detected by ${ }^{1} H N M R$ spectroscopy, viz., a diketone and a 2-hydroxychromanone. The chemical shifts of the methylene protons of the diketone occur at low field

R^{1}			
H	$99(100 \%)^{a}$	-	112
OMe $100(68 \%)^{a}$	$105(32 \%)^{a}$	113	
NO_{2}	$101(78 \%)^{a}$	$106(22 \%)^{a}$	114
F	$102(62 \%)^{a}$	$107(38 \%)^{a}$	115
Cl	$103(37 \%)^{a}$	$108(63 \%)^{a}$	116
Br	$104(45 \%)^{a}$	$109(55 \%)^{a}$	117

SCHEME 26

Reagents : i) NaOEt - EtOH, $\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$; ii) $\mathrm{HCl}-\mathrm{ACOH}(1: 1), \Delta$;
iii) $\mathrm{HCl}($ trace $)-\mathrm{AcOH}, \Delta\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{NO}_{2}\right)$;
iv) $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{ACOH}, \Delta$ or $\mathrm{HBr}-\mathrm{ACOH}(45 \%), \Delta\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{NO}_{2}\right)$.

SCHEME 27

Reagents : i) $\left.\mathrm{NaOEt}-\mathrm{EtOH},\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2} ; \mathrm{ii}\right) \mathrm{HCl}-\mathrm{AcOH}(1: 1), \Delta$.

[^5](ca. 7.1 ppm), while the diastereotopic ($\mathrm{C}-3$) methylene protons of the 2-hydroxychromanone appear as a doublet of doublets at higher field (ca. 2.9 and 3.3 ppm). In the synthesis of chromone-2-carboxylic acid 112 , only the diketone intermediate 99 was formed, while in the synthesis of the substituted chromones 111,113 and 115-117, mixtures of the corresponding intermediates were obtained. In some cases the diketone intermediates $100-102$ predominated, while in others, the 2-hydroxychromanones 108 -109 were the major isomers (Scheme 26). In all cases the crude intermediate mixtures were used without further purification.

Chromone-2-carboxylic acid 112 was alternately prepared by acid hydrolysis of the ethyl carboxylate ester 110.107 7-Nitrochromone-2carboxylic acid 114 was similarly prepared from the carboxylate ester 111 (Scheme 26) using sulphuric acid and acetic acid, 107 since the use of 45\% hydrobromic acid in acetic acid following the literature procedure ${ }^{106}$ gave the acid in low yield (ca. 33\%). 6-Chlorochromone-2carboxylic acid 118 was prepared via Claisen acylation of 5-chloro-2hydroxyacetophenone 98 (Scheme 27 p.56). 103 3-Methylchromone-2carboxylic acid 120 was prepared by acid hydrolysis of the carboxylate ester 119 , which in turn, was prepared by Claisen acylation of o-hydroxypropiophenone and diethyl oxalate with sodium hydride (Scheme 28). 107

SCHEME 28

Reagents : i) $\mathrm{NaH},\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}, \mathrm{EtO}_{2}$; ii) H^{+}, Δ; iii) H^{+}, Δ.

Repeated recrystallisation of the acids did not improve the melting points which, in some cases, were well below the literature values. Other methods, such as sublimation and extraction with ethyl acetate, were used in attempts to obtain analytically pure samples.

The ${ }^{1}{ }_{H}$ chemical shifts of the chromone-2-carboxylic acids and carboxylate esters were assigned using reported values, 51,108 while ${ }^{1} H$ and ${ }^{13} \mathrm{C}$ signals of the fluoro analogue 115 were assigned using ${ }^{1} \mathrm{H}-\mathrm{F}$ and ${ }^{13} \mathrm{C}-\mathrm{F}$ coupling constants ${ }^{109}$ (Figure 5). The ${ }^{1} \mathrm{H}$ NMR spectra of the chromone-2-carboxylic acids and carboxylate esters are characterised by the vinyl proton (3-H) singlet at ca. 7.00 ppm or 7.15 ppm respectively (Table 1). C-7 substituents produce small variations in the (3-H) chemical shift, while changing the chloro substituent position did not affect the (3-H) chemical shift, as illustrated in Table 1 . The IR carbonyl absorption bands (ca. $1740 \mathrm{~cm}^{-1}$) of the chromone-2-carboxylic acids and carboxylate esters are well separated from the ketone carbonyl absorption bands occuring at ca. $1650 \mathrm{~cm}^{-1}$.

Table 1. Selected spectral data for chromone-2-carboxylic acids and chromone-2-carboxylate esters.

Compound Acid	$3-\mathrm{H}$ (ppm)	$\mathrm{CO} . \mathrm{OH}$ $\left(\mathrm{cm}^{-1}\right)$	CO $\left(\mathrm{cm}^{-1}\right)$	Compound Ester	$3-\mathrm{H}$ (ppm)	$\mathrm{CO.OR}$ $\left(\mathrm{~cm}^{-1}\right)$	CO $\left(\mathrm{cm}^{-1}\right)$
112	7.00	1740	1630	23	7.15	1740	1650
113	6.90	1735	1625	-	-	-	-
114	7.20	1730	1640	24	7.25	1745	1660
115	6.84	1740	1630	-	-	-	-
116	7.00	1710	1650	-	7.09	1740	1655
117	7.00	1720	1630	-	-	-	-
118	7.00	1735	1630	-	-	-	-
120	2.30^{a}	1730	1615	31	2.35^{a}	1730	1645

[^6]

FIGURE 5. $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ spectrum of 7 -fluorochromone-2-carboxylic acid 115.

2.1 (iii). Preparation of chromone-2-carboxamides.

An NMR study of rotational isomerism in the chromone-2-carboxamides 129-138 (Scheme 29) required the synthesis of a range of substituted N, N-dialkyl amides; the ring and N-alkyl substituents were chosen to illustrate the influence of electronic and steric effects on rotational barriers. Symmetrically substituted amides were chosen to simplify interpretation of the dynamic NMR spectra. The chromone-2-carboxamides 129-139 were prepared from the corresponding chromone-2-carbonyl chlorides 121-127 generated, in turn, from the respective chromone-2carboxylic acids $112-117$ and 120 using thionyl chloride (Scheme 29). 64 In all cases, yields of the carboxamides were calculated from the corresponding carboxylic acids (Table 2). The crude chromone-2-carbonyl chlorides were reacted, following a literature procedure, ${ }^{64}$ with one molar equivalent of primary or secondary amine in aqueous sodium bicarbonate, or in pyridine. An equimolar quantity of amine was used, since $C-2$ nucleophilic attack by excess amine with consequent ringopening afforded acrylamides, e.g. reaction of chromone-2-carbonyl chloride 121 with excess aqueous dimethylamine afforded the acrylamide 140. It is interesting to note that in related studies, Jerzmanowska and Kostka ${ }^{17}$ have reported the ammonolysis of chromone-2-carboxylate esters using one molar equivalent of amine; while ring-opening of chromone-2-carboxylate esters with two molar equivalents of amine, and subsequent cyclisation of the resulting acrylamides (e.g. 140), afforded chromone-2-carboxamides (e.g. 129). The analogous preparation of N, N-dimethylchromone-2-carboxamide 129 via amonolysis of the ethyl carboxylate ester 110 with one molar equivalent of ethanolic dimethylamine in ethanol was unsuccessful.

	R^{1}	R^{2}	
112	H	H	121
113	OMe	H	122
114	NO_{2}	H	123
115	F	H	124
116	Cl	H	125
117	Br	H	126
120	H	Me	127

R^{1}	R^{2}	R^{3}	
H	H	NMe_{2}	129
OMe	H	NMe_{2}	130
NO_{2}	H	NMe_{2}	131
F	H	NMe_{2}	132
Cl	H	NMe_{2}	133
Br	H	NMe_{2}	134
H	Me	NMe_{2}	135
H	H	NPr_{2}	136
H	H	N^{2}	137
H	H	N_{J}	138
H	H	NH_{2}	139

SCHEME 29

```
Reagents : i) SOCl2 - DMF - ClCH2 CH2Cl, }\Delta\mathrm{ ;
    ii) Me2 NH2Cl (128) - pyridine, 0}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ , or
        R 3}\textrm{H}\mathrm{ - aq. NaHCO
        R}\mp@subsup{}{}{3}H=pyridine
    iii) R}\mp@subsup{}{}{3}H(2 Molar eq.) - H2O(R1= R ( N = H); 
    iv) Ethanolic Me2NH - EtOH ( }\mp@subsup{\textrm{R}}{}{1}=\mp@subsup{R}{}{2}=H)
    v) Ethanolic Me2NH - pyridine ( }\mp@subsup{\textrm{R}}{}{1}=\mp@subsup{R}{}{2}=H)\mathrm{ .
```

TABLE 2. Preparation of chromone-2-carboxamides 129-138.

Compound	R^{1}	R^{2}	R^{3}	Anhydrous	eactions	Aqueous	Reactions	
				Crude	Chrom.	Crude	Chrom.	Melting
				Yield ${ }^{\text {a }}$	Yield ${ }^{\text {b }}$	Yield ${ }^{\text {a }}$	Yield ${ }^{\text {b }}$	Point
				(\%)	(\%)	(\%)	(\%)	$\left({ }^{\circ} \mathrm{C}\right)$

129	H	H	NME_{2}	76	62	109	$5^{\text {h }}$	115-116 ${ }^{\text {d }}$
130	OMe	H	MME_{2}	92	83	-	-	120-122 ${ }^{\text {c }}$
131	HO_{2}	H	NHe_{2}	68	66	-	-	152-153 ${ }^{\text {C }}$
132	F	H	NHE_{2}	76	64	54	43	144-146 ${ }^{\text {c }}$
133	C1	H	NME_{2}	80	72	61	41	146-147 ${ }^{\text {C }}$
134	Br	H	MMe_{2}	96	77	32	21	143-145 ${ }^{\text {c }}$
135	H	Me	NME_{2}	84	71	52	24	74-76 ${ }^{\text {c }}$
136	H	H	$\mathrm{MPr}^{\mathbf{i}} 2$	-f	40	6	-	$95-96^{\text {c }}$
137	H	H	N	-	-	_ ${ }^{\text {i }}$	22	103-105 ${ }^{\text {c }}$
138	H	H	N	-f	75	-	-	$66-67{ }^{\text {e }}$

a Overall yield from the corresponding acid, material essentially clean by ${ }^{1}{ }_{H}$ NMR spectroscopy.
b Dverall yield from corresponding acid after flash chromatography. ${ }^{\text {c New compound with }}$ satisfactory spectroscopic analyses. ${ }^{\text {d Lit. }}{ }^{17} 115-116^{\circ} \mathrm{C}$. e Lit. ${ }^{17} 90.5-92^{\circ} \mathrm{C}$. f Crude oil. g Recrystallised yield. ${ }^{6}$ Flash chromatography of crude motherliquors. ${ }^{i}$ Crude mixture of acid and amide.

The N, N-dimethylchromone-2-carboxamides 129 and $132-135$ were initially prepared in variable yields (15-61\%; Table 2 p.62) from the chromone-2carbonyl chlorides 121 and 124-127 using equimolar quantities of aqueous dimethylamine ($40 \% \mathrm{w} / \mathrm{w}$), and applying the procedure reported by Ellis et al. ${ }^{64}$ [Low yields were also obtained in the preparation of chromone-2-carboxamides 136 and 137 in aqeuous media (Table 2).] Such low yields may be attributed to factors such as the insolubility of both starting materials and products in aqueous media and the possible hydrolysis of the chromone-2-carbonyl chloride intermediates. The synthesis of chromone-2-carboxamide 138 in higher yield (75\%) using dry pyridine as solvent illustrated the advantages of using anhydrous conditions, and this approach was consequently explored for the synthesis of the N, N-dimethylchromone-2-carboxamides 129-135. 110 However, the use of ethanolic dimethylamine (33\% w/w) afforded a mixture (1:2) of the carboxamide 129 , in low yield (ca. 28\%), and the corresponding ethyl carboxylate ester 110. The use of pure dimethylamine was not considered a viable proposition in view of its volatility (b.p. $7^{\circ} \mathrm{C}$), which complicates both handling and measuring of the compressed liquid at room temperature. [An alternative procedure which does not require the "use of the somewhat objectionable dimethylamine", has been reported by Coppinger. ${ }^{111}$ This procedure involves the reaction of an acid chloride or anhydride in N, N-dimethylformamide at high temperatures ($150^{\circ} \mathrm{C}$) to afford N, N-dimethylcarboxamides.]

The use of dimethylammonium chloride 128 in anhydrous pyridine at $0^{\circ} \mathrm{C}$, eliminated the problems associated with the use of aqueous/ethanolic or neat dimethylamine, and afforded the required N, N-dimethylchromone-2carboxamides 129-135 in high yield (68-98\%; Table 2). 110 Various quantities of amine hydrochloride were used in the preparation of the unsubstituted analogue 129 , and optimum yields were obtained using two
molar equivalents of the amine hydrochloride. Free dimethylamine is thus generated in situ via neutralisation with pyridine, the reaction solvent. Furthermore, acyl substitution ${ }^{112}$ is enhanced by the formation of an acylammonium salt, ${ }^{113}$ via nucleophilic attack of pyridine on the carbonyl chloride intermediate, and the hydrochloric acid produced is neutralised by pyridine. [Ammonium salts have previously been used in the reported acid catalysed ammonolysis of ethyl benzoate; ${ }^{114}$ the acylation of amines by carboxamides; ${ }^{115}$ and the Schotten-Baumann acylation ${ }^{116}$ of 1,3,5-tris(aminomethyl)benzene trihydrochloride. ${ }^{117}$]

Chromone-2-carboxamide 139 was prepared from the carbonyl chloride 121 using a large excess of aqueous ammonia, or two molar equivalents of ammonium chloride in pyridine; the latter preparation represents an extension of the use of ammonium salts in the synthesis of chromone-2carboxamides. However, in both preparations, impurities were detected in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

The ${ }^{1} \mathrm{H}$ NMR chemical shifts of the chromone-2-carboxamides 129 -139 were assigned using the literature values for chromone, 11 and correlation data from COSY experiments. Non-quaternary ${ }^{13} \mathrm{C}$ chemical shifts were assigned from HETCOR experiments (Figure 6), while the benzenoid signals were also confirmed by calculation using correlation tables ${ }^{109}$ and, in the case of the fluoro-analogue 132 , using ${ }^{13} \mathrm{C}-\mathrm{F}$ coupling constants ${ }^{109}$ (Figure 7). In general, the $\mathrm{C}-5$ and $\mathrm{C}-6{ }^{13} \mathrm{C}$ chemical shifts are too similar to assign by calculation (in the case of the N, N-dimethylchromone-2-carboxamide 129 these signals actually coincide). The quaternary carbons, C-4a and C-8a, and the ketone carbonyl carbon (C-4) signals correlate with reported values for chromone, ${ }^{11}$ while C-2 chemical shifts were assigned by comparison with reported values of the corresponding chromone-2-carboxylic acids and carboxylate esters. 51,108

FIGURE 6. 400 MHz HETCOR spectum of N, N-dimethyl chromone-2carboxamide 129.

The ${ }^{1}{ }^{H}$ NMR spectra of chromone-2-carboxamides 129-139 are characterised by the vinyl proton (3-H) singlet at ca. 6.45 ppm . The observed splitting of the N-alkyl signals at ambient temperature in all the ${ }^{13} \mathrm{C}$ NMR spectra and, with the exception of the N, N-dimethylchromone-2carboxamides 129,132 and 133 in all the ambient ${ }^{1}{ }^{1} \mathrm{~N}$ NR spectra, reflects slow site-exchange of the N-alkyl substituents. The C-7 substituents produce wide variations in the $C-7{ }^{13}$ C chemical shifts relative to the parent system 129, as illustrated in Table 3. This effect gradually decreases with distance from C-7, and produces small chemical shift variations of the γ-pyrone carbons, particularly the remote $C-2$. The largest variations were generally due to 7-methoxy-, 7-nitro-, and 7-fluoro- substituents. Variation of the 7-substituent also effected small variations in the vinyl (3-H) ${ }^{1} \mathrm{H}$ chemical shifts. In the $I R$ spectra of the chromone-2-carboxamides 129-139, the ketone carbonyl absorption band occurs in the typical chromone carbonyl region (ca. $1650 \mathrm{~cm}^{-1}$), and the overlapping of the amide carbonyl absorption band in this region is attributable to delocalisation of the nitrogen lone-pair, which increases the single-bond character of the amide carbonyl.

Table 3. Comparative ${ }^{1_{H}}$ and ${ }^{13} \mathrm{C}$ NMR data for the N,N-dimethylchromone-2-carboxamides 129-134.

${ }^{13} \mathrm{C}$ Nucleus	$\delta 129$ (ppm)	$\Delta \delta^{\mathrm{a}}$ (ppm)
CON	162.27	0.94
$\mathrm{C}-2$	158.20	1.08
$\mathrm{C}-3$	111.58	0.83
$\mathrm{C}-4$	177.42	1.61
$\mathrm{C}-4 \mathrm{a}$	124.20	6.15
$\mathrm{C}-5$	125.73	3.66
$\mathrm{C}-6$	125.73	11.33
$\mathrm{C}-7$	134.25	31.41
$\mathrm{C}-8$	118.13	17.74
$\mathrm{C}-8 \mathrm{a}$	155.66	1.77
$3-\mathrm{H}^{\mathrm{b}}$	6.45	0.16

a Maximum variation from compound 129.
b ${ }^{1} \mathrm{H}$ nucleus.
2.1 (iv). Preparation of 2-amino-3-(2-hydroxybenzoyl)acrylamides.

A prerequisite for the proposed kinetic study of the dimethylaminemediated ring-opening of the chromone-2-carboxamides $129-133$ was the unambiguous structural analysis of the N, N-dimethylaminoacrylamide products 140 and $142-146$. The synthesis of these compounds is illustrated in Scheme 30 (p .69). Ring substituents (R^{1}) were chosen to illustrate electronic effects on the reaction rates, which, in turn, were used to determine the reaction mechanism. The N, N-dimethyl-2pyrrolidinoacrylamide 151 (Scheme 32 p.72) was prepared to facilitate assignment of the N-methyl NMR signals of the substituted N, N-dimethylacrylamides $140,142-150$, and 153 . The acrylamide 153 was prepared in order to show the interaction of N, N-dimethylchromone-2carboxamide 129 with glycine (Scheme 33 p.72). The acrylamides $140,142-151$ and 153 were generally prepared via amine-mediated ring-opening of the
corresponding chromone-2-carboxamides (129-134) in ethanol at $35^{\circ} \mathrm{C}$, or, in some cases, at ambient temperature (Schemes 30-33). The acrylamides 140 and 141 were obtained by reacting the chromone-2-carbonyl chloride 121 with two molar equivalents of secondary amine in water (Scheme 29 p.61).

Isolation of the substituted N-methylaminoacrylamides (147-150; Scheme 30), as minor products in the preparation of the substituted N, N-dimethylaminoacrylamides $143-146$, is attributed to contamination of the ethanolic dimethylamine ($25 \% \mathrm{w} / \mathrm{w}$) with traces of methylamine. [GLC analysis of ethanolic dimethylamine ($25 \% \mathrm{w} / \mathrm{w}$) showed an additional peak with a retention time corresponding to ethanolic methylamine ($5 \% \mathrm{w} / \mathrm{w}$).]

SCHEME 30
Reagents : i) Ethanolic $\mathrm{Me}_{2} \mathrm{NH}-\mathrm{EtOH}, 35^{\circ} \mathrm{C}(130-134)$, or rt (129).

The bromo-analogue 150 was also prepared using ethanolic methylamine (Scheme 31 p.72), thus providing an alternative preparation and evidence for the characterisation of the N-methylaminoacrylamides 147-150. The acrylamide 153 was prepared using glycine ethyl ester, generated in situ by neutralising the hydrochloride salt 152 with an equimolar quantity of potassium hydroxide using ethanol as solvent (Scheme 33 p.72). [Excess base may catalyse cyclisation of the acrylamide 153 to afford a pyrrolyl derivative ${ }^{23}$ (e.g. 18; Scheme 5 p .8), as described previously in Section 1.1.1.2 (ii)].

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N-methyl signals of the N, N-dimethylacrylamides 140, 142-150 and 153 were assigned by comparison with the NMR spectra of N, N-dimethyl-2-pyrrolidinoacrylamide 151, and correlation data from HETCOR experiments on the acrylamide 153 (Figure 8 p .73). The benzenoid ${ }^{13} \mathrm{C}$ chemical shifts were assigned by calculation using correlation tables ${ }^{109}$ and, in the case of the fluoro analogue 144 , by ${ }^{13} \mathrm{C}-\mathrm{F}$ coupling constants ${ }^{109}$ (Figure 10 p .75), while correlation data from HETCOR and COSY - experiments were used to establish the ${ }^{1} \mathrm{H}$ chemical shifts (Figures 8 and 9 p.73 and p.74).

The acrylamides $140-151$ and 153 (Schemes 29-33) are differentiated from the chromone-2-carboxamides $129-134$ and 137 by the vinyl proton (3-H) singlet which occurs at $5.63-5.80 \mathrm{ppm}$ in the acrylamides (Tables 4 and 5), and at lower field, viz., 6.45-6.62 ppm in chromone-2carboxamides. The acrylamides are also characterised by the phenolic proton singlet which occurs at low field, ca. 13 - 14 ppm due to intramolecular hydrogen bonding between the phenolic proton and ketone carbonyl group. ${ }^{15}$ Determination of the E-double bond configurational and the conformational preferences of the N, N-dimethylacrylamides 140,142-146 and 151 will be discussed in Section 2.3. Although, the vinyl
proton (3-H) chemical shifts of the N-methylaminoacrylamides 147-150 are almost identical to those of the corresponding (E)-N,N-dimethylaminoacrylamides 143-146 (Tables 4 and 5 p.76), the Z-double-bond configuration is presumably favoured in the N-methylaminoacrylamides $147-150$ and the acrylamide 153 due to additional intra-molecular hydrogen bonding between the amino proton and the ketone carbonyl group (Schemes 30 and 33). 15 The N-alkylamino acrylamides (147-150 and 153; Schemes 30 and 33) are characterised by amino and phenolic proton chemical shift singlets at ca. 10 and 13 ppm respectively, and the $I R N-H$ absorption band of the amino group at ca. $3200 \mathrm{~cm}^{-1}$ (Table 5 and Figure 11 p. 76 and p.77). These values correlate with data reported by Zagorevskii et al. 15 in related studies. In the N, N-dimethylaminoacrylamides $(140,142-146$, and 151$)$ the $I R$ hydroxyl stretching band is shifted below $3000 \mathrm{~cm}^{-1}$ due to intramolecular hydrogen bonding, and similar effects are presumed to obtain in the N-methylaminoacrylamides (147-150 and 153; Figure 11).

SCHEME 31

Reagents : i) Ethanolic $\mathrm{Me}_{2} \mathrm{NH}-\mathrm{EtOH}, 35^{\circ} \mathrm{C}$.

SCHEME 32

Reagents : i) Pyrrolidine - EtOH, $35^{\circ} \mathrm{C}$.

SCHEME 33. i) $\mathrm{EtO}_{2} \mathrm{CCH}_{2} \mathrm{NH}_{2} . \mathrm{HCl}$ (152), $\mathrm{KOH}-\mathrm{EtOH}$; ii) $35^{\circ} \mathrm{C}$.

FIGURE 8. 400 MHz HETCOR spectrum of 2-(N-carbethoxymethylamino)-3-(2-hydroxybenzoyl)- N, N-dimethylacrylamide 153.

FIGURE 9. 400 MHz COSY spectrum of 2-(N-carbethoxymethylamino)-3-(2-hydroxybenzoyl)-N,N-dimethylacrylamide 153.

GILL
 LDLL 6LLL
 9768 -

[6LLI
3 3-

Table 4. Characteristic spectroscopic data for the N, N-dialkylamino acrylamides 140-146 and 151.

Compound	$3-\mathrm{H} / \mathrm{ppm}$	$\mathrm{OH} / \mathrm{ppm}$
140	5.75	13.60
141	5.57	13.61
142	5.65	14.10
143	5.71	13.85
144	5.63	14.00
145	5.66	13.85
146	5.65	13.70
151	5.72	13.70

Table 5. Characteristic spectroscopic data for the N-alkylamino acrylamides $147-150$ and 153.

Compound	$3-\mathrm{H} / \mathrm{ppm}$	$\mathrm{NH} / \mathrm{ppm}$	$\mathrm{OH} / \mathrm{ppm}$	$\mathrm{NH}^{\mathrm{a}} / \mathrm{cm}^{-1}$
147	5.76	10.56	13.52	3235
148	5.62	10.10	13.57	3230
149	5.65	10.30	13.41	3200
150	5.65	10.30	13.36	3200
153	5.80	10.50	13.01	3230

a Assigned by comparison with OH absorption bands of N, N-dialkylamino acrylamides and reported values for N-monosubstituted- β-aminovinylketones (e.g. $3310 \mathrm{~cm}^{-1}$). ${ }^{15}$

FIGURE 11. Solid-state IR spectra of compounds 146 and 150.

2.1 (v). Preparation of disodium cromoglycate.

As part of an investigation of the significance of ring-opening reactions in molecular-level chromone pharmacology, the dimethylaminemediated ring-opening reactions were extended to include DSCG 158 . DSCG 158 was prepared following the procedures reported by King et al. 40 (Schemes 34 and 35). Thus, the bis(o-hydroxyacetophenone) 155 was prepared by condensation of two molar equivalents of 2,6-dihydroxyacetophenone with single molar equivalents of epichlorohydrin and potassium hydroxide (Scheme 34). King et al. 40 found that alkylation of the second phenolic group of the monoalkylated intermediate species 154 was prevented by strong intra-molecular hydrogen bonding between the phenolic proton and ketone carbonyl group. Diethyl cromoglycate 156 was prepared via Claisen acylation of the bis(o-hydroxyacetophenone) 155 with excess diethyl oxalate and sodium ethoxide. Three products, viz., the required diethyl carboxylate ester 156, starting material 155, and the major component, 3-(2-acetyl-3-hydroxyphenoxy)-1-(2-ethoxycarbonylchromon-5-yloxy)-2-hydroxypropane 157, were isolated in yields well below the reported values. Disodium cromoglycate 158 was prepared by hydrolysis of the diethyl carboxylate ester 156. The quantity of sodium hydroxide used was limited to 2 molar equivalents in order to control contamination by the ring-opened product. 118 The dimethylamine-mediated ring-opening of DSCG 158
(Scheme 35) was performed in an NMR tube, and the reaction was followed by NMR spectroscopy, as described in Section 2.4.

SCHEME 35
Reagents : i) $\mathrm{NaOH}-E t O H, \mathrm{H}_{2} \mathrm{O}$ (trace), Δ; ii) aq. $\mathrm{Me}_{2} \mathrm{NH}-\mathrm{D}_{2} \mathrm{O}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts of the 2 -hydroxypropane analogues 155 159 were assigned using correlation data from COSY and HETCOR experiments on compound 157 (Figures 12 and 13); the ${ }^{13} \mathrm{C}$ benzenoid signals were assigned by calculation using correlation tables. 109 In diethyl cromoglycate 156 , the aromatic and 2 -hydroxypropane proton chemical shifts correlate with the literature values for dimethyl cromoglycate, 119 and the $C-2$ signal was assigned using the value for ethyl chromone-2-carboxylate 110.108

FIGURE 12. 400 MHz COSY spectrum of compound 157.

FIGURE 13. 400 MHz HETCOR spectrum of compound 157.

2.2 NMR ANALYSIS OF ROTATIONAL ISOMERISM IN
 CHROMONE-2-CARBOXAMIDES ${ }^{120}$

The chromone-2-carboxamides (129-138; Table 6 p.85) were prepared from the corresponding acids via an acid chloride intermediate, as described previously in Section 2.1 (iii). The ring and N-alkyl substituents were chosen to determine electronic and steric effects on the rotational equilibria. Symmetrically substituted N, N-dialkyl amides were chosen to simplify interpretation of the variable-temperature ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectra. The rotational energy barriers ($A G^{*}$; Table 6) of the chromone-2-carboxamides were determined from variable-temperature ${ }^{1} \mathrm{H}$ spectra (e.g. Figure 14), in which the observed splitting of the N-alkyl signals was attributed to slow site-exchange of the N-alkyl substituents.

335 K

325 K

320 K

315 K

305 K

296 K

315 K

305 K

300 K

345 335 X

296 K

285 K

FIGURE 14. Variable temperature ${ }^{{ }^{1}} \mathrm{H}$ NMR spectra showing N-alkyl signals for selected chromone-2-carboxamides (129-138).

TABLE 6. Data from dynamic NMR study of chromone-2-carboxamides 129-138. ${ }^{\text {a }}$

Compound $R^{1} \quad R^{2} \quad R^{3} \quad T_{c}{ }^{b} / K \quad \Delta v_{c}{ }^{c} / \mathrm{Hz} \quad \Delta G^{* d} / k J m o l^{-1} \quad K_{298}{ }^{\mathrm{e}} / \mathrm{s}^{-1}$

130	OMe	H	NMe_{2}	302	2.5 ± 0.7	69.7 ± 1.5	4
131	NO_{2}	H	NHe_{2}	305	1.8 ± 0.6	71.2 ± 1.9	2
132	F	H	NMe_{2}	270	1.0 ± 0.5	64.1 ± 2.3	36
133	Cl	H	$\mathrm{NMe}_{2}<255^{\mathrm{f}}$	-	-	-	
134	Br	H	NMe_{2}	290	1.0 ± 0.3	69.0 ± 1.6	5
135	H	Me	$\mathrm{NMe}_{2}>345 \mathrm{~g}$	-	$>72.3 \pm 0.2$	<1	
129	H	H	NMe_{2}	270	0.8 ± 0.3	64.6 ± 1.9	29
136	H	H	$\mathrm{NPr}_{2}{ }_{2}$	315	87.2 ± 2.2	63.5 ± 0.7	46

137 H

332
13.6 ± 1.1
72.2 ± 0.9
1 H $\quad \mathrm{H}$

61.6 ± 1.6
66.5 ± 0.9
14
${ }^{\text {a }}$ Variable temperature $300 \mathrm{MHz}{ }^{1}{ }^{1}$ NMR spectra recorded using solutions in CDCl_{3}. ${ }^{\mathrm{b}}$ Coalescence temperature $(\pm 3 \mathrm{~K})$. ${ }^{\mathrm{c}}$ Frequency separation at coalescence.
${ }^{d}$ Free energy of activation for N -CO rotation; $\Delta \mathrm{G}^{*}=\mathrm{R} T_{\mathrm{C}}\left(22.96+\ln T_{\mathrm{c}} / \Delta \nu_{\mathrm{c}}\right)$.
 $f_{\text {No splitting of }}$ NMe2 $_{2}$ signal observed. SNo coalescence of the NMe signals observed; $^{\text {No }}$ Δv at $345 \mathrm{~K}=36.5 \pm 0.5 \mathrm{~Hz}$.

In chromone-2-carboxamides (Scheme 36 p.87; where $R^{*}=R$) simultaneous rotation about two bonds, viz., the $N-C O$ and $C(2)-C O$ bonds implies a rotational equilibrium between two equivalent pairs of quasi-planar, resonance-stabilised conformers $[(\mathrm{Ia} \equiv \mathrm{II} a)$ and $(\mathrm{Ib} \equiv \mathrm{Ilb})]$. [In analogous benzamides the amide and aromatic planes are apparently twisted slighly out of plane relative to each other due to steric interactions and the rotational equilibrium apparently comprises two quasi-planar conformers, 49 as discussed in Section 1.2.1.] Siteexchange about the $C(2)-C O$ bond at ambient temperature is expected to be too rapid for dynamic $N M R$ spectroscopic analysis. This expectation may be rationalised by analogous rotational barriers about the $C(1)-C O$ bond in sterically hindered ortho-substituted benzamides which have been reported to be less than $60 \mathrm{~kJ} \mathrm{~mol}{ }^{-1} .45$ Since $I R$ spectroscopy has a very much shorter time-scale, the rapid $C(2)-C O$ rotation may have been analysed using this alternative detection method. Successful analysis of rapid $C(2)-C O$ rotations have been shown by the IR study of rotational isomerism in chromone-2-carboxylate esters, ${ }^{51}$ previously discussed in Section 1.2.2. In chromone-2-carboxamides, however, the infrared ketone and amide carbonyl absorption bands partially coincide at ca. $1650 \mathrm{~cm}^{-1}$, which prevented IR analysis of the $C(2)-C O$ rotational barrier. However, rotation about the $\mathrm{N}-\mathrm{CO}$ bond is expected to be hindered by delocalization of the nitrogen lone-pair (Figure 15 p .87), and in the rotational equilibria, $k_{\mathrm{a}}, k_{\mathrm{a}^{\prime}} \ll k_{\mathrm{b}}, k_{\mathrm{b}^{\prime}}$ (Scheme 36). Consequently, site-exchange of the N-alkyl substituents is likely to be sufficiently slow for NMR analysis. Since the rotational equilibria comprise two non-equivalent rotamer types (a) and (b), the measured rate constants

Ho 16

SCHEME 36

FIGURE 15.
for site-exchange are weighted combinations of the individual rate constants. Use of the Winstein-Holness principle ${ }^{44}$ then affords equation 4 .

$$
\begin{equation*}
k_{\mathrm{obs}}=k_{\mathrm{a}}[\mathbf{I a}]+k_{\mathrm{a}^{\prime}}[\mathrm{Ib}] \tag{4}
\end{equation*}
$$

In the series $129-138$, the ${ }^{1} H$ NMR frequency separations measured at slow site-exchange $\left(\Delta \nu_{0}\right)$ range between $1-99 \mathrm{~Hz}$, and are smallest for the N, N-dimethylcarboxamides (129-132 and 134). Such frequency separations $\left(\Delta \nu_{0}\right)$ reflect the difference in the average magnetic environment of each N-alkyl substituent in each compound, and more specifically, their average position relative to the magnetically anisotropic chromone and amide ${ }^{45}$ functions. The positions of the relevant nuclei relative to the amide function are determined by : dipole-dipole and steric ${ }^{49}$ interactions; "gear-meshing"121 of the isopropyl groups in compound 136; and ring-conformational constraints in the heterocyclic analogues 137 and 138. Similar deshielding of the N-methyl groups in the N, N-dimethylcarboxamides (129-132 and 134) may thus account for the small $\Delta \nu_{0}$ values. In the 7 -chloro analogue 133 , the ${ }^{1} H N R N$-methyl signal did not split, the material precipitating below 255 K . This observation is probably due to identical deshielding of the N-methyl groups at slow site-exchange, rather than an unusually low rotational barrier. This argument is also substantiated by the observed splitting of N-alkyl ${ }^{13} \mathrm{C}$ signals at ambient temperature for all the chromone-2-carboxamides 129-138, including the 7-chloro compound 133.

Rotational energy barriers (ΔG^{*}; Table 6 p.85), were determined for the chromone-2-carboxamides (129-132,134,136-138) from the coalescence temperatures (T_{c}) and the frequency separations at coalescence ($\Delta \nu_{c}$), using equation 2.46 The latter $\Delta \nu_{c}$ values were determined by linear extrapolation (Section 3.3), as described by Lai and Chen. ${ }^{122}$ Siteexchange rate constants (k) were then determined from the ΔG^{*} values using equation 3 .

$$
\begin{align*}
& \Delta G^{*}=R T_{c}\left(22.96+\ln T_{c} / \Delta \nu_{c}\right) \tag{2}\\
& \ln k=\ln \left(k_{b} T / h\right)-\Delta G^{*} / R T \tag{3}
\end{align*}
$$

The rotational energy barriers (ΔG^{*}) range between $64-72 \mathrm{~kJ}$ mol ${ }^{-1}$ correlating with typical amide rotational barriers ($50-100 \mathrm{~kJ}$ mol ${ }^{-1}$) and, more importantly, with reported ΔG^{*} data for comparable N, N-dialkylbenzamides. 123,124 The slightly higher rotational barriers determined for the chromone analogues, relative to the N, N-dialkylbenzamides, may reflect a reduction in competitive delocalisation ${ }^{45}$ due to the electron-withdrawing chromone system (Figure 16 p.92). This electron-withdrawing effect consequently increases the double-bond character of the N-CO bond, which effectively increases the magnitude of the chromone-2-carboxamide rotational barriers. In the substituted N, N-dimethylcarboxamides, the increasing net electronwithdrawing effects of the substituent R^{1} result in decreasing competitive delocalization, and such effects may account for the gradual increase in ΔG^{*} values in the series $R^{1}=F(132)<\operatorname{Br}(134)<\mathrm{NO}_{2}(131)$. This trend also correlates with reported ΔG^{*} data for the corresponding para-substituted N, N-dimethylbenzamides. ${ }^{123}$ Changing conformer populations may influence the overall rate of rotation and could explain the apparently anomalous result for the 7 -methoxy analogue 130.

The rotational barriers for the pyrrolidine derivative 137 , and to a lesser extent, for the piperidine analogue 138 are both higher than that of the N, N-dimethyl compound 129 . This may illustrate the influence of electron-releasing inductive effects on nitrogen lone-pair delocalisation (Figure 15 p.87). Ring conformational contraints are expected to allow the pyrrolidine nitrogen to adopt the planar $s p^{2}$ arrangement more easily than the piperidine nitrogen. The pyrrolidine nitrogen thus has more $s p^{2}$ character and hence more effective nitrogen lone-pair delocalization. This effect may account for higher rotational barrier for the pyrrolidine derivative 137 than for the piperidine analogue 138. This trend correlates with reported ΔG^{*} data for simple piperidine and pyrrolidine compounds, ${ }^{45}$ as discussed in Section 1.2.1. The electron-releasing inductive effect may be opposed by steric destabilisation of the carboxamide ground-state ${ }^{125}$ which inhibits delocalisation, and this effect presumably occurs in the N, N-diisopropylchromone-2-carboxamide 136. An analogous trend occurs in the reported ΔG^{*} data for benzamide analogues, viz., N, N-diisopropylbenzamide $\leq N, N$-dimethylbenzamide ${ }^{124} \approx 1$-benzoylpiperidine. 50

As discussed previously in Section 1.2.2, an IR study of rotational isomerism in chromone-2-carboxylate esters has shown that bulky 3-substituents appear to prevent co-planarity of the ester and chromone planes. ${ }^{51}$ Similar steric effects were thus expected to occur in 3-methylchromone-2-carboxamide 135 and this expectation is supported both by computer modelling and by earlier studies of benzamide analogues. ${ }^{49}$ Steric effects of the bulky 3-methyl substituent are expected to inhibit rotation about both the $\mathrm{C}(2)-\mathrm{CO}$ and $\mathrm{N}-\mathrm{CO}$ bonds. This expectation was confirmed by the well separated ${ }^{1} \mathrm{H}$ NMR N-methyl signals (37 Hz) which did not coalescence even at 345 K . The proposed
conformation illustrated in Figure 17 (p.92) rationalises both the failure to achieve coalescence of the ${ }^{1} H N$-methyl signals and the expected steric constraints. In the proposed conformation, the essentially planar N, N-dimethylcarboxamide group lies perpendicular or nearly perpendicular to the chromone plane, the N-methyl groups are diastereotopic, and rotation about both the $\mathrm{C}(2)-\mathrm{CO}$ and $\mathrm{N}-\mathrm{CO}$ bonds is significantly hindered due to steric effects of the 3-methyl substituent. These steric interactions were further investigated using nuclear Overhauser enhancement (n.O.e.) experiments, involving the separate irradiation of the 3 -methyl group and each of the N-methyl groups (Figure 18 p.93). In each case, small enhancements of both nonirradiated methyl groups occur in the n.O.e difference spectra (Figure 19 p.92). [Calculation of the n.0.e. enhancements is described in Section 3.3] These findings suggest that all three methyl groups are closely situated to each other, thus substantiating the proposed conformation (Figure 17). However, in view the small magnitude of the intensity enhancements and the complexity of the internal rotations, arguments based on the n.O.e data cannot be considered conclusive.

FIGURE 16. a) competitive delocalization;
b) nitrogen lone-pair delocalization.

FIGURE 17. Proposed conformation of compound 135 based on computer-modelled structure; (i) "wire-frame" and (ii) "spacefill" representations.

FIGURE 19. Percentage n.O.e. enhancements of compound 135.

FIGURE 18. ${ }^{1}$ H N.m.r. spectra of methyl signals from n.o.e. experiments on chromone-2-carboxamide 135 :-
a) irradiation at frequency, ν_{1}; b) irradiation at frequency $\nu_{2} ; ~ c$) irradiation at frequency, ν_{3}; and d) reference spectrum.

2.3 STRUCTURAL ANALYSIS OF CHROMONE-DERIVED

2-AMINO-3-(2-HYDROXYBENZOYL)ACRYLAMIDES ${ }^{126}$

As previously discussed in Section 1.3.3 (iv), many different modes of action for DSCG in asthma therapy have been proposed. The mast cell stabilising action ${ }^{72,93}$ of DSCG has received the most attention, although, the molecular basis for this action (and all the other proposed modes of action) has not been elucidated. $66,72,93,98$ Chromones are susceptible to $\mathbf{C - 2}$ nucleophilic attack and are consequently ringopened by various nitrogen ${ }^{21}$ and oxygen nucleophiles. 26 The implications of such reactions in molecular-level chromone pharmacology have thus been explored in the present study. DSCG may interact with biogenetic nucleophiles via the ring-opening reaction. Such reactions thus provide a mechanism for the $C-2$ covalent binding of the drug to mast cell receptor sites such as the DSCG-binding protein (Figure 20).94,95 The drug may similarly block or antagonise the effects of anti-inflammatory mediators such as histamine. The reactions of the chromone-2carboxamides with amines as models for in vivo nucleophiles were thus investigated (Scheme 37 p .95). The configurational and conformational preferences of the ring-opened 2-amino-3-(2-hydroxybenzoyl)acrylamides 140, 142-146, and 151 were determined using a combination of x-ray crystallographic, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectroscopic, and computer modelling techniques. 126

FIGURE 20. Putative interaction of biogenetic nucleophiles (e.g. $X=N, 0, S$) with chromone systems.

	R^{1}	R^{2}	R^{3}	
129	H	Me	Me	140
130	OMe	Me	Me	142
131	NO_{2}	Me	Me	143
132	F	Me	Me	144
133	Cl	Me	Me	145
134	Br	Me	Me	146
129	H	$-\left(\mathrm{CH}_{2}\right)_{4^{-}}$	151	

SCHEME 37

Chromones are ring-opened to produce products with either E - or Z-double-bond configurations. Zagorevskii et al. ${ }^{15}$ have investigated β-aminovinylketone systems using ${ }^{1} \mathrm{H} J_{1,3}$ vinyl coupling constants to determine the E-configuration of N, N-disubstituted β-aminovinylketones 160 and the Z-configuration of $N-m o n o s u b s t i t u t e d$ analogues 161. However, they failed to determine the double-bond configuration in the products of reactions of $2-s u b s t i t u t e d$ chromones with secondary amines. $N M R$ and IR spectroscopy have also been used ${ }^{15}$ to determine the significance of intra-molecular hydrogen-bonding in both series.

160

161

The E-double-bond configuration of the parent system 140 was unambiguously determined by single crystal x-ray diffraction analysis. The crystal structure and packing diagrams of this compound (140) are shown in Figures 21 and 22 (p. 97 and 98). The crystal stucture also indicates intra-molecular hydrogen-bonding between the phenolic proton and the syn-orientated ketone carbonyl group. The amide group is planar with a maximum deviation from the least-square plane of $0.0820 \AA$, and lies perpendicular (ca. 85°) to the rest of the molecule. The remaining crystallographically determined atoms are co-planar, with a maximum deviation from the least-square plane of 0.0796 A . The planarity of the β-amino-vinyl ketone system implies significant delocalisation of the dimethylamino nitrogen lone pair into the extended conjugated system (Figure 23 p.99). This delocalisation effect is also enhanced by intra-molecular hydrogen-bonding chelation which also encourages the co-planarity of the aryl and β-amino-vinylketone systems.

FIGURE 21. X-Ray crystal structure of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N, N-dimethylacrylamide 140 , showing the crystallographic numbering.

FIGURE 22. Packing diagram of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N, N-dimethylacrylamide 140.

\uparrow

(a)

III

(b)

III

(c)

FIGURE 23. (a) Favoured E-configuration of compounds $140,142-146$ and 151 illustrating delocalisation and hydrogen-bonded chelation. (b) Unfavourable steric interaction in the alternative conformer of the E-diastereomer.
(c) Unfavourable steric interaction in a planar conformation of the Z-diastereomer.

NMR and $I R$ data may be used to argue that the solid state (crystal) conformation of the parent system is essentially maintained in solution i.e. in chloroform; and the same configurational and conformational preferences are present in all of the 2-amino-3-(2-hydroxybenzoyl)acrylamides $140,142-146$, and 151 . The E-double-bond configuration in each of the 2-amino-3-(2-hydroxybenzoyl)acrylamides is substantiated by the following NMR data, obtained for CDCl_{3} solutions. In the series (Table 7; Figure 24 p.101), the chemical shifts for the vinyl (3-H) protons and the non-aromatic carbons show only small differences and the vinyl $3-H$ proton chemical shifts correlate more closely to the calculated value for the E-isomer (5.51 ppm) than for the Z-isomer (6.08 ppm). These calculated values were determined using the method of additive increments described by Matter et a1. 127 Furthermore, in each of the compounds, the ${ }^{13} \mathrm{C} N$-methylamino and N-methylcarboxamido signals are both split at ambient temperature. The corresponding ${ }^{1}{ }_{H}$ N-methylcarboxamido signals are clearly split, while the ${ }^{1} \mathrm{H}$ N-methylamino signals form broad, post-coalescence singlets at ambient temperature (Figure 24). N, N-disubstituted amides usually exhibit slow site-exchange of N-alkyl groups at ambient temperature. However, the analogous splitting of the ${ }^{13} \mathrm{C} N, N$-dimethylamino signals is significant and implies a rotational equilibrium between resonance-stabilised planar conformers due to slow site-exchange of diastereotopic N-methyl groups. These conformational options are only possible in the E-double-bond configuration of the acrylamide illustrated in Figure 23a (p.99), since molecular modelling studies show that in the Z-diastereomer (Figure 23c), unfavourable steric interactions prevent co-planarity of the dimethylamino- and vinyl ketone moieties. The alternative planar conformer (Figure 23b) is destabilised by unfavourable steric interactions even when the planar amide moiety is perpendicular to the rest of the molecule. [The planar arrangements illustrated in Figure 23

Table 7. Comparative ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts for dimethylamino- N, N-acrylamides $140,142-146$, and 151.

${ }^{13} \mathrm{C}$ Nucleus	$\delta(140$ (ppm)	$\Delta \delta^{\mathrm{a}}$ (ppm)
$\mathrm{CO}^{\mathrm{NM} \mathrm{Ne}_{2}}$	34.06	0.44
	36.84	0.46
NMe_{2}	39.38	0.52
	40.11	0.82
$\mathrm{C}-1$	166.44	1.52
$\mathrm{C}-2$	158.76	1.54
$\mathrm{C}-3$	88.81	0.31
$\mathrm{C}-4$	189.74	1.72
$3-\mathrm{H}^{\mathrm{b}}$	5.75	0.12

a Maximum deviation from compound 140.
b 1_{H} nucleus.
(a)

FIGURE 24. (a) Compounds IV with numbering (see Table 7 for NMR data).
(b) Partial ${ }^{1} \mathrm{H}$ NMR spectrum for compound (144; $\mathrm{R}^{1}=\mathrm{F}$).
(c) Partial ${ }^{13} \mathrm{C}$ NMR spectrum for compound (14.4; $\mathrm{R}^{1}=\mathrm{F}$).
were obtained by changing the relevant torsion angles of energy minimised structures.] The perpendicular arrangement of the amide group illustrated in the crystal structure of the parent system is likely to be maintained in solution, and eliminates unfavourable steric interaction with the vinyl ketone oxygen, while still allowing uninhibited delocalisation of the nitrogen lone-pair in the independently planar amide group.

In the $I R$ spectra of the compounds obtained using $K B r$ discs and chloroform solutions, the carbonyl absorption bands differ only by ca. $\pm 10 \mathrm{~cm}^{-1}$. This observation is significant since IR carbonyl band frequencies are sensitive to structural change. Furthermore, in the systems examined, both ketone and amide carbonyl absorption bands are generally superimposed at low frequencies, viz., ca. $1650 \mathrm{~cm}^{-1}$ [Figure 11 p. 77, Section 2.1 (iv)]. This observation reflects a reduction in the double-bond character of both carbonyl groups due to effective delocalisation. While such frequency shifts are characteristic of planar amide systems, they also independently substantiate the essential co-planarity of the dimethylamino and aryl vinyl ketone systems. The hydroxyl stretching band is shifted below $3000 \mathrm{~cm}^{-1}$ in both the solid state and solution IR spectra of each compound, while the phenolic proton chemical shifts occur at low field (ca. 14 pmm) in the $60 \mathrm{MHz}{ }^{1} \mathrm{H}$ MMR spectrum of each compound. Both these observations substantiate ${ }^{48}$ the strongly hydrogen-bonded chelate conformation illustrated in Figure 23a (p.99).

C-2 nucleophilic attack may occur at either face of the planar chromone-2-carboxamide (I, Scheme 37 p.95) and ring-opening proceeds via racemic, dipolar intermediates III (see mechanistic study in Section 2.5.) Product development control may be responsible for the preferential
formation of the corresponding (E)-dimethylaminoacrylamides IV. Alternatively, the predominance of the more stable isomer may result from equilibration to the E-product, as a result of the configurational lability of the dimethylaminoacrylamides IV. Analogous configurational labilty has been reported by Shvo and Shanan-Aridi ${ }^{128}$ in related systems, and has been rationalised by amino nitrogen lone-pair delocalisation which effectively increases the single-bond character of the double-bond. The essentially planar, conjugated E-products IV are the more stable isomers due to effective delocalisation of the dimethylamino nitrogen lone-pair, an effect which is not possible in the Z-diastereomers due to steric inhibition of resonance. In the monosubstituted amino analogues 161 (p.96) examined by Zagorevskii et al., 15 however, co-planarity of the syn-orientated amino- and vinyl ketone groups may be achieved in the Z-isomer without steric strain. The Z-double-bond configuration in these compounds is apparently favoured due to stabilisation by additional intra-molecular hydrogen bonding between the amino hydrogen and the ketone carbonyl group.

2.4 NMR ANALYSIS OF THE REACTION OF DISODIUM CROMOGLYCATE WITH DIMETHYLAMINE

The dimethylamine-mediated ring-opening of DSCG 158 (Scheme 35 p.80) was performed in an NMR tube, and the reaction was followed by NMR spectroscopy. 1_{H} and ${ }^{13} \mathrm{C}$ spectra of the starting material, and the reaction mixture after 0.5 h are shown in Figures 25 and 26 . The ${ }^{1} \mathrm{H} N M R$ spectrum of the reaction mixture taken after 0.5 h shows the complete disappearance of the vinyl (3-H) proton singlet and the shifting of the benzenoid protons to higher field with chemical shifts comparable to those observed for bis(o-hydroxyacetophenone) 155; the benzenoid proton triplet and doublets are also shifted further apart. In the ${ }^{13} \mathrm{C} N M \mathrm{R}$ spectrum, taken after 0.5 h , the vinyl ketone ($\mathrm{C}-4$) chemical shift occurs at lower field (ca. 193 ppm) and the benzenoid chemical shifts are comparable to those observed for bis(o-hydroxyacetophenone) 155. The N-methylamino ${ }^{13} \mathrm{C}$ signals presumably coincide with those of dimethylamine. The spectra of the reaction mixture after 0.5 h thus show significant differences from the starting material and differences are consistent with formation of the ring-opened product 159. Isolation of the ring-opened product 159 was then attempted. Surprisingly, however, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of the crude isolated product (obtained in quantitative yield) correlate with DSCG 158 rather than the ringopened product 159 [as illustrated in the DEPT spectra (Figure 27)]. While there is clear evidence that ring-opening of DSCG occurs in the reaction solution, the reaction appears to be reversible since the starting material was isolated. This interesting reaction still requires further investigation.

FIGURE 25. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ spectra of
a) reaction mixture after 0.5 h .
b) DSCG 158 (starting material).

FIGURE 26. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ spectra of
a) reaction mixture after 0.5 h .
b) DSCG 158 (starting material).

FIGURE 27. 100 MHz DEPT spectra of
a) reaction mixture after 24 h .
b) DSCG 158 (isolated product).
a Impurities

2.5 KINETICS AND MECHANISM OF THE REACTION OF CHROMONE-2CARBOXAMIDES WITH DIMETHYLAMINE ${ }^{129}$

Further investigation of the implications of the ring-opening reactions of chromones in molecular-level chromone pharmacology involved a kinetic study of the dimethylamine-mediated ring-opening of the N, N-dimethylchromone-2-carboxamides 129-133 to the corresponding (E)-2-(N, N-dimethylamino)-3-(2-hydroxybenzoyl)acrylamides 140 and 142-145 (Scheme 38).

	R^{1}	
129	H	140
130	OMe	142
131	NO_{2}	143
132	F	144
133	Cl	145

The ring-opening reactions were followed by ultraviolet spectroscopy. The absorption maxima of the reactants and products were well separated (e.g. Figure 28 p .110), in all cases, and the reactions were followed by monitoring the rate of formation of the acrylamides. In each case, the absorbance changes were measured at the wavelength corresponding to the absorption maximum of the particular acrylamide (e.g. Figures 29 and 30 p. 110 and p.111). The cuvette chamber, reaction flask, and reagent solutions were maintained at $30(\pm 0.2)^{\circ} \mathrm{C}$. Other reaction parameters such as the wave-length, initial chromone-2-carboxamide- and dimethylamine concentrations, and the duration of each reaction are summarised in Table 8. Initial chromone-2-carboxamide concentrations were chosen to produce maximum acrylamide absorbances of ca. 1.0-1.2 absorbance units, and dimethylamine concentrations were chosen to ensure ca. 80% completion of the reactions within $1-1.5 \mathrm{~h}$. The final absorbance readings $\left(\lim t \rightarrow \infty A_{t}\right)$ were taken after $15-24 \mathrm{~h}$. All determinations were duplicated. The linear (Beer's Law) relationship between acrylamide concentration and absorbance (e.g. Figure 31 p.111) was confirmed over the corresponding ranges used for each system.

TABLE 8. Reaction parameters.

R^{1}	λ (nm)	[Amide] $\left(\mathrm{mol} . \mathrm{dm}^{-3} \times 10^{5}\right)$	$\left[\mathrm{Me}_{2} \mathrm{NH}\right]$ $\left(\mathrm{mol} . \mathrm{dm}^{-3}\right)$	Completion $(\%)$	Reaction time (min)
H	357	3.5	$1.0-1.8$	$80-85$	$40-120$
OMe	361	3.0	$1.8-2.6$	$65-76$	$32-80$
NO_{2}	388	5.5	$0.059-0.099$	$80-82$	$35-70$
F	353	3.5	$0.4-0.8$	$74-85$	$19-70$
Cl	358	3.5	$0.2-0.6$	$80-87$	$17.5-130$

FIGURE 28. UV Spectra of ethanolic solutions of 7 -chloro- N, N-dimethyl-chromone-2-carboxamide 133 and the corresponding acrylamide 145.

FJGURE 29. UV Spectra showing absorbance changes during the reaction of 7-fluoroN, N-dimethylchromone-2-carboxamide 132 with 0.5 M -dimethylamine at $30^{\circ} \mathrm{C}$.

FIGURE 30. Plots of absorbance vs. time for reactions at $30^{\circ} \mathrm{C}$ of N, N-dimethyl-chromone-2-carboxamide 129 with
(a) $1.0 \mathrm{M}-\mathrm{Me}_{2} \mathrm{NH} ;$ (b) $1.2 \mathrm{M}-\mathrm{Me}_{2} \mathrm{NH}$;
(c) $1.4 \mathrm{M}-\mathrm{Me}_{2} \mathrm{NH} ;$ (d) $1.6 \mathrm{M}-\mathrm{Me}_{2} \mathrm{NH}$;
and (e) $1.8 \mathrm{M}-\mathrm{Me}_{2} \mathrm{NH}$.

FIGURE 31. Beer's Law plot of absorbance $v s$. concentration of the acrylamide 140.

Large excesses of dimethylamine $\left\{>10^{3} x[\right.$ chromone-2-carboxamide 1]\} were used to produce pseudo first-order reaction conditions (Equation 7). The pseudo first-order rate constants (k_{a}) at different dimethylamine concentrations were determined from linear plots (e.g. Figure 32 p.113) of $\ln \left(A-A_{t}\right)$ against time using equation 5 . The ring-opening reactions were shown to be third-order overall, consistent with equation 6 . The rate constants ($k_{0 b s}$) were determined from plots of pseudo first-order rate constants (k_{a}) against the square of the dimethylamine concentration $\left\{\left[\mathrm{Me}_{2} \mathrm{NH}\right\}^{2}\right\}$ (e.g. Figure 33 p.113). The relevant data are summarised in Tables 9 and 10 (p .114 and 117). Linear regression analysis of the experimental data afforded best straight line fits (Section 3.5).

$$
\begin{align*}
& \ln \left(A-A_{t}\right)=-k_{a} t+\ln \left(A-A_{0}\right) \tag{5}\\
& \text { where } A_{0}=\text { initial absorbance } \\
& A_{t}=\text { absorbance at time, } t \\
& A=1 m_{t \rightarrow \infty} A_{t} \\
& \text { Rate }=k_{0 b s}\left[\text { chromone-2-carboxamide I] [Me2NH }{ }^{2}\right. \tag{6}\\
& =k_{a}[\text { chromone-2-carboxamide I] } \tag{7}\\
& \text { where } k_{a}=k_{0 b s}\left[\mathrm{Me}_{2} \mathrm{NH}\right]^{2}
\end{align*}
$$

FIGURE 32. Pseudo first-order kinetic plot for the reaction of 7 -fluoro- N, N -dimethylchromone-2-carboxamide 132 with 0.7 M -dimethylamine at $30^{\circ} \mathrm{C}$.

FIGURE 33. Plot of pseudo first-order rate constants $\left(k_{\mathrm{a}}\right)$ vs. [$\left.\mathrm{Me}_{2} \mathrm{NH}\right]^{2}$ for the reaction of N, N-dimethylchromone-2carboxamide 129 with dimethylamine at $30^{\circ} \mathrm{C}$.

TABLE 9. Pseudo first-order rate constants (k_{a}) for the ring-opening of N, N-dimethylchromone-2-carboxamides 129-133 by dimethylamine at $30^{\circ} \mathrm{C}$.

R^{1}	$\begin{gathered} \text { [Amide] } \\ \left(\mathrm{mol} \cdot \mathrm{dm}^{-3} \times 10^{5}\right) \end{gathered}$	$\begin{gathered} {\left[\mathrm{Me}_{2} \mathrm{NH}\right]} \\ \left(\mathrm{mol} . \mathrm{dm}^{-3}\right) \end{gathered}$	$\begin{gathered} k_{\mathrm{a}}^{\mathrm{a}} \\ \left(\mathrm{~s}^{-1} \times 10^{4}\right) \end{gathered}$
H	3.5	1.00	2.40 ± 0.02
		1.20	3.45 ± 0.15
		1.40	4.53 ± 0.03
		1.60	5.90 ± 0.38
		1.80	7.10 ± 0.12
OMe	3.0	1.80	3.97 ± 0.05
		2.00	4.98 ± 0.22
		2.10	5.73 ± 0.18
		2.40	6.87 ± 0.25
		2.60	7.97 ± 0.15
NO_{2}	5.5	0.059	2.53 ± 0.12
		0.069	3.35 ± 0.05
		0.079	4.33 ± 0.10
		0.089	5.67 ± 0.18
		0.099	6.50 ± 0.02
F	3.5	0.40	3.33 ± 0.05
		0.50	4.70 ± 0.20
		0.60	7.23 ± 0.72
		0.70	9.18 ± 0.48
		0.80	12.22 ± 0.65
Cl	3.5	0.20	2.22 ± 0.02
		0.30	4.75 ± 0.03
		0.40	7.05 ± 0.42
		0.50	10.72 ± 0.40
		0.60	15.53 ± 0.65

[^7]Szabo et al. have studied the kinetics of hydroxide ion induced ringopening reactions of chromone- 26 and isoflavonoid derivatives. 27,28 They established that the reactions follow second-order kinetics, in which the rate is directly proportional to the product of the substrate and hydroxide ion concentrations. In their proposed mechanism (Scheme 39), the rate-determining step is considered to be the first step ($162 \rightarrow 163$) involving C-2 nucleophilic attack by the hydroxide ion. They suggested ${ }^{26}$ that the measured rate constants could be used to quantify the electron density at $\mathrm{C}-2$ and, hence, the susceptibility of chromone derivatives to C-2 nucleophilic attack.

SCHEME 39

Consequently, the reactions of the N, N-dimethylchromone-2-carboxamides with dimethylamine were expected to follow second-order kinetics with the rate-determining step involving C-2 nucleophilic attack by dimethylamine. However, the kinetic data show that ring-opening of chromone-2-carboxamides follow third-order (rather than second-order) kinetics overall corresponding to the rate equation 6 ($p .112$). The proposed mechanism is detailed in Scheme 38 (p.108). The rate
expression (Equation 8) is consistent with the proposed mechanism, and is equivalent to the experimentally determined relationship (Equation 6 p.112) when $k_{3} K_{1} K_{2}=k_{\text {obs }}$.

$$
\begin{equation*}
\text { Rate }=k_{3} \mathrm{~K}_{1} \mathrm{~K}_{2}[\text { chromone-2-carboxamide } \mathrm{I}]\left[\mathrm{Me}_{2} \mathrm{NH}\right]^{2} \tag{8}
\end{equation*}
$$

In the proposed mechanism, two consecutive equilibria are followed by a rate-determining ring-opening step. The first equilibrium involves readily reversible nucleophilic attack by the amine at C-2 of the chromone-2-carboxamide I. The resultant dipolar species II then eliminates the neutral amine (II $\rightarrow \mathbf{I}$; Figure 34 p.119) more readily than it undergoes ring-cleavage (II \rightarrow IV). In the second acid-base equilibrium, a second molecule of amine abstracts a proton from the dipolar species II thus acting as a base, rather than a nucleophile. [It is presumably this additional step which is responsible for the overall third-order kinetics, since in the hydroxide mediated reactions, (which follow second-order kinetics), the hydroxide ion does not require deprotonation (Scheme 39 p .115), and is not as easily eliminated as the Me2NH.] The resulting enolate species III then undergoes ring cleavage in the rate-limiting step (III \rightarrow IV) which involves the elimination of the resonance stabilised phenoxide ion in preference to $\mathrm{Me}_{2} \mathrm{~N}^{-}$ (Figure 34 p.119). The formation of an intermediate addition product analogous to compound 165 (Scheme 39 p.115) has not been included in the proposed mechanism, since Zagorevskii et al. 16 have reported an $N M R$ study, in which they have demonstrated the absence of isotope exchange in the reactions of chromone with 1 -D-piperidine and of $3-D-c h r o m o n e$ with piperidine. Consequently, in their proposed mechanism (Scheme 40 p.119), amine-mediated ring-opening of chromones apparently proceeds via the dipolar species 166 without the formation of the addition product 167.

Two substituent effects are expected to influence the experimentally determined rate constant (k_{obs}). The remote $C-7$ substituents may influence the electron density at $\mathrm{C}-2$ and hence the equilibrium constant (K_{1}; Equation 8 p.116). However, as meta-substituents, they are also expected to significantly affect the relative stability of the phenoxide "leaving group" in the rate-determining step. Thus, electronwithdrawing substituents should accelerate ring-opening. The experimentally determined rate constants ($k_{0 b s}$; Table 10) decrease in the following order viz., $k_{\mathrm{NO}_{2}}>k_{\mathrm{Cl}}>k_{\mathrm{F}}>k_{H}$ and, with the exception of the 7 -methoxy analogue 130 , this trend correlates with the reported order of the dissociation constants for meta-substituted phenols and benzoic acids, 130 and 4-substituted 2-hydroxyacetophenones. ${ }^{131}$ The methoxy analogue 130 was expected to produce a larger rate constant ($k_{\text {obs }}$; Table 10) than the parent system 129 , since the methoxy substituent constant is positive ($\sigma_{m-M E D}=+0.10$). ${ }^{132}$ This apparently anomalous smaller rate constant for the methoxy analogue 130 may be

TABLE 10. Rate constants ($k_{\text {obs }}$) for the ring-opening of N, N-dimethylchromone-2-carboxamides 129-133 by dimethylamine at $30^{\circ} \mathrm{C}$.

R^{1}	$k_{\mathrm{obs}}{ }^{\mathrm{a}}$
	$\left(\mathrm{dm}^{6} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{~s}^{-1} \times 10^{4}\right)$
H	2.12 ± 0.08
OMe	1.13 ± 0.05
NO_{2}	648 ± 7
F	18.5 ± 1.2
Cl	40.8 ± 1.3

a Mean value from duplicate runs.
rationalised by electron-releasing resonance effects, which either reduce electron density at C-2 (Figure 35 a p.119) and/or reduce the stability of the phenoxide ion. The phenoxide ion is stabilised by conjugation with the o-acyl function, and this effect may be opposed by competitive delocalization involving the electron-releasing m-methoxy substituent (Figure 35b p.119).

The reaction constant (p; Equation 10) was determined from a linear plot (Figure 36) of $\log \left(k_{\text {obs-x }} / k_{\text {obs-H }}\right)$ against the corresponding metasubstituent constants $\left(\sigma_{m-x}\right), 132$ applying the Hammett equation (9), 133 [The x denotes the substituent R^{1}.] The positive experimentally determined reaction constant $(\rho=4.48 \pm 0.45)$ shows the development of a negative charge at the reaction centre for the rate-determining step, ${ }^{133}$ consistent with the deprotonated intermediate species III in the proposed mechanism (Scheme 38 p.108).

$$
\begin{align*}
& \log \left(k_{x} / k_{H}\right)=\rho \sigma_{x} \tag{9}\\
& \log \left(k_{\text {obs-x }} / k_{\text {obs-H }}\right)=\rho \sigma_{m-x} \tag{10}
\end{align*}
$$

FIGURE 36. Plot of $\log \left(k_{\text {obs-x }} / k_{\text {obs-H }}\right)$
vs. (σ_{m-x}) for the reaction of the N, N-dimethylchromone-2-carboxamides 129-133 with dimethylamine at $30^{\circ} \mathrm{C}$.

SCHEME 40

Reagents : i) $\mathrm{R}_{2} \mathrm{NH}$

FIGURE 34.

FIGURE 35a.
FIGURE 35b.

2.6 POTENTIOMETRIC DETERMINATION OF DISSOCIATION CONSTANTS OF CHROMONE-2-CARBOXYLIC ACIDS

. While the acidity of anti-allergic compounds may be an important contributing feature for significant activity [Section 1.3.3 (i)], no satisfactory correlations have been established. 40 The poor solubility of cromoglycic acid in aqueous solutions has been reported to have prevented the determination of its $\mathrm{pK}_{\mathrm{a}}{ }^{119}$ The bischromone acids corresponding to the DSCG analogues (79) [discussed in Section 1.3.3 (i)], however, have been reported to exhibit high acidity due to the delocalisation effects of the carbonyl ketone group and the oxygen of the pyran ring, with pK_{a} values in the range of 1.3 to 2.0.40 Chromone-2-carboxylic acid (129) has reported pK_{a} values of 2.96 (determined by conductimetry at $25^{\circ} \mathrm{C}$) ${ }^{134}$ and 2.8 (determined potentiometrically in 50% ethanol). 135 In chromone-2-carboxylic acids, substitution at $\mathrm{C}-5$ by an alkoxy group has been reported to increase the acidity, e.g. 5-(2-hydroxypropyloxy)chromone-2-carboxylic acid and 5-(2-hydroxy-3-methoxypropyloxy)chromone-2-carboxylic acid have reported pK_{a} values of 1.86 and 1.92 respectively. 119 The acidity ($\mathrm{pK}_{\mathrm{a}} 2.8$) of 2-(1H-tetrazol-5-yl)chromone (determined by potentiometry in 50% ethanol at $\left.20^{\circ} \mathrm{C}\right)^{136}$ is comparable to chromone-2-carboxylic acid (129).

In the present study, the pK_{a} values (Table 11 p .121) for the chromone-2-carboxylic acids 112-118 were determined in order to explore further substituent effects on chromones. The 7-substituted chromone-2-carboxylic acids (112-117; Table 11) were chosen to elucidate electronic effects, while 6-chlorochromone-2-carboxylic acid 118 illustrates the effect of changing the substituent position.

TABLE 11. Dissociations constants of the chromone-2-carboxylic acids $112-118$ at $25^{\circ} \mathrm{C}$.

Compd.	R^{1}	$\mathrm{pK}_{\mathrm{a}}{ }^{\mathrm{a}}$
112	$7-\mathrm{H}$	$2.69 \pm 0.05^{\mathrm{b}}$
113	$7-0 \mathrm{Me}$	$2.96 \pm 0.02^{\mathrm{c}}$
114	$7-\mathrm{NO}_{2}$	2.60 ± 0.03
115	$7-\mathrm{F}$	2.63 ± 0.01
116	$7-\mathrm{Cl}$	2.64 ± 0.04
117	$7-\mathrm{Br}$	2.64 ± 0.02
118	$6-\mathrm{Cl}$	2.62 ± 0.02

[^8]The pK_{a} values (Table 11) for the chromone-2-carboxylic acids 112-118 were determined by potentiometry in ethanol-water ($50 \% \mathrm{v} / \mathrm{v}$) at $25^{\circ} \mathrm{C}$. 0.01 M -Aqueous ethanolic solutions of the acids were titrated with 0.01M-sodium hydroxide; although, in the case of the methoxy analogue 113, 0.005 M -acid and sodium hydroxide solutions were used. The recommended 0.01 M -acid concentrations were generally used, since activity effects at this concentration are usually small. 137 However, precipitation of 7-methoxychromone-2-carboxylic acid 113 from a $0.01 \mathrm{M}-$ solution required the use of a $0.005 \mathrm{M}-\mathrm{solution}$ in this case. The solvent ratio (ethanol-water; $50 \% \mathrm{v} / \mathrm{v}$) was chosen to correspond to the reported ${ }^{135}$ ratio used to determine the pK_{a} of the parent system 112.

In weak acids, the pK_{a} is equivalent to the pH at half the equivalence point, ${ }^{138}$ and plots (e.g. Figure 37 p .123) of the first $(\Delta \mathrm{pH} / \Delta \mathrm{V})$ and second derivatives $\left(\Delta^{2} \mathrm{pH} / \Delta \mathrm{V}^{2}\right)$ of the pH titration curve against volume (V) were used, in each case, to determine the equivalence point. ${ }^{139}$ All determinations were duplicated using the same standard acid solutions (solution 1), and then repeated using a second standard acid solution (solution 2).

In para-substituted benzoic acids, the reported ${ }^{130}$ gradation of pK_{a} values is : $\mathrm{OMe}>\mathrm{H}>\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{NO}_{2}$ and a similar trend was expected in the chromone-2-carboxylic acids 112-117. Electron-withdrawing substituents on chromone-2-carboxylic acids should decrease electron density at $\mathrm{C}-2$ thus increasing the polarity of the $0-\mathrm{H}$ bond and stabilising the anion of the dissociated acid. Thus, electron withdrawing substituents should produce stronger acids (with lower pK_{a} values) than the parent system 112. The pK_{a} values (Table 11 p .121) of the 7 -substituted acids $112-117$ follow the expected, general trend (i.e. $\mathrm{OMe}>\mathrm{H}>\mathrm{Cl}, \mathrm{Br}, \mathrm{F}>\mathrm{NO}_{2}$) although the electronic effects of the 7-halogeno substituents on the pK_{a} appear to be very similar. The higher result $\left(\mathrm{pK}_{\mathrm{a}}=2.96\right)$ for the methoxy analogue 113 , relative to the parent analogue 112 , may be rationalised by electron-releasing resonance effects which increase electron density at C-2 (Figure 38 p.124). [The pK_{a} of the methoxy anologue 113 might have been expected to be lower than that of the parent system 112, if only inductive effects acting through the pyran oxygen were considered, as shown in the reported ${ }^{130}$ gradation of pK_{a} values in meta-substituted benzoic acids or phenols $\left(\mathrm{H}>\mathrm{OMe}>\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{NO}_{2}\right)$.]
(a)

(b)

(c)

FIGURE 37. Curves for the titration of
0.01 M -chromone-2-carboxylic acid 112 against $0.01 \mathrm{M}-\mathrm{NaOH}$.
(a) Titration curve;
(b) Plot of the first derivative $(\Delta \mathrm{pH} / \Delta \mathrm{V})$ vs. volume;
(c) Plot of the second derivative ($\Delta^{2} \mathrm{pH} / \Delta \mathrm{V}^{2}$) vs. volume.

Changing the chloro substituent position from $C-7$ to $C-6$ results in a very small reduction in the pK_{a}, although the values are nearly identical. This apparent reduction in pK_{a} may be rationalised in terms of a larger net electron-withdrawing effect for the 6-chloro substituent compared to the 7-chloro substituent. Although the electron-withdrawing inductive effect of the 7 -chloro substituent (Figure 39) may be expected to be stronger than that of 6 -chloro substituent (since it acts over a shorter distance), mesomeric electron release is only possible with the 7-chloro substituent (Figure 39). It should be noted, however, that the difference in the pK_{a} values are very small and lie within the estimated experimental errors. Nevertheless, the estimated experimental errors are within the permitted scatter of $\pm 0.06,140$ reported for potentiometric determinations. The small, observed pK_{a} differences suggest that the $C-7$ substituents do affect the electron density at $C-2$. It is not surprising that the differences in this effect are small in view of the distance between the 7 -substituent and the carboxylic acid group.

FIGURE 38.

FIGURE 39.

The pK_{a} values were also determined in order to explore their relationship with the rate constants (k_{bbs}) for the ring-opening reactions described in the previous Section (2.5). In related kinetic studies of hydroxide ion induced ring-opening reactions of chromone derivatives (Scheme 39 p.115), Szabo et al. ${ }^{26}$ established a linear relationship (Equation 11) between the second-order rate constant (k) and the protonation constant $\left(\mathrm{pK}_{\mathrm{BH}^{+}}\right)$of the pyran carbonyl oxygen. They also suggested that this equation could be used to predict the reactivity of chromones towards other nucleophiles (e.g. nitrogen nucleophiles). In the present investigation, a linear relationship (Equation 12) was obtained from a plot (Figure 40) of $\log \left(k_{0 b s}\right)$ against the corresponding dissociation constants (pK_{a}) of the chromone-2carboxylic acids $112,114-116$. This relationship is only possible provided the data for the methoxy anologue 113 is excluded. Since the pKa value of the methoxy analogue 113 follows the expected trend, this confirms that the rate constants for the ring-opening reaction do not effectively quantify the electron density at C-2 (i.e. C-2 electrophilicity), but rather reflect stabilising meta-substituent effects on the phenoxide "leaving group", as discussed in the previous Section (2.5).

```
log (k) = -1.55pK
log}(\mp@subsup{k}{\textrm{obs}}{})=-25.91\mp@subsup{\textrm{pK}}{\textrm{a}}{}+65.9
```


FIGURE 40. Plot of $\log \left(k_{\mathrm{obs}}\right)$ vs. $\left(\mathrm{pK}_{\mathrm{a}}\right)$ for the chromone-2-carboxylic acids 112-116.

2.6 CONCLUSION

In the chromone systems investigated, it is apparent that the $0-7$ substituent influences the electron density at $\mathbf{C - 2}$, as shown in both the NMR conformational study and the pK_{a} studies. Since the biological activity of anti-allergic chromones is apparently influenced by both conformation and acidity, such activity may, in turn, be related to the electron density at $\mathrm{C}-2$. An involvement of ring-opening of the pyran ring in chromone pharmacology at a molecular level has been proposed. The ease of ring-opening of the chromone system may be an additional factor influencing biological activity. Future research will be concerned with verifying these proposals and is expected to involve the following.
(i) Further NMR and IR analysis of the ring-opening of DSCG with various nitrogen nucleophiles.
(ii) An extension of such analyses to include the interaction of DSCG and its analogues with proteinaceous material and mast cell extracts.
(iii) The preparation of novel DSCG analogues with enhanced ring-opening capabilities (e.g. a 7,7'-dinitro DSCG analogue) and the determination of their biological activities.

3. EXPERIMENTAL

3.1 GENERAL.

Melting points were determined on a Kofler hot-stage apparatus or an automatic Mettler FP1 melting point apparatus (m.p. $>230^{\circ} \mathrm{C}$), and are uncorrected. NMR spectra were recorded on Bruker AM 300, AMX 400, and WM 500 MHz , or Varian Gemini 200 MHz NMR spectrometers, from CDCl_{3} or DMSO-d d_{6} solutions generally using TMS as internal standard. (In the absence of TMS, the chloroform peak was used as internal standard). The spectra of disodium salts were obtained from $D_{2} O$ solutions with 3-(trimethylsilyl)-propionic acid- d_{6} sodium salt as internal standard for the ${ }^{1} \mathrm{H}$ spectra, and acetone as internal standard for the ${ }^{13} \mathrm{C}$ spectra. The ${ }^{13} \mathrm{C}$ spectra were interpreted using either off resonance decoupled (ORD) spectra or DEPT spectra, which were obtained at the frequencies used to obtain the corresponding ${ }^{13} \mathrm{C}$ spectra. Routine ${ }^{1} H$ NMR spectra were recorded on a Perkin-Elmer R12 60 MHz NMR spectrometer. IR spectra were recorded on a Perkin-Elmer 180 spectrophotometer using KBr discs, liquid films, or CHCl_{3} solutions. UV spectra were recorded on a Beckmann UV 5240 spectrophotometer from dry ethanol solutions. Quartz cuvettes with a 10 mm pathlength were used. Low resolution mass spectra were recorded on a Hewlett Packard 5988A mass spectrometer. High resolution mass spectra were recorded on a Varian Mat 212 spectrometer.

The common nomenclature, viz. chromone, for the chromone structure is chosen, in preference to the 4-oxo-4H-chromene nomenclature, for simplicity. The ring-opened products (140-151 and 153) are all referred to as 2-amino-3-(2-hydroxybenzoyl)-N, N-dialkylacrylamides for continuity. The reported nomenclature ${ }^{40}$ of the 2-hydroxypropane
derivatives ($155-156$ and 158) was generally used. The atom numbering used to quote $N M R$ signals for the different compounds generally agrees with the nomenclature. Standard atom numbering was used for the chromone structure. The benzoyl atoms of the acrylamides (140-151 and 153) are denoted by the "dashed" notation (e.g. 5'-H). The bridging group atoms of the 2 -hydroxypropane compounds (155-159) are referred to as CHOH or OCH_{2}, with the appropriate atoms in italics. In bis(o-hydroxyacetophenone) (155) and the 1-(chromonyloxy)-3-(phenoxy)propane compound (157), the phenoxy atoms are also represented by the "dashed" notation, thereby differentiating them from the bridge atoms and chromonyloxy atoms in the latter compound. The "aromatic" nuclei in the ring-opened compound (159) are denoted by the "dashed" notation, thereby differentiating them from the acrylic acid atoms.

Flash chromatography ${ }^{141}$ was performed on Merck Silica gel 60 [particle size $0.040-0.063 \mathrm{~mm}(230-400 \mathrm{mesh})]$. Preparative layer chromatography was achieved on Merck Silica gel 60 PF 254 plates. Thin layer chromatography was performed on Merck Silica gel $60 \mathrm{~F}_{254}$ precoated plates. TLC plates were analysed by inspection under UV, using iodine, or using ninhydrin spray reagent.

Solvents were dried using the following prodedures ${ }^{142}$:
(i) Benzene and ether were dried over sodium wire and then distilled under N_{2} over sodium wire using benzophenone as an indicator.
(ii) 1,2-Dichloroethane was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$.
(iii) Dimethylformamide and acetone were dried over 4 A molecular sieves.
(iv) 1,2-Dioxan was dried over CaCl_{2} and 4 A molecular sieves, and then filtered through a column of basic alumina.
(v) Ethanol was distilled under N_{2} over magnesium ethoxide.
(vi) Nitrobenzene was distilled under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$.
(vii) Pyridine was dried over KOH overnight and distilled over fresh KOH .

All dry solvents were stored over 4 A molecular sieves. The exact concentration of ethanolic/aqueous dimethylamine and ethanolic methylamine solutions was determined by titration with 0.1M-HCl. The purity of the ethanolic amine solutions was determined by GLC analysis on a Hewlett Packard 5980A gas chromatograph, using flame ionisation detection with N_{2} carrier gas and H_{2} /synthetic air feeder gases. The GLC trace of ethanolic dimethylamine ($25 \% \mathrm{w} / \mathrm{w}$) showed an extraneous peak with a retention time equivalent to that of ethanolic methylamine. HCl gas was generated from $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{SO}_{4}$ using a standard literature procedure. ${ }^{143}$

Computer modelling of structures was achieved using the Tripos Associates software package, ALCHEMY II, and a CW 16 AT microcomputer and Hewlett Packard colour Pro plotter.

3.2 PREPARATION OF CHROMONE DERIVATIVES.

3-Nitrophenyl acetate (88). $103-\mathrm{Ac}_{2} \mathrm{O}(10.9 \mathrm{ml}, 0.118 \mathrm{~mol})$ was added dropwise to a stirred solution of 3 -nitrophenol ($10.0 \mathrm{~g}, 72 \mathrm{mmol}$) and $\mathrm{NaOH}(4.6 \mathrm{~g}, 0.115 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{ca} .100 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 1 h . The mixture was extracted with EtOAc ($3 \times 50 \mathrm{ml}$) and the combined extracts were sequentially washed with 5% aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1 \times 50 \mathrm{ml})$, and then dried (anhyd. MgSO_{4}). The solvent was evaporated to afford crude 3-nitrophenyl acetate (88) (12.9 g, 99\%), m.p. $53-54^{\circ} \mathrm{C}$ (1it., $\left.14455-56^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $7.40-8.30(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1755 (CO).

3-F1uorophenyl acetate (89). 103 - $\mathrm{Ac}_{2} \mathrm{O}(7.4 \mathrm{ml}, 78 \mathrm{mmol})$ was added dropwise to a stirred solution of 3 -fluorophenol ($5.0 \mathrm{~g}, 55 \mathrm{mmol}$) and $\mathrm{NaOH}(3.1 \mathrm{~g}, 79 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{ca} .50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 1 h . The mixture was extracted with EtOAc ($3 \times 25 \mathrm{ml}$) and the combined extracts were sequentially washed with 5% aq. $\mathrm{NaHCO}_{3}(2 \times 25 \mathrm{ml})$ and saturated $\mathrm{NaCl}(1 \times 50 \mathrm{ml})$, and then dried (anhyd. MgSO_{4}). The solvent was evaporated to afford an oil which was distilled to give 3 -fluorophenyl acetate (89) (7.4 g, 87\%), b.p. $183^{\circ} \mathrm{C} / 760 \mathrm{mmHg}\left(1\right.$ it.,$\left.{ }^{145} 77^{\circ} \mathrm{C} / 16 \mathrm{mmHg}\right) ; \delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.20$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $6.80-7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760(\mathrm{CO})$.

3-Chlorophenyl acetate (90). 103 - The experimental procedure employed for the synthesis of 3 -fluorophenyl acetate (89) was followed, using $\mathrm{Ac}_{2} \mathrm{O}(10.4 \mathrm{ml}, 0.110 \mathrm{~mol}), 3$-chlorophenol ($10.0 \mathrm{~g}, 78 \mathrm{mmol}$), and NaOH $(4.4 \mathrm{~g}, 0.110 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}$ (ca. 75 ml$)$. Work-up afforded an oil which was distilled to give 3-chlorophenyl acetate (90) (11.8 g, 89\%), b.p. $49^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}\left(1 i t .,{ }^{103} 105-107^{\circ} \mathrm{C} / 13 \mathrm{mmHg}\right) ; \delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.20$
($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$) and $6.80-7.40(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ (CO).

3-Bromophenyl acetate (91). 103 - The experimental procedure employed for the synthesis of 3 -fluorophenyl acetate (89) was followed, using $\mathrm{Ac}_{2} \mathrm{O}(8.7 \mathrm{ml}, 93 \mathrm{mmol}), 3$-bromophenol ($10.0 \mathrm{~g}, 58 \mathrm{mmol}$), and NaOH $(3.7 \mathrm{~g}, 93 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{ca} .70 \mathrm{ml})$. Work-up afforded an oil which was distilled to give 3 -bromophenyl acetate (91) ($10.8 \mathrm{~g}, 88 \%$), b.p. $81^{\circ} \mathrm{C} / 1.5 \mathrm{mmHg}\left(1 \mathrm{it} ., 146149^{\circ} \mathrm{C} / 40 \mathrm{mmHg}\right) ; \delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.30$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$) and $6.90-7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760$ (CO).

4-Chlorophenyl acetate (92). - The experimental procedure employed for the synthesis of 3 -fluorophenyl acetate (89) was followed, using $A c_{2} O$ $(10.4 \mathrm{ml}, 0.110 \mathrm{~mol}), 4$-chlorophenol ($10.0 \mathrm{~g}, 78 \mathrm{mmol}$), and NaOH ($4.4 \mathrm{~g}, 0.110 \mathrm{~mol}$) in $\mathrm{H}_{2} \mathrm{O}$ (ca. 75 ml). Work-up afforded an oil which was distilled to give 4 -chlorophenyl acetate (92) (12.3 g, 93\%), b.p. $69^{\circ} \mathrm{C} / 0.3 \mathrm{mmHg}\left(\right.$ lit., $\left.147109^{\circ} \mathrm{C} / 13 \mathrm{mmHg}\right) ; \delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.25$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $6.90-7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \nu_{\max }$ (Iiquid film) $/ \mathrm{cm}^{-1} 1755$ (CO).

2-Hydroxy-4-methoxyacetophenone (93).100 - A mixture of resacetophenone ($10.0 \mathrm{~g}, 66 \mathrm{mmol}$), dry acetone (100 ml), and $\mathrm{Me}_{2} \mathrm{SO}_{4}(4.8 \mathrm{ml}, 50 \mathrm{mmol})$ was boiled under reflux over $\mathrm{K}_{2} \mathrm{CO}_{3}(10.2 \mathrm{~g}, 74 \mathrm{mmol})$ for 6 h . The colour of the reaction mixture changed from a dark red to orange after ca. 1 h . The resulting solution was cooled and the acetone removed under reduced pressure. The excess $\mathrm{Me}_{2} \mathrm{SO}_{4}$ was destroyed with a 25\% ammonia-ice mixture (50 ml). The solution was then extracted with EtOAc ($3 \times 60 \mathrm{ml}$) and the combined organic solutions dried (anhyd. MgSO_{4}), evaporated, and distilled to afford 2-hydroxy-4-methoxyacetophenone (93) $(9.5 \mathrm{~g}, 87 \%)$, b.p. $293^{\circ} \mathrm{C} / 760 \mathrm{mmHg}\left(1 i t .,{ }^{\left.100 \mathrm{~m} . \mathrm{p} .48^{\circ} \mathrm{C}\right) ; \delta_{H}(60 \mathrm{MHz} ; ~}\right.$ $\left.\mathrm{CDCl}_{3}\right) 2.50(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.35-6.55(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$
and $5-\mathrm{H}), 7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}, 6-\mathrm{H})$ and $12.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \nu_{\max }$ (KBr) $/ \mathrm{cm}^{-1} 3400-2500(\mathrm{OH})$ and 1625 (CO).

2-Hydroxy-4-nitroacetophenone (94).104 - A mixture of 3-nitrophenyl acetate (88) $(20.0 \mathrm{~g}, 0.110 \mathrm{~mol}), \mathrm{AlCl}_{3}(28.0 \mathrm{~g}, 0.210 \mathrm{~mol})$, and dry, distilled nitrobenzene (100 ml) was heated at $140^{\circ} \mathrm{C}$ for 8 h . After cooling overnight, a mixture of ice (80 g) and conc. HCl (32 ml) was added and the resulting mixture was steam distilled. ${ }^{\text {a }}$ The distillate was extracted with EtOAc and the combined organic solutions were extracted with $0.5 \mathrm{M}-\mathrm{NaOH}$. The combined aqueous solutions were acidified and extracted with EtOAc ($3 \times 80 \mathrm{ml}$). The combined organic solutions were dried (anhyd. MgSO_{4}) and evaporated to afford an oil which was distilled to give 2-hydroxy-4-nitroacetophenone (94) (7.6 g, 38%), m.p. $60-61^{\circ} \mathrm{C}$ (from hexane) (lit., $\left.{ }^{148} 67-68^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $2.75(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 7.60-8.20(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $12.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3600-3300(\mathrm{OH})$ and $1655(\mathrm{CO})$.

4-Fluoro-2-hydroxyacetophenone (95). 101 - A mixture of 3-fluorophenyl acetate (89) ($6.2 \mathrm{~g}, 40 \mathrm{mmol}$) and $\mathrm{AlCl}_{3}(12.8 \mathrm{~g}, 96 \mathrm{mmol})$ was heated in an oil bath at $175-180^{\circ} \mathrm{C}$ for 1.5 h . The cooled mixture was treated with dil. HCl (ca. 110 ml) and then steam distilled. The distillate was extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x} 56 \mathrm{ml})$ and the combined extracts re-extracted with $0.5 \mathrm{M}-\mathrm{KOH}(3 \times 50 \mathrm{ml})$. The combined aqueous alkali solutions were washed with $\mathrm{CHCl}_{3}(2 \times 56 \mathrm{ml})$, acidified, and extracted with CHCl_{3} ($3 \times 56 \mathrm{ml}$). The CHCl_{3} solutions were then combined, dried (anhyd. MgSO_{4}), and evaporated to afford an oil which crystallised to give crude 4-fluoro-2-hydroxyacetophenone (95) (4.9 g, 80\%), m.p. $31-33^{\circ} \mathrm{C}$

[^9](from hexane) (lit., $1^{149} 24^{\circ} \mathrm{C}$) ; $\delta_{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.55$ (3H, s, COMe), $6.54-6.60(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H}), 7.71(1 \mathrm{H}, \mathrm{dd}, J 9$ and $6 \mathrm{~Hz}, 6-\mathrm{H})$ and $12.53(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3500-2600(\mathrm{OH})$ and $1645(\mathrm{CO})$.

4-Chloro-2-hydroxyacetophenone (96). 101 - The experimental procedure employed for the synthesis of 4-fluoro-2-hydroxyacetophenone (95) was followed, using 3 -chlorophenyl acetate (90) (9.0 g, 53 mmol$)$ and AlCl_{3} $(16.8 \mathrm{~g}, 0.126 \mathrm{~mol})$. Work-up afforded an oil which was distilled to give 4-chloro-2-hydroxyacetophenone (96) (5.4 g, 60\%), b.p. $77^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ (1it., $\left.{ }^{101} 121-124^{\circ} \mathrm{C} / 15 \mathrm{mmHg}\right) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \operatorname{CDCl}_{3}\right) 2.60(3 \mathrm{H}, \mathrm{s}, \operatorname{COMe})$, $6.80-7.15(2 H, m, 3-H$ and $5-H), 7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}, 6-\mathrm{H})$ and 12.45 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3500-2500(\mathrm{OH})$ and $1645(\mathrm{CO})$.

4-Bromo-2-hydroxyacetophenone (97). 101 - The experimental procedure employed for the synthesis of 4-fluoro-2-hydroxyacetophenone (95) was followed, using 3 -bromophenyl acetate (91) (10.0 g, 47 mmol) and AlCl_{3} $(20.3 \mathrm{~g}, 0.152 \mathrm{~mol})$. In this case the reaction mixture was heated for 3 h. Work-up afforded an oil which was distilled to give 4-bromo-2hydroxyacetophenone (97) (5.6g, 56\%), m.p. 39-41 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{101} 42-43^{\circ} \mathrm{C}$); δ_{H} $\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.60(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 6.95-7.30(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H})$, $7.65(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 6-\mathrm{H})$ and $12.40(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \nu_{\max }(\mathrm{nujol} \mathrm{mull}) / \mathrm{cm}^{-1}$ $3500-2500(\mathrm{OH})$ and 1640 (CO).

5-Chloro-2-hydroxyacetophenone (98). - The experimental procedure employed for the synthesis of 4-fluoro-2-hydroxyacetophenone (95) was followed, using 4 -chlorophenyl acetate (92) (11.0 g, 65 mmol) and AlCl_{3} $(20.5 \mathrm{~g}, 0.154 \mathrm{~mol})$. Work-up afforded an oil which crystallised to afford 5 -chloro-2-hydroxyacetophenone (98) (6.5 g, 59%), m.p. $51-53^{\circ} \mathrm{C}$ (lit.,$\left.{ }^{150} 52.5^{\circ} \mathrm{C}\right) ; \delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.60(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 6.80-7.80$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $12.20(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3600-2500$ (OH) and

1650 (CO).

Ethy1 4-(2-hydroxypheny1)-2,4-dioxobutanoate (99).105 - Diethyl oxalate $(12.0 \mathrm{ml}, 88 \mathrm{mmol})$ and o-hydroxyacetophenone ($7.2 \mathrm{ml}, 60 \mathrm{mmol}$) were added dropwise to a stirred ethanolic solution of NaOEt [generated in situ by adding Na metal ($4.1 \mathrm{~g}, 0.180 \mathrm{~mol}$) to dry EtOH (120 ml)]. The stirred, yellow mixture was gently boiled under reflux for 0.5 h becoming a thick, yellow slurry. After cooling, the mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(450 \mathrm{ml})$ and allowed to stand for 0.5 h . The resulting yellow, sodium salt of (3a) was then filtered off, washed ($E t_{2} \mathrm{O}$), and added to $2 \mathrm{M}-\mathrm{HCl}(150 \mathrm{ml})$. The resulting semi-solid was extracted with $\operatorname{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{ml}$) and the combined organic solutions were dried (anhyd. MgSO_{4}) and evaporated to afford the diketone, ethyl 4-(2-hydroxyphenyl)-2,4-dioxobutanoate (99) which was shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to be partially enolised and was used without further purification. δ_{H} ($60 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}$) $1.45(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 4.50\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me}\right), 6.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 7.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right)$ and $7.35-8.35(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Ethyl 4-(2-hydroxy-4-methoxyphenyl)-2,4-dioxobutanoate (100) and ethyl 2-hydroxy-7-methoxychromanone-2-carboxylate (105). - The experimental procedure employed for the synthesis of ethyl 7-chloro-2-hydroxy-chromanone-2-carboxylate (108) and ethyl 4-(4-chloro-2-hydroxyphenyl)-2,4-dioxobutanoate (103) (p.137) was followed, using 2-hydroxy4 -methoxyacetophenone (93) ($8.0 \mathrm{~g}, 48 \mathrm{mmol}$), diethyl oxalate (9.7 ml , $72 \mathrm{mmol})$, Na metal ($1.7 \mathrm{~g}, 72 \mathrm{mmol}$), and dry EtOH (80 ml). In this case the reaction time was 70 min . Work-up afforded crude ethyl 4-(2-hydroxy-4-methoxyphenyl)-2,4-dioxobutanoate (100)(8.7 g, 68\%) $\left[\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.40(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.40(2 \mathrm{H}, \mathrm{q}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 6.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right)$ and $7.30-8.35(3 \mathrm{H}, \mathrm{m}$, ArH)], which was used without further purification. During the
extraction ($E_{2} 0,3 \times 67 \mathrm{ml}$), an insoluble interface was filtered off, dried under vacuum, acidified with $2 \mathrm{M}-\mathrm{HCl}(50 \mathrm{ml})$, and extracted with EtOAC ($3 \times 67 \mathrm{ml}$). The combined organic solutions were dried (anhyd. MgSO_{4}) and evaporated to afford crude ethyl 2-hydroxy-7-methoxychromanone-2-carboxylate (105) (1.6 g, 12\%); $\delta_{H}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}\right) 1.30(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 2.85$ and $3.25\left(2 \mathrm{H}, \mathrm{dd}, J 17 \mathrm{~Hz}, \mathrm{COCH}_{2}\right)$, $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.35(2 \mathrm{H}, \mathrm{q}, \mathrm{CH} \mathrm{Me}), 6.40-7.35(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 8-\mathrm{H}$ and $\mathrm{OH})$ and $7.90(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5-\mathrm{H})$.

Ethyl 4-(2-hydroxy-4-nitrophenyl)-2,4-dioxobutanoate (101) and ethyl 2-hydroxy-7-nitrochromanone-2-carboxylate (106).105,106 - A solution of 2-hydroxy-4-nitroacetophenone (94) (6.0 g, 33 mmol$)$ and diethyl oxalate $(50.7 \mathrm{ml}, 0.373 \mathrm{~mol})$ was added dropwise to a stirred, ethanolic solution of NaOEt [generated in situ by adding Na metal ($2.4 \mathrm{~g}, 0.105 \mathrm{~mol}$) to dry EtOH (75 ml)]. The stirred, red solution was gently boiled under reflux for 45 min . becoming a red slurry. After cooling, the mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(450 \mathrm{ml})$ and allowed to stand for 0.5 h . The red solid was filtered off, washed ($\mathrm{Et}_{2} \mathrm{O}$), and added to $2 \mathrm{M}-\mathrm{HCl}(300 \mathrm{ml})$. The mixture was extracted with EtOAc ($4 \times 200 \mathrm{ml}$) and the combined organic solutions dried (anhyd. MgSO_{4}) and evaporated to afford a red solid shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to comprise a mixture of ethyl 4-(2-hydroxy-4-nitrophenyl)-2,4-dioxobutanoate (101) (78\%) [δ_{H} (60 MHz ; DMSO- $\left.d_{6} / \mathrm{CDCl}_{3}\right) 1.35(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 4.35(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}), 7.20(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{2}\right), 7.60-8.60(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $\left.9.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})\right]$ and ethyl 2-hydroxy-7-nitrochromanone-2-carboxylate (106) (22\%) [$\delta \mathrm{H}$ (60 MHz ; DMSO-d $\left./{ }_{6} / \mathrm{CDCl}_{3}\right) 1.35(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 3.00$ and $3.40\left(2 \mathrm{H}, \mathrm{dd}, J 17 \mathrm{~Hz}, \mathrm{COCH}_{2}\right)$ $4.50(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}), 7.60-8.60(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) \mathrm{J}$, which was used without further purification.

Ethy1 4-(4-fluoro-2-hydroxyphenyl)-2,4-dioxobutanoate (102) and ethyl 7-fluoro-2-hydroxychromanone-2-carboxylate (107). - The experimental procedure employed for the synthesis of ethyl 7-chloro-2-hydroxy-chromanone-2-carboxylate (108) and ethyl 4-(4-chloro-2-hydroxyphenyl)-2,4-dioxobutanoate (103) was followed, using 4-fluoro-2hydroxyacetophenone (95) (2.0 g, 13 mmol$)$, diethyl oxalate (9.8 ml, 72 mol), Na metal ($1.2 \mathrm{~g}, 52 \mathrm{mmol}$), and dry EtOH (30 ml). Work-up afforded a solid shown, by ${ }^{1} H$ NMR spectroscopy, to comprise a mixture of ethyl 4-(4-fluoro-2-hydroxyphenyl)-2,4-dioxobutanoate (102) (62\%) [8H ($60 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.00-1.65(3 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 4.15-4.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right)$, $6.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right), 7.25-7.60(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $8-H)$ and $8.30(1 \mathrm{H}, \mathrm{dd}, J 8$ and $7 \mathrm{~Hz}, 5-\mathrm{H})]$ and ethyl 7 -fluoro-2-hydroxychromanone-2-carboxylate (107) (38\%) [$\delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.00-$ $1.65(3 \mathrm{H}, \mathrm{m}, \mathrm{Me}), 3.50$ and $3.75\left(2 \mathrm{H}, \mathrm{dd}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.15-4.75$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{Me}), 6.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.25-7.60(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $8-\mathrm{H})$ and $8.30(1 \mathrm{H}, \mathrm{dd}, J 8$ and $7 \mathrm{~Hz}, 5-\mathrm{H})]$, which was used without further purification.

Ethyl 7-chloro-2-hydroxychromanone-2-carboxylate (108) and ethyl 4-(4-chloro-2-hydroxypheny1)-2,4-dioxobutanoate (103).103 - A warm solution of 4-chloro-2-hydroxyacetophenone (96) (4.5 g, 26 mmol) and diethyl oxalate $(19.9 \mathrm{ml}, 0.147 \mathrm{~mol})$ was added dropwise to a stirred ethanolic solution of NaOEt [generated in situ by adding Na metal (2.4 $\mathrm{g}, 0.105 \mathrm{~mol})$ to dry $\operatorname{EtOH}(44 \mathrm{ml})]$. The stirred, yellow mixture was gently boiled under reflux for 40 min . becoming a thick, yellow slurry. After cooling, the mixture was poured into $E t_{2} \mathrm{O}(108 \mathrm{ml})$ and allowed to stand for 0.5 h . The resulting yellow solid was filtered off, washed $\left(E t_{2} O\right)$, and added to $2 \mathrm{M}-\mathrm{HCl}(145 \mathrm{ml})$. The resulting semi-solid was extracted with $\operatorname{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$ and the combined organic solutions were dried (anhyd. MgSO_{4}) and evaporated to afford a solid shown, by ${ }^{1} \mathrm{H}$ NMR
spectroscopy, to comprise a mixture of ethyl 7-chloro-2-hydroxychromanone-2-carboxylate (108) (63\%) [$\delta \mathrm{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}\right.$) $1.30(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 2.90$ and $3.30\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 4.35(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 6.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.00-7.25(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $8-\mathrm{H})$ and 7.85 (1H, d, J $9 \mathrm{~Hz}, 5-\mathrm{H})$) and ethyl 4-(4-chloro-2-hydroxyphenyl)-2,4dioxobutanoate (103) (37\%) $\left[\delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}\right) 1.40(3 \mathrm{H}, \mathrm{t}, \mathrm{Me})\right.$, $4.35\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me}\right), 6.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.00-7.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}, 6-\mathrm{H}\right.$ and $8-H)$ and $7.85(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 5-\mathrm{H}) \mathrm{J}$, which was used without further purification.

Ethyl 7-bromo-2-hydroxychromanone-2-carboxylate (109) and ethyl 4-(4-bromo-2-hydroxypheny1)-2,4-dioxobutanoate (104). - The experimental procedure employed for the synthesis of ethyl 7-chloro-2-hydroxychromanone-2-carboxylate (108) and ethyl 4-(4-chloro-2-hydroxyphenyl)-2,4-dioxobutanoate (103) was followed, using 4-bromo-2hydroxyacetophenone (97) (4.5 g, 21 mmol$)$, diethyl oxalate (15.8 ml, $0.116 \mathrm{~mol})$, Na metal ($2.3 \mathrm{~g}, 0.101 \mathrm{~mol}$), and dry EtOH (71 ml). In this case EtOAc was used for the extraction. Work-up afforded a solid shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to comprise a mixture of ethyl 7-bromo-2-
 $1.35(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 2.90$ and $3.30\left(2 \mathrm{H}, \mathrm{dd}, J 17 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 4.35(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right)$ and $7.00-8.25(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and OH$\left.)\right]$ and ethyl 4-(4-bromo-2-hydroxyphenyl)-2,4-dioxobutanoate (104) (45\%) [$\delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}\right.$) $1.35(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 4.35\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH} \mathrm{H}_{2} \mathrm{Me}\right)$ and $7.00-8.25\left(6 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}, \mathrm{ArH}\right.$ and OH$)$], which was used without further purification.

Ethyl chromone-2-carboxylate (110). 105,106 - A mixture of crude ethyl 4-(2-hydroxyphenyl)-2,4-dioxobutanoate (99), AcOH (60 ml), and conc. HCl (1 ml) was boiled under reflux for 40 min . After cooling, a mixture of ice and water (200 ml) was added and the resulting precipitate was
filtered and dissolved in EtOAc (100 ml). The solution was then washed with 5% aq. $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{ml})$, dried (anhyd. MgSO_{4}), and evaporated to afford crude ethyl chromone-2-carboxylate (110) (17.9 g, 69%), a m.p $72^{\circ} \mathrm{C}$ (from EtOH) (1it., $\left.{ }^{19} 71-72^{\circ} \mathrm{C}\right) ; \delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 4.50$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me}\right), 7.15(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.30-8.00(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H})$ and $8.25(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5-\mathrm{H}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1740(\mathrm{CO} .0)$ and 1650 (CO).

Ethyl 7-nitrochromone-2-carboxylate (111). 105.106 - A mixture (4:1) of crude ethyl 4-(2-hydroxy-4-nitrophenyl)-2,4-dioxobutanoate (101) and ethyl 2-hydroxy-7-nitrochromanone-2-carboxylate (106), AcOH (75 ml), and conc. HCl (trace, 5 drops) was boiled under reflux for 45 min. After cooling, a mixture of ice and water (150 ml) was added and the resulting precipitate was filtered and dissolved in EtOAc (500 ml). The solution was then washed with 5% aq. $\mathrm{NaHCO}_{3}(4 \times 80 \mathrm{ml})$, dried (anhyd. MgSO_{4}), and evaporated to afford crude ethyl 7-nitrochromone-2-carboxylate (111) ($5.1 \mathrm{~g}, 58 \%$), b m.p. $138^{\circ} \mathrm{C}$ (from EtOH) (lit., ${ }^{151} 135-137^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.50(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 4.55\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me}\right), 7.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$ and $8.20-8.75(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1745(\mathrm{CO} .0)$ and $1660(\mathrm{CO})$.

Chromone-2-carboxylic acid (112). 105 -

Method 1. A mixture of ethyl 4-(2-hydroxyphenyl)-2,4-dioxobutanoate (99), $\mathrm{ACOH}(30 \mathrm{ml})$, and conc. $\mathrm{HCl}(30 \mathrm{ml})$ was boiled under reflux for 1 h. After cooling, the precipitated solid was filtered and recrystallized from $A c O H$ to afford chromone-2-carboxylic acid (112)

[^10]($9.6 \mathrm{~g}, 84 \%$), ${ }^{\mathrm{a}} \mathrm{m} . \mathrm{p} .251^{\circ} \mathrm{C}$ (decomp.) (lit., ${ }^{105} 250-251^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(60 \mathrm{MHz}$; DMSO $-d_{6}$) $7.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.35-8.25(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.90(1 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300-2100\left(\mathrm{CO}_{2} \mathrm{H}\right), 1740\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1630(\mathrm{CO})$.

Method 2. ${ }^{107}$ A mixture of ethyl chromone-2-carboxylate (110), AcOH $(65 \mathrm{ml}), 8 \mathrm{M}-\mathrm{H}_{2} \mathrm{SO}_{4}(28 \mathrm{ml})$, and conc. $\mathrm{HCl}(15 \mathrm{ml})$ was boiled under reflux for 14 h . After cooling, $\mathrm{H}_{2} \mathrm{O}(110 \mathrm{ml})$ was added and the mixture was left to stand for 1 h . The precipitated solid was filtered off and recrystallised from AcOH to afford chromone-2-carboxylic acid (112) $(9.9 \mathrm{~g}, 88 \%) \mathrm{a}^{\mathrm{a}}$

7-Methoxychromone-2-carboxylic acid (113). - The experimental procedure employed for the synthesis of 7-chlorochromone-2-carboxylic acid (116) (p. 142) was followed, using crude ethyl 4-(4-methoxy-2-hydroxyphenyl)-2,4-dioxobutanoate (100) ($8.7 \mathrm{~g}, 33 \mathrm{mmol}$), AcOH (64 ml), and conc. $\mathrm{HCl}(32 \mathrm{ml})$. In this case the reaction time was 1.5 h . Workup afforded crude 7-methoxychromone-2-carboxylic acid (113) (6.6 g, 91%), b m.p. $266^{\circ} \mathrm{C}$ (decomp.) (from EtOH) [Iit., $152270^{\circ} \mathrm{C}$ (decomp.)]; δ_{H} ($60 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}$) $3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.90(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.00-7.30$ $(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 8-\mathrm{H}$ and OH$)$ and $8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}, 5-\mathrm{H}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3200-2100(\mathrm{OH}), 1735\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1625(\mathrm{CO})$.

7-Nitrochromone-2-carboxylic acid (114).

Method 1. 1^{107} A mixture of ethyl 7-nitrochromone-2-carboxylate (111) $(0.9 \mathrm{~g}, 4 \mathrm{mmol}), \mathrm{AcOH}(4.0 \mathrm{ml})$, and $8 \mathrm{M}-\mathrm{H}_{2} \mathrm{SO}_{4}(1.8 \mathrm{ml})$ was boiled under

[^11]reflux for 12 h . After cooling, $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{ml})$ was added and the resulting precipitate was filtered, dissolved in EtOAc (40 ml), and the solution was extracted with 5% aq. $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{ml})$. The combined aqueous solutions were acidified and extracted with EtOAc ($3 \mathbf{x} 40 \mathrm{ml}$). The organic solutions were combined, dried (anhyd. MgSO_{4}), and evaporated to afford crude 7 -nitrochromone-2-carboxylic acid (114) ($0.5 \mathrm{~g}, 65 \%$), $\mathrm{m} . \mathrm{p}$. $215^{\circ} \mathrm{C}^{\mathrm{b}}$ (from EtOH); $\delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 7.20(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$ and $8.30-$ $8.70(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300-2100\left(\mathrm{CO}_{2} \mathrm{H}\right), 1730\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and 1640 (CO).

Method 2. 106 A solution of ethyl 7-nitrochromone-2-carboxylate (111) (3.0 $\mathrm{g}, 11 \mathrm{mmol}$) and $45 \% \mathrm{HBr}$ in $\mathrm{AcOH}(7.7 \mathrm{ml}, 43 \mathrm{mmol})$ was boiled under reflux for 1.5 h . After cooling, $\mathrm{H}_{2} \mathrm{O}(31 \mathrm{ml})$ was added and the resulting precipitate was filtered and shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to comprise a mixture of ethyl 7-nitrochromone-2-carboxylate (111) (72\%) and 7 -nitrochromone-2-carboxylic acid (114) (27\%). The solid was dissolved in EtOAc (50 ml) and extracted with 5% aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{ml})$. The combined aqueous alkali solutions were then acidified and extracted with EtOAc (3 $\times 50 \mathrm{ml}$). The organic solutions were combined, dried (anhyd. MgSO_{4}), and evaporated, and the residue was recrystallised from EtOH to afford 7-nitrochromone-2-carboxylic acid (114) (0.9 g, 33\%).

7-Fluorochromone-2-carboxylic acid (115). - The experimental procedure employed for the synthesis of 7-chlorochromone-2-carboxylic acid (116) (p.142) was followed, using a mixture (3:2) of crude ethyl 4-(4-fluoro-2-hydroxyphenyl)-2,4-dioxobutanoate (102) and ethyl 7-fluoro-2-

[^12]hydroxychromanone-2-carboxylate (107), AcOH (10.8 ml), and conc. HCl $(5.5 \mathrm{ml})$. Work-up afforded crude $7-f l u o r o c h r o m o n e-2-c a r b o x y l i c$ acid (115) (2.2 g, 81\%), m.p. $230^{\circ} \mathrm{C}$ (from EtOH); (Found : C, $57.4 ; \mathrm{H}, 2.5$. $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{FO}_{4}$ requires : $\mathrm{C}, 57.7$; $\mathrm{H}, 2.4 \%$) ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{DMSO}^{\left(d_{6}\right)} 6.84\right.$ (1H, s, $\mathrm{CH}=\mathrm{C}), 7.32-7.36(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 7.60\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{m}} 2 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HF}} 10 \mathrm{~Hz}$, $8-\mathrm{H}), 8.03\left(1 \mathrm{H}, \mathrm{dd}, J_{0} 9 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HF}} 6 \mathrm{~Hz}, 5-\mathrm{H}\right)$ and $8.9(60 \mathrm{MHz} ; 1 \mathrm{H}$, br $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}_{\mathrm{d}}\right) 105.60\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 26 \mathrm{~Hz}, \mathrm{C}-8\right), 113.67$ $(\mathrm{C}-3), 114.69\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 23 \mathrm{~Hz}, \mathrm{C}-6\right), 120.92(\mathrm{C}-4 \mathrm{a}), 127.82\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 11 \mathrm{~Hz}\right.$, $\mathrm{C}-5), 153.56(\mathrm{C}-2), 156.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}} 14 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{a}\right), 161.16\left(\mathrm{CO}_{2} \mathrm{H}\right), 165.49$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CF}} 253 \mathrm{~Hz}, \mathrm{C}-7\right)$ and $176.66(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300-2700$ $\left(\mathrm{CO}_{2} \mathrm{H}\right), 1740\left(\mathrm{CO}_{2}\right)$ and $1630(\mathrm{CO}) ; \mathrm{m} / \mathrm{z} 208\left(\mathrm{M}^{+}, 100 \%\right)$.

7-Chlorochromone-2-carboxylic acid (116).103 - A mixture (9:5) of crude ethyl 7-chloro-2-hydroxychromanone-2-carboxylate (108) and ethyl 4-(4-chloro-2-hydroxyphenyl)-2,4-dioxobutanoate (103), AcOH (22 ml), and conc. HCl (ll ml) was boiled under reflux for 1.5 h . After cooling, $\mathrm{H}_{2} \mathrm{O}$ (36 ml) was added and the resulting precipitated solid was filtered and recrystallised from EtOH to afford 7-chlorochromone-2-carboxylic acid (116) (3.5 g, 59%), b m.p. $236^{\circ} \mathrm{C}$ (decomp.) (lit., $\left.103248-250^{\circ} \mathrm{C}\right)$; $\delta_{H}(60$ MHz; DMSO-d $6.75\left(1 \mathrm{H}\right.$, br $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 7.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 8 and $2 \mathrm{~Hz}, 6-\mathrm{H}), 7.90(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H})$ and $8.10(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, $5-\mathrm{H}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3200-2300\left(\mathrm{CO}_{2} \mathrm{H}\right), 1710\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1650(\mathrm{CO})$. The crude product was sublimed to yield ethyl

7-chlorochromone-2-carboxylate m.p. 106-108 ${ }^{\circ} \mathrm{C}$ (1it., ${ }^{51} 108-109^{\circ} \mathrm{C}$); δ_{H} $\left(500 \mathrm{MHz} ; \mathrm{DMSO}_{6}\right) 1.42(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 4.45\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH} \mathrm{C}_{2} \mathrm{Me}\right), 7.09(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}), 7.40(1 \mathrm{H}, \mathrm{d}, J 2$ and $9 \mathrm{~Hz}, 6-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H})$ and $8.12(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 5-\mathrm{H}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1740\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1655(\mathrm{CO})$;

[^13]$m / z 252\left({ }^{35} \mathrm{Cl}, M^{+}, 100 \%\right)$.

Abstract

7-Bromochromone-2-carboxylic acid (117).51 - The experimental procedure employed for the synthesis of 7-chlorochromone-2-carboxylic acid (116) was followed, using a mixture (11:9) of crude ethyl 7-bromo-2-hydroxychromanone-2-carboxylate (109), and ethyl 4-(4-bromo-2-hydroxyphenyl)-2,4-dioxobutanoate (104) $\mathrm{AcOH}(16.4 \mathrm{ml})$, and conc. HCl (8.7 ml). Work-up afforded crude 7 -bromochromone-2-carboxylic acid (117) (2.2 g, 81\%), a m.p. $247^{\circ} \mathrm{C}$ (decomp.) (from EtOH) (lit., ${ }^{51} 252$ $\left.253^{\circ} \mathrm{C}\right) ; \delta_{H}\left(60 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right), 7.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.60-8.20(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $9.05\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3200-2100\left(\mathrm{CO}_{2} \mathrm{H}\right), 1720$ $\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1630(\mathrm{CO})$.

6-Chlorochromone-2-carboxylic acid (118). - The experimental procedure employed for the synthesis of ethyl 7-chloro-2-hydroxychromanone-2carboxylate (108) and ethyl 4-(4-chloro-2-hydroxyphenyl)-2,4dioxobutanoate (103) was followed, using 5-chloro-2-hydroxyacetophenone (98) ($4.5 \mathrm{~g}, 26 \mathrm{mmol})$, diethyl oxalate ($19.9 \mathrm{ml}, 0.147 \mathrm{~mol}$), Na metal $(2.4 \mathrm{~g}, 0.105 \mathrm{~mol})$, and dry EtOH (44 ml). Work-up afforded a solid which was used without further purification. The experimental procedure employed for the synthesis of 7-chlorochromone-2-carboxylic acid (116) was then followed using the crude solid, AcOH (22 ml), and conc. HCl (11 ml). Work-up afforded a solid which was recrystallised from EtOH to afford 6-chlorochromone-2-carboxylic acid (118) (3.0 g, 51\%), b m.p. $253^{\circ} \mathrm{C}$ (decomp.) (from EtOH) (1it., $150,153275^{\circ} \mathrm{C}, 267-269^{\circ} \mathrm{C}$ and $262^{\circ} \mathrm{C}$); δ_{H} ($60 \mathrm{MHz} ; \mathrm{DMSO}_{\mathrm{C}}-d_{6}$) $5.65\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 7.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.75-7.95$ $(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $8-\mathrm{H})$ and $8.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1 \mathrm{~Hz}, 5-\mathrm{H}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300$

[^14]$-2000\left(\mathrm{CO}_{2} \mathrm{H}\right), 1735\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1630(\mathrm{CO})$.

Ethyl 3-methylchromone-2-carboxylate (119).107 - A mixture of o-hydroxypropiophenone ($10.0 \mathrm{~g}, 67 \mathrm{mmol}$) and diethyl oxalate (27.1 ml , 0.200 mol) was cooled in an ice-bath. NaH (50% dispersion in oil; $9.6 \mathrm{~g}, 0.200 \mathrm{~mol}$) was then added portionwise to the vigorously stirred mixture. The ice-bath was removed occasionally to allow the reaction to proceed and dry $E t_{2} O(100 \mathrm{ml})$ was then added to disperse the NaH within the slurry. After the addition of the NaH , the mixture was stirred at ca. $0^{\circ} \mathrm{C}$ for 30 min . and at room temperature for 48 h . The solid material was filtered and added portionwise to a stirred mixture of AcOH $(16 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$, and ice (40 g). After stirring for 2 h , the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 50 \mathrm{ml})$. The combined ethereal extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{ml})$, dried (anhyd. MgSO_{4}), and evaporated. The residue was then dissolved in $\mathrm{AcOH}(20 \mathrm{ml})$ and conc. HCl (2 ml), and the resulting mixture was boiled under reflux for 0.5 h . After cooling, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added and the mixture was cooled in an ice-bath. The resultant precipitate was filtered, dissolved in $E t_{2} 0$ $(125 \mathrm{ml})$, and the solution was sequentially washed with 5% aq. NaHCO_{3} (2 $\times 50 \mathrm{ml}$) and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$, and dried (anhyd. MgSO_{4}). The solvent was evaporated to afford crude ethyl 3-methylchromone-2-carboxylate (119) (7.9 g, 51\%). The oil present in the filtrate was similarly extracted to afford additional crude ethyl 3-methylchromone-2-carboxylate (119) $\left(1.0 \mathrm{~g}, 7 \%\right.$, overall 59%), m.p. $91-92^{\circ} \mathrm{C}$ (from EtOH) (1it., $10789-90^{\circ} \mathrm{C}$); δ_{H} $\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}\right), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}=\mathrm{C}), 4.50(2 \mathrm{H}, \mathrm{q}$, $\mathrm{CH}_{2} \mathrm{Me}$) and $7.30-8.40(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1730(\mathrm{CO} .0)$ and 1645 (CO).

3-Methylchromone-2-carboxylic acid (120). 107 - A solution of ethyl 3-methylchromone-2-carboxylate (119) ($6.5 \mathrm{~g}, 28 \mathrm{mmol}$), $\mathrm{AcOH}(26 \mathrm{ml})$, and
$7 \mathrm{M}-\mathrm{H}_{2} \mathrm{SO}_{4}(22 \mathrm{ml})$ was boiled under reflux for 12 h . After cooling, $\mathrm{H}_{2} \mathrm{O}$ $(52 \mathrm{ml})$ was added and the resultant solid was filtered, dried, and recrystallised from EtOH to afford 3-methylchromone-2-carboxylic acid (120) (2.7 g, 49\%), m.p. $230^{\circ} \mathrm{C}$ (1it., $\left.{ }^{107} 233-234^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{DMSO}_{6} / \mathrm{CDCl}_{3}\right) 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.30-8.30(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $10.55(1 \mathrm{H}$, br s, $\left.\mathrm{CO}_{2} \mathrm{H}\right) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400-2300\left(\mathrm{CO}_{2} \mathrm{H}\right), 1730\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and 1615 (CO).

Chromone-2-carbonyl chloride (121).64 -

Method 1. $\mathrm{SOCl}_{2}(0.88 \mathrm{ml}, 12 \mathrm{mmol})$ was added to a suspension of chromone-2-carboxylic acid (112) (1.8 g, 9 mmol) in dry 1,2 -dichloroethane $(11 \mathrm{ml})$ and N, N-dimethylformamide $(0.18 \mathrm{ml}, 2.3$ mmol). The mixture was boiled under reflux for 1 h , cooled, and then concentrated under reduced pressure. Additional 1,2-dichloroethane (12 ml) was added to the concentrate and the resulting solution was evaporated to afford crude yellow chromone-2-carbonyl chloride (121) [m.p $92-93^{\circ} \mathrm{C}$ (sublimed) (lit., $154104-108^{\circ} \mathrm{C}$); $\delta \mathrm{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.30$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$ and $7.40-8.40(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1730(\mathrm{CO} . \mathrm{Cl})$ and 1625 (CO)], which was used without further purification.

[^15]7-Methoxychromone-2-carbonyl chloride (122). - The experimental procedure employed for the synthesis of chromone-2-carbonyl chloride (121) was followed, using 7 -methoxychromone-2-carboxylic acid (113) $(1.8 \mathrm{~g}, 8 \mathrm{mmol})$, dry 1,2 -dichloroethane (12 ml), N, N-dimethylformamide ($0.16 \mathrm{ml}, 2.0 \mathrm{mmol}$), and $\mathrm{SOCl}_{2}(0.77 \mathrm{ml}, 10.6 \mathrm{mmol})$. In this case the reaction time was 2 h . Work-up afforded crude green crystalline 7-methoxychromone-2-carbonyl chloride (122) $\left[\delta_{H}\left(60 \mathrm{MHz} ; \mathrm{DMSO}_{6} \mathrm{~d}_{6} / \mathrm{CDCl}_{3}\right)\right.$ $3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.00-7.30(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $8-\mathrm{H})$ and $8.05(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5-\mathrm{H}) ; \nu_{\max }\left(1,2-\mathrm{dich}\right.$ oroethane) $/ \mathrm{cm}^{-1} 1740$ (CO.CI) and 1620 (CO)], which was used without further purification.

7-Nitrochromone-2-carbonyl chloride (123). - $\mathrm{SOCl}_{2}(0.91 \mathrm{ml}, 12.5$ mmol) was added to a suspension of 7 -nitrochromone-2-carboxylic acid (114) (2.3 g, 10 mmol$)$ in dry dioxan (13 ml) and N, N-dimethylformamide $(0.18 \mathrm{ml}, 2.3 \mathrm{mmol})$. The mixture was boiled under reflux for 2 h , cooled, and then concentrated under reduced pressure. Additional dry dioxan (10 ml) was added to the concentrate and the resulting solution was evaporated and dried under vacuum for 1 h at $50^{\circ} \mathrm{C}$ to afford a brown solid shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to comprise a mixture of 7-nitrochromone-2-carbonyl chloride (123) (81%) [$8 \mathrm{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.40 $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$ and $8.35-8.70(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})]$ and 7 -nitrochromone-2carboxylic acid (6c) (19\%) [(60 MHz; $\left.\mathrm{CDCl}_{3}\right) 7.40(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 8.35-$ $8.70(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $11.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})]$, which was used without further purification.

7-Fluorochromone-2-carbonyl chloride (124). - The experimental procedure employed for the synthesis of chromone-2-carbonyl chloride
 g, 6 mmol), dry 1,2-dichloroethane (7 ml), N, N-dimethylformamide (0.11 $\mathrm{ml}, 1.4 \mathrm{mmol})$, and $\mathrm{SOCl}_{2}(0.55 \mathrm{ml}, 7.6 \mathrm{mmol})$. In this case the reaction
time was 1.5 h . Work-up afforded crude brown crystalline 7-fluorochromone-2-carbonyl chloride (124) [m.p 113-115 ${ }^{\circ} \mathrm{C}$ (sublimed); δ_{H} ($60 \mathrm{MHz} ; \mathrm{CDCl}_{3} / 1,2$-dichloroethane) $7.25-7.40(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $8-\mathrm{H}$), $7.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$ and $8.15-8.50(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1765$ (CO.C1) and 1650 (CO)], which was used without further purification.

7-Chlorochromone-2-carbonyl chloride (125). - The experimental procedure employed for the synthesis of chromone-2-carbonyl chloride (121) was followed, using 7-chlorochromone-2-carboxylic acid (116) $(1.8 \mathrm{~g}, 8 \mathrm{mmol})$, dry 1,2 -dichloroethane (13 ml), N, N-dimethylformamide $(0.15 \mathrm{ml}, 2.0 \mathrm{mmol})$, and $\mathrm{SOCl}_{2}(0.76 \mathrm{ml}, 10.4 \mathrm{mmol})$. In this case the reaction time was 1.5 h . Work-up afforded crude brown crystalline 7-chlorochromone-2-carbonyl chloride (125) [m.p $179-182^{\circ} \mathrm{C}$ (sublimed); δ_{H} $\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2$ and $9 \mathrm{~Hz}, 6-\mathrm{H})$, $7.70(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H})$ and $8.20(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 5-\mathrm{H}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1760 (CO.C1) and 1650 (CO)], which was used without further purification.

7-Bromochromone-2-carbonyl chloride (126). - The experimental procedure employed for the synthesis of chromone-2-carbonyl chloride (121) was followed, using 7 -bromochromone-2-carboxylic acid (117) (1.8 g, $7 \mathrm{mmol})$, dry 1,2 -dichloroethane (8 ml), N, N-dimethylformamide (0.13 ml , $1.7 \mathrm{mmol})$, and $\mathrm{SOCl}_{2}(0.65 \mathrm{ml}, 8.9 \mathrm{mmol})$. In this case the reaction time was 1.5 h . Work-up afforded crude red crystalline 7 -bromochromone-2-carbonyl chloride (126) $\left[8 \mathrm{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.65(1 \mathrm{H}\right.$, dd, $J 2$ and $8 \mathrm{~Hz}, 6-\mathrm{H}), 7.90(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H})$ and $8.15(1 \mathrm{H}, \mathrm{d}, J 9$ $\mathrm{Hz}, 5-\mathrm{H}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1740(\mathrm{CO} . \mathrm{Cl})$ and 1640 (CO)], which was used without further purification.

3-Methylchromone-2-carbonyl chloride (127). - The experimental procedure employed for the synthesis of chromone-2-carbonyl chloride (121) was followed, using 3-methylchromone-2-carboxylic acid (120) $(0.9 \mathrm{~g}, 4 \mathrm{mmol})$, dry 1,2 -dichloroethane (5 ml), N, N-dimethylformamide $(0.08 \mathrm{ml}, 1.1 \mathrm{mmol})$, and $\mathrm{SOCl}_{2}(0.41 \mathrm{ml}, 5.6 \mathrm{mmol})$. In this case the reaction time was 2 h . Work-up afforded crude yellow crystalline 3-methylchromone-2-carbonyl chloride (127) [δ_{H} ($60 \mathrm{MHz} ; \mathrm{CDCl}_{3} / 1,2-$ dichloroethane) $2.35(3 H, s, C M e=C), 7.35-8.40(4 H, m, A r H) ; \nu_{\max }$ (KBr) $/ \mathrm{cm}^{-1} 1760$ ($\mathrm{CO} . \mathrm{Cl}$) and 1640 (CO)], which was used without further purification.

Dimethylammonium chloride (128). - HCl gas was bubbled through a stirred solution of ethanolic $\mathrm{Me}_{2} \mathrm{NH}(25 \% \mathrm{w} / \mathrm{w} ; 18 \mathrm{ml}, 77 \mathrm{mmol})$ and dry EtOH (40 ml) for 2 h at $\mathrm{ca} .0^{\circ} \mathrm{C}$. The solvent was evaporated and the white crystalline slurry was dried under vacuum for 1 h . Dry $\mathrm{Et}_{2} \mathrm{O}$ (ca. 40 ml) was added and the mixture was cooled to ca. $0^{\circ} \mathrm{C}$. The solvent was decanted off and the crystals dried under vacuum for 1 h . The crystals were then washed with $\operatorname{Et}_{2} \mathrm{O}(6 \times 10 \mathrm{ml})$ by filtration under N_{2} and vacuum dried for 1 h to afford crude dimethylamonium chloride (128) (6.4 g, 102\%), m.p. $142-143^{\circ} \mathrm{C}\left(1 \mathrm{it},. 155157^{\circ} \mathrm{C}\right)$; $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 2.80(6 \mathrm{H}, \mathrm{t}$, Me) and 9.45 (1H, br s, NH).

N,N-Dimethylchromone-2-carboxamide (129).

Method 1. ${ }^{110}$ A slurry of dimethylammonium chloride (128) (1.5 g, 18 mmol) in dry pyridine (5 ml) was added slowly to a precooled $\left(-5^{\circ} \mathrm{C}\right)$, stirred suspension of chromone-2-carbonyl chloride (121) (1.9 g, 9 mmol) in dry pyridine (15 ml), ensuring that the temperature of the resulting black mixture did not exceed $0^{\circ} \mathrm{C}$. The reaction mixture was
stirred at $0^{\circ} \mathrm{C}$ for 2 h and at room temperature for 20 h , and was then poured into $2 \mathrm{M}-\mathrm{HCl}(200 \mathrm{ml})$, allowed to stand for 0.5 h , and extracted with EtOAc ($4 \times 70 \mathrm{ml}$). The organic extracts were combined, sequentially washed with 5% aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{ml})$ and saturated aqueous $\mathrm{NaCl}(1 \times 50 \mathrm{ml})$, dried (anhyd. MgSO_{4}), and evaporated to afford N, N-dimethylchromone-2-carboxamide (129) (1.5 g, 76%). a,b The crude solid was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford N, N-dimethylchromone-2-carboxamide (129) (1.2 g, 62%), ${ }^{\text {a }} \mathrm{m} . \mathrm{p} .115-116^{\circ} \mathrm{C}$ (from EtOAC) (1it., $\left.{ }^{17} 115-116^{\circ} \mathrm{C}\right) ; \delta_{H}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 3.10\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NMe}_{2}\right), 6.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.37-7.47(2 \mathrm{H}, \mathrm{m}$, $6-H$ and $8-H), 7.64-7.70(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$ and $8.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2$ and 8 Hz , $5-H) ; \delta_{c}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 35.41$ and $38.27\left(\mathrm{NMe}_{2}\right), 111.58(\mathrm{C}-3), 118.13$ $(C-8), 124.20(C-4 a), 125.73(C-5$ and $C-6), 134.25(C-7), 155.66(C-8 a)$, $158.20(\mathrm{C}-2), 162.27(\mathrm{CO} . \mathrm{N})$ and $177.42(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3060(\mathrm{CH})$, 1645 and $1640(\mathrm{CO}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 215\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 16\right.$ 929), 226 (19 907) and 301 (8710).

Method 2. ${ }^{64}$ Chromone-2-carbonyl chloride (121) (1.9 g, 9 mmol) was cautiously added to a precooled $\left(0^{\circ} \mathrm{C}\right)$, stirred solution of aqueous $\mathrm{Me}_{2} \mathrm{NH}$ $(43 \% \mathrm{w} / \mathrm{w} ; 1.14 \mathrm{ml}, 9.6 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(1.3 \mathrm{~g}, 15 \mathrm{mmol})$ in ice-cold $\mathrm{H}_{2} \mathrm{O}$ (11 ml). The mixture was stirred at ca. $0^{\circ} \mathrm{C}$ for 1 h and the resulting precipitate was filtered and washed ($5 \% \mathrm{aq} . \mathrm{NaHCO}$) . The crude solid $(0.7 \mathrm{~g})$ was shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to comprise a mixture (1:3) of chromone-2-carboxylic acid (112) and N, N-dimethylchromone-2carboxamide (129). The mixture was dissolved in $\mathrm{CHCl}_{3}(40 \mathrm{ml})$ and the solution was sequentially washed with 5% aq. $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{ml})$ and

[^16]saturated aqueous $\mathrm{NaCl}\left(1 \times 30 \mathrm{ml}\right.$), and then dried (anhyd. MgSO_{4}). The solvent was evaporated and the residue recrystallised from EtOAc to afford N, N-dimethylchromone-2-carboxamide (129) ($0.2 \mathrm{~g}, 10 \%$). a The crude mother liquors were chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford additional N, N-dimethylchromone-2carboxamide (129) (0.1 g, 5\%). ${ }^{\text {a }}$

Method 3. The first experimental procedure employed for the synthesis of N, N-dimethylchromone-2-carboxamide (129) was followed, using chromone-2-carbonyl chloride (121) (1.9 g, 9 mol), ethanolic $\mathrm{Me}_{2} \mathrm{NH}$ ($33 \% \mathrm{w} / \mathrm{w} ; 1.75 \mathrm{ml}, 9.6 \mathrm{mmol}$), and dry pyridine (19 ml). In this case the reaction time at room temperature was 15 h . Work-up afforded a solid (1.7 g) shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to comprise a mixture (1:2) of N, N-dimethylchromone-2-carboxamide (129) (0.6 g, ca. 28%) and ethyl chromone-2-carboxylate (110) (1.1 g, ca. 56\%).

Attempted preparation. ${ }^{17}$ A solution of ethyl chromone-2-carboxylate (110) (2.0 g, 9 mmol$)$, ethanolic $\mathrm{Me}_{2} \mathrm{NH}(33 \% \mathrm{w} / \mathrm{w} ; 1.26 \mathrm{ml}, 7.0 \mathrm{mmol})$, and dry EtOH (50 ml) was stirred at room temperature for 2 days and 21 h , and then boiled under reflux for 9 h . After cooling, the solution was evaporated to afford starting material (2.0 g).

7-Methoxy-N,N-dimethylchromone-2-carboxamide (130). - The first experimental procedure employed for the synthesis of N, N-dimethylchromone-2-carboxamide (129) was followed, using 7-methoxychromone-2-carbonyl chloride (122) (1.9 g, 8 mmol), dimethylammonium chloride (128) (1.3 g, 16 mmol$)$, and dry pyridine (20 ml). In this case the reaction time at room temperature was 24.5 h .

[^17]Work-up afforded crude 7-methoxy-N,N-dimethylchromone-2-carboxamide (130) $(1.8 \mathrm{~g}, 92 \%)^{\text {a }}$ which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford 7-methoxy-N,N-
dimethylchromone-2-carboxamide (130) (1.7 g, 83\%), a m.p. 120-122 ${ }^{\circ} \mathrm{C}$ (from EtOAC) ; (Found : C, 63.0; H, 5.1; N, 5.7. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires : C, 63.15; $\mathrm{H}, 5.3 ; \mathrm{N}, 5.7 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.10$ and $3.11\left(6 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{NMe}_{2}\right)$, $3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.45(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 8-\mathrm{H}), 6.98$ $(1 \mathrm{H}, \mathrm{dd}, J 2$ and $8 \mathrm{~Hz}, 6-\mathrm{H})$ and $8.10(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5-\mathrm{H}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 35.53$ and $38.50\left(\mathrm{NMe}_{2}\right), 55.91(\mathrm{OMe}), 100.39(\mathrm{C}-8), 111.68(\mathrm{C}-3)$, $115.00(C-6), 118.05(C-4 a), 127.13(C-5), 157.43(C-8 a), 157.50(C-2)$, $162.32(\mathrm{CO}, \mathrm{N}), 164.41(\mathrm{C}-7)$ and $176.69(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2995(\mathrm{CH})$, 1660 and $1650(\mathrm{CO}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 217$ ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 25769$), 229 (21 300) and 298 (12 277); $m / z 247\left(M^{+}, 100 \%\right)$.

N,N-Dimethyl-7-nitrochromone-2-carboxamide (131). - The first experimental procedure employed for the synthesis of N, N-dimethylchromone-2-carboxamide (129) was followed, using a mixture ($4: 1 ; 2.6 \mathrm{~g}$) of crude 7 -nitrochromone-2-carbonyl chloride (123) (8 mmol) and 7-nitrochromone-2-carboxylic acid (114), dimethylammonium chloride (128) ($1.3 \mathrm{~g}, 16 \mathrm{mmol}$), and pyridine (20 ml). In this case the reaction time at room temperature was 13 h . Work-up afforded crude brown N, N-dimethyl-7-nitrochromone-2-carboxamide (131) (1.7 g, 68\%)b which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford N, N-dimethy1-7-nitrochromone-2-carboxamide (131) (1.7 g, 66%), b m.p. 152-153 ${ }^{\circ} \mathrm{C}$ (from EtOAC); (Found : C, $55.4 ; \mathrm{H}, 3.8 ; \mathrm{N}, 10.6$.

[^18]$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires : $\mathrm{C}, 55.0$; $\mathrm{H}, 3.8 ; \mathrm{N}, 10.7 \%$) ; $\delta \mathrm{H}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.14$ and $3.15\left(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NMe}_{2}\right), 6.61(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 8.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2$ and 8 $\mathrm{Hz}, 6-\mathrm{H})$ and $8.33-8.40(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $8-\mathrm{H}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 35.65$ and $38.40\left(\mathrm{NMe}_{2}\right), 112.41(\mathrm{C}-3), 114.55(\mathrm{C}-8), 119.97(\mathrm{C}-6), 127.86$ $(C-5), 150.83(C-7), 154.99(C-8 a), 159.28(C-2), 161.33(C 0 . N)$ and $175.81(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1670$ and $1655(\mathrm{CO}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 212$ ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 19846$), $252(20137)$ and $322(5712) ; \mathrm{m} / \mathrm{z} 262\left(M^{+}\right.$, 73\%) and 72 (100\%).

7-Fluoro-N,N-dimethylchromone-2-carboxamide (132).

Method 1. The first experimental procedure employed for the synthesis of N, N-dimethylchromone-2-carboxamide (129) was followed, using 7-fluorochromone-2-carbonyl chloride (115) (1.3 g, 6 mmol), dimethylammonium chloride (128) (1.0 g, 12 mmol$)$, and dry pyridine (14 ml). Work-up afforded crude brown 7-fluoro-N,N-dimethylchromone-2carboxamide (132) (1.0 g, 76\%) ${ }^{\text {a }}$ which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford 7-fluoroN, N-dimethylchromone-2-carboxamide (132) ($0.9 \mathrm{~g}, 64 \%$).a

Method 2. The second experimental procedure employed for the synthesis of N, N-dimethylchromone-2-carboxamide (129) was followed, using 7-fluorochromone-2-carbonyl chloride (124) (1.9 g, 9 mmol), aqueous $\mathrm{Me}_{2} \mathrm{NH}(43 \% \mathrm{w} / \mathrm{w} ; 1.20 \mathrm{ml}, 10.1 \mathrm{mmol}), \mathrm{NaHCO}_{3}(1.2 \mathrm{~g}, 14 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}$ (10 ml). Work-up afforded a solid (1.1 g) shown, by TLC, to comprise a mixture of two components. The mixture was chromatographed [flash

[^19]chromatography on silica gel; elution with EtOAc] to afford a solid ($0.9 \mathrm{~g}, 43 \%)^{\mathrm{a}}$ which was recrystallized from EtOAc to give 7 -fluoro-N,N-dimethylchromone-2-carboxamide (132) ($0.5 \mathrm{~g}, 25 \%$), a m.p. $144-146^{\circ} \mathrm{C}$; (Found : C, 61.85; H, 4.3; N, 6.1. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FNO}_{3}$ requires : C, 61.3; H, 4.3; $\mathrm{N}, 6.0 \%) ; \delta_{H}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.11\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 6.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$, $7.10-7.20(2 H, m, 6-H$ and $8-H)$ and $8.16-8.24(1 H, m, 5-H) ; \delta_{c}(125$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 35.30$ and $38.14\left(\mathrm{NMe}_{2}\right), 104.77\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 26 \mathrm{~Hz}, \mathrm{C}-8\right), 111.58$ $(\mathrm{C}-3), 114.39\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 23 \mathrm{~Hz}, \mathrm{C}-6\right), 120.92(\mathrm{C}-4 \mathrm{a}), 128.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{CFF}} 11 \mathrm{~Hz}\right.$, C-5) $156.47\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 14 \mathrm{~Hz}, \mathrm{C}-8 \mathrm{a}\right), 158.25(\mathrm{C}-2), 161.72$ (CO.N), 165.66 $\left(\mathrm{d},{ }^{1} J_{\mathrm{CF}} 256 \mathrm{~Hz}, \mathrm{C}-7\right)$ and $176.15(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1660$ and 1648 (CO); $\lambda_{\max }(E t O H) / \mathrm{nm} 223\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 18558\right), 263$ (8 687) and 296 (8 782); m/z $235\left(M^{+}, 100 \%\right)$ and 72 (100\%).

7-Chloro-N,N-dimethylchromone-2-carboxamide (133).

Method 1. The first experimental procedure employed for the synthesis of N, N-dimethylchromone-2-carboxamide (129) was followed, using 7-chlorochromone-2-carbonyl chloride (125) (2.0 g, 8 mmol), dimethylammonium chloride (128) (1.3 g, 16 mmol$)$, and dry pyridine (20 ml). In this case the reaction time at $0^{\circ} \mathrm{C}$ was 2.5 h , and at room temperature was 19.5 h . Work-up afforded crude brown 7 -chloro-N,N-dimethylchromone-2-carboxamide (133) (1.6 g, 80\%) ${ }^{\text {b }}$ which was chromatographed [flash chromatography on silica gel; elution with EtOAc]

[^20]```
to afford 7-chloro-N,N-dimethylchromone-2-carboxamide (133)
(1.4 g, 72%).a
```

Method 2. The second experimental procedure employed for the synthesis of. $N, N$-dimethylchromone-2-carboxamide (129) was followed, using 7-chlorochromone-2-carbonyl chloride (125) (1.9 g, 8 mol), aqueous $\mathrm{Me}_{2} \mathrm{NH}(43 \% \mathrm{w} / \mathrm{w} ; 0.99 \mathrm{ml}, 8 \mathrm{mmol}), \mathrm{NaHCO}_{3}(1.2 \mathrm{~g}, 14 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}$ ( 10 ml ). Work-up afforded a solid ( 1.2 g ) shown, by TLC, to comprise a mixture of two components, which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford a solid $(0.8 \mathrm{~g}, 38 \%)^{\text {a }}$ which was recrystallised from EtOAc to give $7-c h l o r o-N, N-$ dimethylchromone-2-carboxamide (133) ( $0.4 \mathrm{~g}, 22 \%$ ), a m.p. $146-147^{\circ} \mathrm{C}$; (Found : C, $57.3 ; \mathrm{H}, 3.7 ; \mathrm{N}, 5.5 . \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNO}_{3}$ requires : $\mathrm{C}, 57.3 ; \mathrm{H}, 4.0$; $\mathrm{N}, 5.6 \%) ; \delta_{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 6.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$, $7.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2$ and $9 \mathrm{~Hz}, 6-\mathrm{H}), 7.47(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 8-\mathrm{H})$ and 8.10 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}, 5-\mathrm{H}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 35.48$ and $38.27\left(\mathrm{NMe}_{2}\right), 111.95$ $(C-3), 118.23(C-8), 122.76(C-4 a), 126.67$ and $127.17(C-5$ and $C-6)$, $140.40(\mathrm{C}-7), 155.75(\mathrm{C}-8 \mathrm{a}), 158.23(\mathrm{C}-2), 161.91(\mathrm{CO} . \mathrm{N})$ and 176.55 (C-4); $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1658$ and $1650(\mathrm{CO}) ; \lambda_{\max }(E t O H) / \mathrm{nm} 224$ $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 19810\right), 274(9390)$ and $304(9310) ; \mathrm{m} / \mathrm{z} 251\left({ }^{35} \mathrm{Cl}\right.$, $M^{+}, 54 \%$ ) and 123 (100\%).

7-Bromo-N, N-dimethylchromone-2-carboxamide (134).

Method 1. The first experimental procedure employed for the synthesis of $N, N$-dimethylchromone-2-carboxamide (129) was followed, using

[^21]7-bromochromone-2-carbonyl chloride (126) (1.9 g, 7 mmol ), dimethylammonium chloride (128) (1.1 g, 14 mmol$)$, and dry pyridine $(20 \mathrm{ml})$. In this case the reaction time at room temperature was 14 h . Work-up afforded crude 7 -bromo-N,N-dimethylchromone-2-carboxamide (134) $(1.9 \mathrm{~g}, 96 \%)^{\text {a }}$ which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford 7-bromo-N,N-dimethylchromone-2carboxamide (134) (1.5 g, 77\%). ${ }^{\text {a }}$

Method 2. The second experimental procedure employed for the synthesis of $N, N$-dimethylchromone-2-carboxamide (129) was followed, using 7-bromochromone-2-carbonyl chloride (126) (1.9 g, 7 mol), aqueous $\mathrm{Me}_{2} \mathrm{NH}$ ( $43 \% \mathrm{w} / \mathrm{w} ; 0.96 \mathrm{ml}, 8.1 \mathrm{mmol}), \mathrm{NaHCO}_{3}(1.0 \mathrm{~g}, 11 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{ml})$. Work-up afforded a solid ( 0.6 g ) shown, by TLC, to comprise a mixture of two components, which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford a crude 7 -bromo-N,N-dimethylchromone-2-carboxamide (134) ( $0.4 \mathrm{~g}, 21 \%$ ), m.p. 143-145² (from EtOAC); (Found : C, 48.8; H, 3.45; N, 4.8. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNO}_{3}$ requires : C, $48.7 ; \mathrm{H}, 3.4 ; \mathrm{N}, 4.7 \%) ; \delta_{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.07$ and $3.08(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}$, $\left.\mathrm{NMe}_{2}\right), 6.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2$ and $9 \mathrm{~Hz}, 6-\mathrm{H}), 7.63(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}, 8-\mathrm{H})$ and $7.99(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 5-\mathrm{H}) ; \delta_{\mathrm{c}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 35.48$ and $38.26\left(\mathrm{NMe}_{2}\right), 111.93(\mathrm{C}-3), 121.23(\mathrm{C}-8), 123.06(\mathrm{C}-4 \mathrm{a}), 127.12$ and 129.39 ( $\mathrm{C}-5$ and $\mathrm{C}-6$ ), $128.51(\mathrm{C}-7), 155.61(\mathrm{C}-8 \mathrm{a}), 158.17(\mathrm{C}-2), 161.62$ (CO.N) and $176.58(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1655$ and $1635(\mathrm{CO}) ; \lambda_{\max }(\mathrm{EtOH})$ $/ \mathrm{nm} 228\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 19667\right), 272(10$ 245) and $297(8 \mathrm{~g} 97) ; \mathrm{m} / \mathrm{z} 295$ $\left({ }^{79} \mathrm{Br}, M^{+}, 35 \%\right)$ and 72 (100\%).

[^22]N,N-Dimethyl-3-methylchromone-2-carboxamide (135).

Method 1. The first experimental procedure employed for the synthesis of $N, N$-dimethylchromone-2-carboxamide (129) was followed, using 3-methylchromone-2-carbonyl chloride (127) (1.0 g, 4 mmol ), dimethylamonium chloride (128) ( $0.7 \mathrm{~g}, 9 \mathrm{mmol}$ ), and dry pyridine ( 10 ml ). In this case the reaction time at room temperature was 14 h . Work-up afforded crude $\mathrm{N}, \mathrm{N}$-dimethyl-3-methy1chromone-2-carboxamide (135) $(0.8 \mathrm{~g}, 84 \%)^{\mathrm{a}}$ which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford $\mathrm{N}, \mathrm{N}$-dimethyl-3-methylchromone-2carboxamide (135) (0.7 g 71\%). ${ }^{\text {a }}$

Method 2. The second experimental procedure for the synthesis of $N, N$-dimethylchromone-2-carboxamide (129) was followed, using 3-methylchromone-2-carbonyl chloride (127) (1.9 g, 9 mmol ), aqueous $\mathrm{Me}_{2} \mathrm{NH}(43 \% \mathrm{w} / \mathrm{w} ; 1.22 \mathrm{ml}, 10.2 \mathrm{mmol}), \mathrm{NaHCO}_{3}(1.2 \mathrm{~g}, 15 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}$ ( 7 ml ). In this case the mixture was stirred at ca. $0^{\circ} \mathrm{C}$ for 2 h . Workup afforded a crude solid ( 1.7 g ) shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to comprise a mixture (ca. 1:4) of 3-methylchromone-2-carboxylic acid (120) and N,N-dimethyl-3-methylchromone-2-carboxamide (135). The mixture was dissolved in EtOAC ( 60 ml ), and the solution was sequentially washed with $5 \%$ aq. $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{ml})$ and saturated aqueous $\mathrm{NaCl}(1 \times 30 \mathrm{ml})$, and then dried (anhyd. $\mathrm{MgSO}_{4}$ ). The solvent was evaporated to give an oil which crystallized to afford crude $N, N$-dimethyl-3-methylchromone-2carboxamide (135) ( $1.0 \mathrm{~g}, 52 \%$ ). ${ }^{\text {a }}$ Recrystallization from EtOAc afforded N,N-dimethyl-3-methylchromone-2-carboxamide (135) (0.1 g, 6\%). ${ }^{\text {a }}$ The crude motherliquours were chromatographed [flash chromatography on

[^23]silica gel; elution with EtOAc] to afford additional N,N-dimethyl-3-methylchromone-2-carboxamide (135) ( $0.5 \mathrm{~g}, 24 \%$ ), a m.p. $74-76^{\circ} \mathrm{C}$ (from EtOAc ); [m/z Found : 231.090 ( $M^{+}, 100 \%$ ). $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires : 231.090]; $\delta_{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.96(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 2.95$ and $3.07\left(6 \mathrm{H}, 2 \mathrm{x}, \mathrm{NMe}_{2}\right)$, $7.31-7.35(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $8-\mathrm{H}), 7.56-7.60(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$ and $8.11(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J} 2$ and $8 \mathrm{~Hz}, 5-\mathrm{H}) ; \delta_{c}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.98(3-\mathrm{Me}), 34.56$ and 37.63 $\left(\mathrm{NMe}_{2}\right), 117.36(\mathrm{C}-3), 117.88(\mathrm{C}-8), 122.89(\mathrm{C}-4 \mathrm{a}), 125.24$ and 125.78 $(\mathrm{C}-5$ and $\mathrm{C}-6), 133.72(\mathrm{C}-7), 154.39(\mathrm{C}-8 \mathrm{a}), 155.61(\mathrm{C}-2), 162.40(\mathrm{CO} . \mathrm{N})$ and $177.82(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1640$ and $1635(\mathrm{CO}) ; \mathrm{m} / \mathrm{z} 231$ ( $M^{+}, 100 \%$ ).

N,N-Diisopropylchromone-2-carboxamide (136). -

Method 1. ${ }^{64}$ Diisopropylamine ( $1.06 \mathrm{ml}, 7.6 \mathrm{mmol}$ ) was added to a solution of chromone-2-carbonyl chloride (121) (1.5 g, 7 mmol ) in dry pyridine ( 20 ml ) and the resulting solution was warmed on a steam bath for 3 h . After cooling, the solution was poured into $2 \mathrm{M}-\mathrm{HCl}$ ( 200 ml ) and the resulting mixture was extracted with EtOAc ( $3 \times 50 \mathrm{ml}$ ). The organic extracts were combined, dried (anhyd. $\mathrm{MgSO}_{4}$ ), and evaporated to afford a yellow oil (1.2g) which was chromatographed [flash chromatography on silica gel; elution with EtOAc-hexane (1:1)] to afford an oil ( $0.8 \mathrm{~g} ; 40 \%)^{\text {b }}$ which crystallised on standing. Recrystallisation from EtOAc gave $\mathrm{N}, \mathrm{N}$-diisopropylchromone-2-carboxamide (136) (0.3 g, 15\%), b m.p. $95-96^{\circ} \mathrm{C}$ (from EtOAC); (Found : C 70.65 ; H 7.3; N, 5.3. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires: $\left.\mathrm{C} 70.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.1 \%\right) ; \mathrm{\delta}_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$

[^24]b Yield calculated on the basis of chromone-2-carboxylic acid (112).
1.29 ( $6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHMe}_{2}$ ), $1.55\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHMe}_{2}\right), 3.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH})$, 3.91 (1H, br s, NCH), $6.49(1 H, s, C H=C), 7.49-7.55$ and $7.76-7.83$ $(2 \mathrm{H}, 2 \mathrm{x} \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}, 8-\mathrm{H})$ and $8.23(1 \mathrm{Hd}$, $J 7 \mathrm{~Hz}, 5-\mathrm{H}) ; \delta_{c}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.94\left(\mathrm{CHMe}_{2}\right), 20.57\left(\mathrm{CHMe}_{2}\right), 46.28$ ( NCH ), 51.12 ( NCH ), $109.50(\mathrm{C}-3), 117.96(\mathrm{C}-8), 124.06$ (C-4a), 125.45 and $125.48(C-5$ and $C-6), 133.98(C-7), 155.46(C-8 a), 159.83(C-2)$, $161.33(C O . N)$ and $177.37(C-4) ; \nu_{\max } / \mathrm{cm}^{-1} 1655$ and $1640(C O) ; m / z 273$ ( $M^{+}, 24 \%$ ), 216 (100\%).

Method 2. The second experimental procedure for the synthesis of $N, N$-dimethylchromone-2-carboxamide (129) was followed, using chromone-2carbonyl chloride (121) ( $1.5 \mathrm{~g}, 7 \mathrm{mmol}$ ), diisopropylamine (1.23 ml, $8.8 \mathrm{mmol}), \mathrm{NaHCO}_{3}(1.2 \mathrm{~g}, 15 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}(11 \mathrm{ml})$. The precipitated solid was filtered off and shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to be starting material ( 0.2 g ). The filtrate was extracted with EtOAc, dried (anhyd. $\mathrm{MgSO}_{4}$ ), and evaporated to afford crude $\mathrm{N}, \mathrm{N}$-diisopropylchromone-2carboxamide (136) (0.1 g, 6\%).a

1-[(Chromon-2-yl)-carbonyl]-pyrrolidine (137). - The second experimental procedure for the synthesis of $N, N$-dimethylchromone-2carboxamide (129) was followed, using chromone-2-carbonyl chloride (121) $(1.7 \mathrm{~g}, 8 \mathrm{mmol})$, pyrrolidine $(0.746 \mathrm{ml}, 9.0 \mathrm{mmol}), \mathrm{NaHCO}_{3}(1.2 \mathrm{~g}$, 14 mmol), and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. In this case, the mixture was stirred at ca. $0^{\circ} \mathrm{C}$ for 1.5 h . Work-up afforded a crude solid ( 0.9 g ) shown, by TLC, to comprise a mixture of three components. The mixture was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford crude 1-[(chromon-2-y1)-carbony1]-pyrrolidine (137) (0.4 g, 22\%),a m.p.103-105 ${ }^{\circ} \mathrm{C}$ (from EtOAc); [m/z Found : $243.089\left(M^{+}, 100 \%\right) . \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$

[^25]requires : 243.090 ]; $\delta_{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.83-1.89[4 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right)\right], 3.51\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2}\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2}\right), 6.62(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}), 7.27-7.30$ and $7.56-7.60(2 \mathrm{H}, 2 \mathrm{xm}, 6-\mathrm{H}$ and $7-\mathrm{H}), 7.36$ $(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 8-\mathrm{H})$ and $8.03(1 \mathrm{H}, \mathrm{dd}, J 2$ and $8 \mathrm{~Hz}, 5-\mathrm{H}) ; \delta_{\mathrm{c}}(125 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 23.49\left(\mathrm{CH}_{2}\right), 26.09\left(\mathrm{CH}_{2}\right), 46.92\left(\mathrm{NCH}_{2}\right), 48.08\left(\mathrm{NCH}_{2}\right) 111.91(\mathrm{C}-3)$, $117.87(\mathrm{C}-8), 123.94(\mathrm{C}-4 \mathrm{a}), 125.35$ and $125.47(\mathrm{C}-5$ and $\mathrm{C}-6), 134.06$ $(\mathrm{C}-7), 155.16$ (C-8a), 157.86 (C-2), $159.60(\mathrm{CO} . \mathrm{N})$ and 177.48 (C-4); $\nu_{\max }$ ( KBr ) $/ \mathrm{cm}^{-1} 1640$ and 1630 (CO); m/z 243 ( $M^{+}, 100 z$ ).

1-[(Chromon-2-yl)-carbonyl]-piperidine (138). - The first experimental procedure for the synthesis of $\mathrm{N}, \mathrm{N}$-diisopropylchromone-2carboxamide (136) was followed, using piperidine ( $0.80 \mathrm{ml}, 8.1 \mathrm{mmol}$ ), chromone-2-carbonyl chloride (121) (1.6 g, 8 mmol), and dry pyridine $(20 \mathrm{ml})$. Work-up afforded a red oil ( 1.6 g ) which was chromatographed [flash chromatography on silica gel; elution with EtOAc-hexane (3:1)] to afford an oil ( 1.5 g ). The oil was chromatographed fflash chromatography on alumina; elution with EtOAc-hexane (2:3)] to afford an oil which crystallized on standing to afford 1-[(chromon-2-yl)-carbonyl]-piperidine (138) ( $1.5 \mathrm{~g}, 75 \%$ ), ${ }^{\mathrm{a}} \mathrm{m} . \mathrm{p} .66-67^{\circ} \mathrm{C}$ (from EtOAC) (lit., ${ }^{17} 90.5-92^{\circ} \mathrm{C}$ ); (Found : C, 70.5; H 5.9; N, 5.6. Calc for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$ : C, 70.0 ; $\mathrm{H}, 5.9$; $\mathrm{N} 5.4 \%$ ) $\mathrm{K}_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.57-1.66[6 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{3}\right], 3.39\left(2 \mathrm{H}\right.$, br $\left.\mathrm{s}, \mathrm{NCH}_{2}\right), 3.62\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2}\right), 6.39$ (1H, s, $\mathrm{CH}=\mathrm{C}$ ) , $7.34-7.37$ and $7.61-7.65(2 \mathrm{H}, 2 \mathrm{x} \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H})$, $7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}, 8-\mathrm{H})$ and $8.11(1 \mathrm{H}, \mathrm{dd}, J 2$ and $8 \mathrm{~Hz}, 5-\mathrm{H}) ; \delta_{\mathrm{c}}(125$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.17,25.21$, and $26.34\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 43.21\left(\mathrm{NCH}_{2}\right)$, $48.03\left(\mathrm{NCH}_{2}\right), 110.96(\mathrm{C}-3), 118.09(\mathrm{C}-8), 124.09(\mathrm{C}-4 \mathrm{a}), 125.57$ (C-5 and C-6), $134.09(\mathrm{C}-7), 155.61$ (C-8a), $158.42(\mathrm{C}-2), 160.67$ (CO.N)

[^26]and $177.26(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1655$ and $1650(\mathrm{CO}) ; \mathrm{m} / \mathrm{z} 257\left(\mathrm{M}^{+}, 35 \%\right)$ and 89 (100\%).

Chromone-2-carboxamide (139).

Method 1. The second experimental procedure for the synthesis of $N, N$-dimethylchromone-2-carboxamide (129) was followed, using chromone-2carbonyl chloride (121) (1.2 g, 11 mmol ) and aqueous $\mathrm{NH}_{3}(25 \% \mathrm{w} / \mathrm{v}$; $8.4 \mathrm{ml}, 0.123 \mathrm{~mol}$ ). In this case work-up, which excluded the extraction, afforded crude chromone-2-carboxamide (139) (1.5 g, 74\%) ${ }^{\text {a }}$ which was recrystallised from a mixture of EtOH, DMF and $\mathrm{H}_{2} \mathrm{O}$ to afford
 (lit., ${ }^{17} 150-151^{\circ} \mathrm{C}$ ); $\delta_{H}\left(500 \mathrm{MHz} ; \mathrm{DMSO}^{( } \mathrm{d}_{6} / \mathrm{CDCl}_{3}\right.$ ) 2.06 (3H, s, impurity), $3.32\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CONH}_{2}\right), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.44-7.47$ and $7.78-7.82$ $(2 \mathrm{H}, 2 \mathrm{x} \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 7.68(1 \mathrm{H}, \mathrm{dd}, J 1$ and $8 \mathrm{~Hz}, 8-\mathrm{H}), 8.01(1 \mathrm{H}$, dd, $J 2$ and $8 \mathrm{~Hz}, 5-\mathrm{H})$ and 8.10 and $8.45(2 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}$, impurities); $\delta_{c}\left(125 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6} / \mathrm{CDCl}_{3}\right) 30.45$ (Me impurity), $110.42(\mathrm{C}-3), 118.61$ $(C-8), 123.51(C-4 a), 124.72$ and $125.58(C-5$ and $C-6), 134.49(C-7)$, $155.00(\mathrm{C}-8 \mathrm{a}), 155.62(\mathrm{C}-2), 160.62(\mathrm{CO} . \mathrm{N})$ and $177.25(\mathrm{C}-4) ; \nu_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3360(\mathrm{NH}), 3160(\mathrm{CH}), 1715(\mathrm{CO} . \mathrm{N})$ and 1673 and $1628(\mathrm{CO})$. Impurities in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR specra could not be eliminated by repeated recrystallisation from EtOH; or by purifying recrystallised material ( 200 mg ) by chromatography [flash chromatography on alumina; elution with EtOAC and EtOH].

Method 2. The first experimental procedure for the synthesis of $N, N$-dimethylchromone-2-carboxamide (129) was followed, using chromone-2-

[^27]carbonyl chloride (121) ( $2.2 \mathrm{~g}, 11 \mathrm{mmol}$ ), $\mathrm{NH}_{4} \mathrm{Cl}(1.1 \mathrm{~g}, 21 \mathrm{mmol})$, and dry pyridine ( 20 ml ). In this case the acidic mixture was filtered to afford a solid ( 0.3 g ) and the extracted filtrate afforded a solid ( 0.9 g ). Both solids were shown, by TLC, to comprise a mixture of three components. The combined material (1.2 g) was chromatographed [flash chromatography on silica gel; elution with EtOAc-hexane (50:1)] to afford crude chromone-2-carboxamide (139) ( $0.3 \mathrm{~g}, 17 \%$ ). ${ }^{\text {a }}$
(E)-2-(Dimethylamino)-3-(2-hydroxybenzoyl)-N, N-dimethylacrylamide (140).

Method 1. ${ }^{17,126}$ Ethanolic Me ${ }_{2} \mathrm{NH}(25 \% \mathrm{w} / \mathrm{w} ; 3.14 \mathrm{ml}, 13.2 \mathrm{mmol}$ ) was added to a solution of $N, N$-dimethylchromone-2-carboxamide (129) (0.500 g, $2.3 \mathrm{mmol})$ in $d r y \mathrm{EtOH}(17 \mathrm{ml})$ and the solution was stirred at room temperature for 20 h . The solution was evaporated under reduced pressure to afford a crude solid ( 0.53 g ) which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N, N-dimethylacrylamide (140) (0.374 g, 62\%).

Method 2. Crude chromone-2-carbonyl chloride (121) (1.8 g, 9mmol) was cautiously added to precooled $\left(0^{\circ} \mathrm{C}\right)$, stirred aqueous $\mathrm{Me}_{2} \mathrm{NH}(43 \% \mathrm{w} / \mathrm{w}$; $2.13 \mathrm{ml}, 17.9 \mathrm{mmol})$, and cold water ( 10 ml ) was then added. The mixture was stirred for 1 h at ca. $0^{\circ} \mathrm{C}$ and the resulting precipitate was filtered and washed ( $\mathrm{H}_{2} \mathrm{O}$ ) to afford crude (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N,N-dimethylacrylamide (140) (0.7 g, 32\%), m.p. $165-166^{\circ} \mathrm{C}$ (from EtOH) (lit., ${ }^{17} 166-167^{\circ} \mathrm{C}$ ); $\delta_{H}\left(500 \mathrm{MHz} ; \mathrm{CDC1}_{3}\right.$ ) 2.89 and $3.09\left(6 \mathrm{H}, 2 \mathrm{xs}, \mathrm{CONMe}_{2}\right), 3.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.75-$

[^28]6.79 and $7.29-7.33\left(2 H, 2 x \mathrm{~m}, 4^{\prime}-H\right.$ and $\left.5^{\prime}-H\right), 6.88(1 H, d d, J 1$ and 8 $\left.\mathrm{Hz}, 3^{\prime}-\mathrm{H}\right), 7.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2\right.$ and $\left.8 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right)$ and $13.60(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.06$ and $36.84\left(\mathrm{CONMe}_{2}\right), 39.38$ and $40.11\left(\mathrm{NMe}_{2}\right)$, $88.81(\mathrm{C}-3), 117.78$ and $117.88\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 120.18\left(\mathrm{C}-\mathrm{I}^{\prime}\right), 128.03$ $\left(\mathrm{C}-6^{\prime}\right), 133.75\left(\mathrm{C}-4^{\prime}\right), 158.76(\mathrm{C}-2), 162.53\left(\mathrm{C}-2^{\prime}\right), 166.44$ (CO.N) and $189.74(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2920$ and $1648 ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2970$ and $1650 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 216\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 16719\right), 257(7$ 783) and 357 (29 647); m/z 263 ( $M^{+}, 6 \%$ ) and 72 (100\%).

N - [3-(2-Hydroxybenzoy1)-2-pyrrolidinoacryloyl]pyrrolidine (141). - The second experimental procedure for the synthesis of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N,N-dimethylacrylamide (140) was followed, using chromone-2-carbonyl chloride (121) (1.7 g, 8 mmol), pyrrolidine ( $1.40 \mathrm{ml}, 16.9 \mathrm{mmol}$ ), and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. Work-up afforded an oily solid which was dissolved in $E t_{2} O(25 \mathrm{ml})$, and the solution was washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$. The aqueous layer was then extracted with $\mathrm{EtO}_{2}$ $(2 \times 25 \mathrm{ml})$. Yellow crystals formed during the extraction and in the combined ethereal layers which were left to stand overnight. The ethereal solution was then filtered to afford crude N-[3-(2-hydroxybenzoyl)-2-pyrrolidinoacryloyl]pyrrolidine(141) (0.2 g, 9\%), ${ }^{\text {a }}$ m.p. $161-162^{\circ} \mathrm{C}$ (from EtOH) ( 1 it.,${ }^{19} 182^{\circ} \mathrm{C}$ ); $\delta_{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ ) $1.77-1.96\left[8 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 3.06-3.10,3.41-3.45,3.60-$ 3.61 and $3.67-3.69\left[4 \mathrm{H}, 4 \mathrm{x} \mathrm{m}, \mathrm{CON}\left(\mathrm{CH}_{2}\right)_{2}\right], 3.22-3.31[4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right], 5.57(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.68-6.79$ and $7.20-7.24(2 \mathrm{H}, 2 \mathrm{x} \mathrm{m}$, $4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 6.79\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1\right.$ and $\left.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.61$ (1H, dd, J 1 and $8 \mathrm{~Hz}, 6 \mathrm{H}$ ) and $13.61(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.09,24.41$, 24.99 and $25.44\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 44.96,46.82,48.11$ and 48.42 (2 x $\left.\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 88.53(\mathrm{C}-3), 117.68$ and $117.81\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 120.14\left(\mathrm{C}-1^{\prime}\right)$,

[^29]$123.00\left(\mathrm{C}-6^{\prime}\right), 133.55\left(\mathrm{C}-4^{\prime}\right), 156.78(\mathrm{C}-2), 162.56\left(\mathrm{C}-2^{\prime}\right), 164.99(\mathrm{CO} . \mathrm{N})$ and $189.49(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1960,1875,1650$ and $1643 ; \mathrm{m} / \mathrm{z} 314$ ( $M^{+}, 2 \%$ ) and 121 (100\%).
(E)-2-(Dimethylamino)-3-(2-hydroxy-4-methoxybenzoyl)-N,Ndimethylacrylamide (142). - The first experimental procedure employed for the synthesis of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N,Ndimethylacrylamide (140) was followed, using 7-methoxy-N, $N$ -dimethylchromone-2-carboxamide (130) (0.500 g, 2.0 mmol$)$, dry EtOH $(15 \mathrm{ml})$, and ethanolic $\mathrm{Me}_{2} \mathrm{NH}(25 \% \mathrm{w} / \mathrm{w} ; 2.82 \mathrm{ml}, 11.9 \mathrm{mmol})$. In this case the reaction solution was maintained at $35^{\circ} \mathrm{C}$ for 27 h . Work-up afforded a crude yellow oil ( 0.577 g ) which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to give a solid which was recrystallized from EtOAc to afford (E)-2-(dimethylamino)-3-(2-hydroxy-4-methoxybenzoyl)-N,N-dimethylacrylamide (142) (0.212 g, 36\%), m.p. $154-156^{\circ} \mathrm{C}$ (from EtOAC); [ $m / z$ Found : 292.141 ( $M^{+}, 10 \%$ ). $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires : 292.142]; $\delta_{H}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.90$ and $3.09(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}$, $\mathrm{CONMe}_{2}$ ), $3.04\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NMe}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.65(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$, $6.31-6.37\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right)$ and 14.10 $(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCI}_{3}\right) 34.48$ and 37.30 (CONMe $\left.\mathrm{Cl}_{2}\right), 39.47$ and $40.09\left(\mathrm{NMe}_{2}\right), 55.37(\mathrm{OMe}), 89.12(\mathrm{C}-3), 101.02$ and $106.43(\mathrm{C}-3$ and C-5'), $113.95\left(\mathrm{C}-\mathrm{I}^{\prime}\right), 129.63\left(\mathrm{C}-6^{\prime}\right), 157.89(\mathrm{C}-2), 164.26\left(\mathrm{C}-4^{\prime}\right), 165.33$ (C-2'), $166.93(\mathrm{CO.N})$ and $189.01(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2930,1660$ and $1650 ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2970$ and $1650 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 221\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1} 16250\right), 280(8020)$ and $361(39240) ; \mathrm{m} / \mathrm{z} 292\left(M^{+}, 10 \%\right)$ and 220 (100\%).
(E)-2-(Dimethylamino)-3-(2-hydroxy-4-nitrobenzoyl)-N,N-
dimethylacrylamide (143) and 3-(2-hydroxy-4-nitrobenzoyl)-N,N-dimethyl-2-methylaminoacrylamide (147). - The first experimental procedure employed for the synthesis of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N, $N$-dimethylacrylamide (140) was followed, using $N, N$-dimethyl-7-nitrochromone-2-carboxamide (131) ( $0.500 \mathrm{~g}, 1.9 \mathrm{mmol}$ ), dry EtOH ( 55 ml ), and ethanolic $\mathrm{Me}_{2} \mathrm{NH}(25 \% \mathrm{w} / \mathrm{w} ; 2.60 \mathrm{ml}, 11.0 \mathrm{mmol})$. In this case, the solution, which rapidly turned red, was maintained at $35^{\circ} \mathrm{C}$ for 25 h . Work-up afforded a crude red oil ( 0.545 g ) which was chromatographed [preparative layer chromatography; elution with EtOAc] to afford 2 crude components, viz.,
(i) (E)-2-(dimethylamino)-3-(2-hydroxy-4-nitrobenzoyl)-N,Ndimethylacrylamide (143) ( $0.305 \mathrm{~g}, 52 \%$ ), m.p. $160-161^{\circ} \mathrm{C}$ (from EtOAC); (Found : C, $54.8 ; \mathrm{H}, 5.7 ; \mathrm{N}, 13.5 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires : $\mathrm{C}, 54.7$; H , $5.6 ; \mathrm{N}, 13.7 \%) ; \delta_{H}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.92$ and $3.11(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{CONMe}$ ), 3.07 and $3.19\left(6 \mathrm{H}, 2 \mathrm{x}, \mathrm{NMe}_{2}\right), 5.71(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2$ and $\left.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.69\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.79\left(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right)$ and $13.85(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; 8 \mathrm{c}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.50$ and 37.14 $\left(\mathrm{CONMe}_{2}\right), 39.90$ and $40.93\left(\mathrm{NMe}_{2}\right), 89.04(\mathrm{C}-3), 112.28$ and $113.52\left(\mathrm{C}-3^{\prime}\right.$ and $\left.C-5^{\prime}\right), 124.82\left(C-1^{\prime}\right), 128.87\left(C-6^{\prime}\right), 150.53\left(C-4^{\prime}\right), 160.30(C-2)$, $163.09\left(\mathrm{C}-2^{\prime}\right), 165.92(C O . N)$ and $188.02(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2920$ and 1645; $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2930$ and $1650 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 215$ ( $\left.\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 21425\right), 279(15379)$ and $388(21087) ; \mathrm{m} / \mathrm{z} 307$ ( $M^{+}, 11 \%$ ) and 72 (100\%); and
(ii) 3-(2-hydroxy-4-nitrobenzoyl)-N,N-dimethyl-2-methylaminoacrylamide (147) (0.041g, 7\%), m.p. $222-225^{\circ} \mathrm{C}$ (from EtOAc); [m/z Found : 293.100 ( $M^{+}, 13 \%$ ). $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires : 293.101]; $\delta_{H}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.07$ and $3.08(3 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NMe}), 3.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CONMe}_{2}\right), 5.76(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.58-$ $7.79(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 10.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $13.52(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta \mathrm{C}(50$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 31.02$ and 31.84 ( NHMe ), 34.27 and $37.88\left(\mathrm{CONMe}_{2}\right), 88.18$
$(C-3), 113.13$ and $113.81\left(C-3^{\prime}\right.$ and $\left.C-5^{\prime}\right), 125.26\left(C-1^{\prime}\right), 129.21\left(C-6^{\prime}\right)$, $151.20\left(\mathrm{C}-4^{\prime}\right), 153.20(\mathrm{C}-2), 163.11\left(\mathrm{C}-2^{\prime}\right), 164.07(\mathrm{CO} . \mathrm{N})$ and 191.18 (C-4); $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3235$ (NH), 2930 and 1655 ; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 212$ ( $\varepsilon$ $\left./ \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 11815\right), 274(13606)$ and $388(20043) ; \mathrm{m} / \mathrm{z} 293\left(\mathrm{M}^{+}, 13 \%\right)$ and 221 (100\%).
(E)-2-(Dimethylamino)-3-(4-fluoro-2-hydroxybenzoyl)-N,N-
dimethylacrylamide (144) and 3-(4-fluoro-2-hydroxybenzoyl)-N,N-dimethyl-2-methylaminoacrylamide (148). - The first experimental procedure employed for the synthesis of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N, $N$-dimethylacrylamide (140) was followed, using 7-fluoro- $N$, $N$-dimethylchromone-2-carboxamide (132) ( $0.500 \mathrm{~g}, 2.1 \mathrm{mmol}$ ), dry EtOH ( 16 ml ), and ethanolic $\mathrm{Me}_{2} \mathrm{NH}(25 \% \mathrm{w} / \mathrm{w} ; 2.90 \mathrm{ml}, 12.2 \mathrm{mmol})$. In this case, the reaction solution was maintained at $35^{\circ} \mathrm{C}$ for 26 h . Workup afforded a crude yellow oil ( 0.711 g ) which was recrystallized from EtOAc ( 0.361 g ) and chromatographed [preparative layer chromatography; elution with EtOAc] to give 2 components, viz.,
(i) a solid which was recrystallized from EtOAc to afford (E)-2-(dimethylamino)-3-(4-fluoro-2-hydroxybenzoyl)-N,N-dimethylacrylamide (144) ( $0.228 \mathrm{~g}, 39 \%$ ), m.p. $164-166^{\circ} \mathrm{C}$ (from EtOAc); (Found : C, $59.7 ; \mathrm{H}$, $6.3 ; \mathrm{N}, 10.0 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}$ requires : $\left.\mathrm{C}, 60.0 ; \mathrm{H}, 6.1 ; \mathrm{N}, 10.0 \%\right) ; \delta_{\mathrm{H}}$ $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.89$ and $3.08\left(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{CONMe}_{2}\right), 3.06(6 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NMe}_{2}\right), 5.63(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.44-6.58\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.65$ ( $1 \mathrm{H}, \mathrm{dd}, J 7$ and $9 \mathrm{~Hz}, 6{ }^{\prime}-\mathrm{H}$ ) and $14.00(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 34.39$ and $37.15(\mathrm{CONMe}), 39.59$ and $40.40\left(\mathrm{NMe}_{2}\right), 88.96(\mathrm{C}-3)$, 104.73 and $105.81\left(2 \times \mathrm{d},{ }^{2} J_{\mathrm{CF}} 23 \mathrm{~Hz}\right.$ and ${ }^{2} J_{\mathrm{CF}} 24 \mathrm{~Hz}, \mathrm{C}-3^{\prime}$ and $\mathrm{C}-5^{\prime}$ ), $117.25\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}} 3 \mathrm{~Hz}, \mathrm{C}-1^{\prime}\right), 130.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 11 \mathrm{~Hz}, \mathrm{C}-6{ }^{\prime}\right), 159.03(\mathrm{C}-2)$, 165.27 (d, ${ }^{3} J_{\text {CF }} 15 \mathrm{~Hz},\left(-2^{\prime}\right), 166.10\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 254 \mathrm{~Hz}, \mathrm{C}-4^{\prime}\right), 166.62$ (CO.N) and $189.10(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2910$ and $1660 ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 2960, 2920 and 1655 ; $\lambda_{\max }(E t O H) / \mathrm{nm} 220\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 17631\right), 258$
(7 561) and 353 ( 32 027); $m / z 280\left(M^{+}, 9 \%\right)$ and 208 (100\%); and (ii) crude 3-(4-fluoro-2-hydroxybenzoyl)-N,N-dimethy1-2methylaminoacrylamide (148) (0.039 g, 7\%), m.p. $163-165^{\circ} \mathrm{C}$ (from EtOAc); [ $m / z$ Found : $266.105\left(M^{+}, 11 \%\right) . C_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}$ requires : 266.106]; $\delta_{H}$ $\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.90$ and $3.02(3 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NMe}), 3.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CONMe}_{2}\right)$, $5.62(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.47-6.63\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 7 and $\left.9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 10.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $13.57(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}(50$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$ ) 31.46 (NHMe), 34.24 and $37.90\left(\mathrm{CONMe}_{2}\right), 87.43(\mathrm{C}-3), 105.07$ and $106.61\left(2 \mathrm{x}\right.$ d, ${ }^{2} J_{\mathrm{CF}} 23 \mathrm{~Hz}$ and ${ }^{2} J_{\mathrm{CF}} 23 \mathrm{~Hz}, C-3^{\prime}$ and $\left.C-5^{\prime}\right), 117.28$ ( $\mathrm{C}-\mathrm{I}^{\prime}$ ), $130.27\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 11 \mathrm{~Hz}, \mathrm{C}-6^{\prime}\right), 161.36(\mathrm{C}-2), 164.74\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 12\right.$ $\left.\mathrm{Hz}, \mathrm{C}-2^{\prime}\right), 165.13(\mathrm{CO} . \mathrm{N}), 166.64\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}} 254 \mathrm{~Hz}, \mathrm{C}-4^{\prime}\right)$ and 192.57 $(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3230(\mathrm{NH}), 2930$ and $1650 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 215$ ( $\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 17067$ ), 256 (6 117) and 253 (27 967); $\mathrm{m} / \mathrm{z} 266\left(M^{+}\right.$, 11\%) and 139 (100\%).
(E)-3-(4-Chloro-2-hydroxybenzoyl)-2-(dimethylamino)-N,Ndimethylacrylamide (145) and 3-(4-chloro-2-hydroxybenzoyl)-N,N-dimethyl-2-methylaminoacrylamide (149). - The first experimental procedure employed for the synthesis of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N,N-dimethylacrylamide (140) was followed, using 7 -chloro- $N, N$-dimethylchromone-2-carboxamide (133) (0.500 g, 2.0 mmol ), dry EtOH ( 20 ml ), and ethanolic $\mathrm{Me}_{2} \mathrm{NH}(25 \% \mathrm{w} / \mathrm{w} ; 2.71 \mathrm{ml}, 11.4 \mathrm{mmol})$. In this case the reaction solution was maintained at $35^{\circ} \mathrm{C}$ for 24 h . Workup afforded a crude yellow oil ( 0.555 g ) which was chromatographed [preparative layer chromatography; elution with EtOAc] to give 2 crude components, viz.,
(i) (E)-3-(4-chloro-2-hydroxybenzoyl)-2-(dimethylamino)-N,Ndimethylacrylamide (145) ( $0.327 \mathrm{~g}, 55 \%$ ), m.p. $124-125^{\circ} \mathrm{C}$ (from EtOAc); [ $m / z$ Found : $296.092\left({ }^{35} \mathrm{C} 1, M^{+}, 12 \%\right) . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$ requires : 296.093]; $\delta_{H}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.89$ and $3.09\left(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{CONMe}_{2}\right), 3.07(6 \mathrm{H}, \mathrm{br} \mathrm{s}$,
$\left.\mathrm{NM}_{2}\right), 5.66(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.74\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2\right.$ and $\left.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.89(1 \mathrm{H}$, d, J $\left.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.57\left(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right)$ and $13.85(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.48$ and $\left.37.07(\mathrm{CONMe})_{2}\right), 39.70$ and $40.60\left(\mathrm{NMe}_{2}\right)$, $88.88(\mathrm{C}-3), 118.24$ and $118.39\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 118.85\left(\mathrm{C}-\mathrm{I}^{\prime}\right), 129.10$ $\left(C-\sigma^{\prime}\right), 139.32\left(C-4^{\prime}\right), 159.09(C-2), 163.52\left(C-2^{\prime}\right), 166.45(C O . N)$ and $188.99(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2920$ and $1660 ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2970,2930$ and $1650 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 213\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 17236\right), 264$ (10 209) and 358 (34 077); m/z $296\left({ }^{35} \mathrm{Cl}, M^{+}, 12 \%\right)$ and $224(100 \%)$; and (ii) crude 3-(4-chloro-2-hydroxybenzoyl)-N,N-dimethyl-2methylaminoacrylamide (149) ( $0.032 \mathrm{~g}, 6 \%$ ), m.p. $166-168^{\circ} \mathrm{C}$ (from EtOAc); [ $m / z$ Found : $282.076\left({ }^{35} \mathrm{Cl}, \mathrm{M}^{+}, 11 \%\right) . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{C} 1$ requires : 282.077]; $\delta_{H}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.99$ and $3.02(3 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NMe}), 3.09$ and $3.10(6 \mathrm{H}, 2$ $\left.x \mathrm{~s}, \mathrm{CONMe}_{2}\right), 5.65(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.77\left(1 \mathrm{H}, \mathrm{dd}, J 2\right.$ and $\left.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $6.93\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.51\left(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 10.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH})$ and $13.41(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 31.51$ (NHMe), 34.25 and $\left.37.89(\mathrm{CONMe})_{2}\right), 87.52(\mathrm{C}-3), 118.61$ and $119.24\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 119.01$ $\left(C-1^{\prime}\right), 129.25\left(C-6^{\prime}\right), 139.88\left(C-4^{\prime}\right), 161.61(C-2), 163.41\left(C-2^{\prime}\right), 164.50$ (CO.N) and $192.55(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3200(\mathrm{NH}), 2920$ and $1640 ; \lambda_{\max }$ ( EtOH ) $/ \mathrm{nm} 207\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 17367\right.$ ), 266 ( 8283 ) and 358 (29 367); $m / z 282\left(C 1^{35}, \mathrm{M}^{+}, 11 \%\right)$ and 210 (100\%).
(E)-3-(4-bromo-2-hydroxybenzoyl)-2-(dimethylamino)-N,N-
dimethylacrylamide (146) and 3-(4-bromo-2-hydroxybenzoyl)-N,N-dimethyl-2-methylaminoacrylamide (150). - The first experimental procedure employed for the synthesis of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N,N-dimethylacrylamide (140) was followed, using 7-bromo- $N, N$-dimethylchromone-2-carboxamide (134) ( $0.500 \mathrm{~g}, 1.7 \mathrm{mmol})$, dry EtOH ( 28 ml ), and ethanolic $\mathrm{Me}_{2} \mathrm{NH}(25 \% \mathrm{w} / \mathrm{w} ; 2.31 \mathrm{ml}, 9.7 \mathrm{mmol}$ ). In this case the reaction was maintained at $35^{\circ} \mathrm{C}$ for 24 h . Work-up afforded a crude red oil ( 0.711 g ) which was chromatographed [preparative layer
chromatography; elution with EtOAc] to give 2 crude components, viz., (i) an oil which crystallized and was filtered to afford (E)-3-(4-bromo-2-hydroxybenzoyl)-2-(dimethylamino)-N,N-dimethylacrylamide (146) (0.265 g, 46\%), m.p. $124-125^{\circ} \mathrm{C}$ (from EtOAC); (Found : C, 49.2; H, 5.1; N, 8.4. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}$ requires : $\left.\mathrm{C}, 49.3 ; \mathrm{H}, 5.0 ; \mathrm{N}, 8.2 \%\right) ; \delta \mathrm{H}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 2.89 and $3.08\left(6 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CONMe} \mathrm{C}_{2}\right), 3.06\left(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NMe}_{2}\right), 5.65(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}), 6.89\left(1 \mathrm{H}, \mathrm{dd}, J 2\right.$ and $\left.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.06\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, $7.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right)$ and $13.80(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 34.40$ and $37.11\left(\mathrm{CONMe} \mathrm{C}_{2}\right), 39.74$ and $40.52\left(\mathrm{NMe}_{2}\right), 88.88(\mathrm{C}-3)$, $119.30\left(C-1^{\prime}\right), 121.28$ and $121.40\left(C-3^{\prime}\right.$ and $\left.C-5^{\prime}\right), 127.63\left(C-4^{\prime}\right), 129.21$ $\left(\mathrm{C}-\mathbf{6}^{\prime}\right), 159.33(\mathrm{C}-2), 163.56\left(\mathrm{C}-2^{\prime}\right), 166.49(\mathrm{CO} . \mathrm{N})$ and $189.28(\mathrm{C}-4)$; $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2920$ and $1660 ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2970,2930$ and 1655; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 212\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 14521\right), 267(10$ 203) and 360 (33 131); m/z $340\left({ }^{79} \mathrm{Br}, M^{+}, 6 \%\right)$ and 72 (100\%); and
(ii) 3-(4-bromo-2-hydroxybenzoy1)-N,N-dimethyl-2-methylaminoacrylamide (150) ( $0.028 \mathrm{~g}, 5 \%$ ), m.p. $153-155^{\circ} \mathrm{C}$ (from EtOAc); [m/z Found : 326.025 ( $\mathrm{Br}^{79}, M^{+}, 12 \%$ ). $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}$ requires : 326.027$] ; \delta_{H}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 2.99 and $3.02\left(3 H, 2 \mathrm{x}\right.$ s, NMe), 3.08 and 3.09 ( $6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{CONMe}_{2}$ ), 5.65 (1H, s, $\mathrm{CH}=\mathrm{C}), 6.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2$ and $9 \mathrm{~Hz}, 5 \mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2 \mathrm{~Hz}$, $\left.3^{\prime}-\mathrm{H}\right), 7.44\left(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 10.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $13.36(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 31.52$ (NHMe), 34.26 and 37.89 (CONMe2), 87.52 $(\mathrm{C}-3), 119.38\left(\mathrm{C}-\mathbf{1}^{\prime}\right), 121.73$ and $122.11\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 128.29\left(\mathrm{C}-4^{\prime}\right)$, $129.29\left(\mathrm{C}-6^{\prime}\right), 161.66(\mathrm{C}-2), 163.31\left(\mathrm{C}-2^{\prime}\right), 164.48(\mathrm{CO} . \mathrm{N})$ and 192.66 $(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3200(\mathrm{NH}), 2920$ and $1640 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 207$ ( $\varepsilon$ $\left./ \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 18550\right), 267(9767)$ and $360(3200) ; \mathrm{m} / \mathrm{z} 326\left(\mathrm{Br} 79, \mathrm{M}^{+}\right.$, 12\%) and 256 (100\%).

3-(4-Bromo-2-hydroxybenzoy1)-N,N-dimethyl-2-methylaminoacrylamide (150).

- The first experimental procedure employed for the synthesis of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N, N-dimethylacrylamide (140)
was followed, using 7 -bromo- $N$, $N$-dimethylchromone-2-carboxamide (134) $(0.502 \mathrm{~g}, 1.7 \mathrm{mmol})$, dry EtOH ( 25 ml ), and ethanolic $\mathrm{MeNH}_{2}(4.8 \% \mathrm{w} / \mathrm{w}$; $5.44 \mathrm{ml}, 8.4 \mathrm{mmol}$ ). In this case the reaction solution was maintained at $35^{\circ} \mathrm{C}$ for 19.5 h . Work-up afforded a crude solid ( 0.565 g ) which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford crude 3-(4-bromo-2-hydroxybenzoyl)-N,N-dimethyl-2methylaminoacrylamide (150) ( $0.470 \mathrm{~g}, 85 \%$ ), $157-158^{\circ} \mathrm{C}$ (from EtOAC); $\delta_{H}$ $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.96$ and $3.01(3 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NMe}), 3.08$ and $3.09(6 \mathrm{H}, 2 \mathrm{x}$ s, $\mathrm{CONMe}_{2}$ ), $5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.92\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2\right.$ and $\left.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.10$ (1H, d, J $\left.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 7.43\left(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 10.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $13.37(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 31.37$ (NHMe), 34.10 and 37.72 $\left.(\operatorname{CONMe})_{2}\right), 87.24(\mathrm{C}-3), 119.02\left(\mathrm{C}-1^{\prime}\right), 121.33$ and $121.70\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right)$, $127.86\left(\mathrm{C}-4^{\prime}\right), 128.87\left(\mathrm{C}-6^{\prime}\right), 161.17(\mathrm{C}-2), 162.81\left(\mathrm{C}-2^{\prime}\right), 163.96(\mathrm{CO} . \mathrm{N})$ and $192.06(\mathrm{C}-4) ; \nu \max (\mathrm{KBr}) / \mathrm{cm}^{-1} 3210(\mathrm{NH}), 2925$ and $1640 ; \mathrm{m} / \mathrm{z} 326$ $\left(\mathrm{Br}^{79}, \mathrm{M}^{+}, 1 \%\right)$ and 72 ( $100 \%$ ).
(E)-3-(2-Hydroxybenzoy1)-N,N-dimethyl-2-pyrrolidinoacrylamide (151). The first experimental procedure employed for the synthesis of (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N, N-dimethylacrylamide (140) was followed, using $N, N$-dimethylchromone-2-carboxamide (129) (0.500 g, $2.3 \mathrm{mmol})$, dry EtOH ( 10 ml ), and pyrrolidine ( $0.95 \mathrm{ml}, 11.5 \mathrm{mmol}$ ). In this case the reaction solution was maintained at $35^{\circ} \mathrm{C}$ for 6.5 h . Workup afforded a crude solid ( 0.669 g ) which was chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford (E)-3-(2-hydroxybenzoy1)-N,N-dimethyl-2-pyrrolidinoacrylamide (151) ( $0.594 \mathrm{~g}, 90 \%$ ), m.p. $183-184^{\circ} \mathrm{C}$ (from EtOH); (Found : C, $66.3 ; \mathrm{H}, 7.05$; $\mathrm{N}, 9.2 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires : $\left.\mathrm{C}, 66.65 ; \mathrm{H}, 7.0 ; \mathrm{N}, 9.7 \%\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.86-2.11\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 2.94$ and $3.11(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}$, $\left.\mathrm{NMe}_{2}\right), 3.36-3.45$ and $3.65-3.72\left[3 \mathrm{H}\right.$ and $\left.1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right], 5.72$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.76-6.93\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.28-7.37(1 \mathrm{H}, \mathrm{m}$,
$\left.3^{\prime}-\mathrm{H}\right), 7.69\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2\right.$ and $\left.8 \mathrm{~Hz}, 6^{1}-\mathrm{H}\right)$ and $13.70(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.82$ and $25.39\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 34.41$ and 37.24 $\left(\mathrm{NMe}_{2}\right), 48.57$ and $48.78\left[\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right], 89.84(\mathrm{C}-3), 118.30$ and $118.61(\mathrm{C}-3)$ and $\left(\mathbf{C}-5^{\prime}\right), 120.70\left(\mathrm{C}-1^{\prime}\right), 128.62\left(\mathrm{C}-6^{\prime}\right), 134.35\left(\mathrm{C}-4^{\prime}\right), 156.74(\mathrm{C}-2)$, $163.31\left(\mathrm{C}-2^{\prime}\right), 167.65(\mathrm{CO} . \mathrm{N})$ and $190.44(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2930$, 2870 and $1650 ; \mathrm{m} / \mathrm{z} 288\left(M^{+}, 2 \%\right)$ and 121 (100\%).

Glycine ethyl ester hydrochloride (152). 156 - HCl gas was bubbled through a mixture of glycine ( $7.5 \mathrm{~g}, 10 \mathrm{mmol}$ ) and EtOH ( 40 ml ) on a boiling water bath until all the glycine was dissolved (ca. 1 h ) and then for an additional 5 min. After cooling, the solution rapidly crystallised and was cooled on an ice bath. The crystals were filtered, washed (cold EtOH), and dried under vacuum for 1 h to afford crude glycine ethyl ester hydrochloride (152) (13.0 g, 93\%) m.p. $141-143^{\circ} \mathrm{C}$ (lit., $\left.{ }^{156} 143-144^{\circ} \mathrm{C}\right) ; \delta_{H}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.80$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.30\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $8.80\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{3}{ }^{+}\right)$.

2-(N-Carbethoxymethylamino)-3-(2-hydroxybenzoy1)-N,N-dimethylacrylamide (153). - Ethanolic glycine ethyl ester ( 2.5 mmol ) [generated by adding a solution of $\mathrm{KOH}(0.14 \mathrm{~g}, 2 \mathrm{mmol})$ in dry $\mathrm{EtOH}(2 \mathrm{ml})$ dropwise to a solution of glycine ethyl ester hydrochloride (152) (0.35 g, 2.5 mmol ) in dry EtOH ( 5 ml )] was added dropwise to a solution of $N, N$-dimethylchromone-2-carboxamide (129) ( $0.50 \mathrm{~g}, 2.3 \mathrm{mmol}$ ) in dry EtOH $(10 \mathrm{ml})$. The resulting mixture was warmed at $35^{\circ} \mathrm{C}$ for 24 h . Additional glycine ethyl ester ( 9.2 mmol ) [generated by adding a solution of KOH ( $0.60 \mathrm{~g}, 11 \mathrm{mmol}$ ) in dry EtOH ( 4 ml ) dropwise to a solution of glycine ethyl ester hydrochloride () (1.29 g, 9.2 mmol ) in dry EtOH (5 ml)] was added and the mixture was warmed at $35^{\circ} \mathrm{C}$ for 4 days, and at room temperature for 23 days. After cooling, the mixture was filtered and the filtrate was evaporated to give a red oil (1.53 g) which was
chromatographed [flash chromatography on silica gel; elution with EtOAc] to afford 3 fractions, viz.,
i) an oil ( $0.28 \mathrm{~g}, 37 \%$ ) which crystallized and was recrystallized from EtOAc to afford 2-(N-carbethoxymethylamino)-3-(2-hydroxybenzoyl)-N,Ndimethylacrylamide (153) ( $0.19 \mathrm{~g}, 25 \%$ ), m.p. $134-135^{\circ} \mathrm{C}$ (from EtOH); (Found : C, $59.8 ; \mathrm{H}, 6.2 ; \mathrm{N}, 8.6 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires : C, 60.0; H, 6.3; $\mathrm{N}, 8.7 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.05$ and $3.12(6 \mathrm{H}$, 2 x s, $\left.\mathrm{NMe}_{2}\right), 4.07\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2} \mathrm{NH}\right), 4.24(2 \mathrm{H}, \mathrm{q}, \mathrm{CH} \mathrm{Me}), 5.80$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.81\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.93\left(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, $7.36\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.61\left(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 10.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH})$ and $13.01(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.10\left(\mathrm{CH}_{2} \mathrm{Me}\right), 34.36$ and $38.51\left(\mathrm{NMe}_{2}\right), 45.82\left(\mathrm{NHCH}_{2}\right), 61.86\left(\mathrm{CH}_{2} \mathrm{Me}\right), 89.20(\mathrm{C}-3), 118.37$ and $118.40\left(C-3^{\prime}\right.$ and $\left.C-5^{\prime}\right), 120.09\left(C-1^{\prime}\right), 128.04\left(C-6^{\prime}\right), 134.46\left(C-4^{\prime}\right)$, $158.15(\mathrm{C}-2), 162.35\left(\mathrm{C}-2^{\prime}\right), 164.13(\mathrm{CO} . \mathrm{N}), 168.82(\mathrm{CO.O})$ and 193.62 $(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3230(\mathrm{NH}), 2990(\mathrm{CH}), 1743(\mathrm{CO} .0)$ and $1640(\mathrm{CO}) ;$ $\mathrm{m} / \mathrm{z} 320\left(M^{+}, 24 \%\right)$ and 248 (100\%);
ii) starting material ( 0.03 g ); and
iii) an oil ( 0.11 g$)$.

1,3-Bis(2-acety1-3-hydroxyphenoxy)-2-hydroxypropane (155).40 - A solution of $\mathrm{KOH}(85 \%$ pellets; $2.3 \mathrm{~g}, 35 \mathrm{mmol})$, $i-\mathrm{PrOH}(25 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}$ (ca. 1 ml ) was added to a stirred solution of 2,6 -dihydroxyacetophenone ( $9.7 \mathrm{~g}, 64 \mathrm{mmol}$ ), epichlorohydrin ( $2.75 \mathrm{ml}, 35 \mathrm{mmol}$ ), and $\mathrm{i}-\mathrm{PrOH}$ $(250 \mathrm{ml})$. The mixture was then boiled under reflux for 96 h , and stirred for 2 days. Half the $i-\mathrm{PrOH}$ was distilled off and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ was then added. After cooling, the precipitated solid was filtered off, washed (i-PrOH and $E t_{2} \mathrm{O}$ ), and recrystallized from $i-\mathrm{PrOH}$ to afford 1,3-bis(2-acetyl-3-hydroxyphenoxy)-2-hydroxypropane (155) (4.6 g, 40\%), m.p. $167-169^{\circ} \mathrm{C}\left(1 i t .,{ }^{40} 165-166^{\circ} \mathrm{C}\right) ; \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.57(3 \mathrm{H}, \mathrm{s}$, impurity), 2.73 (6H, s, COMe), $4.23-4.33(5 \mathrm{H}$, sept, CHOH and 2 x
$\left.\mathrm{OCH}_{2}\right), 4.55-4.62(1 \mathrm{H}$, ses, CHOH$), 6.40$ and $6.63(4 \mathrm{H}, 2 \mathrm{x} \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}, 2$ x $4^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 7.35\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8 \mathrm{~Hz}, 2 \mathrm{x} 5^{\prime}-\mathrm{H}\right)$ and $13.17(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}$ ArOH); $\delta \mathrm{C}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 33.92$ ( COMe ), 68.73 ( CHOH ), 70.02 ( 2 X OCH ), 101.80 and $111.80\left(\mathrm{C}-4^{\prime}\right.$ and $\left(-6^{\prime}\right), 111.45\left(\mathrm{C}-2^{\prime}\right), 136.13\left(\mathrm{C}-5^{\prime}\right), 159.92$ $\left(\mathrm{C}-\mathrm{B}^{\prime}\right), 164.78\left(\mathrm{C}-\mathrm{I}^{\prime}\right)$ and $204.37(\mathrm{CO}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3600-3400(\mathrm{OH})$ and 1618 (CO).

1,3-Bis(2-ethoxycarbonylchromon-5-yloxy)-2-hydroxypropane (156) and 3-(2-acetyl-3-hydroxyphenoxy)-1-(2-ethoxycarbony1chromon-5-yloxy)-2hydroxypropane (157). 40 - An ethanolic solution of NaOEt was generated in situ by adding Na metal (1.1 g, 48 mmol ) to dry EtOH (14 ml) with stirring and heating under reflux. After cooling, $E t_{2} \mathrm{O}(28 \mathrm{ml})$ was added. A warm solution of 1,3-bis(2-acetyl-3-hydroxyphenoxy)-2hydroxypropane (155) (4.0 g, 11 mmol$)$, diethyl oxalate ( 6.94 ml , $51 \mathrm{mmol})$, dry EtOH ( 14 ml ), and dry benzene ( 14 ml ) was then added, and the resulting yellow mixture was boiled under reflux overnight (ca. $16 \mathrm{~h})$. After cooling, dry $\mathrm{Et}_{2} \mathrm{O}(56 \mathrm{ml})$ was added and the resulting precipitate was filtered off, washed $\left(\mathrm{Et}_{2} \mathrm{O}, 28 \mathrm{ml}\right)$, and dried. The solid was then added to $\mathrm{H}_{2} \mathrm{O}(67 \mathrm{ml})$ with stirring, and the mixture was acidified with conc. HCl . The $\mathrm{H}_{2} \mathrm{O}$ was decanted off, and the remaining syrupy solid was dissolved in dry EtOH (14 ml) and dry benzene (14 ml). The solvent was evaporated off to azeotrope off any $\mathrm{H}_{2} \mathrm{O}$. Conc. HCl ( 0.14 ml ), dry EtOH ( 5 ml ), and dry benzene ( 5 ml ) was added to the red oil, and the mixture was boiled under reflux for 5 min. Since no precipitation occurred, the mixture was azeotroped with additional dry EtOH-benzene (1:1; 28 ml ). The resulting oil was dissolved in dry EtOHbenzene (1:1; 10 ml ) and conc. HCl ( 0.28 ml ), and boiled under reflux for 5 min . After cooling, the solution was evaporated and azeotroped with dry EtOH-benzene (1:1; 40 ml ) to afford a red oil (3.4 g), half of which was repeatedly chromatographed [flash chromatography on silica
gel; elution with EtOAc-hexane (2:1)] to afford three components, viz., i) starting material ( 0.22 g ) m.p. $171-172^{\circ} \mathrm{C}$;
ii) a solid which was recrystallised from EtoH to afford 1,3-bis(2-ethoxycarbonylchromon-5-yloxy)-2-hydroxypropane (156) (0.151 g), m.p $186-188^{\circ} \mathrm{C}\left(1 i t . \mathrm{C}^{40} 180-182^{\circ} \mathrm{C}\right) ; \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.42(6 \mathrm{H}, \mathrm{t}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 4.34-4.38$ and $4.49-4.59\left(5 \mathrm{H}, 2 \mathrm{xm}, \mathrm{CHOH}\right.$ and $\left.2 \mathrm{x} \mathrm{OCH}_{2}\right), 4.45$ ( $4 \mathrm{H}, \mathrm{q}, 2 \mathrm{x} \mathrm{CH} \mathrm{Me}$ ) , $4.86(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, \mathrm{CHOH}), 6.96(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}=\mathrm{C})$, 6.97 and $7.16(4 \mathrm{H}, 2 \times \mathrm{d}, J 8 \mathrm{~Hz}, 2 \mathrm{x} 6-\mathrm{H}$ and $8-\mathrm{H})$ and $7.60(2 \mathrm{H}, \mathrm{t}, J$ $8 \mathrm{~Hz}, 2 \mathrm{x} 7-\mathrm{H}) ; \delta \mathrm{C}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.06\left(\mathrm{CH}_{2} \mathrm{Me}\right), 62.89\left(\mathrm{CH}_{2} \mathrm{Me}\right), 67.76$ $(\mathrm{CHOH}), 70.36(2 \mathrm{X} \mathrm{OCH} 2), 109.64$ and $111.13(\mathrm{C}-6$ and $\mathrm{C}-8), 115.66$ $(C-4 a), 116.21(C-3), 134.88(C-7), 150.66(C-2), 157.69(C-8 a), 158.83$ $(\mathrm{C}-5), 160.46(\mathrm{CO} .0)$ and $178.19(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3600-3200(\mathrm{OH})$, 1748 (CO.0) 1666 and 1650 (CO); and
iii) a mixture ( 0.73 g ), shown, by TLC, to comprise two components, of which 70 mg was chromatographed [preparative layer chromatography; elution with EtOAc-hexane (2:1)] to afford 3-(2-acetyl-3-hydroxyphenoxy)-1-(2-ethoxycarbonylchromon-5-yloxy)-2-hydroxypropane (157) ( 0.038 g ), m.p. $140-142^{\circ} \mathrm{C}$ (from EtOH); ${ }^{\mathrm{a}} \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.43$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}\right), 2.72(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 4.26-4.33$ and $4.36-4.39(4 \mathrm{H}, 2 \mathrm{x}$ $\left.\mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 4.46\left(3 \mathrm{H}, \mathrm{q}, \mathrm{CHOH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6 \mathrm{~Hz}, \mathrm{CHOH})$, 6.44 and $6.57\left(2 H, 2 \times \mathrm{d}, J 8 \mathrm{~Hz}, 4^{\prime}-\right.$ and $\left.6^{\prime}-H\right), 6.90$ and $7.25(2 \mathrm{H}, 2 \mathrm{x}$ d, J 8 and $9 \mathrm{~Hz}, 6-\mathrm{H}$ and $8-\mathrm{H}), 6.99(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.32(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8 \mathrm{~Hz}$, $\left.5^{\prime}-\mathrm{H}\right), 7.64(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8 \mathrm{~Hz}, 7-\mathrm{H})$ and $13.18(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 14.06\left(\mathrm{CH}_{2} \mathrm{Me}\right), 33.96$ ( COMe ), $63.03\left(\mathrm{CH}_{2} \mathrm{Me}\right), 68.03$ ( CHOH ), 69.32 ( $\mathrm{CH}_{2} \mathrm{OPh}$ ), 72.25 ( $\left.\mathrm{CH}_{2} \mathrm{OChromonyl}\right), 102.03$ and $111.14\left(\mathrm{C}-4^{\prime}\right.$ and $\mathrm{C}-6^{\prime}$ ), 110.59 and $112.07(\mathrm{C}-6$ and $\mathrm{C}-8), 111.40\left(\mathrm{C}-2^{\prime}\right), 115.99(\mathrm{C}-4 \mathrm{a}), 116.13$ $(C-3), 134.96(C-7), 136.09(C-5), 150.99(C-2), 157.64(C-8 a), 158.79$ $(\mathrm{C}-5), 160.25$ and $160.32\left(\mathrm{C}-3^{\prime}\right.$ and CO .0$), 164.62(\mathrm{C}-1), 178.55(\mathrm{C}-4)$

[^30]and $204.88(\mathrm{CO}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3600-3300(\mathrm{OH}), 1725(\mathrm{CO} .0), 1660$ (CO) and 1625 (COMe).

1,3-Bis(2-carboxychromon-5-yloxy)-2-hydroxypropane disodium salt [disodium cromoglycate (DSCG)] (158). ${ }^{40-2 N-N a O H(0.233 \mathrm{ml}, 0.8 \mathrm{mmol}) ~}$ was added dropwise to a stirred suspension of 1,3-bis(2-ethoxycarbonylchromon-5-yloxy)-2-hydroxypropane (156) ( $0.122 \mathrm{~g}, 0.2 \mathrm{mmol}$ ) in absolute EtOH $(0.58 \mathrm{ml})$. Three drops of $\mathrm{H}_{2} \mathrm{O}$ was added to the yellow/red paste and the mixture was boiled under reflux for 1 h . The solid dissolved after ca. 5 min . After cooling, EtOH ( 1.16 ml ) was added and the precipitate was filtered, washed (absolute EtOH ), and dried under vacuum at $50^{\circ} \mathrm{C}$ for 3 h to afford crude 1,3 -bis(2-carboxychromon-5-yloxy)-2-hydroxypropane disodium salt (158) (0.109 g, 91\%); ${ }^{\mathrm{a}} \delta_{\mathrm{H}}$ (400 MHz; $\mathrm{D}_{2} \mathrm{O} /$ acetone) $4.17-4.32(5 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$ and 2 x OCH ), $4.55-4.71(10 \mathrm{H}, \mathrm{m}, \mathrm{HDO}), 6.37(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}=\mathrm{C}), 6.71$ and $6.80(4 \mathrm{H}, 2$ $x \mathrm{~d}, J 7 \mathrm{~Hz}, 2 \mathrm{x} 6-\mathrm{H}$ and $8-\mathrm{H})$ and $7.14(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, 2 \times 7-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 67.92(\mathrm{CHOH}), 70.89\left(2 \times \mathrm{OCH}_{2}\right), 109.56$ and 111.21 ( $\mathrm{C}-6$ and $\mathrm{C}-8), 112.70(\mathrm{C}-3), 113.74(\mathrm{C}-4 \mathrm{a}), 135.98(\mathrm{C}-7), 156.87(\mathrm{C}-2), 157.49$ $(\mathrm{C}-8 \mathrm{a}), 158.25(\mathrm{C}-5), 165.63(\mathrm{CO} .0 \mathrm{Na})$ and $181.58(\mathrm{C}-4) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3700-2800$ ( OH and $\mathrm{H}_{2} \mathrm{O}$ of crystallisation) and 1635 (CO).

Ring-opening of 1,3-bis(2-carboxychromon-5-yloxy)-2-hydroxypropane disodium salt [disodium cromoglycate (DSCG)] (158). - A solution of 1,3-bis(2-carboxychromon-5-yloxy)-2-hydroxypropane disodium salt (158) ( $0.031 \mathrm{~g}, 0.05 \mathrm{mmol}$ ) in $\mathrm{D}_{2} \mathrm{O}(0.7 \mathrm{ml})$ was added to aqueous $\mathrm{Me}_{2} \mathrm{NH}(43 \%$ $\mathrm{w} / \mathrm{w}, 74 \mu \mathrm{l}, 0.62 \mathrm{mmol}$ ) in an NMR tube. After 0.5 h , the resulting red solution was examined by NMR spectroscopy and showed no evidence of

[^31]starting material, as illustrated in Figures 25 and 26 (p. 105 and 106).a [Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of the reaction mixture correspond essentially with the ring-opened disodium 1,3-bis[2-(3-carboxy-3-
dimethylaminoacryloyl)-3-hydroxyphenoxy]-2-hydroxypropane (159).] After 24 h , the spectra of the reaction solution were essentially the same. After 32 h , the red solution was poured into a round bottomed flask, and dry benzene ( 5 ml ) was added.b The solution was warmed under vacuum to azeotrope off the $\mathrm{H}_{2} \mathrm{O}$. This process was repeated several times in an attempt to reduce the volume of $\mathrm{H}_{2} \mathrm{O}$, and the resulting solution was dried under vacuum for 2 h at $\mathrm{ca} .70^{\circ} \mathrm{C}$ to afford crude starting material (0.033 g, 100\%).

[^32]
### 3.3 NMR CONFORMATIONAL STUDIES.

Variable-temperature ${ }^{1} \mathrm{H}$ spectra were recorded on a Bruker AM 300 MHz NMR spectrometer, from $\mathrm{CDCl}_{3}$ solutions of the chromone-2-carboxamides, and temperature errors are estimated at $\pm 1 \mathrm{~K}$. The n.O.e difference spectra were recorded on a Bruker AM 300 MHz NMR spectrometer, from a $\mathrm{CDCl}_{3}$ solution at 298 K .

The coalescence temperatures ( $T_{c}$ ) were obtained from the variabletemperature spectra (Figure 41) with an estimated $\pm 2 \mathrm{~K}$ accuracy. The estimated error of the $T_{c}$ values, viz., $\pm 3 K$ is the sum of this error and the accuracy of the NMR spectrometer temperature, viz., $\pm 1 \mathrm{~K}$. The ${ }^{1} \mathrm{H} N M R$ frequency separations measured at slow site-exchange ( $\Delta v_{0}$ ) are either maximum frequency separations $\left(\Delta \nu_{0}\right)$ or separations corresponding to the minimum temperature below which precipitation of material precluded further measurement. The frequency differences at coalescence ( $\Delta \nu_{c}$ ) were obtained from the variable-temperature spectra by extrapolation of linear plots of the frequency separations ( $\Delta v$ ) against temperature ( $T$ ). Extrapolation data and plots are included after the variable temperature spectra (Figure 41). The estimated error of the $\Delta \nu_{c}$ values is the sum of the measurement error $[ \pm 0.5 \mathrm{~mm}$ (for $1 \mathrm{~mm}=1 \mathrm{~Hz}$ ) and $\pm 0.3 \mathrm{~mm}$ (for $2 \mathrm{~mm}=1 \mathrm{~Hz})$ ] and the linear extrapolation error. The latter error was calculated by substituting $T_{c} \pm 3 \mathrm{~K}$ into the respective linear equation. The rotational energy barriers ( $\Delta G^{*}$ ) were calculated from the coalescence temperatures ( $T_{c}$ ) and the frequencies at coalescence ( $\Delta \nu_{c}$ ). The estimated errors of the $\Delta G^{*}$ data were calculated from the separate effects of the errors in $T_{c}$ and $\Delta \nu_{c}$, and the maximum scatter incorporating both effects was quoted.


FIGURE 41. Variable temperature ${ }^{1}{ }^{H}$ NMR spectra showing $N$-alky signals for selected chromone-2-carboxamides 129-138.

130

| No. $\quad \mathrm{Tc} / \mathrm{K}$ | dV/ Hz | Y CALC) |
| :---: | :---: | :---: |
| 1275 | 4.0 | 3.9 |
| 2285 | 3.1 | 3.4 |
| 3296 | 3.0 | 2.8 |
| 4300 | 2.6 | 2.6 |
| Regression Output: |  |  |
| Constant |  | 17.39826 |
| Std Err of Y Est |  | 0.247249 |
| R Squared |  | 0.88328 |
| No. of Observations |  | 4 |
| Dagrees of Preadom |  | 2 |
| $X$ Cobificiant(s) | -0.0492154 |  |
| Std Err of Coef. 0 | 0.0126503729 |  |



131


132

| No. $\quad \mathrm{Tc} / \mathrm{K}$ | dV/ Hz | Y(CALC) |
| :---: | :---: | :---: |
| 1255 | 1.75 | 1.75 |
| 2265 | 1.25 | 1.25 |
| 3270 | 1.00 | 1.00 |
| Regression Output: |  |  |
| Constant |  | 14.5 |
| Std Err of Y Est |  | 1.11E-06 |
| R Squared |  | 1 |
| No. of Observarions |  | 3 |
| Degrees of Preedom |  | 1 |
| $X$ Coefficient (s) | -0.0500 |  |
| Std Err of Coef. | 0.0000 |  |



134

| No. | $\mathrm{Tc} / \mathrm{R}$ | $\mathrm{d} / \mathrm{/Hz}$ | Y (CALC) |
| :---: | :---: | :---: | :---: |
| 1 | 265 | 1.0 | 1.0 |
| 2 | 275 | 1.0 | 1.0 |
| 3 | 280 | 1.0 | 1.0 |
| 4 | 285 | 1.0 | 1.0 |
| 5 | 290 | 0.9 | 0.9 |
| Regression Output: |  |  |  |
| Constant |  |  | 1.80945 |
| Std Err of Y Est |  |  | 0.03971 |
| R Squared |  |  | 0.40878 |
| No. of Observations |  |  | 5 |
| Degrees of Preadom |  |  | 3 |
| $X$ Cooffic Std Erx | (s) | $\begin{aligned} & 729730 \\ & 422329 \end{aligned}$ |  |





136





## Calculation of the percentage n.O.e.

The percentage n.O.e for each interaction was calculated using equation 13, where $A_{s}, B_{s}, C_{s}$, and $D_{s}$ represent the height, in mm, of a particular peak in a trace divided by the scale for the trace of the spectra $A, B$, $C$, and D respectively (figure 42).

$$
\begin{equation*}
\% \text { n.0.e }=\left(A_{s} / B_{s}\right) \times 100 \times\left(D_{s} / C_{s}\right) \tag{13}
\end{equation*}
$$

Calculations : a) Irradiation at $\nu_{1}: \quad D_{s}=144, C_{s}=104$
Peak $2: A_{S}=.9375, \quad B_{s}=150, \%$ n.0.e $=.87$
Peak $3: A_{S}=.3125, \quad B_{S}=144, \%$ n.0.e $=.30$
b) Irradiation at $v_{2}$ : $\quad D_{s}=144, C_{s}=110$

Peak $1: A_{s}=1.5625, B_{s}=144, \% \mathrm{n} .0 . \mathrm{e}=1.42$
Peak $3: A_{s}=.59375, \quad B_{s}=144, \%$ n.0.e $=.54$
c) Irradiation at $\nu_{3}$ : $\quad D_{s}=144, C_{s}=104$

Peak $1: A_{S}=.390625, B_{S}=144, \% \mathrm{n} .0 . \mathrm{e}=.38$
Peak $2: A_{s}=.76565, \quad B_{S}=150, \%$ n.0.e $=.71$
a)


B) Reference Spectum of A.

### 3.4 CRYSTAL STRUCTURE DETERMINATION OF 2-DIMETHYLAMINO-3-(2-HYDROXYBENZOYL)- $N, N$-DIMETHYLACRYLAMIDE.

## Collection and reduction of intensity data.

The crystal used for data collection was grown from $95 \%$ ethanol. Preliminary investigation was carried out using a Stoe reciprocal lattice explorer. The absence of symmetry in the oscillation photograph and the de Jong-Bouman photograph of the reciprocal lattice plane hko indicated that the crystal was triclinic with the space group $P 1$ or $P \bar{l}$. Crystal density calculation indicated that there were two molecules per unit cell, suggesting $\bar{P} \overline{1}$ as the correct group. The structure was successfully refined in $P \overline{1}$ which confirmed this assignment. X-ray intensity data were measured on an Enraf-Nonius CAD4 diffractometer at 298 K using graphite-monochromated Mo $K \alpha$ radiation ( $\lambda=0.70930 \AA$ ). The data were corrected for Lorenz and polarization effects and for absorption.

## Structure solution and refinement.

Automatic centrosymmetric direct methods were used to determine the positions of the non-hydrogen atoms. The structure was refined using full matrix least-squares; 190 parameters were refined using 3260 observed ( $I>\sigma(I)$ ) reflections. All the non-hydrogen atoms were assigned anisotropic temperature factors. Hydrogen atoms [with the exception of the hydroxy hydrogen $H(0)]$ were placed at calculated positions based on the corresponding carbon atoms and refined with common isotropic temperature factors. The position of $H(0)$ was determined from the difference Fourier map and refined in subsequent cycles. $H(0)$ is involved in an intramolecular hydrogen bond :
$O(1)-H(0) 0.87(3) \AA ; O(2) \ldots H(0) 1.69(3) \AA$; and $O(1)-H(0) \ldots O(2)$
$150.0(2)^{\circ}$. The final refinement converged to an $R$ factor of 0.069 with
unit weights for the reflection data. SHELX 158 was used for the structure solution and refinement.

## Structure Analysis.

The crystal data are summarised in tables 12-23 (Appendix 5.2). The program XANADU 159 was used to calculate dihedral angles of the amide and enamine functionalities (table 17) and the hydrogen bond (table 18), mean planes through various groups of atoms (tables 19-22) and the angles between the normals of the planes (table 23). The plotting program PLUTO ${ }^{160}$ was used to obtain the molecular structure (figure 21 p.97) and packing diagram (figure 22 p.98) viewed in the direction of minimum overlap. Grystal data are summarised in table 12 , the atomic co-ordinates and equivalent isotropic temperature factors for the nonhydrogen atoms and the atomic co-ordinates and isotropic temperature factor for $H(0)$ in table 13, the atomic co-ordinates and isotropic temperature factors for the hydrogen atoms in table 16 , bond lengths and angles for non-hydrogen atoms and $H(0)$ in table 14 , and the anisotropic temperature factors for non-hydrogen atoms in table 15. Observed and calculated structure factors are available from the Department of Chemistry and Biochemistry, Rhodes University, Grahamstown, South Africa.

### 3.5 KINETIC STUDIES.

Standard ethanolic chromone-2-carboxamide solutions were prepared by the following illustrative procedure : $N$, $N$-dimethylchromone-2-carboxamide $129(5.0 \mathrm{mg}, 23.0 \mathrm{mmol})$ was dissolved in dry EtOH ( 10 ml ) in a 10 ml volumetric flask and the resulting solution ( $0.46 \mathrm{ml}, 1.05 \times 10^{-3} \mathrm{mmol}$ ) was diluted in a 10 ml volumetric flask. This solution (1.00 $\mathrm{ml}, 1.05 \mathrm{x}$ $10^{-3} \mathrm{mmol}$ ) was then diluted in a 3 ml reaction volumetric flask to the required initial concentration. The volumes and corresponding dimethylamine concentrations used are summarised in Table 24.

Dilution and triggering of the reaction were carried out in a 3 ml volumetric flask [for the chromone-2-carboxamides (129,130,132, and 133) standard amide solutions ( 1.00 ml ) were added to the volumetric flask containing the required ethanolic dimethylamine (33\% w/w; 0.22-1.43 ml ) ; while ethanolic dimethylamine ( $33 \% \mathrm{w} / \mathrm{w}$; 32.54 - $54.23 \mu \mathrm{l}$ ) was added to the flask containing $N, N$-dimethyl-7-nitro-chromone-2-carboxamide 131 $(1.00 \mathrm{ml})]$. The stopwatch was started after combining the reagents and mixing was achieved by inverting the flask five times. The reaction was then transferred to the curvette and initial readings were taken after 1-2 min.

Concentrations and corresponding absorptions required for the Beer's Law determinations of the acrylamides $(140,142-143)$ were calculated using molar absorption coefficients [e.g. for the parent acrylamide (140), $\lambda_{\max }$ 357 ( $\varepsilon 29647 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ )]. Standard ethanolic acrylamide solutions were prepared by the following procedure : (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N, N-dimethylacrylamide (140) (5.35 mg, 20.4 mmol$)$ was dissolved in dry EtOH ( 10 ml ) in a 10 ml volumetric flask and the resulting solution ( $0.50 \mathrm{ml}, 1.02 \times 10^{-4} \mathrm{mmol}$ ) was diluted in a 10 ml
volumetric flask. This solution was then diluted in a 3 ml volumetric flask. The volumes used for the final dilution, and the concentrations, calculated absorptions ( $A_{c}$ ), and measured absorptions ( $A_{m}$ ) are summarised in table 25 p.186. The linear regression data is summarised below Table 25.

TABLE 24. Ethanolic dimethylamine concentrations.

| $\mathrm{R}^{1}$ | $\begin{gathered} \text { Volume }{ }^{\text {a }} \\ (\mathrm{ml}) \end{gathered}$ | $\begin{gathered} {\left[\mathrm{Me}_{2} \mathrm{NH}\right]} \\ \left(\mathrm{mol} .1^{-1}\right) \end{gathered}$ | $\mathrm{R}^{1}$ | $\begin{gathered} \text { Volume }{ }^{\text {b }} \\ (\mu 1) \end{gathered}$ | $\begin{gathered} {\left[\mathrm{Me}_{2} \mathrm{NH}\right]} \\ \left(10^{-2} \mathrm{~mol}^{-1} 1^{-1}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H | 0.55 | 1.00 | $\mathrm{NO}_{2}$ | 32.54 | 5.9 |
|  | 0.66 | 1.20 |  | 37.96 | 6.9 |
|  | 0.77 | 1.40 |  | 43.38 | 7.9 |
|  | 0.88 | 1.60 |  | 48.81 | 8.9 |
| OMe | 0.99 | 1.80 |  | 54.23 | 9.9 |
|  | 1.10 | 2.00 |  |  |  |
|  | 1.21 | 2.20 |  |  |  |
|  | 1.32 | 2.40 |  |  |  |
|  | 1.43 | 2.60 |  |  |  |
| F | 0.22 | 0.40 |  |  |  |
|  | 0.27 | 0.50 |  |  |  |
|  | 0.33 | 0.60 |  |  |  |
|  | 0.38 | 0.70 |  |  |  |
|  | 0.44 | 0.80 |  |  |  |
| C1 | 0.11 | 0.20 |  |  |  |
|  | 0.17 | 0.30 |  |  |  |
|  | 0.22 | 0.40 |  |  |  |
|  | 0.27 | 0.50 |  |  |  |
|  | 0.33 | 0.60 |  |  |  |

$a \pm 0.1 \mathrm{ml} . \quad b \pm 0.4 \mu \mathrm{l}$.

TABLE 25. Beer's Law data for 2-(dimethylamino)-3-(2-hydroxybenzoyl)-N, $N$-dimethylacrylamide 140 .

| [acrylamide] <br> $\left(10^{-5} \mathrm{~mol} 1^{-1}\right)$ | volume <br> $(\mathrm{ml})$ | $A_{\mathrm{C}}$ | $\mathrm{A}_{\mathrm{m}}$ |
| :---: | :---: | :---: | :---: |
| 0.7 | 0.20 | 0.2 | 0.233 |
| 1.4 | 0.40 | 0.4 | 0.440 |
| 2.0 | 0.59 | 0.6 | 0.639 |
| 2.7 | 0.79 | 0.8 | 0.858 |
| 3.4 | 0.99 | 1.0 | 1.083 |
| 4.0 | 1.19 | 1.2 | 1.305 |

The linear regression data are summarised below :
(i) determinations of Beer's law p.187-189;
(ii) determinations of the pseudo first order rate constants ( $k_{\mathrm{a}}$ ) p.190-214;
(iii) determinations of the observed rate constants ( $k_{0 b s}$ ) p. 215-217. (iv) Hammett plot p.217.
(i) Determinations of Beer's law.
$\mathrm{R}=\mathrm{H}$
No

| No. Ca/10.5 | Absorbance | Y(calc) |  |
| ---: | :---: | :---: | ---: |
| 1 | 0.68 | 0.233 | 0.224 |
| 2 | 1.35 | 0.440 | 0.438 |
| 3 | 2.02 | 0.639 | 0.651 |
| 4 | 2.70 | 0.858 | 0.867 |
| 5 | 3.37 | 1.083 | 1.081 |
| 6 | 4.05 | 1.305 | 1.297 |

Constant
Regression Output:
Std Err of Y Est
No. of Observations
Degrees of Freedom
$X$ Coefficient(s) 0.31828
Std Err of Coef. 0.00345
$\mathrm{R}-\mathrm{H}$
No.

| Ca/lo-5 | Absorbance | Y(cale) |  |
| :---: | :---: | :---: | :---: |
| 0.68 | 0.235 | 0.222 |  |
| 1.35 | 0.432 | 0.437 |  |
| 2.02 | 0.641 | 0.651 |  |
| 2.70 | 0.862 | 0.868 |  |
| 3.37 | 1.080 | 1.083 |  |
| 4.05 | 1.311 | 1.300 |  |
| Regression Output: |  |  |  |

Constant
f Est
0.00478
0.01055
0.99945

R Squared
. 6
$X$ Coefficient(s) 0.31985
Std Err of Coef. 0.00374

142
$\mathrm{R}=\mathrm{OMe}$
No.

| No. | Ca/ $10-5$ | Absorbance | $Y($ calc $)$ |
| ---: | :---: | :---: | :---: |
| 1 | 0.51 | 0.207 | 0.216 |
| 2 | 1.02 | 0.416 | 0.408 |
| 3 | 1.53 | 0.599 | 0.599 |
| 4 | 2.04 | 0.802 | 0.791 |
| 5 | 2.56 | 0.978 | 0.986 |
| 6 | 3.06 | 1.171 | 1.173 |

Constant Regression Outpur:

Std Err of Y Est
R Squared
Mo. of Obsarvations
Dagrees of Freedom
$X$ Coefficient(s) 0.37521
Std Err of Cosf. $\quad 0.00439$

## $\mathrm{R}=\mathrm{OMe}$

No. Ca/10-5 Absorbance $Y($ calc $)$

| 0.51 | Absorbance | (calc) |
| :---: | :---: | :---: |
| 0.221 | 0.227 |  |
| 1.02 | 0.429 | 0.424 |
| 1.53 | 0.626 | 0.621 |
| 2.04 | 0.821 | 0.819 |
| 2.56 | 1.011 | 1.020 |
| 3.06 | 1.216 | 1.213 |

Regression Output:
Constant

No. of Observations
Degrees of Preedom
$X$ Coefficient(s) 0.38678
Std Err of Coef. 0.00305





R-NO2

| No. | Ca/10-5 | Absorbance | Y(calc) |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.95 | 0.224 | 0.206 |  |
| 2 | 1.90 | 0.419 | 0.423 |  |
| 3 | 2.85 | 0.620 | 0.640 |  |
| 4 | 3,79 | 0.848 | 0.855 |  |
| 5 | 4,74 | 1.072 | 1.072 |  |
| 6 | 5.69 | 1.302 | 1.289 |  |
| Regression Outpur: 0.01110 |  |  |  |  |
| Constant |  |  |  | -0.01110 |
| Std Err of Y Est |  |  |  | 0.01550 |
| R Squared |  |  |  | 0.99883 |
| No. of Observations |  |  |  | 6 |
| Degrees of Preedom |  |  |  |  |
|  | $X$ Coeffici | lent (s) | 0.22849 |  |
|  | Std Err of | Coef. | 0.00391 |  |


$\mathrm{R}=\mathrm{NO} 2$

| No, | Ca/10-5 | Absorbance | Y(cale) |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.95 | 0.215 | 0.201 |  |
| 2 | 1.90 | 0.420 | 0.417 |  |
| 3 | 2.85 | 0.612 | 0.634 |  |
| 4 | 3.79 | 0.840 | 0.847 |  |
| 5 | 4.74 | 1.062 | 1.064 |  |
| 6 | 5.69 | 1.294 | 1.280 |  |
| Regression Output: 0,01530 |  |  |  |  |
| Constant |  |  |  | -0.01530 |
|  |  |  |  | 0.01518 |
| R Squared |  |  |  | 0.99887 |
| No. of Observations |  |  |  |  |
| Degrees of Freedom |  |  |  |  |
|  | $X$ Coeffici | ient(s) | 0.22765 |  |
|  | Std Err of | Coef. | 0.00383 |  |


| 144 | $\mathrm{R}=\mathrm{F}$ |  |  |
| :---: | :---: | :---: | :---: |
| No. | Ca/10-5 Absorbance | Y(calc) |  |
| 1 | 0.620 .221 | 0.229 |  |
| 2 | 1.250 .426 | 0.431 |  |
| 3 | $1.87 \quad 0.651$ | 0.631 |  |
| 4 | 2.50 0.835 | 0.835 |  |
| 5 | 3.121 .033 | 1.035 |  |
| 6 | 3.751 .233 | 1.238 |  |
| Regression Output: |  |  |  |
| Constant |  |  | 0.02712 |
| Std Err of Y Est |  |  | 0.01129 |
| R Squared |  |  | 0.99929 |
| No. of Observations |  |  | 6 |
| Degrees of Freedom |  |  | 4 |
|  | $X$ Coefficient (s) | 0.32303 |  |
|  | Std Err of Coef. | 0.00432 |  |

## $R=F$

| No. | Ca/ 10-5 | Absorbance | Y(calc) |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.62 | 0.231 | 0.225 |  |
| 2 | 1.25 | 0.423 | 0.426 |  |
| 3 | 1.87 | 0.624 | 0.625 |  |
| 4 | 2.50 | 0.818 | 0.828 |  |
| 5 | 3.12 | 1.033 | 1.027 |  |
| 6 | 3.75 | 1.232 | 1.230 |  |
| Regression Output: |  |  |  |  |
| Constant |  |  |  | 0.02437 |
| Sed Err of Y Est |  |  |  | 0.00682 |
| R Squared |  |  |  | 0.99974 |
| No. of Observations |  |  |  | 6 |
| Dagreas of Preadom |  |  |  | 4 |
|  | $X$ Cooffici | ant (s) | 0.32139 |  |
|  | Std Err of | Cosf. | 0.00261 |  |



145
$\mathrm{R}=\mathrm{Cl}$

| No: | Ca/l0-5 | Absorbance | $\mathrm{Y}(\mathrm{calc})$ |  |
| ---: | ---: | ---: | ---: | :---: |
| 1 | 0.59 | 0.207 | 0.210 |  |
| 2 | 1.17 | 0.406 | 0.401 |  |
| 3 | 1.76 | 0.600 | 0.596 |  |
| 4 | 2.35 | 0.783 | 0.790 |  |
| 5 | 2.93 | 0.978 | 0.981 |  |
| 6 | 3.52 | 1.179 | 1.175 |  |
| Regression Ourput: |  |  |  |  |

Constant
Std Err of Y Est
R Squared
No. of Observations Degrees of Freedom
$X$ Coofficient(s) 0.32938
Std Err of Coef. 0.00226
$\mathrm{R}=\mathrm{Cl}$

| No. | $\mathrm{Ca} / 10-5$ | Absorbance | Y(calc) |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.59 | 0.214 | 0.221 |  |
| 2 | 1.17 | 0.427 | 0.414 |  |
| 3 | 1.76 | 0.613 | 0.611 |  |
| 4 | 2.35 | 0.801 | 0.808 |  |
| 5 | 2.93 | 0.994 | 1.002 |  |
| 6 | 3,52 | 1.206 | 1.199 |  |
| Regression Output: |  |  |  |  |
| Constant |  |  |  | 0.02384 |
| Std Err of Y Est |  |  |  | 0.00967 |
| R Squared |  |  |  | 0.99944 |
| No. of Observations |  |  |  | 6 |
| Degrees of Freedom |  |  |  | 4 |
|  | $X$ Coeffici | lent(s) | 0.33376 |  |
|  | Std Err of | f Coef. | 0.00394 |  |



(ii) Determinations of pseudo first order rate constants $\left(k_{\mathrm{a}}\right)$.

129

| RUN 1 | $\mathrm{R}=\mathrm{H}$ | Ca-3.5 | $\mathrm{Cb}=1.0$ | A-1.163 | 2R-83 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | rime | Absorbance | A-At | $\ln (\mathrm{A}-\mathrm{At})$ | Y(cale) |
| 1 | 1.58 | 0.050 | 1.113 | 0.107 | 0.092 |
| 2 | 5.02 | 0.106 | 1.057 | 0.055 | 0.042 |
| 3 | 7.50 | 0.146 | 1.017 | 0.017 | 0.006 |
| 4 | 10.00 | 0.185 | 0.978 | -0.022 | -0.030 |
| 5 | 15.00 | 0.255 | 0.908 | -0.097 | -0.102 |
| 6 | 20.00 | 0.322 | 0.841 | -0.173 | -0.174 |
| 7 | 25.00 | 0.383 | 0.780 | -0.248 | -0.246 |
| 8 | 30.00 | 0.439 | 0.724 | -0.323 | -0.318 |
| 9 | 35.00 | 0.491 | 0.672 | -0.397 | -0.390 |
| 10 | 40.00 | 0.539 | 0.624 | -0.472 | -0.462 |
| 11 | 45.02 | 0.583 | 0.580 | -0.545 | -0.535 |
| 12 | 50.00 | 0.624 | 0.539 | -0.618 | -0.607 |
| 13 | 55.00 | 0.662 | 0.501 | -0.691 | -0.679 |
| 14 | 60.00 | 0.697 | 0.466 | -0.764 | -0.751 |
| 15 | 70.00 | 0.759 | 0.404 | -0.906 | -0.895 |
| 16 | 80.03 | 0.812 | 0.351 | -1.047 | -1.040 |
| 17 | 90.00 | 0.858 | 0.305 | -1.187 | -1.184 |
| 18 | 100.02 | 0.897 | 0.266 | -1.324 | -1.328 |
| 19 | 110.00 | 0.930 | 0.233 | -1.457 | -1.472 |
| 20 | 120.00 | 0.960 | 0.203 | -1.595 | -1.616 |



Constant
Regression Output:

Std Err of Y Est
0.1147
0.0111

No. of Observations
0.9996

Degrees of Freedom 18

| RUN 2 | $\mathrm{R}=\mathrm{H}$ | $\mathrm{Ca}=3.5$ | $\mathrm{Cb}=1.0$ | A=1. 156 | 7R-82 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | time | Absorbance | A-At | $\ln (A-A \tau)$ | Y(calc) |
| 1 | 1.15 | 0.043 | 1.113 | 0.107 | 0.099 |
| 2 | 5.00 | 0.101 | 1.055 | 0.054 | 0.044 |
| 3 | 7.50 | 0.140 | 1.016 | 0.016 | 0.008 |
| 4 | 10.00 | 0.178 | 0.978 | -0.022 | -0.028 |
| 5 | 15.00 | 0.248 | 0.908 | -0.097 | -0.099 |
| 6 | 20.00 | 0.313 | 0.843 | -0.171 | -0.171 |
| 7 | 25.00 | 0.372 | 0.784 | -0.243 | -0.242 |
| 8 | 30.00 | 0.428 | 0.728 | -0.317 | -0.314 |
| 9 | 35.00 | 0.479 | 0.677 | -0.390 | -0.385 |
| 10 | 40.00 | 0.527 | 0.629 | -0.464 | -0.457 |
| 11 | 45.00 | 0.570 | 0.586 | -0.534 | -0.528 |
| 12 | 50.00 | 0.611 | 0.545 | -0.607 | -0.600 |
| 13 | 55.00 | 0.649 | 0.507 | -0.679 | -0.671 |
| 14 | 60.00 | 0.684 | 0.472 | -0.751 | -0.743 |
| 15 | 70.00 | 0.747 | 0.409 | -0.894 | -0.886 |
| 16 | 80.00 | 0.801 | 0.355 | -1.036 | -1.029 |
| 17 | 90.00 | 0.847 | 0.309 | -1.174 | -1.172 |
| 18 | 100.02 | 0.887 | 0.269 | -1.313 | -1.315 |
| 19 | 110.00 | 0.921 | 0.235 | -1.448 | -1.458 |
| 20 | 120.02 | 0.951 | 0.205 | -1. 585 | -1.601 |



Constant
Regression Output:
Std Err of
$R$ Squared
No. of Observations
0.1152
0.0076
0.9998

Degrees of Preedom
20
18

X Coefficients (s) -0.0143
Std Err of Coef. 0.0000
RUN 1
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

| R=H | Ca $=3.5$ $C b$ <br> time Absorbance |  |
| :---: | :---: | :---: |
| 1.77 | 0.068 |  |
| 3.97 | 0.118 |  |
| 5.00 | 0.143 |  |
| 7.50 | 0.198 |  |
| 10.00 | 0.255 |  |
| 12.50 | 0.299 |  |
| 15.00 | 0.344 |  |
| 17.50 | 0.389 |  |
| 20.02 | 0.430 |  |
| 25.00 | 0.506 |  |
| 30.00 | 0.573 |  |
| 35.00 | 0.634 |  |
| 40.00 | 0.689 |  |
| 45.00 | 0.738 |  |
| 50.02 | 0.781 |  |
| 55.00 | 0.819 |  |
| 60.00 | 0.855 |  |
| 70.00 | 0.913 |  |
| 80.00 | 0.960 |  |
| 90.00 | 0.997 |  |
|  |  |  |

2R=85
Y(calc)
0.083
0.036
0.014
$-0.040$
-0.094
-0.148
-0. 201
$-0.255$
$-0.309$
$-0.417$
$-0.524$
$-0.632$
-0.739
-0.847
$-0.955$
$-1.062$
$-1.170$
1.385
-1.600
$-1.815$
0.1213
0.0072
0.9999

20
18
Constant

| Std Err of Y Est |  |
| :--- | ---: |
| R Squared |  |
| No. of Observations |  |
| Degrees of Freadom |  |
|  |  |
| X Coefficient(s) | -0.0215 |
| Std Err of Coef. | 0.0001 |

RUN 2
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21







X Coefficient(s) $\quad \mathbf{0 . 0 4 1 9}$
Std Err of Coef. 0.0004


RUN $2 \quad \mathrm{R}=\mathrm{OMa} \quad \mathrm{Ca}=3.0 \quad \mathrm{Cb}=1.8 \quad \mathrm{~A}=1.166 \quad 2 \mathrm{R}-\mathrm{Bl}$

| No. | time | Absorbance | A-At | $\ln (A-A t)$ | Y(calc) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.03 | 0.052 | 1.114 | 0.108 | 0.098 |
| 2 | 3.00 | 0.103 | 1.063 | 0.061 | 0.052 |
| 3 | 5.00 | 0.153 | 1.013 | 0.013 | 0.005 |
| 4 | 7.00 | 0.202 | 0.964 | -0.037 | -0.042 |
| 5 | 8.50 | 0.236 | 0.930 | -0.073 | -0.078 |
| 6 | 10.00 | 0.270 | 0.896 | -0.110 | -0.113 |
| 7 | 12.50 | 0.323 | 0.843 | -0.171 | -0.171 |
| 8 | 15.00 | 0.372 | 0.794 | -0.231 | -0.230 |
| 9 | 17.52 | 0.419 | 0.747 | -0.292 | -0.289 |
| 10 | 20.00 | 0.463 | 0.703 | -0.352 | -0.347 |
| 11 | 22.50 | 0.504 | 0.662 | -0.412 | -0.406 |
| 12 | 25.00 | 0.542 | 0.624 | -0.472 | -0.465 |
| 13 | 27.50 | 0.578 | 0.588 | -0.531 | -0.523 |
| 14 | 30.00 | 0.612 | 0.554 | -0.591 | -0.582 |
| 15 | 32.50 | 0.644 | 0.522 | -0.650 | -0.641 |
| 16 | 35.00 | 0.674 | 0.492 | -0.709 | -0.699 |
| 17 | 40.00 | 0.728 | 0.438 | -0.826 | -0.817 |
| 18 | 45.00 | 0.775 | 0.391 | -0.939 | -0.934 |
| 19 | 50.00 | 0.818 | 0.348 | -1.056 | -1.051 |
| 20 | 55.00 | 0.855 | 0.311 | -1.168 | -1.169 |
| 21 | 60.00 | 0.888 | 0.278 | -1.280 | -1.286 |
| 22 | 70.00 | 0.942 | 0.224 | -1.496 | -1.521 |
| Regression Output: |  |  |  |  |  |
| Constant |  |  |  | 0.1219 |  |
| Std Err of Y Est |  |  |  | 0.0087 |  |
| $R$ Squared |  |  |  | 0.9997 |  |
|  |  |  |  | 22 |  |
| No. of Observations |  |  |  | 20 |  |



| 1 | $\mathrm{R}=0 \mathrm{Ma}$ | $\mathrm{Ca}=3.0$ | $C b=2.0$ | $A=1.182$ | 7R=82 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | time | Absorbance | A-At | $\ln (A-A t)$ | Y(calc) |
| 1 | 1.32 | 0.072 | 1.110 | 0.104 | 0.098 |
| 2 | 2.50 | 0.112 | 1.070 | 0.068 | 0.062 |
| 3 | 5.00 | 0.194 | 0.988 | -0.012 | -0.016 |
| 4 | 7.00 | 0.255 | 0.927 | -0.076 | -0.079 |
| 5 | 9.00 | 0.313 | 0.869 | -0.140 | -0.141 |
| 6 | 10.00 | 0.340 | 0.842 | -0.172 | -0.172 |
| 7 | 12.58 | 0.406 | 0.776 | -0.254 | -0.253 |
| 8 | 15.00 | 0.463 | 0.719 | -0.330 | -0.329 |
| 9 | 17.52 | 0.518 | 0.664 | -0.409 | -0.407 |
| 10 | 20.00 | 0.568 | 0.614 | -0.488 | -0.485 |
| 11 | 22.50 | 0.615 | 0.567 | -0.567 | -0.563 |
| 12 | 25.00 | 0.658 | 0.524 | -0.646 | -0.641 |
| 13 | 27.50 | 0.697 | 0.485 | -0.724 | -0.719 |
| 14 | 30.00 | 0.733 | 0.449 | -0.801 | -0.797 |
| 15 | 32.50 | 0.767 | 0.415 | -0.879 | -0.875 |
| 16 | 35.00 | 0.798 | 0.384 | -0.957 | -0.953 |
| 17 | 40.00 | 0.853 | 0.329 | -1.112 | -1.109 |
| 18 | 45.00 | 0.900 | 0.282 | -1.266 | -1.265 |
| 19 | 50.02 | 0.939 | 0.243 | -1.415 | -1.422 |
| 20 | 55.02 | 0.973 | 0.209 | -1. 565 | -1.578 |
| Regression Output: |  |  |  |  |  |
| Constant |  |  |  | 0.1397 |  |
| Std Err of Y Est |  |  |  | 0.0051 |  |
| R Squared |  |  |  | 0.9999 |  |
| No. of Observations |  |  |  | 20 |  |
| Degrees of Freedom |  |  |  | 18 |  |
| X Coefficient(s) |  |  | -0.0312 |  |  |
|  | Std Err of | Cosf. | 0.0001 |  |  |




| RUN 1 | $\mathrm{R}=0 \mathrm{Me}$ | $\mathrm{Ca}=3.0$ | Cb-2, 2 | $A=1.227$ | $7 R=83$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | cime | Absorbance | A-At | $\ln (A-A T)$ | Y(calc) |
| 1 | 1.42 | 0.100 | 1.127 | 0.120 | 0.113 |
| 2 | 2.50 | 0.142 | 1.085 | 0.082 | 0.074 |
| 3 | 4.02 | 0.201 | 1.026 | 0.026 | 0.020 |
| 4 | 5.00 | 0.237 | 0.990 | -0.010 | -0.014 |
| 5 | 6.62 | 0.292 | 0.935 | -0.067 | -0.072 |
| 6 | 7.50 | 0.322 | 0.905 | -0.100 | -0.103 |
| 7 | 9.00 | 0.371 | 0.856 | -0.155 | -0.157 |
| 8 | 10.05 | 0.403 | 0.824 | -0.194 | -0.194 |
| 9 | 12.02 | 0.460 | 0.767 | -0.265 | -0.264 |
| 10 | 13.00 | 0.487 | 0.740 | -0.301 | -0.299 |
| 11 | 15.00 | 0.538 | 0.689 | -0.373 | -0.370 |
| 12 | 17.00 | 0.586 | 0.641 | -0.445 | -0.441 |
| 13 | 19.00 | 0.631 | 0.596 | -0.518 | -0.512 |
| 14 | 20.00 | 0.652 | 0.575 | -0.553 | -0.547 |
| 15 | 22.52 | 0.702 | 0.525 | -0.644 | -0.637 |
| 16 | 25.00 | 0.747 | 0.480 | -0.734 | -0.725 |
| 17 | 27.50 | 0.787 | 0.440 | -0.821 | -0.814 |
| 18 | 30.00 | 0.824 | 0.403 | -0.909 | -0.902 |
| 19 | 35.00 | 0.889 | 0.338 | -1.085 | -1.080 |
| 20 | 40.00 | 0.943 | 0.284 | -1.259 | -1.258 |
| 21 | 45.00 | 0.987 | 0.240 | -1.427 | -1.435 |
| 22 | 50.00 | 1.024 | 0.203 | -1.595 | -1.613 |
| Regression Output: |  |  |  |  |  |
| Constant |  |  |  | 0.1631 |  |
| Std Err of Y Est |  |  |  | 0.0069 |  |
| R Squared |  |  |  | 0.9998 |  |
| No. of Observations |  |  |  | 22 |  |
| Degrees of Preadom |  |  |  | 20 |  |
| $X$ Coefficient (s) |  |  | $-0.0355$ |  |  |
|  |  |  | 0.0001 |  |  |




| RUN 2 | $\mathrm{R}=0 \mathrm{Me}$ | Ca-3.0 | $\mathrm{Cb}=2.4$ | $A=1.191$ | 2R-82 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No, | time | Absorbance | A-At | $\ln (A-A t)$ | Y(ealc) |
| 1 | 1.35 | 0.097 | 1.094 | 0.090 | 0.080 |
| 2 | 2.50 | 0.147 | 1.044 | 0.043 | 0.034 |
| 3 | 4.00 | 0.209 | 0.982 | -0.018 | -0.025 |
| 4 | 5.00 | 0.249 | 0.942 | -0.060 | -0.065 |
| 5 | 5.78 | 0.314 | 0.877 | -0.131 | -0.136 |
| 6 | 7.50 | 0.339 | 0.852 | -0.160 | -0.164 |
| 7 | 9.00 | 0.390 | 0.801 | -0. 222 | -0.224 |
| 8 | 10.00 | 0.423 | 0.768 | -0.264 | -0.263 |
| 9 | 11.98 | 0.484 | 0.707 | -0.347 | -0.342 |
| 10 | 14.00 | 0.539 | 0.652 | -0.428 | -0.422 |
| 11 | 15.02 | 0.566 | 0.625 | -0.470 | -0.463 |
| 12 | 18.12 | 0.639 | 0.552 | -0.594 | -0.586 |
| 13 | 20.00 | 0.680 | 0.511 | -0.671 | -0.660 |
| 14 | 22.50 | 0.728 | 0.463 | -0.770 | -0.759 |
| 15 | 25.00 | 0.771 | 0.420 | -0.868 | -0.858 |
| 16 | 27.50 | 0.811 | 0.380 | -0.968 | -0.958 |
| 17 | 30.00 | 0.846 | 0.345 | -1.064 | -1.057 |
| 18 | 32.77 | 0.881 | 0.310 | -1.171 | -1.167 |
| 19 | 35.00 | 0.906 | 0.285 | -1.255 | -1.255 |
| 20 | 37.52 | 0.932 | 0.259 | -1.351 | -1.355 |
| 21 | 40.00 | 0.954 | 0.237 | -1.440 | -1.454 |
| 22 | 42.50 | 0.975 | 0.216 | -1.532 | -1.553 |
| Regression Dutput: |  |  |  |  |  |
| Constant |  |  |  | 0.1334 |  |
| Std Err of Y Est |  |  |  | 0.0090 |  |
| R Squared |  |  |  | 0.9997 |  |
| No. of Observations |  |  |  | 22 |  |
| Degrees of Fraedom |  |  |  | 20 |  |
| $X$ Coefficient(s) -0.0397 |  |  |  |  |  |
|  | Sta Err of | Coef. | 0.0001 |  |  |


$\begin{array}{lr}X \text { Coefficient(s) } & -0.0426 \\ \text { Std Err of Coesf } & 0.0001\end{array}$
(0.0001







| RUN 1 | $\mathrm{R}=\mathrm{NO} 2$ | $\mathrm{Ca}=5.5$ | $\mathrm{Cb}=0.069$ | $A=1.087$ | 2R-76 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | time | Absorbance | A-At | $\ln (\mathrm{A}-\mathrm{At})$ | Y(calc) |
| 1 | 1.33 | 0.082 | 1.005 | 0.005 | -0.012 |
| 2 | 5.00 | 0.157 | 0.930 | -0.073 | -0.084 |
| 3 | 7.50 | 0.203 | 0.884 | -0.123 | -0.134 |
| 4 | 10.00 | 0.247 | 0.840 | -0.174 | -0.183 |
| 5 | 12.68 | 0.292 | 0.795 | -0.229 | -0.236 |
| 6 | 15.00 | 0.333 | 0.754 | -0.282 | -0.282 |
| 7 | 17.67 | 0.373 | 0.714 | -0.337 | -0.335 |
| 8 | 20.00 | 0.407 | 0.680 | -0.386 | -0.381 |
| 9 | 22.75 | 0.444 | 0.643 | -0.442 | -0.435 |
| 10 | 25.12 | 0.475 | 0.612 | -0.491 | -0.482 |
| 11 | 27.77 | 0.505 | 0.582 | -0.541 | -0.534 |
| 12 | 30.00 | 0.530 | 0.557 | -0.585 | -0.578 |
| 13 | 35.00 | 0.589 | 0.498 | -0.697 | -0.677 |
| 14 | 40,00 | 0.635 | 0.452 | -0.794 | -0.776 |
| 15 | 45.00 | 0.677 | 0.410 | -0.892 | -0.875 |
| 16 | 50.02 | 0.713 | 0.374 | -0.983 | -0.974 |
| 17 | 55.02 | 0.746 | 0.341 | -1.076 | -1.073 |
| 18 | 60.03 | 0.775 | 0.312 | -1.165 | -1.172 |
| 19 | 70,00 | 0.822 | 0.265 | -1.328 | -1.369 |
| Regression Output: |  |  |  |  |  |
| Constant |  |  |  | 0.0147 |  |
| Std Err of Y Est |  |  |  | 0.0148 |  |
| R Squared |  |  |  | 0.9987 |  |
| No. of Observarions |  |  |  | 19 |  |
| Degrees of Preedom |  |  |  | 17 |  |

$\begin{array}{lr}\text { X Coafficient(s) } & \mathbf{- 0 . 0 1 9 8} \\ \text { Std Err of Coef. } & 0.0002\end{array}$








RUN
$R=F \quad C a=3.0 \quad C b=0.7 \quad A=1.056$


| time | Absorbance | A-At | ln(A-At) |
| :---: | :---: | :---: | :---: |
| 1.37 | 0.121 | 0.935 | -0.067 |
| 2.00 | 0.156 | 0.900 |  |


| 2.00 | 0.156 | 0.900 | -0.105 |
| :--- | :--- | :--- | :--- |
| 3.00 | 0.205 | 0.851 | -0.161 |

Y(cale) $-0.072$ -0.108
-0.166 -0.166
-0.224 $-0.282$ -0.282
-0.340 -0.340
-0.398 -0.398
-0.456 $-0.513$ -0.571 -0.629
-0.687 -0.687
-0.745 $-0.861$ -0.861
-0.977 -0.977
-1.034 -1.150 -1.295 $-1.440$ -1.584
-1.729 -1.874 0.0076 0.0040

Regression Output:

## Constant Std Err of R Squared

No, of Observations
Degrees of Freadom
0.9999
$\begin{array}{r}22 \\ \hline 29\end{array}$ 20
$X$ Coefficient(s) $\quad \mathbf{0 . 0 5 7 9}$
Std Err of Coef. 0.0001


| $\mathbf{R}=\mathbf{F}$ | $\mathrm{Ca}=3.0$ | $\mathrm{Cb}=0.7$ | $A=1.080$ | 7R-77 |
| :---: | :---: | :---: | :---: | :---: |
| Exme | Absorbance | A-At | $\ln (\mathrm{A}-\mathrm{At})$ | Y(calc) |
| 1.40 | 0.112 | 0.968 | -0.033 | -0.048 |
| 2.00 | 0.143 | 0.937 | -0.065 | -0.080 |
| 3.00 | 0.193 | 0.887 | -0.120 | -0.132 |
| 4.00 | 0.242 | 0.838 | -0.177 | -0.184 |
| 5.00 | 0.287 | 0.793 | -0.232 | -0.236 |
| 6.00 | 0.330 | 0.750 | -0.288 | -0.289 |
| 7.00 | 0.370 | 0.710 | -0.342 | -0.341 |
| 8.00 | 0.408 | 0.672 | -0.397 | -0.393 |
| 9.00 | 0.444 | 0.636 | -0.453 | -0.445 |
| 10.00 | 0.478 | 0.602 | -0.507 | -0.497 |
| 11.00 | 0.509 | 0.571 | -0.560 | -0.550 |
| 12.00 | 0.539 | 0.541 | -0.614 | -0.602 |
| 13.00 | 0.567 | 0.513 | -0.667 | -0.654 |
| 15.00 | 0.618 | 0.462 | -0.772 | -0.758 |
| 17.00 | 0.663 | 0.417 | -0.875 | -0.863 |
| 18.00 | 0.683 | 0.397 | -0.924 | -0.915 |
| 20.00 | 0.721 | 0.359 | -1.024 | -1.019 |
| 22.50 | 0.763 | 0.317 | -1.149 | -1.150 |
| 25.00 | 0.798 | 0.282 | -1.266 | -1.280 |
| 27.50 | 0.829 | 0.251 | -1.382 | -1.411 |
| Regression Output: |  |  |  |  |
| Constant |  |  | 0.0247 |  |
| Std Err of Y Est |  |  | 0.0125 |  |
|  |  |  | 0.9991 |  |
| No. of Observations |  |  | 20 |  |
| Degrees of Freedom |  |  | 18 |  |
| $X$ Coefficient $(9)$Std Err of Coef. |  | -0.0522 |  |  |
|  |  | 0.0004 |  |  |


No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



| RUN 2 | $\mathrm{B}=\mathrm{Cl}$ | Ca-3. 5 | $\mathrm{Cb}=0.2$ | $A=1.130$ | 7R=82 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | time | Absorbance | A-At: | $\ln (A-A t)$ | I(calc) |
| 1 | 1.48 | 0.042 | 1.088 | 0.084 | 0.072 |
| 2 | 5.00 | 0.094 | 1.036 | 0.035 | 0.026 |
| 3 | 7.52 | 0.130 | 1,000 | -0.000 | -0.008 |
| 4 | 10.00 | 0.163 | 0.967 | -0.034 | -0.041 |
| 5 | 12.50 | 0.196 | 0.934 | -0.068 | -0.074 |
| 6 | 15.00 | 0.229. | 0.901 | -0.104 | -0.107 |
| 7 | 17.50 | 0.259 | 0.871 | -0.138 | -0.140 |
| 8 | 20.00 | 0.288 | 0.842 | -0.172 | -0.173 |
| 9 | 25,00 | 0.344 | 0.786 | -0.241 | -0.239 |
| 10 | 30.00 | 0.396 | 0.734 | -0.309 | -0.306 |
| 11 | 35.00 | 0.444 | 0.686 | -0.377 | -0.372 |
| 12 | 40.00 | 0.489 | 0.641 | -0.445 | -0.438 |
| 13 | 45.00 | 0.531 | 0.599 | -0.512 | -0.504 |
| 14 | 50.00 | 0.570 | 0.560 | -0.580 | -0.571 |
| 15 | 55.00 | 0.606 | 0.324 | -0.646 | -0.637 |
| 16 | 60.00 | 0.640 | 0.490 | -0.713 | -0.703 |
| 17 | 70.00 | 0.702 | 0.428 | -0.849 | -0.835 |
| 18 | 80.00 | 0.754 | 0.376 | -0.978 | -0.968 |
| 19 | 90.00 | 0.800 | 0.330 | -1.109 | -1.100 |
| 20 | 100.00 | 0.839 | 0.291 | -1.234 | -1.233 |
| 21 | 110.10 | 0.874 | 0.256 | -1.363 | -1.367 |
| 22 | 120.00 | 0.904 | 0.226 | -1.487 | -1.498 |
| 23 | 130.23 | 0.930 | 0.200 | -1.609 | -1.633 |
| Regresaion Output: |  |  |  |  |  |
| Constant |  |  |  | 0.0917 |  |
| Std Err of Y Est |  |  |  | 0.0095 |  |
| R Squared |  |  |  | 0.9997 |  |
| No. of Observations |  |  |  | 23 |  |
| Degrees of Freedom |  |  |  | 21 |  |
| $X$ Coefficient(s) |  |  | -0.0132 |  |  |
|  | Err of | Coef: | 0.0001 |  |  |


| RUN 1 | $\mathrm{R}=\mathrm{Cl}$ | $\mathrm{Ca}=3.5$ | $\mathrm{Cb}=0.3$ | $A=1.208$ | 2R-82 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | time | Absorbance | A-At | $\ln (A-A t)$ | Y(calc) |
| 1 | 1.40 | 0.080 | 1.128 | 0.120 | 0.112 |
| 2 | 3.50 | 0.147 | 1.061 | 0.059 | 0.052 |
| 3 | 5.00 | 0.193 | 1.015 | 0.015 | 0.009 |
| 4 | 7.00 | 0.250 | 0.958 | -0.043 | -0.048 |
| 5 | 9.00 | 0.305 | 0.903 | -0.102 | -0.105 |
| 6 | 10.00 | 0.332 | 0.876 | -0.132 | -0.134 |
| 7 | 12.50 | 0.393 | 0.815 | -0.205 | -0.205 |
| 8 | 15.00 | 0.451 | 0.757 | -0.278 | -0.277 |
| 9 | 17.50 | 0.504 | 0.704 | -0.351 | -0.348 |
| 10 | 20.00 | 0.553 | 0.655 | -0.423 | -0.419 |
| 11 | 22.50 | 0.599 | 0.609 | -0.496 | -0.491 |
| 12 | 25.00 | 0.642 | 0.566 | -0.569 | -0.562 |
| 13 | 27.50 | 0.681 | 0.527 | -0.641 | -0.634 |
| 14 | 30.00 | 0.717 | 0.491 | -0.711 | -0.705 |
| 15 | 32.50 | 0.752 | 0.456 | -0.785 | -0.777 |
| 16 | 35.00 | 0.782 | 0.426 | -0.853 | -0.848 |
| 17 | 40.00 | 0.838 | 0.370 | -0.994 | -0.991 |
| 18 | 42.53 | 0.864 | 0.344 | -1.067 | -1.063 |
| 19 | 45.00 | 0.887 | 0.321 | -1.136 | -1.134 |
| 20 | 50.00 | 0.930 | 0.278 | -1.280 | -1.276 |
| 21 | 55.00 | 0.965 | 0.243 | -1.415 | -1.419 |
| 22 | 60.00 | 0.993 | 0.215 | -1.537 | -1.562 |
| Regression Output: |  |  |  |  |  |
| Constant Regression Output |  |  |  | 0.1519 |  |
| Std Err of Y Est |  |  |  | 0.0077 |  |
| R Squared |  |  |  | 0.9998 |  |
| No. of Observations |  |  |  | 22 |  |
| Degrees of Preedom |  |  |  | 20 |  |
| $X$ Coaficient (s) $\quad \mathbf{0 . 0 2 8 6}$ |  |  |  |  |  |
| Std Err of Coef. |  |  | 0.0001 |  |  |

RUN 2

| No. | time | Absorbance | A-At | $\ln (\mathrm{A}-\mathrm{At})$ | Y(calc) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.28 | 0.069 | 1.069 | 0.067 | 0,058 |
| 2 | 3.50 | 0.134 | 1.004 | 0.004 | -0.004 |
| 3 | 5.00 | 0.178 | 0.960 | -0.041 | -0.047 |
| 4 | 7.07 | 0.234 | 0.904 | -0.101 | -0.105 |
| 5 | B. 50 | 0.271 | 0.867 | -0.143 | -0.146 |
| 6 | 10.00 | 0.309 | 0.829 | -0.188 | -0.188 |
| 7 | 12.50 | 0.366 | 0.772 | -0.259 | -0.259 |
| 8 | 15.00 | 0.420 | 0.718 | -0.331 | -0.329 |
| 9 | 17.50 | 0.470 | 0.668 | -0.403 | -0.400 |
| 10 | 20.00 | 0.516 | 0.622 | -0.475 | -0.471 |
| 11 | 22.50 | D. 559 | 0.579 | -0.546 | -0.541 |
| 12 | 25.00 | 0.599 | 0.539 | -0.618 | -0.612 |
| 13 | 27.50 | 0.636 | 0.502 | -0.689 | -0.683 |
| 14 | 30.00 | 0.671 | 0.467 | -0.761 | -0.753 |
| 15 | 32.50 | 0.702 | 0.436 | -0.830 | -0.824 |
| 16 | 35.00 | 0.732 | 0.406 | -0.901 | -0.895 |
| 17 | 40.00 | 0.785 | 0.353 | -1.041 | -1.036 |
| 18 | 42.50 | 0.808 | 0.330 | -1.109 | -1.107 |
| 19 | 45.02 | 0.830 | 0.308 | -1.178 | -1.178 |
| 20 | 50.00 | 0.870 | 0.268 | -1.317 | -1.319 |
| 21 | 55.00 | 0.904 | 0.234 | -1.452 | -1.460 |
| 22 | 60.00 | 0.933 | 0.205 | -1.585 | -1.601 |
| Regression Output: 0.0910 |  |  |  |  |  |
| Constant |  |  | (t) | $0.0946$ |  |
| Std Err of Y Est |  |  |  | 0.0065 |  |
| R Squared |  |  |  | 0.9998 |  |
| No. of Observations |  |  |  | 22 |  |
| Degrees of Freadom |  |  |  | 20 |  |
| X Coefficient(s)Std Err of Coef. |  |  | $\begin{array}{r} -0.0283 \\ 0.0001 \end{array}$ |  |  |



RUN 2
$\mathrm{R}-\mathrm{Cl}$
$\mathrm{Ca}=3.5 \quad \mathrm{Cb}=0.4 \quad \mathrm{~A}=1.148$
RR-87

| No. | time | Absorbance | A-At | $\ln (\mathrm{A}-\mathrm{At})$ | Y(calc) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.58 | 0.127 | 1.021 | 0.021 | 0.008 |
| 2 | 2.57 | 0.172 | 0.976 | -0.024 | -0.036 |
| 3 | 3.50 | 0.213 | 0.935 | -0.067 | -0.078 |
| 4 | 5.00 | 0.278 | 0.870 | -0.139 | -0.145 |
| 5 | 7.00 | 0.354 | 0.794 | -0.231 | -0.235 |
| 6 | 8.00 | 0.390 | 0.758 | -0.277 | -0.279 |
| 7 | 9.00 | 0.424 | 0.724 | -0.323 | -0.324 |
| 8 | 10.00 | 0.457 | 0.691 | -0.370 | -0.369 |
| 9 | 12.07 | 0.520 | 0.628 | -0.465 | -0.461 |
| 10 | 13.00 | 0.546 | 0.602 | -0.507 | -0.503 |
| 11 | 15.02 | 0.599 | 0.549 | -0.600 | -0.593 |
| 12 | 17.50 | 0.658 | 0.490 | -0.713 | -0.704 |
| 13 | 20.00 | 0.711 | 0.437 | -0.828 | -0.816 |
| 14 | 22.50 | 0.757 | 0.391 | -0.939 | -0.927 |
| 15 | 25.00 | 0.799 | 0.349 | -1.053 | -1.039 |
| 16 | 27.50 | 0.836 | 0.312 | -1.165 | -1.151 |
| 17 | 30.00 | 0.868 | 0.280 | -1.273 | -1.263 |
| 18 | 32.50 | 0.897 | 0.251 | -1.382 | -1.374 |
| 19 | 35.00 | 0.922 | 0.226 | -1.487 | -1.486 |
| 20 | 37.50 | 0.944 | 0.204 | -1.590 | -1.598 |
| 21 | 40.00 | 0.965 | 0.183 | -1.698 | -1.710 |
| 22 | 45.00 | 0.999 | 0.149 | -1.904 | -1.933 |
| Regression Output: |  |  |  |  |  |
| Constant |  |  |  | 0.0784 |  |
| Std Err of Y Est |  |  |  | 0.0113 |  |
| R Squared |  |  |  | 0.9997 |  |
| No. of Observations |  |  |  | 22 |  |
| Degrees of Preedom |  |  |  | 20 |  |
|  | $X$ Coeffici | ent(s) | -0.0447 |  |  |
|  | Std Err of | Corf. | 0.0002 |  |  |



| RUN 1 | $\mathrm{R}=\mathrm{Cl}$ | $\mathrm{Ca}=3.5$ | $\mathrm{Cb}=0.6$ | $A=1.154$ | \%R=82 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | time | Absorbance | A-At | $\ln (A-A x)$ | Y(cale) |
| 1 | 1.45 | 0.203 | 0.951 | -0.050 | -0.086 |
| 2 | 2.00 | 0.250 | 0.904 | -0.101 | -0.115 |
| 3 | 2.50 | 0.292 | 0.862 | -0.149 | -0.160 |
| 4 | 3.00 | 0.332 | 0.822 | -0.196 | -0.204 |
| 5 | 3.50 | 0.369 | 0.785 | -0.242 | -0.249 |
| 6 | 4.00 | 0.406 | 0.748 | -0.290 | -0.294 |
| 7 | 4.50 | 0.439 | 0.715 | -0.335 | -0.338 |
| 8 | 5.00 | 0.473 | 0.681 | -0.384 | -0.383 |
| 9 | 5.50 | 0.504 | 0.650 | -0.431 | -0.428 |
| 10 | 6.00 | 0.534 | 0.620 | -0.478 | -0.472 |
| 11 | 6.50 | 0.563 | 0.591 | -0.526 | -0.517 |
| 12 | 7.00 | 0.589 | 0.565 | -0.571 | -0.562 |
| 13 | B. 00 | 0.638 | 0.516 | -0.662 | -0.651 |
| 14 | 9.00 | 0.684 | 0.470 | -0.755 | -0.740 |
| 15 | 10.00 | 0.724 | 0.430 | -0.844 | -0.830 |
| 16 | 11.00 | 0.759 | 0.395. | -0.929 | -0.919 |
| 17 | 12.00 | 0.794 | 0.360 | -1.022 | -1.008 |
| 18 | 13.00 | 0.824 | 0.330 | -1.109 | -1.097 |
| 19 | 14.00 | 0.851 | 0.303 | -1.194 | -1.187 |
| 20 | 15.00 | 0.875 | 0.279 | -1.277 | -1.276 |
| 21 | 17.00 | 0.918 | 0.236 | -1.444 | -1.455 |
| 22 | 19.00 | 0.951 | 0.203 | -1.595 | -1.633 |
| Regression Output: |  |  |  |  |  |
| Constant |  |  |  | 0.0637 |  |
| Std Ery of Y Est |  |  |  | 0.0133 |  |
| $R$ Squared |  |  |  | 0.9992 |  |
| No. of Observations |  |  |  | 22 |  |
| Degrees of Freedom |  |  |  | 20 |  |
| X Coefificient(s)Std Ery of Coef. |  |  | -0.0893 |  |  |
|  |  |  | 0.0006 |  |  |




Std Eri of Coef. 0.0003
(iii) Determinations of the observed rate constants ( $k_{\text {obs }}$ ).

129

| RUN 1 | $\mathrm{R}=\mathrm{H}$ |  |  |
| :---: | :---: | :---: | :---: |
| No. | Cb (Cb)2 | ka | Y(cale) |
| 1 | $1.00 \quad 1.00$ | 1.43 | 1.45 |
| 2 | 1.20 1.44 | 1.98 | 1.99 |
| 3 | 1.40 1.96 | 2.70 | 2.62 |
| 4 | $1.60 \quad 2.56$ | 3.31 | 3.36 |
| 5 | 1.80 3.24 | 4.19 | 4.19 |
| Regression Output: |  |  |  |
| Constant |  |  | 0.230 |
| Std Err of Y Eat |  |  | 0.053 |
| R Squared |  |  | 0.998 |
| No. of Observations |  |  | 5 |
| Degrees of Freedom 3 |  |  |  |
| $X$ Cogficient (s) 1.22 |  |  |  |
| Std Err of Coaf. |  | 0.03 |  |

RUN 2
$\mathrm{R}=\mathrm{H}$


130
RUN 1
$\mathrm{R}=0 \mathrm{Me}$

| No, | Cb | (Cb) 2 | ka | Y(calc) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1.80 | 3.24 | 2.41 | 2.52 |
| 2 | 2.00 | 4.00 | 3.12 | 3.01 |
| 3 | 2.20 | 4.84 | 3.35 | 3.56 |
| 4 | 2.40 | 5.76 | 4.26 | 4.16 |
| 5 | 2.60 | 6.76 | 4.71 | 4.80 |
| Ragrassion Output: |  |  |  |  |
|  | Constant |  |  | 0.416 |
|  | Std Err of | Y Est |  | 0.120 |
|  | R Squared |  |  | 0.987 |
|  | No. of Ob | rvation |  | 5 |
|  | Degrees of | Freedo |  | 3 |
|  | X Coefficient(s) Std Exr of Coef. |  | 0.65 |  |
|  |  |  | 0.04 |  |





| RUN 1 | $\mathrm{R}=\mathrm{NO} 2$ |  |  |
| :---: | :---: | :---: | :---: |
| No. | Cb ( Cb )2 | ka | Y(calc) |
| 1 | 0.0590 .003 | 1.450 | 1.496 |
| 2 | 0.0690 .005 | 1.980 | 1.998 |
| 3 | 0.0790 .006 | 2.660 | 2.579 |
| 4 | 0.0890 .008 | 3.290 | 3.239 |
| 5 | $0.099 \quad 0.010$ | 3.910 | 3,977 |
| Regression Output: |  |  |  |
|  | Constant |  | 0.129 |
|  | Std Err of Y Est |  | 0.073 |
|  | R Squared |  | 0.996 |
|  | No. of Observarions |  | 5 |
|  | Dagreas of Frasdom |  | 3 |
|  | $X$ Coefficient (s) | 392.6 |  |
|  | Std Err of Coaf. | 14.6 |  |


| RUN 2 | $\mathrm{R}=\mathrm{NO} 2$ |  |  |
| :---: | :---: | :---: | :---: |
| No. | $\mathrm{Cb} \quad(\mathrm{Cb}) 2$ | ka | Y(calc) |
| 1 | 0.0590 .003 | 1.580 | 1.574 |
| 2 | 0.0690 .005 | 2.040 | 2.066 |
| 3 | 0.0790 .006 | 2.540 | 2.635 |
| 4 | 0.0890 .008 | 3.510 | 3.281 |
| 5 | 0.0990 .010 | 3.890 | 4.004 |
| Regression Output: 0,235 |  |  |  |
|  | Constant |  | 0.235 |
|  | Std Err of Y Est |  | 0.158 |
|  | R Squared |  | 0.980 |
|  | No. of Observations |  | 5 |
|  | Degrees of Freedom |  | 3 |
|  | $X$ Coefficient(s) | 384.5 |  |
|  | Std Err of Coef. | 31.6 |  |

132







133

| RUN 1 | $\mathrm{R}=\mathrm{Cl}$ |  |  |
| :---: | :---: | :---: | :---: |
| No. | Cb (Cb) 2 | kea | Y(calc) |
| 1 | 0.20 0.04 | 1.33 | 1.43 |
| 2 | $0.30 \quad 0.09$ | 2.86 | 2.62 |
| 3 | 0.400 .16 | 3.98 | 4.28 |
| 4 | 0.50 0.25 | 6.67 | 6.41 |
| 5 | $0.60 \quad 0.36$ | 8.93 | 9.02 |
| Regression Output: |  |  |  |
|  | Constant |  | 0.485 |
|  | Std Err of Y Est |  | 0.278 |
|  | R Squared |  | 0.994 |
|  | No. of Obsarvations |  | 5 |
|  | Degrees of Preadom |  | 3 |
|  | $X$ Coefficient ${ }^{\text {a }}$ | 23.72 |  |
|  | Std Err of Coef. | 1.09 |  |



## (iv) Hammett plot.

## R OHa NO E Cl

| aigma $k$ (obs) | $\log (\mathrm{kc} / \mathrm{kh})$ | Y(calc) |
| :---: | :---: | :---: |
| $0.10 \quad 0.000113$ | -0.273 | -0.14 |
| 0.710 .064800 | 2.485 | 2.59 |
| 0.34 0,001850 | 0.941 | 0.93 |
| 0.37 0.004080 | 1.2BA | 1.06 |
| Regression Outputs |  |  |
| stant |  | -0.59 |
| Err of I Est |  | 0.19 |
|  |  | 0.98 |
| of Observations |  | 4.00 |
| grees of Praadom |  | 2,00 |
| Coafficiant (s) | 4.48 |  |
| Ery of Coaf. | 0.45 |  |



### 3.6 POTENTIOMETRIC DETERMINATION OF DISSOCIATION CONSTANTS.

Aqueous ethanolic chromone-2-carboxylic acid standard solutions (50\% $\mathrm{v} / \mathrm{v} ; 0.01 \mathrm{M}$ and 0.005 M ) were obtained by dissolving the appropriate masses $\left(m_{c}\right)$ in $95 \%$ ethanol (half the volume of the volumetric flask used) with heating and stirring, and on cooling, diluting with water to the required volume (Table 26). Aqueous benzoic acid and salicylic acid standard solutions ( 0.01 M ) were obtained by respectively dissolving benzoic acid ( $0.12230 \mathrm{~g}, 1.00 \mathrm{mmol}$ ) and salicylic acid ( $0.13833 \mathrm{~g}, 1.00$ mmol) in water ( 100 ml ). Standard NaOH solutions ( 0.01 M and 0.005 M ) were obtained by diluting standard $0.1 \mathrm{M}-\mathrm{NaOH}$. The pH buffers 2,4 , and 6, were obtained using commercial vials or tablets with dilution to the appropriate volumes. A British Drug House (B.D.H) pH buffer 3.1, devised by Prideaux and Ward, 161 was also obtained by dilution in the appropriate volume.

Table 26. Standard chromone-2-carboxylic acid solutions.

| $R^{1}$ | Volume <br> $(\mathrm{ml})$ | mass $\left(\mathrm{m}_{\mathrm{C}}\right)$ <br> $(\mathrm{g})$ |
| :--- | :---: | :---: |
| H | 250 | 0.4754 |
|  | 50 | 0.0474 |
| OMe | 50 | 0.05505 |
| $\mathrm{NO}_{2}$ | 25 | 0.05879 |
| F | 25 | 0.05204 |
| Cl | 25 | 0.05615 |
| Br | 25 | 0.06726 |
|  |  |  |


#### Abstract

The pH was measured using a Knick Digital-pH-meter 646 and an Ingold combined electrode; and the pH meter was calibrated with pH buffers 4 and 7 using standard procedures. 162 Once calibrated, the pH region of the expected $\mathrm{pK}_{\mathrm{a}}$ (ca. pH 2.7 ) was checked using pH buffers 2 and 3.1 , which consistently gave readings of 2.01 and 3.16 respectively. It was then assumed that the meter would read accurately in the pH range $2-4$. The 0.01 M -chromone-2-carboxylic acid solutions ( 5 ml ) were maintained at $25( \pm 0.2)^{\circ} \mathrm{C}$, using a waterbath, and titrated with $0.01 \mathrm{M}-\mathrm{NaOH}(\mathrm{ca} .10$ mi). The titrations were done slowly to ensure that the temperature was maintained throughout the titration. In the case of the methoxy analogue $113,0.005 \mathrm{M}$-acid and NaOH solutions were used. Magnetic stirring was stopped while the pH readings were taken.


This procedure was also validated by initially determining the $\mathrm{pK}_{\mathrm{a}}$ values of benzoic acid $\left(\mathrm{pK}_{\mathrm{a}}=4.21 \pm 0.02\right.$ cf lit., 1634.19 at $\left.25^{\circ} \mathrm{C}\right)$ and salicylic acid $\left(\mathrm{pK}_{\mathrm{a}}=3.07 \pm 0.01\right.$ cf lit., 1632.97 at $\left.19^{\circ} \mathrm{C}\right)$, by potentiometry in 0.01 M -aqueous solutions of the appropriate acids at $25^{\circ} \mathrm{C}$.

In each case, the determination was duplicated using the same standard solution (solution 1), and then repeated using a second standard acid solution (solution 2). The $\mathrm{pK}_{\mathrm{a}}$ values are summarised in table 27 . The reported $\mathrm{pK}_{\mathrm{a}}$ value, in each case, is the logarithm of the mean of the dissociation constants obtained using solution 1 (average of two determinations) and the dissociation constant obtained using solution 2 . Linear regression data for the plots of $p K_{a}$ against $\log \left(k_{o b s}\right)$ and sample titration curves for each acid are summarised after Table 27 p.220.

TABLE 27. Dissociations constants of the chromone-2-carboxylic acids 112-118 at $25^{\circ} \mathrm{C}$.


$$
\mathrm{pK}_{\mathrm{a}}{ }^{\mathrm{a}}
$$

Compd. $\mathbf{R}^{1}$ Solution 1 Solution 2 Mean value

| 112 | $7-\mathrm{H}$ | 2.74 | 2.74 | 2.64 | $2.69 \pm 0.05$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 113 | $7-0 \mathrm{Me}^{\mathrm{b}}$ | 2.96 | 2.99 | 2.94 | $2.96 \pm 0.02$ |
| 114 | $7-\mathrm{NO}_{2}$ | 2.65 | 2.59 | 2.57 | $2.60 \pm 0.03$ |
| 115 | $7-\mathrm{F}$ | 2.62 | 2.62 | 2.64 | $2.63 \pm 0.01$ |
| 116 | $7-\mathrm{Cl}$ | 2.67 | 2.67 | 2.60 | $2.64 \pm 0.04$ |
| 117 | $7-\mathrm{Br}$ | 2.65 | 2.67 | 2.63 | $2.64 \pm 0.02$ |
| 118 | $6-\mathrm{Cl}$ | 2.65 | 2.55 | 2.63 | $2.62 \pm 0.02$ |

[^33]Determination of the relationship between $\mathrm{pK}_{\mathrm{a}}$ and $\log \left(k_{\mathrm{obs}}\right)$.

|  |
| :---: |
|  |  |


| pKa k(obs) 1 | $\log$ (kobs) | Y(calc) |
| :---: | :---: | :---: |
| 2.690 .000212 | -3.674 | -3.79 |
| 2.600 .064800 | -1.188 | -1.46 |
| 2.630 .001850 | -2.733 | -2.24 |
| 2.640 .004080 | -2.389 | -2.50 |
| Regression Output: |  |  |
| Constant |  | 65.90 |
| Std Err of Y Est |  | 0.42 |
| R Squared |  | 0.89 |
| No, of Observations |  | 4.00 |
| Degrees of Preedom |  | 2.00 |
| $X$ Coefficient( $s$ ) | -25.91 |  |
| Std Err of Coef. | 6.41 |  |



| R | pRa k(obs) 1 | log(kobs) | Y(calc) |
| :---: | :---: | :---: | :---: |
| H | 2.690 .000212 | -3.674 | -2.71 |
| OMe | 2.960 .000113 | -3.947 | -4.21 |
| $\mathrm{HO2}$ | 2.600 .064800 | -1.188 | -2.21 |
| F | 2.630 .001850 | -2.733 | -2.37 |
| C1 | 2.640 .004080 | -2.389 | -2.43 |
| Regression Output: |  |  |  |
|  | Constant |  | 12.29 |
|  | Std Err of Y Est |  | 0.85 |
|  | R Squared |  | 0.55 |
|  | No. of Observations |  | 5.00 |
|  | Degrees of Freedom |  | 3.00 |
|  | $X$ Coefficient (s) | -5.58 |  |
|  | Std Err of Coef. | 2.90 |  |



| No. | Vol/ml | pH | V1(Ave) | $d(\mathrm{pH}) / \mathrm{dV}$ | V2(Ava) | $\mathrm{d}(\mathrm{pH}) / \mathrm{dv}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.000 | 2.47 |  |  |  |  |
| 2 | 0.520 | 2.49 | 0.260 | 0.038 |  |  |
| 3 | 1.005 | 2.55 | 0.762 | 0.124 | 0.511 | 0.170 |
| 4 | 1.485 | 2.62 | 1.245 | 0.146 | 1.004 | 0.046 |
| 5 | 2.000 | 2.71 | 1.742 | 0.175 | 1.494 | 0.058 |
| 6 | 2.185 | 2.74 | 2.093 | 0.162 | 1.917 | -0.036 |
| 7 | 2.255 | 2.76 | 2.220 | 0.286 | 2.156 | 0.969 |
| 8 | 2.330 | 2.78 | 2.292 | 0.267 | 2.256 | -0.263 |
| 9 | 2.357 | 2.79 | 2.344 | 0.370 | 2.318 | 2.033 |
| 10 | 2.395 | 2.79 | 2.376 | 0.000 | 2.360 | -11.396 |
| 11 | 2.435 | 2.80 | 2.415 | 0.250 | 2.396 | 6.410 |
| 12 | 2.475 | 2.82 | 2.455 | 0.500 | 2.435 | 6.250 |
| 13 | 2.510 | 2.82 | 2.493 | 0.000 | 2.474 | -13.333 |
| 14 | 2.555 | 2.84 | 2.533 | 0.444 | 2.513 | 11.111 |
| 15 | 2.590 | 2.85 | 2.573 | 0.286 | 2.553 | -3.968 |
| 16 | 2.775 | 2.90 | 2.683 | 0.270 | 2.628 | -0.140 |
| 17 | 3.035 | 2.99 | 2.905 | 0.346 | 2.794 | 0.341 |
| 18 | 3.575 | 3.28 | 3.305 | 0.537 | 3.105 | 0.477 |
| 19 | 4.045 | 4,06 | 3.810 | 1.660 | 3.557 | 2.223 |
| 20 | 4.085 | 4.23 | 4.065 | 4.250 | 3.938 | 10.159 |
| 21 | 4.125 | 4.46 | 4.105 | 5.750 | 4.085 | 37.500 |
| 22 | 4.205 | 5.23 | 4.165 | 9.625 | 4.135 | 64.583 |
| 23 | 4.240 | 5.69 | 4.223 | 13.143 | 4.194 | 61.180 |
| 24 | 4.280 | 6.17 | 4.250 | 12.000 | 4.241 | -30.476 |
| 25 | 4.325 | 6.60 | 4.302 | 9.556 | 4.281 | -57.516 |
| 26 | 4.355 | 7.03 | 4.340 | 14.333 | 4.321 | 127.407 |
| 27 | 4.394 | 7.72 | 4.375 | 17.692 | 4.357 | 97.362 |
| 28 | 4.425 | 9.23 | 4.410 | 48.710 | 4.392 | 886.211 |
| 29 | 4.460 | 9.75 | 4.443 | 14.857 | 4.426 | -1025.834 |
| 30 | 4.495 | 10.01 | 4.478 | 7.429 | 4.460 | -212.245 |
| 31 | 4.534 | 10.16 | 4.514 | 3.846 | 4.496 | -96.822 |
| 32 | 4.575 | 10.29 | 4.554 | 3.171 | 4.534 | -16.886 |
| 33 | 4.605 | 10.39 | 4.590 | 3.333 | 4.572 | 4.580 |
| 34 | 4.680 | 10.58 | 4.643 | 2.533 | 4.616 | -15.238 |
| 35 | 4.800 | 10.77 | 4.740 | 1.583 | 4.691 | -9.744 |
| 36 | 4.905 | 10.89 | 4.853 | 1.143 | 4.796 | -3.915 |
| 37 | 5.025 | 10.99 | 4.965 | 0.833 | 4.909 | -2.751 |
| 38 | 5.215 | 11.11 | 5.120 | 0.632 | 5.043 | -1.302 |
| 39 | 5.405 | 11.20 | 5.310 | 0.474 | 5.215 | -0.831 |
| 40 | 5.680 | 11.29 | 5.542 | 0.327 | 5.426 | -0.630 |
| 41 | 5.970 | 11.36 | 5.825 | 0.241 | 5.684 | -0.304 |
| 42 | 6.485 | 11.45 | 6.228 | 0.175 | 6.025 | -0.166 |
| 43 | 7.074 | 11.52 | 6.779 | 0.119 | 6.503 | -0.101 |
| 44 | 7.497 | 11.55 | 7.285 | 0.071 | 7.032 | -0.095 |
| 4.5 | 7.995 | 11.59 | 7.746 | 0.080 | 7.516 | 0.020 |
| 46 | 8.975 | 11.64 | 8.485 | 0.051 | 8.115 | -0.040 |
| 47 | 9.975 | 11.68 | 9.475 | 0.040 | 8.980 | -0.011 |



113
$\mathrm{R}=\mathrm{OMe}$

| No. | Vol/ml | pH | VI(Ave) | $\mathrm{d}(\mathrm{pH}) / \mathrm{dV}$ | V2(Ave) | $\mathrm{d}[\mathrm{d}(\mathrm{pH}) / \mathrm{dV}] \mathrm{V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.000 | 2.68 |  |  |  |  |
| 2 | 0.519 | 2.71 | 0.260 | 0.058 |  |  |
| 3 | 1.044 | 2.75 | 0.782 | 0.076 | 0.520 | 0.035 |
| 4 | 1.514 | 2.80 | 1.279 | 0.106 | 1.030 | 0.061 |
| 5 | 2.019 | 2.87 | 1.767 | 0.139 | 1.523 | 0.066 |
| 6 | 2.244 | 2.91 | 2.131 | 0.178 | 1.949 | 0.107 |
| 7 | 2.278 | 2.92 | 2.261 | 0.294 | 2.196 | 0.898 |
| 8 | 2.318 | 2.92 | 2.298 | 0.000 | 2.280 | -7.949 |
| 9 | 2.401 | 2.94 | 2.360 | 0.241 | 2.329 | 3.918 |
| 10 | 2.464 | 2.95 | 2.433 | 0.159 | 2.396 | -1.125 |
| 11 | 2.509 | 2.96 | 2.487 | 0.222 | 2.460 | 1.176 |
| 12 | 2.558 | 2.96 | 2.534 | 0.000 | 2.510 | -4.728 |
| 13 | 2.599 | 2.97 | 2.579 | 0.244 | 2.556 | 5.420 |
| 14 | 2.674 | 2.99 | 2.637 | 0.267 | 2.607 | 0.392 |
| 15 | 2.859 | 3.03 | 2.767 | 0.216 | 2.702 | -0.388 |
| 16 | 3.080 | 3.09 | 2.970 | 0.271 | 2.868 | 0.272 |
| 17 | 3.549 | 3.24 | 3.315 | 0.320 | 3.142 | 0.140 |
| 18 | 3.999 | 3.45 | 3.774 | 0.467 | 3.544 | 0.320 |
| 19 | 4.219 | 3.63 | 4.109 | 0.818 | 3.942 | 1.049 |
| 20 | 4.299 | 3.72 | 4.259 | 1.125 | 4.184 | 2.045 |
| 21 | 4.351 | 3.76 | 4.325 | 0.769 | 4.292 | -5.390 |
| 22 | 4.379 | 3.80 | 4.365 | 1.429 | 4.345 | 16.484 |
| 23 | 4.464 | 3.92 | 4.421 | 1.412 | 4.393 | -0.297 |
| 24 | 4.584 | 4.14 | 4.524 | 1.833 | 4.473 | 4.113 |
| 25 | 4.719 | 4.46 | 4.652 | 2.370 | 4.588 | 4.212 |
| 26 | 4.799 | 4.72 | 4.759 | 3.250 | 4.705 | 8.183 |
| 27 | 4.900 | 5.02 | 4.850 | 2.970 | 4.804 | -3.091 |
| 28 | 4.940 | 5.18 | 4.920 | 4.000 | 4.885 | 14.606 |
| 29 | 5.024 | 5.60 | 4.982 | 5.000 | 4.951 | 16.129 |
| 30 | 5.077 | 5.86 | 5.050 | 4.906 | 5.016 | -1.377 |
| 31 | 5.119 | 6.14 | 5.098 | 6.667 | 5.074 | 37.074 |
| 32 | 5.161 | 6.43 | 5.140 | 6.905 | 5.119 | 5.669 |
| 33 | 5.199 | 6.70 | 5.180 | 7.105 | 5.160 | 5.013 |
| 34 | 5.240 | 6.98 | 5.220 | 6.829 | 5.200 | -6.987 |
| 35 | 5.284 | 7.28 | 5.262 | 6.818 | 5.241 | -0.261 |
| 36 | 5.324 | 7.85 | 5.304 | 14.250 | 5.283 | 176.948 |
| 37 | 5.369 | 8.80 | 5.346 | 21.111 | 5.325 | 161.438 |
| 38 | 5.404 | 9.35 | 5.386 | 15.714 | 5.367 | -134.921 |
| 39 | 5.454 | 9.62 | 5.429 | 5.400 | 5.408 | -242.689 |
| 40 | 5.479 | 9.74 | 5.466 | 4.800 | 5.448 | -16.000 |
| 41 | 5.511 | 9.83 | 5.495 | 2.812 | 5.481 | -69.737 |
| 42 | 5.589 | 10.05 | 5.550 | 2.821 | 5.523 | 0.146 |
| 43 | 5.664 | 10.22 | 5.627 | 2.267 | 5.588 | -7.240 |
| 44 | 5.751 | 10.34 | 5.708 | 1.379 | 5.667 | -10.955 |
| 45 | 5.879 | 10.49 | 5,815 | 1.172 | 5.761 | -1.930 |
| 46 | 6.001 | 10.61 | 5.940 | 0.984 | 5.878 | -1.506 |
| 47 | 6.518 | 10.91 | 6.260 | 0.580 | 6.100 | -1.262 |
| 48 | 6.994 | 11.03 | 6.756 | 0.252 | 6.508 | -0.661 |
| 49 | 7.494 | 11.13 | 7.244 | 0.200 | 7.000 | -0.107 |
| 50 | 8.000 | 11.18 | 7.747 | 0.099 | 7.495 | -0.201 |
| 51 | 9.039 | 11.28 | 8.520 | 0.096 | 8.133 | -0.003 |
| 52 | 10.019 | 11.32 | 9.529 | 0.041 | 9.024 | 0.055 |





## $\mathrm{R}-\mathrm{NO} 2$

| No. | Vol/ml | pH | V1(Ave) | $\mathrm{d}(\mathrm{pH}) / \mathrm{dV}$ | V2(Ave) | $d[d(\mathrm{pH}) / \mathrm{dV}] \mathrm{V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.000 | 2.36 |  |  |  |  |
| 2 | 0.515 | 2.38 | 0.258 | 0.039 |  |  |
| 3 | 1.000 | 2.43 | 0.758 | 0.103 | 0.508 | 0.129 |
| 4 | 1.630 | 2,51 | 1.315 | 0.127 | 1.036 | 0.043 |
| 5 | 2.001 | 2.57 | 1.815 | 0.j62 | 1.565 | 0.069 |
| 6 | 2.099 | 2.59 | 2.050 | 0.204 | 1.933 | 0.181 |
| 7 | 2.180 | 2.60 | 2.139 | 0.123 | 2.095 | -0.901 |
| 8 | 2.265 | 2.62 | 2.223 | 0.235 | 2.181 | 1.347 |
| 9 | 2.359 | 2.64 | 2.312 | 0.213 | 2.267 | -0.252 |
| 10 | 2.400 | 2.65 | 2.380 | 0.244 | 2.346 | 0.461 |
| 11 | 2.440 | 2.66 | 2.420 | 0.250 | 2.400 | 0.151 |
| 12 | 2.480 | 2.67 | 2.460 | 0.250 | 2.440 | -0.000 |
| 13 | 2.522 | 2.67 | 2.501 | 0.000 | 2.481 | -6.098 |
| 14 | 2.565 | 2.68 | 2.543 | 0.233 | 2.522 | 5.472 |
| 15 | 2.615 | 2.69 | 2.590 | 0.200 | 2.567 | -0.700 |
| 16 | 2.700 | 2.71 | 2.658 | 0.235 | 2.624 | 0.523 |
| 17 | 3.010 | 2.79 | 2.855 | 0.258 | 2.756 | 0.115 |
| 18 | 3.475 | 2.95 | 3.243 | 0.344 | 3.049 | 0.222 |
| 19 | 3.778 | 3.11 | 3.627 | 0.528 | 3.434 | 0.479 |
| 20 | 3.995 | 3.28 | 3.886 | 0.783 | 3.756 | 0.982 |
| 21 | 4.080 | 3.36 | 4.037 | 0.941 | 3.962 | 1.045 |
| 22 | 4.175 | 3.46 | 4.128 | 1.053 | 4.082 | 1.238 |
| 23 | 4.260 | 3.58 | 4.218 | 1.412 | 4.173 | 3.990 |
| 24 | 4.341 | 3.76 | 4.300 | 2,222 | 4.259 | 9.765 |
| 25 | 4.430 | 4.02 | 4.385 | 2.921 | 4.343 | 8.225 |
| 26 | 4.520 | $4.52{ }^{-}$ | 4.475 | 5.556 | 4.430 | 29.432 |
| 27 | 4.565 | 4.95 | 4.542 | 9.556 | 4.509 | 59.259 |
| 28 | 4.605 | 5.41 | 4.585 | 11.500 | 4.564 | 45.752 |
| 29 | 4.645 | 5.97 | 4.625 | 14.000 | 4.605 | 62.500 |
| 30 | 4.685 | 6.49 | 4.665 | 13.000 | 4.645 | -25.000 |
| 31 | 4.730 | 7.08 | 4.708 | 13.111 | 4.686 | 2.614 |
| 32 | 4.775 | 8.00 | 4.753 | 20.444 | 4.730 | 162.963 |
| 33 | 4.820 | 9.17 | 4.798 | 26.000 | 4.775 | 123.457 |
| 34 | 4.861 | 9.50 | 4.841 | 8.049 | 4.819 | -417.470 |
| 35 | 4.915 | 9.84 | 4.888 | 6.298 | 4.864 | -36.894 |
| 36 | 4.950 | 10.03 | 4.932 | 5.429 | 4.910 | -19.499 |
| 37 | 5.021 | 10.29 | 4.986 | 3.662 | 4.959 | -33.332 |
| 38 | 5.118 | 10.51 | 5.070 | 2.268 | 5.027 | -16.594 |
| 39 | 5.202 | 10.65 | 5.160 | 1.667 | 5.115 | -6.645 |
| 40 | 5.282 | 10.76 | 5.242 | 1.375 | 5.201 | -3.557 |
| 41 | 5.385 | 10.85 | 5.333 | 0.874 | 5.288 | -5.478 |
| 42 | 5.479 | 10.93 | 5.432 | 0.851 | 5.383 | -0.231 |
| 43 | 5.555 | 10.96 | 5.517 | 0.395 | 5.474 | -5.369 |
| 44 | 5.800 | 11.11 | 5.678 | 0.612 | 5.597 | 1.355 |
| 45 | 6.021 | 11.20 | 5.911 | 0.407 | 5.794 | -0.880 |
| 46 | 6.525 | 11.35 | 6.273 | 0.298 | 6.092 | -0.302 |
| 47 | 7.119 | 11.45 | 6.822 | 0.168 | 6.548 | -0.235 |
| 48 | 7.558 | 11.50 | 7.338 | 0.114 | 7.080 | -0.105 |
| 49 | 8.125 | 11.55 | 7.841 | 0.088 | 7.590 | -0.051 |
| 50 | 9.020 | 11.58 | B. 572 | 0.034 | 8.207 | -0.075 |
| 51 | 9.975 | 11.61 | 9.497 | 0.031 | 9.035 | -0.002 |






116

## R-C1

No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Vol/ml
0.000
0.522
1.002
1.490
2.030
2.160
2.295
2.380
2.460
2. 500
2.550 2.598 2.640 2.760 3.050 3.502
4.123
4.270
4.405
4.540
4.630
4.680
4.720
4.802
4.851
4.899
4.940
4.981
5.030
5.065
5.120
5.160
5.199
5.240
5.330
5.400
5. 502
5.741 6.000 6.521 7.050 7.492 8.002 9.919
pH 2.37
2.40 $2.40 \quad 0.261$ 2.43
2.47 2.52
2.58
2.61
2.62
0.762
1.246
1.760
2.095
2.228
2.337
2.337
2.420
2.480
2.525
2.574
2.619
2.700
2.700
2.905
3.2
3.276
3.813
4.196
4.337

### 3.70 4.07

4.4
4.585
4.655
4.655
4.700
4.7
4.827
4.827
4.875
4.919
4.919
4.960
5.005
5.047
5.092
5.092
5.140
5.179
5.179
5.220
5.285
5.365
5.451
5.451
-5.622
5.870
6.261
6.786
7.271
7.747
7.747
8.459
9.417
0.057
0.063
0.082
0.093
0.462
0.222
0.118
0.250
0.500
0.200
0.208
0.238
0.238
0.167
0.241
0.354
0.612
1.088
1.688
1.630
2.741
4.444
5.400
6.500
7.439
7.755
7.917
9.268
8.293
12.449
25.429
11.455
7.250
3.659
2.889
2.889
2.571
1.569
1.339
0.772
0.461
0.284
0.158
0.137
0.137
0.099
0.050
0.511
0.511
1.004
1.503
1.503
1.927
1.927
2.161
2.282
2.282
2.379
2.450
2.502
2.550
2.596
2.659
2.803
3.091
3.544
4.005
4.267
4.405
4.529
4.620
4.678
4.731
4.794
4.851
4.897
4.940
4.983
4.983
5.026
5.070
5.116
5.180
5.200
5.252
5.252
5.325
5.408
5.746
6.066
6.523
7.028
7.509
8.103
8.938




## 117

$\mathrm{R}=\mathrm{Br}$

| No. | Vol $/ \mathrm{ml}$ | pH | $\mathrm{V} 1($ Ave $) \mathrm{d}(\mathrm{pH}) / \mathrm{dV}$ | $\mathrm{V} 2($ Ave $) \mathrm{d}[\mathrm{d}(\mathrm{pH}) / \mathrm{dV}) \mathrm{V}$ |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.000 | 2.36 |  |  |  |  |
| 2 | 0.636 | 2.40 | 0.318 | 0.063 |  | -0.022 |
| 3 | 1.023 | 2.42 | 0.829 | 0.052 | 0.574 | 0.200 |
| 4 | 1.468 | 2.48 | 1.245 | 0.335 | 1.037 | -0.033 |
| 5 | 2.062 | 2.55 | 1.765 | 0.118 | 1.505 | 0.728 |
| 6 | 2.193 | 2.60 | 2.127 | 0.382 | 1.946 | -1.659 |
| 7 | 2.303 | 2.62 | 2.248 | 0.182 | 2.188 | 0.740 |
| 8 | 2.345 | 2.63 | 2.324 | 0.238 | 2.286 | -0.459 |
| 9 | 2.442 | 2.65 | 2.393 | 0.206 | 2.359 | -0.547 |
| 10 | 2.483 | 2.66 | 2.462 | 0.244 | 2.428 | 0.547 |
| 11 | 2.528 | 2.67 | 2.505 | 0.222 | 2.484 | -0.504 |
| 12 | 2.573 | 2.68 | 2.550 | 0.222 | 2.528 | 0.000 |
| 13 | 2.673 | 2.70 | 2.623 | 0.200 | 2.587 | -0.307 |
| 14 | 2.805 | 2.71 | 2.739 | 0.076 | 2.681 | -1.071 |
| 15 | 3.043 | 2.79 | 2.924 | 0.336 | 2.832 | 1.407 |
| 16 | 3.493 | 2.94 | 3.268 | 0.333 | 3.096 | -0.008 |
| 17 | 4.021 | 3.24 | 3.757 | 0.568 | 3.512 | 0.480 |
| 18 | 4.203 | 3.43 | 4.112 | 1.044 | 3.934 | 1.340 |
| 19 | 4.384 | 3.71 | 4.293 | 1.547 | 4.203 | 2.771 |
| 20 | 4.553 | 4.16 | 4.468 | 2.663 | 4.381 | 6.376 |
| 21 | 4.688 | 5.02 | 4.620 | 6.370 | 4.544 | 24.392 |
| 22 | 4.784 | 5.79 | 4.736 | 8.021 | 4.678 | 14.290 |
| 23 | 4.885 | 6.57 | 4.835 | 7.723 | 4.785 | -3.026 |
| 24 | 4.938 | 6.95 | 4.912 | 7.170 | 4.873 | -7.181 |
| 25 | 4.984 | 7.42 | 4.961 | 10.217 | 4.936 | 61.567 |
| 26 | 5.024 | 8.62 | 5.004 | 30.000 | 4.982 | 460.061 |
| 27 | 5.082 | 9.31 | 5.053 | 11.897 | 5.028 | -369.458 |
| 28 | 5.123 | 9.63 | 5.102 | 7.805 | 5.078 | -82.660 |
| 29 | 5.164 | 9.83 | 5.143 | 4.878 | 5.123 | -71.386 |
| 30 | 5.265 | 10.18 | 5.214 | 3.465 | 5.179 | -19.897 |
| 31 | 5.413 | 10.51 | 5.339 | 2.230 | 5.277 | -9.925 |
| 32 | 5.558 | 10.71 | 5.486 | 1.379 | 5.412 | -5.805 |
| 33 | 5.728 | 10.93 | 5.643 | 1.294 | 5.564 | -0.541 |
| 34 | 6.025 | 11.14 | 5.877 | 0.707 | 5.760 | -2.514 |
| 35 | 8.528 | 11.33 | 6.276 | 0.378 | 6.076 | -0.823 |
| 36 | 7.018 | 11.46 | 6.773 | 0.265 | 6.525 | -0.226 |
| 37 | 7.563 | 11.54 | 7.290 | 0.147 | 7.032 | -0.229 |
| 38 | 8.103 | 11.59 | 7.833 | 0.093 | 7.562 | -0.100 |
| 39 | 9.003 | 11.66 | 8.553 | 0.078 | 8.193 | -0.021 |
| 40 | 9.983 | 11.70 | 9.493 | 0.041 | 9.023 | -0.039 |




## 4. REFERENCES

1. G.P. Ellis, Chromenes, Chromanones and Chromones, Wiley, New York, 1977, Chapters I, VII, IX, X, and XX.
2. J. Staunton, Comprehensive Organic Chemistry, ed. D. Barton and W.D. Ollis, Pergamon, Oxford, 1979, 4, Section 18.3.
3. P.J. Brogden, G.P. Ellis, C.D. Gabbutt and J.D. Hepworth, Comprehensive Heterocyclic Chemistry, ed. A.R. Katritzky and C.W. Rees, Pergamon, Oxford, 1984, 3, Section 2.22 and 2.23.8.
4. Ref. 2, p. 660-672.
5. Ref. 1, p. 1.
6. Ref. 3, p. 693.
7. Ref. 3, p 640.
8. Ref. 3, p. 596.
9. Ref. 3, p 601.
10. Ref. 3, p. 612.
11. Ref. 3, p. 583 and 589.
12. Ref. 1, p. 566.
13. Y.G. Lee, K. Ishimaru, H. Iwasaki, K. Ohkata and K. Akiba, J. Org. Chem., 1991, 56, 2058.
14. Ref. 1, p. 573.
15. V.A. Zagorevskii, E.K. Orlova, I.D. Isvetkova, V.G. Vinokurov, V.S. Troitskaya and S.G. Rozenberg, Chem. Heterocyclic Comp., 1971, 7, 675-680.
16. V.A. Zagorevskii, E.K. Orlova and I.D. Tsvetkova, Chem. Heterocycl. Compd., 1972, 8, 416.
17. 2. Jerzmanowska and K. Kostka, Roczniki Chem., 1963, 37, 413; Chem. Abstracts, 1963, 59, 12 748b.
1. Z. Jerzmanowska and K. Kostka, Roczniki Chem., 1957, 31, 1071; Chem. Abstracts, 1961, 55, 272871.
2. P.S. Bevan and G.P. Ellis, J. Chem. Soc. Perkin Trans. 1, 1983, 1705.
3. Ref. 1, p. 972.
4. Ref. 1, p. 963 and 973.
5. Ref. 3, p. 701-705.
6. G. Haas, J.L. Stanton and T. Winkler, J. Heteocycl. Chem., 1981, 18, 3, 619; Chem. Abstracts, 1981, 95, 97 721h.
7. Ref. 1, p. 965.
8. D.G. Markees, J. Heteocyc1. Chem., 1989, 26, 1, 29.
9. M. Zsuga, V. Szabo, F. Korodi and A. Kiss, Acta Chim. Acad. Sci. Hung., 1979, 101, 73.
10. V. Szabo and M. Zsuga, Acta Chim. Acad. Sci. Hung., 1975, 85, 179.
11. V. Szabo and M. Zsuga, Acta Chim. Acad. Sci. Hung., 1978, 97, 451.
12. Ref. 3, p. 697-700.
13. Ref. 1, p. 572.
14. Ref. 2, p. 674-677.
15. Ref. 1, p. 567.
16. Ref. 3, p. 816.
17. Ref. 1, p. 495 and 496.
18. Ref. 3, p. 819.
19. Ref. 3, p. 821.
20. Ref. 1, p. 514.
21. Ref. 3, p. 826-830.
22. S. Ruhemann and H.E. Stapleton, J. Chem. Soc., 1900, 77, 1179.
23. H. Cairns, C. Fitzmaurice, D. Hunter, P.B. Johnson, J. King, T.B. Lee, G.H. Lord, R. Minshull and J.S.G. Cox, J. Med. Chem., 1972, 15, 583. 41. Ref. 1, p. 536.
24. Ref. 1, p. 542.
25. E.L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill Book Company, Inc., New York, San Fransisco, Toronto, and London, 1962, p. 126-137.
26. N.S. Isaacs, Physical Organic Chemistry, Longman, Harlow, 1987, Sections 8.4.1, 8.5, and 8.6.
27. W.E. Stewart and T.H. Siddall, Chem. Rev., 1970, 70, 517.
28. R.J. Smith, D.H. Williams and K. James, J. Chem. Soc., Chem. Commun., 1989, 682.
29. D. Kost and H. Egozy, J. Org. Chem., 1989 54, 4909.
30. C.W. Fong and H.G. Grant, Aust. J. Chem., 1981, 34, 2307.
31. C.W. Fong and H.G. Grant, Aust. J. Chem., 1981, 34, 957.
32. J.A. Hirsch, R.L. Augustine, G.Koletar and H.G. Wolf, J. Org. Chem., 1975, 40, 3547.
33. J.H. Drews and P.T. Kaye, S. Afr. J. Chem., 1987, 40, 165.
34. Ref. 3, p. 692.
35. Ref. 1, p. 456.
36. Ref. 2, p. 679.
37. Ref. 1. 460,464 and 466.
38. L.W. McGarry and M.R. Detty, J. Org. Chem., 1990, 55, 4349.
39. N.R. Ayyangar, R.A. Khand and V.H. Deshpande, Tetrahedron Lett., 1988, 29, 19, 2347.
40. J.S.G. Cox, J.E. Beach, A.M.J.N. Blair, A.J. Clarke, J. King, T.B. Lee, D.E.E. Loveday, G.F. Moss, T.S.C. Orr, J.T. Ritchie and P. Sheard, Advan. Drug Res., 1970, 5, 115.
41. J.P. Devlin and M. Hargrave, Pulmonary and Antiallergic Drugs, Whiley, New York, 1985, Chapter 4, Section 2.7.
42. R.B. Gamill, C.E. Day and P.E. Schurr, J. Med. Chem., 1983, 26, 1672.
43. A. Nohara, H. Kuriki, T. Saijo, K. Ukawa, T. Murata, M. Kanno and Y. Sanno, J. Med. Chem., 1975, 18, 34.
44. Ref. 1, p. 985 and 986.
45. R. Walenta, R. Mueller-Peddinghaus, I. Ban, M. Wurl and U. Preuschoff, Chem. Abstracts, 1989, 110, 134 963q.
46. G.P. Ellis, G.J.P. Becket, D. Shaw, H.K. Wilson, C.J. Vardey and I.F. Skidmore, J. Med. Chem., 1978, 21, 1120.
47. F.L. Pearse, Trends Pharmacol. Sci., 1984, 5, 5.
48. F. Pataloni and F. Ruggieri, Eur. Respir, J., 1989, 2(6), 566 s.
49. F.L. Pearse, Prog. Med. Chem., 1982, 19, 59-109, see p. 89 and 90 for anti-allergic compounds.
50. P.J. Barnes, T.I.B.S., 1991, 365.
51. D.K. Rainey, Eur. Respir, J., 1989, 2(6), 561 s.
52. D.R. Buckle, C.S.V. Houge-Frydrych, I.L. Pinto, D.G. Smith and J.M. Tedder, J. Chem. Soc., Perkin Trans. 1, 1991, 63.
53. J.M. Evans and G. Stemp, Chem. in Br., 1991, 27, 5, 439.
54. A.G. Gilman, L.S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics, 6th edn., Macmillan, New York, 1980, p 621.
55. B.V. Cheney, R.B. Wright, C.M. Hall, H.G. Johnson and R.E. Christoffersen, J. Med. Chem., 1978, 21, 936.
56. A. Nohara, H. Kuriki, T. Saijo, H. Sugihara, M. Kanno and Y. Sanno, J. Med. Chem., 1977, 20, 141.
57. G.P. Ellis, Stud. in Org. Chem., 1981, II, 1.
58. J.A. Pickrell, Lung Connective Tissue : Location, Metabolism, and Response to Injury, C.R.C. Press, Inc., 1981, p. 169-183.
59. R.T. Scanlon, Annal of Allergy, 1984, 55, 203.
60. H.H. Salter, On Asthma : its pathology and treatment, $2^{\text {nd }}$ ed., Churchill, London, 1868.
61. P.J. Barnes, Lancet, i, 1986, 242.
62. C.G.A. Persson, Lancet, ii, 1985, 1126.
63. R. Newton, Education in Chemisty, 1990, 27, 130.
64. M.J. Pelizar, E.C.S. Chan and N.R. Krieg, Microbiology, Macgraw Hill Book Company, New York, 1986, Chapter 33.
65. R.P. Siraganian, Trends Pharmacol. Sci., 1983, 3, 432.
66. C.P. Page, Trends Pharmacol. Sci., 1988, 9, 67.
67. A.S. Playfair, Pocket Medical Dictionary, Newnes Books, Middlesex, England, 1985.

86 T.C. Theoharides, W. Sieghart, P. Greengard and W.W. Douglas, Science, 1980, 207, 80.

87 R.B. Fisher, A dictionary of Body Chemistry, Grenada Publishing Limited, London, Toronto, Sydney, New York, 1983, p 57.
88. Concise Science Dictionary, ed. A. Isaacs, J. Daintith and E. Martin, Oxford University Press, Oxford, New York, 1987, p. 181.
89. Ref. 67, p.60, 64, and 96-101.
90. D.J. Triggle, Trends Pharmacol. Sci., 1984, 5, 322.
91. L.E. Wood, I.L. Weis, W.B. Wood and J.H. Wilson, Immunology, 2nd edn., Benjiman/Cummings Publishing Company Inc., Menlo Park, California, 1984, 348-462.
92. F.L. Pearse, Allergy (Copenhagen), 1981, 36(4), 279.
93. F.L. Pearse, Trends Pharmacol. Sci., 1985, 6(10), 389.
94. R. Sagi-Eisenberg, Trends Pharmacol. Sci., 1985, 6(5), 198.
95. N. Mazurek, G. Burger and I. Pecht, Nature (London), 1980, 286, 722.
96. N. Mazurek, P. Bashkin and I. Pecht, J. E.M.B.O., 1982, 1, 585.
97. I.M. Richards, M. Dixon, D.M. Jackson and K. Vendy, Agents Actions, 1986, 18(3-4), 294.
98. C.G.A. Persson, Trends Pharmacol. Sci., 1987, 8(6), 202.
99. C.P. Page, C.B. Archer, W. Paul and J. Morley, Trends Pharmacol. Sci., 1984, 5, 239.
100. A. Zaman and H. Khan, Tetrahedron, 1974, 30, 2811.
101. T.C. Chen and C.T. Chang, J. Chem. Soc., 1958, 146.
102. P.J. Brogden, G.P. Ellis, C.D. Gabbutt and J.D. Hepworth, Comprehensive Heterocyclic Chemistry, ed. A.R. Katritzky and C.W. Rees, Pergamon, Oxford, 1984, 1, p. 1170.
103. J.D. Bryan, A.A. Goldberg and A.H. Wragg, J. Chem. Soc., 1960, 1279.
104. T. Suzujki, Personal Communication.
105. A.O. Fitton and R.K. Smalley, Practical Heterocyclic Chemistry, Academic Press, London, 1968, p. 94.
106. A Japanese Patent, Chem. Abstracts, 1981, 49, P156 754a.
107. J. Schmutz, H. Lauener, R. Hirt and M. Sanz, Helv. Chem. Acta., 1951, 34, 767.
108. J.H. Drews, M.Sc. Thesis, University of Natal, 1985.
109. D.H. Williams and I. Flemming, Spectroscopic Methods in Organic Chemistry, 4th edn., Macgraw-Hill, London, 1987, p. 132, 134 and 147.
110. Part 2. D.N. Davidson and P.T. Kaye, Synth. Commun., 1990, 20 , 727.
111. G.M. Coppinger, J. Amer. Chem. Soc., 1954, 76, 1372.
112. E.F.V. Scriven, Comprehensive Heterocyclic Chemistry, ed. A.J. Boulton and A. McKillop, Pergamon Press, Oxford, 1984, vol.2, p. 180.
113. P.J. Brogden, G.P. Ellis, C.D. Gabbutt and J.D. Hepworth, Comprehensive Heterocyclic Chemistry, ed. A.R. Katritzky and C.W. Rees, Pergamon, Oxford, 1984, 2, p. 960.
114. L.L. Fellinger and L.F. Audrieth, J. Amer. Chem. Soc., 1938, 60, 579.
115. A. Galat and G. Elion, J. Amer. Chem. Soc., 1943, 65, 1566.
116. J.R. Gerrish and R.C. Whitfield, A Modern Course in Organic Chemistry, Longman Group Limited, London, 1977, p 188.
117. D.J. Ecker, L.D. Loomis, M.E. Cass and K.N. Raymond J. Amer. Chem. Soc., 1988, 110, 2457.
118. H. Cairns, J.E.W. Tilmann and D.W. Whymark, Chem. Abstracts, 1975, 82, P 170 674h.
119. Ref. 58, p. 121 and 122.
120. Part 3. D.N. Davidson and P.T. Kaye, J. Chem. Soc. Perkin Trans. 2, 1991, 927.
121. U. Berg and J. Sandstrom, Advances in Physical Organic Chemistry, 1989, 25, 77; U. Berg and I. Pettersson, Magn. Res. Chem., 1985, 3 (7), 536.
122. Y.H. Lai and P. Chen, J. Chem. Soc., Perkin Trans. 2, 1989, 1665.
123. C.W. Fong, S.F. Lincoln and E.H. Williams, Aust. J. Chem., 31, 2615.
124. J. Hauer, G. Völkel and H-D. Lüdermann, J. Chem. Res. (S), 1980, 16.
125. L.M. Jackman, in Dynamic Nuclear Magnetic Resonance Spectroscopy, ed. L.M. Jackman and F.A. Cotton, Academic Press, New York, 1975, p. 212.
126. Part 4. D.N. Davidson and P.T. Kaye, J. Chem. Soc., Perkin Trans. 2, 1991, 1181.
127. U.E. Matter, C. Pascual, E. Pretsch, A. Pross, W. Simon and A. Sternhell, Tetrahedron, 1969, 25, 691.
128. Y. Shvo and H. Shanan-Atidi, J. Am. Chem. Soc., 1969, 91, 6683 and 6689.
129. D.N. Davidson and P.T. Kaye, J. Chem. Soc., Perkin Trans. 2, 1991, 1509.
130. A. Albert and E.P. Serjeant, in Ionisation Constants of Acids and Bases, Methuen, London, 1962, pp. 127 and 130.
131. M. Haruta, Z. Yoshida and H. Ogoshi, Bull. of Chem, Soc. of Japan, 1974, 47, 12, 3029.
132. J. March, in Advanced Organic Chemistry, 3rd edn., Wiley, New York, 1985, p 244.
133. P. Sykes, A Guidebook to Mechanism in Organic Chemistry, 5th edn., Longman Group Limited, London, 1981, p 350.
134. J. Dauphine, D. Chatonier, J. Couquelet, M. Payard and M. Picard, Labo-Pharma-Prob1. Tech., 1770, 18, 58.
135. G.P. Ellis and G. Parker, Prog. Med. Chem., 1973, 9, 65.
136. G.P. Ellis and D. Shaw, J. Med. Chem., 1972, 15, 865.
137. Ref. 130, p. 27.
138. Ref. 130, p. 7.
139. A.I. Vogel, Textbook of Quantitative Inorganic Analysis, 4 th edn., Longman Group Limited, New York, 1978, p 598.
140. Ref. $130, \mathrm{p} .12$.
141. W.C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 14, 2923.
142. D.D. Perrin and W.L.F. Amarego, in Purification of Laboratory Chemicals, 3rd edn., Pergamon, Oxford, 1988.
143. A.I. Vogel, Vogel's Textbook of Practical Organic Chemistry, ed. B.S. Furniss, A.J. Hannaford, P.W.G. Smith and A.R. Tatchell, 4th edn., Longman Scientific and Technical, London, 1978, p 297.
144. G. Janzo, F. Kallay and I. Koczor, Tetrahedron Lett., 1965, 2269.
145. R.W. Taft, E. Price, I.R. Fox, I.C. Lewis, K.K. Anderson and G.T. Davis, J.Amer. Chem. Soc., 1963, 85, 709.
146. W.J. Wohlleben, Chem. Ber., 1909, 42, 4369.
147. T. Nishioka, T. Fujita, K. Kitamura and M. Nakajima, J. Org. Chem., 1975, 40 (17), 2520.
148. A. Gerecs, T. Széll and M. Windholtz, Chem. Abstracts, 1955, 49, 2361b.
149. R. Henning, R. Lattrell, H. Gerhards and M. Leven, J. Med. Chem., 1987, 30, 814.
150. P. Niviere, P. Tronche and J.Couquelet, Chem. Abstracts, 1966, 64, 9671g.
151. A.O. Fitton and B.T. Hatton, J. Chem. Soc. (C), 1970, 18, 2518, Chem. Abstracts, 1971, 74, 22 758h.
152. V.A. Zagorevskii, D.A. Zykov, and E.K. Orlova, Chem. Abstracts, 1961, 55, 22 301h.
153. Ref. 1, p. 993.
154. N. Peet and S. Sunder, J. Org. Chem., 1980, 45, 536.
155. The Merck Index, ed. M. Windholz, loth edn., Merck and Co., Inc., Rathway, New Jersey, 1983, p. 3215.
156. Vogel's, Elemental Practical Organic Chemistry 1: Preparations, ed. A. Vogel, 3rd edn., Longman Gp. Limited, New York, 1980, p. 250.
157. J. Austein, D. Carter and T.B. Lee, Chem. Abstracts, 1975, 83, 147 393c.
158. G.M. Sheldrick, SHELX 76, Programme for Crystal Structure Determination, Cambridge University, 1976.

159 P. Roberts, XANADU, Program For molecular Geometry Calculation, Cambridge University, 1974.
160. F.H. Allen, S.A. Bellard, M.D. Brice, B.A. Cartwrite,
A. Doubleday, H. Higgs, T. Hummelink, B.G. Hummelink-Peters, O. Kennard, W.D.S. Motherwell, J.R. Rogers and D.G. Watson, Acta Crystallog., 1979, B35, 2331.
161. E.B.R. Pirdeaux and A.T. Ward, J. Chem. Soc., 1924, 125, 426.
162. Ref. 139, p. 584.
163. Handbook of Chemistry and Physics, ed. R.C. West, 48 th edn., The Chemical Rubber Co., 1962, D-90.

## 5. APPENDICES

### 5.1 SPECTRAL DATA.




$\stackrel{q}{7}$


皆


$50^{\circ} 0^{-}$

$89^{\circ} 9 L$
$00^{\circ} \angle L$
$2 E^{\circ} \angle L$$\longrightarrow$
tて. 28

2



## $E L .89$ 20.02 <br> $99^{\circ} 9 L$ $00^{\circ} \angle L$ $5 E \cdot \angle L$





### 5.2 CRYSTALLOGRAPHIC DATA.

Table 12. Crystal data for (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)$N, N$-dimethylacrylamide $140{ }^{\text {a }}$

Formula
Molar mass
Crystal system
Space group
a $(\AA)$
$b(\AA)$
$c(\AA)$
$\alpha\left({ }^{\circ}\right)$
$\beta\left({ }^{\circ}\right)$
$\gamma\left({ }^{\circ}\right)$
$\mathrm{V}\left(\AA^{3}\right)$
2
$D_{c}\left(\mathrm{~g} \cdot \mathrm{~cm}^{-1}\right)$
F(000)
$\mu\left(\mathrm{cm}^{-1}\right)$
Number of reflections
$\left(2<\theta<30^{\circ}\right)$
Observed reflections
[ $I>\sigma(I)]$
R(unit weights)
$N_{\text {parameters }}$
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$
262.31
triclinic
$P \overline{1}$
$6.8745(6)$
9.353(1)
10.872(1)
94.536(8)
99.245(8)
91.223 (8)
698.38(21)

2
1.2637(4)

280
0.71

4195

3260
0.069

190

[^34]Table 13. Fractional coordinates ( $\times 10^{4}$ ) and equivalent isotropic temperature factors ( $\AA^{2}, \times 10^{3}$ ) for (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N,N-dimethylacrylamide 140.a,b

| a tom | x/a | $y / b$ | $z / \mathrm{c}$ | $\mathrm{U}_{\mathrm{eq}}$ |
| :---: | :---: | :---: | :---: | :---: |
| C(1) | 3746(3) | 2544 (2) | 7544 (2) | 40(1) |
| C(2) | 4446(3) | 1354(2) | 8181(2) | 44(1) |
| C(3) | 3164(4) | 227 (3) | 8319(3) | 54(1) |
| C(4) | 1200(4) | 271(3) | 7832(3) | 60(1) |
| C(5) | 472(4) | 1427(3) | 7209(3) | 62(1) |
| C(6) | 1730(3) | 2549(3) | 7066 (3) | 53(1) |
| O(1) | 6362 (3) | 1258(2) | 8686(2) | 66(1) |
| H(0) | 6934 (51) | 2084(37) | 8613(32) | 98(12)* |
| O(2) | 6909(2) | 3670(2) | 7972(2) | $61(1)$ |
| C(7) | 5145(3) | 3749 (2) | 7440(2) | 42(1) |
| C(8) | 4480(3) | $4935(2)$ | 6764 (2) | $43(1)$ |
| C(9) | 5709(3) | 6084 (2) | 6666 (2) | 40(1) |
| C(10) | 7921(3) | $6067(2)$ | 7141(2) | 42(1) |
| N(1) | 5105(3) | 7253(2) | 6094 (2) | 47(1) |
| C(11) | 3046(4) | 7375(3) | 5518(3) | $57(1)$ |
| C(12) | 6442(4) | 8452(3) | 5964 (3) | 60(1) |
| O(3) | 8996(2) | 5627(2) | 6412(2) | 56(1) |
| N(2) | 8558(3) | 6626(2) | 8313(2) | 50(1) |
| C(13) | 10644 (4) | 6488(3) | 8826(3) | 71(1) |
| C(14) | 7234 (5) | 7056(4) | 9187(3) | 76(1) |

[^35]Table 14. Bond lengths ( $\AA$ ) and angles ( ${ }^{\circ}$ ) for ( $E$ )-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N,N-dimethylacrylamide 140, a,b,c

| $C(1)-C(2)$ | $1.410(3)$ | $C(1)-C(6)$ | $1.400(3)$ |
| :--- | :--- | :--- | :--- |
| $C(1)-C(7)$ | $1.489(3)$ | $C(2)-C(3)$ | $1.392(3)$ |
| $C(2)-O(1)$ | $1.351(3)$ | $C(3)-C(4)$ | $1.371(3)$ |
| $C(4)-C(5)$ | $1.381(4)$ | $C(5)-C(6)$ | $1.380(3)$ |
| $O(1)-H(0)$ | $0.87(3)$ | $O(2)-C(7)$ | $1.263(2)$ |
| $C(7)-C(8)$ | $1.422(3)$ | $C(8)-C(9)$ | $1.374(3)$ |
| $C(9)-C(10)$ | $1.526(3)$ | $C(9)-N(1)$ | $1.340(3)$ |
| $C(10)-O(3)$ | $1.222(3)$ | $C(10)-N(2)$ | $1.339(3)$ |
| $N(1)-C(11)$ | $1.464(3)$ | $N(1)-C(12)$ | $1.465(3)$ |
| $N(2)-C(13)$ | $1.465(3)$ | $N(2)-C(14)$ | $1.458(3)$ |


| $C(2)-C(1)-C(6)$ | $117.7(2)$ |
| :--- | :--- |
| $C(6)-C(1)-C(7)$ | $123.0(2)$ |
| $C(1)-C(2)-O(1)$ | $122.1(2)$ |
| $C(2)-C(3)-C(4)$ | $119.9(2)$ |
| $C(4)-C(5)-C(6)$ | $119.9(2)$ |
| $C(2)-O(1)-H(0)$ | $106.0(2)$ |
| $C(1)-C(7)-C(8)$ | $120.1(2)$ |
| $C(7)-C(8)-C(9)$ | $122.1(2)$ |
| $C(8)-C(9)-N(1)$ | $123.6(2)$ |
| $C(9)-C(10)-O(3)$ | $118.2(2)$ |
| $O(3)-C(10)-N(2)$ | $124.5(2)$ |
| $C(9)-N(1)-C(12)$ | $123.0(2)$ |
| $C(10)-N(2)-C(13)$ | $117.8(2)$ |
| $C(13)-N(2)-C(14)$ | $117.5(2)$ |


| $C(2)-C(1)-C(7)$ | $119.3(2)$ |
| :--- | :--- |
| $C(1)-C(2)-C(3)$ | $120.6(2)$ |
| $C(3)-C(2)-O(1)$ | $117.3(2)$ |
| $C(3)-C(4)-C(5)$ | $120.8(2)$ |
| $C(1)-C(6)-C(5)$ | $121.2(2)$ |
| $C(1)-C(7)-O(2)$ | $117.6(2)$ |
| $C(2)-C(7)-C(8)$ | $122.3(2)$ |
| $C(8)-C(9)-C(10)$ | $121.3(2)$ |
| $C(10)-C(9)-N(1)$ | $115.0(2)$ |
| $C(9)-C(10)-N(2)$ | $117.1(2)$ |
| $C(9)-N(1)-C(11)$ | $121.1(2)$ |
| $C(11)-N(1)-C(12)$ | $115.9(2)$ |
| $C(10)-N(2)-C(14)$ | $123.1(2)$ |

a For atom labelling see figure 21 p. 97 (Section 2.3 ).
b Estimated standard deviations in parentheses.
c Bond Lengths and angles involving hydrogen atoms, excepting the phenolic
hydrogen, are not listed as their positions were calculated and not refined.

Table 15. Anisotropic temperature factors ( $A^{2}, \times 10^{3}$ ) for (E)-2-(dimethylamino)-3-(2-hydroxybenzoyl)-N,N-dimethylacrylamide 140.a,b

| atom | $\mathrm{U}(11)$ | U(22) | U(33) | U(23) | U(13) | $\mathrm{U}(12)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(1) | $37(1)$ | 39(1) | 42(1) | 4(1) | 6 (1) | 2(1) |
| C(2) | 42(1) | 42(1) | 47(1) | 5(1) | 2(1) | $3(1)$ |
| C(3) | 53(1) | 40(1) | 68(2) | 12(1) | 2(1) | O(1) |
| C(4) | 52(1) | 48(1) | 80(2) | 11(1) | 5(1) | -11(1) |
| C(5) | 40(1) | 58(2) | 85(2) | 17(1) | $-1(1)$ | -6(1) |
| C(6) | 40(1) | 49(1) | 69 (2) | 15(1) | 1(1) | 2(1) |
| O(1) | 44(1) | 59(1) | 93(2) | 31(1) | -10(1) | O(1) |
| O(2) | 40(1) | $55(1)$ | 84(1) | 24(1) | -8(1) | -4(1) |
| C(7) | $37(1)$ | $41(1)$ | 47(1) | 5(1) | 4(1) | 0(1) |
| C(8) | $37(1)$ | 43(1) | 50(1) | 9(1) | 2(1) | 1(1) |
| C(9) | 40(1) | 41(1) | 38(1) | 3(1) | 3(1) | 1(1) |
| C(10) | 41(1) | 36(1) | 47(1) | 4(1) | 3(1) | -2(1) |
| N(1) | 47(1) | 41(1) | $51(1)$ | 9(1) | -1(1) | -1(1) |
| C(11) | 52(1) | 51(1) | $63(2)$ | 12(1) | -7(1) | 6(1) |
| c(12) | 66 (2) | 45(1) | 69(2) | 16(1) | 4(1) | -10(1) |
| O(3) | 45(1) | $63(1)$ | 59(1) | -1(1) | 15(1) | -1(1) |
| N(2) | 50(1) | 48(1) | $46(1)$ | 1(1) | -4(1) | -3(1) |
| C(13) | 55(2) | $77(2)$ | 72(2) | 15(2) | -19(1) | -10(1) |
| C(14) | $84(2)$ | 89(2) | 51(2) | -11(1) | 8(1) | 17(2) |

[^36]Table 16. Fractional coordinates ( $\mathrm{x} 10^{4}$ ) for hydrogen atoms for (E)-2-(dimethylamino)-3-(2-hydroxybenzloyl)$N, N$-dimethylacrylamide $140 . \mathrm{a}, \mathrm{b}$

|  | $\mathrm{x} / \mathrm{a}$ | $\mathrm{y} / \mathrm{b}$ | z/c | U |
| :---: | :---: | :---: | :---: | :---: |
| H(3) | 3715 (4) | -679(3) | 8809 (3) | 82(4) |
| H(4) | 212(4) | -607(3) | 7938(3) | 82(4) |
| H(5) | -1079(4) | 1451(3) | 6834 (3) | $82(4)$ |
| H(6) | 1149(3) | 3448(3) | 6577(3) | 82(4) |
| H(0) | 6934(51) | 2084(37) | 8613(32) | 98(12) |
| $\mathrm{H}(8)$ | 2961(3) | 4932(2) | 6312(2) | 82(4) |
| $\mathrm{H}(11 \mathrm{~A})$ | 2818(4) | 8447(3) | 5231(3) | 176(6) |
| H(11B) | 2095(4) | 7161 (3) | 6187(3) | 176(6) |
| H(11C) | 2704 (4) | 6607 (3) | 4711 (3) | 82(4) |
| H(12A) | 5614(4) | 9168(3) | 5362(3) | 176(6) |
| $\mathrm{H}(12 \mathrm{~B})$ | 7712(4) | 8105(3) | 5565(3) | 176(6) |
| H(12C) | 6924(4) | 9005(3) | 6876(3) | 176(6) |
| H(13A) | 10942(4) | 7148(3) | 9700(3) | 176(6) |
| H(13B) | 11647 (4) | 6801(3) | 8219(3) | 176(6) |
| $\mathrm{H}(13 \mathrm{C})$ | 10840(4) | 5376(3) | 9001(3) | 176(6) |
| H(14A) | 8074(5) | 7683(4) | 9980(3) | 176(6) |
| H(14B) | 6618(5) | 6102 (4) | 9496(3) | 176(6) |
| H(14C) | 6056(5) | 7685 (4) | 8753(3) | 176(6) |

[^37]Table 17. Torsion angles ( ${ }^{\circ}$ ) of the amide and $\beta$-amino-vinyl ketone functionalities. ${ }^{a}$

| $\mathrm{C3}$ | C 10 | N 2 | C 13 | -10.55 |
| :--- | :--- | :--- | :--- | ---: |
| $\mathrm{C3}$ | C 10 | N 2 | C 14 | -175.88 |
| C 9 | C 10 | N 2 | C 13 | 173.99 |
| C 9 | C 10 | N 2 | C 14 | 8.65 |
| N 1 | C 9 | C 10 | N 2 | 90.65 |
| N 1 | C 9 | C 10 | O 3 | -85.11 |
| C 8 | C 9 | C 10 | N 2 | -92.96 |
| C 8 | C 9 | C 10 | O 3 | 91.29 |
| C 8 | C 9 | N 1 | C 11 | 0.00 |
| C 8 | C 9 | N 1 | C 12 | -178.11 |
| C 10 | C 9 | N 1 | C 11 | 175.93 |
| C 10 | C 9 | N 1 | C 12 | -1.81 |
|  |  |  |  |  |

Table 18. Torsion angles ( ${ }^{\circ}$ ) in the vicinity of the intra-molecular hydrogen-bond. ${ }^{\text {a }}$

| C 6 | C 1 | C 7 | C 8 | -4.10 |
| :--- | :--- | :--- | :--- | ---: |
| C 6 | C 1 | C 7 | 02 | 175.75 |
| C 2 | C 1 | C 7 | C 8 | 177.77 |
| C 2 | C 1 | C 7 | 02 | -2.37 |
| C 7 | C 1 | C 2 | 01 | -1.07 |
| C 7 | $\mathrm{C1}$ | C 2 | C 3 | 178.44 |
| C 6 | $\mathrm{C1}$ | C 2 | 01 | 180.00 |
| C 6 | C 1 | C 2 | C 3 | 0.00 |
| $\mathrm{C1}$ | C 2 | $\mathrm{O1}$ | H 0 | 7.16 |
| C 3 | C 2 | $\mathrm{O1}$ | H 0 | -172.37 |
|  |  |  |  |  |

a For atom labelling see figure 21 p. 97 (Section 2.3).

Table 19. Deviations from the mean plane 1 defined by C1-C12, $\mathrm{H} 0, \mathrm{~N} 1, \mathrm{O} 1$, and O2. ${ }^{\text {a }}$
$\qquad$

| C1 | -0.0219 | 02 | 0.0576 |
| :--- | ---: | :--- | ---: |
| C2 | -0.0229 | $\mathrm{C7}$ | -0.0031 |
| C 3 | -0.0078 | CB | -0.0496 |
| C4 | 0.0077 | C 9 | -0.0058 |
| C 5 | 0.0146 | C 10 | -0.0796 |
| C6 | -0.0004 | N 1 | 0.0263 |
| O1 | -0.0287 | C 11 | 0.0082 |
| HO | 0.0732 | C 12 | 0.0323 |

Table 20. Deviations from the mean plane 2 of the amide functionality defined by $\mathrm{C} 9, \mathrm{C} 10,03, \mathrm{~N} 2$, and C14.a

| C9 | -0.0192 | N 2 | 0.0820 |
| :--- | ---: | :--- | ---: |
| C10 | -0.0065 | C 14 | -0.0399 |
| 03 | 0.0025 |  |  |

Table 21. Deviations from the mean plane 3 of the $\beta$-amino-vinyl ketone functionality defined by C8, C9, N1, C11 and C12.a

| C8 | -0.0087 | C11 | -0.0019 |
| :--- | ---: | :--- | :--- |
| $\mathrm{C9}$ | 0.0066 | C 12 | -0.0101 |
| N 1 | 0.0141 |  |  |

a For atom labelling see figure 21 p. 97 (Section 2.3).

Table 22. Deviations from the mean plane 4 of the hydrogen-bond chelation defined by G1, C2, 01, HO, 02, and C7.a

|  |  |  |  |
| ---: | ---: | ---: | ---: |
| C1 | 0.0110 | HO | 0.0375 |
| C2 | 0.0094 | 02 | 0.0013 |
| 01 | -0.0401 | C7 | -0.0191 |

a For atom labelling see figure 21 p. 97 (Section 2.3).

Table 23. The angles ( ${ }^{\circ}$ ) between the normals to the planes.

| 1 and 2 | 85.14 |
| :--- | ---: |
| 1 and 3 | 1.28 |
| 1 and 4 | 2.17 |
| 2 and 3 | 86.40 |

### 5.2 PUBLICATIONS.

Manuscript as published in Synth. Commun., 1990, 20, 727, by courtesy of Marcel Dekker, Inc.

# CHROMONE STUDIES. PART 2. ${ }^{1}$ AN EFFICIENT SYNTHESIS <br>  

Deborah N. Davidson and Perry T. Kaye*<br>Department of Chemistry, Rhodes University P.O. Box 94, Grahamstown, 6140, Republic of South Africa

ABSTRACT: Chromone-2-carboxylic acids are efficiently transformed into the $N, N$-dimethylcarboxamides, without concomitant formation of unwanted products, by reacting the corresponding acid chlorides with dimethylammonium chloride in pyridine.

The potential of chromone derivatives in asthma therapy is well illustrated by the established action of compounds such as khellin, a naturally-occuring furochromone, and the widely used synthetic drug, disodium cromoglycate. ${ }^{2}$ Certain chromone carboxamides have also been shown to exhibit some antiallergic activity. ${ }^{3}$ In order to explore the conformational properties of such compounds, we required a range of model carboxamides, including the $\mathrm{N}, \underline{N}$-dimethylchromone-2-carboxamides[3(a-f); Scheme]. However, the preparation of these (latter) compounds, from the corresponding acid chlorides (2), was complicated by:-

[^38]i) competitive formation of the ethyl carboxylate analogues, when using ethanolic dimethylamine; ${ }^{4}$
ii) heterogeneous reaction mixtures with hydrolytic potential, when using aqueous dimethylamine; ${ }^{5}$
iii) the susceptibility of chromones to nucleophilic attack at C-2 by excess dimethylamine and consequent ring opening to afford products such as (4): ${ }^{6}$
iv) the difficulties associated with handling and metering pure dimethylamine (b.p. $7^{\circ} \mathrm{C}$ ); ${ }^{7}$ and
v) unacceptably low yields. 4,5



4

SCHEME
Reagents 1) $\mathrm{SOCl}_{2}$, DMF, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$;
ii) $\mathrm{Me}_{2} \mathrm{NH}_{2} \mathrm{Cl}$, pyridine, $\mathrm{O}^{\circ} \mathrm{C}$.

|  | R |
| :--- | :--- |
| $\mathbf{a}$ | H |
| b | OMe |
| $\mathbf{c}$ | $\mathrm{NO}_{2}$ |
| d | F |
| $\mathbf{e}$ | Cl |
| $\mathbf{i}$ | Br |

The foregoing difficulties were obviated by the simple but effective expedient of generating dimethylamine in situ from the amine salt, dimethylammonium chloride, in pyridine. The pyridine thus serves as reaction solvent; as base, releasing nucleophilic dimethylamine from its hydrochloride salt and neutralising the HCl liberated during acyl substitution; and, presumably, as nucleophilic catalyst, enhancing acyl substitution. ${ }^{8}$ Previous applications involving ammonium salts include the acid catalysed ammonolysis of ethyl benzoate; ${ }^{9}$ the acylation of amines by carboxamides; ${ }^{10}$ and, recently, Schotten-Baumann acylation of 1,3,5-tris(aminomethyl)benzene trihydrochloride. ${ }^{11}$

In our method, the acid chlorides (2) were reacted with two equivalents of dimethylammonium chloride in pyridine, at ca. $0^{\circ} \mathrm{C}$, to afford the corresponding chromone-2-carboxamides (3) in overall yields ranging from moderate to excellent (Table). The general procedure is illustrated by the following example. A slurry of dimethylammonium chloride ${ }^{12}(1.50 \mathrm{~g}, 18.4 \mathrm{mmol})$ in dry pyridine ( 5 ml ) was added slowly to a pre-cooled (- $\left.5^{\circ} \mathrm{C}\right)$, stirred solution of chromone-2-carbonyl chloride (2a) [generated ${ }^{3}$ from the acid (1a)(1.75 g, 9.2 mmol$\left.)\right]$ in dry pyridine ( 15 ml ), ensuring that the temperature of the resulting mixture did not exceed $0^{\circ} \mathrm{C}$. After stirring for 2 h at $0^{\circ} \mathrm{C}$ and then for a further 20 h at room temperature, the black mixture was poured into $2 \mathrm{M}-\mathrm{HCl}$


Compd. R

TABLE Data for $\underline{N}, \underline{N}$-dimethylaminochromone-2-carboxamides(3)

| Crude | Chromotographed |
| :---: | :---: |
| Yielda | Yield ${ }^{\text {b }}$ |
| (\%) | (\%) |


| Melting |  |  |
| :--- | :---: | :---: |
| Point |  | Found |
| $\left({ }^{\circ} \mathrm{C}\right)$ | C | H |

Molecular
Formula
Requires
C
H

| 3a | H | 76 | 62 | $115-116^{\text {c }}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3b | OMe | 92 | 83 | 120-122 ${ }^{\text {d }}$ | 63.0 | 5.1 | 5.7 | $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$ | 63.15 | 5.3 | 5.7 |
| 3c | NO2 | 68 | 66 | 152-153 ${ }^{\text {d }}$ | 55.4 | 3.8 | 10.6 | $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$ | 55.0 | 3.8 | 10.7 |
| 3d | F | 76 | 64 | 144-146 ${ }^{\text {d }}$ | 61.85 | 4.3 | 6.1 | $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FNO}_{3}$ | 61.3 | 4.3 | 6.0 |
| 3 e | Cl | 80 | 72 | $146-147^{\text {d }}$ | 57.3 | 3.7 | 5.5 | $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{C} \mathrm{NO}_{3}$ | 57.3 | 4.0 | 5.6 |
| $3{ }^{\text {f }}$ | Br | 96 | 77 | 143-145 ${ }^{\text {d }}$ | 48.8 | 3.45 | 4.8 | $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNO}_{3}$ | 48.7 | 3.4 | 4.7 |

a Overall yield from the corresponding acids (1); the crude material was essentially clean by ${ }^{1} H$ NMR spectroscopy.
${ }^{b}$ Overall yield from acid (1) after flash chromatography. ${ }^{c}$ Lit. ${ }^{6} 115-116^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}}$ New compound which gave
satisfactory spectroscop ic ( ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, and MS) analyses.
$(200 \mathrm{ml})$. After standing for 0.5 h , the resulting mixture was extracted (EtOAC) and the organic extracts were washed (ca. $52 \mathrm{aq} . \mathrm{NaHCO}_{3}$ and then satd.aq. NaCl ), dried (anhyd. $\mathrm{MgSO}_{4}$ ), and evaporated. The residue (1.51 g) was chromatographed (flash chromatography on silica gel; elution with EtOAc) to afford N, N-dimethylchromone-2carboxamide (3a) (1.24 g).

## ACKNOWLEDGEMENTS

The authors thank AECI Ltd for a post-graduate fellowship (to D.N.D.) and Rhodes University and the Foundation for Research Development for generous support.

## REFERENCES and NOTES

1. Part 1. Drews, J.H. and Kaye, P.T., S.Afr.J.Chem., 1987, 40(3), 165.
2. Cox, J.S.G., Beach, J.E., Blair, A.M.J.N., Clarke, A.J., King, J., Lee, T.B., Loveday, D.E.E., Moss, G.F., Orr, T.S.C., Ritchie, J.T., and Sherd, P., Advan. Drug Res., 1970, 5, 115.
3. Ellis, G.P., Becket, G.J.P., Shaw, D., Wilson, H.K., Vardey, C.J., and Skidmore, I.F., J. Med. Chem., 1978, 21(11), 1120.
4. For example, reaction of the acid chloride (2a) with $33 \%$ ethanolic $\mathrm{Me}_{2} \mathrm{NH}$ (1 eq.) in pyridine gave a $1: 2$ mixture of the chromone-2-carboxamide [(3a), 287] and the corresponding ethyl carboxylate ester.
5. Reaction of various acid chlorides (2) with $40 Z \mathrm{aq} . \mathrm{Me}_{2} \mathrm{NH}$ (1 eq.), in the presence of $\mathrm{NaHCO}_{3}$, gave the carboxamides (3) (15-61\%) and the corresponding carboxylic acids (1).
6. We obtained the known enamine (4), in $37 \%$ yield, from a reaction of the acid chloride (2a) with excess (2 eq.) $40 \%$ aq. $\mathrm{Me}_{2} \mathrm{NH}$. Cyclisation of this enamine (4) to the chromone-2-carboxamide (3a) has been reported by Jerzmanowska, Z. and Kostka, K., Roczniki Chem., 1963, 37, 413.
7. An alternative to "use of the somewhat objectionable dimethylamine", reported by Coppinger, G.M., J. Am. Chem. Soc., 1954, 76, 1372, involves formation of $\mathrm{N}, \mathrm{N}-$ dimethylcarboxamides by heating an acid chloride or anhydride in $N$, $N$-dimethylformamide.
8. Scriven, E.F.V., in 'Comprehensive Heterocyclic Chemistry', ed. Boulton, A.J. and McKillop, A., Pergamon Press, Oxford, 1984, vol.2, p. 180.
9. Fellinger, L.L. and Audrieth, L.F., J. Am. Chem. Soc., 1938, 60, 579.
10. Galat, A. and Elion, G., J. Am. Chem. Soc., 1943, 65, 1566.
11. Ecker, D.J., Loomis, L.D., Cass, M.E., and Raymond, K.N., J. Am. Chem. Soc., 1988, 110, 2457.
12. Dimethylammonium chloride was obtained by bubbling dry HCl through $33 \%$ ethanolic $\mathrm{Me}_{2} \mathrm{NH}$ at $\mathrm{ca} .0^{\circ} \mathrm{C}$ for 2 h . The solvent was evaporated in vacuo and the crystalline salt was washed $\left(E t_{2} \mathrm{O}\right)$ under $\mathrm{N}_{2}$ and dried in vacuo.

Reproduced by permission of the editor.

# Chromone Studies. Part 3.' NMR Analysis of Rotational Isomerism in 4-Oxo-4H-chromene-2-carboxamides 

Dehorah N. Davidson and Perry T. Kaye
Department of Chemistry, Rhodes Universily, P.O. Box 94, Grahamstown, 6140, Republic of South Alrica

Temperaturn dependent spliting of N -alkyl 'H and ${ }^{13} \mathrm{C}$ NMR signals in a series of 4-oxo-4H. chromeng-2-carboxamides has been enalysed in terms of rotation of the amide proup. Rotational barriers have been calculated from dynamic 'H NMR data and the conformational options have been explored.

Varimes 4-oxn-4/l.chromene derivalives are known to exhibis noti-allergic activity: these include the widely nsed synhetic trur. tisestium cromoplycale ${ }^{2}$ and certain 4 -0x0-4/f-cliromcue cartoramiales. ${ }^{3}$ In an entlicr commonication ${ }^{4}$ we described an IR study of rolational isomerism in a series of 4 -nxn-4/f. chromene-2-carbouylate esters. As part of an investigation into electronic and comformational eflects in chromone systems with medicinal pelential, we now report the results of NMR studics of mational isomerism in a series of 4 -oxo-4/f-chromenc-2carboxiamides.

## Resultes and Jiscussion

The 4 -indi-d/l.chromene-2-carhoxamides (d) were nblained by reacting the acit chlorides (3) with the appropriate secondary amine or, in the ease of the N.N. limethylcarboxamides, with dimellylammonium chloride in pyridine' (Scheme 1). Sym-

 pyridine of R'll ay. Nalle 0 , if $R^{3}$ 'll-pytidine
metrically subsibuted amides were used in order (1) simplify onalysis of the dymmic NMR data, while the $N$-nlkyl and ring substiduents were chosen to clucidate clectronic and steric cllects on the rolmmeric equilibria.

In the J-טxo-4/f-chromene-2-cirboxamides [4 $\mathrm{K}^{*}=\mathrm{R}$ (Seheme 2)]. the conformational energy minima associaled



lb
$\xrightarrow{n^{\prime}}$

Scheme 2
with simultaneous rotation about the $\mathrm{N}-\mathrm{CO}$ and ( $-2-\mathrm{CO}$ bonda may be expected to conrespond to two equivaient pairs of quasi-planar $\dagger$ conjugated conformers (la $¥$ lla and $\mathrm{lb} \equiv \mathrm{llh}$ ). In two recent investigations ${ }^{n, 7}$ of sysiema exhibiting simultancous rolation ahout separate bomes, the sile-exchange processes were sufliciemly slow for dynamic $N M R$ amalysis of individual rotational barricrs. In the $4-0 \times 0-4 /$-chromene-2carloxamides (4). however, al nombient temperature C.2-CO rolation is expected to be rapid, relative to the NMR timeseate, $\dagger$ and to require analysis by an sliernalive lechnique. The sensitivity of IR carbonyl absorption bands to conformational change ofien makes IR apecirnseopy (with ils very much shorter time-scale) a useful probe for studying rapid rotations involving earbonyl gromps. ${ }^{4}$ Unfortumately, the amide and 4 -nav-4/f-cliomene IR cartonyl ahsurption bands of the d-oxo-4//-chromene-2-carboxamides (d) overlap extensively (al ra $1650 \mathrm{~cm}^{-1}$ ), precluding use of IR suectroseopy for amalysing rotation about the $\mathrm{C}-2-\mathrm{CO}$ bond. Rolation about the $\mathrm{N}-\mathrm{CO}$ bond, on the other hand, should be sufficienily inhibited by delocalisalion effects (Fig. 2), [i.r. $k_{0}, k_{*}, k_{\mathrm{b}}, k_{\mathrm{b}}$. (Scheme 2)] Io permil analysis by dynamic NMR methods. The observed splitiong of $N$-alkyl ${ }^{1 / 1}$ (Fig. 1 and Table 1) and ${ }^{13} \mathrm{C}$ NMR signals is thus altributed to slow site-exchange of the $N$-alkyl suhstituents 8 and variable temperahure 'II NMR ancectroscopy has heen used to explore rotation about the $\mathrm{N}-\mathrm{CO}$ bond in the lille compounds (4).
It should be noled that rotation of the amide group in a
f Siericinesactions in amalogotat benzamidesapparar boinleffere with the co-phanarily nf the aromalic and carboxamide systema.'
1 liven in sterically hindered oftho-subelituled benzamides, (-1-CO) rolational barriers are less than 60 kJ mol '.
8 Dynamic rate processes involving nitrogen inversinn and ring reversal are considered to be significandy fasier than N CO rolatiom."

Table 1 Data from dynamic NMR study of 4-oxo-4/f-chromene-2-carboxamides (4)*


4

| Compound | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | $T_{\mathrm{E}}{ }^{1} / \mathrm{K}$ | $\Delta v_{\mathrm{s}} / 7 \mathrm{~Hz}$ | $\Delta G^{1 / 4} / \mathrm{kJ} \mathrm{mol}^{-1}$ | $k_{208}{ }^{7} / \mathbf{s}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 m | OMe | H | NMe, | 302 | $2.5 \pm 0.7$ | $69.7 \pm 1.5$ | 4 |
| 4 b | $\mathrm{NO}_{2}$ | H | $\mathrm{NMe}_{2}$ | 305 | $1.8 \pm 0.6$ | $71.2 \pm 1.9$ |  |
| 4 c | F | H | $\mathrm{NMe}_{2}$ | 270 | $1.0 \pm 0.5$ | $64.1 \pm 2.3$ | 36 |
| 4 d | $\mathrm{Cl}^{\mathrm{Cl}}$ | 1 | $\mathrm{NMe}_{2}$ | $<255^{\prime}$ |  | - | - |
| 4 c | $\stackrel{\mathrm{Br}}{ }$ | H | $\mathrm{NMe}_{2}$ | 290 | $1.0 \pm 0.3$ | $69.0 \pm 1.6$ | 5 |
| 48 48 | H H | $\mathrm{Me}_{\mathrm{H}}^{\mathrm{M}}$ | NMe, NMe, | $>345^{\circ}$ 270 | $0.8 \pm 0.3$ | $>72.3 \pm 0.2$ $64.6 \pm 1.9$ | $<1$ 29 |
| 4 h | 13 | H | $\mathrm{NPr}_{2}{ }^{2}$ | 315 | $87.2 \pm 2.2$ | $63.5 \pm 0.7$ | 46 |
| di | H | H | $N$ | 332 | $13.6 \pm 1.1$ | $72.2 \pm 0.9$ | 1 |
| 4j | H | H | $\stackrel{N}{7}$ | 325 | $61.6 \pm 1.6$ | $66.5 \pm 0.9$ | 14 |

 conlescence (set reference 12). Free energy of activation for $N$-CO rotation; $\Delta G^{1}=R T_{\varepsilon}\left(22.96+\ln T_{z} / \Delta v_{z}\right) \cdot$ Firrs-order rate constant at 298 K for $\mathrm{N}-\mathrm{C}^{\prime} \mathrm{O}$ rotation; $\mathrm{hn} k=\ln \left(\mathrm{k}_{\mathrm{b}} 7 / \mathrm{h}\right)-\Delta G^{1} / R T$. No splitting of $N \mathrm{Ne}_{2}$ signal observed. ' $N o$ coulescence of the NMe signals observed; $\Delta v$ at $345 \mathrm{~K}=$ $36.5 \pm 0.5 \mathrm{~Hz}$.


Fig. 1 Variable lemperature 'H NMR spectra showing $N$-alkyl signals for selected 4-oxo-4 $/$-chromene-2-carboxamides (4)


Fig. 2
symmetrically substituted benzamide, for example, effectively involves site-exchange between a pair of equivalent quasiplanar conformers. ${ }^{5}$ In the 4 -ox $0-4 / /$-chromene- 2 -carboxamides (4), however, the situation is complicated by the nonequivalence of rotamer types ( $a$ ) and ( $b$ ) (Scheme 2) and the measured rates of site-exchange must represent some combination of the individual rates, $k_{2}[\mathrm{la}]$ and $k_{\mathrm{a}}$ [ $[\mathrm{lb}] .{ }^{10}$

The ${ }^{1} H$ NMR frequency separations measured at slow site exchange * $\left(\Delta v_{0}\right)$ vary widely ( $1-99 \mathrm{H}$ ) , the separations being smallest for the $N, N$-dimethylcarboxamides. For each compound examined $\Delta \nu_{0}$ must reflect the difference in the average magnetic environment of the nuclei concerned and, more specifically, their average spatial orientation relative to the magnetically anisolropic 4-oxo-4H-chromene and carboxamide ${ }^{8}$ moieties.
Factors which contribute to such orientation of the relevant nuclei undoubtedyyinclude: dipole-dipole and steric ${ }^{3}$ interactions; "gear-meshing ${ }^{\text {it }}$ of the isopropyl groups in compound 4h; and ring-conformational constraints in the heterocyclic analogues 4 f and 4 j . Thus, comparable deshielding of the N methyl groups in the $N, N$-dimethylcarboxamides (4a-c, e and $g$ ) accounts for their remarkably small $\Delta v_{0}$ values; in fact, in the case of the 8 -chloro- $N, N$-dimethylcarboxamide (4d), splitting of the $N$-methyl 'If NMR signals could not be achieved within the accessible temperature range $\dagger$-an observation which undoubtedly reflects the chemical shift equivalence of these signals at slow site exchange rather than an unusually low rotational barrier. $\ddagger$
Rotational energy barriers ( $\Delta G^{\ddagger}, 64-72 \mathrm{~kJ} \mathrm{~mol}^{-1}$; Table 1), determined for the 4 -oxo-4 H -chromene-2-carboxamides 4 m -c. $\mathrm{e}, \mathrm{p}$ - j from the conlescence data, ${ }^{12}$ lie within the typical amide range ( $50-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ). More pertinent is the correspondence between these results and the $\Delta G^{1}$ data obtained for comparable $N, N$-dialkylbenzamides. ${ }^{13.14}$ The tendency towards slightly higher rotational barriers in the 4 -oxo- $4 / \mathrm{H}$ chromene analogues is consistent with the expectation that the electron-withdrawing 4 -oxo-d//-chromene system should reduce competitive delocalisation ${ }^{*}$ and, hence, increase the

[^39]

Fir. 3 Proposed conformation of compound $4 f$ based on computermodelled structure; (i) 'wire-Irame' and (ii) 'spacefill' representations
$\pi$-character of the $\mathrm{N}-\mathrm{CO}$ bond and the magnitude of the rotational barrier. Similar arguments, based on the net electronwithdrawing properities of substituent $R^{\prime}$ may well explain the gradation of $\Delta G^{i}$ values in the series of $N$, $N$-dimethylcarboxamides $\mathrm{R}^{1}=\mathrm{F}(4 \mathrm{c})<\mathrm{Br}(4 \mathrm{e})<\mathrm{NO}_{2}(4 \mathrm{~b})$-a trend which parallels results obtained for the corresponding para-substituted $N, N$-dimethylhenzamides. ${ }^{13}$ The anomatous result for the 7 methoxy analogue (da), while possibly reflecting the influence of changing conformer populations on the overall rate of rotation, nevertheless emphasises the complexity of the rotameric cquilibria and the need for cantion in interpreting the $\Delta G^{t}$ data, particularly when $\Delta G^{\prime}$ differences are comparable with the estimated errors.

The influence of electron-releasing inductive effects on nitrogen lone-pair delocalisation (Fig. 2) appears to be illustrated by the higher rotational barrier (relative to compound $\mathbf{4 g}$ ) observed for the pyrrolidine derivative (4i) and, to a lesser extent, for the piperidine analogue ( 4 j ). The difterence in $\Delta G^{\mathbf{1}}$ for carboxamides $\mathbf{4 i}$ and $4 j$ is consistent with the greater ease with which a pyrrolidine nitrogen is expected to adopt the plamar $\mathrm{sp}^{2}$ arrangement necessary for effective lone-pair delocalisation. In spite of an electron-releasing inductive effect. such delocalisation may, of course, be inhibited by steric destabilisation of the carboxamide ground-state ${ }^{13}$-a situation which presumably obtains in the case of $N, N$-diisopropyl-4-oxo-4H-chromene-2-carboxamide (4h). (Rolational barriers for benzamide analogues are reported to follow a similar pattern: $N, N$-diisopropylbenzamide $\leqslant N, N$-dimethylbenzamide ${ }^{14} \approx 1$ benzoylpiperidine. ${ }^{16}$ )

In 4-oxo-4H-chromene-2-carboxylate esters, bulky 3 -substituents appear to prevent co-planarity of the ester and chromene planes ${ }^{4}$ and similar conformational constraints were expected to operate in the 3 -methyl-4-oxo-4 $H$-chromene-2carboxamide (AD)-an expectation which is supported both by computer modelling and by carlier studies of benzamide analogues. ${ }^{3} \mathrm{H}$ NMR analysis of this compound (4D) reveals $N$ methyl signals which are well separated ( 37 Hz ) and which, even at 345 K . show no sign of coalescence. These observations, which indicate significant inhibition of $N$-methyl site-exchange,
are accommodated by the proposed conformation (Fig. 3), in which: (i) the essentially planar $N, N$-dimethylcarboxamide group occupies an average position perpendicular, or quasiperpendicular, to the chromone plane; (ii) the $\boldsymbol{N}$-methyl groups are diastereotopic; and (iii) there is significant steric hindrance to rotation about both the $\mathrm{C}-2-\mathrm{CO}$ and $\mathrm{N}-\mathrm{CO}$ bonds.

## Experimental

The 4-oxo-4 $/$-chromene-2-carboxamides (4) were obtained by treating the acid chlorides ( 3$)^{3}$ [obtained from the corresponding carboxylic acids (2) ${ }^{4}$ ]: with dimethylammonium chloride in pyridine ${ }^{1}(4 a-g)$; with the appropriate amine in aq. $\mathrm{NaHCO}_{3}$ $(4 i)^{3}$ or in pyridine ( $4 \mathrm{~h}, \mathrm{j}$ ). ${ }^{3}$
${ }^{13} \mathrm{C}$ NMR spectra were edited with the aid of DEPT (75 M1Hz) and ORD ( 125 MHz ) techniques. All coupling constants are in Hz . Variable temperature ${ }^{1} \mathrm{H}$ NMR data were obtained from $\mathrm{CDCl}_{3}$ solutions of the $4-0 \times 0-4 / 1$-chromene-2-carboxamides (4) on a Bruker AM 300 NMR spectrometer and temperitures are judged to be correct within $\pm 1 \mathrm{~K}$. Computer modelling for compound if was effected using the Tripos Associates software package, ALCHEMY'11,

Analytical data for new compounds are as Jollows:
7-Fhuoro-4-oxo-4h-chromene-2-carboxylic acid (2c) m.p. $230^{\circ} \mathrm{C}$ (EtOH) (Found: C. $57.4 ; \mathrm{H}, 2.5 . \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{FO}_{4}$ requires: C , $57.7 ; \mathrm{H}, 2.4 \%) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 6.84(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}), 7.32-7.36(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 7.60\left(1 \mathrm{H}, \mathrm{dd}, J_{m} 2\right.$ and ${ }^{3} J_{\mathrm{HFF}} 10$, $8-\mathrm{H}), 8.03\left(1 \mathrm{H}, \mathrm{dd}, J_{0} 9\right.$ and $\left.^{4} J_{\mathrm{HF}} 6,5-\mathrm{H}\right)$ and $8.9(60 \mathrm{MHz}$ i H , br $\left.\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 105.60\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}} 26, \mathrm{C}-8\right)$, 113.67 (C-3), 114.69 ( $\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{cF}}$ 23, C-6), 120.92 (C-4a), 127.82 ( d , $\left.{ }^{3} J_{\text {CF }} 11, \mathrm{C}-5\right), 153.56(\mathrm{C}-2), 156.56\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}} 14, \mathrm{C}-8 \mathrm{a}\right), 161.16$ $\left(\mathrm{CO}_{2} \mathrm{H}\right), 165.49\left(\mathrm{~d} .{ }^{1} \mathrm{~J}_{\mathrm{cF}} 253, \mathrm{C}-7\right)$ and $176.66(\mathrm{C}-4) ; \mathrm{r}_{\text {max }}(\mathrm{K} \mathrm{Br})$ $3300-2700(\mathrm{OH}), 1740(\mathrm{CO} \cdot \mathrm{OH})$ and $1630(\mathrm{CO}) \mathrm{cm}^{-1} ; m / z 208$ ( $\mathrm{M}^{+}, 100 \%$ ).

N, N,3-methy-4-oxv-4H-chromene-2-carboxamide (4f) m.p. $74-76{ }^{\circ} \mathrm{C}$ (ElOAc) (Found: $\mathrm{M}^{+} 231.090 \mathrm{C}_{1,3} \mathrm{H}_{1} \mathrm{NO}_{3}$ requires $M, 231.090) ; s_{\mathrm{H}}\left(500 \mathrm{M1Hz} \mathrm{CDCl}_{3}\right) 1.96(3 \mathrm{H}, \mathrm{s} .3-\mathrm{Mc}), 2.95$ ( 3 H, s, NMe), 3.07 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$ ), $7.31-7.35$ (2 H, m, 6-H and 7.H). 7.56-7.60(1 H, m, 8-H ) and 8.11 (1 H. dd, J 2 and $8,5-H) ; \delta_{\mathrm{c}}(75$ $\mathrm{MHz} \mathrm{CDCl}_{3}$ ) 9.98 (3-Me), 34.56 ( NMe ), 37.63 ( NMe ). 117.36 (C-3), 117.88 (C-8), 122.89 (C-4a), 125.24 and 125.78 (C. 5 and C-6), $133.72(\mathrm{C}-7), 154.39(\mathrm{C}-8 \mathrm{Ba}), 155.61(\mathrm{C}-2), 162.40(\mathrm{CO} \cdot \mathrm{N})$ and $177.82(\mathrm{C}-4) ; v_{\max }(\mathrm{K} \mathrm{Br}) 1640$ and $1635(\mathrm{CO}) \mathrm{cm}^{-1} ; m / z 231$ $\left(\mathrm{M}^{+}, 100 \%\right.$ ).
$\mathrm{N}, \mathrm{N}$-Diisopropy-4-nxo-4H-chromene-2-carboxomide (4h) m.p. $95-96^{\circ} \mathrm{C}$ (E1OAc) (Found: C, 70.65; H, 7.3: N. 5.3. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires: $\mathrm{C}, 70.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.1 \%$ ): $\delta_{\mathrm{H}}(500 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{br} s, \mathrm{CHMe} \mathrm{Cl}_{2}\right), 1.55\left(6 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{CHM} \mathrm{Cl}_{2}\right) .3 .60(1$ $\mathrm{H}, \mathrm{brs}, \mathrm{NCH}), 3.91$ ( $1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}$ ), 6.49 ( $1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}$ ), $7.49-$ 7.55 and $7.76-7.83(2 \mathrm{H}, 2 \times \mathrm{m}, 6-\mathrm{H}$ and $7 . \mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}, J 8$, 8-H) and $8.23(1 \mathrm{H}, \mathrm{d} J 7,5 \cdot \mathrm{H}): 5 \mathrm{c}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.94$ $\left(\mathrm{CHMe}_{2}\right), 20.57$ ( $\mathrm{CHM}_{2}$ ), 46.28 (NCH), 51.12 ( NCH ), 109.50 (C-3), 117.96 (C-8), 124.06 (C-4a), 125.45 and 125.48 (C-5 and C-6), 133.98 (C-7), 155.46 (C-8a), 159.83 (C-2), 161.33 (CO.N) and $177.37(\mathrm{C}-4)$; $v_{\mathrm{mm}} 1655$ and $1640(\mathrm{CO}) \mathrm{cm}^{-1} ; m / z 273\left(\mathrm{M}^{+}\right.$, $24 \%$ ), 216 ( $100 \%$ ).

1-(4-O.xo-4H-chromen-2-ylcarbonyl)pyrrolidine (4i) m.p. $103-105^{\circ} \mathrm{C}$ (EIOAc) (Found: $\mathrm{M}^{+}$243.089. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires: $M, 243.090$ ); $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.83-1.89([4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 3.51\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2}\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2}\right), 6.62$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 7.27-7.30$ and $7.56-7.60(2 \mathrm{H}, 2 \times \mathrm{m}, 6-\mathrm{H}$ and 7 . $\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H})$ and $8.03(1 \mathrm{H}, \mathrm{dd}, J 2$ and $8,5-\mathrm{H})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 23.49\left(\mathrm{CH}_{2}\right), 26.09\left(\mathrm{CH}_{2}\right), 46.92\left(\mathrm{NCH}_{2}\right)$, $48.08\left(\mathrm{NCH}_{2}\right), 111.91(\mathrm{C}-3), 117.87(\mathrm{C}-8), 123.94(\mathrm{C}-4 \mathrm{a}), 125.35$ and 125.47 (C-5 and $\mathrm{C}-6$ ), 134.06 (C-7), $155.16(\mathrm{C}-8 \mathrm{C}), 157.86$ (C-2). $159.60(\mathrm{CO} \cdot \mathrm{N})$ and $177.48(\mathrm{C}-4) ; v_{\operatorname{man}}(\mathrm{KBr}) 1640$ and $1630(\mathrm{CO}) \mathrm{cm}^{-1} ; m / z 243\left(\mathrm{M}^{+}, 100 \%\right)$.

1-(4-O.xo-4H-chromen-2-y/)-carbonyl)piperidine (4j) m.p. 65-
$66^{\circ} \mathrm{C}$ (E1OAc) (lit., ${ }^{7} 90.5-92^{\circ} \mathrm{C}$ ) (Found: C. $70.5 ; \mathrm{H}, 5.9 ; \mathrm{N}$, 5.6. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires: $\left.\mathrm{C}, 70.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 5.4 \%\right) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) .1 .57-1.66\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 3.39(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NCH}_{2}$ ). 3.62 ( $2 \mathrm{II}, \mathrm{br}$ s, $\mathrm{NCH}_{2}$ ), $6.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}$ ), $7.34-7.37$ and $7.61-7.65(2 \mathrm{H}, 2 \times \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{II}), 7.41$ ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9,8 \mathrm{H}$ ) and 8.11 ( $1 \mathrm{H}, \mathrm{dd}, J 2$ and $8,5-\mathrm{H}$ ); $\delta_{\mathrm{c}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.17$, 25.21 and $26.34\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ClH}_{2} \mathrm{CH}_{2}\right), 43.21\left(\mathrm{NCH}_{2}\right)$, $48.03\left(\mathrm{NCH}_{2}\right), 110.96(\mathrm{C}-3), 118.09(\mathrm{C}-8), 124.09(\mathrm{C}-4 \mathrm{n}), 125.57$ (C-5 and C-6), 134.09 (C-7), 155.61 (C. $\mathrm{Kn}_{\text {A }}$, 158.42 (C-2), 160.67 $(\mathrm{CO}-\mathrm{N})$ and $177.26(\mathrm{C}-4): v_{m p n}(\mathrm{KBr}) 1655$ and $1650(\mathrm{CO}) \mathrm{cm}^{-1}$; $m / z 257\left(\mathrm{M}^{*}, 35 \%\right)$ and $89(100 \%)$.

## Acknowledgements

The authors thank the Foundation for Research Development and Rhodes University for generous financial support, AECI L.id for a post-graduate fellowship (D. N. D.), and Professor V. Brand (University of the Orange Free State) for obtaining the variable temperature NMR data.

## References

1 Part 2. D. N. Davidson and P. T. Kaye, Synth. Commun., 1990, 20, 727.
2 J. S. G. Cox, J. E. Beach, A. M. J. N. Blair, A. J. Clarke, J. King, T. B. Lee. D. E. E. Loveday, G. F. Moss, T. S. C. Orr, J. T. Ritchie and P. Sheard, Adtom. Drug Res., 1970, 5, 115.

3 G. P. Ellis, G. J. P. Becket. D. Shaw, H. K. Wilson, C. J. Vardey and I. F. Skidmore, J. Med. Chem., 1978, 21, 1120.

4 J. H. Drews and P. T. Kaye, S. Afr. J. Chem., 1987, 40, 165 5 C. W. Fong and H. G. Grant, Ausi. J. Chem., 1981, 34, 957. 6 D. Kost and H. Egozy, J. Org. Chem., 1989, 54, 4909.
7 R. J. Smith, D. H. Williams and K. James, J. Chem. Soc., Chem. Commии., 1989, 682.
8 W. E. Stewart and T. Il. Siddall, Chem. Rell, 1970, 70, 517.
9 C. W. Fong and H. G. Grant, Aust. J. Chem., 1981, 34, 2307.
10 Application of the Winstein-Holncss equation (see, for example, N. S. Isaacs, Physiral Organir Chemivery, Longman, Harlow, 1987, p. 313 ff) would afford the expression: $k_{\mathrm{bhs}}=k_{\mathrm{p}}[\mathrm{la}]+k_{\mathrm{a}}$ [1b].

11 I. Berg and J. Sandstrom, Adpances in Physiral Organic Chenistry. 1989. 25. 77; U. Berg and I. Pettersson, Magn. Ret. Chem., 1985, 23(7), 536.
12 Frequency separations at coalescence ( $\Delta v_{s}$ ) were determined by exlrapolation as described by Y. H. Lai and P. Chen, J. Chem. Soc., Perk in Trans. 2, 1989, 1665.
13 C. W. Fong, S. F. Lincoln and E. H. Williams, Ausi. J. Chem., 1978, 31, 2615.
14 J. Hauer, G. Völkel and H-D. Lüdemann. J. Chem. Res. (S), 1980. 16 15 L. M. Jackman, in Dynamic Nuclear Magnetic Resonanre Spectroscopy, ed. L. M. Jackman and F. A. Cotton, Academic Press, New York, 1975, p. 212.
16 J. A. Hirsch, R. L. Augustine, G. Koletar and H. G. Wolf. J. Org. Chem. 1975, 40, 3547.
17 Z. Jerzmanowska and K. Kostka, Roczniki Chem., 1963, 37.413. This compound, shown to be pure by TLC and ${ }^{13} \mathrm{C}$ NMR spect roscopy, consistently melted some $25^{\circ} \mathrm{C}$ below the value quoted.

Paper 0/04004E
Rcceived 4th September 1990 Accepted 19h December 1990

## Chromone Studies. Part 4.' Structural Analysis of Chromone-derived 2-Amino-3-(2-hydroxybenzoyl)acrylamides

Deborah N. Davidson, Robin B. English and Perry T. Kaye*
Department of Chemistry, Rhodes University, PO Box 94, Grahamstown 6140, Republic of South Africa
A combination of $X$-ray crystallographic, ${ }^{1} \mathrm{H},{ }^{3} \mathrm{C}$ NMR and $I R$ spectroscopic, and computermodelling techniques have been used to explore both configurational and conformational aspects of the structures of a series of substituted 2-amino-3-(2-hydroxybenzoyl)acrylamides.

Chromone derivatives such as disodium cromoglycate (DSCG 1). ${ }^{2}$ and certain chromone-2-carboxamides ${ }^{3}$ are known to exhibit anti-illergic activity. In fact, DSCG 1 is widely used ${ }^{4}$ in asthma therapy, its mode of action apparently involving, amongst other things, stabilisation of mast cells in the bronchial mucosa. ${ }^{3.6}$ To our knowledge, however, the molecular basis for such action has yet to be established. ${ }^{4} \rightarrow 7$ The susceptibility of chromones to ring opening, vin $\mathrm{C}-2$ attack by various nitrogen, ${ }^{\text {a }}$ and oxygen nucleophiles, ${ }^{9}$ has prompted us to explore the possible implication of this molecular process in chromone pharmacology. Thus, appropriate chromones may block or modify receptor interactions by binding covalently, through C-2, to biogenetic nucleophiles such as mast-cell proteins or inflammatory mediators like histamine ${ }^{10}$ (Fig. 1). Consequently. we have begun a detailed examination of the reactions of chromone-2-carboxamides (2, Scheme 1) with amines as models for in vivo nucleophiles.


In principle, ring opening of chromones may afford products having either $E$ - or $Z$-double-bond configurations. Zagorevskii et al. ${ }^{11}$ in an earlier investigation of related systems, used ${ }^{1} \mathrm{H}$ NMR $J_{1,3}$ vinyl coupling constants and IR spectroscopy to establish: the E-configuration of $N, N$-disubstituted $\beta$-aminovinylketones 6 ; the $Z$-configuration of $N$-monosubstituted analogues 7 ; and the significance of intra-molecular hydrogen bonding in both series. However, they were unable to determine the double-bond geometry in the products of reactions of 2 substituted chromones with secondary amines. In this com-


Fig. 1 Putative interaction of biogenetic nucteophiles (e.g. $X=N, O, S$ ) with chromone syslems



6



Fig, 2 X-Ray crystal structure of 2-(dimethylamino) -3-(2-hydroxy-benzoyl)- $N, N$-dimethylacrylamide (3n), showing the crystallographic numbering
munication we describe the use of X-ray crystallographic, spectroscopic and computer-modelling methods in elucidating the stereochemistry of such compounds 5 .
A definitive determination of the solid-state structure of the parent system 5 a was achieved by single crystal X-ray diffraction analysis. The crystal structure (Fig. 2) clearly indicates the $E$-geometry of the double bond in this compound. Oiher significant features of the solid state structure are: (i) intra-




(a)

(b)

(c)

Fig. 3 (a) Favoured E-configuration of compounds 5 -f illustrating delocalisation and hydrogen-bonded chelation. (b) Unfavourable steric interaction (sce footnote * on p. 1183) in the alternative rotamer of the E-diastereoisomer. (c) Unfavourable steric interaction (see footnote "on p. 1183) in a planar conformation of the $Z$-diastereoisomer.

Table 1 Comparative ' H and ${ }^{\text {" }} \mathrm{C}$ NMR chemical shifts for compounds 5a-f(see Fig. 4)

| ${ }^{13} \mathrm{C}$ Nucleus | $\delta \mathrm{s}$ | $\Delta \delta^{*}$ |
| :--- | ---: | :--- |
| $\mathrm{CONMe}{ }_{2}$ | 34.06 | 0.44 |
|  | 36.84 | 0.46 |
| $\mathrm{NMe}_{2}$ | 39.38 | 0.52 |
|  | 40.11 | 0.82 |
| $\mathrm{C}-1$ | 166.44 | 0.52 |
| $\mathrm{C}-2$ | 158.76 | 1.54 |
| $\mathrm{C}-3$ | 88.81 | 0.31 |
| $\mathrm{C}-4$ | 189.74 | 1.72 |
| $3-\mathrm{H}^{*}$ | 5.75 | 0.12 |

- Maximum variation from value for compound 5 a in the series 5 b -f. ${ }^{1}$ 'H nucleus.
molecular hydrogen bonding between the phenolic hydroxy and the syn-orientated ketone carbonyl groups; (ii) the orthogonal (ca. $85^{\circ}$ ) arrangement of the planar* carboxamide moiety with respect to the rest of the molecule; and (iii) the remarkable co-planarity* of all of the remaining crystallographically determined atoms. The observed co-planarity is consistent with significant delocalisation of the dimethylamino nitrogen lone pair into the extended conjugated system, an effect which is, undoubtediy, enhanced by the hydrogen-bonding chelation (Fig. 3).

It is apparent, from IR and NMR spectroscopic data, that the solid-state (crystal) conformation of the parent system 5a is essentially maintained in solution (in chloroform at least) and it may also be argued that the same configurational and conformational features, in fact, characterise all of the 2-amino-3-(2-hydroxybenzoyl)acrylamides $5 a-8$ examined. Thus the NMR data, obtained for $\mathrm{CDCl}_{3}$ solutions, provide compelling evidence for $E$-geometry in each of the 2-amino-3-(2-hydroxybenzoyl)acrylamides 5a-g. Fitstly, the chemical shifts for the vinyl protons ( $3-\mathrm{H}$ ) and the non-aromatic carbons exhibil only marginal variations within the series (Table 1; Fig. 4), and the 3-

- Maximum deviations from the least-square planes were: 0.0820 A (carboxamide moiety) and 0.079 A (rest of the molecule).

5

(c)
$\delta$

Fig. 4 (a) Compounds 5 with numbering (see Table 1 for NMR data); (b) partial 'H NMR spectrum for $\operatorname{Sd}\left(\mathbf{R}^{2}=F\right)$; (c) partial ${ }^{13} \mathrm{C} N M R$ spectrum for $5 \mathrm{~d}\left(\mathbf{R}^{\prime}=F\right)$

H chemical shifts are closer to the calculated ${ }^{12}$ value for the $E$-isomer ( 5.51 ppm ) than for the $Z$-isomer ( 6.08 ppm ). Secondly, in each of the compounds 5a-f, both the amino- and carboxamido ${ }^{13} \mathrm{C} \boldsymbol{N}$-methyl signals are split [in the 'H NMR spectra only the corresponding carboxamido signals are clearly split, the amino $N$-methyl signals typically appearing, at ambient temperature, as broad, post-coalescence singlets (Fig. 4)]. $\dagger$ While slow site-exchange of $N$-alkyl groups is typical of $N, N$-disubstituted carboxamides, the parallel splitting of the dimethylamino ${ }^{13} \mathrm{C}$ signals is particularly significant, the implication being hindered rotation between resonance-stabilised
$\dagger$ The assignment of ' H and ${ }^{3}{ }^{3} \mathrm{C}$ NMR N -methyl signals is based on comparisons between the relevant spectra of the dimethylamino ( $5_{m}-\mathbb{f}$ ) and pyrrolidino ( $5_{8}$ ) analogues.
planar conformers in which the $N$-methyl groups are diastereotopic. Such an arrangement is only possible if the acrylamides 5 a-g adopt the E-configuration illustrated in Fig. $3(a)$, since molecular modelling studies* clearly indicate that in the $Z$-diastereoisomer [Fig. 3(c)], co-planarity of the dimethylamino and vinyl ketone moieties is sterically prohibited. [Unfavourable steric interactions* would also destabilise the aliernalive planar rotamer, Fig. $3(b)$, cven when the carboxamide moiety is perpendicular to the rest of the molecule.] The significance of these steric constraints is further illustrated by the orthogonal orientation of the carboxamide group in the crystal structure of the parent system 5a. This orientation, which is presumably maintained in solution, obviates unfavourable steric interaction with the vinyl ketone oxygen without inhibiting lone-pair delocalisation in the independently planar carboxamide group.
IR carbonyl absorption band frequencies tend to be sensitive to structural change and it is noteworthy that, in the solid ( K Rr disc) and solution (chloroform) spectra of compounds 5 m -g. these bands exhibit minimal frequency variation (ca. $\pm 10$ $\mathrm{cm}^{-1}$ ). Moreover, the general superposition of both ketone and carboxamide carbonyl absorption bands at low ( $\mathrm{ca} .1650 \mathrm{~cm}^{-1}$ ) frequencies reflects effective delocalisation and concomitant reduction in the double-bond character of both carbonyl groups. Such frequency shifts are characteristic of planar carboxamide moieties but, more pertinently in this instance, argue independently for the essential co-planarity of the dimethylamino and aryl vinyl kelone systems. Furthermore, in both the solid state and solution IR spectra of each compound $5 \mathrm{a}-\mathrm{g}$, the hydroxyl stretching band is shifted below $3000 \mathrm{~cm}^{-1}$. This observation [logether with the low lield resonance (ca. $\delta$ 14) of the phenolic proton in the $60 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of each compound] is indicative " of the strongly hydrogenbonded chelate conformation illustrated in Fig. 3.

C-2 nucleophilic atlack is, of course, equally likely at either face of the chromone-2-carboxamides (2, Scheme 1) and ringopening ( via racemic intermediates 4) to the corresponding ( $E$ )dimethylaminoacrylamides 5 may be attributed either to product development control or, in view of the reported ${ }^{13} E / Z$ configurational lability of related systems, 10 predominance of the more stable diastercoisomer. Effective $\pi$-participation by the dimethylamino nitrogen lone pair is expected to account for stabilisation of the essentially plamar, conjugated $E$-products 5 , relative to the corresponding $Z$-isomers. In the mono-substituted amino analogues 7 examined by Zagorevskii et al., ${ }^{11}$ however, sjn-orientated amino and vinyl ketone groups can achieve co-planarity without steric strain, and the configuration which permits 'double hydrogen bonding' is apparently favoured.

## Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were oblained from $\mathrm{CDCl}_{3}$ solutions on Bruker AM 300 and WM 500 MHz or Varian Gemini 200 MHz spectrometers. Computer modelling was effected using Tripos Associates' software package, ALCHEMY II. The title compounds $5 a-g$ were oblained by treating the corresponding chromone-2-carboxamides $2 a-$ f $^{14}$ with ethanolic dimethylamine as illustrated in the following example (all coupling constant values $J$ are given in Hz ).

Dimethylamine ( $25 \% \mathrm{w} / \mathrm{w}$ solution in EIOH, $3.14 \mathrm{~cm}^{3} ; 13.2$ mmol) was added to a solution of $N, N$-dimethylchromone-2-

* The required structures were modelled, and the resulting interatomic distances measured, using the software package, ALCHEMY II. The planar arrangemenis were obtained by altering the relevant torsion angles of energy-ninimised sifuctures.
carboxamide 2a ( $0.500 \mathrm{~g}, 2.3 \mathrm{mmol}$ ) in dry $\mathrm{E} 1 \mathrm{OH}\left(17 \mathrm{~cm}^{3}\right)$. After being stirred at room temperature $\left(35^{\circ} \mathrm{C}\right.$ for the preparalion of compounds $\mathbf{5 b - g}$ ) for 20 h , the solution was cooled and evaporated under reduced pressure to afford a crude solid $(0.53 \mathrm{~g})$ which was chromatographed $\dagger$ on silica (elution with EtOAc) to afford 2-(dimethylamino)-3-(2-hydroxybenzoyl)$N, N$-dimethylacrylamide (5a) (0.374 g, 62\% $/$ ), m.p. $165-166^{\circ} \mathrm{C}$ (from EiOH) (lit., ${ }^{3} 166-167^{\circ} \mathrm{C}$ ); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.89$ and $3.09\left(6 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CONMe}_{2}\right), 3.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 5.75$ (1 H, $\mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.75-6.79$ and $7.29-7.33\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4^{\prime} \cdot \mathrm{H}\right.$ and $\left.\mathrm{S}^{\prime}-\mathrm{H}\right)$. $6.88\left(1 \mathrm{H}, \mathrm{dd}, J 1\right.$ and $\left.8,3^{\prime}-\mathrm{H}\right), 7.67\left(1 \mathrm{H}, \mathrm{dd}, J 2\right.$ and $\left.8,6^{\prime}-\mathrm{H}\right)$ and $13.60(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.06$ and $36.84\left(\mathrm{CONA}_{2}\right), 39.38$ and $40.11\left(\mathrm{NMe}_{2}\right), 88.81(\mathrm{C}-3), .117 .78$ and 117.88 ( $\mathrm{C}-3^{\prime}$ and $\mathrm{C}-5^{\prime}$ ), 120.18 ( $\mathrm{C}-1$ ), 128.03 (C-6'), 133.75 $\left(\mathrm{C}-4^{\prime}\right), 158.76(\mathrm{C}-2), 162.53\left(\mathrm{C}-2^{\prime}\right), 166.44(\mathrm{CO} . \mathrm{N})$ and 189.74 (C-4): $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 2920\right.$ and 1648.

Analytical data for new compounds are as follows. 2-( Di-methylamino)-3-(2-hydroxy-4-mpthoxyhenzoyl)-N,N-stimethytacrylamide (5b) ( $0.212 \mathrm{~g}, 36 \%$ ), m.p. $154-156^{\circ} \mathrm{C}$ (from E1OAc); [ $m / z$ Found: 292.141 ( $\left.\mathrm{M}^{+}, 10 \%\right) . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires: 292.142 ]: $\delta_{14}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.90$ and $3.09(6 \mathrm{H}, 2 \times \mathrm{s}$, $\mathrm{CONMe}_{2}$ ), $3.04\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NMe}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.65$ ( $1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.3 \mathrm{~J}-6.37\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime} \cdot \mathrm{H}\right), 7.58(1 \mathrm{H}, \mathrm{d}$, $J 9.6$-H) and $14.10(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}, \mathrm{OH}): \delta_{\mathrm{c}}(75 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 34.48$ and $37.30\left(\mathrm{CON} M e_{2}\right), 39.47$ and $40.09\left(\mathrm{NMe}_{2}\right)$. $55.37\left(\mathrm{OCH}_{3}\right) .89 .12(\mathrm{C}-3), 101.02$ and $106.43\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right)$, $113.95\left(\mathrm{C}-1^{\prime}\right), 129.63\left(\mathrm{C}-6^{\prime}\right), 157.89(\mathrm{C}-2), 164.26\left(\mathrm{C}-4^{\prime}\right), 165.33$ (C-2'), 166.93 (CO.N) and $189.01(\mathrm{C}-4) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2930,1660 and $1650 ; m / z 292\left(\mathrm{M}^{+}, 10 \%\right)$ and $220(100 \%)$.

2-(Dimethylamino)-3-(2-hydroxy-4-nitrobenzoyl)-N,N-dimethylacrylanide (5c) ( $0.305 \mathrm{~g}, 52 \%$ ), m.p. $160-161^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{C}, 54.8 ; \mathrm{H}, 5.7 ; \mathrm{N}, 13.5 . \mathrm{C}_{14} \mathrm{H}_{1} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires: $\mathrm{C}, 54.7 ; \mathrm{H}, 5.6 ; \mathrm{N}, 13.7 \%$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.92$ and 3.11 ( $6 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CONMe}{ }_{2}$ ), 3.07 and $3.19\left(6 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{NMe}_{2}\right), 5.71$ ( $1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}$ ), $7.58\left(1 \mathrm{H}, \mathrm{dd}, J 2\right.$ and $\left.9,5^{\prime}-\mathrm{H}\right), 7.69(1 \mathrm{H}, \mathrm{d}, J 2$, $\left.3^{\circ}-\mathrm{H}\right) 7.79\left(1 \mathrm{H}, \mathrm{d}, J 9,6^{\circ}-\mathrm{H}\right)$ and $13.85(60 \mathrm{MHz}, 1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.50$ and $37.14\left(\mathrm{CONM} e_{2}\right), 39.90$ and $40.93\left(\mathrm{NMe}_{2}\right), 89.04(\mathrm{C}-3), 112.28$ and $113.52\left(\mathrm{C}-3^{\prime}\right.$ and C $\left.5^{\prime}\right), 124.82\left(\mathrm{C}-1^{\prime}\right), 128.87\left(\mathrm{C}-6^{\prime}\right), 150.53\left(\mathrm{C}-4^{\prime}\right), 160.30(\mathrm{C}-2)$, $163.09\left(\mathrm{C}-2^{\prime}\right) . \quad 165.92(\mathrm{CO} \cdot \mathrm{N})$ and $188.02(\mathrm{C}-4) ; v_{\max }(\mathrm{K} \mathrm{Br})$ ) $\mathrm{cm}^{-1} 2920$ and $1645 ; m / z 307\left(\mathrm{M}^{+}, 11 \%\right)$ and $72(100 \%)$.

2-(Dimethylamino)-3-(4-fuoro-2-hydroxybenzoy/)-N.N.
dimethylacrylamide (5d) ( $0.228 \mathrm{~g} .39 \%$ ), m.p. $164-166^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{C}, 59.7 ; \mathrm{H}, 6.3 ; \mathrm{N}, 10.0 . \mathrm{C}_{14} \mathrm{H}_{1}{ }_{7} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}$ requires: $\mathrm{C}, 60.0 ; \mathrm{H}, 6.1 ; \mathrm{N}, 10.0 \% ; \delta_{H}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.89$ and $3.08\left(6 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CONMe}_{2}\right), 3.06\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NMe}_{2}\right), 5.63$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}), 6.44-6.58\left(2 \mathrm{H}, \mathrm{m} .3^{\circ}-\mathrm{H}\right.$ and $\left.5^{\circ}-\mathrm{H}\right) .7 .65(1 \mathrm{H}$, dd. $J 7$ and $\left.9,6^{\prime}-\mathrm{H}\right)$ and $14.0(60 \mathrm{MHz} ; \mathrm{J}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$ $\left.\mathrm{CDCl}_{3}\right) 34.39$ and $37.15\left(\mathrm{CON} \mathrm{Ce}_{2}\right), 39.59$ and $40.40\left(\mathrm{NMe}_{2}\right)$, $88.96(\mathrm{C}-3), 104.73$ and $105.81 \cdot\left(2 \times \mathrm{d},{ }^{2} J_{\mathrm{rF}} 23\right.$ and ${ }^{2} J_{\mathrm{CF}} 24, \mathrm{C}-3^{\prime}$ and $\mathrm{C}-5^{\prime}$ ), 117.25 (d. ${ }^{4} J_{\mathrm{CF}} 3, \mathrm{C}-1{ }^{\prime}$ ), 130.18 ( $\left.\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CF}} 11, \mathrm{C}-6^{\prime}\right)$, 159.03 (C-2), 165.27 ( $\left.\mathrm{d}^{3} J_{\mathrm{CF}} 15, \mathrm{C}-2^{\prime}\right), 166.10\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}} 254, \mathrm{C}-4^{\prime}\right)$, $166.62(\mathrm{CO} \cdot \mathrm{N})$ and $189.10(\mathrm{C}-4) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2910$ and $1660 ; m / z 280\left(\mathrm{M}^{+}, 9 \%\right)$ and $208(100 \%)$.

3-(4-Ch/oro-2-hydroxyhenzoyl)-2-(dinethylamino)-N,Ndimethylary ${ }^{\text {hamide }} 5 \mathrm{e}\left(0.327 \mathrm{~g}, 55 \%\right.$ ), m.p. $124-125^{\circ} \mathrm{C}$ (from ElOAc); [m/z Found: $296.092\left(\mathrm{M}^{+}, 12 \%\right) . \mathrm{C}_{14} \mathrm{H}_{1}{ }_{7} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$ requires: 296.093 ]; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.89$ and $3.09(6 \mathrm{H}$, $\left.2 \times \mathrm{s}, \mathrm{CONMe})_{2}\right), 3.07\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}_{2} \mathrm{NMe}_{3}\right), 5.66(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C})$, $6.74\left(1 \mathrm{H}, \mathrm{dd}, J 2\right.$ and $\left.9,5^{\prime} \cdot \mathrm{H}\right), 6.89\left(1 \mathrm{H}, \mathrm{d}, J 2,3^{\prime}-\mathrm{H}\right), 7.57(1 \mathrm{H}$, $\mathrm{d}, J 9,6 \cdot \mathrm{H})$ and $13.85(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$ $\mathrm{CDCl}_{3}$ ) 34.48 and 37.07 ( $\mathrm{CON} \mathrm{Me}_{2}$ ), 39.70 and 40.60 ( $\mathrm{NMe}_{2}$ ). $88.88(\mathrm{C}-3), 118.24$ and $118.39\left(\mathrm{C}-\mathbf{3}^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 118.85\left(\mathrm{C}-1{ }^{\prime}\right)$ $129.10\left(\mathrm{C}-6^{\prime}\right), 139.32\left(\mathrm{C}-4^{\prime}\right), 159.09(\mathrm{C}-2), 163.52\left(\mathrm{C}-2^{\prime}\right), 166.45$
$\dagger$ Preparative layer chromatography was typically employed to obtain analytical samples.

Table 2 Fractional coordinates ( $\times 10^{4}$ ) for 2-(dimethylamino)-3-(2-hydroxybenzoyl)-N.N-dimethylacrylamide ${ }^{\text {o. }}$

| Atom | $x / a$ | $y / h$ | $z / c$ |
| :--- | :--- | :--- | :--- |
| $C(1)$ | $3746(3)$ | $2544(2)$ | $7544(2)$ |
| $C(2)$ | $4446(3)$ | $1354(2)$ | $8181(2)$ |
| $C(3)$ | $3164(4)$ | $227(3)$ | $8319(3)$ |
| $C(4)$ | $1200(4)$ | $271(3)$ | $7832(3)$ |
| $C(5)$ | $472(4)$ | $1427(3)$ | $7209(3)$ |
| $C(6)$ | $1730(3)$ | $2549(3)$ | $7066(3)$ |
| $O(1)$ | $6362(3)$ | $1258(2)$ | $8686(2)$ |
| $H(0)$ | $6934(51)$ | $2084(37)$ | $8613(32)$ |
| $O(2)$ | $6909(2)$ | $3670(2)$ | $7972(2)$ |
| $C(7)$ | $5145(3)$ | $3749(2)$ | $7440(2)$ |
| $C(8)$ | $4480(3)$ | $4935(2)$ | $6764(2)$ |
| $C(9)$ | $5709(3)$ | $6084(2)$ | $6666(2)$ |
| $C(10)$ | $7921(3)$ | $6067(2)$ | $7141(2)$ |
| $N(1)$ | $5105(3)$ | $7253(2)$ | $6094(2)$ |
| $C(11)$ | $3046(4)$ | $7375(3)$ | $5518(3)$ |
| $C(12)$ | $6442(4)$ | $8452(3)$ | $5964(3)$ |
| $O(3)$ | $8996(2)$ | $5627(2)$ | $6412(2)$ |
| $N(2)$ | $8558(3)$ | $6626(2)$ | $8313(2)$ |
| $C(13)$ | $10644(4)$ | $6488(3)$ | $8826(3)$ |
| $C(14)$ | $7234(5)$ | $7056(4)$ | $9187(3)$ |

- For atom labelling, see Fig. 2." Estimated standard deviations in parentheses.

Table 3 Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for 2 -(dimethylamino)-3-(2-hydroxybenzoyl)- $N$, $N$-dimet hylacrylamide ${ }^{0 . b}$

| $\mathrm{C}(1)-\mathrm{C}(7)$ | $1.489(3)$ | $\mathrm{C}(2)-\mathrm{O}(1)$ | $1.351(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O}(1)-\mathrm{H}(0)$ | $0.87(3)$ | $\mathrm{O}(2)-\mathrm{C}(7)$ | $1.263(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.422(3)$ | $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.374(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.526(3)$ | $\mathrm{C}(9)-\mathrm{N}(1)$ | $1.340(3)$ |
| $\mathrm{C}(10)-\mathrm{O}(3)$ | $1.222(3)$ | $\mathrm{C}(10)-\mathrm{N}(2)$ | $1.339(3)$ |
| $\mathrm{N}(1) \mathrm{C}(11)$ | $1.464(3)$ | $\mathrm{N}(1)-\mathrm{C}(12)$ | $1.465(3)$ |
| $\mathrm{N}(2)-\mathrm{C}(13)$ | $1.465(3)$ | $\mathrm{N}(2)-\mathrm{C}(14)$ | $1.458(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$ | $119.3(2)$ | $\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$ | $123.0(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$ | $122.1(2)$ | $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$ | $117.3(2)$ |
| $\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{H}(0)$ | $106.0(2)$ | $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(2)$ | $117.6(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | $120.1(2)$ | $\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$ | $122.3(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $122.1(2)$ | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $121.3(2)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(1)$ | $123.6(2)$ | $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(1)$ | $115.0(2)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(3)$ | $118.2(2)$ | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$ | $117.1(2)$ |
| $\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{N}(2)$ | $124.5(2)$ | $\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(11)$ | $121.1(2)$ |
| $\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(12)$ | $123.02)$ | $\mathrm{C}(11-\mathrm{N}(1)-\mathrm{C}(12)$ | $115.9(2)$ |
| $\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(13)$ | $117.8(2)$ | $\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(14)$ | $123.1(2)$ |
| $\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{C}(14)$ | $117.5(2)$ |  |  |

- For atom labelling, see Fig. 2. Estimated standard deviations in parentheses.
(CO.N) and $188.99(\mathrm{C}-4) ; v_{\text {man }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2920$ and $1660 ; \mathrm{m} / \mathrm{z}$ $296\left({ }^{35} \mathrm{Cl}, \mathrm{M}^{+}, 12 \%\right.$ ) and $224(100 \%)$.

3-(4-Bromo-2-hydroxybenzoy/)-2-(dimethylamino)-N,N-
dimethylacrylamide ( 5 F ) $\left(0.265 \mathrm{~g} .46 \%\right.$ ), m.p. $124-125^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{C}, 49.2 ; \mathrm{H}, 5.1 ; \mathrm{N}, 8.4 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}$ requires: C. 49.3; H. $5.0 ; \mathrm{N}, 8.2 \%$ ) $\delta_{\mathrm{m}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.89$ and 3.08 ( 6 $\left.\mathrm{H}, 2 \times \mathrm{s}, \mathrm{CONMc}_{2}\right), 3.06\left(6 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{NMe}_{2}\right), 5.65(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}), 6.89\left(1 \mathrm{H}\right.$, dd, $J 2$ and $\left.9.5^{\prime}-\mathrm{H}\right), 7.06\left(1 \mathrm{H}, \mathrm{d}, J 2,3^{\prime} \cdot \mathrm{H}\right)$, $7.50\left(1 \mathrm{H}, \mathrm{d}, J 9,6^{\prime}-\mathrm{H}\right)$ and $13.80(60 \mathrm{MHz} ; 1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}}(75$ $\mathrm{MHz} \mathrm{CDCl}_{3}$ ) 34.40 and 37.11 ( $\mathrm{CONMe}_{2}$ ), 39.74 and 40.52 ( $\mathrm{NMe}_{2}$ ), $88.88(\mathrm{C}-3), 119.30\left(\mathrm{C}-1^{\prime}\right), 121.28$ and $121.40\left(\mathrm{C}-3^{\prime}\right.$ and C-5'), 127.63 (C-4'), 129.21 (C-6'), 159.33 (C-2), 163.56 (C-2'), $166.49(\mathrm{CO} \cdot \mathrm{N})$ and $189.28(\mathrm{C}-4) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2920$ and $1660 ; \mathrm{m} / \mathrm{z} 340\left({ }^{79} \mathrm{Br}, \mathrm{M}^{+}, 6 \%\right)$ and 72 ( $100 \%$ ).

3-(2-Ifydroxybenzoyl)-N,N-dimethyl-2-pyrrolidinoacrylamide ( 5 g ) (0.594 g. $90^{\%} \%$ ), m.p. $183-184^{\circ} \mathrm{C}$ (from EIOH) (Found: C. 66.3; H. 7.05; $\mathrm{N}, 9.2 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires: $\mathrm{C}, 66.65$; $\mathrm{H}, 7.0 ; \mathrm{N}, 9.7$ ); $\delta_{11}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ ) $1.86-2.11[4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 2.94$ and $3.11\left(6 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CONMe}_{2}\right), 3.36-$
3.45 and $3.65-3.72\left[3 \mathrm{H}\right.$ and $\left.\mathrm{I} \mathrm{H}, 2 \times \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right], 5.72(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}), 6.76-6.93\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.28-7.17\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ H), $7.69\left(1 \mathrm{H}, \mathrm{dd}, J 2\right.$ and $\left.8,6^{\circ}-\mathrm{H}\right)$ and $13.70(60 \mathrm{MHz}: 1 \mathrm{H}, \mathrm{s}$. $\mathrm{OH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.82$ and $25.39\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right]$. 34.41 and $37.24(2 \times \mathrm{NMe}), 48.57$ and $48.78\left[\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right], 89.84$ (C-3), 118.30 and 118.61 (C-3' and C-5'), $120.70\left(\mathrm{C}-\mathbf{1}^{\prime}\right), 128.62$ (C-6'), 134.35 (C-4'), 156.74 (C-2), 163.31 (C-2'), 167.65 (CO-N) and $190.44(\mathrm{C} .4)$; $v_{\text {mas }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2930, 2870 and $1650 ; \mathrm{m} / \mathrm{z} 288$ $\left(\mathrm{M}^{+}, 2 \%\right)$ and $121(100 \%)$.

Crystal Data.- $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}, M=262.31$. Triclinic, $a=$ $6.8745(6), \quad b=9.353(1), \quad c=10.872(1) \quad A, \quad \alpha=94.536(8)$, $\beta=99.245(8), \gamma=91.223(8)^{\circ}, V=687.4(1) \AA^{3}$ (by leastsquares refinement on diffractometer angles for 25 automatically centred reflections, $\lambda=0.7093 \lambda$ ), space group $P T$, $Z=2, D_{n}=1.264 \mathrm{~g} \mathrm{~cm}^{-3}$, yellow blocks, $\mu=0.71 \mathrm{~cm}^{-1}$.

Data Collection and Processing.-CAD4 diffractometer, 1 20 mode with $\theta$ scan width $=0.5+0.35$ tan 0 , variable (1) scan speed (max $=5.49^{\circ} \min ^{-1}$ ), graphite-monochromated Mo-Kx radiation: 4195 reflections measured $\left(2 \leq 0 \leq 30^{\circ}\right.$, h:9-9. $k:[3-13, l: 0-15), 3260$ observed with $I>\sigma(I)$. No crystal decay observed.

Structure Analysis and Refinement.-Direct methods ${ }^{16}$ followed by full-matrix least-squares refinement with all nonhydrogen atoms anisotropic, and hydrogen atoms (with the exception of the phenolic hydrogen) in calculated positions with common isotropic temperature factors. The phenolic hydrogen [ $\mathrm{H}(0)$ ] was located from a difference Fourier map and its position refined. $H(0)$ is involved in an intramolecular hydrogen bond: $\mathrm{O}(1)-\mathrm{H}(0) \mathbf{0 . 8 7 ( 3 )} \mathrm{A} ; \mathrm{O}(2) \ldots \mathrm{H}(0) \mathrm{I} .69(3) \AA$; and $O(1)-H(0) \cdots O(2) 150.0(2)^{\circ}$. Unit weights were used. The final $R$ value was 0.069 ( 190 parameters). Final fractional atomic coordinates are given in Table 2, and some selected bond lengths and angles are presented in Table 3. A diagram of the molecule appears in Fig. 2. Full lists of bond lengths and bond angles, thermal parameters and hydrogen atom coordinates have been deposited at the Cambridge Crystallographic Data Centre (CCDC).*

## Acknowledgements

The authors thank AECI for a Post Graduate Fellowship (D. N. D.) and Rhodes University and the Foundation for Research Development for generous financial support.

* For details, sce 'Instructions for Authors', J. Chem. Soc.. Perkin Trans 2, 1991, issue 1.

References
1 Part 3. D. N. Davidson and P. T. Kaye, J. Chem. Soc., Perkin Trons. 2.1991,927.

2 See, e.s., J. S. G. Cox, J. E. Beach. A. M. J. N. Blair. A. J. Clarke. J. King, T. B. Lee, D. E. E. Loveday, G. F. Moss, T. S. C. Orr, J. T. Ritchic and P. Sherd, Adr. Drug Res, 1970, 5, IIS.
3 G. P. Ellis, G. J. P. Recket, D. Shaw, H. K. Wilson, C. J. Vardey and I. F. Skidmore, J. Med. Chem., 1978, 21 (1), $1: 20$.

4 F. Pataloni and F. Ruggieri, Eur. Respir. J., 1989, 2(6), 566 s .
5 A. G. Gilman, L. S. Goodman and A. Gilman, The Molectur Basis of Therapeutic:, 6th edn., Macmillan, New York, 1980, p. 621.
6 F. L. Pearce. Trends Pharmacol. Sci., 1985, 6(10), 189.
7 C. G. A. Persson, Trewds Phormacol. Sci., 1987, 8(6), 202.
8 See, e.g., G. P. Ellis, Chromenes, Chromanones and Chromones, Wiley. New York, 1971, pp. 963 and 973, and references contained therein. 9 M. Zsaga, V. Szabo, F. Korodi and A. Kiss, Acta Chem. Acod. Sci Hurg.. 1979, 101, 73.
10 R. Sagi-Eisenberg. Trends Pharmued. Sci., 1985, 6(5), 198; N. Mazurek, G. Burger and I. Pecht, Nafure (London), 1980, 286, 722.

11 V. A. Zagorevskii, E. K. Orlova, I. D. Tsvetkova, V. G. Vinokurov, U. S. Troitskaya and S. G. Rozenberg, Chem. Hererocyclic Compd., 1971. 7. 675.

12 Using the method of additive increments described by U. E. Matter, C. Pascual, E. Pretsch, A. Pross, W. Simon and A. Slernhell, Tetrahedron, 1969, 25.691. The method, however, is not infallible; see, e.g., F. Ameer. S. E. Drewes, J. S. Field and P. T. Kaye, S. Afr. J. Chem, 1985, $38,35$.

13 Y. Shvo and H. Shanan-Alidi. J. Am. Chem. Soc., 1969,91, 6683 and 66R9
14 D. N. Davidson and P. T. Kaye, Symh. Commun., 1990; 20, 727.

15 Z. Jerzmanowsk a and K. Kosika, Rocz. Chem., 1963, 37, 413. 6 G. M. Sheldrick. SHELX 76, Programme for Crysial Siructure Determination, Cambridge University, 1976.

# Chromone Studies. Part 5.' Kinetics and Mechanism of the Reaction of 4-Oxo-4H-chromene-2-carboxamides with Dimethylamine 

## Deborah N. Davidson and Perry T. Kaye*

Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Ahrica

The dimethylamine-mediated ring-opening of a series of $N, N$-dimethyl-4-oxo-4H-chromene-2carboxamides to the corresponding ( $E$ )-2-( $N, N$-dimethylamino)-3-(2-hydroxybenzoyl)acrylamides has been monitored by UV spectroscopy, and a mechanistic sequence which accommodates the observed third-order kinetics is presented.

In our investigations of substituent effeets in chromone (4-oxo-4/J-chromene) systems we have previously examined the internal rotation of 4 -oxo-4/f-chromene-2-carboxylate esters by 1 R speciroscopy ${ }^{2}$ and $N$-methyl site-exchange in 4 -oxo411 -chromene-2-carboxamides by DNMR techniques. ${ }^{3}$ The susceptibility of chromone derivatives to ring-opening via nucleophilic allack at $\mathrm{C}-2$ is well illustrated by the aminemediated formation of (E)-2-( $N, N$-dimethylamino)-3-(2hydroxybenzoyl)acrylamides 4 from 4 -oxo- $4 \boldsymbol{H}$-chromene-2carboxamide precursors $\mathbf{3 , 1}$ and the possible implication of such




3
2


4
Scheme 1 Reagems: i, $\mathrm{SOCl}_{2}-\mathrm{DMF}_{-\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} ; i, \mathrm{Me}_{2} \mathrm{NH}_{2} \mathrm{Cl}-~}^{\text {- }}$ pyridine; iii, ethanolic Me, $\mathrm{NH}-\mathrm{FIOH}$
reactions in the molecular-level pharmacology of anti-allergic drugs such as disodium cromoglycate (DSCG, 1) has prompied the present kinetic study of substituent effects on the ringopening process.

## Experimental

Materials. - The N.N-dimethyl-4-oxo-4H-chromene-2-carboxamides 3 e were prepared from the corresponding 4 -oxo-4/I-chromene-2-carboxylic acids 2 m -e as described previously ${ }^{4}$ and the identity of the ring-opened products as (E) $2 \cdot(\mathcal{N}, N-$


Fig. 1 Plots of absorbance $v$. time for reaction of $N, N$-dimethyl-4-oso$4 H$-chromene-2-carboxamide 3m with $\mathrm{Me}_{2} \mathrm{NH}$ at $30^{\circ} \mathrm{C}$. $\left[\mathrm{Me}_{2} \mathrm{NH}\right] / \mathrm{mol}$ $\mathrm{dm}^{-3} ;(a), 1.0 ;(b), 1.2 ;(c) 1.4 ;(d), 1.6 ;(e), 1.8$.
dimethylamino)-3-(2-hydroxybenzoyl)acrylamides 4 has already been established.' The exact concentration of the ethanolic dimethylamine (supplied by Fluka as a $33 \%$ w/w solution) was determined by titration against $0.1 \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3} \mathrm{HCl}$. Ethanol, used as a solvent for the reactions, was dried by distillation from magnesium ethoxide. ${ }^{5}$

Kinetic Procedure.-The formation of the acrylamides 4 was followed on a Beckmann UV 5240 spectrophotometer, the absorbance changes being measured, in each case, at the wavelength corresponding to the absorption maximum of the particular acrylamide 4 (e.g. Fig. I). In all cases, the absorption maxima of reaclants and products were well separated. The wavelength, initial concentrations of 4 -0x0-4/f-chromene-2carboxamide 3 and dimethylamine, and the duration of each reaction are summarised in Table 1 . Quarlz cuveltes with 10 mm pathlength were used, and the cuvette chamber, reaciion flask, and reagent solutions were maintained at $30( \pm 0.2)^{\circ} \mathrm{C}$. Initial 4-oxo-4/1-chromene-2-carboxamide 3 concentrations were chosen to produce maximum acrylamide 4 absorbances of ca. 1.0-1.2 absorbance units and dimethylamine concentrations were chosen to ensure ca. $80 \%$ transformation within 1-1.5 h (Table I). The final absorbance readings ( $\mathrm{lim}, \rightarrow A_{i}$ ) were taken after 15-24 h. All determinations were duplicated. The linear (Beer's Law) relationship between acrylamide 4 concentration and absorbance was confirmed over the corresponding ranges used for each system.

Use of large excesses of dimethylamine $\left\{>10^{3}\right.$ [3]\} permitted pseudo-first-order analysis of the reactions, linear plots of $\ln \left(A-A_{i}\right)$ against time [eqn. (1)] affording pseudo-first-order rate constants [ $k_{s}$; eqn. (3)] at different dimethylamine concentrations. The ring-opening reactions were shown to be third-order overall [eqn. (2)] and the rate constants ( $k_{\text {son }}$ ) were

Table I Reaction parameters

| $R^{\prime}$ | $\lambda$ | $\begin{aligned} & {[\text { Amide }] / 10^{-3}} \\ & \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$ | $\begin{aligned} & {\left[\mathrm{Me}_{2} \mathrm{NH}\right] /} \\ & \mathrm{mnl} \mathrm{dm} \end{aligned}$ | Completion (\%) | Reaction lime (min) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H | 357 | 3.5 | 1.0-1.8 | 80-85 | 40-120 |
| OMe | 361 | 3.0 | 1.8-2.6 | 65-76 | 32-80 |
| NO2 | 388 | 5.5 | $0.059 \cdot 0.099$ | 80.82 | 35-70 |
| F | 353 | 3.5 | 0.9-0.8 | 74-85 | 19-70 |
| Cil | 358 | 3.5 | 0.2-0.6 | 80-87 | 17.5-130 |



Fig. 2 Plot of pecudo-first-order rate constants $k_{1}$ ux. [ $\left.\mathrm{Me}{ }_{2} \mathrm{NH}\right]^{2}$ for the reaction of $N, N$-dimethyl-4-oxo-4h-chromene-2-carboxamide 3a with $\mathrm{Me}_{2} \mathrm{NH}$ at $30^{\circ} \mathrm{C}$

Table 2 Pseudu-firsl-order rate conslants ( $k_{3}$ ) for the fing-opening of N. $N$-dimethyl-4-oxo-4H-chromene-2-carboxamides 3 by dimelhylamineal $30{ }^{\circ} \mathrm{C}$

| $\mathbf{R}^{\prime}$ | [Amide]/ <br> $10^{3} \mathrm{~mol}$ $\mathrm{dm}^{-3}$ | $\left.\underset{\mathrm{mol} \mathrm{dm}}{\left[\mathrm{Me}_{2} \mathrm{NH}\right]}\right]$ | $k_{\mathrm{a}} / 110^{4} \mathrm{~s}^{-1}$ |
| :---: | :---: | :---: | :---: |
| H | 3.5 | 1.00 | $2.40 \pm 0.02$ |
|  |  | 1.20 | $3.45 \pm 0.15$ |
|  |  | 1.40 | $4.53 \pm 0.03$ |
|  |  | 1.60 | $5.90 \pm 0.38$ |
|  |  | 1.80 | $7.10 \pm 0.12$ |
| OMe | 3.0 | 1.80 | $3.97 \pm 0.05$ |
|  |  | 2.10) | $4.98 \pm 0.22$ |
|  |  | 2.10 | $3.73 \pm 0.18$ |
|  |  | 2.40 | $6.87 \pm 0.25$ |
|  |  | 2.60 | $7.97 \pm 0.15$ |
| $\mathrm{NO}_{2}$ | 5.5 | 0.059 | $2.53 \pm 0.12$ |
|  |  | 0.069 | $3.35 \pm 0.05$ |
|  |  | 0.079 | $4.33 \pm 0.10$ |
|  |  | 0.089 | $5.67 \pm 0.18$ |
|  |  | 0.039 | $6.50 \pm 0.02$ |
| F | 3.5 | 0.40 | $3.33 \pm 0.05$ |
|  |  | 0.50 | $4.70 \pm 0.20$ |
|  |  | 0.60 | $7.23 \pm 0.72$ |
|  |  | 0.70 | $9.18 \pm 0.48$ |
|  |  | 0.80 | $12.22 \pm 0.65$ |
| Cl | 3.5 | 0.20 | $2.22 \pm 0.02$ |
|  |  | 0.30 | $4.75 \pm 0.03$ |
|  |  | 0.40 | $7.05 \pm 0.42$ |
|  |  | 0.50 | $10.72 \pm 0.40$ |
|  |  | 0.60 | $15.53 \pm 0.65$ |

- Mean value from duplicate runs.
determined from plots of pseudo-first-order rate constants ( $k_{3}$ ) against $\left[\mathrm{Me}_{2} \mathrm{NH}\right]^{2}$ (e.g. Fig. 2). The relevant datn are summarised in Tables 2 and 3. Best straight line fits were oblained by linear regression analysis of the experimental data.

Table 1 Rate conslants ( $k_{a s u}$ ) for the ring-opening of $N, N$-dimet hyl-4 Dx0-4/f-chromene-2-carboxamides 3 by dimethylamine at $30^{\circ} \mathrm{C}$

|  | $\mathbf{R}^{1}$ | $\begin{aligned} & k_{\mathrm{om} / 2} / 10^{4} \\ & \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \end{aligned}$ |
| :---: | :---: | :---: |
|  | H | $2.12 \pm 0.08$ |
|  | OME | $1.13 \pm 0.05$ |
|  | $\mathrm{NO}_{2}$ | $648 \pm 7$ |
|  | F | $18.5 \pm 1.2$ |
|  | Cl | $40.8 \pm 1.3$ |

$$
\begin{equation*}
\ln \left(A-A_{1}\right)=-k_{2} t+\ln \left(A-A_{0}\right) \tag{1}
\end{equation*}
$$

where $A_{0}=$ initial absorbance, $A_{1}=$ absorbance al time, $t$ and $A=\lim _{\rightarrow \rightarrow \infty} A_{t}$

$$
\begin{align*}
\text { Rate } & =k_{\mathrm{ob}}[3]\left[\mathrm{Me}_{2} \mathrm{NH}\right]^{2}  \tag{2}\\
& =k_{\mathrm{n}}[3] \tag{3}
\end{align*}
$$

where $k_{\mathrm{a}}=k_{\mathrm{oms}}\left[\mathrm{Me}_{2} \mathrm{NH}\right]^{2}$

## Results and Discussion

In related kinetic studies, Szabo ft al. have shown that hydroxide-ion-induced cleavage of the pyrone ring in chromone ${ }^{5}$ and isolavonoid derivalives ${ }^{7,8}$ follows secondorder kinetics $\left\{\right.$ Rate $\propto$ [substrate] $\left.\left[\mathrm{OH}^{*}\right]\right\}$. They proposed a mechanistic sequence (Scheme 2) in which the first step (5-6),

involving hydroxide ion attack at $\mathrm{C}-2$, is considered to be ratedetermining, and suggested ${ }^{6}$ that the measured rate constants reflect the electron density at $\mathrm{C}-2$ and, hence, the susceptibility of ehromone derivatives to $\mathbf{C}-2$ nueleophilic attack.

Consequently, we expected the reactions of $N_{v} N$. dimethyl-4-oxo-4 $H$-chromene-2-carboxamides 3 with dimethylamine to follow second-order kinetics with C-2 athack by dimethylamine being rate-determining. In the event, our results clearly show that these ring-opening reactions follow third-order (rather than second-order) kinetics overall and require formulation of the rate equation as indicated in eqn. (2) The mechanism which we are now proposing is detailed in Scheme 3 and is consistent with a rate expression [eqn. (4)] which, for $k_{3} K_{1} K_{2}=k_{\text {nbs }}$, is identical to the experimentally determined relationship [eqn. (2)].

$$
\begin{equation*}
\text { Rate }=k_{3} K_{1} K_{2}[3]\left[\mathrm{Me}_{2} \mathrm{NH}\right]^{2} \tag{4}
\end{equation*}
$$

The proposed mechanism (Scheme 3) comprises two consecutive equilibria followed by a rate-determining ring opening step. In the lirst equilibrium, readily reversible nucleophilic attack by the amine at $\mathrm{C}-2$ of the $4-0 \times 0-4 / \mathrm{H}$ -chromene-2-carboxamide 3 affords the dipolar species 9 in which loss of the neural amine ( $9 \rightarrow 3$; Fig. 3) occurs more readily than ring-fission $(9 \rightarrow 11)$. The next step is simply an acidbase equilibrium, the second molecule of amine now acting as a


[^0]:    ${ }^{\text {a }}$ Anti-bodies are termed immunoglobins (abbrev. Ig) since they are globular proteins with an immune function. IgE-antibodies, one of the five classes of immunoglobins, are responsible for allergic reactions. ${ }^{82}$

[^1]:    a Inflammation ${ }^{85}$ is a defensive reaction of the tissues to injury or infection; the blood vessels in the effected area swell and allow their contents to ooze out. Many protective substances, including white blood cells, are released which destroy the foreign particles and bacteria. This process is often referred to as plasma exudation or edema.

[^2]:    ${ }^{\text {a }}$ Cyclic adenosine monophosphate (CAMP) ${ }^{87,88}$ is a nucleotide which, in the presence of a hormone at the cell membrane, breaks down adenosine triphosphate (ATP) to cAMP, which then acts in the cell to bring about a functional change. Additional functions include an involvement in controlling gene expression, in immune responses, and in nerve transmission.

[^3]:    a Cyclic guanosine monophosphate (cGMP), a nucleotide with regulatory functions.

[^4]:    a platelet activating factor, an ether-linked phospholipid (abbrev. PAF-acether). ${ }^{84}$

[^5]:    ${ }^{\text {a }}$ Calculated from ${ }^{1} \mathrm{H}$ spectrum of crude intermediate mixtures.

[^6]:    ${ }^{\mathrm{a}}$ (3-Me) $^{\mathbf{1}_{\mathrm{H}}}$ chemical shift.

[^7]:    a Mean value from duplicate runs.

[^8]:    a Potentiometric titration in 0.01 M -aqueous ethanol ( $50 \% \mathrm{v} / \mathrm{v}$ ). b Lit. $143,1352.8$ by potentiometry in $50 \%$ EtOH and 2.96 by conductimetry at $25^{\circ} \mathrm{C}$. c Potentiometric titration in 0.005 M -aqueous ethanol ( $50 \% \mathrm{v} / \mathrm{v}$ ).

[^9]:    a The bulk of the nitrobenzene was contained in the first two 400 ml fractions.

[^10]:    a Yield calculated on the basis of 2-hydroxyacetophenone.
    b Yield calculated on the basis of 2-hydroxy-4-nitroacetophenone (94).

[^11]:    a Yield calculated on the basis of 2-hydroxyacetophenone.
    b Yield calculated on the basis of 2-hydroxy-4-methoxyacetophenone (93).

[^12]:    a Yield calculated on the basis of 2-hydroxy-4-nitroacetophenone (94). b No melting point is given in the abstract ${ }^{106}$ describing the second procedure for the synthesis of 7-nitrochromone-2-carboxylic acid (114).

[^13]:    a Yield calculated on the basis of 4-fluoro-2-hydroxyacetophenone (95).
    b Yield calculated on the basis of 4-chloro-2-hydroxyacetophenone (96).

[^14]:    a Yield calculated on the basis of 4-bromo-2-hydroxyacetophenone (97).
    b Yield calculated on the basis of 5-chloro-2-hydroxyacetophenone (98).

[^15]:    Attempted Preparation. ${ }^{154} \mathrm{PCl}_{5}(6.0 \mathrm{~g}, 29 \mathrm{mmol})$ was added to a stirred slurry of chromone-2-carboxylic acid (112) (5.0 g, 26 mmol ) in cyclohexane ( 70 ml ), and the resulting mixture was boiled under reflux for lh . The solution was maintained at ca. $1^{\circ} \mathrm{C}$ for 15 h and the solvent was then evaporated to afford a solid residue shown, by ${ }^{1} \mathrm{H}$ NMR spectroscopy, to be starting material.

[^16]:    a Yield calculated on the basis of chromone-2-carboxylic acid (112).
    b Optimised reaction; yields using 1 and 1.5 molar equivalents of dimethylammonium chloride (128) were $65 \%$ and $71 \%$ respectively.

[^17]:    a Yield calculated on the basis of chromone-2-carboxylic acid (112).

[^18]:    a Yield calculated on the basis of 7-methoxychromone-2-carboxylic acid (113).
    b Yield calculated on the basis of 7-nitrochromone-2-carboxylic acid (114).

[^19]:    a Yield calculated on the basis of 7-fluorochromone-2-carboxylic acid (115).

[^20]:    a Yield calculated on the basis of 7-fluorochromone-2-carboxylic acid (115).
    b Yield calculated on the basis of 7-chlorochromone-2-carboxylic acid (116).

[^21]:    a Yield calculated on the basis of 7-chlorochromone-2-carboxylic acid (116).

[^22]:    a Yield calculated on the basis of 7 -bromochromone-2-carboxylic acid (117).

[^23]:    a Yield calculated on the basis of 3-methylchromone-2-carboxylic acid (120).

[^24]:    a Yield calculated on the basis of 3-methylchromone-2-carboxylic acid (120).

[^25]:    a Yield calculated on the basis of chromone-2-carboxylic acid (112).

[^26]:    a Yield calculated on the basis of chromone-2-carboxylic acid (112).

[^27]:    a Yield calculated on the basis of chromone-2-carboxylic acid (112).

[^28]:    a Yield calculated on the basis of chromone-2-carboxylic acid (112).

[^29]:    a Yield calculated on the basis of chromone-2-carboxylic acid (112).

[^30]:    a No melting point is given in the abstract. ${ }^{157}$

[^31]:    a Yield calculated of the basis of the unhydrated product.

[^32]:    a The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of DSCG (158) were calibrated against acetone. The spectra of the reaction mixture were calibrated against the HDO signal at $4.5-4.7 \mathrm{ppm}$ for the ${ }^{1} \mathrm{H}$ spectrum, and by the $\mathrm{Me}_{2} \mathrm{NH} N$-methyl signal at ca. 36.9 ppm in the ${ }^{13} \mathrm{C}$ spectrum. [The $\mathrm{Me}_{2} \mathrm{NH}$ chemical shift was calibrated from a reference solution of aqueous $\mathrm{Me}_{2} \mathrm{NH}(40 \% \mathrm{w} / \mathrm{w})$ in $\mathrm{D}_{2} \mathrm{O}$ using acetone as reference material.]
    b The isolation procedure did not involve acidification, since this may have resulted in formation of the dimethylammonium salt.

[^33]:    a Potentiometric titration in 0.01 M -aqueous ethanol ( $50 \% \mathrm{v} / \mathrm{v}$ ).
    b Potentiometric titration in 0.005 M -aqueous ethanol ( $50 \% \mathrm{v} / \mathrm{v}$ ).

[^34]:    a Estimated standard deviations in parentheses.

[^35]:    * isotropic temperature factor
    $U_{e q}=1 / 3 \Sigma_{i} \Sigma_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*}\left(a_{j} \cdot a_{j}\right)$
    ${ }^{a}$ For atom labelling see figure 21 p. 97 (Section 2.3).
    b Estimated standard deviations in parentheses.

[^36]:    a For atom labelling see figure 21 p. 97 (Section 2.3).
    b Estimated standard deviations in parentheses.

[^37]:    a For atom labelling see figure 21 p. 97 (Section 2.3).
    b Estimated standard deviations in parentheses.

[^38]:    *To whom correspondence should be addressed.

[^39]:    - At maximum separation ( $\Delta v_{0}$ ) or at the minimum temperalure below which precipitation of malerial precluded further measurement.
    $\dagger$ Material precipitated below 255 K .
    $\ddagger$ Spliting of $N$-alkyl signals was observed in the ambient ${ }^{3} \mathrm{C}$ NMR spectra of all the 4 -dxo-4 H -chromene-2-carboxamides (4) examined, including 4 d .

