
SEARCH ALGORITHMS

on structured and unstructured data

in a large database

Mathys Cornelius du Plessis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by South East Academic Libraries System (SEALS)

https://core.ac.uk/display/145048636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SEARCH ALGORITHMS

on structured and unstructured data

in a large database

Mathys Cornelius du Plessis

Submitted in partial fulfilment of the requirements for the degree of

Magister Scientiae in the Faculty of Science at the University of Port Elizabeth.

December 2004

Supervisor : Prof. G. de V. de Kock

Acknowledgements

I wish to thank my supervisor, Professor G. de V. de Kock for his patience,

guidance, enthusiasm and willingness to assist me at any time in spite of his busy

schedule.

To Kevin Naudé and Tim Gibbon, I would like to express my gratitude for their

valuable assistance in proofreading this dissertation.

A special word of thanks to my colleagues, family and friends for their constant

encouragement and support during the duration of this project.

Abstract

This project is concerned with the development of a search algorithm for a large

archival database.

The Port Elizabeth Genealogical Information System (PEGIS) contains a database

consisting of almost 600000 individuals. The standard search algorithms are no

longer sufficient to locate individuals in the database.

A new algorithm was required that allows searches on any of the words or dates

in the database, as well as a means to specify where in the desired record a word

should occur. A ranking function of retrieved records was also required.

A literature study on the field of Information Retrieval and on algorithms de-

signed specifically for the PEGIS was done. These algorithms were adapted and

hybridized to yield a search algorithm that allows for the boolean formulation of

queries and the specification of the structure of search words in the desired records.

The algorithm ranks retrieved records in assumed relevance to the user.

The new algorithms were evaluated with regards to retrieval speed and accuracy

and were found to be very effective.

Contents

1 INTRODUCTION 1

1.1 Problem Domain . 1

1.2 The Port Elizabeth Genealogical Information System 1

1.3 Data Structures . 2

1.4 Goals of Research . 4

1.5 Scoping . 4

1.6 Structure of Dissertation . 5

2 RETRIEVAL SYSTEMS 6

2.1 Introduction . 6

2.2 Information Retrieval Models . 7

2.2.1 Definition . 7

2.3 Boolean Model . 8

2.4 Vector Space Model . 10

2.4.1 Term weighting . 11

2.4.2 Disadvantages . 14

2.5 Fuzzy Set Model . 15

2.5.1 Fuzzy Set Theory . 15

2.5.2 Fuzzy Set Model for Retrieval . 16

2.6 Extended Boolean Model . 16

2.6.1 Motivation . 16

2.6.2 Lp Vector Norm . 19

2.6.3 The p Norm Model . 20

i

CONTENTS ii

2.6.4 Implications . 22

2.7 Probabilistic Model . 22

2.8 Structured Text Retrieval Models . 27

2.8.1 Tree Matching Model . 28

2.9 Neural Network Model . 32

2.10 Bayesian Network Model . 34

2.11 Conclusions . 35

3 SEARCH ALGORITHMS IN GIS 36

3.1 Full name . 36

3.1.1 Definition . 36

3.1.2 Equivalent Classes . 37

3.1.3 Similarity Sets . 39

3.1.4 Alternative Similarity Sets . 41

3.2 General Search Algorithm . 46

3.2.1 Similarity index on search words . 46

3.2.2 Events . 47

3.2.3 Similarity in dates . 48

3.2.4 Search index and ranking . 50

3.3 Conclusions . 51

4 INFORMATION RETRIEVAL MODEL FOR THE GIS 52

4.1 Introduction . 52

4.2 Adaptation of Extended Boolean Model . 53

4.3 Adaptation of Structured Text Retrieval . 54

4.4 Incorporation of Structured Text Retrieval 58

4.4.1 Fast Matching . 58

4.4.2 Complete Matching . 58

4.5 Combination with General Search Algorithm 59

4.5.1 Similarity Sets . 59

4.5.2 Dates . 60

4.6 Conclusions . 62

CONTENTS iii

5 INDEXES 63

5.1 Introduction . 63

5.2 Inverted File . 64

5.3 Suffix Trees and Suffix Arrays . 67

5.4 Signature Files . 69

5.5 Conclusions . 71

6 LEXICON REFINEMENT 73

6.1 Introduction . 73

6.2 Case Folding . 73

6.3 Stop words . 74

6.4 Stemming . 74

6.5 GIS Term Frequencies . 75

6.5.1 Words . 76

6.5.2 Dates . 87

6.5.3 Names . 90

6.6 Removed Terms . 90

6.7 Equivalent and Similarity Groups . 93

6.8 Conclusions . 93

7 IMPLEMENTATION 94

7.1 Introduction . 94

7.2 Retrieval Approach . 94

7.3 Data structures . 95

7.3.1 Equivalent and Similarity Database 95

7.3.2 Term Search Index . 97

7.3.3 Date Search Index . 98

7.3.4 Relevance Table . 100

7.4 Indexing Process . 102

7.4.1 Equivalent and Similarity Database 102

7.4.2 Term and Date Search Index . 103

7.5 Optimization . 104

CONTENTS iv

7.5.1 Repacking Postings . 104

7.6 Search Process . 105

7.7 Implementation Performance . 108

7.7.1 Indexing . 108

7.7.2 Searching . 108

7.8 Conclusions . 111

8 EVALUATION OF IMPLEMENTED ALGORITHMS 112

8.1 Introduction . 112

8.2 Retrieval in the GIS . 113

8.3 Evaluation . 114

8.3.1 Case Study 1 . 115

8.3.2 Case Study 2 . 115

8.3.3 Case Study 3 . 116

8.3.4 Case Study 4 . 117

8.3.5 Case Study 5 . 118

8.3.6 Case Study 6 . 119

8.3.7 Case Study 7 . 120

8.3.8 Case Study 8 . 120

8.3.9 Case Study 9 . 121

8.3.10 Case Study 10 . 121

8.3.11 Case Study 11 . 122

8.4 Conclusions . 122

9 CONCLUSIONS 124

9.1 Summary of Research . 124

9.2 Future Research . 125

9.3 Conclusions . 125

A Data Structures 126

B EBNF for Query Language 128

CONTENTS v

C Search Fields 129

D Record Fields 131

E Date Fields 133

F Relevance Function 134

G Equivalent and Similarity Database Indexing 135

H Term and Date Indexing 137

I Retrieval and Ranking algorithm 139

List of Figures

2.1 Equidistance lines from (1, 1) for and and from (0, 0) for or. 17

2.2 The Tree Hierarchy of a simple document. 28

2.3 The Tree Hierarchy of a Query. 29

2.4 Tree Inclusion. 30

2.5 Unordered tree inclusion. 31

2.6 Ordered tree inclusion. 32

3.1 An example of equivalent classes . 39

3.2 An example of similarity sets . 40

3.3 Smaller Equivalent Groups . 41

3.4 Venn diagram of original similarity sets . 42

3.5 Venn diagram of alternative similarity sets 43

3.6 Forming of original equivalence class for Pieternella 44

3.7 Alternative Similarity Set . 45

3.8 y = f(x, a) with a = 10 . 49

4.1 Structure of a person record . 55

5.1 A Suffix Tree. 68

6.1 Distribution of Word Occurrences in Groups of 1000 77

6.2 Distribution of Distinct words . 81

6.3 Distribution of Word Occurrences . 82

6.4 Distribution of Words Occurring less than 50 times. 83

6.5 Distribution of words according to length 86

vi

LIST OF FIGURES vii

6.6 Distribution of Dates . 87

6.7 Distribution of Names . 91

7.1 Unpacked Postings . 104

7.2 Packed Postings . 105

List of Tables

2.1 Conventional Boolean Retrieval . 17

2.2 Extended Boolean Retrieval . 18

2.3 p-Value Interpretation . 22

3.1 Class size distribution . 38

5.1 An Inverted Index . 66

5.2 Hash Codes for Index Terms . 70

5.3 Signature file . 71

6.1 Words Occurring more than 3 000 times . 78

6.2 Distribution of Words in Groups of 1000 . 79

6.3 Distribution of Words according to Occurrence Range 80

6.4 Distribution of Words Occurring less than 50 times. 84

6.5 Distribution of words according to length 85

6.6 Date distributions 1600 to 1808 . 88

6.7 Date distributions 1809 to 2003 . 89

6.8 Distribution of Names according to Type of Name 90

6.9 Words Occurring more than 3 000 times after removing non-index terms . . 92

7.1 Extract of the term relevance table . 100

7.2 Queries . 109

7.3 Retrieval times in seconds of various queries 109

7.4 Comparing Fast and Complete Matching algorithms 110

viii

LIST OF TABLES ix

C.1 Available date search fields . 129

C.2 Available term search fields . 130

Chapter 1

INTRODUCTION

1.1 Problem Domain

This project is concerned with the analysis, hybridization, implementation and evaluation

of search algorithms using structured and unstructured data in a large database. The Port

Elizabeth Genealogical Information System (PEGIS) is used as a case study.

1.2 The Port Elizabeth Genealogical Information System

The aim of genealogical research is to create a family tree or ancestor list of individuals.

The purpose of a Genealogical Information System (GIS) is to allow for the interactive

retrieval, editing, adding and deleting of individuals and their relationships. PEGIS was

developed over the last 20 years in the Department of Computer Science and Information

Systems at the University of Port Elizabeth. Through the efforts of the Port Elizabeth

Genealogical Research Group, the Genealogical Database (GDB) now contains the details

of about 600000 individuals. The GDB currently grows by several thousand individuals

each month.

Searching for individuals in the GDB is important not only when information is drawn

from the database, but also when information is added. It is essential that information of

an individual is not duplicated, and researchers should thus be provided with an effective

means of locating existing individuals. Due to the rapid expansion of the GDB (in 1991 it

1

CHAPTER 1. INTRODUCTION 2

contained only 90 000 individuals), searching for individuals has become an increasingly

challenging task. Before the algorithms implemented by the author, searches could only

be performed using queries of the following form: Surname, First names, Birthdate. The

result of such a query is the individual with closest alphabetical and chronological match

with the query. The user can then scroll through the alphabetical successors of the first

hit. Note that, although the birthdate is an optional refinement to the query, it is highly

recommended to specify first names, since only specifying a surname will require the user

to scroll through many people with the required surname before the correct record is

found. Queries where the surname is unknown are impossible. Furthermore, permuting

the order of the first names or discarding one of the first name would result in undesired

search results.

Apart from the problems mentioned above, simple searches on name and birth date are

no longer effective because of the large number of individuals with the same names (the

GDB currently contains more than 390 individuals named SCHALK WILLEM VAN DER

MERWE). The problem is compounded by variations in spelling of names (for example

Coertz, Coorts, Koorts, Koort, Coertse, Koortsen, Coertsen etc. were all derived from the

German surname Kürz) and inaccuracies in the details of an individual. Work has been

done on solving spelling variations of names by dividing the names up into equivalence

groups [Ple91]. This will be discussed in more detail in a later chapter.

Genealogical researchers often posses information other than a person’s surname, first

names and birthdate, for example, the names of an individual’s parents, spouses or chil-

dren, or perhaps the person’s birth place or occupation. Searches on this information

should also be supported.

1.3 Data Structures

The data stored in the GDB can be divided into three main categories: Person, Event

and Relationship. Not all information is relevant to searching (for example, references to

CHAPTER 1. INTRODUCTION 3

books, archives etc. where information on an individual was found) and such information

will thus be excluded in the following discussion. The above mentioned categories contain

the following information [Ple01]:

Person:

Surname, given names, father, mother, gender, nickname, general information.

Event:

Event type, place, start date, end date, details. Provision is made for the following events:

Birth, Baptism, Death, Burial, Residence, Will and Estate, Adoption, Military, Medical,

Education, Occupation and Other.

Relationship:

Husband, Wife, Marriage type, place, date, divorce date, details.

The actual data structures used to store information can be seen in appendix A. The

fields defined above contain general textual information (except given names and sur-

name), for example, the field Birth place could contain the string Martjie Venter Hos-

pital, Tarkastad or On the farm Doornkloof near Cradock. Most of the fields are

left empty for many of the individuals.

The data in the GDB was parsed into the above fields from a previous version of the GIS

that, for example, did not provide separate fields for different events (except birth, baptism

and death). Although the parsing was reasonably successful, much of the event information

in the GDB was simply placed in the general information field. As it requires a time

consuming manual process to consider each record individually and make the necessary

changes by hand, the data is currently still not perfectly distributed in the correct fields.

CHAPTER 1. INTRODUCTION 4

1.4 Goals of Research

The goal of this research is to create a search function for the GIS. This function should

allow the user to search the GDB by means of words and dates that occur in the records,

and should rank the resultant records in order of how well each record satisfies the query.

The ranking of the records is very important, since much more than just surname and

first names are taken into account. Queries often results in several thousand hits, and

should thus be presented in order of most relevant.

The user is likely to know in which field the word or date is located. This is very useful

information and it is essential that the search algorithm takes the structure of data in the

record and the query into account. For example, if the user knows that a certain word

or term is a person’s surname, a record that contains the term as a first name should be

ranked lower than a record that contains the term as a surname.

Functionality to search on nearby relations of a person (parents, spouses and children)

is essential, since this is often the only information known about an individual.

Finally, the algorithms that provide the above functionality should be designed in such

a way as to make searches extremely fast and efficient.

1.5 Scoping

Information retrieval is a wide and intensively researched field. Several books have been

written that give a complete overview of information retrieval and its applications, notably

Ribeiro-Neto et al. [RBY99] and Witten et al [TCB99]. It is not the intention of this

project to rewrite these sources. The different information retrieval approaches that are

not suitable to being applied to the GIS will only be discussed briefly. Several techniques

used by the information retrieval community to minimize response times and disk space

used, for example index and record compression, will not be investigated.

CHAPTER 1. INTRODUCTION 5

1.6 Structure of Dissertation

In chapter 2, the field of information retrieval will be discussed broadly. Retrieval models

suited to implementation in the GIS will be focused on.

Chapter 3 describes search algorithms created especially for the GIS. Although most of

these algorithms were not implemented, they provide many novel approaches and provide

a benchmark for the functionality that should be provided by the new search algorithm

for the GIS.

Chapter 4 will be devoted to the description of an information retrieval model for the

GIS. This model will be a hybrid of the algorithms and models discussed in chapters 2

and 3.

In view of implementing the algorithms in chapter 4, chapter 5 will focus on the various

indexing techniques that could be used in an efficient implementation.

Chapter 6 will consider the various lexicon refinement techniques, whereafter an in depth

study of the search terms will be done. The chapter will conclude with a discussion of the

lexicon to be used in the GIS search algorithm.

In chapter 7 the implementation of the search algorithm will be described. The dis-

cussion will focus on how the retrieval model developed in chapter 4 can be efficiently

implemented using the indexing techniques of chapter 5. Various methods used to make

searches faster will be discussed.

Chapter 8 will describe the evaluation of the new search algorithms.

The conclusions drawn from this research, as well as future work will be discussed in

chapter 9.

Chapter 2

RETRIEVAL SYSTEMS

2.1 Introduction

A data retrieval system can be described simply as a system that returns a record speci-

fied by the user. A data retrieval system is simple to create assuming that every record

is uniquely identified by some key attribute (for example, in a database storing the study

records of all the students at a university, this key attribute would be the student number

of each of the respective students) and that the value of that key attribute is known for

every record in advance.

An information retrieval (IR) system can be described as a system that returns several

records related to a query of the user. An example of an information retrieval system is

the search engines used to search the World Wide Web, for example, Google [Goo04] and

Yahoo [Yah04]. The main difference between a data retrieval system and an information

retrieval system is that with the former the user knows exactly which record should be

retrieved, while in the latter the user is interested in records that are similar to a certain

query (i.e. not an exact match).

Searching the GDB is always concerned with the location of a specific person (or as-

certaining if the person is absent from the database), and thus falls in the data retrieval

category. There are, however, several problems which make locating an individual difficult:

6

CHAPTER 2. RETRIEVAL SYSTEMS 7

1. Apart from a record number automatically assigned to each individual in the GDB,

there are no attributes (not even compound attributes) that are guaranteed to

uniquely identify an individual.

2. Not all relevant information is stored for all individuals, for example, assume that

a specific individual’s first name would uniquely identify that person in the GDB.

There is no guarantee that the first name was known to the person who originally

added the individual to the database.

3. There is a large amount of incorrect data in the database, due to the many discrepan-

cies on birth certificates, marriage certificates, death notices and other genealogical

sources.

4. Often only information on an individual’s parents, children or spouses are known.

For these reasons, retrieval from the GDB becomes an information retrieval problem, in

the sense that it can not be said with full certainty whether a specific record should be

retrieved in response to a query.

In the following sections the theories and implementation techniques developed for in-

formation retrieval systems will be investigated with specific emphasis on relevance to the

GIS.

2.2 Information Retrieval Models

This section describes models used to determine which records to retrieve from a record

set, given a query. Implementation techniques for these models will not be discussed. The

discussion will focus on models that have been shown to yield good retrieval results while

minimizing retrieval time.

2.2.1 Definition

Each record can be described by a set of terms, called index terms (Indexes will be

discussed in detail in chapter 5). An information retrieval system aims to take as input a

query (in the form of a set of terms) and to return a set of records relevant to the query.

CHAPTER 2. RETRIEVAL SYSTEMS 8

A retrieval model M can be defined formally [RBY99] as a quadruple

[D,Q,F, sim(dj , q)]

where:

• D is the set of all records in a collection.

• Q is the set of all possible queries.

• F is a framework for modelling record representations, queries and their relation-

ships.

• sim(dj , q) is a similarity function that computes the similarity of dj ∈ D to q ∈ Q.

In the following sections of this chapter, several frameworks will be discussed.

2.3 Boolean Model

This model has been employed by most of the older information retrieval systems. The

Boolean model is based on Set Theory. Assume a universal set of all index terms (call this

set I), then the record set is defined as:

D ⊆ 2I

(i.e. dj ∈ D implies dj ⊆ I). A record can thus be defined as a subset of the universal

set. It is clear that some records may not be defined by a unique set.

A query consists of index terms joined by the logical expressions and, or and not.

A query can always be written in disjunctive normal form (i.e. the disjunction of

conjunctions of literals), for example, the query:

[(a ∨ b) ∧ (c ∨ ¬d)]

can be written as:

[(a ∧ c) ∨ (a ∧ ¬d) ∨ (b ∧ c) ∨ (b ∧ ¬d)]

CHAPTER 2. RETRIEVAL SYSTEMS 9

where a, b, c, d ∈ I and (a ∧ c), (a ∧ ¬d), (b ∧ c), (b ∧ ¬d) are called the conjunctive com-

ponents of the query.

The retrieved records will be those which contain the conjunctive components of the

query as subsets.

Formally: We can define a query q as:

q =
n∨

r=1

qr

where

qr =
mr∧

s=1

qrs

with qrs ∈ I . Define q′ as the set of conjunctive components of q:

q′ = {q′1, q′2, ..., q′n}

i.e.

q′r = {q′r1, q′r2, ..., q′rmr
}

The similarity of a record dj to the query q is defined as:

sim(dj , q) =

1 if ∃ q′i | (q′i ∈ q′) ∧ (q′i ⊆ dj)

0 otherwise

From the above it can be seen that a specific record is categorized as either relevant or

not relevant. Salton et al. [SFW83] identified the following disadvantages of the Boolean

model:

1. The number of retrieved records obtained in response to a query is difficult to control;

depending on the occurrence frequency of the query terms and the actual term

combinations used in the query, many records might be retrieved, or alternatively,

none at all.

2. The retrieved records are not ranked in order of presumed importance to the user.

CHAPTER 2. RETRIEVAL SYSTEMS 10

3. No provisions are made for assigning importance factors or weights to the terms

attached either to the records or to the queries; thus, all terms included in the

records and queries are assumed to have equal importance.

4. Boolean query formulations may produce counterintuitive results: for example, in

response to the query:

[a ∨ b ∨ c]

a record containing only one of the query terms is deemed as important as a record

containing all of the query terms. Similarly, in response to the query:

[a ∧ b ∧ c]

a record containing two of the terms is deemed just as irrelevant as a record con-

taining none of the search terms.

In an attempt to address these problems, the Vector Space Model was developed.

2.4 Vector Space Model

The Vector Space Model [SL68] is based on the idea of assigning weights to index terms.

These weights are ultimately used to rank retrieved records in order of assumed relevance

to a query. As the name implies, every record can be considered to be a vector. These

vectors are constructed as follows [RBY99]:

Let t be the number of index terms in the record set and ki be an index term. Let I =

{k1, ..., kt} be the set of all index terms. A weight wi,j > 0 is associated with with every in-

dex term ki of a record dj . If term ki does not appear in dj then wi,j = 0. Associated with

a record dj is an index term vector −→dj represented by −→dj = (w1,j , w2,j , ..., wt,j). Let gi be a

function that returns the weight of an index term ki in any record vector, i.e. gi(
−→
dj) = wi,j .

A vector for a query can be defined as follows:

CHAPTER 2. RETRIEVAL SYSTEMS 11

For a query q, let wi,q be the weight associated with the pair [ki, q], where wi,q ≥ 0. The

query vector is given by −→q = (w1,q, w2,q, ..., wt,q).

The terms in a query are thus also weighted. The similarity between a query and a

record can be defined as the cosine of the angle between the query vector and the record

vector and can thus be calculated using the inner product rule:

sim(dj , q) =
−→
dj · −→q

‖ −→dj ‖‖ −→q ‖

=

t∑

i=1

wi,j .wi,q

√√√√
t∑

i=1

w2
i,j .

√√√√
t∑

i=1

w2
i,q

(2.1)

Thus, sim(dj , q) will be a number between 0 and 1. The records are sorted according to

their similarity to the query and the first n, where n is an appropriate retrieval threshold,

will be returned as the result of the search.

2.4.1 Term weighting

Several approaches to assign weights to the record terms have been suggested. The earliest

and most well known of these schemes is the tf.idf approach, proposed by McGill et al.

[MJM83]. Let Fi,j be the frequency that index term ki occurs in record dj , then define

the weight, wi,j , of term ki in record dj , as:

wi,j = tfi,j .idfi

where

tfi,j =
Fi,j

maxl Fl,j

i.e. the frequency of a term ki in record dj divided by the frequency of the most common

term in record dj , and

idfi = log
N

fi

where N is the total number of records and fi is the number of records that contain term ki.

CHAPTER 2. RETRIEVAL SYSTEMS 12

The weights for the query vector are normally calculated as:

wi,q = idfi.(0.5 + 0.5× tfi,q)

where tfi,q is the frequency of term ki in query, q. Note that, for the query vector weights,

the term frequencies are computed over the query and not over D.

Several variations of the tf.idf approach have been suggested. The most notable attempt

at defining a heuristic by which the weighting scheme for a specific scenario could be

decided, was the result of experimental work of Salton et al. [SB88]. The equation giving

a term’s weight can be broken up into three components, each with several possible values:

1. Term Frequency Component

b 1.0 Binary weight equal to 1 for terms present in vector

(term frequency is ignored)

t tfi Raw term frequency (Note that this differs from the

previous definition)

n 0.5 + 0.5
tfi

maxl tfl
Augmented normalized frequency (tf factor normal-

ized by maximum tf in the vector, and further nor-

malized to lie between 0.5 and 1.0)

2. Collection Frequency Component

x 1.0 No change in weight

f log
N

fi
Inverse collection frequency factor (N is the total

number of records and f is the number of records

that contain term)

p log
N − fi

fi
Probabilistic inverse collection frequency factor

3. Normalization Component

x 1.0 No normalization

c
1√√√√
t∑

l=1

w2
l

Cosine normalization where each term weight is di-

vided by a factor representing the Euclidian vector

length.

Combining the above mentioned three components yields a term weighting strategy for

record and query term weights. For example, a similar weighting scheme for record vectors

CHAPTER 2. RETRIEVAL SYSTEMS 13

to the classical tf.idf approach would be found by selecting the raw term frequency, t, for

the term frequency component, the inverse collection frequency factor, f, for the collection

frequency component and cosine normalization, c, for the normalization component. The

weighting scheme of the classical approach is found by only using the augmented nor-

malized frequency, n. This selection is written as tfc.nxx by combining first the letters

representing the various selected components for the record vector and then for the query

vector. The resultant weighting is

wi,j =
tfi,j . log

N

fi√√√√
t∑

l=1

(
tfl,j . log

N

fl

)2

for record term weights, and

wi,q = 0.5 + 0.5
tfi,q

maxl tfl,q

for query term weights.

The following recommendations for selecting a term weighting scheme were formulated

by Salton et al. [SB88], after studying the results obtained using different combinations

of the term weighting components on several databases:

Query vectors

1. Term-frequency component

• b Use when all terms occur only once

• t Use for long query vectors

• n Use for short query vectors

2. Collection-frequency component

• Very similar results are obtained for both p and f, with slightly better results

for f

3. Normalization component

• Always use x since query normalization does not effect ranking

CHAPTER 2. RETRIEVAL SYSTEMS 14

Document vectors

1. Term-frequency component

• b Use for short record vectors, especially with a controlled vocabulary

• t Use for varied vocabulary

• n Use for technical vocabulary

2. Collection-frequency component

• For semi-static collections use either f or p. Slightly better results are obtained

for f

• For dynamic collections, where many changes are often made to the database,

f and p requires constant updating. Use x.

3. Normalization component

• c Use when the deviation in vector lengths is large

• x Use for short record vectors of homogeneous length

Attempts have been made to create a more effective weighting function using genetic

algorithms [Ore02]. Despite the fact that only small improvements were made over the

standard tf.idf approaches, genetic algorithms still provide a novel way to customize the

weighting scheme for a specific IR system.

2.4.2 Disadvantages

A major disadvantage of the Vector Space Model is that a Boolean formulation of queries

can not be used (i.e. the and, or and not can not be used in queries). Several hybrid

Boolean/Vector Space systems were developed that first used the Boolean Model to re-

trieve the initial set of records and then used the Vector Space Model to rank these records.

An alternative to these systems was suggested in the form of the Extended Boolean Model

(discussed in section 2.6 on page 16).

CHAPTER 2. RETRIEVAL SYSTEMS 15

2.5 Fuzzy Set Model

Before the Extended Boolean Model is discussed, a very brief description of the Fuzzy Set

Model will be given.

2.5.1 Fuzzy Set Theory

Unlike Boolean logic, Fuzzy Set Theory considers the membership of elements to a set to

be gradual, i.e. an element is only associated with a particular set to a certain extent.

Formally [Dur94]:

Definition 2.5.1 Let X be a universe of discourse, with x ∈ X. A fuzzy subset A of X is

characterized by a membership function µA : X → [0, 1] which associates with each element

x of X a number µA(x) in the interval [0, 1] (i.e. µA(x) → [0, 1] ∀A⊆X).

As in Boolean logic, the complement, union and intersection can be defined for fuzzy

sets. Let X be the universe of discourse, A and B be fuzzy subsets of X , and A be the

compliment of A relative to X . Let x be an element of X .

We define the intersection between A and B as:

µA∩B(X) = min(µA(x), µB(x)) ∀ x ∈ X

since no element is more likely to be in the intersection than in one of the original sets.

We define the union between A and B as:

µA∪B(X) = max(µA(x), µB(x)) ∀ x ∈ X

since no element in the union can have a membership value that is less than the member-

ship value of either of the original sets.

CHAPTER 2. RETRIEVAL SYSTEMS 16

We define the complement of A as:

µA(x) = 1− µA(x)

Fuzzy sets thus provides a way to represent vagueness and imprecision in sets.

2.5.2 Fuzzy Set Model for Retrieval

In the standard Fuzzy Set retrieval model, record terms can be weighted as in the vector

space model (see Section 2.4). Then, given queries (ki ∨ km), (ki ∧ km) and (¬ki), and a

record dj with weights wi,j and wm,j associated with record terms ki and km respectively,

we can calculate the similarity between the queries and dj as [SFW83]:

sim(dj , q) = max[wi,j , wm,j] for q = (ki ∨ km) (2.2)

sim(dj , q) = min[wi,j , wm,j] for q = (ki ∧ km) (2.3)

sim(dj , q) = 1− wi,j for q = (¬ki)

It is easy to see that if terms are weighted only 0 or 1, the fuzzy set model reduces to the

Boolean model. In fact, the fuzzy set model provides only a marginal improvement over

the Boolean model, since the rank of a retrieved item only depends on lowest or highest

term for and and or queries respectively. For this reason the fuzzy set model has never

enjoyed much popularity with the information retrieval community.

2.6 Extended Boolean Model

2.6.1 Motivation

The Extended Boolean Model [SFW83] can be seen as a unification of the Boolean, Vector

Space and Fuzzy Set Models. Consider table 2.1.

Three record classes can be identified for two-term queries: those containing both terms,

those containing one of the terms and those containing neither of the terms. The similarity

between query and record would thus be 1 for the and and the or queries if the record

CHAPTER 2. RETRIEVAL SYSTEMS 17

Terms Similarity to Query
Record ki km (ki ∨ km) (ki ∧ km)
d1 1 1 1 1
d2 1 0 1 0
d3 0 1 1 0
d4 0 0 0 0

Table 2.1: Conventional Boolean Retrieval

contains both terms, 0 for the and and 1 for the or query if the record contains one of

the terms, and 0 for both queries if the record contains none of the terms. When only

two terms are considered, the term assignment can be represented in a two-dimensional

graph, with each axis assigned to a different term (see figure 2.1).

-

6

(0, 0)

(0, 1)

(1, 0)

(1, 1)

ki

km

ki AND km

-

6

(0, 0)

(0, 1)

(1, 0)

(1, 1)

ki

km

ki OR km

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

¡¡ª

¡¡

¡¡

¡¡ª¡
¡

¡
¡µ

¡¡

¡¡

¡¡

¡¡

Sim = (1− 1√
2
)

Sim = (1√
2
)

rd5

rd6

rd7

rd5

rd6

rd7

Figure 2.1: Equidistance lines from (1, 1) for and and from (0, 0) for or.

For an and query, the point (1, 1) is the desirable location, and for an or query, the

point (0, 0) is the position to be avoided. Thus, a retrieval system could rank the results

of a search in increasing order of distance from (1, 1) for an and query, and in decreasing

order of distance from (0, 0) for or queries. Furthermore, because such a system no longer

makes use of set operations that require a term to either be an element of a set or not;

record terms could be weighted. For a record dj with term weights wi,j and wm,j for terms

ki and km respectively, the distance from the point(0,0) is:

√
(wi,j − 0)2 + (wm,j − 0)2

CHAPTER 2. RETRIEVAL SYSTEMS 18

and the distance from point (1, 1) is given by:

√
(1− wi,j)2 + (1− wm,j)2

If we assume that 0 ≤ wi,j ≤ 1 for any i and k then these distances can be normalized by

dividing by the maximum distance between (0, 0) and (1, 1), i.e.
√

2. The distances can

be used to compute the similarity between a query q and a record dj :

sim(dj , q) =

√
(wi,j)2 + (wm,j)2

2
for q = (ki ∨ km) (2.4)

sim(dj , q) = 1−
√

(1− wi,j)2 + (1− wm,j)2

2
for q = (ki ∧ km) (2.5)

Table 2.2 shows the similarity values calculated, using equations 2.4 and 2.5, for the

three record classes described earlier.

Terms Similarity to Query
Record ki km (ki ∨ km) (ki ∧ km)
d1 1 1 1 1
d2 1 0 1√

2
1− 1√

2

d3 0 1 1√
2

1− 1√
2

d4 0 0 0 0

Table 2.2: Extended Boolean Retrieval

As opposed to the Conventional Boolean Model, records that contain only one of the

query terms receive a similarity value of 1√
2

for or queries and 1 − 1√
2

for and queries.

Note that the presence of one term in a record in an or query is worth less than the

presence of both terms, but is still worth more than the presence of a single term in the

case of an and query. The model also assigns a non-zero value to records that contain

only one term in the case of an and query, which is a significant improvement over the

Conventional Boolean Model.

Examples of three records, d5, d6 and d7, containing weighted terms can be seen in

figure 2.1. Lines representing equidistant points are used to illustrate the similarity values

for each of the records. Note that:

sim(d7, q) > sim(d6, q) > sim(d5, q) for q = (ki ∨ km)

CHAPTER 2. RETRIEVAL SYSTEMS 19

sim(d7, q) > sim(d6, q) > sim(d5, q) for q = (ki ∧ km)

and that (for q1 = (ki ∨ km) and q2 = (ki ∧ km)):

sim(d7, q1) > sim(d7, q2)

sim(d6, q1) > sim(d6, q2)

sim(d5, q1) > sim(d5, q2)

Equations 2.4 and 2.5 can be extended to allow for query term weights, 0 ≤ wi,q ≤ 1

for term ki in query q:

sim(dj , q) =

√√√√w2
i,q.(wi,j)2 + w2

m,q.(wm,j)2

w2
i,q + w2

m,q

for q = [(wi,q, ki) ∨ (wm,q, km)]

(2.6)

sim(dj , q) = 1−
√√√√w2

i,q.(1− wi,j)2 + w2
m,q.(1− wm,j)2

w2
i,q + w2

m,q

for q = [(wi,q, ki) ∧ (wm,q, km)]

(2.7)

Before continuing, the concept of the Lp vector norm will be briefly discussed [Nic90].

2.6.2 Lp Vector Norm

Definition 2.6.1 A norm of a vector is defined as a function f(−→x) (normally written

‖ −→x ‖) that satisfies the following conditions:

1. f(−→x) ≥ 0

2. f(−→x) = 0 ⇔ −→x = 0

3. f(−→x +−→y) ≤ f(−→x) + f(−→y)

4. f(|c|−→x) = |c|f(−→x) where c is a scalar

In other words: Only the zero vector has norm zero, the norm of a vector must satisfy

the triangle inequality (3), and the norm must be homogeneous with respect to scalar

CHAPTER 2. RETRIEVAL SYSTEMS 20

multiplication.

The most commonly used norm is the Euclidean norm which gives the length of vectors

in Euclidian space and is defined as:

‖ −→x ‖=
√√√√

t∑

i=1

|xi|2

where t is the number of vector elements. The Euclidean norm is a special case of the Lp

norm that can be defined as:

‖ −→x ‖p= p

√√√√
t∑

i=1

|xi|p

The most interesting Lp norms are:

• p = 1: The absolute value norm.

• p = 2: The Euclidean norm.

• p = ∞: The Chebyshev norm.

Note that the case p = ∞ is a limiting case which becomes:

‖ −→x ‖∞= max(|x1|, ..., |xt|)

It is often useful to work with the normalized Lp norm:

‖ −→x ‖p (normalized) =

p

√√√√√√
t∑

i=1

|xi|p

t
(2.8)

where t is the number of vector elements.

2.6.3 The p Norm Model

Equations 2.4 and 2.5 were derived using the Euclidean norm. Since only two query terms

were used, the equations can be seen as a special case (t = 2 and p = 2) of the more

general equations in normalized Lp norm form:

sim(dj , q) = p

√
(w1,j)p + ... + (wt,j)p

t

CHAPTER 2. RETRIEVAL SYSTEMS 21

for q = (k1 ∨p ... ∨p kt)

(2.9)

sim(dj , q) = 1− p

√
(1− w1,j)p + ... + (1− wt,j)p

t

for q = (k1 ∧p ... ∧p kt)

(2.10)

where ∨p and ∧p refer to OR and AND queries where p was selected as the vector norm.

Equations 2.9 and 2.10 can be generalized to account for weighted query terms as in

equations 2.6 and 2.7:

sim(dj , q) = p

√√√√wp
1,q.(w1,j)p + ... + wp

t,q.(wt,j)p

wp
1,q + ... + wp

t,q

for q = [(w1,q, k1) ∨p ... ∨p (wt,q, kt)]

(2.11)

sim(dj , q) = 1− p

√√√√wp
1,q.(1− w1,j)p + ... + wp

t,q.(1− wt,j)p

wp
1,q + ... + wp

t,q

for q = [(w1,q, k1) ∧p ... ∧p (wt,q, kt)]

(2.12)

The value of p can be varied to simulate different retrieval models.

p = 1

When p is set equal to 1, it can be shown that both equations 2.11 and 2.12 reduce to:

sim(dj , q) =
w1,q.(w1,j) + ... + wt,q.(wt,j)

w1,q + ... + wt,q

=

t∑

i=1

wi,j .wi,q

√√√√
t∑

i=1

w2
i,q

(2.13)

where t is the total number of record terms.

CHAPTER 2. RETRIEVAL SYSTEMS 22

Apart from not normalizing each record vector, the Extended Boolean Model thus

becomes equivalent to the Vector Space Model (compare equations 2.1 and 2.13).

p = ∞

When p tends to ∞ and the query terms are equally weighted, it can be shown that

equations 2.11 and 2.12 reduce to equations 2.2 and 2.3 respectively. Thus for p = ∞ the

Extended Boolean Model becomes equivalent to the Fuzzy Set Model, and by extension,

the conventional Boolean Model.

2.6.4 Implications

By varying p between 1 and infinity, the ranking behavior of the Extended Boolean Model

can be changed from that of the Vector Space Model to that of the Boolean and Fuzzy

Set Models. Table 2.3 shows how changing the value of p will affect a retrieval system.

p Value Operator Written Result

∞ AND ∧∞ Item not retrieved unless all query terms present
∞ OR ∨∞ At least one of each group of query terms is required
3 AND ∧3 Presence of all terms worth more than presence of only some
3 OR ∨3 Presence of several terms worth more than presence of only one
1 AND, OR ∨1, ∧1 Queries are ranked only on term weights

Table 2.3: p-Value Interpretation

Another advantage to the the Extended Boolean Model is that it does not exclude

queries like:

(k1 ∨2 k2) ∧∞ k3

i.e. it is possible to define which retrieval model should be used for specific sections of the

query.

2.7 Probabilistic Model

The Probabilistic Model was developed Robertson and Jones ([RJ88] in [RBY99]) for sys-

tems where the user does not have a definite idea of which index terms would appear in the

relevant records. The user would thus start a retrieval process by making a guess of which

index terms would appear in relevant records. A list of relevant records is displayed, and

CHAPTER 2. RETRIEVAL SYSTEMS 23

the user then selects which records are most relevant. The information in these records is

then used to refine the query and thus return a more accurate result set. This process can

be repeated as many times as necessary. The main advantage of the Probabilistic Model

is that records are ranked in decreasing order of their probability of being relevant.

The goal of the probabilistic model is to estimate the probability that the user will

find record dj relevant, given query q. It is assumed that relevance only depends on the

information in the record and the query, and that there is a subset of all records, R, that

the user prefers in response to query q. R is thus the set of all relevant records.

It now remains to show how the probability of relevance should be calculated for a

record dj , given query q. Consider the following definition [RBY99]:

Definition 2.7.1 For the Probabilistic Model all index term weights are binary i.e., wi,j ∈
{0, 1} and wi,q ∈ {0, 1}. A query q is a subset of index terms. Index term vectors are set

up for records as in the Vector Space Model. Let R be the set of records known (initially

guessed) to be relevant. Let R be the compliment of R (i.e. the set of non-relevant records).

Let P (R|−→dj) be the probability that record dj is relevant to the query q and P (R|−→dj) be the

probability that dj is not relevant to q.

We will originally define:

sim(dj , q) =
P (R|dj)
P (R|dj)

Using Bayes’ rule it can be rewritten as:

sim(dj , q) =
P (−→dj |R)× P (R)

P (−→dj |R)× P (R)

where

• P (−→dj |R) is the probability of randomly selecting the record dj from the set R of

relevant records.

• P (R) is the probability of randomly selecting a relevant record from the entire record

set.

CHAPTER 2. RETRIEVAL SYSTEMS 24

• P (−→dj |R) is the probability of randomly selecting the record dj from the set R of

non-relevant records.

• P (R) is the probability of randomly selecting a non-relevant record from the entire

record set.

Since P (R) and P (R) are constants, we redefine the similarity function as:

sim(dj , q) =
P (−→dj |R)

P (−→dj |R)
(2.14)

Assuming independence of index terms, equation 2.14 can be rewritten as:

sim(dj , q) =

 ∏

wi,j=1

P (ki|R)

×

 ∏

wi,j=0

P (ki|R)

 ∏

wi,j=1

P (ki|R)

×

 ∏

wi,j=0

P (ki|R)

(2.15)

where

• P (ki|R) is the probability of term ki being present in a randomly selected record

from R.

• P (ki|R) is the probability that term ki is not present in a record randomly selected

from R.

• P (ki|R) is the probability of term ki being present in a randomly selected record

from R.

• P (ki|R) is the probability that term ki is not present in a record randomly selected

from R.

Since all term weights are binary, equation 2.15 can be rewritten as:

sim(dj , q) =

(
t∏

i=1

P (ki|R)wi,j

)
×

(
t∏

i=1

P (ki|R)(1−wi,j)

)

(
t∏

i=1

P (ki|R)wi,j

)
×

(
t∏

i=1

P (ki|R)(1−wi,j)

) (2.16)

CHAPTER 2. RETRIEVAL SYSTEMS 25

Taking logarithms on both sides of equation 2.16 we get:

log(sim(dj , q)) =
t∑

i=1

wi,j log P (ki|R)

+
t∑

i=1

(1− wi,j) log P (ki|R)

−
t∑

i=1

wi,j log P (ki|R)

−
t∑

i=1

(1− wi,j) log P (ki|R) (2.17)

which can be rewritten as:

log(sim(dj , q)) =
t∑

i=1

wi,j log P (ki|R)

+
t∑

i=1

log P (ki|R)

−
t∑

i=1

wi,j log P (ki|R)

−
t∑

i=1

wi,j log P (ki|R)

−
t∑

i=1

log P (ki|R)

+
t∑

i=1

wi,j log P (ki|R) (2.18)

The terms
∑t

i=1 log P (ki|R) and
∑t

i=1 log P (ki|R) will be the same for all records in the

context of a specific query, and can thus be ignored. Recall that P (ki|R) + P (ki|R) = 1.

Defining a new similarity function as the logarithm of the previous similarity function and

multiplying with the weights of the query terms to exclude non query terms, we can now

define:

sim(dj , q) =
t∑

i=1

wi,q.wi,j

(
log

P (ki|R)
1− P (ki|R)

+ log
1− P (ki|R)

P (ki|R)

)
(2.19)

Equation 2.19 is used as the similarity function of the probabilistic model.

To retrieve the first set of records, some initial values for P (ki|R) and P (ki|R) must be

selected. Normally it is assumed that the probability of randomly selecting a query term

CHAPTER 2. RETRIEVAL SYSTEMS 26

that is in a relevant record is some constant (typically 0.5), thus:

P (ki|R) = 0.5

and it is assumed that the distribution of index terms among the non-relevant records is

equal to the distribution of the index terms among all the records in the collection, thus:

P (ki|R) =
ni

N

where ni is the number of records that contain term ki and N is the total number of

records in the collection. After the initial set of records are retrieved, the estimations

made for the values of P (ki|R) and P (ki|R) can be improved as follows. Let the set V be

the set of records that the user judged as most relevant of the total set of retrieved records

(user intervention is not strictly necessary: V could be created by simply selecting the top

n highest ranked records, where n is a predefined threshold). Let the set Vi ⊆ V be the

set of records that contain term ki. We then approximate P (ki|R) by the distribution of

term ki among the records retrieved:

P (ki|R) =
|Vi|
|V|

P (ki|R) can be approximated by considering that all non-retrieved records are not rele-

vant:

P (ki|R) =
ni − |Vi|
N − |V|

This process can be repeated recursively. To cater for small values of |V| and |Vi|, an

adjustment factor can be added to the equations:

P (ki|R) =
|Vi|+ ni

N

|V|+ 1
(2.20)

P (ki|R) =
ni − |Vi|+ ni

N

N − |V|+ 1
(2.21)

The Probabilistic Model has several disadvantages:

1. The need to guess the initial relevance of the index terms.

2. The fact that all term weights have to be binary.

3. The assumption that terms are independent (whether this is really a disadvantage

is debatable).

CHAPTER 2. RETRIEVAL SYSTEMS 27

2.8 Structured Text Retrieval Models

Normally the field of information retrieval is concerned with retrieving textual records.

These records are not structured in the same way as records in a relational database would

be, where information is already formatted and is meant to be retrieved by means of a

key attribute [NBY95]. Some structure can, however, be found in a textual database, for

example: chapters, sections, titles, etc. The user may find it useful to be able to specify

information on the structure of the record to be retrieved. An example of such a query is:

Chapter(information, database, Title(Retrieval)) i.e., the user is looking for a chapter

that contains the words information and database and with the word Retrieval in the title.

To a certain extent the records in the GDB are structured in fields as one would expect

in a relational database. However, this structure is not always useful for retrieval pur-

poses, because of inaccuracies in the data and the limited amount of information that the

user may have when searching for an individual. For example, the user may know that an

individual was baptized in the town Queenstown and may then naturally assume that the

individual was also born in the same town. If the individual was in fact born in another

town, a search on birth place will not retrieve the desired record. Furthermore, many of

the fields in the GDB contain natural language text and can thus not be seen as a field in

the same sense as a field in the relational model. By integrating structured text retrieval

methods, the above problems may be overcome.

A system that allows the user to specify the content and structure of a record in a

query would contain only records that satisfy the query in its result set, and can thus be

described as a data retrieval system. By searching for records that match the structure of

the query only partially and ranking the result set, the system can be seen as an informa-

tion retrieval system [RBY99].

It is only in recent years that research has been done in structured text retrieval. Ac-

cording to Navarro and Baeza-Yates in [NBY97], the models proposed are not as mature

as some classical models like the Boolean or Vector Space models. Several structured text

CHAPTER 2. RETRIEVAL SYSTEMS 28

retrieval models were compared in [BYN96], and it is interesting to note that only three

of the compared models have O(n) efficiency.

2.8.1 Tree Matching Model

After considering several models it was concluded that the Tree Matching Model proposed

by Kilpeläinen and Mannila in [KM93] is one of the more versatile models and would be

best suited to be implemented in the GIS. This model is similar (but more powerful) to

the model proposed by Burkowski [Bur92].

The Tree Matching Model makes use of the fact that information in a database can

often be broken up into an hierarchial structure. A document that can be broken up into

sections, paragraphs, sentences and words would be represented by a tree structure as

shown in figure 2.2.

Document
¡

¡
¡

¡

B
B
B
B

Section Section
©©©©©©©©©

¢
¢

¢
¢

@
@

@
@

Paragraph Paragraph Paragraph

@
@

@
@

@
@

@
@

Sentence Sentence
½

½
½

½
½½

¢
¢

¢
¢

J
J

J
JJ

earth planet sea

Figure 2.2: The Tree Hierarchy of a simple document.

CHAPTER 2. RETRIEVAL SYSTEMS 29

The tree hierarchy makes it possible to formulate queries as trees, where the sub-nodes

for each node are given in brackets, for example:

Paragraph(sea, (Sentence(earth, planet)))

The tree for the above query can be seen in figure 2.3.

Paragraph
¡

¡
¡

¡

@
@

@
@

sea Sentence
¡

¡
¡

¡

@
@

@
@

earth planet

Figure 2.3: The Tree Hierarchy of a Query.

The model allows the query depicted in figure 2.3 to be located in the document depicted

in figure 2.2 as shown in figure 2.4. This is called Tree Inclusion. Note that the word

sea was matched with the corresponding word in the hierarchy, despite the fact that a

Sentence node exists above sea in the document tree, but not in the query tree.

CHAPTER 2. RETRIEVAL SYSTEMS 30

Document
¡

¡
¡

¡

B
B
B
B

Section Section
©©©©©©©©©

¢
¢

¢
¢

@
@

@
@

Paragraph Paragraph Paragraph

@
@

@
@

@
@

@
@

Sentence Sentence
½

½
½

½
½½

¢
¢

¢
¢

J
J

J
JJ

earth planet sea

Y

Paragraph
¡

¡
¡

¡

@
@

@
@

1

sea

I

Sentence
¡

¡
¡

¡

@
@

@
@

6

earth

µ

planet

Figure 2.4: Tree Inclusion.

CHAPTER 2. RETRIEVAL SYSTEMS 31

As illustrated in figure 2.4, the goal of the model is identifying ancestorship and labels

(i.e. leaf nodes) rather than a direct hierarchial match. The model seeks minimal subtrees

of the target. More formally, an included tree of a tree T consists of a set of nodes that

appear in a T with similar hierarchial relationships. The trees considered here are ordered.

We can say that if the left-to-right order of the nodes is the same as in T , the included

tree is an ordered included tree of T . Note that ordered tree inclusion is a stricter form of

inclusion than unordered tree inclusion. Figures 2.5 and 2.6 illustrate ordered tree inclusion

and unordered tree inclusion respectively.

½¼

¾»
a

@
@

@@

¡
¡

¡¡

½¼

¾»
a

½¼

¾»
c

A
A
AA

¢
¢

¢¢

A
A
AA

½¼

¾»
c

½¼

¾»
a

A
A
AA

¢
¢

¢¢

½¼

¾»
b

½¼

¾»
b

½¼

¾»
d

½¼

¾»
a

A
A
AA

¢
¢

¢¢

½¼

¾»
b

½¼

¾»
c

-

-
PPPPPPPPPPPPPq

Figure 2.5: Unordered tree inclusion.

The tree matching model also allows for the use of variables in queries, for example

Paragraph(x, (Sentence(earth, x)))

so that the value of variable x does not explicitly have to be stated. Queries of this form

are thus more focused on the structure of the tree than the content.

Unfortunately, even without allowing for variables in queries, unordered tree inclusion

is an NP-complete problem. Ordered tree inclusion can be calculated in polynomial time.

Tree inclusion is thus a very expensive retrieval model. However, by appropriately index-

ing the database, and making the assumption that the database does not contain recursive

CHAPTER 2. RETRIEVAL SYSTEMS 32

½¼

¾»
a

@
@

@@

¡
¡

¡¡

½¼

¾»
a

½¼

¾»
c

A
A
AA

¢
¢

¢¢

A
A
AA

½¼

¾»
c

½¼

¾»
a

A
A
AA

¢
¢

¢¢

½¼

¾»
b

½¼

¾»
b

½¼

¾»
d

½¼

¾»
a

A
A
AA

¢
¢

¢¢

½¼

¾»
b

½¼

¾»
c

³³³³³³³³³³³³³³1

³³³³³³³³³³³³³³³1

PPPPPPPPPPPPPq

Figure 2.6: Ordered tree inclusion.

hierarchies (i.e. no structure contains itself as a substructure), it has been shown that in-

clusion queries can be solved in O(n) time.

Yan and Annevelink [YA94] describes the successful implementation of the Tree Match-

ing model in a object oriented database system.

2.9 Neural Network Model

Neural Networks are an attempt to model the human brain using a computer [HK01]. The

brain can be very simply seen as a vast interconnected network of cells, called neurons.

Each connection to a neuron (called a synapse) can be seen as either an input or output

connection. The value of the output is determined by the values of the inputs. An

elementary mathematical model for a neuron could thus be that the output is equal to

the sum of the inputs, i.e.

v =
n∑

i=1

xi (2.22)

where v is the output, n is the number of inputs and xi is a specific input.

CHAPTER 2. RETRIEVAL SYSTEMS 33

In practice it was found that the synapses in the brain are of different thicknesses, thus

implying that not all inputs are equally important. Equation 2.22 is thus adapted to allow

inputs to be weighted:

v =
n∑

i=1

wixi (2.23)

where wi is a weight.

A network is formed by connecting the outputs of some neurons to the inputs of others.

Some neurons will receive input from outside the network. These neurons are called input

neurons. Other neurons, called the output neurons, provide the output for the entire net-

work. Input is provided to input neurons, whereupon some of them will fire, i.e. provide

input to other nodes. The output of the network would be the output of the output node

or nodes.

An advantage of neural networks is that they can be trained to perform a certain task

(as opposed to a human programmer coding a program to perform a task). A network can

also be created in such a way as to learn from mistakes and continuously improve after

user feedback.

An information retrieval system is implemented in three layers [WH91]: the query term

layer, the record term layer and the record layer. The process starts off with the query

term nodes sending signals to the record term nodes, which in turn send signals to the

records. These signals are weighted (a weighting scheme similar to that of the Vector

Space Model can be used). Signals received by the record nodes are summed for each

node and the result used in the ranking of the records. It can be shown that the process

as described this far is equivalent to the Vector Space Model. The models deviate in that

after the initial signals reach the record nodes, the record nodes in turn may send signals

back to the record term nodes, starting a cycle. Terms not appearing in the original query

may thus be activated. The signals sent out by the record nodes become weaker each cycle

so that the process eventually halts.

CHAPTER 2. RETRIEVAL SYSTEMS 34

The Neural Network model is not popular among the information retrieval community,

largely because the model provides very little, if any, improvement in retrieval performance

over the Vector Space Model. Furthermore, for a database containing a large number of

records, a very large number of neurons would be needed, which in turn implies long

periods of training time.

2.10 Bayesian Network Model

According to [TC90], a Bayesian inference network is a directed, acyclic dependency graph

in which nodes represent propositional variables or constants and edges represent depen-

dence relations between propositions. If a proposition represented by a node p “causes”

or implies the proposition represented by node q, we draw a directed edge form p to q.

The node q contains a link matrix that specifies P (q|p) for all possible values of the two

variables. When a node has multiple parents, the link matrix specifies the dependence

of that node on the set of parents and characterizes the dependence relationship between

that node and all nodes representing its potential causes. Given a set of prior probabili-

ties for the roots of the network, these networks can be used to compute the probability

associated with all remaining nodes.

The Bayesian Network Retrieval Model can be very briefly described as follows: A

Bayesian inference network is set up with the records in the collection as the root nodes.

The child nodes are used to describe the records using a variety of representation tech-

niques. The network just described is called the Document Network. The Document

Network is created only once for a specific collection. Edges from the Document Network

are connected to the Query Network, which is essentially a representation of the user’s

information need, which is the final node in the Query Network. The Query Network is

modified during query processing as more queries are added or queries are refined. In

short, an attempt is made to define a specific information need in terms of a tree of which

the roots are the records in which the user is interested. By receiving relevance feedback

from the user and by incorporating changes to the user’s query, the Query Network can

be improved after each search.

CHAPTER 2. RETRIEVAL SYSTEMS 35

A major strength of the Bayesian Network model is the fact that the relevance of a record

to a query can be inferred (for example, records that are relevant to query although none

of the query terms appear in the record, can be returned). However, in the case of the

GIS, where locating a record is essentially a data retrieval problem, inferring relevance can

be considered a weakness. This reason, coupled with the fact that the Bayesian Network

Model is used very seldom in practice, led to the model not being seriously considered as

a model for the search algorithms in the GIS.

2.11 Conclusions

Several well known IR Models were presented in this chapter. Unfortunately, no single

model is appropriate for use in the GIS. The functionality provided by Structured Text

models, when applied to the fields present in the records contained in the GDB, would

greatly enhance a search algorithm for the GIS. The flexibility of the Extended Boolean

model makes it a prime candidate for implementation in the GIS. It was thus decided to

create a hybrid algorithm of the Extended Boolean and Structured Text models.

Chapter 3

SEARCH ALGORITHMS IN GIS

3.1 Full name

The problem of searching for an individual only on full name has long been investigated

at UPE [DK04]. The conclusions of that researched will be discussed in this section.

3.1.1 Definition

The full name search problem can be formally stated as follows [DK02]:

Definition 3.1.1 Let N be the universal set of all names (this set includes all surnames

and forenames and their variations). A full name is defined as n = n1, n2, n3, ..., nk with

k ≥ 1, ni ∈ N for i = 1, 2,, k and n1 is the surname. Let F ⊆ N × N ×N × ... × N
be the set of all full names, and let V ⊆ N be the set of all names occurring in the GDB,

and let F ⊆ V × V × V × ...× V ⊆ F be the set of full names contained in the database.

Given a full name n ∈ F a search algorithm should return records containing the closest

full names from the set F . Assume a distance function d, between any two full names, i.e.

d : F ×F → I, where I is a positive closed real interval starting at zero, and d(n,m) ≥ 0,

d(n, n) = 0 and d(n, m) = d(m,n).

The problem can now be defined as: Determine the set of records defined by M = {x : x ∈
F, d(n, x) ≤ t}, for a full name, n ∈ F , where t is some small threshold value. Sorting

the set of all x ∈ M in increasing order of d(n, x) yields the search results in order of most

likely to least likely.

36

CHAPTER 3. SEARCH ALGORITHMS IN GIS 37

Several attempts were made to define a distance function, see [DK88], [Ple91], [DKDP93],

and an attempt by [Chi96] based on the work of [WF74], [LW75] and [Hal80]. Unfortu-

nately an adequate distance function was not found. Failure to do so has prompted a

different approach to searching on full name.

3.1.2 Equivalent Classes

The first approach followed involved grouping names into equivalent classes, for example,

the names De Kock, Kock and Kok would be classified as being equivalent. This was a

manual process, originally assisted by the soundex algorithms developed by Du Plessis

[Ple91].

Each equivalent class has a characteristic name, ideally the root name of all the names

in the class. Essentially, an index entry can be created for each full name in the database

by concatenating the characteristic name of each name in the full name. A full name query

would also be converted to a concatenation of characteristic names and the resultant string

can then be compared to all index entries to find a match.

Formally: Partition V into equivalent classes, Vi for i = 1, 2, ..., N , by grouping spelling

variations, aliases and derivatives of names, such that

V =
N⋃

i

Vi where Vi ∩ Vj = φ ∀ i 6= j (3.1)

i.e. no name is a member of more than one equivalent class.

The characteristic name of a equivalent class Vi is denoted by ci. Let C = {c1, c2, ..., cN}
then define the function C : N → C as

C(x) = ci if x ∈ Vi (3.2)

= cj if x /∈ V where x ¹ y, y ∈ Vj and there is no other

z ∈ V such that x ¹ z ¹ y

In the above equation, the lexicographical ordering on the name set, V, is denoted by ¹.

CHAPTER 3. SEARCH ALGORITHMS IN GIS 38

The full name index entry for the full name n = n1, n2, ..., nk ∈ F consists of the con-

catenation of C(ni) for i = 1 to k. Each C(ni) must be padded with blanks until it is

equal to some chosen length. Note that the index can contain duplicates. The birthdate

of the relevant person can be concatenated to the end of the entry so that people with the

same name will be ordered in the index by birthdate.

A query on full name m = m1,m2,, mk ∈ F is also converted to a search key by

concatenating C(mi) for i = 1 to k.

| Vi | f f%
∑

f% P =| Vi | f P%
∑

P% NO
∑

NO%

≥13 236 1.06% 1.06% 5 236 13.08% 13.08% 828436 52.95%
12 28 0.13% 1.19% 336 0.84% 13.92% 21778 54.34%
11 35 0.16% 1.35% 385 0.96% 14.88% 30066 56.27%
10 58 0.26% 1.61% 580 1.45% 16.33% 36823 58.62%
9 71 0.32% 1.93% 639 1.60% 17.93% 52344 61.96%
8 64 0.29% 2.21% 512 1.28% 19.21% 17835 63.10%
7 133 0.60% 2.81% 931 2.33% 21.53% 46475 66.07%
6 181 0.81% 3.63% 1086 2.71% 24.25% 37825 68.49%
5 313 1.41% 5.03% 1565 3.91% 28.16% 82863 73.79%
4 536 2.41% 7.45% 2144 5.36% 33.51% 55489 77.34%
3 1181 5.31% 12.76% 3543 8.85% 42.37% 119305 84.96%
2 3677 16.54% 29.30% 7354 18.37% 60.74% 132340 93.42%
1 15713 70.70% 100.00% 15713 39.26% 100.00% 102943 100.00%

22226 100.00% 40024 100.00% 1564522

Table 3.1: Class size distribution

Table 3.1 depicts the distribution of names into equivalence classes in June 2004 [DK04].

Column | Vi | lists the size of the classes, f lists the number of classes of size | Vi |, f% lists

the number of classes as a percentage,
∑

f% gives an accumulated percentage, P =| Vi | f
lists the number of names in each set of classes, P% gives that number as an percentage,
∑

P% gives the accumulated percentage, NO lists the number of times that names from

each class occurs in the database and
∑

NO% gives the accumulated percentage of column

NO.

There are 22226 different equivalent classes in the GIS. The largest class contains 117

names and there are 15713 classes containing only one name. When a new name is added

to the GDB, it is placed in an equivalent class of its own. New names must be manually

CHAPTER 3. SEARCH ALGORITHMS IN GIS 39

placed in existing equivalent classes.

Although only 13.0% of all distinct names in the GDB occur in equivalent classes that

contain more than 13 names each, these names account for 52.95% of names occurring in

the GDB. In other words, assuming that the occurrence frequency is an indication of the

probability that a name will a appear in a query, then most queries will be made more

effective by using the equivalent name index.

Figure 3.1: An example of equivalent classes

3.1.3 Similarity Sets

A drawback of the equivalent name index is that the equivalent classes are too rigid

[DK04]. Consider the equivalent classes depicted in figure 3.1. The name Pieter is placed

in a different class to Pieternella. Clearly these names are very similar, and a search for

Pieter should also yield hits like Pieternella. Simply moving one of these names to the

other class is not an option, since this will cause the same problem with different classes

of names. Combining both classes into the same class would negatively affect searches,

CHAPTER 3. SEARCH ALGORITHMS IN GIS 40

since a search for Peet would, amongst others, yield Petro. A solution was proposed by

having overlapping similarity sets associated with names, a simple example of which can

be seen in figure 3.2 (colours indicate the original equivalent classes).

Figure 3.2: An example of similarity sets

Formally: Construct similarity sets, {Sj : j = 1, 2, ...,K}, for all names in V such that

V =
K⋃

j=1

Sj with N ≤ K ¿| V | (3.3)

Note that these sets are not disjoint, but it is assumed none of the sets is a subset of

another.

An unique characteristic name, scj is associated with each Sj . For each name, x ∈ V,

the characteristic names of all the similarity sets of which it is a member, is stored in a

database . The function E : N → 2C is defined as:

E(x) =
⋃

x∈Sj

{scj} if x ∈ V (3.4)

= E(y) if x /∈ V where x ¹ y, y ∈ V and there is no other

z ∈ V such that x ¹ z ¹ y

CHAPTER 3. SEARCH ALGORITHMS IN GIS 41

The first characteristic name stored for x will be C(x), i.e. the equivalent name for x.

Equivalent classes are thus retained. For each full name n = n1, n2, ..., nk ∈ F , entries are

made into the index with the keys E(n1)×E(n2)× ...× E(nk).

The search key for a search on the full name m = m1,m2, ..., mk ∈ F is given by

E(m1)× E(m2)× ...×E(mk).

3.1.4 Alternative Similarity Sets

The similarity sets as formulated by De Kock [DK04] and described in the previous section

have two major drawbacks:

1. Multiple search keys are generated when searching for a search on full name. This

makes it impossible to define a lexicographical next or previous on the search results.

2. The search index no longer contains only equivalent names. As a result, the index

is much larger.

Figure 3.3: Smaller Equivalent Groups

CHAPTER 3. SEARCH ALGORITHMS IN GIS 42

In attempt to address the above problems, an alternative strategy for creating similarity

sets will be proposed here. Firstly, reduce the size of equivalent classes, so that they only

contain names that are undebatably equivalent. Such a subdivision can be seen in figure

3.3 (compare with figure 3.1).

We now define a similarity set as a set that is formed by associating each name in V with

more than one equivalent class (any name is, by default, associated with its own equivalent

class). Venn diagrams of the original and alternative similarity sets can be seen in fig-

ures 3.4 and 3.5, where similarity sets are depicted in blue and equivalent classes in yellow.

Formally, equation 3.3 is redefined for the set of similarity sets, {Sx : x ∈ V}, as:

V =
K⋃

j=1

Sj with K = | V | (3.5)

Figure 3.4: Venn diagram of original similarity sets

Each set Si is manually created by associating characteristic names from one or more

equivalent classes from V with a name from a class Vj (note that this will probably not

CHAPTER 3. SEARCH ALGORITHMS IN GIS 43

Figure 3.5: Venn diagram of alternative similarity sets

be the characteristic name from Vj). The function E : N → 2C is defined as:

E(x) = {C(y) : y ∈ Sx} for x ∈ V (3.6)

= E(y) if x /∈ V where x ¹ y, y ∈ V and there is no other

z ∈ V such that x ¹ z ¹ y

It appears at first glance that by using smaller equivalence classes, the effectiveness

of searches will be compromised. However, by selecting appropriate similarity sets, the

same results as larger equivalence groups can be achieved. For example, consider the large

equivalence class containing the names Nella, Pieternella, Petronella, Petro and Petru

depicted in figure 3.1. Now consider figure 3.3. Here the class is broken into three smaller

classes. By creating a similarity set for each of the names in the large equivalent group,

containing the characteristic names of all the small equivalent groups, entries will be made

in the index resulting in the same hits as for the large equivalent classes (see figure 3.6).

There are thus no adverse affects to using smaller equivalence groups.

CHAPTER 3. SEARCH ALGORITHMS IN GIS 44

Figure 3.6: Forming of original equivalence class for Pieternella

By making use of smaller equivalent classes and creating similarity sets as defined above,

similarity sets closely matching those depicted in figure 3.2 can be created. Figure 3.7 de-

picts a similarity set that was created by associating several equivalence classes to the

name Pieternalla. This set is almost identical to one of the sets depicted in 3.2.

The alternative formulation of similarity sets provides a powerful advantage over the

original, in that similarity sets need not be symmetric. For example, it is possible to

associate Pieternella with Pieter (i.e. searches for Pieternella will also yield records con-

taining Pieter) but not associate Pieter with Pieternella.

For each full name n = n1, n2, ..., nk ∈ F , entries are made into the index with the keys

E(n1)× E(n2)× ...× E(nk). Keys are padded with blanks in the same way as described

earlier. The index is significantly larger than when using only an equivalent index, since

several entries will be made per full name.

The query full name will be converted to a key in the same way as in section 3.1.2. It is

not necessary to convert queries into similarity keys as well, since, if a full name contained

in the database has a similarity name equivalent to that of the query, a similarity entry

CHAPTER 3. SEARCH ALGORITHMS IN GIS 45

Figure 3.7: Alternative Similarity Set

pointing to the relevant record would already have been made in the index.

A drawback to making entries for each of the similar names in the index is that, for

similar names that are lexicographically close, certain blocks of the search results are

repeated [dT03]. For example, consider the entries for individuals named Stephan Francios

du Toit in the database. Assuming the database contains three such individuals, born in

1880, 1920 and 1950 respectively, and ignoring similar names, the index entries would look

as follows:

.

.

.
Toit______Stephan___Francios__1880
Toit______Stephan___Francios__1920
Toit______Stephan___Francios__1950
.
.
.

If search results are presented to the user in lexicographic order, the next results after the

three entries will be full names of different individuals, one of which may be the individual

CHAPTER 3. SEARCH ALGORITHMS IN GIS 46

that the user is searching for.

Now consider the situation where the names Francios and Francis are defined as similar

to the name Frans. The index entries will now be:

.

.

.
Toit______Stephan___Francis__1880
Toit______Stephan___Francis__1920
Toit______Stephan___Francis__1950
Toit______Stephan___Francios__1880
Toit______Stephan___Francios__1920
Toit______Stephan___Francios__1950
Toit______Stephan___Frans_____1880
Toit______Stephan___Frans_____1920
Toit______Stephan___Frans_____1950
.
.
.

Certain entries pointing to the a group of individuals are thus repeated. If each name

in a full name have similar names associated with it, and if the similar names are all

lexicographically close, then the same group of results may be presented to the user many

times before an entry in the index is found that represents a new individual.

3.2 General Search Algorithm

In this section a General Search Algorithm (GSA), proposed by De Kock [DK04], making

use of not only names but all words (index terms) in the database as well as the structure

of the information, is described. A major improvement of the algorithm discussed in this

section over those of the previous sections is that it provides a ranked set of possible

relevant records in response to a query.

3.2.1 Similarity index on search words

Section 3.1.4 focused on a similarity index for names. This idea can be generalized by now

defining V to be the set of all terms (search words and phrases) contained in the database.

CHAPTER 3. SEARCH ALGORITHMS IN GIS 47

Again equivalent classes and similarity sets are created such that equations 3.3 and 3.6

hold.

Possible search terms are classified into different types, for example, surname, male

name, female name, place name, occupation type, etc. Let T = {t1, t2, ..., tp} be the set of

all possible types. This information can be used for validity checks (for example, gender

checking).

For each term, w, the following information is stored: The frequency with which it

occurs as a specific type, i.e. f1, f2, ..., fp and a number of pairs {(hi, σi) : ∀hi ∈ E(w)},
where σi with 0 ≤ σi ≤ 1 indicates the similarity of w to each element of E(w). For the

equivalent term in E(w), σ1 = 1.

3.2.2 Events

Let the set of event types, E = {E1, E2, ..., Eq} be the events described in section 1.2 on

page 1. We number the subfields, period (date or period, i.e. start and end dates), place

and details; 1, 2 and 3 respectively. Let Ej .r refer to subfield r of event Ej .

For the sake of simplicity, we consider the surname and first names fields to be events

with no place or dates associated with it. Nicknames is considered to be part of the de-

tails field of a first names event. The general information field will be considered to be

an information event with no dates. Relationships classify as relationship events, with the

relationship date as the start date, the separation date as end date and the names of the

spouse in the details field.

The correlation between any two event fields must be manually defined in a table that

will give the relevance between any two fields. The correlation table can be used to define

a relevance function R : (E × {1, 2, 3}) × (E × {1, 2, 3}) −→ [0, 1] to indicate relevance

between fields. Note that R(Ei.r, Ei.r) = 1.

Examples of values between events would be:

CHAPTER 3. SEARCH ALGORITHMS IN GIS 48

• R(birth.r, baptism.r) = 0.9 i.e. the same fields in birth and baptism events are very

relevant to each other, since these events normally occur close to each other and are

likely to occur in the same place.

• R(birth.1, baptism.2) = 0 i.e. there is no relevance between a place name and a date.

• R(birth.2, baptism.3) = 0.7 and R(birth.2, birth.3) = 0.8 i.e. if a term is expected

in a place field, but occurs in a details field, it is still considered relevant.

• R(birth.r, death.r) = 0.2 i.e. terms expected to be in a birth event, but that occur in

a death event, are not very relevant since the likelihood that a person was born and

died in the same place and that these two events occurred very close together is low

(This assumption does not hold for children who died shortly after birth. However,

in general, individuals mostly appear in the database if they are part of a family

line, hence children who died shortly after birth occur infrequently).

3.2.3 Similarity in dates

In this section a similarity function between dates is defined. Any date can be represented

as a real number, where the integer part represents the year and the decimal part represents

the months and days. A period, p = (s, e) consists of a start date, s, and an end date, e. If

e = 0 then p represents a single date. If s = 0 it implies that e = 0 and p then represents

an unknown period. The distance between two periods p1 = (s1, e1) and p2 = (s2, e2),

d(p1, p2) is given by:

d(p1, p2) =

100 either s1 = 0 or s2 = 0

0 e1 6= 0, e2 = 0 & s2 ∈ [s1, e1]

0 e2 6= 0, e1 = 0 & s1 ∈ [s2, e2]

0 e1, e2 6= 0 and

[s1, e1] ∩ [s2, e2] 6= φ

g(p1, p2) otherwise

where

g(p1, p2) = min(| e1 − s2 |, | e2 − s1 |)

CHAPTER 3. SEARCH ALGORITHMS IN GIS 49

The similarity 0 ≤ f(d(p1, p2), aj) ≤ 1 between two periods p1 and p2 is calculated as

follows:

f(x, a) =

0 x < −a

(x+a)(a−x)
a2 −a ≤ x ≤ a

0 x > a

or (3.7)

f(x, a) = e−4a−2x2
(3.8)

The two alternative formulas described above are depicted in figure 3.8 for a = 10.

0

0.2

0.4

0.6

0.8

1

+a6420−2−4−6−a

x

Figure 3.8: y = f(x, a) with a = 10

A separate value for a, aj is defined for each type of event. For events where the date

can be expected to be a specific date, for example birth, baptism or death, aj can be given

a low value, for example, aj = 10. For events were the date is less specific, for example,

residence or occupation, aj can be given a high value, for example, aj = 20.

CHAPTER 3. SEARCH ALGORITHMS IN GIS 50

3.2.4 Search index and ranking

A general search algorithm will now be defined using the concepts described in the previ-

ous sections.

An entry is made in the search index for each element in the set {(hi, σi) : ∀ hi ∈ E(w)}
of term w in subfield rj of event Ej of record D. Each entry contains (hi, σi) and a pointer,

(PD, PEj .rj), pointing to subfield Ej .rj of record D. This is done for all terms in the

database, except dates, so rj ∈ {2, 3}.

A query, Q, consists of a set of tuples

Q = {(v1, Ek1 , tk1 , pk1), (v2, Ek2 , tk2 , pk2), ..., (vL, EkL
, tkL

, pkL
)}

with v` ∈ V, pk`
a period and tk`

a subfield of event Ek`
.

The search index is used as follows: For each v` with ` ∈ L, C(v`) (see section 3.1.2) is

located in the search index. Assume that a set of hits is obtained:

H` = {(C(v`), σi), (PDi, PEji .rji) : i = 1, 2, ..., h}

Assume the set of all possible records to be returned by the search algorithm to be:

{D1, D2, . . . , Dp} =
L⋃

`=1

h⋃

i=1

Di

A ranking number N(Dk) can be calculated for each record Dk for k = 1, 2, ..., p, as

follows: Let record Dk have events Ei for i = 1, 2, ..., ek and let nri` indicate the number

of occurrences of term v` in subfield r ∈ {2, 3} of event Ei, then

N(Dk) =
L∑

`=1

ek∑

i=1

σi

[
R(Ek`

.t`, Ei.2)n2i`w
t`2
jik`

+ R(Ek`
.t`, Ei.3)n3i`w

t`3
ik`

+ w1
ik`

f(d(pk`
, pji), ak`

)
]

where wt`2
jik`

with r, t ∈ {2, 3} is a weight indicating the importance of a hit of the search

term in field Eji .rji and field Ek`
.tk`

. For example, the weights for a hit of a place name

in similar events will be high. If the number of hits of term v` in an event is deemed

irrelevant, nri` can be set to 0 or 1 to indicate a hit or not.

CHAPTER 3. SEARCH ALGORITHMS IN GIS 51

3.3 Conclusions

The General Search Algorithm provides most of the functionality that is required for the

GIS. It provides a realistic means of dealing with similarities in terms. To a large extent,

the structure of queries and records are taken into account. Furthermore, searches on

dates are made possible.

A significant drawback of the GSA is that it does not allow the boolean formulation

of queries. Another drawback is that the main term index would contain almost 3500000

entries (the total number of words in the GDB; see chapter 6 for further information),

which would make searches slow.

Chapter 4

INFORMATION RETRIEVAL

MODEL FOR THE GIS

4.1 Introduction

The aim of this chapter is to motivate the selection of a proposed and implemented IR

Model for the GIS.

Of the retrieval models described in chapter 2, the most natural option is the Extended

Boolean Model. This model is unique in that it provides the power and functionality of

both the Boolean model and the Vector Space model.

The semi structured nature of the information in the GDB makes functionality as is

provided by the Tree Matching model essential. Unfortunately, the information in the GIS

is structured in recursive hierarchies. This implies that ordered tree inclusion algorithms

have polynomial time efficiency. By placing restrictions on queries, it will be shown that

the Tree Matching model can be very efficiently implemented and furthermore integrated

with the Extended Boolean model.

The General Search Algorithm discussed in chapter 3 takes into account spelling vari-

ations and incorporates searches on dates, but does not allow for boolean formulation of

52

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 53

queries. It will be shown how the advantages of the General Search Algorithm can be

incorporated into the Extended Boolean Model with searches based on structure.

4.2 Adaptation of Extended Boolean Model

The ranking formula of the Extended Boolean model in its general form is given by:

sim(dj , q) = p

√√√√wp
1,q.(w1,j)p + ... + wp

t,q.(wt,j)p

wp
1,q + ... + wp

t,q

for q = [(w1,q, k1) ∨p ... ∨p (wt,q, kt)]

(4.1)

sim(dj , q) = 1− p

√√√√wp
1,q.(1− w1,j)p + ... + wp

t,q.(1− wt,j)p

wp
1,q + ... + wp

t,q

for q = [(w1,q, k1) ∧p ... ∧p (wt,q, kt)]

(4.2)

By following the recommendations of Salton et al [SB88], described in section 2.4.1 on

page 11, an appropriate query term weight would be nfx, i.e.:

wi,q = log
N

fi
(4.3)

since short query vectors can be expected.

An appropriate record term weight would be tfc:

tf. log
N

f√√√√ ∑

vector

(
tfi. log

N

fi

)2

because of the varied vocabulary and the fact that record vectors are comparatively short

and are of homogeneous length. It was decided not to make use of the normalization term,

c, for the following reasons:

1. Including the term implies an extra pass of all term vectors after the tf components

of the weights have been calculated. Apart from the computing time involved in this

process, the memory requirements would be significant, especially for long query

vectors.

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 54

2. The following sections will describe how the term weight will also be used as a mea-

sure of how well the structure of a target record matches the structure specified by

the user in the query. Normalization with respect to other terms in the query would

be pointless since we are interested in how well the record matches the structure

with respect to other records.

For the same reason as point 2 above, it was decided to divide each term weight by the

maximum weight found for that term in all records. The weight of index term ki in record

dj is thus:

wi,j =
Fi,j . log

N

fi

maxp

(
Fi,p. log

N

fi

) (4.4)

where Fi,j is the frequency with which index term ki occurs in record dj , N is the total

number of records and fi is the number of records that contain term ki.

Equations 4.3 and 4.4 are standard weighting techniques and should perform well in any

archival database. The significance of the scale factor in equation 4.4 will only become

clear after the following sections. This is a different approach, but should not negatively

affect the final ranking since terms will still be ranked in the same order relative to each

other.

4.3 Adaptation of Structured Text Retrieval

The motivation behind the use of structured text retrieval models, discussed in section

2.8, is that queries specify where in a record a certain term must be found. The data in

the GIS is far more structured than information in a normal text document. Often the

expected location of a term in a record is known, for example, it may be known that a

person was born in a town called Tarkastad. A possible drawback to taking a strict struc-

tured view of the information is that some terms may not appear in the exact field where

they were expected. For example, a search that attempts to locate a person with the first

name Mathys may not return a record where Mathys appears in the nickname field. It

is thus necessary to take into account the hierarchical nature of the information in the GIS.

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 55

Person

Name Event General Relationship

Surname

First Name

Nick Name
Type

Date

Divorce Date

Information

Place

Start Date End Date Information Place

©©©©©©

(((((((((((((((((

HHHHHH

hhhhhhhhhhhhhhhhh

¡
¡

¡

@
@

@

@
@

@
@@

©©©©©©

@
@

@

©©©©©©©©©©©©

¢
¢

¢
¢

¢
¢

HHHHHHHHHHHH

A
A
A
A
A
A

Figure 4.1: Structure of a person record

Consider figure 4.1. Here the information of one person record is structured in a tree.

Queries specify the leaf or subtree where a term is expected. Consider the following 3

queries (See appendix B on page 128 for the final EBNF of queries.):

Person(Mathys) AND Person(Tarkastad)

First Name(Mathys) AND Birthplace(Tarkastad)

Name(Mathys) AND Event(Tarkastad)

The first query is looking for the terms Mathys and Tarkastad anywhere in a person

record. The second query is looking for the term Mathys specifically in a first name field

and the term Tarkastad specifically in a birth place field. The third query only requires

the term Mathys to be in a name subtree (first name, surname or nickname) and the term

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 56

Tarkastad to be in an event subtree.

Note that it was not necessary to allow for recursive type queries, for example:

Person(Birth(Place(Tarkastad)), Name(Mathys))

for a single person. This makes it possible that the Tree Matching algorithms discussed

in section 2.8 to be implemented efficiently.

Although tree matching would be a large improvement on the searching capability of

the system, a broader approach is necessary for the GIS. Consider the following query:

Birthplace(Tarkastad)

If a pure Tree Matching algorithm was employed, only records that contain the term

Tarkastad in a birth place field would be returned. Records where the term appeared in

the baptism place field would not be returned. There is a strong relationship between

these two fields. If a child was baptized in a certain town, it is very likely that that child

was also born there. Therefore records containing term Tarkastad in the baptism field

should also be returned to the user. The user could change the query to:

Eventplace(Tarkastad)

but then all records that have the term Tarkastad associated with the place field in an

event would be returned.

Let H = {H1,H2, ..., Hn} be the set of all fields (for example, Surname) and field hier-

archies (for example, Name) within a person record. Let HL = {HL1 ,HL2 , ..., HLn} be the

set of all leaf fields in the tree hierarchy and let HN = {HN1 ,HN2 , ..., HNn} be the set of

all internal nodes (with their respective subtrees) in the tree hierarchy. Thus H = HL∪HN .

If Hj ∈ H is a node in the subtree Hi ∈ HN then we denote it with Hj ¹ Hi. We

define a relevance function D : (H×H) −→ [0, 1] indicating the relevance between any two

fields. Let the first parameter of D be the field as specified in the query, and the second

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 57

parameter be the field where a term was found in a record. Note that D(Hi,Hi) = 1 and

that D(Hi,Hj) = 1 if Hj ¹ Hi.

D is not symmetric, i.e. in general D(Hi,Hj) 6= D(Hj ,Hi). Obviously this is the case

where Hj is a node in the subtree denoted by Hi (i.e. Hj ¹ Hi). If the user specified

that a term should fall within a name field and the term was found in the surname field,

D should return a much higher relevance value than if the user specified a term should

be found in the surname field but it was found in some other name field. For situations

where neither Hj ¹ Hi or Hj º Hi, D is also not symmetric. For example, if the user

specified in a query that a term should be found in a residence place field, and the term is

then found in a baptism place field, it is likely that that person lived in that place in his

or her early years. D should thus return a reasonably high value. Conversely, if the user

specified that a term should be located in a birth place field, but the term was found in a

residence field, it does not really imply that that person was born there. D should thus

return a reasonably low value.

D makes use of a manually drawn up relevance table, from which the relevance of any

two leaf fields can be read.

Often the only information known about an individual is details of that person’s parents,

spouses, relationships or children. It is thus very useful to allow queries as follows:

Person(Mathys) AND Mother(Tarkastad)

Father(Firstname(Mathys)) AND Mother(Birthplace(Tarkastad))

Child(Name(Mathys)) AND Spouse(Event(Tarkastad))

For the sake of efficiency it is necessary to restrict the user to queries one generation from

the person to be searched for, i.e. not allow recursive generational queries, like:

Mother(Father(Surname(Mathys)))

For the same reason we define D(Hi,Hj) = 0 if Hi and Hj are not from the same person,

for example, if a term to be found in a field in a spouse record is found in a field in a child

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 58

record then there is no relevance between the query and the record.

4.4 Incorporation of Structured Text Retrieval

Two approaches to incorporating structured text retrieval into equations 4.1 and 4.2 will

be discussed here. The first approach was designed specifically with an efficient imple-

mentation in mind. This approach will be referred to as the Fast Matching approach. A

second approach was devised through communications with the study leader. The second

approach, though it may not be as fast as the first, should yield better retrieval results.

The second approach will be referred to as the Complete Matching approach. The

reasons for the first approach being faster than the second will be discussed in chapter 7.

The major difference between the two ranking approaches is how multiple occurrences

of terms in the same record are dealt with. Records in which a specific term only appears

once, will be ranked exactly the same by the Fast and the Complete matching algorithms.

4.4.1 Fast Matching

This approach assumes that the ranking depends only on the best structure match found

for the term in the record. To incorporate structured text retrieval into equations 4.1 and

4.2 we simply multiply the record term weight (given in equation 4.4) by the relevance

function:

wi,j =
Fi,j . log

N

fi
.D(Hi,q,Hi,j)

maxp

(
Fi,p. log

N

fi
.D(Hi,q,Hi,p)

) (4.5)

where Hi,q is the query specified location of term ki and Hi,j is field where term ki was

found in record dj .

4.4.2 Complete Matching

The problem with equation 4.5 is that, for situations where a term occurs several times in

a record but few of those times in the desired field, the term will be assigned a weight as

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 59

if all its occurrences were in the correct field. A more accurate approach would be to look

at the value given by the distance function for each time the term appears in a different

field. Equation 4.4 is adapted by replacing the term frequency component, Fi,j , by the

sum of the distance between the field specified in the query and each occurrence in the

record:

wi,j =

 ∑

(Hk∈HL)¹Hi,q

∑

(Hl∈HL)¹Hi,j

D(Hk,Hl)

 .log

N

fi

maxp

 ∑

(Hk∈HL)¹Hi,q

∑

(Hl∈HL)¹Hi,p

D(Hk,Hl)

 .log

N

fi

(4.6)

In effect, the Complete Matching approach assigns a weight according to how the mul-

tiple occurring term is distributed in the record with respect to the query.

The role of the denominator in equation 4.5 and 4.6 can now be better explained.

Consider a situation where a query consists of several terms. Assume the record dj contains

only one of the terms, but it occurs several times and in the desired location. If we were

to normalize the weight assigned to that term in dj with respect to the Euclidian length

of the weight vector for dj then record dj would be ranked too high (i.e. it may outrank

records that contain dj the same amount of times and also in the correct field, merely

because the other records contain some of the other terms as well). The denominator that

was finally decided on is an attempt to ensure that no single term ever dominates the

ranking of a multiple term query.

4.5 Combination with General Search Algorithm

The algorithm discussed in this chapter provides all the functionality of the General Search

Algorithm discussed in chapter 3, except for accounting for equivalent and similar terms

and dates. In the following section it will be shown how the ideas presented in chapter 3

can be introduced into the information retrieval algorithms for the GIS.

4.5.1 Similarity Sets

The General Search Algorithm makes use of similarity sets to circumvent the problem of

spelling variations in terms. This approach can easily be incorporated into our algorithm

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 60

so far by first finding E(ki), the set of similarity names for term ki, and then calculating

wi,j . For the Fast Matching approach (equation 4.5) the final weight will be given by:

wi,j =

∑

km∈E(ki)

Fm,j . log
N

fi
. max
km∈E(ki)

(D(Hi,q,Hm,j))

maxp

 ∑

km∈E(ki)

Fm,p. log
N

fi
. max
km∈E(ki)

(D(Hi,q,Hm,p))

(4.7)

For the Complete Matching approach (equation 4.6) the final weight will be given by:

wi,j =

∑

km∈E(ki)

 ∑

(Hk∈HL)¹Hm,q

∑

(Hl∈HL)¹Hm,j

D(Hk,Hl)

 .log

N

fi

maxp

 ∑

km∈E(ki)

 ∑

(Hk∈HL)¹Hm,q

∑

(Hl∈HL)¹Hm,p

D(Hk,Hl)

 .log

N

fi

(4.8)

Presumably similar terms will occur in the same record very infrequently.

4.5.2 Dates

Discussion so far focused only on index terms and made no mention of dates. Allowing

for the inclusion of dates in queries would be a powerful addition to the search algorithm.

The user should be able to enter queries like the following:

Firstname(Mathys) AND Birthdate(1980.01.12)

Name(Mathys) AND Birthdate(1980-1981)

It is important to note here that searching on a date alone would not be very useful in

locating an individual in the GDB. The field matching can be achieved using function D
defined above. The general weight of a date should not be calculated as in equation 4.4,

rather, records should be ranked in order of how close their relevant dates are to the query

date. An approach similar to that followed by [DK04] (discussed in section 3.2.3 on page

48) will thus be followed. The selected approach will be given first and be motivated below.

Let a date be represented as the number of days that have passed since 1 January 1

A.D.. Define a period p as the tuple (start date, end date). The distance between two

periods p1 = (s1, e1) and p2 = (s2, e2), d(p1, p2) is given by:

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 61

g(p1, p2) =

999999 either s1 = 0 or s2 = 0

| s1 − s2 | e1 = 0 and e2 = 0

0.5 e1 6= 0, e2 = 0 & s2 ∈ [s1, e1]

0.5 e2 6= 0, e1 = 0 & s1 ∈ [s2, e2]

0 e1, e2 6= 0 and[s1, e1] ∩ [s2, e2] 6= φ

min(| e1 − s2 |, | e2 − s1 |) otherwise

(4.9)

The similarity 0 ≤ s(g(p1, p2)) ≤ 1 between two periods p1 and p2 is calculated as

follows:

s(x) = e−4.(3650)−2x2

which can be rewritten as:

s(x) = ex2/−3330625

It was decided use equation 3.8 rather than equation 3.7 because of the sharper gradient

near zero, i.e. for p1 to have have a high similarity to p2 it must be closer to to p1 than it

would have to be if equation 3.7 was used. Furthermore 3.8 only approaches zero would

thus provide a useful similarity for any two dates (rather than assigning the similarity

value to zero for large differences).

Note that, in equation 4.9, a value of 0.5 (or half a day) is assigned to g when one

and only one of the end dates is zero. This is to ensure that, when a query only speci-

fied a start date, occurrences of single dates that match the query date exactly will rank

very slightly higher than records that merely contain a period in which the query date falls.

In the discussion in section 3.2.3, a variable, a, could be changed to give different simi-

larity values for different queries. It was decided to set a to 3650 (about 10 years) for all

queries, since the location relevance of a date occurrence can be found with D.

Given a query, q, that contains a period, pq, we define the weight of a period term, pij ,

in record dj as:

wi,j = s(g(pq, pij)).D(Hi,q,Hi,j) (4.10)

CHAPTER 4. INFORMATION RETRIEVAL MODEL FOR THE GIS 62

To be consistent with the weights calculated for normal terms, the weight for each period

term is divided by the maximum weight found for the period in all records:

wi,j =
s(g(pq, pij)).D(Hi,q,Hi,j)

maxr (s(g(pq, pir)).D(Hi,q,Hi,r))
(4.11)

This weight can be used in equations 4.1 and 4.2 in the same way as the weight for

normal terms, given by equation 4.7, is used.

4.6 Conclusions

The algorithms presented in this chapter provide essential functionality for a search al-

gorithm for the GIS. These algorithms were designed with efficient implementations in

mind, but no implementation details have been discussed. The following chapters gives

some background on possible implementation techniques and motivates the decisions made

in the final implementation.

Chapter 5

INDEXES

5.1 Introduction

Consider the problem of finding all occurrences of term ki in a record set D. The simplest

method would be to do a sequential search through all the records dj in D, comparing

all the terms in dj with the term ki. Although this method guarantees success, it is not

practical due to the amount of time such a search takes. For example, consider searching

for a word in the GDB. It currently contains about 3500000 words (names of individuals

are included in this number). A sequential search would thus imply 3500000 word com-

parisons. Without using efficient text matching algorithms, such a search takes about 20

minutes on a modern PC. This is clearly not acceptable.

If the search was restricted to only one field in a record, for example the surname of an

individual, the problem could be simplified by sorting the records in alphabetical order of

surname and then using a binary search to locate the desired individuals. The GDB con-

tains about 600000 records, so a sequential search for a surname would take about 600000

comparisons. Using a binary search on a sorted record set, the search would only need

dlog2 600001e = 20 comparisons plus the number of comparisons it would take to identify

how many other records contain an individual with the same surname. Unfortunately,

sorting the record set is very expensive, so it is not practical to re-sort the record set on

a different field each time a search should be performed.

63

CHAPTER 5. INDEXES 64

Searching time can be improved by building efficient data structures over the record set,

called indexes. Apart from providing a means of limiting the number of comparisons dur-

ing a search, indexes also provide a means of limiting the number of disk accesses (which

is, by comparison, an extremely time consuming operation) needed to locate information.

Although indexes add to the disk space and are relatively expensive to maintain (each

time a record is added, edited or deleted, the changes have to be reflected in the indexes),

it is worth while for large semi-static collections. The GDB can be described as semi-static

since a large percentage of the records will rarely be changed.

Indexes have been the focus of intensive research because of their usefulness. The three

most powerful indexing methods will be discussed in this chapter.

5.2 Inverted File

The inverted file or inverted index draws its name from the fact that it represents a situ-

ation where the roles of the records and the roles of the attributes are reversed [Knu73].

Instead of listing the attributes of a given record, we list the records having given at-

tributes. An example of an inverted file in every day life is the glossary or index appearing

in the back of most academic books.

An inverted file consists of a list of words (called index terms) in alphabetic order that

appear in the lexicon (the list of all terms that can be searched on) [TCB99]. See chapter 6

for a discussion on which terms should be included in the lexicon (for the moment, assume

that all terms will be included). Each index term points to an inverted list, that contains

all the occurrences or postings of the term in the record set.

For example, consider a record set where each record is a verse of poetry:

CHAPTER 5. INDEXES 65

Record 1

Tyger! Tyger! burning bright

In the forests of the night,

What immortal hand or eye

Could frame thy fearful symmetry?

Record 2

In what distant deeps or skies

Burnt the fire of thine eyes?

On what wings dare he aspire?

What the hand dare seize the fire?

An inverted index for the record set given above can be seen in table 5.1. Note that each

posting is given in the form Record, Line, Position; where Record is the record number of

the record in which the term appears, Line is the line number on which the term appears,

and Position is the position of the term in the line. As is the practice when indexing a

record, punctuation has been left out.

The addressing granularity of the postings is how accurately the position of a term in

a record is specified. This normally depends on the application. Often only the record

number is specified. It is also common practise to break the records up into logical blocks,

for example blocks of 10 characters each. The posting list would thus require less space

because there are fewer blocks than positions and a posting can thus be represented by

a smaller number, and more than one occurrence of a term inside a block would now be

reduced to a single posting.

Searching for a term using an inverted index can be summed up in three steps [RBY99]:

1. Lexicon search Terms in the query are isolated and located in the lexicon.

2. Retrieval of postings Lists of the occurrences of all terms found are retrieved.

CHAPTER 5. INDEXES 66

Index Term Postings (Record, Line, Position)
Burnt (2,2,1)
Could (1,4,1)
In (1,2,1) (2,1,1)
On (2,3,1)
Tyger (1,1,1) (1,1,2)
What (1,3,1) (2,4,1)
aspire (2,3,6)
bright (1,1,4)
burning (1,1,3)
dare (2,3,4) (2,4,4)
deeps (2,1,4)
distant (2,1,3)
eye (1,3,5)
eyes (2,3,6)
fearful (1,4,4)
fire (2,2,3) (2,4,7)
forests (1,2,3)
frame (1,4,2)
hand (1,3,3) (2,4,3)
he (2,3,5)
immortal (1,3,2)
night (1,2,6)
of (1,2,4) (2,2,4)
or (1,3,4) (2,1,5)
seize (2,4,5)
skies (2,1,6)
symmetry (1,4,5)
the (1,2,2) (1,2,5) (2,2,2) (2,4,2) (2,4,6)
thine (2,2,5)
thy (1,4,3)
what (2,1,2) (2,3,2)
wings (2,3,3)

Table 5.1: An Inverted Index

CHAPTER 5. INDEXES 67

3. Manipulation of occurrences Occurrences are processed to solve query (for ex-

ample, Boolean) operations.

Inverted files provide a very flexible and efficient means to locate relevant records, and

are thus the most frequently used indexing method.

5.3 Suffix Trees and Suffix Arrays

Suffix trees provides an efficient way to search for phrases, words or prefixes of words in

a record set [GT02]. A Suffix Array provides the same functionality as a Suffix Tree but

requires less space.

When a Suffix tree is used, all the data in the record set is seen as one long string of

text. A suffix tree is essentially a trie data structure built over all the suffixes of the text.

For example, consider the following string of text:

In what distant deeps or skies

The above text will have the following suffixes:

In what distant deeps or skies

what distant deeps or skies

distant deeps or skies

deeps or skies

or skies

skies

In this example we will only index words, providing similar functionality as inverted

files. A suffix tree is created by first noting the position of each term in the record set (in

this case the position of the first character of the term in the line), for example:

1 4 9 17 25 28

In what distant deeps or skies

CHAPTER 5. INDEXES 68

A Suffix Tree can be drawn up for the text as seen in figure 5.1.

½¼

¾»

HHHHHHH
’I’

``````````````̀
’d’ ’o’

©©©©©©©
’s’

ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃ
’w’

1
½¼

¾»
25 28 4

17 9

¡
¡

¡
’i’

@
@

@
’e’

Figure 5.1: A Suffix Tree.

A search for a word (the model can be extended to allow for phrases) can now be per-

formed by using the characters in the search word to trace a path in the tree. Leaves in

the suffix tree store the position of the search word in the text.

Suffix Trees allow very efficient searching (ignoring disk accesses), but they are not

space efficient. The size of a Suffix Tree can vary between 120% to 240% of the size of the

original collection [RBY99].

A similar approach is a Suffix Array. It is created by performing an in-order traverse

on a Suffix Tree and storing the leaves in an array. The Suffix Array for the Suffix Tree

in figure 5.1 would thus be:

1 17 9 25 28 4

Note that the elements of the array is stored in lexicographical order. A word can be

located using a binary search by comparing words at the respective locations with the

search word. Unfortunately, in most cases a disk read will have to be performed for each

comparison (to locate the word to compare).



CHAPTER 5. INDEXES 69

By using a supra-index, the problem can be reduced. A supra-index is a second index

that points to locations in the Suffix Array. A search would first be done in the supra-

index to reduce the amount of disk reads. Not all index terms have to appear in the supra-

index. To make the supra-index more space efficient, only every x words represented in

the Suffix Array need appear. To improve space efficiency still further, only the first y

characters of each word need to be taken into account. The supra-index is likely to be

small enough to be stored in memory. This means that the closest match to a term is

first found in the supra-index, which points to some location in the Suffix Array. The

exact match of the term is then searched for from that position in the Suffix Array, hence

reducing the number of disk reads.

A Suffix Array provides the same functionality as a Suffix Tree but requires less space.

The distinction between a Suffix Tree (when implemented as a Suffix Array) and a

Inverted File is very small, since they both rely on an index to point towards a list of

postings. The most significant difference is that the occurrences of a single term in an

Inverted File is sorted by text position, while in a Suffix Tree it is sorted in lexicographical

order of the words following the term.

5.4 Signature Files

Signature Files work on the principle of assigning a descriptor to each record [TCB99].

The descriptor of a record depends on the terms that appear in the record. In the following

example each record contains a line of poetry:

Record 1

In what distant deeps or skies

Record 2

Burnt the fire of thine eyes?



CHAPTER 5. INDEXES 70

Record 3

On what wings dare he aspire?

Record 4

What the hand dare seize the fire?

A 16 bit hash code is created for each word contained in the records, as shown in table

5.2.

Index Term Hash Code
Burnt 1000 0000 0010 0100
In 0010 0100 0000 1000
On 0000 1010 0000 0000
What 0000 1001 0010 0000
aspire 0000 1000 1000 0010
dare 0100 0010 0000 0001
deeps 0010 1000 0000 0100
distant 1000 1000 0100 0000
eyes 0000 0101 0000 0001
fire 0100 0100 0010 0000
hand 0000 0010 0110 0000
he 0100 0100 0000 0001
of 1010 1000 0000 0000
or 0010 0001 0000 0010
seize 0001 1000 0000 1000
skies 0000 0100 1000 0100
the 0110 0000 0100 0000
thine 0000 0001 0010 0010
what 0001 1000 0000 1000
wings 0100 0000 1100 0000

Table 5.2: Hash Codes for Index Terms

The record descriptors are created by performing a logical OR on the hash codes of

terms contained in each record. Thus, the descriptor for record 1 is the disjunction of

0010 0100 0000 1000 (hash code for In), 0001 1000 0000 1000 (hash code for what), 1000

1000 0100 0000 (hash code for distant), 0010 1000 0000 0100 (hash code for deeps), 0010

0001 0000 0010 (hash code for or) and 0000 0100 1000 0100 (hash code for skies), that is,



CHAPTER 5. INDEXES 71

1011 1101 1100 1110. The descriptors for all four records can be seen in table 5.3.

Record Text Descriptor
1 In what distant deeps or skies 1011 1101 1100 1110
2 Burnt the fire of thine eyes? 1110 1101 0110 0111
3 On what wings dare he aspire? 0101 1110 1100 1011
4 What the hand dare seize the fire? 0111 1110 0110 1001

Table 5.3: Signature file

A search for term ki can be conducted by finding the hash code term ki and then doing

a sequential search for ki through all records that have corresponding bits set in their

descriptors as the hash code for ki. Note that the fact that the same bits are set in the

descriptor as in the hash code does not guarantee that the term is present in the record.

For example, despite that fact that the appropriate bits are set for the term On in record

4, the term does not appear in that record.

The drawback of Signature files is that, if records contain many terms, the record de-

scriptors will contain many 1’s. This results firstly in too many hits for a search and

secondly in inaccurate results.

A great advantage in using Signature files is that phrase searching is improved [RBY99].

This is because by searching for more terms, the number of bits that are set is greater,

and thus fewer records would have to be sequentially searched for terms.

Signature files normally take up only 10% to 20% as much space as the original record

set. However, because the searching time of a Signature file is linear, Signature files are

only appropriate for small text collections.

5.5 Conclusions

Signature files can be dismissed as a possible implementation technique in the GIS simply

because of the possibility of inaccurate results. Very specific searches are done on the GDB



CHAPTER 5. INDEXES 72

and as a result the returning of irrelevant records by a search algorithm should be avoided.

Furthermore, the advantage of efficient phrase searching by signature files is redundant

for the searches to be supported in the GIS. Signature files are only appropriate for small

collections, not for a database the size of the GDB.

The large space requirements of Suffix Trees coupled with the fact that they do not

provide any additional functionality makes inverted files the only realistic option.

An inverted file with a B-tree implementation will be used for implementing the search

algorithm. A B-tree is a balanced search tree and was created with the aim of minimizing

the amount of disk reads necessary to locate an item [FMC98].



Chapter 6

LEXICON REFINEMENT

6.1 Introduction

The list of terms on which a record set is indexed is called the lexicon. Since all the terms

in the lexicon appear in the index, it is preferable to keep the lexicon as small as possible.

Furthermore, it is also important to remove words from the lexicon unlikely to improve

query results. Punctuation (with a few exceptions) is commonly disregarded when setting

up the lexicon. In this chapter several techniques used to minimize the size of the lexicon

are discussed. An analysis of the distribution of the words in the GIS will be done in

section 6.5.

6.2 Case Folding

One of the simplest ways to reduce the number of terms in the lexicon is a technique

called case folding, whereby all capitalization is ignored. The words House, HOUSE

and house will thus all be mapped to house. Not only is the number of words in the

lexicon reduced, but search recall is improved since more records are retrieved in response

to a query. Furthermore, in most cases, search precision is also improved since in the

absence of case folding, case mismatch often causes queries to fail [TCB99].

73



CHAPTER 6. LEXICON REFINEMENT 74

6.3 Stop words

Terms that appear too many times in a record set do not make good search words since

too many records are returned by queries including the term. For example, consider the

term van in the GDB. The term occurs a total of 85 221 times in the GIS, making the

term useless as a search term. Furthermore, if an inverted index is used to index the

GDB, the term van would account for 4.41% of the postings in the index. Clearly search

effectiveness can be improved and disk space saved by removing certain terms from the

lexicon. Terms that are not indexed are added to a stop list.

The choice of terms to add to the stop list has been the subject of debate, but normally

consists of articles, prepositions and conjunctions [RBY99]. Other candidates for inclu-

sion in the stop list are terms that appear too frequently (since too many records would

be returned), terms that appear very infrequently (words that are likely to be spelling

mistakes) and very short terms (for example, one letter terms).

When indexing general text collections, the exclusion of stop words may be problematic

since searches for phrases that consists entirely of stop words, for example the verb to be,

are not entirely unlikely. The GIS especially lends itself to the removal of stop words since

a search for an individual is in its nature specific, and thus unlikely to consist entirely of

terms that have been designated as stop words.

6.4 Stemming

Stemming is a technique whereby words are broken down to their stems. Thus, terms

like connected, connecting, connection and connections would all be broken down

to connect. Queries are also broken down to their stems. Thus a search for the term

connected would also return records containing, for example, connection. The main

motivation behind stemming is that, if several terms can be mapped to one term, the size

of the lexicon can be significantly reduced.



CHAPTER 6. LEXICON REFINEMENT 75

Although it seems obvious that stemming should improve searches, it has been found

in practice that there are no clear benefits to stemming [Fra92].

Several stemming techniques exists, the most prominent of which is affix stemming.

Mostly only suffixes of words are removed since most variants of words are generated by

adding suffixes to the stem word. It is important to note that the stems that are found by

removing affixes do not necessarily have to be a valid word, since the stems are only used

for indexing. Unfortunately ambiguity sometimes arise since unrelated words frequently

share a common stem.

The most popular suffix removal algorithm is Porter’s algorithm ([Por97] in [RBY99])

which reduces words to their stems by a set of production rules to a word. Examples of

the rules employed by Porter’s algorithm are:

sses → ss

ies → i

s → λ

where λ represents the empty string.

It is not recommended to apply Porter’s algorithm blindly to any lexicon. The language

use and context of a record set has serious implications regarding the stemming algorithm

that should be used [XC98]. The GDB contains mostly Afrikaans words, but also English

words. Significant changes would have to be made to the rules of Porter’s algorithm if

stemming were to be applied in the GIS, since the algorithm was specifically designed for

stemming English words.

6.5 GIS Term Frequencies

At the time of this analysis (July 2003), the GDB contained a total of 551440 records. The

average number of terms (words and names) per record is 6.88 with a standard deviation

of 12.38.



CHAPTER 6. LEXICON REFINEMENT 76

6.5.1 Words

In this section the words in the unstructured data (i.e. Data in the Person Details, Person

Footnote, Event Place, Event Details, Event Comment, Relationship Details, Relation-

ship Comment and Information categories) were considered. The words were extracted

and sorted in ascending order of number of occurrences. There are currently 82289 distinct

words occurring a total of 1931578 times.

All the words can unfortunately not be listed, but the words occurring more than three

thousand times each can be seen in Table 6.1. These words make up only 0.12% of the

list of distinct words.

The presence of many of the words in table 6.1 can be easily explained. The most

common word, van, is a word often used in Afrikaans. It also occurs in many surnames,

for example, van der Merwe, van Antwerpen and van Rensburg. The one letter word X

was until recently used by genealogists to indicate a marriage in the information field.

The words J, D and M results from entries of the age at death, for example, 80j 9m 18d.

The words S and K represents references to death notices, S/K (from the afrikaans word

sterfkennis).

The words in the GIS are distributed very unevenly. Table 6.2 was created by grouping

words into groups of 1000, in sequence of their number of occurrences. The percentage of

the total word occurrences of each group was then tabulated. Note that only 1000 words

make up more than 76.7% of the words in the database. The information in table 6.2 can

be seen graphically in figure 6.1.



CHAPTER 6. LEXICON REFINEMENT 77

Figure 6.1: Distribution of Word Occurrences in Groups of 1000



CHAPTER 6. LEXICON REFINEMENT 78

Word # Occurrences Word # Occurrences

VAN 85221 DIST 6308
SY 34274 V 6057
EN 30249 KINDERS 6025
DIE 29530 WORD 5948
IN 27902 AAN 5772
MET 24662 PORT 5715
OP 22875 THE 5640
X 22652 A 5436
JR 17697 TEN 5411
BOER 16148 TYE 5263
HY 13990 JOHANNES 5116
KAAPSTAD 13744 SOMERSET-OOS 5090
PRETORIA 13351 G 4960
HAAR 13197 POTCHEFSTROOM 4909
N 11833 OF 4905
J 11741 WORCESTER 4773
TOE 11741 TULBAGH 4662
GRAAFF-REINET 11661 MIDDELBURG 4490
WOON 11582 BEAUFORT-WES 4263
IS 11376 COLESBERG 4236
S 10689 BURGER 4201
AS 10290 ONGETROUD 4151
KERK 9945 PLAAS 4064
DISTRIK 9468 KAAP 3995
DOOD 9443 GERMANY 3990
JOHANNESBURG 9374 AND 3988
SWELLENDAM 8980 HUIS 3928
TROU 8970 JONK 3898
UITENHAGE 8929 ENGLAND 3789
SE 8565 HUMANSDORP 3764
HUWELIK 8550 OORLEDE 3737
PAARL 8451 MARIA 3627
GEORGE 8348 SWANEPOEL 3581
HET 8250 TVL 3402
CALEDON 8247 HOSPITAAL 3392
M 7924 JACOBUS 3344
WAS 7895 CAPE 3298
BY 7688 JOHANNA 3296
ELIZABETH 7543 OOK 3284
GENOEM 7244 VIR 3190
BLOEMFONTEIN 7217 WOONAGTIG 3172
STELLENBOSCH 7126 STERFKENNIS 3133
K 6926 VOOR 3119
DE 6738 ROBERTSON 3098
NIE 6670 KROONSTAD 3081
D 6568 LATER 3080
TE 6556 RUSTENBURG 3051
NA 6477 AANKOMS 3049
CRADOCK 6320 VOLGENS 3016

Table 6.1: Words Occurring more than 3 000 times



CHAPTER 6. LEXICON REFINEMENT 79

Word Group % of Occurrences Words % of Occurrences
1 - 1000 76.70% 41001 - 42000 0.05%
1001 - 2000 6.35% 42001 - 43000 0.05%
2001 - 3000 3.00% 43001 - 44000 0.05%
3001 - 4000 1.92% 44001 - 45000 0.05%
4001 - 5000 1.36% 45001 - 46000 0.05%
5001 - 6000 1.02% 46001 - 47000 0.05%
6001 - 7000 0.81% 47001 - 48000 0.05%
7001 - 8000 0.67% 48001 - 49000 0.05%
8001 - 9000 0.57% 49001 - 50000 0.05%
9001 - 10000 0.49% 50001 - 51000 0.05%
10001 - 11000 0.43% 51001 - 52000 0.05%
11001 - 12000 0.37% 52001 - 53000 0.05%
12001 - 13000 0.33% 53001 - 54000 0.05%
13001 - 14000 0.31% 54001 - 55000 0.05%
14001 - 15000 0.26% 55001 - 56000 0.05%
15001 - 16000 0.26% 56001 - 57000 0.05%
16001 - 17000 0.22% 57001 - 58000 0.05%
17001 - 18000 0.21% 58001 - 59000 0.05%
18001 - 19000 0.21% 59001 - 60000 0.05%
19001 - 20000 0.18% 60001 - 61000 0.05%
20001 - 21000 0.16% 61001 - 62000 0.05%
21001 - 22000 0.16% 62001 - 63000 0.05%
22001 - 23000 0.16% 63001 - 64000 0.05%
23001 - 24000 0.16% 64001 - 65000 0.05%
24001 - 25000 0.00% 65001 - 66000 0.05%
25001 - 26000 0.10% 66001 - 67000 0.05%
26001 - 27000 0.10% 67001 - 68000 0.05%
27001 - 28000 0.10% 68001 - 69000 0.05%
28001 - 29000 0.10% 69001 - 70000 0.05%
29001 - 30000 0.10% 70001 - 71000 0.05%
30001 - 31000 0.10% 71001 - 72000 0.05%
31001 - 32000 0.10% 72001 - 73000 0.05%
32001 - 33000 0.10% 73001 - 74000 0.05%
33001 - 34000 0.10% 74001 - 75000 0.05%
34001 - 35000 0.10% 75001 - 76000 0.05%
35001 - 36000 0.10% 76001 - 77000 0.05%
36001 - 37000 0.07% 77001 - 78000 0.05%
37001 - 38000 0.05% 78001 - 79000 0.05%
38001 - 39000 0.05% 79001 - 80000 0.05%
39001 - 40000 0.05% 80001 - 81000 0.05%
40001 - 41000 0.05% 81001 - 82000 0.05%

Table 6.2: Distribution of Words in Groups of 1000



CHAPTER 6. LEXICON REFINEMENT 80

The word distributions can be clarified by tabulating the data in occurrence ranges

(i.e. grouping the words on word occurrences). Table 6.3 shows word occurrence ranges,

along with the number of distinct words in the range, the percentage of distinct words

represented by the range, the number of occurrences in the database of the words in the

range and the percentage of the total number of word occurrences in the database. It

can be seen from the more intuitive graphical representation in Figures 6.2 and 6.3 that

some of the words that represent a very small percentage of the distinct words, represent

a very large percentage of the word occurrences in the GDB (Specifically note that one

word represents 4.41% of all the word occurrences in the database).

Word Occur Range # Distinct % Distinct # Occur % Occur
1 45963 55.85% 45963 2.38%
2 11487 13.96% 22974 1.19%
3 5346 6.50% 16038 0.83%
4 3282 3.99% 13128 0.68%
5 - 6 3782 4.60% 20554 1.06%
7 - 11 4219 5.13% 18236 0.94%
12 - 29 4091 4.97% 16340 0.85%
30 - 3000 4026 4.89% 14970 0.77%
3001 - 6025 47 0.06% 194332 10.06%
6026 - 9374 26 0.03% 197921 10.25%
9375 - 17697 17 0.02% 207896 10.76%
17698 - 34274 7 0.01% 192144 9.95%
85221 1 0.00% 85221 4.41%
Total: 82289 100.00% 1931578 100.00%

Table 6.3: Distribution of Words according to Occurrence Range



CHAPTER 6. LEXICON REFINEMENT 81

Figure 6.2: Distribution of Distinct words



CHAPTER 6. LEXICON REFINEMENT 82

Figure 6.3: Distribution of Word Occurrences



CHAPTER 6. LEXICON REFINEMENT 83

Table 6.4 shows the distribution of words that occur less than 50 times each. Every

row in the table lists the number of word occurrences (for example, words occurring 5

times), the number of words that occur the given number of times, the percentage of the

total number of distinct words that these words constitute, a cumulative percentage of the

previous field, the number of times that these words occur in the database, the percentage

of words in the database that are represented by the words in the row and an accumulative

percentage of the previous column. These words make up 96.68% of the distinct words

and 14.61% of the total word occurrences in the database. A graph of table 6.4 can be

seen in figure 6.4.

Figure 6.4: Distribution of Words Occurring less than 50 times.



CHAPTER 6. LEXICON REFINEMENT 84

# Occur # Words % Distinct Accu % Σ # Occur % Occur Accu %

1 45963 55.85% 55.85% 45963 2.38% 2.38%
2 11487 13.96% 69.81% 22974 1.19% 3.57%
3 5346 6.50% 76.31% 16038 0.83% 4.40%
4 3282 3.99% 80.30% 13128 0.68% 5.08%
5 2138 2.60% 82.89% 10690 0.55% 5.63%
6 1644 2.00% 84.89% 9864 0.51% 6.14%
7 1196 1.45% 86.34% 8372 0.43% 6.58%
8 996 1.21% 87.55% 7968 0.41% 6.99%
9 778 0.95% 88.50% 7002 0.36% 7.35%

10 651 0.79% 89.29% 6510 0.34% 7.69%
11 598 0.73% 90.02% 6578 0.34% 8.03%
12 489 0.59% 90.61% 5868 0.30% 8.33%
13 440 0.53% 91.15% 5720 0.30% 8.63%
14 391 0.48% 91.62% 5474 0.28% 8.91%
15 354 0.43% 92.05% 5310 0.27% 9.19%
16 278 0.34% 92.39% 4448 0.23% 9.42%
17 262 0.32% 92.71% 4454 0.23% 9.65%
18 251 0.31% 93.01% 4518 0.23% 9.88%
19 217 0.26% 93.28% 4123 0.21% 10.10%
20 196 0.24% 93.51% 3920 0.20% 10.30%
21 175 0.21% 93.73% 3675 0.19% 10.49%
22 164 0.20% 93.93% 3608 0.19% 10.68%
23 147 0.18% 94.11% 3381 0.18% 10.85%
24 155 0.19% 94.29% 3720 0.19% 11.04%
25 124 0.15% 94.44% 3100 0.16% 11.20%
26 110 0.13% 94.58% 2860 0.15% 11.35%
27 129 0.16% 94.73% 3483 0.18% 11.53%
28 100 0.12% 94.86% 2800 0.14% 11.68%
29 109 0.13% 94.99% 3161 0.16% 11.84%
30 93 0.11% 95.10% 2790 0.14% 11.98%
31 93 0.11% 95.21% 2883 0.15% 12.13%
32 95 0.12% 95.33% 3040 0.16% 12.29%
33 101 0.12% 95.45% 3333 0.17% 12.46%
34 80 0.10% 95.55% 2720 0.14% 12.60%
35 67 0.08% 95.63% 2345 0.12% 12.73%
36 86 0.10% 95.74% 3096 0.16% 12.89%
37 63 0.08% 95.81% 2331 0.12% 13.01%
38 58 0.07% 95.88% 2204 0.11% 13.12%
39 76 0.09% 95.98% 2964 0.15% 13.27%
40 72 0.09% 96.06% 2880 0.15% 13.42%
41 49 0.06% 96.12% 2009 0.10% 13.53%
42 61 0.07% 96.20% 2562 0.13% 13.66%
43 69 0.08% 96.28% 2967 0.15% 13.81%
44 46 0.06% 96.34% 2024 0.10% 13.92%
45 47 0.06% 96.39% 2115 0.11% 14.03%
46 53 0.06% 96.46% 2438 0.13% 14.15%
47 44 0.05% 96.51% 2068 0.11% 14.26%
48 41 0.05% 96.56% 1968 0.10% 14.36%
49 51 0.06% 96.62% 2499 0.13% 14.49%
50 45 0.05% 96.68% 2250 0.12% 14.61%

Table 6.4: Distribution of Words Occurring less than 50 times.



CHAPTER 6. LEXICON REFINEMENT 85

The length of the words is another factor that is considered. Table 6.5 shows the dis-

tribution of words according to length. Note that 18.3% of the total word occurrences are

one or two letter words. A graphical comparison of the percentages of distinct words and

word occurrences according to word length can be seen in figure 6.5.

Word Length # Distinct % Total Distinct # Occur % Total Occur
1 26 0.03% 107989 5.59%
2 454 0.55% 245409 12.71%
3 1563 1.90% 277701 14.38%
4 3288 4.00% 206146 10.67%
5 5713 6.94% 114275 5.92%
6 8303 10.09% 151047 7.82%
7 9480 11.52% 194686 10.08%
8 9719 11.81% 149026 7.72%
9 9591 11.66% 162681 8.42%

10 8452 10.27% 110496 5.72%
11 6997 8.50% 69698 3.61%
12 5358 6.51% 69767 3.61%
13 4037 4.91% 35552 1.84%
14 2838 3.45% 12291 0.64%
15 2048 2.49% 8182 0.42%
16 1431 1.74% 9180 0.48%
17 944 1.15% 2771 0.14%
18 629 0.76% 1735 0.09%
19 445 0.54% 1099 0.06%
20 329 0.40% 886 0.05%
21 173 0.21% 307 0.02%
22 145 0.18% 191 0.01%
23 102 0.12% 122 0.01%
24 68 0.08% 81 0.00%
25 51 0.06% 64 0.00%
26 23 0.03% 71 0.00%
27 24 0.03% 31 0.00%
28 21 0.05% 39 0.00%
29 18 0.04% 31 0.00%
30 7 0.01% 9 0.00%
31 12 0.02% 15 0.00%

Total: 82289 100.00% 1931578 100.00%

Table 6.5: Distribution of words according to length



CHAPTER 6. LEXICON REFINEMENT 86

Figure 6.5: Distribution of words according to length



CHAPTER 6. LEXICON REFINEMENT 87

6.5.2 Dates

In July 2003 the GDB contained 909440 dates. Most dates fall in the period 1600 to 2003.

There are some dates outside this range, but they are assumed to be incorrect. Table 6.6

and 6.7 shows the distribution of dates from 1600 to 2003. See figure 6.6 for a graphical

representation. The two unusually high spikes at 1983 and 1990 represents the intensive

use of voter’s roles to capture residence and occupation details for many of the individuals

in the GDB.

Figure 6.6: Distribution of Dates



CHAPTER 6. LEXICON REFINEMENT 88

Date Frequency Date Frequency Date Frequency Date Frequency

1600 4 1662 36 1711 254 1760 864
1603 1 1663 22 1712 237 1761 741
1606 2 1664 17 1713 279 1762 927
1610 1 1665 34 1714 277 1763 913
1611 1 1666 28 1715 254 1764 961
1612 2 1667 37 1716 275 1765 971
1614 1 1668 42 1717 338 1766 908
1615 1 1669 31 1718 301 1767 907
1617 1 1670 60 1719 267 1768 1033
1618 1 1671 50 1720 307 1769 1009
1620 2 1672 48 1721 331 1770 1053
1621 1 1673 54 1722 315 1771 968
1623 2 1674 43 1723 356 1772 1088
1624 1 1675 59 1724 348 1773 1095
1625 2 1676 51 1725 371 1774 1025
1626 2 1677 62 1726 343 1775 1315
1627 2 1678 61 1727 406 1776 1206
1628 2 1679 67 1728 319 1777 1288
1629 1 1680 70 1729 389 1778 1216
1630 2 1681 57 1730 405 1779 1336
1631 1 1682 64 1731 364 1780 1356
1634 2 1683 64 1732 401 1781 1337
1635 7 1684 74 1733 393 1782 1429
1636 4 1685 86 1734 432 1783 1543
1637 3 1686 111 1735 435 1784 1524
1638 2 1687 96 1736 443 1785 1697
1639 4 1688 171 1737 386 1786 1619
1640 5 1689 107 1738 389 1787 1723
1641 1 1690 145 1739 462 1788 1759
1642 3 1691 137 1740 464 1789 1748
1643 4 1692 161 1741 499 1790 1826
1644 4 1693 154 1742 473 1791 1786
1645 8 1694 154 1743 510 1792 2051
1646 4 1695 167 1744 529 1793 1889
1647 3 1696 193 1745 525 1794 2085
1648 5 1697 162 1746 497 1795 1990
1649 6 1698 147 1747 592 1796 1946
1650 12 1699 192 1748 594 1797 2384
1651 5 1700 205 1749 625 1798 2291
1652 15 1701 187 1750 681 1799 2187
1653 8 1702 202 1751 662 1800 2453
1654 9 1703 183 1752 703 1801 2212
1655 10 1704 186 1753 748 1802 2145
1656 16 1705 211 1754 718 1803 2534
1657 18 1706 202 1755 704 1804 2665
1658 20 1707 156 1756 706 1805 2361
1659 25 1708 233 1757 694 1806 2654
1660 46 1709 227 1758 803 1807 2463
1661 24 1710 236 1759 731 1808 2767

Table 6.6: Date distributions 1600 to 1808



CHAPTER 6. LEXICON REFINEMENT 89

Date Frequency Date Frequency Date Frequency Date Frequency

1809 2964 1858 5200 1907 4606 1956 4191
1810 3004 1859 4639 1908 5086 1957 4149
1811 2742 1860 5873 1909 4345 1958 4261
1812 2773 1861 4857 1910 5555 1959 3885
1813 2830 1862 5147 1911 4403 1960 4462
1814 3071 1863 5105 1912 5197 1961 3857
1815 3040 1864 5552 1913 4229 1962 3965
1816 3022 1865 5144 1914 4858 1963 3783
1817 3185 1866 5432 1915 4425 1964 3813
1818 3251 1867 5158 1916 4861 1965 3569
1819 3400 1868 5407 1917 4424 1966 3797
1820 4046 1869 4987 1918 5708 1967 3445
1821 3625 1870 6058 1919 4468 1968 3536
1822 3703 1871 4971 1920 5471 1969 3405
1823 3413 1872 5374 1921 4295 1970 3760
1824 3591 1873 5100 1922 4758 1971 3216
1825 3828 1874 5496 1923 4178 1972 3258
1826 3827 1875 5463 1924 4291 1973 2827
1827 3713 1876 5497 1925 4531 1974 2813
1828 3644 1877 5324 1926 4508 1975 2548
1829 3517 1878 5603 1927 4143 1976 2435
1830 4044 1879 5296 1928 4524 1977 2258
1831 3240 1880 6643 1929 3927 1978 2303
1832 3654 1881 5484 1930 5171 1979 2128
1833 3625 1882 5722 1931 3830 1980 2502
1834 3619 1883 5270 1932 4251 1981 2222
1835 3432 1884 5517 1933 3875 1982 2294
1836 3733 1885 5581 1934 4199 1983 12261
1837 3430 1886 5575 1935 4307 1984 2104
1838 3741 1887 5410 1936 4377 1985 2073
1839 3277 1888 5951 1937 4148 1986 1889
1840 4360 1889 5363 1938 4435 1987 1774
1841 3675 1890 6639 1939 3987 1988 1745
1842 4011 1891 5366 1940 5016 1989 1682
1843 3900 1892 6254 1941 3858 1990 10379
1844 4194 1893 5740 1942 4478 1991 1328
1845 4233 1894 5889 1943 4003 1992 1344
1846 3991 1895 5842 1944 4499 1993 1144
1847 3736 1896 5750 1945 4400 1994 2106
1848 4463 1897 5452 1946 4511 1995 1047
1849 4021 1898 5615 1947 4237 1996 798
1850 4936 1899 5064 1948 4523 1997 717
1851 3804 1900 6384 1949 3985 1998 622
1852 4352 1901 5138 1950 4709 1999 722
1853 4310 1902 5184 1951 3806 2000 616
1854 4510 1903 4854 1952 4268 2001 383
1855 4538 1904 5358 1953 4000 2002 149
1856 4696 1905 5034 1954 4348 2003 11
1857 4453 1906 5157 1955 4135

Table 6.7: Date distributions 1809 to 2003



CHAPTER 6. LEXICON REFINEMENT 90

6.5.3 Names

Unlike general words, all the names in the name fields of the GDB are relevant to search-

ing. Almost all the stored individuals have at least one name associated with them (it is

very seldom that a person was added without knowing at least their surname or one first

name) and most have more than one name. In July 2003 there were 36297 different names

in the GDB. These names occur a total of 1557560 times in the database, 520403 times

as surnames, 512669 times as male names, and 524488 times as female names.

The same name sometimes occurs as more than one type of name (for example, the

name Pieter occurs as both a male and female name, and the name Wessel occurs as both

a surname and a male name). There is thus no distinction made between different types of

names. Table 6.8 shows how names are distributed in the different categories. See figure

6.7 for a graphical representation.

Name Occurring As # Names % Names # Occur % Occur
Surname 14127 38.92% 58974 3.79%
Male 6000 16.53% 34772 2.23%
Female 10907 30.05% 143336 9.20%
Surname and Male 2391 6.59% 77137 4.95%
Surname and Female 922 2.54% 8895 0.57%
Male and Female 487 1.34% 578746 37.16%
Surname, Male and Female 1463 4.03% 655700 42.10%
Total: 36297 100.00% 1557560 100.00%

Table 6.8: Distribution of Names according to Type of Name

6.6 Removed Terms

A stop list for the words in the GIS was drawn up manually. All words with length

less than 3 characters were added to the stop list. From table 6.5 it can be seen that

480 distinct words and were thus removed (i.e. the total number of words with length less

than 3) . Accordingly a total of 353398 occurrences will not have to be stored in the index.

From the 98 words that occurred more than 3000 times (see table 6.1), 53 were added

to the stop list. The 9 most frequently occurring words were among the invalid words.



CHAPTER 6. LEXICON REFINEMENT 91

Figure 6.7: Distribution of Names



CHAPTER 6. LEXICON REFINEMENT 92

The new list of terms occurring more than 3000 times after the removal of some terms can

be seen in table 6.9.

Word # Occurrences Word # Occurrences

BOER 16148 MIDDELBURG 4490
KAAPSTAD 13744 BEAUFORT-WES 4263
PRETORIA 13351 COLESBERG 4236
HAAR 13197 BURGER 4201
GRAAFF-REINET 11661 ONGETROUD 4151
DOOD 9443 KAAP 3995
JOHANNESBURG 9374 GERMANY 3990
SWELLENDAM 8980 JONK 3898
UITENHAGE 8929 ENGLAND 3789
PAARL 8451 HUMANSDORP 3764
GEORGE 8348 MARIA 3627
CALEDON 8247 SWANEPOEL 3581
ELIZABETH 7543 TVL 3402
BLOEMFONTEIN 7217 HOSPITAAL 3392
STELLENBOSCH 7126 JACOBUS 3344
CRADOCK 6320 CAPE 3298
AAN 5772 JOHANNA 3296
PORT 5715 OOK 3284
JOHANNES 5116 VIR 3190
SOMERSET-OOS 5090 VOOR 3119
POTCHEFSTROOM 4909 ROBERTSON 3098
WORCESTER 4773 KROONSTAD 3081
TULBAGH 4662 RUSTENBURG 3051

Table 6.9: Words Occurring more than 3 000 times after removing non-index terms

The stop list contains a total of 4475 words. Combined they constitute a total number of

937008 occurrences. By making use of a stop list, a reduction of 48.5% in the occurrences

to be stored in the index was achieved.

Investigations using stemming with a simplified version of Porter’s algorithm were per-

formed. It was found that small reductions could be made to the size of lexicon, but that

the risk of terms with different meanings being indexed as one term was too great. A safer

approach to achieving some of the benefits of stemming would be to make words with the

same stem part of the same similarity set (see sections 3.1.4 and 3.2.1). A stemming algo-

rithm was used to group certain surnames into equivalent groups, for example, removing

surname prefixes like van der, de and du.



CHAPTER 6. LEXICON REFINEMENT 93

6.7 Equivalent and Similarity Groups

Populating the database is not part of the scope of this project. Therefore, although

the functionality is provided in the implementation of the GIS, not all terms have been

grouped into equivalent or similarity groups.

Names and surnames have been grouped into equivalent groups, with a few similarity

groups for testing purposes. It is envisioned that words in Afrikaans and English that

have the same meaning will be grouped into equivalence groups, for example, geneesheer,

dokter and doctor. Apart from better search results, such groupings will greatly reduce

the size of the index.

6.8 Conclusions

In this chapter a clear picture of the terms appearing the the GDB was given. Methods

to refine the lexicon were described and techniques used to do so were discussed. The

number of index terms were significantly reduced.



Chapter 7

IMPLEMENTATION

7.1 Introduction

In chapter 4 an information retrieval model for the GIS was discussed. The focus of

this chapter will be the algorithms used to implement the retrieval model. The approach

followed will be motivated, and restrictions on the model necessary to make fast retrieval

possible will be discussed.

7.2 Retrieval Approach

The goal of the search algorithm is to evaluate equations 4.1 and 4.2, on page 53, for each

record. As was mentioned in chapter 5, a sequential search through all records would be

ineffective. To speed up search times, an index must be used that point to some data

structure that contains information that can be used to evaluate equations 4.1 and 4.2.

There are two approaches that may be followed:

1. Use an index on record number that points to term postings sorted in lexicographic

order. For each posting all information needed to calculate the term weight, given

by equations 4.7 and 4.8, must be stored. The search process will consist of doing

an intersection merge on the terms appearing in the query with the postings for

each record, by traversing the index linearly. The resultant list can then be used to

evaluate equations 4.1 and 4.2.

94



CHAPTER 7. IMPLEMENTATION 95

2. Make use of an index on terms that points to postings of the records that contain

the term. Each posting contains the information needed to calculate the weight of

the index term in that specific record. During searching, the record postings for each

term will undergo a union merge, and the resultant list will be used to calculate the

rank of each record.

Both approaches will require about the same amount of disk space. The second approach

will provide a faster search algorithm since in most cases not all records will have to be

evaluated. The drawback of the second approach is that the indexing process will take

longer. This is not seen as a significant problem since the GDB is semi-static (it grows

by a relatively small percentage every month) so it will not be necessary to rebuild the

index often (at the moment dynamic updating of the index is not supported). The second

approach was followed to implement the search algorithm in the GIS.

7.3 Data structures

In the section the data structures used by the search algorithm will be discussed. The

actual use of these data structures is discussed later in this chapter. In all cases when the

word index is used, it refers to an inverted file as discussed in chapter 5. To facilitate fast

location, the index terms are stored in a B-tree.

7.3.1 Equivalent and Similarity Database

The creation and retrieval of equivalent and similarity sets (see section 3.2.1) is done

through an equivalent and similarity term database. For each distinct term in the GDB

the following record is stored:

TTermRecord = record
Status : integer; { 4 bytes}
Term : String; { 32 bytes}
Code : integer; { 4 bytes}
EquivalentTerm : String; { 32 bytes}
EquivalentCode : integer; { 4 bytes}
SimilarTerms : array[1..5] of String; {5 x 32 bytes}
SimilarCodes : array[1..5] of integer; {5 x 4 bytes}
TotalFrequency : integer; { 4 bytes}



CHAPTER 7. IMPLEMENTATION 96

MaleNameHz : integer; { 4 bytes}
FemaleNameHz : integer; { 4 bytes}
SurnameHz : integer; { 4 bytes}
PlaceNameHz : integer; { 4 bytes}
ValidPersonName : boolean; { 1 bytes}
SearchTerm : boolean; { 1 bytes}

end; {278 bytes}

Term contains the actual term. Note that a maximum of 31 characters are allowed per

term. Each term is assigned an unique 4-byte code. This code has the same lexicographical

order as the term it represents. In essence the codes are generated by sorting the terms al-

phabetically and then numbering them (more detail will be given in a later section). Each

term has an equivalent or characteristic term associated with it, stored in EquivalentTerm.

The code of the equivalent term is stored in EquivalentCode. There can be a maximum

of five similar terms associated with each term, stored in the SimilarTerms array. The

code for each similar term is stored in the SimilarCode array. By storing the codes for

term equivalent term and the similar terms, information is duplicated. The reason for this

will be discussed later.

The total number of occurrences, number of occurrences as a male, female, place name

and surname are all stored for statistical purposes and validity checks. ValidPersonName

is used for validity checks. The field Status is used by the database system, and is not

used by the search algorithm.

The similarity database also acts as the stop list. If the field SearchTerm is set to false,

then the term should not occur in the search index.

Two indexes are used in the similarity database. The first index, the similarity term

index (STI), contains all the terms in the GDB and points to the record for each term.

The second index, the similarity code index (SCI), contains the unique code for each term

and points to the record associated with that term. Note that it is faster to locate the

record for a term using the code index since the term index must make provision for 31

byte entries, while each entry in the code index is only 4 bytes long. There are thus fewer



CHAPTER 7. IMPLEMENTATION 97

comparisons and less disk reads involved in searching the code index.

7.3.2 Term Search Index

The term search index (TI) consists of the codes of all search terms (i.e. the equivalent

term codes of all terms that are not in the stop list). Each entry points to a linked list

of postings, one for each record in which the term occurs. Each posting (element in the

linked list) has the following form:

TPosting = record
Status : integer; { 4 bytes}
RecordID : integer; { 4 bytes}
Frequency : integer; { 4 bytes}
Occurrences : int64; { 8 bytes}
Next : integer; { 4 bytes}

end; {24 bytes}

The Status field is used by the database management system. RecordID is the record

number of a record that contains the term at least once. Frequency is the total number

of times that the term appears in the record.

The Occurrences field stores the fields in which the term occurs in the record. The

system currently caters for 64 possible fields. The current fields can be seen in appendix

D on page 131. Each field is represented by a unique 64-bit integer that is an exponent of

2. In other words each field is assigned a 64-bit binary code of which only one bit is set

to 1. For example, the Surname field is represented by 2 and the Information field is rep-

resented by 8. In binary, these numbers are 10 and 1000 respectively. The Occurrences

field stores the bit-wise OR of all the fields in the record where the term is located. For

example, if the term was located in both the Surname and the Information fields, then

Occurrences would store 1010. It may be tempting to think that the Occurrences field

makes the Frequency field unnecessary since the number of occurrences can be found by

counting the number of bits set to 1 in Occurrences. This would not work in situations

where a term occurs more than once in the same field. The total number of occurrences

must thus still be stored separately.



CHAPTER 7. IMPLEMENTATION 98

Note that the approach followed above is not perfect. Information will be lost if a term

appears in several different fields and in some of those fields more than once. This will

negatively affect the Complete Matching weighting scheme described in section 4.4.2 on

page 58. Despite the drawback, it was decided to use this approach for the following

reasons:

1. This approach makes the calculation of the distance function very fast.

2. Storing all information about a term’s occurrence would imply a dramatic increase

in the space used on disk (and hence also imply more disk reads).

3. Only very few records contain a term several times in the same field. The ranking

algorithm will thus be affected very infrequently.

The field Next stores the location of the next posting in the linked list. By using a

linked list, it is not necessary to have more than one entry for the same term in the B-tree

(some terms appear in thousands of different records). Creating one big record to store

all postings is impractical because of the large difference in the number of occurrences of

terms (see table 6.3 and figures 6.2 and 6.3). The linked list is sorted in ascending order

of RecordID.

The first posting in the linked list for any term contains the total number of records in

which the term occurs in the database (i.e. the number of posting records). This num-

ber is used as the fi of equations 4.7 and 4.8. It is not strictly necessary to store this

value, since it can be calculated by counting the postings. However, counting the postings

and afterwards evaluating equations 4.7 and 4.8 would imply two passes over the linked list.

A separate term index is created for Person, Mother, Father, Spouse and Children. In

each case the RecordID that is used in each posting is the Person’s record number.

7.3.3 Date Search Index

The weight of a date in a record is calculated according to its proximity to the query

date. An indexing approach similar to terms would imply an index consisting of dates



CHAPTER 7. IMPLEMENTATION 99

pointing to postings of records in which each date occurs. From equation 4.11 on page 62

it can be seen that any date will contribute some weight. A search for a date would imply

visiting every posting of every date and calculating a weight for that posing. All linked

lists must then be merged to find the final linked list containing the weight of the date

in each record. As stated in section 6.5.2, there are almost 1000000 dates in the GDB.

Clearly this approach would be very time consuming and thus impractical.

A more efficient approach is to have an index on record number pointing to postings

of dates and their locations in the records. This approach implies a linear iteration over

all record numbers, but not a merge of all linked lists. The fact that the final linked list

containing weights for a query date in each record can be found after one pass over the

index, makes this approach far superior to the first approach discussed.

Search times can be considerably improved by asserting that searching for dates should

only be seen as a refinement on an existing query. We assume that a query will never

consist of dates alone. The lists of records containing the terms can then be found first

and only those records are then considered for the date search. Note that searching for

dates is a far more computationally expensive task than searching for normal terms, since

far more linked lists must be evaluated. The number of linked list for terms is equal to the

number of terms in the query, whereas the number of linked list for dates is equal to the

number of records that contained any of the terms in the query. Typically there would be

several thousand date linked lists to evaluate.

The date search index (DI) consists of record numbers, each pointing to a date posting

linked list. Each element will be of the following form:

TDatePosting = record
Status : integer; { 4 bytes}
Field : integer; { 4 bytes}
StartDate : integer; { 4 bytes}
EndDate : integer; { 4 bytes}
Next : integer; { 4 bytes}

end; {20 bytes}



CHAPTER 7. IMPLEMENTATION 100

As before, Status is only used by the database management system. Field stores a

32-bit integer indicating the field in which the date occurred. This integer is similar to

the 64 bit integer used to store the field for normal terms. See appendix E on page 133

for a list of all possible date field values. StartDate and EndDate store the start and the

end date for a period. Each date is represented by an integer which stores the number of

days that have elapsed between 1 January 1 A.D and the date to be stored. The Next

field stores the position of the next posting in the posting linked list.

A separate date index is created for Person, Mother, Father, Spouse and Children. In

each case the record number that is used in the index is the Person’s record number.

7.3.4 Relevance Table

The function D, discussed in section 4.3, makes use of a relevance table to determine how

relevant the field where a term was located is to the field specified in the query. The

relevance table was drawn up manually by experienced genealogists. A separate relevance

table is used for term and dates, since a term can never be located in a date field or vice

versa.

The relevance table only stores the relevance values for the leaf fields in the field tree

for a person record, i.e. only values for Hi where Hi ∈ HL (see section 4.3 on page 54).

An extract of the term relevance table can be seen in table 7.1, where the vertical axis

represents the required field and the horizontal axis represents the field where the term

was located.

Field First Name Surname Nickname Information · · ·
First Name 1 0.7 0.9 0.8 · · ·
Surname 0.7 1 0.7 0.7 · · ·
Nickname 1 0.6 1 0.9 · · ·
Information 0.8 0.8 0.8 1 · · ·
...

...
...

...
...

. . .

Table 7.1: Extract of the term relevance table



CHAPTER 7. IMPLEMENTATION 101

Note that the table is not symmetric. For example, if a query states that a term must

be found in the Nickname field, and it is located in the FirstName field then the relevance

is 1. If the query states that a term must be located in the FirstName but it is found

in the Nickname then the relevance is 0.9. The reason for this seeming discrepancy can

be explained as follows: If a user thinks that the name they have is a nickname and it

is located in the name field, then it is likely that the name was in fact the person’s real

name or that the data capturer was under the impression that it was the person’s real

name. However, if the user specifies that the term is a first name and it is located in the

Nickname field, it implies that the user did not know the real name of the person, and

that person should thus be ranked lower than an individual who actually had the term as

a first name.

The relevance tables are implemented as two dimensional arrays where each cell, refer-

enced by Table[column][row], contains the relevance of the required field, represented

by column, to the located field, represented by row. Rows and columns are numbered as

log2 x + 1 where x is the integer that represents each field (see appendix D on page 131).

For example, the row representing the field Medical Details which had the code 268435456,

is numbered 29.

Queries can specify that a term belongs to a subtree. Each internal node in the field

tree, i.e. for Hi where Hi ∈ HN , is assigned an integer that is the bit-wise OR of the codes

of the fields in its subtree (the codes of all fields Hj ∈ HL where Hj ¹ Hi). The binary

value of the resultant integer is a bit string with all the values of where the term should

appear set to 1. This integer will be referred to as the Query Structure Value.

The pseudo-code for the implementation of the relevance function, D can be found in

appendix F on page 134. Firstly, a logical AND is performed on the Occurrences field of

the term posting and Query Structure Value. If the resultant integer is 1, then the term

occurs in one of the relevant locations and a relevance of 1 is returned. If the resultant

integer is 0, then the term does not occur into any of the desired locations. The relevance

function then compares each desired field with each of the occurrence fields and then re-



CHAPTER 7. IMPLEMENTATION 102

turns the highest relevance found in the relevance table.

Although it is not necessary to create a different relevance function for the Complete

Matching approach (see section 4.4.2 on page 58), it is used slightly differently. Instead of

passing the Occurrences field and the Query Structure Value to the relevance function,

each code representing leaf nodes is passed to the relevance function individually. The

resultant values are then summed (see equation 4.6 on page 59).

7.4 Indexing Process

The goal of the indexing process is to populate the data structures discussed in the previous

sections. In so doing, most of the processing is removed from the actual search time.

7.4.1 Equivalent and Similarity Database

The creation of the Equivalent and Similarity database is mostly a manual process. All

terms in the database are located by iterating through all records sequentially. Each new

term found is placed in a record as described in section 7.3.1. An entry is made into the

STI for each new record. If a record was already created for a term, the record is retrieved

and the relevant frequency fields updated. A count of the number of unique terms is also

kept.

The second phase of the algorithm is to assign unique codes to each term. A step size

between terms is calculated as the maximum code (in this case 2147483647) divided by

the total number of terms plus 1. The terms are then processed alphabetically and each

term sequentially assigned a multiple of the step size, so that the codes maintain the

lexicographic order of the terms. The motivation behind assigning codes in steps is that

terms are dynamically added to the similarity database. When new terms are added they

must be assigned a unique code that maintains the lexicographic order. These terms are

assigned a code between the codes of their lexicographic predecessors and successors.

The pseudo-code for the indexing of the Equivalent and Similarity database can be seen



CHAPTER 7. IMPLEMENTATION 103

in appendix G.

After all terms are in the Similarity database, the similarity and equivalent groups are

set up manually. The stop list is also manually created by setting some terms to non index

terms.

As new records are added to the database, a code is assigned to each new term. These

terms are manually placed into equivalent or similarity groups periodically. All terms have

to be assigned new codes when one of the code gaps between terms are filled with new

terms.

7.4.2 Term and Date Search Index

The term and date search indexes (TI and DI) are the most important, as they make the

entire retrieval algorithm possible.

To create the indexes, all records in the GDB are traversed sequentially. All fields in

each record are considered separately.

Each term in a field is located in the STI (it is important that the equivalent and sim-

ilarity database should be up to date before creating the term and date search index),

and the relevant TTermRecord read. Each equivalent and similarity code of the term is

then located (or a new entry created if it does not yet exist) in the TI. The posting linked

list that the term points to is then retrieved. If the posting linked list already contains

a posting for the current record, the TPosting record is retrieved, the Frequency field

incremented and a logical OR performed on the 64-code representing the current field and

the Occurrences field. If no postings for the current record exist, a new posting is created

containing the relevant data for the term.

For each period in a field, the record number is located in the DI. If no entry exists, a new

entry is made. The linked list for the record number is then retrieved. A TDatePosting



CHAPTER 7. IMPLEMENTATION 104

record is created containing the relevant field, start date and end date. This posting is

inserted in the linked list.

The above process is repeated for the individual in the current records’ mother, father,

spouses and children, with the entries made in the relevant indexes.

The pseudo-code for the term and date indexing can be seen in appendix H on page 137.

Note that, because the TPosting linked list is sorted in ascending order of record num-

ber, the algorithm is much faster if the records in the GDB is traversed in descending

order of record number. New postings can then always be added to the beginning of each

linked list, making inserting much faster.

7.5 Optimization

7.5.1 Repacking Postings

It was mentioned earlier that an efficient search algorithm should minimize the number

of disk reads. The algorithm described in section 7.4.2 does not index all postings for a

specific term before indexing the next term. Records are processed sequentially and terms

are indexed as they occur in the records. As a result the postings for a specific term are not

written to disk next to one another. Figure 7.1 depicts what the postings for a database

containing 5 records may look like on disk. Note that each block contains a tuple of the

form (term number, posting number).

Figure 7.1: Unpacked Postings



CHAPTER 7. IMPLEMENTATION 105

Assume that in one disk read three postings are read from the disk. To retrieve all the

postings for term 1, it would thus require 4 separate disk reads. Furthermore, after each

disk read, the reading head must be moved to the location from which it must read the

next term. This is a time consuming operation.

The disk read problem can be alleviated by repacking the postings after the indexing

process. Although this may take a considerable amount of time, it only has to be done

once after the index is created. Figure 7.2 depicts the same postings as in figure 7.1

after they have been repacked. Note that all the postings for term 1 can now be read

with only 2 disk reads and very little movement of the read head. In an actual computer

where far more than 3 postings are read during each disk read, repacking postings makes

a considerable difference to the algorithm’s response time.

Figure 7.2: Packed Postings

7.6 Search Process

Queries are assumed to be in disjunctive normal form. This approach was also followed

by [CKR01]. Define the set of individuals that can be used in queries to locate a person

to be: ∆ = {Person, Mother, Father, Spouse, Child}. Let Λ be the set of all fields that

can be used in a query (these fields are listed in appendix C). Formally, queries have the

following form:
m∨

i=1

ni∧

j=1

δi,j(λi,j(kij )) (7.1)

where δi,j ∈ ∆, λi,j ∈ Λ and kij is a term or a period. See appendix B for the EBNF

of queries. The evaluation of a query will consist of first evaluating equation 4.1 for the



CHAPTER 7. IMPLEMENTATION 106

conjunctive components and then evaluating equation 4.2 for the disjunctive components.

It is assumed that a value for p in equations 4.1 and 4.2 is specified by the user before

the search process starts (see section 2.6.4 on page 22 for how varying p changes the re-

trieval algorithm). The user can also specify if weighted query vectors should be used (it

was found in practice that better results are obtained from using using un-weighted query

vectors, see chapter 8) and if the Fast Matching or the Complete Matching weighting

technique should be used (see sections 4.4.1 and 4.4.2).

Records are ranked in response to a query by first locating each term in the STI and

obtaining its equivalent code. The conjunctive components are evaluated first. Each

equivalent code in a conjunctive component is then located in the TI and the relevant

posting linked list retrieved. This linked list is used to calculate a weight (using equation

4.7 or 4.8) for the current term in every record in which it occurs. This information is

stored in a new linked list in memory.

After a weight linked list has been found for each term in the conjunctive components,

equation 4.1 is evaluated for conjunctive component by means of a union merge on all the

weight linked lists. The resultant linked lists will contain a ranking of each of the records

in which terms occurred. If a conjunctive component contained any periods, the record

number of each record in which terms were located is used to locate the date posting linked

lists using the DI. An new ranking for each record is then calculated using equation 4.1

with equation 4.11 giving the weights for date terms.

Once ranking is complete for all conjunctive components, the disjunctive component can

be evaluated. The result of equation 4.1 for each conjunction acts as a weight in equation

4.2. The weight for the terms and periods in the disjunctive component is found in the

same way as in the conjunctive components. Equation 4.2 is also evaluated by performing

a union merge of the different weight linked lists.

The result of the above process is a linked list containing the final ranking of each record



CHAPTER 7. IMPLEMENTATION 107

to be retrieved. The linked list is sorted in ascending order of record number.

The pseudo-code for the retrieval and ranking algorithm can be seen in appendix I on

page 139.

In the algorithm just described, two passes are made over each linked list. The first pass

is made when the postings are read from disk and the linked list containing the record

occurrences of the term in the GDB is created. During this pass the numerator of equation

4.7 or 4.8 is calculated and the maximum numerator (the denominator) found. A second

pass is made when the linked lists are merged. Equation 4.1 or 4.2 is evaluated during the

merge after the numerator of equation 4.7 is divided by the denominator for each term

occurrence. If the resultant linked list represents the ranking of a conjunction of terms, a

third pass may be made over it as it is merged with the other linked lists in the disjunction.

Date searches are far less efficient than normal term searches. A date or period search

implies an extra traverse of the linked list of the terms in the conjunction or disjunction

where the period is specified. For each record number in the linked list, the numerator of

equation 4.11 is calculated for each period posting and the maximum stored in the period

linked list. This requires many disk reads since the record numbers are not known before

query times and thus no repacking of postings can be performed. Furthermore, all date

postings for the relevant records must be considered. A final merge must be performed

on the linked list to divide the numerator of equation 4.11 by the denominator and to

calculate equation 4.1 or 4.2.

Note that the final linked list is not sorted in order of ranking. Even a very efficient

sort algorithm would require several passes of the list. Rather than sorting the entire list

in one go, the top 10 highest ranking records are removed and added to a separate sorted

list (a process that can be done in a single pass). As the user views the results 10 at a

time, the sorted list will grow longer until it contains all the record numbers. It is unlikely

that this will ever happen since the user would usually only look at the first few highest

ranked records before refining his or her query. Although the total sort time would be



CHAPTER 7. IMPLEMENTATION 108

longer than a complete sort at the beginning if all records are eventually viewed by the

user, a single pass over the linked list takes a short enough time not to be noticed and so

no time is wasted in unnecessarily sorting the list.

7.7 Implementation Performance

Reporting on retrieval times is difficult because of the factors that influence response times.

Firstly there is caching, the process whereby data read from the hard drive is automat-

ically stored in memory. When the data is needed again, it can be accessed from memory,

making several disk reads unnecessary. As a result of caching, retrieval times depends on

previous queries.

The second factor that affect response times is the hardware on which the GIS is run.

Processor speed and the configuration of the hard drive can greatly affect the time that a

search takes.

7.7.1 Indexing

For the 551440 records that are currently in the GDB, indexing takes over 4 hours. This

number includes the time it takes to repack the postings. Records are thus indexed at

a rate of around 34 per second, a reasonable rate considering that no further sorting is

required.

7.7.2 Searching

Table 7.2 lists the queries used in searches that were performed. The computer was re-

booted after each query (for searches using both packed and unpacked postings). Some

of the terms, for example, MERWE and WILLEM was selected because of the large

number of times they occur in the GDB, thus constituting a worst case scenario.

Table 7.3 lists the statistics for queries that were performed. The column labelled #

represents the number of records that were returned in response to a query. Groups of



CHAPTER 7. IMPLEMENTATION 109

Query
A (FirstName Willem) AND (Surname Merwe)
B (BirthPlace Willem) AND (BaptismPlace Merwe)
C (FirstName Cornelis) AND (Surname Plessis)
D (BirthPlace Cornelis) AND (BaptismPlace Plessis)
E (FirstName Willem) AND (Surname Merwe) AND (BirthDate 1880)
F (FirstName Cornelis) AND (Surname Plessis) AND (BirthDate 1980.01.12)
G ((Mother) Surname Merwe) AND ((Father) FirstName Cornelis)

AND ((Father) Surname Plessis) AND ((Child) FirstName Willem)

Table 7.2: Queries

columns labelled I represents initial queries and groups C represents queries that have been

repeated (i.e. where caching play a role). Columns labelled T represent the total time for

a search, and columns labelled D represents time spent on disk reads. All times are in

seconds. Note that only the Fast Matching algorithm was used in the tests represented in

table 7.3

Unpacked Packed
I C I C

Query # T D T D T D T D
A 53424 16.623 16.561 0.313 0.25 0.579 0.532 0.298 0.235
B 53424 17.444 17.397 1.282 1.219 1.571 1.455 1.283 1.236
C 15345 17.0 16.969 0.11 0.094 0.313 0.297 0.109 0.094
D 15345 21.304 21.272 0.359 0.344 0.579 0.563 0.359 0.329
E 53424 24.798 24.72 1.375 1.297 8.272 8.194 1.392 1.329
F 15345 24.173 24.157 0.5 0.484 7.23 7.199 0.485 0.454
G 61136 31.074 31.012 0.375 0.296 0.715 0.704 0.36 0.281

Table 7.3: Retrieval times in seconds of various queries

The effect of repacking postings can be clearly seen. Note that for query G an improve-

ment in search time of 30.36 seconds was found.

Table 7.3 also highlights the negative effect on search time due to using dates in queries.

In both cases were dates were used (queries E and F), searches took almost 7 seconds longer

than the same queries without the dates (queries A and C).

In queries B and D, terms were searched for in fields where they are not expected to

occur. In such cases the term matching was not found by the logical AND performed on



CHAPTER 7. IMPLEMENTATION 110

the desired and actual locations of the term by the relevance function (see section 7.3.4)

had to be evaluated for almost every hit. This had a considerable negative effect on search

times for query B. The terms in query D does not occur as frequently in the GDB as the

terms in query B, and was thus not as negatively affected.

Query G makes use of the relative indexes (Father, Mother, Child and Spouse) to lo-

cate a person. It is clear that, although longer search times were found, search times are

reasonable and well worth the added functionality to the search algorithm.

A second set of tests were conducted to compare the Fast Matching with the Complete

Matching algorithm. The results can be seen in table 7.4. The results shown are for the

same queries as were used in the first test. The retrieval times are listed in seconds, and

are all for repacked postings and cashed searches.

Query # Fast Matching Complete Matching
A 53424 0.298 1.281
B 53424 1.283 1.297
C 15345 0.109 0.375
D 15345 0.359 0.375
E 53424 1.392 2.407
F 15345 0.485 0.74
G 61136 0.36 1.469

Table 7.4: Comparing Fast and Complete Matching algorithms

For the most part, the retrieval time for the Fast Matching algorithm is much faster than

for the Complete Matching algorithm. This is to be expected, since far more processing

time goes into the Complete Matching algorithm than into the Fast Matching algorithm.

Note that the search times for queries B and D is virtually the same. These are the

queries for which the fields specified for terms where not the fields where it was expected

the terms would appear. In these cases the Fast and Complete Matching algorithms had

to perform virtually the same computations.

All the search times for repacked postings in table 7.3 and 7.4 (even queries that contain



CHAPTER 7. IMPLEMENTATION 111

dates) are comparable to search times reported by Brin and Page for the first version of

Google [BP98].

7.8 Conclusions

This chapter described how the retrieval model discussed in chapter 4 can be efficiently

implemented. The algorithm was evaluated with respect to search times and it was found

that it compares favorably to other retrieval systems.



Chapter 8

EVALUATION OF

IMPLEMENTED ALGORITHMS

8.1 Introduction

The evaluation of an information retrieval system can be very difficult, and no perfect

methods have emerged [RBJ89]. The most popular method of retrieval evaluation is Re-

call and Precision [VR89]. In general, the goals of an information retrieval system is

firstly to retrieve as many relevant records as possible, and secondly to retrieve a minimal

number of non relevant records. These two goals are often conflicting, as a system that

retrieves all records will completely satisfy the first goal, while a system that retrieve no

records will satisfy the second goal.

We can formalize the notion of the first goal by defining the concept of Recall as the

ratio of the number of relevant records retrieved to the total number of relevant records.

The second goal can be define as Precision, the ratio of the number of relevant records

retrieved to the total number of records retrieved. A recall-precision graph is created by

plotting the precision values versus different recall values.

Unfortunately, the nature of searches in the GIS makes the above approach inappropri-

ate. When searching for an individual, only one record is relevant, therefore the Recall

112



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 113

value will only be 1 or 0, depending whether the individual is found of not (ignoring the

possibility of duplicate individuals). The Precision value can be useful, if we define it as

the number of records retrieved before the relevant record was found. In this chapter this

new definition of precision will be the measure of how well a search algorithm performs.

8.2 Retrieval in the GIS

Apart from using the precision value to evaluate the search algorithm, it will be compared

to the original search algorithms in the GIS. The original algorithm allowed for searches on

name and birthdate. The results are sorted in alphabetical order and then on birthdate.

For example, for the query du Plessis, Mathys Cornelius, the first 10 results are:

1. Du Plessis, Mathys Cornelis 1837.09.00
2. Du Plessis, Matthys Cornelis 1864.09.11
3. Du Plessis, Matthys Cornelis 1873.09.20
4. Du Plessis, Mathys Cornelius 1904
5. Du Plessis, Mathys Cornelius 1923.12.06
6. Du Plessis, Mathys Cornelius 1980.01.12
7. Du Plessis, Matheus Gideon 1944.08.18
8. Du Plessis, Matthys Heyns 1906.11.24
9. Du Plessis, Matthys 1865
10. Du Plessis, Matthys 1872

The results of the new search algorithm are displayed in order of the ranking assigned

by the weighting formulas. The user can specify the p value (see section 2.3), whether

weighted query vectors should be used, and whether the Fast or the Complete Matching

algorithm should be used. The first 10 results of the query {FirstName Mathys} AND

{FirstName Cornelius} AND {Surname du Plessis} are (a p of 3 and a un-weighted

fast matching search was used):

1. Du Plessis, Matthys Cornelis 1864.12.04
2. Du Plessis, Mathys Cornelis 1837.09.00
3. Du Plessis, Mathys Cornelius 1980.01.12
4. Du Plessis, Mathys Cornelius 1923.12.06
5. Du Plessis, Mathys Cornelius 1904
6. Du Plessis, Matthys Cornelis 1874.01.12
7. Mattheus, Cornelius Johannes 1885.06.20
8. Du Plessis, David Gerhardus Cornelius 1872
9. Du Plessis, Cornelis Johannes 1804.11.25
10. Du Plessis, Cornelis Johannes Hendrik 1814.04.09



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 114

Note that, if a date was specified, then many of the relevant results would not have been

returned by the original algorithm. For example, the query du Plessis, Mathys Cornelius 1904

would yield:

1. Du Plessis, Mathys Cornelius 1904
2. Du Plessis, Mathys Cornelius 1923.12.06
3. Du Plessis, Mathys Cornelius 1980.01.12
4. Du Plessis, Matheus Gideon 1944.08.18
5. Du Plessis, Matthys Heyns 1906.11.24
6. Du Plessis, Matthys 1865
7. Du Plessis, Matthys 1872
8. Du Plessis, Mattheus Jacobus 1851.05.19
9. Du Plessis, Mattheus Johannes Andries 1839.12.03
10. Du Plessis, Mattheus Johannes 1810.05.04

To the query {FirstName Mathys} AND {FirstName Cornelius} AND {Surname du Plessis}

AND {BirthDate 1904}, the new search algorithm would yield:

1. Du Plessis, Mathys Cornelius 1904
2. Du Plessis, Matthys Cornelis 1864.12.04
3. Du Plessis, Mathys Cornelis 1837.09.00
4. Du Plessis, Matthys Heyns 1907.02.03
5. Du Plessis, Mathys Cornelius 1980.01.12
6. Du Plessis, Mathys Cornelius 1923.12.06
7. Du Plessis, Matthys Cornelis 1874.01.12
8. Van Rensburg, Cornelius Mattheus 1900
9. Du Plessis, Gerrit Thomas Cornelius Ferreira 1899
10. Moggee, Charles Matthys Cornelis 1900.08.15

8.3 Evaluation

In this section searches will be performed and the results reported on and discussed. Ac-

tual case studies (not selected by the author) from genealogical sources [vH04] will ensure

an accurate representation of the search capabilities of the GIS.

The tables reporting the results for the new search algorithm will be labelled in the

following way: First the p value will be shown. If weighted query vectors is used, a W will

appear in the label. A F will indicate the Fast Matching algorithm and a C will indicate

the Complete Matching algorithm.



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 115

8.3.1 Case Study 1

Known Information

The person to be located is Lance Lindenberg Tomlinson, born 1884.10 and married

in 1900 to Sarah Johanna Uys, born 1879.1.7 and died in 1918. He had a daughter

named Francina.

Original search algorithm

The query used was Tomlinson, Lance Lindenberg 1884.10. The correct record con-

tained the person’s name as Lance Miles Tomlinson, born in 1885. The correct record

was the third record retrieved.

New search algorithm

The following query was used:

{FirstName Lance} AND {FirstName Lindenberg} AND {Surname
Tomlinson} AND {(Spouse) FirstName Sarah} AND {(Spouse) FirstName
Johanna} AND {(Spouse) Surname Uys} AND {(Child) FirstName
Francina} AND {RelationshipDate 1900} AND {(Spouse) BirthDate
1976.1.7} AND {(Spouse) DeathDate 1918} AND {BirthDate 1884.10}

The following results were obtained for the different user settings:

3C 3F 3WF 3WC 1WF 1WC

Position 1 1 3 3 1 2

The two queries not using weighted query vectors both listed the correct record first.

The weighted query vectors listed the record third, but changing the p value to 1 made

the weighted queries list the record as first and second for Fast and Complete Matching

respectively.

8.3.2 Case Study 2

Known Information

The person to be located is Sarah Crous, born in 1848 and married to Ephraim Fer-

reira. Her father was Pieter Arnoldus Crous and her mother was Johanna Aletta



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 116

van Rooyen.

Original search algorithm

The first query used was Crous, Sarah 1848. The correct record was not found in

the list of records. The date was then left out of the query and the correct record,

(Sarah Elizabeth Crouse 1840) was the second item in the list. The reason why the

first query did not find the correct person is that the birth date specified was later than

the birth date in the record.

New search algorithm

The following query was used:

{FirstName Sarah} AND {Surname Crous} AND {(Spouse) FirstName
Ephraim} AND {(Spouse) Surname Ferreira} AND {BirthDate 1848}

The following results were obtained for the different user settings:

3C 3F 3WF 3WC

Position 1 1 1 1

The record was listed first for all the different user settings. The person’s parents do

not occur in the database. If that information was included in the query, the record would

have been the 9th record listed.

8.3.3 Case Study 3

Known Information

The person to located is Henriëtta de Kock who was married to Matthys Johannes

Somerset and was the widow of Matthee.

Original search algorithm

The query used was Kock, Henrietta and the correct record was returned second.



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 117

New search algorithm

The second husband of the person is not in the database, but since this was not known to

the user before the person was located, the information was included in the query:

{FirstName Henrietta} AND {Surname Kock} AND {(Spouse) FirstName
Mattys} AND {(Spouse) FirstName Johannes} AND {(Spouse) Surname
Somerset} AND {(Spouse) Surname Matthee}

The following results were obtained for the different user settings:

3C 3F 3WF 3WC

Position 1 1 3 3

The correct record was the first returned record for un-weighted query vectors and third

for weighted query vectors. Varying the p value had no positive effect on where the record

as ranked.

8.3.4 Case Study 4

Known Information

The person to be found is Johanna Maria De Kock, married to Johan Godried Bam

who was born on 1802.11.7.

Original search algorithm

The following query was used: De Kock, Johanna Maria. The correct person was the

seventh record found.

New search algorithm

The query used for the new search algorithm was:

{FirstName Johanna} AND {FirstName Maria} AND {Surname Kock} AND
{(Spouse) FirstName Johan} AND {(Spouse) FirstName Godfried} AND
{(Spouse) Surname Bam} AND {(Spouse) BirthDate 1802.11.7}

The following results were obtained for the different user settings:



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 118

3C 3F 3WF 3WC

Position 1 1 1 1

The correct record was listed first for all the different user settings.

8.3.5 Case Study 5

Known Information

The person to be found is Jan Hendrik Badenhorst, son of Bernardus Gerhardus

Badenhorst, born 1811.3.17 and Susara Susanna Magdalena de Kock. Jan Hen-

drik Badenhorst was married in 1851 to Hendrina Wilhelmina Swart, born 1833.1.15,

who should also be located in the search.

Original search algorithm

The query used to search for Jan Hendrik Badenhorst was Badenhorst, Jan Hendrik.

Thirteen incorrect records were retrieved before the correct record was found. To locate

Hendrina Wilhelmina Swart, the query Swart, Hendrina Wilhelmina 1833.1.15

was used. The correct record was the first record retrieved.

New search algorithm

The marriage between Jan Hendrik Badenhorst and Hendrina Wilhelmina Swart

is not recorded in the GDB, but the information was nonetheless included in the query:

{FirstName Jan} AND {FirstName Hendrik} AND {Surname Badenhorst}
AND {(Mother) FirstName Susara} AND {(Mother) FirstName Susanna}
AND {(Mother) FirstName Magdalena} AND {(Mother) Surname Kock} AND
{(Father) FirstName Bernardus} AND {(Father) FirstName Gerhardus}
AND {(Father) Surname Badenhorst} AND {(Spouse) FirstName
Hendrina} AND {(Spouse) FirstName Wilhelmina} AND {(Spouse)
Surname Swart} AND {RelationshipDate 1851} AND {(Spouse) BirthDate
1833.1.15} AND {(Father) BirthDate 1811.3.17}

The following results were obtained for the different user settings:

3C 3F 3WF 3WC 1WF

Position 1 1 2 1 1



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 119

Despite the misleading information, the record was the first retrieved for all user set-

tings except for weighted query vectors using the Fast Matching algorithm. When the p

value was dropped to 1, the search with weighted query vectors using the Fast Matching

algorithm also returned the correct record first.

Knowing that the marriage is not recorded in the GDB, it was not included in the query

when searching for Hendrina Wilhelmina Swart:

{FirstName Hendrina} AND {FirstName Wilhelmina} AND {Surname
Swart} AND {BirthDate 1833.1.15}

The correct record was returned first for all the user settings.

8.3.6 Case Study 6

Known Information

The person to be found is Jan Crous who was married to Maria de Kock. This

scenario is complicated by the fact that both the first names do not match the first names

of the correct individuals in the GDB (The actual records was Johannes Hendrikus

Gerhardus Samuel Crouse and Catharina Petronella Wilhelmina De Kock).

Original search algorithm

The query used was: Crous, Jan. The correct record was located only after 16 incorrect

records were retrieved.

New search algorithm

The following query was used:

{FirstName Jan} AND {Surname Crous} AND {(Spouse) FirstName Maria}
AND {(Spouse) Surname Kock}

The following results was obtained for the different user settings:

3C 3F 3WF 3WC 20F

Position 10 2 22 1 1



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 120

The correct record was located first by the query using weighted query vectors and

Complete Matching. It was located second by the query using only Fast Matching. This

position was moved to 1 by changing the p value to 20. No significant improvements were

achieved for the other queries by changing the p value.

8.3.7 Case Study 7

The search presented here can not be performed using the original search algorithm, since

the maiden name of the individual was not known . Only results for the new search

algorithm will be presented.

Known Information

The person to be located is Eunice Swart, where Swart is her surname after marriage.

Results

The query used was:

{FirstName Eunice} AND {(Spouse) Surname Swart}

The correct record was that of Eunice Susanna Saayman, and was located first for

all the possible user settings. This is a significant result as it clearly illustrates not only

the effectiveness of the new search algorithm, but also its capacity to perform searches

that were previously impossible.

8.3.8 Case Study 8

This scenario is another example of a search not possible using the original search algo-

rithm.

Known Information

The person to be located is Engela Catherina Christina who was married to a Rossouw.

Her maiden name was unknown.



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 121

Results

The query used was:

{FirstName Engela} AND {FirstName Catherina} AND {FirstName
Christina} AND {(Spouse) Surname Rossouw}

The correct record was that of Engela Christina Catharina Van Graan, and was

located first for all the possible user settings.

8.3.9 Case Study 9

The original search algorithm could also not be used for this scenario.

Known Information

The person to be located is Aletta Gertruida Susanna who was married to a Van

der Merwe. Her maiden name was unknown. She was born on 1891.9.24 and died on

1950.5.12 in the town Edenburg.

Results

The query used was:

{FirstName Aletta} AND {FirstName Gertruida} AND {FirstName
Susanna} AND {DeathPlace Edenburg} AND {(Spouse) Surname Merwe}
AND {BirthDate 1891} AND {DeathDate 1950}

The correct record was that of Aletta Gertruida Susanna Cloete, with a recorded

birthdate of 1892, and was located first for all the possible user settings.

8.3.10 Case Study 10

This is an artificial scenario, designed to illustrate the power of the new search algorithm.

A search will be done for Luine Stefanie Stapelberg, but only minimal information

will be used.



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 122

Known Information

Assume that only the following information is known: The individual’s father was born in

Barkley-Oos, her mother maiden surname is Seeber, and she has a child who is named

Mathys.

Results

The query used was:

{(Mother) Surname Seeber} AND {(Father) BirthPlace Barkley-Oos}
AND {(Child) FirstName Mathys}

The correct record was located first for all the possible user settings. This scenario shows

that the correct individuals can be located using only the bare minimum of information.

8.3.11 Case Study 11

In this second artificial scenario, a search for Gideon de Villiers de Kock will be

performed.

Known Information

Assume that only the following information is known: We know that the person to be

searched for has the first name Deon and that he married to a lady named Magdalena

in Pretoria-Oos.

Results

The query used was:

{FirstName Deon} AND {(Spouse) FirstName Magdalena} AND
{RelationshipPlace Pretoria-Oos}

The correct record was located first for all the possible user settings.

8.4 Conclusions

The case studies presented in this chapter clearly show the versatility and effectiveness of

the new search algorithm. In each case the individual searched for was located and found



CHAPTER 8. EVALUATION OF IMPLEMENTED ALGORITHMS 123

with fewer incorrect records than the original search algorithm. Some searches that were

not possible using the original search algorithm were performed successfully with the new

algorithm.

Despite the heuristics laid down by Salton and Buckley [SB88], it was found that un-

weighted query vectors outperforms weighted query vectors. This is mainly because each

term used to search the GDB can be seen as equally important.

In general, results using the Complete Matching algorithm was superior to the Fast

Matching algorithm.



Chapter 9

CONCLUSIONS

9.1 Summary of Research

This project consisted of a literature study of Information Retrieval models. Several mod-

els were investigated, and both the most novel and commonly used were reported. For

genealogical information, it was concluded that the Extended Boolean retrieval model

would be best suited. Structured text retrieval models were considered with the idea of

hybridization with other retrieval models.

Several algorithms proposed specifically for the GIS were investigated and adapted. A

new retrieval model, that draws ideas from the Extended Boolean model, Structured Text

models and the algorithms specifically designed for the GIS, was proposed.

Several implementation techniques were investigated, and the lexicon to be used by the

retrieval algorithm refined. The efficient implementation of the new retrieval algorithm

was described in detail.

The new retrieval algorithm was evaluated with respect to search times and retrieval

effectiveness. It was compared to the original search algorithm where possible.

124



CHAPTER 9. CONCLUSIONS 125

9.2 Future Research

The focus of this research was the development of the search algorithm. Several factors

were not considered, and could be topics of future research.

The relevance values between different fields, that are used by the relevance function,

can only be shown to be correct through many searches. The refinement of these relevance

values could present opportunities for further research.

No compression was done on the posting linked lists that are stored for each term. By

using an efficient compression algorithm the disk space used could be significantly reduced.

Perhaps more importantly, if less disk space were to be used, it would require fewer disk

reads to retrieve information and would thus result in faster retrieval times.

9.3 Conclusions

This research cumulated in the design and implementation of a fast, effective search al-

gorithm. The algorithm allows searches for words and dates, and takes into account the

structure of the query and records. Functionality is provided that allows the user to search

on information about an individual’s relations (parents, children, etc.). Search results are

ranked in order of most relevant to the user’s query.

The algorithm can be applied to any database that stores textual information on indi-

viduals and their relations.



Appendix A

Data Structures

AltparTipe = Record
Altfat : IDTipe;
Altmot : IDTipe;
ATipe : str4; {0 Adopted, 1 Foster Parents}
end;

EventTipe = Record
ETipe : str4;
StartDat, EndDat : DatumTipe;
StartDatC, EndDatC : str4;
EPlekC : str4;
EPlek : PlekTipe;
EInfo : String;
EVoetNota : String;
References : String;
end;

MInfoRekordTipe = Record
Inf : String;
IVoetNota : String;
end;

EventArray = Array[1..MaxEvents] of EventTipe;
ReferenceArray = Array[1..MMaxVerwys] of VerwysTipe;
AlternateParentArray = Array[1..MaxAltPar] of AltparTipe;

MensRekord = record
(*------*) Id,PaId,MaId : IDTipe ;

Geslag : str4 ; {0 male, 1 female, 2 unknown}
GebDat,

126



APPENDIX A. DATA STRUCTURES 127

SterfDat : DatumTipe;
Van : String[VanLen];
VNaam : String[VoornaamLen];
BNaam : String[Bynaamlen];
AltParent : AlternateParentArray;
Events : EventArray;
MVerwys : ReferenceArray;
MInfoRek : MInfoRekordTipe;
MRecordHis : Array[1..MaxRecordHis] of RecordHistType;
NrAltPar, NrEvents, NrMVerwys : integer;

end;

HInfoRekordTipe = Record
Inf : String;
HVoetNota : String;
end;

ReferenceArray = Array[1..HMaxVerwys] of VerwysTipe;

HuwRekord = record
(*-----*) ManId,VrouId : IDtipe;

HuwDat,SkeiDat : Datumtipe;
HuwDatC, SkeiDatC : str4;
HPlekC : str4;
HPlek : PlekTipe;
SkeiTipe, (* 0 Marriage, 1 Common Law*)
TrouTipe : str4; (*0 Divorce, 1 Annulment, 2 Seperation*)
HVerwys : ReferenceArray;
HInfoRek : HInfoRekordTipe;
HRecordHis : Array[1..MaxRecordHis] of RecordHistType;
NrHVerwys : integer;
end;



Appendix B

EBNF for Query Language

The query language for the GIS is given below. Value means a name, term or date that

a user would like to search for.

Query ::= Disjunction

Disjunction ::= Conjunction {OR Conjunction}
Conjunction ::= Term {AND Term}
Term ::= {Individual Field Value}

Individual ::= (Father) | (Mother) | (Person) | (Spouse) | (Child) | λ

Field ::= firstname | surname | nickname | place | event | birth
| birthplace | birthdetails | baptism | baptismplace | ...

| eventdate | birthdate | ...

The rest of the possible search fields can be seen in appendix C.

128



Appendix C

Search Fields

All fields that can be searched for are listed in tables C.1 and C.2.

Person eventdate birthdate
OR Mother baptismdate
OR Father deathdate
OR Child deathdate
OR Spouse burialdate

immigrationdate
residencedate
willdate
adoptiondate
militarydate
medicaldate
educationdate
occupationdate
otherdate
relationshipdate

Table C.1: Available date search fields

129



APPENDIX C. SEARCH FIELDS 130

Person name firstname
OR Mother surname
OR Father nickname
OR Child event birth birthplace
OR Spouse birthdetails

baptism baptismplace
baptismdetails

death deathplace
deathdetails

burial burialplace
burialdetails

immigration immigrationplace
immigrationdetails

residence residenceplace
residencedetails

will willplace
willdetails

adoption adoptionplace
adoptiondetails

military militaryplace
militarydetails

medical medicaldetails
medicalplace

education educationplace
educationdetails

occupation occupationplace
occupationdetails

other otherplace
otherdetails

relationship relationshipplace
relationshipdetails

place baptismplace
birthplace
deathplace
burialplace
immigrationplace
residenceplace
willplace
adoptionplace
militaryplace
educationplace
occupationplace
otherplace
relationshipplace

information

Table C.2: Available term search fields



Appendix D

Record Fields

Provision is made for terms appearing in 64 different field. Each field has a 64-bit inte-

ger associated with it. The code for each field corresponds to one bit of the bit-string

representing the integer being set to 1.

First Name : 1; //1
Surname : 2; //2
Nickname : 4; //3
Information : 8; //4
Relationship Type : 16; //5
Relationship Place : 32; //6
Relationship Info : 64; //7
Separation Type : 128; //8
Birth Place : 512; //10
Birth Details : 1024; //11
Baptism Place : 2048; //12
Baptism Details : 4096; //13
Death Place : 8192; //14
Death Details : 16384; //15
Burial Place : 32768; //16
Burial Details : 65536; //17
Immigration Place : 131072; //18
Immigration Details : 262144; //19
Residence Place : 524288; //20
Residence Details : 1048576; //21
Will Place : 2097152; //22
Will Details : 4194304; //23
Adoption Place : 8388608; //24
Adoption Details : 16777216; //25
Military Place : 33554432; //26
Military Details : 67108864; //27

131



APPENDIX D. RECORD FIELDS 132

Medical Place : 134217728; //28
Medical Details : 268435456; //29
Education Place : 536870912; //30
Education Details : 1073741824; //31
Occupation Place : 2147483648; //32
Occupation Details : 4294967296; //33
Other Place : 8589934592; //34
Other Details : 17179869184; //35
Event 13 Place : 34359738368; //36
Event 13 Details : 68719476736; //37
Event 14 Place : 137438953472; //38
Event 14 Details : 274877906944; //39
Event 15 Place : 549755813888; //40
Event 15 Details : 1099511627776; //41
Event 16 Place : 2199023255552; //42
Event 16 Details : 4398046511104; //43
Event 17 Place : 8796093022208; //44
Event 17 Details : 17592186044416; //45
Event 18 Place : 35184372088832; //46
Event 18 Details : 70368744177664; //47
Event 19 Place : 140737488355328; //48
Event 19 Details : 281474976710656; //49
Event 20 Place : 562949953421312; //50
Event 20 Details : 1125899906842624; //51
Event 21 Place : 2251799813685248; //52
Event 21 Details : 4503599627370496; //53
Event 22 Place : 9007199254740992; //54
Event 22 Details : 18014398509481984; //55
Event 23 Place : 36028797018963968; //56
Event 23 Details : 72057594037927936; //57
Event 24 Place : 144115188075855872; //58
Event 24 Details : 288230376151711744; //59
Event 25 Place : 576460752303423488; //60
Event 25 Details : 1152921504606846976; //61
Event 26 Place : 2305843009213693952; //62
Event 26 Details : 4611686018427387904; //63



Appendix E

Date Fields

Birth Date : 1;
Baptism Date : 2;
Death Date : 4;
Burial Date : 8;
Immigration Date : 16;
Residence Date : 32;
Will Date : 64;
Adoption Date : 128;
Military Date : 256;
Medical Date : 512;
Education Date : 1024;
Occupation Date : 2048;
Other Date : 4096;
Event 13 Date : 8192;
Event 14 Date : 16384;
Event 15 Date : 32768;
Event 16 Date : 65536;
Event 17 Date : 131072;
Event 18 Date : 262144;
Event 19 Date : 524288;
Event 20 Date : 1048576;
Event 21 Date : 2097152;
Event 22 Date : 4194304;
Event 23 Date : 8388608;
Event 24 Date : 16777216;
Event 25 Date : 33554432;
Event 26 Date : 67108864;
Relationship Date : 134217728;

133



Appendix F

Relevance Function

The relevance function D is implemented using the following algorithm that calculates the

distance between fields Required and Located. Note that these fields are integers encoded

as described in sections 7.3.3 and 7.3.2. In the algorithm AND and OR is the bit-wise logical

AND and OR of the integers.

function Relevance(Required, Located) begin
RELEVANCE = 0
if (Required AND Located) > 0 then
begin

RELEVANCE = 1
end
else begin

for each non-zero bit position, RP, in Required
begin

for each non-zero bit position, LP, in Located
begin

RELEVANCE = Max(Table[RP][LP], RELEVANCE)
end

end
end

return RELEVANCE
end

In other words, if a term is located in the required field (or fields), the relevance is 1.

Otherwise, the relevance is the maximum relevance between all the fields where the term

was located and required.

134



Appendix G

Equivalent and Similarity

Database Indexing

The equivalent and similarity database is created by sequentially processing the entire

GDB. The following algorithm is used:

COUNT = 0 For each person record in GDB: begin
Read person record
For each term in the record:

if Term is not in STI then
begin

Create a TTermRecord
Assign Term to current term
Write record to disk
Create STI entry pointing to record
Increment COUNT

end
else begin

Use STI to locate record
Increment TotalFrequency
Increment other relevant frequency fields

end
end

STEP = MAX_CODE_SIZE / (COUNT+1) TEMP = STEP For each term in STI
(traversed alphabetically): begin

Read term record
Assign Code to TEMP
TEMP = TEMP + STEP
Save changes to record

135



APPENDIX G. EQUIVALENT AND SIMILARITY DATABASE INDEXING 136

Create SCI entry, using Code, pointing to the record
end

The above code is run only once. Note that the codes conform to the lexicographical

order of the terms. A gap is left between codes so that new terms can be added to the

database without assigning a new code to all terms.



Appendix H

Term and Date Indexing

The following algorithm is used to create the term and the date index:

For each person record in GDB begin
Read record
For each field in record
begin

For each term in field
begin

Locate term in STI
Read TTermRecord
With EquivalentCode and each SimilarCode do
begin

if Code is in TI then
begin

Locate TPosting linked list
if there exist a TPosting with

(RecordID = record number) then
begin

Read TPosting record
Occurrences = Occurrences OR field code
Increment Frequency
Save changes

end
else begin

Create TPosting record
Assign RecordID to person record number
Assign Occurrences to field code
Assign Frequency to 1
Insert TPosting into linked list

end
end

137



APPENDIX H. TERM AND DATE INDEXING 138

else begin
Create TPosting record
Assign RecordID to person record number
Assign Occurrences to field code
Assign Frequency to 1
Store record
Insert Code into TI pointing to TPosting record

end
end

end
For each date in field
begin

if record number is in DI then
begin

Locate TDatePosting linked list
Create TDatePosting record
Assign Field to field
Assign Startdate to the start date
Assign Enddate to the end date
Insert TDatePosting in linked list

end
else begin

Create TDatePosting record
Assign Field to field
Assign Startdate to the start date
Assign Enddate to the end date
Store TDatePosting record
Insert record number into DI

pointing to TDatePosting record
end

end
end
Repeat above process with person’s mother, father,

spouses and children using appropriate indexes
end

The above algorithm will create the term and date search indexes as described in sections

7.3.2 and 7.3.3.



Appendix I

Retrieval and Ranking algorithm

The following algorithm is used to retrieve and rank records in response to query Q.

For each term, ki, in Q begin
if ki is a word and not a period
begin

Locate ki in STI
Read TTermRecord
Replace ki by EquivalentCode

end
end For each conjunction of terms, QCT begin

For each Code in QCT
begin

Locate Code in TI
Retrieve TPosting linked list, calculate

weight for each term and store in memory
in a new linked list

end

Perform union merge on linked list and evaluate

equation 4.1 for each person record

For each period in QCT
begin

For each record number in linked list
begin

Locate record number in DI
Traverse TDateposting linked list and

calculate weight for date term and use

equation 4.1 to determine a

139



APPENDIX I. RETRIEVAL AND RANKING ALGORITHM 140

new ranking for each record
in the linked list

end
end

end For the disjunction of terms, QDT begin
For each Code in QDT
begin

Locate Code in TI
Retrieve TPosting linked list, calculate

weight for each term and store in memory
in a new linked list

end

Perform union merge on linked list and evaluate

equation 4.2 for each person record

For each period in QCT
begin

For each record number in linked list
begin

Locate record number in DI
Traverse TDateposting linked list and

calculate weight for date term and use

equation 4.2 to determine a

new ranking for each record
in the linked list

end
end

end

Perform union merge on linked lists from conjuctions

and disjunctions and evaluate equation 4.2

for each person record

Retrieve 10 highest ranking records and display to the user



Bibliography

[BP98] Sergei Brin and Lawrence Page. The anatomy of a large-scale hypertextual

web search engine. Computer Networks and ISDN Systems, 30:107–117, April

1998.

[Bur92] Forbes J. Burkowski. Retrieval activities in a database consisting of heteroge-

neous collections of structured text. In Proceedings of the 15th annual inter-

national ACM SIGIR conference on Research and development in information

retrieval, pages 112–125. ACM Press, 1992.

[BYN96] Ricardo Baeza-Yates and Gonzalo Navarro. Integrating contents and structure

in text retrieval. ACM SIGMOD Record, 25(1):67–79, 1996.

[Chi96] C. Chinner. Transformation algorithms to determine the similarity between

names. Master’s dissertation not completed, Department of Computer Science

and Information Systems, U.P.E., Port Elizabeth, 1996. Supervisor : G. de V.

de Kock.

[CKR01] J. Choi, M. Kim, and V. V. Raghavan. Adaptive feedback methods in a

extended boolean model. ACM SIGIR Workshop on Mathematical/Formal

Methods in Information Retrieval, 7 - 12 September 2001.

[DK88] G. de V. De Kock. Measuring the success of name matching algorithms in a

genealogical database (die meting van sukses van naampassingsalgoritmes in

’n genealogiese databasis). Q.I., 6(3):119 – 122, 1988.

[DK02] G. de V. De Kock. Proceedings SAICSIT 2002 : Enablement through Tech-

nology, Annual Research Conference of SAICSIT : Searching on Full Name

141



BIBLIOGRAPHY 142

Providing for Spelling Variations, chapter 2, page 255. ACM International

Conference Proceedings. SAICSIT (SA Institute of Computer Scientists and

Information Technologists), Boardwalk, Port Elizabeth, 16 to 18 September

2002. Abstract.

[DK04] G. de V. De Kock. A search algorithm for an archive database using person and

place names. In Proceedings of the 2nd International Conference on Cumputer

Science and its Applications, pages 216–223. US Education Service, LCC, 2004.

[DKDP93] G. de V. De Kock and Charmaine Du Plessis. The empiracal evaluation of some

word matching algorithms to determine eqivalent surnames in a genealocial

database (die empiriese evaluering van enkele variasies van ’n woordpassingal-

goritme vir die bepaling van ekwivalente vanne in ’n genealogiese databasis).

S.A. Computer Journal, 10:48 – 53, September 1993.

[dT03] S.F. du Toit. A search module based on the similarity name database for

the wingis system. Honours project, Department of Computer Science and

Information Systems, U.P.E., Port Elizabeth, 2003. Supervisors : M.C. du

Plessis, G. de V. de Kock.

[Dur94] J. Durkin. Expert Systems, Design and Development. Macmillan Publishing

Company, 1st edition, 1994.

[FMC98] R. Veroff F. M. Carrano, P. Helman. Data Abstraction and Problem Solving

with C++. Addison-Wesley, 2nd edition, 1998.

[Fra92] W. B. Frakes. Stemming algorithms. Information retrieval: data structures

and algorithms, pages 131–160, 1992.

[Goo04] Google. Google search engine. www.google.com, 2004.

[GT02] M. T. Goodrich and R. Tammasia. Algorithm Design: Foundations, Analysis,

and Internet Examples. John Wiley and Sons, 1st edition, 2002.

[Hal80] P. A. V. Hall. Approximate string matching. Computing Surveys, 12(4):381 –

402, 1980.



BIBLIOGRAPHY 143

[HK01] F. M. Ham and I. Kostanic. Principles of Neurocomputing for Science and

Engineering. McGraw-Hill, international edition, 2001.

[KM93] Pekka Kilpelinen and Heikki Mannila. Retrieval from hierarchical texts by

partial patterns. In Proceedings of the 16th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 214–

222. ACM Press, 1993.

[Knu73] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching,

volume 3. Addison-Wesley, 1973.

[LW75] R. L. Lowrance and R. A. Wagner. An extension of the string-to-string cor-

recting problem. J. ACM, 22(2):177 – 183, 1975.

[MJM83] G. Salton M. J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, 1st edition, 1983.

[NBY95] Gonzalo Navarro and Ricardo Baeza-Yates. A language for queries on structure

and contents of textual databases. In Proceedings of the 18th annual interna-

tional ACM SIGIR conference on Research and development in information

retrieval, pages 93–101. ACM Press, 1995.

[NBY97] Gonzalo Navarro and Ricardo Baeza-Yates. Proximal nodes: a model to query

document databases by content and structure. ACM Transactions on Infor-

mation Systems (TOIS), 15(4):400–435, 1997.

[Nic90] W. Keith Nicholson. Linear Algebra with Applications. PWS Publishing Com-

pany, third edition, 1990.

[Ore02] Nir Oren. Reexamining tf.idf based information retrieval with genetic pro-

gramming. In Proceedings of the 2002 annual research conference of the South

African institute of computer scientists and information technologists on En-

ablement through technology, pages 224–234. South African Institute for Com-

puter Scientists and Information Technologists, 2002.



BIBLIOGRAPHY 144

[Ple91] Charmain Du Plessis. Woordpassingsalgoritmes vir die bepaling van gelyksoor-

tige vanne in ’n Genealogiese Inligtingstelsel. Masters dissertation, University

of Port Elizabeth, Port Elizabeth, Febuary 1991.

[Ple01] M.C. Du Plessis. Genealogical Information System in Windows. Honours

project, University of Port Elizabeth, Port Elizabeth, December 2001. Super-

visor : G. de V. de Kock.

[Por97] M.F. Porter. An algorithm for suffix stripping. Readings in Information Re-

trieval, pages 313–316, 1997.

[RBJ89] V. V. Raghavan, P. Bollmann, and G. S. Jung. Retrieval system evaluation

using recall and precision: problems and answers. In Proceedings of the 12th

annual international ACM SIGIR conference on Research and development in

information retrieval, pages 59–68. ACM Press, 1989.

[RBY99] B. Ribeiro-Neto R. Baetza-Yates. Modern Information Retrieval. Addison-

Wesley, 1st edition, 1999.

[RJ88] Stephen E. Robertson and Karen Sparck Jones. Relevance weighting of search

terms. Document retrieval systems, pages 143–160, 1988.

[SB88] G Salton and C Buckley. Term-weighting approaches in automatic text re-

trieval. Information processing and management, 24(5):513 – 523, 1988.

[SFW83] Gerard Salton, Edward A. Fox, and Harry Wu. Extended boolean information

retrieval. Communications of the ACM, 26(11):1022–1036, 1983.

[SL68] G. Salton and M. E. Lesk. Computer evaluation of indexing and text process-

ing. Journal of the ACM (JACM), 15(1):8–36, 1968.

[TC90] H. Turtle and W. B. Croft. Inference networks for document retrieval. In Pro-

ceedings of the 13th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 1–24. ACM Press, 1990.



BIBLIOGRAPHY 145

[TCB99] I. H. Witten T. C. Bell, A. Moffat. Managing Gigabytes, Compressing and

Indexing Documents and Images. Morgan Kaufmann Publishers, Inc., 2nd

edition, 1999.

[vH04] Marena van Hemert. Families Registers, Old Swellendam Families, volume 2.

M. van Hemert and R.L. Aspeling, 1st edition, 2004.

[VR89] P. Bollman V.V. Raghavan, G.S. Jung. A critical investigation of recall and

precision as measures of retrieval system performance. ACM Transactions on

Information Systems (TOIS), 7(3):205–229, July 1989.

[WF74] R. A. Wagner and M. J. Fischer. The string-to-string correcting problem. J.

ACM, 21(1):168 – 173, 1974.

[WH91] Ross Wilkinson and Philip Hingston. Using the cosine measure in a neural

network for document retrieval. In Proceedings of the 14th annual international

ACM SIGIR conference on Research and development in information retrieval,

pages 202–210. ACM Press, 1991.

[XC98] Jinxi Xu and W. Bruce Croft. Corpus-based stemming using cooccurrence of

word variants. ACM Trans. Inf. Syst., 16(1):61–81, 1998.

[YA94] Tak W. Yan and Jurgen Annevenlink. Integrating a structured-text retrieval

system with an object-orientated database system. In Proceedings of the 20th

International Conference on Very Large Databases, pages 740–749, 1994.

[Yah04] Yahoo. Yahoo search engine. www.yahoo.com, 2004.


