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Abstract 
This thesis presents an alternative approach for pre-concentrating heavy metals in aqueous 

environments using electro spun polymer nanofiber sorbents. The conditions for electrospinning 

polyethersulfone, polystyrene, polysulfone and polyamide-6 were optimized. The morphologies 

and porosities of the electrospun nanofibers were studied using SEM and BET nitrogen gas 

adsorptions. The nanofibers had mesoporous morphologies with specific surface areas up to 58 

m2/g. The electro spun nanofiber sorbents were characterized in terms of their tunability for both 

uptake and release of heavy metals. The usability of the sorbent was also assessed. The sorbents 

showed fast adsorption kinetics for heavy metals « 20 min for As, Cu, Ni and Pb) in different 

aqueous environments. The adsorption characteristics of the sorbents best fitted the Freundlich 

isotherm and followed the first order kinetics. The efficiencies of adsorption and desorption of 

heavy metals on both imidazolyl-functionalized polystyrene and amino-functionalized 

polysulfone sorbents were more than 95% up to the fifth cycle of usage. Reusability improved 

dramatically (up to 10 runs of usage) when mechanically stable amino-functionalized nylon-6 

electro spun nanofibers were used. The capacity of the amino-functionalized nylon-6 sorbent to 

pre-concentrate heavy metals compared very favourably with those of aqua regia and 

HN03+H202 digestions especially in less complex matrices. Due to their highly porous nature, 

the electro spun nanofibers exhibited high adsorption capacities (up to 50 mg/g) for heavy metal 

ions. The loading capacities achieved with the imidazolyl-functionalized sorbent were higher 

than those for amino-functionalized mesoporous silica and biomass-based sorbents. The 

electro spun nanofiber sorbents presents an efficient and cost effective alternative for pre

concentrating heavy metals in aqueous environments. 

iv 



Table of contents 

Oed i cation." ....... , ............... .......... ... ..... ............................ , .. " ..... , , ...... , , .. , .. , ........ .. ,", ..... ', ...... , ........ , ...... ........ , ....... ", ... ii 

Acknowledgements .............................................................................................. .......... ........................................... ii i 

Abstract ........ ..... .................. ............ ...... ............ ...... ......... ...................................................... ......... ...... ..... ................ iv 

Table of contents ..... ............ ....................................................................... ................... ..................................... ........ v 

list of papers ................ .......................... ................................................................................................ .................... ix 

list of patents ........ .... ......... ..... ................... .. .......................................................... ........................................... ......... x 

list of abbreviation .......... .. ...................... ................................................................ ................................................. xi 

list of figures ........................ ..... ...... .......... ..................... ......................................................................................... . xii 

list of schemes ............................................................ .. ......................................................................... ... ............... xii 

list of tables ................................. ...... .............. ... .... ... ................................................ ............... .................. ..... .......... iv 

Chapter 1: Introduction .... ................... ........ .. ......... ... .. .................................................... ... .. .......... ........ ................... 1 

1.1 Heavy metal pollution in water ........ .... ......................................... ...... .. ...... ............................. .. ............. 2 

1.2 Sources of heavy metals in water ................ .... .................... .. ... .............................................................. 3 

1.3 Toxicities of heavy metals in water ...... · ................................................... .... ............................................ 4 

1.4 Methods for treating heavy metals in water ............................................................... .. ........ .. ............... 5 

1.4.1 Ion exchange ... ... .......... ........... ...................................... ........... .. ... ...... .... ... ....... .. ................... ... ....... 5 

1.4.2 Membrane filtration .... .... ........ ........... .. ... ............................................................. .. ......................... 6 

1.4.3 Coagulation and flocculation ....................................... ................................. ................................... 7 

1.4.4 Electrochemical treatment .................................. .... ..... ... ... .. .. .................. ... .. ........................ .. ........ 8 

1.4.5 Adsorption ........... .................. ................................................ .... .. .... .. ..... ......................................... 8 

1.5 Scope of the thesis .. ...... .... .............................................................. .. ............ ........................................ 11 

2.1 Overview .......... .. .... ... ........ ...... ....... ...... ... ......................................... .......... .. ..................................... .... 13 

2.2 Methods for producing nanofibers ..................... ................... .. ........ ........ ............................................. 13 

2.2.1 Drawing ............. .. ... ..... ................. .. ........... ......................................... .......... ......... .... ....... ...... ........ 13 

2.2.2 Template synthesis ............... .... ............... .............................. ..... ........... ........................................ 14 

2.2.3 Phase separation ............. .... ....... ............. .. ... ...... ....... .. ................................ .. .. .. ... ........ ... .... ......... .. 15 

v 



2.2.4 Self-assembly ................................................................................................ ......... .................. .. .... 15 

2.2.5 Melt blowing .............. ... ....... ............................... .. .............................. ...... .. .... ... ..................... ..... .. 16 

3.1 Overview ....... ........ ........... ... .................. .. ......... ...... ......... ... ... .. .. .. .... .... .. ... ......................... .. ...... ... ......... 18 

3.2 Historical background of electrospinning ............................................. ....... ...... .. .............................. ... 18 

3.3 Description of the electrospinning process .................................................. .. ...................................... 20 

3.4 Physical principles of the electrospinning process ..... .. ... .. ......... .. ............ .. .......................................... 21 

3.4.1 Launching the jet ... ................................................ .......... ................... .... ... ...................... ....... ... .. ... 21 

3.4.2 Jet elongation ........ ........................ .. ............. ........... ...... .. ...... .... ......... .. .. ...... .......................... .. ...... 25 

3.4.3 Whipping instability .. ...... ........... ... ....... ....... ........ ... .... ... .. .......... .. .. ......... ....................... ........... ...... 25 

3.4.4 Jet solidification .... .. ...... ......................................... ....... ... ........ ...... .. ..... ...... ...................... ..... ... ..... 26 

3.5 Types of electrospinning .. ....... .... ... ...... ............. ......... .. .... .............. ...... ... .... ................................. .. ..... .. 26 

3.5.1 Mono nozzle electrospinning ................................................................................... ... .. ................. 27 

3.5.2 Multi nozzle electrospinning ....... .... .. ... .... .. ...... ..... .... ..... .. .. ... .. .. .. .... .. ... .. ....................... .. ............... 28 

3.5 .3 Needleless electrospinning .................. ............................................................... .... .... ................... 29 

3.6 Electrospinning parameters ................................................................................. .. .... ........................... 31 

3.6.1 Solution parameters ....................... .. .... .. ....... ........ .. .. ................................................ ....... .. ........... 32 

3.6 .2 Spinning parameters ..................................................................................... ... ...... ... ................ .... . 39 

3.6 .3 Ambient parameters ...................................................................................... ....... ....... ............. .. ... 43 

3.7 Optimization of electrospinning parameters ...... .. ........ .... ... ........ .......... .......... ......... .............. .. ............ 45 

3.8 Functionalization of electrospun nanofibers ..................................................... ............. .. ............... .. ... 47 

3.9 Applications of electrospun nanofibers ............................................................. ..... .... ..................... .. ... 48 

4.1 Overview .................................................................................................................... ............... ............ 52 

4.1 Materials ....... .. .......... .. ........... .. .. .... .. ....... ..... .... .............. .. ......... .. .. .... .. ...... ..... .. ................................. .... 52 

4.1.1 Chemicals and reagents ........ .... ... .. .. ..... ........... ....... ........ ... ......... .. .... ...... .......... ............................. 52 

4.1.2 Polymers ................................... ... .... .. ........... ................. .. .. .... ... .. ...... .............. ............... ................ 53 

4.2 Instrumentation .................... ................................ .......... ...... ....... ... ....... .. .................................... ......... 53 

4.2.1 Electrospinning set up ................ ............... .................. ....... ........ .. ..... .............. ............. .. ................ 53 

4.2.2 Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy ................... 54 

4.2.3 Scanning electron microscopy .......................................................................... ..... ...... .. ................ 55 

4.2.4 Brunauer-Emmet-Teller (BET) analysis .......................................................................................... 55 

4.2.5 Inductively Coupled Plasma-Optical Emission Spectrometry ........................... .. ............ .. ............. 57 

4.3 Conductivity, temperature and viscosity ..................................................................... ......................... 58 

vi 



4.4 Potentiometric acid-base tit rations ........................... .. ......................................................................... 59 

4.5 Metal adsorption and desorption studies ....................................................................... .. ........ .. ........ . 59 

4.6 sorbent dose ... ...... ... .... ... .... .. ..... ........ .. ...................................................................... ..... .. ...... ........ ...... 60 

4.7 Effect of fiber size on efficiency of adsorption ................................ .. ................................................... 61 

4.8 Fiber reusability ............................................. .......... .. ................................................... ... ... ...... ........... . 61 

4.9 Acid digestion ... ..... .. ....... .... .. ...... .. ..... .. ................................................................... ..... ...... ... ................. 61 

4.10 Analytical quality control procedure .................... ........ ......................................................... .... .. ..... .. 62 

5.1 Overview ........................................................................................................................................ ....... 64 

5.2 Results and discussions .. .. .... .. .. .. ....... ...... ............... .. .. ..... ....................................... ... ........... .... ............. 64 

5.2.1 Dissolution of polymer .................................................................................................... ..... .... ...... 64 

5.2.2 Solution characteristics ......................................................................................................... ... ..... . 66 

5.2.3 Window of eletrospinnabi lity ... .. ........ .......... ..... .... .... ....... ....... ................ .. ....... ............................. 67 

5.2.3 Effect of solvent composit ion on nanofiber diameter ................................................. .... .............. 68 

5.2.4 Effect of applied volt age on nanofiber diameter ...... .... ... .... .. .... ........ ............................................ 69 

5.2.6 Effect of tip-to-collector distance on nanofiber diameter .............. .... ........................................... 70 

5.3 Conclusion .. ..... .... ....... .. .. ... .... ...... ...... ......................................................... ....... ... ....... .. ................... ..... 71 

6.1 Overview .................... ............................................ .. ......... ....... ...... .......... ... ... ........... ............................ 73 

6.2 Results and discussions ..................... .. ........... .... ..... .. .... .. ..... ..... ... .. ....... ... ....... .................................... .. 73 

6.2.1 Nanofibe r characterization ... ..... ........... .... ................ ............... ................ .. ...... .. ........... .... ............. 73 

6.2.2 pH dependence .............. ....................... ............ .. .. ......... ............. .............. .... ....... ................... ....... 78 

6.2 .3 Protonation and binding constants .............. ........... .......... ............................................................ 80 

6.2.4 Equilibration time .. .. ...... .. ... .... .. ... .......... ...... .. .... ... .... .... .. ..... ....... ..... ....... .. .. ...... .................. ........... 81 

6.2.5 sorbent dosage ... ... .................. ... ..... .................. ... ... .............................................. ........... .... ......... 82 

6.2.6 Desorption of metal ions and sorbent regeneration ...................................................... ........ .. ..... 83 

6.2.7 Adsorptions in real aqueous environments ....................................................... ...... ...................... 84 

6.2.8 Interference studies .. ... ..... ............................................................................................................. 86 

6.3 Conclusion ..... ... ..... .... .. ..... .... ............. ............ ......... ............ ............. ......................... ... .......................... 87 

7.1 Overview ........ .. .. ..... ...... .... .. .... .................................................................................. ...... ... .... ....... ... ..... 89 

7.2 Results and discussions .. ........ .. .. .. ................ .. ........ ......... ...................................................................... 89 

7.2.1 FT-IR studies ........................... ....... ................. ......... .. .. .. ... .... ...... ..... ............................................... 89 

7.2.2 Effect of pH on adsorption and desorption .. .. ................................ ......... .................. .................... 90 

7.2 .3 Effect of contact t ime on adsorption and desorption .......... ...... ................................................... 91 

vii 



7.2.4 Kinetics of adsorptions ..... ........ .............................. .................. ............................................. ....... .. 94 

7.2.5 Effect offiber size on efficiency of adsorption ................................................................ .. .... ........ 95 

7.2.6 Reusability of fiber ...................................... ................................................... ................................ 96 

7.2.7 Adsorption isotherms .................................................................................................................... 97 

7.2.8 Application on natural water samples ........................................................................................... 99 

7.3 Conclusion ............................................................................................................... .. ....... ................... 100 

8.1 Overview .... ... ... .... ... ...... ...... ..... ....................................................................................... .................... 102 

8.2 Results and discussions ....................... ........... ............................................................ .. .... .. .. .... .. .... ..... 103 

8.2.1 Functional ization and characterization of nylon-6 ...................................................................... 103 

8.2.2 Electrospinning of functionalized nylon-6 ....................................................... ...... .. .......... .......... 105 

8.2.3 Porosity measurements ..................................................... .................................... ...................... 106 

8.2.4 pH dependence .. ......... .............. ............ ...................... ................. ......... ....................... ........... ... .. 107 

8.2.5 Adsorption kinetics .................................................. ..... ............... .................. ......................... ... .. 109 

8.2.6 Kinetic models ............................................. ................................. ... ................................. ....... ... .. 110 

8.2.7 Adsorption isotherms .. .... .... .. ........... ........... ..... ... ... .... ......... .................................................. ...... 111 

8.2.8 Comparison with digestion protocols ....................................................................................... ... 113 

8.2.9 Reusability of nanofiber sorbent ...... .... ............... .. ............................................................ .. .. .. .... 115 

8.3 Conclusion ....... ..... ....... ...... .... .... ... .... ..... ... .. .. .... .... .. .... .. ............................ .. ....................... .. .. ..... ......... 116 

9 Conclusions .................................... .... ... ... ... ........ .. .......... ... ... ... ... .... .. .... .. ..... .. ........................................ 118 

References .... .... .. .. ..... .. .. ... ......... .................. .......... ... ....... ...................... ............................ .. ..... .... .... ........ 120 

viii 



List of papers 

1. Darko, G., Chigome, S., Tshentu, Z., Torto, N. (2011). Enrichment ofCu(ll), Ni(ll), and 
Pb(II) in aqueous solutions using electrospun polysulfone nanofibers functionalized with 
1-[bis[3-(dimethylamino)-propyl]amino ]-2-propanol. Analytical Letters, 44: 1855-1867. 

II. Chigome, S., Darko, G., Buttner, U., Torto, N. (2010). Semi-micro solid phase extraction 
with electrospun polystyrene fiber disks. Anal. Methods, 2: 623-626. 

III. Chigome, S., Darko, G., Torto, N. (2011). Electrospun nanofibers as sorbent material for 
solid phase extraction. Analyst, 136: 2879-2889. 

IV. Rammika, M., Darko, G., Tshentu, Z., Sewry, J., Torto, N. (2011). Dimethylglyoxime 
based ion-imprinted polymer for the determination of Ni(II) ions from aqueous samples. 
Water SA, 37(3): 1-10. 

V. Rammika, M., Darko, G., Torto, N. (2011). Incorporation of Ni(II)-dimethylglyoxime 
ion-imprinted polymer into electrospun polysulfone nanofibers for the determination of 
Ni(II) ions from aqueous samples. Water SA, 37(4): 537-546. 

VI. Darko, G., Chigome, S., Lillywhite, S., Tshentu, Z., Darkwa, J., Torto, N. (2011). 
Sorption of heavy metal ions in aqueous environments using electrospun polystyrene 
nanofibers functionalised with diazole ligands. International Journal of Envorinmental 
Analytical Chemistry (Under Review). 

VII. Darko, G., Sobola, A. , Chigome, S., Adewuyi, S., Okonkwo, J.O., Torto, N. (2012). Pre
concentration of heavy metals using electro spun arnino-functionalized nylon-6 nanofiber 
sorbent. S. Afr. J. Chern., 65: 14-22. 

VIII. Darko, G., Zugle, R., Nyokong, T. , De Clerck, K., Westbroek, P. , Goethals, A., De 
Schoenmaker, B. Torto, N. (2011). Steady states electro spinning of polyethersulfone (In 
preparation). 

IX. Pakade. V.£.. Cukrowsb, E.M., Darb\a, .T., Darko. G .. Torto N., Chimub. L. (2012) 
Simple and efficient ion imprinted polymer for recovery of uranium from environmenta l 
samp]e,. Wat~r S..:i. TeclmoI.. 65(4): 718-736. 

ix 



List of Patents 

I. Ruphino, Z., Darko, G., Litwinski, c., Nyokong, T., Torto, N. (2012) Polymer bound 
metallophthalocyanines. International Patent. WO 2012 1 023 100 AI. 

x 



List of abbreviations 

AC 

AFM 

BET 

C 

CNTs 

d 

DC 

DCE 

DMF 

DTAB 

E 

E' 

Eqn 

eV 

FT-IR 

g 

h 

HA 

HFP 

I 

ICP-OES 

K 

Alternating current 

Atomic Force Microscope 

Brunauer- Emmet-Teller 

Equilibrium concentration 

Carbon nanotubes 

Diameter 

Direct current 

Dichloroethene 

N,N-dimethylformamide 

Dodecyl trimethyl ammonium bromide 

Applied voltage 

Standard redox cell potential 

Equation 

Electron volts 

Fourier transform infrared 

gram 

Length of the capillary 

Hyalauronic acid 

Hexafluoropropylene 

Current 

Inductively couple plasma-optical emission spectroscopy 

Conductivity 

xi 



keY 

kY 

LOD 

LOQ 

MEK 

mg 

mg/L 

min 

ml 

MPa 

NIST 

nm 

NMP 

p 

PA-6 

PCEMA 

PCL 

PES 

PET 

PLGA 

PLLA 

PMMA 

kilo electron volts 

kilovolts 

Limits of detection 

Limits of quantification 

metre squared 

Methyl ethyl ketone 

milligrams 

milligram per litre 

minute 

millilitre 

mega Pascal 

National Institute of Standards and Technology 

nanometre 

N-Methyl-2-pyrrolidone 

Pressure 

Polyamide-6 (Nylon-6) 

Poly(methyl methacrylate) 

Poly(L-caprolactone) 

Polyethersulfone 

Polyethylene terephthalate 

poly(lactic-co-glycolic acid) 

Poly(L-lactic) acid 

Poly(methyl methacrylate) 

Saturated vapour pressure 

xii 



PS Polystyrene 

PSU Polysulfone 

Q Surface charge 

QR Maximum charge 

r Radius 

SEM Scanning electron microscope 

rpm Revolutions per minute 

TEBAC Triethyl benzyl ammonium chloride 

tg Glass transition temperature 

THF Tetrahydrofuran 

TMACI Tetramethylanunonium chloride 

UK United Kingdom 

US United States 

Vc Critical or minimum voltage 

VIII Molar volume 

WHO World Health Organisation 

wt% Weight percent 

x Mass of adsorbate adsorded 

Ii Dielectric constant 

f1 Velocity 

p Density 

cr Statistical error 

'J Surface tension 

xiii 



List of figures 

Figure 1.1: Sources of heavy metals in aquatic environments ....... .. . . . .. ...... .. ........ .. ... ... .... 3 

:Figure 2.1: Drawing process for generating nanofibers .................................. . . . ............ 13 

Figure 2.2: A schematic setup for producing fibers through template synthesis ........... . ......... 14 

Figure 2.3: A phase separation process ....................................... . ...... . .................... 15 

Figure 2.4: Typical melt blowing setup for producing ........................... . .. . .. ................ .16 

Figure 3.1: A schematic diagram of a typical electrospinning setup ......... " ................ . ...... 20 

Figure 3.2: A mono nozzle electrospinning setup ....... . .............. . .............................. . . 27 

Figure 3.3: A multi nozzle electro spinning setup ..................... . ... " .. . ........ . .. . .............. 28 

Figure 3.4: Schematic diagram of needleless electro spinning setup .................................. 29 

Figure 3.5: A typical electro spinning setup showing the major parameters that affect the 
process.................. . ............................................................................. 31 

Figure 3.6: Taylor cone and deposition patterns of non-optimized electrospinning .. ............ .45 

Figure 3.7: Scanning electron micrograph of nanofibers dhowing different effects of 
optimization .............................. . ...... .. ..... . ........................... ............ : . . . .. ....... .46 

Figure 3.8: Some of the major applications of polymer nanofihers .. . ................... . . . ......... .49 

Figure 4.1: Electrospinning setup ............... ..... .. ...................... . . ....................... . ..... 54 

Figure 5.1: Window of electrospinnability of poly ether sulfone ................... . ....... ......... . 67 

Figure 5.2: SEM images of poly ether sulfone ........................................................... 68 

Figure 5.3: The effects of the applied voltage on the average fiber diameter.. ...................... 69 

Figure 5.4: The effects of the tip-to-collector distance on the average fiber diameter. ............. 70 

Figure 6.1: Scanning electron microscopy images of different concentration of polystyrene ..... 74 

Figure 6.2: Scanning electron microscopy images of polystyrene in DMF:THF (4:1 v/v) .. .... .. 75 

xiv 



Figure 6.3: The relationship between polymer concentrations, BET surface areas and average 
pore width of polystyrene nanofibers ........................................... ..... ......... . . .. ........ 76 

Figure 6.4: ATR-FTIR spectra of functionalized polystyrene nanofibers ...... .. . . . .. ............ ... ... 77 

Figure 6.5: Adsorption profile of functionalized nanofiber sorbent .... .. ..... ... . ......... . .. . , ..... 78 

Figure 6.6: Adsorption profile of functionalized polystyrene nanofibers ....... . ...... ........ ...... 82 

Figure 6.7: Optimization ofsorbent mass for adsorption .. . ....... . . .. ............. .. ..... .. . . .. ....... 83 

Figure 6.8: Profile of number of times of fiber regeneration ............................... .. ... . ..... 84 

Figure 7.1: FT -IR Spectra of electrospW1 polysulfone nanofibers ............... .... ..... ...... ....... ........ 89 

Figure 7.2: Adsorption profiles of metals on functionalized electrospun polysulfone 
nanofibers ................ .. ...... ..... ... . ..................................................................... 91 

Figure 7.3: Rate of metal ions adsorption in turbulent and quiescent experiments ...... ... ... ..... 92 

Figure 7.4: Rate of metal ion desoption on functionalized polysulfone nanofibers ... .............. 93 

Figure 7.5: First order adsorption of metals on functionalized electrospW1 polysulfone 
nanofibers .. .. ........ .................. .... .. ........... . ............... ... ............ .. ............ .... ..... . 95 

Figure 7.6: Adsorption efficiencies the functionalized polysulfone nanofibers of different 
diameters .. . ... ...... . ...... .. ... ........... ......... .. .. . ..... ... ............. ................. ........... .... 96 

Figure 7.7: Reusability of functionalized e1ectrospW1nanofibers. . . . . . . . . . . . .... . . .. .. . ............. 97 

Figure 7.8: Freundlich isotherms for Cu, Ni, and Pb on e1ectrospW1 nanofiber. ........ .. ........... 98 

Figure 8.1 : FT-IR spectra offunctionalized nylon-6 nanofibers ..... ..... . ... . ............. ... ... .. .104 

Figure 8.2: Scanning electron microscopy image offunctionalized nylon-6 nanofibers ....... .. 105 

Figure 8.3 : Optimal pH for adsorption of heavy metals ............ .. ......... ..... . ........ .... ..... 107 

Figure 8.4: Adsorption kinetics of functionalized nylon-6 sorbent. ................................. I 09 

Figure 8.5: First order kinetics metal adsorption ...... .. .. ........ ... .. ...................... .. .... .. . 110 

Figure 8.6: FreW1dlich isotherm of adsorption ................................. ... .. ... ........... . . .... 112 

Figure 8.7: Comparison of pre-concentration efficiencies .......... ... ... '" .. .. .. ... ... . . ........... 115 

Figure 8.8: Reusability of the sorbent. ..... ....... ..... .. ............... ...... .. .............. ......... . 116 

xv 



List of schemes 

Scheme 8.1: Synthesis of functionalized Nylon-6-AMMP .................. .... ....... .... ........... 103 

xvi 



List of tables 

Table 1.1: Recommended (daily) dietary allowances and overdose effects of some essential 
heavy metals ........... ........ ....... , ............................................. , .. .. . .. . .. ... . ......... .. .. .4 

Table 3.1: Chronological development of electro spinning patents ............... .... ..... ............ 19 

Table 3.2: Trends in the patents filed on multiple nozzle electrospinning ........................ .. 30 

Table 3.3: Physical parameters of some solvents commonly used in 
electrospiruring ...................... ... ...... ....... .. , . , ....... , , ............................................ 34 

Table 4.1: Optimal conditions used for BET analysis .......................... .. ...................... 56 

Table 4.2: Analytical parameters used for metal analyses on the ICP-OES ................................. 57 

Table 4.3: Operational conditions ofICP-OES ................................................... . .. .. .. 58 

Table 5.1: Relevant physical characteristics of the solvents used ..................................... 64 

Table 5.2: Solubility characteristics of polyethersulfone (23-28 wt%) concentrations in various 
composition ratios ofDMF and NMP ..................................................................... 65 

Table 5.3: Characteristics of the po lymer solutions formed ............................................ 66 

Table 6.1: Concentration of heavy metal ions determined in 5 different types of water and the 
corresponding recovery values from 100 mglL spiked samples ....................................... 85 

Table 6.2: List of some of the properties divalent metal ions that affect their adsorption from 
aqueous solutions ............ ...... ................... .. ... .. .... ... .............. , ........ ... ................ 86 

Table 6.3: Recoveries of metals upon spiking with supposed interfering metal ions ............... 87 

Table 7.1: 'Adsorption parameters obtained from experimental data fitted into Freundlich 
adsorption model. ...................... ... , ...... .................... , ....................................... 98 

Table 7.2: Enrichment efficiencies of functionalized electrospWl nanofibers in natural water 
samples .. . . . .. . .. , ..... .. ....... , ...................... ... ... ... ..................... " ............. ........ . . I 00 

Table 8.1: Pore characteristics of electrospun nylon-6-AMMP nanofiber sorbent ...... " .... , ... l 06 

Table 8.2: Rate constants and the correlation coefficients for first order adsorption of metals on 
electro spun nylon-6·AMMP nanofiber sorbent.. . .. . ...... . .. ..................... . .................. III 

xvii 



1 
Introduction 

1 



1.1 Heavy metal pollution in water 

Many different definitions based on density, atomic weights (Fu and Wang, 2011) and toxicities 

(Boran and Altmok 2010) have been proposed for heavy metals. The term is therefore used for a 

loosely-defmed subset of elements that exhibit metallic properties including the transition metals, 

some metalloids, lanthanides and actinides (Duffus 2002). They are generally classified as 

elements having atomic weights between 63.5 and 200.6, and a specific gravity greater than 5.0 

(Srivastava and Majumder 2008). The heavy metals cannot be degraded and destroyed unlike 

their organic counterparts. They are stable and persistent environmental contaminants (Fu and 

Wang 2011). They are widespread, typically in concentrations less than I mglL, in surface water 

resources (Zolotov et ai., 1987). 

Although their concentrations in natural water sources are low (mglL range), metal ions tend to 

bio-accwnulate through the food chain (Gundacker 2000; Pourang 1995) and exert various health 

effects on humans and animals. The impact of heavy metals on human health is becoming a 

challenge to public health (Demirbas 2008; Muhammad et aI., 2011). Heavy metals are ranked 

high among the most important pollutants in natural and treated water resources. There is 

therefore the need for a regular, quick and accurate determination of the heavy metal ion in water 

resources. The direct quantification of metals in natural water samples has, however, proven to 

be a challenge as their concentrations are usually below the detection limits of many analytical 

instruments (Mohammadi et al. , 20 I 0). Hence, the need for an efficient sample pre-concentration 

step to bring their concentrations to detectable levels for accurate measurements . 
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1.2 Sources of heavy metals in water 

Heavy metals in water could originate from natural sources (such as weathering and erosion of 

bed rocks and ore deposits) or anthropogenic sources such as mining, industries, wastewater 

irrigation and agriculture activities (Chanpiwat et aI., 2010). Industrial waste constitutes the 

major source of metal pollution in natural water (Celik and Demirbas 2005; Demirbas et aI., 

2006; 2005 ; Pastircakova, 2004). Heavy metals are found in the wastewater from several 

industrial processes such as electroplating, metal finishing, metallurgical, tanning, mining and 

chemical manufacturing industries (Acar and Malkoc 2004; AI-Rub 2006). Heavy metals from 

these sources eventually leach into surface and underground water reserves and pollute them 

(Kang et ai., 2007). Figure l.l illustrates some of the major sources of heavy metals in aquatic 

enviroments 

BiDlaaioaJ. • ..t C~rriGW A'· . '.--A 
L.,ll ~ 

~mcdo.d~ --R!s:,J:::' 
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Figure 1.1: Sources of heavy metals in aquatic environments (Garbarino et aI., 1995). 
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1.3 Toxicities of heavy metals in water 

Heavy metals are among the most harmful elemental pollutants in water and are of particular 

concern because of their toxicities to human (Fu and Wang 20 II). Some of the heavy metals 

such as copper, cobalt, iron, magnesium and zinc are required (in trace concentrations) in human 

diet for nornlal body functions and as such, dietary allowances have been set for them (Table 

\.1) . 

Table 1.1: Recommended (daily) dietary allowances and overdose effects of some essential heavy 
metals (Ohno et al., 2010; WHO 1996) 

Recommended Over dosage (mg) Effect 
daily intake (mg) 

Cu 2 10 Intestinal distress 
Fe 15 20 Stomach upset 
Zn 15 25 Anaemia 

However, these same elements can cause health effects in humans when their tolerance levels are 

exceeded. For example, zinc is in1portant for the physiological functions of living tissue and 

regulates many biochemical processes. However, excess of zinc in the body can cause health 

problems such as stomach cramps, skin irritations, vomiting, nausea and anemia (Oyaro et ai., 

2007). Copper is essential for metabolic activities in the body and forms an active component of 

haemoglobin (Paulino et aI., 2006). However, excess copper in the blood stream can get 

deposited in the brain, liver and pancreas myocardium (Palanivelu et al., 2006) and initiates 

intestinal distress, kidney damage and anemia (AI-Rub et al., 2006). 

The presence of some toxic heavy metals such as cadmium, lead and mercury in the body has a 

potentially damaging effect on human physiology (Demirbas 2008). Nickel exceeding its critical 

4 



level in the human system may cause lung and kidney failure, gastrointestinal distress, 

pulmonary fibrosis and skin dermatitis (Borba el al" 2006). Nickel is also known to be a human 

carcinogen (Fu and Wang 2011). Mercury is a neurotoxin and can impair the functions of the 

kidney (Namasivayam and Kadirvelu, 1999). Exposure to high levels of mercury will also result 

in death (Godt et al.. 2006). Cadmium exposes human health to several risks. Chronic exposure 

to cadmium results in kidney dysfunction, mucous membrane destruction, diarrhea and vomiting 

as well as bone damage. It also affects the production of progesterone and testosterone. Lead is 

one of the most toxic heavy metals that have latent long-term negative impacts on human health; 

causing anemia, encephalopathy, hepatitis and nephritic syndrome (Deng et al.. 2006). Lead can 

also damage the brain, kidneys and the liver as well as the nervous and the reproductive systems 

(Naseem and Tahir, 2001). In view of their high toxicities, the exact concentrations of heavy 

metals in water samples ought to be known. Also, effort ought to be made to reduce their 

concentrations in water to lowest possible levels or remove them completely. 

1.4 Methods for treating heavy metals in water 

Many methods, including chemical precipitation, ion-exchange, adsorption, membrane filtration, 

electrochemical treatment have been explored for removing heavy metals from water. Each of 

these methods has their own advantages and limitations (Kurniawan et al., 2006). Some of these 

methods could be explored to pre-concentrate heavy metals in water. 

1.4.1 Ion exchange 

Ion exchange is a reversible process where an ion from a solution is exchanged for a similarly 

charged ion attached to an immobile solid particle. Ion.exchange process is widely used in water 

purification and softening. The most common ion exchangers used in water treatment are the 
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strongly acidic resins with sulfonic acid groups (-S03H) and the weakly acidic with carboxylic 

acid groups (-COOH). As a solution containing heavy metal passes through cations column, 

metal ions are exchanged for hydrogen ions on the resin as depicted in equations 1.1 and 1.2 

below: 

1.1 

1.2 

Ion-exchange processes have high levels of efficiencies and fast kinetics (AlyUz and Veli 2009). 

However, their efficiencies for heavy metal uptake are affected by many variables such as pH, 

temperature, initial metal concentration and contact tinle (Abo-Farha et ai., 2009; Gode and 

PehIivan, 2006). 

1.4.2 Membrane ftltration 

Membrane filtration processes have h.igh efficiencies for removing heavy metals and are easy to 

operate. The major drawback of these processes is the h.igh power consumption due to the 

pumping pressures, and fouling of the membranes (Fu and Wang 2011). Membrane processes 

that could be applied to remove heavy metals from water are ultrafiltration, reverse osmosis and 

nanofiltration. 

In ultrafiltration, hydrostatic pressure is used to force the water sample through a semipermeable 

membrane. Suspended solids are retained, while water and low-molecular-weight solutes (such 

as ions) pass through the membrane. The method is effective in removing suspended matter. 

However, some of the dissolved ions like the hydrates that have smaller sizes than the pore of the 

membrane can also pass through (Landaburu-Aguirre 2009; Sampera et ai., 2009). 
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Reverse osmosis is effective in removing a wide range of dissolved species from wastewater. It 

has been used extensively in the desalination industry (Shahalam et ai. , 2002) but has not been 

applied on the other water types (such as wastewater) because of its high cost of operation 

(Zbang el ai., 2009). 

Nanofiltration is a membrane filtration process used mostly in treating polyvalent cations in 

surface and fresh ground water sources that contain low levels of dissolved solids (Hillie and 

Hlophe 2007; Letterman 1999). Nanofiltration is a promising technology for removing beavy 

metal ions such as nickel (Murthy and Chaudhari, 2008), chromium (Muthukrislman and Guha, 

2008), copper (Csefalvay et ai., 2009) and arsenic (Figoli et ai. , 2010; Nguyen el ai., 2009) from 

waste water. The nanofiltration process benefits from ease of operation, reliability and 

comparatively low energy consumption (Erikson, 1988). The transmembrane pressure (pressure 

drop across the membrane) required in nanofiltTation is lower (up to 3 MFa) than those used in 

conventional membrane filtration, reducing the operating cost significantly. However, 

nanofiltration membranes are still subject to scaling and fouling. 

1.4.3 Coagulation and flocculation 

Coagulation and flocculation followed by sedimentation and filtration is also used in water 

treatment. Many coagulants such as aluminium, ferrous sulfate and ferric chloride are available 

for removal of particulates and impurities by forming hydroxide precipitates (Chang and Wang, 

2007). Generally, coagulation and flocculation cannot completely treat the heavy metals in water 

(Chang and Wang, 2007). Therefore, coagulation and flocculation must be followed by other 

treatment techniques (Bojic et ai., 2009; Plattes et ai., 2007, Tokuyama ef aI., 2010). 
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1.4.4 Electrochemical treatment 

This method involves plating-out the metal ions onto a cathode surface. The electrodeposited 

metal can be recovered from the cathode in their elemental states. Electrochemical wastewater 

technologies have not been widely applied because they involve relatively large capital 

investment and electricity supply (Wang et ai., 2007). 

1.4.5 Adsorption 

Adsorption is recognized as an effective and economic method for treatment of heavy metals in 

water. The adsorption process offers flexibility in design and operation and, in many cases, 

produces high-quality treated water (Fu and Wang 2011). In adilition, it allows for the 

regeneration and reuse of the sorbents after they have been desorbed. The effectiveness of the 

adsorption process depends on the characteristics of the sorbent used. The adsorption process 

could therefore be explored to pre-concentrate heavy metals in water samples. Several different 

kinds of adsorbents, including activated carbons, bioadsorbents and carbon nanotubes have been 

used (Hamissa et ai., 20 I 0). 

Activated carbon sorbents: Activated carbon sorbents have been widely used in removing heavy 

metals from water (Jusoh et ai., 2007). However, the depleted source of commercial coal-based 

activated carbon has resulted in a sharp increase in price. To make progress in heavy metals 

adsorption, alternative adsorbents that are cheaper and effective ought to be explored (Guo et ai., 

2010; Yanagisawa et ai., 2010). 

Biosorbents: The major advantage of biosorption lies in the use of readily available and 

inexpensive materials. Biosorbents are derived from three main sources (Apiratikul and 
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Pavasant, 2008), namely; (i) non-living biomass such as batk, lignin and shells (ii) algal biomass 

and (iii) microbial biomass such as bacteria, fungi and yeast. Several different forms of 

inexpensive, materials such as potato peels (Arnan el aI., 2008), sawdust (Kaczala et al., 2009), 

black gram husk (Saeed et al., 2005), eggshell (Jai el aI., 2007), seed shells (Arnudaa ef al., 

2009), coffee husks (Oliveira ef aI. , 2008), sugar-beet (Mata et al., 2009) and citrus peels 

(Schiewer and Patil, 2008), kaolinite and montmorillonite (Gu and Evans, 2008; Sud et a1. 2008), 

zeolites (Apiratikul and Pavasant, 2008), clay and peat (AI-Jlil and Alsewailem, 2009) have been 

investigated for adsorption of heavy metals from water. However, the process seems to be 

grappling with difficulties of reusability of the sorbents. 

Carbon nanotubes: Carbon nanotubes (CNTs) have been widely studied for their excellent 

properties in adsorption applications. They have proven to possess great potential for removing 

heavy metal ions such as cadmium (Kuo and Lin, 2009), chromium (Pillay ef al., 2009), copper 

(Li el al., 2010), lead (Kabbashi el al., 2009; Wang et aI., 2007), and nickel (Kandah and 

Meunier, 2007) from water. The mechanisms by which the metal ions are adsorbed on CNTs are 

not well understood but they appear attributable to surface electrostatic attraction, sorption

precipitation and chemical interaction between the metal ions and the CNTs (Rao et al., 2007). 

Both functionalized and unfunctionalized CNTs have superior adsorption capabilities compared 

with activated catbons (Pillay et aI., 2009). However, CNTs could be hatmful to human health 

(Karlsson et aI., 2008; Simon-Deckers el al., 2008) and their widespread use will result in their 

eventually discharge into the human environment (Fu and Wang, 2010). An environmentally 

friendly adsorbent that have capacities comparable to those of CNTs will therefore be a better 
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alternative (Li et al. , 2010). This is why electrospun nanofibers are receiving attention as a new 

platform for adsorption of heavy metals from water. 

Electrospun nanofiber sorbents: Electrospun nanofibers are currently receiving worldwide 

attention in adsorption applications (Greiner and Wendorff 2006) because they have the ability to 

overcome the limitations (low adsorption capacity, reusability) of the other kinds of adsorbents. 

A major limitation of activated carbons and bioadsorbents is their inability to desorb the heavy 

metals they adsorb back into solution for quantification. Their applications are tllerefore limi ted 

to mopping up the metals ions from water and not for sample preparation or pre-concentration 

purposes. 

The electro spun nanofibers have high specific surface areas and porosities that impart on them 

very high adsorption capacities (Huang et al., 2003). The electrospinrting process offers the 

flexibility for surface functionalizing the nanofibers with moieties that have high affinities for 

the heavy metals. For example, heavy metals are known to interact strongly with ligands such as 

the amino, tltiol and hydroxyl groups (Aguado et al., 2009; Yoshitake 2003). The binding 

abilities of the electro spun nanofibers for metals are dramatically enhanced when they are 

surface functionalized with ligands (Kang et aI. , 2007). Functionalized electrospun nanofibers 

could therefore make excellent adsorbent for quantitative pre-concentration of heavy metals from 

aqueous enviromnents. The metal ions adsorbed could easily be leached back into solutions by 

pH adjustments in order to avail the metals for qnantification without affecting the integrity of 

the sorbent. These remarkable features of electrospun nanofibers make them the preferred 
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sorbent materials for development of a platform for pre-concentration of heavy metals from 

water. 

1.5 Scope ofthe thesis 

The aim of this study was to develop electro spun nanofiber sorbents that have tunable 

characteristics for uptake of metals from water samples and releasing them into solutions, upon 

adjustment of pH, for quantification. The study focused on optimizing parameters for 

electro spinning different polymers into nanofibers and characterizing the sorbents developed 

from the nanofibers in terms of their tunabililty for uptake and release of heavy metals from 

aqueous environments, reusability and loading capacities. 

Electrospinning conditions were optimized for four different polymers (polyamide-6, 

polyethersulfone, polysulfone and polystyrene). The nanofibers were fully characterized in terms 

of their average diameters, morphologies and porosities. The nanofiber mat were then stamped 

out into optimized masses and applied as adsorbents for uptake of heavy metals. Parameters 

affecting adsorption such as initial concentration, contact time and pH were also investigated. 

The capacity of the functionalized electro spun fibers to pre-concentrate heavy metals from tap 

water, river water, sea water, treated and untreated sewage was assessed. The loaded sorbents 

were then desorbed and their efficiencies of adsorptions/desorption as well as cycles of usage 

determined. The capacities of the sorbents to pre-concentrate heavy metals were compared with 

the extraction efficiencies of two standard wet ashing or acid digestion (aqua regia and 

HN03+H,02) protocols. 
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2 
Nanofiber sorbents 
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2.1 Overview 

This chapter discusses the various methods for producing nanofibers. Methods such as drawing, 

template synthesis, phase separation, self-assembly and melt blowing will be discussed in this 

chapter. Electrospinning will be considered in detail in Chapter 3. 

2.2 Methods for producing nanofibers 

Production of nanofibers has centered around organic polymers and inorganic materials. The 

synthesized nanofibers can be tailored for specific purposes. Several methods for producing 

nanofibers have been outlined in literature (Ramakrishna et ai., 2005) but they could all be 

categorized into 5 groups; drawing, template synthesis, phase separation, self-assembly and 

electrospinning. 

2.2.1 Drawing 

A micropipette or the tip of an atomic force microscope (AFM) is dipped into a droplet of a 

viscous polymer solution near the contact line. The micropipette or the AFM tip is smoothly 

withdrawn slowly from the solution (Fig 2. I). Nanofibers are formed provided the solution is 

viscous enough. Drawing a nanofiber requires a viscoelastic material that can undergo strong 

deformations. 

A B AFM tip 

Polymer AFM tip Polymer 
droplet y droplet 

I 
Smooth ::= Smooth 

----7 
surface ..;, ~ surface ..... --. .... ~;;;;;;;;i--;NanOfiber 

Figure 2.1: Drawiug process in which (A) AFM tip is in contact with polymer droplet and (B) AFM 
tip is drawn away to generate nanofibers 
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The drawing method was applied successfully in fabricating sodium citrate nanofibers using 

chloroauric acid as the solvent (Ondarcuhu and Joachim 1998). Even though the drawing process 

gives a good level of repeatability, control of fiber dimensions is limited. The drawing process is 

only suitable for laboratory production of nanofibers as it cannot be scaled up for industrial or 

commercial production. 

2.2.2 Template synthesis 

In the template synthesis, the polymer solution is extruded through a metal oxide membrane 

having pore diameters in the nano range. Upon coming into contact with a solidifying solution, 

the extruded solution fonns nanofibers whose diameters are detennined by the pores in the 

template. Fibers of specified diameter can easily be made using a template of an appropriate 

diameter. Feng et ai., (2002) used a setup similar to the one illustrated (Fig 2.2) to synthesize 

PAN nanofibers. Nanofibers having diameters of about 100 nm were obtained from a PAN 

solution using dimethylfonnamide (DMF) as the solvent. 

Pressurized wate. 

=::~~__ Polymer solutio n 

I:xtruded fiber 

~olidifjcation solution 

Figure 2.2: A schematic setup for producing fibers through template synthesis 
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2.2.3 Phase separation 

In phase separation, a polymer solution is allowed to fonn a gel and then the solvent is extracted 

leaving behind the residual porous solid phase (Fig 2.3). 

> 

Figure 2.3: A phase separation process in which (a) polymer solution is allowed to gel out and (b) 
nanofibers are formed after extracting the solvent (Ramakrishna et ai., 2005) 

Tltis method has a minimal equipment requirement, batch-to-batch consistency is achieved easily 

and the mechanical properties of the matrix can be tailored by adjusting polymer concentration 

(Ramakrishna et ai .. 2005). However, it is limited to a few polymer types and there is only little 

control over the diameters of fibers fonned. Nanofibers have been successfully generated from 

poly(L-lactic) acid (PLLA) using tltis method (Ma and Zhang, 1999). 

2.2.4 Self-assembly 

In self-assembly, smaller molecules are used as building blocks to create nanofibers (Liu et ai., 

1996). Tltis method has been used extensively in synthesis of genetic materials such as DNA 

(Hartgerink et ai., 2001; Liu el at., 1996, 1999; Yan el at. , 2001). This method has also been 

applied on PCEMA core-PS shell (Liu, 1997), and many other copolymers (Yan ef ai. , 2004) . 

Self-assembly requires no machinery to move or orient components. Self-assembly can be used 

to produce atomically precise nanosystems. The fundamental disadvantage of pure self-assembly 
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is that for every product, the structure of the parts must encode the structure of the whole 

(Ramakrishna ef ai. , 2005) 

2.2.5 Melt blowing 

Melt blowing is a process for producing fibers directly from polymers using high-velocity air. It 

is a single-step process that converts polymer raw material directly into nanofibers. The polymer 

is melted in an extruder and then pumped through die holes into a high speed, hot air chamber. 

The fibers formed are collected on a rotating collector (Bresee 2004). Figure 2.4 is a schematic 

diagram of a melt blowing setup. Tbe process bas a high productivity and has been used to 

generate nanofibers from polymers such as polypropylene, polyethylene, polybutylene 

terephthalate, Nylon 6 and polystyrene (Chen et al., 2005; Ellison et al., 2007). 

Air 
Streams 

Figure 2.4: Typical melt blowing setup (Bresee 2004). 
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Electrospinning 
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3.1 Overview 

Electrospinning is the most versatile of all the methods for making nanofibers. The method could 

be applied to virtually every soluble or fusible polymer and the polymer solutions can be 

modified with additives prior to or after electro spinning for special purposes (Bhardwaj and 

Kundu 2010; Greiner and Wendorff 2007). The chapter discusses the electrospinning process in 

detail. 

3.2 Historical background of electrospinning 

The first documented accounts on electrospinning were put forward by J. F. Cooley and W. J. 

Morton in 1902 (Table 3.1). They described the electro spinning process as "the deposition of a 

viscous polymer solution as a cobweb-like mass from a positively charged orifice onto a 

negatively charged electrode". A year later, in 1903, Cooley patented electro spinning as "an 

introduction of the viscous polymer solution near the terminus of a charged electrode to yield 

fibers". Between 1934 and 1944, Anton Forrnhals patented five different versions of the 

electro spinning apparatus. Forrnhals was the first to document methods for electro spinning 

multi-component nanofibers and introduced a moving collecting system that allows some degree 

of fiber orientation. 
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Table 3.1: Chronological development of electrospinning patents (Andrady, 2008) 

Holder Year 
Cooley, J.F. 1902 

__________ ~O~ __________ __ 

Morten, J.W. 1902 
Cooley, J.F. 1903 
F ormhals, A. 1934-1944 

Hagiwara, K. 1929 
Norton, c.L. 1936 
Gladding, E.K. 1939 
Manning, F.W. 1943 
Simons, H.L. 1966 
Simrn, W., et al., 1976 
Martin, G.E., et aI., 197711978 
Simm, W., et aI., 1978 
Fine, J., et aI. , 1980 
Guignard, C. 198011981 
Bomat, A. 1982 
How, T.V. 1985 
Bomat, A. 1987 
Martin, G.E., et al., 1989 
Berry, J.P. 1991 
Scardino, F.L. and 2000 
Balonis, R.J. 
Chu, B. , et aI. , 2004 

- ---- --

U.S. Patent Reference # 
692,631 
705,691 
745,276 
1,975,504; 2,077,373; 
2,116,942; 2,123,992; 
2,158,416; 2,160,962; 
2,323,025; 2,349,950 
1,699,615 
2,048,651 
2,168,027 
2,336,745 
3,280,229 
3,944,258 

2,109,333 ; 
2,158,415; 
2,187,306; 

4,043,331; 4,044,404; 4,127,706 
4,069,026 
4,223,101 
4,230,650; 4,287,139 
4,323,525 
4,552,707 
4,689,186 
4,878,908 
5,024,789 
6,106,913 

6,713,011 ----

In the 1960s, Sir Geoffrey Taylor contributed immensely towards the fundamental understanding 

of the behaviour of droplets placed in electric fields (Taylor 1964, 1969). Taylor's findings 

helped develop the electrospinning process further. Around the same period, H. L. Simons 

(Table 3.1) identified conductivity, dielectric constant, viscosity and volatility of solvent as the 

key parameters that determine electrospinnability, fiber morphology and fiber diameter. In 1971 , 

Peter Bawngarten demonstrated the dependence of fiber diameter on viscosity (and hence on 

polymer concentration) and the electric field applied (Baumgarten 1971). Table 3.1 shows the 
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chronological development of patents on electro spinning from 1902 to 2004 (Andrady, 2008). 

There are currently over 70 patents filed on various aspects of electrospinning. 

3.3 Description of the eiectrospinning process 

In electrospinning, a high electric field is generated between the polymer solution contained in a 

syringe and a metallic collection plate by connecting the needle of the syringe to a high voltage 

power supply as shown in Figure 3.1. At a certain threshold voltage (depending on a number of 

factors to be discussed later) when the repulsive electrostatic force overcomes the surface tension 

of the polymer solution, a droplet draws out into a cone-shaped terminus and sprays downwards 

towards the grounded collector (usually an aluminum foil). As the jet travels towards the 

collector plate, the solvents dry off and the jet deposits as a mesh of nanofibers on the collector. 

Electrified __ ->.;==~ 
jet 

1<---- Syringe 

___ Polymer 

solution 

~ 0-- Voltage iG - supply 

__ .. _. __ Coliector 

plate 

Figure 3.1: A schematic diagram of a typical electrospinning setup. 
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3.4 Physical principles of the electro spinning process 

The polymer solution undergoes a number of processes, during electro spinning, before it 

transforms into nanofibers. For the convenience of description, Reneker and Fong (2006) divided 

the electrospinning process into 4 key stages: launching the jet, jet elongation, whipping 

instability and solidification. 

3.4.1 Launching the jet 

The j et launching is the first stage of the electrospirming process. The jet launching stage 

comprises droplet generation and Taylor cone formation. In the absence of an applied electric 

field, a polymer solution pumped through a capillary will just form droplets and fall off under the 

influence of gravity. Assuming that the only forces working on the meniscus of the droplets of 

polymer solution having density (p) are surface tension ('i) and gravity (g), then the radius ofthe 

droplet, ro, produced by a capillary of internal radius R is given by the expression 

(
3R"V)1 

/. - - -' o -
2pg 

3.1 

When a high enough voltage is applied to the droplets (having a finite conductivity), the 

electrical force (Er) and the gravitational force (Gil , will both work against the surface tension 

and only a sustainable droplet size will be maintained at the capillary tip when these forces 

balance out. 

i.e., y = E f + G f 3.2 
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Based on the equation first postulated by Loeb et al., (1941), Bugarski et al., (1994); DeShon 

and Carson (1968) as well as Lee (2003) proposed that the magnitude of the electric force at a 

capillary tip carrying a positive voltage (V) held at a distance (L) from a grounded metal surface 

is given as 

E, 

£ is the permittivity of the gas in which the process was carried out (usually, air) . 

Equation 3.3 depicts that as the voltage increases, the diameter of the droplet becomes 

progressively smaller until instability sets in at a critical value of the electric field (V c) where 

electro spraying and therefore bead formation starts. To maintain a constant flow of the charged 

droplets, the outward electrical force must be higher than the inward surface tension. 

3.4 

Instability of the electrically charged electrospinning jet has been explained using the Rayleigh 

condition (Rayleigh 1882). Rayleigh proposed that the maximum charge, QR, that the surface of 

a droplet can accommodate in vacuum is determined by the surface tension ('J) and the radius of 

the droplet (r) 

3.5 
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According to Rayleigh (1882), the electrically charged polymer droplet becomes unstable when 

the electrical force exerted on it exceeds its surface tension. Rayleigh, again, espoused that when 

the electrostatic force overcomes the surface tension (which acts in the opposite direction to the 

electrostatic force) the unstable charged droplet breaks up into a series of charged droplets at this 

point and the polymer solution ejects into fme jets. The droplet flrst deforms in the electric fleld 

and then explodes into a number of smaller droplets due to coulombic repulsion of the charges 

accumulated on its surface. In practice, this limit can be reached by either gradually increasing 

the electric fleld or by systematically reducing the droplet ' s diameter through evaporation 

(Abbas and Latham 1967; Kalayci el aI., 2005). 

According to Taylor'S theory, it is the instability induced on the surface of the electrically 

charged droplet that causes the nanoflber fonnation (Taylor, 1964; 1969). Taylor hypothesized 

that a spherical droplet of polymer forms at the capillary tip and elongates as the applied voltage 

increases. The elongated droplet assumes a cone-like shape and a narrow jet of liquid ejects from 

tillS point (Taylor 1964, 1969). It is the change in shape of the droplet into conical shape that 

deflnes the onset of the flber formation. Accordingly, it was proposed that the Taylor cone forms 

at a critical voltage (Vel given as 

3.6 

where hand r are length of the capillary and radius of the drop respectively. 
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Equation 3.6 suggests that the critical voltage required for electrospinning to occur is dependent 

on the surface tension of the solution. The Taylor's equation does not take into consideration the 

conductivity and the viscosity of the solution. In practice, however, both conductivity and 

viscosity heavily influence cone fonnation (Hendricks et al., 1964). The Taylor cone may not 

necessarily be maintained throughout the electro spinning process. Maintenance of the Taylor 

cone is dependent on the ratio of the feed rate and the rate of mass transfer onto the collector 

(Wang et al., 2006) and that electro spinning can occur from an essentially flat surface of a 

solution subjected to a strong enough electric field (Yarin and Zussman 2004). 

The pendant electrically charged Taylor cone does not explode because of the chain 

entanglement in the concentrated polymeric solution. The surface area of the Taylor cone also 

increases to accommodate the charge build-up and this leads to stretching out of the cone and 

fiber fonnation (Burger et al., 2006; Shenoy et aI., 2005). According to Deitzel et aI., (2006), the 

jet initiation occurs from the surface layers of the cone. By conservation of mass, feed rate and 

the speed of the launched jet can be described as 

Feed rate = (nd: fL ) 3.7 

where d is the diameter of the jet, p is the density, and I' its velocity. 

By conservation of charge, (He el al. , 2005a, 2005b) the current flowing in the jet (l) relates to 

the applied voltage (E) as 
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3.8 

where Q is the surface charge and k the conductivity of the solution. 

3.4.2 Jet elongation 

Jet elongation occurs when a voltage (Ve) exceeding the strength of surface tension of the 

polymer solution is applied. Buer et aI., (200 I) revealed that the velocity of the jet increases as it 

travels towards the collector. As a result of solvent evaporation and polymer stretching, the jet 

diameter decreases rapidly. 

3.4.3 Whipping instability 

The initially straight jet segment eventually becomes unstable and displays bending and 

undulating movements as it travels towards the collector. This undulating motion of the charged 

jet is primarily due to the competition between several different modes of instabilities such as 

axis symmetric, bending and Raleigh instabilities (Hohman et ai., 200 1b; Reneker ef al., 2000; 

Spivak and Dzenis 1998; Spivak et al., 2000; Yarin et ai. , 2001a, 2001b). 

The predominant mode of instability exhibited is dependent on the electric field, with stronger 

fields favouring Whipping instability. Whipping instability is known to be the primary 

mechanism responsible for reducing nanofiber dimensions during electro spinning (Shin ef al., 

2001a, 2001b). However, it has been pointed out that suppressing this instability using either a 

secondary electric field or a short gap distance (between the tip of the needle and the collector) 

does not change the average fiber diameter significantly (Dzenis 2004). It is, therefore, the 

interplay of these different forces that determines the diameter of the jet and not just one of them. 

Consequently, no mathematical model has singly explained the entire electrospinning process 
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adequately. Understanding of the process is far from complete, and not all the factors that govern 

the fiber formation are well Wlderstood. 

3.4.4 Jet solidification 

The time available to the jet to undergo whipping instability is determined by the rate of 

evaporation of the solvent. The microstructure, morphology and mechanical integrity of the 

electro spun nanofibers are affected by the volatility characteristics of the solvent mixture used 

(Wei et ai., 2006a). Solvent volatility is therefore a key consideration in controlling fiber 

diameter and morphology. With appropriate selection of solvents and process parameters, 

extremely fine nanofibers can be electrospWl (Koombhongse et ai., 2001; Larsen et al., 2004a; 

Reneker et ai., 2002). 

3.5 Types of eiectrospinning 

Though the electro spinning technique can be scaled up for commercial production, its 

productivity has been a challenge (Greiner and Wendorff 2007). There have therefore been many 

attempts to improve on the productivity of the process. Improved and more efficient versions of 

electro spinning have recently evolved but they all operate on the basic principles of the 

techniques. The different versions can be categorized under mono nozzle, multi nozzle and 

needleless electro spinning. 
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3.5.1 Mono nozzle electrospinning 

_. _. _. _. _. _. - . - , 

r.==U -

Figure 3.2: A mono nozzle electrospinning setup 

The mono nozzle is the simplest type of electrospinning setup in which only one nozzle/needle 

discharges the polymer solution (Fig 3.2). It is by far the most common and popular type of 

electrospinning especially in research laboratories. Mono nozzle electrospinning is simple and 

does not require a lot of capital investment. Its major limitation is the low productivity. 
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3.5.2 Multi nozzle electrospinning 

Figure 3.3: A multi nozzle electrospinning setup 

In the multi nozzle electro spinning, the polymer solution is fed into an array of nozzles or 

needles which are either static or moving. If the array of needles is the moving type, then they 

must be programmed to move in unison. The multi nozzle setup allows for the deposition of 

mUlti-component structures if different polymer solutions are electrospun concurrently. It is a 

straightforward way of increasing the productivity of electro spinning by just increasing the 

number of nozzles discharging the polymer solution (Ding et al., 2004; Kidoaki et ai., 2005; 

Madhugiri et al., 2003; Theron et al., 2005). The average fiber diameter may increase as a result 

of the fluctuation of the electric field between the nozzles and the collector. Figure 3.3 shows a 

schematic diagram of a multiple spinneret electrospinning setup. 
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3.5.3 Needleless electrospinning 

In the needle less electrospinning, the needles are replaced with holes, but the underlying 

principles of electrospinning remain the same. The system consists of a porous polyethylene tube 

placed inside a coaxial cylindrical drum (Fig 3.4). The polymer solution is pushed through the 

holes in the porous polyethylene tube using air pressure. When optimal electrical charges are 

induced on the polymer through the use of the electrode situated inside the porous tube, 

nanofibers extrude through the pores. The needleless method is said to be hundred times more 

efficient than the conventional electro spinning methods (Yarin and Zussman 2004). Maintenance 

of an even distribution of polymer solution and air pressure over the different holes in the porous 

drum is the main challenge of the needle less electro spinning. Reproducibility could therefore be 

low. 

I<f----- ---- Polymer 
~----i solution 

00 0 0 0 

I<E--- - Collector 
drum 

I<f---------- Electrode 

Figure 3.4: Schematic diagram of needleless clectrospinning setup 
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Not much scientific reports are available on multiple needles electro spinning. There exist, 

however, a good number of patents on multiple needles electrospinning (Table 3.2). 

Table 3.2: Trends in the patents filed on multiple nozzle electro spinning (DeVriez 2010) 

Year 

2002 

2004 

2005 

2006 

2007 

2008 

2009 

Numbers filed 

2 

10 

6 

7 

3 

6 

3 

Holder(s) 

Donaldson 

Donaldson 

State University of New York 

Donaldson 

Research Triangle Institute 

Raisio Chemicals Korea lnc. 

Donaldson 

Research Triangle Institute 

Donaldson 

State University of New York 

DOW 

Finetex 

BASF 

Teijin 

UGent 

BASF 

Cook Inc 

Bayer 

A large proportion of these patents are owned by companies such Donaldson, which manufacture 

air filtration products. A few other patents are held by research institutes who developed their 

own ways of working with multiple needles. 
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3.6 Electrospinning parameters 

A successful electro spinning process is dependent on a myriad of parameters each of which is 

important in determining quality and yield of the nanofibers. Factors such as the nature and 

concentration of polymer, characteristics of the solvent, the choice of equipment and its 

operational conditions as well as the prevailing environmental conditions, all affect the process. 

These parameters interrelate and a change in one of them affects the entire process (Ramakrishna 

2005). For the convenience of description, these parameters are categorized into four as shown in 

Fig 3.5. 

DC High VQltage generator 

I ( 20.0 ) kV ~mA 
. M.d.;n Gh,n. • L 

Process parameters 
Voltage; flow rate; 
Gap distance 

Instrument parameters 
Needle; collector 

Ambient conditions 
Temperature; humidity 

Solution parameters 
Concentration; Viscosity; 
Surface tension 
Solvent; Volatility; 
Dielectric constant 

Figure 3.5: A typical electrospinning setup showing the major parameters that affect the process 
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3.6.1 Solution parameters 

The solution parameters cover the properties (such as concentration, conductivity, surface 

tension) of the polymers solution that determine its electrospinnability. 

Concentration: In electro spinning, continuous and uniform nanofibers can only form when the 

solution concentration is high enough to present a high level of chain entanglement (Deitzel et 

al., 2001; Pomsopone et a/., 2005; Subbiah et al., 2005). The concentration of polymer in 

solution is the dominant factor that determines whether the fibers will be formed. The polymer 

concentration in solution determines the morphologies of the fibers (Demir et aI., 2002; Zong et 

al., 2002). It has also been established that the polymer concentration is the main criteria that 

determines fiber diameter. Higher polymer concentrations generally yield nanofibers of larger 

average diameter (Gupta et al., 2005; McKee et a/., 2004a, 2004b; Demir et aI. , 2002) . Several 

other researchers have indicated that the fiber diameter increases with polymer concentration 

(Baumgarten, 1971; Deitzel et al., 2001; Huang et al., 2006; Jun et al., 2003; Mit-uppatham et 

al., 2004b; Supaphol et aI., 2005b). Despite such an agreement, it is reasonable to expect the size 

of the fibers formed are also affected by other factors such as the nature of solvent used, feed 

rate (Supaphol et al., 2005a, 2005b), spinning conditions (Kang et aI. , 2002) and temperature 

(Mit-uppatham et al" 2004). 

Viscosity: Solution viscosity IS generally determined by the concentration of the polymer 

solution, molecular mass of the polymer and the density of the solvents used. Viscosity has 

effects similar to that of polymer concentration on the electro spinning process (Jilll el al., 2003). 

Although solution viscosity is primarily adjusted by changing polymer concentration, varying the 

32 



solvent composition (at a constant concentration of polymer) can also serve the same purpose 

(Lee et ai., 2003a) . At the same concentration, poly(p-phenylene vinylcne) (PPV) in 

ethanoUDMF solvent system has a higher viscosity than when dissolved in ethanol alone (Xin et 

aI., 2006). Higher concentrations of polymer generally give bead-free fibers. However, 

concentrations that are too high may lead to tip blockage (Subbiah et ai., 2005; Zong, et aI., 

2002). 

Addition of low concentrations of polyelectrolytes as demonstrated by Xin et aI., (2006) and 

vibrating the solution at low frequencies during electro spinning (He et ai., 2004; Wan ef ai., 

2006) are the two known methods for changing solution viscosity without an appreciable change 

in concentration. Vibrations facilitate temporary disentanglement of polymer chains by 

disrupting the van der Waal 's interactions between them and therefore reducing the solution 

viscosity. By merely vibrating the capillary tip (at 400 kHz) Wan et ai., (2007), generated thinner 

nanofibers of poly(butylene succinate) compared to when vibrations were not used. The 

vibration technique might also be used in electro spinning gels and coagulated materials that are 

difficult to electrospin. 

Solvent: The nature of solvent used determines the conformation of the dissolved polymer 

chains, the ease of charging the spinning jet, the strength of cohesion in the solution due to 

surface tension and the rate of solidification of the jet (Shenoy et ai. , 2005a). Jarusuwannapoom 

et ai., (2005) demonstrated the effect of solvents by investigating the electrospinnability of 

polystyrene (PS) using different solvents. Of the 17 solvents that dissolved the polymer, only 4 

(DMF, MEK, THF, DeE) yielded electrospinnable solutions. They identified dipole moment and 
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conductivity of the solutions as the key factors that determined electrospinnability of PS in those 

solvents (Jarusuwamlapoom et ai. , 2005). Son et ai., (2004) , studied the electrospiIDling of PEO 

at different concentrations in five different solvents. They observed that the average nanofiber 

diameters varied with the solvent used; thinner fibers were obtained using solvents of higher 

dielectric constant. Table 3.3 lists the properties of some of the solvents that are commonly used 

in electrospinning of polymers. 

Table 3.3: Physical parameters of some solvents commonly used iu electrospinning (Andrady 2008) 

Density Boiling Dielectric Surface Viscosity 
(glcm') point constant tension (roPa.s) 

('C) (25 'c) (mN/m) 

Acetic acid 1.050 118 6.1 9 26.9 1.1 

Acetone 0.790 56 20.7 23.46 0.324 

Chloroform 1.483 62 4.81 26.67 0.568 

Cyc10hexane 0.779 81 2.02 24.65 0.979 

DMF 0.944 153 36.7 0 .92 

Ethanol 0.785 78 24.6 22.0 1.1 

Formic acid 1.213 101 58.5 37.7 1.8 

THF 0.889 66 7 .6 23.97 0.468 

Toluene 0.867 111 2.38 27.95 0.59 

Water 0.998 100 78.5 71.99 1 

Four characteristics of solvents (conductivity, dielectric properties, surface tension, volatility) are 

considered important in electro spinning (Krishnappa et aI. , 2003; Mit-uppatham el ai. , 2004; 

Shawon and Sung 2004; Wannatong el ai. , 2004; Wu el ai., 2005; Yang et ai. , 2004). Each of 

these solvent characteristics has a direct influence on electrospiIDlability of the polymer solution 

and on the morphology of the nanofiber formed. These parameters generally interrelate and they 

CarolOt be independently varied to optinlize a solution. For example, addition of a few drops of 
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alcohol to change the surface tension of a PEO/water system also changed the viscosity and 

conductivity of the solution (Morota el ai., 2004). Selecting an ideal solvent system for a 

polymer to be electrospun is therefore a complex task (Lu et ai., 2006). Solvent is mostly based 

on trial and error. 

Conductivity: Solutions of zero conductivity cannot be electrospun. A minimal electrical 

conductivity is required in the polymer solution to transfer electric charges from the electrode to 

the droplet at the tip of the spinneret. Due to the presence of conducting ionic species from the 

polymer (mostly from impurities or additives), conductivity of a polymer solution is generally 

expected to be higher than that oftl,e pure solvent. Conductivity may decrease (Jun et ai. , 2003) 

or increase (McKee et ai., 2006a) with concentration depending on the nature of the polymer. If 

the polymer has ionic functionality (as in the case of polyelectrolytes), the so lution's 

conductivity will increase with increase in the polymer concentration. Conductivity of polymer 

solutions can be altered by changing the composition of the solvent system used. Changing 

solvent composition will also change the surface tension and dielectric constant. The consequent 

changes in electrospinning behavior cannot be uniquely attributed to changes in conductivity. It 

is however known that polymer solutions having higher conductivities give nanofibers of smaller 

diameters (Tan et ai., 2005). 

A solution may be spiked with an additive if its conductivity is found to be too low to electrospin 

smooth, continuous fibers. The addition of ionic species to the solution allows a relatively higher 

surface charge density to be maintained on the jet (Zong er ai., 2002). The presence of ionic 

species in the spinning solution reduces the magnitude of voltage required for electro spinning 
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and often results in improved fiber morphology. Some of the additives that have been used in 

electro spinning include inorganic salts such as NaCI (Kim e/ al., 2005; Lee et aI., 2005; 

Wannatong e/ aI., 2004; You et al., 2006), pyridinium formate (lun et al., 2003), palladium 

diacetate (Yu et al., 2004), trialkylbenzyl ammonium chloride (Zeng et aI., 2003b) . 

Dielectric Constant: The dielectric constant (E) is a measure of how effectively a material placed 

in electric field can concentrate the electrostatic lines of flux. In a practical sense, it is the 

solvent's ability to hold electrical charges. Solvents of different dielectric constants will interact 

differently with the electrostatic field. The dielectric constants of the solvents are therefore 

important in electrospinning. Solutions with higher dielectric constants tend to disperse the 

surface charge density on tlle jet more evenly and this leads to the production of fibers with 

uniform morphologies and smaller diameters (Wannatong el aI., 2004). 

The effect of the solvent's dielectric constant on fiber morphology was explicitly demonstrated 

by Min et al., (2004) by comparing the morphologies of nanofibers electrospun from 15 wt% 

poly(lactide-co-glycolide) solutions in chloroform and in hexafluoropropylene (HFP). Different 

fiber morphologies were obtained with the two solvents and the average fiber diameter obtained 

from HFP (having a higher E of about 16.7) was lower than those obtained from chloroform 

(having a lower value E of about 4.81). This phenomenon also held true when PEO was 

electro spun in different solvents (Son et al., 2004). Solvents with the higher E resulted in smaller 

average diameters. The extent to which solvents affect the nanofiber characteristics have been 

investigated by several other researchers. For example, Hsu and Shivkumar (2004b) reported that 

as the volume fraction of DMF in a CHClylDMF mixture increased from 0 10 10 wl%, the 
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average diameter of fibers electrospun from poly(L-caprolactone) (PCL) decreased from 450 nm 

to 150 nm. The decrease in fiber diameter was attributed to the increase in dielectric constant of 

the solvent system due to the increase in the propOltion of DMF (having £ of 36.7) compared to 

CHCI3 (having £ of 4.8). A similar effect was also observed in PS dissolved in DMFfTHF (Lee et 

al. , 2003a), PCL in DMF/CH2CI2 (Lee et al., 2003b) and PVC in DMFfTHF (Lee et al., 2002). 

The qualitative correlation between £ of so lvents and the morphologies of nanofibers they form 

has also been reported on different polymer solutions such as PMMA (Dong el al., 2004), PCL 

(Lee et aI. , 2003b), PLGA (You et al., 2006a), and PVC (Lee et aI., 2002). 

Surface tension: Surface tension is the mam force of attraction that opposes the Coulomb 

repulsion in electro spinning. The charges induced on the polymer solution must be high enough 

to overcome the surface tension of the solution before the fibers could form. Surface tension of 

the solution may cause tbe solution to breakup into droplets as the solution jet accelerates from 

the tip of the spinneret towards the collector (Christa31ti a31d Walker 2001; Shummer and Tebel 

1983). High surface tension is also responsible for a phomonenon called electrospraying 

(Morozov el aI. , 1998) where droplets of the polymer rather tha31 fibers are formed on the 

collector. Surface tension has also been attributed to the formation of beads on the electro spun 

fibers (Fong et aI. , 1999; Shawon and Sung 2004). According to Deitzel el al. , (2001), surface 

tension and viscosity of the solution are the main parruneters that determine the window within 

which a specific polymer/so lvent system can be electrospun. Surface tension of a polymer 

solution is dependent on the concentration (Deitzel et aI., 200 I), the chemical nature of the 

polymer (Lee et al., 2003b) and temperature (Clark 1938). Surface tension is affected by the 
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electric field and it is likely to change with time, as the jet moves from the tip of the capillary to 

the collector (Fong et al., 1999). 

All other factors being equal, lower surface tension is a desirable solvent characteristic in 

electrospinning (Fridrikh et al., 2003). Surface tension of a polymer solution can be controlled 

by a judicious selection of solvents. However, changing the solvent composition leads to a 

change in viscosity (Lee et ai., 2002). Additives such as surfactants can be employed to reduce 

the surface tension of a polymer solution to facilitate electro spinning (Jung et al., 2005; Lin et 

ai., 2005a; Zeng et al., 2003b). Lin et ai., (2004), electro spun bead-free nanofibers from an 

otherwise unspinnable 5% PS (w/v) in DMFrrHF when 0.03 mmollL of a cationic surfactant, 

dodecyl trimethyl ammonium bromide (DT AB), was added to the polymer solution. Some other 

surfactants that have been used in electro spinning are Triton X-IOO (Yao et al., 2003), triethyl 

benzyl ammonium chloride (TEBAC) and AEOIO (Zeng et al., 2003b). 

Volatility: For the best results, all solvents in the polymer solution must dry up before the 

charged jet hits the collector. Otherwise, the wet fibers may fuse together to fonn a melded or 

reticular mat (Hsu and Shivkumar 2004a) or a flat ribbon-like nanofibers (Koombhongse et al., 

2001). Using volatile solvents encourages evaporation and removes this challenge. However, the 

solution may dry up quickly at the needle tip and block the flow when highly volatile solvents 

are used (Megelski et ai., 2002). This may lead to the fonnation of wrinkled or "raisin-like" 

nanofibers (Krishnappa et al. , 2003). Very rapid drying can also result in the fonnation of fibers 

with bigger diameters (Bognitzki ef ai., 2000; Wannatong e! ai., 2004; Wei et aI., 2006b). At a 

given gap distance, the rate at which polymer solutions dry during electrospinning is detennined 
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by the environmental temperature, the vapour pressure of the solvents and the degree of 

whipping instability (Kidoaki et al., 2006; Larsen et al., 2004b). 

3.6.2 Spinning parameters 

The spinning parameters comprise the nature of the setup (collector material and geometry) as 

well as the operational variables (magnitude and polarity of the applied voltage, feed rate and 

gap distance) employed during the spinning process. 

Voltage: The applied voltage is needed to induce the necessary charges on the solution and also 

establish the external electric field to drive the process. While direct current (DC) supply is the 

most commonly used. It is also possible to use the alternating current (AC) for electrospinning 

(Ramakrishna et al. , 2005). Either positive or negative voltage of more than 6 kV should be able 

to cause the jet initiation (Taylor 1964). 

In general, application of higher voltages brings about greater levels of instability and stretching 

of the jet (Buchko et aI., 1999; Fridrikh et al., 2003 ; Shin et aI., 2001a, 2001b) and results in 

smaller fiber diameters (Buchko et aI., 1999; Jalili el al., 2005; Lee e( al. , 2004; Megelski el al., 

2002; Spasova et al. , 2004; Takahashi el aI., 2005). Several other researchers (Gu and Ren 2005; 

Lee el al., 2002; Shukla el al., 2005; Yuan et al., 2004) have however, reported that the applied 

voltage does not have a significant effect on the average fiber diameter. These discrepancies in 

observations suggest that the effect of applied voltage on fiber diameter needs to be considered 

together with other parameters such as feed rate, gap distance (Sukigara et aI., 2003) and mass 

transfer (Baumgarten 1971 ; Dersch et al., 2003; Khil et al., 2003; Shin et al. , 2001a; Theron el 
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al. , 2004). The apparent discrepancy in the reported effects of voltage on fiber diameter is likely 

due to the different polymer concentrations, feed rates and gap distances used in the different 

studies. 

A high voltage may favour the formation of secondary jets resulting in the formation of fibers of 

smaller average diameters (Demir et al., 2002). Fiber diameter is also affected by the length of 

the jet 's flight time. A longer flight time will allow more time for the fibers to stretch and 

elongate before they are deposited on the collector plate. At a lower voltage, the reduced 

acceleration of the jet and the weaker electric field may increase the flight time of the 

electrospinning jet and results in the formation of fibers with lower average diameters (Zhao et 

al., (2004) . 

The polarity of the voltage applied at the capillary tip has an impact on morphology and the 

average diameter of the fiber formed. A significant difference was observed in the average 

diameters of nylon-6 nanofibers electrospun separately from positively and negatively charged 

tips (Mit-uppatham et af., 2004a; Supaphol et al., 2005a). The average diameters of fibers 

generated from negatively charged capillary tips were found to be significantly larger (Mit

uppatham et al., 2004a; Kalayci et aI., 2005). A sinlilar phenomenon was also observed with 

nanofibers electrospun from PAN in DMF (Kalayci et al. , 2005). 

Feed rate: Feed rate is the quantity of polymer solution pumped into the tip per unit time. For a 

steady state and continuous formation of fibers, the feed rate of the solution must match the rate 

of its removal from the tip . At lower feed rates, the Taylor cone gets depleted and the 
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electro spinning process may only be intermittent or even stop completely. At higher feed rates 

however, larger fiber diameters and beads often result (Kidoaki et al., 2006). 

The feed rate is itself dependent on the internal diameter of the orifice or needle through which 

the polymer solution is pumped. An orifice with a smaller internal diameter reduces the 

incidence of clogging as well as bead formation (Mo et al., 2004) and results in formation of 

fibers with smaller average diameters (Zhao et aI., 2004). The reduction in the incidence of 

clogging could be due to less exposure of the solution to the atmosphere during electro spinning. 

In the case of a smaller internal diameter of the orifice, the size of the droplet that forms at the tip 

of the orifice reduces, and the surface tension of the droplet increases. Surface tension is 

dependent on the size of the droplet. For the same applied voltage, a greater Coloumbic force is 

required to cause jet initiation on a smaller sized droplet than a bigger one. As a result, the 

acceleration on the jet from a smaller droplet decreases and this allows more time for the solution 

to stretch and elongate before it is collected. This leads to the formation of fibers with smaller 

average diameters. If the diameter of the orifice is too small, however, it may not be possible to 

extrude a droplet of solution at the tip of the orifice. The effect of feed rate on fiber fonnation 

and morphology has been widely investigated (Buttafoco et aI. , 2006; Fridrikh el al., 2003; Jeun 

et aI., 2005; Theron et al., 2004; Zhang et al., 2005). 

Gap distance: This is the distance extending from the capillary tip to the surface of the collector. 

The gap determines the electric field strength and the time available for evaporation of the 

solvent before the jet strikes the collector surface. All factors being equal, an increase in gap 

distance leads to a decrease in average fiber diameter (Baker et aI. , 2006; Kidoaki et al., 2006; 
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Lee et al., 2004) within a limit. Too short a gap distance yields wet fibers that fuse on the 

collector (Hsu and Shivkumar 2004a; Jalili el al., 2005). The fiber diameter however increases 

and the fiber morphology deteriorates if the gap distance is too wide (Hong et al. , 2006; Yao et 

al., 2005). 

Capillary tip: Conducting materials such as metal needles as well as non-conducting materials 

such as glass and plastics have been used as the capillary tip in solution electro spinning (Yarin 

and Zussman, 2004). Although most studies reported the use of a simple and static capillary tip, 

a number of innovations have explored the use of movable tips. For example, Kidoaki et al., 

(2005) used a movable tip to obtain an even deposition of nanofibers on a drum collector. 

Electrospinning with a moving tip help align the fibers. Li (2005), used a tip made of a non

conducting fiber inserted in the lumen of a conducting capillary tip. Accordingly, this modified 

tip allowed the electric field to be used solely to accelerate the jet and therefore reduced the 

potential needed to be applied. 

Collector: The simplest and the most used collector in laboratory electro spinning is a stationary 

metal plate or an aluminium foil placed at a fixed distance from the tip. The collector is usually 

grounded to allow for a rapid discharge of the residual charges on the fibers. The collector may 

also be held at polarity opposite to that of the tip to increase the strength of the electric field. The 

material, nature and geometry of the collector playa major role in defining the morphology of 

the fibers (Teo and Ramakrishna 2006). 
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The rate of discharge of residual charges of the jet upon contact with the collector is influenced 

by the dielectric properties of the collector. The collector material is therefore an important 

factor in determining the morphology of the electro spun fibers (Kessick et aI., 2004; Kinl and 

Kim, 2006; Mitchell and Sanders, 2006). It has been demonstrated that some of the common 

solvents such as water (Khil el al., 2005; Smit e/ aI., 2005), and methanol (Kinl et al., 2005) 

could be better collectors than their solid counterparts . A liquid collector may also be used to 

precipitate the nanofibers when non-volatile solvents are used. Srinivasan and Reneker (1995) 

demonstrated this by electro spinning poly(p-phenylene terephthalamide) nanofibers from 

sulfuric acid solution into a grounded water bath to precipitate the polymer. 

Several different shapes of collectors such as flat plate (Kidoaki el aI., 2005); rotating drum 

(Wannatong et ai., 2004), mandrel (Mo and Weber 2004), rotating disc (Zussman et aI., 2003), 

rectangular, triangular, or wire cylinder frame (Katta et al., 2004), electrode pair arrangements 

(Li et ai., 2003), ring and mesh electrode (Dalton et ai., 2005), cones (Bunyan et al., 2006) have 

been used. 

3.6.3 Ambient parameters 

The effect of the environnlental conditions on electro spinning is not as extensively investigated 

as the other parameters. Since electro spinning is driven by external electric field, changes in the 

electro spinning environment will affect the process. Four conditions (humidity, pressure, 

temperature and type of atmosphere) have been identified to affect the process and consequently, 

the quality of the fibers fOffiled. 
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Humidity: Humidity has a pronounced effect on the morphology of the fiber if it is spun from a 

volatile solvent (Bognitzki el ai., 2001; Megelski et ai., 2002). Casper et ai., (2004) observed 

that smooth fibers are fonned from PSU dissolved in THF only when humidity is less than 50%; 

circular pores were formed on the fiber surfaces when humidity was higher than 50%. The 

hl\ffiidity also affects the rate of evaporation of solvents. At a very low humidity, a volatile 

solvent may dry very rapidly leading to tip blockage and fonnation of fibers with bigger average 

diameters (Baumgarten 1971). As the charged jet interacts with the environment during spinning, 

the surface charges could be dissipated on contact with the humid air particles (Li and Xia 

2004a; Li et. al. 2005a). 

Pressure: Electrospinning is not possible at very low pressures due to direct discharge of the 

electrical charges (Ramakrishna et ai., 2005). A stream of air or a gas at a high pressure may be 

delivered coaxially to the tip to provide an additional drag force for jet extension. When the drag 

force is dominant over the electrostatic force in driving jet extension, the process is referred to as 

electroblowing (Um et ai., 2004; Wang et ai. , 2005). 

Temperature: Temperature of the electrospinning chamber detennines the rate of evaporation of 

the solvents in the jet and hence controls the final diameter of the nanofibers (Mit-uppatham et 

ai., 2004a). An external heating source such as a heat gun or a high wattage lamp could be used 

to help dry the fiber rapidly during electrospinning (Subramanian et ai. , 2005). In electrospinning 

aqueous solutions ofhyalauronic acid (HA), Um et ai., (2004) used a jacket of heated air (25-57 

0c) to decrease solution viscosity and increase the rate of drying of the fiber. 
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Atmosphere: The composition of the atmosphere in the electrospinning setup has an effect on the 

process because different gases behave differently in an electric field . For example, using a 

positively charged capillary tip in an electron-rich gaseous environment will impede the process 

and environment of highly electronegative gases (such as CO2 or freons) discourages the loss of 

surface charges and improves nanofiber quality (Ensor and Andrady, 2007). 

3.7 Optimization of electrospinning parameters 

----------------, 

Elongated Taylor cone Split Taylor cone Circular deposition 

Invisible Taylor cone 
L-_________________ _____________ _ 

~ 
-----------~ ---- --

Hump deposition 

Figure 3.6 Taylor cone and deposition patterns of non-optimized electrospinnning 

Uniform and bead-free nanofibers are fonned only when all the electrospinning parameters are 

optimized. However, it is difficult to check case-by-case whether all the parameters are 

optimized prior to electrospinnning. Optimization of the electrospinning parameters could be 

checked during electrospinning using the stability and shape of the Taylor cone or the pattern of 
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nanofiber deposition. Figure 3.6 shows some non-optimized conditions. For example, an 

elongated Taylor cone (a) depicts higb flow rates or too Iowa voltage. When the voltage is 

higher than the optimum, the Taylor cone splits into dendrites (b) or a hollow-centre circular 

deposition is observed. The Taylor cone does not show (d) if the applied voltage is higher than 

the optimum or the flow rate is low. Otherwise, a hump deposition (e) is observed if the flow rate 

is higher than the optimum. 

Beads Wet solvent Dry tip 

High voltage Optimized 

Figure 3.7 Scanning electron microscope images of nanofibers showing different effects of 
optimization 

The SEM images (Fig 3.7) could also give some indication whether the electro spinning 

parameters were optimized. For example, occurrence of cylindrically shaped beads is an 
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indication of low polymer concentration. If the solvents do not evaporate during electrospinning, 

especially when non-volatile solvents like DMF and NMP are used in dissolving the polymer, 

the nanofibers fused together as shown in (b). Otherwise, if the solvents evaporate too quickly, 

the capillary tip dries up and forms a knot (c). Figure d is a typical SEM for Taylor cone split 

where nanofibers of very different diameters are formed. 

3.8 Functionalization of electro spun nanofibers 

Electrospun polymer nanofibers have a great potential for applications in many fields of science 

and technology. However, most of polymer nanofibers are chemically inert and do not have 

reactive functional groups in their structures. For a successful application in fields such as 

inunobilization of chemicallbiological agents , the inert nanofibers ought to be functionalized 

(Ramakrishna 2005) in order to enhance their absorption properties and also extend their life 

spans. lkada (1994); Ratner (1995) and Desai et. al. (2004) reviewed the modern trends in 

functionalization of nanofibers. Some of the common surface modification techniques include 

treatments by blending, coating, radiation with electromagnetic wave, electron beam, ion beam 

(Dong and Bell 1999; Brown 2003) or atom beams (Chan et ai., 1996), corona or plasmas 

treatment (Chu el ai., 2002; Grace and Gerenser 2003; Liston et ai., 1993), chemical vapour 

deposition, gas oxidation, metallization, chemical modifications use wet-treatment and surface 

grafting polymerization (Uyama el ai., 1998; Kato et al.. 2003). The chemical approach has been 

commonly used. An added advantage of the electrospinning process is that the fibers could be 

functiona lized prior to, during and even after spinning. 
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Chemical modification involves the introduction of one or more chemical species to a given 

surface so as to produce a surface which has enhanced chemical and physical properties (Mottola 

1992). The chemical modification is a direct and simple approach for functionalizing polymers 

having functional groups like hydroxyl, carboxyl, amino and ester. Chemical reactions can be 

carned out at sites that are vulnerable to electrophilic or nucleophilic attack. For example, 

polyesters like PET, PCL and PLLA can be treated by diamine compounds to introduce amino 

groups through the aminolysis of the ester groups (Zhu et aI., 2002). Through chemical 

modification, oxygen-containing functional groups (such as carbonyl, hydroxyl, and carboxylic 

groups) may be introduced at the surface of the polymer. The oxygen-containing functional 

groups increase the polarity and the ability to hydrogen bond, thus in tum results in the 

enhancement of wettability and adhesion. 

3.9 Applications of eiectrospun nanofibers 

The major advantage of electrospun nanofibers is their nanoscale dimensions as they result in a 

number of superior properties such as increased surface-to-volume ratio, small pore sizes, high 

porosity and enhanced mechanical strength. Consequently, electro spun nanofibers are excellent 

candidates for application in different fields such as tissue engineering, high-performance 

filtration, chemical-biological protective clothing and polymer composite reinforcement 

(Ramakrishna el ai .. 2005). Figure 3.8 adapted from Huang el ai., (2003), illustrates the diversity 

of applications of electrospun nanofibers. The following section provides a comprehensive 

review of some applications of electro spun nanofibers. 
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Figure 3.8: Some of tbe major applications of polymer nanofibers (adapted from Huang et aI., 
2003) 

An affinity membrane is a functionalized membrane that selectively captures target molecules 

using the ligands on its surface (Ma et al., 2006). Electrospun nanofibers can be surface 

functionalized with metal adsorbing ligands and be applied as an affinity membrane for the pre-

concentration of heavy metals from water. Functionalized electrospun nanofiber membranes 

pennit the purification of water based on chemical properties rather than molecular weight/size 

(Bhardwaj and Kundu 2010). Their highly porous structures coupled with high surface areas and 

ease of functionalization make the electro spun nanofibers ideally suited for use as affmity 

membranes (Zussman et ai., 2002). Electrospun nanofibers are increasingly being used for water 

filtration and purification (Tsai et aI., 2002, Wang et ai, 2011). Bjorge et ai., (2010) evaluated 

the suitability of electro spun nanofiber for water purification. The study showed that the 

electro spun membranes could be used for water purification applications, but that further 

improvements were necessary before these membranes could be practically employed in the 
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water sector. Bjorge et aI. , (20 I 0) identified the level of functionality and the properties of 

irreversible fouling as the major issues requiring further research. 
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4 
Experimental 
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4.1 Overview 

This chapter outlines the materials and methods used in the research. It also describes the 

experimental procedures that were employed. 

4.1 Materials 

4.1.1 Chemicals and reagents 

All the chemicals were of analytical grade and were used without any further purification. 1-

[bis[3-(Dimethylamino )-propyl]amino-2-propanol (98%), 1-methyl-2-pyrrolidinone (99.5%), 

nitrate salts of Cu(IT), Ni(II), Co(Il), Cd(II) and Pb(II), all of purity more than 99.0%, were 

purchased from Aldrich (St Louis, USA). Pyridine (99.9%, anhydrous) was obtained from BDH 

Chemicals (London, England). Dichloromethane (99%), tetrahydrofuran (98%), N,N

dimethylfomlamide (99%), nitric acid (65%), hydrochloric acid (32%), 1,1 -

carbonyldiimidazole, 1,8-diazabicyclo[5,4]undec-l-ene, formic acid (98%) and glacier acetic 

acid (99%) were purchased from Merck Chemicals (Wadesville, South Africa). 

Standard solutions were freshly prepared using ultrapure water generated from MilliQ systems 

(Massachusetts, USA). All glassware was soaked overnight in 4 M RNO) solution prior to use. 

Working standards of metal solutions were freshly prepared from stock solutions. Solutions used 

in the potentiometric titrations were prepared using freshly boiled, degassed ultrapure water to 

ensure the removal of carbon dioxide and oxygen. 
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4.1.2 Polymers 

Polyamide-6 (PA-6: Mw 10000, Sigma 181110), polysulfone (PSU: Mw 22,000, CAS 25135-51-

7), polystyrene (PS: Mw 192,000, CAS 9003-53-6), polyethersulfone (PES) and Polyvinylidene 

fluoride (PVDF) were supplied by Sigma Aldrich (St. Louis, USA). All the po lymers were used 

as received. Polymer solutions were prepared by dissolving known masses of the polymer 

(pellets or powder) in appropriate volumes of solvents by slowing agitating the solution using 

Stuart SB-162 magnetic stirrer (Staffordshire, UK). Solutions were prepared in glass bottles with 

air-tight lids to avoid evaporation of solvents at room temperature. 

4.2 Instrumentation 

4.2.1 Electrospinning setup 

Single nozzle setups (Fig 4.1) consisting of an infusion pump (KD Scientific Syringe Pump 

Series 100 or New Era Multi-phaser NE-1000) and a IUgh voltage source (Glassman High 

Voltage Series EH). The collector system was a flat aluminium sheet placed on . a support. 

Electrospinning was carried out at room temperature (293 ± 2 K). 
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Figure 4.1 Electrospinning setup 

4.2.2 Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) 
spectroscopy 

ATR-FTIR spectra (400-4000 em-I) were recorded with a PerkinElmer FT 100 spectrometer 

(Massachusetts, USA), equipped with a germanium (Ge) universal ATR sampling accessory. An 

average of 8 scans with a resolution of 4 em-I was taken for each spectrum. Scans were taken on 

3 different spot for each sample and an average calculated. 
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4.2.3 Scanning electron microscopy 

Morphology of the nanofibers was studied using two scanning electron microscopes (SEM); a 

low-resolution Tescan TS5136ML (Brno, Czech Republic) and a high-resolution Quanta 200 

equipped with a field emission gun (FEG) system from FE! (Eindhoven, The Netherlands). Prior 

to the SEM analyses, the samples were sputter-coated with a gold or gold-palladium layer using 

Balzers SCD 030 (Liechtenstein, Germany). Typical magnifications of SEM images taken 

ranged between 1000 and 150000 and were analyzed through the distance transform approach 

(Ziabar et al 2009) using either Scandium® or Cell"D Olympus Imaging Software. Average fiber 

diameters were deduced by finding the diameters of >60 fibers per sample. 

4.2.4 Brunauer-Emmet-Teller (BET) analysis 

Surface areas and pore characteristics of the nanofibers were determined using the Brunauer

Emmet-Teller (BET) isothernls obtained from nitrogen adsorption on an Accelerated Surface 

Area and Porosimetry System (ASApTM 2020), Micromeritics (Bedfordshire, England). Prior to 

analysis, about 0.3 g portions of samples were degassed overnight at 105 °C (temperature higher 

than water but lower than the glass transition temperature (tg) of the polymeric material in N2 

environment using a Micromeritics SmartVac degassing system. Table 3.2 gives the detail 

operating parameters used for degassing. The pore size distribution and specific surface areas 

were deternlined via N2 adsorption/desorption isotherms obtained at -196°C. Analyses were 

repeated, at least twice, for all samples and the measurements were in good agreement. 
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Table 4.1: Optimal conditions used for BET analysis 

Evacuation phase 
---

Target temp (K) 

Temperature ramp (Klmin) 

Evacuation rate (mbarls) 

Vacuum set point (~bar) 

Evacuation time (h) 

423* 

1.0 

6.7 

13 

1.0 

* dependent on the polymeric material. 

Heating phase 

Target temp (K) 

Ramp rate (Klmin) 

Hold temperature (K) 

Hold time (h) 

Hold pressure (mbar) 

423* 

1.0 

423* 

10 

133 

The BET gas adsorption method is a well-established method for characterizing surface area and 

pore structure of porous materials (Adamson and Gast 1997). By assuming the Langmuir 

adsorption model and incorporating the concept of multimolecular layer adsorption, the surface 

area of the substrate can be calculated the BET equation: 

P 
(po - p) 

I C-I (P) 
= VmC + VmC Po 

4.1 

where P and Po are the gas pressure and the saturated gas pressure at the temperature of 

experiment, Va and V m are the quantity of gas adsorbed under pressure P and the quantity of gas 

required for a monolayer adsorption on the sample surface, respectively. C is a constant related 

to the heat of adsorption of the first molecular layer of gas. By plotting PN ,CPo-P) against 

(PlPo), C and Vm can be calculated from the intercept and the slope of the straight line. Since 

there is no assumption on cylindrical pore geometry, the specific surface area determined by the 

BET method is more reliable than capillary flow and mercury porosimetry (Nisbet et ai., 2009). 
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4.2.5 Inductively Coupled Plasma-Optical Emission Spectrometry 

Concentrations of metals were determined using an iCAP 6000 series Inductively Coupled 

Plasma-Optical Emission Spectrometer (ICP-OES) from Thermo Electron Corporation 

(Cheshire, United Kingdom). Emission lines were selected based on tbe EPA metbod of 

determining trace elements in water (US-EPA 2001). Table 4.2 shows tbe analytical parameters 

used for the analyses while Table 4.3 shows the detailed operational conditions oftbe ICP-OES. 

Table 4.2: Analytical parameters used for metal analyses on the ICP-OES 

Analyte Wavelengtb Highest calibration Estimated detection 
(run) point (mg/L) limit (flg/L) 

As 193 .759 10 53 

Cd 226.502 2 3.4 

Co 228.616 2 7.0 

Cu 324.754 2 5.4 

Ni 231.640 2 15 

Pb 220.353 10 42 
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Table 4.3: Detailed operational conditions of the ICP-OES 

Analysis r.references 
Sample options # of repeats: 3 

Sample flush time: 30 s 
Source Light source: rCAP 

Plasma view: Axial 
Analysis maximwn Low WL Range Axial 15 Radial 15 
Integration times (s) High WL Range Axis 5 Radial 5 
Calibration mode Concentration 

Trailing full flame Intelli-Flame: Yes 
Options Max integration time (s): 30 

WLRange: Low 
View: Axial 

Source settings 

Nebulizer pump Flush pwnp rate (rpm): 100 
Analysis pwnp rate (rpm): 50 
Pump relaxation time (s): 5 
Pwnp tubing type: Tygon 

orange/white 
RFPower: 1150W 
Auxilia as : 0.5 U min 

4.3 Conductivity, temperature and viscosity 

Conductivities and temperatures of the solutions were measured using MeterLab CDM 210 

conductivity meter (Lyon, France) . The pH of the solutions was determined using the Jenway 

(3510) pH meter (Essex, UK). Solution ' s viscosity and shear stress were measured using a 

Brookfield DV-II rotational viscometer (Essex, UK) with variable speed from 0.01 to 200 rpm. 
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4.4 Potentiometric acid-base titrations 

The protonation constants of ligands in aqueous solutions were determined by potentiometric 

titration at 25.00 ± 1.00 °c in a Metrohm 794 double-walled titration cell (Herisau, Switzerland) 

in an inert, nitrogen environment. Titrations were performed over a pH range of 2 to 11 using 

0.10 M HCI and 0.10 M tetramethylammonium hydroxide. Titrations were controlled using 

Tiamo software. The glass electrode was calibrated for a strong acid-strong base reaction by the 

Gran method (Brunelot 1989: Gran 1952) and E' value of the reaction was obtained using the 

GLEE software (Gans 2000). The pKw value of 13 .83 ± 0.01 in 0.1 M tetramethylammonium 

chloride (TMACI) as an ionic medium was used for all the computations (Bazzicalupi et ai., 

2009). The HYPERQUAD program (2008 version) was used for computation of protonation 

constants in equilibrium state (Gans et ai" 1996). About 400 data points emanating from three 

independent titrations were used in calculating the protonation constants of the ligands. The 

statistica l error (cr) was below 0.03 for both refInements. 

45 Metal adsorption and desorption studies 

Adsorption of metal ions by the functionalized electro spun fibers was investigated in aqueous 

solutions. The influence of the initial concentrations of the metal ions was investigated for a 

range (0-10 mg/L) of standard solutions. To vials containing 10 rnL aliquots of metal solutions of 

known concentrations were added optimized sorbent mass of 10 and stirred for 2 h. The 

nanofibers were fIltered off through 0.45 J.lm sintered filter using suction. The concentration of 

metal ions left in solution was then determined using the ICP-OES. The concentration of metal 

adsorbed was taken as the difference between the initial and the fmal concentrations of the 

solution. Desorption experiments were carried out on the spent sorbents to confmn the adsorbed 
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concentrations. For desorption, the loaded fiber was washed three times with 5 mL portions of 

de-ionized water and was dried on the filter using vacuum suction. The dried fiber was Illen 

placed in dilute HNO) of pH 2 and stirred with a magnetic stirrer for the stipulated time. The 

concentration of metal desorbed is taken as the difference in fmal concentration of the acidic 

solution and the blank solution. All adsorption studies were carried out at the optimal pH of the 

respective metals while desorptions were conducted at pH of 2 because no adsorptions were 

observed at pH values less than 3. 

4.6 Sorbent dose 

The effect of nanofiber dose on Ille uptake of metals was investigated for nanofiber mass ranging 

from 2-20 mg. Portions of the functionalized nanofibers (with masses ranging from 2-20 mg) 

were stirred, for 2 h, in 10 mL portions of 5 mg/L metal solutions. The loaded sorbent was then 

filtered off, washed with ultrapure water and was dried on the filter using vacuum suction. The 

dried fibers were placed in 10 mL aliquot of 0.10 M HNO) solution and stirred for 2 min in order 

to desorb the metal ions enriched on the nanofibers. To investigate the optimal pH for metal ions 

enrichment, adsorption experiments were carried out in 5 mg L" standard solutions of the metals 

buffered to the desired pH values ranging from 2 to 12. The extent to which metal ions were 

enriched was then determined using the rep-OES. The effect of contact time on the uptake of 

metal ions was also investigated in 5 mg/L metal ion solutions in batch experiments. In order to 

avoid precipitation at higher pH, the solutions were kept at the optimal pH of the metal under 

study using an ammonia buffer (Sun el ai., 2006). 
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4.7 Effect of fiber size on efficiency of adsorption 

Nanofibers of different diameters were electrospun by varying the polymer concentrations and 

the distance between the needle tip and the collector (gap distance). The effect of the nanofiber 

diameter on efficiency of adsorption was investigated in 10 mL portions of 100 mg/L standard 

metal solutions. 

4.8 Fiber reusability 

To evaluate the reusability of the fibers, 10 mg mass of adsorbent was used repeatedly to adsorb 

Ni in 20 mL aliquots of 100 mg/L solution. After each adsorption, the adsorbent was desorbed by 

placing it in HN03 solution at a pH of 2 for 5 min (optimized time was > 4 min). The fiber was 

thoroughly washed in de· ionized water, filtered through 0.45 fim filter using suction. It was then 

dried and reused to adsorb Ni in another 20 mL aliquot of 100 mgiL solution. 

4.9 Acid digestion 

The metal ions in the samples were either leached in to solution through acid digestion or were 

adsorbed onto the polymer nanofiber sorbent and then desorbed into acid solutions for analysis. 

Three acid digestion procedures were separately employed. For aqua regia digestion, a 100 ml 

portion of water sample placed in 250 ml pyrex digestion tube was pre-digested at room 

temperature for 16 h with either 28 m1 of37% HCl:70% HN03 (3:1) mixture. Otherwise, 30 ml 

aliquot of HN03+H~O~ (v/v) mixture was used for digestion. The suspension was then digested 

at 130 °C for 2 h in a reflux condenser. It was then filtered through an ashless Whatman 41 filter, 

diluted to 100 ml with 0.5 M HN03, and stored in polyethylene bottles at 4 °c for analyses. 

Another 100 ml portion was just spiked with with 15 m1 of 70% HN03 and then filtered through 
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an ashless Whatman 41 filter and stored in polyethylene bottles at 4 °c for analyses . For metal 

adsorption, 20-30 mg portion of stamped out nanofiber sorbent was placed in 100 ml portion of 

water sample and stirred intermittently for 2 h . The fiber was filtered off and dried using 

vacuum. The loaded fiber was then desorbed in 10 ml portion of 0.0 I M RNO). 

4.10 Analytical quality control procedure 

A custom-made certified reference material for groundwater (SEP-3) purchased from Inorganic 

Ventures (Christiansburg, USA) was used to validate the analytical procedure. Analytical 

calibrations were carried out in aqueous standard solutions. Adsorption and desorption 

experiments were carried out using 10 mg of the nanofiber adsorbent in 10 mL portions of the 

certified reference groundwater. Repeatability of the method was evaluated by comparing the 

signals obtained from 5 determinations of the reference material. The limits of detection (LOD) 

and quantification (LOQ) were evaluated as 3 and 10 times the estimated regression standard 

deviation respectively based on 5 replicate determinations. 
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5 
Steady state electro spinning of polyethersulfone 

This chapter is based on : 

Darko. G .• Zugle. R .• Nyokong, T.. De Clerck. K. , Westbroek. P., Goethals, A. , De Schoenmaker, B. Torto. N. 
(2011). Steady states electrospinning of poly ether su lfone (I n preparation) 
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5.1 Overview 

Polyethersulfone was electrospun under optimal conditions in DMF-NMP solvent systems. The 

effects of the processing parameters such as voltage, tip-lo-collector distance and flow rate on 

nanofiber diameter were investigated. The nanofibers were not applied as sorbents for pre· 

concentrating heavy metals. 

5.2 Results aud discussions 

5.2.1 Dissolution of polymer 

Polyethersulfone disolves completely in both DMF and NMP. The surface tension and boiling 

point ofDMF are lower than those ofNMP. Also DMF has a higher vapour pressure than NMP. 

Therefore blending DMF with NMP reduces the rate of solvent evaporation. However, NMP has 

higer conductivity and a better solvency effect for polymers. Table 5.1 shows the relevant 

physical characteristics of the solvents used. 

Table 5.1: Relevant pbysical cbaracteristics of tbe solvents used 

DMF NMP 

Vapour pressure (kPa at 25 °C) 0.30 0.29 

Conductivity (mS/cm at 25°C) 0.000 0.002 

Surface tension (nN/m at 20 °C) 37.1 40.7 

Boiling point (0C) 153 202 

Density (glcm) al25 0C) 0.944 1.028 

Viscosity (cP at 25 °C) 0.92 1.65 

64 



Table 5.2: Solubility characteristics of polyethersulfone (23-28 wt%) concentrations in various 
composition ratios of DMF and NMP 

Percentage composition (DMF:NMP) 

100:0 95:5 90:10 85:15 80:20 

28 
c 

27 0 
... ~ 
al",,_ 

26 E'::~ »c .... 
- al ;:: 25 o()_ 
Il. C 

24 0 
() 

23 

The polymer did not dissolve at concentrations 2:: 28 wt%, regardless of the solvent composition 

(black zone). Dissolution only occurred when the polymer concentration was less than 28 wt% 

(grey and brown zones). However, concentrations and solvent combinations indicated in the grey 

zone formed gels when the solutions were left standing (Table 5.2). The rate and extent of gel 

formation was found to be dependent on the polymer concentration and the composition of the 

solvent system. Higher proportions of DMF, for example 100:0, lead to a faster rate of gel 

formation. For such concentrations and combinations that form gels, the polymer solutions were 

electro spun before gelation. 
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5.2.2 Solution characteristics 

Table 5.3: Characteristics of the polymer solutions formed 

- - -- -- -
Percentage composition (DMF:NMP) 

100:0 95:5 90:10 85: 15 80:20 - , - - --
= Visc_osity (Ns/m-) 2018 2080 3635 3848 

.S: 26 -- Conductivity (mS/cm) 0.006 0.009 0.009 0.009 0.009 eo ~- .~ ---., - -... 1552 1613 1623 1638 1648 - Viscosity (Ns/m-) _ = .. ~ 25 .. ~ Co,!~uctivi!y (mS/cm) 0.010 0.010 0.010 0.010 0.010 
=~ . 
8 ~ 

, 
1486 1542 1559 1576 1583 ... ~ 

24 
~scositYJ!'is/~-) -- - -... Conductivity (mS/cm) 0.011 0.013 0.013 0.013 0.013 E , .., 
V~cosity (Ns/m- l. 1346 1412 1431 1435 1453 "0 

~ 22 --- -
Conduc!ivity (ElS/cm) 0.012 0.012 0.013 0.015 0.015 

The increase in solution conductivity due to increase in the proportion of NMP was more 

pronounced in the dilute solutions than in the concentrated ones (Table 5.3). For example, no 

significant change in conductivity was observed at 26 wt% concentrdtion at different 

compositions. Similar trends were observed at 25 and 24 wt% concentrations. However, at 22 

wt%, conductivity increased gradually with increasing proportion ofNMP. 

Generally, conductivity of the solutions decreased with increase in polymer concentration. This 

was not unexpected because the polymer is itself not charged and the solutions derived their 

conductivities from the solvents. The dilute polymer solutions, containing more solvents will be 

more conducting than the concentrated solutions containing more of the unconducting polymer. 

Viscosity of the solutions increased with increase in polymer concentration and proportion of 

NMP. The density and viscosity of NMP are higher than those of DMF. Increasing the 

proportion of NMP will therefore increase the viscosity of the solution even at a constant 

concentration. 

66 



5.2.3 Window of eletrospinnability 
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Figure 5.1: Window of electrospinnability of polyethersulfone in different solvent combinations of 
DMF:NMP 

Polymer concentrations up 25 wt% were either not electrospinnable, because of their low 

viscosity, or gave out beaded nanofibers (Fig 5.1). Solutions of 25 wt% polymer in pure DMF 

exhibited drying at the spinneret tip and did not give nanofibers of uniform morphologies. Some 

levels of bead formation were observed in the nanofibers formed from 25 wt concentration at all 

the solution composition variations. 25 wt% polymer solution containing 20% NMP could not 

e1ectrospin due to excess of less-volatile NMP in the solution. There was a bit of bead fonnation 

in 26 wt% polymer in pure pure DMF, probably due to low conductivity of the solution. Bead-

free fibers having uniform morphologies were obtained only from 26 wt% polymer solution (Fig 

5.2). 
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5.2.3 Effect of solvent composition on nanofiber diameter 

374±99 nm 449 ± 129 nm 691 ± 135 nm 730 ± 151 nm 

Figure 5.2: SEM images and the corresponding average fiher diameters obtained from 26 wt% 
polymer in different composition ratios of DMF and NMP 

The average fiber diameter increased systematically from 374 ± 99 nm to 730 ± lSI nm when 

the compostion ofNMP was increased from 5 to 20%. The increasing fiber diameter is due to the 

increase in solution viscosity as proportion of NMP was increased. The size distribution of the 

nanofibers also increased when the proportion of NMP was increased. This could be due to the 

differences in the evaporative characteristics of the two solvents used. 
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5.2.4 Effect of applied voltage on nanofiber diameter 
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Figure 5.3: The effects of the applied voltage on the average fiber diameter. POlymer concentration, 
flow rate and and tip-to-collector distance were held at 26 wt% (95 DMF:5 NMP), 1.0 mlfh and 13 
em respectively. 

By holding the other processing parameters at constant values, (polymer concentration at 26 wt% 

(95 DMF:5 NMP), flow rate at 1.0 mllh and tip-to-collector distance at 13 cm), the effect of the 

applied voltage on fiber diameter was investigated from 10-20 kV. The average diameter of 

nanofibers decreased systematically from 690 nm to 392 nm when the applied voltage was 

increased from 10 kV to 20 kV. There was a wider distribution of nanofiber diameter at the 

higher voltages (15-20 kV) than they were at lower applied voltages (10-15 kV). The wide 

distribution of fiber diameter at higher voltages could be due to splitting of the Taylor cone 

during electro spinning. An increase in the applied voltage leads to increase in the electric field 
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strength. The resultant increase in the electrostatic repulsive force on the fluid jet favours the 

formation of thinner fibers. The excess repulsive force could cause a split up of the Taylor cone 

leading to the generation of fibers of different diameters (broader distribution in fiber diameters). 

At higher applied voltage, the polymer solution also gets removed from the needle tip more 

quickly as the jet is ejected from Taylor cone leading to the formation of fibers of lower 

diameters. 

5.2.6 Effect of tip-to-collector distance on nanofiber diameter 
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Figure 5.4: The effects of the tip-to-collector distance on the average fiber diameter. Polymer 
concentration, flow rate and voltage were held at 26 wt% (95 DMF:5 NMP), 1.0 mlfh and 10 kV 
respectively. 

The fiber diameters decreased proportionally with increase in tip-to-collector distance. An 

optimal tip-to-collector distance is necessary to ensure evaporation of solvents before the jet hits 

the collector. With an increase in the distance, the electrospinning jet has a longer flight time to 
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stretch up than when the distance is short. Hence, the increase in tip-to-collector distance was 

expected to cause a reduction in fiher diameter. 

5.3 Conclusion 

Polyethersulfone was successfully electrospun at the optimized conditions. A binary mixture 

consisting of DMF:NMP was found to be an appropriate solvent sytem for dissolving and 

electrospinning the polymer. The optimal polymer concentration for electro spinning was found 

to be 26 wt% and the solvent system must contain up to 95% of DMF. Increase in voltage and 

tip-to-collector distance resulted in decrease in the fiber diameters. 
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Pre-concentration of 

environments usmg 

polystyrene nanofibers 

This chapter is based on: 

heavy metals 

diazole-incorporated 
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electrospun 

Darka G., Torto N. , Tshcntu z .. Darkwa J. (201 1). Pre-concentration o f heavy meta l ions in aqueous environment by 
e\ecrrospun polystyrene nanofibers functionalized with diazole ligands. International Journal of Environmental 

Analytical Chemi stry. (Under review) 
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6.1 Overview 

Electrospun nanofibers that have been functionalized with nitrogen.containing chelating agents 

have shown excellent adsorption capabilities for metal cations owing to the strong affmity 

between the nitrogen atom and metal cations (Chang and Chen 2005; Rashchi et al., 2004; Qu el 

aI. , 2005; Sarna I et aI., 2000). As bidentate ligands, diazoles (imidazoles and pyrazoles) 

coordinate strongly with metal ions tltrough their nitrogen atoms (Bogdanovic et aI., 2005). 

When the diazole ring has different donor atoms in position 1-, 3- or 5-, it can also act as 

bridging polydentate ligand (Koysal et aI. , 2005; Szecsenyi et al. , 2005). Electrospun polymer 

nanofibers functionalized Witll diazoles are, therefore, being looked up to as a new platform for 

enrichment of metal ions in aqueous environments prior to their determination. In this study, 

polystyrene nanofibers functionalized with potassium salts of IH-pyrazole-l-carbodithioate and 

IH-imidazole-l-carboditllioate were applied as sorbent to the pre-concentrate heavy metal ions 

from aqueous environments. 

6.2 Results and discussions 

6.2.1 Nanofiber characterization 

A mixture of DMF:THF (4: I v/v) was found to be a suitable solvent system for dissolving 

polystyrene into solution. The high conductivity of DMF and volatility of THF both favoured 

formation of smooth nanofibers (Lee et al., 2003). 
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Figure 6.1: Scanning electron microscopy image of different concentrations of polystyrene (10 -35% 
wI) electrospun at +25 kV, -5 kV and 12 em gap 

Effects of polymer concentration on the formation and morphology of the fiber is illustrated in 

Fig 6.1. Different concentrations of polystyrene (10-35 wt%) were electro spun at +25 kV, -5 kV, 

12 cm gap. Only concentration range of 20-30 wt% could give smooth and bead-free fibers. At 

low polymer concentrations, the high surface tension due to the solvents leads to formation of 

beads. At high concentrations, effects such as tip drying and blockages can also result in 

formation of beads. By optimizing the solution concentration, applied voltage, feed rate and 

distance between the syringe needle and the collector, it was determined that 25 wt% polystyrene 
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gives smooth, defect-free nanofibers (Fig 6.2) when it is electro spun at a feed rate of 1.0 mL h'l 

through an electric field strength of 1.3 kV cm' l. At these conditions, fibers with diameter 

ranging from about 300 to 800 run were obtained. 

.A.C : HIVi, C 
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Figure 6,2: SEM image of polystyrene nanofiber formed from 25% polystyrene in DMF:THF (4:1 
v/v) electrospun through a field strength of 1.3 kV em" at a feed rate of 1 mL h", Inset is the SEM 
image at a higber magnification, 
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Figure 6.3: The relationship between polymer concentrations, BET surface areas and average pore 
width of polystyrene nanofibers. 

Figure 6.3 shows the relationship between polymer concentrations, BET surface areas and 

average pore width of polystyrene nanofibers. A linear relationship was observed between the 

polymer concentration (20-35 %wt) and the BET surface area of the nanofibers formed. The 

BET surface area decreased linearly from 14.08 m2/g for nanofibers generated from 20 %wt 

concentration polymer to 4.95 m2/g for nanofibers generated from 35 %wt concentration. 

Increasing the polymer concentration leads to formation of nanofibers of bigger diameters and 

hence smaller specific surface area (Patanaik et ai., 2010). The pore size did not follow the linear 
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trends observed in BET surface area. The pore sized showed more of a logarithm relationship to 

the polymer concentration. 
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Figure 6.4: ATR-FTlR spectra of (A) potassium IH-pyrazole-l-carbodithioate, (B) potassium IH
imidazole-l-carbodithioate, (C) polystyrene, (D) polystyrene functionalized with potassium IH
pyrazole-l-carbodithioate and (E) polystyrene functionalized with potassium I H-imidazole-l
carbodithioate_ 

FT-IR spectra of the incorporated and the pristine polystyrene as well as those of the ligands 

were taken in the range of 4000- 650 cm- ! (Fig 6.4). The characteristic peaks of the pyrazole (A) 

1620 cm-! due to C=S stretching and 850 cm-! assigned to C-N overtones were also found on the 

functionalized polystyrene (C). The characteristic C=S, C=N and C-N bands of the imidazole 
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ligand registered at 1200 cm-],1520 cm-] and 850 cm-] respectively on the spectra of both the 

ligand (8) and the incorporated polystyrene. 

6.2.2 pH dependence 
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Figure 6.5: Adsorptiou profile of nanofiber functionalized with potassium IH-pyrazole-l
carbodithioate and potassium IH-imidazole-l-carbodithioate in 0.50 mM standard solutions of 
metal ions at various pH values; temperature: 25 'CO 

Because H+ ions compete with metal ions ion solution for binding sites on sorbents, pH becomes 

a very crucial parameter in binding studies. At lower pH, H+ ion concentration in solution is 

relatively high and they tend to fill up the binding sites on the adsorbent surface. The presence of 

H+ ions on the sorbent surface creates an electrostatic repulsion for the metal cations. Enrichment 
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of metal ions unto the sorbent is therefore expected to be low at lower pH values. Metal uptake 

is, however, favoured at higher pH values where H+ ion concentrations and, consequently, 

electrostatic repulsions are low. 

Figure 6.5 shows the profile of metal ions ermchment on the functionalized nanofiber sorbent at 

various pH values. No adsorptions were observed on the imidazole-functionalized sorbent at pH 

values less than 2. The optimal pH for adsorption of Cu, Ni and Pb were 7.0, 7.4 , and 11.2 

respectively. In an increasing order of their optimal pH for adsorption, these metals could be 

ranked as Cu<Ni<Pb. This order suggests that pH for metal uptake is determined, somehow, by 

thermodynamic factors such as electronegativity, acidity and ionic radius of the metal ion. That 

is, metal ions of higher electronegativity (higher acidity or lower ionic size) are better adsorbed 

in the acidic range. The optimal pH for enriching the metal ions on the pyrazole-functionalized 

nanofibers followed the same order (Cu = 6.3 ; Ni = 7.6 and Pb = 10.3) as with the imidazole. 

There was, however, a significant uptake at lower pH values. For example at a pH of 2, there 

were about 16, 22 and 27% adsorptions for Cu(Il), Ni(II) and Pb(II) respectively. These 

relatively high adsorptions at lower pH values may be attributed to the low pka of the pyrazole 

ligand (Chen et ai., 1991; Trofimov 1992). The pK indicates pH value at which a ligand is 50% 

protonated. This means that some binding sites on the pyrazole were available even at the low 

pH levels. 
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6.2.3 Protonation and binding constants 

Both ligands exhibited two protonation processes in the pH range 2-11. Log K values of the 

imidazole ligand were higher than those of the pyrazole. The pK of the imidazole was 6.83 

(while that of the pyrazole was 3.36). This implies that at pH of 3.36. about 50% of the binding 

sites on the pyrazole ligand were still free for binding. This gives credence to the relatively high 

adsorptions that occurred on the pyrazole at lower pH values. 

Stability constant (also called formation or binding constant) is the concentration equilibrium for 

the formation of a complex in solution. Stability constant is a measure of the strength of the 

interaction between the reagents that come together to form the complex. It also shows the 

balance between the binding and dissociation processes after an infinite reaction time. The 

binding constant, fJ, relates to the Gibbs energy of formation as 

-2.303RT log,o j3 6.1 

The magnitude of formation constant is, thus, a direct reflection of the Gibb ' s free energy of 

formation (Eqn 6.1) . Binding constant is used to quantify the affinity of binding since it is 

directly related to the molar free enthalpy (Bradbury and Baeyens 2005; Mishustin 2007). The 

order of the metals stability on the pyrazole was Co<Ni<Pb<Cd<Cu while that of the imidazole 

was Co<Ni<Cu<Cd<Pb. Based on these trends, it could be speculated that binding of bigger ions 

with the imidazole was more favourable. Stability of the first row transition metal ions followed 

the order of their ionic size or electronegativity [Co(II)<Ni(II)<Cu(II)] for both imidazole and 

pyrazole. The overall stabilities for the pyrazole-metal complex were, in all cases, larger than 

those for the imidazoles. The divalent metal ions (borderline acids) were better coordinated by 
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pyrazole (softer base) than the imidazole (harder base) as proposed by Pearson (Pearson 1963). 

Stability constants obtained for the imidazole complexes of the divalent transition metal ions 

were in agreement with results previously published (Kapinos et ai., 1998). This fast adsorption 

kinetics of the may be attributed to the morphology (large specific surface area, small fiber size 

and high porosity) of the fibers (Ramakrishna et ai., 2005). 

6.2.4 Equilibration time 

The rate at which metal ions were enriched on the nanofiber sorbent is profiled in Fig 6.6 . The 

profile showed that the metal ions were, initially, adsorbed rapidly until the sorbent got saturated. 

Equilibration times for maximwn uptake of Cu(IJ) and for Ni(II) were 10 min and 18 min 

respectively. These times were roughly the same for both types of functionalized nanofibers. 

The longest time for equilibrating was 42 min recorded for uptake of Pb(II) on imidazole

functionalized nanofibers. The adsorbents had faster enrichment kinetics than some of the 

sorbents already reported (Gosset el ai., 1986; Sari and Tuzen, 2009; Zhou et ai., 2009) 
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Figure 6.6: Adsorption kinectics of polystyrene nanofibers functionalized with potassium IB
pyrazole-I-carbodithioate and potassium IB-imidazole-I-carbodithioate in 0.50 mM metal 
solutions 

6.2.5 Sorbent dosage 

The effect of the mass of nanofibers used on adsorption of metal ions in solution was studied 

(Fig 6.7). The sorbent dosage is an important parameter because it determines the capacity of the 

sorbent at a given initial concentration. Adsorption of all metal ions significantly increased with 

an increase mass of adsorbent to up 8 mg and then leveled off. 10 mg fiber mass was therefore 

used in all the experiments. 
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Figure 6.7: Optimization of sorbent mass for adsorption 

6.2.6 Desorption of metal ions and sorbent regeneration 

Sorbents reusability is largely determined by the efficiencies of their recovery and the extent to 

which the adsorbed ions are desorbed. The pyrazole-functionalized nanofibers could not desorb 

in the first instance; they could, therefore, not be regenerated for further usage. The efficiencies 

of adsorption and desorption of all the metal ions on the imidazole-functionalized nanofibers 

were nearly constant up to the fourth cycle of usage (Fig 6.8). There was an overall drop of 

3.49% in adsorption and 5.07% in desorption up to the fifth cycle of sorbent reuse. This decline 

in efficiencies could be attributed to losses of trace amounts of the sorbent during usage. The 
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regeneration of sorbent showed that the adsorption-desorption process was reversible for the 

imidazole-functionalized nanofibers . 
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Figure 6.8: Profile of number of times of fiber regeneration 

6.2.7 Adsorptions in real aqueous environments 

Capacity of the imidazole-functionalized nanofibers to enrich metal ions in the natural aqueous 

environment was tested in three batches each of three river water, sea water, tap water from three 

different locations and four batches of treated and untreated sewage from one location. The pH, 

background concentrations of the metal ions as well as the recovery efficiencies of the 

functionalized nanofiber sorbent in 100 mg/L spiked natural water samples are recorded in Table 

6.1. 
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Table 6.1: Concentration of beavy metal ions determined in 5 different types of water and the 
corresponding recovery values from 100 mg/L spiked samples 

Background concentration (mf;;; L-I) Percenta~e recovery (%) 
pH Ni Cu Pb Cd Co Ni Cu Pb Cd Co 

River 7.34 0.15 0.09 0.02 0.01 0.08 72.56 95.21 99.00 77.82 70.29 
(0.06) (0.57) (0.42) (0.68) (0.38) (3.81) (0.85) (7.56) ( 1.89) (0.7 1 ) 

Sea 7.94 0.02 0.22 0.04 0.03 0.01 78.28 97.59 97.8 1 78.09 77.48 
(0.01) ( 1.29) (2.24) (4.48) (2.73) (6.22) (1.04) (1.42) (5.44) (0.20) 

Tap 8.13 0.01 0.08 0.01 0.01 ND 72.48 96.65 97.49 98.90 72.07 
(0.37) (0.37) (0.77) (0.18) (0.57) (1.02) ( 1.54) (4.99) (0.14) 

Untreated 6.51 0.02 0.04 0.02 0.06 om 72.12 84.40 82.21 73.68 70.71 
sewage (0.10) (2.1 1) (0.31) (3.96) (2.49) (0.97) (1.15) (8.73) (2.63) (0.3 8) 
Treated 6.55 0.02 0.04 ND 0.02 ND 71.06 94. 16 96.59 84.74 68.54 
sewa~e (0.17) (2.79) ( 1.85) (0.84) (1.04) (8.59) (8.99) (0.37) 
Standard deviations in brackets; NO ::= below detection 

The average pH ranged from 6.51 (in untreated sewage samples) to 8. 13 (in tap water). The 

sorbent was able to quantitatively enrich the trace background concentration of metal ions (0 .15 

mg L-l
) in all the water types. The background concentrations of the metals in water (Ni < 0.15 

mg L· l
, Cu < 0.22, Pb < 0.04, Cd < 0.06 and Co < 0.08 mg L-l

) were ignored during spiking 

because they were very low, relative to the 100 mg L- l spiking concentration used. 

The recoveries (in 100 mg L- l standard solutions) ranged from 71.06-78.28% for Ni(ll) , 84.40-

97.57% for Cu(ll), 82.21-99.00% for Pb(Il), 73 .68-98 .90% for Cd(Il) and 68.54-77.48% for 

Co(Il). The imidazole-functionalized nanofiber sorbent was found to be more sensitive to Pb(Il), 

CU(Il) and Cd(Il) than to Ni(Il) and Co(Il). Table 6.2 gives the main characteristics (hardness, 

electronegativity, electron affinity, pKa) of metal ions that determine their binding to a ligand. 

The order of adsorption efficiencies, Co<Ni<Cd<Cu<Pb, obtained in this work, does not wholly 

fit into the order of any of the parameters outline. It could therefore be said that adsorption of the 

metal ions is not strictly determined by a single factor but, maybe, by a combination of 
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thermodynamic factors. For the first row metal ions, however, the order of adsorptions followed 

their order of electron affinity [Co(II)<Ni(II)<Cu(II)] as espoused by Martin (Martin 1998). 

Table 6.2: List of some of the properties divalent metal ions that affect their adsorption from 
aqueous solutions 

Metal ion Hardness • Electro Electron pK, 
(M"+) negativity affinity 
Co 8.22 25.28 17.06 9.65 
Ni 8.50 26.67 18.17 9.86 
Cu 8.27 28.56 20.29 7.50 
Cd 10.29 27.20 16.91 10.08 
Pb 8.46 23.49 15.03 7.71 
*According to the Pearson's hard-soft acid-base concept, hardness is defined as half the difference between the 
ionization potenlial and electron affinity of a metal ion, and electronegativity is defined as half the sum of the 
ionization potential and electron affinity. Softness is defined as the reciprocal of hardness. 

6.2.8 Interference stndies 

The interfering effect of ions on one another was investigated. Results are presented in Table 6.2. 

An ion was said to be interfering, if it caused more than 5% reduction in the uptake of another 

one. Based on the criteria for interference set, it was deduced that the uptake ofNi(!!) and Cu(II) 

are not affected by the presence of any of the metals studied. The uptake of Cd(II) was, however, 

suppressed somehow by all the metals. Cu(II) and Ni(II) interfered the uptake of each other at 

higher concentrations of the interfering agents . At higher concentrations of Co(I!), it interfered 

the uptake of both Cu(!!) and Ni(II). Uptake ofPb is affected by the presence of Cd. 
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Table 6.3: Recoveries of metals upon spiking with supposed interfering metal ions 

Spiked interfering Concentration of analyte ion adsorbed from a 5 mgL" solution in the 
ions (mgL'!) presence of interring ion 

Pb Cu Ni Co Cd 
Pb I 4.98 (0.06) 4.99 (0.02) 5.00 (0.07) 4.26 (0.09) 

10 4.93 (0.69) 4.97 (0.01) 4.96 (0.04) 4.01 (0.10) 
Cu I 4.52 (0.03) 4.19 (0.09) 4.81 (0.\0) 4.71 (0.06) 

10 5.90 (0.01) 4.00 (0.06) 4.28 (0.03) 4.56 (0.09) 
Ni I 4.98 (0.04) 4.73 (0.04) 4.71 (0.09) 4.85 (0.12) 

10 4.78 (0.02) 4.04 (0.08) 4.67 (0 .06) 8.75 (0.08) 
Co I 4.93 (0.12) 4.99 (0 .09) 4.91 (0.09) 4.99 (0.06) 

10 5.00 (0 .06) 4.15 (0 .09) 4.09 (0.96) 4.12 (0 .04) 
Cd I 4.46 (0.08) 4.96 (0.46) 4.94 (0.07) 4.95 (0.08) 

10 4.10 (0.05) 4.76 (0.31) 4.92 (0.01) 4.86 (0.01) 

6.3 Conclusion 

Polystyrene solution was successfully functionalized with potassium salts of IH-pyrazole-I-

carbodithioate and IH-imidazole-I-carbodithioate and was electro spun into nanofibers. The 

functionalized nanofibers were found to have optimal adsorption of metal ions around the natural 

pH of the water types sampled. Bond strengths of the metal-ligand complexes as depicted by 

their formation constants were high and fo llowed the order of the metals ' electronegativity or 

ionic strength. The functionalized nanofibers exhibited fast adsorption kinetics and high loading 

capacities for metal ions. These qualities coupled with the high stability of the metal-ligand 

complexes and tenability for easy desorption of the metal ions from the surface make 

electro spun polystyrene nanofibers functionalized with diazoles excellent sorbents for the 

enrichment of heavy metal ions for aqueous environments. 
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7 
Pre-concentration of eu(II), Ni(II), and Pb(II) in aqueous 
solutions usmg electro spun 

functionalized with 
propyl] amino ]-2-propanol 

This chapter is based on: 

polysulfone nanofibers 
1-[bis[3-( dimethylamino)-

Darko, G., Chigome, S. , Tshentu , Z. , Torto, N. (2011). Enrichment ofCu(H), Ni(I1) , and Pb(H) in aqueous solutions 

using electrospun polysulfone nanofibers functionalized with 1-[bis[3-( dimethylamino )-propyJ]amino ]-2-propanol. 
Analytical Letters 44(11): 1855- 1867. 
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7.1 Overview 

The diazo Ie-incorporated polystyrene sorbent exhibited sharp decline in efficiencies of 

adsorptions and desorptions just after the second round of usage. The deterioration in efficiency 

of use could be as result of either leaching of the ligand or loss of small masses of sorbent upon 

successive usage. Chemically coupling the ligand (through covalent bonds) with the polymer 

will halt leaching of the ligand and improve the stability of the sorben!. In this work, polysulfone 

solution was functionalized with 1-[bis[3-( dimethylamino )-propyl]amino ]-2-propanol and 

electrospun into nanofibers which then employed as sorbents for pre-concentrating heavy metal 

ions from aqueous environments. 

7.2 Results and discussions 

7.2.1 FT -IR studies 
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Figure 7.1: FTlR Spectra for unfunctionalized polysuUone nanofiber (A); 1-[bis[3-
(dimethylamino)-propyl]amino]-2-propanol (B); and polysulfone nanofiber functionalized with 1-
Ibis[3-(dimethylamino)-propyllamino]-2-propanol (C). 
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Figure 7.1 shows the infra red spectra of the unfunctionalized nanofiber (A), the amine ligand 

(B) and the functionalized nanofiber (C). The spectrum of the functionalized nanofiber showed 

the N-H stretch due to an amine group (- 3000 cm-I
, dublet). The N-H adsorption band was, 

however, absent on the unfunctionalized nanofibers. This indicated that the functionalized 

nanofiber contained an amine group. 

7.2.2 Effect of pH on adsorption and desorption 

Figure 7.2 shows the dependence of metal adsorptions on pH. No adsorptions were achieved in 

the high acidic solutions (pH <3) for all the three metal ions. As the H+ ions concentration in 

solution is very high at lower pH, the It ions tend to fill up the binding sites on the adsorbent 

surface and create electrostatic repulsion for the metal ions . This leads to lower metal enrichment 

efficiencies at lower pH values. Metal uptake is, however, favoured at higher pH values where 

H+ ion concentrations and consequently electrostatic repulsions are lower. 

The optimal pH for adsorptions was 5.92, 6.12 and 7.67 for Cu, Ni and Pb respectively. The 

adsorption profiles of the metal ions showed less variation with pH despite the higher Lewis 

acidity of Cu compared with Ni and Pb, suggesting that there are other physical parameters at 

play that overcome this thermodynamic factor. 
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Figure 7.2: Adsorption profIles of Cu, Ni and Pb on functionalized electrospun polysulfone 
nanofiber 

7.2.3 Effect of contact time on adsorption and desorption 

Initial rates of adsorption were rapid for all the metal ions in both turbulent and quiescent 

experiments (Fig 7.3). Equilibrating times were between 20 - 30 min for the three metals (Pb, eu 

and Ni) in the turbulent experiments. Equilibrating times for adsorptions were shorter in the 

quiescent experiments than in the turbulent ones but efficiencies of adsorptions were more than 

twice better in the turbulent experiments . Adsorptions of the ions were therefore enhanced by 

stirring. Rates of desorption were very rapid for all the metal ions in both types of experiments. 

Equilibration times were all less than 5 min (Fig 7.4). The shorter equilibration times offer an 

advantage of higher sample throughput. The rate of desorption was not affected by stirring. Rate 

of desorption was affected only by the pH of the solution. 
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Figure 7.3: Rate at which metal ions were adsorbed from aqueous solutions on tbe functionalized 
electrospun polysulfone nanofibers during turbulent (T) and in quiescent (Q) experiments. 
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Figure 7.4: Rate at which metal ions were desorhed from the functionalized polysulfone nanofibers 
using 10 ml of 0.10 M UNO'(.q) in turbulent (T) and in quiescent (Q) experiments. 

The fast rates of adsorption and desorption observed is an advantage in that it cuts down 

significantly on the sample preparation time and increases throughput of sample preparation. An 

experimenter will have to soak the fiber containing the analyte solution for about 30 min to 

quantitatively adsorb the metal (Cu, Ni and Pb) ions. The adsorbed ions could be desorbed into 

acidic solution of pH 2 by soaking for not more than 5 min and the sample is ready for 

determination. This approach is far more convenient and faster than the conventional acid 

digestion protocol used for metal ion detennination. 
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7.2.4 Kinetics of adsorptions 

Rates of adsorption were assessed using the fIrst order and second order empirical kinetic models 

and the kinetics best fItted the fIrst order rate law. For fIrst order reactions, the initial 

concentration of adsorbate (a) relates to the equilibrium concentration (x) and time (I) as: 

In _a_ = kt 
a - x 

k is the rate constant (min'\), Equation (1) simplifies into: 

In(a - x)= -kt + Ina 

7.1 

7.2 

Figure 7.5 shows that adsorption of the metal ions on the electrospun fIber follows the fIrst order 

model as the plots of In (a - x) versus I gave straight lines. This means for a given mass of the 

electrospun nanofIber, the rate of adsorption of the metal ions is proportional to the concentration 

of the ions in solution, First order rate constants were 0.258 min'\ for eu(IT), 0.096 min' \ for 

Ni(II) and 0.006 min' \ for Pb(II) . This trend is consistent with the Lewis acidity of the ions. 
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Figure 7.5: First order plots for adsorption of Cu2+, Ni and Pb on the functionalized electrospun 
polysulfone nanofibers. 

7.2.5 Effect of fiber size on efficiency of adsorption 

It was found out that efficiency of adsorption was dependent on the fiber size. Fiber of about 900 

nm in diameter was the highest fiber size to give quantitative adsorption of the metal ions (Fig 

7.6). Adsorption efficiencies declined sharply when the nanofiber diameter increased from 900 to 

1000 nm. Small-sized fibers have a higher surface area. An increase in surface area increases the 

extent of adsorption. Small-sized fibers also generate fiber mat with higher porosity. Adsorption 

kinetics depends on adsorbent porosity as a porous matrix will allow the adsorbate to reach the 

binding sites quicker (Beppu et al .. 2004). 
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Figure 7.6: Adsorption efficiencies the functionalized polysnlfone nanofibers of different diameters 

Relation between nanofiber size and their efficiencies of enriching metals in solution was 

investigated. This was to find out if nanofibers of larger diameters will enrich as efficiently as 

those with smaller diameters. 

7.2.6 Reusability of fiber 

Because the adsorbed ions could desorb completely, no significant change in the efficiencies of 

adsorption and desorption was observed up the 5th time of use (Fig 7.7). Both adsorption and 

desorption efficiencies were more than 90 ± 2.2% at the fifth time of usage. 
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Figure 7.7: Reusability of functionalized electrospun nanofibers 

7.2.7 Adsorption isotherms 

Adsorption isotherms for the metal ions on functionalized electrospun nanofibers were 

constructed for a concentration range of 10 - 200 mg L't at 25°C, and the data best fitted into the 

Freundlich model (Fig. 7.8). The isotherm relates the equilibrium concentrations of a solute on 

the surface of an adsorbent, to the concentration of the solute in the liquid with which it is in 

contact as 

X 1 
- =k Co 
m 

7.3 

where x = mass of solute adsorbed on a mass m of adsorbent; C = equilibrium concentration of 

the solution ; and k and n are constants. 
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Taking logs of equation 3 yields; 

Equation 7.4 implies that a plot of log xlm against log C should be a straight line. 

1 

0.5 • Ni • Cu • Pb 
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-1 log C 

Figure 7.8 Freundlich isotherms for Cu, Ni, and Pb on electrospun nanofiber 

Table 7.1: Adsorption parameters obtained from experimental data fitted into Freundlich 
adsorption model 

Freundlich adsorption constants 
k n R' 

Cu 0.119 1.419 0.998 
Ni 0.175 1.992 0.996 
Pb 0.031 0.906 0.991 
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Adsorption parameters obtained by fitting the experimental data are listed in Table 7.1. The 

Freundlich isotherm is one of the best models that describe adsorptions of metals (Rogers and 

Sclar 2006). This is partly because the isotherm can be used to calculate the equilibrium 

concentration as well as tile mass of adsorbent necessary to cause a desired change in 

concentration for the investigation in question. 

7.2.8 Application on natural water samples 

Applicability of the fibers in real (natural) water environment was evaluated. Table 7.2 shows the 

adsorption efficiencies (recoveries), minimum metal concentrations that could be detected 

reproducibly, and standard errors (% RSD) of adsorption. The average pH of all the water types 

ranged between 6.94 and 7.89. The minimum mean pH of all the water types was higher than the 

optimal pH for adsorption for all the metal ions. This indicates that the polymer nanofiber will 

adsorb maximally in all the water types. 

Recoveries of Cu ranged from 89.58% (in untreated sewage) to 99.86% in tap water. Recoveries 

of Ni and Pb ranged from 69.70% (in untreated sewage) to 98.64% (in river water) and 71.46% 

(in untreated sewage) to 99.0 1% (for seawater) respectively. Recoveries were higher in less 

complex water types like tap water than in tile more complex water types like sewage. 

Adsorption of the metal ion by the functionalized nanofiber is therefore affected by the matrix 

complexity. 
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Table 7.2: Enrichment efficiencies of functionalized electrospun nanofibers in natural water 
samples 

Cu(ll) Ni(lJl Pb(ll) 

\va ter A'. Back- % ads LD % 8ack- % ... LD % Back- ,~ ads LD 
"P' pH b't'Ound /mgfL) RSD ""''''''' (Olg: L) RSD ground (Ing/L) 

(mgll) (mglL) (mg/L) 
So. 1.86 0.38 94.27 0.004 1.28 0.05 97.28 0.001 3-44 0,02 99.01 0.005 
T, p 7.89 0.12 99.86 0.004 1.42 0.01 98.17 0.006 8.62 0.01 98.72 0.006 
River 6.94 0.03 98.63 0.002 0.33 0.Q7 98 .64 0,(>0) 0. 19 0.02 %.98 0.002 
Treated 7.25 0.01 98.73 0.009 3.94 O.OS 91.60 0.010 1.56 0.01 90.31 0.002 
sewage 
Untreated 7.25 4.92 89.58 0.008 1.61 0.Q7 69.10 0.045 1.13 0.Q2 71.46 0.017 
sewage 

7.3 Conclusion 

%RSD 

2.11 
1.54 
0.85 
6.55 

0.97 

Polysulfone has been functionalized with 1-[bis[3-(dimethylamino)-propyl]amino-2-propanol 

and fabricated into nanofibers through electro spinning techniques. The functionalized 

electrospun nanofibers exhibited tunable characteristics in the uptake and release of metal ions 

through pH control. The high enrichment factors observed coupled with the low limits of 

enrichment and fast adsorption rates of the metal ions in real sample matrices indicate that the 

functionalized polymer nanofiber is a good adsorbent for fast enrichment and/or removing metal 

ions from aquatic environments. 
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8 
Pre-concentration of heavy metals usmg electro spun 

amino-functionalized nylon-6 nanofiber sorbent 

This chapter is based on : 

Darko, G., Sabala. A., Chigome. S., Adewuyi. S. , Okonkwo, J.O., Torto, N. (2012). Pre-concenlration of heavy 
metal s using eleclrospun amino-functionalized nylon-6 nanofiber sorbent. S. Afr. J. Chern. , 65, 14-22. 
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8.1 Overview 

Sorbents derived from electrospWl polystyrene and polysulfone functionalized metal-ligands 

achieved adsorbing capacities higher than those of some of the materials already investigated 

(Hamissa et al. , 2010; Heidari et aI., 2009). However, their efficiencies declined sharply with the 

number of usage (Darko et al., 2011). The decline in efficiency was attributed to the loss of some 

of the sorbent mass due to the brittle nature of the polymer used or loss of the ligand. It was 

rationalized that traces of the sorbent might have flaked off during the adsorption-desorption 

processes leading to sequential decrease in sorbent mass upon successive usage. If these reasons 

hold, then chemically coupling the ligand with a mechanically stable polymer such as nylon-6 

would be the solution. 

In this study, nylon-6 was surface-functionalized with a Schiff base ligand, 2-((Z)-(2-

aminophenylimino )methyl)-6-methoxyphenol, prior to electrospimling. The nanofiber 

membranes were stamped out into disks and were employed as sorbent for uptake of heavy 

metals from water samples. The capacity of the sorbent to pre-concentrate heavy metals (As, Cd, 

Ni and Pb) was compared with those of conventional acid digestion protocols. The major 

challenge of sorbent reusability encoWltered with the sorbents developed earlier on was solved 

using amino-functionalized nylon-6 electrospWl nanofiber sorbents . 
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8.2 Results and discussions 

8.2.1 Functionalization and characterization of nylon-6 

r~, . . 11 ,w:{ftS' l~5'C' 
t1 'b'1' n ~H~~ 'O /'... /'... )J ] n 

Nylon 6 

Ca-MeOH, OBU, COl L ! - - J 

Nylon 6-AMMP 

Scheme 8.1: Synthesis of functionalized polymer N-(6-(methylamino)hexyl)-6-oxoheptanamide-2-
«Z)-(2-aminophenylimino)methyl)-6-methoxypbenol (Nylon-6-AMMP) 

Nylon-6 has a structure in which the N-H groups in the chain are hydrogen bonded to the C=O 

groups in adjacent chains; thus nylon has good mechanical and chemical stabilities. 

Consequently, it is difficult to dissolve the polymer before its hydrogen bonds are severed. 

Although nylon-6 is insoluble in methanol, it was observed to be soluble in hot MeOHICaCl2 

solution (Sun, 1994). Solubility of nylon in MeOHICaCh solution was attributed to an initial 

complex compound formed by calcium with nylon-6, by breaking tlle hydrogen bonds, thus 

forcing the polymer into the solvent molecules. Nylon-6 polymer was functionalized by 

covalently bonding it with AMMP, a multidentate ligand molecule, in a Schiff base condensation 

reaction (Scheme 8.1). 
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Figure 8.1: FT-IR spectra of AMMP (A), nylon-6 (B) and functionalized nylon-6-AMMP (C) 
electrospun nanofiber 

A comparison of the FT-JR spectra of the AMMP, nylon-6 and functionalized nylon-6-AMMP 

polymer (Fig 8.1) shows that the changes in the main bond are those anticipated for the covalent 

functionalization of AMMP with nylon-6. The amide I mode, which is known to be dominated 

by the C=O absorption band around 1633 cm'], is shifted and overlaps with the imine stretching 

frequency initially at 1618 cm-' in the AMMP. This spectral change in nylon-6-AMMP polymer 

is ascribed to interaction of the C=O bond of nylon-6 with the -NHl group of the AMMP. Also, 

the sharp N-H bands in nylon-6 and AMMP (3296 and 3362 cm-' respectively) and AMMP-OH 

band appeared as broad peak in the new nylon-6-AMMP, suggesting hydrogen bond interaction. 

In addition, both the symmetrical and asymmetrical -CHl stretching modes of nylon-6 around 

2870 and 2930 cm-' respectively are present in the new nylon-6-AMMP spectrum. The use of 

A TR is more appropriate in this work because it only scans the surface (up to the depth of 5 11) of 
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the nanofiber membrane (Greener et al .. 20 I 0). The functional groups identified on the spectra 

can therefore said to be on the surface of the membrane. 

8.2.2 Electrospinning of functionalized nylon-6 

The morphologies nanofibers and their formation during electro spinning are dependent on the 

properties of the polymer solution used (Hussain et aI., 2010). Nylon-6 dissolves in formic acid, 

but not in acetic acid. However, steady states could not be achieved when pure formic acid was 

used to electro spin nylon-6 (De Vrieze et aI., 20 11). Therefore, formic acid was blended with 

acetic acid in order to achieve steady states during the electrospinning of the functionalized 

nylon-6. Smooth, non-beaded nanofibers of diameter ranging from 80 nm to 95 nm were 

obtained (Fig 8.2). 

!J . .tl..TE . , 1 fU .2/1 0 
DE:,;T. CLe' ete c to r 5 un ... 
C. t;!!v l ce V,: · "17&04 t;1 J 

\/E'Q -.i ' .... T " .. s c ... n 
R hode _ Un l,,"erZ ltv 8C • 

Figure 8.2: Scanning electron microscopy image of nylon-6-AMMP nanofibers 
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8.2.3 Porosity measurements 

The highly porous nature of nanofiber non-woven produced via electrospinning is a key element 

in their application in many fields (Oh et al .• 2008; Shim et aI., 2006). For example, the pore 

sizes of the sorbent material will control the accessibility of the ligand to the metal ions. The 

specific surface area of the sorben! defines its efficiency of adsorption. Table 8.1 shows the pore 

characteristics of the amino-functionalized nylon-6 sorben!. 

Table 8.1: Pore characteristics of electrospun nylon-6-AMMP nanofiber sorbent 

Porosity parameter 

Average fiber diameter (run) 
Specific surface areal (m2/g) 

Average pore size! (A) 
Micropore volume! (cm2/g) 

Measurement 

80 ± 19 

58.10 ± 2.25 
122± 1.61 
0.08 ± 0.01 

~ Specific surface area was calculated using the BET method. ! Average pore size and micropore volume was calculated using the 
BJH method. 

The specific surface area of the sorbent is determined by the size of the nanofibers it is composed 

of. Nanofibers of smaller diameters produce sorbents of higher surface areas. The average fiber 

diameter (80 ± 19 nm) and specific surface area (58.10 ± 2.25 m2/g) generated from 

electrospinning 12% nylon-6 in this work, compares favourably with the average diameter of 90 

nm and specific surface area of 33 m2/g recorded on electro spinning 15% nylon-6 (Ryu et aI., 

2003). Dianleter of electrospun nanofibers are directly proportional to the polymer concentration 

used. Therefore 15 wt% concentration was expected to give nanofibers of bigger diameters 

(smaller specific surface areas) than those from 12 wt% concentration. 
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8.2.4 pH dependence 

The concentration of H+ ions in the solution containing the adsorbate is an important criterion in 

adsorption studies because H+ ions compete with the metal cations for the binding sites on the 

sorbent. The concentration of H+ ion in an acidic solution is relatively high and they tend to fill 

up the binding sites on the sorben!'s surface. The H- ions also create a repulsive electrostatic 

force for the on-coming cations. Adsorption is therefore low in highly acidic solutions (PH less 

than 4). Adsorption of metals is however favoured in less acidic solutions because such 

solutions contain less numbers of competing H+ ions and consequently, electrostatic repulsions 

are low. 
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Figure 8.3: Optimal pH for adsorption of heavy metals 

i " 
~ .. 
• 

r • 

r 

! 
~ " 

" 

Figure 8.3 shows the profile of metal ions pre-concentration on the functionalized nanofiber 

sorbent for pH values ranging from 2-12. It was observed that adsorption of the metal ions 

increased rapidly with increase in solution's pH until it reaches equilibrium where no significant 
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change was observed with a change in pH. These adsorption patterns are typical of cations 

(Stumm, 1992). The optimal pH for adsorption was fotnld to be 5.5,6.0,6.5 and II for As, Cd, 

Ni and Pb respectively. No significant adsorptions were observed when the solution pH was less 

than 3 in all metals studied. This was the expected trend due to high competition between the H

and the metal cations in acidic solutions. 

The adsorption curves and the optimal pH values obtained in the work are similar to those 

observed in the previous studies. For example, Ezoddin et al (2010) found the pH range of 7-8 as 

the optimal for quantitative recovery (> 95%) of Cd and Pb on a modified nano-')I-alumina. Zhou 

et al (2009) observed that no appreciable uptake of metals occurred on thiourea-modified 

magnetic chitosan micro spheres when the solution pH was less than 2. Because the pH of natural 

groundwater is often in the range of 5.5-8.5 (Guo and Chen 2007), there will be no need for pH 

adjustments when the sorbent is used in natural waters . This is of significant in1portance in 

applying the sorbent in natural water environments. 
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8.2.5 Adsorption kinetics 
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Figure 8.4: Adsorption kinetics of As, Cd, Ni and Pb on nylon-6-AMMP electrospun nanofiber 
sorben! 

Figure 8.4 shows the adsorption profile of metals with respect to time_ The process showed 

considerably fast kinetics at the initial period until equilibrium was attained_ For example, by the 

end of the 10th min after application of the sorbent, 97% of As, 98% of Cd, 96% of Ni and 95% 

of Pb had already been adsorbed_ These equilibration times were shorter than the 3 h recorded 

for functionalized chitosan sorbents (Justi et ai. , 2005), 6 h for an ion imprinted composite (Rena 

et aI., 2008) and 8 h for thiourea-modified magnetic chitosan microspheres (Zhou et ai., 2009)_ 

According to Pierce and Moore (1982), adsorption processes that are purely due to electrostatic 

attractions are usually very rapid. Hence, the results obtained in this work might indicate a 

hydrogen bond formation between the metal species and the sorben!. Such fast adsorptions 
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kinetics is an added advantage of the sorbent as it allows for a high throughput of samples prior 

to analysis. 

8.2.6 Kinetic models 

Adsorption data obtained were fitted into kinetic models and the first order kinetics best 

described the process. For first order reactions, the initial concentration of adsorbate (a) relates to 

the equilibrium concentration (x) and time (I) as: 

In(a - x) = -kt + In a 8.1 

k is the rate constant (min- I) . 

A plot of In(a - x) VS I (min) will therefore yield a straight line if first order kinetics was 

obeyed. Figure 8.5 show the first order kinetics for As, Cd, Ni and Pb while Table 8.2 shows 

their correlation coefficients and the rate constants, k. 
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Figure 8_5: First order kinetics of adsorption of As, Cd, Ni and Pb on electrospun nylon-6-AMMP 
nanofiber sorbent 
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Table 8.2: Rate constants and the correlation coefficients for first order adsorption of metals on 
electrospun nylon-6-AMMP nanofiber sorben! 

Metal k (min") 
) 

I~ 

Cd 0.0604 0.9781 
Ni 0.0963 0.9961 
Pb 0.0474 0.9873 

As 0.0642 0.9961 

8.2.7 Adsorption isotherms 

Adsorption data obtained from standard solutions (concentration range of 1.0-10 mg/L) at 25 °C 

were fitted into known adsorption models and the data best fitted into the Freundlich model. The 

Freundlich isotherm relates the equilibrium concentrations of a solute on the surface of an 

sorbent to the concentration of the solute in the liquid with which it is in contact as: 

x 

m 
8.2 

where x is the mass of solute adsorbed on a fixed mass of sorbent (m) and C is the equilibrium 

concentration of the solution; and k and n are constants. 

Taking logs of equation 3 gives: 

I 
logk + -logC 

n 
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It could be deduced from Eqn 8.3 that a plot of log(xlm) versus log C should be a straight line if 

the adsorptions of heavy metals on the electro spun nylon-6 sorbents followed the Freundlich 

model. Figure 8.6 shows the isotherms obtained for the individual metals. 
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Figure 8.6: Freundlich isotherm depicting the adsorption of As, Cd, Ni and Pb on electrospun 
nylon-6-AMMP nanofiber sorbent 

The Freundlich isotherm best fits a wide range of experimental data (Rogers and Sclar 2006) 

because it is based on empirical results and not on theoretical assumptions. The benefit of the 

isotherm is that it could be used to calculate the equilibrium concentration. In any case, 

adsorptions on the nanofiber sorbent were not expected to obey the Langmuir model due to non-

uniformity of the sorbent's surface. 
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8.2.8 Comparison with digestion protocols 

Using the metal concentrations obtained from samples that were only spike with HN03 as the 

bench mark, the capacity of the sorbent to pre-concentrate metals (As, Cd, Ni and Pb) was 

compared with those of standard digestion protocols, namely aqua regia and HN03+H202 

digestion methods. The relative pre-concentration factors achieved by the three methods are 

summarized in Fig 8.7. 

The concentrations of As and Cd in all the water samples were generally low compared to those 

of Ni and Pb. The 3 methods recorded similar levels of pre-concentrating Ni in river water 

samples; 6.30 for HN03+H20 2 digestion, 6.69 for aqua regia digestion and 6.55 for adsorptions. 

That means any of the 3 methods could be used for enriching Ni in river water samples. Pb ions 

in the river water samples were pre-concentrated slightly better using the two digestion methods 

(pre-concentration factor - 22) compared to adsorptions (pre-concentration factor - 21). With 

regards to As and Cd in river water samples, the efficiency of pre-concentration followed the 

trend: aqua regia digestion > adsorption> HN03+H202 digestion. 

The efficiencies of pre-concentrating As in tap and sea water samples were almost the same for 

all the three methods. Aqua regia digestion was the best pre-concentration procedure for Cd and 

Ni followed by the adsorption method. The digestion methods recorded higher pre-concentration 

efficiencies (11.66 for aqua regia digestion and 11.27 for HN03+H20 2 digestion) compared to 

the adsorption method (9.87). The sorbent could not pre-concentrate Cd in sea water although the 

concentrations detected using the digestion methods were higher than the LOD of the adsorption 

method. This could be due to matrice effect of the sea water. The HN03+H20 2 and aqua regia 

digestion metllOds recorded pre-concentration factors of 0.19 and 0.11 respectively for Cd in sea 
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water samples. The order of pre-concentration efficiencies for Ni in sea water was HN03+H20 2 

digestion>aqua regia digestion> adsorption . With respect to uptake of Pb in sea water, the 

sorbent performed better (factor - I 0.49) than both HN03+H202 (10.45) and aqua regia (9.80). 

In the treated waste water samples, the aqua regia digestion method achieved higher pre

concentration levels than the other two methods. The adsorption process was also slightly more 

efficient than the HN03+H20 2 digestion with respect to Cd and Ni. However, the efficiency of 

HN03+H20 2 digestion superseded that of the adsorption process in terms of Ni and Pb in the 

treated water samples. The pre-concentration efficiencies of the two acid digestion protocols in 

untreated waste water samples were slightly higher than tlmt of the adsorption process, for all the 

metals investigated. Ideally, one expects fouling on the sorbent when it is applied in complex 

matrices like untreated waste water. The high performance of the nanofiber sorbent, relative to 

other membrane sorbents, is attributable to the highly porous nature ofthe nanofibers. 
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Figure 8.7: Comparison of pre-concentration of As, Cd, Ni and Pb achieved using HNO,+H,O, 
digestion, aqua regia digestion or adsorption in river, tap, sea, treated and untreated waste water 
samples 

8.2.9 Reusability of nanofiber sorbent 

The sorbent showed a remarkable stability in reusability. Sorbent reusability which used to be a 

challenge with some of the electrospun nanofiber sorbents we prepared early was not 

encountered in this work. This is because the ligand was covalently bonded to a mechanically 

stable nylon-6 backbone. Leaching of the ligand and loss of traces of the sorbent during use was 

therefore restricted. Just about 0.1 % reduction in adsorption/desorption effici encies was observed 

at the 10th round of usage (Fig 8.8). 
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Figure 8.8: Reusability of the sorbent 

8.3 Conclusion 

Nylon-6 was successfully functionalized with a Schiff base ligand that has a high affinity for 

heavy metal ions. The functionalized polymer was electro spun to get nanofibers which was them 

stamped out into sorbents for uptake of heavy metal ions from different aqueous environments. 

The sorbent tuned as a function pH, for both uptake and release of the metals . The sorbent 

exhibited high pre-concentration capacity comparable to acid digestion protocols currently in 

use. It also presents the advantage of good reusability and high chemical stability. Electrospun 

functionalized nylon-6 nanofiber sorbent has been successfully applied to pre-concentrate heavy 

metals from different aqueous environments. 
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Conclusions 
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9 Conclusions 

This thesis presented an evaluation on the applicability of electrospun nanofiber sorbents in pre

concentration of heavy metals from different aqueous environments. The optimal conditions for 

e1ectrospinning polyamide-6, polyethersulfone, polysulfone and polystyrene were established 

and their nanofibers fully characterized in terms of their morphologies and porosities. The 

electrospun nanofibers had mesoporous structures, smaller diameters and large surface areas. 

The sorbents were characterized regarding their tunability for uptake and release of heavy 

metals, reusability and loading capacities. They exhited fast adsorption kinetics, high loading 

capacities, good stability for reuse and high recovery levels for heavy metals in water. 

Parameters affecting adsorption such as fiber diameter, contact time, and pH were investigated. 

The adsorption characteristics of the sorbents best fitted the Freundlich isotherm and followed 

the first order kinetics. The maximum equilibration time for pre-concentrating Cu, Ni and Pb in 

different water sources using polysulfone functionalized with 1-[bis[3-(dimethylamino)

propyl]amino ]-2-propanol was up to 30 min. The optimal pH for pre-concentrating heavy metals 

using diazole-incorporated polystyrene nanofibers was found to be dependent on the basicity of 

the ligands. The functionalized polystyrene and polysulfone nanofibers sorbents could be 

regenerated and re-used up to five times without a significant deterioration in adsorption and 

desorption efficiencies. 

Sorbent reusability improved dramatically (up to 10 runs of usage) when mechanically stable 

amino-functionalized nylon-6 electrospun nanofibers were used. The capacity of the amino

functionalized nylon-6 sorbent to pre-concentrate heavy metals compared favourably with those 
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of aqua regia and HNO]+H202 digestions especially in less complex matrixes. Due to their 

highly porous nature, the electrospun nanofibers exhibited high adsorption capacities (up to 50 

mg/g) for heavy metal ions. The loading capacities of the electrospun nanofiber sorbents 

exceeded those of chitosan microparticles, ion imprinted composites and amino-functionalized 

mesoporous materials. 

This thesis has demonstrated the potential of electrospun nanofiber as novel sorbents for efficient 

and cost effective alternative for pre-concentrating heavy metals in aqueous environments. 
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